
M A N N I N G

Paul P. Daniels
Luis Atencio
FOREWORD BY Ben Lesh

www.allitebooks.com

http://www.allitebooks.org

RxJS in Action
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

RxJS in Action
COVERS RXJS 5

PAUL P. DANIELS
LUIS ATENCIO

FOREWORD BY BEN LESH

M A N N I N G
SHELTER ISLAND
www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2017 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Frances Lefkowitz
20 Baldwin Road Technical development editor: Dean Iverson
PO Box 761 Project editor: Janet Vail
Shelter Island, NY 11964 Copyeditor: Linda Recktenwald

Proofreader: Katie Tennant
Technical proofreader: Cody Sand

Typesetter: Dottie Marsico
Cover designer: Marija Tudor

ISBN 9781617293412
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 22 21 20 19 18 17
www.allitebooks.com

http://www.manning.com
http://www.allitebooks.org

brief contents
PART 1 UNDERSTANDING STREAMS 1

1 ■ Thinking reactively 3
2 ■ Reacting with RxJS 28
3 ■ Core operators 61
4 ■ It’s about time you used RxJS 85

PART 2 OBSERVABLES IN PRACTICE 119
5 ■ Applied reactive streams 121
6 ■ Coordinating business processes 151
7 ■ Error handling with RxJS 182

PART 3 MASTERING RXJS 209
8 ■ Heating up observables 211
9 ■ Toward testable, reactive programs 245

10 ■ RxJS in the wild 271
v

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

contents
foreword xiii
preface xv
acknowledgments xvii
about this book xix
about the authors xxiv
about the cover xxv

PART 1 UNDERSTANDING STREAMS.................................1

1 Thinking reactively 3
1.1 Synchronous vs. asynchronous computing 5

Issues with blocking code 5 ■ Non-blocking code with
callback functions 6 ■ Understanding time and space 7
Are callbacks out of the picture? 9 ■ Event emitters 11

1.2 Better callbacks with Promises 12
1.3 The need for a different paradigm 14
1.4 The Reactive Extensions for JavaScript 17

Thinking in streams: data flows and propagation 17
Introducing the RxJS project 18 ■ Everything is a
stream 19 ■ Abstracting the notion of time from your
programs 21 ■ Components of an Rx stream 23

1.5 Reactive and other programming paradigms 26
1.6 Summary 27
vii

www.allitebooks.com

http://www.allitebooks.org

CONTENTSviii
2 Reacting with RxJS 28
2.1 Functional programming as the pillar of reactive

programming 29
Functional programming 30 ■ The iterator pattern 38

2.2 Stream’s data-driven approach 41
2.3 Wrapping data sources with Rx.Observable 43

Identifying different sources of data 43 ■ Creating RxJS
observables 44 ■ When and where to use RxJS 46
To push or not to push 49

2.4 Consuming data with observers 53
The Observer API 53 ■ Creating bare observables 55
Observable modules 57

2.5 Summary 60

3 Core operators 61
3.1 Evaluating and cancelling streams 62

Downside of eager allocation 62 ■ Lazy allocation and
subscribing to observables 64 ■ Disposing of subscriptions:
explicit cancellation 65 ■ Cancellation mismatch between
RxJS and other APIs 67

3.2 Popular RxJS observable operators 69
Introducing the core operators 70

3.3 Sequencing operator pipelines with aggregates 77
Self-contained pipelines and referential transparency 77
Performance advantages of sequencing with RxJS 80

3.4 Summary 83

4 It’s about time you used RxJS 85
4.1 Why worry about time? 87
4.2 Understanding asynchronous timing with JavaScript 88

Implicit timing 88 ■ Explicit timing 88 ■ The JavaScript
timing interfaces 90

4.3 Back to the future with RxJS 94
Propagation 98 ■ Sequential time 99

4.4 Handling user input 101
Debouncing 101 ■ Throttling 108

4.5 Buffering in RxJS 111
4.6 Summary 116
www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix
PART 2 OBSERVABLES IN PRACTICE119

5 Applied reactive streams 121
5.1 One for all, and all for one! 122

Interleave events by merging streams 124 ■ Preserve order
of events by concatenating streams 130 ■ Switch to the
latest observable data 133

5.2 Unwinding nested observables: the case of
mergeMap 135

5.3 Mastering asynchronous streams 141
5.4 Drag and drop with concatMap 146
5.5 Summary 150

6 Coordinating business processes 151
6.1 Hooking into the observable lifecycle 152

Web hooks and the observer pattern 153
Hooked on observables 154

6.2 Joining parallel streams with combineLatest and
forkJoin 159
Limitations of using Promises 162 ■ Combining
parallel streams 163 ■ More coordination with
forkJoin 168

6.3 Building a reactive database 170
Populating a database reactively 172 ■ Writing
bulk data 175 ■ Joining related database
operations 177 ■ Reactive databases 180

6.4 Summary 181

7 Error handling with RxJS 182
7.1 Common error-handling techniques 183

Error handling with try/catch 183 ■ Delegating errors
to callbacks 184 ■ Errors and Promises 186

7.2 Incompatibilities between imperative error-handling
techniques and functional and reactive code bases 188

7.3 Understanding the functional error-handling
approach 189

7.4 The RxJS way of dealing with failure 193
Errors propagated downstream to observers 193
Catching and reacting to errors 195 ■ Retrying failed
www.allitebooks.com

http://www.allitebooks.org

CONTENTSx
streams for a fixed number of times 197 ■ Reacting to
failed retries 199

7.5 Summary 208

PART 3 MASTERING RXJS ..209

8 Heating up observables 211
8.1 Introducing hot and cold observables 212

Cold observables 212 ■ Hot observables 215

8.2 A new type of data source: WebSockets 217
A brief look at WebSocket 218 ■ A simple WebSocket
server in Node.js 219 ■ WebSocket client 220

8.3 The impact of side effects on a resubscribe or a
replay 221
Replay vs. resubscribe 222 ■ Replaying the logic
of a stream 222 ■ Resubscribing to a stream 224

8.4 Changing the temperature of an observable 226
Producers as thermometers 227 ■ Making a hot
observable cold 228 ■ Making a cold observable
hot 230 ■ Creating hot-by-operator streams 232

8.5 Connecting one observable to many observers 237
Publish 237 ■ Publish with replay 240
Publish last 242

8.6 Summary 243

9 Toward testable, reactive programs 245
9.1 Testing is inherently built into functional programs 246
9.2 Testing asynchronous code and promises 250

Testing AJAX requests 250 ■ Working with Promises 253

9.3 Testing reactive streams 255
9.4 Making streams testable 258
9.5 Scheduling values in RxJS 260
9.6 Augmenting virtual reality 263

Playing with marbles 264 ■ Fake it ’til you make it 266
Refactoring your search stream for testability 267

9.7 Summary 270

CONTENTS xi
10 RxJS in the wild 271
10.1 Building a basic banking application 273
10.2 Introduction to React and Redux 274

Rendering UI components with React 274
State management with Redux 284

10.3 Redux-ing application state 286
Actions and reducers 286 ■ Redux store 287

10.4 Building a hot RxJS and Redux store adapter 290
10.5 Asynchronous middleware with RxJS Subject 291

RxJS subjects 294 ■ Building epic, reactive middleware 296

10.6 Bringing it all home 302
10.7 Parting words 304
10.8 Summary 304

appendix A Installation of libraries used in this book 305
appendix B Choosing an operator 310

index 315

foreword
It’s no secret that the web has grown dramatically in popularity as a platform for build-
ing large-scale, high-traffic applications. Modern web applications are somewhat
unique in the computing world, however, because they require a great deal of asyn-
chrony, ranging from AJAX requests to animations to lazy-loaded client resources and
multiplexed web sockets. And all this asynchrony comes with a complexity cost.

 A simple drag and drop, for example, is actually a coordination of three or more
different events: wait for a mouse-down and then listen to all mouse movements until
the next mouse-up. Current imperative approaches to implement this sort of thing are
not always straightforward; they’re difficult to maintain, and they’re rarely bug free.

 RxJS is an ideal tool to help you manage asynchronous complexity in your applica-
tions in a declarative, easy-to-maintain, and fun way. So how do you learn Rx?

 This book, RxJS in Action, is to date the only resource of its type to cover the latest
version, RxJS 5. As the project lead for RxJS, I’m very happy to see this book reach the
masses with important information you need to know about this library in order to be
an effective reactive programmer.

 —Ben Lesh
Project lead, RxJS 5
xiii

preface
We wrote this book to help you understand the power and significance of reactive pro-
gramming in JavaScript and develop the skills to put RxJS to work.

FROM PAUL: Like many skills, RxJS was not something I had originally set out to learn
but instead something I stumbled on and continued in, only because of a confluence
of events. Earlier in my programming career, I had been working on a new UI system
for an internal tool in which the project owner had given me a large degree of latitude
regarding what technologies I employed. Because the only constraint was that it be
written in .NET, I was introduced to Rx.NET first while trying to build out various UI
interactions. During and after my college years, my experience had been primarily of
an object-oriented nature. I understood the singleton pattern, the decorator, the
adapter, and others, and I had heard of a fabled programming paradigm that
focused—seemingly counterintuitively—on functions. But to me, that seemed entirely
backward. Ignoring the larger context involved, I happily plugged the new library into
my application, thinking it a simple substitute for the existing .NET event system.

 On a later project, where I was first starting to really cut my teeth with JavaScript, I
thought back to the library I had used that made my event management so much eas-
ier, and I went looking for a parallel in JavaScript. Lo and behold, RxJS entered my
life! At first, I happily plugged it in wherever I could, seeing it simply as a way to
replace the ugliness of event callbacks. The full breadth of what could be accom-
plished with RxJS and the benefits of reactive, functional programming dawned
slowly. It started with the gift of a book from a family member on Clojure, which gave
me some insight into this mystical functional world. It expanded as I looked more into
xv

PREFACExvi
asynchronous patterns and saw the parallels in other asynchronous structures like
promises.

 It was around this time, as I became more involved in the community of RxJS (pri-
marily through contributions to the open source library back in the old days of RxJS
2!), that Manning approached me about the possibility of writing a book on RxJS. It
was to be a rather large undertaking, especially for me as a first-time author. But it pre-
sented me with the ability to give back to the overall community in a way that hadn’t
been available when I started learning Rx, because most of the resources focused pri-
marily on Rx.NET. And I was lucky enough to have Luis join me on the project, mak-
ing it less daunting.

FROM LUIS: I came across RxJS a couple of years ago, while studying monads in func-
tional programming. The realization that the two were intimately related opened my
eyes to new and different ways of designing APIs. I instantly fell in love with it. So I
began using RxJS as an orchestration layer to consume information from different
remote services and feed user interfaces an object, easy to digest, containing all the
information that needed to be displayed.

 I wanted others to learn about RxJS, so I decided to end my first book, Functional
Programming in JavaScript, with a section on reactive programming and RxJS observ-
ables. But my passion didn’t stop there. A couple of months later, Manning
approached me and I was privileged to pair up with Paul, who I found to be an incred-
ibly talented engineer, to coauthor this book. And just like that, I was again writing
about my two favorite topics—JavaScript and functional programming.

acknowledgments
Writing a book is no simple task. It isn’t a straightforward data dump of knowledge
onto paper (or e-ink). Building a book that’s accurate, well paced, and sufficiently dif-
ficult yet not overly abstract takes many people working through the countless revi-
sions to bring you a book like the one you’re reading now.

 The staff at Manning were instrumental in getting this book from a loosely related
set of lessons into a quality resource of learning material. Special thanks to Mike Ste-
phens and Erin Twohey for originally approaching me about writing a book about
RxJS; to Frances Lefkowitz for being the best editor out there and herding the cats
otherwise known as us authors through to the finish line; to Bert Bates for never set-
tling for less, passing on his wisdom on teaching technical topics, and always trying to
help elevate us as writers; and to everyone on the editorial and production teams,
including Kevin Sullivan, Linda Recktenwald, Dottie Marsico, Katie Tennant, and all
the other people who worked behind the scenes.

 We owe a huge thanks to Aleksandar Dragosavljevic and his amazing team of
technical peer reviewers—Álvaro Falquina, Bachir Chihani, Carlos Curotto, Clin-
ton Campbell, Corinna Cohn, Damian Esteban, James Anaipakos, Kamal Raj, Mat-
teo Gildone, Osama Khan, Rod Monk, Sai Ram Kota, Thomas Peklak, Tim
Thornton, and Zachary Lysobey—and, of course, all the wonderful insights and
suggestions from the forum contributors.

 For the technical side of things, we’d like to thank Dean Iverson for being a fan-
tastic technical editor, whose attention to detail was frankly incredible. Also, we’d
like to thank Cody Sand for his quick and thorough edits; he was really the best
technical proofer one could ask for with tight deadlines. In addition, we’d like to
especially thank Ben Lesh for writing the foreword to the book.
xvii

ACKNOWLEDGMENTSxviii
FROM PAUL: I would like to thank foremost my family—mother, father, brothers,
and all the aunts, uncles, and grandparents who inspired me to grow up reading,
writing, and playing with computers. Also, I thank my friends for supporting me
through this long process and not being too disappointed when I had to choose
writing over you. And finally, I thank my coworkers for being willing guinea pigs as
I learned how to teach this topic. And to everyone who asked what the book was
about and followed up by asking what JavaScript was—seriously, love you guys —
thank you.

FROM LUIS: I would like to thank my wife for being my inspiration and my family for
always supporting me, pushing me to become better every day, and not questioning
why I decided to do this all over again ; also, my friends and colleagues at work
for your support in purchasing early releases of the chapters.

 Finally, we both would like to thank the JavaScript community at large for adopt-
ing RxJS through this book and giving us feedback.

about this book
Asynchronous code is something the human brain never seems quite able to under-
stand. Its behavior is, at best, difficult to synthesize and, at worst, completely nonde-
terministic.

 We, as programmers, have been to the dark side and seen what happens when
code is written with a series of timeouts and callbacks. We’ve tried to keep up with all
the possible outcomes and implications of a block of code where asynchronous execu-
tion is involved. We’ve handled new failure cases because we now have to face cases
where our code executes out of order. And we’ve seen the type of chaos that nested
callbacks and global state bring to code that can execute out of order.

 Moreover, the amount of data that we’re processing these days, both on the client
side and on the server side, means that we can’t spend our time sweating the small
stuff. We shouldn’t reinvent the wheel every time we have data coming over the wire.
And the paradigm that we use should include the necessary constructs for free so that
we can simply layer our business logic on top.

 Reactive programming, and RxJS in particular, gives us the tools to build pipelines
to move our data through without worrying about the boilerplate underneath. And it
does so using concepts distilled from functional programming to give us clean, read-
able syntax that will be useful six months from now.

Road map
This book has 10 chapters split over three parts that will take you from a basic intro-
duction to RxJS and the functional concepts underlying it all the way to more-
advanced practical examples of using RxJS in the real world.
xix

ABOUT THIS BOOKxx
 Part 1 is all about getting your feet wet with reactive programming. We know that,
for many readers, this is a new topic, but fortunately, if you’ve been using JavaScript
for any amount of time, chances are you’ve already been exposed to some of the con-
cepts that RxJS uses:

 Chapter 1 introduces the idea of thinking reactively. We compare asynchronous
versus synchronous paradigms and point out where existing patterns fall short.
This chapter explains why you need reactive programming and how it fits in
with your existing models of computing.

 Chapter 2 introduces the primitives of RxJS: the Observable and the Observer.
We look at RxJS’s data-driven model and how the consistent computational
model of streams allows you to see all data sources as Observables.

 Chapter 3 opens the RxJS toolbox to look at the operators that make building
functional pipelines possible. Here, you’ll see how streams are built and
expanded through the use of these operators.

 Chapter 4 adds time as a new layer of complexity for building pipelines. We
examine how time can be recorded and even manipulated by RxJS operators.

Part 2 zeroes in on more-practical aspects of RxJS, such as nesting and combining
multiple streams and handling exceptions in Rx:

 Chapter 5 looks at nesting Observables and the functional technique of flatten-
ing streams. This chapter walks through the process of converting multiple
streams into a single stream.

 Chapter 6 covers combining the output of streams to build unions or intersec-
tions out of their respective events. In particular, this chapter looks at a few of
the possibilities when combining the outputs of multiple observables.

 Chapter 7 is all about exceptions—or, more specifically, how to handle them in
a stream without having messy boilerplate logic everywhere. This chapter starts
with a foundation in functional error handling through a Try object and builds
up to an understanding of how exceptions can be handled gracefully in an
Observable.

Part 3 is about the more complex tasks in RxJS. In this section, we look at practical
examples of handling the temperature of Observables and unit testing with virtual
time, and finally we put together all we’ve discussed to build a reactive application by
integrating RxJS with other frameworks. Note: we decided to wait until chapter 8 to
discuss Subjects because we think they’re often a beginner’s crutch that allows you to
use patterns that are more familiar to you, while seemingly “Rx-ified.” Although this
isn’t wrong, our view is that this isn’t in following with the spirit of Rx and it tends to
rob developers of many of the benefits of using RxJS. Thus, we focus first and primar-
ily on Observables and Observers, in order to show the multitude of solutions avail-
able before you resort to using Subjects.

ABOUT THIS BOOK xxi
 Chapter 8 explores how to manage the temperature of Observables. This
involves not just a discussion about whether certain data sources are hot or cold
but also how you can change the temperature of such data sources to fit your
needs.

 Chapter 9 handles reactive testing. We cover topics that are important for test-
ing your Observables and address techniques for building modular and test-
able applications. Finally, we show how you can control the flow of time
explicitly while testing, to avoid making tests dependent on real-world time.

 Chapter 10 puts RxJS to use in the real world by integrating it into a functional
banking application with React and Redux. This app is both modular and reac-
tive, and we show how you can easily test and extend this application.

Finally, there are two appendixes at the end of the book:

 Appendix A, “Installation of libraries used in this book”
Our goal was to use external libraries only as necessary and helpful, while also
being as inclusive as possible. So, for instance, we don’t use TypeScript, because
it’s still a sore spot for many developers, with ongoing transpiler wars (with
PureScript, CoffeeScript, Dart, or Flow + JavaScript, and others). Eliminating
the need to explain TypeScript and its many evolving language features—or
worse, assuming all our readers know it—allowed us to focus on the meat of
RxJS and avoid alienating developers who haven’t, can’t, or don’t want to join
the transpiler bandwagon. Along the same lines, we wanted to go with the sim-
plest route of installation, so we decided not to include the install for other
frameworks, even those commonly associated with RxJS. Most frameworks have
several steps for installing, and likely those steps will have changed by the time
of publication. So we leave it to the library maintainers and Stack Overflow for
troubleshooting RxJS integrations with your favorite framework.

 Appendix B, “Choosing an operator”
This is a list of all the operators that we use in the book. There are plenty more
operators, but there is not one standard set that everyone agrees on, and the list
is still growing and changing. Purists may wish we included fewer operators,
whereas kitchen-sinkers will want operators for a use case they came up with for
a pet project no one else may ever see. We decided it would be most helpful if
we stuck to the operators that we show you how to use throughout the book, so
you can be assured that you’ll know how to put all operators on our list to work.
A more complete list of operators can be found at http://reactivex.io/rxjs/
manual/overview.html#choose-an-operator.

Who should read this book
RxJS in Action is for JavaScript developers who are aware of the current asynchronous
challenges facing modern applications. We expect that, for beginners, this book will

http://reactivex.io/rxjs/manual/overview.html#choose-an-operator.
http://reactivex.io/rxjs/manual/overview.html#choose-an-operator.
http://reactivex.io/rxjs/manual/overview.html#choose-an-operator.

ABOUT THIS BOOKxxii
be quite the crash course because we assume that the reader is already familiar with
JavaScript syntax and conventions.

 Intermediate developers improve their development chops by adding a new set of
tools to their JavaScript toolkit. Reactive programming standardizes the push-based
event model to allow the consolidation of many of the familiar patterns of event emis-
sion under one roof. Advanced developers or developers who are coming from Rx in
other languages will benefit from learning some of the gotchas and pitfalls involved in
using RxJS as well as understanding some of the common patterns for using RxJS in
practice. Also, although this book covers some functional concepts, it shouldn’t be
considered an introduction to functional programming. For a better resource on that,
see Functional Programming in JavaScript (Manning, 2016).

How to use this book
For your best reading experience, it’s important to understand that the first three
chapters will be new for some readers but review for others. We had to strike a balance
between addressing readers who need a more gentle introduction to what is in some
ways a large paradigm shift and those who are already “thinking in streams” and com-
ing to this book strictly to learn the RxJS approach. We erred on the side of providing
more introduction, and we encourage more-advanced readers to skip ahead to the
topics they’re ready to learn.

 So our recommendations for how to use this book depend on who you are. If
you’re a beginner or intermediate developer or are just curious about the founda-
tional aspects that led to the development of RxJS, start with chapter 1. If you’re a
strong programmer already familiar with the reactive paradigm, you can skim chap-
ters 1 and 2 and then jump in at chapter 3, where we really start diving into code sam-
ples with RxJS. More-advanced developers, those who are strong JavaScript developers
with functional backgrounds or who are coming from Rx in a different language, can
probably do a quick review of chapter 3 for JavaScript-specific fundamentals and then
start reading in earnest with chapter 4.

Examples and source code
The code examples in this book use ECMAScript 6 JavaScript (aka ES6, aka ES2015),
which run equally well on either the server side, aka Node.js, or in the browser. Some
examples show network I/O operations or browser DOM APIs but don’t include any
remarks about browser incompatibilities, nor do we use any browser-specific Java-
Script. We assume a basic level of competence with HTML pages and the console.
During the course of our examples, this book makes use of third-party libraries like
Ramda.js and PouchDB. You can find the documentation and installation information
for these libraries in appendix A. This book contains extensive code listings that
showcase reactive patterns and compare promises and callbacks to their Rx counter-
parts. You can find all the code samples at the publisher’s website, www.man-
ning.com/books/rxjs-in-action, and on GitHub, https://github.com/ RxJSinAction/.

www.manning.com/books/rxjs-in-action
www.manning.com/books/rxjs-in-action
https://github.com/RxJSinAction/

ABOUT THIS BOOK xxiii
The sample code project and the final banking application project are both available
under the root GitHub at https://github.com/RxJSinAction/rxjs-in-action and
https://github.com/RxJSinAction/banking-in-action, respectively. You can find instal-
lation details for both projects in appendix A.

Author Online
Purchase of RxJS in Action includes free access to a private web forum run by Manning
Publications where you can make comments about the book, ask technical questions,
and receive help from the authors and from other users. To access the forum and sub-
scribe to it, point your web browser to www.manning.com/books/rxjs-in-action. This
page provides information on how to get on the forum once you are registered, what
kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and authors can take place. It
is not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the Author Online forum remains voluntary (and
unpaid). We suggest you try asking them some challenging questions lest their inter-
est stray! The Author Online forum and the archives of previous discussions will be
accessible from the publisher’s website as long as the book is in print.

https://github.com/RxJSinAction/rxjs-in-action
https://github.com/RxJSinAction/banking-in-action
www.manning.com/books/rxjs-in-action

about the authors
PAUL P. DANIELS (@paulpdaniels) is a professional software devel-
oper with over 6 years of industry experience as a full stack engi-
neer working in various fields from augmented reality to
embedded systems to cloud platforms. A long-time user and con-
tributor to the Rx community, he enjoys evangelizing and teach-
ing reactive programming. When not behind a computer screen,
Paul is in the dance studio, where he teaches and trains as a com-
petitive Latin dancer.

LUIS ATENCIO (@luijar) is a Staff Software Engineer for Citrix Sys-
tems in Fort Lauderdale, Florida. He has a BS and an MS in Com-
puter Science and now works full-time developing and
architecting cloud web applications using JavaScript, Java, and
PHP. Luis is also very involved in the community and has presented
at conferences and local meet-ups. When he isn’t coding, Luis
writes a developer blog (http://luisatencio.net) focused on soft-
ware engineering, and has written several magazine articles for

php[architect] and DZone. Luis is also the author of Functional Programming in JavaScript
(Manning 2016), and Functional PHP (Leanpub).
xxiv

http://luisatencio.net/

about the cover
The figure on the cover of RxJS in Action is captioned “Calmouck,” and shows a man
equipped with a spear, a sword, and a bow and arrows. The illustration is taken from a
collection of dress costumes from various countries by Jacques Grasset de Saint-
Sauveur (1757-1810), titled Costumes de Différents Pays, published in France in 1797.
Each illustration is finely drawn and colored by hand. The rich variety of Grasset de
Saint-Sauveur’s collection reminds us vividly of how culturally apart the world’s towns
and regions were just 200 years ago. Isolated from each other, people spoke different
dialects and languages. In the streets or in the countryside, it was easy to identify
where they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then, and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.
xxv

Part 1

Understanding streams

In this first part of the book, you’ll get your feet wet with streams by discover-
ing the stream as the missing data contemporary to the iterable.

 Chapter 1 lays out the problem with the state of asynchrony in JavaScript and
where other solutions don’t quite reach your ideal. In chapter 2, you’ll get an
introduction to functional programming as the foundation for reactive program-
ming. Here, you’ll walk through the basic parts of producing and consuming a
stream. (If you’re already on board with streaming, you may wish to skim or skip
these first two chapters.) In chapter 3, you’ll start to see some real RxJS usage as
you explore your first operators and how you use them to create fluent streaming
applications. Finally, in chapter 4, you’ll start looking at some more-complex
operators and introduce a new dimension of streams: time. With this new dimen-
sion, you’ll see the real power of using Rx for your asynchronous data.

Thinking reactively
Right now, somewhere in the world, someone just created a tweet, a stock price just
dropped, and, most certainly, a mouse just moved. These tiny pinpricks of data light
up the internet and pass ubiquitously through semiconductors scattered across the
planet. A deluge of data propagates from any connected device. What does this have
to do with you? As you push your code to production, this fire hose of events is
pointed squarely at your JavaScript application, which needs to be prepared to han-
dle it effectively. This creates two important challenges: scalability and latency.

 As more and more data is received, the amount of memory that your applica-
tion consumes or requires will grow linearly or, in worst cases, exponentially; this is

This chapter covers
 Comparing asynchronous JavaScript with

callback- and Promise-based solutions

 Using streams to model static, dynamic, and
time-bound data

 Using observable streams to handle unbounded
data in a functional manner

 Thinking reactively to deal with the composition of
asynchronous data flows
3

www.allitebooks.com

http://www.allitebooks.org

4 CHAPTER 1 Thinking reactively
the classic problem of scalability, and trying to process it all at once will certainly cause
the user interface (UI) to become unresponsive. Buttons may no longer appear to
work, fancy animations will lag, and the browser may even flag the page to terminate,
which is an unacceptable notion for modern web users.

 This problem is not new, though in recent years there has been exponential
growth in the sheer scale of the number of events and data that JavaScript applications
are required to process. This quantity of data is too big to be held readily available and
stored in memory for use. Instead, we must create ways to fetch it from remote loca-
tions asynchronously, resulting in another big challenge of interconnected software
systems: latency, which can be difficult to express in code.

 Although modern system architectures have improved dramatically to include
faster network devices and highly concurrent processing, the libraries and methods
for dealing with the added complexity of remote data haven’t made the same strides.
For example, when it comes to fetching data from a server or running any deferred
computation, most of us still rely on the use of callbacks, a pattern that quickly breaks
down when business rules evolve and change or the problem we’re trying to solve
involves data that lives not in one but in several different remote locations.

 The solution lies not only in which library to use but which paradigm best suits
these types of problems. In this book, you’ll first learn about the fundamental princi-
ples of two emerging paradigms: functional programming (FP) and reactive program-
ming (RP). This exhilarating composition is what gives rise to functional reactive
programming (FRP), encoded in a library called RxJS (or rx.js), which is the best pre-
scription to deal with asynchronous and event-based data sources effectively.

 Our prescriptive roadmap has multiple parts. First, you’ll learn about the princi-
ples that lead to thinking reactively as well as the current solutions, their drawbacks,
and how RxJS improves on them. With this new-found mindset, you’ll dive into RxJS
specifics and learn about the core operators that will allow you to express complex
data flows of bounded or unbounded data in a succinct and elegant manner. You’ll
learn why RxJS is ideal for applications of any size that are event driven in nature. So,
along the way, you’ll find real-world examples that demonstrate using this library to
combine multiple pieces of remote data, autocompleting input fields, drag and drop,
processing user input, creating responsive UIs, parallel processing, and many others.
These examples are intended to be narrow in scope as you work through the most
important features of RxJS. Finally, all these new techniques will come together to end
your journey with a full-scale web application using a hybrid React/Rx architecture.

 The goal of this chapter is to give a broad view of the topics you’ll be learning
about in this book. We’ll focus on looking at the limitations of the current solutions
and point you to the chapters that show how RxJS addresses them. Furthermore,
you’ll learn how to shift your mindset to think in terms of streams, also known as func-
tional sequences of events, which RxJS implements under the hood through the use of
familiar patterns such as iterator and observer. Finally, we’ll explore the advantages of
RxJS to write asynchronous code, minus the entanglement caused by using callbacks,

5Synchronous vs. asynchronous computing
which also scales to any amount of data. Understanding the differences between these
two worlds is crucial, so let’s begin there.

1.1 Synchronous vs. asynchronous computing
In simple terms, the main factor that separates the runtime of synchronous and asyn-
chronous code is latency, also known as wait time. Coding explicitly for time is difficult
to wrap your head around; it’s much easier to reason about solutions when you’re able
to see the execution occur synchronously in the same order as you’re writing it: “Do
this; then immediately do that.”

 But the world of computing doesn’t grant such luxuries. In this world of highly
networked computing, the time it takes to send a message and receive a response rep-
resents critical time in which an application can be doing other things, such as
responding to user inputs, crunching numbers, or updating the UI. It’s more like “Do
this (wait for an indeterminate period of time); then do that.” The traditional
approach of having applications sit idle waiting for a database query to return, a net-
work to respond, or a user action to complete is not acceptable, so you need to take
advantage of asynchronous execution so that the application is always responsive. The
main issue here is whether it’s acceptable to block the user on long-running processes.

1.1.1 Issues with blocking code

Synchronous execution occurs when each block of code must wait for the previous
block to complete before running. Without a doubt, this is by far the easiest way to
implement code because you put the burden on your users to wait for their processes
to complete. Many systems still work this way today, such as ATMs, point of sale sys-
tems, and other dumb terminals. Writing code this way is much easier to grasp, main-
tain, and debug; unfortunately, because of JavaScript’s single-threaded nature, any
long-running tasks such as waiting for an AJAX call to return or a database operation
to complete shouldn’t be done synchronously. Doing so creates an awful experience
for your users because it causes the entire application to sit idle waiting for the data to
be loaded and wasting precious computing cycles that could easily be executing other
code. This will block further progress on any other tasks that you might want to exe-
cute, which in turn leads to artificially long load times, as shown in figure 1.1.

 In this case, the program makes a blocking call to process 1, which means it must
wait for it to return control to the caller, so that it can proceed with process 2. This
might work well for kiosks and dumb terminals, but browser UIs should never be
implemented this way. Not only would it create a terrible user experience (UX), but
also browsers may deem your scripts unresponsive after a certain period of inactivity
and terminate them. Here’s an example of making an HTTP call that will cause your
application to block, waiting on the server to respond:

let items = blockingHttpCall('/data');
items.forEach(item => {
 // process each item
});

Loading server-side data synchronously halts
program execution. The nature of the data
isn’t important right now; it’s some generic
sample data pertaining to your application.

6 CHAPTER 1 Thinking reactively
A better approach would be to invoke the HTTP call and perform other actions while
you’re waiting on the response. Long-running tasks aren’t the only problem; as we
said earlier, mouse movement generates a rapid succession of very quick, fine-grained
events. Waiting to process each of these synchronously will cause the entire applica-
tion to become unresponsive, whether it’s long wait times or handling hundreds of
smaller waits quickly. So what can you do to handle these types of events in a non-
blocking manner? Luckily, JavaScript provides callback functions.

1.1.2 Non-blocking code with callback functions

Using functions as callbacks has been a staple of JavaScript development for years.
They’re used in everything from mouse clicks and key presses to handling remote
HTTP requests or file I/O. JavaScript, being a single-threaded language, requires such
a construct in order to maintain any level of usability. Callback functions were created
to tackle the problem of blocking for long-running operations to complete by allow-
ing you to provide a handler function that the JavaScript runtime will invoke once the
data is ready for use. In the meantime, your application can continue carrying out any
other task, as shown in figure 1.2.

Program

Process 1

Process 2

Invoke block call

Blocked! Must wait for
process 1 to complete.

Program execution

Figure 1.1 A program that invokes two processes synchronously. A process in this case
can be as simple as a function call, an I/O process, or a network transaction. When
process 1 runs, it blocks anything else from running.

App

Callback

Make HTTP request

Input

Inversion
of control

Output

Figure 1.2 Callback functions in JavaScript create an inversion of control
where functions call the application back, instead of the other way around.

7Synchronous vs. asynchronous computing
 Unlike the previous code that makes a blocking HTTP call that you must wait for,
using callbacks with asynchronous (AJAX) requests creates an inversion of control that
permits your application to continue executing the next lines of code. Inversion of
control in this sense refers to the way in which certain parts of your code receive the
flow of control back from the runtime system. In this case, the runtime calls you (or
returns control to you) via the function handler when the data is ready to be pro-
cessed; hence, the term callback. Look at this alternative:

ajax('/data',
 items => {

items.forEach(item => {
// process each item

});
});
beginUiRendering();

Callback functions allow you to invoke code asynchronously, so that the application
can return control to you later. This allows the program to continue with any other
task in the meantime. In this code sample, the HTTP function runs in the background
and immediately returns control to the caller to begin rendering the UI; it handles the
contents of the items only after it has completely loaded. This behavior is ideal because
it frees up the application to make progress on other tasks such as loading the rest of a
web page, as in this case. As you’ll see throughout this book, asynchronous code is a
good design for I/O-bound work like fetching data from the web or a database. The
reason this works is that I/O processes are typically much slower than any other type of
instruction, so we allow them to run in the background because they’re not depen-
dent on processor cycles to complete.

SYNTAX CHECK In the code sample in section 1.1.2, the second parameter of
ajax() is the callback function. In that code, as in many parts of the book, we
use the ECMAScript 6 lambda expression syntax,1 which offers a terser and
more succinct way of invoking functions. Also called arrow functions, lambda
expressions behave somewhat similarly to an anonymous function call, which
you’re probably familiar with. The subtle difference has to do with what the
keyword this refers to. On rare occasions, when the value of this is import-
ant, we’ll call it out in the text and switch to using an anonymous function
expression.

1.1.3 Understanding time and space

Certainly, asynchronous functions allow us to stay responsive, but they come at a price.
Where synchronous programs allow us to reason directly about the state of the appli-
cation, asynchronous code forces us to reason about its future state. What does this
mean? State can be understood simply as a snapshot of all the information stored into

1 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions.

No explicit return value
Declaration of callback function

All processing is carried out within the callback body
after the data has been fetched from the server.

This function begins immediately after AJAX is called.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions

8 CHAPTER 1 Thinking reactively
variables at any point in time. This information is created and manipulated via
sequences of statements. Synchronous code can be thought of as an ordered, step-by-
step execution of statements, as shown in figure 1.3.

 In this model, it’s easy to determine at any point what the states of the variables are
and what will occur next, which is why it’s easy to write and debug. But when tasks
have different wait times or complete at different times, it’s difficult to guarantee how
they’ll behave together. Functions that terminate at unpredictable times are typically
harder to deal with without the proper methods and practices. When this happens,
the mental model of our application needs to shift to compensate for this additional
dimension. Compare figure 1.3 to the model in figure 1.4, which grows not only verti-
cally but also horizontally.

As of now, if steps 1, 2, and 3 were independent tasks, then executing them in any
order wouldn’t be a problem. But if these were functions that shared any global state,
then their behavior would be determined by the order in which they were called or by
the global state of the system. These conditions we refer to as side effects, which you’ll
learn more about in chapter 2; they involve situations where you need to read or mod-
ify an external resource like a database, the DOM, the console, and others. Functions
with side effects can perform unreliably when run in any arbitrary order. In functional
and reactive programming, you’ll learn to minimize them by using pure functions, and
you’ll learn in this book that this is extremely advantageous when dealing with asyn-
chronous code.

Step 1 Step 2

Program execution

Step 3
Figure 1.3 Synchronous code is a
step-by-step sequential execution of
statements where each step
depends on the previous one to run.

Step 1

Step 2

Step 3

Program execution

Completes

Completes

Completes

Figure 1.4 In asynchronous execution, steps that are invoked in sequence need
not terminate all at the same time. So there’s absolutely no guarantee that you
can rely on the data from step 1 to be available in step 2, for example.

9Synchronous vs. asynchronous computing
 So, assuming that our functions were side effect free, we still have another important
issue—time. Steps 1, 2, and 3 might complete instantly or might not complete depend-
ing on the nature of the work. The main issue is how we can guarantee that these steps
run in the correct order. As you’ve probably done many times before, the proper way
to achieve this is by composing these functions together, so that the output of one
becomes the input to the next, and therefore a chain of steps is created. The traditional
approach that ensures the proper sequence of steps takes place is to nest a sequence of
callbacks, and the model of the application’s runtime resembles figure 1.5.

Undoubtedly, this nested control flow is much harder to reason about than the syn-
chronous, straight-line model of figure 1.4. In figure 1.5, step 1 runs first, which then
calls step 2 as soon as it completes; then step 3 executes, and so on for the rest of the
steps. This suggests the presence of a temporal dependency or time coupling between
these steps, which means that one can begin as soon as the previous finishes—it’s a
chain of commands. In this scenario, the callback functions are used to respond to the
asynchronous request that happened before them and begin processing its data. This
happens typically when making sequential AJAX requests, but it can also happen when
mixing in any other event-based system, whether it be key presses, mouse movements,
database reads and writes, and others; all these systems rely on callbacks.

1.1.4 Are callbacks out of the picture?

The short answer is no. Using a paradigm to tackle event-based or asynchronous code
isn’t necessary when you’re dealing with simple interactions with users or external ser-
vices. If you’re writing a simple script that issues a single remote HTTP request, RxJS is
a bit of overkill, and callbacks remain the perfect solution. On the other hand, a
library that mixes functional and reactive paradigms really begins to shine when
implementing state machines of moderate-to-advanced complexity such as dynamic
UIs or service orchestration. Some examples of this can be the need to orchestrate the
execution of several business processes that consume several microservices, data
mashups, or perhaps the implementation of features of a rich UI made up of several
widgets on the page that interact with each other.

Step 1

Step 2

Calls step 2

Step 3

Program execution

Calls step 3
Figure 1.5 In order to guarantee the
proper order of steps and
asynchronous invocation takes place,
we use callback functions to transfer
control of the application once a long-
running operation terminates.

10 CHAPTER 1 Thinking reactively
 Consider the task of loading data from the client originating from different
remote server-side endpoints. To coordinate among them, you’d need several nested
AJAX requests where each step wraps the processing of the data residing within each
callback body in the logic of invoking the next step, as you saw previously in figure 1.5.
Following is a possible solution for this, which requires the use of three composed call-
back functions to load datasets that potentially live in the same host or different hosts,
together with its related meta-information and files:

ajax('<host1>/items',
 items => {

for (let item of items) {
ajax(`<host2>/items/${item.getId()}/info`,
 dataInfo => {
 ajax(`<host3>/files/${dataInfo.files}`,

processFiles);
});

 }
});
beginUiRendering();

Now although you might think this code looks trivial, if continuing this pattern, we’ll
begin to sink into horizontally nested calls—our model starts to grow horizontally. This
trend is informally known in the JavaScript world as callback hell, a design that you’ll
want to avoid at all costs if you want to create maintainable and easy-to-reason-about pro-
grams. It isn’t simply aesthetics—making sure that separate asynchronous operations are
synchronized is hard enough without also having difficult-to-read code. There’s another
hidden problem with this code. Can you guess what it is? It occurs when you mix a syn-
chronous artifact like a for..of imperative block invoking asynchronous functions.
Loops aren’t aware that there’s latency in those calls, so they’ll always march ahead no
matter what, which can cause some really unpredictable and hard-to-diagnose bugs. In
these situations, you can improve matters by creating closures around your asynchro-
nous functions, managed by using forEach() instead of the loop:

ajax('<host1>/items',
 items => {

items.forEach(item => {
 ajax(`<host2>/items/${item.getId()}/info`,
 dataInfo => {
 ajax(`<host3>/files/${dataInfo.files}`,
 processFiles);
});

});
});

This is why in RxJS—and FP in general, for that matter—all loops are virtually elimi-
nated! Instead, in chapters 4 and 5 you’ll learn about operators that allow you to
spawn sequences of asynchronous requests taking advantage of pure functions to keep
all of the information properly scoped. Another good use of callbacks is to implement
APIs based on Node.js event emitters. Let’s jump into this next.

Loads all items you want to display

For each item, loads
additional meta-information

For each meta record,
loads associated files

The forEach() method of arrays will
properly scope each item object
into the nested HTTP call.

11Synchronous vs. asynchronous computing
1.1.5 Event emitters

Event emitters are popular mechanisms for asynchronous event-based architectures.
The DOM, for instance, is probably one of the most widely known event emitters. On a
server like Node.js, certain kinds of objects periodically produce events that cause
functions to be called. In Node.js, the EventEmitter class is used to implement APIs
for things like WebSocket I/O or file reading/writing so that if you’re iterating
through directories and you find a file of interest, an object can emit an event refer-
encing this file for you to execute any additional code.

 Let’s implement a simple object to show this API a bit. Consider a simple calculator
object that can emit events like add and subtract, which you can hook any custom
logic into; see figure 1.6.

Here’s some code for the calculator add and subtract events:

const EventEmitter = require('events');

class Calculator extends EventEmitter {}

const calc = new Calculator();

calc.addListener('add', (a, b) => {
 calc.emit('result’, a + b);
});
calc.addListener('subtract', (a, b) => {
 calc.emit('result', a - b);

Add
emit(2, 3)

5

−1

Calculator Client

Adder function

When an emitter fires the
event, it executes the logic
associated to that event.

Calculator publishes
a set of events

emit(2, 3)
Minus functionSubtract

Figure 1.6 Node emitter object representing a simple calculator, which exposes two events: add
and subtract

Loads the events module

Creates a custom emitter

Handles the add event

12 CHAPTER 1 Thinking reactively
});

calc.addListener('result', (result) => {
 console.log('Result: ' + result);
});

calc.emit('add', 2, 3); //-> Prints 'Result: 5'
calc.emit('subtract', 2, 3); //-> Prints 'Result: 1'

Subscribing to an event emitter is done through the addListener() method, which
allows you to provide the callback that will be called when an event of interest is fired.
Unfortunately, event emitters have all of the same problems associated with using call-
backs to handle emitted data coming from multiple composed resources. Overall,
composing nested asynchronous flow is difficult.

 The JavaScript community as a whole has made strides in the right direction to
solve these types of issues. With the help of patterns emerging from FP, an alternative
available to you with ES6 is to use Promises.

1.2 Better callbacks with Promises
All hope is not lost; we promise you that. Promises are not part of the RxJS solution,
but they work together perfectly well. JavaScript ES6 introduced Promises to represent
any asynchronous computation that’s expected to complete in the future. With Prom-
ises, you can chain together a set of actions with future values to form a continuation.2

A continuation is just a fancy term for writing callbacks and has a lot to do with the
principle of Inversion of Control we referenced earlier. A continuation (a callback)
allows the function to decide what it should do next, instead of indiscriminately wait-
ing for a return value. They’re used heavily when iterating over arrays, tree structures,
try/catch blocks, and, of course, asynchronous programming. So, the code you saw
earlier—

ajax('<host1>/items',
 items => {

for (let item of items) {
 ajax(`<host2>/items/${item.getId()}/info`,
 dataInfo => {
 ajax(`<host3>/files/${dataInfo.files}`,
 processFiles);
});

 }
});

—is known to be continuation-passing style (CPS), because none of the functions are
explicitly waiting for a return value. But as we mentioned, abusing this makes code
hard to reason about. What you can do is to make continuations first-class citizens and
actually define a concrete interpretation of what it means to “continue.” So, we intro-
duce the notion of then: “Do X, then do Y,” to create code that reads like this:

2 http://www.2ality.com/2012/06/continuation-passing-style.html.

http://www.2ality.com/2012/06/continuation-passing-style.html

13Better callbacks with Promises
Fetch all items, then
 For-each item fetch all files, then

Process each file

This is where Promises come in. A Promise is a data type that wraps an asynchronous
or long-running operation, a future value, with the ability for you to subscribe to its
result or its error. A Promise is considered to be fulfilled when its underlying opera-
tion completes, at which point subscribers will receive the computed result. Because
we can’t alter the value of a Promise once it’s been executed, it’s actually an
immutable type, which is a functional quality we seek in our programs. Different
Promise implementations exist based on the Promises/A+ protocol (see https://
promisesaplus.com/), and it’s designed to provide some level of error handling and
continuations via the then() methods. Here’s how you can tackle the same example if
you assume that ajax() returns Promises:

ajax('<host1>/items')
 .then(items =>
 items.forEach(item =>

ajax(`<host2>/data/${item.getId()}/info`)
.then(dataInfo =>
 ajax(`<host3>/data/files/${dataInfo.files}`)
)
.then(processFiles);

)
);

This looks similar to the previous statement! Being a more recent addition to the lan-
guage with ES6 and inspired in FP design, Promises are more versatile and idiomatic
than callbacks. Applying these functions declaratively—meaning your code expresses
the what and not the how of what you’re trying to accomplish—into then blocks allows
you to express side effects in a pure manner. We can refactor this to be more declara-
tive by pulling out each function independently

let getItems = () => ajax('<host1>/items');
let getInfo = item => ajax(`<host2>/data/${item.getId()}/info`);
let getFiles = dataInfo => ajax(`<host3>/data/files/${dataInfo.files}`);

and then use Promises to stitch together our asynchronous flow. We use the Promise
.all() function to map an array of separate Promises into a single one containing an
array of results:

getItems()
 .then(items => items.map(getInfo))
 .then(promises => Promise.all(promises))
 .then(infos => infos.map(getFiles))
 .then(promises => Promise.all(promises))
 .then(processFiles);

The use of then() explicitly implies that there’s time involved among these calls,
which is a really good thing. If any step fails, we can also have matching catch()
blocks to handle errors and potentially continue the chain of command if necessary,
as shown in figure 1.7.

The key term “then” suggests
time and sequence.

https://promisesaplus.com/
https://promisesaplus.com/
https://promisesaplus.com/

14 CHAPTER 1 Thinking reactively
Of course, Promises also have shortcomings, or else we wouldn’t be talking about Rx.
The drawback of using Promises is that they’re unable to handle data sources that pro-
duce more than one value, like mouse movements or sequences of bytes in a file
stream. Also, they lack the ability to retry from failure—all present in RxJS. The most
important downside, moreover, is that because Promises are immutable, they can’t be
cancelled. So, for instance, if you use a Promise to wrap the value of a remote HTTP
call, there’s no hook or mechanism for you to cancel that work. This is unfortunate
because HTTP calls, based on the XmlHttpRequest object, can be aborted,3 but this
feature isn’t honored through the Promise interface. These limitations reduce their
usefulness and force developers to write some of the cancellation logic themselves or
seek other libraries.

 Collectively, Promises and event emitters solve what are essentially the same prob-
lems in slightly different ways. They have different use cases (Promises for single-value
returns like HTTP requests and event emitters for multiple-value returns like mouse
click handlers), mostly because of their own implementation constraints, not because
the use cases are so different. The result is that in many scenarios a developer must
use both in order to accomplish their goal, which can often lead to disjointed and
confusing code.

 The problems of readability; hard-to-reason-about code; and the downsides of cur-
rent technology that we’ve discussed so far aren’t the only reasons that we, as develop-
ers, need to worry about asynchronous code. In this next section, we’ll outline more
concretely why we need to switch to a different paradigm altogether to tackle these
issues head on.

1.3 The need for a different paradigm
For many years now, we’ve learned to use many JavaScript async libraries; everyone has
their own preference, whether it be JQuery, Async.js, Q.js, or others, yet they all fall
short one way or another. We believe that it’s not a matter of just choosing a library,

3 https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/abort.

Promise
(HTTP request)

Rejected

Fulfilled

.then(handleResponse)

.catch(error)

Figure 1.7 Promises create a flow of calls chained by then methods. If the
Promise is fulfilled, the chain of functions continues; otherwise, the error is delegated
to the Promise catch block.

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/abort

15The need for a different paradigm
but choosing the right paradigm for the job. By combining functional and reactive
programming paradigms, RxJS will help you address the following issues:

 Familiar control flow structures (like for and while loops) with asynchronous
functions don’t work well together because they’re not async aware; that is,
they’re oblivious of wait time or latency between iterations.

 Error-handling strategies become easily convoluted when you begin nesting
try/catch blocks within each callback. In chapter 7, we’ll approach error han-
dling from a functional perspective. Also, if you want to implement some level
of retry logic at every step, this will be incredibly difficult even with the help of
other libraries.

 Business logic is tightly coupled within the nested callback structure you need
to support. It’s plain to see that the more nested your code is, the harder it is to
reason about. Functions that are deeply nested become entangled with other
variables and functions, which is problematic in terms of readability and com-
plexity. It would be ideal to be able to create reusable and modular components
in order to have loosely coupled business logic that can be maintained and unit
tested independently. We’ll cover unit testing with RxJS in chapter 9.

 You want to avoid excessive use of closures, but functions in JavaScript create a
closure around the scope in which they’re declared. Nesting them means that
you need to be concerned about not just the state of the variables passed in as
arguments but also the state of all external variables surrounding each function
declaration, causing side effects to occur. In the next chapter, you’ll learn how
detrimental side effects can be and how FP addresses this problem. Side effects
increase the cognitive load of the state of your application, making it virtually
impossible to keep track of what’s going on in your programs. Throw a few
loops and conditional if-else statements into the mix, and you’ll regret the
day a bug occurs that impacts this functionality.

 It’s difficult to detect when events or long-running operations go rogue and
need to be cancelled. Consider the case of a remote HTTP request that’s taking
too long to process. Is the script unresponsive or is the server just slow? It would
be ideal to have an easy mechanism to cancel events cleanly after some prede-
termined amount of time. Implementing your own cancellation mechanism
can be very challenging and error prone even with the help of third-party
libraries.

 One good quality of responsive design is to always throttle a user’s interaction
with any UI components, so that the system isn’t unnecessarily overloaded. In
chapter 4, you’ll learn how to use throttling and debouncing to your advantage.
Manual solutions for achieving this are typically very hard to get right and
involve functions that access data outside their local scope, which breaks the sta-
bility of your entire program.

16 CHAPTER 1 Thinking reactively
 It’s rare to be concerned about memory management in JavaScript applica-
tions, especially client-side code. After all, the browser takes care of most of
these low-level details. But as UIs become larger and richer, we can begin to see
that lingering event listeners may cause memory leaks and cause the size of the
browser process to grow. It’s true that this was more prevalent in older browsers;
nevertheless, the complexity of today’s JavaScript applications is no match for
the applications of years past.

This long list of problems can certainly overwhelm even the brightest developers. The
truth of the matter is that the very paradigms that help us tackle these problems are
hard to express in code, which is why a tool like RxJS is necessary to redefine our
approach.

 You learned that Promises certainly move the needle in the right direction (and
RxJS integrates with Promises seamlessly if you feel the need to do so). But what you
really need is a solution that abstracts out the notion of latency away from your code
while allowing you to model your solutions using a linear sequence of steps through
which data can flow over time, as shown in figure 1.8.

 In essence, you need to combine the ability to decouple functionality like event
emitters with the fluent design pattern of Promises, all into a single abstraction. More-
over, you need to work with both synchronous and asynchronous code, handle errors,
discourage side effects, and scale out from one to a deluge of events. This is certainly a
long laundry list of things to take care of.

 As you think about this, ask yourself these questions: How can you write code as a
linear sequence of steps that acts only after some event has occurred in the future?
How do you combine it with other code that might have its own set of constraints?
Your desire for synchronicity isn’t just about convenience; it’s what you’re used to.
Unfortunately, most of the common language constructs that you use in synchronous
code aren’t well suited for asynchronous execution. This lack of language support for
things like async try/catch, async loops, and async conditionals means that develop-
ers must often roll their own. It’s not surprising that in the past few years, other peo-
ple have asked the same questions and come together with the community at large to
address these challenges, emerging as what’s known as the Reactive Extensions—we
have arrived!

Step 1 Step 2

Program execution

Step 3

Events

Latency Latency

Figure 1.8 RxJS can treat
asynchronous data flows with
a programming model that
resembles a simple chain of
sequential steps.

17The Reactive Extensions for JavaScript
1.4 The Reactive Extensions for JavaScript
Reactive Extensions for JavaScript (RxJS) is an elegant replacement for callback or
Promise-based libraries, using a single programming model that treats any ubiquitous
source of events—whether it be reading a file, making an HTTP call, clicking a button,
or moving the mouse—in the exact same manner. For example, instead of handling
each mouse event independently with a callback, with RxJS you handle all of them
combined.

 As you’ll learn in chapter 9, RxJS is also inherently robust and easy to test with a
vibrant community to support it. The power of RxJS derives from being built on top of
the pillars of functional and reactive programming, as well as a few popular design
patterns such as observer and iterator that have been used successfully for years. Cer-
tainly, RxJS didn’t invent these patterns, but it found ways to use them within the
context of FP. We’ll discuss FP and its role in RxJS further in the next chapter; in order
to take full advantage of this framework, the key takeaway from this section is that you
must learn to think in terms of streams.

1.4.1 Thinking in streams: data flows and propagation

Whether you deal with thousands of key presses, movement events, touch gestures,
remote HTTP calls, or single integers, RxJS treats all of these data sources in exactly
the same way, which we’ll refer to as data streams from now on.

STREAMS Traditionally, the term stream was used in programming languages
as an abstract object related to I/O operations such as reading a file, reading a
socket, or requesting data from an HTTP server. For instance, Node.js imple-
ments readable, writable, and duplex streams for doing just this. In the RP
world, we expand the definition of a stream to mean any data source that can
be consumed.

Reactive programming entails a mental shift in the way you reason about your pro-
gram’s behavior, especially if you come from an imperative background. We’ll illus-
trate this shift in mindset with a simple exercise:

let a = 20;
let b = 22;
let c = a + b; //-> 42

a = 100;
c = ?

You can easily predict the value of c in this case: 42. The fact that we changed a didn’t
have any influence on the value of c. In other words, there’s no propagation of change.
This is the most important concept to understand in reactive programming. Now we’ll
show you a pseudo JavaScript implementation of this:

A$ = [20];
B$ = [22];

Creates a stream initialized with the value 20
Creates a stream initialized
with the value 22

18 CHAPTER 1 Thinking reactively
C$ = A$.concat(B$).reduce(adder); //-> [42]

A$.push(100);
C$ = ?

First, we’ll explain some of the notation we use here. Streams are containers or wrap-
pers of data very similar to arrays, so we used the array literal notation [] to symbolize
this. Also, it’s common to use the $ suffix to qualify variables that point to streams. In
the RxJS community, this is known as Finnish Notation, attributed to Andre Staltz,
who is one of the main contributors of RxJS and Finnish.

 We created two streams, A$ and B$, with one numerical value inside each. Because
they’re not primitive objects in JavaScript or have a plus (+) overloaded operator, we
need to symbolize addition by concatenating both streams and applying an operator
method like reduce with an adder function (this should be somewhat familiar to you if
you’ve worked with these array methods). This is represented by C$.

ARRAY EXTRAS JavaScript ES5 introduced new array methods, known as the
array extras, which enable some level of native support for FP. These include
map, reduce, filter, some, every, and others.

What happens to C$ if the value 100 is pushed onto A$? In an imperative program,
nothing will actually happen except that A$ will have an extra value. But in the world
of streams, where there’s change propagation, if A$ receives a new value (a new
event), this state is pushed through any streams that it’s a part of. In this case, C$ gets
the value 122. Confused yet? Reactive programming is oriented around data flows and propa-
gation. In this case, you can think of C$ as an always-on variable that reacts to any
change and causes actions to ripple through it when any constituent part changes.
Now let’s see how RxJS implements this concept.

1.4.2 Introducing the RxJS project

RxJS is the result of many efforts to manage the myriad of problems that manifest in
asynchronous programming, outlined earlier. It’s an open source framework ported
by Matthew Podwysocki from Rx.Net (Reactive Extensions for .Net), itself open source
and created by Microsoft. RxJS has now evolved as a community-driven project owned
by Ben Lesh from Netflix, sanctioned by Microsoft as RxJS 5. This latest version is a
complete overhaul of the previous version with a brand-new architecture, a laser focus
on performance, and drastic simplification of the API surface. It offers several distinct
advantages over other JavaScript solutions, because it provides idiomatic abstractions
to treat asynchronous data similar to how you would treat any source of synchronous
data, like a simple array. You can obtain installation details in appendix A.

 If you were to visit the main website for the Reactive Extensions project (http://
reactivex.io/), you’d find it defined as “an API for asynchronous programming with
observable streams.” By the end of this chapter, you’ll be able to parse out exactly what
this means. We’ll demystify this concept and put you on the right path to tackle the
problems presented in this book.

Concatenates both streams
and applies an adder function
to get a new container with 42

Pushes a new value into A$

http://reactivex.io/
http://reactivex.io/
http://reactivex.io/

19The Reactive Extensions for JavaScript
 Let’s see what thinking in streams looks like more concretely in RxJS. In figure 1.9,
we show a simple breakdown of a stream (or pipeline) approach to handling data. A
pipeline is a series of logic blocks that will be executed, in order, when data becomes
available.4 On the left side of figure 1.9 are the data sources, which produce various
forms of data to be consumed by an application. And on the right are the data con-
sumers, the entities that subscribe to (or listen for) these events and will do something
with data they receive, such as present it on a chart or save it to a file. In the middle is
the data pipeline. During this middle step, data that’s coming from any of the data
sources that are being observed is filtered and processed in different ways so that it
can be more easily consumed by the consumers.

You can subscribe to streams and implement functions within the pipeline that will be
called (therefore react) when an event occurs (it’s this pipeline component where the
principles of FP will come into play, as you’ll learn about in chapter 2).

DEFINITION A stream is nothing more than a sequence of events over time.

A popular example that you can relate to would be an Excel spreadsheet. You can eas-
ily bind functions onto cells that subscribe to the values of other cells and respond in
real time as soon as any of the bounded cells change. A stream is an abstract concept
that works exactly like this, so we’ll slowly wind up to it and break it down starting with
some popular constructs you’re familiar with.

1.4.3 Everything is a stream

The concept of a stream can be applied to any data point that holds a value; this
ranges from a single integer to bytes of data received from a remote HTTP call. RxJS
provides lightweight data types to subscribe to and manage streams as a whole that can
be passed around as first-class objects and combined with other streams. Learning
how to manipulate and use streams is one of the central topics of this book. At this

4 You can relate this to the popular pipes and filter design pattern.

Web

Mouse clicks

Keyboard input

HTTP requests
Pipeline

Subscribes

Consumer

Streams are transformed

Figure 1.9 A generic data-processing pipeline deals with a constant stream of asynchronous data,
moving it from a producer (for example, a user clicking the mouse) to a consumer (code that reacts
to the click). The pipeline will process data before it’s passed to the consumer for consumption.

20 CHAPTER 1 Thinking reactively
point, we haven’t talked about any specific RxJS objects; for now, we’ll assume that an
abstract data type, a container called Stream, exists. You can create one from a single
value as such:

Stream(42);

At this point, this stream remains dormant and nothing has actually happened, until
there’s a subscriber (or observer) that listens for it. This is very different from Promises,
which execute their operations as soon as they’re created. Instead, streams are lazy data
types, which means that they execute only after a subscriber is attached. In this case, the
value 42, which was lifted into the stream context, navigates or propagates out to at least
one subscriber. After it receives the value, the stream is completed:

Stream(42).subscribe(
 val => {

console.log(val); //-> prints 42
 }
);

Furthermore, you can extend this example to a sequence of numbers

Stream(1, 2, 3, 4, 5).subscribe (
 val => {

console.log(val);
 }
);
//-> 1

2
3
4
5

Using a simple function that
will be called with each event
in the stream

Observer pattern
Behind RxJS is a fine-tuned observer design pattern. It involves an object (the sub-
ject), which maintains a list of subscribers (each an observer) that are notified of any
state changes. This pattern has had many applications, especially as an integral part
of the model-view-controller (MVC) architecture where the view layer is constantly lis-
tening for model changes. But the rudimentary observer pattern has its drawbacks
because of memory leaks related to improper disposal of observers. You can learn
more about this in the famous book Design Patterns: Elements of Reusable Object-
Oriented Software, known casually as the Gang of Four book.

RxJS draws inspiration from this pattern for its publish-subscribe methodology tar-
geted at asynchronous programs but adds a few extra features out of the box, like
signals that indicate when a stream has completed, lazy initialization, cancellation,
resource management, and disposal. Later on, we’ll talk about the components of
an RxJS stream.

a. Gamma, Helm, Johnson, and Vlissides (Addison-Wesley, 1977, Oxford University Press).

21The Reactive Extensions for JavaScript
or even arrays:

Stream([1, 2, 3, 4, 5])
 .filter(num => (num % 2) === 0)
 .map(num => num * num)
 .subscribe(

val => {
console.log(val);

}
);
//-> 4

16

In this example, the set of operations that occurs between the creation of the pro-
ducer of the stream (in this case, the array) and the consumer (the function that logs
to the console) is what we’ll refer to as the pipeline (we’ll expand on these concepts
shortly). The pipeline is what we’ll study thoroughly in this book and is what allows
you to transform a given input into the desired output. In essence, it’s where your
business logic will be executed, as outlined in figure 1.10.

Up until now, we’ve created streams from static data sources: numbers (or strings),
sequences, and arrays. But the power of RxJS extends beyond that with the ability to
treat dynamic data sources in exactly the same way, as if time didn’t factor into the
equation.

1.4.4 Abstracting the notion of time from your programs

Indeed, time is of the essence. The hardest part of asynchronous code is dealing with
latency and wait time. You saw earlier how callbacks and Promises can be used to cope
with these concerns, each with their own limitations. RxJS brings this notion of contin-
uous sequences of events over time as a first-class citizen of the language—finally, a
true event subsystem for JavaScript. In essence, this means that RxJS abstracts over time
under the same programming model regardless of source, so that you can transform your data
as if your code was completely linear and synchronous. This is brilliant because you
now can process a sequence of mouse events just as easily as processing an array of
numbers.

 Looking at figure 1.11, you can see that streams are analogous to a real-
world monthly magazine subscription. Your subscription to the magazine is actually a

Streams also support the Array.map() and
Array.filter() functions introduced in ES5
to process the contents within the array.

Pipeline

Consumerfilter map
[1, 2, 3, 4, 5] [4, 16]

Producer

Figure 1.10 A simple producer (an array of numbers) that emits events linearly. These events are submitted
through the pipeline and transformed. The final data is then sent to all subscribers to be consumed.

22 CHAPTER 1 Thinking reactively
collection of magazines that are separated by time; that is, there are 12 magazines
annually, but you receive only one every month. Upon receiving a magazine, you usu-
ally perform an action on it (read it or throw it away). There are additional cases that
you can also consider, such as the time between magazine deliveries being zero,
whereby you would receive all the magazines at once, or there might be no magazines
(and someone would be getting an angry email). In all these cases, because you per-
form the action only upon receiving the magazine, you can think of this process as
reactive (because you’re reacting to receiving a magazine). A non-reactive version of
this would be going to a newspaper stall at the airport. Here, you can also find maga-
zines, but now you won’t receive additional magazines, only the ones that you buy at
the stall. In practice, this would mean that you receive updates only when you happen
to be near a magazine stand rather than every time a new magazine becomes available.

Rx allows you to take this magazine subscription metaphor and apply it to a wide
range of use cases: loading files from disk or over a network, processing user input, or
handling real-time services like RSS and Twitter feeds. Following the same examples as
before, with RxJS you can consume a stream of time-based asynchronous sequences of
events, just as you did with normal synchronous data:

Stream(loadMagazines('/subscriptions/magazines'))
 .filter(magazine => magazine.month === 'July')
 .subscribe(

magazine => {
console.log(magazine.title);
//-> prints Dr. Dobbs "Composing Reactive Animations"

}
);

ConsumerRxJS

, ,

No latency
One programming model to handle
sequences of events separated in time,
as well as data stored in memory

TimeTime

Figure 1.11 Not only does RxJS handle sequential events, but using the same programming
model, it can just as easily work with asynchronous events (bound by time). This means that the
same level of reasoning applied to linear programs can also be applied to non-linear programs with
latency and wait times.

Using the well-known
Array.filter() operator,
this time with magazine
subscriptions, to retrieve
only the July edition

23The Reactive Extensions for JavaScript
These types of services produce data in real time at irregular intervals, and the data
produced forms the foundation of an event stream. In the case of a service like Twit-
ter, you can think of the Twitter API as a producer of tweets, of which some will be
interesting and some not so much. In general, in most cases you’re interested in creat-
ing logic that processes the content of the tweet rather than diving into the intricacies
of network communication. As we mentioned earlier, this logic is made up of several
components, which we’ll look at in more detail.

1.4.5 Components of an Rx stream

The RxJS stream is made up of several basic components, each with specific tasks and
lifetimes with respect to the overall stream. You saw some examples of these earlier,
and now we’ll introduce them more formally:

 Producers
 Consumers
 Data pipeline
 Time

PRODUCERS

Producers are the sources of your data. A stream must always have a producer of data,
which will be the starting point for any logic that you’ll perform in RxJS. In practice, a
producer is created from something that generates events independently (anything
from a single value, an array, mouse clicks, to a stream of bytes read from a file). The
observer pattern defines producers as the subject; in RxJS, we call them observables, as in
something that’s able to be observed.

 Observables are in charge of pushing notifications, so we refer to this behavior as
fire-and-forget, which means that we’ll never expect the producer to be involved in
the processing of events, only the emission of them.

TC-39 OBSERVABLE SPEC The use of observables has proven to be so success-
ful from the previous version of the library (RxJS 4) that a proposal has been
made to include it in the next major release of JavaScript.5 Fortunately, RxJS
5 follows this proposal closely to remain completely compatible.

CONSUMERS

To balance the producer half of the equation, you must also have a consumer to
accept events from the producer and process them in some specific way. When the
consumer begins listening to the producer for events to consume, you now have a
stream, and it’s at this point that the stream begins to push events; we’ll refer to a con-
sumer as an observer.

 Streams travel only from the producer to the consumer, not the other way around.
In other words, a user typing on the keyboard produces events that flow down to be
consumed by some other process. This means that part of understanding of how to

5 https://github.com/tc39/proposal-observable.
www.allitebooks.com

https://github.com/tc39/proposal-observable
http://www.allitebooks.org

24 CHAPTER 1 Thinking reactively
think in streams will mean understanding how to think about parts of an application
as upstream or downstream to determine the direction in which the data will flow.
With respect to RxJS, a stream will always flow from an upstream observable to a down-
stream observer, and both components are loosely coupled, which increases the mod-
ularity of your application, as shown in figure 1.12.

 For instance, a keyboard event handler would be upstream because it would only
produce events, not consume them, whereas code that should perform logic based on
key presses would be downstream. At a fundamental level, a stream will only ever
require the producer and the consumer. Once the latter is able to begin receiving
events from the former, you have effectively created a stream. Now what can you do
with this data? All of that happens within the data pipeline.

DATA PIPELINE

One advantage of RxJS is that you can manipulate or edit the data as it passes from the
producer to the consumer. This is where the list of methods (known as observable
operators) comes into play. Manipulating data en route means that you can adapt the
output of the producer to match the expectations of the consumer. Doing so pro-
motes a separation of concerns6 between the two entities, and it’s a big win for the modu-
larity of your code. This design principle is typically extremely hard to accomplish in
large-scale JavaScript applications, but RxJS facilitates this model of design.

TIME

The implicit factor behind all of this is time. For everything RxJS there’s always an
underlying concept of time, which you can use to manipulate streams. The time factor
permeates all the components we’ve discussed so far. It’s an important and abstract
concept to grasp, so we’ll look at it in detail in later chapters. For now, you need only
understand that time need not always run at normal speed, and you can build streams
that run slower or faster depending on your requirements. Luckily, this won’t be an
issue if you decide to use RxJS. Figure 1.13 provides a visualization of the parts of the
RxJS stream.

6 Separations of concerns in this case refers to the use of functions with single responsibility.

Subscribes

Direction of data flow

Observable Observer
Figure 1.12 Events always
move from observables to
observers and never the other
way around.

25The Reactive Extensions for JavaScript
If you pay close attention to the structure of a stream, you’ll notice that this closely
resembles the pattern used in Promises. What started out as a nested callback “pyra-
mid of doom”

ajax('<host1>/items',
items => {
 items.forEach(item => {
 ajax(`<host2>/items/${item.getId()}/info`,
 dataInfo => {
 ajax(`<host3>/files/${dataInfo.files}`,
 processFiles);
 });
});

});

was drastically improved using Promises:

ajax('<host1>/items')
 .then(items =>

items.map(item => ajax(`<host2>/data/${item.getId()}/info`)
)
 .then(promises => Promise.all(promise))
 .then(

dataInfo => ajax(`<host3>/data/files/${dataInfo.files}`)
)
 .then(promises => Promise.all(promises))
 .then(processFiles);

And now, streams extend this behavior with powerful operators that break this down
even further:

Stream(ajax('<host1>/items')
 .streamMap(item =>

Stream(ajax(`<host2>/data/${item.getId()}/info`)))
 .streamMap(dataInfo =>

Stream(ajax(`<host3>/data/files/${dataInfo.files}`)))
 .subscribe(processFiles);

Remember that the Stream object here is merely an abstract artifact designed to show
you how the paradigm works. In this book, you’ll learn to use the actual objects that
implement these abstract concepts to design your applications using a functional and
reactive model. But RxJS doesn’t obligate you to use only a single paradigm; it’s often
the combination of paradigms that creates the most flexible and maintainable
designs.

Time

Producer

Pipeline

Consumer

Stream.timerInSeconds()
 .interval()
 .map(x => x.value)
 .filter(x => x % 2 === 0)
 .take(10)
 .subscribe(val=> console.log(val));

Figure 1.13 Sample code
highlighting the different
components of a stream

Streams can
also compose
other streams.

26 CHAPTER 1 Thinking reactively
1.5 Reactive and other programming paradigms
Every new paradigm that you’ll encounter during your programming career will
require you to modify your thinking to accommodate the primitives of the language.
For example, object-oriented programming (OOP) puts state within objects, which are
the central units of abstraction, and the intricacy of the paradigm comes from the
interactions that arise when they interact with one another. In a similar fashion, FP
places behavior at the center of all things, with functions as the main unit of work.
Reactive programming, on the other hand, requires you to see data as a constantly
flowing stream of change as opposed to monolithic data types or collections holding all
of an application’s state.

 Now you’re probably wondering, am I allowed to choose only one? Or can I com-
bine them into the same code base? The beauty behind all this is that you can use all
of them together. Many prominent figures in our industry have attested to this. In
other words, RxJS doesn’t force on you a certain style of development or design pat-
tern to use—it is unopinionated. Thankfully, it also works orthogonally to most librar-
ies. As you’ll see later on, it’s a simple matter in most cases to adapt an existing event
stream such as a DOM event handler into an observable. The library provides many
operators for such operations baked directly into it. It will even support unusual
design patterns such as those you’ll see when you use a library like React or Redux
(which you’ll see in the last chapter).

 In practice, you can use OOP to model your domain and use a powerful combina-
tion of reactive and FP (a combination known as functional reactive programming) to
drive your behavior and events. When it comes to managing events, you’ll soon begin
to see an important theme in code involving Rx. Unlike in OOP where state or data is
held in variables or collections, state in RP is transient, which means that data never
remains stored but actually flows through the streams that are being subscribed to,
which makes event handling easy to reason about and test.

 Another noticeable difference is the style used in both paradigms. On one hand,
OOP is typically written imperatively. In other words, you instantiate objects that keep
track of state while running through a sequence of statements revealing how those
objects interact and transform to arrive at your desired solution.

 On the other hand, RxJS code encourages you to write declaratively, which means
your code expresses the what and not the how of what you’re trying to accomplish.
RxJS follows a simple and declarative design inspired by FP. No longer will you be
required to create variables to track the progress of your callbacks or worry about
inadvertently corrupting some closed-over outer state causing side effects to occur.
Besides, with RxJS it becomes easy to manage multiple streams of data, filtering and
transforming them at will. By creating operations that can be chained together, you
can also fluently create pipelines of logic that sound very much like spoken sentences
like this: “When I receive a magazine for the month of July, notify me.”

 In this chapter, you learned how RxJS elegantly combines both functional and
reactive paradigms into a simple computing model that places observables (streams)

27Summary
at the forefront. Observables are pure and free of side effects, with a powerful arsenal
of operators and transformations that allow you to elegantly compose your business
logic with asynchronous operations. We chose to keep the code abstract for now as we
work through some of the new concepts. But we’ll quickly ramp up to a comprehen-
sive theoretical and practical understanding of the library, so that you can begin to
apply it immediately at work or on your personal projects. Now it’s time to start really
thinking in streams, and that’s the topic of the next chapter.

1.6 Summary
 Asynchronous code can be very difficult to implement because existing pro-

gramming patterns don’t scale to complex behavior.
 Callbacks and Promises can be used to deal with asynchronous code, but they

have many limitations when targeted against large streams generated from
repeated button clicks or mouse movements.

 RxJS is a reactive solution that can more concisely and declaratively deal with
large amounts of data separated over time.

 RxJS is a paradigm shift that requires seeing and understanding data in streams
with propagation of change.

 Streams originate from a producer (observable), where data flows through a
pipeline, arriving at a consumer (observer). This same programming model is
used whether or not data is separated by time.

Reacting with RxJS
When writing code in an object-oriented way, we’re taught to decompose problems
into components, interactions, and states. This breakdown occurs iteratively and
on many levels, with each part further subdivided into more components, until at
last we arrive at a set of cohesive classes that implement a well-defined set of interac-
tions. Hence, in the object-oriented (OO) approach, classes are the main unit of
work. Every time a component is created, it will have state associated with it, and
the manipulation of that state in a structured fashion is what advances application
logic. For example, consider a typical online banking website. Banking systems con-
tain modules that encapsulate not only the business logic associated with withdraw-
ing, depositing, and transferring money but also domain models that store and

This chapter covers
 Looking at streams as the main unit of work

 Understanding functional programming’s
influence on RxJS

 Identifying different types of data sources and
how to handle them

 Modeling data sources as RxJS observables

 Consuming observables with observers
28

29Functional programming as the pillar of reactive programming
manage other properties, such as account and user profiles. Manipulating this state
(its behavior) causes the data to transform into the desired output. In other words,
behavior is driven by the continuous mutation of a system’s state. If such a system is
designed using object-oriented programming, the units of work are the classes respon-
sible for modeling accounts, users, money, and others.

 RxJS programming works a bit differently. In reactive programming in general, the
fundamental unit of work is the stream.

 In this chapter, we ask you to think in terms of streams (think reactively) and
design code that, instead of holding onto data, allows data to flow through and applies
transformations along the way until it reaches your desired state. You’ll learn how to
handle different types of data sources, whether static or dynamic, as RxJS streams that
use a consistent computational model based on the Observable data type. Unlike
using other JavaScript libraries, however, using RxJS in your application means much
more than implementing new APIs; it means that you must approach your problems
not as the sum of the set of states manipulated by methods in classes but as a sequence
of data that continuously travels from the producers to the consumers through a set of
operators that implement your desired behavior.

 This way of thinking places the notion of time at the forefront; this notion runs as
the undercurrent through the components of an RxJS stream and causes data to be
never stored but rather transiently flowing. Relating this to a real-world physical water
stream, you can think of the data source as the top of the stream and the data con-
sumer as the bottom of the stream. Hence, data is always traveling downstream, in a sin-
gle direction, like water in a river, and along the way you can have control dams in
charge of transforming the nature of this stream. Thinking this way will help you
understand how data should move through an application.

 This is not to say that this understanding will come easily—like any new skill, it
must be built up over time and through iterative application of the concepts. As you
saw in the pseudo streams example in chapter 1, the notion of data in motion versus
data kept in variables is a difficult one for most people to wrap their head around. In
this book, we’ll provide you with the necessary tools to ease this learning curve. To
begin building your toolkit, this chapter lays the groundwork to help you better
understand streams. Many of the basic principles behind RP derive from functional
programming, so let’s start there.

2.1 Functional programming as the pillar of
reactive programming
The abstractions that support RP are built on top of FP, so FP is the foundation for RP.
Much of the hype around RP derives from the development communities and the
industry realizing that FP offers a compelling way to design your code. This is why it’s
important for you to have at least a basic understanding of the FP principles. If you
have a solid background in functional programming, you’re free to skip this section,
but we recommend you read along because it will help you better understand some of
the design decisions behind RxJS.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/function*

30 CHAPTER 2 Reacting with RxJS
 Just like in chapter 1, we ask you to take another quick glance at the main website
for the Reactive Extensions project (http://reactivex.io). In it, you’ll find the follow-
ing definition:

ReactiveX is a combination of the best ideas from the Observer pattern, the Iterator
pattern, and functional programming.

You learned about the main components of the observer pattern in chapter 1 (pro-
ducer and consumer); now you’ll learn the about the other parts that gave rise to the
Rx project, which are functional programming and iterators. Here’s a diagram (fig-
ure 2.1) that better illustrates the relationship between these paradigms.

 Let’s begin by exploring the basics of FP.

2.1.1 Functional programming

Functional programming is a software paradigm that emphasizes the use of functions
to create programs that are declarative, immutable, and side effect–free. Did you trip
over the word immutable? We agree with you; the notion of a program that doesn’t ever
change state is a bit mind bending. After all, that’s why we put data in variables and
modify them to our heart’s content. All of the object-oriented or procedural applica-
tion code you’ve written so far relies on changing and passing variables back and forth
to solve problems. So how can you accomplish the same goals without doing this?
Take the example of a clock. When a clock goes from 1:00 p.m. to 2:00 p.m., it’s
undoubtedly changing, isn’t it? But to frame this from a functional point of view, we
argue that instead of a single clock instance mutating every second, it’s best to return
new clock instances every second. Theoretically, both would arrive at the same time,
and both would give you a single state at the end.

 RxJS borrows numerous principles from FP, particularly function chaining, lazy eval-
uation, and the notion of using an abstract data type to orchestrate data flows. These
are some of the design decisions that drive the development of RxJS’s stream
programming via the Observable data type. Before we dive in, we’ll explain the main

Functional
programming

Reactive
programming

Iterator

Observer

Paradigms

Patterns

Extends

Uses

Uses

Uses

Figure 2.1 The RP paradigm builds and extends from FP. Also, it leverages commonly known
design patterns such as iterator and observer.

http://reactivex.io

31Functional programming as the pillar of reactive programming
parts of the FP definition we just gave and then show you a quick example involving
arrays.

 To reiterate, functional programs have the following characteristics:

 Declarative—Functional code has a peculiar style, which takes advantage of
JavaScript’s higher-order functions to apply specialized business logic. As you’ll
see later on, function chains (also known as pipelines) describe data transforma-
tion steps in an idiomatic manner. Most people see SQL syntax as a perfect
example of declarative code.

 Immutable—An immutable program (and by this we mean any immutable func-
tion, module, or whole program) is one that never changes or modifies data
after it’s been created or after its variables have been declared. This can be a rad-
ical concept to grasp, especially when you’re coming from an OO background.
Functional programs treat data as immutable, constant values. A good example
of a familiar module is the String type, because none of the operations change
the string on which they operate; rather, they all return new strings. A good prac-
tice that you’ll see us use throughout the book is to qualify all of our variables
with const to create nicely block-scoped immutable variables that can’t be reas-
signed. This doesn’t solve all the problems of immutability, but it gives you a lit-
tle extra support when your data and functions are shared globally.

 Side effect–free—Functions with side effects depend on data residing outside its
own local scope. A function’s scope is made up of its arguments and any local
variables declared within. Interacting with anything outside this (like reading a
file, writing to the console, rendering elements on an HTML page, and more) is
considered a side effect and should be avoided or, at the very least, isolated. In
this book, you’ll learn how RxJS deals with these issues by pushing the effectful
computations into the subscribers.

In general, mutations and side effects make functions unreliable and unpredictable.
That is to say, if a function alters the contents of an object inadvertently, it will com-
promise other functions that expect this object to keep its original state. The OO solu-
tion to this is to encapsulate state and protect it from direct access from other
components of the system. In contrast, FP deals with state by eliminating it, so that
your functions can confidently rely on it to run.

 For instance, figure 2.2 illustrates the dependency between the two functions
doWork() and doMoreWork() through a shared state variable called data.

 This coupling presents an issue because doMoreWork now relies on doWork to run
first. Two issues may occur:

 The result of doMoreWork() depends entirely on the successful outcome of
doWork() and on no other parts of the system changing this variable.

 Unit tests against this function can’t be done in isolation as they should be, so
your test results are susceptible to the order in which the test cases are run (in
chapter 9, we’ll explore testing in much more detail).

32 CHAPTER 2 Reacting with RxJS
Shared variables, especially in the global scope, add to the cognitive load of reasoning
about your code because these variables demand that you keep track of them as you
trace through it. Another way you can think of global data is as a hidden parameter
within all your functions. So the more global the state you have to maintain, the
harder it is for you to maintain your code. The example in figure 2.2 is an obvious side
effect, but they’re not always this clear. Consider this trivial function that returns the
lowest value in a numerical array:

const lowest = arr => arr.sort().shift();

Although this code may seem harmless to you, it packs a terrible side effect. Can you
spot it? This function actually changes the contents of the input array, as shown in the
following snippet. So if you used the first element of the array somewhere else, that’s
completely gone now:

let source = [3,1,9,8,3,7,4,6,5];
let result = lowest(source); //-> 1
console.log(source); //-> [3, 3, 4, 5, 6, 7, 8, 9]

Later on, we’ll talk about a functional library that provides a rich set of functions for
working with arrays immutably, so that things like this don’t inadvertently creep up
on you.

 Matters get worse if you have concurrent asynchronous processes where data struc-
tures are shared and used in different components. Because latency is unpredictable,
you’d need to either nest your function calls or use some other robust synchroniza-
tion mechanism to ensure they execute and mutate this state in the right order; other-
wise, you’ll experience random and hard-to-troubleshoot bugs.

 Fortunately, JavaScript is single threaded, so you don’t need to worry about shared
state running through different threads. But as JavaScript developers, we deal quite often
with concurrent code when either working with web workers or making simultaneous

data

doWork doMoreWork

Changes Depends
on update

Coupling

Order matters: doWork
must be called first

Side effect: Dependency
on shared state

Figure 2.2 Function doWork() is temporarily coupled to doMoreWork() because of the
dependency on shared state (side effect). Hence, doWork() must be called before
doMoreWork() or the program will cease to work.

The original array
changed!

33Functional programming as the pillar of reactive programming
HTTP calls. Consider the trivial yet frequent use case illustrated in figure 2.3, which
involves asynchronous code mixed with synchronous code. This presents a tremendous
challenge because the latter assumes that the functions executing before it have com-
pleted successfully, which might not necessarily be the case if there’s some latency.

 In this scenario, doAsyncWork() fetches some data from the server, which never
completes in a constant amount of time. So doMoreWork() fails to run properly
because it reads data that hasn’t yet been initialized. Callbacks and Promises help you
solve this problem, so that you don’t have to hardcode your own timeouts in order to
anticipate latency. Dealing directly with time is a recipe for disaster because your code
will be extremely brittle and hard to maintain and will cause to you to come in to work
during a weekend when your application is experiencing slightly more traffic than
usual. Working with data immutably, using FP, and the help of an asynchronous library
like RxJS can make these timing issues disappear—immutable variables are protected
against time. In chapters 4 and 6, we’ll cover timing and synchronization with observ-
ables, which offer a much superior solution to this problem.

 Even though JavaScript isn’t a pure functional language, with a bit of discipline
and the help of the proper libraries you can use it completely functionally. As you
learn to use RxJS, we ask that you also begin to embrace a functional coding style; it’s
something we believe strongly about and promote in all code samples in this book.

Null

doAsyncWork doMoreWork

Reads
uninitialized

data

Updates after
1 s

Coupling

Order matters

data

Server

Side effect

Function
compromised:
data initially null

Fetch data

1 s

Figure 2.3 Function doAsyncWork() is an example of a remote call that fetches data from the
server. Suppose this call has a latency around one second, depending on network conditions.
Immediately after, the next function runs doMoreWork(), expecting that a piece of shared data
has already been initialized. Because of this latency, the shared data has not been initialized, and
the execution of doMoreWork() is compromised.

34 CHAPTER 2 Reacting with RxJS
 Aside from using const to safeguard the variable’s reference, JavaScript also has
support for a versatile array data structure with methods such as map, reduce, filter,
and others. These are known as higher-order or first-class functions, and they’re one
of the most important functional qualities in the language, allowing you to express
JavaScript programs in an idiomatic way. A higher-order function is defined as one
that can accept as argument as well as return other functions; they’re used extensively
with RxJS, as with any functional data type.

 The following listing shows a simple program that takes an array of numbers,
extracts the even numbers, computes their squares, and sums their total.

const isEven = num => num % 2 === 0;
const square = num => num * num;
const add = (a, b) => a + b;

const arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

arr.filter(isEven).map(square).reduce(add); //-> 220

In this example, because these operations are side effect–free, this program will always
produce the same value (220), given the same input array.

If you imagine for a second having to write this program using a non-functional or
imperative approach, you’ll probably need to write a loop, a conditional statement,
and a few variables to keep track of things. FP, on the other hand, raises the level of
abstraction and encourages a style of declarative coding that clearly states the purpose
of a program, describing what it does and not how it does it. Nowhere in this short pro-
gram is the presence of a loop, if/else, or any imperative control flow mechanism.

 One of the main themes in FP that you’ll use as well in RP is programming without
loops. In listing 2.1, you took advantage of map, reduce, and filter to hide manual
looping constructs—allowing you to implement looping logic through functions’
arguments. Moreover, these functions are also immutable, which means that new
arrays are created at each step of the way, keeping the original intact.

Listing 2.1 Processing collections with map, reduce, and filter

Where can I find this code?
All the code for this book can be found in the RxJS in Action GitHub repository at
https://github.com/RxJSInAction. There, you’ll find two subrepositories. Under rxjs-
in-action, you’ll find a simple application that contains the code for all individual chap-
ter listings for chapters 1 through 9. All samples are presented as runnable snippets
of RxJS code that you can interact with. Also, under the banking-in-action repository,
you’ll find our web application that showcases RxJS embedded into a React/Redux
architecture. Some of the APIs that we interact with in the book don’t allow cross-
origin resource sharing (CORS). The simplest way to get around this is to disable it
at the browser level by installing an extension or add-on.

https://github.com/RxJSInAction

35Functional programming as the pillar of reactive programming
 Going back to our discussion, side effect–free functions are also known as pure,
because they’re predictable when you’re working on collections of objects or streams.
You should always strive for purity whenever possible because it makes your programs
easy to test and reason about.

The code shown in listing 2.1, which works well with arrays, also translates to streams.
Along the lines of the pseudo Stream data type that we discussed in chapter 1, look at
how similarly arrays and streams work when processing some number sequence:

Stream([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
 .filter(isEven)
 .map(square)
 .reduce(add)
 .subscribe(console.log); //-> 220

You can clearly see how Rx was inspired by FP. All we had to do was wrap the array into
a stream and then subscribe to it to listen for the computed values that derive from
the sequence of steps declared in the stream’s pipeline. This is the same as saying that
streams are containers that you can use to lift data (events) into their context, so that
you can apply sequences of operations on this data until reaching your desired out-
come. Fortunately, you’re already familiar with this concept from working with arrays
for many years. You can lift a value into an array and map any functions to it. Suppose
you declare some simple functions on strings like toUpper, slice, and repeat:

['rxjs'].map(toUpper).map(slice(0, 2)).map(repeat(2)); //-> 'RXRX'

The ancient Greek philosopher Heraclitus once said, “You can never step into the
same river twice.” He formulated this statement as part of his doctrine on change and
motion being central components of the universe—everything is constantly in motion.
This epic realization is what RxJS streams are all about: as data continuously flows and
moves through the stream, orchestrated through this is the data type you’re learning
about called Stream. Despite being dynamic, Streams are immutable data types. Once

Want to learn more about functional programming?
JavaScript’s Array object has a special place in functional programming because it
behaves as an extremely powerful data type called a functor. In a simple sense, func-
tors are containers that can wrap data and expose a mapping method that allows you
to immutably apply transformations on this data, as shown by the Array.map()
method. As you’ll see learn later on, RxJS streams follow this same functor-like
design.

Functional programming is a huge subject to cover. In this book, we’ll cover only
enough of FP to help you to understand and be proficient with RxJS and RP. If you’d
like more information about FP and FP topics, you can read about them in detail in
Functional Programming in JavaScript (Manning, 2016) by Luis Atencio.

36 CHAPTER 2 Reacting with RxJS
a Stream is declared to wrap an array, listen for mouse clicks, or respond to an HTTP
call, you can’t mutate it or add a new value to it afterward—you must do it at the time
of declaration. Hence, you’re specifying the dynamic behavior of an object or value declara-
tively and immutably. We’ll revisit this topic a bit more in the next chapter.

 Moreover, the business logic of this program is pure and takes advantage of side
effect–free functions that are mapped onto the stream to transform the produced
data into the desired outcome. The advantage of this is that all side effects are isolated
and pushed onto the consumers (logging to the console, in this case). This separation
of concerns is ideal and keeps your business logic clean and pure. Figure 2.4 shows
the role that the producers and consumers play.

Another design principle of streams that’s borrowed from FP is lazy evaluation. Lazy
evaluation means that code is never called until actually needed. In other words, func-
tions won’t evaluate until their results are used as part of some other expression. In
the following example, the idea is that a stream sits idle until a subscriber (a con-
sumer) is attached to it; only then will it emit the values 1–10:

Stream([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
 .filter(isEven)
 .map(square)
 .reduce(add);

When a subscriber begins listening, the stream will emit events downstream through
the pipeline in a single, unidirectional flow from the producer to the consumer. This

Receive push events

Transform data

Apply business logic

Prepare data for consumer

Flow of data

Producers

Interact with DOM

Log to console

Read/Write filesystem

Read/Write database

Consumers

Implemented
by observables

Implemented
by observers

Figure 2.4 Events emitted by producers are pushed through a pipeline of side effect–free
functions, which implement the business logic of your program. This data flows to all observers
in charge of consuming and displaying it.

Nothing runs here because
no subscriber is added.

37Functional programming as the pillar of reactive programming
is beneficial if your functions have side effects because the pipeline runs in a single
direction, helping to ensure an orderly execution of your function calls. This is
another reason to avoid side effects at all costs, especially when you begin combining
multiple streams, because things can revert into the tangled mess that you’re trying to
get rid of in the first place. Lazy evaluation is a mandatory requirement for streams
because they emit data infinitely to handle mouse movements, key presses, and other
asynchronous messages. Otherwise, storing the entire sequence of mouse movements
in memory could make your programs crash.

For instance, without lazy evaluation, code that uses infinite streams like this will cause
the application to run out of memory and halt:

//1
Stream.range(1, Number.POSITIVE_INFINITY)
 .take(100)
 .subscribe(console.log);

//2
Stream.fromEvent('mousemove')
 .map(e => [e.clientX, e.clientY])
 .subscribe(console.log);

In example 1, lazy evaluation makes the stream smart enough to understand that it
will never need to actually run through all the positive numbers infinitely before tak-
ing the first 100. And even if the amount of numbers to store is big, streams won’t per-
sistently hold onto data; instead, any data emitted is immediately broadcast to all
subscribers at the moment it gets generated. In example 2, imagine if you needed to
store in memory the coordinates of all mouse movements on the screen; this could
potentially take up a huge amount of memory. Instead of holding onto this data, RxJS
lets it flow freely and uses the iterator pattern to traverse any type of data source irre-
spective of how it’s created.

Reactive Manifesto
One of the key principles of a reactive system is the ability to stay afloat under varying
workloads—known as elasticity. Obviously, this has many architectural and infrastruc-
tural implications that extend beyond the scope of this book, but a corollary to this
is that the paradigm you use shouldn’t change whether you’re dealing with one, one
hundred, or thousands of events. RxJS offers a single computing model to handle
finite as well as infinite streams.

The Reactive Manifesto (http://www.reactivemanifesto.org) was published by a
working group that aims at identifying patterns for building reactive systems. It has
no direct relation to the Rx libraries, but philosophically there are many points in
common.

Reads infinitely many
numbers in memory

Listens to all mouse moves
the user is performing

http://www.reactivemanifesto.org

38 CHAPTER 2 Reacting with RxJS
2.1.2 The iterator pattern

A key design principle behind RxJS streams is to give you a familiar traversal mecha-
nism, just as you have with arrays. Iterators are used to traverse containers of data in a
structure-agnostic way or independent of the underlying data structure used to har-
ness these elements, whether it’s an array, a tree, a map, or even a stream. In addition,
this pattern is effective at decoupling the business logic applied at each element from the itera-
tion itself. The goal is to provide a single protocol for accessing each element and mov-
ing on to the next, as shown in figure 2.5.

We’ll explain this pattern briefly now, and later on you’ll see how this applies to
streams. The JavaScript ES6 (or ES2015) standard defines the iterator protocol, which
allows you to define or customize the iteration behavior of any iterable object. The
iterable objects you’re most familiar with are arrays and strings. ES6 added Map and
Set. With RxJS, we’ll treat streams as iterable data types as well.

 You can make any object iterable by manipulating its underlying iterator. We’ll be
using some ES6-specific syntax to show this. Consider an iterator object that traverses an
array of numbers and buffers a set amount of contiguous elements. Here, the business
logic performed is the buffering itself, which can be useful to group elements together
to form numerical sets of any dimension, like the ones illustrated in figure 2.6.

 Now let’s see what the code would look like. The next listing shows the internal
implementation of this custom iterator, which contains the buffer logic.

Events accessible
in a single protocol

r x...

[1,...,Infinity]

Key presses

Iterator
......

Mouse clicks

Arrays

e e

Figure 2.5 Iterators abstract the traversal mechanism, whether a for or a while loop, so
that processing any type of data is done in the exact same way.

Buffer size 2
[1, 2, 3, 4, 5, 6, 7, 8, 9, ...]

[1, 2]

[3, 4]

[5, 6]

[7, 8]

[9, ...]

Figure 2.6 Using an iterator to display sets of numbers of size 2

39Functional programming as the pillar of reactive programming
function BufferIterator(arr, bufferSize = 2) {
 this[Symbol.iterator] = function () {

let nextIndex = 0;

return {
 next: () => {
 if(nextIndex >= arr.length) {
 return {done: true};
 }
 else {
 let buffer = new Array(bufferSize);
 for(let i = 0; i < bufferSize; i++) {

buffer[i] = (arr[nextIndex++]);
}
return {value: buffer, done: false};

}
 }
}

 };
}

Any clients of this API need only interact with the next() function, as outlined in the
class diagram in figure 2.7. The business logic is hidden from the caller, the for...of
block, which is the main goal of the iterator pattern.

 The next() function in listing 2.2 is used to customize the behavior of the itera-
tion through for...of or any other looping mechanism. As you’ll see later on, RxJS
observers also implement a similar interface to signal to the stream to continue emit-
ting elements.

DID ITERATORS THROW YOU FOR A LOOP? The ES6 iterator/iterable protocols are
powerful features of the language. RxJS development predates this protocol, so it
doesn’t use it at its core, but in many ways the pattern is still applied. We don’t use
iterators in this book; nevertheless, we recommend you learn about them. You can
read more about this protocol here: https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Iteration_protocols#iterator.

Listing 2.2 Custom BufferIterator function

Assigns a default buffer size of 2

Overrides the provided array’s iterator
mechanism. Symbol.iterator represents
the array’s iterator function.

The next()
function is part
of the Iterator
interface and

marks the next
element in the

iteration.

Returns an object with a done =
true property, which causes the
iteration mechanism to stop

Creates a temporary
buffer array to group
contiguous elements

Returns the buffered items and a status
of done = false, which indicates to the

iteration mechanism to continue

Iterator

for...of + next()

Uses

BufferIterator

+ next()
buffering logic

Client

Figure 2.7 A class diagram (UML)
highlighting the components of the
iterator pattern. The Iterator
interface defines the next() function,
which is implemented by any concrete
iterator (BufferIterator). Users of
this API need only interact with the
interface, which is general and applies
to any custom traversal mechanism.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols#iterator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols#iterator

40 CHAPTER 2 Reacting with RxJS
Iterators allow you to easily take advantage of the JavaScript runtime to take care of the
iteration on your behalf. Following, we show some examples of this using our simple
numerical domain. Buffering is built into RxJS, and it’s really useful to gather up a
sequence of events and make decisions about the nature of these events or apply addi-
tional logic. An example of this is when you need to invoke an expensive operation in
response to a sequence of mouse events, like drag and drop. Instead of running expen-
sive code at each mouse position, you buffer a specific number of them and emit a sin-
gle response, taking all into account. Implementing this yourself would be tricky,
because it would involve time management and keeping external state that tracks the
frequency and speed with which the user moves the mouse; certainly, you’ll want to del-
egate this to libraries that understand how to manage all this for you. We’ll examine buf-
fers in more detail in chapter 4. In RxJS, buffers aren’t implemented as in listing 2.2,
but it serves to show you an example of how you can buffer data using iterators, which
is how you think about these sorts of operations. Here’s our BufferIterator in action:

const arr = [1, 2, 3, 4, 5, 6];

for(let i of new BufferIterator(arr, 2)) {
 console.log(i);
}
//-> [1, 2] [3, 4] [5, 6]

for(let i of new BufferIterator(arr, 3)) {
 console.log(i);
}
//-> [1, 2, 3] [4, 5, 6]

When you subscribe to a stream, you’ll be traversing through many other data sources
such as mouse clicks and key presses in the exact same way. Theoretically speaking,
because our pseudo Stream type is an iterable object, you could traverse a set of key
press events as well with a conventional loop:

const stream = Stream(R, x, J, S)[Symbol.iterator]();

for(let keyEvent of stream) {
 console.log(event.keyCode);
}
//-> 82, 120, 74, 83

Streams in RxJS also respect the Iterator interface, and subscribers of this stream
will listen for all the events contained inside it. As you saw previously, iterators are
great at decoupling the iteration mechanism and data being iterated over from the
business logic. When data defines the control flow of the program, this is known as
data-driven code.

Buffers two elements at once

Buffers three elements at once.
Notice how the iteration
mechanism is completely separate
from the buffering logic.

Creating a stream that
wraps key presses for
those four letters

Traversing a stream is semantically
equivalent to subscribing to it
(more on this later).

41Stream’s data-driven approach
2.2 Stream’s data-driven approach
RxJS encourages a style of development known as data-driven programming. The
data-driven approach is a way of writing code such that you can separate the behavior
of an application from the data that’s passing through it. This is a core design decision
of RxJS and the main reason why you can use the same paradigm to process arrays,
mouse clicks, or data from AJAX calls.

 In the OO approach, you place more emphasis on the supporting structures than
the data itself. This explains why pure OO languages like Java have many different
implementations to store a sequential collection of elements, each tackling different
use cases: Array, ArrayList, LinkedList, DoublyLinkedList, ConcurrentLinkedList,
and others. To put it another way, imagine that you run a local florist that performs
deliveries. Your business in this case is importing flowers, cutting them, packaging
them, handling orders, and sending those orders out for delivery. These tasks are all
part of your business logic; that is, they are the important bits that your customers care
about and the parts that bring in revenue. Now imagine that in addition to those
tasks, you’re also tasked with designing the type of delivery van to use. Creating this
structure is itself a full-time job and one that would likely distract from your primary
business without meaningfully lending to it.

 Data, as in the data that you care about and that which gives rise to search engines,
websites, and video games, is the flower component of software design. Creating soft-
ware should therefore be about how you manipulate data rather than how you create
approximations of real-world objects (as you might in OO programming). Bringing
data to the forefront and separating it from the behavior of the system is at the heart
of data-driven/data-centric design. Similarly, loosely coupling functions from the
objects that contain data is a design principle of FP and, by extension, RP.

 To be driven by data is to be compelled to act by the presence of it and to let it fuel
your logic. Without data to act on, behavior should do nothing. The idea of data giv-
ing life to behavior ties back to our earlier definition of what it means to be reactive—
reacting to data instead of waiting for it. Streams are nothing more than a passive pro-
cess that sits idle when nothing is pushed through them and no consumer is attached,
as shown in figure 2.8.

 This design pattern seems intuitive to most people because we think of data as
requiring some sort of behavior in order to be meaningful. In a physics simulation,
the mass of a ball is just a decimal number without context until the behavior of grav-
ity is applied to it. Thus, if we are to imagine that both are intertwined by nature, it
seems only natural that they should cohabitate logically within an object. In theory,
this would seem to be a fairly obvious approach, and indeed the prevalence and popu-
larity of OO programming stands testament to its power as a programming paradigm.

 But it turns out that the greatest strength of OO design is also perhaps its greatest
weakness. The intuition of representing components as objects with intrinsic behavior
makes sense to a certain extent, but much like the real world, it can become difficult
to reason about as the complexity of the application grows. For instance, if you hadn’t

42 CHAPTER 2 Reacting with RxJS
used the BufferIterator type before, you would’ve had to implement the buffering
logic with the application logic that uses this data. To keep things simple, you just
logged the numbers to the screen, but in real life you’ll use iterators for something
more meaningful.

 The data-centric approach seeks to remedy this issue by separating the concerns of
data and behavior, through its producer/consumer model. Data would be lifted out of
the behavior logic and instead would pass through it. Behavior could be loosely linked
such that the data moved from one part of the application to another, independent of
the underlying implementation. Earlier you saw how iterators help with this:

Stream([1, 2, 3, 4, 5, 6])
 .buffer(2)
 .subscribe(console.log)); //-> [1, 2] [3, 4] [5, 6]

Each step in the pipeline resides within its own scope that’s externalized from the rest
of the logic. In this case, you can see that just like iterators, the buffering step is done
separately from the code acting on the data. By constructing it so, you’ve both
declared the intent of each step and effectively decoupled the data from the underly-
ing implementation, because each component reacts only to the step that preceded it.

 Furthermore, producers come in all shapes and sizes. Event emitters are one of the
most common ones; they’re used to respond to events like mouse clicks or web
requests. Also, there are timer-based sources like setTimeout and setInterval that

Before subscription

Stream declaration

After subscription
ConsumerStream declaration

Without consumers,
no events are emitted.

Data is pushed down
to any consumers.

Subscribing actuates the stream and
allows the data to flow through it.

Stream is
lazily initiated

Figure 2.8 Initially, streams are lazy programs that wait for a subscriber to become available.
Any events received at this point are discarded. Subscribing to the stream puts the wheels in
motion, and event data flows through the pipeline and out for consumers to use.

43Wrapping data sources with Rx.Observable
will execute a task at a specified point in the future. There are subtler ones such as
arrays and strings, which you might recognize as collections of data but not necessarily
producers of data.

 Traditionally, when dealing with each of these data sources, you’ve been condi-
tioned to think of them as requiring a different approach. For instance, event emitters
require named event handlers, Promises require the continuation-passing “thenable”
function, setTimeout needs a callback, and arrays need a loop in order to iterate
through them. What if we told you that all of these data sources can be consolidated
and processed in the exact same way?

2.3 Wrapping data sources with Rx.Observable
All along, we’ve been using a pseudo data type called Stream as a substitute for the
real Rx.Observable type available in RxJS 5. We did this to help you understand the
paradigm and what it means to think in streams, rather than focus on the specifics of
the library. In this section, we’ll begin diving into the RxJS 5 APIs (for information
about installing RxJS 5 on the client or on the server, please visit appendix A).
Through the Rx.Observable type, you can subscribe to events produced from differ-
ent types of data sources.

ES7 SPECIFICATION One of the key design decisions behind the development
of RxJS 5 was to create an Observable type that follows the proposed observ-
able specification slated for the next version of JavaScript ES7. You can find all
the details of this API here: https://github.com/zenparsing/es-observable.

You can lift a heterogeneous set of inputs into the context of an observable object.
Doing so allows you to unlock the power of RxJS to transform or manipulate them to
reach your desired outcome. First, let’s identify these different types of data.

2.3.1 Identifying different sources of data

We mentioned earlier that the advantage of separating data and behavior is that you
can reason about a holistic model to account for any type of data. Hence, the first step
to break the data free is to understand that all of these data sources are the same when
viewed through a data-driven (or stream-driven?) lens. First, let’s re-categorize the
types of data we’ll encounter. Rather than dealing with them as strict JavaScript types,
let’s look at some broader categories of data.

EMITTED DATA

Emitted data is data that will be created as a result of some sort of interaction with the
system; this can be either from a user interaction such as a mouse click or a system
event like a file read. As we alluded to in chapter 1, some of these will have at most
one event; that is, you request data and then, at some point in the future, you receive
a response. For this, Promises can be a good solution. Others, like a user’s clicks and
key presses, are part of a continuous process, and this requires you to treat them as
event emitters that produce multiple discrete events at future times.

https://github.com/zenparsing/es-observable

44 CHAPTER 2 Reacting with RxJS
STATIC DATA

Static data is data that’s already in existence and present in the system (in memory);
for example, an array or a string. Artificial unit test data also falls into this category.
Interacting with it is usually a matter of iterating through it. If you were wrapping a
stream around an array, for instance, the stream would never actually store the array;
it would extend it with a mechanism that flushes the elements within the array (based
on iterators). Arrays are a common and heavily used static data source, but you could
also think of associative arrays or maps as unordered static data. Most of the examples
so far have dealt with static data such as strings, numbers, and arrays, which we used to
illustrate some of the basic concepts. In later parts of the book, we’ll focus on emitted
data and generated data.

GENERATED DATA

Generated data is data that you create periodically or eventually, like a clock sounding a
chime every quarter hour; it can also be something more procedural like generating
the Fibonacci sequence using ES6 generators. In the latter case, because the sequence
is infinite, it’s not feasible to store it all in memory. Instead, each value should be gen-
erated on the fly and yielded to the client as needed. In this category, you can also
place the traditional setTimeout and setInterval functions, which use a timer to
trigger events in the future.

 Just like the saying, “When you’re a hammer, every problem looks like a nail,” the
Rx.Observable data type can be used to normalize and process each of these data
sources using a single programming model—it’s the hammer. With this approach, you
gain the most code reuse and avoid creating specific ad hoc functions to deal with the
idiosyncrasies of each event type.

2.3.2 Creating RxJS observables

In Rx, an observer subscribes to an observable. As you learned in chapter 1, this is
analogous to the observer pattern with the subject acting as the observable;
Rx.Observable represents the object that pushes notifications for observers to
receive. The observers asynchronously react to any events emitted from the observ-
able, which allows your application to remain responsive instead of blocking in the
face of a deluge of events. This is ideal to implement asynchronous, responsive code
both on the client and on the server.

 Rx.Observable has different meanings to different people. To functional pro-
gramming purists, it falls under a special category called a functor, an endofunctor to be
exact. (We don’t cover functors in this book because they’re not essential to under-
standing Rx, but if you want learn more about them, you’ll find them in the func-
tional programming book mentioned earlier.) To most others, it’s simply a data type
that wraps a given data source, present in memory or eventually in the future, and
allows you to chain operations onto it by invoking observable instance methods
sequentially. Figure 2.9 shows a simple visualization of this concept.

45Wrapping data sources with Rx.Observable
Here’s a quick look at how observables implement chaining extremely well:

Rx.Observable.from(<data-source>)

 .operator1(...)

 .operator2(...)

 .operator3(...)

 .subscribe(<process-output>);

Whether you choose to accept one definition over the other, it’s important to under-
stand that an observable doesn’t just represent a value now but also the idea of a value
occurring in the future. In FP, this is the same definition given to pure functions, which
are nothing more than to-be-computed values, and part of the reason why we refer to
the “methods” invoked on an observable instance as operators.

 Because observables in RxJS are immutable data types, this pattern works quite
well and should not look that foreign to you. Consider a familiar data type, String.
Look at this trivial example and notice its similarity to the previous pattern:

String('RxJS')
 .toUpperCase()
 .substring(0, 2)
 .concat(' ')
 .repeat(3)
 .trim()
 .concat('!') //-> "RX RX RX!"

Learning about a shiny new tool is always exciting, and there’s a tendency among
developers to try to use that tool in every conceivable situation where it might poten-
tially apply. But as is often the case, no tool is meant for every situation, and it’s just as
important to understand where RxJS won’t be used.

 You can divide your computing tasks into four groups within two different dimen-
sions. The first dimension is the number of pieces of data to process. The second is
the manner in which the data must be processed, that is, synchronously or asynchro-
nously. In enumerating these possibilities, we want to highlight where RxJS would be
most beneficial to your applications.

Input Output
Operator

Subscribers see
the final product.

Operator Operator

Time

Figure 2.9 The sequential application of methods or operators that transform an input into
the desired outcome, which is what subscribers see

Wraps a data source with a stream

Invokes a sequence of operations chained by
the dot operator. In chapter 3, we’ll spend a lot
more time with observable instance methods.

Processes the results

46 CHAPTER 2 Reacting with RxJS
2.3.3 When and where to use RxJS

Learning to use a new tool is as important as learning when not to use it. The types of
data sources we’ll be dealing with in this book can be classified into the four different
categories listed in figure 2.10, which we’ll explain next.

SINGLE-VALUE, SYNCHRONOUS

The simplest case is that you have only a single piece of data. In programming, you
know there are operations that return a single value for each invocation. This is the
category of any function that returns a single object. You can use the Rx.Observable
.of() function to wrap a single, synchronous value. As soon as the subscriber is
attached, the value is emitted (we haven’t yet explained the details behind subscribe,
but we’ll cover that in a bit):

Rx.Observable.of(42).subscribe(console.log); //-> 42

Although there are cases where you’ll need to wrap single values, in most cases, if your
goal is just to perform simple operations on them (concatenating another string, add-
ing another number, and others), an observable wrapper may be overkill. The only time
you’ll wrap simple values with observables is when they combine with other streams.

MULTI-VALUE, SYNCHRONOUS

You can also group single items together to form collections of data, mainly for arrays.
In order to apply the same operation that you used on the single item on all of the
items, you would traditionally iterate over the collection and repeatedly apply the
same operation to each item in the collection. With RxJS, it works in exactly the same
way:

Rx.Observable.from([1, 2, 3]).subscribe(console.log);
// -> 1

2
3

Rx.Observable.from('RxJS').subscribe(console.log);
// -> "R"

"x"
"J"
"S"

Character, number

Promise

Synchronous

Asynchronous

Single-value Multi-value

Strings, arrays

Event emitters:
clicks, key presses, etc. Figure 2.10 Different types of

data sources with examples in
each quadrant

47Wrapping data sources with Rx.Observable
The RxJS from() operator is probably one of the most commonly used. And to make
it a bit more idiomatic, RxJS has overloaded the forEach observable method as well,
with the exact same semantics as subscribe:

const map = new Map();

map.set('key1', 'value1');
map.set('key2', 'value2');

Rx.Observable.from(map).forEach(console.log);
//-> ["key1", "value1"] ["key2", "value2"]

Both of these groups operate synchronously, which means each subsequent block of
code must wait for the previous block to complete before executing. In the multi-
value example, each item will be processed serially (one by one) until the collection is
exhausted. This behavior is useful when dealing with items that have been preallo-
cated, like arrays, sets, or maps, or if they can be generated, in place, on demand.
Essentially, you can consider synchronous behavior to be actions on demand with
results returning immediately (or at the very least before any further processing is
done). When this is not the case, data is known as asynchronous.

SINGLE-VALUE, ASYNCHRONOUS

This brings us to the second dimension of computing tasks, where RxJS gives you the
most benefits. This dimension addresses whether a task will execute synchronously or
asynchronously. In the latter case, code is only guaranteed to run at some time in the
future; thus, subsequent code blocks can’t rely on any execution of a previous block hav-
ing already taken place. Like with the first dimension, you also have a single-value case,
where the result of a task will result in a single return value. This kind of operation is
usually used to load some remote resource via an AJAX call or wait on the result of some
non-local calculation wrapped in a Promise, without blocking the application. In either
case, after the operation is initiated, it will expect a single return value or an error.

 As we mentioned previously, in JavaScript this case is often handled using Prom-
ises. A Promise is similar to the single-value data case in that it resolves or errors only
once. RxJS has methods to seamlessly integrate with Promises. Consider this simple
example of a Promise resolving into a single, asynchronous value:

const fortyTwo = new Promise((resolve, reject) => {
 setTimeout(() => {

resolve(42);
 }, 5000);
});

Rx.Observable.fromPromise(fortyTwo)
 .map(increment)
 .subscribe(console.log); //-> 43

console.log('Program terminated');

NOTE The promised value is being computed asynchronously, but Promises
differ from Observables in that they’re executed eagerly, as soon as they’re
declared.

48 CHAPTER 2 Reacting with RxJS
Running this program as is produces the following output:

'Program terminated'

43 //-> after 5 seconds elapse

And because Promises are single-value and immutable, they’re never run again. So if
you subscribe to one 10 seconds later, it will return the same value 10 times—this is a
desirable trait of a Promise by design. In chapter 7, you’ll learn that you can retry a
Promise Observable and force it to be executed many times by nesting it within
another Observable, which has support for retries. Using the version of ajax(url)
that returns a Promise, you can write the following:

Rx.Observable.fromPromise(ajax('/data'))
 .subscribe(data => console.log(data.id));

Another frequently used alternative is to use jQuery’s deferred objects, which also
implement the Promise interface. In particular, you can use functions like
$.get(url) or $.getJSON(url):

Rx.Observable.fromPromise($.get('/data'))
 .subscribe(data => console.log(data.id));

MULTI-VALUE, ASYNCHRONOUS

For those keeping score, this brings us to our fourth and final group of computing
tasks. The tasks in the fourth group are those that will produce multiple values over
time, yet do so asynchronously. You create this category especially for the DOM events,
which are all asynchronous and can occur infinitely many times. This means that
you’ll need a mix of semantics from both the iterator and the promise patterns. More
specifically, you need a way to process infinitely many items in sequence and capture
any errors that occur. These items could be data fetched from remote AJAX calls or
data generated from dragging the mouse across the screen. For this you need to invert
your control structures to operate asynchronously.

 The typical solution to a problem of this nature would be to use an EventEmitter.
It provides hooks or callbacks to which closures can be passed; in this way it’s very
much like the Promise. But an event emitter doesn’t stop after a single event; instead,
it can continue to invoke the registered callbacks for each event that arrives, creating
a practically infinite stream of events. The emitter will fulfill both of your criteria for
handling multi-value, asynchronous events. But it’s not without its share of problems.
Though simple to use, event emitters don’t scale well for larger systems, because their
simplicity leads to a lack of expressiveness. The semantics for unsubscribing and dis-
posing of them can be cumbersome, and there’s no native support for error handling.
These deficits can make it difficult to compose and synchronize complex tasks where
multiple events from different parts of the system can be in flight simultaneously.

 Rather, you can use RxJS to wrap event emitters, with all their benefits and versatil-
ity. The following code attaches a callback to a click event on a link HTML element:

49Wrapping data sources with Rx.Observable
const link = document.querySelector('#google');

const clickStream = Rx.Observable.fromEvent(link, 'click')
 .map(event => event.currentTarget.getAttribute('href'))
 .subscribe(console.log); //-> http://www.google.com

Note that in this example, the subscribe() method was used to process click events
and perform the required business logic, in this case extracting the href attribute, as
shown in figure 2.11. Later on, when we cover the Observable instance methods that
form the pipeline, you’ll see concrete examples of how to decouple the business logic
from the printing of the result.

You can also use Observables to wrap any custom event emitters. Going back to our
calculator emitter in Node.js, instead of listening for the add event,

addEmitter.on('add', (a, b) => {
 console.log(a + b); //-> Prints 5
});

you can subscribe to it:

Rx.Observable.fromEvent(addEmitter, 'add', (a, b) => ({a: a, b: b}))
 .map(input -> input.a + input.b)
 .subscribe(console.log); //-> 5

addEmitter.emit('add', 2, 3);

In this section, we covered only a few of the ways for creating Observables with RxJS.
Later on, we’ll tackle more-complex problems as well as new Observable methods.

2.3.4 To push or not to push

Event emitters have been around as long as the JavaScript language. In that time, they
haven’t had any significant improvements to their interface in the latest releases of
the language. This contrasts with Promises, iterators, and generators, which were part
of the JavaScript ES6 specification and are already supported in many browsers at the
time of writing. This is one of the reasons why RxJS is so important; it brings many
improvements to JavaScript’s event system.

Creates an observable around
click events on this link

Extracts the link’s
href attribute

Queries the DOM
for the link HTML
element

Observable

Clicks

<a google /> Extract href attr

Consumer

Log to console

Figure 2.11 Observable that wraps click events and passes them down to the
observer for processing

50 CHAPTER 2 Reacting with RxJS
Event emitters parse through a sequence of events asynchronously, so they come really
close to being an iterator and, hence, a stream. The difference, however, lies in the
way data is consumed by its clients—whether it is pulled or pushed. This is extremely
important to understand, because most of the literature for RxJS defines observables
as objects that represent push-based collections. Figure 2.12 highlights the main differ-
ence between the pull and push mechanisms, which we’ll explain immediately.

 Iterators use a pull-based semantic. This means that the consumer of the iterator is
responsible for requesting the next item from the iterator. This data-on-demand
model has two major benefits. First, it creates an abstraction over the data structure
that’s being used. Essentially, any data source that exposes some common method of
iteration can be used interchangeably with another. The second benefit of data on
demand is for sequences of data that result from some calculation. Such is the case
with JavaScript generators.

 For instance, for a Fibonacci number sequence, which is infinite, you need only
calculate numbers as they’re requested rather than wasting computing time generat-
ing parts of a sequence that the caller doesn’t care about. This is immensely helpful if

Pull-based semantic (e.g., iterators)

Consumer

next()Iterator
for...of

Data

Push-based semantic (e.g., observables)

Consumer requests
(pulls) elements from
a data structure

A source of data (event emitter,
array, HTTP call) pushes data
down to any observers.

Consumer

next()
Observer

Data

Observable.of()

Figure 2.12 Notice the positions of the consumer and the direction of the data. In pull-based
semantics, the consumer requests data (iterators work this way), whereas in pushed-based
semantics, data is sent from the source to the consumer without it requesting it. Observables work
this way.

51Wrapping data sources with Rx.Observable
the data source is expensive or difficult to calculate. In the next listing, you use a gen-
erator to create a lazy Fibonacci calculator. Generators are nothing more than itera-
tors behind the scenes, so each value will be produced only when the consumer calls
(or pulls) the next() method.

function* fibonacci() {
 let first = 1, second = 1;
 for(;;) {
 let sum = second + first;
 yield sum;
 first = second;
 second = sum;
 }
}

const iter = fibonacci();

console.log(iter.next()); //-> {value: 2, done: false}
console.log(iter.next()); //-> {value: 3, done: false}
console.log(iter.next()); //-> {value: 5, done: false}

A pull-based paradigm is useful in cases where you know that a value can be returned
immediately from a computation. But in scenarios like listening for a mouse click,
where the consumer has no way of knowing when the next piece of data will become
available, this paradigm breaks down. For this reason, you require a corresponding
type on the asynchronous side that is push-based—the opposite of the pull-based
approach. In a push paradigm, the producer is responsible for creating the next item,
whereas the consumer only listens for new events. As an example of this, consider
your phone’s email client. A pull-based mechanism that checks for new email every
second can drain the resources of your mobile device quickly, whereas with push
email, or any push notifications for that matter, your email client needs to react to any
incoming messages only once.

Listing 2.3 Fibonacci function using generators

A generator function is
denoted by the * (star)
notation.

Fibonacci sequence must
be initialized with at
least two values.

yield will return the result of each
intermediate step in the loop.

Creates the generator

Want to learn more about generators?
Generators are a language feature added into JavaScript as part of the ES6 specifi-
cation. From a syntax point of view, generators introduce the function* and yield
keywords. A function with an asterisk declares that a function behaves as a genera-
tor, which means it can exit with a return value via yield and later reenter. Under the
hood, generators don’t actually execute immediately but return an Iterator object,
which is accessed via its next() method. Through this Iterator object, a generator
can pause and resume exactly where it left off, and any context (closure) is kept
across reentrances. A generator is a rare but powerful construct for producing infinite
data using a given formula or template. If you want to learn more about them, we rec-
ommend you read the documentation: https://developer.mozilla.org/en-US/
docs/Web/JavaScript/Reference/Statements/function*.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/function*
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/function*
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/function*

52 CHAPTER 2 Reacting with RxJS
 RxJS observables use push-based notifications, which means they don’t request
data; rather, data is pushed onto them so that they can react to it. Push notifications
bring the reactive paradigm to life. RxJS proposes observables as an improvement
over event emitters because they’re more versatile and extensible. The observable also
serves as a better contemporary to the Iterator type, given that it possesses similar
semantics but with a push-based mechanism.

 You can see from our discussion so far how iterators and Promises can be potential
data sources that can be wrapped as observables, even though we earlier classified
them as distinct groups. This ability to adapt not just the types they are replacing but
also types from other groups is immensely powerful—observables work equally well
across synchronous and asynchronous boundaries. It not only makes interfacing with
legacy code incredibly easy, but also it allows consumer code to be written inde-
pendently of how the producer is implemented.

WATCH OUT! This power comes with responsibility as well, for although
you’re able to convert anything your heart desires into Observables, it doesn’t
always mean that you should. In particular, processes that are strictly synchro-
nous and iterative or will only ever deal with a single value do not need to be
“Rx-ified” just for the sake of being cool. Even though Observables are cheap
to create, there’s a bit of overhead associated with applying simple operations
on data. For instance, just transforming a string from lower- to uppercase
does not require it to be wrapped with an observable; you should directly use
the string methods. Don’t be reactive just because you can.

In RxJS, you’ll always have a pipeline that takes data from the source to the corre-
sponding consumer. Data will always be created or materialized from a data source.
Again, the type of data source isn’t relevant to how your abstraction operates; when
data reaches the end of its journey and must be consumed, it’s immaterial where the
data came from. We’ll reiterate that the separation and abstraction of these two con-
cepts, data production and data consumption, is important for three reasons:

 It enables you to hide differences of implementation behind a common inter-
face, which lets you focus more on the business logic of your task. This has the
benefit of not only optimizing development time but also reducing code com-
plexity by removing extra noise from code.

 The separation of production and consumption builds a clear separation of
concerns and makes the direction of data flow clear.

 It makes streams testable by allowing you to attach mock versions of the pro-
ducer and wire the corresponding matching expectations in the observer.

Now that you understand how streams can be constructed, you’re missing only the last
place where observers come into play—stream consumption.

53Consuming data with observers
2.4 Consuming data with observers
Every piece of data that’s emitted and processed through an observable needs a desti-
nation. In other words, what was the purpose of capturing and processing a certain
event? Observers are created within the context of a subscription, which means that
the result of calling subscribe() on an observable source is a Subscription object.
Because observables operate synchronously or asynchronously, the consumer of an
observable must in some way support the inversion of control that also happens with
callbacks. This is consistent with its push-based mechanism. That is, because you don’t
know when a DOM element, for instance, will fire an event or when the result of an
AJAX call will return, observables must be able to call into or signal the observer struc-
ture that more data is available by using the observer’s next() method, as illustrated
in figure 2.13. This mechanism is directly inspired in the iterator and observer pat-
terns. An iterator doesn’t know (or care) about the size of the data structure it’s loop-
ing over or if it will ever end; it only knows whether there’s more data to process.

Through a concise iterator-like API, observables are able to signal to their subscribers
whether more events have occurred. This gives you the flexibility to control what data
observers receive.

2.4.1 The Observer API

An observer is registered with an observable in much the same way that you registered
callbacks on an event emitter. An observable becomes aware of an observer during the
subscription process, which you’ve seen a lot of so far. The subscription process is a
way for you to pass an observer reference into an observable, creating a managed,
one-way relationship.

Observer

next(

.subscribe()

)

Observable

After subscribing, any events
that occur get pushed onto
the observer via .next().

Any number of random
events occurs.

Calling .subscribe() returns a Subscription object back
to the users: const subscription = obs$.subscribe(observer).

Figure 2.13 Observables calling into an observer’s methods. Observers expose a simple iterator-like
API with a next() method. Upon subscription, an object of type Subscription is returned to the
calling code, which it can use for cancellation and disposal, as we’ll discuss in a bit.

54 CHAPTER 2 Reacting with RxJS
Figure 2.14 shows how observables call an observer’s methods to signal more data,
completion, and even errors. As you can see, aside from next(), two other methods
are called on observers: error() and complete().

 Figure 2.14 shows that once the subscribe method is called, an observer is implic-
itly created with an API that exposes three (optional) methods: next, complete, and
error (in RxJS 4 these were called onNext, onCompleted, and onError, respectively).
In code, the resulting object has the following structure:

const observer = {
 next: function () {

// process next value
 },
 error: function () {

// alert user
 },
 complete: function () {

 }
}

Up until now, you’ve used a single function call only to process the results. This func-
tion maps to next(). Each method serves a specific purpose in the lifetime of the
observer, as shown in table 2.1.

 Alternatively, you can use this API directly by creating your own observable.

Observer

next(

complete()

error()

)

Observable

Observables can send the next
event, the completed signal, or
an error with exception.

Random
events occur.

Observer API consists
of these three methods

Figure 2.14 Observables call into the Observer API to send the
next event in the stream, the completed flag when a stream has
finished, or any errors that occur during the pipeline’s operation.
We’ll discuss more about error handling in later chapters.

55Consuming data with observers

2.4.2 Creating bare observables

Most of the time, you’ll use the RxJS factory operators like from() and of(), as you
learned at the beginning of this chapter, to instantiate observables. In practice, these
should cover all your needs. But it’s important to understand how observables work
under the nice RxJS abstraction and how they interact with the observer to emit
events. We’ll show you a barebones model of an observable that emits events asynchro-
nously and exposes the mechanism to unsubscribe. At the core, an observable is a
function that processes a set of inputs and returns a subscription to the caller to man-
age the disposal of the stream:

const observable = events => {
 const INTERVAL = 1 * 1000;
 let schedulerId;

 return {
subscribe: observer => {

schedulerId = setInterval(() => {
 if(events.length === 0) {
 observer.complete();
 clearInterval(schedulerId);
 schedulerId = undefined;
 }
 else {
 observer.next(events.shift());
 }
}, INTERVAL);

return {
 unsubscribe: () => {

if(schedulerId) {
clearInterval(schedulerId);

}
 }
};

Table 2.1 Defining the Observer API

Name Description

next(val):void Receives the next value from an upstream observable. This is the
equivalent of update in the observer pattern. When a single func-
tion is passed into subscribe() instead of an observer object, it
maps to the observer’s next().

complete():void Receives a completion notification from the upstream observable.
Subsequent calls to next(), if any, are ignored.

error(exception):void Receives an error notification from the upstream observable. This
indicates that it encountered an exception and won’t be emitting any
more messages to the observer (subsequent calls to next() are
ignored). Generally, error objects are passed in, but you could cus-
tomize this to pass other types as well.

56 CHAPTER 2 Reacting with RxJS
}
 }
};

You can call this function by passing the observer object:

let sub = observable([1, 2, 3]).subscribe({
 next: console.log,
 complete: () => console.log('Done!')
});
//-> 1

(...1 second)
2

(...1 second)
3

(...1 second)
Done!

This is a simplistic model of RxJS, and there’s much more that goes into it. But the main
takeaway here is that an observable behaves like a function that begins chipping away
at the data pushed into it as soon as a subscriber is available; the subscriber has the key
to turn the stream off via sub.unsubscribe(). Now, let’s move on to using RxJS.

 Using RxJS, you can register an observer object through Rx.Observable.create().
Like the previous code, this function expects an observer object that you can use to sig-
nal the next emitted event by invoking its next() method. Most of the time, you’ll pro-
vide the observer object literal directly into the subscription and use the static
create() method when you want full control of how and when the data is emitted
from the observable through the Observer API. For instance, you create observables
artificially by calling into the observer’s methods directly:

const source$ = Rx.Observable.create(observer => {
 observer.next('4111111111111111');
 observer.next('5105105105105100');
 observer.next('4342561111111118');
 observer.next('6500000000000002');
 observer.complete();
});

const subscription = source$.subscribe(console.log);

A marble diagram of this stream would look like figure 2.15.
 This sample code is simple because it just emits a series of account numbers, but

you could do much more. You could create your own observables with custom behav-
ior that can be reused anywhere in your application.

If an observable is finite, you
can signal its completion by
calling the observer’s
complete() method.

At this point, the observable stands
idle and none of the data is emitted
or passed into the observer.

With subscribe(), the observer
logic is executed; in this case,

it’s printing to the console.

57Consuming data with observers

S
c

2.4.3 Observable modules

Directly calling the observer object allows you to define the data that’s pushed to the
subscriber. How this data is generated and where it comes are encapsulated into the
observable’s context—kind of like a module. For instance, suppose you wanted to cre-
ate a simple progress indicator widget that can be used when a user is performing a
long-running operation. This module will emit percentage values 0% to 100% at a cer-
tain speed, as shown in the following listing.

const progressBar$ = Rx.Observable.create(observer => {
 const OFFSET = 3000;
 const SPEED = 50;

 let val = 0;
 function progress() {

if(++val <= 100) {
observer.next(val);
setTimeout(progress, SPEED);

}
else {

observer.complete();
}

 };
 setTimeout(progress, OFFSET);
});

const label = document.querySelector('#progress-indicator');

progressBar$
 .subscribe(
 val => label.textContent = (Number.isInteger(val) ? val + "%" : val),
 error => console.log(error.message),
 () => label.textContent = 'Complete!'
);

The business logic of how the values are generated and emitted belongs in the observ-
able, whereas all the details of rendering, whether you want a simple number indica-
tor or use some third-party progress bar widget, are for the caller to implement within
the observer.

Listing 2.4 Custom progress indicator module using RxJS

next()

The pipe symbol is used to denote
the completion of a stream.

4111... 5105... 4342... 6500...

Figure 2.15 A marble diagram showing a synchronous set of events ended by a call to complete()

Starts the progress
indicator counter
after three seconds

Emits a new
progress value
every 50
milliseconds

Calls the progress
function
recursively

ends the
omplete

signal
after

reaching
100%

58 CHAPTER 2 Reacting with RxJS
NOTE You could also achieve this by using RxJS’s time operators. More about
this in the next chapter.

Using these methods gives you more opportunities to react to the different states of
the program. Stepping back into our discussion about iterators and generators in
chapter 2, observers operate similarly to these artifacts. The key difference is that the
iterator uses a pull-based mechanism as opposed to an observable’s push-based
nature—an observable pushes values into an observer. For iterators and generators,
the consuming code is controlling the pace of consumption. For instance, a for loop
controls (or requests) what to pull from an iterator or a generator, not the other way
around. This means that each time a new piece of data is needed (by a call to next()
or yield), the consumer of the iterator will call the appropriate method to advance
the state of the iterator. Figure 2.16 shows another example using the Fibonacci
sequence.

As a result, iterators must have a way to inform the consumer that there are no longer
any items for consumption. Bank tellers are real-world iterators. Each time a customer
comes up, that person must be handled before the next customer can be helped.
When the teller becomes available, they yell “Next!” to “pull” the next customer in. If
they were to call “Next!” and no one responded, they would know that the line was
complete and it might be safe to take their lunch break.

 Something to keep in mind, though, is that infinite event emitters, like the DOM,
will never fire the complete() function (or error() for that matter) on any of its
events. Therefore, it’s entirely up to you to unsubscribe from them or roll your own
autodispose mechanism. But for finite event sequences, when an observer is called
with either of these methods, it knows that contractually it won’t receive any more
messages from its owning observable. This again is a tight parallel to an iterator, which
by definition should stop returning values when the iteration generates an exception
or completes.

 Consider a simple Promise object that resolves to the value 42 after 5 seconds
(shown in figure 2.17).

Figure 2.16 The pull mechanism of iterators

for (let nums of new BufferIterator(arr, 2)) {

 console.log(nums);

}

for(let num of fibonacci()){

 console.log(num);

}

The loop pulls the next
element from the iterator
by calling .next().

The loop pulls data from
the generator function,
requesting it to yield
the next element.

59Consuming data with observers
We mentioned in chapter 1 that Promises can be used to model an immutable, single
(future) value. You’ll use the setTimeout() function to simulate this; now, instead of
creating your own observable, you’ll use the generic creational methods in RxJS, such
as the following:

Rx.Observable.fromPromise():
const computeFutureValue = new Promise((resolve, reject) => {
 setTimeout(() => {
 resolve(42);

}, 5000);
});

Rx.Observable.fromPromise(computeFutureValue)
 .subscribe(
 val => {

console.log(val);
 },
 err => {

console.log(`Error occurred: ${err}`);
 },
 () => {

console.log('All done!');
 });

Because Promises emit a single value, this stream will eventually send the completed
status after 5 seconds have passed, printing “All done!” at the end. Now, suppose that
instead of a resolved Promise, something goes wrong in computing this value and the
Promise is rejected:

const computeFutureValue = new Promise((resolve, reject) => {
 setInterval(() => {
 reject(new Error('Unexpected Exception!'));
 }, 5000);
});

This will cause the observable to invoke the error() method on the observer and
print the following message after 5 seconds:

"Error occurred: Unexpected Exception!"

This is quite remarkable because RxJS not only takes care of error handling for you
(without messy, imperative try/catch statements) but also provides logic that ties in
with Promise semantics of resolve/reject. We’ll cover all there is to know about error
handling in chapter 7.

5 seconds observer.complete()

.next(42)

“All done!”

Timeout starts

42

Figure 2.17 An observable (wrapped Promise) that emits a value after 5 seconds

Resolves the Promise after
5 seconds have elapsed

60 CHAPTER 2 Reacting with RxJS
 An important takeaway from this discussion about observers is that the callbacks
passed to it are, for all practical purposes, future code. That is, you don’t know when
the callbacks will actually be called, so other code shouldn’t make assumptions about
their execution. This relates to the larger point made earlier about the nature of the
code within a stream. Because one of your goals is to move away from the messy busi-
ness of keeping track of state changes, avoiding the introduction of side effects is one
of the ways that you can keep your streams pure and prevent unwanted changes from
adversely seeping into the application logic. This works well with RxJS because pure
functions can run in any order and at any time (now or in the future) and will always
yield the correct results.

 With observers, we’ve finish introducing the three main parts of RxJS: producers
(observables), the pipeline (business logic), and consumers (observers). This chapter
is just the start of your journey of learning how to think reactively (and functionally).
It will take much more time and many more examples to truly understand how you
can think reactively, but you were able to get your feet wet on some advanced APIs.
Much of what you’ve seen so far has been abstract in nature with very little coding, but
this step is crucial for understanding how this approach differs from ones you’ve been
taught in the past. In the next chapter, we’ll look more closely at the operations that
you can perform on streams as well as how you can cancel them if needed. By doing
so, we’re officially taking the training wheels off and introducing you to the core oper-
ations for building applications in RxJS.

2.5 Summary
 RxJS and, more generally, the concept of thinking in streams derive many of

their foundational principles from functional programming.
 The declarative style of RxJS allows you to translate almost exactly from your

problem statement into working code.
 Data sources can often operate quite differently, even within the observable

contract.
 Mouse clicks, HTTP requests, or simple arrays are all the same under the eyes of

observables.
 Push-based and pull-based semantics are represented through observables and

iterators, respectively. Wrapping data sources is the first step in creating a pipe-
line/observable.

 Observables abstract the notion of production and consumption of events such
that you can separate production, consumption, and processing into com-
pletely self-contained constructs.

 Observers expose an API with three methods: next(), complete(), and
error().

Core operators
In the first two chapters, you learned that RxJS draws inspiration from functional
programming and reactive programming. Both paradigms are oriented around
data flows and the propagation of change through a chain of functions known as
operators. Operators are pure functions that create a new observable based on the
current one—the original is unchanged. In this chapter, you’ll learn about some of
the most widely used RxJS observable operators that you can use to create a pipe-
line that transforms a sequence of events into the output you desire.

 A common theme in this chapter is creating observables using a declarative style
of coding, which originates from FP. You can lift sequences of data of any size into
an observable context, as well as data generated or emitted over time, with the goal
of creating a unified programming model for any type of data source, static or
dynamic. Before we dive into the operators used to apply transformations onto the
data that flows through an observable sequence, it’s important to understand that,
unlike many AJAX libraries, observables can be cancelled.

This chapter covers
 Introducing disposal of streams

 Exploring common RxJS operators

 Building fluent method chains with map, reduce,
and filter

 Additional aggregate operators
61

62 CHAPTER 3 Core operators
3.1 Evaluating and cancelling streams
Imagine someone making a long-running AJAX call requesting considerable data
from the server. But shortly after spawning this call, the user navigates away from the
page by clicking some other button. What happens to the original AJAX request? Con-
sider another example. You begin a client-side interval to poll for certain data to
become available, but an exception occurs and the data never becomes available.
Should these processes be allowed to run wild and take up system resources? We’re
guessing no.

 A stream, as it exists in RxJS, is an object with a deterministic lifespan defined
almost entirely by you, the programmer. JavaScript, unlike some other languages, has
few distinct types, most of those types mirroring the simplicity of JSON. Additionally,
there’s little support within JavaScript for memory management because this has his-
torically been left to browser manufacturers to worry about. Although both of these
features make JavaScript a marvelously simple language to learn and use, they also
somewhat obscure what’s really happening under your application’s plumbing.

 In languages like C and C++, there exists an extremely fine-grained approach to
control not only the specific data structure you use but also its exact lifetime in mem-
ory—you have complete control of allocating and deallocating objects in memory. On
the other hand, in JavaScript, the lifetime of objects is controlled by the garbage col-
lector, and rightfully so. The garbage collector is a process operated by the runtime
engine that’s running your application. It will periodically run and free up memory
associated with any unused references. The garbage collector does so by keeping track
of the references that are kept between various objects in the application—this is
known as ref counting. When it detects that an object is no longer referenced, it
becomes a candidate for disposal. A failure to find references that are no longer in
use results in a memory leak. Memory leaks are generally an indicator of either sloppy
design or reference tracking and can result in a runaway system footprint that results
in either the user or the system killing your application, because it becomes unrespon-
sive at that point.

CAUTION This notion of automatic garbage collection gives us JavaScript
developers a false impression that we need not care about memory manage-
ment. This is a mistake when attempting to write our own event-handling code.
RxJS frees us from this by implementing a mechanism to unsubscribe or effec-
tively clean up attached listeners from any event emitters such as the DOM.

In older browser implementations, this used to be a big problem, particularly with
Internet Explorer’s event-handling system. Modern browsers are now much more effi-
cient at this, and libraries such as RxJS are tuned to avoid many of these problems.

3.1.1 Downside of eager allocation

An important point to remember when dealing with RxJS is that the lifetime of a
stream doesn’t start with the creation of an observable. It begins when it’s subscribed

63Evaluating and cancelling streams
to. Hence, there’s little overhead in creating and initializing one, because it begins in
a dormant state and doesn’t generate or emit events without an observer subscribed to
it. It’s analogous to the old adage “If an observable is created by your application, and
no one subscribes to it, does it emit an event?”

 In computing terms, an object that creates data only when needed is known as a
lazy data source. This is in sharp contrast to JavaScript, which has strict eager evalua-
tion. The terms lazy and eager refer to when an application requests memory from the
system and how much it requests up front. Lazy allocation is always done when the
space is actually needed (or on demand), whereas eager allocation is performed up
front as soon as the object is scoped. In the eager scheme, there’s an up-front cost to
allocation and there exists the possibility that you’ll overallocate because you don’t
know how much space will be used. Lazy allocation, on the other hand, waits until the
space is needed and pays the penalty for allocation at runtime. This allows frameworks
to be really smart and avoid overallocating space in certain situations. To illustrate the
difference, we’ll show you how a popular JavaScript array method, slice(), would
work under eager and lazy evaluation. Consider a function called range(start, end),
which generates an array of numbers from start to end. Generating an infinite num-
ber of elements and taking the first five would look like the scheme in figure 3.1.

Here it is in code:

range(1, Number.POSITIVE_INFINITY).slice(0, 5); //-> Browser halts

With JavaScript’s eager evaluation, this code will never get past the range() function,
because it needs to generate numbers infinitely (or until you run out of memory and
crash). In other words, eager evaluation means executing each portion of an expres-
sion fully before moving on to the next. On the other hand, if JavaScript functions
were lazy, then this code would only need to generate the first five elements, as shown
in figure 3.2.

range(1, infinity)

slice(5)

Never gets
executed

Program runs
out of memory

1 2 3 4 5 6 ...

Figure 3.1 In an eager allocation scheme, the program halts before it can execute
the slice(5) function because it runs out of memory.

64 CHAPTER 3 Core operators
In this case, the entire evaluation of the expression waits until the result of the expres-
sion is needed. In RxJS, the strategy is precisely this: wait until a subscriber subscribes
to the observable expression, and then begin to initialize any required data structures.
You’ll see later on that using lazy evaluation allows RxJS to perform internal data
structure optimizations and reuse.

3.1.2 Lazy allocation and subscribing to observables

RxJS avoids premature allocation of data in two ways. The first, as we mentioned, is
the use of a lazy subscription mechanism. The second is that an observable pushes
data as soon as the event is emitted instead of holding it statically in memory. In chap-
ter 4, we’ll discuss the buffering operators, which can be used to transiently store data
for either a period of time or until a certain condition is met, if you wish to do so. But
by default, the data is emitted downstream as soon as it’s received.

 A lazy subscription means that an observable will remain in a dormant state until
it’s activated by an event that it finds interesting. Consider this example that again
generates an infinite number of events separated by half a second:

const source$ = Rx.Observable.create(observer => {
 let i = 0;
 setInterval(() => {
 observer.next(i++);
 }, 500);
});

The cost of allocating an observable instance is fixed, unlike an array, which is a
dynamic object with potential unbounded growth. It must be this way; otherwise, it
would be impossible to store each user’s clicks, key presses, or mouse moves. To activate
source$, an observer must first subscribe to it via subscribe(). A call to subscribe will
take the observable out of its dormant state and inform it that it can begin producing

range(1, infinity)

slice(5) [1, 2, 3, 4, 5,]

Requests 5 elements,
executes successfully

1 2 3 4 5

Figure 3.2 In a lazy allocation scheme, the runtime waits until the
result of this expression is needed and only then runs it through the
program, allocating only the resources it needs to request.

This interval will keep on emitting
events every 500 milliseconds until
something stops it.

65Evaluating and cancelling streams
values—in this case, starting the allocation for events 1, 2, 3, 4, 5, and so on every half-
second. Because an observable is an abstraction over many different data sources, the
effect will vary from source to source.

 The second advantage to a lazy subscription is that the observable doesn’t hold
onto data by default. In the previous example, each event generated by the interval
will be processed and then dropped. This is what we mean when we say that the
observable is streaming in nature rather than pooled. This discard-by-default semantic
means that you never have to worry about unbounded memory growth sneaking up
on you, causing memory leaks. When writing native event-driven JavaScript code,
especially in older browsers, memory leaks can occur if you neglect event manage-
ment and disposal.

3.1.3 Disposing of subscriptions: explicit cancellation

Just as important as when memory is allocated is when it is deallocated or released
back to the application. For example, rich JavaScript UIs bind event handlers to
potentially thousands of elements. After the user has finished interacting with a cer-
tain part of the UI, there’s no reason for those objects to exist and take up memory. As
discussed earlier, the garbage collector is fairly smart about how it cleans up memory.
Unfortunately, it’s able to do so only if the references to those objects are found to be
unused or if no reference cycles are formed, which tends to occur frequently in native
event-handling code.

 It’s easy to initialize objects and then forget about them without removing refer-
ences to them, which prevents the application from ever recovering that memory (this
might not be a concern with small scripts but can easily become an issue with modern,
client-heavy applications). For example, you can see the problem better in this simple
code where we listen for right-click events on a menu item, perhaps to show a custom
context menu:

document.addEventListener('mouseup', e => {
 if (e.button === 2)
 showCustomContextMenu();

e.stopPropagation();
});

Many developers may not even recognize the problem with this code. The problem
arises from the fact that in order to unsubscribe from this event we need the reference
to the function that was passed into the event handler (the inlined lambda expres-
sion). Because we’re trying to use this idiom as much as possible, we end up creating a
handler that we can’t unsubscribe from—if we even remember to unsubscribe from it
at all. To make matters worse, if we had nested event handlers or subscribed to other
events from within this one, we’d create yet another level of complexity and potential
for more memory to leak.

 For older web applications (the Web 1.0 years), memory deallocation wasn’t so
much of a problem because navigation between pages forced a page reload, which

66 CHAPTER 3 Core operators
cleared out JavaScript’s runtime footprint. Today, as single-page applications grow in
popularity (the Web 2.0+ era) and clients become more modern and richer, memory
pressure becomes a real threat; objects can now conceivably exist for the duration of
the entire application’s lifespan loaded into the browser.

 All this is not meant to sound alarmist. We expect that (just as they have since
JavaScript’s inception) garbage collectors will continue to improve, and many applica-
tions will run without issue. But proper memory management is still a good thing for
all applications.

 This is why we need sophisticated libraries like RxJS. In RxJS, the producer is the
one responsible for unsubscribing. Managing a subscription is handled through an
object of type Subscription (also known as a Disposable in RxJS 4) returned from a
call to subscribe(), which implements the mechanism to dispose of the source
stream. If we’ve finished with the observable and no longer wish to receive events
from it, we can call unsubscribe() to tear it down; this is known as explicit cancella-
tion. Here’s a short example:

 const mouseClicks = Rx.Observable.fromEvent(document, 'mouseup');
 const subscription = mouseClicks.subscribe(someMouseClickObserver);

 ... moments later
 subscription.unsubscribe();

This tearing-down process will stop further events from going to any registered observ-
ers and will immediately release all resources allocated by the observable. The sub-
scription instance handles the entire unsubscription process, and it’s able to do this
because every observable also defines how it will be disposed. Additionally, as you’ll
see in later chapters, this behavior acts on the entire observable, meaning that all
resources allocated by a given stream can be deallocated cleanly without additional
boilerplate and without the risk of orphaning objects in memory.

 Recall that in chapter 2 we introduced the Rx.Observable.create() method,
which could be used to create arbitrary observables. The final step in creating it was to
indicate how subscribe would dispose of it, and that’s your responsibility to imple-
ment. Going back to our progress indicator code, add the unsubscription mechanism
at the end, like this.

const progressBar$ = Rx.Observable.create(observer => {
 const OFFSET = 3000;
 const SPEED = 50;

 let val = 0;
 let timeoutId = 0;
 function progress() {

if(++val <= 100) {
observer.next(val);
timeoutId = setTimeout(progress, SPEED);

}

Listing 3.1 Disposing of an observable

Tears down the stream and frees up
any allocated objects

67Evaluating and cancelling streams
else {
observer.complete();

}
 };
 timeoutId = setTimeout(progress, OFFSET);

 return () => {
clearTimeout(timeoutId);

 };
});

CODE SAMPLES Remember that all the code for this chapter can be found in
the RxJSinAction GitHub repository, https://github.com/RxJSInAction/rxjs-
in-action.

The function added at the end of the observable body becomes the body of the
unsubscribe() method of the returned Subscription object. In essence, each
observable provides the keys to its own destruction during its creation. Every time a
subscription occurs from an observer, it passes back a way to clean itself up (analogous
to the finally clause after a try/catch). Because every observable provides this self-
contained, self-destruct button, you can also compose its subscriptions such that you
can always tear them down correctly no matter how complex the underlying observ-
able is.

CUSTOM OBSERVABLES If you’re creating a custom observable with create(),
and it happens to emulate an infinite interval stream, you’re responsible for
supplying the proper unsubscribe behavior, or it will run indefinitely and
cause memory to leak.

The examples we’ve shown so far for the most part involve setting timed intervals to
generate events, which support cancellation through clearInterval(). But what hap-
pens to data sources that don’t support cancellation? Let’s jump into that next.

3.1.4 Cancellation mismatch between RxJS and other APIs

RxJS observables provide a straightforward mechanism for cancelling and disposing
of event streams. But this simplicity can be deceiving when used in conjunction with
other JavaScript APIs. For example, you might encounter problems when trying to
cancel observables that wrap promises; look at the next listing.

const promise = new Promise((resolve, reject) => {
 setTimeout(() => {

resolve(42);
 }, 10000);
});
promise.then(val => {
 console.log(`In then(): ${val}`);
});

Listing 3.2 Disposing of a promise

Function that executes when
the unsubscribe method is
called. Describes how to cancel
that timeout upon disposal.

Creates a promise that
resolves to 42 after 10

Handles the resolved
promise value

https://github.com/RxJSInAction/rxjs-in-action
https://github.com/RxJSInAction/rxjs-in-action

68 CHAPTER 3 Core operators
const subscription$ = Rx.Observable.fromPromise(promise).subscribe(val => {
 console.log(`In subscribe(): ${val}`);
});
subscription$.unsubscribe();

As you can see from listing 3.2, you dispose of the observable thinking it would also
take care of the underlying promise. The observable object itself was properly dis-
posed of; surprisingly, although you attempt to explicitly cancel the event as well, after
10 seconds this program emits the following (apparently, JavaScript promises can’t be
broken after all):

"In then(): 42"

So, what happened? This process is explained in figure 3.3.

What happens is that promises were not design to be cancelled. Once a Promise
object begins executing (gets into a pending status), it tries to become fulfilled by
either resolving or rejecting the underlying result, as the case may be.

 RxJS makes it easy to integrate with external APIs, but you must be mindful that
there’s a mismatch of design philosophies between an API designed to emit a single
value (promise) and one that supports infinite values (observable). This is one use
case, but it could also happen if you integrate with other APIs that aren’t RxJS aware.
Most of the time, though, you don’t have to worry about cancelling subscriptions your-
self because many RxJS operators do this for you.

 Now that we’ve covered creating and cancelling streams, in the next section we’ll
begin with the more popular operators that are essential to any RxJS program.

Wraps an observable
around the Promise API

Attempts to dispose
of the observable

Promise ResultObservable

doWork2. Promise performs
long-running
computation

4. Promise is
resolved

1. Observable wraps
a promise

3. Midstream, the observable
gets cancelled (promise is
unaffected).

42

Figure 3.3 The cancellation of an observable doesn’t affect the underlying promise.

69Popular RxJS observable operators
3.2 Popular RxJS observable operators
Though the subscription and disposal semantics of RxJS are useful in managing
resources to avoid leaky event handlers, they’re only part of the story. But keep in mind
what thinking reactively is all about; instead of you controlling what goes on a stream
by creating a custom observable and pushing events through observer.next(), it’s
preferable to relinquish that control and react when the time comes—you want to
always be reactive! This means allowing RxJS factory operators (of(), from(), and oth-
ers) to wrap an event source of interest and create the observable sequence with which
to apply the business logic you desire. Hence, being reactive involves defining what a
program will do when a value is pushed sometime in the future.

 This is where RxJS shines, and it’s because of its fully loaded arsenal of out-of-the-
box operators, which you can use to create expressive streams of logical data flows.
You can create flows to solve virtually any problem, including creating responsive web
forms, drag and drop, and even games.

 An operator is a small piece of declarative functionality that allows you to inject
logic into an observable’s pipeline. An operator is a pure, higher-order function as
well, which means it never changes the observable object it’s operating under (called
the source), but rather it returns a new observable that continues the chain. FP best
practices come into play at this point because the functions composing your business
logic, the building blocks of your solution, should be done using pure functions as
much as possible. These operators can be used to inspect, alter, create, or delay events
after they leave the data source but before they reach the consumer; in other words,
anything in your business logic pipeline is handled by the combination of one or
more operators, which drive the execution of the pure functions of your program.
And if that’s not enough, RxJS operators are also lazily evaluated!

 Recall that in chapter 2 (figure 2.10) we highlighted four fundamental types of
computing tasks. We split them into two dimensions depending on whether they per-
formed work synchronously or asynchronously and whether they acted on single val-
ues or collections. Manipulating a single value is a relatively trivial task (known as a
singleton stream), given that you can inspect its properties and manipulate it directly. In
most cases, though, you want streams to act across a range of values rather than just
one and done. The computing model behind RxJS encourages you to work with func-
tion chains that process data, similar to a conveyor belt in an assembly line, as shown
in figure 3.4.

map

Time

filter

Figure 3.4 An assembly line where operators represent individual stations and each has its
own task to perform on each piece of data that passes by

70 CHAPTER 3 Core operators
Another important design principle of RxJS is to provide a computing model that’s
similar to what you’re accustomed to. Inspired in the Array#extras APIs introduced in
ES5, RxJS features its own version of core operators such as map, filter, and reduce.
Because these are some of the more frequently used, let’s start with them.

3.2.1 Introducing the core operators

Operators come in two varieties: as instance methods or as static methods of the
observable type. Part of the RxJS 5 rework was the drastic simplification of the API sur-
face, which consisted of a sheer reduction in the number of operators as well as a sim-
plification of their usage. Hence, most of the operators in RxJS 5 can be invoked as
static or as instance methods (when we say instance, we refer to invoking them using
the dot (.) notation on an observable instance).

 RxJS comes with many operators built in that handle many common tasks such as
working with collections, extracting elements from the stream, manipulating and
transforming the data, handling errors, and others. In this section, we’ll focus on the
three that you’ll use about 80% of the time—map, filter, and reduce—as well as a
variation of reduce called scan.

MAPPING OPERATIONS ON OBSERVABLES

By far the most common operator that you’ll likely come across when dealing with
RxJS is map(). RxJS isn’t the only library to implement it, and all the libraries follow
the same FP principles. In FP, map() belongs to a category of operations called transfor-
mational because it changes the nature of data running through the observable by
applying a function; therefore, it’s a single output value or a one-to-one transforma-
tion. In symbolic notation, you write it as map :: x -> f(x), where for a given value x
you can associate an input of x with an output of f(x). Consider a quick example that
applies a given percentage value onto a set of prices:

const addSixPercent = x => x + (x * .06);
Rx.Observable.of(10.0, 20.0, 30.0, 40.0)
 .map(addSixPercent)
 .subscribe(console.log); //-> 10.6, 21.2, 31.8, 42.4

Mapping functions is a fundamental process when transforming data from one type to
another. For example, say you had a list of user IDs for which you wanted to fetch
GitHub information. Mapping a function like ajax() over the set of IDs yields an
array of JSON account objects.

 In RxJS, you want to map functions across all the elements emitted from an observ-
able. To help you better visualize operators, we’ll use the marble diagrams. Recall that
arrows and symbolic characters represent the various operations that convert the
input stream into the output stream, as shown in figure 3.5.

Applies this function
onto each value of the
source observable

71Popular RxJS observable operators
We’ll use these vertical transformations in figure 3.5 to depict operations that take
one form of data and convert it to another. By design, this function in RxJS has the
exact same signature as that of array:1

Array.prototype.map :: a => b; for all a in Array<a>
Rx.Observable.prototype.map :: a => b; for all a in Observable<a>

Like with arrays, observable’s map() is immutable, which means it won’t change the
original but instead will transform the value passed through it. Also, as you can see in
figure 3.5, the output will always be the same size as the input because mapping is a
one-to-one relationship that preserves structure. It’s left up to you to decide exactly
what the transform function is, depending on your business logic; map() simply guar-
antees that it will be called on every value passing through the stream as it’s propa-
gated downstream to the next operator in the chain.

 We mentioned briefly before that all RxJS operators are pure. To show you what
this means, we’ll demonstrate the case of map(). Transforming a String into an ID
looks like figure 3.6.

1 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map.

map(String -> obj)

obj

A user ID can be input into
a function that knows how
to fetch the account details
from GitHub.

From ID strings…

…to GitHub JSON response.

ID

obj

ID

obj

ID

Figure 3.5 The map operator will produce a one-to-one transformation that will convert an input
value into an output value by a given process. In this case, map takes a URL string and converts it
into an array of users by means of the mapping function. In the diagram, operators are encoded inside
a box that illustrates the function that’s passed in.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map

72 CHAPTER 3 Core operators
Now, let’s look at the code for this. Suppose you need to convert a collection of strings
into a corresponding comma-separated value (CSV) array. Here’s a simple stream that
will accomplish this.

Rx.Observable.from([
 'The quick brown fox',
 'jumps over the lazy dog'
])
 .map(str => str.split(' '))
 .do(arr => console.log(arr.length))
 .subscribe(console.log);

For those familiar with design patterns, mapping functions is analogous to the adapter
pattern (as shown in the famous “Gang of Four” book titled Design Patterns: Elements of
Reusable Object-Oriented Software). In the adapter pattern, an object interacts with two
otherwise incompatible interfaces and allows information to flow between them,
adapting them to each other. In a similar fashion, you use map() to create a type com-
patibility between the producer and the consumer of data. The purpose of using it is
to convert the raw input data into something the consumers can understand. In this
way, the adaptation is done from the producer to the consumer.

 But sometimes there can be too much data to process, and you may not be inter-
ested in all of it. For this, there’s an operator to discard unwanted events.

FILTERING OUT UNWANTED EVENTS

Filtering is the process of removing unwanted items from a stream. The criteria to
remove these elements is passed in as a selector function, also called the predicate.
Here’s a simple example of how this operator works. Say you need you need to place
restrictions on input boxes for numerical quantities. It’s probably a good idea to place
a business rule over text boxes rejecting any non-numerical input. Whenever you’re
thinking about rejecting, removing, narrowing, or selecting data, you can do that easily

Listing 3.3 Mapping functions over streams

String

Source observable Result observable

Array

Source observable
is unchanged

Figure 3.6 Mapping a function from String to Array to a source Observable creates a
new Observable with the result of the function.

Maps a set of functions to
extract the value from

RxJS .do() is a utility operator that’s useful
for effective actions such as logging to the
screen. This can be handy for debugging or
tracing the values flowing through a stream.

73Popular RxJS observable operators
using a filtering operator called filter() and inspecting the keyCode property of the
keystroke, as shown in the following listing.

const isNumericalKeyCode = code => code >= 48 && code <= 57;
const input = document.querySelector('#input');
Rx.Observable.fromEvent(input, 'keyup')
 .pluck('keyCode')
 .filter(isNumericalKeyCode)
 .subscribe(code => console.log(`User typed:

 ${String.fromCharCode(code)}`));

Also, you can use it to ignore unwanted mouse clicks, touch events, and others. It
could be that you’re interested only in data that meets certain criteria, or you need
only a certain subset of the data. In some cases, allowing too much data through can
have an adverse effect on the performance of your application. Think about building
an API for users to access their account history for the month; if on every request you
simply dump their entire account history, you’d quickly find both your API and your
clients overwhelmed. To make matters worse, your application won’t scale to the size
of data being processed. Filtering could be used to generate different views if the user
wanted only debits, credits, or transactions after a certain month.

 An easy way to think about filtering is to consider the job interview process (every
developer’s favorite activity). When recruiting people for a specific job, one of the first
things to look for is the candidates’ previous experience in order to determine if they
have the right skill-set for the position. If the job requires programming, then you’d
expect that the candidates should have some sort of programming background listed
on their resume. If not, you could exclude them from your final interview list.

 Suppose you modeled your applicant-screening process as an array; then, you could
write your filtering operation using the array’s filter()2 method. Because observables
implement the same filtering semantics, you’re already familiar with using a predicate
function (also called a discriminant) in filter() that returns true for candidates who
will be selected to move on to the next round. Here’s the dataset you’ll use:

let candidates = [
 {name: 'Brendan Eich', experience : 'JavaScript Inventor'},
 {name: 'Emmet Brown', experience: 'Historian'},
 {name: 'George Lucas', experience: 'Sci-fi writer'},
 {name: 'Alberto Perez', experience: 'Zumba Instructor'},
 {name: 'Bjarne Stroustrup', experience: 'C++ Developer'}
];

Whether this data arrives because of an AJAX call or a DOM event, the observable
treats it all the same way. So for now, you’ll stick with a simple array. In this case, you

Listing 3.4 Filtering events from a stream

2 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter.

Extracts this property from
the object passing through
the observable

Accepts only keys in
the numerical range
www.allitebooks.com

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
http://www.allitebooks.org

74 CHAPTER 3 Core operators
can wrap the data with an observable and keep only the candidates who will be consid-
ered for this JavaScript job:

const hasJsExperience = bg => bg.toLowerCase().includes('javascript');

const candidates$ = Rx.Observable.from(candidates);
candidates$
 .filter(candidate => hasJsExperience(candidate.experience)) //#A
 .subscribe(console.log); //-> prints "Brendan Eich"

Figure 3.7 shows what’s happening behind the scenes. Like map(), filter() works
vertically removing values from the resulting stream.

Functions map() and filter() are similar in that they take a single function as their
parameter. But whereas the function passed to map converted the input value into an
output value, the filter() function is used merely as a criterion that decides
whether to keep the event in the stream or not. As you know, JavaScript being loosely
typed will accept any “truthy” value as a pass, while any “falsy” values will cause it to
reject the event.

map and filter work well together in scenarios where you don’t want to apply a map-
ping function to each element but apply it to only the subset you care about. But filter
isn’t the only function married to map; let’s not forget about the powerful map/reduce
combinations.

filter(String -> Boolean)

user

useruser user

Brendan EichIgnored Ignored

Figure 3.7 The filter
operator is used to discard
candidates who don’t have
any JavaScript experience.

Truthy vs. falsy
In JavaScript, truthy is any value that can be coerced to a true Boolean value. This
includes objects, arrays, non-zero numbers, non-empty strings, and of course the true
Boolean value. Meanwhile, falsy would be represented by 0, ' ', null, undefined, or
false. In practice, although JavaScript will accept all these types without question, it’s
often best for clarity’s sake to return a Boolean value.

75Popular RxJS observable operators
AGGREGATING RESULTS WITH REDUCE

Sometimes you aren’t interested in acting on each item in a collection in isolation;
sometimes you want to look at the collection in aggregate rather than piecemeal. For
instance, suppose you want to take the average value of a collection of numbers or you
want to turn a sequence into a mathematical series. This type of operation is called a
reduction or an aggregation, with the result as a single value output instead of another
collection. Once again, arrays come with a built-in reduce operator for this purpose,3

and observables follow suit. reduce is a bit more involved than the other two; here’s
the function signature:

Rx.Observable.reduce(accumulatorFunction, [initialValue]);

The accumulator function is called on every element, and it’s given the current run-
ning total and the new value as parameters. The initial value (optional) is used to
begin the accumulation process; we’re using 0 to begin the addition. Here’s a simple
example to illustrate how reduce() works. Suppose you want to compute the user’s
spending for the month by totaling all their transactions. For this example, these
transaction objects have a property called amount.

const add = (x, y) => x + y;
Rx.Observable.from([
 {

date: '2016-07-01',
amount: -320.00,

 },
 {

date: '2016-07-13',
amount: 1000.00,

 },
 {

date: '2016-07-22',
amount: 45.0,

 },
])
 .pluck('amount')
 .reduce(add, 0)
 .subscribe(console.log);

It’s important to notice that reduce() with observables works a bit differently than
map() and filter(). With arrays, reduce() doesn’t return another array; instead, it
produces a single raw value, which is the result of the reduction. The observable’s
reduce(), on the other hand, continues the previous pattern of returning a new sin-
gleton observable. This distinction will become important in section 3.3 when we talk

3 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reduce.

Listing 3.5 Using reduce() to compute spending

Extracts the amount property

Reduces the set of amount
values with an add function

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/reduce

76 CHAPTER 3 Core operators
more about operator chaining. Figure 3.8 is a visual representation of the previous
code. Reduction is an operation that moves horizontally through the stream.

 Suppose you needed to traverse through the candidate stream and group all the
candidates with a technical background (that is, with knowledge of C++ or JavaScript):

Rx.Observable.from(candidates)

 .filter(candidate => {

 const bg = candidate.experience.toLowerCase();

 return bg.includes('javascript') || bg.includes('c++');

 })

 .reduce((acc, obj) => {

acc.push(obj.name);

return acc;

 }, [])

 .subscribe(console.log); //-> ["Brendan Eich", "Bjarne Stroustrup"]

As you can see, reduce applies an accumulator function over the observable sequence
initialized with the first seed value, which will be used to begin the aggregation pro-
cess. Because reduce() returns a single value, there’s a need for partial accumulation
as well. We’ll look at a variation of reduce() called scan().

SCANNING AGGREGATE DATA

RxJS uses scan() to apply an accumulator function over an observable sequence (just
like reduce()) but returns each intermediate result as the accumulation process is
happening and not all at once. This is useful to obtain progress information about
how data is being aggregated with each event.

 Changing the previous code to use scan() as a direct swap-in replacement of
reduce() reveals the intermediate steps of the accumulation:

Rx.Observable.from(candidates)
 .filter(candidate => {
 const bg = candidate.experience.toLowerCase();
 return bg.includes('javascript') || bg.includes('c++');
 })
 .scan((acc, obj) => {

acc.push(obj.name);
return acc;

 }, [])

add

0 –320.00 1000.00 45.00

add add

reduce 725.00

acc = 725.00acc = 680.00acc = –320.00Initial value

Figure 3.8 The reduce operator moving horizontally, accumulating every value through the
stream using the add function

Filters all candidates who have no
knowledge of a programming language

Adds a candidate name to the array

Begins with an empty array
(called the seed)

Scan can be used as a direct replacement of reduce. In
RxJS 4, you would have had to change the seed
parameter to be the first one. This was fixed in RxJS 5,
with scan now having the same signature as reduce.

77Sequencing operator pipelines with aggregates
 .subscribe(console.log);
//-> ["Brendan Eich"]

["Brendan Eich", "Bjarne Stroustrup"]

Aside from scan(), the symmetries between arrays and observables are no coinci-
dence. This signature was chosen specifically because it’s so simple and because it’s
one that many JavaScript developers are already familiar with. But here the similari-
ties end. Remember that these methods by themselves don’t cause any work to run
on the stream (only a subscriber can); instead, when an operator is called on an
observable, it’s configuring the observable for future values. Recall our definition of a
stream as a specification of a dynamic value. This is a key distinction between the
operators that you’ll see with arrays and those with observables, and you’ll learn in
later chapters that arrays represent work happening now, whereas observables repre-
sent work in the future.

3.3 Sequencing operator pipelines with aggregates
One principle of FP is the ability to construct lazy function chains. In this section, we’ll
show you how to mix and match the main observable operators you just learned about
together with a few other functions known as aggregates. Aggregate functions let you
do useful things like keeping track of a running total, taking only a subset of the total
set of data, returning default values, and others. Some functional libraries you might
have heard of or used before, such as Lodash.js and Underscore.js, have ample sup-
port for this. First, it’s important to understand that observable sequences must be
self-contained.

3.3.1 Self-contained pipelines and referential transparency

Function chains utilize JavaScript’s power of higher-order functions to act as the single
providers of the business logic. You saw examples of this before such as the filter
function taking a predicate parameter. Also, observable pipelines should be self-
contained, which essentially means they’re side effect–free (keep in mind that if your
business logic functions are pure, your entire program is pure and stable as well). A
pure pipeline doesn’t allow any references to leak out of the observable’s context.
Once an event is lifted into the context, it’s contained and transformed through a
sequence of operators. Earlier we showed that it’s possible to group operations
together to create more-expressive logic. In RxJS, we call this process operator chaining
or fluent programming. The analogy of a self-contained pipeline works great as a visual-
ization aid, as shown in figure 3.9.

 Consider this example:

let sinceLast = new Date();

Rx.Observable.fromEvent(document, 'mouseup')
.filter(e => {

As soon as it finds the first event, it
emits it and accumulates it. A second
emission happens when the second
event is found, returning the current
state of the accumulation.

78 CHAPTER 3 Core operators
 let timeElapsed = new Date() - sinceLast;
 sinceLast = new Date();
 return timeElapsed < 200;

}).subscribe(() => console.log('double clicked'));

This code is an example of poorly designed scope management in which the state vari-
able sinceLast is allowed to live outside the observable’s context. The result is that
the observable is no longer stateless, and the lifecycles of the state and the observable
are now dependent on each other.

 It’s important to understand that when you create an observable, you’re creating
an ecosystem or a bounded context. That ecosystem is a closed loop that begins with a
subscription and ends with a disposal. If you were to look at the observable through an
FP lens, you’d see that the internals of that observable remain completely stateless and
walled off somewhat from the rest of the application. The scope of the callbacks that
are passed into the operators should remain small and local. Mixing code that has
external side effects not only introduces difficult-to-track complexity but also removes
one of the key advantages to using observables, which is their well-defined lifespan—
creation and disposal should leave the system in the same state they found it in.

Careless side effects of
reading and writing to
an external variable

Input
Output to
observers

Self-contained pipeline

Global scope

Operator OperatorOperator

No side effects

Figure 3.9 A self-contained pipeline is one where all of its operations are side effect–free and work
strictly on the data coming from previous operators. Operators might be any of map, filter,
reduce, and others you’ll learn about in this book.

What is a bounded context?
A bounded context is a design principle originating from domain-driven design, which
states that entities pertaining to a single domain model should be highly cohesive
and expose only the necessary interface to interact with other contexts. You can
extend this definition to the Observable type as a form of context that hides the
nature of the data that’s pushed through it, allowing you to transform it by a ubiqui-
tous language made up from the limited set of operators being exposed and inde-
pendently of what happens in the outside world.

79Sequencing operator pipelines with aggregates
At a glance, a single subscription to this observable will function correctly, assuming
that no other code manipulates sinceLast. But if this observable is subscribed to a
second time, the result is no longer the same. An observable must always produce the
same results given the same events passing through it (that is, pressing the same key
combination should always yield the same data to the observers), a quality known in
FP as referential transparency.

 Each invocation of subscribe() does more than start an event emitter. It spins off
a brand-new pipeline that will be independent of any other pipelines that were created
by subsequent calls to subscribe(). This behavior is intentional in order to minimize
side effects and be referentially transparent; similarly, the result of an observable
should be the result of the data passed through it, not the number of parallel observ-
ables that are also active. You’ll see in the next chapter on dealing with time in RxJS
that the sort of operation used in the previous code sample is unnecessary.

 As mentioned earlier, the operator chain is core to the design of an RxJS operator:
every operator must perform some work on the data passing through it and then wrap
it into another observable instance that gets returned.4 In this manner, the subscrip-
tion gets internally passed around from one context to the next. To show how this
works, you’ll add your own operator using prototype extension (using ES6, you could
also do it by extending from the Observable class); this operator is the logical inverse
of filter(), called exclude(), and is shown in the next listing.

function exclude(predicate) {
 return Rx.Observable.create(subscriber => {

 let source = this;
return source.subscribe(value => {

 try {
 if(!predicate(value)) {
 subscriber.next(value);
 }

 }
 catch(err) {

subscriber.error(err);
 }
 },
 err => subscriber.error(err),
 () => subscriber.complete());

 });
}

Rx.Observable.prototype.exclude = exclude;

As you can see from this snippet, every operator creates a brand-new observable, trans-
forming the data in its own way and delegating it to the next subscriber in the chain.
You can use it to exclude all even numbers as such:

4 https://github.com/ReactiveX/rxjs/blob/master/doc/operator-creation.md#advanced.

Listing 3.6 Custom exclude operator

Creates a new observable context
to return with the new result

Because you’re in a lambda function,
“this” points to the outer scope.

Catches errors
from user-

provided
callbacks Passes the next value to the

new operator in the chain

Be sure to handle errors
appropriately and pass them along.

Adds the operator by extending
the Observable prototype

https://github.com/ReactiveX/rxjs/blob/master/doc/operator-creation.md#advanced

80 CHAPTER 3 Core operators
Rx.Observable.from([1, 2, 3, 4, 5])
 .exclude(x => x % 2 === 0)
 .subscribe(console.log);

Furthermore, operation chaining in combination with an observable’s lazy evaluation
gives RxJS an important performance advantage over arrays, which we’ll discuss next.

3.3.2 Performance advantages of sequencing with RxJS

Aside from the declarative style of development that encourages you to write side
effect–free code, the primary advantage of using observable operators is that there is
little or no performance penalty for chaining two methods like map and filter.
Behind the scenes, RxJS produces little overhead because observables themselves are
lightweight and inexpensive to create. On the other hand, operator calls on arrays cre-
ate new instances along the way, which naturally incurs more memory allocations
when the collection being processed is large. You can see this with a simple example
that uses the full set of parameters for map() and filter() array functions:

 const original = [1,2,3];
 const result = original

.filter((x, idx, arr) => {
console.log(`filtering ${x}, same as original?

${original === arr}`);
return x % 2 !== 0;

})
.map((x, idx, arr) => {
console.log(`mapping, same as original? ${original === arr}`);
return x * x;

}); result; //-> [1, 9]

Running this code logs the following messages:

"filtering, same as original? true"
"filtering, same as original? true"
"filtering, same as original? true"
"mapping, same as original? false"
"mapping, same as original? false"

You can visualize the difference between both approaches in figure 3.10.
 RxJS, by contrast, doesn’t create intermediate data structures. As you can see in the

previous example, filter() works on the same data structure as the original because
it’s first on the chain. This operation returns a brand-new array instance that becomes
the new owning object on which you call map. This can be inefficient on very large col-
lections because new data structures are created and used only once before being gar-
bage collected. In RxJS, the underlying data structure is optimized to process each

map and filter expose extra parameters such as the
current index and the source array. Typical
implementations of these methods don’t use these
parameters, but it’s good to know they’re there.

Logging to the console within the pipeline is
considered a side effect. We’re bending the

rule here a bit to illustrate this concept.

81Sequencing operator pipelines with aggregates
item through the pipeline from the producer to the consumer at once, avoiding the
creation of extra data structures along the way. Let’s convert the same code to use
observables:

Rx.Observable.from(original)
.filter(x => {

console.log(`filtering ${x}`);
return x % 2 !== 0;

})
.map(x => {

console.log(`mapping ${x}`);
return x * x;

})
.subscribe();

Running this code shows you that each element (or mouse click, key press, asynchro-
nous data, and others) passes through the pipeline by itself without creating interme-
diary storage. The first value, 1, passes through filtering and then through mapping
before 2 and 3 are looked at:

"filtering 1"
"mapping 1"
"filtering 2"
"filtering 3"
"mapping 3"

No need for temporary arrays

Creates temporary array

[1, 2, 3]

1

2

3

1

3

[1, 3]Array

true

Input Intermediate Output

filter

filter

filter

false

true

filter

[1, 9]map

1map

9map

Observable

Figure 3.10 The array’s filter and map operators generate intermediate, wasteful data
structures. RxJS observables are optimized and process events entirely through all functions at
once, avoiding intermediate storage altogether.

82 CHAPTER 3 Core operators
Now this is optimal. This fluent chaining pattern hinges on the return type of all
observable methods to always return observables. As you know, in arrays, the reduce
operator breaks the chain of commands because it doesn’t return an array, so further
chaining becomes impossible. In RxJS, every operator will return an observable
instance so that it can support further chaining. This property means that a virtually
unlimited variety of combinations can be assembled. Whereas observables are abstrac-
tions over various data sources, their operators are just abstractions of those abstrac-
tions. That is, just like the adapter methods used to create observables from other
library types, an operator is simply an adapter to convert an existing observable into a
new one with more-specific functionality.

 Before we continue having fun building more chains, we’ll introduce another set
of aggregate methods that will become handy for building nice expressive business
logic. Table 3.1 briefly explains each of these aggregate functions.

Now, let’s have fun with some examples that put some of these to work.

Rx.Observable.from(candidates)
 .pluck('experience')
 .take(2)
 .do(val => console.log(`Visiting ${val}`))
 .subscribe(); // prints "Visiting JavaScript Guru"

"Visiting Historian"

Table 3.1 More aggregate operators

Name Description

take(count) Filtering operator. Returns a specified amount (count) of contiguous
elements from an observable sequence. Later, you’ll see this is useful
to extract a finite set of events from an otherwise infinite stream.

first, last A refinement on the take function. Returns the first element in the
observable stream or the last, respectively.

min, max Filtering operators. Work on observables that emit numbers returning
the minimum or maximum value of a finite stream, respectively.

do Utility operator. Invokes an action for each element in the observable
sequence to perform some type of side effect. This operator is for
debugging and tracing purposes and can be plugged into any step in the
pipeline.

Listing 3.7 Using aggregate operators

Takes only the first two elements
(another filtering operator)

Performs the logging
routine and passes along
the observable sequence

83Summary
Being able to use this repertoire of operators is certainly beneficial because it frees
you from having to write them yourself, reducing the probably for bugs to occur (you
can find a complete list of all the operators used in this book in appendix B—you’re
free to use it as a guide). Nevertheless, the functions passed into these operators are
solely your responsibility, so please test them thoroughly. We’ll revisit testing further
in chapter 9.

 In this chapter, we talked at length about several of the core operators that come
bundled with RxJS. We purposely avoided specifically enumerating all the operators
that are available for mapping, filtering, and other tasks. That job is better left to the
reference material on GitHub or on the internet.5 Instead, we wanted to demonstrate
how operators are used in conjunction with observables to build chains of logic that
let you write streams declaratively, so that they’re both easy to understand and easy to
extend. We chose what we think of as the set of core operators. We explored how you
can build complex logic intuitively using fluent operators. These are operators that
act primarily on a single observable and don’t introduce any time-based operations. In
the next chapter, we’ll explore the time aspect of observables, which allows you to
handle future data.

3.4 Summary
 Streams provide their own mechanisms for cancellation and disposal, which is

an improvement over JavaScript’s native event system.
 The Observable data type enables fluent function chaining that allows the

sequential application of operators, using a model similar to that of arrays.
 Unlike JavaScript’s native promises, observables have built-in capabilities for

disposal and cancellation.
 Functions injected into the operators of an observable sequence contain the

business logic of your application and should be side effect–free.
 Observables are self-contained with indefinitely chainable operators.

5 http://xgrommx.github.io/rx-book/index.html.

Effectful computations
The do operator is known as an effectful computation, which means it will typically
cause an effect such as I/O, a database insert, append to the DOM, or write to a
file—all of these side effects, of course. The reason why do() still preserves the
chain is rooted in an FP artifact called the K combinator. In simple terms, this is a
function that executes any effect but ignores its outcome, just passing the value
along in the stream to the next operator. In a way, it’s a bridge that intercepts the
stream that allows you to invoke any function. It’s known in other libraries as the
tap() operator.

http://xgrommx.github.io/rx-book/index.html

84 CHAPTER 3 Core operators
 Operators act independent of each other and work only on the output of the
operator that preceded them.

 The order and type of operators used determine the behavior and the perfor-
mance characteristics of an observable.

It’s about time
you used RxJS
Time is a tricky business. We spoke earlier about the challenges that exist when the
code you write isn’t synchronous; it may have unpredictable wait times from one
instruction to the next. We defined observables as infinite sequences of events, and
now we add the last part of the puzzle to this definition—over time. The ancient
Greek Heraclitus implied that time is always in motion, and so are observables.

OBSERVABLES are infinite sequences of events over time.

This chapter covers
 Understanding time in RxJS

 Using time as a new dimension of your programs

 Building observable streams with time

 Learning about RxJS operators like debounce
and throttle

 Analyzing event data with buffering
85

86 CHAPTER 4 It’s about time you used RxJS
You can accurately measure the time a synchronous program takes by adding the exe-
cution time of its constituent functions, but this doesn’t hold for asynchronous pro-
grams because instructions aren’t linearly executed, as shown in figure 4.1.

 Generally speaking, you should never try to inject wait times into your code in an
attempt to time your operations. Asynchronous code is unpredictable, and many fac-
tors can alter the period of time an AJAX call takes to respond or a long-running com-
putation to finish. So instead of dealing with time directly yourself and trying to guess
when certain operations complete, you should react to them.

 In previous chapters, we talked about how observables react to future events, but
we skirted around the specifics of what the future is. We also mentioned the issue with
latency in passing but never addressed it head-on. This chapter will first give you a
brief introduction to time as viewed by RxJS and will then explore how to use opera-
tors to affect not only the output of a sequence of events but also when this output will
occur and how that type of transformation can be useful. Having direct control over
time, such as being able to schedule certain actions to occur or to generate data in set
timed intervals, is essential to creating responsive user interfaces that interact with
user actions. Keep in mind that modern users have high expectations that web UIs
behave like native applications, so that any clicks, key presses, or any other types of
action are immediately acknowledged.

Synchronous

Asynchronous

Time depends on input
size and server speeds

Program execution

Predictable time

Step 1 Completes

Time depends on input size,
server speed, network speed, etc

Step 2

Predictable time

Completes Step 3

Program execution

x milliseconds

Step 1 Completes Step 2

y milliseconds

Completes Step 3

Figure 4.1 In synchronous code (top), operations are predictable and typically depend on the input
size and speed of the environment. Asynchronous programs (bottom) depend on many other factors,
including the speed of the network.

87Why worry about time?
4.1 Why worry about time?
Time is of the essence, and in computing it’s essential. Many years ago, the world of
user experience (UX) and design adopted the rule of the “Powers of Ten” to create
guidelines about what is an acceptable amount of time a user can wait for an applica-
tion to respond. The study can be summarized as such:

 At 0.1 seconds, the user feels as though their actions are causing a direct impact
on the application. The interactions are real and pleasant.

 From 0.1 to 1 second, the user still feels in control of the application enough to
stay focused on their activity. For web applications, pages or sections of a page
should display within 1 second.

 From 1 to 10 seconds, the user gets impatient and notices that they’re waiting
for a slow computer to respond.

 After 10 seconds, the flow is completely broken and the user is likely to leave
the site.

Time is the undercurrent that causes your data to flow within a stream. And you can
see from this study that it’s a crucial aspect of any successful application. JavaScript
applications are notorious for being frequently exposed to time, and we don’t mean
using any date/time libraries. We’re referring to the conflicting tasks of having to bal-
ance fetching data from remote locations, slow networks, user animations, scheduled
events, and others—all making balance incredibly challenging.

 Before we get into this topic, it’s important to realize that time-based functions rely
on external state directly or indirectly. What do we mean by this? From a pure func-
tional programming perspective, functions that deal with time are inherently impure.
Time is a dimension that’s not necessarily local to a function—it’s global to the entire
application and forever changing.

IMPURE JAVASCRIPT FUNCTIONS Some frequently used JavaScript functions
like Date.now() and Math.random() are impure because you can never guar-
antee a consistent return value.

Despite this incompatibility from a pure FP standpoint, RxJS is still the right tool for
the job. When you chain operators, as you already know, most of these issues are
addressed by virtue of sequenced, synchronous execution that threads through time
and minimizes the impact of this side effect. In previous chapters, you saw how to
build a pipeline out of array-like operators that use higher-order functions, such as
map(), filter(), and reduce(). Time, being a dimension that doesn’t exist with
arrays, doesn’t have a direct analogy to any array methods. But this doesn’t mean you
can’t introduce time into operators and end up with the same fluent design.

 RxJS comes bundled with many of the tools to inspect and manipulate time right
out of the box (in chapter 9, you’ll learn how to work with virtual time in unit tests,
essentially by mocking time). Before we dive into these new operators, let’s review
JavaScript’s own timing mechanisms and how they can easily interact with RxJS.

88 CHAPTER 4 It’s about time you used RxJS
4.2 Understanding asynchronous timing with JavaScript
The runtime of an asynchronous application depends on factors outside its control
such as network, filesystem, server speed, and others; all of these become bottlenecks
to code that would otherwise execute instantly on a CPU. An asynchronous event has
two main challenges:

 It’s ambiguous in that it may or may not happen at any time in the future.
 It’s conditional, meaning that it’s dependent on the correct execution of a pre-

vious task, such as loading data from a file or database.

The reason RxJS is a game changer is that it allows you to treat asynchronous tasks as if
their execution order were synchronous. In simpler terms, it’s designed to serialize
operations so that one piece of code executes only after another piece of code has
completed. This is possible through the orchestration layer of observables so that you
can handle time implicitly or explicitly.

4.2.1 Implicit timing

Consider the example of a relay race. In a relay race, the participants run as fast as
they can around the track. Every time a runner finishes their set distance, they pass
the baton to the next runner. The winner of the race is always the team who collec-
tively crosses the finish line first. JavaScript functions that use callbacks work under
this same philosophy. This is why all of the client-side AJAX APIs, as well as all of the
streaming I/O APIs in Node.js, to name a few, declare callback parameters batons. Fig-
ure 4.2 shows that time factors into many types of JavaScript problems, whether it’s
fetching data from the server or a database or handling user input.

 Both cases would involve the use of nested callbacks to pass the baton along the
way and ensure their synchronicity. On the left, two nested HTTP calls depend on each
other to fetch the required data from the server. On the right, a DOM event is inter-
cepted, which causes some data to be fetched from the server. By treating both scenar-
ios as streams, observables internally take care of passing the baton for you through
the operator’s internal subscription mechanism, which you learned about in chapter
3. Your job is to wait and react accordingly. Now let’s look at another form of timing in
JavaScript, explicit timing.

4.2.2 Explicit timing

Unlike implicit timing, explicit timing has the following desirable characteristics:

 Concrete—It will happen at a set time.
 Explicit—It will happen at a time you clearly define and control.
 Unconditional—It will always happen, unless an error occurs or the stream is

cancelled.

Think of any time you’ve had to write an event that occurred a few seconds after the
user performed some action, or maybe delayed an animation for a set amount of time.

89Understanding asynchronous timing with JavaScript
These are examples of when you’ve explicitly declared that you wanted something to
occur in the future as well as exactly when you wanted it to happen.

 Use cases for these explicitly timed operations tend to revolve around two general
categories: user-centric and resource-centric. In the former case, you’re concerned
with creating something that’s perceivable to the human eye. An animation, a dialog,
and a validation message are examples of user-centric timings. Although some anima-
tions are superfluous, they’re also an important part of drawing the user’s attention to
where they should act next and creating a connection with the UI so that it’s always
responsive. By carefully timing how elements move and react to the user’s interaction,
you can subtly guide the user through what could otherwise be a difficult experience.

 In the resource-centric case, you can use timing to reduce demands on a given
resource. Network I/O operations, rapid user input, and CPU-intensive calculations
are scenarios where reducing the number of method calls could significantly boost
performance. In these cases, you could constrain either the number of calls or their
impact by specifying a timeout. Another way of handling resources is through buffer-
ing or caching a certain subset of elements so that they can be accomplished at once.
One example is when you need to apply many database operations and it’s preferable
to do a single bulk operation (at the end of this chapter we’ll show how buffering
helps you in this respect).

 Explicit timing is similar to a train or airline schedule. Tasks such as moving passen-
gers from point A to point B don’t happen as soon as there’s availability. Trains and
planes depart at their scheduled time (for the most part, of course, but that’s a separate

getData

getMoreData

Time

processResult

Time

Invoke callback
function with
response

Use result to
fetch more data

Display
result

Key press

getData

Time

processResult

Time

Handle click event
with registered
callback

On click, fetch data
from the server

Display
result

Figure 4.2 The dimension of time is implicit in I/O tasks such as fetching data from the server and handling user
input. On the left, a sequence of AJAX calls fetches necessary data from the server before processing. On the
right, you listen for a key press DOM event and a resultant fetch from the server. As each step completes, data
(the baton) is passed from one step to the next.

90 CHAPTER 4 It’s about time you used RxJS
issue). You know that an airplane doesn’t leave simply because you’re on it (or you’ve
subscribed to it). It will leave only on or after its departure time.

 Explicitly timing events is a useful property in computing because it means that
you can exercise some control over when a piece of code is run rather than rely on the
implied timing of executing operations in sequence. The latter is unreliable for any
sort of exact timing, because it’s bound to the speed and availability of processors,
memory, and network latency. In practical terms, this means that the behavior of an
application would be very different on a desktop as opposed to a smartphone, so
explicitly defined behavior is sometimes necessary. You can use explicit time to invoke
timed tasks in sequence, such as hiding and showing messages to the user after a set
number of seconds, displaying a notification dialog that guides the user to the next
step, implementing a countdown clock indicating an action needs to be completed by
a certain time, and others. Figure 4.3 shows a simple visualization of explicit time-
dependent tasks.

 Now that you understand both modalities, let’s see what JavaScript has to offer. If
you’ve used functions such as setTimeout() or setInterval(), then you’ve already
been exposed to JavaScript’s timing interfaces.

4.2.3 The JavaScript timing interfaces

There are two well-known interfaces for accomplishing explicit timing in JavaScript
(there are actually several more, but they’re not universal so we’ll leave them out for
now). Both methods use time relatively; that is, all declarations of future tasks will be
done by a time offset relative to the current time (“now”) within the application. For
instance, if you show a countdown clock for an action that is to be completed within 3
seconds, this action would complete in 3 seconds relative to the execution of the
timed operator in use (or now + 3 sec), as shown in figure 4.4.

runTask1

runTask2

5 s

Run next task in
exactly 5 seconds

Click button

Hide message

2 s

Hide success message
after 2 seconds

Figure 4.3 Explicitly timed tasks can execute with a delay or can overlap in time.

fn

Some user-defined functionNow
3 seconds

exec(fn, 3 seconds)

Figure 4.4 Explicitly timing some function after 3 seconds offset time

91Understanding asynchronous timing with JavaScript
Generally, there are two types of explicit time in RxJS. Relative time is also called offset
time, and it represents only a delta measurement from now. Absolute time always refers
to a specific instance in time, which can be either in the past or in the future.

We’ll go over JavaScript’s most common timing operations that are part of the Window-
Timers utilities and their equivalent operators in RxJS, starting with setTimeout().

SETTIMEOUT

The setTimeout() function (a method of the global context object) sets up an
explicit one-time task to execute at a specific point in the future (in milliseconds) rel-
ative to now. Invoking the function will tell the JavaScript runtime that some body of
code should be executed milliseconds after setTimeout() is called, which is consid-
ered time zero milliseconds. This is the programmatic equivalent of setting an egg
timer to notify you when your cake is done baking and is great if you don’t want some-
thing to be executed synchronously with the rest of your program. For instance, you
could schedule some CSS to slide the account details panel to the right after a short
delay to make the interaction with the page richer:

setTimeout(() =>
 document.querySelector('#panel')

.setAttribute('class', 'slide-right'), 1000);

The setTimeout() function is similar to the Promise in that its callback is invoked
exactly once in the future. But it offers none of the same versatility that a Promise or
RxJS does. For example, there’s no mechanism for error handling or fluent composi-
tion. Clearly, you can do better!

 With your new understanding of streams, you should also be able to recognize that
this is again a simple observable, one that emits once to each subscriber. You can cre-
ate an observable that wraps over setTimeout(), which applies some CSS action down-
stream into the observer to avoid conflating it with any business logic; see the
following listing.

When is “now”?
“Now” in JavaScript is always the time provided by the system when a particular line
of code executes. If you’re declaring a time of new Date(), you’d expect the date to
be the system time in milliseconds since 1970 at the moment the line is evaluated.
For some of the examples involving dates and time, we’ll be using a library called
moment.js (installation instructions are available in appendix A). Moment.js provides
a simple API for accessing and manipulating dates and time.

92 CHAPTER 4 It’s about time you used RxJS

De
unsubsc

beha
const source$ = Rx.Observable.create(observer => {
 const timeoutId = setTimeout(() => {

observer.next();
observer.complete();

 }, 1000);

 return () => clearTimeout(timeoutId);
});

source$.subscribe(() =>
document.querySelector('#panel').style.backgroundColor = 'red');

CODE SAMPLES Remember that all the code for this chapter can be found in
the RxJSinAction GitHub repository, https://github.com/RxJSInAction/rxjs-
in-action.

Listing 4.1 creates an observable that will fire once after a second and then complete,
without being tied to any business logic, and it provides the unsubscription mecha-
nism of the timer by passing clearTimeout(timeoutId) back as the disposal logic. It
turns out, however, that this kind of boilerplate code is unnecessary because the RxJS
library already possess implementations for these base cases. The setTimeout()
method can be substituted with the timer() operator, which creates an observable
that will emit a single event after a given period of time. The next listing performs the
same action as before, using a one-second timer to emit an action that changes the lay-
out of an HTML element.

Rx.Observable.timer(1000)
 .subscribe(()=>

document.querySelector('#panel').style.backgroundColor = 'red');

We can illustrate this using a marble diagram, as shown in figure 4.5.
 Notice that you no longer need to worry about unruly callbacks. Although the

result of listing 4.2 is the same as that of listing 4.1, taking advantage of RxJS operators
has, in our opinion, drastically improved the readability of this simple program. As an
additional plus, the timer is now emitting a generic event that can be used by several
consumers if you want it to go through subsequent subscriptions, rather than being
forced to cram several callbacks together.

Listing 4.1 Working with observables and setTimeout()

Listing 4.2 Creating a simple animation with an RxJS timer

Wraps everything
inside the observable
factory method

Sends the single next and
completed flags a second after
the subscription occursfines

ribe
vior

Subscribes to the observable
to start the timer

Performs CSS
operations

Timer factory function in milliseconds

Adds a custom CSS class to the selector
element after a set time has elapsed

https://github.com/RxJSInAction/rxjs-in-action
https://github.com/RxJSInAction/rxjs-in-action

93Understanding asynchronous timing with JavaScript
SETINTERVAL

The other commonly used method is setInterval(). Whereas setTimeout() bears
similarities to a promise, setInterval() more closely resembles event emitters in that
it can create multiple events over a span of time, specified in milliseconds. Now,
instead of a single operation being performed, this function invokes the operation
repeatedly by specifying how far apart in time those calls should be. Using this type of
operation, you could easily create a simple counter that would tell the user how long
they’ve been on the same page:

let tick = 0;
setInterval(() => {
 document.querySelector('#ticker').innerHTML = `${tick}`;
 tick++;
}, 1000);

Unfortunately, this sample code uses a global side effect to increment the counter.
Instead, consider using a pure observable context to create a container around the
effect and push out new counts as events into the observer. Listing 4.3 creates a simple
observable in charge of spawning a two-second interval. At every interval, it incre-
ments a running counter and pushes the event to any downstream observers. In light
of what you learned in chapter 3 and because JavaScript’s time intervals can run
infinitely, we included the cancellation of the event. The cancellation process also
occurs explicitly after 8 seconds have elapsed.

const source$ = Rx.Observable.create(observer => {
 let num = 0;
 const id = setInterval(() => {

observer.next(`Next ${num++}`);
 }, 2000);

 return () => {
clearInterval(id);

 }
});

Listing 4.3 Explicit time using JavaScript timing functions and RxJS

timer(1000)

Emitted

Received

Now

1000 ms

Figure 4.5 Emit an
action after one second.
This is similar to using
a one-second timeout.

External state keeping track of the ticker

Updates the counter
on the screen (clear
side effect)

Sets the time period for the interval
(in milliseconds) to 1 second

Every 2 seconds prints
the next number count

The returned object contains the
cancellation logic for this
observable (the disposal handler).

94 CHAPTER 4 It’s about time you used RxJS
const subscription = source$.subscribe(
 next => console.log(next),
 error => console.log(error.message),

() => console.log('Done!')
);

setTimeout(function () {
 subscription.unsubscribe();
}, 8000);

This code wraps an observable over a JavaScript explicit setInterval() function,
which emits a count after 2 seconds. After 8 seconds have elapsed, the stream is can-
celled and disposed of, generating a total of 8 / 2 = 4 events. Notice that because it was
cancelled, the completed function of the observer is also omitted. Running this code
yields the following:

"Next 0"
"Next 1"
"Next 2"
"Next 3"
"Done!"

As you saw in listing 4.3, setInterval() can be used within an observable. In its cur-
rent form, however, it isn’t particularly useful. For instance, there’s no way to track the
number of invocations, short of tracking it yourself with an external variable. An
actual observable operator would be more useful because it can forward state down-
stream while remaining infinitely more extensible.

 Fortunately, you don’t have to implement this method either, because it already
exists as the interval() operator, which gives you a simple compact, generic form.
Essentially, you can subscribe to the interval and begin receiving periodic events, and
in true RxJS form you gain automatic disposal semantics for free!

 Both the interval and the timer emulate the existing behavior that you see from
the traditional JavaScript interfaces, but they do so without the associated entangle-
ment. Although interval emits the number of milliseconds in the interval, you don’t
have to use it. Most RxJS implementations use interval to monitor and react to an
external resource. For instance, you can make periodic AJAX requests to an external
API and detect when something has changed. This is useful for stock tickers, weather
trackers, and other real-time applications. In the next section, we’ll look at how to
introduce time-based operators into a stream to implement a stock ticker component.

4.3 Back to the future with RxJS
The time-based operators in RxJS come in several different flavors. The factory func-
tions that resemble generic versions of the setInterval() and setTimeout() meth-
ods have function signatures resembling these RxJS operators, respectively:

Rx.Observable.interval(periodInMillis)
Rx.Observable.timer(timeoutInMillis)

Handles next

Flags when stream is done

After 8 seconds, cancels the interval

95Back to the future with RxJS

]

These static methods (interval() and timer()) work just like the other factory meth-
ods that you saw in previous chapters for creating observables, except that where most of
those either wrapped other sources or emitted events immediately upon subscription,
the time-based factory methods emit only after a provided amount of time has elapsed.

SCHEDULERS There’s another parameter called a scheduler that’s passed into
either interval() or timer(), as well as other operators. You can imagine
that unit testing code with long timers is virtually impossible. You’ll learn
about schedulers when we cover unit testing in chapter 9.

We’ve illustrated these timing operators by themselves, but in real-world problems
they’re usually combined with observable streams that generate meaningful data. This
combination is extremely powerful, because you can use the timers to synchronize the
frequency with which you consume data from an observable.

 We’ll start implementing our stock ticker widget using only functional and reactive
primitives. We’ll come back to this example and add more features as you explore and
get more comfortable with RxJS. At the moment, we’ll use a made-up symbol, ABC, to
keep things simple, and instead of fetching its stock price using a real web service,
we’ll emulate it using random numbers. In the next chapter, we’ll tie everything
together and fetch stock data using actual AJAX calls to a real service endpoint. Here’s
our simple function that fabricates random numbers:

const newRandomNumber = () => Math.floor(Math.random() * 100);

NOTE This function is impure, but we’re using it only as a random producer
of events, not as part of our business logic.

At a high level, the process of fetching stock data works as shown in figure 4.6. Our
program consists of generating a random value every 2 seconds, which we’ll use to
emulate continuous stock quote prices of our hypothetical ABC company.

Maps the
number into
the range [0,100

90.3

1

70.6

2

20.5

3

34.7

4

14.8

5

Every 2 seconds

map(num => newRandomNumber(num))

Figure 4.6 The process of fetching the stock data involves using a promise to make
a remote HTTP call against a stock service. In this case, we’ll use a random-number-
generator function to emulate stock price changes, and we’ll revisit this in chapter 5.

96 CHAPTER 4 It’s about time you used RxJS
Stock prices are made up of a numerical portion and a currency string. You can model
this with a simple Money value object:

const Money = function (currency, val) {
 return {
 value: function () {

return val;
 },
 currency: function () {

return currency;
 },
 toString: function () {

return `${currency} ${val}`;
 }
 };
};

A value object is a design pattern used to represent simple immutable data structures
whose equality is based not on the entity itself but on its values. In other words, two
value objects are equal only if they have the same content or their corresponding
properties contain the same values. These objects are ideal to transfer immutable state
from one component to another.

 The stock ticker widget is kicked off by a two-second interval, which will set the
pace for how often notifications are pushed onto your observable stream. Subscribers
receive each value and update the DOM, as shown in the following listing.

Rx.Observable.interval(2000)
 .skip(1)
 .take(5)
 .map(num => new Money('USD', newRandomNumber()))
 .subscribe(price => {

document.querySelector('#price').textContent = price;
 });

As we’ve mentioned, you can use RxJS’s time operators to control the advancement of
the stream they’re part of. Another variation of interval() is an instance operator
called timeInterval()—which gives you a bit of extra information such as the count
as well as the time in between intervals—which you can use with do() to print the time
elapsed between price refreshes, as shown in the next listing.

Rx.Observable.interval(2000)
 .timeInterval()
 .skip(1)
 .take(5)
 .do(int =>

Listing 4.4 Simulating a simple stock ticker widget

Listing 4.5 Augmenting stock data with the time interval

Creates a two-second interval
Skips the first number emitted, zero

Because this is an
infinite operator,
simulates only five
values

Augments the interval value
as an object that also
includes the precise number
of milliseconds between
intervals

97Back to the future with RxJS
console.log(`Checking every ${int.interval} milliseconds`))
 .map(int => new Money('USD', newRandomNumber()))
 .subscribe(price => {

document.querySelector('#price').textContent = price;
 });

This function reveals the fraction of delay present in the call needed to compute the
random number; checking the log shows the following:

"Checking every 2000 milliseconds"
"Checking every 2002 milliseconds"
"Checking every 1999 milliseconds"
"Checking every 2001 milliseconds"
"Checking every 2000 milliseconds"

The two types of timing options we’ve discussed so far (explicit and implicit) aren’t
mutually exclusive. Using one doesn’t preclude the use of the other. But using them
together does require an understanding of how time propagates to downstream oper-
ators. Unlike when you use only implicitly timed operations, where each operation
will initiate directly after the previous one, explicit timing can introduce new issues
with ordering.

 This knowledge is especially important when introducing a new operator called
delay(). It accepts a time in milliseconds and can be used to time shift the entire
observable sequence. This means that if an event arrives at 1 second to delay(), it
would be emitted to the subscribe method at 3 seconds if the delay was 2 seconds
long. You can visualize this with the marble diagram in figure 4.7.

The value property returns
the number of intervals

emitted by the observable.

The interval property contains the
number of milliseconds elapsed
between one interval and the next.

map(timeMs -> elapedTimeSecs)

next(1 second)

delay(2000)

1

3Delay

Timer

3Result

Now
1-second timer + 2-second
delay = 3 seconds elapsed

Figure 4.7 A marble diagram of how the delay operator affects the output observable

98 CHAPTER 4 It’s about time you used RxJS

pro
of t

by
Here’s a code sample to illustrate its use.

Rx.Observable.timer(1000
 .delay(2000)
 .timeInterval()
 .map(int => Math.floor(int.interval / 1000))
 .subscribe(seconds => console.log(`${seconds} seconds`));

This code reflects what figure 4.7 shows: how the stream is affected by the delay oper-
ator to create a shifted observable sequence. Running this code will print “3 seconds”
rather than the initial time. The effect of this process raises two important points
about the nature of a delay:

 Each operator will affect only the propagation of an event, not its creation.
 Time operators act sequentially.

Let’s discuss each of these points individually.

4.3.1 Propagation

The first effect applies to all operators but is especially critical with explicitly timed
operations because it can have drastic effects on the performance of your application.
Because operators have no knowledge about the specific observable to which they’re
attached, they’re unable to affect the production of events (remember that you can
think of each operator as a workstation on an assembly line). In order to maximize
decoupling and throughput, each operator must work independently. This decoupling
can lead to problems, however, if one station drastically outpaces another in terms of
production. Suppose an assembly line had one station that painted a part and another
that required that part to sit for at least an hour for the paint to dry. If the first station
produced one part every minute, 60 parts would be waiting to dry at any given moment.
The deficit would be greater the larger the ratio of production to propagation.

 This means that an operator like delay() will affect the propagation of the events
downstream only after they’ve been generated, not during. Consider a simple observ-
able example that shows a delay firing all at once, for an array with multiple values.
Instead of delaying each event in the stream, delay shifts the entire sequence by a spe-
cific period, as in this listing.

Rx.Observable.of([1, 2, 3, 4, 5])
.do(x => console.log(`Emitted: ${x}`))
.delay(200)
.subscribe(x => console.log(`Received: ${x}`));

Listing 4.6 Showcase the delay operator

Listing 4.7 delay shifts the entire observable sequence

Emits a value after 1 second Delays the entire
sequence by a
two-second offset

Computes the time elapsed
using the interval value from
timeInterval()

Converts and rounds the
result to seconds

Delays
pagation
he event
 200 ms

Uses the .do() operator
to introduce an effectful
computation; in this
case, logs to the console
the emitted data.

99Back to the future with RxJS
You might expect that each Emitted event would be followed immediately by a
Received, followed by a delay of 200 ms before the next Emitted/Received pair. This
is a common mistake for newcomers to RxJS. In reality, the result is this:

Output:

"Emitted: 1,2,3,4,5"

// 200 milliseconds later...

"Received: 1,2,3,4,5"

This result is much different than you might have expected, because the generation of
the events is independent of the delay operator. This is exactly the same as the factory
worker scenario where production and propagation are not matched. Figure 4.8 illus-
trates what’s happening.

A corollary to this idea is that in order for a delay to work, it must buffer the events it
receives before emitting them at the right time. The delay() operator has a fixed con-
stant value called a bounded upper limit that’s proportional to the number of events
received and their frequency. You can calculate this with the following relation:

of events received / time * (x time units)

For the most part, as long as an operator will eventually propagate, a buffer will always
remain bounded, and it will not grow beyond a certain size (we’ll come back to buffer-
ing in a bit). It’s worth mentioning this behavior because it’s often confusing for new-
comers to RxJS who see delay and think that the production of the sequence can be
delayed or somehow controlled downstream. Another important aspect of these time-
based operators is that they act sequentially.

4.3.2 Sequential time

As you’ve already seen, when operators are chained together, they always operate in
sequence, where operators earlier in the chain execute before operators later in the
chain. This downstream flow is a core design of RxJS observables. You’d expect this to
hold when dealing with time-based operators as well. That is to say, if you were to

Emitted

Now

1 2 3 4 5

Received 1 2 3 4 5

delay(200)

200 ms delay of the entire
observable sequence

Figure 4.8 A 200 ms delay
injected into the pipeline shifts
the entire observable sequence
instead of each event.

100 CHAPTER 4 It’s about time you used RxJS
chain multiple delays, you’d expect that the actual delay downstream would be the
sum of each of them. Although delay() is sequential, its execution as it appears in the
stream declaration with respect to other non-time operators isn’t, which can be con-
fusing. The next listing shows how delay() stays true to its definition to shift the
entire observable sequence, regardless of where it’s placed in the sequence.

Rx.Observable.from([1, 2])
 .delay(2000)
 .concat(Rx.Observable.from([3, 4]))
 .delay(2000)
 .concat(Rx.Observable.from([5, 6]))
 .delay(2000)
 .subscribe(console.log);

Based on your intuition of how non-time operators work, you’d expect the element
pairs [1, 2], [3, 4], and [5, 6] to be emitted 2 seconds apart, but this is not the case.
Each subsequent delay receives an event after the preceding one expires, thus creating
a delay of 2000 + 2000 + 2000 = 6000 ms with respect to the entire observable sequence,
printing [1,2,3,4,5,6] after all 6 seconds have elapsed, as shown in figure 4.9.

 You can relate this to a downstream river with control dams along the way that
temporarily delay the flow of water. When the water reaches its destination, however,
all of the water would be there at once. So don’t make the mistake of thinking that

Listing 4.8 Sequential delay operators

Chaining multiple delay
operators together

1 2

3 4

delay(2000)

delay(2000)

delay(2000)

5 6

1 2 3 4 65

Emission offset
by 6 seconds

Injection of three
2-second delays

Figure 4.9 Injecting several delay operators has
the effect of compounding one delay operator
equal to the aggregate amount of wait time.

101Handling user input
embedding multiple delays into a stream will actually exert its effect at each stage in
the pipeline.

 Now that you’ve examined some RxJS time operators, let’s put them in action and
mix them up with other familiar operators. One of the main areas of concern when
you build responsive UIs is dealing with user input. For instance, you’d expect that the
application you’re building would react accordingly whether the user was pressing a
button once or rapidly many times. Consider the DOM events fired by a text box on
each key press. Should the application handle every single change, or could you just
process the result when the entire word is entered? Let’s examine this next.

4.4 Handling user input
Both the interval() and timer() static methods are used to create observables and
initiate an action after a timed offset. These, together with delay(), are probably the
most familiar combinations when scheduling a future action that executes once, at a
set interval, or after a set time. These operators are ideal for use with an explicit event
for which you know the action to perform, and you want to schedule it to be run at
some later time. But what happens when sequences of events are generated from a
dynamic event emitter, like a user’s mouse move or key presses, which can emit poten-
tially many events in a short time? In this case, you’re probably not interested in pro-
cessing each of them but events in between.

 In this section, we’ll look at two of the most useful observable mechanisms:
debounce and throttle. They perform similar functions, so first you’ll learn to apply
debouncing to implement a smart search program, starting with an imperative version
before moving into a fully reactive version.

4.4.1 Debouncing

In signal and circuit design, it’s common to debounce a signal so that a manual input
signal doesn’t appear like multiple signals. This is a common feature with switches and
other types of manual user interactions. The same thing happens when software inter-
acts with humans, for which RxJS offers an operator called debounceTime(), which
emits an event from an observable sequence only after a particular time span (in milli-
seconds) has passed without it emitting any other item—essentially sending one and
not many within a certain time frame. You can think of this operator as belonging to
the filtering category of operators, using time as the predicate to decide which events
to keep. In simple software terms, debouncing means “execute a function or some
action only if a certain period has passed without it being called.” In this case, it means
that an event is emitted from an observable sequence if a set time span has passed
without emitting another value, and it may be represented with the marble diagram in
figure 4.10.

102 CHAPTER 4 It’s about time you used RxJS
Here’s a simple example showcasing the debouncing operator, which emits the most
recent click after a rapid succession of clicks:

Rx.Observable.fromEvent(document, 'click')
 .debounceTime(1000)
 .subscribe(c => {

console.log(`Clicked at position
 ${c.clientX} and ${c.clientY}`)

 });

With this code, the user can generate a burst of click events, but only the last one will
be emitted after a second of inactivity.

Let’s put this operator to the test. Consider the example shown in figure 4.11 of a
smart search widget that allows you to easily look up articles from Wikipedia by giving
you suggestions as you type.

 Running this code generates the following output: if the user types r into the text
box, it will suggest two possible results: “rxmarbles.com” and “reactivex.io.” Addition-
ally typing e into the box will filter the results further to just “reactivex.io.” As the user

1 2 3 54 6

5 61

debounceTime(offset)

Debounce delay offset

Events ignored when another
event is emitted within the
debounce offset period

Figure 4.10 This generic
debounce operation allows the
emission of an item only after a
certain time span has elapsed
before another event is emitted.

Observable factory vs. instance methods
Static methods and instance methods on some websites are referred to as observ-
able methods and observable instance methods, respectively. The static methods are
defined directly on the Rx.Observable object and are not part of the object’s proto-
type. These are typically used for initiating the declaration of an observable instance,
for example, Rx.Observable.interval(500). The observable instance methods are
included in the object’s prototype and are used as members of the chained pipeline
after you’ve initiated an observable declaration. We’ve referred to these simply as
operators in previous chapters for brevity, for example, Rx.Observable.prototype
.delay(), Rx.Observable.prototype.debounceTime(), and others.

103Handling user input
types their keywords, you recognize that making web requests after each letter typed is
a bit wasteful, and you’d be better off if you allow the user to type first and wait for a
specific amount of time before making the expensive round-trip request. This has the
benefit of restricting the number of web requests made to the server while the user is
still typing, which is better resource utilization overall. When interacting with a third-
party service, such as the Wikipedia API, it’s good to do this so that you don’t hit your
rate limit. Preferably, the program should back off until the user has stopped typing
for a brief period (indicating that they’re not sure what to type next) before looking
for possible suggestions. This is both to prevent the additional network congestion of
initiating requests that will never be seen and to avoid the annoying UX of having the
type-ahead flicker as the user types.

 Prior to RxJS, you’d need to implement this yourself, probably using setTimeout().
The timeout is reset every time the user types a new key. If the user doesn’t type for a
short duration, the timeout will expire and the function will execute. We’ll need to
cover a little more ground in order to start streaming from remote services, so in the
meantime, we’ll use a small dataset and return to this program in the next chapter:

let testData = [
'github.com/Reactive-Extensions/RxJS',
'github.com/ReactiveX/RxJS',
'xgrommx.github.io/rx-book',
'reactivex.io',
'egghead.io/technologies/rx',
'rxmarbles.com',
'https://www.manning.com/books/rxjs-in-action'

];

rxmarbles.com

reactivex.io

2 results 1 result

reactivex.io

The first key press, r, matches two accounts from the
dataset. But as the user presses more keys, the result
set is narrowed until the desired account is found.

r e..

Key presses

Figure 4.11 The user interacts with the search box. As the user types on the keyboard, the
list of search results filters down. This is typical of modern search engines.

104 CHAPTER 4 It’s about time you used RxJS
To implement this, we’ll need HTML elements for the search box and a container to
show results. As the user types into the search box, any results will be inserted into this
container:

const searchBox = document.querySelector('#search'); //-> <input>
const results = document.querySelector('#results'); //->

Here’s a possible implementation of a smart search box using a typical imperative or
procedural solution without debouncing. The goal of this code sample is to illustrate
how you’d typically approach this problem without thinking in terms of FP and
streams:

searchBox.addEventListener('keyup', function (event) {
 let query = event.target.value;
 let searchResults = [];
 if(query && query.length > 0) {

clearResults(results);
for(result of testData) {
if(result.startsWith(query)) {
 searchResults.push(result);
}

}
 }
 for(let result of searchResults) {

appendResults(result, results);
 }
});

function clearResults(container) {
 while(container.childElementCount > 0) {

container.removeChild(container.firstChild);
 }
}

function appendResults(result, container) {
 let li = document.createElement('li');
 let text = document.createTextNode(result);

li.appendChild(text);
container.appendChild(li);

}

This code is simple. Building a smart search box involves binding the keyup event and
using the value in the text box to look up possible search results. If there’s a match,
the results are appended to the DOM; otherwise, the DOM is cleared. For this, you cre-
ated two functions, appendResults() and clearResults(), respectively. This flow is
shown in figure 4.12.

 This code has no debouncing logic, so essentially it will issue queries against the
test array for every letter the user enters into the search box. By adding debouncing
logic to this imperative code example, we end up with the following.

Listens for all keyup
events on that
search box

Loops through all of
your test data URLs
and find matches

If no matches are found, clears the
list of search results; otherwise,
appends the items found

Function used to
clear search results
container

Function used to
append a result onto
the container

105Handling user input
let timeoutId = null;

searchBox.addEventListener('keyup', function (event) {

 clearTimeout(timeoutId);

 timeoutId = setTimeout(function (query) {
console.log('querying...');
let searchResults = [];
if(query && query.length > 0) {

clearResults(results);
for(let result of testData) {
 if(result.startsWith(query)) {
 searchResults.push(result);
 }
}

}
for(let result of searchResults) {

appendResults(result, results);
}

}
 }, 1000, event.target.value);
});

Whenever the user types a key, that key press event will trigger the event listener.
Inside the event listener, you first clear any existing pending timeouts using clear-
Timeout(). Then you reset the timer. The result of all this is that the task won’t
execute until the input has “cooled off” or there’s a delay between inputs. In this case,

Listing 4.9 Manual debouncing logic for smart search widget

keyup
event fires

Event handler
executes callback

Find matching
resultClear results

Match
found?

Input
valid?

No

No

Yes

Append results
to DOM

Yes

End

Loop

Figure 4.12 The stages of this simple program from the moment the event fires to
finding a correct search result and writing the data on the page. Notice the use of a
couple of conditional statements and loops. This is the mark of true imperative design.

Registers the current timeout

As the user presses the key,
clears the current timeout
to initiate a new one

Starts a new timeout that
will fire after 1 second of
no interaction

Debounces for 1 second

106 CHAPTER 4 It’s about time you used RxJS
the delay in inputs dovetails nicely with the perception of helping the user along if
they hesitate when typing.

 Although the number of lines of code added here is minimal, several things make
this approach less than desirable. For one, you’re forced to create an external time-
outId variable that’s accessible within the callback’s closure and exists outside the
scope of the event handler. This introduces more of the dreaded global state pollu-
tion, which is a clear sign of side effects. Further, there’s no real separation of con-
cerns. The operation itself isn’t terribly indicative of what it’s intended for, and the
timeout value together with all the business logic get buried and entangled with the
debouncing logic—adding additional logic is very invasive.

 It would be nice if we could clean up this operation. Let’s wear our functional hats
and start by creating a method similar to setTimeout() that will encapsulate the
debouncing mechanism, separate it from the rest of the business logic, and lift the
method out of the closure. From that we could expect a function signature, as shown
in the next listing.

const copyToArray = arrayLike => Array.prototype.slice.call(arrayLike);

function debounce(fn, time) {
 let timeoutId;
 return function() {
 const args = [fn, time]

.concat(copyToArray(arguments));
 clearTimeout(timeoutId);
 timeoutId = window.setTimeout.apply(window, args);
 }
}

This new debounce() can now wrap the request logic, allowing you to elegantly decou-
ple event-handling logic from debouncing logic. Using this method, you can extend
the imperative version of the search code, as follows.

function sendRequest(query) {
 console.log('querying...');
 let searchResults = [];
 if(query && query.length > 0) {

clearResults(results);
for(result of testData) {

if(result.startsWith(query)) {
 searchResults.push(result);
}

}
 }

Listing 4.10 Dedicated debounce() method using vanilla JavaScript

Listing 4.11 Using custom debounce() method

Stores timeoutId externally
so it can be shared

Returns a function that
wraps the original callback

Captures the
arguments
object into an
actual array

Resets
the timer

Proxies the arguments to
the setTimeout() method

Helper method to send HTTP

107Handling user input
 for(let result of searchResults) {
appendResults(result, results);

 }
}

let debouncedRequest = debounce(sendRequest, 1000);

searchBox.addEventListener('keyup', function (event) {
 debouncedRequest(event.target.value);
});

As you can see, just like in previous chapters, you’re able to remove much of the ugly
and bug-prone extrinsic state by compartmentalizing behavior into small functions.
But doing this introduces another problem, which is that the result of the task com-
pletion is no longer readily available. You now need to push all of the event-handling
logic into sendRequest() because there’s no way to forward the result outside the clo-
sure. All this serves to show that implementing your own debounce logic can be quite
daunting and imposes many limitations on your design.

 Fortunately, with RxJS this becomes extremely simple, and the fact that you push
all of the DOM interaction into the observer means your business logic is greatly sim-
plified from the complex flow chart shown earlier to the abstract model shown in fig-
ure 4.13, where data always moves forward from producer to consumer in its typical
unidirectional manner.

Thinking reactively, you can see a debounce operation as simply a filter embedded into
the processing pipeline that uses time to remove certain events from the observer.
Hence, you can use observables to explicitly inject time into your stream as a first-class
entity. For this functional version of the program, you’ll create a pure, more-streamlined
version of sendRequest() and use debounceTime() to implement all of the debounc-
ing logic for you. Here’s the functional-reactive version.

Wraps this helper
method with
debounce()

Invokes the debounced
version of the function
after handling user input

Processing reactivex.io

Chaining of the functions
that compose the business
logic of the program occurs
in the RxJS pipeline.

Subscribers see only the
final outcome and render
it on the screen.

r e a x...

Key presses

Producer Pipeline Consumer

Figure 4.13 RxJS uses the pipeline to process data from the producers in a way that’s consumable
and acceptable to the consumers to display and do more work on. Reactive state machines are
modeled using marble diagrams; more on this later in this section.

108 CHAPTER 4 It’s about time you used RxJS
const notEmpty = input => !!input && input.trim().length > 0;

const sendRequest = function(arr, query) {
 return arr.filter(item => {
 return query.length > 0 && item.startsWith(query);
 });
}

const search$ = Rx.Observable.fromEvent(searchBox, 'keyup')
 .debounceTime(1000)
 .pluck('target', 'value')
 .filter(notEmpty)
 .do(query => console.log(`Querying for ${query}...`))
 .map(query =>
 sendRequest(testData, query))
 .subscribe(result => {
 if(result.length === 0) {

clearResults(results);
 }
 else {

appendResults(result, results);
 }
 });

The advantage of this approach should be readily apparent. Note that, just like other
operators, debounceTime() simply slots into the stream. RxJS’s time abstraction allows
time to be introduced transparently and, in conjunction with all of your other opera-
tors, seamlessly. Figure 4.14 shows how debouncing affects the user input passed
through the stream.

 As we mentioned, this kind of behavior is quite common and testifies to RxJS’s
extensible design. In scenarios where the operation that needs to be performed is
expensive or the resources available to the application are limited, such as those on a
mobile platform, limiting the amount of extraneous computation is an important
task, and debouncing is a way to achieve that. This is a more efficient way of handling
user input, and the Wikipedia servers agree with us. Another way to achieve this is with
the operator throttle, a sister to debounce.

4.4.2 Throttling

The debounceTime() operator has a close sister called throttleTime(). Throttling
ignores values from an observable sequence that are followed by another value before
a certain time. In simple terms, this means “execute a function at most once every
period,” as shown in the marble diagram in figure 4.15.

 Let’s say you’re executing an expensive computation in response to a user scroll-
ing or moving the mouse. It’s probably best to wait for the user to finish scrolling
instead of executing this function thousands of times. This can also work well with

Listing 4.12 A simple debounce-optimized search program

Injects a debounce offset
of 1 second, after
capturing the user’s
input. This will allow the
user to type any
characters in the time
span of a second, before
requests are sent over.

Helper function to check
whether a string is empty

Maps the search results into the
source observable. For now, you’re
creating a test dataset. In chapter
5, you’ll learn how to add AJAX calls
into your streams.

Refactors
sendRequest() to be
more functional and
returns the list of
matched search results

109Handling user input
banking sites for controlling important action buttons like withdrawing from an
account or with popular shopping sites like Amazon to add extra logic around the
“one-click buy” buttons. The next listing shows how to throttle mouse moves.

r e a c t i

debounce(1000)

map(query => Array(queryResults))

1 second (1000 ms)

Debounce
user input
for 1 second

Make
query

Results are narrowed as
the user types more data.

keyup

Result

Result

r reac

reactivex.io reactivex.io

rxmarbles.com

Figure 4.14 Debouncing the event stream allows the user to rapidly input a set of characters
so that they can be processed all at once, instead of querying for data at every key press.

1 2 3 4 5 6

1 4

throttleTime(time)

Emit first event in
a window of time

Ignore
the rest

Figure 4.15 Throttling events so that at most one will be emitted in a
specified period of time, in this case the first event in the time span window

110 CHAPTER 4 It’s about time you used RxJS
Rx.Observable.fromEvent(document, 'mousemove')
 .throttleTime(2000)
 .subscribe(event => {

console.log(`Mouse at: ${event.x} and ${event.y}`);
 });

With throttling in place, even if the user moves the mouse rapidly, it will fire only once
in a two-second period, instead of emitting hundreds of events in between. You really
care only where the mouse cursor lands. The effect of throttle in this program can
be seen in figure 4.16.

Up until now, this chapter has been all about understanding the basics of time in
RxJS. We explored several of the operators to demonstrate the power of RxJS to sim-
plify the concepts of time and make coding with it much easier. We demonstrated that
RxJS operators allow you to intuitively use time as part of an observable.

 Time-based operators like delay() and others contain buffering or caching logic
under the hood to temporarily defer emitting events without any loss of data; this is
how RxJS is able to control or manipulate the time within the events of an observable
sequence. This can be a powerful feature to use in your own applications as well, so
RxJS exposes buffering operators for you to use directly in order to temporarily store
data of a certain amount or for a certain period. This is analogous to building control
dams along the way to harvest the streams, not only for a specific period but also of a
certain size, so that you can make decisions and potentially transform the stream
before it flows through. In the next section, we’ll kick it up a notch. The plan is to use
buffering as a means to temporarily cache data, together with timed operators to
debounce or throttle user input.

Listing 4.13 Controlling button action with throttle

Plugging a two-second
throttle to prevent
click bursts

x x x x x

throttle(2000)

Events skipped
during throttle

Throttle for
2 seconds

Record coordinates

Mouse moves

Result

Figure 4.16 Throttling button clicks allows the application to ignore accidental
repeated clicking, thereby preventing the withdraw action from executing multiple times.

111Buffering in RxJS
4.5 Buffering in RxJS
We’ve mentioned many times that streams are stateless and don’t store any data. In
chapter 2, we showed how you can create a small repository of data within a custom
iterator, called BufferIterator, which you used to format and change the nature of
the elements being iterated over.

 RxJS recognizes that it’s useful to temporarily cache some events like mouse
moves, clicks, and key presses, instead of processing a deluge of events all at once, and
apply some business logic to them before broadcasting them out to subscribers.
Depending on the nature of this cached data, you might allow the events to flow
through as is or perhaps create a whole new event that subscribers see. The buffering
operators provide underlying data structures that transiently store past data so that
you can work with it in batches instead of as a whole, as shown in figure 4.17.

One important thing to understand is what happens to the data emitted because of
buffering. Instead of a single observable output, as you’d normally expect and as
you’ve seen all along, subscribers receive an array of observables. Buffering is useful
for tasks where the overhead of processing items is large, and therefore it’s better to
deal with multiple items at once. A good example of this is when reacting to a user
moving the mouse or scrolling a web page. Because mouse movement emits hundreds
of events at once, you might want to buffer a certain amount and then emit an observ-
able in response to where the mouse or the page is.

 Table 4.1 provides a list of the observable instance methods that we’ll explore in
this chapter.

Table 4.1 API documentation for buffer operators

Name Description

buffer(observable) Buffers the incoming observable values until the provided observable
emits a value, at which point it emits the buffer on the returned
observable and starts a new buffer internally, waiting for the next time
an observable emits.

Events input to pipeline from
any observable data source

Events output to subscribers in
batches instead of one at a time

Pipeline with buffer

...

Figure 4.17 Buffers plugged into an RxJS pipeline. A buffer of size 3, as in this case,
can store up to three events at a time and then emit them all at once as an array of
observables.

112 CHAPTER 4 It’s about time you used RxJS
Generally speaking, this ability to capture a temporary set of data gives you a window
of time that you can use to examine and make decisions about the nature or fre-
quency of the data coming in. The buffer operators achieve this by grouping the data
of an observable sequence into a collection (an array), and they also provide a second
parameter called a selector function, which you can use to transform or format the
data beforehand.

 We’ll start with the buffer() operator. buffer() gathers events emitted by source
observables into a buffer until a passed-in observable, called the closing observable,
emits an event. At this point, buffer() flushes out the buffered data and starts a new
buffer internally. To show this, we’ll use timer(0, 50). A period argument of 50
causes the timer to emit subsequent values every 50 ms. We’ll buffer the events with a
closing timer observable of 500 ms; hence, you should expect 500 / 50 = 10 events to
be emitted at once. Figure 4.18 is a marble diagram showing this process.

bufferCount(number) Buffers a number of values from the source observable and then
emits the buffer whole and clears it. At this point, a new buffer is inter-
nally initialized.

bufferWhen(selector) Opens a buffer immediately and then closes the buffer when the
observable returned by calling selector emits a value. At that time,
it immediately opens a new buffer and repeats the process.

bufferTime(time) Buffers events from the source for a specific period. After the time has
passed, the data is emitted and a new buffer is initialized internally.

Table 4.1 API documentation for buffer operators (continued)

Name Description

0

0

buffer(Observable.timer(500))

Timer set to emit values
every 50 milliseconds

Buffer is closed after
500 milliseconds.

Event is emitted with all elements
packed (buffered) into a single array.

Timer

Result

50

1

100

2

150 200 250
......

......

500

10[]

Figure 4.18 A timer with a 50 ms period
emits values every 50 ms.

113Buffering in RxJS
You can implement this with the following code:

Rx.Observable.timer(0, 50)
 .buffer(Rx.Observable.timer(500))
 .subscribe(
 function (val) {

console.log(`Data in buffer: [${val}]`);
 });
//-> "Data in buffer: [0,1,2,3,4,5,6,7,8,9]"

The fact that buffers emit an array of observables is analogous to the iterator example
we discussed in chapter 2 because the client of the iterator (the for…of loop) would
receive arrays of data as each element. In that example, creating a BufferIterator(3)
would yield arrays of triplets at each iteration (or at each call to next()). The best way
to illustrate this is by using the bufferCount() operator.

 bufferCount() retains a certain amount of data at a time, which you define by
passing a size. Once this number is reached, the data is emitted and a new buffer
started. You’ll use a buffer count to display a warning message for numerical inputs
that involve large quantities (say, five digits or more). You’ll listen for changes on the
amount field so that you can display a warning next to it when the amount value is five
digits long:

const amountTextBox = document.querySelector('#amount');
const warningMessage = document.querySelector('#amount-warning');

Rx.Observable.fromEvent(amountTextBox, 'keyup')
 .bufferCount(5)
 .map(events => events[0].target.value)
 .map(val => parseInt(val, 10))
 .filter(val => !Number.isNaN(val))
 .subscribe(amount => {

warningMessage.setAttribute('style', 'display: inline;');
 });

As you can see, a buffer is in some ways similar to a delay. But nothing relates buffers
and time more than the bufferWhen() and bufferTime() operators. We’ll begin with
bufferWhen(). This operator is useful for caching events until another observable
emits a value. This operator differs slightly from buffer() in that it takes a selector
function that creates an observable to signal when the buffer should emit. It doesn’t
just buffer at the pace of a subordinate observable; it calls this factory function to cre-
ate the observable that dictates when it should emit, reset, and create a new buffer. For
example, suppose you’re implementing form fields that can keep track of previously
entered values, so that you could revert to a value you had entered before changing it.
First, let’s look at the marble diagram for this entire interaction in figure 4.19.

buffer uses a closing observable,
which is the criteria for when to
stop buffering data, in this case
after 500 ms of caching events.

buffer returns an array of
observable sequences.

Listens for key
events on the

amount text box

Extracts the value of the input box. Because
buffer returns an array of events, it’s
sufficient to use the first event’s target DOM
element that received the key input.

Displays a warning to alert the user
they’ve entered a large quantity

Buffers a total of five events at a time

Ensures the amount entered is numeric
Filters out any empty numbers

114 CHAPTER 4 It’s about time you used RxJS
The goal of this program is that as values are entered into a form field, you keep them
in a buffer so that you can always go back to any of them if you wish to do so. As you
can see from listing 4.14, in this book we occasionally sprinkle a functional library
called Ramda.js to replace utility functions like input validation, array manipulation,
and others you’d otherwise have to write yourself (for details about installing Ramda,
please visit appendix A). We also do it to show you how well RxJS interacts with func-
tional libraries you may use (in chapter 10, “RxJS in the wild,” expect to see a lot of
this interaction).

 Ramda loads its arsenal of functions under a single namespace, R. One special
function you’ll come to learn and love is R.compose() for functional composition.
Used with RxJS, which is great at managing state, it’s the perfect combination of func-
tional and reactive programming. Here’s the code to implement this business logic.

r x j s

pluck(target.value)

bufferWhen(Obs('click')) bufferWhen(Obs('click'))

filter(value -> negate(empty))

Empty
string

Debounce set for
700 milliseconds

“rx” is stored
in field’s buffer

Pop last element
in buffer and
emit the history

Ignore
empty
values

Extract value
from event

Buffer until the
“flush history”
button is clicked

Filter out
empty input

keyup space

click

map(history -> history.pop)

rx

rx js

rx js

Figure 4.19 A stream listening for key presses, debounced in order to capture the event at a little over half a
second. Any word entered is passed through a simple validation check. The data fills the buffer and is flushed only
when requesting the history. This observable closes off the buffer and prints the history.

115Buffering in RxJS
const field = document.querySelector('.form-field');
const showHistoryButton = document.querySelector('#show-history');
const historyPanel = document.querySelector('#history');

const showHistory$ = Rx.Observable.fromEvent(showHistoryButton, 'click');

Rx.Observable.fromEvent(field, 'keyup')
 .debounceTime(200)
 .pluck('target', 'value')
 .filter(R.compose(R.not, R.isEmpty))
 .bufferWhen(() => showHistory$)
 .do(history => history.pop())
 .subscribe(history => {

let contents = '';
if(history.length > 0) {
 for(let item of history) {
 contents += '' + item + '';
 }
 historyPanel.innerHTML = contents;

}
});

Pay attention to how the composition of R.isEmpty() and R.not() creates the behav-
ior for “non-empty.” Always remember that FP is powerful when you can create and
combine functions with minimal logic that together solve complex tasks. We’ll use
Ramda again in the next code listing so that you can see how it benefits the readability
of your code.

 Finally, we’ll take a look at bufferTime(). This operator holds onto data from an
observable sequence for a specific period of time and then emits it as an observable
array. You can think of this as equivalent to a bufferWhen() operator combined with
an Rx.Observable.timer(). You’ll see this in action in listing 4.15. You’re going to
run a buffer with a timer in the background to monitor a form with a text box and a
button just like in the previous example. In this example, however, you’ll use a rolling
buffer to look for a specific key sequence, that is, a passcode. As with many of the
operators, we suggest that you review the documentation for bufferTime() to under-
stand all its possible uses.

 Another twist added to this code in preparation for the next chapters is the use of
the combineLatest() operator to combine the outputs from two independent
streams. Take a look (make sure to click the Submit button at least once to see the
result).

const password = document.getElementById('password-field');
const submit = document.getElementById('submit');
const outputField = document.getElementById('output');

Listing 4.14 Creating form field history with bufferWhen()

Listing 4.15 Buffering events for a specific period of time

Validates the input field by
composing Ramda functions
to check for non-empty

Signals that the stream should
clear the buffer when the history
button observable emits a value

Prints the history next to the button

116 CHAPTER 4 It’s about time you used RxJS

Submits
passw

Buffers inp
7 secon

then f
const password$ = Rx.Observable.fromEvent(password, 'keyup')
 .map(({keyCode}) => keyCode – 48)
 .filter(value => 0 <= value && value <= 9);

const submit$ = Rx.Observable.fromEvent(submit, 'click');

Rx.Observable.combineLatest(
 password$
 .bufferTime(7000)
 .filter(R.compose(R.not, R.isEmpty))
 submit$
)
.take(10)
.subscribe(
 ([maybePassword]) => {
 if (maybePassword.join('') === '1337') {

outputField.innerHTML = 'Correct Password!';
 } else {

outputField.innerHTML = 'Wrong Password!';
 }
 },
 err => {},
 () => outputField.innerHTML = 'No more tries accepted!'
);

When combining buffers and time, you need to understand how your application gets
used. Buffers use temporary data structures to cache events that occur in their window
of operation. Ten seconds can be a very long time if you’re caching hundreds of
events per second, like mouse moves or scrolls. So exert caution by not overflowing
the amount of memory you have, or your UI will become unresponsive. In the process
of illustrating RxJS concepts, we introduced a new operator called combineLatest(),
which is used to join multiple streams into one. At this point, you’ve seen the most fre-
quently used operators that act on a single stream. In chapters 5 and 6, we’ll begin to
dive deeply into RxJS by taking on more real-world problems, and we’ll explain more-
advanced operators so that you can begin to work with multiple simultaneous streams.

4.6 Summary
 RxJS allows you greater control in manipulating and tracking the flow of time

in an application.
 Operators can interact with time to change the output of an observable.
 Time can be implicit, or it can be explicitly declared when more fine-grained

control is needed.

Determines the
numeric key that
was pressed

the
ord

Combines the events emitted from
both the text field and button
simultaneously (you’ll learn about
this operator later in chapter 6)

ut for
ds and
lush it

Composes a series of Ramda
functions to remove empty
buffers from the output stream

ES6 destructuring, because you
care only about the password field

Accepts only three password
tries until locking the system

Outputs when the stream has
stopped accepting entries

Determines if the password
was correct

117Summary
 Implicit time manifests in the latency waiting for asynchronous HTTP calls to
respond. You have no control over how long these functions take.

 Explicit time is controlled by you and takes advantage of JavaScript’s timers.
 Delaying shifts the observable sequence by a due time (in milliseconds).
 Debouncing emits an event from an observable sequence only after a particular

time span (in milliseconds) has passed without it omitting any other item.
 Throttling enforces a maximum number of times a function can be called over

time.
 Buffering operations use many of the same semantics as the timing operations.
 RxJS features size-based as well as time-based buffers.

Part 2

Observables in practice

Now that you understand the basics of RxJS observables and you’re start-
ing to become familiar with the syntactic style of the library, it’s time to kick it up
a notch and dive into some more-interesting use cases. In chapter 5, we’ll exam-
ine nested observables, or streams within streams, and their ability to create
more-powerful semantics for asynchronous control. Chapter 6 starts by disman-
tling the observable lifecycle and explaining how you can make use of different
parts of the observable’s life to manage state logic without exposing such state
externally. Chapter 6 follows this with a discussion of how you can combine sev-
eral observables and combine multiple events occurring at different times. In
chapter 7, you’ll learn about how observables manage exceptions neatly and
allow you to program based on happy-path expectations, beginning with a func-
tional programming introduction to the Try data type.

Applied reactive streams
In the previous chapter, we firmly rooted the notion that an observable is a
sequence of events over time. You can think about it as the orchestrator or channel
through which events are pushed and transformed. So far, we’ve discussed how to
process observable sequences in isolation for the most part, and you learned how
you could apply familiar operators over all the elements within an observable in the
same way that you could with an array, irrespective of when those elements were
emitted. Toward the end of the chapter, we briefly gave you some exposure to an
RxJS operator called combineLatest(), which is used to combine streams. The

This chapter covers
 Handling multiple observable sequences with one

subscription

 Learning to make observable streams conformant

 Flattening nested observables structures

 Merging a collection of observables into a single
output

 Preserving sequence order with concatenation

 Implementing real-world problems: search box, live
stock ticker, and drag and drop
121

https://github.com/RxJSInAction/rxjs-in-action
https://github.com/RxJSInAction/rxjs-in-action
https://github.com/RxJSInAction/rxjs-in-action
https://github.com/RxJSInAction/rxjs-in-action

122 CHAPTER 5 Applied reactive streams
reason for these discussions is that other than trivial examples, most of your program-
ming tasks will involve the use of these operators so that the events from one stream
propagate and cause a reaction somewhere else. This is where RxJS and the entire
reactive paradigm begin to shine and set themselves superior to other conventional
asynchronous libraries.

 Now you’ve entered into new, more sophisticated territory. This chapter is our
point of inflection where we’ll look at combinatorial operators similar to combine-
Latest() like merge(), switch(), concat(), and others to solve real-world, complex
problems. Although there’s still a lot to gain from using observables to handle a single
event source, like a single button click, in all but the most trivial of applications, you’ll
quickly find that your logic will require more than a single stream to get the job done.
You had a taste of this toward the end of chapter 4 when you implemented a slightly
more complicated problem, which required you to combine and buffer the output of
multiple streams.

 Depending on the complexity of your application, your logic will likely involve the
interplay between many observables, potentially containing different types of data.
For instance, a user typing keys on the search bar kicks off an entirely different type of
stream for fetching data from a server—to put it in Newton’s terms, user actions may
create reactions in different parts of the application. But combining different observ-
ables presents a challenge because you have to learn how to fuse them together. What
if their interfaces are different? This happens quite often, especially when modeling
complex state machines such as UIs or mashing up data from remote locations. Thus,
in this chapter, we’ll focus on an important principle in functional programming
called flattening a data type, which stems from the need to project other observables
carrying needed data into a single source. After learning this technique, you’ll be pre-
pared to tackle all sorts of complicated flows. Let’s begin with the idea that all data
sources, whether static or dynamic, can be treated in the exact same manner under
the observable programming model, because everything is a stream.

5.1 One for all, and all for one!
The addition of time to the observable introduced a new dimension that let you delay,
filter, and manipulate elements based on when they were dispatched. By playing with
various types of operators and their corresponding selector functions, you were able
to determine if, when, and how events made it downstream, so this gave your business
logic full control of how data is transformed within the stream.

 Up until now, we’ve been focusing on single streams. In this chapter, we expand
our use of operators and introduce more-advanced ones that allow you to create com-
plex flows and combine them into a single flow. This is essential for any non-trivial
state machines where input taken from the user creates a ripple effect on other parts
of the system in real time.

 Multi-stream scenarios are common in the real world. Generally, you’ll find that
the more complex your system becomes, the more entangled your streams will be.

123One for all, and all for one!
This linear relation shouldn’t surprise you because complexity grows as you inject
more business logic into your code. But this is far more maintainable than the expo-
nential complexity growth of a system that deals with asynchronous flows relying only
on nested callback functions or even solely on promises.

 The combination operators you’ll learn in this chapter are indispensable because
if isolated streams were unable to interact with each other, it would be up to you to
create the necessary boilerplate for those streams to work together. Ugh! You’d likely
be no better off than before you started using RxJS!

REACTIVE MANIFESTO According to the Reactive Manifesto, one of the central
principles of reactive architectures is elasticity. An elastic system is one that
stays responsive under a varying workload. RxJS nicely achieves this because
multiple sources of data with varying input rates can be combined in different
ways without you having to rewrite or refactor how your code works.

As an example of when multiple streams come into play, imagine that in addition to
supporting mouse handling, you wanted to support touch interfaces. JavaScript
already provides built-in support for touch events in most browsers, but adding touch
support to an application means introducing a second set of events and logic. Without
the right architecture, you’ll most likely have to create a whole new set of event han-
dlers for those as well. With your newly developed reactive mindset, you realize that
those are all just different streams passing through the same channel. Whether you’re
using mouse or touch, most of the time those streams kick-start events that need to
combine key presses with other HTTP calls, timed intervals, animations, and much
more—complex UIs work this way.

 Let’s look at a quick example. Just as mouse events have mousedown, mouseup, and
mousemove, touch events have touchstart, touchend, and touchmove, respectively.
This means that, at a minimum, you’ll need to create three new streams in order to
emulate the same behaviors from mouse events as with touch events and have your
code work on mobile browsers. Consider the scenario of two independent streams.
The touchend event is probably equivalent to mouseup, which means that in most cases
users will use it in the same way:

const mouseUp$ = Rx.Observable.fromEvent(document, 'mouseup');

const touchEnd$ = Rx.Observable.fromEvent(document, 'touchend');

Each of the streams represents the same action of completing some interaction with
your application, whether it’s through a mouse or the screen. You know from the pre-
vious chapters that you can subscribe to each of the handlers individually as such:

mouseUp$.subscribe(/* Handle mouse click */);

touchEnd$.subscribe(/* Handle touch click* /);

But this setup is less than ideal. For one, you now have two subscription blocks for what
will most likely be identical code. Any code that must be shared between the two will

124 CHAPTER 5 Applied reactive streams
now require a shared external state. In addition, now two subscriptions must be
tracked, which introduces one more area of potential memory leaks. It would be in
many ways preferable if you could manage both subscriptions with a single block of
code without having to worry about the synchronization of both streams, as shown in
figure 5.1, especially in this case, because both observables will emit very similar events.

 There are many different ways to join multiple streams into one and take advan-
tage of using a single observer to handle them all. In this section, we’ll look at the fol-
lowing strategies:

 Interleave events by merging streams—This strategy is useful for forwarding events
from multiple streams and is ideal for handling different types of user interac-
tion events like mouse or touch.

 Preserve order of events by concatenating streams—This one is used when the order
of the events emitted by multiple streams needs to be preserved.

 Switch to the latest stream data—This is used when one type of event kicks off
another, such as a button click initiating a remote HTTP call or beginning a
timer.

5.1.1 Interleave events by merging streams

The simplest operator that combines multiple streams together is merge(). It’s easy to
understand; its purpose is to forward the events from several streams in order of
arrival into one observable, like a funnel. Logically, you can think of merge as per-
forming an OR of the two events, as shown in figure 5.2.

m

combine

A combination operator
(the focus of this chapter)…

Stream generated from
the mouseUp$ events

Stream generated from
the touchEnd$ events

…allows both streams to be
handled as if they were one,
with a single observer.

mouseUp$

touchEnd$ t t

m

m t t m

Figure 5.1 A simplified diagram of the desired behavior of ingesting two streams, mouseUp$ and
touchEnd$, through a combination operator, and creating a single output block for consumption.
In this chapter, you’ll learn about the most important combination operators in RxJS.

125One for all, and all for one!
We can illustrate this with a simple example:

const source1$ = Rx.Observable.interval(1000)
 .map(x => `Source 1 ${x}`)
 .take(3);
const source2$ = Rx.Observable.interval(1000)
 .map(y => `Source 2 ${y}`)
 .take(3);

Rx.Observable.merge(source1$, source2$)
 .subscribe(console.log);

The resulting stream created from merge will emit values every second, alternating
between sources 1 and 2. merge()has no logic of its own other than placing the events
onto a single stream in the order in which they arrive.

 In the example of mouse and touch streams, because the two types are virtually
interchangeable, you can funnel both through this operator so that you can react to
either one in the exact same way or with the same observer logic. Just like most of the
operators you’ll learn about soon, merge() can be found in the static method form:

Rx.Observable.merge(source1$, source2$, ...)

Or, it can be found in instance form:

source1$.merge(source$2).merge(...)

In the static form, it’s a creational operator, as we showed in chapter 4. In other words,
you’re creating a new stream from the combination of two or more observables. Using
it in instance form, we say that an observable is projected or mapped to the source observ-
able. Both yield the same results, and because operators are pure, both create new
observables.

merge

Forward events into
a single observable

Events arrive in same time and order as
they were emitted by merged sources

source2$

source1$

Result

Figure 5.2 The merge() operator has no logic of its own, other than to combine events
from multiple streams in the order in which they’re emitted.

126 CHAPTER 5 Applied reactive streams
merge() can accept either an array or a variable number of streams that are to have
their outputs merged into one. Thus, for the previous example, you can create a
merged stream easily by passing both sources into the merge() operator, as shown in
figure 5.3, for both static and instance forms.

 Here’s the code that combines both streams, in creational form:

Rx.Observable.merge(mouseUp$, touchEnd$)
 .subscribe(/* single observer to consume either event */);

Again, you can also write this code where a source observable merges onto another in
midstream in instance form:

mouseUp$.merge(touchEnd$)
 .subscribe(/*single observer to consume either event */);

The outcome of merging two observables is that they now appear as a single one from
the point of view of any instance methods used, all the way down to the observer, so all
their outputs are piped to a single output block. This is true for all of the combinato-
rial operators you’ll learn about in this chapter. You now need only worry about a sin-
gle subscription for the two streams.

 Now, here’s something to think about when merging streams is order. The merge
operator will interleave events from each stream in the order in which the events are

m

merge

mouseUp$

touchEnd$ t tt

m

m t t tm

m t t tmm merge

mouseUp$ touchEnd$

m

Static operator

Instance operator

Events can arrive at the
same or different times.

merge() forwards events from either stream
and does not apply any additional logic.

t t =t

Figure 5.3 Static and instance versions of the merge operator between two streams. The results
are the same. merge() is the simplest operator because it only forwards events from either
stream as they come.

In this case, both mouseUp$ and touchEnd$
are still referred to as the source observables.

127One for all, and all for one!

e

received; internally, RxJS does a good job of timestamping each event that gets
pushed through the observable.

 Each stream, though independent, contributes to the overall output of the
sequence. In more statically typed languages, the compiler will also often constrain
the types that can go into a merge. This forces the input streams to have a uniform
and predicable type for the output. In JavaScript, because these constraints don’t
exist, it’s much easier to merge types that may not even be compatible. But this flexi-
bility can result in some unexpected errors downstream when you’re looking to han-
dle one type of event differently than the other. For this, one thing you could do is
check your use cases to determine the type, as in the following listing. Again, going
back to the touch and click streams, assume you need to print out the coordinates of
both touch and click events.

Rx.Observable.merge(mouseUp$, touchEnd$)
 .do(event => console.log(event.type))
 .map(event => {

switch(event.type) {
 case 'touchend':
 return {left: event.changedTouches[0].clientX,

top: event.changedTouches[0].clientY};
 case 'mouseup':
 return {left: event.clientX,

top: event.clientY};
}

 }).subscribe(obj =>
console.log(`Left: ${obj.left}, Top: ${obj.top}`));

CODE SAMPLES Remember that all the code for this chapter can be found in
the RxJSinAction GitHub repository, https://github.com/RxJSInAction/rxjs-
in-action.

But this sort of behavior should raise some flags as a potential code smell. One of the
main reasons to combine observables is that they possess some similarities that you’d
like to leverage into simpler code. Introducing more boilerplate code into the mix,
only to then switch on type, doesn’t serve this purpose; it simply moves the complexity
to a different location.

 On another note, keep in mind that in FP you try to avoid imperative control state-
ments like if/else whenever possible. Instead, each event should be at least contract
compatible with any other, which means that the data emitted from all of them should
at least follow the same protocols or structure in order to be consumed by the same
observer code. Now, why you should avoid imperative control structures as much as
possible has more to do with the notion of using RxJS in a functional style as well as to
continue the fluent declaration of an observable chain.

Listing 5.1 Case matching event data resulting from merging mouse and touch streams

Merges the outputs of the two streams

Detects the type of the
event, builds a compatibl
type, and constructs the
object accordingly

https://github.com/RxJSInAction/rxjs-in-action
https://github.com/RxJSInAction/rxjs-in-action

128 CHAPTER 5 Applied reactive streams
FUNCTIONAL VS. IMPERATIVE Generally speaking, most of the cases using
structures like for/of or if/else can be satisfied by using RxJS operators like
filter(), map(), reduce(), take(), first(), last(), and others. In other
words, most of the complex tasks for which you need to implement loops and
branches are just instances of a certain combination of these operators. A
familiar example of this is an array. Most uses of for/of and if/else state-
ments can be supplanted by a combination of map() and filter().

In cases where you absolutely need to apply specific logic, you can insert operators
upstream of where the merge occurs in order to create compatible types ahead of
time. Instead of forcing observers to use conditional logic to discern between differ-
ent types of events (figure 5.4), you should make the stream data conformant before
the merge (figure 5.5) to make your subscribers happier by avoiding any checks.

Observers subscribed
to merged stream

Conditional logic pushed
down to observers

merge m

m

t

t

mouseUp$

touchEnd$

Figure 5.4 The logic that decides how to handle events from the merged streams is pushed down to
the observer. The observer code at this point could use if/else or switch blocks based on type.

Observers subscribed
to merged stream

Conditional logic
not needed

Event data transformed into
objects with same structure
to facilitate consumption

merge

mapmmouseUp$

touchEnd$ mapt

Figure 5.5 Applying an upstream transformation to both streams to normalize the data and
facilitate the observer code

129One for all, and all for one!
 Listing 5.2 shows how you can do this with our mouse clicks and touch events
example. As you can imagine, the touch interface doesn’t exactly correspond to that
of the mouse interface, so to make them work together, you need to normalize the
events so that you can reuse the same functions to handle the merged stream. You do
this in the next listing by creating conformant streams or streams that emit data with
similar structure.

const conformantMouseUp$ = mouseUp$.map(event => ({
 left: event.clientX,
 top: event.clientY
}));

const conformantTouchEnd$ = touchEnd$.map(event => ({
 left: event.changedTouches[0].clientX,
 top: event.changedTouches[0].clientY,
}));

Rx.Observable.merge(conformantMouseUp$, conformantTouchEnd$)
 .subscribe(obj =>

console.log(`Left: ${obj.left}, Top: ${obj.top}`));

It may seem more verbose to create separate streams, but as the complexity of the
application grows, updating and managing a switch statement will become a tedious
process. By requiring that the source observables be conformant with the expected
output interface, you can more easily expand this and continue adding more logic as
needed, in case you want to include streams generated from, say, the pointerup event
of a pointer device, like a pen (https://w3c.github.io/pointerevents). The pointer
event commands may have a completely different interface from either the mouse
click or the touch events, but you can still use them to control your application by forc-
ing the incoming stream to conform to the interface expected by the subscribe block.

 One important point about merge that could be confusing to an RxJS beginner is
that it will emit all the data that’s immediately present in memory from any merged
observables. The interleaving happens when events arrive asynchronously, like with
interval() and mouse movements, but when the data is synchronously loaded, it will
emit one entire stream before emitting the next. Consider this code:

const source1$ = Rx.Observable.of(1, 2, 3);
const source2$ = Rx.Observable.of('a', 'b', 'c');
Rx.Observable.merge(source1$, source2$).subscribe(console.log);

From what you just learned, you might think merge() alternates between numbers
and letters, but it iterates through all numbers first and then all letters. This is because
the data is synchronously available to emit. The same would happen whether you were
passing scalar values one at a time, whole arrays, or generators.

 Whether data is synchronous or asynchronous, if your goal is to preserve the order
of events in the combined streams, then you need to use concatenation.

Listing 5.2 Normalizing upstream event data merges the streams

Converts each type
upstream before it’s
merged into the final
stream

Merges the converted streams;
the observer logic stays the same

https://w3c.github.io/pointerevents

130 CHAPTER 5 Applied reactive streams
5.1.2 Preserve order of events by concatenating streams

The RxJS merge() operator uses a naïve strategy of outputting all the observable data
in the order in which events are received from the source streams. But in other sce-
narios, you might be more interested in preserving the order of the entire observable
sequences when you join them instead of interleaving them. That is, given two observ-
ables, you might want to receive all the events from source1$ and then all the events
from source2$. This is useful in cases when you’d like to give priority to one type of
event versus another. We refer to this type of operation as a concatenation of the two
streams.

 Just as you can concatenate two strings or two arrays, you can also concatenate two
streams that will generate a brand-new observable made from the events of both con-
stituent observables—similar to a set union operation. The signature is almost identi-
cal to that of the merge operator:

const source$ = Rx.Observable.concat(...streams)

The behavior of this new observable operator is shown in figure 5.6.

It’s important to note that a merge differs from a concatenation on one key behavior:
whereas the merge() operator will allow you to immediately subscribe to all of the
source observables, concat() will subscribe to only one observable at a time.
Although it continues to manage the subscriptions to each of the underlying streams,
it will hold only a single subscription at a time and process that before the next one in
order. You can see this behavior clearly with this simple example:

const source1$ = Rx.Observable.range(1, 3).delay(3000);
const source2$ = Rx.Observable.of('a', 'b', 'c');
const result = Rx.Observable.concat(source1$, source2$);
result.subscribe(console.log);

concatenate(source1$, source2$)

Observable source1$
completes first.

All of source2$ is shifted
so that it starts emitting
only after observable
source1$ has completed.

source2$

source1$

Result

Figure 5.6 A marble diagram of
the concat() operator, which
waits for the first observable to
complete before subscribing to the
next one. In concatenation, the
data from both observables is
appended rather than interleaved.

First stream is
delayed by 3 seconds,
which means it will
start emitting after 3
secondsSecond stream is set to

three letters immediately

131One for all, and all for one!
Intuitively, because the second stream is delayed by 3 seconds, you’d expect to see the
letters a, b, and c emitted first. But because concat() keeps the order, it will complete
the first stream before appending the next stream. So you’d see the numbers 1, 2, and
3 before the letters, as shown in figure 5.7.

 Consequently, if you were to take the example of merging the touch events and the
mouse events, for instance, changing from merge() to concat() would result in very
different (possibly undesired) behavior, as figure 5.8 shows.

concatenate(source1$, source2$)

3-second delay
of source1$ event
sequence

Parentheses indicate events
are emitted synchronously
(all at once).

source2$

source1$

Result

1 2 3

a b c

(

()

a b c()

)

1 2 3()

Regardless of the delay,
event order is still kept.

Forward events into
a single observable.

Figure 5.7 Marble diagram showing the interaction of sources with delay. Regardless of the
delay offsetting the entire observable sequence, the order of the events in a stream is preserved
using concat.

concat

Concatenating
mouse events
with touch events

Mouse events
are infinite.

Concatenation will append all touch events
after all mouse events (preserving order).
Because mouse events are infinite, observers
will never see the touch events.

mouseUp$

touchEnd$

m mm m

m m m
...

...

t t

Figure 5.8 The concatenation of an infinite stream with any other stream will only ever emit an
event from the first stream.

132 CHAPTER 5 Applied reactive streams
Keep in mind that concat() begins emitting data from a second observable once the
first one completes (fires the complete() observer method). But this actually never
occurs, because all DOM events (including touch) are essentially infinite streams. In
other words, you’ll only process observables from mouseUp$ under normal circum-
stances. In order to see later concatenated observables, you’d need to terminate or
cancel mouseUp$ gracefully at some point in the pipeline. For instance, you could use
take(), which you learned about in chapter 3, to have mouseUp$ complete (made
finite) after a set number of events were emitted. Say you take only the first 50 events
from the mouse interface:

Rx.Observable.concat(mouseUp$.take(50), touchEnd$)
 .subscribe(event => console.log(event.type));

Voila! Now you’ll see touch events after you’ve received the first 50 mouse events. In
the case of the mouse and touch streams, the concatenation operation works a little
bit differently than the merge mechanism. This has to do with a basic distinction
between two types of observables known as hot and cold, which we’ll discuss in chapter
8. In this case, when you do begin receiving touch events, they’re only for events that
occurred after the end of the mouse events and not from the beginning offset to the
end. Essentially, this use of concat() is equivalent to a nested subscription of the fol-
lowing form:

mouseUp$
 .take(50)
 .subscribe(

function next(event) {
console.log(event.type);

},
function error(e) {

console.log(e);
},
function complete() {

touchEnd$.subscribe(
 event => console.log(event.type)
);

}
);

A diagram of this would look like figure 5.9.

BEST PRACTICE We show this sample code merely to illustrate the behavior of
the concat() operator in this example. We’re not promoting that you nest
subscriptions this way, which is tempting for new RxJS users. Nesting subscrip-
tions breaks the downstream flow of data from one observable to the next,
which is an antipattern in the RxJS model. Also, not only would you be dupli-
cating your efforts by having to write the same observer code in two differ-
ence places, but you’d hamper RxJS’s optimizations in the pipeline chain by
impeding its ability to reuse internal data structures and lazy evaluation.

Handles the first 50 mouse events

Starts the touch stream when mouse
events finish. Any touch events that
occurred prior to the first 50 mouse
events are missed.

133One for all, and all for one!
As you can see, the type of strategy employed makes a huge difference in how a down-
stream observable will behave. It’s therefore important to understand that when you
combine streams, there’s a difference between when a stream is created and when a
subscriber subscribes to it. You can use merge() when you want to receive the latest
event from any observable as it’s emitted, whereas concat() is useful when you wish to
preserve the absolute ordering between observables.

 As we mentioned briefly, there will be cases when you’ll need to cancel one of the
observables and receive data from only another one. Let’s look at another combina-
tor, switch().

5.1.3 Switch to the latest observable data

Both merge and concat propagate the input stream data forward into the pipeline.
But suppose you wanted a different behavior, such as cancelling the first sequence
when a new one begins emitting. Let’s study this simple example:

Rx.Observable.fromEvent(document, 'click')
 .map(click => Rx.Observable.range(1, 3))
 .switch()
 .subscribe(console.log);

Running this code logs the numbers 1, 2, 3 to the console after the mouse is clicked.
In essence, when the click event occurs, this event is cancelled and replaced by
another observable with numbers 1 through 3. In other words, subscribers never see
the click event come in—a switch happened.

concat

take(50)

Mouse events
are infinite.

Subscribers begin to see
touch events after the
first 50 mouse events.

Touch events that occur
during first 50 mouse
events will be missed.

Using the take()
operator makes the
mouse stream finite.

mouseUp$

touchEnd$

m m

m m m
......

...

...
t t

t t

Figure 5.9 Because we’ve made the mouseUp$ stream finite, subscribers will see data emitted
from touchEnd$ after the first 50 mouseUp$ events.

Listens for any clicks on the page

Maps another observable
to the source observable

Uses switch to begin emitting data
from the projected observable

134 CHAPTER 5 Applied reactive streams
 switch() occurs only as an instance operator, and it’s one of the hardest ones to
understand because it carries a bit of logic of its own. As you can see from the previous
code, switch() takes another observable that has been mapped to the source observ-
able and fuses it into the source observable. The caveat is that each time the source
observable emits, switch() immediately unsubscribes from it and begins emitting
events from the latest observable that was mapped. To showcase the difference, con-
sider what the same code would look like using merge instead:

Rx.Observable.fromEvent(document, 'click')
 .merge(Rx.Observable.range(1, 3))
 .subscribe(console.log);

In this case, because the source observable (click events) is not cancelled, observers
will receive click events mixed with numbers from 1 through 3. Hence, this sort of
behavior can be useful when one stream (a button click, for instance) is used to initi-
ate another stream. At this point, there’s no interest in listening for the original
stream’s data (the button clicks). So switch() is also a suitable operator for our sug-
gested search stream:

const search$ = Rx.Observable.fromEvent(inputText, 'keyup')
 .pluck('target', 'value')
 .debounceTime(1000)
 .do(query => console.log(`Querying for ${query}...`))
 .map(query =>

 sendRequest(testData, query)))
 .switch()
 .subscribe(...);

This is because as soon as the keyup event fires, there’s no need to push that event
onto the observers; instead, it’s best to switch to the search results streams and push
that data downstream to any subscribers, which is what gets displayed as search results.
As you can see in the code, before calling switch(), you mapped (or projected) an
observable to the source. This terminology is important, and you’ll see us repeat it
quite a bit in this chapter. At this point, switch() will cancel the previous subscription
when the new one comes in. In this way, the downstream observable is always guaran-
teed to have the latest data by removing operations that have become stale or are no
longer of interest. You can visualize this interaction in figure 5.10.

 In using the latest value, you guarantee that no cycles will be wasted on data that
will be overridden immediately when new data arrives, and you don’t have to guard
against that same data coming back out of order. Also, the observers don’t need to
worry about handling events from key presses because those are not of interest and
have been suppressed by switch(). Because network requests can be processed and
returned out of order, in certain scenarios you could see earlier requests arrive after
later ones. If those requests were not excluded from the final stream, then you could
see old data overwriting newer data, which is obviously not the desired behavior.

Switch operator causes the
observable stream to switch to
the projected observable

135Unwinding nested observables: the case of mergeMap
DISCLAIMER If switch() is somewhat confusing at this point, there’s a reason
for this. Internally, this operator is addressing a fundamental need in func-
tional programs, which is to flatten nested context types into a single one. In
this case, the observable that’s mapped to the source internally creates a
nested observable object. You’ll learn about this in the next section in the
form of a single switchMap(), and then everything will be clear.

These three operators, merge(), concat(), and switch(), grouped observable data in
a flat manner, each with a different strategy. In other words, you’re receiving events
from one source or another and processing them accordingly. All these operators
have higher-order observable equivalents, which handle nested observables.

DEFINITION The term higher-order observable originates from the notion of a
higher-order function, which can receive other functions as parameters. In
this case, we mean observables that receive other observables as arguments.

At this point in the book, you’ll make the leap from a novice RxJS developer to a prac-
titioner, and the techniques you’re about to learn will drastically shape the way in
which you approach reactive and functional programs. We began with the idea that all
types of data are treated equally when wrapped with an observable; this includes the
observable itself.

5.2 Unwinding nested observables: the case of mergeMap
The previous section detailed how streams can have their outputs combined simulta-
neously. In each case, the input consisted of several streams funneled into a single out-
put stream. Depending on the strategy of combination, you can extract different
behaviors from observables, as you saw in the previous section. But there are also cases

switch

Causes keyUp$ to be
cancelled for more
recent observable

searchResults$

keyUp$

Result

Mapped
(projected)
observable

Source
observable

Figure 5.10 A marble diagram of the switch() operator, which allows only the most recently
received observable to run

136 CHAPTER 5 Applied reactive streams
that occur frequently where an observable emits other observables of its own, a situa-
tion we call nesting the observable, as shown in figure 5.11.

 Nesting observables is useful when certain actions result in or initiate subsequent
asynchronous operations whose results need to be brought back into the source
observable. Recall that when you map a function to an observable, the result of this
function (internally passed through to subscriber.next()) gets wrapped into
another observable and propagated through. But what happens when the function
you’re trying to map also returns an observable? In other words, instead of mapping a
function that returns some scalar value as you’ve been doing all along, the mapped
function returns another observable—known as projecting an observable onto another, or
an observable of observables. This is by no means a flaw in the design of RxJS; it’s an
expected and desired behavior.

 This situation arises frequently in the world of FP because the protocol of map() is
that it’s a structure-preserving function (for example, Array.map() also returns a new
array). This is the contractual obligation of the implementing data type, in this case
the observable, so that it retains its functor-like behavior. Again, we don’t cover func-
tors in this book because they’re a more advanced functional programming topic. Suf-
fice it to say that RxJS has already implemented this for you because the
Rx.Observable type, as you might have guessed, behaves very much like a functor.

 Let’s see how this can manifest itself in a real-world scenario. In chapter 4, we imple-
mented a simple search box that streamed data from a small, static dataset. In that ver-
sion, we used map() to transform a stream carrying a keyword entered by the user into
an array of search results matching the term. Here are the relevant parts of it:

const search$ = Rx.Observable.fromEvent(inputText, 'keyup')
 ...
 .map(query => sendRequest(testData, query)))
 .subscribe(...)

But consider what would have happened if sendRequest() had returned an observ-
able object, as it would have if it was actually invoking an AJAX call. As you know, all

Observable

Events from
any observable
data source

Events initiate some business
logic that results in the creation
of another observable to perform
additional asynchronous work.

Subscribers see an
observable nested
inside another.

Observable =
Observable

Figure 5.11 A nested observable structure that occurs when subsequent observables are
created within the one observable’s pipeline.

137Unwinding nested observables: the case of mergeMap
operators create new observable instances; as a result, mapping this function will pro-
duce values of this type:

Observable<Observable<Array>>

Now subscribers need to deal with Observable<Array> directly instead of the data
that’s contained within it. This is not the desired behavior.

 The search$ stream is now essentially a nested observable, as shown in figure 5.12.
But observers shouldn’t be reacting to a layer of wrapped observable values; this is
unnecessary exposure or lack of proper encapsulation. They should always receive the
underlying data that resulted from applying all of your business rules. So you need to
somehow flatten or unwind these layers into a single one.

 You can do this in two ways: either you can perform a nested subscribe, wherein
you subscribe to the inner observable in the parent’s subscription block (bad idea for
the same reasons discussed earlier), or you can merge the streams such that search$
actually appears as a simple stream of search results to any subscriber (better idea). To
get there, you need to learn and master the mergeMap() operator (previously known
as flatMap() in RxJS 4).

 Unlike merge() and concat(), mergeMap() and others you’ll learn about shortly
have additional logic under the hood to compress the inner observable back into a
single observable structure (you’ll learn what this means in a bit):

const search$ = Rx.Observable.fromEvent(inputText, 'keyup')
 ...
 .mergeMap(query => sendRequest(testData, query)))
 .subscribe(...)

search$; //-> Observable<Array>

Observable

Observable<Observable<Array>>

Nested observables occur
when mapping one observable
sequence to another.

Observable

You need operators that know
how to flatten the nested structure
into a single observable layer.

ObservableFlatten

A
A

Figure 5.12 Mapping an observable-returning function to a source observable yields a nested
observable type. switch can be used to flatten this structure back to a single observable.

Merges the
outputs and
switches to the
observable values
emitted from the
query resultsSubscribers of this

stream will deal only
with values of type T.

138 CHAPTER 5 Applied reactive streams

Wi
The same would hold if you wrapped a function that returns a non-observable value
directly as part of the mapping function, like so:

const search$ = Rx.Observable.fromEvent(inputText, 'keyup')
 ...
 .mergeMap(query => Rx.Observable.from(queryResults(query)));

Both of these cases occur often. This makes this stream much more useful in that you
can now reason about the keystrokes as though they directly mapped to your search
results, without worrying about the dependency between the asynchronous calls. Now
that you understand mergeMap(), let’s collect all the pieces and come up with the full
solution to the search program that queries real data from Wikipedia. We’ll also intro-
duce a few other helpful operators along the way. Because it involves making an AJAX
call, we’ll use RxJS’s version of ajax(), as well as appendResults(), clearResults(),
and notEmpty() from the initial search code from chapter 4 (listing 4.12). The next
listing combines most of the concepts you’ve learned up to now, including debounc-
ing, into a single program.

const searchBox = document.querySelector('#search'); //-> <input>
const results = document.querySelector('#results'); //->
const count = document.querySelector('#count'); //-> <label>

const URL = 'https://en.wikipedia.org/w/api.php
 ?action=query&format=json&list=search&utf8=1&srsearch=';

const search$ = Rx.Observable.fromEvent(searchBox, 'keyup')
 .pluck('target','value')
 .debounceTime(500)
 .filter(notEmpty)
 .do(term => console.log(`Searching with term ${term}`))
 .map(query => URL + query)
 .mergeMap(query =>

Rx.Observable.ajax(query)
.pluck('response', 'query', 'search')
.defaultIfEmpty([]))

 .mergeMap(R.map(R.prop('title')))
 .subscribe(arr => {
 count.innerHTML = `${arr.length} results`;
 clearResults(results);
 appendResults(arr, results);
 });

Listing 5.3 Reactive search solution

kipedia’s
API URL

Mapping an
observable-returning
function and flattening
it (or merging it) into
the source observable

If the result of the AJAX call happens
to be an empty object, converts it to
an empty array by default

Extracts all title properties of
the resulting response array

Warning: Working with CORS
Throughout the book, we’ll make use of several external APIs; if you plan to copy and
paste these samples directly into your browser, make sure that you have CORS protec-
tion disabled or a plugin for your browser active. If you don’t want to worry about these
issues, please use the code in the sample repository (https://github.com/RxJSInAction/
rxjs-in-action), which uses a simple proxy method to bypass CORS issues.

https://github.com/RxJSInAction/rxjs-in-action
https://github.com/RxJSInAction/rxjs-in-action
https://github.com/RxJSInAction/rxjs-in-action

139Unwinding nested observables: the case of mergeMap
Figure 5.13 shows how running this program looks with a little CSS.
 You just implemented your first sample program, and despite the added complex-

ity, you still hold true to all the principles of immutability and side effect–free coding.
You’ll continue to tackle problems of different types as you get comfortable with the
RxJS operators. This will prepare you for chapter 10, which will show you a complete
end-to-end application that integrates RxJS into React and Redux, to create a fully
reactive solution.

Figure 5.13 Reactive
search program querying for
“reactive programming”

Where does the notion of flattening data come from?
The notion of flattening data comes from the world of arrays when you need to reduce
the levels of a multidimensional array. Here’s an example:

[[0, 1], [2, 3], [4, 5]].flatten(); //-> [0, 1, 2, 3, 4, 5]

JavaScript doesn’t actually have an array-flatten method, but you can easily use
reduce with subsequent array concatenation to achieve the same effect:

[[0, 1], [2, 3], [4, 5]].reduce(function(a, b) {
 return a.concat(b);
}, []); //-> [0, 1, 2, 3, 4, 5]

As you can see, flattening is achieved by repeated concatenation at each nested level
of the multidimensional array. For this reason, flatten() also goes by the name
concatAll().

Instead of rolling your own, use a functional library like Ramda.js to achieve this:

R.flatten([[0, 1], [2, 3], [4, 5]]); //-> [0, 1, 2, 3, 4, 5]

140 CHAPTER 5 Applied reactive streams
If you come from an OO background, you might not be accustomed to flattening data
structures as a core operation. This is because observables manage and control the
data that flows through them—this idea is known as containerizing data. There are vari-
ous benefits to doing this, some of which you’ve already been exposed to, such as
enforcing immutability and side effect–free code, data-handling abstractions to sup-
port many event types seamlessly, and using higher-order functions to declaratively
chain operators fluently. You want to have all these benefits regardless of how com-
plex or deep your observable graph is.

 Working with nested observables is analogous to inserting an array into another
array and expecting map() and filter() to work with just the data inside them. Now,
instead of you having to deal with the nested structure explicitly, you allow operators
to take care of this for you so that you can reason about your code better. Graphically,
the notion of flattening observables means extracting the value from a nested observ-
able and consolidating the nested structure so that the user sees only one level. This
process is shown in figure 5.14.

 We’ll show an example that uses simple arrays so that you can see more clearly the
difference between flattening an array and leaving it as is. Consider some simple code
that fills in numbers in an array:

const source = [1, 2, 3];

source.map(value =>
Array(value).fill(value));

//-> [[1],[2,2],[3,3,3]]

source.map(value => Array(value).fill(value)).concatAll();
//-> [1,2,2,3,3,3]

1. Mapping

map :: => Observable< > Observable

Observable

2. Flattening

Observable

Observable

Flatten subscribe
Observable

Observable

Flattening extracts the data
from the nested observable.

Figure 5.14 The process of mapping a function onto an observable, resulting in a nested observable,
and then flattening to extract its value. You do this so that subscribers deal with only the processed
data. Here, flatten can be any one of the RxJS operators, such as switch() or merge().

Mapping a function that returns an array onto
an array results in a multidimensional array.

After a call to concatAll (or flatten), the
resulting array is single dimensional and

much easier to work with.

141Mastering asynchronous streams
Wrapping your head around the idea of observables propagating other observables
may take some time, but we guarantee it will come to you naturally by the end of the
book. This software pattern is at the root of the FP paradigm and implemented data
types known as monads. In simple terms, a monad exposes an interface with three
simple requirements that observables satisfy: a unit function to lift values into the
monadic context (of(), from(), and the like), a mapping function (map()), and a
map-with-flatten function (flatMap() or mergeMap()).

In the real world, nested streams occur so frequently that for most of the combinato-
rial operators there exists a set of joint operators so that you don’t have to use two
every time you need to use switching, merging, and concatenating. We introduced
mergeMap() in this section, and now we’re going to use it to tackle more-complex
problems.

5.3 Mastering asynchronous streams
Recall that for our initial implementation of our stock ticker widget in chapter 4 we
used a simple random-number generator to model the variability of our hypothetical
company ABC and its stock price in the market. In this chapter, we’ll integrate with a
real stock service, such as Yahoo Finance, to fetch data for a given symbol. The task at
hand is to use the Yahoo Finance API to query for a company’s real stock price in real
time so that the user sees updates pushed to the application reflecting changes in the
stock’s value. This simple-to-use API responds with CSV. To start off, let’s use one sym-
bol, Facebook (FB). This time, instead of using RxJS’s ajax(), we’ll show you how to
plug in promise-based AJAX calls. The process is roughly outlined in figure 5.15.

More information about monads
We don’t cover monads in this book, but we encourage you to learn more about them
because they’re a central pillar of FP. If you’re interested in learning more, please read
chapter 5 of Functional Programming in JavaScript (Manning, 2016) by Luis Atencio.

Observable.()Promise HTTP call

Create observable
from promise

Use wrapped promise
to make HTTP call

Search stock
quote for FB

Display price
tick for FB

Every 2 seconds

FB

Figure 5.15 Using a promise call to the Yahoo web service for Facebook’s stock data

142 CHAPTER 5 Applied reactive streams

C
an
 You’ll approach this stream by tackling its individual components. The first one
you’ll need is a stream that uses a promise to query stock data via AJAX, as shown in
the following listing.

const csv = str => str.split(/,\s*/);

const webservice = 'http://download.finance.yahoo.com
/d/quotes.csv?s=$symbol&f=sa&e=.csv';

const requestQuote$ = symbol =>
Rx.Observable.fromPromise(

ajax(webservice.replace(/\$symbol/, symbol)))
.map(response => response.replace(/"/g, ''))
.map(csv);

The CSV response string emitted by the Yahoo API needs to be cleaned up and parsed
into a string. Here, you create a function that returns an observable capable of fetch-
ing data from a remote service and publishing the result. You’ll combine this with a
two-second interval to poll and provide the real-time feed:

const twoSecond$ = Rx.Observable.interval(2000);

Now, you have two isolated streams that need to be combined, or mapped one to the
other. You can use mergeMap() to accomplish this. You can create a function that takes
any stock symbol and creates a stream that requests stock quote data every 2 seconds.
You’ll call this resulting observable function fetchDataInterval$, as shown here.

const fetchDataInterval$ = symbol => twoSecond$
.mergeMap(() => requestQuote$(symbol));

All that’s left to do now is call this function with any stock symbol, in this case FB:

fetchDataInterval$('FB')
 .subscribe(([symbol, price])=>

console.log(`${symbol}, ${price}`)
);

Notice how declarative, succinct, and easy to read this code is. At a glance, it describes
the process of taking a two-second poll and mapping a function to fetch stock data—
as simple as that. This works well for a single item, but when scaling out to multiple
items, it’s common to lift the collection of stock symbols to search for into an observ-
able context and then map other operations to it. The next listing shows how to use
mergeMap() again to fetch quotes for companies: Facebook (FB), Citrix Systems
(CTXS), and Apple Inc. (AAPL).

Listing 5.4 The request quote stream

Listing 5.5 Mapping one stream into another

Helper function that
creates an array
from a CSV string

Yahoo Finance REST API
link and requesting output
format to be CSV

Uses the promise
based ajax() to
query the service

leans up
d parses
the CSV
output

143Mastering asynchronous streams
const symbols$ = Rx.Observable.of('FB', 'CTXS', 'AAPL');

const ticks$ = symbols$.mergeMap(fetchDataInterval$);

ticks$.subscribe(
 ([symbol, price]) => {

let id = 'row-' + symbol.toLowerCase();
let row = document.querySelector(`#${id}`);
if(!row) {

addRow(id, symbol, price);
}
else {

updateRow(row, symbol, price);
}

 },
 error => console.log(error.message));

Essentially, the semantic meaning of mergeMap() is to transform the nature of the
stream (map) by merging a projected observable. This operator is incredibly useful
because now you can use it to orchestrate a complex business process containing mul-
tiple observable levels. The program flow looks like figure 5.16.

 This program is simple and high level, but it accomplishes a lot:

1 You start by lifting the stock symbols involved in your component into a stream
so that you can begin to fetch their quote data. This technique of lifting or
wrapping a scalar value into an observable is beneficial because you can initiate

Listing 5.6 Updating multiple stock symbols

For brevity, we won’t show the body of
these functions that simply manipulate
HTML to add or update rows. You can visit
the code repository to get all the details.

mergeMap

2. Run a 2-second
interval observable

1. Emit stock symbols
through an observable

4. Extract the data and send
the stock quote objects to
any downstream observers

3. At each interval, fetch all three stock
symbols, in order, via a remote HTTP
call wrapped in a promise

5. At each interval, update
the UI to refresh the
stock price

Promise AAPL

mergeMap
Promise CTXS

Promise FB

interval(2000) CTXS, 78.5

AAPL, 109.8

FB, 112.2

mergeMap
FB, CTXS, AAPL

Figure 5.16 Steps to implement the stock ticker widget with multiple symbols and a refresh interval of 2 seconds.
Every step involves the use of nested observables that are merged or concatenated accordingly as the information
gets transformed into different types of streams. At the end, subscribers will see only the scalar values representing
the stock symbols and their respective prices.

144 CHAPTER 5 Applied reactive streams
asynchronous processes involving these values. Also, you unlock the power of
RxJS when involving blocks of code related to these values.

2 You map an interval (every 2 seconds) to this observable, so that you cycle
through the stock symbols every minute. This gives it the appearance of real
time.

3 At each interval, you execute AJAX calls for each stock symbol against the Yahoo
web service.

4 Finally, you map functions that strip out unnecessary company data and leave
just the stock symbol and price, before emitting it to subscribers.

The result is that the subscribers see the data pairs shown in figure 5.17 emitted every
2 seconds.

 There’s room for improvement here,
because in cases when there’s not a
whole lot of fluctuation in a company’s
stock price, you don’t want to bother
updating the DOM unnecessarily. One
optimization you can do is to allow the
stream to flow down to the observer only
when a change is detected, by means of a
filtering operator called distinctUntil-
Changed(). First, we’ll show you how this
operator works, and then we’ll include it
in our code. Here’s an example of using
it with a simple input:

Rx.Observable.of('a', 'b', 'c', 'a', 'a', 'b', 'b')
 .distinctUntilChanged()
 .subscribe(console.log);

distinctUntilChanged() belongs in the category of filtering operators and emits a
sequence of distinct, contiguous elements. So the fifth element, a, is skipped because
it’s the same as the previous one, and the same for the last, b. You can see this mecha-
nism in action in figure 5.18.

Dropped—not distinct when
compared to previous element

Source

Result

a

a

b

b

c

c

a

a

a b

b

b

distinctUntilChanged

Figure 5.18
distinctUntilChanged()
returns an observable that
emits all items emitted by the
source observable that are
distinct when compared to the
previous item.

Figure 5.17 A Stocks table that updates with
real stock symbols every 2 seconds

145Mastering asynchronous streams
This is perfect for the task at hand. Adding this feature to your stream involves using it
with a key selector function, a function that instructs the operator what to use as the
property to compare:

const fetchDataInterval$ = symbol => twoSecond$
.mergeMap(() => requestQuote$(symbol))
.distinctUntilChanged(([symbol, price]) => price);

Now, you’ll update the DOM strictly on a price change, which is much more optimal
than doing it naïvely everything 2 seconds.

 You were able to combine observable flows and solve this problem without creating
a single external variable, conditional, or for loop. Because this task involves the com-
bination of multiple streams—iterating through the symbols, a timed interval, and
remote HTTP requests with promises—you had to unwind nested streams using a com-
bination of a couple of nested mergeMap() operators to convert the intricate business
logic into a more flattened and linear sequence of data that observers subscribe to
and easily consume. As we mentioned previously, it’s much more efficient and fluent
to do it this way, rather than to subscribe to each nested stream at each step. Using
RxJS operators to handle this, as well as all the business logic, is always preferred over
sending raw nested observables to any downstream observers.

 As you can see from this example, RxJS’s combinatorial operators like mergeMap()
are about more than simply reducing the number of subscribe blocks you have to
write and the number of subscriptions to keep. They also serve as an important way to
craft more-intricate flows to support complex business logic. By leveraging nested
streams, you can think of each block within a nest as a mini application (that can be
partitioned out into its own stream, as you learned previously). This is a clear sign of
modularity in your code and something that functional programs exhibit extremely
well. By breaking down problems into individual, independent blocks, you can create
code that’s more modular and composable. Now that we’ve covered merging complex
observable flows, let’s look at a more complex example.

 Aside from mergeMap(), other operators work in a similar manner but with a
slightly different flavor driven by the behavior of the composed function, whether it
be switch(), merge(), or concat(), depending on what you’re trying to accomplish.
Table 5.1 describes the three joint operators we’ll use in this book.

Table 5.1 A breakdown of the three most used RxJS joint operators

Split operator Joint operator Description

map()...merge() mergeMap() Projects an observable-returning function to each
item value in the source observable and flattens
the output observable. You might know this opera-
tor by flatMap(), as used in previous versions
of RxJS.

Performs a distinct
comparison based on
price, so that the
DOM will get updated
only when the price
changes

146 CHAPTER 5 Applied reactive streams
Now that you’ve mastered handling nested observables, let’s move on to other types of
higher-order observable combinations, continuing with concatMap().

5.4 Drag and drop with concatMap
We’ve looked at two ways of composing streams such that they produce a single output
stream. In each case, the resulting stream appears identical to an observer. Both

Rx.Observable.merge(source1$, source2$)

and

source1$.mergeMap(() => source2$)

result in observables that return a type compatible with either source. As we men-
tioned before, this is entirely up to you because JavaScript won’t enforce that observ-
ables wrap values of the same type, as statically typed languages will.

 But the behavior of these two approaches is slightly different. In the former case,
you create a set of simultaneous streams; this means that both streams are subscribed
to at the same time and the resulting observable can output from either observable—
both are active simultaneously.

 Sequential streams, on the other hand, are streams in which the output of one
stream generates a new one. In the second case, the observer won’t receive any events
from the first stream; an observer will only see the results of the observable projected
by mergeMap(). By combining sequential and simultaneous streams, you can make
fairly complex logic relatively easily.

 One canonical example of a sequential stream is drag and drop, present in most
modern web content management systems and customizable dashboards. Implement-
ing this behavior in vanilla JavaScript is fairly difficult to get right because it involves

map()...concatAll() concatMap() Similar to mergeMap() with the merging happen-
ing serially; in other words, each observable waits
for the previous one to complete. Why not
map()...concat()? We’ll explain this disparity
shortly.

map()...switch() switchMap() Similar to mergeMap() as well but emitting only
values from the recently projected observable. In
other words, it switches to the projected observ-
able emitting its most recent values, cancelling
any previous inner observables. You might know
this operator by flatMapLatest(), as used in
previous versions of RxJS. We’ll come back to this
operator in chapter 6.

Table 5.1 A breakdown of the three most used RxJS joint operators (continued)

Split operator Joint operator Description

Observers see data emitted
from either observable.

Observers see only data from source2$.

147Drag and drop with concatMap
keeping track of fast-changing states with multiple targets and interaction rules. Using
streams, you can implement this in a somewhat streamlined manner.

 To implement drag and drop, you need to first identify the three types of mouse
events that are necessary for basic drag and drop. First, you need to know when the
mouse button is clicked, because this indicates that the drag has started, and then the
mouse-button-up event to determine when it has stopped, because this indicates a
drop. In order to track the drag, you need to capture the mouse-move event as well.
You’ll need only those three events (mouseup, mousemove, and mousedown); each, of
course, modeled as a stream.

 A drag starts when the user clicks and stops only when the mouse button is
released or until the mouseup event fires. As the mouse is moved with the button
down, the object is being dragged; it also moves in a fluent manner, so you’ll antici-
pate performing a side effect by manipulating the DOM element. When the button is
released, you drop that object into the coordinates of the location of the mouse on
the screen—thus terminating the mousemove event. As before, the gist is to combine
these streams, representing the three mouse events emitting data.

 First, you’ll create streams from the different types of events you’re interested in,
as shown in the following listing.

const panel = document.querySelector('#dragTarget');

const mouseDown$ = Rx.Observable.fromEvent(panel, 'mousedown');
const mouseUp$ = Rx.Observable.fromEvent(document, 'mouseup');
const mouseMove$ = Rx.Observable.fromEvent(document, 'mousemove');

After you’ve established the streams that will be used to control the drag, you can
build logic around it. In the next step, you need to implement the logic, first to han-
dle detecting a click on a drag target that will initiate the drag event. Then, you need
to have the element follow the mouse around the screen until it’s released and
dropped somewhere. You’ve learned in this chapter how you can use the RxJS joint
operators to combine and flatten multiple nested streams so that subscribers see a
simple representation of the data flowing through the stream. So you need an order-
preserving operator (the mouse is pressed, then dragged, and finally released), just
like concat(), but you also need to be able to flatten the observable that’s pushed
through it. Care to take a guess? Yes, this is the job of concatMap(). This operator
works just like mergeMap() but performs the additional logic of retaining the order of
the observable sequences, instead of interleaving the events.

 The logic for handling the drag is made up of a sequence of streams that emit
mouse events together, as shown in the next listing.

Listing 5.7 Streams needed to implement drag and drop with a mouse

A reference to the panel or target
you want to drag (My Stocks widget)

Observable for mousedown
events on the target

Observable for mouseup events
over the entire page

Observable for mousemove
events over the entire page

148 CHAPTER 5 Applied reactive streams
const drag$ = mouseDown$.concatMap(() => mouseMove$.takeUntil(mouseUp$));

drag$.subscribe(event => {
 panel.style.left = event.clientX + 'px';
 panel.style.top = event.clientY + 'px';
});

Sorry, were you expecting more? This is all that’s required to drag the stock widget
around the page. If you think about it—likely, you’ve implemented drag and drop
before—you’re probably aware that using plain JavaScript would take much more
code, using many more variables to store some transient state. This code is not only
shorter, but it also has a higher level of abstraction, because all side effects were
pushed elegantly onto the observer.

 Here, we’ve introduced another variation of the take() operator called take-
Until(). The name is straightforward; this operator also belongs to the filtering cate-
gory and allows the source observable to emit values until the provided notifier
observable emits a value. The notion of notifier observables occurs frequently in RxJS,
to be used as signals to either start or stop some kind of interaction; in this case, to
take any mousemove concatenated with the mousedown events until a mouseup event is
fired. This is the gist behind dragging.

 Here’s a simple use of takeUntil() so that you can fully appreciate how it works.
This example starts a simple one-second interval, which will print values to the con-
sole until the user clicks a button. This could be useful to implement a site inactivity
feature, for instance:

const interval$ = Rx.Observable.interval(1000);
const clicks$ = Rx.Observable.fromEvent(document, 'click');

interval$.takeUntil(clicks$)
 .subscribe(

x => console.log(x),
err => console.log(`Error: ${err}`),
() => console.log('OK, user is back!'));

The other benefit of RxJS’s unified computing model is that if you were implement-
ing drag through a touch interface, it would just be a matter of changing the event
names in the stream declaration to touchmove, touchstart, and touchend, respec-
tively. The business logic stays the same, and the code would work exactly the same!

 There’s a small caveat here. From our earlier discussions, you might be led to
believe that calling map()...concat() would work in a fashion similar to the split
operator concatMap(). You might intuitively think that this code would work exactly
the same way as listing 5.7:

const drag$ = mouseDown$.map(() =>
 mouseMove$.takeUntil(mouseUp$))
 .concat();

Listing 5.8 Drag-and-drop stream logic

As soon as a click event is emitted,
the interval stream is cancelled.

Using the instance operator
concat() in place of concatMap()

149Drag and drop with concatMap
Unfortunately, it doesn’t, because there’s no mechanism here to flatten the observ-
able type running through the stream. Recall that the concat() instance method
takes a number of observables and concatenates them in order. It’s not designed to
work with an observable of observable type—a higher-order observable. For this, you
need to use a variation of concat() that works with nested observables and also flat-
tens them, called concatAll() (just as you implemented with arrays before). So the
RxJS nomenclature here is a little inconsistent, because concatMap() is really
map()...concatAll().

 Now this code works just like listing 5.7:

const drag$ = mouseDown$
 .map(() => mouseMove$.takeUntil(mouseUp$))
 .concatAll();

Figure 5.19 is a visual of how concatAll() works.

In the code repository, you’ll find a more complete version of this example, which we
simplified for the sake of highlighting the important elements. In reality, you can add
any number of bells and whistles to this functionality, and for our sample application,
we added some helper code for dealing with CSS. For instance, if you wanted to pre-
vent users from accidentally dragging a widget by allowing them to confirm the drag,
you could just filter the mouseup stream to include this confirmation:

A mouseDown event
initiates the drag.

mouseMove is projected
onto the mouseDown
observable

Result

mouseDown$

mouseUp$

mouseMove$

concatAll

Take all mouseMove
events until a mouseUp
event is fired

Using concatAll() preserves
the order of events.

Figure 5.19 Workings of concatAll() combining three mouse events. This operator not
only preserves order but can also flatten a sequence of nested observables. Also, the use of
takeUntil() causes mouseMove$ to cancel as soon as mouseUp$ emits a value.

150 CHAPTER 5 Applied reactive streams
const drag$ = mouseDown$.
 concatMap(() =>
 mouseMove$.takeUntil(

mouseUp$.filter(() => confirm('Drop widget here?'))));

It’s as simple as that. The examples that we’ve discussed in this chapter are only a
small portion of the total number of use cases we could support. As we mentioned at
the outset, almost all non-trivial applications will use flattened streams, so understand-
ing them is a huge step toward understanding RxJS.

 In this chapter, we entered more complex territory by combining the outputs of
multiple streams. This was key for us to begin implementing more real-world tasks
instead of just showcasing the different operators. Initially, we looked at static streams
that merely had their outputs piped together to appear as a single stream. But as a
more complex case, we examined how to nest observables within each other and then
flatten the result to deliver the appropriate data to observers. We discussed how mak-
ing more-complex applications, especially those that deal with UIs and other state
machines, will almost always necessitate the use of nested or merged streams. Finally,
we explored a couple of practical examples of flattening and merging that helped you
understand the design principle behind projecting observables.

 In the next chapter, we’ll continue expanding on this topic by examining how you
can further coordinate observables and have them work together. We’ll also explore
other interesting ways that observables combine, using an operator called combine-
Latest().

5.5 Summary
 You can merge the outputs of several observables into a single stream to sim-

plify subscription logic.
 You can use different merge strategies that contain different behavior for com-

bining streams, depending on your needs.
 You can interleave streams with merge(), cancel and switch to a new projected

observable with switch(), or preserve entire observable sequences in order by
using concat().

 You can use split operators to combine and flatten a series of nested observable
streams.

 You can combine and project observables into a source observable using the
higher-order operators such as mergeMap() and concatMap().

 You implemented an auto-suggest search box.
 You implemented a live stock ticker with deeply nested streams.
 You implemented drag and drop using stream concatenation.

Coordinating
business processes
The previous chapter examined how converting multiple observables into a single
one can simplify their consumption and reduce the management overhead. This
mechanism is important because it allows you to reuse a single subscription to han-
dle data that’s being transformed or created by the composition of multiple tasks,
such as AJAX requests, business logic transformations, timers, and others. The vari-
ous strategies for how these different types of merging operations (merge(),
concat(), or switch()) occurred, as in whether we cared about the order of the
events or cancelled others, was determined by the operator itself—each had a dif-
ferent flavor. We also showed examples like search and drag and drop that use the
output of one observable to signal the start or completion of another.

This chapter covers
 Synchronizing the emission of several observables

 Using observables as signaling devices

 Building complex interactions from multiple inputs

 Spawning streams simultaneously

 Streamlining database storage operations using
observables
151

152 CHAPTER 6 Coordinating business processes
 In this chapter, we’ll continue with this theme and expand where we left off in
chapter 5. You’ll learn that you don’t always have to care about the result of an observ-
able if you simply want to leverage the semantics of when one emits to cause some
other process to begin. Furthermore, we’ll explore scenarios where events from multi-
ple streams can be aggregated and combined so that the resulting observable is emit-
ting the sum of two observables: in other words, two streams cooperating with each
other, working together toward a common goal. To illustrate this, in this chapter, we’ll
tackle problems that involve authentication, data persistence, and stream paralleliza-
tion. The interplay of using observables as a signaling device and the more interesting
uses we can achieve through joining observables forms the foundation of the more
complex logic you’re likely to see in the wild. In order for you to understand how
observables can collaborate, you must first understand how to tap into their lifecycle.

6.1 Hooking into the observable lifecycle
The representational power of a single observable is limited. Although you can create
a stream to represent just about any data type, a single stream can contain logic for
only a single set of inputs and outputs, like the results of a series of keystrokes or an
individual web request. Even using the combinational operators from the previous
chapters like mergeMap(), there’s still only a single task to which a observable can be
assigned without introducing side effects. Remember that in the last chapter you were
able to combine mouse and touch events to support drag and drop. Trying to also sup-
port, say, free-form drawing using the same stream would be very difficult because it
would no longer be clear which use case an observer should be expecting. It’s import-
ant to realize that, by design, a single stream can carry out only a single task; there-
fore, performing multiple actions whether serially or in parallel depends on how you
combine streams.

 By now, you’ve learned how to transform and filter data in flight, even coming
from different sources. Separating tasks into loosely coupled streams is advantageous
because you can compartmentalize their respective logic without bleeding state into
other areas of the application—we call this upstream compartmentalization or confor-
mance. You saw examples of this in the mouse and touch code when you needed to
make two streams conformant to a single observer block. You could, alternatively,
combine the stream data as is and group all your business logic into the observer, or
downstream compartmentalization. We highly recommend the former over the latter.

 But there are times when those operations are insufficient because you need
several streams to interact while also maintaining the same semantically easy-to-
understand flow of code that you’ve come to expect from RxJS. So instead of creating
separate streams and building the scaffolding to connect them yourself, you learned
in the previous chapter how to combine and map observables to other observables.
You did this for real-world tasks such as smart search, a stock widget, and others. In
this chapter, you’ll continue building on those techniques and continue the theme of
observables working in unison to achieve a certain goal.

153Hooking into the observable lifecycle
6.1.1 Web hooks and the observer pattern

RxJS’s Observable type is comparable to an EventEmitter data type, which we briefly
mentioned in chapter 1, in that both belong to a general class of objects known as
event hooks. Event hooks are just a way of targeting certain points in an object’s lifecycle
with the objective of triggering further actions. When an action associated with a hook
is triggered, you say that the hook has fired. Event hooks can operate within or beyond
the confines of a single application. For instance, GitHub, the most popular version
control repository for hosting code, provides access to a whole slew of external hooks
that allow multiple services to coordinate with events such as the creation of pull
requests, new commits, or branches. Each time an action is performed, the associated
event hooks will fire and any listeners will receive those events, as shown in figure 6.1.

In general, event hooks provide two main benefits:

 They allow the developer of the application to retain control over what consti-
tutes a hook, thereby maintaining final say over where and when events will be
fired.

 They allow third parties to execute arbitrary code without having to worry
about detecting internal system implementation.

It’s not hard to realize that event hooks are just another manifestation of the observer
pattern omnipresent in RxJS. Similarly, every observable also has a set of events, or

Pull request

GitHub Client
(branch management

software)

Register
callback

Action

When an event is fired, GitHub
fires any actions associated
(hooked) with the event.

GitHub publishes a set
of web hooks for clients
to inject actions.

Client actions encompass
code to run when reacting
to a fired event.

New branch

Figure 6.1 A couple of well-known GitHub hooks that clients can plug logic into

154 CHAPTER 6 Coordinating business processes
hooks, in its lifecycle that can be plugged into, all of which should be familiar to you
by now:

 Observable start (subscription)
 Observable stop (completion or error)
 Observable next (normal event)

6.1.2 Hooked on observables

Let’s discuss each one a bit further and offer some operators that work during these
stages. The first item, the observable start (or the onSubscribe hook), may not be as
obvious as the other two, which you’ve seen in some form several times up to this
point, but it’s also perhaps the easiest to understand. The goal of listening to when a
subscription is created is to perform some action when an observable begins emitting
events. Hence, the startWith() operator does something to this effect by prepending
a value to the front of an observable each time it’s subscribed to by an observer. So in
the following code, the number 0 will appear before any other events on the console:

Rx.Observable.range(1, 5)
 .startWith(0)
 .subscribe(console.log);
//-> 0

1
2
3
4
5

The startWith() operator is a concat() (in reverse) of all of the values provided to it
with the source stream following, in that order. It leverages the subscription behavior
to inject events before others are received. This can be trivially implemented as a cus-
tom operator just like in chapter 3. The following listing shows how you might imple-
ment it.

function startWith(value) {
 return Rx.Observable.create(subscriber => {
 let source = this;
 try {

subscriber.next(value);
 }
 catch(err) {

subscriber.error(err);
 }
 return source.subscribe(subscriber);
 });
};

Rx.Observable.prototype.startWith = startWith;

Listing 6.1 Hooking into the start of a stream

Uses the factory method
to create the stream

Always emits the value
before anything else

Emits the rest of the stream

155Hooking into the observable lifecycle
CODE SAMPLES Remember that all the code for this chapter can be found in
the RxJSinAction GitHub repository: https://github.com/RxJSInAction/rxjs-
in-action.

This operator makes sure that every time the stream is subscribed to, it produces that
value first. Now, normally you wouldn’t reinvent your own startWith() because RxJS
already implements the necessary hooks for you; all you have to do is inject any func-
tion you want. But this serves to show how extensible observables are.

 On the opposite side of the spectrum, you can also think of the completion event
as its own kind of event. It occurs when invoking the observer’s complete() method
when some observable finishes and before the subscription is disposed of. As you’ve
seen all along, this hook is used to perform all of your side effect logic, operations out-
side the scope of the observable (such as logging to the console, printing data to the
screen, writing to a database), and others.

RXJS FINALLY RxJS’s error-handling mechanism also introduces the
finally() operator. Semantically similar to the traditional finally block in
JavaScript, this operator is the last step in the observable lifecycle, regardless
of whether any errors occurred. The function passed to the finally operator
will be executed when the observable is shutting down for any reason, so even
if the observable terminates with an exception, the block will still be run. This
gives you the opportunity to recover from errors and clean up any necessary
resources. We’ll cover error handling and all of the wonderful things you can
do to recover from errors in chapter 7.

In addition, you can combine logic that’s tied to the start and end of an observable.
You can do this with a new operator, called using(). Figure 6.2 demonstrates how this
operator works.

 This operator (using()) takes two parameters: a function that creates a disposable
resource (like an object) and a function that creates an observable. The created
object is called a disposable because it provides the mechanism to clean itself up—an
unsubscribe() method. Both of these functions are known as factory functions in RxJS
parlance. The resource is tied to the lifecycle of the observable created by this func-
tion, so that when the latter is disposed of, so is the resource. When an observer sub-
scribes to the observable returned from using(), the first factory function is invoked
to create an instance of the resource. The resource is then passed to the second fac-
tory function as a parameter, and that second factory function returns the actual
observable that will be subscribed to. Disposing of the resource is as simple as dispos-
ing of the stream through normal means. When the subscription goes through the
disposal process, it will also attempt to dispose of the resource that was created by the
resource factory. The completion of the observable will also attempt to dispose of the
resource, whichever comes first. Essentially, what you’re doing is linking the lifespan
of an object using an observable.

https://github.com/RxJSInAction/rxjs-in-action
https://github.com/RxJSInAction/rxjs-in-action

156 CHAPTER 6 Coordinating business processes
Here’s an example that will help you understand how it works. Consider an arbitrary
disposable resource object, called DisposableResource:

class DisposableResource {
 constructor(value) {

this.value = value;
this.disposed = false;

 }

 getValue() {
if (this.disposed) {

throw new Error('Object is disposed');
}
return this.value;

 }

 unsubscribe() {
if (!this.disposed) {

this.disposed = true;
this.value = null;

}
console.log('Disposed');

 }
}

A resource is any object
that implements the
unsubscribe() method.

Disposing the
source observable also
disposes the resource
(calls unsubscribe).

source$

Resource (disposable)

using(resourceFactory, observableFactory)

resourceFactory()

observableFactory()

unsubscribe()

The observable generated
from the factory dictates when
the source observable completes.

Figure 6.2 The using() operator controls the lifespan of a resource object (created via a
resourceFactory()) through the lifespan of an observable (created via an
observableFactory()).

A disposable resource
must provide an
implementation for the
unsubscribe() behavior.

157Hooking into the observable lifecycle
You can tie the behavior of this object and its state with the lifespan of any observable
with using(), as follows:

const source$ = Rx.Observable.using(
 ()=> new DisposableResource(42),
 resource => Rx.Observable.interval(1000)
);

const subscription = source$.subscribe(
 next => console.log(`Next: ${next}`),
 err => console.log(`Error: ${err}`),
 () => console.log('Completed')
);

//...
subscription.unsubscribe();

Running this code will begin emitting one value every second. Seconds later (after
subscription but before emission), you unsubscribe from the source. This cleans up
the resource observable as well as the DisposableResource instance by calling its
unsubscribe method.

 The idea behind it is that you often have resources that are completely subject to
the lifespan of the observable. In order to hook into this stage, the only requirement
is that the object you plug in must be disposable-like, which is to say that it must
declare an unsubscribe() method in order to be cleaned up properly if needed. As
an example, suppose you want to manage the login session of the user through an
observable. When the user logs in, you can create a session token that can be stored in
the cookies that keep track of the authenticated user session. But when the user logs
out or closes the window, the session needs to be deleted. The closing of the browser
signals an event that you can listen for, so you can use observables for this.

 First, you need to create an object that will manage the lifecycle of the session
token, similar to the previous code sample. Upon construction, it will set the session
to expire in 24 hours, as shown here.

class SessionDisposable {
 constructor(sessionToken) {
 this.token = sessionToken;
 this.disposed = false;
 let expiration = moment().add(1, 'days').toDate();
 document.cookie = `session_token=${sessionToken};

expires=${expiration.toUTCString()}`;
 console.log('Session created: ' + this.token);
 }

 getToken() {
return this.token;

 }

 unsubscribe() {

Listing 6.2 SessionDisposable object implementing the dispose functionality

using() receives two
parameters: a resource
object and an observable.

Seconds later, you unsubscribe from
the source, which will unsubscribe
from the observable managing the
resource as well as the resource itself.

Creates a cookie
with an expiration
date 24 hours from
now, using the
popular moment.js
library to
manipulate dates
easily (installation
instructions found in
appendix A)

Adds the
cookie

Clears the cookie

158 CHAPTER 6 Coordinating business processes
if (!this.disposed) {
this.disposed = true;
this.token = null;
document.cookie = 'session_token=; expires=Thu, 01 Jan 1970
 00:00:00 GMT';
console.log('Ended session! This object has been disposed.');

}
 }
}

The most important aspect to note from this class is the declaration of the unsubscribe()
method, so that objects of this type conform to the disposable specification.

DISPOSE OR UNSUBSCRIBE The terms dispose and unsubscribe are interchange-
able. The notion of disposing was used predominantly in RxJS 4, so the termi-
nology became part of the RxJS jargon. RxJS 5 changes this to unsubscribe, yet
it’s still easier to say disposable than unsubscribable.

If you have a Java or C# background, this is analogous to saying that your class imple-
ments the Disposable interface. The logic here is simple; it only resets the value of
the token and sets the time back to the epoch (01/01/1970) so that the browser
deletes it before closing. Now, let’s tie the SessionDisposable object to a stream. For
this example, you’ll use the using() operator to construct an observable sequence
that depends on an object whose lifetime is tied to the resulting observable sequence’s
lifetime; in other words, you’ll make one stream dependent on another one. This
using() operator takes a factory function that creates the SessionDisposable object
and a second method that makes that object available to the stream.

 Here’s how you can use using() to manage a session token available for the dura-
tion of a countdown.

function generateSessionToken() {
 return 'xyxyxyxy'.replace(/[xy]/g, c => {

return Math.floor(Math.random() * 10);
 });
}

const $countDownSession = Rx.Observable.using(
 () => new SessionDisposable(generateSessionToken()),
 () => Rx.Observable.interval(1000)

.startWith(10)

.scan(val => val - 1)

.take(10)
);

$countDownSession.subscribe(console.log);

With this code, your user’s login state is now tied into the lifetime of the session, such
that when the user closes the window or logs out (thereby unsubscribing from the

Listing 6.3 Managing a temporary session token with using()

Simple function to
generate a random
session token

Attaches the session
to the lifespan of this
observable

When this subscription completes,
the subordinate session disposable
token will be disposed of and the
cookie deleted.

159Joining parallel streams with combineLatest and forkJoin
subscription), they’re also logged out of the application. This kind of pattern is used a
lot in e-commerce sites where you need to perform some action within a certain time
span. This kind of coordination takes advantage of the hooks to create side effects
around the observable, but you can do much more by incorporating more streams
into the mix.

ABOUT THE RX.OBSERVABLE.USING() OPERATOR The using operator actually
comes from C#, where a using(resource){ ... } block is a synchronous
construct that manages the lifetime of a resource by invoking the garbage col-
lector and cleaning up the resource once the inner block (between the curly
braces) exits.

Using a disposable object allowed you to tap into RxJS’s unsubscription mechanism. It
turns out that you can handle many different use cases when observables coordinate
with others through signals.

 Another form of coordination occurs when multiple streams join together to pro-
duce a result. You learned in the previous chapters about combination operators such
as merge(), switch(), and concat(), and we briefly introduced combineLatest(). In
the areas of signaling and coordination, combineLatest() can have many practical
effects. Let’s spend more time exploring how important this operator is when it comes
to parallel streams.

6.2 Joining parallel streams with combineLatest
and forkJoin
Building asynchronous flows is a difficult endeavor, because each possible permuta-
tion of data arrival times—which you can never guarantee—must be accounted for.
Using the browser’s multiple connections, you can retrieve some of the data in paral-
lel. But when data is causally linked, it needs to be fetched serially. In this section, we’ll
show you how to use RxJS to coordinate between observable streams that can origi-
nate from independent and dependent actions. That is to say, a stream’s data can
come from events causally linked to other data sources (dependent), like a button
click that kicks off an AJAX request, or it can be run in parallel with other streams
(independent), like simultaneously invoking two AJAX requests. There are ways to do
this with plain-vanilla JavaScript using our long-lost friends, callbacks and Promises.
Consider writing an event handler for a button that, when clicked, queries two remote
data sources for data using an ajax() function with a callback:

button.addEventListener('click', () => {
 let result1, result2 = {};
 ajax('/source1', data => {

result1 = data;
 });

 ajax('/source2', data => {
result2 = data;

 });

160 CHAPTER 6 Coordinating business processes
 setTimeout(() => {
processResults(result1, result2);

 }, arbitraryWaitTimeMs);
});

Of course, the chances of this working are slim to none because you can never predict
how long both AJAX calls will take. Other options include writing custom waiting rou-
tines based on setInterval() and semaphores, yet they’re convoluted and invasive to
the business logic. This code would allow both AJAX requests to happen in parallel,
but waiting and combining the results later is difficult without proper wait semantics.
Inserting sleep functions into a single-threaded JavaScript code is frowned on,
because browsers may deem your scripts unresponsive. In order for this to work, you
have to either sacrifice parallelism and nest your AJAX calls or create a variable visible
at a higher scope. Neither of these solutions is terribly wieldy:

button.addEventListener('click', () => {
 ajax('/source1', result1 => {
 ajax('/source2', result2 => {

processResults(result1, result2);
 });
 });
});

Or:

button.addEventListener('click', () => {
 let firstResult;
 ajax('/source1', result => {
 if (firstResult) processResults(result, firstResult);
 else firstResult = result;
 });
 ajax('/source2', result => {
 if (firstResult) processResults(firstResult, result);
 else firstResult = result;
 });
});

And just in case you’re thinking about this, we’ll mention that using observables this
way goes against the RxJS philosophy—it’s an antipattern. What we mean to say is that
you could think of nesting subscribe() blocks like this:

click$.subscribe(() => {
 source1$.subscribe(result1 => {

source2$.subscribe(result2 => {
processResults(result1, result2);

});
 });
});

But just like the previous snippet, this would lead you to the very familiar callback hell
you’re trying to stay away from in the first place. In addition, this solution would apply

Would need to be long enough
so that both AJAX calls have
enough time to finish

161Joining parallel streams with combineLatest and forkJoin
only if the inner observables were eagerly loaded, which is not the case. Consequently,
the inner subscriptions would begin executing only after the outer subscription had
produced its first value. This makes your code blocks dependent and tightly coupled
to each other, not parallel, as shown in figure 6.3.

 In the previous chapter, you learned that you can project observables using opera-
tors such as mergeMap() and switchMap(), but these won’t work either, for two reasons:

 Nesting observables implies causality: that a source observable dictates how the
other executes.

 You need to preserve the data from all the observables at the same time without
cancelling any of them.

Note that nesting callbacks does eliminate the need for an arbitrary wait time. But in
either case, you won’t be able to perform tasks in parallel, which is what you’re trying
to do here. Given how frequently this occurs in JavaScript, other libraries address this
problem, such as Async.js (https://github.com/caolan/async), which you can use to
write code of the following form:

button.addEventListener('click', () => {
async.parallel([

ajax('/source1'),
ajax('/source2')

],
(err, ([result1, result2])) => {

processResults(result1, result1);
});

});

Luckily, you don’t need to include another library, because RxJS is the right tool for
the job. In this section, we’ll explore an operator called combineLatest() that applies
parallel semantics similar to Async.js but in line with the RxJS operator philosophy. To
frame this problem more concretely, consider two streams that access two popular
APIs to shorten a URL. One makes an AJAX request to Bitly (https://app.bitly.com),

The nested observable
won’t begin to emit events
to downstream observers
until outer observables
have emitted events.

click$.subscribe {

source1$.subscribe {

}

}

source2$.subscribe {

 processResults(result1, result2)

}

Figure 6.3 The issue with nested subscription blocks

Runs all functions in parallel

The final callback in async.parallel()
receives an array with the outcome
of both AJAX calls.

https://github.com/caolan/async
https://app.bitly.com

162 CHAPTER 6 Coordinating business processes
and the other to Google URL Shortener (https://goo.gl). For the sake of discussion,
you’ll kick these streams off using another stream that monitors a URL text box field—
debounced for efficiency, of course.

 You want both to be able to run in parallel, and you might be able to use operators
that you learned in the previous chapter, like merge() and concat(), depending on
whether you care about order preservation. But because both streams are not causally
linked (as in you can’t just chain them together one after the next), you can’t use
these operators. For example, concat() would force each result to emit in order, one
after another rather than in parallel, whereas merge() would only allow you to con-
sider a single emission at a time downstream, instead of collectively.

 Rather, we stipulated that both tasks must run in parallel but emit results only
when all of them have emitted, which may be at any point in the future. You tried
using callbacks; let’s see if Promises fair better.

6.2.1 Limitations of using Promises

Certainly, you need a new pattern or set of operators to accomplish your goal, such
that you can execute all the statements in parallel while also being able to gather them
collectively when they’ve all completed. Promise libraries that follow the Promise/A+
protocol include a collection operation called Promise.all(), which creates a new
Promise that awaits the completion of all the Promises or rejects with the error of the
first one to reject. Let’s use this method here, but instead of using callbacks, you’ll use
a version of ajax() that returns Promises that wrap the HTTP request:

button.addEventListener('click', () => {
 Promise.all(ajax('/source1'), ajax('/source2'))

.then(([result1, result2]) => {
 processResults(result1, result2);

});
});

Already, you see that the use of Promises helps your code not only in indentation and
readability but also in parallel, effectively, because you’re using a mechanism that
knows to emit the value only when all have arrived. But the more these types have to
be mixed and matched, the more difficult this becomes, because each variation will
require a more intricate solution. In the previous code, you mix two fundamentally
different paradigms: event-driven listeners with the more functional Promises. Never-
theless, it does achieve parallelism and moves the needle in the right direction.

 You already know the desired traits of the new operator you need. It should pro-
vide the fluent API design of Promises plus the parallelism semantics of Async.js. This
operator should take multiple sources, like the static merge() operator, but at the
same time, it should be able to combine and emit the collective result from all inputs
as an event of its own. Let’s take a look at combineLatest().

Executes all Promises and
waits for all to complete

Processes the joined value, an array,
returned from the call to .all(), which
is destructured and passed into a
method that knows how to render
account details

https://goo.gl

163Joining parallel streams with combineLatest and forkJoin
6.2.2 Combining parallel streams

Whereas operators such as merge(), concat(), and switch() combine a series of
observables (or an array of them) to output a single observable, combineLatest()
gives you a way to emit and capture events from multiple sources at the same time.
This operator creates an observable whose values are calculated from the latest values
of each of its input observables. combineLatest() is ideal for situations where you
need to spawn to long-running processes in parallel and then use the combined
result. For example, suppose you want to use third-party services to shorten URLs.
Because both streams act independently, you can use both services in parallel and
then present the user with both outputs. This is the task we’ll tackle in this section.

 Before we begin developing the solution to this problem, we’ll briefly introduce
you to combineLatest() with a simple example. The data emitted is similar to how
buffering worked in chapter 3. In other words, the output is an array that combines
the latest data from all of the input observables—the same semantics as Promise
.all() or async.parallel(). Here’s a quick example to showcase how this operator
works. You’ll combine the output of two streams: one emits letters every second, and
the other emits numbers every second.

const letter$ =
 Rx.Observable.interval(1000)
 .map(num => String.fromCharCode(65 + num))
 .map(letter => `Source 1 -> ${letter}`);

const number$ = Rx.Observable.interval(1000)
 .map(num => `Source 2 -> ${num}`);

Rx.Observable.combineLatest(letter$, number$)
 .take(5)
 .subscribe(console.log);

Running this code prints the following:

["Source 1 -> A", "Source 2 -> 0"]
["Source 1 -> B", "Source 2 -> 0"]
["Source 1 -> B", "Source 2 -> 1"]
["Source 1 -> C", "Source 2 -> 1"]
["Source 1 -> C", "Source 2 -> 2"]

Here, you have two independent streams that emit every second: one, letters starting
with A, and the other, numbers starting at zero. Each emission will cause a collective
emission of the latest value present in the stream. So after the first emission, A -> 0,
each result alternates emitting the latest from the other stream. In other words, when
Source 1 emits B, it sends the result with the latest value in Source 2 at that time, 0.
Then, when Source 2 emits the next value, 1, it sends the result with the latest value in
the stream at that time, 0. In summary, an emission from any stream in the combina-
tion causes all of them to publish their latest value, all sent to the observer via an array.

Listing 6.4 Synchronizing streams with combineLatest()

Emits A, B, C, … every second

Emits 0, 1, 2, 3, …
every second

Source 1 emits “B” with the
latest value in source 2, “0.”

Source 2 emits “1” with the
latest value in source 1, “B.”

164 CHAPTER 6 Coordinating business processes

Co
lates

bo
 In this simple case, both data sources are asynchronous intervals. With synchro-
nous data sources, you have to be careful because RxJS will immediately run through
the events of the first source stream and combine its latest value with the latest value
of the combined stream instead of pairing each number with a letter.

const letter$ = Rx.Observable.from(['a', 'b', 'c']);
const number$ = Rx.Observable.from([1, 2, 3]);
Rx.Observable.combineLatest(letter$, number$).subscribe(console.log);

Running this code will output a very different result:

 ["c", 1]
 ["c", 2]
 ["c", 3]

Now that you understand how this operator works, let’s jump into your task. Again,
you want to spawn parallel AJAX calls to shorten some URL. The user is expected to
type a valid URL into a text box; when the user removes focus from it, it will kick off
these independent streams. So you’re mixing one causally linked stream with two par-
allel streams, which should suggest the use or mergeMap() (or switchMap()) and
combineLatest(), respectively.

CAUSALITY Generally, causal streams (one depends on the other) are com-
bined using mergeMap() or switchMap(), whereas independent streams are
combined using combineLatest() and others you’ll learn about shortly.

Reasoning about this problem this way—thinking in streams—we came up with the
following program for a URL shortener stream that uses both Bitly and Google.

const urlField = document.querySelector('#url');

const url$ = Rx.Observable.fromEvent(urlField, 'blur')
 .pluck('target', 'value')
 .filter(isUrl)
 .switchMap(input =>

Rx.Observable.combineLatest(bitly$(input), goog$(input)))
 .subscribe(([bitly, goog]) => {

console.log(`From Bitly: ${bitly}`);
console.log(`From Google: ${goog}`)

 });

To run this program, type any URL into the input field; we’ll use these providers to
shorten this URL. So, for https://www.manning.com/books/rxjs-in-action, the output
is

From Bitly: http://bit.ly/2dkHUau
From Google: https://goo.gl/plTbDG

Listing 6.5 Combining multiple URL shortener streams

Checks using a regex
that the input provided
matches a valid URL
(omitted for brevity)

Projects an observable that
will emit results when both

subordinate streams emit

mbines the
t events of
th services

https://www.manning.com/books/rxjs-in-action

165Joining parallel streams with combineLatest and forkJoin
These all resolve to the original link (so feel free to share it on your favorite social
media!). Of course, you don’t understand exactly how bitly$ and goog$ work, but
the abstraction provided by RxJS means you can still reason about this code as is, from
its declarative nature. Figure 6.4 is a simple graph to show you what’s happening.

 Fortunately, combineLatest() allows you to provide a selector function that makes
the stream more conformant, so that you can avoid the direct array access, which can
be tedious and error prone when you need only one of the results. This selector func-
tion receives as arguments the data emitted from each subordinate observable. So, by
using a selector function that measures the length, you can compute the shorter of
the URLs:

const url$ = Rx.Observable.fromEvent(urlField, 'blur')
 .pluck('target', 'value')
 .filter(isUrl)
 .switchMap(input =>

 Rx.Observable.combineLatest(bitly$(input), goog$(input),
 (b, g) => b.length > g.length ? b : g))

 .subscribe(shortUrl => {
console.log(`The shorter URL is: ${shortUrl}`);

 });

For the sake of completing this example, let’s finish implementing each individual
stream, because they pack another interesting technique used to deal with third-party
APIs that work with callbacks. You’ll implement both services as functions that accept

Run in parallel

Run in parallel

Result [],

blur$

bitly$

switchMap()

combineLatest

B

B

goog$ G

G

Figure 6.4 The workings of combineLatest(). This operator outputs an
array containing the latest values from all of its input observables.

Using a selector
function to pick the data
from the stream that
emits the shorted URL

166 CHAPTER 6 Coordinating business processes
a URL and return a stream used to shorten it. You’ll start with bitly$. When you open
a Bitly account, you’ll need to find the following information in order to make remote
web API requests:

const API = 'https://api-ssl.bitly.com';
const LOGIN = '<YOUR LOGIN>';
const KEY = '<YOUR GENERATED KEY>';

The next listing shows the observable function used to shorten this URL.

const ajaxAsObservable = Rx.Observable.bindCallback(ajax);

const bitly$ = url => Rx.Observable.of(url)
 .filter(R.compose(R.not, R.isEmpty))
 .map(encodeURIComponent)
 .map(encodedUrl =>
 `${API}/v3/shorten?longUrl=${encodedUrl}&login=${LOGIN}&apiKey=${KEY}`)
 .switchMap(url => ajaxAsObservable(url).map(R.head))
 .filter(obj => obj.status_code === 200 && obj.status_txt === 'OK')
 .pluck('data', 'url');

For starters, we need to explain the first line in listing 6.6, which you haven’t encoun-
tered before. It’s a fact that many JavaScript APIs, particularly Node.js, still use callback
functions heavily. Just as RxJS works well with Promises, it’s important to be able to
adapt callback-based APIs to RxJS. The way to do this is by internally binding the call-
back as the observer’s next() method and publishing that value as an observable to
continue the chain, as shown in figure 6.5.

 This way, when the bound ajax() function is invoked with the URL argument, it
will execute and the result intended for the callback will be proxied into a new observ-
able. Because you’re returning an observable, you use switchMap() to project it and

Listing 6.6 Bitly URL shortener stream

Bitly’s Web API URL
You can obtain these fields
from your profile settings.

Binds the function’s
callback internally to the
observer’s next functionBuilds the

API path

Invokes an AJAX call against Bitly
with the longUrl to shorten

Extracts the URL property

Last parameter
must be a function

Transform it into a function that
returns an observable with
the result of the callback

Rx.Observable.bindCallback ajax(url): Rx.Observable.of(data)
ajax(url, data => {

})

Figure 6.5 bindCallback transforms any function f(x, callback) into a function g, such that
calling g(x) outputs an observable with the result of the callback.

167Joining parallel streams with combineLatest and forkJoin
replace the source stream. This is the only new part; everything else should be
straightforward.

 Furthermore, working with Google’s URL shortener is similar, except that for rea-
sons of security and authentication, it’s best to use their JavaScript client APIs instead
of making a raw request (details about installing this library can be found in appendix
A). Just like Bitly, Google’s service expects you to have a Google account, have this par-
ticular API enabled, and have generated a security OAuth2 token. This client API
library gapi gives you access to many of Google’s web APIs, and it works partially with
callbacks and Promises. So integrating it into RxJS involves wrapping those promisi-
fied method calls to configure the library and pushing it downstream as you set up to
make the shorten call; see the following listing.

const GKEY = '<YOUR-GENERATED-OAUTH-KEY>';

const gAPILoadAsObservable = Rx.Observable.bindCallback(gapi.load);

const goog$ = url => Rx.Observable.of(url)
 .filter(R.compose(R.not, R.isEmpty))
 .map(encodeURIComponent)
 .switchMap(() =>

gAPILoadAsObservable('client'))
.do(() => gapi.client.setApiKey(GKEY))

 .switchMap(() =>
Rx.Observable.fromPromise(gapi.client.load('urlshortener', 'v1')))

 .switchMap(() =>
Rx.Observable.fromPromise(gapi.client.urlshortener.url.insert(
 {'longUrl': example_url}))

)
 .filter(obj => obj.status === 200)
 .pluck('result', 'id');

As you can see, you can compartmentalize both services as individual observables, only
to embed them into an orchestrating observable using combineLatest() to run those
services in parallel in reaction to the URL field changing. Here’s that code once more:

const url$ = Rx.Observable.fromEvent(urlField, 'blur')
 .pluck('target', 'value')
 .filter(isUrl)
 .switchMap(input =>

Rx.Observable.combineLatest(bitly$(input), goog$(input)))
 .subscribe(([bitly, goog]) => {

console.log(`From Bitly: ${bitly}`);
console.log(`From Google: ${goog}`)

 });

This code reveals that spawning and joining streams gets first-class citizen treatment in
RxJS. To nail this point home, let’s look at an operator called forkJoin().

Listing 6.7 Google URL shortener stream

Uses your OAuth2 token generated
through the Google APIs console

Binds the callback into the load
method so that you can

integrate it into the observable

Loads the client library
Passes the generated token

Loads the
URL

shortener
API

Shortens the URL and
inserts it into your

personal list of URLs

168 CHAPTER 6 Coordinating business processes
6.2.3 More coordination with forkJoin

RxJS provides an operator called forkJoin(), in many ways similar to combine-
Latest(), in charge of running multiple observable sequences in parallel and collect-
ing their last element. In contrast to combineLatest(), forkJoin() will emit only the
last value of each forked stream. This is important, so we’ll come back to it to make this
really clear. At the time of writing, most modern browsers allow you to make up to 10
requests for data simultaneously, and forkJoin() takes advantage of this to maximize
throughput. For the stock ticker widget, this operator is a plus because you can look up
multiple stock symbols simultaneously and then add them all up to reflect the grand
total of the user’s entire stock portfolio. Take a look at this example in figure 6.6.
Here’s an outline of the steps:

1 Create a function that uses an observable to fetch the stock data for a com-
pany’s symbol with price.

2 Iterate through the user’s preferred stock symbols: FB (Facebook), AAPL
(Apple), and CTXS (Citrix).

3 Use forkJoin() to spawn these simultaneous processes and join the result.
4 Add the final result.

To implement our widget, the first thing you’ll do is reuse the function that fetches a
stock symbol’s price requestQuote$() from our stock ticker widget in chapter 5:

const requestQuote$ = symbol =>
Rx.Observable.fromPromise(

ajax(webservice.replace(/\$symbol/, symbol)))
.map(response => response.replace(/"/g, ''))
.map(csv);

There are so many things you can do, and it all depends on your needs. In this case,
you’re optimizing for parallelism. One of the things you did in chapter 5 was make the
stream conformant in that it returns only the price property of the fetched company
symbol as a numerical float.

Fork waits for all
requests to complete

requestQuote$CTXS

requestQuote$AAPL

requestQuote$FB

FB 117.7 90.90 85.70Fork JoinAAPL CTXS

Figure 6.6 The fork operation spawns several requests, waits for them to complete, and emits when all streams
have completed. The result is an array mapping to the output of each stream.

169Joining parallel streams with combineLatest and forkJoin
Remember from previous chapters that the user has chosen to fetch stock informa-
tion for three companies:

const symbols = ['FB', 'AAPL', 'CTXS'];

To compute the total price, you need to query for each of these symbols in parallel
and add up the joined result. For this, you’ll use forkJoin(). You could pass each
request observable one by one:

Rx.Observable.forkJoin(
 requestQuote$('FB'),
 requestQuote$('AAPL'),
 requestQuote$('CTXS')
);

This is clean and declarative. Preferably, use your FP skills to map this function over
the symbols array, as shown here.

Rx.Observable.forkJoin(symbols.map(requestQuote$))
 .map(data => data.map(arr => parseInt(arr[1])))
 .subscribe(allPrices => {
 console.log('Total Portfolio Value: ' +

new USDMoney(allPrices.reduce(add).toLocaleString()));
 });

Just like combineLatest(), forkJoin() will return an array with all stock prices all at
once. The subscriber receives the array and reduces it with a simple const add = (x,
y) -> x + y; function to produce the result, which at the time of this run is

"Total Portfolio Value: USD 293.25"

As you can see, this flow is declarative, immutable, and uses functional expressions to
obtain the final answer. A simple look at the browser’s console, shown in figure 6.7,
reveals that all simultaneous processes began at the same time:

 forkJoin() and combineLatest() are similar, yet each imparts its own flavor.
Aside from the former being strictly a static factory method and the latter used inter-
changeably as a factory and instance operator, they differ in the criteria with which
they emit their values. forkJoin() emits only the latest values from each of the input

Listing 6.8 Using forkJoin to fetch multiple stock symbols simultaneously

Reads the price amount only

Total value subject to change
depending on market conditions

Figure 6.7 The browser’s view of network traffic shows the remote HTTP requests all start at the same time. The
forkJoin() operator spawns these requests and waits for all to emit before emitting its result.

170 CHAPTER 6 Coordinating business processes
observables. So if a sequence emits five values, it will sit there and wait for the last one
(certainly expect some level of in-memory caching occurring here):

Rx.Observable.forkJoin(
 Rx.Observable.of(42),
 Rx.Observable.interval(1000).take(5))
.subscribe(console.log); //-> [42,4]

On the other hand, combineLatest() is closer to a merge in the sense that it will emit
values for the latest values when any of its input observables emits, namely:

Rx.Observable.combineLatest(
 Rx.Observable.of(42),
 Rx.Observable.interval(1000).take(5))
.subscribe(console.log);

//-> [42, 0]
[42, 1]
[42, 2]
[42, 3]
[42, 4]

As you saw in these examples, asynchronous data may arrive at any time, which makes
coordination difficult to implement without a tool like RxJS. This is particularly
important when synchronizing data operations into a database, for instance. Let’s see
how RxJS fares with these kinds of problems.

6.3 Building a reactive database
When data sources are expected to arrive at different times or are tied to different
source events, it can become difficult to properly coordinate them. As you saw earlier,
operators like combineLatest() and forkJoin() implement a joining pattern that
one way or another waits for input observables to complete before emitting a value.
This is incredibly powerful and the sort of behavior you’ll find in sophisticated con-
currency frameworks. You can also find plenty of uses cases of this pattern in backend
systems, especially when dealing with data persistence.

It will hold on to 42 for about 5
seconds and then emit the last
value seen from all streams.

Pitfalls of combinatorial operators
For many operators that combine streams, even those like combineLatest(), which
emits on any change, each observable is expected to emit at least once before the
combining operator emits. So, don’t try to do this,

Observable.combineLatest(
 Observable.empty(),
 Observable.range(1, 3)
)

and expect to get any values.

171Building a reactive database
 The use case you’ll tackle here is a simple banking transaction system that keeps
track of all transactions as a user withdraws money from their account. Thinking reac-
tively here, you should recognize instances of join patterns because reacting to some
action triggers another to occur. In this case, you’ll need to join together or sequence
a set of database calls to reflect a withdraw action and a transaction record being cre-
ated. Around this problem domain, you’ll implement a few tasks such as loading all of
a user’s transactions from the database.

 A common problem with sophisticated client-side applications is loading all the
data from the backend into the browser, an environment restricted to a limited
amount of memory. Some architectures load the data as needed; this is called progres-
sive loading. But this doesn’t work well if an application has high demands for perfor-
mance or needs to work without an internet connection. Most modern applications
are expected to work this way. Another approach is to bypass the browser’s memory
and load the data into persistent storage. Let’s go over the technology you’ll be using.

 IndexedDB is a great and relatively underutilized web standard for client-side data-
bases. It takes what was traditionally a server-side process of storing data efficiently in
some structured manner and allows those same types of operations for the web.
Unfortunately, the standard has a less-than-straightforward interface. So for this exam-
ple, you’ll use an abstracted library modeled after the more popular CouchDB library,
called PouchDB, which is more readable and handles browser differences (please visit
appendix A for installation instructions).

 The benefit of using PouchDB, like most modern asynchronous JavaScript APIs you
interacted with earlier, is that it uses Promises to model all of its asynchronous opera-
tions, which means you can use Rx.Observable.fromPromise() to adapt all the API
calls if you want to use observables, which is exactly what you’ll do because you’re
smarter about preferring observables to regular Promises. For instance, the output of
PouchDB.put(), a Promise method, can be converted to an observable, as in figure 6.8.

 You can use RxJS to move this static, persistent data into flows of asynchronous
operations that compose or cascade the outcome of one into the next seamlessly.
Hence, RxJS becomes your query language, treating data as constantly moving and
changing infinitely. Keep in mind that PouchDB is a schemaless document store, so
this means you don’t need to define and create schema before writing data to its
tables. You’ll start with a simple example that loads a set of banking transactions into
the document store. Constructing an instance of the database is as simple as this:

const txDb = new PouchDB('transactions');

db.put(tx).then(response => {

 //...handle response
 }
);

Rx.Observable.fromPromise(db.put(tx))
 .map(response => {

 //...handle response
});

Figure 6.8 Adapting the callback-based API into an observable

172 CHAPTER 6 Coordinating business processes
This database stores transaction documents in JSON form. A transaction has the fol-
lowing structure.

class Transaction {
 constructor(name, type, amount, from, to = null) {

this.name = name;
this.type = type;
this.from = from;
this.to = to;
this.amount = amount;

 }

}

Next, you’ll populate your database with a few transaction records that represent a
user transferring money from one account to another.

6.3.1 Populating a database reactively

The code to create and store several transactions involves looping through Transaction
objects (whether they come from a locally stored array or from a remote HTTP call),
date-stamping each transaction with an RxJS timestamp, and posting it to the database,
as shown in figure 6.9.

You’ll start by artificially populating the database with this dataset:

function getTransactionsArray() {
 return [
 new Transaction('Brendan Eich', 'withdraw', 500, 'checking'),
 new Transaction('George Lucas', 'deposit', 800, 'savings'),
 new Transaction('Emmet Brown', 'transfer', 2000, 'checking', 'savings'),
 new Transaction('Bjarne Stroustrup', 'transfer', 1000, 'savings', 'CD'),
];
}

The next listing shows this in action. You’ll create two streams, one in charge of per-
forming the database operation and the other for processing the input.

Listing 6.9 Transaction class

timestamp Write to database

Store the new object
in a database using
PouchDb.post()

Create a new object
containing the transaction
with a timestamp
property

Process each
transaction

T , T T T,[]...

Figure 6.9 Steps to populate data into local storage using streams

173Building a reactive database
const writeTx$ = tx => Rx.Observable.of(tx)
 .timestamp()
 .map(obj => Object.assign({}, obj.value, {

date: obj.timestamp
})

)
 .do(tx => console.log(`Processing transaction for: ${tx.name}`))
 .mergeMap(datedTx => Rx.Observable.fromPromise(txDb.post(datedTx)));

Rx.Observable.from(getTransactionsArray())
 .concatMap(writeTx$)
 .subscribe(
 rec => console.log(`New record created: ${rec.id}`),
 err => console.log('Error: ' + err),
 () => console.log('Database populated!')
);

Before we get into the details of this code, it’s important to note that you were able to
process and manipulate a set of objects and store them in a database, all in an
immutable manner; this is compelling and reduces the probability of bugs. Listing
6.10 involves multiple steps and new concepts:

1 You know you’ll need to modify the transaction objects to include the date
when the transaction was processed. This is typical of any banking application
because most transactions are sorted based on date. Because functional pro-
grams are immutable, instead of mapping a function to the transactions array
and modifying the object’s internal structure directly, you can use JavaScript’s
ES6 Object.assign() to immutably create or set a new property into the object,
leaving the original intact—you want your code to be as stateless as possible.

2 Next, you retrieve the transaction data into an array. Given RxJS’s unifying
model of computation, you could easily retrieve data from a local array, or you
could just as easily fetch it with a remote HTTP call, such as this:

 Rx.Observable.fromPromise(ajax('/transactions'))
.timestamp()
...

3 You use the Object.assign() function to add a date to the transaction object
iterated over by passing the generated RxJS timestamp() operator. This operator

Listing 6.10 Populating the database

Attaches a timestamp to each emitted item that
indicates when it was emitted. The resulting object
has two properties, obj.value, which points to the
emitted object (transaction), and obj.timestamp,
which contains the time the event was emitted.

Uses ES6 Object.assign() to create a copy of the
transaction object with the additional date

property. This preserves immutability. You could
also use the ES6 spread operator (partially

supported in some JavaScript environments).

Posts the object into the database by wrapping the
PouchDB.post() operation with an observable. This
assigns the stored document a unique _id.

Reads the
transaction objects
from a local array

Joins the stream to
process and creates
the new transaction
document

174 CHAPTER 6 Coordinating business processes
creates an object with a timestamp and a value property, containing the original
object’s data, as shown in figure 6.10.

4 You create each transaction object using the post() method of the PouchDB
object. This object also sets a randomly generated key in the database table.
Although this method call inevitably creates a side effect in your application
(writing to a database), it’s one that’s managed by RxJS and isolated to its own
function—the rest of the code remains pure. As we said earlier, because
PouchDB exposes a thenable API, you can wrap observables over it, creating
your reactive database.

5 Finally, because the call to post() returns a Promise, which you convert to an
observable, you use mergeMap() to flatten the projected observable.

6 Running this code prints the following:
"Processing transaction for: Brendan Eich"
"New record created: 4F7404AF-10D2-8438-AEAB-CC21CDC23810"
"Processing transaction for: George Lucas"
"New record created: A9ACE7FE-85DB-484E-AA74-B47A7F4D32B1"
"Processing transaction for: Emmet Brown"
"New record created: DD469ACA-BC5C-A5C6-8E4A-0FB544C62231"
"Processing transaction for: Bjarne Stroustrup"
"New record created: B5C8B8C7-127B-11C7-A90E-64D79C8315E2"
"Database populated!"

Another benefit of wrapping observables over the database API is that all side effects
are pushed downstream to observers instead of each Promise.then() call. It’s nice to
keep your business logic pure as much as possible and side effects isolated.

 Depending on the size of the transaction objects, when storing thousands of them
in an array, you could end up with very large memory footprints. Of course, you’d
like to avoid keeping all of that data directly in memory, which is why you leverage
the browser’s database to store this data within it but persisted out of memory. To
make this example simple, you use a small array. Most likely you’ll also want to keep
transactions created locally as well as data coming in remotely. Can you guess which

timestamp

The timestamp operator creates a temporary
object with a timestamp property and a value
property that points to the original object.

1

1t1

2

2t2

Figure 6.10 RxJS
timestamp operator

175Building a reactive database
operator you need? Correct! You can use RxJS’s merge() to plug in all of the data
from multiple sources:

Rx.Observable.merge(
 getTransactionsArray(),
 Rx.Observable.fromPromise(ajax('/transactions')))
 .concatMap(writeTx$)
 .subscribe(
 rec => console.log(`New record created: ${rec.id}`),
 err => console.log('Error: ' + err),
 () => console.log('Database populated!')
);

The rest of the code continues to work exactly the same way. Brilliant! The asynchro-
nicity of code is seamless in reactive programming!

 And in the event that the remote HTTP call response is not an array, remember
that you can make the observable conformant, just as we discussed earlier, and push
some logic upstream like this. It’s typical of remote calls to return an object with a sta-
tus and a payload. So if you’re response object is something like

{
 status: 'OK',
 payload: [{name: 'Brendan Eich', ...}]
}

you can make it conformant as you inject it into the stream:

Rx.Observable.merge(
 getTransactionsArray(),
 Rx.Observable.fromPromise(ajax('/transactions'))

.mergeMap(response => Rx.Observable.from(response.payload))
)
 .concatMap(writeTx$)
 ...

Moreover, databases are full of optimizations to improve read and write speed. You can
further help these optimizations by performing bulk operations whenever possible.

6.3.2 Writing bulk data

The previous code samples create single bank transaction records at a time. You can
optimize this process with bulk operations. Bulk operations write an entire set of
records with a single post request. Naturally, the PouchDB operation bulkDocs()
takes an array. Earlier, we talked about how much memory was used to build this set,
and this is completely in your control using RxJS buffers.

 The buffer() operator that you saw back in chapter 4 would come in handy here
when you’re processing not just a handful of transactions but hundreds of them. Let’s
optimize listing 6.10 with the following listing.

Merging the output from
local and remote streams

Converts the JSON response object into an array
that gets combined with the other transaction

records and pushed through the stream

176 CHAPTER 6 Coordinating business processes
Rx.Observable.from(getTransactionsArray())
 .bufferCount(20)
 .timestamp()
 .map(obj => {

return obj.value.map(tx => {
return Object.assign({}, tx, {
 date: obj.timestamp
 })

})
 })
 .do(txs => console.log(`Processing ${txs.length} transactions`))
 .mergeMap(datedTxs =>

Rx.Observable.fromPromise(txDb.bulkDocs(datedTxs)))
 .subscribe(
 rec => console.log('New records created'),
 err => console.log('Error: ' + err),
 () => console.log('Database populated!')
);

To support this optimization, you had to make a few adjustments. After collecting 20
objects with bufferCount(20), the data passing through the stream is now an array
instead of a single record, as shown in figure 6.11.

 Alternatively, you could have also buffered for a certain period of time with
buffer(Rx.Observable.interval(500)); this decision depends on the amount of
data your application will process. In this case, each record will be kept in a buffer for
500 milliseconds, at which point it will be released and all the records can be written
in bulk to the database.

 But there’s a problem with just using a count- or time-based buffer. If the user
attempts to navigate away from the page while the data is being cached, you could
potentially lose anything waiting in the buffer, up to 20 transactions in this case, which

Listing 6.11 Optimizing write operations using bulk writes

Buffers 20 transactions at a time
Timestamps the entire set of items at once

Loops within each set and assigns
a date to each transaction object

Performs bulk
operation upon
passing the
entire buffer

bufferCount(20) timestamp Bulk write

Buffer 20
transactions
at a time

Process N transactions

Timestamp entire
buffered transaction

Persist all 20
objects in bulk

T1

T1

TNT2

T

...

.
.
.

T2

.
.
.

T20 T

Figure 6.11 Flow followed to add items in bulk (in this case, 20 at a time)

177Building a reactive database
will never get saved. To fix this, let’s introduce another observable to trigger a buffer
write. Buffers also support signaling, so that the emission can occur in response to the
execution of some browser hook, such as the closing of the window. To implement
this you can use the bufferWhen() operator with an observable that’s smart enough to
support both use cases: to cache the results for a specific period of time or emit before
the browser closes:

Rx.Observable.from(getTransactionsArray())
 .bufferWhen(() =>
 Rx.Observable.race(

Rx.Observable.interval(500),
Rx.Observable.fromEvent(window, 'beforeunload'))

)
 ...

bufferWhen(), instead of taking an observable to trigger the start of each new buffer,
accepts a closing selector method that’s re-invoked every time the buffer is closed, and
the resulting observable is used to determine when the next buffer should close.
Using this, you can create a signal observable that has a host of possible constraint
states. Now that you know how to get data into the database, let’s join with a query that
can count the total number of records.

6.3.3 Joining related database operations

All of the local store operations, whether you’re using IndexedDB directly or
PouchDB, happen asynchronously, but with RxJS you can treat your operations almost
as if they were synchronous because of the abstraction that it poses over the latency
involved in database calls. To illustrate this, you’ll chain together an operation to
insert a record, followed by an operation that retrieves the total count.

 PouchDB is a map/reduce database, so in order to query the data, you must first
define how the projection or the mapping function works. This object is called a
design document, which you need to include as part of the query. For your purposes,
you’ll keep it simple and count the number of transactions performed. So your design
document—you’ll call it count—looks like this:

const count = {
 map: function (doc) {
 emit(doc.name);
 },
 reduce: '_count'
};

The next listing shows how you can join two queries with a single stream declaration.

Buffers events from the source observable
until the provided observable emits

Creates an observable that mirrors the first observable
to emit a value of the ones provided to it. In this case,
it will emit after half a second or when the window
closes, whichever comes first.

Hooking into the browser closing event.
Because the contents within the buffer

storage are emitted as a single array
object and processed synchronously,

there’s no danger of the browser shutting
down before the buffer gets processed.

Counts the number of users

Uses the reduce PouchDB aggregate operator _count

178 CHAPTER 6 Coordinating business processes
Rx.Observable.from(getTransactionsArray())
 .switchMap(writeTx$)
 .mergeMap(() => Rx.Observable.fromPromise(

txDb.query(count, {reduce: true})))
 .subscribe(
 recs => console.log('Total: ' + recs.rows[0].value),
 error => console.log('Error: ' + error),
 () => console.log('Query completed!')
);

PouchDB also has some reduction operations of its own, and you understand what a
reduction is because you’re an experienced functional programmer by now. Aside
from count, you can perform other reductions such as sum and stats. Let’s go over
another example that combines all of what you’ve learned thus far. It performs a with-
draw from the account database and creates a new transaction document, as shown in
figure 6.12.

First, you’ll need to seed a set of user accounts with the following structure (again,
you’ll keep your domain simple).

class Account {
 constructor(id, name, type, balance) {

this._id = id;
this.name = name;

Listing 6.12 Two queries in a single stream declaration

Listing 6.13 The Account class

Posts a single transaction

Runs a reduction query
to count the total
number of documents
in the table

Prints
the total

value

If the account is
not found, abort
the transaction.

Find ID Null?

Abort

Yes

No

Yes

No

Ignore

{
 balance: A.balance - amount
}

withdraw(accountId, 1000)

Ok?Create Update

A

If the update operation
is successful, create the
transaction object.

Figure 6.12 The backend workflow that takes place when a withdraw operation occurs. First, you find the
account by ID, and if it results in a valid object, you subtract the withdraw amount and update the account.

The _id field is used to tell PouchDB’s put()
method to use your provided ID instead of
generating a new one. You can use
PouchDB’s get() method to query by this ID.

179Building a reactive database

d
this.type = type;
this.balance = balance;

 }

 get id() {
 return this._id;
 }
}

Similarly, you’ll create a few different types of accounts for your user Emmet Brown—

const accounts = [
new Account('1', 'Emmet Brown', 'savings', 1000),
new Account('2', 'Emmet Brown', 'checking', 2000),
new Account('3', 'Emmet Brown', 'CD', 20000),

];

—to populate a new document store:

const accountsDb = new PouchDB('accounts');

Because you’re already familiar with creating databases and populating them from the
earlier example, you’ll jump right into the withdraw() function, which returns an
observable responsible for creating the flow to query and update multiple databases,
as shown in the next listing.

function withdraw$({name, accountId, type, amount}) {
 return Rx.Observable.fromPromise(accountsDb.get(accountId))

.do(doc => console.log(
 doc.balance < amount ?
 'WARN: This operation will cause an overdraft!' :
 'Sufficient funds'

))
.mergeMap(doc =>
Rx.Observable.fromPromise(

accountsDb.put({
 _id: doc._id,
 _rev: doc._rev,
 balance: doc.balance - amount
}))

)
.filter(response => response.ok)
.do(() =>

 console.log('Withdraw succeeded. Creating transaction document'))
.concatMap(() => writeTx$(

 new Transaction(name, 'withdraw', amount, type)));
}

You can run this code by passing it an operation object literal:

withdraw$({
 name: 'Emmet Brown',

Listing 6.14 withdraw function

Retrieves
the

existing
account

info

Unpacks the
input into the

parameters
needed for the

transaction

Updates the user balance

Continues only if the DB
update was successful

Creates the
transaction recor
and return it

180 CHAPTER 6 Coordinating business processes
 accountId: '3',
 type: 'checking',
 amount: 1000
})
.subscribe(
 tx => console.log(`Transaction number: ${tx.id}`),
 error => console.log('Error: ' + error),
 () => console.log('Operation completed!!')
);

This will generate the following output:

"Sufficient funds"
"Withdraw succeeded. Creating transaction document"
"Processing transaction for: Emmet Brown"
"Transaction number: DB6FF825-C703-0F1A-B860-DA6B1138F723"
"Operation completed!!"

As you can see, because the API of PouchDB uses Promises, it’s easy to integrate your
database code with your business logic, all wrapped and coordinated via the observ-
able operators. Although database calls are a form of side effect, it’s one you’re willing
to take in practice and rely on the unidirectional flow of streams to streamline the use
of this shared state. But wrapping API calls is not the only thing you can do with
PouchDB. In addition, you can build support for a reactive database.

6.3.4 Reactive databases

PouchDB is an event emitter, which means it exposes a set of events or hooks for you
to use to plug logic into certain phases of its lifecycle. Just as GitHub exposes hooks to
tap into when branches are created, you can add event listeners that fire when data-
bases are created and destroyed.

 This is important in browser storage where the lifespan of a database is temporary
because it can be destroyed and re-created at any time. So before you begin adding
any documents, it will be good to do so in the context of a database-created hook.

 Using the Rx.Observable.fromEvent() operator, you can transform any event
emitter into an observable sequence. Hooking into the database-creation event looks
like the following:

Rx.Observable.fromEvent(txDb, 'created')
 .subscribe(
 () => console.log('Database to accept data!')
);

Adding this check in your streams is easy. All you need to do is key off of that hook to
perform all your logic. This is somewhat similar to waiting for the document to be
ready before executing any of your JavaScript code. The withdraw operation would
look like this:

Rx.Observable.fromEvent(txDb, 'created')
 .switchMap(() =>

Reacts to the ‘created’ event

181Summary
 withdraw$({
name: 'Charlie Brown',
accountId: '1',
type: 'checking',
amount: 1000

 })
)
 ...

In this chapter, you saw how you can bring together multiple distinct subsystems and
build coherent state machines from them. Each example brought out a small piece of
functionality that could be independently attached to and handled. The combinato-
rial operators allow you to join each stream while maintaining the same separation of
concerns that you achieved with single streams. Notice that, so far, none of the code
you’ve written has accounted for errors or exceptions. What if there’s an error insert-
ing a record into a database? What if there’s an exception happening when you call
some third-party function? In the next chapter, we’ll take these same concepts and
show you how to make your applications more fault tolerant against the unexpected.

6.4 Summary
 You joined parallel URL shortening services with combineLatest() and

spawned multiple observable sequences with forkJoin().
 You used buffering to improve the performance database queries.
 You used observables to control the lifespans of non-observables like user

sessions.
 You saw how reactive databases allow you to orchestrate business flows involving

permanent storage.

Error handling with RxJS
Until now, we’ve explored only happy-path examples involving RxJS for tackling
many different use cases. We suspect that at some point you’ve probably asked your-
self, “What would happen if a remote HTTP call failed while fetching data for my
stock quote widget?” Observers see the outcome of combining and transforming
sequences of streams that you use to map your business logic to. But if an exception
occurs midstream, what will the observer see at that point? These are some valid
and important questions, but it was important that you first understand and learn
to think reactively with ideal scenarios. Now, we’re going to sprinkle a dose of the
real world onto your code. The brutal reality is that software will likely fail at some
point during its execution.

 Many issues can arise in software where data inadvertently becomes null or unde-
fined, exceptions are thrown, network connectivity is lost, and so on. Your code

This chapter covers
 The issues with imperative error–handling schemes

 Using functional data types to abstract exception
handling

 Using observable operators to handle exceptions

 Different strategies for retrying observable
sequences
182

183Common error-handling techniques
needs to account for the potential occurrence of these issues, which unavoidably cre-
ates complexity. In other words, you can’t escape errors, but you can learn how to deal
with them. One strategy that developers often use is to scatter error-handling code
around every function call. We do this to make our code more robust and fault tolerant,
but it has the detrimental effect of making it even more complex and harder to read.

 In this chapter, you’ll learn that the key to elegant error handling in RxJS is done
in part by the effective use of observables and by following proper FP principles, as
you’ve seen all along. Given a properly constructed observable stream, the next step is
to learn about the different RxJS observable operators that you can plug in to respond
to any adversity. Before we get started, it’s important for you to understand that you
need to put aside the imperative error-handling techniques you’re accustomed to, like
try/catch, in favor of a functional approach as implemented in RxJS.

7.1 Common error-handling techniques
JavaScript errors can occur in many situations, especially when an application fails to
communicate with a server when invoking an AJAX call. Also, third-party libraries that
you load into your project can have functions that throw exceptions to signal special
error conditions. Hence, you always need to be prepared for the worst and design with
failure in mind, instead of letting it become an afterthought and a source of regret.

 In the imperative world, exceptions are typically handled with the common
try/catch idiom, which occurs frequently with synchronous code. Conversely, in the
asynchronous world—remote HTTP calls and event emitters—you’re required to
interface with functions that delegate failures to callback functions. And recently with
JavaScript ES6, many libraries have switched to using Promises to wrap their asynchro-
nous computations. Let’s examine each of these cases individually.

7.1.1 Error handling with try/catch

JavaScript’s default exception-handling mechanism is geared toward throwing and
catching exceptions through the popular try/catch block, which is also pervasive in
most modern programming languages. Here’s a sample:

try {
 someDangerousFunction();
}
catch (error) {
 // statements to handle any exceptions
 console.log(error.message);
}

As you know, the purpose of this structure is to surround a piece of code that you
deem to be unsafe. Upon throwing an exception, the JavaScript runtime abruptly
halts the program’s execution and creates a stack trace of all the function calls leading
up to the problematic instruction. Specific details about the error, such as the mes-
sage, line number, and filename, are populated into an object of type Error and
passed into the catch block.

184 CHAPTER 7 Error handling with RxJS
RXJS 5 EXCEPTIONS RxJS 5 has a number of improvements over its previous
version. One of them involves the simplification of the internal mechanisms
of RxJS, resulting in a stack trace that’s much easier to parse.

The catch block becomes a safe haven so that you can potentially recover your pro-
gram. But with your knowledge about observables, you can see how this imperative
style of dealing with exceptions is structurally very different from what you’ve done so
far. So, adding try/catch to your RxJS code to provide error-handling logic to a
stream would look like the following:

try {
 const data$ = Rx.Observable.fromPromise(ajax('/data'))

.subscribe(console.log);
}
catch(error) {
 console.log(`Error processing stream: ${error.message}`);
}

Now, imagine having to merge multiple streams, each with its own type of failure, and
you can see how this pattern couldn’t possibly be effective if you need to wrap each
stream with its own try/catch. With asynchronous functions, the common JavaScript
pattern is to provide the error callback alongside the success callback.

7.1.2 Delegating errors to callbacks

As is common with asynchronous functions in many JavaScript libraries, there’s typi-
cally a function that responds to the success case and one that handles errors. This is
necessary because asynchronous functions are unpredictable in terms of if and when
they return, and if errors occur. Until now, we purposely avoided talking about error
cases when using an asynchronous function like ajax(). You’ve been using this func-
tion all along, as a kind of black box that always ran correctly. You could use it in two
different ways: with callbacks or with Promises. Let’s peek under the hood of this func-
tion using callbacks.

const ajax = function (url, success, error) {
 let req = new XMLHttpRequest();
 req.responseType = 'json';
 req.open('GET', url);
 req.onload = function() {

if(req.status == 200) {
 let data = JSON.parse(req.responseText);
 success(data);

}
else {
 req.onerror();

}
 }
 req.onerror = function () {

Listing 7.1 Function ajax() with success and error callbacks

Initializes an XmlHttpRequest
object used to fetch data remotely

On success, parses the data as JSON
and invokes the success() callback

185Common error-handling techniques
if(error) {
 error(new Error('IO Error'));

}
 };
 req.send();
};

CODE SAMPLES Remember that the code for this chapter can be found in the
RxJSinAction GitHub repository, https://github.com/RxJSInAction/rxjs-in-action.

Using this function, code that would require multiple nested sequences of HTTP calls,
such as when mashing up different sources of data, would look like the next listing.

ajax('/data',
 data => {
 for (let item of data) {

ajax(`/data/${item.getId()}/info`,
dataInfo => {
 ajax(`/data/images/${dataInfo.img}`,
 showImage,
 error => {

console.log(`Error image: ${error.message}`);
 });
},
error => {
 console.log(`Error each data item: ${error.message}`);
});

 }
 },
 error => {
 console.log(`Error fetching data: ${error.message}`);
 }
});

Looking at this code from just a structural point of view, you can picture it as nested
code blocks, such as the ones shown in figure 7.1.

Listing 7.2 Imperative error handling with asynchronous code

On error, converts the error
message into an exception object

Handles the innermost
HTTP call

Handles second-level
HTTP call

Handles the outermost
HTTP call

ajax
ErrorSuccess

Each ajax provides callbacks
for Success and Error.

ajax

ajax

ErrorSuccess

ErrorSuccess

Figure 7.1 Imperative asynchronous error
handling tends to nest when processing a
series of asynchronous calls.

https://github.com/RxJSInAction/rxjs-in-action

186 CHAPTER 7 Error handling with RxJS
Indeed, although our code is more fault tolerant, all we’ve done here is exacerbate
the problem of having to parse this nested “pyramid of doom,” which we spoke about
in chapter 1. Because of this type of situation, the JavaScript ES6 specification intro-
duced Promises, which elegantly streamline the invocation of a sequence of asynchro-
nous functions.

7.1.3 Errors and Promises

The Promise.then() function acts as the mapping function (similar to Rx.Observable
.map()) used to project (or map) another Promise to a source Promise. This is the rea-
son why we decided to “promisify” ajax(), and it’s what we’ve been using for most of the
examples as a form much superior to its callback counterpart. Here’s the code for that.

const ajax = function (url) {
 return new Promise(function(resolve, reject) {

let req = new XMLHttpRequest();
req.responseType = 'json';
req.open('GET', url);
req.onload = function() {
 if(req.status == 200) {

let data = JSON.parse(req.responseText);
resolve(data);

 }
 else {

reject(new Error(req.statusText));
 }
};
req.onerror = function () {
 reject(new Error('IO Error'));
};
req.send();

 });
 };

Much as you can with observables, you can chain multiple asynchronous calls by map-
ping new Promises to a source Promise. Then, you can use the Promise.catch()
operator to implement an error-handling strategy that answers to any of the rejected
Promises or ones that throw exceptions, as such:

ajax('/data')
 .then(...)
 .catch(error => console.log(`Error fetching data: ${error.message}`))

Because catch() itself returns a Promise, you can implement specific errors by insert-
ing multiple asynchronous calls to catch() in series, like this:

ajax('/data')
 .then(item => ajax(`/data/${item.getId()}/info`))
 .catch(error => console.log(`Error fetching data: ${error.message}`))

Listing 7.3 Promisified ajax()

Creates and returns
the HTTP call wrapped
in a Promise

Promise is resolved if data
is fetched successfully

Promise is rejected in
case failure occurs
while performing the
remote request

187Common error-handling techniques
.then(dataInfo => ajax(`/data/images/${dataInfo.img}`))

.catch(error => console.log(`Error each data item: ${error.message}`))

.then(showImg);

.catch(error => console.log(`Error image: ${error.message}`))

Arguably, in comparison to figure 7.1, the statement in figure 7.2 resembles a much
easier structure to parse.

If the first ajax() fails, the first catch() operator runs before jumping into the next
Promise in the chain. Each catch can be thought of as a recovery block for the previ-
ous Promise; the Promise allows you to resume processing in some known state.

CONTINUOUS CATCH The previous code example introduces a small bug that
we ignored to prevent cluttering up the code. Because catches are also part of
the continuation, the handler method can return either a value or another
Promise; if no value is returned, then an undefined value will be passed to the
next continuation block.

Just like with a synchronous try/catch, you can either continue by recovering from
the error, in this case by returning a non-error value, or you can rethrow the error. In
the catch block, that’s done by either returning a Promise.reject() or throwing
within the callback method. But because you’re basically just transferring control
from one Promise to the next, it’s more typical to just implement a single, global
catch() operator (this is essentially equivalent to placing an overarching try/catch
block over your entire function body). In this case, when any Promise fails, the
catch() operator is run and the entire body of code is exited:

ajax('/data')
 .then(item => ajax(`/data/${item.getId()}/info`))
 .then(dataInfo => ajax(`/data/images/${dataInfo.img}`))

Promise

ajax
ErrorSuccess

Each ajax is wrapped in a Promise,
which allows the chainable execution
of sequential HTTP calls.

then then

Promise

ajax
ErrorSuccess

Promise

ajax
ErrorSuccess

Figure 7.2 Promises allow you to chain subsequent asynchronous calls, each with its own success and error
(catch) callbacks.

188 CHAPTER 7 Error handling with RxJS
 .then(showImg)
 .catch(error => console.log(error.message));

Certainly, Promises get you closer to where you want to be. Unfortunately, all these
approaches limit your ability to make your code responsive and reactive; in other
words, you can’t easily return a default value in case a request failed or perhaps retry a
rejected Promise. You can get around passing default values down the chain by intro-
ducing side effects in your code. And you can implement retries with the help of
third-party libraries, such as Q.js (https://github.com/kriskowal/q). But more impor-
tantly, recall from our earlier discussions that Promises model single asynchronous
values, not a deluge of them, which are the type of problems you solve when combin-
ing functional and reactive programming—and to make matters worse, Promises can
swallow exceptions if no error handler is provided. Let’s examine in more detail the
reasons why these imperative error-handling mechanisms are incompatible with a
reactive application.

7.2 Incompatibilities between imperative error-handling
techniques and functional and reactive code bases
The structured mechanism of throwing and catching exceptions in imperative Java-
Script code has many drawbacks when used in a functional or reactive style. In gen-
eral, functions that throw exceptions

 Can’t be composed or chained like other functional artifacts.
 Violate the principle of pure functions that advocates a single, predictable

value because throwing exceptions constitutes another exit path from your
function calls.

 Cause side effects to occur because an unanticipated unwinding of the stack
impacts the entire system beyond just the function call or the stream declaration.

 Violate the principle of non-locality because the code used to recover from the
error is distanced from the originating function call. When an error is thrown, a
function leaves the local stack and environment, for instance:
try {

let record = findRecordById('123');

... potentially many lines of code in between
}
catch (e) {

console.log('ERROR: Record not found!');

// Handle error here
}

 Put a great deal of responsibility on the caller to declare matching catch blocks
to manage specific exceptions instead of just worrying about a function’s single
return value.

 Are hard to use asynchronously. The try/catch idiom is effective when enclos-
ing synchronous code, where errors are syntactically bounded by the enclosing

https://github.com/kriskowal/q

189Understanding the functional error-handling approach
try blocks. This code is predictable and not affected by time and latency. Asyn-
chronous functions, on the other hand, are unpredictable and typically provide
an error callback mechanism to give control of the program back to the user.

 Are hard to use when multiple error conditions create nested levels of exception-
handling blocks:
let record = null;
try {
 record = findRecordByName('RecordA');
}
catch (e) {
 console.log('ERROR: Cannot locate record by name');

 try {
record = findRecordById('123');

 }
 catch (e) {

console.log('ERROR: Record is nowhere to be found!');
 }
}

After reading all these statements, you’re probably asking yourself, “Is throwing excep-
tions completely off the table?” We certainly don’t believe so. In practice, they can
never be off the table because there are many factors outside your control that you may
need to account for, like system or environmental errors or calls to third-party code.

 We’re not recommending you don’t use exceptions at all, because they do serve a
purpose—just use them for truly exceptional conditions. When you need to use
exceptions or deal with errors, the functional approach is to allow functional data
types to abstract them away from your main business logic; this prevents you from cre-
ating side effects or code that becomes hard to maintain.

7.3 Understanding the functional error-handling approach
The functional approach to error handling is quite simple. As we mentioned before,
we won’t get too deep into any functional topics in this book, so we’ll provide a sim-
plistic view of this approach that will serve to help you better understand the design of
RxJS’s error-handling mechanism. The goal here is to reify, or make a first-class citi-
zen, the idea of a wrapper around a function or body of code that has the potential of
throwing an exception. If you think about it, that’s what you’ve been doing all along
when you use a try/catch block. The function findRecordById() can throw an
exception in the event that a database record is not found, as illustrated in figure 7.3.

The curly braces imposed by
the try block create an invisible
container around the function call.

try {
 let record = findRecordById('123');

 //... processing account
}
catch(e) {
 console.log(`Exception caught: ${e.message}`);
}

Figure 7.3 A try/catch block creates an invisible section that protects any section of code.

190 CHAPTER 7 Error handling with RxJS
The try block creates an invisible enclosure around the function call so that you can
implement all your error-handling logic inside the catch block. In the functional
world, you’ll reify this container with a data type called Try.

NOTE The Try data type is a common pattern in FP that we introduce here
merely as a theoretical construct. This will help you later, when we discuss
how observables implement this pattern.

Figure 7.4 shows how this data type would work.
 You can use this type to apply or map a function to a certain value. This is equiva-

lent to invoking the function with that parameter. With this extra plumbing, Try
allows you to provide the necessary abstraction to return an object of type Success if a
record object is found; otherwise, an object of type Failure, signaling that something
unexpected occurred. Notice that this requires the input to be a function so that it
can properly capture a thrown exception:

Try.of(() => findRecordById('123')); //-> Success(Record)
Try.of(() => findRecordById('456')); //-> Failure
Try.of(() => findRecordById('xxxxx'))
 .getOrElse(new Record(...)); //-> Default value

Now, just like any functional data type, suppose Try also had a map() operator, which
you can use to perform any action on the resolved object, if one is found:

Try.of(() => findRecordById('123')).map(processRecord);

Using Try as the return type of your functions is quite handy, because not only do you
protect the value it returns from a possible null access, but also you let your users know
that this particular function might produce an invalid result—it’s self-documenting.
This is why other languages such as Scala, Java, and Haskell one way or another provide
native APIs for this data type.

 For the purpose of our discussion, we show some of the pieces of Try in the next
listing, as well as its derived types Success and Failure.

Try findRecordById

Success<Record>

Failure

'123'
Apply On

Figure 7.4 Use a data type called Try to make errors first-class citizens of your application.
This can be used to wrap any value and then safely apply or map functions to it. If a function
invocation is successful (no exceptions produced), a data type called Success is returned;
otherwise, an object of Failure is returned.

191Understanding the functional error-handling approach
class Try {
 constructor(val) {
 this._val = val;
 }

 static of(fn) {
 try {

return new Success(fn());
 } catch (error) {

return new Failure(error);
 }
 }

 map(fn) {
 return Try.of(() => fn(this._val));
 }
}

class Success extends Try {

 getOrElse(anotherVal) {
return this._val;

 }

 getOrElseThrow() {
return this._val;

 }
}

class Failure extends Try {

 map(fn) {
 return this;
 }

 getOrElse(anotherVal) {
return anotherVal;

 }

 getOrElseThrow() {
 if(this._val !== null) {

throw this._val;
 }
 }
}

SYNTAX Listing 7.4 uses the class syntax in ES6 to model the Try data type.
We use classes only because they’re syntactically shorter than using functions
and object prototypes. As you probably know by now, classes are nothing
more than syntactic sugar over JavaScript’s existing prototype-based inheri-
tance. Whether you decide to implement this using function or class syntax is
entirely up to you.

Listing 7.4 Internals of the Try functional data type

Creates a new instance of this data type

If Try yields a successful
computation, wraps the result in
a Success; otherwise, wraps the
result in a Failure

Map applies a function to a value with internal
try/catch logic and returns an instance of Try
to continue chaining more operations (this is
analogous to Rx.Observable.map()).

Success represents a successful
computation, with a method to
get the value.

Failure represents a function that
resulted in an exception being
thrown. Any subsequent mapping
operations are skipped.

192 CHAPTER 7 Error handling with RxJS
Listing 7.4 shows just a few of the key details of this functional data type. Try models
two scenarios:

 If an instance of Try<Record> represents a successful computation, it’s an
instance of Success<Record> internally that’s used to continue the chain.

 If, on the other hand, it represents a computation in which an error has
occurred, it’s an instance of Failure<Error>, wrapping an Error object or an
exception.

What you accomplish with this is a simple data type that allows you to pipeline, or
chain operations on objects, catching exceptions along the way, without impacting
your business logic and hiding the imperative try/catch structure. Here’s how you
can use it. Suppose you execute a function processRecord() that works on a record
fetched from a database. If the record is not found, processRecord() will throw an
exception:

let record = Try.of(() => findRecordById('123')
 .map(processRecord)
 .getOrElse(new Record('123', 'RecordA'));

This code works by lifting a value into the Try context and then mapping a function to
it. map() is where the try/catch logic lives, consolidated in one place. Arguably, this
code is much more readable and pure compared to the following:

let record;
try {
 record = findRecordById('123');
 processRecord(record);
}
catch (e) {
 record = new Record('123', 'RecordA');
}

In the functional case, if the process operation were to fail, nothing in this logic would
actually change because the error would be propagated internally via Failure
instances, finally resulting in the getOrElse() function that creates and returns a
default record object. This simple design pattern is really powerful, because it
abstracts error handling completely from your business logic so that your functions
worry only about writing code to solve your task at hand, while remaining side effect–
free. You can see the workings of this in the diagram in figure 7.5.

 Does this discussion about propagation of change and the mapping of functions
ring a bell? That’s right! The Observable data type works exactly the same way, and
now you’ll see how it implements its own exception-handling operators.

193The RxJS way of dealing with failure

s

.

7.4 The RxJS way of dealing with failure
Just as observables abstract data flow and processing, they also abstract errors and
exception handling. RxJS’s Observable type provides several strategies for you to
manage the errors that could arise midstream. In this section, you’ll learn about these
strategies:

 Propagating errors to observers
 Catching errors and reacting accordingly
 Retrying a failed operation for a fixed number of times
 Reacting to failed retries

7.4.1 Errors propagated downstream to observers

In chapter 2, we mentioned that at the end of the observable stream is a subscriber
waiting to pounce on the next event to occur. This subscriber implements the
Observer interface, consisting of three methods: next(), error(), and complete().

 In general, errors don’t escape the observable pipeline. They are contained and guarded
to prevent side effects from happening—much like Try, as shown in figure 7.6.

 Errors that occur at the beginning of the stream or in the middle are propagated
down to any observers, finally resulting in a call to error(). Here’s a quick example to
illustrate this concept.

const computeHalf = x => Math.floor(x / 2);
Rx.Observable.of(2,4,5,8,10)
 .map(num => {

if(num % 2 !== 0) {
throw new Error(`Unexpected odd number: ${num}`);

}

Listing 7.5 Calling the error method on observers when an exception is thrown

Record

try

catch

map

Failure

Success

Record

Try

processRecord processRecord

Error

Figure 7.5 Mapping a function to a Try returns the result wrapped in a Success type or an
exception wrapped in a Failure.

The business logic spit
out an exception
somewhere midstream

194 CHAPTER 7 Error handling with RxJS
return num;
 })
 .map(computeHalf)
 .subscribe(

(next) => console.log(val),
(error) => console.log(`Caught: ${err}`),
() => console.log('All done!');

);

Running this code prints the following:

1
2
"Caught: Error: Unexpected odd number: 5"

You can consider this approach similar in structure to an overarching try/catch
block. The important aspect to note from this example is how the Observable data
type acts like a Try by disallowing the exception to leak from the stream’s context.
Because there’s no way to recover, the first exception that fires will result in the entire
stream being cancelled. Think of parsing data from a network call; you’d obviously
want to skip parsing the object if the network call was unsuccessful. The error is
pushed down to any subscribers so that they can perform any side effects, such as
showing an alert pop-up or a modal dialog. Most of the time, though, you’ll want to
catch and recover from the error that occurred. To make understanding the different
recovery strategies easier, we’ll continue using this simple numerical example from
listing 7.5 as our theme.

Without any exception
handlers (discussed later in
section 7.4), any errors are
automatically propagated
down to the observers.

Source observable

Operator skipped
following exception

Business logic executed by this
operator throws an exception.
The exception exists only within
the observable environment.

Operator Operator Operator

Any exceptions caught within the
context of an observable are directly
propagated down to the observer’s
error() callback.

next()

complete()

error()

Figure 7.6 Errors that occur within an operator are not allowed to escape the context of the observable. Rather,
errors can be handled within the pipeline (as you’ll see later in section 7.4); otherwise, the observer’s error()
function is called.

195The RxJS way of dealing with failure
7.4.2 Catching and reacting to errors

Most of the time, you’ll want to catch and recover from any errors so that your applica-
tion is always responsive and resilient—one of the main requirements of being reac-
tive is always being responsive.

REACTIVE MANIFESTO One of the main principles of reactive systems is the
notion of resiliency, which states that systems should stay responsive in the
face of failure. Reacting to errors using RxJS operators is one way to work
toward this goal.

The basic error-handling mechanism that RxJS provides is the catch() operator, used
to intercept any error in the Observable and give you the option to handle by return-
ing a new Observable or, again, by propagating it down to observers in case there’s a
recoverability path, as shown in figure 7.7.

Just like with regular try/catch usage, you want to place the catch() operator close
to the segment of code that might fail. catch() allows you to insert a default value in
place of the event that caused the error; any subsequent operators in the chain will
never know that an exception occurred. Imagine if you experienced a login error to
the server or had a problem accessing your local DB. The catch could be used to cap-
ture that error and inject a default or in-memory value into the stream without the
downstream being any the wiser!

 You can use marble diagrams to show error handling in a stream as well, just like
with any other operator. Figure 7.8 shows an example of a stream that rejects odd
numbers and returns evens instead.

Source observable

3. The next operator
proceeds normally.1. Exception is thrown

2. The catch() operator is called and
handled. A default value is returned.

next()

complete()

error()Operator catch Operator

Figure 7.7 Exception caught in an operator upstream by using the catch() operator

196 CHAPTER 7 Error handling with RxJS
 Here’s the code for figure 7.8.

Rx.Observable.of(2,4,5,8,10)
 .map(num => {

if(num % 2 !== 0) {
throw new Error(`Unexpected odd number: ${num}`);

}
return num;

 })
 .catch(err => Rx.Observable.of(6))
 .map(n => n / 2)
 .subscribe(

(next) => console.log(val),
(error) => console.log(`Caught: ${err}`),
() => console.log('All done!');

);

Running this code now prints the following:

1
2
3
"All done!"

As you can see, the stream continues to be cancelled when the exception occurs, but
now you’re at least able to recover. Some errors, however, might be intermittent and
shouldn’t halt the stream. For instance, a server is unavailable for a short period of
time because of a planned outage. In cases like this, you may want to retry your failed
operations.

Listing 7.6 Recovering from an exception using catch()

Catches or intercepts the error and
returns an observable in its place

In this case, because the
exception is caught and
handled, the error method
on the observer is never
executed.

Somewhere along the pipeline,
an exception is thrown.

After the exception is caught and
handled, the observable sequence
completes with a default value.

2

2

4

4

5

6

catch(err => Observable.of(6))

Figure 7.8 Error handling
using marble diagrams

197The RxJS way of dealing with failure
7.4.3 Retrying failed streams for a fixed number of times

The catch() operator is passed a function that takes an error argument (shown in list-
ing 7.6) as well as the source observable that was caught, which you can return to tell
the source observable to retry from the beginning. Let’s take a look:

Rx.Observable.of(2,4,5,8,10)
 .map(num => {

if(num % 2 !== 0) {
throw new Error(`Unexpected odd number: ${num}`);

}
return num;

 })
 .catch((err, source) => source)
 ...

This operation can be dangerous when the exception is unavoidable or not transient
because you’ve now entered an infinite loop; there’s no condition in the business
logic that will change for the error to disappear. Figure 7.9 shows what’s occurring.

Another place looping can occur is when using Promises. A Promise can emit two
types of errors: either an unexpected exception is thrown during the body of the com-
putation, or the Promise becomes unfulfilled and gets rejected. Because Promises are
not retriable artifacts, dereferencing the value of a Promise will always return its ful-
filled value or error, as the case may be. The following code creates a big problem:

const requestQuote$ = symbol =>
Rx.Observable.fromPromise(

ajax(webservice.replace(/\$symbol/, symbol)))

Returning the original observable, which
will begin to emit the entire observable
sequence, starting with the first value, 2

Operator . catch . OperatorSource observable

(err$, source$) => source$

source() will retry the observable
infinitely many times, as long as
an exception occurs.

An internal observable is created
containing any errors that occurred.

catch() is also provided a reference to
the source observable for retrying.

Figure 7.9 The catch() operator is provided an Observable sequence populated with any errors
that occurred as well as the source observable, which you can use to retry the sequence from the
beginning.

198 CHAPTER 7 Error handling with RxJS
.catch((err$, promise$)=> promise$)

.map(response => response.replace(/"/g, ''))

.map(csv);

Just like in figure 7.9, if the server you’re trying to access is offline, the exception
thrown would also create an infinite loop and exhaust the main thread, because you
would be retrying the same exception (failed Promise) over and over again. You’ll see
how to solve this problem in a bit.

 RxJS provides more-intuitive ways of retrying via the retry() operator, which com-
bines this notion of catching and reexecuting the source observable into one func-
tion. Here’s a simple example:

Rx.Observable.of(2,4,5,8,10)
 .map(num => {

if(num % 2 !== 0) {
throw new Error(`Unexpected odd number: ${num}`);

}
return num;

 })
 .retry(3)
 .subscribe(

num => console.log(num),
err => console.log(err.message)

);

Running this code will print a sequence of numbers 2 and 4 a total of four times
before printing “Unexpected odd number: 5.” So unless you’re dealing with a tran-
sient failure that you know will resolve itself somehow, avoid catching and returning
the same sequence or the equivalent retry operation with an empty argument. In
order to ensure you don’t lock up the UI or cause infinite loops to occur, you should
always use retry() with a fixed number. You could also elegantly combine the two
approaches. You can reattempt the operation three more times and then catch the
exception, to fall back to a default value:

Rx.Observable.of(2,4,5,8,10)
 .map(num => {

if(num % 2 !== 0) {
throw new Error(`Unexpected odd number: ${num}`);

}
return num;

 })
 .retry(3)
 .catch(err$ => Rx.Observable.of(6))
 .subscribe(

num => console.log(num),
err => console.log(err.message));

Again the effect of this is that the sequence would be tried a total of four times before
the catch block executes, emitting the default value 6 and then completing the
sequence. Notice that using a default value with catch doesn’t simply replace the value

Using the selector function to
reiterate the execution of this

Promise stream. Bad idea!

Repeats this sequence three more times
(a total of four) if there’s an error before
giving up and letting the exception
propagate down to the observer

Instead of propagating the
error down, you can use
this placeholder value.

199The RxJS way of dealing with failure

ee
in the sequence and allow it to continue. After an exception occurs, the Observable is
terminated at that point.

 Now that we’ve talked about catch/retry, you’re probably thinking it would be
appropriate to embed retry into your stock ticker code, so that if the server were to fail
due to a restart or a small outage, you could at least retry to fetch stock information:

const requestQuote$ = symbol =>
Rx.Observable.fromPromise(

ajax(webservice.replace(/\$symbol/, symbol)))
.retry(3)
.map(response => response.replace(/"/g, ''))
.map(csv);

But there’s a small caveat here. Recall from our previous discussions that Promises have
no retry capability (you don’t get second chances with Promises). Unlike Promises,
streams are retriable artifacts, so you can easily get around this limitation by wrapping
the Promise observable into another stream that is retriable—again creating a higher-
order observable. Effectively, what you want to do is apply the retry function to an outer
observable that wraps the inner Promise. You can use mergeMap() to flatten it back into
a single stream, so placing the retry at fetchDataInterval$ solves this problem:

const fetchDataInterval$ = symbol => twoSecond$
.mergeMap(() => requestQuote$(symbol)

 .distinctUntilChanged((previous, next) => {
...

 }))
.retry(3);

This code will cause the Promise internally to reinstantiate and retry three more times
if it encounters an exception or a rejection, which is really nice. Keep in mind that it will
become a single observable layer once mergeMap() projects requestQuote$(symbol)
onto the source. The fact that streams can reemit or replay events upon multiple sub-
scriptions is important, but there’s a bit more you need to understand that’s happening
behind the scenes. We’ll come back to this solution in the next chapter in the context
of hot observables. Another way of implementing retries effectively is to add a backoff
strategy, which introduces some wait time in between retry actions.

7.4.4 Reacting to failed retries

Using retries with backoff is an effective way to retry more times without overloading
the server. Examples of a backoff strategy are constant, linear, exponential, and random
(also known as jitter). The exponential and linear types are more commonly used, but
in any case, the goal is to use progressively longer waits between retries for consecutive
periods of time. RxJS allows you to accomplish this using the retryWhen() operator.
retryWhen() takes a notifier observable argument (an internal Observable object that
contains any errors that occurred during the execution of the stream, just like with
catch()) and repeats the source observable that errors at the pace of when this notifier
emits values. For instance, you can say “retry after 3 seconds,” as shown in figure 7.10.

requestQuote$ invokes the
Promise. This source obser-
vable is an outer observable
that you can use to make the
Promise observable retry thr
more times.

200 CHAPTER 7 Error handling with RxJS
In other words, if the provided error observable emits a value, the retry action is exe-
cuted. So you can use this observable to control when and how retries should take
place; it’s common to use timer observables to accomplish this. Let’s go back to our
numbers example to see this clearly:

Rx.Observable.of(2,4,5,8,10)
 .map(num => {

if(num % 2 !== 0) {
throw new Error(`Unexpected odd number: ${num}`);

}
return num;

 })
 .retryWhen(errors$ => errors$.delay(3000))
 ...

This will retry the observable sequence from the start and every 3 seconds thereafter
and repeat the numbers indefinitely or until the operation that threw the exception
becomes successful:

1
2
// 3 seconds wait...
1
2
// 3 seconds wait...
...
// and so on

You can also use retryWhen() to implement a fixed number of retries by keeping
track of the number of times the source observable has been retried. Remember, you
can use scan() to emit values at every accumulated interval:

const maxRetries = 3;

Rx.Observable.of(2,4,5,8,10)
 .map(num => {

Operator . retryWhen . OperatorSource observable
(or promise)

(err$) => err$.delay(3000)

retryWhen retries the source
observable when the error observable
emits a value, after a 3-second delay.

An internal observable is created
containing any errors that occurred.

You can use this observable to
control the behavior of retries.

Figure 7.10 Implementing retries with a constant wait of 3 seconds between retries

Using the delay operator to
plug in a three-second delay
between when each error
value is emitted

201The RxJS way of dealing with failure
if(num % 2 !== 0) {
throw new Error(`Unexpected odd number: ${num}`);

}
return num;

 })
 .retryWhen(errors$ =>

errors$.scan((errorCount, err) => {
 if(errorCount >= maxRetries) {

throw err;
 }
 return errorCount + 1;
}, 0)

)
 ...

Running this code prints the same result as previously, with the difference that instead
of running indefinitely, it will retry up to the maxRetries limit and then error, calling
the error() method on the observers. A more effective retry strategy used in cases
where remote requests are being made is a linear backoff, which alleviates the overall
load on the server. This technique is readily implemented in most major modern web-
sites; the first retry action occurs immediately, and subsequent actions occur after a
certain lag time, which increases linearly, as shown in figure 7.11.

Operator . retryWhen . Operator

If the operator
can’t recover, notify
all downstream
observers.

Additional 2-second
backoff between
each retry

Retry after 2 seconds

Operator . retryWhen . Operator

Retry after 4 seconds

Operator . retryWhen . Operator

Retry after 6 seconds

Figure 7.11 After each retry, the time between retries grows linearly. It starts with a two-second wait, and then
invokes the next retry call after 4 seconds, and then after 6 seconds, and so on.

202 CHAPTER 7 Error handling with RxJS
 Before we get into the code that implements this, we’ll introduce a new operator
called zip(). This operator merges the specified observable sequence into one by
using a selector function (a function that you provide to instruct zip() how to format
the events emitted) whenever all of the observable sequences have emitted values at a
corresponding index. This operator is frequently used in FP to merge two correspond-
ing arrays; for instance, zip() is implemented in Ramda.js:

const records = R.zip(
 ['RecordA', 'RecordB', 'RecordC'],
 ['123', '456', '789']
);
//=> [['RecordA', '123'],

['RecordB', '456'],
['RecordC', '789']

]

This works with streams just as well, as shown in the marble diagram in figure 7.12.

In some ways, zip() works like combineLatest(), except that the former matches the
index of the corresponding events one-to-one, as shown in figure 7.12, whereas the
latter just combines the latest values when any of the observables emits a value. Here’s
a simple numerical example illustrating this difference:

const s1$ = Rx.Observable.of(1, 2, 3, 4, 5, 6, 7, 8, 9);
const s2$ = Rx.Observable.of('a', 'b', 'c', 'd', 'e');

Rx.Observable.zip(s1$, s2$).subscribe(console.log);
//-> [1, "a"]

[2, "b"]
[3, "c"]
[4, "d"]
[5, "e"]

zip combines both arrays into
a multidimensional array,
associating each value at the
corresponding key.

zip(s1$, s2$, [selector])

The selector function determines
how the observers receive the
result of the merged stream.

s2$

s1$

Result [[

=> [];selector = ,

[[

Figure 7.12 Internal workings of zip with streams. Both stream events are combined at each index
irrespective of the time either event occurs.

203The RxJS way of dealing with failure

t

 Rx.Observable.combineLatest(s1$, s2$).subscribe(console.log);
//-> [9, "a"]

[9, "b"]
[9, "c"]
[9, "d"]
[9, "e"]

As you can see, zip() sticks to the array definition, merges both events, and matches
the corresponding indexes between the streams. In this case, s1$ continues to emit
more values, but because s2$ doesn’t, zip() ignores them—both have to emit events.
On the other hand, combineLatest() just merges the latest event of s1$ with what-
ever is the latest value emitted by s2$.

 Now that you know how to use zip(), you’ll implement a linear backoff that retries
the first time after 1 second, the next time after 2 seconds, and so on, as shown in the
following listing.

const maxRetries = 3;
Rx.Observable.of(2,4,5,8,10)
 .map(num => {

if(num % 2 !== 0) {
throw new Error(`Unexpected odd number: ${num}`);

}
return num;

 })
 .retryWhen(errors$ =>

Rx.Observable.range(0, maxRetries)
 .zip(errors$, val => val)
 .mergeMap(i =>
 Rx.Observable.timer(i * 1000)

.do(() => console.log(`Retrying after ${i} second(s)...`)))
)
 .subscribe(console.log);

With this retry strategy, the stream will attempt to run for a fixed number of times
(given by maxRetries), with a linearly incrementing time of 1 second between retries,
before finally giving up. Because you’re not throwing the exception, the stream halts
execution on every retry, generating the following output:

2
4
Retrying after 0 second(s)...
2
4
Retrying after 1 second(s)...

Listing 7.7 Implementing a linear backoff retry for our stock ticker stream

Returns an observable tha
will emit a maxRetries
number of events. So, if
maxRetries is 3, it will emit
events 3 - 0 = 3 times.

zip is used to combine one-to-one values from the source
observable (range) with the error observable. You pass a
selector function, known in FP as the identity function,
that returns the value of the first argument passed to it.

Merges map with a timer
observable based on the number of
attempts. This is what allows you to

emulate the backoff mechanism.

204 CHAPTER 7 Error handling with RxJS

par
t
a

obj
2
4
Retrying after 2 second(s)...
2
4

Although the following listing is pretty advanced, you can also bundle throwing the
exception if your goal is to signal the unrecoverable condition on your last retry
action, as shown in the next listing. You can do this by implementing some condi-
tional logic within the projected observable returned from mergeMap(). In this case, if
you’ve reached the last retry, you’ll project an observable with an exception; other-
wise, you’ll project the timer, just as before.

const maxRetries = 3;

Rx.Observable.of(2,4,5,8,10)
 .map(num => {

if(num % 2 !== 0) {
throw new Error(`Unexpected odd number: ${num}`);

}
return num;

 })
 .retryWhen(errors$ =>

Rx.Observable.range(0, maxRetries + 1)
 .zip(errors$, (i, err) => ({'i': i, 'err': err}))

 .mergeMap(({i, err}) => {
 if(i === maxRetries) {
 return Rx.Observable.throw(err);
 }
 return Rx.Observable.timer(i * 1000)

.do(() =>
console.log(`Retrying after ${i} second(s)...`));

})
)
 .subscribe(

console.log,
error => console.log(error.message)

);

Running this code prints the following:

2
4
Retrying after 0 second(s)...
2
4
Retrying after 1 second(s)...

Listing 7.8 Fixed count, linear backoff, and throwing exception if error persists

Uses a selector
function that

combines events
from both zipped

streams into a
single object

Destructures the
ameter to extract
he attempt count
nd the last error

ect that occurred

Because this code is inside a mergeMap() operator, it expects you to return an observable
object. You can use the throw() operator to create an observable that safely wraps an

exception object (throwing the error would also work, but this approach is more elegant).

205The RxJS way of dealing with failure
2
4
Retrying after 2 second(s)...
2
4
Unexpected odd number: 5

Using if/else here is not the most functional way of writing code, but it’s acceptable
in practice given that the scope is internal to the pipeline. But if you’re looking for a
purer approach that uses more lambda expressions and keeps the FP spirit high, RxJS
provides Rx.Observable.if(condition, then$, else$), which evaluates a given
condition function and either returns the then$ observable or the else$, respectively.
You’ll use this to refactor just that segment of code:

...

.retryWhen(errors$ =>
Rx.Observable.range(1, maxRetries)

.zip(errors$, (i, err) => ({'i': i, 'err': err}))

.mergeMap(({i, err}) =>
 Rx.Observable.if(() => i <= maxRetries - 1,

Rx.Observable.timer(i * 1000)
.do(() => console.log(`Retrying after ${i} second(s)...`)),

Rx.Observable.throw(err))
)

)
 ...

BEST PRACTICE The zip() operator can be very useful in cases when you
need to spread out a stream synchronously over time, just as you did in the
previous code samples. It’s not recommended when coordinating asynchro-
nous streams that emit at different times—combineLatest() is the operator
of choice in these cases. The reason for this is that zip() pairs the events one-
to-one, so it’s effective when the asynchronous streams it’s operating over
emit values with similar time intervals, which you can’t control all of the time.
So if you’re pairing a mouse-move observable that emits rapidly, for example,
with an AJAX call that emits every few seconds, you can easily cause its inter-
nal, unbounded buffer to overflow and your application to crash.

Finally, in order to be at feature parity with the imperative world of try/catch/
finally, RxJS provides the finally() operator. Just like the do() operator, this oper-
ator mirrors the source observable and invokes a specified void function after the
source observable terminates by invoking the observer’s complete() or error() meth-
ods. So the expectation is that finally() could perform some kind of side effect, if
need be, such as cleanup actions. This is perfect for our stock ticker widget, which

Uses the if() operator (also called the functional
combinator) to select between two streams,
depending on the evaluation of the condition function

If the condition returns true, project
this observable; otherwise, project the

observable created in the else block.

Otherwise, use throw() to
propagate an exception
downstream to subscribers.

206 CHAPTER 7 Error handling with RxJS
shows a counter of the last time the stock quotes were updated. In this case, you can add
another subscription to the twoSecond$ observable for updating the last updated date:

const lastUpdated = document.querySelector('#last-updated');

const updateSubscription = twoSecond$.subscribe(() => {
 lastUpdated.innerHTML = new Date().toLocaleTimeString();
});

Remember that you can have a list of subscribers for the same event, so separating the
logic for updating different portions of the site keeps the code under the observer nice
and simple. If you had, say, three components that needed to change as a result of a
stream emitting events, you could attach three observers and update the different por-
tions of the site accordingly. So you have two subscribers: the one we just showed you
and another used to fetch the stock data, to which you’ll add error-handling code. If
the web service call made in the fetchDataInterval$ observable were to fail (return-
ing a 500 HTTP response code, for example), the catch() operator would react and
return a default value for that stock quote section, as shown in the next listing.

const requestQuote$ = symbol =>
Rx.Observable.fromPromise(
ajax(webservice.replace(/\$symbol/, symbol)))

.map(response => response.replace(/"/g, ''))

.map(csv)

.catch(() =>
 Rx.Observable.of([new Error('Check again later...'), 0]))

.finally(() => {
 updateSubscription.unsubscribe();

});

The other code you added was the finally() operator, which fires when a stream
completes or when it errors. Because you’re running a two-second interval, you don’t
expect a completion, but in the event of an error, you should also clean up the inter-
val and cancel the subscription, so that the updated time shown reflects the last
quoted update received before the error occurred. You can see this process in the
graph in figure 7.13.

 And now you need to make a small adjustment to the tick$ observable, so that it
knows how to handle an error. You can use our Try functional data type to handle
this, and if a failure does occur, delegate the exception to the error callback of the
observer. Here’s that code once more with the new addition:

Listing 7.9 Stock ticker with error handling

Adds catch() to handle
the exception

potentially thrown
from requestQuote$

In the event an error occurs, cancels
the twoSecond$ interval observable
through its subscription object.

207The RxJS way of dealing with failure
ticks$
 .map(([symbol, price]) => [Try.of(symbol).getOrElseThrow(), price])
 .subscribe(
 ([symbol, price]) => {

let id = 'row-' + symbol.toLowerCase();
let row = document.querySelector(`#${id}`);
if(!row) {
 addRow(id, symbol, price);

}
else {
 updateRow(row, symbol, price);

}
 },
 error => console.log(error.message));

If this service were to fail (or your internet disconnect), you’d see “Check again
later…” printed in the console.

 As you can see, RxJS provides a comprehensive set of error-handling operations
that allows you to easily retry an entire observable sequence when an error is detected
in the pipeline. But we made a huge assumption about the nature of the observable
sequences. That is, the observables that we created and retried in this chapter belong
to a category known as cold observables. Cold observables are passive (dormant) and
emit values only when subscribed to: an array of numbers, a Promise, intervals, and
the like. In other words, retrying a cold observable basically resubscribes to it and
requests that it emit its values again. In the next chapter, you’ll learn to create and
handle the different types of observables: cold and hot.

Before the data is handed
down to the subscriber,

Try can inspect it and
decide if the data flowing

in is an exception that
needs to be thrown.

twoSecond$

Operator

catch finally

requestQuote$

unsubscribe

mergeMap

fetchDataInterval$

1. Function throws
an exception

2. The exception bubbles up to the
source stream. You catch it and
propagate a default message
down to the observer.

3. The finally operator
unsubscribes to cancel
the interval stream.

Figure 7.13 Using finally to clean up and cancel any outstanding streams

208 CHAPTER 7 Error handling with RxJS
7.5 Summary
 Imperative error handling has many drawbacks that make it incompatible with FP.
 Value containers, like Try, provide a fluent, expressive mechanism for trans-

forming values immutably.
 The Try wrapper is a functional data type used to consolidate and abstract

exception handling so that you can sequentially map functions to values.
 RxJS implements many useful and powerful operators that allow you to catch

and retry failed operations in a way that doesn’t break the flow of the stream
and the declarative nature of an RxJS stream declaration.

 RxJS provides operators such as catch(), retry(), retryWhen(), and finally()
that you can combine to create sophisticated error-handling schemes.

Part 3

Mastering RxJS

Now that you have a firm grasp of the basics of RxJS, it’s time to start
working with some advanced techniques. We’ll cover sharing your streams
between observers, as well as a detailed discussion of eager versus lazy types and
how observables are able to handle both scenarios gracefully. We’ll also go back
to some concepts about time that we only teased you with in the first part of the
book; we’ll show you how to use them to build powerful declarative tests that can
run with user-defined concepts of time.

 In chapter 8, we’ll talk about the difference between hot and cold streams,
how to identify the two types, and how to move between them easily using RxJS
operators. Chapter 9 covers reactive testing and provides an introduction to the
scheduling abstraction, which is a powerful concept that allows you to run tests
faster than real time. Finally, in chapter 10 we’ll wrap up by bringing together
everything you’ve learned to create a basic banking application using React,
Redux, and RxJS. This combo will help give you an idea of the potential for inte-
gration afforded by RxJS, as well as the strategies and benefits of maintaining a
single-directional flow of events through an application.

Heating up observables
As you know, an observable function is a lazy computation, which means the entire
sequence of operators that encompass the observable declaration won’t begin exe-
cuting until an observer subscribes to it. But have you ever thought about what hap-
pens to all the events that occur before subscription happens? For instance, what
does a mouse move observable do with all the mouse events or a WebSocket that
has received a set of messages? Do these potentially very important occurrences get
lost in the ether? The reality is that these active data sources won’t wait for subscrib-
ers to listen to begin emitting events, and it’s vital for you to know how to deal with
this situation. Earlier, we briefly called out this idea that observables come in two

This chapter covers
 The difference between hot and cold observables

 Working with WebSockets and event emitters via
RxJS

 Sharing streams with multiple subscribers

 Understanding how hot and cold pertains to how
the producer is created

 Sending events as unicast or multicast to one or
multiple subscribers
211

212 CHAPTER 8 Heating up observables
different flavors: hot and cold. This isn’t a simple topic to grasp; it’s probably one of
the most complex in the RxJS world, which is why we dedicate an entire chapter to it.

 In this chapter, we’ll take a closer look at hot and cold observables, how they differ,
the benefits of each, and how you can take advantage of this in your own code. Up until
now, we’ve had only a single subscriber to a stream, and we even looked at combining
multiple streams funneled through one observer in chapter 6. Now, we take the oppo-
site approach as we look into sharing a single observable sequence with multiple observ-
ers. For instance, we can take a simple numerical stream and share its values with
multiple subscribers or take a single WebSocket message and broadcast it to multiple
subscribers. This is very different from the single-stream subscriber cases we’ve dealt
with. We’ll begin by demonstrating the differences between hot and cold observables.

8.1 Introducing hot and cold observables
Think about when you turn on your TV set and switch to the channel of your favorite
show. If you catch the show 10 minutes after it began, will it start from the beginning?
Restarting the show would mean that cable companies broadcast independent streams
to every subscriber—which would be great. Instead, the same content is broadcast to
all subscribers at a set time. So unless you have a recording device, which you can asso-
ciate with a buffer operator, you can’t replay content that aired in the past.

 A TV’s live stream is equivalent to a hot observable. RxJS divides observable sources
into either of two categories: hot or cold. These categories determine the behavioral
characteristics, not just of subscription semantics, but also of the entire lifetime of the
stream. An observable’s temperature also affects whether the stream and the producer
are managed together or separately, which can greatly affect resource utilization (we’ll
get to this shortly). We classify an observable as either hot or cold based on the nature
of the data source that it’s listening to. Let’s begin with cold observables.

8.1.1 Cold observables

In simple terms, a cold observable is one that doesn’t begin emitting all of its values until
an observer subscribes to it. Cold observables are typically used to wrap bounded data
types such as numbers, ranges of numbers, strings, arrays, and HTTP requests, as well
as unbounded types like generator functions. These resources are known as passive in
the sense that their declaration is independent of their execution. This also means
that these observables are truly lazy in their creation and execution.

 Now, this isn’t news to you, because that’s what we’ve defined an observable to be
all along, so what’s the catch? Being cold means that each new subscription is creating
a new independent stream with a new starting point for that stream. This means that
subscribers will independently receive the exact same set of events always, from the
beginning. Here’s another way to conceptualize it: when creating a cold observable,
you’re actually creating a plan or recipe to be executed later—repeatedly, top to bot-
tom. The recipe itself is just a set of instructions (operators) that tell the JavaScript
runtime engine how to combine and cook the ingredients (data); cold observables
begin emitting events only when you choose to start cooking.

213Introducing hot and cold observables

PURE OBSERVABLES Observables are pure when they abide by the FP princi-
ples of a pure function, which is immutable, side effect–free, and repeatable.
We’ve talked about the first two principles at length in this book, and now we
tag on this third quality. In order to support the desirable functional property
of referential transparency, functions must be repeatable and predictable,
which means that invoking a function with the same arguments always yields
the same result. The same holds for cold observables when viewed simply as
functions that produce (return) a set of values.

From a pure FP perspective, you can think of cold observables as behaving very much
like functions. A function can be thought of as a lazy or to-be-computed value that’s
returned when you invoke it, only when needed (languages with lazy evaluation, like
Haskell, work this way). Similarly, observable objects won’t run until subscribed to,
and you can use the provided observers to process their return values. You can visual-
ize this resemblance in figure 8.1.

 Furthermore, the declaration of a cold observable frequently begins with static
operators such as of() or from(), and timing observables interval() and timer()
also behave coldly. Here’s a quick example:

const arr$ = Rx.Observable.from([1,2,3,4,5,6,7,8,9]);

const sub1 = arr$.subscribe(console.log);

// ... moments later ... //
const sub2 = arr$.subscribe(console.log);

const evenNumbers$ = Rx.Observable.fromArray(numbersArr)
 .filter(num => num % 2 === 0);

evenNumbers$.subscribe(num => {
// Use even num here

});

Input

Return value

Body

Cold observable

const evenNumbers = function (numbersArr) {
 return numbersArr.filter(num => num % 2);
};

evenNumbers(); //-> Use even numbers here

Function

Figure 8.1 A cold observable can be thought of as a function that takes input—data that is to be
processed—and, based on this, returns an output to the caller.

Every subscriber gets their own
independent copy of the same
data no matter when the
subscription happens.

sub2 could have subscribed moments
later, yet it still receives the entire
array of elements.

214 CHAPTER 8 Heating up observables
With cold observables, all subscribers, no matter at what point the subscription
occurred, will observe the same events. Another example is the interval() operator.
Each time a new subscription occurs, a brand-new interval instance is created, like in
figure 8.2.

 interval acts like a factory for timers, where each timer operates on its own sched-
ule and each subscription can, therefore, be independently created and cancelled as
needed. Cold observables can be likened to a factory function that produces stream
instances according to a template (its pipeline) for each subscriber to consume fully.
The following listing demonstrates that you can use the same observable with two sub-
scribers that listen for even and odd numbers only, respectively.

const interval$ = Rx.Observable.interval(500);

const isEven = x => x % 2 === 0;

interval$
 .filter(isEven)
 .take(5)
 .subscribe(x => {

console.log(`Even number found: ${x}`);
 });

interval$
 .filter(R.compose(R.not, isEven))
 .take(5)
 .subscribe(x => {

console.log(`Odd number found: ${x}`);
 });

CODE SAMPLES Remember that all the code for this chapter can be found in
the RxJSinAction GitHub repository, https://github.com/RxJSInAction/rxjs-
in-action.

Listing 8.1 Interval factory

500-millisecond interval set
between events for all subscribers

All subscriptions
receive the same
events.

interval1$(500)1 2 3 4 5

const sub1 = interval1$.subscribe(console.log) //-> 1,2,3,4,5,...

const sub2 = interval1$.subscribe(console.log) //-> 1,2,3,4,5,...

Figure 8.2 A cold observable is like an object factory, which can be used to create a family of
subscriptions that will receive their own independent copy of all the events pushed through them.

Two subscriptions for the
same observable, interval$

Two subscriptions for the
same observable, interval$

https://github.com/RxJSInAction/rxjs-in-action
https://github.com/RxJSInAction/rxjs-in-action

215Introducing hot and cold observables
In the example in listing 8.1, the streams are independently created from one
another. Each time a new subscriber subscribes, the logic in the pipeline is reexecuted
from scratch. So these streams all receive the same numbers and don’t affect each
other’s progress—they’re isolated, as shown in figure 8.3.

DEFINITION A cold observable is one that, when subscribed to, emits the
entire sequence of events to any active subscribers.

Now, we’re ready to heat things up and look closely at the other side of the coin: hot
observables.

8.1.2 Hot observables

Streams don’t always start when you want them to, nor can you reasonably expect that
you’d always want every event from every observable. It may be the case that by delaying
subscription, you deliberately avoid certain events like an implicit version of skip().

 Hot observables are those that produce events regardless of the presence of sub-
scribers—they are active. In the real world, hot observables are used to model events
like clicks, mouse movement, touch, or any other events exposed via event emitters.
This means that, unlike the cold counterpart where each subscription triggers a new
stream, subscribers to hot observables tend to receive only the events that are emitted
after the subscription is created, as shown in figure 8.4.

 A hot observable continues to remain lazy in the sense that without a subscriber, the
events are simply emitted and ignored. Only when an observer subscribes to the stream
does the pipeline of operators begin to do its job and the data flow downstream.

 This type of stream is often more intuitive to many developers because it closely
mirrors behaviors they’re already familiar with in Promises and event emitters.

PROMISES AND HTTP CALLS Although a conventional HTTP request is cold, it
isn’t when a Promise is used to resolve it. As you’ll learn in a bit, a Promise of
any type represents a hot observable because it’s not reexecuted after it’s
been fulfilled.

interval1$(500)

First
subscription

Second
subscription

Time (ms)

500 1000 1500 2000

...

Both streams receive the same
events with the same frequency.

Figure 8.3 Resubscribing to an interval observable yields two independent sequences,
with the same events happening with the same frequency; hence, this is a cold observable.

216 CHAPTER 8 Heating up observables
Because of the unpredictable and unrepeatable nature of the data that hot observ-
ables emit, you can reason that they’re not completely pure, from a theoretical per-
spective. After all, reacting to an external stimulus, like a button click, can be
considered a form of side effect dependent on the behavior of some other resource,
like the DOM, or simply time. Nevertheless, from the point of view of the application
and your code, all observables can be considered pure.

 Unlike cold observables that create independent copies of the data source to emit
to every subscriber, a hot observable shares the same subscription to all observers that
listen to it, as shown in figure 8.5. Therefore, you can conclude that a hot observable
is one that, when subscribed to, emits the ongoing sequence of events from the point
of subscription and not from the beginning.

 Whether an observable is hot or cold is partly related to the type of source that it’s
wrapping. For instance, in the case of any mouse event handler, short of creating
some new mechanism for handling mouse events, an observable is merely abstracting
the existing addEventListener() call for a given emitter. As a result, the behavior of
mouse event observables is contingent on the behavior of the system’s handling of
mouse events. You can further categorize this source as natively hot, because the
source is determining the behavior. You can also make sources hot, programmatically,
using operators as well, and we’ll discuss this further in the sections to come.

 On the other hand, observables that either wrap a static data source (array) or use
generated data (via a generator function) are typically cold, which means they don’t
begin producing values without a subscriber listening to them. This is intuitive
because, like iteration, stepping through a data source requires a consumer or a client.

Subscription
start

As the mouse moves, it
generates an unpredictable
number of events.

Events are
discarded.

Events emitted
to subscribers

EndStart

Drag mouse

mouseMove$ m m m m m

Time

m m m m m

Figure 8.4 A mouse move handler generates unbounded events that can be captured as soon as
the HTML document loads, but these events will be ignored until the stream has been created and
the observer subscribed to it.

217A new type of data source: WebSockets
A key selling point for using RxJS is that it allows you to build logic independently of
the type of data source you need to interact with—we called this a unifying computing
model. A source can emit zero to thousands of events unpredictably fired at different
times. Nevertheless, the abstraction provided by the observable type means that you
don’t have to worry about these peculiarities when building the logic inside the
stream or within the context of the observable. This interface abstracts the underlying
implementation out of sight and out of mind—for the most part.

DEFINITION Hot observables are those that produce events regardless of the
presence of subscribers.

In general, it’s better to use cold observables wherever possible because they’re inher-
ently stateless. This means that each subscription is independent of every other sub-
scription, so there’s less shared state to worry about, from an internal RxJS
perspective, because you know a new stream is starting on every subscription.

8.2 A new type of data source: WebSockets
In chapter 4, we mentioned that time ubiquitously exists in observables—in hot
observables, to be exact. This disparity between when a data source begins emitting
events and when a subscriber starts listening can lead to issues. Think about that TV
show that you switched to midprogram. In such contexts, unless you’ve watched the
show before tuning in, you’ll miss some context or plot that was presented at the
beginning. In the same vein, you can imagine a simple messaging system using a pro-
tocol like WebSockets—or any other event emitter, for that matter. In these cases,
missing any messages can be critical to the proper functioning of your application. So
if a subscription to a hot observable occurs after a critical message packet arrives, then
those instructions might be lost. We haven’t talked about using WebSockets with RxJS,
so let’s begin by briefly examining what they are and how RxJS can help you handle
these asynchronous message flows.

mouseMove$

First
subscription

Second
subscription

Time (ms)

500 1000 1500 2000

...

...

......

The ongoing stream is shared with all
subscriptions after their start points.

Figure 8.5 Hot observables share the same stream of events to all subscribers. Each
subscriber will start receiving events currently flowing through the stream after subscription.

218 CHAPTER 8 Heating up observables
8.2.1 A brief look at WebSocket

Aside from binding to DOM events and AJAX calls, RxJS can just as easily bind to Web-
Sockets. WebSocket (WS) is an asynchronous communication protocol that provides
faster and more efficient lines of communication from client to server than traditional
HTTP. This is useful for highly interactive applications like live chats, streaming ser-
vices, or games. Like HTTP, WS runs on top of a TCP connection, but the advantage is
that information can be passed back and forth while keeping the connection open
(taking advantage of the browser’s multiplexing capabilities and the keep-alive fea-
ture). The other benefit is that servers can send content to the browser without it
explicitly requesting it.

 Figure 8.6 shows a simplified view of WS communication. It begins with a hand-
shake, which bridges the world of HTTP to WS. At this time, details about the connec-
tion and security are discussed to pave the way for secure, efficient communication
between the parties involved.

 The steps taken between the client and the server, illustrated in figure 8.6, are
these:

1 Establish a socket connection between parties for the initial handshake.
2 Switch or upgrade the communication protocol from regular HTTP to a socket-

based protocol.
3 Send messages in both directions (known as full duplex).
4 Issue a disconnect, via either the server or the client.

TimeTime

Event is emitted

Connection is kept
alive throughout
communication

Handshake

Bidirectional messages

message

close

Either side closes

open

Client Server

Figure 8.6 WebSocket communication diagram showing communication that begins
with a handshake where client and server negotiate the terms of the connection.
Afterward, communication flows freely until one of the parties closes.

219A new type of data source: WebSockets
The crucial point of this process is the initial handshake that negotiates the upgrade
process. The upgrade needs to happen because WebSocket uses the same ports 80
and 443 for HTTP and HTTPS, respectively (443 is used by the WebSockets Secure pro-
tocol). Routing requests through the same ports is advantageous because firewalls are
typically configured to allow this information to flow freely. At a very high level, this
process happens with an initial secure request by the client and a proper response by
the WebSocket-supporting server, shown in figure 8.7.

 From the point of view of asynchronous event messaging, you can think of Web-
Socket as an event emitter for client-server communication. We haven’t really talked
about server-side RxJS, but little changes there. You can easily use RxJS to support
both sides of the coin, starting with the server.

8.2.2 A simple WebSocket server in Node.js

In the spirit of a JavaScript book, we’ll write our server using Node.js. But you can use
any other platform of your liking such as Python, PHP, Java, or any other platform with
a socket API. Our server side will be a simple TCP application listening on port 1337
(chosen arbitrarily) using the Node.js WebSocket API. WebSocket negotiates with the
HTTP server to be the vehicle to send and receive messages. Once the server receives a
request, it will respond with the message “Hello Socket,” as follows.

const Rx = require('rxjs/Rx');
const WebSocketServer = require('websocket').server;
const http = require('http');

// ws port
const server = http.createServer();
server.listen(1337);

// create the server
wsServer = new WebSocketServer({
 httpServer: server
});

Listing 8.2 Simple RxJS Node.js server

Secure key

Accept

HTTP/1.1 101 WebSocket protocol handshake
Upgrade: WebSocket
Connection: Upgrade

GET HTTP/1.1
Upgrade: WebSocket

Client Server

Figure 8.7 The handshake negotiation process begins with the client’s GET request containing a
secure key and instructions for the server to attempt to upgrade to a message-based WebSocket
connection. If the server understands WebSocket, it will respond with a unique hash confirming the
protocol upgrade.

Imports the RxJS core APIs

Imports the WebSocket
server library

Imports the
HTTP library

Instantiates an HTTP server to
begin listening on port 1337

https://github.com/ReactiveX/rxjs/blob/master/src/operator/publish.ts
https://github.com/ReactiveX/rxjs/blob/master/src/operator/publish.ts
https://github.com/ReactiveX/rxjs/blob/master/src/operator/publish.ts

220 CHAPTER 8 Heating up observables

Re
m

Rx.Observable.fromEvent(wsServer, 'request')
 .map(request => request.accept(null, request.origin))
 .subscribe(connection => {

connection.sendUTF(JSON.stringify({ msg:'Hello Socket' }));
 });

You can run the server with Node.js using the CLI (for details about setting up RxJS on
the server, please visit appendix A):

> node server.js

Now that your server is up and listening, you can build the client again using RxJS—
one library to rule them all!

8.2.3 WebSocket client

Modern browsers come equipped with the WebSocket APIs, which allow for an interac-
tive communication with a server. Using these APIs, you can send messages to a server
and receive event-driven responses (server push) without you having to explicitly poll
for data, which is what you would do with regular HTTP requests. The next listing
shows a simple WebSocket connection using RxJS.

const websocket = new WebSocket('ws://localhost:1337');

Rx.Observable.fromEvent(websocket, 'message')
 .map(msg => JSON.parse(msg.data))
 .pluck('msg')
 .subscribe(console.log);

WebSockets are a form of loosely decoupled communication between two entities, in
this case a browser and a server, that act as event emitters. This goes back to the idea
of using a familiar computing model for everything. In essence, with RxJS, the details
of setting up event listeners for WebSocket communication are completely abstracted
and removed from your code.

REACTIVE MANIFESTO A good design principle of reactive systems is that they
communicate using asynchronous message passing, in order to establish a
boundary between loosely coupled components.1 This not only allows compo-
nents to evolve independently but also delegates failures as messages. This
means non-local components can react to errors appropriately.

Just like any event emitter, using RxJS with WebSocket creates a hot observable, which
means it won’t reenact all the messages emitted upon subscription but merely begin

Listing 8.3 WebSocket client with RxJS

1 http://www.reactivemanifesto.org/.

Reacts to the request
received event

Sends a JSON object packet once
a connection is established

Listens for the ‘message’ events used to
transmit messages between client and server

Connects to port 1337 using the
WebSocket (ws) protocol

Parses the serialized
string into a JSON objectads the

essage

http://www.reactivemanifesto.org/

221The impact of side effects on a resubscribe or a replay
pushing any that occur thereafter. This can be tricky because subscribing to a hot
observable a little too late can result in a loss of data. Consider this slight variation of
listing 8.3:

Rx.Observable.timer(3000)
 .mergeMap(() => Rx.Observable.fromEvent(websocket, 'message'))
 .map(msg => JSON.parse(msg.data))
 .pluck('msg')
 .subscribe(console.log);

In this stream, you tie WebSocket subscription to a wait time (3 seconds). You arbi-
trarily set this wait time in order to simulate a delay such as one caused by page initial-
ization—essentially, you create a time dependency. Recall the WebSocket handshake
diagram; as soon as the socket fires the open event, this hot observable can begin
emitting events. Thus, if the socket opening occurs before the page has completed its
initialization step, the observable will potentially miss any events emitted in the inter-
vening period.

 As an added complication, time dependencies aren’t necessarily deterministic. In
this scenario, you added a simple three-second timeout, but your page load or initial-
ization logic could be much more complex. It could be affected by any number of
variables, such as whether the application was loaded from a cache, how many
resources the user’s system has available for processing requests, how much network
latency is present, or even how much animation is on the page, because they all can
change when the page initialization occurs or when the WebSocket connects and
begins sending events.

 Certainly a dependency on time can be significant in an observable’s behavior, to
the point of breaking the nice functional quality that cold observables possess. Ideally,
every subscriber to a cold observable should see the same sequence of events
replayed, but this isn’t always the case, because there’s a big difference between resub-
scribing and replaying when side effects are at play.

8.3 The impact of side effects on a resubscribe or a replay
As you saw from the previous use case, hot observables, for the most part, follow a
strict you-snooze-you-lose policy, which means you can’t replay the contents of a hot
observable by resubscribing to it, as you can with cold observables (there are ways of
doing it, but this isn’t the default behavior). Now, this doesn’t mean that all cold
observables behave this way, especially when you introduce side effects into your code.
Before we discuss this further, you need to understand the difference between resub-
scribing and replaying in RxJS:

 A replay is about reemitting the same sequence of events to each subscriber—in
effect, replaying the entire sequence. You must use caution when attempting to
replay sequences because they potentially require using lots of memory (often
with unbounded buffers) to store the contents of a stream that is to be reemitted

Wraps the socket object after
a three-second delay

222 CHAPTER 8 Heating up observables
at a later time. For obvious reasons, we recommend against doing this with
streams like mouse clicks or any other infinite event emitter.

 A good example of replay semantics is a Promise. Replaying the observable cre-
ated from a Promise by means of a retry or simply attaching new subscribers
doesn’t cause the fulfilled Promise to invoke again but simply to return the
value or the error, as the case may be.

 A resubscribe re-creates the same pipeline and reexecutes the code that produces
events. Although the results emitted by the producer will be implementation
dependent, if your observable pipeline remains pure, then you can guarantee
that all subscribers will receive the same events for the same input produced.

8.3.1 Replay vs. resubscribe

The difference is subtle but important. In essence, it’s about whether the pipeline
(your business logic) gets reexecuted or not when another subscriber starts listening.
Most of the canned observable factory methods—create(), interval(), range(),
from(Array|scalar|generator*), and others—are cold by default. The diagram in
figure 8.8 illustrates the differences between these mechanisms. A replay emits the
same output to all subscribers without invoking the operator sequence.

In contrast, a cold resubscribe (figure 8.9) invokes the sequence of operators that lead
to the result for every subscriber.

 We’ll show a simple example showcasing both scenarios and the impact a side
effect can have. For this, you’ll build custom observables whose behavior depends on
the time of day (a side effect). In this case, you’ll emit events until the time reaches
10:00 p.m., at which point they’ll fire the complete signal.

8.3.2 Replaying the logic of a stream

To showcase how a replay works, consider a body of time-sensitive code wrapped in a
Promise that will emit a value of “Success!” before 10:00 p.m. or throw an exception if
executed after. The first observer that subscribes before 10:00 p.m. will cause the

Observable sequence
is invoked once

Result is shared with
all subscribers

Operator 1 Operator 2 Operator N Subscriber 2

Subscriber 3

Subscriber 1
Events from

producer

Figure 8.8 When replaying, the output emitted by an observable sequence is shared or broadcast to all subscribers.

223The impact of side effects on a resubscribe or a replay
Promise to execute and resolve. Any observers that subscribe later will receive the
same value without invoking the body of the Promise. The business logic is ignored:

const p = new Promise((resolve, reject) => {
 setTimeout(() =>{
 let isAtAfter10pm = moment().hour() >= 20;
 if(isAtAfter10pm) {

reject(new Error('Too late!'));
 }
 else {

resolve('Success!');
 }
 }, 5000);
});

const promise$ = Rx.Observable.fromPromise(p);

promise$.subscribe(val => console.log(`Sub1 ${val}`));

// ... after 10 pm ...//
promise$.subscribe(val => console.log(`Sub2 ${val}`));

Regardless of the time of the subscription, any observers that subscribe to this stream
receive the same value, whether it’s a success or failure. This cold observable behaved
predictably, but this is only because of the way Promises work. Querying the result of a
fulfilled Promise always outputs the same value. So the body of the Promise, in this
case, doesn’t actually run when the second subscribe occurs—this is a replay, and the
fromPromise() static operator is hot. Now let’s look at the case of a resubscribe.

Events from
producer

A resubscribe causes the
producer to emit and the
observable sequence
to run again.

Subscribers observe an
independent set of events
(which could vary with
side effects).

Operator 1 Operator 2 OperatorN Subscriber 1

...

Subscriber 2

Observable sequence runs and
pushes results to the first subscriber

Figure 8.9 A resubscribe causes the producer and the observable sequence to execute. If the operator sequence
has side effects, then new subscribers could see different results.

Uses moment.js to check if
the current time is 10:00 p.m.

First subscriber
executes the Promise

Second subscriber will emit the same value, regardless
of the time it subscribed, because it won’t run the code

within the body of the Promise

224 CHAPTER 8 Heating up observables
8.3.3 Resubscribing to a stream

Consider this custom observable that emits numbers every second with, again, two
observers subscribed to it at different times. The first subscription, Sub1, happens
before 10:00 p.m. and immediately begins receiving events, whereas the second, Sub2,
happens after and is terminated immediately:

"Sub1 Starting interval..."
"Sub1 Next 0"
"Sub1 Next 1"
"Sub1 Next 2"

"Sub2 Starting interval..."

Let’s examine this code. The reason this behaves differently compared to the code in
the previous section is that the create() factory operator is cold by default:

const interval$ = Rx.Observable.create(observer => {
 let i = 0;

 observer.next('Starting interval...');
 let intervalId = setInterval(() => {

 let isAtAfter10pm = moment().hour() >= 20;

 if(isAtAfter10pm) {
clearInterval(intervalId);
observer.complete();

 }

 observer.next(`Next ${i++}`);
 }, 1000);
});

 // ... before 10 pm ... //
const sub1 = interval$.subscribe(val => console.log(`Sub1 ${val}`));

// ... after 10 pm ... //
const sub2 = interval$.subscribe(val => console.log(`Sub2 ${val}`));

Resubscribing to this stream (with sub2) would create a new, independent stream, but
it won’t just blindly propagate the same values again. Instead it re-invokes the logic so
that different subscribers would receive (or not) events based on when they sub-
scribed. If the time reaches 10:00 p.m. before subscriber sub2 has a chance to listen, it
won’t receive any events at all. So the fact that the observable begins emitting events
when subscribed to indicates that it’s a cold observable. But because you have a side
effect in your code, preventing it from replaying the sequence, the results that sub-
scribers see might be significantly different.

SIDE EFFECT ALERT As we mentioned, the direct use of time in your code is
clearly a sign of a side effect because, intuitively, it’s global to your application
and ever changing. This is why hot observables are the less-pure form when
compared to cold observables, which should reemit (or replay) all the items
to any subscribers.

Subscription occurs before 10
p.m. and begins to receive values

Subscription occurs after, so observer
never sees the numbers emitted.

Uses moment.js to check if the
current time is 10:00 p.m.

Stops emitting events

Subscriber sub1
begins listening.

After 10 p.m., sub2 subscribes but ends immediately.

225The impact of side effects on a resubscribe or a replay
In the same vein, consider an operator you saw in the last chapter, retry(), which per-
forms a resubscribe on an observable when an error occurs. Let’s revisit using it as
part of your stock ticker stream. Using retry() directly on the Promise seemed like a
good idea:

const requestQuote$ = symbol =>
Rx.Observable.fromPromise(

ajax(webservice.replace(/\$symbol/, symbol)))
.retry(3)
.map(response => response.replace(/"/g, ''))
.map(csv);

You might expect to retry a web request if it fails, resulting in up to four requests sent
to the server before an error is finally served. But we mentioned a small caveat in that
you may have then been surprised to see that the network debugger showed only a sin-
gle request being executed. Why? Let’s look at this in the context of hot and cold
observables.

 This goes back to our examination of how sources affect the behavior of observ-
ables. A Promise is an eager data type (read hot observable), which means that upon cre-
ation it can only ever resolve or reject and will do so even without listeners. Promises
are not retriable. So once it’s in one of those two states, it stays there, and every new
handler will receive either the resolved value or the error that caused the rejection.
Because Promises don’t have retry, any attempt to retry through fromPromise() is
futile because it just replays whatever the final state of the Promise is, by design. Recall
that to get around this limitation, you wrapped the creation of the Promise in another
observable, which is retriable, so that the operation contained inside it (the Promise)
could be retried. That’s why you moved it to its outer observable:

const fetchDataInterval$ = symbol => twoSecond$
.mergeMap(() => requestQuote$(symbol))
.retry(3)
.catch(err => Rx.Observable.throw(

new Error('Stock data not available. Try again later!')));

Remember that this worked because you actually created a new Promise within the
mergeMap() operator and the retry is resubscribing to the projected observable and
not to the one created directly in fromPromise(). The resubscription rebuilds the
pipeline and reexecutes it for the single value that you passed into it. So now you have
a complete and deep understanding of why this technique works. You changed the
temperature of this observable, so that it essentially behaves cold.

 To summarize, resubscribing to a cold observable creates independent event chan-
nels for each subscriber, which means each observer creates its own copy of the pro-
ducer. In most situations, this is desirable. For instance, if you use observables to
process a set of objects originating from a generator function, you’ll definitely want to

The inner observable that’s projected
onto the two-second stream

This is the observable that retries the failed stream
three more times; if not successful, it catches and
propagates the error downstream.

226 CHAPTER 8 Heating up observables
work on copies of this producer (created via the cold from() static operator) instead
of sharing it. On the other hand, replaying can be effective and save you precious
computing cycles when your intent is to broadcast or share the output of an observ-
able sequence to multiple observers.

 In practice, when the producer resource is expensive to create, such as a remote
HTTP call or a WebSocket, then sharing it is a smart thing to do. Let’s examine how to
heat up observables to accomplish this.

8.4 Changing the temperature of an observable
The resubscription mechanism of cold observables is easy to reason about because
each stream carries its own copy of the producer, spawning a new pipeline back up to
the source. This happens in RxJS by default when wrapping synchronous data sources
like scalars and arrays but also through custom observables containing asynchronous
data sources such as remote event emitters, AJAX calls, or WebSockets that are created
within the observable context. In all these cases, you deal with cold observables. From
a functional point of view, this is the purest solution because no data is being shared
and the observable acts like a template (or a recipe, as we mentioned previously) for
creating data, as shown in figure 8.10.

But when resources are scarce, doing this can pose significant problems. In practice,
it’s beneficial to spawn one HTTP request, have a single event emitter instance, or cre-
ate one WebSocket connection that many observers can share, instead of one for
each. In section 8.3, we showed that wrapping an external socket (created outside the
observable context) represents a hot observable. The WebSocket object in this case is
the producer of data, and it’s important to understand that the scope in which it’s cre-
ated is the ultimate thermometer, so to speak, to measure whether an observable is
considered hot or cold.

Every subscriber gets the same set
of events (assuming pure functions
are applied in each operator).

Subscriber 2 a b c

Subscriber 3 a b c

Subscriber 1 a b c

Cold
observable

Figure 8.10 New subscribers
to cold observables fork the
event sequence and obtain their
own copy.

227Changing the temperature of an observable
8.4.1 Producers as thermometers

Ben Lesh, who is the project lead for RxJS 5, wrote an interesting piece on
Medium.com2 that explains hot and cold observables from the perspective of the
producer (that is, WebSockets, eager HTTP requests via Promises, and event emitters).
He articulates it eloquently as follows:

COLD is when your observable creates the producer.

HOT is when your observable closes over the producer.

In this article, he treats producers as a generic object of type Producer, which represents
any object capable of emitting data asynchronously—without necessarily being iterated
over. Let’s examine the terminology he uses. A cold observable “creates the producer,”
meaning that it’s created within the scope of the observable context, for instance:

const cold$ = new Rx.Observable(observer => {
 const producer = new Producer();

 // ...Observer listens to producer,
 // producer pushes events to the observer...

 producer.addEventListener('some-event', e => observer.next(e));

 return () => producer.dispose();
});

When this stream object is garbage collected, the underlying producer object gets col-
lected with it. Likewise, when the stream is disposed of, it will invoke the mechanism
to discard the producer as well. The other implication is that anything that subscribes
to cold$ will obtain its own copy of the producer object, as we’ve mentioned before.
This one-to-one communication between a producer and a consumer (observer) is
referred to as unicast.

UNICAST In the world of computer networking, a unicast transmission
involves the sending of messages to a single network destination identified by
a unique source address.

On the other hand, hot observables “close over the producer object” that’s created or
activated outside the observable context. In this case, the lifecycle of the event emitter
source is independent of that of the observable. The term closes over derives from the
idea that the producer object is accessible through the closure formed around the
observable declaration.

const producer = new Producer();

const hot$ = new Rx.Observable(observer => {

 // ...Observer listens to producer,
 // and pushes events onto it...
 producer.addEventListener('some-event', e => observer.next(e));

2 https://medium.com/@benlesh/hot-vs-cold-observables-f8094ed53339#.966re47vq.

The lifecycle of the producer
entity (a generic object) is bound
to that of the observable’s

Producer object is in scope
through the closure formed

around the observable
declaration

https://medium.com/@benlesh/hot-vs-cold-observables-f8094ed53339#.966re47vq

228 CHAPTER 8 Heating up observables
 // producer gets disposed of outside of Observable context
 });

From our FP discussion, you can see that this is not pure because the observable object
(or function) is accessing external data directly, which is a side effect. In practice,
though, the benefit of doing this is that the producer is now shared by all subscribers
to hot$ and emits data to all of them—a model known as multicast.

MULTICAST In computer networking, multicast refers to a one-to-many form
of communication where information is addressed to multiple destinations
from a single source.

Figure 8.11 explains the difference between the two modes of message passing.

To sum up, the multicast mode is the process behind hot observables, whereas unicast
messaging occurs with cold observables. Depending on your needs, you can use RxJS
to make hot observables cold for isolated, dedicated connections or vice versa for
shared access to resources. Let’s look at examples of each scenario.

8.4.2 Making a hot observable cold

So far, our de facto mechanism for fetching remote data has always involved using
Promises. Without you realizing it, you’ve already had to convert observable types; you
did this in chapter 5 so that you could use Promises to fetch fresh stock data. Now we
can discuss that technique more in depth and frame the problem this way: if Promises
are hot because the value they emit is shared among all subscribers and are not
repeatable or retriable, how can you use them to fetch new stock quotes? Wouldn’t the
stock price be the same all the time? Again, this has everything to do with where the
observable was instantiated. If you execute the Promise request globally (eagerly), as
in this simple code, the same value (or error) is essentially broadcast to all subscribers:

Subscriber 3

Subscriber 1

Subscriber 4

Subscriber 2

Subscriber 2

Multicast

Cold
observable

Subscriber 1Cold
observable

Unicast

Hot
observable

Figure 8.11 Multicast transmits messages from one source to many destinations;
unicast sends dedicated messages to one destination address.

229Changing the temperature of an observable
const futureVal = new Promise((resolve, reject) => {

 const value = computeValue();

 resolve(value);
});

const promise$ = Rx.Observable.fromPromise(futureVal);

promise$.subscribe(console.log);

promise$.subscribe(console.log);

To make this observable cold, you move the instantiation of the Promise within the
observable context through ajax(). Here’s a snippet of that code once more:

const requestQuote$ = symbol =>
 Rx.Observable.fromPromise(ajax(...))

...

const fetchDataInterval$ = symbol => twoSecond$
.mergeMap(() => requestQuote$(symbol)

 ...

In essence, this is analogous to what you just learned, which is to move the source or
the producer of events into the observable context:

const coldPromise$ = new Rx.Observable(observer => {
 const futureVal = new Promise((resolve, reject) => {

const value = computeValue();

resolve(value);
 });

 futureVal.then(result => {
observer.next(result);
observer.complete();

 });
});

coldPromise$.subscribe(console.log);

coldPromise$.subscribe(console.log);

You can apply this same principle to WebSockets. In section 8.3.3, you used an observ-
able to wrap a global, shared WebSocket object. Here it is once more:

const websocket = new WebSocket('ws://localhost:1337');

const sub = Rx.Observable.fromEvent(websocket, 'message')
 .map(msg => JSON.parse(msg.data))
 .pluck('msg')
 .subscribe(console.log);

websocket.onclose = () => sub.unsubscribe();

Begins invoking the Promise

After the first invocation of the Promise resolves, all
subsequent subscriptions will resolve to the same value.

ajax() instantiates a new Promise
within the observable context.

Shoves the
instantiation of
the Promise into
the observable

Emits the value from the Promise

Because you’re expecting only a
single value, completes the stream

Both subscribers will invoke
the internal Promise object.

Globally
shared
object

Socket’s lifecycle is managed
outside the observable sequence

230 CHAPTER 8 Heating up observables
If you instead wanted to have dedicated connections to each subscriber, you could
enclose the activation of the producer within the observable context. This way, every
subscriber of the stream would create its own socket connection:

const ws$ = new Rx.Observable(observer => {
 const socket = new WebSocket('ws://localhost:1337');
 socket.addEventListener('message', e => observer.next(e));
 return () => socket.close();
});

const sub1 = ws$.map(msg => JSON.parse(msg.data))
 .subscribe(msg => console.log(`Sub1 ${msg}`));

const sub2 = ws$.map(msg => JSON.parse(msg.data))
 .subscribe(msg => console.log(`Sub2 ${msg}`));

This also applies to the RxJS static factory operators such as create(), from(),
interval(), range(), and others. As mentioned previously, because they’re cold by
default, you may want to make them hot with the intention of sharing their content
and avoiding not only duplicating your efforts but also duplicating resources. Let’s
look at doing that next.

8.4.3 Making a cold observable hot

In this section, you’ll apply the reverse logic. To make a cold observables hot, you
need to focus on how they emit data and how subscribers access this data. Circling
back to your stock ticker widget, this means that you must move the source of events
(stock ticks) away from the observable pipeline. You would want to do something like
this if you had stock data being pushed into different parts of the application and you
wanted them all in sync with the same event timer. In this case, simply subscribing with
multiple observers won’t do the trick.

const sub1 = ticks$.subscribe(
 quoteDetails => updatePanel1(quoteDetails.symbol, quoteDetails.price)
);

const sub2 = ticks$.subscribe(
 quoteDetails => updatePanel2(quoteDetails.symbol, quoteDetails.price)
);

The other problem with this approach is resource usage. With two subscribers, if you
were to open the developer console, you’d notice that for each refresh action (2 sec-
onds apart) there would be not one but two separate requests being sent to the server
with each observer. This means that every subscriber would have its own independent
interval stream, which would incur the expense of establishing the same remote con-
nection multiple times to fetch data against the Yahoo API, as shown in figure 8.12.

Not global but
instantiated
with every
observer

Gets its own dedicated
socket connection

sub1 and sub2 will use their own two-second intervals, which could get out of sync,
and also fetch their own copies of stock data. You could optimize this so that the HTTP
response can be parsed once and consumed by multiple observers.

231Changing the temperature of an observable
Why create new HTTP connections when you could just share this data downstream to
multiple subscribers? Again, the answer lies in how the source of the stream is acti-
vated—as a globally accessible resource or within the observable context—we can’t
stress that enough. You can expose your service that fetches stock data as a resource
that multiple subscribers can observe. But how can you make AJAX calls hot? There
are many ways of doing this, but one idea involves using event emitters with an inter-
nal polling mechanism, so that, in conjunction with the hot Rx.Observable.from-
Event() observable, you can pump stock data to all subscribers. This works just like a
WebSocket, broadcasting stock ticks independently of when a subscriber exists. Take a
look at an example of this in the next listing.

class StockTicker extends EventEmitter {

 constructor(symbol) {
 super();
 this.symbol = symbol;
 this.intId = 0;
 }

 tick(symbol, price) {
 this.emit('tick', symbol, price);
 }

 start() {
 this.intId = setInterval(() => {
 const webservice =

`http://finance.yahoo.com/d/quotes.csv?s=${this.symbol}&f=sa&e=.csv`;

ajax(webservice).then(csv).then(
([symbol, price]) => {
 this.tick(symbol.replace(/\"/g, ''), price);

});
 }, 2000);
 }
 stop() {

Listing 8.4 Stock ticker as event emitter

Yahoo
web service

New HTTP Establish connection Fetch dataSubscriber 1

Every 2 seconds, each subscriber
wastes resources by creating
brand-new HTTP connections.

New HTTP Establish connection Fetch dataSubscriber 2

Figure 8.12 With two cold subscriptions, each one is responsible for initiating and allocating
resources to make AJAX calls against the same service.

Event emitter to
encapsulate a StockTicker

This represents the ‘tick’ event.

Every two seconds, polls the
stock service for new price data

232 CHAPTER 8 Heating up observables
 clearInterval(this.intId);
 }
}

const ticker = new StockTicker('FB');
ticker.start();

const tick$ = Rx.Observable.fromEvent(ticker, 'tick',
(symbol, price) => ({'symbol': symbol, 'price': price}))

 .catch(Rx.Observable.throw(new Error('Stock ticker exception')));

const sub1 = ticks$.subscribe(//#E
 quoteDetails => updatePanel1(quoteDetails.symbol, quoteDetails.price)
);

const sub2 = ticks$.subscribe(//#E
 quoteDetails => updatePanel2(quoteDetails.symbol, quoteDetails.price)
);

As you can see from this code, whether you subscribe to the source or not, it will con-
tinue to fetch and send out price ticks. The big difference here is that you’ve decou-
pled the subscription from the activation of the event source, essentially now a hot
observable. Because of this decoupling, the observable is also removed from the life-
cycle of the event source (that is, start() and stop()), just like with WebSockets ear-
lier. Thus, when all subscribers unsubscribe, the event emitter will continue to send
data—it’s just that no one is there to listen. This is expected, and most of the hot
observables you’ll find in the wild (DOM elements, a database, or the filesystem) won’t
emit a complete signal, because their lifecycle extends that of the observable.

 You shouldn’t expect that to make cold observables hot you need to have them
depend on global producers all the time. You want the best of both worlds and cer-
tainly the nice functional qualities of cold observables. There are many benefits to
encapsulating the event source and having it managed through the observable’s life-
cycle (this also ensures fewer possibilities of memory leaks because all resources are
collected and disposed of when they’re completely unsubscribed from). On the other
hand, you also don’t want to duplicate your efforts and instead share the events from a
single source to multiple subscribers.

8.4.4 Creating hot-by-operator streams

So far, you’ve seen that the process of converting a cold stream to hot is to place the
activation of the producer resource within the context of an observable. But this isn’t
the only way. Fortunately, RxJS provides a convenient operator called share()that
does just that. It’s so named because it shares a single subscription to a stream among
multiple subscribers (kind of like the old days of DIRECTV, where a single satellite feed
could operate multiple TVs in the same house). This means that you can place this
operator right after a set of operations whose results should be common, and the sub-
scribers to each of them will all get the same stream instance (without replaying the

Starts the event emitter

sub1 and sub2 will share the data
from the same source of events.

233Changing the temperature of an observable
pipeline). Just as important, this operator takes care of the management of the under-
lying stream’s state such that upon the first subscriber subscribing, the underlying
stream is also subscribed to, and when all the subscribers stop listening (either
through error or cancellation), the underlying subscription is disposed of as well. Bril-
liant! When a new subscriber comes in, the source is reconnected and the process is
restarted. Here’s a quick example that shows the same result shared without replaying
the entire sequence:

const source$ = Rx.Observable.interval(1000)
 .take(10)
 .do(num => {

console.log(`Running some code with ${num}`);
 });

const shared$ = source$.share();

shared$.subscribe(createObserver('SourceA'));

shared$.subscribe(createObserver('SourceB'));

function createObserver(tag) {
 return {

next: x => {
 console.log(`Next: ${tag} ${x}`);
},
error: err => {
 console.log(`Error: ${err}`);
},
complete: () => {
 console.log('Completed');
}

 };
}

Once the observable in front of share() is subscribed to, it’s for all intents and pur-
poses hot; this is known as hot-by-operator, and it’s the best way to heat up a cold observ-
able. Running this code illustrates that a single subscription is shared to the
underlying sequence:

"Running some code with 0"
"Next: SubA 0"
"Next: SubB 0"
"Running some code with 1"
"Next: SubA 1"
"Next: SubB 1"

... and so on...

"Completed"
"Completed"

Converts the cold observable to hot

When the number of
observers subscribed to a
published observable goes
from 0 to 1, you connect to
the underlying observable
sequence.

When the second subscriber is added, no additional subscriptions are
added to the underlying observable sequence. As a result, the operations
that result in side effects are not repeated per subscriber.

Helper method to create
a simple observer for
standard out

234 CHAPTER 8 Heating up observables
Let’s apply this to your original stock ticker stream so that you can avoid making
unnecessary HTTP calls with each subscriber that subscribes to the stream; instead,
you make only one call that broadcasts to any subscribers. Making your stock ticker
stream hot is as simple as adding share() at the end of it:

const ticks$ = symbol$.mergeMap(fetchDataInterval$).share();

const sub1 = ticks$.subscribe(
 quoteDetails => updatePanel1(quoteDetails.symbol, quoteDetails.price)
);

const sub1 = ticks$.subscribe(
 quoteDetails => updatePanel2(quoteDetails.symbol, quoteDetails.price)
);

And now you’ve officially completed the stock ticker code. Here’s the full rendition
with all the parts added from the operators you learned about in chapters 5 through
8. Let’s recap:

Pitfall: sharing with a synchronous event source
The share() operator is useful in many cases where subscribers subscribe at differ-
ent times but are somewhat tolerant of data loss. Because it can be used following
any observable, it’s sometimes confusing to newcomers who might be tempted to do
the following:

const source$ = Rx.Observable.from([1,2,3,4])
 .filter(isEven)
 .map(x => x * x)
 .share();
source$.subscribe(x => console.log(`Stream 1 ${x}`));
source$.subscribe(x => console.log(`Stream 2 ${x}`));

This code is often seen as an easy, efficient win for those new to reactive program-
ming. If the pipeline executes for each subscription, then it makes sense that by add-
ing the share operator you can force it to execute only once, and both observers can
use the results. As the console will tell you, however, this does not appear to occur.
Instead, only Stream 1 seems to get executed. The reason for this is twofold. The
first is scheduling, which we’ll gloss over for now because it’s covered in a later chap-
ter. In basic terms, subscribing to a synchronous source like an array will execute and
complete before the second subscribe statement is even reached. The second rea-
son is that share() has introduced state into your application. With it, the first sub-
scription always results in the observable beginning to emit, and so long as at least
one subscriber continues to listen, it will continue to emit until the source completes.
If you’re not careful, this kind of behavior can become a subtle bug.

When dealing with observables that run immediately, like those in the example, this
can result in only a single subscriber receiving the events.

Just like with the global event emitter example, all subscribers will receive the
same tick data. We’ll show a more complete version of this code in a bit.

235Changing the temperature of an observable
 Chapter 5—You learned how to use higher-order observables and flattening
operators such as mergeMap().

 Chapter 6—You learned to coordinate multiple observables with combineLatest().
 Chapter 7—You added fault tolerance to your streams with retry and error handling.
 Chapter 8—You learned how to convert a cold observable into a hot observable

that shares its event data with many subscribers. To demonstrate this, you’ll
have two subscribers updating different parts of the site.

You’ll put all of this together in listing 8.5 and enhance your stock widget with the
ability to track the price and day’s change for all stocks (we omit the CSS and HTML
code, which you can find in the GitHub repository). With these changes, your UI is
updated to look like figure 8.13.

You’ll make several changes to the code you started with in listing 5.6, because you’ll
combine the stock ticker stream with another stream against the same service to read
the stock’s opening price. Subtracting the current price from the previous price gives
you the next change. These will be two independent subscriptions parting from the
commonly shared tick$ stream, which is now hot. The following listing shows the
complete code and uses many of the techniques you’ve learned about so far.

const csv = str => str.split(/,\s*/);
const cleanStr = str => str.replace(/\"|\s*/g, '');

const webservice = 'http://download.finance.yahoo.com/d/quotes.csv
?s=$symbol&f=$options&e=.csv';

const requestQuote$ = (symbol, opts = 'sa') =>
 Rx.Observable.fromPromise(

ajax(webservice.replace(/\$symbol/,symbol)
 .replace(/\$options/, opts)))

Listing 8.5 Complete stock ticker widget with change tracking

Figure 8.13 Screenshot of the live HTML
stock ticker component as it ticks every 2
seconds and includes additional logic to
compute the stock’s price change from the
opening price (prices are subject to market
conditions)

Helper function to split a string into a
comma-separated set of values (CSV)

Function used to create a stream
that invokes a Promise that fetches

data from the web service and
parses the result into CSV

Applies options to the request URI.
s = symbol; a = asking price; o = open.

The Yahoo Finance web service to use with additional
options used to query for the pertinent data

236 CHAPTER 8 Heating up observables

C
output

The
se

observ
used to
the execu

of the
time

Share
stock

wi
subscr

subscr
Crea
nec
row

updat
price a

i

.retry(3)

.catch(err => Rx.Observable.throw(
 new Error('Stock data not available. Try again later!')))

.map(cleanStr)

.map(data => data.indexOf(',') > 0 ? csv(data) : data);

const twoSecond$ = Rx.Observable.interval(2000);

const fetchDataInterval$ = symbol => twoSecond$
.mergeMap(() => requestQuote$(symbol)

 .distinctUntilChanged((previous, next) => {
let prevPrice = parseFloat(previous[1]).toFixed(2);
let nextPrice = parseFloat(next[1]).toFixed(2);
return prevPrice === nextPrice;

 }));

const symbol$ = Rx.Observable.of('FB', 'CTXS', 'AAPL');

const ticks$ = symbol$.mergeMap(fetchDataInterval$).share();

ticks$.subscribe(
 ([symbol, price]) => {

let id = 'row-' + symbol.toLowerCase();
let row = document.querySelector(`#${id}`);
if(!row) {
addRow(id, symbol, price);

}
else {
updateRow(row, symbol, price);

}
 },
 error => console.log(error.message));

ticks$
 .mergeMap(([symbol, price]) =>
 Rx.Observable.of([symbol, price])

.combineLatest(requestQuote$(symbol, 'o')))
 .map(R.flatten)
 .map(([symbol, current, open]) => [symbol, (current - open).toFixed(2)])
 .do(console.log)
 .subscribe(([symbol, change]) => {

let id = 'row-' + symbol.toLowerCase();
let row = document.querySelector(`#${id}`);
if(row) {
updatePriceChange(row, change);

}
 },
 error => console.log(`Fetch error occurred: ${error}`)
);

onverts
 to CSV Cleans string of

any white
spaces and
unnecessary
characters

 two-
cond
able

drive
tion

real-
 poll

Propagates
stock price
values only
when they’ve
changed.
This avoids
unnecessary
code from
executing every
2 seconds when
price values
remain the
same.

Stock symbols to
render data for.
These can be any
symbols; keep in
mind that to see live
changes, you must
run the program
during market hours.

s the
 data
th all
ibers

First
iption.
tes all
essary
s and

es the
mount
n USD.

Second subscription. A conformant stream that
combines the price of the stock at the open, so that it
can compute the change amount for the day. It
appends the next change price in the stock.

Uses Ramda to flatten the internal array
of data passing through, making it easier

to parse, for example, [[symbol, price],
open] -> [symbol, price, open]

237Connecting one observable to many observers
const updatePriceChange = (rowElem, change) => {
 let [,, changeElem] = rowElem.childNodes;
 let priceClass = "green-text", priceIcon="up-green";
 if(parseFloat(change) < 0) {

priceClass = "red-text"; priceIcon="down-red";
 }
 changeElem.innerHTML =

`

 (${parseFloat(Math.abs(change)).toFixed(2)})

`;
};

The share() method is a useful and powerful shortcut to implement these complex
examples with relatively few lines of code. But to understand what’s really happening
under the hood, you need to dive a little deeper and explore the domain of an observ-
able variety called ConnectableObservable.

8.5 Connecting one observable to many observers
We mentioned previously that in RxJS and the networking world, a single point-to-
point transmission is known as unicast, and the one-to-many transmission is known as
multicast. As you saw from the previous example, share() is a multicast operator, but
there are other flavors or specializations of it, all derived from a single generic function
known as multicast(). In practice, typically you’ll never actually use multicast()
directly, but rather one of its specializations.

RXJS 5 IMPROVEMENT It’s important to recall that the RxJS 5 team has done a
great job at cutting the API surface pertaining to the set of operators used to
share and publish values by about 75%.

A thorough explanation of all the specializations for multicasting (also known as the
multicasting operators in RxJS parlance) can require a whole book of its own. We won’t
be using them much in this book, and you won’t need them in your initial exploration
of RxJS. When the time arises, share() is all you need (no pun intended). Neverthe-
less, it’s important to be aware that RxJS gives you a lot more control over the amount
and types of data to emit when you need it. So we’ll spend some time talking about the
most common ones:

 Publish
 Publish with replay
 Publish last

8.5.1 Publish

The first specialization is the operator publish(). This is the vanilla multicast special-
ization. The idea is to create an observable (like share()) that allows a single subscrip-
tion to be distributed to several subscribers. The difference between these operators is

238 CHAPTER 8 Heating up observables
one of simplicity versus control. Whereas share() automatically managed the sub-
scription and unsubscription of the source stream based solely on the number of
subscribers, publish() is slightly more low-level. Here it is, using the same source$
stream as before:

const source$ = Rx.Observable.interval(1000)
 .take(10)
 .do(num => {

console.log(`Running some code with ${num}`);
 });

const published$ = source$.publish();

published$.subscribe(createObserver('SubA'));

published$.subscribe(createObserver('SubB'));

Now, when you run this code, there’s no output, as if the stream is sitting idle. The
issue you encounter is that publish() returns a derivation of observables known as a
ConnectableObservable. This new type requires a more explicit initiation step than
share(). Whereas the latter connects on the first subscription, the former requires
another call to build the underlying subscription. You can start the source observable
by calling connect() on the resulting ConnectableObservable:

published$.connect();

CAUTION We made our stream finite in this code sample for an important
reason. connect() is a low-level operator, which means you’re bypassing all of
the nice subscription management logic available in the core RxJS creational
operators. In other words, it’s not a managed subscription. connect() can be
a powerful tool, but it’s up to you to ensure that the stream is unsubscribed
from at some point; otherwise, you’ll cause memory leaks.

As soon as you call the connect() method, your observable will act just like the one in
the previous example. You can visualize this process with figure 8.14.

 If you were to examine ConnectableObservable, you’d see an interface roughly
shaped like this:

interface ConnectableObservable<T> extends Observable<T> {
 connect() : Subscription
 refCount(): Observable<T>
}

NOTE Observables that share subscriptions are generally called hot, whereas
those that don’t are called cold. But there are also observables that start emit-
ting events only after the first subscription (a quality seen only in cold observ-
ables) and thereafter share their data to all subscribers (a hot quality). We
sometimes refer to these observables as warm.

Makes your stream finite

Can be invoked at any point after the call to publish()

239Connecting one observable to many observers
These are two important concepts to understand:

 The connect() method returns a Subscription instance that represents the
shared underlying subscription. Unsubscribing from it will result in both sub-
scribers no longer receiving any events. You saw how to use connect in the pre-
vious example.

 The refCount() method is named after the garbage collection concept
known as ref counting, or reference counting. The point is that it returns an
observable sequence that stays connected to the source as long as there’s a
least one active subscription. Does this sound familiar? It should because the
share() operator we discussed a moment ago is little more than an alias for
publish().refCount().

Now you understand why share() is just a shortcut for what’s happening under the
hood. RxJS creates warm observables that multicast their values to all connected sub-
scribers managed through the connectable observable, which keeps a count of all
active subscribers. When all subscribers have unsubscribed, it will unsubscribe from
the source observable.

 The use of internal ref counting is crucial to the efficiency of RxJS. As we men-
tioned earlier, an important difference between hot and cold observables is when
their lives start and when they can be considered to have ended. Hot observables can
produce events in the absence of observers, whereas cold observables don’t become
active until they have a subscription. A result of this is that hot streams will often have

publish()

Source begins emitting
after a call to connect

Source

connect()

1 second

Subscriber A

Subscriber B

0 1 2 3 4 9

0

0

The call to publish
creates a hot observable
that multicasts its events
to all subscribers.

...

1 2 3 4 9...

1 2 3 4 9...

Figure 8.14 Publish creates a hot observable whereby all subscribers begin receiving the events as soon as
the call to connect is made. Otherwise, the source stream behaves like a cold observable, sitting idle until
connect() is called. The share() operator would yield the same results except that the call to
connect() would be done internally by the library.

240 CHAPTER 8 Heating up observables
much longer lifespans than their cold counterparts. Whereas a cold stream will shut
down when the subscriber shuts down, a hot one can continue running after the end
of a subscription. This can have important implications, depending on the source. If a
hot observable is unmanaged, that is, its state is not being maintained by refCount(),
then its state (and the associated resources) can easily be forgotten about and cause a
memory leak—which is what happens when a connectable observable emits infinite
events. A majority of the included operators, such as Rx.Observable.fromEvent()
which intrinsically wrap hot sources, take care to manage their own disposed state. If
you ever find yourself creating a hot observable explicitly with one of the multicast()
family of operators, it’s worth asking yourself when those streams will be destroyed
and how many will be created. It may also be helpful to identify where and when a
stream would be disposed of and to explicitly unsubscribe from it to avoid taking up
unnecessary resources. This is especially important in single-page applications with
multiple views, where it’s easy to create streams within a view without properly dispos-
ing of them.

 Publish is just one flavor of hot observable; several others can be useful, depending
on the desired behavior on subsequent subscription. Suppose you wanted to have a
moving window of past values to be emitted to all observables. Earlier, we talked about
the differences between replaying the results of a sequence and resubscribing to exe-
cute the entire sequence again. You can mix that concept with publish.

8.5.2 Publish with replay

You could use another specialization of multicast called publishReplay() to emit the
last 1, 10, 100, or all of the most recent values to all subscribers (obviously, this is
another case of a warm observable). This operator uses several parameters to deter-
mine the characteristics of a buffer to maintain. And as with any of the buffering oper-
ators you learned about in chapter 4, we caution you again that the use of buffers can
be dangerous when replaying entire sequences and the buffer grows indefinitely. You
can see this clearly if you inspect the signature of this operator:

publishReplay(bufferSize = Number.POSITIVE_INFINITY,
windowTime = Number.POSITIVE_INFINITY)

This operator is analogous to the RxJS 4 shareReplay() operator, which had the
same issue. So using publishReplay() with empty arguments can be dangerous.
Here’s an example of this operator. Unlike the publish example, to showcase the use
of this operator, you have to simulate a subscriber coming at a later time:

const source$ = Rx.Observable.interval(1000)
 .take(10)
 .do(num => {

console.log(`Running some code with ${num}`);
 });

Begins a counter that pushes integers
every second, starting at zero

Creates a side effect to
show that it’s running

241Connecting one observable to many observers
const published$ = source$.publishReplay(2);

published$.subscribe(createObserver('SubA'));

setTimeout(() => {
 published$.subscribe(createObserver('SubB'));
}, 5000)

published$.connect();

Running this code would print the following output. What you’ll notice here is that as
soon as the second subscriber comes, it will first make sure to emit the last events in the
stream (current and previous); afterward, both streams will replay the same events:

"Running some code with 0"
"Next: SubA 0"
"Running some code with 1"
"Next: SubA 1"
"Running some code with 2"
"Next: SubA 2"
"Running some code with 3"
"Next: SubA 3"
"Next: SubB 2"
"Next: SubB 3"
"Running some code with 4"
"Next: SubA 4"
"Next: SubB 4"
"Running some code with 5"
"Next: SubA 5"
"Next: SubB 5"
...
"Next: SubA 9"
"Next: SubB 9"
"Completed"
"Completed"

Figure 8.15 is a diagram of what’s happening in the code sample.
 Alternatively, when you want only the last value to be emitted, publishLast() will

do the trick.

Subscribing 5 seconds later,
subscriber B should begin
receiving events starting with
the number 4, but because of the
replay it will first receive 2 and 3.

Subscriber A connects subscribers
immediately, and begins receiving
events from count 0.

Creates an observable that
can store two past events
and reemit them to any
new subscribers

SubB will begin receiving the last
two events (previous and current).

Both subscribers receive
the same data.

242 CHAPTER 8 Heating up observables
8.5.3 Publish last

publishLast() is simple to understand. It returns a connectable observable sequence
that shares a single subscription containing only the last notification. This operator is
analogous to last() (except non-blocking) in that it multicasts the last observable
value from a sequence to all subscribers. Follow our simple example once more:

const published$ = source$.publishLast();

published$.subscribe(createObserver('SubA'));

published$.subscribe(createObserver('SubB'));

published$.connect();

Running this code prints out the following:

"Running some code with 0"
"Running some code with 1"
...
"Running some code with 9"
"Next: SubA 9"
"Next: SubB 9"
"Completed"
"Completed"

publishReplay(2)

Source begins emitting
after a call to connect

Source

connect()

4 seconds

Subscriber A

Subscriber B

0 1 2 3 4 9

0

When Subscriber B subscribes, it receives the current element 3
and the previous element 2 (replay 2 events). This is not done at
once with an array but with two calls to the observer’s next().

...

1 2 3 4 9...

2 3 4 9...

1 second

Figure 8.15 publishReplay with a buffer count of 2 will emit the last two
elements in the buffer (current and previous) at the moment the subscriber
subscribes to the stream. Afterward, both streams receive the latest value emitted.

243Summary
There are many overloaded specializations of multicast() in RxJS. You can find them
all here: https://github.com/ReactiveX/rxjs/blob/master/src/operator/publish.ts.
If you inspect these operators, you’ll find that they delegate most of their work to enti-
ties called subjects.

RxJS provides hot and cold observables because the designers recognized that differ-
ent types of sources must often be addressed, with different needs. There is no one-
size-fits-all solution to every problem, but share() will get you a long way ahead. But
to that end, there’s also a steeper learning curve to mount in order to fully under-
stand the library, especially the topic of multicasting operators. We hope this chapter
has demystified some of the strangeness around these different observable types. But
when all else fails, here’s a good analogy to keep in mind (taken from the Reactive
Extensions GitHub project3):

 A cold observable is like watching a movie.
 A hot observable is like watching live theater.
 A hot observable replayed is like watching a play on video.

These lessons will be useful when we move into the next chapter and discuss how to
test your Rx pipelines.

8.6 Summary
 A cold observable is passive in that it waits until a subscriber is listening to exe-

cute an individual pipeline for each subscriber. Cold observables manage the
lifecycle of the event producer.

 Hot observables are active and can begin emitting events regardless of whether
subscribers are listening. Hot observables close over the producer of events, so
their lifecycles are independent of the source.

 Event emitters such as WebSockets and DOM elements are examples of hot
observables.

 Events from hot observables will be lost if no one is listening, whereas cold
observables will always rebuild their pipeline upon every subscription.

3 https://github.com/Reactive-Extensions/RxJS/blob/master/doc/gettingstarted/creating.md.

Further reading
Theoretically, subjects can be used to supplant virtually all of your observable needs,
and the possibilities are endless. Because this is an advanced topic, in this book we
prefer sticking to the managed observables created via RxJS factory methods. But if
you would like to read on further, we recommend you begin with the RxJS manual:
http://reactivex.io/rxjs/manual/overview.html#subject.

https://github.com/ReactiveX/rxjs/blob/master/src/operator/publish.ts
http://reactivex.io/rxjs/manual/overview.html#subject
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/gettingstarted/creating.md

244 CHAPTER 8 Heating up observables
 share() makes observers use the same underlying source stream and discon-
nects when all the subscribers stop listening. This operator can be used to make
a cold observable hot—or at least warm.

 Using operators such as publish(), publishReplay(), and publishLast() cre-
ates multicast observables.

Toward testable,
reactive programs
If you’ve been in the software industry for any appreciable amount of time, you’ve
likely encountered some form of testing. In production software, there’s no escap-
ing the need for tests (or there shouldn’t be), whether they target newly written
code or a system-wide refactoring. Changes to complex applications can easily pro-
duce unforeseen consequences in different paths of execution; it’s particularly
problematic when multiple developers work with code that they’re not intimately
familiar with. For instance, when a user types a negative number in the withdraw

This chapter covers
 Understanding functional programming’s inherent

testability

 Testing asynchronous code with Mocha.js

 Exploring the tools for testing observables

 Understanding the need for using virtual time
instead of physical time

 Introducing RxJS schedulers

 Refactoring streams to enhance testability
245

246 CHAPTER 9 Toward testable, reactive programs
field or presses this number rapidly many times, your banking application should han-
dle it gracefully. As you know, in JavaScript, a misspelled variable or a forgotten return
statement means that certain execution paths may produce undefined values. These
sorts of errors may be obvious or subtle, and no developer—no matter how experi-
enced—is safe from them.

 Tests not only help catch programmatic errors and find places where code is brit-
tle, but they also ensure that there’s a unified understanding of the requirements. In
other words, tests also document the expected behavior of your code.

 There are multiple types of testing methods, probably more than we can keep track
of, but in this chapter, we’ll focus strictly on unit tests. Unit tests are used to create
expectations or assertions about the functionality of a single unit of work—a function.

 We’ll begin this chapter by demonstrating that pure functions are inherently much
easier to test than stateful functions, because they have clear inputs and predictable
outputs—known as boundary conditions. Likewise, observables are functional data types
that can be tested in the same manner as pure functions by translating these pure
function boundaries to the world of producers and observers. But this isn’t always
easy. In JavaScript, with so many asynchronous processes to coordinate, testing can be
difficult to wrap your head around. You’ll learn to use RxJS’s observable-based testing
to make asynchronous testing easier. With the help of a JavaScript testing framework,
Mocha.js, as well as an RxJS instrumentation tool known as a virtual scheduler, you can
learn to test streams that compose any sort of asynchronous code easily. Toward the
end of this chapter, you’ll learn about RxJS schedulers. Although they can be power-
ful, using schedulers in JavaScript applications, especially client-side, is not all that
common and intended only for edge cases where the schedulers that accompany the
RxJS operators aren’t sufficient.

 In the end, one of the main advantages of writing your programs functionally is
that you’ve organized the code in such a way that favors testability. Let’s start here.

9.1 Testing is inherently built into functional programs
Think back to when you last wrote a set of unit tests for some complex functionality.
Do you remember running into any challenges? If this application was written using
OOP, most likely you experienced at least one of the following:

 Methods rely on external state that must be properly set up and destroyed for
each test.

 Methods are tightly coupled to other modules of the system, making it impossi-
ble to test each one independently.

 Your application design lacks a proper dependency injection strategy, so you’re
unable to properly mock calls to all third-party dependencies.

 Methods are long and complex, so they contain many internal logic paths (lots
of if/else blocks), which requires you to write multiple tests against the same
method just to cover all the flows.

247Testing is inherently built into functional programs
 The order in which tests are run can impact the results that output from the
functions under test, so changing the order or possibly commenting out a unit
can cause others to fail.

This is by no means an exhaustive list, just some of the more common pain points that
we’ve all experienced while unit testing. Now we don’t mean to say that functional
tests won’t ever have these problems, but what you’ll begin to see is that by using pure
functions, you can significantly diminish their occurrence.

 Pure functions tend to be small in scope, have at most three clearly defined param-
eters (rarely more), and have a predictable, consistent output—like a black box with
simple boundary conditions, as shown in figure 9.1. Moreover, a pure function is
deterministic, which means its result is directly determined from the arguments that
are passed to it, so half of the testing battle is just coming up with comprehensive sets
of inputs. These can be any primitive type like a number or a string, or complex types
such as objects and mocks (object impersonators), also shown in figure 9.1.

 The other half of the battle is asserting that the return value matches solely the
logic behind the function under test, which isn’t influenced by what’s happening
externally. In this book, we’ll use Mocha.js as our unit test framework (you can find
setup information in appendix A). Let’s look at a quick example of its basic usage.
Aside from loading the necessary scripts on the page, there’s a minor setup step for
you to specify the API style you’ll use for your assertions and expectations, known as
the UI of the test. You’ll use the BDD UI, which is the default. If you’re using it in the
browser, you can use this:

mocha.setup({ ui: 'bdd', checkLeaks: true});

Number Mock objectString

Inputs

Boundaries

Boundaries

Output

Mock objects can be used to
simulate the behavior of any
external component or service
such as a database, filesystem,
the DOM, and others.

[input] => output

assert() Figure 9.1 Boundary conditions of a
pure function include all the inputs and its
output. A pure function clearly defines all
the arguments that it needs to carry out
its work.

248 CHAPTER 9 Toward testable, reactive programs
On the server, you can run your scripts as

mocha --check-leaks –-ui tests.js

The second parameter is very interesting (as a functional programmer, you’ll particu-
larly appreciate this). Mocha also has the ability to detect if global variables “leak”
during a single test. A leaked variable is global to the entire test suite with a lifespan
that exceeds the test that created it. You may want to leak variables in order to share
them with another test, but more often than not, that could cause a programmatic
error. For instance, can you spot the leak in this function?

function average(arr) {
 let len = arr.length;

 total = arr.reduce((a, b) => a + b);
 return Math.floor(total / len);
}
average([80, 90, 100]) //-> 90

As you know by now, a leaked variable is a side effect that can compromise both the
order and the results of your unit tests. Each it() block in your tests should be an iso-
lated set of expectations, which is to say that the order and outcome of other tests
within the suite should not affect the outcome of any one test. Each test case must
start and end with a clean environment, sometimes referred to as a sandbox.

 All the same principles of pure functions apply as best practices for test develop-
ment, particularly the property of idempotency that states you should be able to run
the tests as many times as needed and always obtain the same results.

 Now, let’s look at the first function you want to test. Earlier in developing your
search widget, you used a function to validate the user’s input typed in the search
field. Here’s that function again to refresh your mind:

const notEmpty = input => !!input && input.trim().length > 0;

This function is pure because it doesn’t rely on any external state or mutate any of the
inputs, so it’s easy to test. Listing 9.1 shows your first Mocha test. With Mocha, you can
create nested suites of behavioral tests. A suite is marked as a describe block with a
brief description that should tie together the focus of the suite. These blocks can usu-
ally be nested so that tests can be further grouped by focus area. At the bottom level is
a test case encapsulated within an it block; this is where the application logic is actu-
ally exercised. Each of these blocks should ideally target a specific aspect of a specific
behavior—input validation, in this case.

const expect = chai.expect;

describe('Validation', function () {
 it('Should validate that a string is not empty', function() {

expect(notEmpty('some input')).to.be.equal(true);

Listing 9.1 First unit test of a pure function notEmpty

Accidentally used “;” instead of
“,” for multivariable assignment.
As a result, the “total” variable is
declared globally.

Sets up the expect framework

Asserts the
positive use case

http://reactivex.io/rxjs/manual/overview.html%23using-schedulers

249Testing is inherently built into functional programs
expect(notEmpty(' ')).to.be.equal(false);
expect(notEmpty(null)).to.be.equal(false);
expect(notEmpty(undefined)).to.be.equal(false);

 });
});

Finally, to run this unit test you invoke

mocha.run(); or mocha --check-leaks –-ui validation.js

And everything works as expected:

 Should validate that a string is not empty

CODE SAMPLES Remember that all the code for this chapter can be found in
the RxJSinAction GitHub repository, https://github.com/RxJSInAction/rxjs-
in-action.

As you can see, testing this pure function was easy, and setup was minimal. Now that
you know what a simple Mocha test looks like, let’s play with the leak-detection feature
for a bit. Running a test for our fishy average function

describe('Average numbers', function () {
 it('Leak the variable total', function () {

expect(average([80, 90, 100])).to.be.equal(90);
 });
});

causes the result

Error: global leak detected: total

identifying exactly which variable caused a side effect. Inadvertently changing total, a
globally declared variable, because of a subtle code bug could have caused any other
tests that depended on it to fail. So as a general rule of thumb, try not to read from or
mutate any global state.

Asserts the
negative
use cases

Mocha with Chai
Mocha.js is a full-fledged JavaScript testing framework built for both the browser and
Node.js. It runs all of your unit tests serially and creates detailed reports. One of the
nice features of Mocha is that it allows you to easily plug in any assertion library you
want, whether you’re familiar with the xUnit assertion APIs like assert.js or other vari-
eties such as expect.js (used previously) and should.js, to name a few. In this book,
because we have synchronous as well as asynchronous test requirements, we’ll use
a flexible API or a domain-specific language (DSL) called Chai.js, which includes sup-
port for all the testing APIs mentioned previously. Should.js will be instrumental when
running tests involving Promises.

https://github.com/RxJSInAction/rxjs-in-action
https://github.com/RxJSInAction/rxjs-in-action

250 CHAPTER 9 Toward testable, reactive programs
Undeniably, the world would be a better place if all your code was this easy to unit test
(certainly people would be less afraid of it). But asynchronous functions throw a mon-
key wrench into the whole process, and JavaScript applications are notorious for deal-
ing with lots of asynchronous behavior. So let’s talk about how you can use Mocha to
test these types of programs.

9.2 Testing asynchronous code and promises
Asynchronous code creates a big wrinkle in your ability to write unit tests. Although
it’s true that Mocha is designed to run your individual test cases serially (one by one),
how can you instruct it to wait for the completion of some long-running computation
instead of sweeping through your entire test suite synchronously? In this section, we’ll
examine two testing scenarios: invoking AJAX requests directly and working with
Promises.

9.2.1 Testing AJAX requests

The smart search widget we developed in chapter 5 made AJAX requests against the
Wikipedia API to suggest potential search results using the RxJS DOM operator called
Rx.Observable.ajax(). As you can imagine, under the hood, this operator uses the
common XmlHttpRequest object to communicate with the server. Before you work
your way up to testing entire observables, let’s focus on testing plain asynchronous
calls for now. Consider this simple alternative:

const ajax = (url, success, error) => {
 let req = new XMLHttpRequest();
 req.responseType = 'json';
 req.open('GET', url);
 req.onload = function() {
 if(req.status == 200) {

let data = JSON.parse(req.responseText);
success(data);

 }
 else {

req.onerror();
 }
 }
 req.onerror = function () {

(continued)
Mocha also has great reporting capabilities. It prints out the results as human-
readable sentences—allowing you to tell exactly which behaviors are failing in the
application—and lets you isolate debugging efforts to a specific region.

One of the main reasons for using Mocha is its ample support for asynchronous test-
ing and promises. Hence, it’s the framework with which core RxJS code is tested.
More details about installing Mocha can be found in appendix A. To explore the RxJS
test suites, you can visit http://reactivex.io/rxjs/test.html.

http://reactivex.io/rxjs/test.html

251Testing asynchronous code and promises
 if(error) {
error(new Error('IO Error'));

 }
 };
 req.send();
};

You’ll use Mocha to set up a unit test for this just like before:

describe('Asynchronous Test', function () {
 it('Should fetch Wikipedia pages for search term +

`"reactive programming"', function() {

const searchTerm = 'reactive+programming';
const url = `https://en.wikipedia.org/w/api.php?action=query +

`&format=json&list=search&utf8=1&srsearch=${searchTerm}`;

let result = undefined;

ajax(url, response => {
result = response;

});

expect(result).to.not.be.undefined;
 });
});

WATCH OUT: CORS Remember, if you’re running any of these examples in
the browser, make sure you disable CORS so that you can access the tested
endpoints. Otherwise, just use the example directory located at https://
github.com/RxJSInAction/rxjs-in-action, which handles these issues for you.

At a glance, this test seems pretty simple. Set up the initial conditions, make the asyn-
chronous request, capture its response, and assert it. Nothing to it, yet running it
prints this:

AssertionError: expected undefined not to be undefined

What happened? To be and not to be? The issue here is that your unit test is not async-
aware. In other words, it thinks it can run synchronously and execute every single
statement top to bottom, disregarding the latency present in the HTTP request.

 Luckily, Mocha provides excellent support for testing functions that execute asyn-
chronously. It’s pretty straightforward: provide a function (usually) called done() into
the callback passed to it(), and Mocha will understand that it needs to wait for this
function to be called. Instead of running these tests in parallel and printing randomly
ordered test reports, it’s advantageous that Mocha runs your tests serially and properly
waits for one test to finish before proceeding to the next (if you were thinking for a
second that the use of a done function looks familiar, it’s because you’ve gotten used
to the complete() function of observers by now). Let’s write a test suite that checks for
the success and error cases of ajax().

Sets up initial
conditions

Makes the request and assigns the
response to the result variable

Asserts the result
variable has a value

https://github.com/RxJSInAction/rxjs-in-action
https://github.com/RxJSInAction/rxjs-in-action
https://github.com/RxJSInAction/rxjs-in-action

252 CHAPTER 9 Toward testable, reactive programs
const assert = chai.assert;

describe('Ajax test', function () {
 it('Should fetch Wikipedia pages for search term +

`"reactive programming"',
function (done) {

const searchTerm = 'reactive+programming';
const url = `https://en.wikipedia.org/w/api.php?action=query& +

`format=json&list=search&utf8=1&srsearch=${searchTerm}`;

const success = results => {
expect(results)

.to.have.property('query')

.with.property('search')

.with.length(10);
done();

};

const error = (err) => {
done(err);

};

ajax(url, success, error);
 });

 it('Should fail for invalid URL', function (done) {

const url = 'invalid-url';

const success = data => {
done(new Error('Should not have been successful!'));

};

const error = (err) => {
expect(err).to.have.property('message').to.equal('IO Error');
done();

};

ajax(url, success, error);
 });
});

The suite in listing 9.2 contains two test cases: one to test the Wikipedia response
object returned from invoking a successful AJAX query with matched results, and the
other asserting the error condition when no search results match.

 As you can imagine, the ability to test asynchronous functions is a necessity for appli-
cations involving RxJS. But recall that with promises you have several options when
working with these longer-running tasks. You could use the AJAX directly with RxJS:

Rx.Observable.ajax(query)

Or, if your AJAX function uses Promises or a promise-like (deferred) interface (like
jQuery’s popular $.get()), then you can also use

Rx.Observable.fromPromise(ajax(query))

Listing 9.2 Using Mocha/Chai to test an asynchronous function

Loads the assert style of assertions

Passing the done function
instructs Mocha to halt,
waiting for the async ajax()
function to return.

Sets up the success
function and the assertion

In the successful case, you
don’t expect the call to fail.

Within the same
test, includes
the error case

In the error case, you don’t
expect the call to be successful.

Asserts that the failure
occurred and that you received

the correct error message

253Testing asynchronous code and promises
Using Promises to wrap these types of operations is the more functional approach
because it provides an abstraction over the factor of time, which is a form of side
effect. Also, many third-party libraries are wrapping their APIs with promises. Let’s dis-
cuss this a bit more.

9.2.2 Working with Promises

In this section, we’ll continue with our running example of invoking the ajax() func-
tion, except this time using Promises. As stated before, a Promise is a functional, con-
tinuation data type that allows you wrap any long-running operation, so that you can
map functions via then() to the eventually created value. It’s proven to be so success-
ful that Mocha includes support for working natively with Promises through a Chai
extension called chai-as-promised.js and the should.js fluent API (setup information
available in appendix A).

 Let’s start by refactoring ajax() to use Promises. This is simple; just wrap the body
of the function within the Promise and delegate the success and error conditions to
the Promise’s resolve and reject callbacks:

const ajax = url => new Promise((resolve, reject) => {
 let req = new XMLHttpRequest();
 req.responseType = 'json';
 req.open('GET', url);
 req.onload = () => {

if(req.status == 200) {
let data = JSON.parse(req.responseText);
resolve(data);

}
else {
reject(new Error(req.statusText));

}
 };
 req.onerror = () => {

reject(new Error('IO Error'));
 };
 req.send();
 });

Now you’re going to tell Chai to use the Promise extensions and load the should.js
APIs into your tests. This is a quick setup at the top of the file:

chai.use(chaiAsPromised);
const should = chai.should();

You can see that the test in listing 9.3 is similar to listing 9.2. The abstraction provided
by the Promise allows the test framework to instrument the result of the test much bet-
ter. Using the should.js APIs, you can wire up semantically meaningful expectations
for Promises such as should.be.fulfilled to assert the call completed and

To use Chai in environments that don’t support Node.js-like
CommonJS modules (like the browser), you’ll need to use
Browserify to create the compatible bundle. We’ve done
that for you in the GitHub repo accompanying this book.

254 CHAPTER 9 Toward testable, reactive programs
should.enventually.have to inspect the results. Also, instead of passing done, Mocha
expects you to return the Promise object under test to the engine to run the specified
expectations.

describe('Ajax with promises', function () {
it('Should fetch Wikipedia pages for search term +

`"reactive programming"', function () {

const searchTerm = 'reactive+programming';
const url = `https://en.wikipedia.org/w/api.php?action=query& +

`format=json&list=search&utf8=1&srsearch=${searchTerm}`;

return ajax(url)
 .should.be.fulfilled
 .should.eventually.have.property('query')
 .with.property('search')
 .with.length(10);

 });
});

Nothing much changes with this test compared to the previous one, except that you
can work directly with the Promise returned from ajax(). It’s incredible to see how
descriptive and fluent tests can be using Mocha. Now that you’ve asserted ajax()
works as expected, let’s see how this function is used within the observable pipeline.
The following listing shows a snippet of the search$ observable again.

const search$ = Rx.Observable.fromEvent(inputText, 'keyup')
 .debounceTime(500)
 .pluck('target','value')
 .filter(notEmpty)
 .do(term => console.log(`Searching with term ${term}`))
 .map(query => URL + query)
 .switchMap(query =>

Rx.Observable.fromPromise(ajax(query))
 .pluck('query', 'search')
 .defaultIfEmpty([]))

 .do(result => {
 count.innerHTML = `${result.length} results`;
 })
 .subscribe(arr => {
 clearResults(results);
 appendResults(results, arr);
 });

Pay attention to how the code branches off in the call to switchMap(). This additional
flow will make your tests complex. Because most of the data flow logic is handled by

Listing 9.3 Asynchronous testing with Promises

Listing 9.4 Search stream used in the smart search component

Instead of using the done() function, you return the Promise to Mocha so
that it knows to fulfill the Promise and run the necessary assertions.

Uses the should.js
support with Promises

Asserts the eventual
value resolved through
the Promise

Your main area of focus
when testing this program

255Testing reactive streams
the observable itself, which you trust has already been tested extensively, all you need
to worry about is testing that your own functions work as expected. In this case, you’ve
tested that notEmpty() and ajax() work, and now you can test that this entire code
block integrated with your functions works as well. Before you can do this, in the next
sections, you’ll try to split the AJAX stream into its own observable and test that inde-
pendently. This will drastically simplify your tests and allow your code to be more
modular and reusable.

 Because observables are also pure functions (you can translate the black box anal-
ogy of inputs and output to be producer and consumer, respectively), you should be
able to test them with some confidence. You’ll need this for the stream projected into
search$ as well. In the next section, you’ll explore how to test reactive streams.

9.3 Testing reactive streams
Reactive testing follows a similar format to how you normally test functional programs
as described earlier. Because observables are pure functional data types, the transitive
property of purity applies, which states that if an observable is made up solely of pure
functions, the entire observable sequence is itself pure. Let’s begin with a cold observ-
able that synchronously adds the numbers in an array.

describe('Adding numbers', function () {
 it('Should add numbers together', function () {

 const adder = (total, delta) => total + delta;

 Rx.Observable.from([1, 2, 3, 4, 5, 6, 7, 8, 9])
.reduce(adder)
.subscribe(total => {
 expect(total).to.equal(45);

});
 });
});

Notice that because the semantics of observables are designed for asynchronicity with
the producer/consumer model, you’re able to place all the assertions into the down-
stream observer, which is intuitive because that’s where the outcome of the stream is.
Again, this works only with synchronous functions. Here’s a similar program using
generators:

 it('Should add numbers from a generator', function () {

 const adder = (total, delta) => total + delta;

 function* numbers() {
let start = 0;
while(true) {
 yield start++;
}

 }

Listing 9.5 Testing a stream that adds up all numbers of an array

256 CHAPTER 9 Toward testable, reactive programs
 Rx.Observable.from(numbers)
.take(10)
.reduce(adder)
.subscribe(total => {
 expect(total).to.equal(45);

});
 });

And you obtain the same results. It’s clear that testing synchronous observables is as
simple as testing regular pure functions—you expect cold observables to behave like
this. Let’s mix it up a bit by injecting a time delay into your tests:

it('Should add numbers together with delay', function () {
Rx.Observable.from([1, 2, 3, 4, 5, 6, 7, 8, 9])

.reduce((total, delta) => total + delta)

.delay(1000)

.subscribe(total => {
 expect(total).to.equal(45);
});

});

Running this code prints out the following:

 Should add numbers together with delay

It worked! But there’s a red herring. Although you get the impression the test is pass-
ing, the subscribe() block or the observer isn’t actually executing; it runs after a
whole second has passed, and the result is ignored. Try failing the test case by chang-
ing the result to some nonsense value:

Rx.Observable.from([1, 2, 3, 4, 5, 6, 7, 8, 9])
 .reduce((total, delta) => total + delta)
 .delay(1000)
 .subscribe(total => {

expect(total).to.equal('non-sense!');
 });

Now, instead of passing the test, you expect that Mocha will throw an error and fail.
But you see the same outcome as in your test report. What happened? The obvious
culprit seems to be that the delay operator introduces something into the test mixture
that isn’t properly handled by the test. This intuition is correct, and it’s at the heart of
what you’re trying to accomplish with reactive testing. Because you’ve added an asyn-
chronous time element that isn’t being handled by the test, the test reports comple-
tion before the asynchronous block has completed running and you get a false
positive. You were deceived by RxJS’s abstraction over time. Observables make work-
ing with latency and time so simple that it seemed as though the operators were exe-
cuting synchronously to the test. Of course, this isn’t the case.

 No fear, grab a cup of Mocha and get to it. Here, you’ll need to come back to using
done() with the it() callback. Do you recall how similar Mocha’s concept of done() is
to the observer’s complete()? Try making them the same, as in the following listing.

257Testing reactive streams
it('Should add numbers together with delay', function (done) {
Rx.Observable.from([1, 2, 3, 4, 5, 6, 7, 8, 9])

.reduce((total, delta) => total + delta)

.delay(1000)

.subscribe(total => {
 expect(total).to.equal(45);
 }, null, done);

});

Running it now prints this:

 Should add numbers together with delay (1008ms)

The time label in milliseconds next to the output should hint to you that Mocha
waited for this test to complete and actually ran the expectations. Armed with the
knowledge of how to test asynchronous observables, let’s go back to the search stream
search$ in listing 9.4. You can recognize that most of the observable pipeline in this
code is synchronous, until this:

.switchMap(query =>
Rx.Observable.fromPromise(ajax(query))
 .pluck('query', 'search').defaultIfEmpty([]))

This segment spawns an AJAX request against Wikipedia for search results that match
the user’s input, which is actually its own observable stream. You can test this function
that’s being mapped to the source observable and apply the same technique as you
did in listing 9.6. The stream function under test this time is

query => Rx.Observable.fromPromise(ajax(query))
.pluck('query', 'search').defaultIfEmpty([])

The next listing shows how to test your asynchronous, Promise-based observable
mapped to the source observable.

it('Should fetch Wikipedia pages for search term "reactive programming" +
 `using an observable + promise', function (done) {

 const searchTerm = 'reactive+programming';
 const url = `https://en.wikipedia.org/w/api.php?action=query& +

`format=json&list=search&utf8=1&srsearch=${searchTerm}`;

 const testFn = query => Rx.Observable.fromPromise(ajax(query))
.subscribe(data => {
 expect(data).to.have.property('query')

Listing 9.6 Testing an observable with a delay

Listing 9.7 Testing a promise AJAX call within an observable

Changing this output to anything
other than 45 will break the test.

Uses done to signal the completion of the stream
and hence the test. Because this code will never
produce errors, you skip it by passing null.

Uses done to notify Mocha this
will be an asynchronous test

Defines the
function under test

258 CHAPTER 9 Toward testable, reactive programs
.with.property('search')

.with.length(10);
 }, null, done);

 testFn(url);
});

So far, you’ve covered lots of ground by testing all the functions that make up your
business logic as well as the asynchronous branch of the search component, in isola-
tion. This is certainly the right direction, but you shouldn’t have to rebuild or copy
and paste a testable version of your observable sequence into your unit tests; that
duplicates your efforts. Instead, it’s convenient to split these concerns so as not to mix
browser-specific details like emitting a DOM event and rendering to the screen with
actual data transformation and event processing. Let’s refactor the existing observable
to be testable, and we’ll show how to write reactive code with testing in mind.

9.4 Making streams testable
As visually pleasant as long observable sequences are (at least for two of us), for matters
of testability and even sometimes reusability, it’s important to separate the observer
from the pipeline and the subscription. Decoupling these main parts will allow you to
inject any assertions that you need to make, depending on the stream under test. The
goal is to not have to modify or rebuild the observable sequence in the application as
well as in the unit test and have code duplicated in both areas. Continuing with the
same mindset with which you started the chapter, to make this code more testable,
you’ll split up your functions so that they can be tested independently from the stream,
as well as decompose the stream into its three main parts: producer, pipeline, and con-
sumer. This will allow you to separate the pure (testable) part of the stream from the
impure. The impure sections involve writing to a database, making actual AJAX calls, or
writing to the DOM, all of which should be outside of your scope of test.

 Start out with this simple program that generates 10 consecutive numbers every
second and performs the sum of all the even numbers:

Rx.Observable.interval(1000)
 .take(10)
 .filter(num => num % 2 === 0)
 .map(num => num * num)
 .reduce((total, delta) => total + delta)
 .subscribe(console.log);

In order to make this program testable you need to do a few things:

1 Split out the business logic from the observable pipeline.
2 Decouple the consumer and producer and isolate the stream pipeline. This will

allow you to inject your assertion code.
3 Wrap the stream into a function that you can call with the proper observer.

By applying these steps to the previous code, this program becomes a more generic set
of functions that you can test thoroughly:

Passes done in place of the
completed observer method
to signal the end of this
observable sequence and
hence the end of the testCalls the function

being tested

259Making streams testable
const isEven = num => num % 2 === 0;
const square = num => num * num;
const add = (a, b) => a + b;

const runInterval = (source$) =>
 source$

.take(10)

.filter(isEven)

.map(square)

.reduce(add);

Notice how you also wrap the stream into a function that can be called from within
your test with whatever event producer you want. It could be a literal sequence of
numbers, an array, a generator, and others. The function allows you to pass in test
input arguments. Without refactoring it this way, if all these functions were embedded
into the observable itself as in the original version, you wouldn’t have the flexibility to
cover all the possible use cases required to run through all paths of this code. This is
also much more efficient because you don’t need to execute the entire sequence
every time. Now, with a more testable version of this stream, let’s proceed.

 The functions isEven(), square(), and add() are straightforward to test. We’ll
leave those as an exercise for you and focus on the observable. Because observables
are feed-forward, unidirectional flows that rely on side effect–free functions, you can
just as easily consider the entire stream as being pure.

 Instead of rewriting another version of the same stream in your test, just call it
from within your test, provide a producer into it, and place your assertions into the
subscribe block:

it('Should square and add even numbers', function (done) {

this.timeout(20000);
runInterval(Rx.Observable.interval(1000))

.subscribe({
 next: total => expect(total).to.equal(120),
 err: err => assert.fail(err.message),
 complete: done

 });
});

The producer and the subscriber are the boundaries of this pure stream. Figure 9.2
highlights the sections of code that got decoupled from the observable pipeline. By
ensuring your functions work and trusting in RxJS to do the right thing, you can be
confident in your expectations. Also, parameterizing the observer gives you the extra
flexibility of directing the output of the stream toward a set of assertions (as in this
case), the console, a filesystem, an HTML page, a database, and others.

 Running this code prints the following:

 Should square and add even numbers (10032ms)

Separates producer (source) and
subscriber from the business
logic by making an argument

Increases Mocha’s
timeout setting to
allow the stream
to complete

The expectations are
wired up in the test,
decoupled from the
stream code.

260 CHAPTER 9 Toward testable, reactive programs
This single unit test took 10 seconds to run, so you needed to tell Mocha that this test
will surpass the default (two-second) timeout. Imagine having test suites with hun-
dreds of these types of tests; it would easily render your CI pipeline useless. Unit tests
should be quick; the culprit here is the interval() operator (the same would be true
for timer()). How can you speed up tests of code that has explicit time values? The
main reason for adding physical time into your stream is to create the illusion of
movement for the user. For example, a panel slides to the right, a counter winds
down, a color fades out, and so on. But this isn’t important or relevant when running
it as a unit test, so instead of refactoring your streams to use a synchronous producer
or temporarily commenting out the timers, the proper way to solve this is to add a vir-
tual timer or scheduler.

9.5 Scheduling values in RxJS
If you’re dealing with observable sequences that publish values over an extended
period of time, unit testing them can be time consuming. As you know, Mocha will
run all your tests serially by design, so it’s wasteful for Mocha to be sitting idle waiting
for long intervals to complete. In RxJS, time is internally managed using an artifact
called a scheduler. In this section, we’ll briefly introduce this topic and then show how
you can apply it to speed up the runtime of your tests. After we’ve finished introduc-
ing schedulers, we’ll go back and fix our long-running unit test that uses a delay.

 Schedulers control when a subscription starts and when notifications are pub-
lished. This abstraction allows work to run immediately or in the future without the
calling code being aware of it. Remember that RxJS is used to abstract the notion of
time? At the heart of all this is a scheduler.

 Generally speaking, a scheduler consists of three main parts:

 A data structure that stores all the actions queued to be executed.
 An execution context that knows where the action will be executed: timer,

interval, immediately, callback, a different thread (for server-side Rx frame-
works), and so on.

 A virtual clock that provides a notion of time for itself. This point will become
very important for testing.

RxJS has different types of schedulers, but all abide by the same interface:

source$.take(10)

.filter(

.map(

.reduce(

.subscribe(

observer

);

isEven

= Decoupled component

Expectations

square

add

Separate:
• Producer
• Pipeline
• Subscriber

)

)

)

Figure 9.2 The areas from the stream that need to be decoupled in order to gain the
maximum test coverage of the entire stream

261Scheduling values in RxJS

a

interface Scheduler {

 now(): number;

 schedule(work, delay?, state?): Subscription;

 flush(): void;

 active: boolean;

 actions: Action[];

 scheduledId: number;

}

Here’s how you can use it to schedule a set of actions to run synchronously and then
flush as a series of notifications:

it('Should schedule things in order', function () {
let stored = [];

let store = state => () => stored.push(state);

let scheduler = Rx.Scheduler.queue;

scheduler.schedule(store(1));
scheduler.schedule(store(2));
scheduler.schedule(store(3));
scheduler.schedule(store(4));
scheduler.schedule(store(5));

scheduler.flush();

expect(stored).to.deep.equal([1, 2, 3, 4, 5]);
 });

Just like observables, schedulers have a similar behavior in that you can push a set of
actions that are internally queued or buffered. Every call to schedule returns a
Subscription object that you can use to cancel the subscription if you wish to do so.

 Up to this point, we haven’t explicitly called out the fact that many of the RxJS fac-
tory operators you’ve seen in this book—from(), generate(), range(), delay(),
debounceTime(), interval(), timer(), of(), and others—have an extra parameter
for you to supply a scheduler. All operators make use of a single scheduler, if available.
For synchronous data sources, typically a value of null is used so that notifications are
delivered instantly. On the other hand, two often-used schedulers in RxJS are the
AsapScheduler and the AsyncScheduler, which apply to delayed (async) actions
(internally RxJS executes and manages these actions in the event loop through
setTimeout() and setInterval(), respectively).

Returns a number that represents
current time as managed internally
by its own clock

Schedules new work to be
executed, specifying optional
delay and state fields that are
used for future execution and
state management, respectively

Executes all actions and clears the queue

Indicates whether the queue is
currently executing a set of actions

Queue of
ctions to
schedule

Temporarily stores the
scheduled actions so that
you can compare them to
what the scheduler remits.
Every time an action runs,
it stores its value into the
stored array.

Uses a simple scheduler that
queues the actions to run

Schedules actions to run immediately
(delay, the second parameter of
scheduler.schedule(), defaults to 0)

Runs all
the

actions

Performs a deep comparison of both data structures; looks at
the values contained within it. In later code samples, you’ll be

using deep.equal as the basis for your assertions.

262 CHAPTER 9 Toward testable, reactive programs
 Let’s spend some time looking at the effect of having a scheduler control the
stream. In the same spirit as the previous code snippet, consider this simple range
observable that pushes the values emitted into an external array:

it('Emits values synchronously on default scheduler', function () {
let temp = [];
Rx.Observable.range(1, 5)
.do([].push.bind(temp))
.subscribe(value => {

expect(temp).to.have.length(value);
expect(temp).to.contain(value);

});
});

This stream uses the default scheduler, so this test asserts that each value emitted by
range() is pushed into temp and immediately propagated down to the subscriber.
Your expectations check that the size of the array increases with every value and the
array contains that value. This stream is fairly simple, and it’s behavior that you’re
accustomed to. Now you’re going to change the scheduler used to publish the value to
an AsyncScheduler, and in the case of most factory operators, you can do this by pass-
ing an additional scheduler parameter. By doing so, as shown in the next listing, you
change how the stream publishes the values produced by range() from synchronous
to asynchronous. Let’s introduce this new parameter and change your assertions to
match this new behavior.

 it('Emits values on an asynchronous scheduler', function (done) {
let temp = [];
Rx.Observable.range(1, 5, Rx.Scheduler.async)
 .do([].push.bind(temp))
 .subscribe(value => {
 expect(temp).to.have.length(value);
 expect(temp).to.contain(value);
 }, done, done);

 });

Notice that, because it’s asynchronous, you need to use the done() resolution callback
to let Mocha know to wait for all values to be emitted. In sum, just by using a sched-
uler, you can manipulate how time flows through the stream and control how
the events are published. In this case, you overrode the default synchronous event-
publishing mechanism to emit asynchronously.

Listing 9.8 Publishing values on an async scheduler

Side effect that pushes value into
array temp that lives outside the
context of your observable

Configures the stream to use an async scheduler to proxy the
values emitted by the producer. This additional proxying will
cause all values to be emitted before the subscription block.

Asserts that the array is
growing at every
asynchronous emitted value

You can also pass an error handler to done() to
indicate an exception condition (the test failed).

263Augmenting virtual reality
It’s important to note that in server-side implementations of the Rx family, like Rx.Net
or RxJava, schedulers can be extremely important to offload heavy processing onto
different threads while keeping the active UI thread idle to react to user actions. In
the single-threaded world of JavaScript, you’d normally use the default schedulers,
and it’s rare to choose otherwise. For this reason, in this book we don’t cover schedul-
ers in regular application-level code; here’s a good resource to start with if you’re
interested: http://reactivex.io/rxjs/manual/overview.html#using-schedulers. But
given their ability to control time, schedulers are very useful, if not necessary, for unit
testing asynchronous streams. Let’s begin writing some unit tests in virtual time with
Rx.TestScheduler.

9.6 Augmenting virtual reality
Now that you know what schedulers are, let’s circle back to our long-running unit test
that used delay() and where you also had to set an arbitrarily long timeout value—you
want to avoid doing that at all costs! The root of the problem here is that the unit test
was using physical time. We mentioned recently that by using schedulers, you could
manipulate how these values were emitted, so a physical delay could become a virtual
(fake) delay and your tests could run instantly. You can use the Rx.TestScheduler
class, which is derived from VirtualTimeScheduler. This almighty artifact can actually
create time!

it('Create time from a marble diagram', function () {
 let scheduler = new Rx.TestScheduler();
 let time = scheduler.createTime('-----|');
 expect(time).to.equal(50);
});

The observeOn() operator
Aside from passing schedulers into the observable factory operations to control how
producers emit events, you can also use the observeOn() instance operator to
transform the emission of events midstream:

Rx.Observable.range(1, 5)
.do([].push.bind(temp))
.observeOn(Rx.Scheduler.async)
.subscribe(...)

It’s important to note that configuring the scheduler midway controls the emission of
events downstream only from the point of observeOn(), not before. In other words,
in this code the execution of range() and do() still happens synchronously, and the
results of those events are then emitted asynchronously to the subscriber. For the
examples in this chapter, however, we’ll keep it simple and apply schedulers at the
factory operator level, just like in listing 9.8.

An empty marble
diagram with five
time frames

Each time frame counts as 10 units
of time (usually milliseconds), so 5
units amounts to 50.

http://reactivex.io/rxjs/manual/overview.html#using-schedulers

264 CHAPTER 9 Toward testable, reactive programs
Instead of passing in a set of notification objects or actions, you probably recognize
the “-----” notation as segments of a marble diagram. In this section, you’ll learn
how to use the virtual scheduler provided in RxJS and how it’s intimately related to
the marble diagrams you’ve seen all along.

9.6.1 Playing with marbles

The TestScheduler is driven by the RxJS language of marbles, which, among other
characters, primarily contains frames and notifications. In Rx parlance, you use mar-
ble diagrams to communicate how a particular operator works with respect to time.
Every event that’s pushed onto the stream is internally wrapped using a Notification
object, which transports all of the necessary metadata for a particular event. They’re
more useful as testing artifacts because they make it easier to represent events that you
can extend to add more behavior, such as timestamps or numerical ordering, that
you’d want to assert. Here’s a simple example of how you’d use notifications directly
in your tests:

it('Should parse a marble string into a series of notifications',
 function () {

let result = Rx.TestScheduler.parseMarbles(
'--a---b---|',

 { a: 'A', b: 'B' });
 expect(result).deep.equal([
 { frame: 20, notification: Rx.Notification.createNext('A') },
 { frame: 60, notification: Rx.Notification.createNext('B') },

 { frame: 100, notification: Rx.Notification.createComplete() }
]);

});

The marble diagrams are a convenience method of creating expectations and events.
Under the hood, the test scheduler parses out the ASCII text, and from this it gener-
ates and queues the actions to perform, which then get published as notifications.
The notification is an abstraction of the emission mechanism within RxJS. As you can
see from this code, you have three types of emitted events in RxJS: a value, an error,
and a completion—yes, this is the observer’s API. Even though each type is fundamen-
tally different, you can think of each one more generically as an event, similar to how
all DOM events are an abstraction of a single base event type. In other words, you can
create a data type to encapsulate an event type regardless of its underlying kind.

 Luckily, this internal mechanism can also be abstracted even further by the test
scheduler, which uses the high-level Marbles language, kind of like a DSL, to make
testing even easier. Consider the map() operator we’ve been using extensively
throughout the book. Representing a simple stream that uses it as a marble diagram
in ASCII form looks like this:

source --1--2--3--4--5--6--7--8--9--|
map square => a * a
subs --1--4--9--16--25--36--49--64--81--|

The dashes represent frames and the letters
events (or notifications) that the stream will

publish. Every dash represents 10 frames.

The mapping
comparisons
used in your

assertions

265Augmenting virtual reality
Let’s use the TestScheduler to verify that this diagram holds, literally. This class has a
rich set of features that helps you create and wire expectations onto observables.
Here’s a unit test of map() using the square() function.

function square(x) {
 return x * x;
}

function assertDeepEqual(actual, expected) {
 expect(actual).to.deep.equal(expected);
}

 describe('Map operator', function () {
it('Should map multiple values', function () {
 let scheduler = new Rx.TestScheduler(assertDeepEqual);

 let source = scheduler.createColdObservable(
'--1--2--3--4--5--6--7--8--9--|');

 let expected = '--a--b--c--d--e--f--g--h--i--|';

 let r = source.map(square);

 scheduler.expectObservable(r).toBe(expected,
{ 'a': 1, 'b': 4, 'c': 9, 'd': 16, 'e': 25,

'f': 36, 'g':49, 'h': 64, 'i': 81});

 scheduler.flush();
 });
});

In this example, you use two marble diagrams to set up your test case. The first is used
to create a source input that behaves like a cold observable. Like the normal diagrams
that you saw earlier in the book, each number indicates an event, and each dash indi-
cates a single unit of time. What a single unit of time means for your application is
something you’ll need to determine. Again, this comes down to how you dilate time in
a stream, whether a dash means 1 ms or 1 minute. These marble diagrams carry a lot
more meaning than just lines and letters. It turns out that each line segment “-” rep-
resents 10 frames of a time period. So, “- - - - -” is a total of 50 frames of the unit of time
(typically, each frame represents 10 ms).

 The second stream is the expected stream. In order to clarify what’s happening,
you use a simple associative array that maps the expected values for each notification
emitted through the stream.

 The test scheduler is extremely powerful because it allows you to test your streams
visually. In addition, you’re able to test the entire range of observable behaviors, from
the construction of the stream, to the emission of events, all the way to the teardown
of the stream on completion.

 But, admittedly, there are easier ways to test map() using a plain Mocha test
because it’s a synchronous operation and doesn’t use time for anything. Remember,

Listing 9.9 Testing the map() operator

Helper function that uses
Chai to perform a deep.equal
assertion of its arguments

Creates an instance of the
TestScheduler and passes the

comparison function to use

Creates a cold
observable from
the ASCII diagram

Creates the
assertion

value
placeholders

Source stream with square operation

Uses the scheduler
to wire expectations

Flushes the stream, which causes the
cold observable to emit its values

266 CHAPTER 9 Toward testable, reactive programs
time is what makes asynchronous programming difficult, and that’s the problem
you’re trying to solve.

MARBLE SYNTAX You can find the meaning of all the ASCII symbols of the
marble language here: https://github.com/ReactiveX/RxJS/blob/master/
doc/writing-marble-tests.md.

These frames are meaningful for operations that are based on time. Let’s use the vir-
tual scheduler to test a stream with debounceTime(), which would otherwise be com-
plicated and brittle to test because you’d have to rely on adding your own timestamps
to emitted notification objects. Let RxJS do this for you.

describe('Marble test with debounceTime', function () {
 it('Should delay all element by the specified time', function () {

let scheduler = new Rx.TestScheduler(assertDeepEqual);

let source = scheduler.createHotObservable(
 '-a--------b------c----|');

let expected = '------a--------b------(s|)';

let r = source.debounceTime(50, scheduler);
scheduler.expectObservable(r).toBe(expected);
scheduler.flush();

 });
});

Running this test creates a stream that simulates (fakes) the effect of debounceTime()
with a behavior that matches the expected number of frames. As you can see from the
diagram, the first notification as a result of emitting a should appear after the fifth
frame in debounceTime(50). Now that you know how to fake time, you can speed up
that long-running unit test based on interval().

9.6.2 Fake it ’til you make it

Removing time from the stream means that you shift to using the virtual timer’s inter-
nal clock, which you can wind up by using the time units “-” in the marble diagrams.
The interval(1000) operator emits consecutive integers every second and is an
example of code you might use in production. So in order to simulate your one-
second interval, you’ll use a 10 ms mocked interval. Now, you know that a scheduler is
what’s controlling this behavior behind the scenes, so let’s take advantage of it to cre-
ate the mock source as well as the correct expectation.

it('Should square and add even numbers', function () {
 let scheduler = new Rx.TestScheduler(assertDeepEqual);

 let source = scheduler.createColdObservable(

Listing 9.10 Testing the debounceTime operator

Listing 9.11 Speeding up runInterval() with the virtual time scheduler

Creates a stream with
the first element on
the second frame

You debounce with 50 ms
(5 frames), the first input
after the fifth frame.Passes in the virtual scheduler

into debounceTime()

Creates an
observable that
emits values every
unit of time (10 ms)

https://github.com/ReactiveX/RxJS/blob/master/doc/writing-marble-tests.md
https://github.com/ReactiveX/RxJS/blob/master/doc/writing-marble-tests.md
https://github.com/ReactiveX/RxJS/blob/master/doc/writing-marble-tests.md

267Augmenting virtual reality
'-1-2-3-4-5-6-7-8-9-|');

 let expected = '-------------------(s-|';

 let r = runInterval(source);

 scheduler.expectObservable(r).toBe(expected, {'s': 120});

 scheduler.flush();
});

Certainly, refactoring the runInterval() stream to make it more testable paid off.
You were able to easily inject a virtual cold observable as the producer of events, and
everything worked exactly as expected.

9.6.3 Refactoring your search stream for testability

As you’ve seen in this chapter, RxJS’s notion of time is much more sophisticated than
a simple callback, and your test cases must reflect that. The simple fact that you can
incorporate delays or debouncing into a stream means that the test cases must also
understand how time flows and, perhaps more important, must be able to manipulate
it when necessary.

 Let’s finally circle back to the example of your search component, which used a
debounceTime() operation to prevent flooding the Wikipedia servers with unneces-
sary search queries. This stream is a bit longer and more complex, but now you have
everything you need to properly test it.

 If you used a realistic time of 250–500 ms to handle this scenario, it would mean
that your test case would likely need to run for at least a second. Although that may
not seem like a lot, as we mentioned previously, in a large test suite with several hun-
dred test cases, that could mean minutes to run, which throws continuous integration
right out the window. You definitely want to do better than this for your tests if you
plan to test as you develop. Now, let’s apply what you learned and refactor your exist-
ing search stream with an eye for testability.

 Testing this in its original state is somewhat difficult. Thus, one of the benefits of
plugging this into the RxJS tests is that you can refactor the code based on best prac-
tices. So how would you test this?

 As before, the focus should be on decoupling the producer, the pipeline, and the
subscription so that you can test that your functions are working correctly as inte-
grated into the stream without worrying about how the DOM emits events (producer)
and gets updated (observer). You’re interested in testing the actual business logic and
not the interaction with any other technology.

 Just like before, refactoring your stream into a function changes the stream from
the hardcoded

const search$ = Rx.Observable.fromEvent(inputText, 'keyup')
 .pluck('target','value')
 .debounceTime(500)
 .filter(notEmpty)
 .do(term => console.log(`Searching with term ${term}`))

The expected output is a stream
with a single result at the end,
given by the reduce operation.

Asserts the end
value to be 120

268 CHAPTER 9 Toward testable, reactive programs
 .map(query => URL + query)
 .switchMap(query =>

Rx.Observable.fromPromise(ajax(query)).pluck('query',
 'search').defaultIfEmpty([]))

 .subscribe(arr => {
 count.innerHTML = `${result.length} results`;
 if(arr.length === 0) {

clearResults(results);
 }
 else {

appendResults(results, arr);
 }
 });

to a more modular stream composed of a source$ to which you can pass a virtual
observable stream and a search stream fetchResult$ in charge of making the AJAX
call to fetch results from Wikipedia (which you already tested in listing 9.3). By mock-
ing both of these parameters, you can execute the entire stream without worrying
about asynchronous callbacks, how the data is produced, and how it’s affected by
debounceTime(). Here’s the refactored search$ function, as implemented in applica-
tion code:

const search$ = (source$, fetchResult$, url = '', scheduler = null) =>
 source$

.debounceTime(500, scheduler)

.filter(notEmpty)

.do(term => console.log(`Searching with term ${term}`))

.map(query => url + query)

.switchMap(fetchResult$);

This way of encapsulating an observable sequence into its own function is known as an
epic. Epics will become important in chapter 10, because they will allow you to easily
embed RxJS into an overall reactive architecture.

 To use the reactive architecture, just call the function with the source and AJAX
streams:

search$(

 Rx.Observable.fromEvent(inputText, 'keyup')
.pluck('target','value'),

 query =>
Rx.Observable.fromPromise(ajax(query))
.pluck('query', 'search')
.defaultIfEmpty([])

).subscribe(arr => {
 if(arr.length === 0) {

clearResults(results);
 }
 else {

appendResults(results, arr);
 }
 });

269Augmenting virtual reality
Furthermore, parameterizing the dependent streams keeps your tests from making
outbound calls to the Wikipedia APIs. This is desirable because you don’t want your
unit test to be compromised by a third-party dependency. In other words, in place of
fetchResults$, you’ll provide an observable with a compatible return type.

 This second version doesn’t look as fluent as the original, but it’s now a lot easier
to test, as shown in the next listing. Using the virtual scheduler, you’re also able to test
how the debouncing works in the stream. Because your debouncing extends to half a
second, you use a simple function frame() to easily inline any number of time units
into your marble diagrams.

function frames(n = 1, unit = '-') {
 return (n === 1) ? unit :

unit + frames(n - 1, unit);
}

describe('Search component', function () {
 const results_1 = [

'rxmarbles.com',
'https://www.manning.com/books/rxjs-in-action'

];

 const results_2 =
 ['https://www.manning.com/books/rxjs-in-action'

];

 const searchFn = term => {
let r = [];
if(term.toLowerCase() === 'rx') {
 r = results_1;
}
else if (term.toLowerCase() === 'rxjs') {
 r = results_2;
}
return Rx.Observable.of(r);

 };

 it('Should test the search stream with debouncing', function () {

let searchTerms = {
 a: 'r',
 b: 'rx',

 c: 'rxjs',
 };

 let scheduler = new Rx.TestScheduler(assertDeepEqual);
 let source = scheduler.createHotObservable(
 '-(ab)-' + frames(50) +'-c|', searchTerms);

 let r = search$(source, searchFn, '', scheduler);

let expected = frames(50) + '-f------(s|)';

scheduler.expectObservable(r).toBe(expected,
 {

Listing 9.12 Unit test main search logic

Helper function to embed any number
of time units “-”into a marble diagram

Dummy data for first search action

Dummy data for second search action

Stub search stream that will be
projected onto the source
observable as part of the search

User input into search stream

Observable that describes the debounce
effect. Helper function frames(50) is used

to emulate a debounceTime of 500 ms.
Invokes

the
search
stream
with all

necessary
pieces

Creates expectations
for the first and
second result sets

270 CHAPTER 9 Toward testable, reactive programs
'f': results_1,
's': results_2

 });

scheduler.flush();
 });
});

This unit test attempts to simulate a user entering the letters rx quickly, producing two
results. The stream gets debounced with 500 ms, and finally the third and fourth let-
ters are entered to make rxjs. At this moment, the dummy AJAX observable returns
only one result to simulate the result set being filtered down. Finally, you’ve thor-
oughly unit tested the entire search component.

 As Einstein postulated in the early 1900s, all time is relative to the observer. In
RxJS, we can transpile this expression to “all time is relative to the scheduler used.” In
this chapter, we explored how to use the tools provided by RxJS to test reactive appli-
cations. In doing so, we also unpacked some concepts surrounding time and its rela-
tionship with streams and the RxJS internal notification publishing mechanism. These
concepts are important to support the future maintainability of your code. In the next
chapter, we’ll take reactive programming to new heights. We’ll put everything
together to create a simple web application that mixes the power of RxJS with a UI
component library known as React.

9.7 Summary
 Functional programs are easy to test, given that all functions are pure and have

clear signatures.
 Testing asynchronous code can be challenging, and you need to leverage async-

aware unit-testing frameworks like Mocha.
 You can combine Mocha with powerful assertion interfaces like Chai.js to create

elegant and fluent tests.
 Testing synchronous observables follows the same procedures as testing any

pure function.
 Testing asynchronous behavior as well as streams that bend time can be done

effectively using the virtual scheduler.
 It’s best to make your streams testable and modular. Attempt to keep your busi-

ness logic separate, as a set of functions, and to decouple a stream from its pro-
ducer and observer; this will allow you to manipulate its test boundaries to suit
the different use cases you want to test.

RxJS in the wild
The moment is finally here to answer a question you may have asked yourself a few
times along this journey: “I can use RxJS to solve all of my asynchronous program-
ming needs, but how can I use it in the context of an entire application?” This is a
valid question and one that you’ll answer by getting your hands dirty and seeing
how RxJS plays out in the “Wild Wild Web.”

 This chapter is structured slightly differently from the previous ones, because we
expect you to know most of the techniques from the earlier lessons by now. Given
that you have a good understanding of Rx, we take the opportunity to introduce you

This chapter covers
 Integrating RxJS with other popular JavaScript

libraries

 Introducing React and Redux

 Compartmentalizing UI components using React

 Feed-forward state propagation using Redux

 Rolling your own functional, asynchronous
middleware using RxJS subjects

 Building a banking application using only reactive
frameworks
271

272 CHAPTER 10 RxJS in the wild
to other technologies under the reactive umbrella called React and Redux. You can
use these frameworks in conjunction with RxJS, and we think they’re well worth your
time learning about, especially if you’re looking to scale the reactive paradigm to large
JavaScript applications.

 Arguably, you could use RxJS in conjunction with any competent web framework
of your choosing, such as Backbone, Angular, or Ember, to name a few. But these
frameworks promote paradigms (mostly object-oriented) that are very different from
the functional and reactive paradigms you’ve learned about in this book. Although it’s
true that both can coexist, your aim is to create fully FRP applications, so you should
prefer using frameworks that share similar principles.

 Fortunately, the most difficult hurdle is the mental leap of changing paradigms,
and you’ve successfully done that because you’re here now. At a high level, the goal of
this chapter is to teach you the components of an RxJS + React + Redux (what we call
the 3R) architecture. Understanding how 3R works can be overwhelming at first, and a
basic understanding of React and Redux would help you going through this chapter,
but it’s certainly not necessary. To make all this content easier to digest, we’ve laid out
the following roadmap:

1 You’ll explore the basic parts of React and Redux with simple examples (if you
have previous experience with these technologies, feel free to skip these begin-
ning sections and jump directly into section 10.4).

2 After rendering the UI using plain React components, you’ll create a state man-
agement controller that allows you to communicate or pass state among these
components. For this, you’ll use Redux to dispatch actions that carry informa-
tion as to how your state and corresponding UI changes.

3 You can implement simple synchronous state changes purely with Redux and
simple functions, but asynchronous changes are much more complex (the story
of our lives). Finally, you’ll build a simple Redux middleware layer from scratch
based entirely on RxJS. This middleware will allow you to dispatch asynchro-
nous actions that can help you cope with asynchronous APIs like PouchDB.

We’ll go through all these steps as you put together a simple banking site used to sim-
ulate the action of withdrawing money from a user’s account and creating corre-
sponding transactions.

Let’s begin by briefly talking about the application in question and why we chose these
technologies.

Where can I find this code?
In some places in this chapter, we’ll provide roadmap cues to guide you along with
this code. It’s all available on GitHub for you to play with and manipulate at your lei-
sure (https://github.com/RxJSInAction/banking-in-action). Instructions on how to set
up and run it are available in the README and appendix A.

https://www.manning.com/books/react-in-action
https://www.manning.com/books/react-in-action
https://www.manning.com/books/react-in-action
https://github.com/RxJSInAction/banking-in-action

273Building a basic banking application
10.1 Building a basic banking application
Before we begin, we should first set the scene. Our goal for the chapter is to build a
basic banking application that can handle various aspects of a user’s finances. In this
case, we’ll focus on the actions that occur when a user attempts to withdraw money
from their account and all the actions that happen behind the scenes, like making
sure every transaction is captured and stored.

 Informally, this application has a few functional requirements that serve as the
basis for our implementation decisions:

 It must track a user’s current balance and update it based on transactions,
which can either add (credit) or subtract (debit) from the balance.

 It must allow the user to change the specifics of a transaction, such as which
account to access and how much money to add or subtract.

 It must not allow transactions that would create a negative balance for the user.

As with all applications, it’s important to have an idea of the overall structure before
diving into the specifics of it. In figure 10.1, we present the UI of the component
you’re about to implement.

 The architecture we’re about to present fulfills four key requirements:

 Unidirectional state flow to go along with RxJS
 Immutable and side effect–free, or functional
 Unopinionated and lightweight
 Decoupled state and UI effects so that the business logic is agnostic to the view

technology

The first two constraints (unidirectional state flow and immutable and side effect–
free) should be obvious in light of the fact that this book is about functional, reactive
programming using RxJS. The third requirement, to implement a lightweight architec-
ture, is more about hitting as large a cross section of today’s web developers as possible.
Certainly, we could target older libraries or build from the ground up in vanilla Java-
Script, but the reality is that, by and large, the JavaScript community has embraced var-
ious frameworks. Thus, in addition to showing how RxJS can stand alone, as we have
for most of the book, we want to show off its use when other libraries are at play and

Figure 10.1 Screenshot of the component that handles user transactions related to
withdrawal and deposit

274 CHAPTER 10 RxJS in the wild
how you can use it to extend your reactive architecture. The final point, about decou-
pling state changes and UI effects from the main logic, is in line with RxJS’s theme of
decoupling the production of the event from the logic that consumes it; now, we take
this principle to heart and apply it globally to the entire application.

 For those reasons, we decided to present to you a lightweight RxJS architecture
based on React and Redux. At a high level, these frameworks will layer in the manner
illustrated in figure 10.2. With this simple picture in mind, our first stop in this jour-
ney is to introduce React and Redux.

10.2 Introduction to React and Redux
In order to understand why we chose React and Redux, you must first understand a lit-
tle about them. First, what are they not? Neither React nor Redux is a complete frame-
work compared to, say, AngularJS. We like this quality because we wanted to
implement a lightweight architecture that includes RxJS. Unlike Angular, which is
highly opinionated in its application design, React and Redux target single areas of
concern and attempt to address them as well as they can.

TERMINOLOGY An opinionated framework is one that makes assumptions as
to how you should organize and implement the components of your applica-
tion. Redux has a minimal footprint and relies largely on using simple func-
tions, thereby qualifying as an unopinionated framework.

Let’s begin by learning more deeply about React.

10.2.1 Rendering UI components with React

React focuses on rendering the visible components that users interact with. React is all
about controlling how (and if) components render on the screen. What sets it aside
from other rendering technologies is how efficiently it decides to make updates and
how decoupled it is from the logic leading up to the UI updates.

MEET REACT
React UIs are built compositionally, which means that a single HTML element can
result from the composition of multiple (smaller) React components. Updating React

Asynchronous
middleware

Decoupled
State

management Redux

UI React

Core
logic RxJS

Figure 10.2 Layered diagram of the 3R architecture that shows the hierarchy of the different layers
of the system and the purpose each serves

https://github.com/redux-observable/redux-observable
https://github.com/redux-observable/redux-observable
https://github.com/redux-observable/redux-observable

275Introduction to React and Redux
state triggers the component to rerender itself recursively, like a nested DOM, check-
ing at each step if a change is needed to a given section.

 Other contenders in the reactive web space are Cycle.js and Yolk. One reason for
choosing React over these alternatives is that we wanted to give you a chance to see
how RxJS works with a framework that doesn’t directly use RxJS from the ground up.
Although React and Redux certainly have properties that make using them with RxJS
relatively straightforward, they were not designed explicitly to use it, thus making it a
more interesting integration problem when it comes to understanding how to design
around interfaces that don’t quite fit—this is what RxJS in the wild is all about!

REACT COMPONENTS

React components are the main unit of modularity and are remarkably simple. Most
React components need only a render() method, which tells the React subsystem
what to do when a component must be rerendered or drawn on the page. You’ll need
to know about only a couple of functions of the top-level API in this chapter. The first
one is called React.createElement(); this is the method that’s called when you want
React to instantiate a particular element, like a or a <div>. Here’s what the
top-level API looks like for this method:

React.createElement(
 type,
 [props],
 [...children]
)

It effectively creates a virtual version of a DOM (also known as a shadow DOM) element,
which is used by React to render your application on the screen. Now, this call on its
own doesn’t draw anything onscreen; that’s the job of the particular renderer that
you’re using, like ReactDOM, for example. Aside from render(), ReactDOM offers
other APIs for removing or unmounting elements and finding DOM nodes in the
HTML tree. These aren’t used that often. Here’s a simple “Hello RxJS!” application
with empty properties:

const element = ReactDOM.render(
 React.createElement('div', {}, 'Hello RxJS!'),
 document.getElementById('root')
);

This type of static rendering isn’t particularly interesting, however; after all, you could
have done this entirely with HTML in far fewer lines:

const element = '<div>Hello RxJS!</div>';

The next step is to build components that can actually do something. For instance,
what if you want to change the language of your greeting? To do that you’ll need a new
approach. In React, you can think of all components as functions; they receive an input
and output a visual. The important argument to understand about these functions is

Passes an empty props
object (this component is
essentially stateless)

276 CHAPTER 10 RxJS in the wild
the props object, which is the mechanism by which you can transfer state into the
React component and its inner children—the input argument. Thus, when defining
components, it makes sense that the simplest type of component would be a function.
You can define a localized Hello RxJS component by creating a function like so:

const HelloWorld = props =>
 React.createElement('div', {}, `${props.greeting} RxJS!`);

React components are analogous to treating UI updates like functions as well—they
take an input and emit some output. In the previous example, you take the input
properties in an object called props and use them to render a single element—a com-
ponent function. Now, you can create it whenever you want with different parameters:

 ReactDOM.render(
 React.createElement(HelloWorld, {greeting: 'Hola'}),
 document.getElementById('root')
);

It’s as simple as that. It’s important to mention the close connection between React
and FP in that all React components must act like pure functions with respect to their
props. This means that a React component renders the exact same HTML output for
the same props. This functional quality is known as referential transparency and it’s
the secret to why these components are so easy to compose and reuse.

 Let’s move on to a more interesting case. Imagine that instead of static data, you
now want your data to change and update. A simple scenario for your banking appli-
cation is an account balance component, which shows the current balance in a user’s
account. Remember the RxJS interval() factory operator? You can easily apply that
here as well, given a simple AccountBalance component definition:

const AccountBalance = props =>
 React.createElement('div', {}, `Checking: ${props.checking} USD

Savings: ${props.savings}`);

Next, you could invoke the render method each second to update the UI, mixing
RxJS with some React to create a simple widget that updates account balances every
second:

Rx.Observable.interval(1000)
 .map(value => ({checking: value, savings: value}))
 .subscribe(props =>
 ReactDOM.render(

React.createElement(AccountBalance, props),
document.getElementById('root')

)
);

By convention, it’s typical to initial cap the function
name to denote this is a React component function.

277Introduction to React and Redux
As we mentioned earlier, React components are just plain functions that get invoked
with parameters and return React (virtual HTML) elements, making them pure func-
tions. Sometimes, however, this route is insufficient because you may want to also add
event handlers, listen for when a component becomes mounted or attached to the
DOM, or apply customizations to the state that’s being passed in; then, you’d end up
with very complex function bodies, which defeats the purpose. It’s sometimes neces-
sary for the developer to have more fine-grained control over a component’s lifecycle
as well as how it manages its state. React also exposes a mechanism for creating new
components that offers more capabilities than a trivial function provides.

REACT CLASSES

The React.createClass() method is used for building more-advanced components
where a function isn’t enough. This static function takes an object bag as its argument,
which contains definitions of the methods used during the lifetime of a component.
The most important among these is, again, the render() method, which must be
defined in order for the component to be used.

 Try rewriting the account balances component to make use of this new approach:

const AccountBalance = React.createClass({
 render() {

return React.createElement('div', {},
 `Checking: ${this.props.checking} USD
 Savings: ${this.props.savings} USD`)

 }
});

Because this component is syntactically closer to a JavaScript class, notice that we’re
now reading props from the this object. The this keyword refers to the current con-
text of a component, so it gives you access only to the component’s state.

THE USE OF “THIS” The use of this isn’t common in functional programs
because it implies you’re accessing a scope outside the function or method, as
the case may be. Nevertheless, considering that React is doing a good job of
confining data access and mutations to the scope of the component itself
(called the component’s context) while you render data on the screen, it’s a
good trade-off to make. For the sake of making it easy to use, React relaxes
the scope of data access from strictly local function scope in pure functional
programs to the entire scope of a component.

So far, the previous component still isn’t showing any new behavior, so let’s add the
next twist. The object bag passed to React.createClass() takes another method
called componentDidMount(). It’s called once by the React framework internally when
a component instance has been initialized and has rendered on the page. So it’s a
good place to set up any initial logic and add some state into your UI. A React class lets
you access this state through a property called this.state and allows you to update it
through a method called this.setState().

Uses ES6 class syntax

278 CHAPTER 10 RxJS in the wild
But doesn’t the thought of components exposing a window for other code to make
changes to them violate the core functional principle of immutable objects? If we’ve
done our job right, the very notion of sharing and changing state should be sending
shivers down your spine. After all, state mutation is the root of all evil and what you’re
trying so hard to avoid!

 Although all those reasons for disliking state mutation are valid (you’ll be thankful
for Redux later on), React minimizes its effect in a couple of ways and protects you
from the normal cesspool of state management:

 All mutation is done through the setState() method. This means that the state
variable isn’t directly accessed and changed; there’s some intelligence behind
it. In fact, as you’ll see, the local context of state is always safe when calling
setState().

 React protects the individual state of components and contains it locally. All state
propagation is done through the props object that is then passed on to child
states, meaning the parent component is responsible for initializing the props
of a child component, which the child should never change thereafter. Remem-
ber, all components must act like pure functions with respect to their props,
and this applies to all levels of the React element (DOM) tree.

With that said, let’s move the interval logic into the componentDidMount() of
AccountBalances so that it initiates with the component and localizes the effects of
mutation to the component’s context. You’ll notice as well that instead of this.props,
you’re now effectively using this.state and this.setState() to read and write the
current state of the component, respectively; the following listing shows these
changes.

const AccountBalances = React.createClass({
 getInitialState() {

 return {checking: 0, savings: 0};
 },
 componentDidMount() {
 Rx.Observable.interval(1000)

.map(value => ({checking: value, savings: value}))

Listing 10.1 A React account balances that updates every second

props vs. state
Earlier, we mentioned that props carries a React component’s input. So what exactly
is the difference between the props and state attributes? They’re similar in concept
but play different roles. First, both props and state make up the totality of a com-
ponent’s state. The former is used to configure the component—its options. It’s
received from its parent or the root, and it’s immutable. Just like a pure function’s
input, props are not meant to change. On the other hand, state is meant to store
data that will suffer mutations in time throughout the lifetime of a component.

Sets the initial state for the component

Uses JavaScript ES6 class syntax

279Introduction to React and Redux
.subscribe(state => this.setState(state))
 },
 render() {
 return React.createElement('div', {},

`Checking: ${this.state.checking} USD
Savings: ${this.state.savings} USD`

);
 }
});

NOTE It’s imperative that you understand to never mutate this.state
directly; it should be treated as immutable, and you should allow only React
to manage these mutations. setState() doesn’t directly or immediately cause
the mutation to occur; instead, it creates a pending transition state that also
gives you hooks to control whether the state should occur and which portions
of it are allowed to change.

You can plug this back into the original render component, and voila! Self-rendering
components that change every second!

ReactDOM.render(
 React.createElement(AccountBalances, {}),
 document.getElementById('root')
);

This is the extent to which we’ll cover core React in this book. The reason for this is
that, for simplicity, we won’t go into is JSX notation. A JSX preprocessor allows you to
elegantly embed HTML directly into React components. We suggest you seek out
materials devoted specifically to the topic in case you’d like to continue exploring it.
And we honestly recommend you do. You can start with Manning’s React in Action
(www.manning.com/books/react-in-action) by Mark Thomas.

MANAGING THE STATE OF A REACT COMPONENT

Now that you can render React components, how can they communicate? A core phi-
losophy of React is that every component feeds its state forward, just as you’ve become
accustomed to with streams. In this case, it’s propagated down to its children and not
back up to its parent or out to any other component. This is very important to under-
stand, because it will become the main reason why you’ll use Redux later to dispatch
state changes from one component to another.

 For instance, in your banking app, suppose you want to show the account bal-
ances of checking and savings accounts independently. For this, you’d create two
balance components to handle each and possibly wrap over them a parent compo-
nent that would receive the data and send it down to each child. Listing 10.2 shows a
simple AccountBalance function that you call to render for checking and savings and
then a wrapping Balances React class that sends data down to each. Another concept
shown here is injecting an observable sequence as props of Balances, which will pro-
duce the required state dynamically to simulate a steady stream of cash flow (if it were
only that easy).

Because you’re using an
arrow function, the keyword
“this” in this case refers to
the component instance
rather than the observable.

www.manning.com/books/react-in-action

280 CHAPTER 10 RxJS in the wild

Cre
com

for
acc
const AccountBalance = props =>
 React.createElement('div', {}, `${props.name}: ${props.value} USD`);

const checking$ = Rx.Observable.timer(0, 1000);
const savings$ = Rx.Observable.timer(0, 1000 * 5);

const balance$ = Rx.Observable.combineLatest(checking$, savings$);

const Balances = React.createClass({
 getInitialState() {
 return {checking: 0, savings: 0};
 },
 componentDidMount() {
 this.props.balance$

.subscribe(([checking, savings]) =>
 this.setState({checking, savings})

);
 },
 render() {
 const { checking, savings } = this.state;
 return (

React.createElement('div', {},
 React.createElement(AccountBalance,

{name: 'Checking', value: checking}),
 React.createElement(AccountBalance,

{name: 'Savings', value: savings}))
);
 }
});

ReactDOM.render(
 React.createElement(Balances, {balance$}),
 document.getElementById('root')
);

Obviously, there are a number of ways that you could implement a seemingly simple
text field. So, for those of you who are new to React, this may seem a bit of a round-
about way to render such a simple system. But what you’ve seen is the basis of a power-
ful concept. By combining RxJS streams with React components, you can create
components that not only update in real time but also largely separate the concerns of
the application. You achieve this separation by isolating UI changes and letting React
efficiently manage the process, so that none of the components need to have an
awareness of any others. This separation of the concerns and immutability of the data
structures also prevents new features from interfering with existing ones.

 So far, you’ve seen how to render DOM components and how to change them. But
most of the dynamic interaction with rich state UIs originates from handling user

Listing 10.2 Communicating to child components using a single parent

Creates a simple subcomponent
that formats its input

Updates savings every 5 seconds

Updates checking every second

Combines the two inputs
into a single stream

ates a
posite
class
 both
ounts

Initializes the
balances to zero

Subscribes to updates
on the balances

Renders the component
as the composition of
two subcomponents

Renders the balances
component to the DOM and
passes the balance$ stream as
props to populate the UI with
the illusion of constant cash
flow into both accounts

281Introduction to React and Redux
input. User interfaces that use React that need to both handle user input and then
render some output on another component based on those interactions present a slight
challenge to RxJS’s unidirectional flow (producers to consumers). The challenge is
that these observables are then inextricably linked to the state of a single component
but need to make changes somewhere else.

 Take the standard search engine example you implemented in chapter 5. You
learned that standard inputs can be used as event sources for data that comes from,
say, keyup events. In the DOM, you could use a query to get the search bar element,
attach the corresponding event handlers, and begin listening for events. After the
stream is set up, you could begin subscribing to it from other parts of the application.
If you were to implement the input box and the output list as React components, then
the search results list, located somewhere else on the page, could subscribe to those
events and update as new results arrive. But this becomes an issue in a feed-forward
(unidirectional) model like React. Why? Remember that state flows smoothest when
it’s travelling to child components and not so well when it’s going back upstream and
into another isolated component, as shown in figure 10.3.

When two isolated components need to communicate, this inevitably leads to sharing
state variables, and you end up losing all the benefits of encapsulating state changes
into a single downstream pipeline. This is important to understand. As you can see
from figure 10.3, React components are good about keeping state to themselves, and
it’s meant to flow only downward. Therefore, if you modeled the search bar and the
search results widgets as React components, there wouldn’t be a direct way of sharing
the data that originates in one with the other. This is a philosophical decision of React
that states that components should never know (or care) whether another component
is stateless or stateful.

 In React, because components are composed hierarchically, it’s difficult for one
state to update another if those components don’t have a direct parent/child relation-
ship (as we did with the AccountBalance earlier), as shown in figure 10.4.

Search box

Reactive programming

Isolated React components
must communicate through
external shared variables.

Search results

Reactive Programming
Functional Reactive Programming
Reactivity
Flapjax
Dataflow

Figure 10.3 React components for search.
Two different React components have no
direct way of communicating because each
component’s state is completely
encapsulated within the component. So you
must resort to using external, shared
variables or patterns such as an event bus.

282 CHAPTER 10 RxJS in the wild
In this figure, there isn’t a clear way for these components to communicate. Of
course, you could think of wrapping the entire search page into an overarching React
component. But then you’d run the risk of the entire page rerendering instead of just
the bits and pieces that change. Another common solution might be to use two-way
data binding of models to views, like in Angular. But this is known to become chal-
lenging as the size of the application grows. In the same way as decoupled architec-
tures, you could use a variation of the observer pattern called an event bus. Using an
event bus, several isolated components could subscribe to a single source of informa-
tion and receive messages pertaining to the topics they’re listening to. Although this
would arguably work, the downside is that event buses are multicast and omnidirec-
tional because events can flow in any direction; this can lead to problems that are hard
to troubleshoot once many components loaded onto the page subscribe to receive
messages, as shown in figure 10.5.

 A downside to an event bus is that it’s hard to picture what information flows
through an event bus at any given time, and it clearly breaks the desired pattern of
having information flow in a single direction. Also, it places the responsibility of writ-
ing the business logic of handling events of interest on the component itself.

 What can you do to fix this issue, and how can you transform this unwieldy web of
events into a single-direction flow of events? Again, it’s the same mindset at play. And
here we reveal the key to reactive applications. As it turns out, while you’re tempted to
look at unidirectional flow in the context of a line, you could also visualize it as a circle (a
line that ties back to itself). Say what? In its path, this circle has multiple components
that have different responsibilities. Consider the diagram in figure 10.6.

State changes
flow inward.

Components do not
communicate directly.

Propagating updates to other components would
require a specific state management logic.

React class

React class

UpdateUpdate

React class

React class

Figure 10.4 React components are walled off from each other, so that state changes can
be propagated only from the parent component down to its children but never in isolation.

283Introduction to React and Redux
Component
ComponentComponent

ComponentComponent

Component
ComponentComponent

1. Send 3. Handle

Every component
publishes events to
a central event bus.

The event bus routes events fired from
one component to other components
that are listening for that event.

Event bus

2. Route

Figure 10.5 A central event bus sends information from one component to another. These
components can be React components or any other UI-rendering technology.

Actions Storage controller

1. Any React component may emit a state
change (for example, that search results
are available) to other components.

2. Event handler will dispatch
an action indicating an
event has occurred

3. Dispatched actions contain state,
which can be propagated to all
React components listening to such
an event through the controller.React components

Figure 10.6 The flow of states among different React components needs to be managed using actions
and a controller that can dispatch such state changes and propagate them down to all components.

284 CHAPTER 10 RxJS in the wild
This figure shows that the final step is actually the first step and vice versa. So in the
context of your banking application, a React component that needs to communicate
with another may dispatch some sort of action (click the withdraw button). This
action kicks off the necessary transformation in the state of the system (compute the
final balance amount), and then this new data is passed on to the balances compo-
nent (display the final balance). You can accomplish this by plugging in some type of
storage controller layer that can help you manage your state, one than can act on a
certain action to perform and have the results propagated downward into all React
components that are listening for such an event. As you might have guessed, this state
controller layer in your circle is called Redux!

10.2.2 State management with Redux

You’ve rendered simple components on the page, so now you’ll move to your second
stop on the roadmap, which is to use Redux to model your state management layer,
the part of the system in charge of sharing data among your components. This section
is a brief introduction to the pieces of Redux you’ll need to know.

 Redux is a state container for JavaScript, and it takes care of how information flows
through an application. Remember that state in RxJS is always transient, so for the
purpose of temporarily retaining it, instead of creating mutable, global variables,
Redux provides a read-only storage component.

 In addition, Redux follows several principles of FP that you explored in earlier
chapters. Primary among these features is the use of single-directional flow to elimi-
nate the side effects of sharing global data between components on the page. In a typ-
ical React/Redux application, data flows to a React component whenever it’s changed
within the Redux store, and, likewise, actions triggered in React (a button click) cause
state to update in the Redux store. Redux stores and then completes the circuit, so to
speak, by using a simple subscription mechanism to notify React of state updates.
Those updates can then be picked up by calling getState() on the Redux store (we’ll
circle back to the Redux subscribe system and how you can build on it later in the
chapter). Another functional dogma, as mentioned earlier, is Redux’s immutable
store, where changes can be made only through pure functions that create new copies
of this state and preserve the original. These functions are called reducers.

 Redux implements a singleton store container—a single source of truth in Redux jar-
gon. This makes tracking changes predictable, especially when used with React,
because it makes updating several components easy to reason about, unlike an event
bus or Angular’s tight data binding of views and models. The Redux philosophy is to
centralize all of an application’s data into a single object in memory rather than hav-
ing it spread out into multiple objects (the net memory footprint is much the same).
This simple concept has far-reaching benefits, especially for debugging, the most
important being that through browser tools you can inspect your entire application’s
state as a single object tree.

285Introduction to React and Redux
Visually, with Redux you can turn a complex update graph of connected compo-
nents, like in figure 10.7, into a simple graph where arrows move from a centralized
object out to each component as needed. Then, every React component decides
whether to accept the change and how it should be made in the most efficient fash-
ion (figure 10.8).

A state change in one React component
would have to be propagated to others
through a complex web of dependencies.

React class

React class React class

React class

Figure 10.7 State changes should be done directly, because they create a
dependency web that’s too difficult to reason about.

React classRedux Store

React class React class

React classA state change in one React
component can be propagated
to others through the Redux
Store object.

The Store object
is easy to inspect
while debugging.

Figure 10.8 The Redux Store object becomes the storage controller that, upon receiving an event
(action), can dispatch and cause state to propagate down to all subscribed React components.

286 CHAPTER 10 RxJS in the wild
Understanding Redux requires a few simple principles that, given the exposure you
just had to Rx, shouldn’t be too complicated to grasp. Let’s discuss how React compo-
nents can communicate in an FRP manner using Redux. After we cover this integra-
tion, we’ll work on integrating RxJS into the Redux middleware.

10.3 Redux-ing application state
Now let’s dive deeply into the components that make up a Redux implementation,
starting with actions and reducers.

10.3.1 Actions and reducers

A reducer is a pure function that takes state and action objects and returns a brand-new
state. An action is a simple object signaling the reducer function to invoke. You’ve seen
instances of these sorts of functions when we were talking about the reduce() and
scan() RxJS instance operators earlier in the book. Recall that you pass two arguments
to reduce: a reducer function and an initial state. After that, each new event that
arrives is subjected to this function and a new state is returned. The same concept hap-
pens in Redux. Reducers are similar to the simple React components that you saw ear-
lier in that you can describe them as pure functions. Here’s a simple reducer that can
perform addition or subtraction, depending on the type of action that’s being invoked:

const mathReducer = (state = {
 result: 0
 }, action) => {
 switch(action.type) {
 case 'ADD':
 return {

...state, result: state.result + action.value
};

 case 'SUBTRACT':
 return {

...state, result: state.result - action.value
};

 default:
return state;

 }
};

The reducer itself is remarkably simple; it takes in a previous state, as well as an action,
and it emits a new state object with the new result. It’s important to note that a
reducer should never mutate the state object directly under any circumstances, which is
why the ES6 spread operator is a common Redux idiom to clone and return the state
object in a single call. This is necessary to avoid polluting the state of the system.

NOTE Always return fresh objects from a reducer when any type of action
takes place.

Reducers always key off of a type of
operation to perform, and using string
constants is the best approach and
best practice in Redux.

The ES6 spread operator is a common idiom in Redux, because
it helps you copy all the properties of the state object. The only

thing that’s left to do is to update only the attributes that
change. Because the Redux single state is read-only, fresh

copies of it are always passed back and forth.

287Redux-ing application state

The next step is to apply that reducer to a piece of state and allow that state to change
over time. This is critical if you expect to have the application respond to changes
during the lifetime of a session.

10.3.2 Redux store

To begin, you use createStore(), which creates a Redux store that holds the com-
plete state tree of your application. createStore() takes a given reducer function and
matches it with a persistent state. It can optionally take in an initial state so that it has
somewhere to start.

const store = createStore(mathReducer, 0);

You can see how this works with an example. In the example of bank accounts, you
had a simple object with two balances, one for each of your accounts:

const accounts = {
 checking: 100,
 savings: 100
};

You could build a reducer analogous to the mathReducer that updates the account bal-
ances like so:

const updateAccounts(state = {
checking: 0,

 savings : 0
}, action) => {
 switch (action.type) {
 case 'WITHDRAW':

return { //#B
 ...state,
 [action.account]: state[action.account] –
 parseFloat(action.amount)

};
 case 'DEPOSIT':

return {
 ...state,
 [action.account]: state[action.account] +
 parseFloat(action.amount)

};
 default:

return state;
 }
});

This code creates a reducer that returns an updated balance for the accounts after a
withdrawal or a deposit has occurred. Thus, you can use it like so:

const withdraw = {
 type: 'WITHDRAW',
 amount: 50,
 account: 'checking'
};

const newAccounts = updateAccounts(accounts, withdraw);

Stores points to your centralized
Redux store object

Initial (default) state

Clones the shape of the state
object, and overrides only the
checking and savings amounts
with the new values in the
action’s payload

Actions have a type and a data (payload)
property. The type of the action is what
invokes the appropriate reducer.

Invokes the reducer
with the current
state and the action

288 CHAPTER 10 RxJS in the wild
The value returned from updateAccounts() would be the new balance state for the
accounts. Plug that reducer into your app to get started:

const store = createStore(updateAccounts, accounts);

This store comes with the additional logic to break down actions and create a new
state based on those actions. This means that instead of manually calling update-
Accounts(), you now update accounts through the store using store.dispatch
(action). Redux will manage invoking the proper reducer depending on the action.
This goes back to our previous discussion about not making changes directly but
using the frameworks to dispatch and manage such changes. Figure 10.9 shows this
interaction.

A simple interaction between React and Redux, shown in figure 10.9, works in the fol-
lowing manner. The event originates from the React component and fires its event
handlers, for instance, a button click or text box change. Then, the handler instanti-
ates the corresponding action to take and uses Redux to dispatch the action, which in
turn modifies the state in the centralized store. Lastly, this store gets propagated down
to all React components, which then decide how best to react to this change.

 Let’s move into implementing the pieces of this interaction and see how you can
begin to include RxJS in the mix. The store executes all the reducers, and the type of
the action represents how parts of the state need to be updated. Instead of just instan-
tiating action objects, the best practice is to use action factories (functions that return
action objects). Then, you can create actions at will and avoid having to type them in
all the time. You can see this in our next snippet:

dispatch(action)
(previousState, action)

Redux Store

3. The actions trigger reducers to
change the state in the Store, which
propagates the state change back
down to the React components.

1. An event is fired from the React
components; for example, an input
box fires the onChange event.

2. Event handler
dispatches actions

Actions Reducers

React components

(state)

newState

Figure 10.9 The circular state diagram
implemented using actions and reducers
with Redux

289Redux-ing application state
function withdraw(payload) {
 return {type: 'WITHDRAW', ...payload};
}

const action = withdraw({amount: 50, account: 'checking'});
store.dispatch(action);
store.getState(); //-> {checking: 50, savings: 100}

As you can see, actions are easy to create. The only required element in Redux is the
type property. Any other logic that you want to perform in the action body is up to
you. We say Redux is an unopinionated framework because it applies few assumptions
about the way you write your logic. Now, if you were to access the state of the store by
calling store.getState(), you’d see that it had been updated by the withdraw()
action. Now let’s tie this into React. The dispatch() method of the store can then be
used in your React components to send out events without worrying about their con-
sumers or tightly coupling them to each other. For instance, to begin implementing
your withdraw functionality in your simple banking form, you can use dispatch() in
place of event handlers, as shown in the following listing.

function handleClick (amount) {
 const { checking, savings} = store.getState();

 if(checking > amount) {
store.dispatch(withdraw({amount, account: 'checking'}));

 }
 else {

throw 'Overdraft error!';
 }
}

React.DOM.button({id: 'withdraw',
 onClick: () =>

 handleClick(document.getElementById('amount').value)},
'Withdraw');

This code allows you to send events to the store, but how would you then access those
events? Remember, your application needs to be reactive, which means that ideally
you should be able to listen for changes in the application state about the store you
created.

 As it turns out, there is a mechanism for this behavior. The store is already an
observable or is “observable-like” with a much narrower observable specification and
doesn’t have all of the fancy bells and whistles that you’ve come to expect from your
RxJS streams. That being said, it does feature a subscribe() method (it’s a “subscrib-
able” object), so you can convert it into an RxJS stream with little difficulty. Because

Listing 10.3 Simple banking form with checking text field and withdraw button

Action factory that
creates an action object

Computes the result of a withdraw synchronously and
emits an action to update the balances in the store

Updates the accounts
if the transaction is

allowed to occur

Otherwise, fires an overdraft error

Reads the value from the text
box and attempts a withdraw

290 CHAPTER 10 RxJS in the wild
Redux deviates from what you’d consider your normal observable pattern, you’ll need
to do a bit of adaptation to make it fit. Here’s where RxJS fits into the mix.

10.4 Building a hot RxJS and Redux store adapter
Integrating RxJS into your React/Redux architecture is easy. It’s important to men-
tion that a lot of the code you’ll see in the next sections used to integrate RxJS and
Redux has already been implemented in a third-party, open source library called
redux-observable (https://github.com/redux-observable/redux-observable), which
makes this integration seamless using a higher level of abstraction. But because this
book is devoted to RxJS, we didn’t want to just glance over this feature and thought it
would be nice to implement this integration ourselves using pure RxJS constructs. It
would also give us the chance to introduce another cool feature called Subject, which
you’re bound to come across as you explore more RxJS.

 Although RxJS and Redux are designed to solve different problems, you have
amazing leverage in the fact that Redux stores are observable-like and so you can cross
over framework lines with a simple adaption.

 The first thing you always should do is run down the list of normal factory methods
that you could use for this purpose. The best option is to use the from() operator.
This operator is special and very intelligent because it takes any observable-like objects
and converts them into real observables. These include arrays and generators, as
you’ve seen all along, but also objects that conform to the ES7 Observable specifica-
tion, which Redux stores do to enough extent. Let’s see how this works:

function createStreamFromStore(store) {
 return Rx.Observable.from(store)

.map(() => store.getState())

.publishBehavior(store.getState())

.refCount();
}

As you can see, Redux’s observable-like behavior is somewhat primitive compared to
what you’ve dealt with in this book. Internally, Redux has been passed a next callback,
which it invokes on each state change. But each time the next callback is invoked, it’s
only notifying observers of available data, not emitting it. Observers are required to
explicitly call store.getState() in order to see the current state of the world. To
amend this, you can use the map operator to call the getState method on every
update and forward that state downstream.

 It’s important to note that in createStreamFromStore, the first call to store.get-
State() is equivalent to the initial state. If there are no changes between the creation
of the stream and its first subscribers’ subscribe(), then they’ll all receive that state.
If a change occurs before a subscriber subscribes, then that change is now stored in
publishBehavior(), and all new subscribers will receive the new state instead. This

store.getState() is called twice, so
that subscribers always receive
the latest state changes.

publishBehavior() is a flavor of a
multicast (hot) operator that emits
the latest value to all subscribers.

Makes this stream go
live as soon as the first
observer subscribes

https://github.com/redux-observable/redux-observable

291Asynchronous middleware with RxJS Subject
function is trivial but very powerful when used to build the bridge connecting Redux
with Rx. Here, you’ve simply lifted the store into an RxJS observable and then
mapped each next value onto the current state of the store’s state. This simple map-
ping makes the Redux store seamlessly work like a normal RxJS observable. Internally,
RxJS is subscribing to the store. The last part of this function converts the stream into
a hot one. This is to optimize the stream and serve many subscribers at once. The
publishBehavior() operator is a special flavor of the publish() operators from chap-
ter 8, which store and emit the most recent value shared with all subscribers. This is
useful if components will be hooking up at different times, which may or may not be
before the observable emits. This way, you make sure that subscribers always get the
latest state when they subscribe.

 Earlier, we showed how you can create dynamic behavior using RxJS to update
React components. Now, you’ll use createStreamFromStore() to add asynchronous
data flows, so that you can use async APIs like PouchDB, for example, to persist your
withdrawal transactions.

10.5 Asynchronous middleware with RxJS Subject
Finally, you’ve arrived at the last stop of our roadmap before we show you all the
pieces of your 3R architecture: building your Rx-based asynchronous middleware.
What’s the benefit of integrating RxJS into Redux? The issue is that, by design, every-
thing in the eyes of Redux happens synchronously: dispatch an action, execute the
reducers, and modify the state; all steps occur one after the other. Suppose you
needed to perform some asynchronous action. How can you introduce wait times, or
the latency of making an AJAX call to fetch data, or perhaps invoke a PouchDB call to
persist a record in local storage? In this case, you want to be able to track every trans-
action (withdrawal or deposit) in the local store. You can examine the interaction dia-
gram in figure 10.10 in order to understand where the challenge is.

 Notice how the linear flow is broken in step 2 in an effort to accommodate asyn-
chronous logic. The issue is that, to account for latency, your middleware actions need
to invoke multiple subactions or subflows to signal when the long-running operation
has completed (the normal Redux idiom is to dispatch actions with status flags like
DONE). One of the canons of reactive architectures is that the application must always
be responsive. Hence, the first action that needs to get dispatched is the one signaling
that the asynchronous call began (DONE, false). You place that flag into the store, so
that your application knows not to fire another action simultaneously.

TIP For those with experience in concurrent processing, this is similar to
using a semaphore.

Once the call completes, a second subflow is dispatched, signaling the completion of
the event (DONE, true). Finally, the processing status is reset in the store, and the
application is free to spawn subsequent actions.

292 CHAPTER 10 RxJS in the wild
For brevity, we won’t show you the full code, but you can imagine your withdraw
action being conditioned like so:

function shouldWithdraw(payload) {
 function (dispatch) => {
 if (payload.done) {

return dispatch(withdraw(payload));
 }
 }
}

store.dispatch(shouldWithdraw({amount: 50, account: 'checking'}));

Checking for additional flags in your actions clutters up all of your code. As you know
by now very well, RxJS is the perfect tool to model asynchronous logic as a single uni-
directional line. In other words, you can build an observable pipeline through which
actions that can execute all sorts of asynchronous behavior can flow serially. Thus, you

Redux Store

1. An event is fired from the React
components; for example, an input
box fires the onChange event.

2. Event handler dispatches
middleware actions

2a-2b. The unidirectional flow is slightly broken
 by the asynchronous nature of the DB API.
 The action signaling (DONE, false) must
 be dispatched first.

3. Middleware handles all actions
and tells reducers to update the
store with status flags.

4. The actions trigger reducers to
change the state in the store, which
propagates the state change back
down to the React components.

Actions

ReducersReact components

RxJS-based middleware

dispatch({type: DONE, val: false})
txDb.put(tx).then(
 dispatch({type: DONE, val: true})
);

Figure 10.10 Async actions introduce the complicated state management needed to keep track of
the progress of the action from the moment the action starts processing to when it eventually returns.
In this case, an async flow is used to call the PouchDB APIs to retrieve initialization data.

This form of action definition
is also supported by Redux.

293Asynchronous middleware with RxJS Subject
can refactor step 2 to spawn asynchronous requests linearly as RxJS operators so that
you can regain that logical unidirectional data flow and keep everything serial, as if it
all happened synchronously. Remember the main goal of RxJS that you began learn-
ing about in chapter 1: Treat asynchronous code as though it was synchronous.

 For simplicity, we’ll zoom in on just that part of the interaction in step 2, as shown
in figure 10.11.

 Using RxJS in the middleware means that every action that passes through gets
wrapped within an observable, processed through the pipeline, and emitted as an
event. That means that you can eliminate the use of callbacks from your action logic.
Also, you unlock all the power of RxJS to, say, throttle the withdraw action as the user
repeatedly clicks the withdraw button. This will be implemented in a component called
an epic, which we’ll come back to after you build your asynchronous middleware.

 To build your asynchronous middleware, you need to learn about one last core RxJS
feature. Let’s take a brief pause from Redux to discuss another cool feature of
RxJS called a Subject. We’ll look at a couple of simple examples using subjects,
and then we’ll circle back (no pun intended) to wrap up our discussion of reactive
architecture.

withdraw

Pipeline handles the
asynchronous business
logic of database persistence
as linear RxJS operators

React components

RxJS-based middleware

Transaction epic

dispatch(action)

PouchDB

error

Orwithdraw

Action

Actions

Processing the database request
might result in an error action
being returned to the Store,
signaling the operation failed.

The unidirectional
flow is restored.

Figure 10.11 Observables can string together actions and model them as a single downstream flow.
The business logic encoded in the observable pipeline might produce an exception, which the
withdraw action transforms into an error action sent back to the store. This logic will live in a function
called an epic.

294 CHAPTER 10 RxJS in the wild

subsc
to
10.5.1 RxJS subjects

If observables emit and observers receive, wouldn’t the ultimate monster mash-up be
an object that can do both? Rest assured; RxJS has you covered. A Subject is a two-
headed beast that implements both the Observable and the Observer interfaces, so it
can both produce and consume events. If you were curious, you’d find that subjects
have this rough interface:

interface Subject extends Observable implements Subscription {

}

This ability suggests that they’re the brains behind creating hot observables. Subjects
allow you to do things that you might not otherwise be able to do with regular observ-
able factory operators. For instance, they allow you to multicast a single source into mul-
tiple outputs, which is why they’re so attractive when mixed with Redux to propagate
changes to multiple React components. Here’s a simple example that uses subjects.

const subject = new Rx.Subject();

subject.subscribe(x => console.log(`Source 1: ${x}`));

subject.subscribe(x => console.log(`Source 2: ${x}`));

subject.next(0);

Rx.Observable.from([1, 2, 3, 4, 5])

 .map(x => x * x)

 .subscribe(subject);

Running this code emits the values 0, 1, 4, 9, 16, 25 to all subscribers, just like
publish(). In fact, publish() is just a façade that uses Rx.Subject to carry out its work.
The publish family of operators that you learned about in chapter 8 leverages this abil-
ity to allow multiple subscribers to listen to the same source. This is possible because the
subject won’t notify the upstream when it gets new subscribers; thus, the only time that
the source is subscribed to is when the subject initially subscribes. In general terms, this
operation is described by an even more generic operator, aptly named multicast(), of
which the set of overloaded publish*() operators is just calls to multicast() with dif-
ferent types of subjects. We show this in figure 10.12.

Listing 10.4 Multiple subscriptions with subjects

Explicitly creates a new Subject

First subscription
to subjectSecond

ription
subject

Explicitly passes a value to the subject

Uses another observable to
pass values to the Subject

publish

publishBehavior

publishReplay

publishLast

Rx.Subject

Rx.BehaviorSubject

Rx.ReplaySubject

Rx.AsyncSubject

Multicast operators

Uses

Figure 10.12 Multicast overloaded operators

295Asynchronous middleware with RxJS Subject
multicast() accepts a subject (or subject variant) as its first argument and returns a
ConnectableObservable. Downstream subscribers will always be subscribing to the
subject, but the subject itself won’t subscribe until connect() is called. Embedding
subjects in a controlled and encapsulated manner can be extremely powerful; you’ll
use subjects to receive, process, and further propagate events to implement your busi-
ness logic into the middleware of your banking application (more on this in the next
section).

A WORD OF CAUTION For all their power, subjects can also be dangerous. For
many newcomers to Rx, they’re a panacea of possibility because they allow
developers to use observables without all the baggage of FP. Unfortunately,
this kind of usage often leads to overexposure of state, so we recommend
them only when you really need this feature.

The case for subjects comes down to a limited set of behaviors that need to be tightly
constrained. For instance, you could emulate standard promise functionality natively
in Rx using the Subject derivation called AsyncSubject.

 The async subject behaves just like the vanilla subject when it comes to accepting
values and then reemitting them. But it has an additional constraint; it holds onto
only a single value and emits only that one value to all current and future subscribers
once the subject has been completed. So it shouldn’t surprise you that the publish-
Last() specialization is really just an async subject behind the scenes. In the following
listing, we show a simple promise implementation using an async subject internally.

Rx.Observable.promiseLike = function(fn) {
 let subject = new Rx.AsyncSubject();

 let resolve = x => {
 subject.next(x);
 subject.complete();
 };

 let reject = e => {
 subject.error(e);
 };

 fn(resolve, reject);
 return subject.asObservable();
};

This code creates a naïve promise-like interface that returns an observable instead.
Using a random number function, we’ll prove to you that this observable behaves like
a promise:

const randomInt = (min, max) => Math.floor(Math.random() * (max - min)) + min;

const random$ = Rx.Observable.promiseLike((resolve, reject) => {
 resolve(randomInt(0, 1000));
});

Listing 10.5 Build a promise-like operator with subjects

Creates a new Subject

Simulates a promise’s resolve method by delegating
to the subject’s next method to emit a value and then
immediately completing the stream (one value only)

Simulates a promise’s reject method by delegating
to the async subject’s error observer method

Invokes the function with the callbacks

Returns the Subject disguised
as a regular Observable

296 CHAPTER 10 RxJS in the wild
random$.subscribe(console.log); //744
random$.subscribe(console.log); //744
random$.subscribe(console.log); //744
random$.subscribe(console.log); //744
random$.subscribe(console.log); //744

In this code, you can see that we’ve addressed two of the issues that we highlighted
earlier. First, we constrained the subject to a highly restricted scope and we do not
expose references to the subject in the return value. And second, we have a defined
lifetime for the subject. These two solutions tend to be good rules of thumb when
explicitly including a subject in your code. Having learned subjects, you can build
your middleware layer.

10.5.2 Building epic, reactive middleware

Generally speaking, middleware is a component or set of components, usually based
on some plugin architecture, that can be injected between certain chunks of logic
without impacting other parts of the system. Middleware allows for clean, noninvasive
code that doesn’t clutter your actions, reducers, or the UI. Because Redux is agnostic
to whether state changes need to happen synchronously or not, you need some way of
injecting this additional waiting logic where actions are generated and before they’re
consumed by a reducer. Let’s see how you can accomplish this.

 Redux is small but supports injecting asynchronous plugins like redux-thunk
(https://github.com/gaearon/redux-thunk), redux-promise-middleware (https://
github.com/pburtchaell/redux-promise-middleware), and others. Figure 10.13 shows
the flow of actions through the system when we plug in an RxJS-based middleware
component that has actions flowing through observable streams that trigger a corre-
sponding reducer on the Redux store.

All subscribers will receive
the same value, in this case
744 (because it’s a random
function, results will vary).

React UI components
dispatch an action.

Redux Store reduces state into
desired output, which flows
back to the React UI view

React UI view Redux Store

RxJS-based middleware

stream1$
stream2$
stream3$

RxJS streams in your middleware
allow you to implement asynchronous
(unidirectional) flows through Redux.

Figure 10.13 A flow diagram of how actions and state move in the application. Actions flow from
React/UI events to the Redux/React component after being processed by middleware and are then
sent back to the UI as state updates.

https://github.com/gaearon/redux-thunk
https://github.com/pburtchaell/redux-promise-middleware
https://github.com/pburtchaell/redux-promise-middleware
https://github.com/pburtchaell/redux-promise-middleware

297Asynchronous middleware with RxJS Subject

This figure shows that any actions dispatched by the UI components can flow through
your middleware component (implemented using RxJS), which carries all of your
business logic and is ideal to handle your asynchronous needs while keeping the feed-
forward flow intact. This is where you could write to your PouchDB database or invoke
an AJAX call to fetch search results. When the data is available, it flows through a set of
reducers before being propagated out (multicast) to all React components through
setState(). RxJS brings you this advantage by encoding your asynchronous business
logic into a set of operators—hence, reactive middleware.

 The objective of using RxJS in the middleware is to create a layer that can consume
an observable action sequence and then asynchronously emit potentially different
actions that will be consumed by the store that resulted from the logic flowing
through the observable. That’s the purpose of the middleware: to receive actions, do
some processing, and return similar or different actions. The actions to process are
contained in a set of epics (we borrow the term from redux-observable).

 Epics are nothing more than functions that have access to the state as well as
incoming actions that are dispatched from your UI components. You can think of
them as functions that take a stream of actions and return a stream of actions—actions
in, actions out. Say, for instance, that you wanted to create an epic to handle persisting
every transaction to local storage as withdraw (or deposit) actions are dispatched. For
this, you can create a transactionLogEpic() function, as shown in the next listing.

const txDb = new PouchDB('transactions');

class Transaction {
 constructor(account, amount, balance, timestamp) {
 this.account = account;
 this.amount = amount;
 this.balance = balance;
 this.timestamp = timestamp;
 }
}

function transactionLogEpic(action$, store) {
 return action$.ofType('WITHDRAW', 'DEPOSIT')
 .timestamp()
 .map(obj => ({...obj.value, timestamp: obj.timestamp}))
 .map(action => ({

...action,
balance: store.getState()[action.account] - action.amount

 }))
 .map(datedAction => (

new Transaction(
datedAction.account,
datedAction.amount,
datedAction.balance,
datedAction.timestamp

)

Listing 10.6 Plugging into the middleware

Slightly simplified version
of the Transaction class
from chapter 6

Convenient new operator
implemented to filter incoming
actions based on type (analogous to
how reducers work on action.type).
We’ll show it in the next listing.

Epic middleware function

Gets a snapshot of the
current state of the store and
updates the targeted account

298 CHAPTER 10 RxJS in the wild
))
.mergeMap(datedTx =>
 Rx.Observable.fromPromise(txDb.post(datedTx))
 .mapTo({payload: {...datedTx}, type: 'LOG'})
 .catch(() =>

Rx.Observable.of({type: 'LOG', payload: 'TX WRITE FAILURE!'})
)
);
}

With this change, your middleware will intercept any action of type WITHDRAW or
DEPOSIT and create the proper transaction to store it. Functions like the one in listing
10.6 are the foundation of your observable-based middleware component. In order to
make these functions come together, you need one more piece that you’ll build your-
self. You need to merge the resulting streams so that you can feed all the results into
the Redux store. Consider the wiring where you define several such functions and add
them to an array. Because these are functions that create new observables, we’ve taken
to naming them “factories.” You’ll add your only epic function now; at the end of this
chapter, we’ll show you how to inject additional functionality by adding another epic
to this array:

const epics = [
 transactionLogEpic,

 /* Add more epics for more functionality */
];

Just as you’re used to switching on action types in reducers, you’ll see that it’s typical of
the middleware to selectively process certain actions. For this, it’s useful to extend the
Observable type with an additional operator, ofType(). As you implement more epic
functions, bringing this concept along as a first-class citizen will make your code much
more succinct. The next listing shows how you can easily augment the Observable pro-
totype with this new operator.

Dispatches instead an
error action to the store
to signal to the user that
an error has occurred

ES 7 Object.assign()
For most of this book, we’ve been strictly sticking to ES 6 (ECMAScript 6) syntax. For
this chapter, for the purposes of both brevity and popularity, we’ll be using ES 7
Object.assign syntax. This syntax appears as {...oldState, prop: 'VALUE'},
where this block would normally be written Object.assign({}, oldState, {prop:
'VALUE'}). As of this writing, most browsers do not yet support this syntax, so if
you wish to use it in your project, you’ll need to use a transpiler like Babel
(https://babeljs.io/).

https://babeljs.io/

299Asynchronous middleware with RxJS Subject

.

Rx.Observable.prototype.ofType = function (...types) {
 return this.filter(({ type }) => {

const len = types.length;
switch (len) {
case 0:
 throw new Error('Must specify at least one type! ');
case 1:
 return type === types[0];
default:
 return types.indexOf(type) > -1;

}
 });
 }

Now that you understand what epics are, you need to connect them to Redux so that
the processing of dispatching an action begins to flow through the observable
sequence. This connective tissue is implemented entirely with RxJS using Subjects.

 A Subject is a key ingredient for building your middleware layer and dispatching
actions that flow through Redux from React components. As far as your banking
application is concerned, it’s recommended to reduce subjects to the smallest possible
scope to avoid abuse. In this case, you’ll use them to dispatch and proxy changes
along the middleware layer with code like this:

const action$ = new Rx.Subject();
const dispatch = action => action$.next(action);

This creates a Subject and wraps the next function in a lambda, which is what you’ll
expose to the rest of the application instead of the reference to the Subject itself. The
logic is not that simple; you still need to do a bit of work. To make this all portable,
you’ll wrap the proxy mechanism into a function called createMiddleware() that
knows how to mimic Redux’s interface and glue observables into your middleware
layer, as shown in this listing.

 function createMiddleware(store, epics) {

 const input$ = new Rx.Subject();

 const actions =
epics.map(epic =>
 epic(input$, store));

 const combinedActions$ = Rx.Observable
.merge(...actions)
.publish();

Listing 10.7 Implementing custom ofType operator

Listing 10.8 Building your middleware

At the top level, the middleware
accepts a store and a set of epics

Creates a new private Subject
instance used to emit actions to
both the store and the epics

Invokes all the factories and stores their
outputs as your middleware streams

Each factory takes the actions (input$)
and state (store) to create a new stream

Merges all the resulting
streams into a single output

Converts that stream into a hot
observable, so it’s shared

300 CHAPTER 10 RxJS in the wild
 combinedActions$.subscribe(input$);

 combinedActions$.subscribe(action => store.dispatch(action));

const sub = combinedActions$.connect();

 return {
dispatch: (action) => input$.next(action),
unsubscribe: () => sub.unsubscribe()

 };
 }

Listing 10.8 is probably a bit of a mind bender. So here’s a quick, isolated example
that shows the chain of commands as actions flowing into the middleware and out to
the reducers:

function simpleReducer(state, action) {
 switch(action.type) {

case 'LOG':
 return {...state, messages: [...action.payload, 'in Redux!']};
default:
 return state;

 }
}

const store = createStreamFromStore(
 createStore(simpleReducer, {messages: []}));
const observableStore = createStreamFromStore(store);

observableStore.subscribe(({messages}) => console.log(messages.join('=>')));

function simpleEpic(action$, store) {
 return action$.ofType('LOG')

.delay(1000)

.map(action => {...action, payload: [...action.payload, 'in Rx!']});
}

const disposableDispatcher = createMiddleware(store, [simpleEpic]);

disposableDispatcher.dispatch({
 type: 'LOG',
 payload: ['Hello']
});

This code snippet shows a simple epic and a simple reducer. It’s meant to illustrate the
chain of commands. When the action is dispatched, it first reaches the middleware,
and then the reducer. The middleware epic pipes the action through the observable
and defers propagating it by a second. Afterward, you process the action and append

Feeds the output of the epic functions
(action streams) so that they can get handled
by subsequent middleware in the chain

Simultaneously sends all
events to the store as well,
in case it can handle them

Connects the stream (makes it hot);
this prevents the stream from emitting
before both subscribers are subscribed

Puts the user in control of disposing
the observable middleware

Returns a proxied version
of dispatch that invokes
next on the subject (thus
sending actions to the
middleware)

301Asynchronous middleware with RxJS Subject
“in Rx!” to the payload. The action finally makes it to the reducers, where it’s modified
once more to append “in Redux!” Hence, the output would look like the following:

 (…after 1 second)
Hello=>in Rx!=>in Redux!

Figure 10.14 illustrates the sequence of actions in this data flow roller coaster.
 You astute readers should notice that the Subject, which you instantiated in the

listing, is subscribing to its own downstream, in what would seem to violate the very laws
of time and space! As the saying goes, this is not a bug; it’s a feature. The reasoning
behind this cycle (or feedback loop for those in the AI field) is simple; often, you’ll
need epics to work together. The epics themselves, as you’ll see in the next section,
are independent silos of logic (read "streams"), which will transform a stream of
actions into another stream of actions; in other words: actions in, actions out. For a
complex middleware layer, you may well want those output actions to become the
input actions of another epic. Thus, the input$ Subject is a means by which to con-
vert those output actions into potential input actions for other epics.

input$ React UI views

Rx.Subject

1. Action dispatched
to middleware

4. After the middleware has executed,
the reducers work on the dispatched
action and update the state.

2. Each epic pipes action
through the observable,
then propagates it.

3. This loop repeats for each
epic in the epics array.

Epic Epic Reducer

OutputActions

Actions 5. The output is then
passed on down
to the views.

Figure 10.14 This diagram shows the flow of actions within createMiddleware(). The input$
subject is in charge of injecting the world of Redux into RxJS. After the action is wrapped in a
Subject observable, it flows through each of the epics in the array in order. Finally, the actions
resulting from executing this series of epics are dispatched further into the Redux reducers.

302 CHAPTER 10 RxJS in the wild
The loopback logic is only one part of the code, though; in the second half of listing
10.8, you’re also subscribing to the combined output of actions and dispatching all
output actions to the store. In effect, this means that an action is evaluated at two
points: first, by the epics, to determine if it can be further processed; and second, by
the reducer itself, to see if the store must be updated and a new state emitted. To opti-
mize this process, you utilized the publish/connect operators, which were discussed in
chapter 8. Recall that by publishing the stream, you share it between all subscribers so
that new pipelines aren’t created for each subscriber. Finally, you connect() the par-
ent stream so that the two subscribers (the Subject and the store) can begin receiving
events when they’re emitted. You allow the user to shut down the system by exposing
the unsubscribe logic to the user through a method. This allows the user of your
library to instigate a controlled shutdown of the application and switch off the streams
when they’re finished with them.

 The result is an interface that more or less resembles that of the original store but
that transparently handles asynchronous actions without changes to the Redux store.
This is important, as you’ll see in the next section, because of how the middleware will
fit into the overall system. Now that you finally have all of your components and have
seen how you might use them, let’s hook them up so that your banking application
can handle user transactions. You can do this in any order; remember, your compo-
nents are all independent of each other.

10.6 Bringing it all home
So far, you’ve learned how to implement all the pieces. Now, you’re ready to put every-
thing together to complete your simple banking app that’s ready to receive withdraw
or deposit actions. You start with a default value of $100 in each account. You add the
transaction epic (to insert all transactions into the database), which then gets added
to the middleware via createMiddleware(). Your store component knows only about
a single reducer at the moment, called updateAccounts(). Finally, you create the par-
ent React component that renders the UI into the document body. You make it capa-
ble of dispatching actions through the middleware through its props object. The next
listing shows all of this wired up.

const Balances = React.createClass({/**/});

const accounts =
 checking: 100, savings: 100
};

const epics = [
 transactionLogEpic
 /* add more epics here */
];

const store = createStore(updateAccounts, accounts);

Listing 10.9 Building the application

Declares the
specification for the
Balances componentCreates an initial state for

the application to start in

Declares the middleware
components that will be invoked

Creates an instance of
a Redux store to house
state changes

303Bringing it all home
const state$ = createStreamFromStore(store);

const middleware = createMiddleware(store, epics);

ReactDOM.render(
 React.createElement(Balances,
 {appState$: state$, dispatch: middleware.dispatch}),
 document.getElementById('root')
);

There are several major advantages to organizing your code as you have. For one,
you’ve virtually removed coupling between components. You have streams, reducers,
and React components, all tied together loosely by the types of events they create and
consume. This means that you can add more components to your application unob-
trusively. Note as well that this is superior to a standard event bus, typical of this kind
of architecture, because the single direction that events follow means that you avoid
race conditions. Further, the compartmentalization of the handlers and reducers
means that you can test each of them in isolation. Finally, by using immutable state
throughout the application, you prevent new features from unexpectedly creating
changes to other components in the system and polluting your system-wide state,
which is always problematic for JavaScript developers.

 Lastly, to demonstrate how easy the task of adding new features is, you can add
another quick feature. For instance, consider a task to calculate interest payments
periodically. These payments would be some fraction of the overall balance that’s
applied over a fixed period of time. How would you add such a feature to your system?

 The first question to ask is, where does this logic actually reside? In this case, you
could think of automated transactions just like any user transaction that you’ve seen
so far. But with interest, there’s no user interaction. Remember as well that your trans-
action management is done without knowing who initiated a transaction. This means
that you’ll likely need to create a new handler:

const computeInterest = p => 0.1 / 365 * p;

function interestEpic(action$, store) {
 return Rx.Observable.interval(15000)
 .map(() => store.getState())
 .map(({savings}) => {type: 'DEPOSIT',

account: 'savings', amount: computeInterest(savings)}))
}

Then, you need to add that handler to your initial stream list:

const epics = [
 transactionLogEpic,
 interestEpic
];

Uses the method defined earlier to convert
the store into an Rx Stream (you can do this
because the store is a subscribable object)

Combines the store with the
middleware to build the application

Creates an instance
 of the Balances
component powered
by the application

304 CHAPTER 10 RxJS in the wild
Voila! You now have new functionality enabling interest payments. We should point
out as well that at this point, you’re dealing almost exclusively with streams, which is
exactly what you want. What you’ve seen here is merely a small sample of what you
could do with this pattern. We invite you to also check out and run the sample applica-
tion that was built using this architecture (https://github.com/RxJSInAction/rxjs-in-
action). We’ve included several more examples with varying degrees of complexity.

10.7 Parting words
This journey through RxJS has taken you to some new places: from the fundamentals
of reactive programming, all the way to a full-fledged web application. Along the way,
you’ve explored how observables are created and destroyed. You looked at how you
can merge and split observables, injecting or extracting the information you need.
You experimented with notions of time, which surround and interweave with observ-
ables, and you used that understanding to build purer, more testable functions. As we
said at the outset, this book wasn’t meant as a definitive guide to all things RxJS;
instead, by focusing on a variety of topics and how they pertain to your real applica-
tions, we’ve hopefully given you both a taste and a hunger for more, because the les-
sons here are merely the beginning of what you can do with RxJS. Also, remember
that the principles we covered in the previous chapters are not confined to JavaScript.
You can utilize them across the stack in a variety of languages. Finally, we hope that
this book has encouraged you not just to use RxJS in your projects (and we really do
hope you do!) but also to examine your code with a more critical eye toward many of
the concepts covered in the book, namely, purity, immutability, composability, testabil-
ity, and laziness. These are valuable ideas that can be applied even without fancy
frameworks (though they do tend to make it easier).

10.8 Summary
 Understanding how data is transformed and moved will inform decisions on

how to include RxJS in your project.
 Keep events moving in a single direction by looping streams in order to create

complex UI interactions that are easy to reason about.
 Manage state immutably and keep all components separate. This will ensure a

clear separation of concerns that will allow you to scale your architecture to sup-
port new features without linearly increasing the complexity of your application.

 You can use Subjects to implement advanced middleware or stream-proxying
solutions. While powerful, Subjects can be hard to troubleshoot given that they
can act as both observables and observers. We recommend you keep Subjects
to a minimum and well encapsulated.

 You can use RxJS to create middleware that handles asynchronous data flows so
that actions dispatched from the UI can flow through an observable pipeline to
be translated into a separate action that flows out of an epic.

 RxJS in an intricate part of the Redux/React architecture, which we call 3R.

https://github.com/RxJSInAction/rxjs-in-action
https://github.com/RxJSInAction/rxjs-in-action

 appendix A
Installation of libraries

used in this book
Installing the example projects
To help you better understand the text, we’ve made two code repositories available
to download and run so as to better see RxJS in Action.

 The primary repository we use throughout the text contains the runnable code
samples.

 URL: https://github.com/RxJSInAction/rxjs-in-action

The second repository, which is used only for chapter 10, contains a standalone
application that can be accessed and run via the following.

 URL: https://github.com/RxJSInAction/banking-in-action

You can also find all the installation instructions on the respective repositories.

Node git clone https://github.com/RxJSInAction/rxjs-in-action.git
cd rxjs-in-action
npm install
npm start
<Open browser to localhost:8080>

Node git clone https://github.com/RxJSInAction/banking-in-action.git
cd banking-in-action
npm install
npm start
<Open browser to localhost:8080>
305

https://github.com/RxJSInAction/rxjs-in-action
https://github.com/RxJSInAction/rxjs-in-action.git
https://github.com/RxJSInAction/banking-in-action
https://github.com/RxJSInAction/banking-in-action.git
http://ramdajs.com/
https://react-bootstrap.github.io/
https://react-bootstrap.github.io/
https://react-bootstrap.github.io/
https://github.com/RxJSInAction/banking-in-action

306 APPENDIX A Installation of libraries used in this book
Installing RxJS
This book uses the latest release of RxJS. RxJS 5 is a complete overhaul/redesign of the
previous RxJS 4 version. The main factor driving this project is a focus on performance
and simplicity. Re-architected under the Lift architecture by Paul Taylor, RxJS 5 fea-
tures a significant reduction in the use of function closures, thereby lessening its run-
time footprint. RxJS 5 was simplified to allow easier debugging and stack trace reports.

 Furthermore, the new Observable data type was redesigned to be more confor-
mant to the upcoming ES-observable-spec slated for JavaScript ES7. Finally, there’s a
focus on modularity so that users can now download and use only the parts of RxJS
they need instead of having to install a single monolithic library.

 Version: 5.0.2
 Homepage: https://github.com/ReactiveX/rxjs
 Installation details follow.

In ES6 environments, you can load the Rx library in the following ways:

import Rx from 'rxjs/Rx';

const Rx = require('rxjs/Rx');

Installing Ramda.js
This utility library was designed specifically for functional programming, which facili-
tates the creation of function pipelines. All of Ramda’s functions are immutable and
side effect–free. In addition, all the functions have automatic currying, and their
parameters are arranged to make it convenient for currying and composition. Ramda
also contains property lenses, which are used in this book to read/write the properties
of objects in an immutable manner.

 Version: 0.18.0
 Homepage: http://ramdajs.com/
 Installation details follow.

Installing PouchDB
PouchDB is an open source JavaScript database inspired by Apache CouchDB that’s
designed to run well within the browser. PouchDB was created to help web developers
build applications that work as well offline as they do online.

Browser https://unpkg.com/rxjs/bundles/Rx.min.js

Node npm install rxjs

Browser <script src="ramda.js"></script>

Node npm install ramda

https://github.com/ReactiveX/rxjs
https://github.com/ReactiveX/rxjs
http://ramdajs.com/

307Using the Bitly Web API
 Version: 5.3.2
 Homepage: https://pouchdb.com/
 Installation details follow.

Installing Moment.js
Moment.js was designed to parse, validate, manipulate, and display dates in JavaScript.

 Version: 2.13.0
 Homepage: http://momentjs.com/
 Installation details follow.

Installing Google client APIs
The Google client library unlocks the power to access all of Google’s web APIs, includ-
ing the URL shortener used in chapter 9. The only requirement to use the library is to
have an active Google account and to generate the OAuth2 token for that API, which
you can do through the Google APIs console.

 Version: 14.0.0
 Homepage: https://www.npmjs.com/package/googleapis
 Installation details follow.

Using the Bitly Web API
Bitly exposes a web service used to shorten URLs. You need to have an active Bitly
account and use the login and token information in your profile settings.

 Homepage: https://app.bitly.com
 Installation details follow.

Browser <script src="
https://cdn.jsdelivr.net/pouchdb/5.3.2/pouchdb.min.js"></script>

Node npm install pouchdb

Browser <script src="https://cdnjs.cloudflare.com/ajax/libs/moment.js/
2.13.0/moment.min.js"></script>

Node npm install moment

Browser <script src="https://apis.google.com/js/api.js"></script>

Node npm install googleapis

Browser Make AJAX calls to https://api-ssl.bitly.com

Node npm install bitly

https://api-ssl.bitly.com
https://pouchdb.com/
http://momentjs.com/
https://www.npmjs.com/package/googleapis
https://app.bitly.com

308 APPENDIX A Installation of libraries used in this book
Installing Mocha
Mocha is a feature-rich unit-testing framework for JavaScript that runs on both
Node.js and in the browser. It uses a serial test runner to support both synchronous
and asynchronous unit tests.

 Version: 3.1.0
 Homepage: https://mochajs.org/
 Installation details follow.

Installing Chai.js
Chai.js is a test-framework-agnostic library for BDD/TDD types of assertions. In this
book, we used Chai to enhance the assertion capabilities of Mocha.

 Version: 3.5.0
 Homepage: https://www.npmjs.com/package/chai
 Installation details follow.

Installing React.js
React is a lightweight component UI library for creating fast, reactive, and modular UI
frontends. It uses a unidirectional flow and a fast diffing mechanism to reduce side
effects and improve performance.

 Version: 15.3.1
 Homepage: https://facebook.github.io/react/
 Installation details follow.

Browser <script src="https://cdnjs.cloudflare.com/ajax/libs/mocha/3.0.2/
mocha.min.js"></script>

Node npm install mocha

Browser <script src="https://cdnjs.cloudflare.com/ajax/libs/chai/3.5.0/
chai.min.js"></script>

Node npm install chai

Browser <script src="https://unpkg.com/react@15.3.1/dist/react.js">
</script>
<script src="https://unpkg.com/react@15.3.1/dist/react-dom.js">
</script>

Node npm install react react-dom

https://mochajs.org/
https://www.npmjs.com/package/chai
https://facebook.github.io/react/

309Installing Redux.js
Installing React-Bootstrap
React-Bootstrap is a small extension library of React that allows you to use bootstrap
components in React.

 Version: 0.30.0
 Homepage: https://react-bootstrap.github.io/
 Installation details follow.

Installing Redux.js
Redux is a small application state library that provides a functional interface to man-
aging state change in an application without mutation and the associated side effects.

 Version: 3.6.0
 Homepage: http://redux.js.org/
 Installation details follow.

Browser <script src=" https://cdnjs.cloudflare.com/ajax/libs/
react-bootstrap/<version>/react-bootstrap.min.js"></script>

Node npm install react-bootstrap

Browser <script src="https://unpkg.com/redux@3.6.0/dist/redux.min.js">
</script>

Node npm install redux

https://react-bootstrap.github.io/
http://redux.js.org/

appendix B
Choosing an operator

The following is a list of operators and a description of when to use them. We cover
the operators (static and instance) used in this book. Some operators can act as
both static and instance, and we indicate which ones. For a more complete list,
please visit http://reactivex.io/rxjs/manual/overview.html#choose-an-operator.

 All factory operators are called as static methods of the Rx.Observable type. See
table B.1.

Table B.1 Static scope operators

Situation Purpose Operator

Creating a new instance With custom logic
From a given value

create

of

From an observable-like object from

From a range of numbers range

With an exception catch

From an ES6 promise
From any event originated by an event emit-
ter like WebSockets or the DOM

fromPromise

fromEvent

Wrapping a callback bindCallback

Attach some recourse dependent on the
lifecycle of an observable
Spawn an AJAX request and merge the
result into the observable sequence
Conditionally create a stream with an if-
then-else approach

using

ajax

if
310

http://reactivex.io/rxjs/manual/overview.html#choose-an-operator

311APPENDIX B Choosing an operator
All instance operators are called through an observable instance (Rx.Observable
.prototype). See table B.2.

Creating a time-based
instance

Single timed interval
Multiple timed intervals
Run all observable sequences in parallel
and collect their last elements

timer
interval
forkJoin

Table B.2 Instance scope operators

Situation Purpose Operator

Transforming a
sequence

Delaying or offsetting the entire emission of an
event sequence

delay

Prepend an element onto the stream startWith

Transform elements one-to-one map

Fold entire event sequence into a single value reduce

Just like reduce, but emit each subsequent fold
as an event

scan

Extract object properties from emitted data pluck

Buffer a certain amount of data and emit all at
once

bufferCount

Buffer for a specific period of time and emit all at
once

bufferTime

Buffer at the pace of when a subordinate observ-
able emits a value

buffer

Like buffer, but use a function that creates a
new observable to indicate when to close the buf-
fer

bufferWhen

Filtering
sequences

Remove events according to a predicate function filter

Skip a certain number of events skip

Grab the first N number of events take

Emit the values of an observable until a subordi-
nate observable emits; emit events until some
other observable tells you not to.

takeUntil

Emit only the first event of a sequence first

Emit only the last event of a sequence last

Table B.1 Static scope operators (continued)

Situation Purpose Operator

312 APPENDIX B Choosing an operator
Filtering
sequences
(continued)

Emit values only after a particular time span given
by another observable has passed

debounce

Debounce for a fixed period of time debounceTime

Emit event at most once every time period throttleTime

Emit only items that are distinct by comparison
(given by you) from the previous item

distinctUntilChanged

Like the previous operator, except now you com-
pare the keys of the emitted items

distinctUntilKeyChanged

Utilities Perform any sort of necessary side effect such as
logging to the screen; useful for debugging pur-
poses

do

Embellish the event object with the interval dura-
tion span; useful for computing time deltas
between emission

timeInterval

Error handling Catch an exception produced from any operator
and replace it with a continuing observable

catch

Allow the sequence to halt and terminate into the
observer’s error handlers

throw

Retry an operation for a certain amount of time retry

Implement additional logic such as a backoff retry
strategy

retryWhen

Call function when an observable completes or
finishes with errors; good for cleanup tasks

finally

Coordinating
sequences

Combine the latest values from a collection of
streams when all of them have emitted; can be
used as a static factory operator as well

combineLatest

Like the previous operator, except this will emit
the latest values from each observable when the
source observable emits

withLatestFrom

Joining events
of multiple
observable
sequences

Forward events from multiple sequences in order
of arrival; can be used in static form as well

merge

Append the events of one observable sequence
after another (in order); can be used in static form
as well

concat

Cancel a source observable midstream and
replace it with a new one

switch

Table B.2 Instance scope operators (continued)

Situation Purpose Operator

313APPENDIX B Choosing an operator
Joining events
of multiple
observable
sequences
(continued)

Merge a collection of observables using a selec-
tor function and emit when all the observable
sequences have emitted at a corresponding
index; useful for keeping a map of corresponding
events. Can be used in static form as well

zip

Projecting or
branching
other observ-
ables, making
AJAX requests,
DB lookups,
and so on

Merge an observable object into the source
observable; flatten the result into a single observ-
able (alias: flatMap)

mergeMap

Like mergeMap(), but dispose the source
observable when it’s no longer needed (alias:
flatMapLatest)

switchMap

Project and flatten a source observable but main-
tain order of events

concatMap

Broadcasting
the outcome of
an observable
sequence to
multiple sub-
scribers

Create a lazy observable that you manage that
multiple subscribers can connect to; use it to con-
trol when you want to let events flow with
connect

publish

Create an observable that shares the outcome
with multiple subscribers. RxJS manages the life-
cycle of this observable internally through
refCount.

share

Share the last N number of events with all sub-
scribers

publishReplay

Share the last observable event with all subscrib-
ers

publishLast

Cancel/dis-
pose of the
stream

Unsubscribe from the stream unsubscribe()

Table B.2 Instance scope operators (continued)

Situation Purpose Operator

index

Symbols

. (dot) notation 70

A

absolute time 91
abstracting over time 21–23
Account class 178
accumulator function 75–76
actions, Redux 286–287
add() function 259
addEventListener() function

216
addListener() method 12
aggregate data, scanning

76–77
aggregate operators 82
aggregates, sequencing opera-

tor pipelines with
77–84

performance advantages of
sequencing with RxJS
80–84

referential transparency
77–80

self-contained pipelines
77–80

aggregating results with
reduce 75–76

ajax operator 310
AJAX, testing requests

250–253
ajax() function 7, 13, 159,

166, 184
allocation

allocating objects 62

eager, disadvantages of
62–64

lazy 64–65
appendResults() function 104
array extras 18
Array object 35
Array.map() method 35
ArrayList 41
arrow functions 7
AsapScheduler 261
asynchronous code, testing

250–255
AJAX requests 250–253
working with Promises

253–255
asynchronous computing, vs.

synchronous comput-
ing

event emitters 11–12
issues with blocking code

5–6
non-blocking code with call-

back functions 6–7
understanding time 7–9
using callbacks 9–10

asynchronous data sources
multi-value 48–49
single-value 47–48

asynchronous middleware
291–302

building 296–302
with RxJS subjects 294–296

asynchronous streams
141–146

asynchronous timing, with
JavaScript 88–94

explicit 88–90

implicit 88
JavaScript interfaces 90–94

AsyncScheduler 261–262
AsyncSubject 295
augmenting virtual reality

263–270
refactoring search streams

for testability 267–270
with marbles 264–266
with virtual time scheduler

266–267

B

bare observables, creating
55–56

bindCallback operator 310
Bitly Web API 307
bitly$ stream 166
blocking code, issues with 5–6
boundary conditions 246–247
bounded context 78
buffer() function 112, 175,

311
bufferCount() function 113,

311
buffering 111–117
BufferIterator function 39
bufferTime operator 311
bufferWhen() function 113,

177, 311
bulk data, writing 175–177
bulkDocs() function 175
business processes, coordinat-

ing
building reactive database

170–181
315

316 INDEX
business processes, coordinat-
ing (continued)

hooking into observable
lifecycle 151–152

joining parallel streams with
combineLatest 159–162

joining parallel streams with
forkJoin 159–162

C

callbacks
delegating errors to 184–186
non-blocking code with 6–7
overview 7
using 9–10
with Promises 12–14

cancelling
streams 62–68

cancellation mismatch
between RxJS and other
APIs 67–68

disadvantages of eager
allocation 62–64

explicitly cancelling
subscriptions 65–67

lazy allocation 64–65
subscribing to observables

64–65
subscriptions, explicitly

65–67
catch block 184
catch() operator 187, 195, 197,

206, 310, 312
Chai.js, installing 308
classes, React 277–279
clearInterval() function 67
clearResults() function 104
clearTimeout() function 105
clients, WS (WebSockets)

220–221
closing observable 112
code

issues with blocking 5–6
non-blocking with callback

functions 6–7
code bases

functional 188–189
reactive 188–189

cold observables 212–217
making from hot observables

228–230
making into hot observables

230–232

cold resubscribe 222
combinatorial operators 170
combineLatest() function 115,

121, 159, 162–163, 165,
312

complete() function 58, 155,
251

components
React 275–277, 279–284
user interface, rendering

with React 274–284
composing functions 9
computing, synchronous vs.

asynchronous 5–12
event emitters 11–12
issues with blocking code

5–6
non-blocking code with call-

back functions 6–7
understanding time 7–9
using callbacks 9–10

concat() function 130, 312
concatenating streams

overview 124
preserving event order by

130–133
concatMap operator

dragging and dropping with
146–150

overview 313
ConcurrentLinkedList 41
conformance 152
connect() method 238–239,

295
ConnectableObservable 238
connecting one observable to

many observers
237–244

publish 237–240
publish last 242–244
publish with replay 240–241

consumers 23–24
consuming data with observers

53–60
creating bare observables

55–56
observable modules 57–60
Observer API 53–54

containerizing data 140
continuation 12
coordinating business processes

building reactive database
170–181

hooking into observable
lifecycle 151–152

joining parallel streams with
combineLatest 159–162

joining parallel streams with
forkJoin 159–162

CORS (cross-origin resource
sharing) 34, 138, 251

CPS (continuation-passing
style) 12

create() method 56, 310
createMiddleware() function

299
createStore() method 287
createStreamFromStore 290
CSV (comma-separated value)

array 72
custom observables 67

D

data
aggregate, scanning 76–77
consuming with observers

53–60
creating bare observables

55–56
observable modules 57–60
Observer API 53–54

generated 44
observable, switching to

latest 133–135
sources of

identifying 43–44
multi-value, asynchronous

48–49
multi-value, synchronous

46–47
single-value, asynchronous

47–48
single-value, synchronous

46
static 44
wrapping sources with

Rx.Observable 43–52
creating RxJS observables

44–45
identifying different

sources of data 43–44
pull-based semantics

49–52
push-based semantics

49–52
when and where to use

RxJS 46–49
data flows 17–18
data pipelines 24

317INDEX
data streams. See streams
databases

joining related operations
177–180

populating reactively
172–175

reactive 180–181
data-driven programming

41–43
Date.now() function 87
Date() function 91
deallocating objects 62
debounce operator 312
debounce() method 106
debounceTime() function 101,

107, 266–267, 312
debouncing 101–108
delay operator 311
delay() function 97
delegating errors, to callbacks

184–186
design document 177
discriminant function 73
dispatch() method 289
DisposableResource object 156
distinctUntilChanged operator

144, 312
distinctUntilKeyChanged

operator 312
do operator 205, 312
DONE status flag 291
dot (.) notation 70
DoublyLinkedList 41
downstream compartmentaliz-

ation 152
dragging and dropping, with

concatMap 146–150
DSL (domain-specific

language) 249
dynamic data sources 21

E

eager allocation, disadvantages
of 62–64

effectful computations 83
emitters. See event emitters
endofunctor 44
error handling 182–208

common techniques
183–188

delegating errors to
callbacks 184–186

with Promise 186–188
with try/catch 183–184

dealing with failure 193–208
catching errors 195–196
propagating errors down-

stream to observers
193–194

reacting to errors 195–196
reacting to failed

retries 199–208
retrying failed streams for

fixed number of
times 197–199

functional approach
189–192

imperative techniques
188–189

error() function 194
errors

catching 195–196
delegating to callbacks

184–186
Promises and 186–188
propagating downstream to

observers 193–194
reacting to 195–196

evaluating streams 62–68
cancellation mismatch

between RxJS and other
APIs 67–68

disadvantages of eager
allocation 62–64

explicitly cancelling
subscriptions 65–67

lazy allocation 64–65
subscribing to observables

64–65
event bus 282
event emitters 11–12
event hooks 153
EventEmitter class 11, 48, 153
events

filtering out unwanted 72–74
interleaving by merging

streams 124–129
preserving order by concate-

nating streams 130–133
example projects, installing 305
explicit cancellation, of

subscriptions 65–67
explicit timing 88–90

F

factory functions 155
failure

catching errors 195–196

propagating errors down-
stream to observers
193–194

reacting to errors 195–196
reacting to failed retries

199–208
retrying failed streams for

fixed number of times
197–199

Failure type 190
falsy value 74
fetchDataInterval$ stream 199
fetchResult$ stream 268
filter() function 73, 77, 311
filtering unwanted events

72–74
finally() operator 155, 205–206
findRecordById() function

189
first operator 311
flattening data 122, 139
fluent programming 77
forkJoin operator

joining parallel streams with
159–162

overview 311
FP (functional programming)

as pillar of RP 29–40
overview 30–37

frame() function 269
from operator 226, 290, 310
fromEvent operator 310
fromPromise operator 223, 310
FRP (functional reactive

programming) 4
function chaining 30
functional code bases 188–189
functional programs, testing

inherently built into
246–250

functional sequences of events
4

functor 35, 44

G

generated data 44
getOrElse() function 192
getState() method 284, 290
Google client APIs,

installing 307

318 INDEX
H

handling errors 182–208
common techniques

183–188
delegating errors to

callbacks 184–186
with Promise 186–188
with try/catch 183–184

dealing with failure 193–208
catching errors 195–196
propagating errors down-

stream to observers
193–194

reacting to failed retries
199–208

retrying failed streams for
fixed number of times
197–199

functional approach
189–192

imperative techniques
188–189

higher-order observable 135
hooks. See web hooks
hot observables

making from cold
observables 230–232

making into cold
observables 228–230

overview 212, 215, 217
hot RxJS, building 290–291

I

if operator 310
immutable function 30–31
imperative error-handling

techniques 188–189
implicit timing 88
IndexedDB 171
input, from users 101–110

debouncing 101–108
throttling 108–110

installing
Chai.js 308
example projects 305
Google client APIs 307
Mocha 308
Moment.js 307
PouchDB 306–307
Ramda.js 306
React.js 308
React-Bootstrap 309

Redux.js 309
RxJS 306

instance methods 102
interfaces, timing JavaScript

90, 94
interleaving events by merging

streams 124–129
interval() operator 94, 214,

260, 276, 311
inversion of control 7
isEven() function 259
iterator patterns 38–40

J

JavaScript
asynchronous timing with

88–94
explicit 88–90
implicit 88

timing interfaces 90–94
setInterval 93–94
setTimeout 91–92

K

keyCode property 73

L

last operator 311
latency 4
lazy allocation 64–65
lazy data source 63
lazy data types 20
lazy evaluation 30, 36–37
lifecycle, of observables

152–154
LinkedList 41
logic of streams, replaying

222–223

M

managing
state of React components

279–284
state with Redux 284–286

manual debouncing 105
map() function 71, 264–265,

311
mapped observable 125
mapping operations on

observables 70–72

marbles 264–266
Math.random() function 87
mathReducer 287
merge() function 125–126,

162, 312
mergeMap operator 135–141,

313
merging operations 151
merging streams, interleaving

events by 124–129
middleware, asynchronous

291–302
building 296–302
with RxJS subjects 294–296

mismatch, of cancellation
between RxJS and other
APIs 67–68

Mocha
installing 308
overview 250

modules, observable 57–60
Moment.js, installing 307
monads 141
mousedown event 123
mousemove event 123, 147
mouseup event 123, 147–148
mouseUp$ stream 124, 133
multicast() function 228, 237,

294
multicasting operators 237
multiple streams 122–135

interleaving events by
merging 124–129

preserving event order by
concatenating 130–133

switching to latest observable
data 133–135

multi-value data sources
asynchronous 48–49
synchronous 46–47

MVC (model-view-
controller) 20

N

nested observables, unwinding
135–141

next() method 39, 51, 53, 56
Node.js, simple WS (Web-

Socket) servers in
219–220

non-blocking code, with call-
back functions 6–7

notEmpty function 248

319INDEX
O

object-oriented programming.
See OOP

object-oriented. See OO
Observable class 79
Observable data type 29
observable instance methods

102
Observable interface 294
observable methods 102
observable operators 69–77

aggregating results with
reduce 75–76

filtering out unwanted
events 72–74

mapping operations on
observables 70–72

scanning aggregate data
76–77

observable pipeline 193
observables 23, 154, 211–244

bare, creating 55–56
changing temperature of

226–237
creating hot-by-operator

streams 232–237
making cold observable

hot 230–232
making hot observable

cold 228–230
producers as

thermometers 227–228
cold 212–217

making from hot 228–230
making into hot 230–232

connecting to many
observers 237–244

publish 237–240
publish last 242–244
publish with replay

240–241
creating 44–45
hot 212, 215–217

making from cold
230–232

making into cold 228–230
impact of side effects on

replay 221–226
replay vs. resubscribe 222
replaying logic of stream

222–223
impact of side effects on

resubscribe 221–226
replay vs. resubscribe 222

resubscribing to stream
224–226

lifecycle 152–159
hooked on 154–159
observer patterns 153–154
web hooks 153–154

mapping operations on
70–72

modules 57–60
subscribing to 64–65
switching to latest data

133–135
unwinding nested, with

mergeMap operator
135–141

WS (WebSockets) 217–221
clients 220–221
overview 218–219
simple servers in Node.js

219–220
observeOn() operator 263
Observer API 53–54
Observer interface 294
observer patterns 20, 153
observers

connecting one observable to
many 237–244

publish 237–240
publish last 242–244
publish with replay

240–241
consuming data with 53–60

creating bare observables
55–56

observable modules 57–60
Observer API 53–54

observers, propagating errors
downstream to 193–194

of operator 310
offset time 91
ofType()operator 298
OO (object-oriented) 28
OOP (object-oriented

programming) 26
operations

database, joining related
177–180

mapping on observables
70–72

operator chaining 77
operators 61–94, 101

cancelling streams 62–68
cancellation mismatch

between RxJS and other
APIs 67–68

disadvantages of eager
allocation 62–64

explicitly cancelling
subscriptions 65–67

lazy allocation 64–65
subscribing to observables

64–65
choosing 310–313
evaluating streams 62–68

cancellation mismatch
between RxJS and other
APIs 67–68

disadvantages of eager
allocation 62–64

explicitly cancelling
subscriptions 65–67

lazy allocation 64–65
subscribing to observables

64–65
observable 69–77

aggregating results with
reduce 75–76

filtering out unwanted
events 72–74

mapping operations on
observables 70–72

scanning aggregate
data 76–77

pipelines, sequencing with
aggregates 77–84

propagation 98–99
sequential time 99, 101

opinionated framework 274

P

paradigms, programming
26–27

parallel streams
joining with combineLatest

159–162
joining with forkJoin

159–162
passive resources 212
patterns

iterator 38–40
observer 153

pipelines
operator, sequencing with

aggregates 77–84
self-contained 77–80

pluck operator 311
pointerup event 129
populating databases,

reactively 172–175

320 INDEX
post() method 174
PouchDB

installing 306–307
overview 171, 177, 180

predicate function 73
processes. See business processes
producers

as thermometers 227–228
overview 23

programming
data-driven 41–43
functional 29–40
reactive, functional program-

ming as pillar of 29–40
without loops 34

programming paradigms
26–27

progressive loading 171
projected observable 125
Promise data type 13, 48
Promise.catch() operator 186
Promises

errors and 186–188
improving callbacks with

12–14
limitations of 162
testing 250, 253–255

propagating errors, down-
stream to observers
193–194

propagation 17–99
props attribute 278
publish

last 242–244
with replay 240–241

publish operator 294, 313
publishBehavior() method 290
publishLast operator 313
publishReplay operator 313
pull-based semantics 49–52
pure functions 8, 247
pure observables 213
push-based collections 50
push-based semantics 49–52

R

Ramda.js, installing 306
range operator 310
range() function 63, 263
React

classes 277–279
components 275–277,

279–284

rendering UI components
with 274–284

overview 274–275
state management with

Redux 284–286
React.createElement()

function 275
React.js, installing 308
React-Bootstrap, installing 309
reactive code bases 188–189
reactive databases, building

170–180
joining related database

operations 177–180
populating database

reactively 172–175
writing bulk data 175–177

Reactive Extensions for Java-
Script. See RxJS

Reactive Manifesto 123
reactive programming. See RP
reactive programs, testing

245–270
asynchronous code 250–255
augmenting virtual

reality 263–270
inherently built into func-

tional programs
246–250

making streams testable
258–260

Promises 250–255
reactive streams 255–258
scheduling values in RxJS

260–263
reactive streams 121–150

asynchronous 141–146
dragging and dropping with

concatMap 146–150
multiple 122–135

interleaving events by
merging 124–129

preserving event order by
concatenating 130–133

switching to latest observ-
able data 133–135

testing 255–258
unwinding nested observ-

ables, with mergeMap
operator 135–141

reduce operator
aggregating results with

75–76
overview 82, 311

reducers
overview 284
Redux 286–287

reduction operation 75
Redux 286–290

actions 286–287
reducers 286–287
state management with

284–286
store 287–290
store adapter 290–291

Redux.js, installing 309
refactoring search streams for

testability 267–270
refCount() method 239
reference counting 239
referential transparency 77–80
relative time 91
render() method 275, 277
rendering UI components with

React 274–284
managing state of React

components 279–284
overview 274–275
React classes 277–279
React components 275–277
state management with

Redux 284–286
resubscribing

impact of side effects on
221–226

replay vs. resubscribe 222
resubscribing to stream

224–226
to streams 224–226
versus replaying 222

results, aggregating with reduce
75–76

retry() operator 198, 312
retrying

failed streams for fixed num-
ber of times 197–199

reacting to failure when
199–208

retryWhen() operator 199, 312
RP (reactive programming),

functional program-
ming as pillar of 29–40

runInterval() function 267
Rx.Observable, wrapping data

sources with 43–52
creating RxJS observables

44–45
identifying different sources

of data 43–44

321INDEX
Rx.Observable, wrapping data
sources with (continued)

pull-based semantics 49–52
push-based semantics 49–52
when and where to use RxJS

46–49
Rx.Observable.ajax() operator

250
Rx.Observable.create()

method 66
Rx.Observable.fromEvent()

operator 180
Rx.TestScheduler class 263
RxJS (Reactive Extensions for

JavaScript)
abstracting over time 21–23
advantages of using 14–16
creating observables 44–45
data flows 17–18
installing 306
introduction to 18–19
other APIs and 67–68
propagation 17–18
scheduling values in

260–263
sequencing with 80–84
streams 17, 19–25
subjects 294–296
when and where to use

46–49
multi-value, asynchronous

data sources 48–49
multi-value, synchronous

data sources 46–47
single-value, asynchronous

data sources 47–48
single-value, synchronous

data sources 46

S

scalability 4
scan() function 77, 286, 311
scanning aggregate data 76–77
scheduler 260
scheduling values in RxJS

260–263
search streams, refactoring for

testability 267–270
search$ stream 137
self-contained pipelines 77–80
semantics

pull-based 49–52
push-based 49–52

sendRequest() function 107,
136

sequencing, operator pipelines
with aggregates 77–84

performance advantages of
sequencing with RxJS
80–84

referential transparency
77–80

self-contained pipelines
77–80

sequential time 99, 101
servers, WS (WebSockets)

219–220
SessionDisposable object

157–158
setInterval() function 42,

44–94
setState() method 278
setTimeout() function 42,

44–92
shadow DOM 275
share() operator 234, 239, 313
shareReplay() operator 240
side effects 8, 31, 224

impact on replaying 221–226
replay vs. resubscribe 222
replaying logic of stream

222–223
impact on resubscribing

221–226
replay vs. resubscribe 222
resubscribing to stream

224–226
sinceLast variable 78
single-value data sources

asynchronous 47–48
synchronous 46

skip operator 311
slice() method 63
sources of data

identifying 43–44
multi-value, asynchronous

48–49
multi-value, synchronous

46–47
single-value, asynchronous

47–48
single-value, synchronous 46
wrapping with Rx.Observable

43–52
square() function 259
startWith operator 154, 311
state

managing with Redux 284–
286

of React components 279–
284

state attribute 278
stateful functions 246
static data 44
static methods 102
stock ticker 231
streams 17, 19–25

asynchronous 141–146
cancelling 62–68

cancellation mismatch
between RxJS and other
APIs 67–68

disadvantages of eager
allocation 62–64

explicitly cancelling
subscriptions 65–67

lazy allocation 64–65
subscribing to observables

64–65
components of 23–25

consumers 23–24
data pipelines 24
producers 23
time 24–25

creating hot-by-operator
232–237

evaluating 62–68
cancellation mismatch

between RxJS and other
APIs 67–68

disadvantages of eager
allocation 62–64

explicitly cancelling
subscriptions 65–67

lazy allocation 64–65
subscribing to observables

64–65
failed, retrying for fixed

number of times
197–199

interleaving events by
merging 124–129

joining parallel with com-
bineLatest
159–170

making testable 258–260
multiple 122–135
preserving event order by

concatenating 130–133
reactive 121–150

asynchronous streams
141–146

dragging and dropping
with concatMap 146–
150

multiple 122–135

322 INDEX
streams, reactive(continued)
testing 255–258
unwinding nested

observables 135–141
replaying logic of 222–223
resubscribing to 224–226
search 267–270

Streams data type 35
sub.unsubscribe() function 56
subactions 291
subflows 291
subjects, RxJS 294–296
subscribe() function 49, 53, 64,

79, 289
subscriptions

explicitly cancelling 65–67
to observables 64–65

Success type 190
switch blocks 128
switch() function 135, 312
switchMap operator 313
synchronizing streams 163
synchronous computing, vs.

asynchronous
computing 5–12

event emitters 11–12
issues with blocking code

5–6
non-blocking code with call-

back functions 6–7
understanding time 7–9
using callbacks 9–10

synchronous data sources
multi-value 46–47
single-value 46

T

take operator 311
takeUntil() function 148, 311
temperature, of observables

226–237
temporal dependency 9
testing

AJAX requests 250–253
asynchronous code 250–255

testing AJAX requests
250–253

working with Promises
253–255

Promises 250–255
testing AJAX

requests 250–253
working with 253–255

reactive programs 245–270
augmenting virtual

reality 263–270
inherently built into func-

tional programs
246–250

making streams testable
258–260

scheduling values in RxJS
260–263

reactive streams 255–258
refactoring search streams

for 267–270
thenable function 43
this keyword 7, 277
throttleTime operator 312
throttling 108, 110
throw operator 312
tick$ observable 206, 235
time

abstracting over 21–23
understanding 7–9
virtual scheduler 266–267

time coupling 9
timeInterval operator 96, 312
timer operator 311
timestamping events 127
timing 85–117

asynchronous with JavaScript
88–94

explicit 88–90
implicit 88
interfaces 90–94

buffering 111–117
explicit 88–90
handling user input 101–110

debouncing 101–108
throttling 108–110

implicit 88
importance of 87
JavaScript interfaces 90–94

setInterval 93–94
setTimeout 91–92

operators 94–101
propagation 98–99
sequential time 99–101

touchend event 123
touchEnd$ stream 124
touchmove event 123
touchstart event 123
transactionLogEpic() function

297
transformational operations 70
transient 26

transparency, referential 77–80
truthy value 74
try block 190
try/catch, error handling with

183–184

U

UI (user interface), rendering
components with React
274–284

managing state of React
components 279–284

overview 274–275
React classes 277–279
React components 275–277
state management with

Redux 284–286
unicast transmission 227
unopinionated framework 26,

274, 289
unsubscribe operator 66, 155,

157–158, 313
unwinding nested observables,

with mergeMap
operator 135–141

upstream compartmentaliz-
ation 152

user input 101–110
debouncing 101–108
throttling 108–110

user interface. See UI
using operator 159, 310
UX (user experience) 5, 87

V

value object 96
values, scheduling values in

RxJS 260–263
virtual reality, augmenting

263–270
refactoring search streams

for testability 267–270
with marbles 264–266
with virtual time scheduler

266–267
virtual time scheduler 266–267

W

web hooks 153–154
withdraw function 179
withLatestFrom operator 312

323INDEX
wrapping data sources with
Rx.Observable 43–52

creating RxJS observables
44–45

identifying different sources
of data 43–44

pull-based semantics 49–52
push-based semantics 49–52

when and where to use RxJS
46–49

WS (WebSockets) 217–221
clients 220–221
overview 218–219
simple servers in Node.js

219–220

X

XmlHttpRequest object 14, 250

Z

zip() operator 202, 205, 313

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Secrets of the JavaScript Ninja,
Second Edition
by John Resig, Bear Bibeault, and Josip Maras

ISBN: 9781617292859
464 pages
$44.99
August 2016

Functional Programming in JavaScript
How to improve your JavaScript programs using
functional techniques
by Luis Atencio

ISBN: 9781617292828
272 pages
$44.99
June 2016

Node.js in Action
by Mike Cantelon, Marc Harter, T.J. Holowaychuk,

and Nathan Rajlich

ISBN: 9781617290572
416 pages
$44.99
October 2013

https://www.manning.com/books/secrets-of-the-javascript-ninja-second-edition
https://www.manning.com/books/functional-programming-in-javascript
https://www.manning.com/books/secrets-of-the-javascript-ninja-second-edition
https://www.manning.com/books/functional-programming-in-javascript
https://www.manning.com/books/node-js-in-action
https://www.manning.com/books/node-js-in-action

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Rx.NET in Action
by Tamir Dresher

ISBN: 9781617293061
344 pages
$49.99
April 2017

Front-End Tooling with Gulp, Bower,
and Yeoman
by Stefan Baumgartner

ISBN: 9781617292743
240 pages
$44.99
November 2016

Express in Action
Writing, building, and testing Node.js applications
by Evan M. Hahn

ISBN: 9781617292422
256 pages
$39.99
April 2016

https://www.manning.com/books/rx-dot-net-in-action
https://www.manning.com/books/front-end-tooling-with-gulp-bower-and-yeoman
https://www.manning.com/books/express-in-action
https://www.manning.com/books/rx-dot-net-in-action
https://www.manning.com/books/front-end-tooling-with-gulp-bower-and-yeoman
https://www.manning.com/books/express-in-action

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Getting MEAN with Mongo, Express,
Angular, and Node
by Simon Holmes

ISBN: 9781617292033
440 pages
$44.99
November 2015

Angular 2 Development with TypeScript
by Yakov Fain and Anton Moiseev

ISBN: 9781617293122
456 pages
$44.99
December 2016

React Quickly
by Azat Mardan

ISBN: 9781617293344
400 pages
$44.99
August 2017

https://www.manning.com/books/getting-mean-with-mongo-express-angular-and-node
https://www.manning.com/books/angular-2-development-with-typescript
https://www.manning.com/books/getting-mean-with-mongo-express-angular-and-node
https://www.manning.com/books/angular-2-development-with-typescript
https://www.manning.com/books/react-quickly
https://www.manning.com/books/react-quickly

Daniels ● Atencio

O
n the web, events and messages fl ow constantly between
UI and server components. With RxJS, you can fi lter,
merge, and transform these streams directly, opening the

world of data fl ow programming to browser-based apps. This
JavaScript implementation of the ReactiveX spec is perfect for
on-the-fl y tasks like autocomplete. Its asynchronous commu-
nication model makes concurrency much, much easier.

RxJS in Action is your guide to building a reactive web UI using
RxJS. You’ll begin with an intro to stream-based programming
as you explore the power of RxJS through practical examples.
With the core concepts in hand, you’ll tackle production tech-
niques like error handling, unit testing, and interacting with
frameworks like React and Redux. And because RxJS builds on
ideas from the world of functional programming, you’ll even
pick up some key FP concepts along the way.

What’s Inside
● Building clean, declarative, fault-tolerant applications
● Transforming and composing streams
● Taming asynchronous processes
● Integrating streams with third-party libraries
● Covers RxJS 5

This book is suitable for readers comfortable with JavaScript
and standard web application architectures.

Paul P. Daniels is a professional software engineer with experi-
ence in .NET, Java, and JavaScript. Luis Atencio is a software
engineer working daily with Java, PHP, and JavaScript
platforms, and author of Manning’s Functional Programming
in JavaScript.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit www.manning.com/books/rxjs-in-action

$49.99 / Can $65.99 [INCLUDING eBOOK]

RxJS IN ACTION

JAVASCRIPT/WEB DEVELOPMENT

M A N N I N G

“Important information
you need to know in order

to become an effective
reactive programmer.”—From the Foreword by Ben Lesh

Project lead, RxJS 5

“Covers the subject
thoroughly and with
 great accessibility.”—Corinna Cohn, Fusion Alliance

“All you need to really
 understand streaming!”—Carlos Corutto, Globant

“Learn to leverage the power
of RxJS to build a reactive
and resilient foundation
for your applications.”—Thomas Peklak, Emakina CEE

SEE INSERT

	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Road map
	Who should read this book
	How to use this book
	Examples and source code
	Author Online

	about the authors
	about the cover
	Part 1 Understanding streams
	1 Thinking reactively
	1.1 Synchronous vs. asynchronous computing
	1.1.1 Issues with blocking code
	1.1.2 Non-blocking code with callback functions
	1.1.3 Understanding time and space
	1.1.4 Are callbacks out of the picture?
	1.1.5 Event emitters

	1.2 Better callbacks with Promises
	1.3 The need for a different paradigm
	1.4 The Reactive Extensions for JavaScript
	1.4.1 Thinking in streams: data flows and propagation
	1.4.2 Introducing the RxJS project
	1.4.3 Everything is a stream
	1.4.4 Abstracting the notion of time from your programs
	1.4.5 Components of an Rx stream

	1.5 Reactive and other programming paradigms
	1.6 Summary

	2 Reacting with RxJS
	2.1 Functional programming as the pillar of reactive programming
	2.1.1 Functional programming
	2.1.2 The iterator pattern

	2.2 Stream’s data-driven approach
	2.3 Wrapping data sources with Rx.Observable
	2.3.1 Identifying different sources of data
	2.3.2 Creating RxJS observables
	2.3.3 When and where to use RxJS
	2.3.4 To push or not to push

	2.4 Consuming data with observers
	2.4.1 The Observer API
	2.4.2 Creating bare observables
	2.4.3 Observable modules

	2.5 Summary

	3 Core operators
	3.1 Evaluating and cancelling streams
	3.1.1 Downside of eager allocation
	3.1.2 Lazy allocation and subscribing to observables
	3.1.3 Disposing of subscriptions: explicit cancellation
	3.1.4 Cancellation mismatch between RxJS and other APIs

	3.2 Popular RxJS observable operators
	3.2.1 Introducing the core operators

	3.3 Sequencing operator pipelines with aggregates
	3.3.1 Self-contained pipelines and referential transparency
	3.3.2 Performance advantages of sequencing with RxJS

	3.4 Summary

	4 It’s about time you used RxJS
	4.1 Why worry about time?
	4.2 Understanding asynchronous timing with JavaScript
	4.2.1 Implicit timing
	4.2.2 Explicit timing
	4.2.3 The JavaScript timing interfaces

	4.3 Back to the future with RxJS
	4.3.1 Propagation
	4.3.2 Sequential time

	4.4 Handling user input
	4.4.1 Debouncing
	4.4.2 Throttling

	4.5 Buffering in RxJS
	4.6 Summary

	Part 2 Observables in practice
	5 Applied reactive streams
	5.1 One for all, and all for one!
	5.1.1 Interleave events by merging streams
	5.1.2 Preserve order of events by concatenating streams
	5.1.3 Switch to the latest observable data

	5.2 Unwinding nested observables: the case of mergeMap
	5.3 Mastering asynchronous streams
	5.4 Drag and drop with concatMap
	5.5 Summary

	6 Coordinating business processes
	6.1 Hooking into the observable lifecycle
	6.1.1 Web hooks and the observer pattern
	6.1.2 Hooked on observables

	6.2 Joining parallel streams with combineLatest and forkJoin
	6.2.1 Limitations of using Promises
	6.2.2 Combining parallel streams
	6.2.3 More coordination with forkJoin

	6.3 Building a reactive database
	6.3.1 Populating a database reactively
	6.3.2 Writing bulk data
	6.3.3 Joining related database operations
	6.3.4 Reactive databases

	6.4 Summary

	7 Error handling with RxJS
	7.1 Common error-handling techniques
	7.1.1 Error handling with try/catch
	7.1.2 Delegating errors to callbacks
	7.1.3 Errors and Promises

	7.2 Incompatibilities between imperative error-handling techniques and functional and reactive code bases
	7.3 Understanding the functional error-handling approach
	7.4 The RxJS way of dealing with failure
	7.4.1 Errors propagated downstream to observers
	7.4.2 Catching and reacting to errors
	7.4.3 Retrying failed streams for a fixed number of times
	7.4.4 Reacting to failed retries

	7.5 Summary

	Part 3 Mastering RxJS
	8 Heating up observables
	8.1 Introducing hot and cold observables
	8.1.1 Cold observables
	8.1.2 Hot observables

	8.2 A new type of data source: WebSockets
	8.2.1 A brief look at WebSocket
	8.2.2 A simple WebSocket server in Node.js
	8.2.3 WebSocket client

	8.3 The impact of side effects on a resubscribe or a replay
	8.3.1 Replay vs. resubscribe
	8.3.2 Replaying the logic of a stream
	8.3.3 Resubscribing to a stream

	8.4 Changing the temperature of an observable
	8.4.1 Producers as thermometers
	8.4.2 Making a hot observable cold
	8.4.3 Making a cold observable hot
	8.4.4 Creating hot-by-operator streams

	8.5 Connecting one observable to many observers
	8.5.1 Publish
	8.5.2 Publish with replay
	8.5.3 Publish last

	8.6 Summary

	9 Toward testable, reactive programs
	9.1 Testing is inherently built into functional programs
	9.2 Testing asynchronous code and promises
	9.2.1 Testing AJAX requests
	9.2.2 Working with Promises

	9.3 Testing reactive streams
	9.4 Making streams testable
	9.5 Scheduling values in RxJS
	9.6 Augmenting virtual reality
	9.6.1 Playing with marbles
	9.6.2 Fake it ’til you make it
	9.6.3 Refactoring your search stream for testability

	9.7 Summary

	10 RxJS in the wild
	10.1 Building a basic banking application
	10.2 Introduction to React and Redux
	10.2.1 Rendering UI components with React
	10.2.2 State management with Redux

	10.3 Redux-ing application state
	10.3.1 Actions and reducers
	10.3.2 Redux store

	10.4 Building a hot RxJS and Redux store adapter
	10.5 Asynchronous middleware with RxJS Subject
	10.5.1 RxJS subjects
	10.5.2 Building epic, reactive middleware

	10.6 Bringing it all home
	10.7 Parting words
	10.8 Summary

	Appendix A Installation of libraries used in this book
	Installing the example projects
	Installing RxJS
	Installing Ramda.js
	Installing PouchDB
	Installing Moment.js
	Installing Google client APIs
	Using the Bitly Web API
	Installing Mocha
	Installing Chai.js
	Installing React.js
	Installing React-Bootstrap
	Installing Redux.js

	Appendix B Choosing an operator

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

