
www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

Foreword..xvii

About the Authors... xix

About the Technical Reviewers.. xxi

Acknowledgments.. xxiii

Chapter 1: Metadata Collection■■ ..1

Chapter 2: Execution Patterns■■ ..29

Chapter 3: Scripting Patterns■■ ...71

Chapter 4: SQL Server Source Patterns■■ ..87

Chapter 5: Data Cleansing with Data Quality Services■■ ...101

Chapter 6: DB2 Source Patterns■■ ...123

Chapter 7: Flat File Source Patterns■■ ...133

Chapter 8: Parallel Data Warehouse Patterns■■ ...169

Chapter 9: XML Patterns■■ ...191

Chapter 10: Expression Language Patterns■■ ..211

Chapter 11: Data Warehouse Patterns■■ ..227

Chapter 12: Logging Patterns■■ ...251

Chapter 13: Slowly Changing Dimensions■■ ..261

Chapter 14: Loading the Cloud■■ ...273

Chapter 15: Logging and Reporting Patterns■■ ...279

Chapter 16: Parent-Child Patterns■■ ..291

www.allitebooks.com

http://www.allitebooks.org

■ Contents at a Glance

vi

Chapter 17: Business Intelligence Markup Language■■ ..301

Chapter 18: Configuration■■ ..327

Chapter 19: Deployment■■ ...351

Chapter 20: Estimating ETL Projects■■ ..361

Appendix A: Evolution of an SSIS Framework■■ ..367

Index■■ ...423

www.allitebooks.com

http://www.allitebooks.org

1

Chapter 1

Metadata Collection

The first Integration Services design pattern we will cover is metadata collection. What do we mean by “metadata
collection”? Good question. This chapter could also be called “Using SSIS to Save Time and Become an Awesome
DBA.” Many DBAs spend a large portion of time on monitoring activities such as verifying backups, alerting on
scheduled job failures, creating schema snapshots (“just in case”), examining space utilization, and logging
database growth over time, to name just a very few. Most RDBMS systems provide metadata to help DBAs
monitor their systems. If you’ve been a DBA for a few years, you may even have a “tool bag” of scripts that you use
to interrogate metadata. Running these scripts manually is easy when you have just one or two servers; however,
this can quickly become unwieldly and consume a large portion of your time as your enterprise grows and as the
number of database servers increases.

This chapter examines how to use Integration Services and the metadata that exists within SQL Server to
automate some of these routine tasks.

Introducing SQL Server Data Tools
One of the major features of SQL Server 2012 is the introduction of SQL Server Data Tools (SSDT). SSDT replaces
Business Intelligence Development Studio (BIDS) and leverages the maturity of the Visual Studio product to
provide a unified development platform for SQL Server, Business Intelligence (BI), and .NET applications. This
book is written using SSDT, although the appearance of the Integration Services designer interface is largely the
same as BIDS 2008. SSDT provides backward compatibility for Integration Services 2008 packages via the SSIS
Package Upgrade Wizard.

Tip ■■   Don’t have SQL Server Data Tools installed? SSDT is a free component of the SQL Server platform and is
available to all SQL Server users. You can install SSDT from your SQL Server installation materials under the “Feature
Selection” menu.

A Peek at the Final Product
Let’s discuss the Integration Services package we will be creating in this chapter.

In SQL Server, we will do the following:

1.	 Create a database to act as our central repository for database monitoring.

2.	 Create a table to store a list of SQL Server instances that we wish to monitor.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ metadata collection

2

3.	 Create a table for each of the data elements we wish to monitor (unused indexes and
database growth).

In Integration Services, we will do the following:

1.	 Create a new Integration Services package.

2.	 Retrieve a list of SQL Server instances and store the list in a variable.

3.	 Create an OLE DB connection with a dynamically populated server name.

4.	 Iterate through each database and

a.	 Retrieve current database and log file sizes for historical monitoring.

b.	 Retrieve a list of index candidates for potential redesign or dropping.

c.	 Update the Last Monitored value for each SQL Server instance.

This is a very flexible model that can easily be expanded to include many more monitoring tasks. A
screenshot of the completed package is displayed in Figure 1-1.

Figure 1-1.  The MetadataCollection package

If this is not your first Integration Services package, maybe you’ve noticed that this package is missing a
few best practices, such as error handling. In the interest of clarity, the package we create will focus only on core
design patterns; however, we will call out best practices when applicable.

Also, please note that the T-SQL examples will only work with SQL Server 2005 or later.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ metadata collection

3

SQL Server Metadata
Although metadata can be collected from any RDBMS that provides an interface for accessing it, this chapter
uses SQL Server as its metadata source. The focus of this chapter is not on the actual metadata, but rather the
pattern of metadata collection. Still, it is useful for you to have a basic understanding of the type of metadata that
is available.

SQL Server exposes a wealth of information through catalog views, system functions, dynamic management
views (DMVs), and dynamic management functions (DMFs). Let’s briefly examine some of the metadata we will
be using in this chapter.

Tip ■■   SQL Server Books Online is a great resource for learning more about the types of metadata available in SQL
Server. Try searching for “metadata functions,” “catalog views,” and “DMVs” for more information.

sys.dm_os_performance_counters
The sys.dm_os_performance_counters DMV returns server performance counters on areas including memory,
wait stats, and transactions. This DMV is useful for reporting file sizes, page life expectancy, page reads and writes
per second, and transactions per second, to name but a few.

sys.dm_db_index_usage_stats
The sys.dm_db_index_usage_stats DMV contains information on index utilization. Specifically, a counter is
incremented every time an index has a seek, scan, lookup, or update performed. These counters are reinitialized
whenever the SQL Server service is started. If you do not see a row in this DMV for a particular index, it means
that a seek, scan, lookup, or update has not yet been performed since the last server reboot.

sys.dm_os_sys_info
The sys.dm_os_sys_info DMV contains information about server resources. Perhaps the most frequently used
piece of information in this DMV is the sqlserver_start_time column, which tells you the last time the SQL Server
service was started.

sys.tables
The sys.tables catalog view contains information about every table that exists within the database.

sys.indexes
The sys.indexes catalog view contains information about every index in the database. This includes information
such as whether an index is clustered or nonclustered and whether the index is unique or nonunique.

sys.partitions
The sys.partitions catalog view gives visibility into the partitioning structure of an index. When an index has more
than one partition, the data in the index is split into multiple physical structures that can be accessed using the
single logical name. This technique is especially useful for dealing with large tables, such as a transaction history
table. If a table is not partitioned, the table will still have a single row in sys.partitions.

sys.allocation_units
The sys.allocation_units catalog view contains information about the number of pages and rows that exist for
an object. This information can be joined to the sys.partitions catalog view by joining the container_id to the
partition_id.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ metadata collection

4

Setting Up the Central Repository
Before we can begin development on our Integration Services package, we need to set up some prerequisites
in SQL Server. First and foremost, we need to create a database that will act as our central data repository. This
is where our list of SQL Server instances will reside and where we will store the metadata we retrieve for each
SQL Server instance. Many enterprises also find it convenient to store all error and package logging to this same
central database. This is especially beneficial in environments where there are numerous DBAs, developers, and
servers, as it makes it easy for everyone to know where to look for information. The T-SQL code in Listing 1-1
creates the database we will use throughout the rest of this chapter.

Listing 1-1.  Example of T-SQL Code to Create a SQL Server Database

USE [master];
GO

CREATE DATABASE [dbaCentralLogging]
 ON PRIMARY
 (
 NAME = N'dbaCentralLogging'
 ,FILENAME = N'C:\Program Files\Microsoft SQL Server\MSSQL11.MSSQLSERVER\
MSSQL\DATA\dbaCentralLogging.mdf'
 , SIZE = 1024MB
 , MAXSIZE = UNLIMITED
 , FILEGROWTH = 1024MB
)
 LOG ON
 (
 NAME = N'dbaCentralLogging_log'
 , FILENAME = N'C:\Program Files\Microsoft SQL Server\MSSQL11.MSSQLSERVER\
MSSQL\DATA\dbaCentralLogging_log.ldf'
 , SIZE = 256MB
 , MAXSIZE = UNLIMITED
 , FILEGROWTH = 256MB
);
GO

Please note that your file directory may differ from the one in the preceding example.
This code can be executed from SQL Server Management Studio (SSMS), as demonstrated in Figure 1-2, or

from your favorite query tool.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ metadata collection

5

Next, we need a list of SQL Server instances that need to be monitored. The easiest way to accomplish this is
to store a list of database instance names in a file or table. We will use the latter method. Using the code in Listing
1-2, create that table now.

Listing 1-2.  Example of T-SQL Code to Create a Table for Monitoring SQL Server Instances

USE dbaCentralLogging;
GO

CREATE TABLE dbo.dba_monitor_SQLServerInstances
(
SQLServerInstance	 NVARCHAR(128)
LastMonitored		 SMALLDATETIME		 NULL

 CONSTRAINT PK_dba_monitor_SQLServerInstances
 PRIMARY KEY CLUSTERED(SQLServerInstance)
);

You will then need to populate the table with the list of SQL Server instances you wish to monitor. The code
in Listing 1-3 will walk you through how to do this, although you will need to use real SQL Server instances.

Figure 1-2.  SQL Server Management Studio 2012

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ metadata collection

6

Listing 1-3.  Example of T-SQL Code to Insert Data into the dba_monitor_SQLServerInstances Table

INSERT INTO dbo.dba_monitor_SQLServerInstances
(
 SQLServerInstance
)
SELECT @@SERVERNAME-- The name of the server that hosts the central repository
UNION ALL
SELECT 'YourSQLServerInstanceHere'-- Example of a SQL Server instance
UNION ALL
SELECT 'YourSQLServerInstance\Here';-- Example of a server with multiple instances

We still need to create two tables to store the metadata we collect, but we will create these as we get to the
appropriate section in the package. Next, we will create our Integration Services package.

The Iterative Framework
In this section, we lay the foundation for our iterative framework. In other words, we will create a repeatable
pattern for populating a variable with a list of SQL Server instances, then iterating through the list and performing
an action on each server. Let’s do this now.

First, open SSDT. Create a new project by navigating to File➤New➤Project. Click Business Intelligence
under Installed Templates, and then click Integration Services Project in the Installed Templates window. Name
the project Meta data Collection, as illustrated in Figure 1-3.

Figure 1-3.  New integration services project

Please note that your default Location will most likely be different from the directory pictured in Figure 1-3.
We now need to create two variables. The first variable will be used to store the list of SQL Server instances

we retrieve. The second variable will store a single instance name as we iterate through our list.
To access the variable menu, select Variables under the SSIS menu (Figure 1-4); you can also access the

Variables menu by right-clicking the designer surface.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ metadata collection

7

Add the following variables by clicking the Add Variable icon on the far left of the Variables menu, as
illustrated in Figure 1-5:

SQLServerList – Object•	

SQLServerInstanceName – String•	

Figure 1-4.  Opening the Variables menu

Figure 1-5.  Package-scoped variables

Now that we have a place to store our list of instances, we’re ready to retrieve them. Drag a new Execute
SQL Task from the SSIS Toolbox onto the designer surface. Rename the task Retrieve SQL Server Instances,
and then double-click it to open the Execute SQL Task Editor. Click the drop-down under Connection, and then
select < New connection…>, as seen in Figure 1-6.

CHAPTER 1 ■ mETADATA CoLLECTion

8

In the Configure OLE DB Connection Manager menu, click New. In the Server Name field, enter the
database server where you created the database in Listing 1-1. Regardless of whether you are using Windows or
SQL Server authentication, make sure that the account has sufficient permissions to each of the instances in our
dba_monitor_SQLServerInstances table. Under “Select or enter a database name,” select dbaCentralLogging
from the drop-down menu, as illustrated in Figure 1-7. Click OK to return to the Execute SQL Task Editor.

Note   Permissions requirements vary depending on the type of metadata you wish to retrieve. For more
information on the permissions necessary to access a specific object, please refer to the object page within SQL
Server Books online.

Figure 1-6. The Execute SQL Task Editor

CHAPTER 1 ■ metadata collection

9

We now need to write the SQL statement that will retrieve the list of SQL Server instances. Click the […] icon
to the right of the SQLStatement field, and then enter the T-SQL code from Listing 1-4.

Listing 1-4.  T-SQL Statement to Retrieve SQL Server Instances

SELECT SQLServerInstance FROM dbo.dba_monitor_SQLServerInstances;

Because we are retrieving an array of values, select Full result set from the ResultSet drop-down. Your
Execute SQL Task Editor should now resemble Figure 1-8; however, your Connection values will likely be
different.

Figure 1-7.  The Connection Manager

CHAPTER 1 ■ metadata collection

10

We’re almost done configuring the Connection Manager. All we have left is to map our result set to our
variable. Select Result Set on the left side of the Execute SQL Task Editor, and then click Add. Because we are
using a full result set, we must replace the Result Name with 0. We now need to tell Integration Services which
variable to use. Select User::SQLServerList from the drop-down under Variable Name, as illustrated in
Figure 1-9. Click OK.

Figure 1-8.  The Connection Manager

Figure 1-9.  Editing the result set

CHAPTER 1 ■ metadata collection

11

Our Execute SQL Task is now complete. Next, we need to iterate through each server to retrieve the metadata
we plan to monitor. This process will be encapsulated within a Foreach Loop Container, which will shred the list
of SQL Server instances stored in the SQLServerList variable.

Add a Foreach Loop Container to the Control Flow and rename it Foreach SQL Server Instance. Connect
it to the Execute SQL Task with a Success Precedence Constraint—in other words, drag the green arrow from the
Execute SQL Task to the Foreach Loop Container, as seen in Figure 1-10.

Figure 1-10.  Connecting the Execute SQL Task to the Foreach Loop Container

Double-click the Foreach Loop Container to edit its properties. Click the Collection page, and then
select Foreach ADO Enumerator in the Enumerator field. Under “ADO object source variable,” select
User::SQLServerList; leave “Enumeration mode” set to Rows in the first table. Your Collection properties
should match those in Figure 1-11.

Figure 1-11.  The Foreach Loop Editor

CHAPTER 1 ■ metadata collection

12

On the Variable Mappings page, map the SQLServerInstanceName variable to Index 0, as demonstrated in
Figure 1-12.

Figure 1-12.  Variable mappings

Click the OK button to close the Foreach Loop Container Editor.
Let’s review what we’ve done so far. We now have a variable, SQLServerList, which contains a list of all the

SQL Server instances we inserted into the dba_monitor_SQLServerInstances table. The Foreach Loop Container
then shreds this variable, walking through each value—each SQL Server instance name, in this case—one
at a time. At each pass, it pushes the value of one of those SQL Server instance names into another variable,
SQLServerInstanceName.

Before we proceed, we need to create the connection that we will use to dynamically connect to each server.
We can accomplish this through the use of property expressions. Let’s walk through how to do this now.

Right-click in the Connection Managers window and select New OLE DB Connection.Create a new
connection using the same server and security properties we used previously (Figure 1-7), but select master
as the database this time. The database server does not really matter as long as you have sufficient permissions
because whatever value we enter will be overwritten by our SQLServerInstanceName variable. The database
value does matter, however, because the database we select must exist on every server. Since master is a system
database, it is a natural choice.

CHAPTER 1 ■ metadata collection

13

Click OK to close the Connection Manager Properties window. But we’re not done with this connection
just yet. Right-click the newly created connection and select Properties. Change the Name property to
DynamicSQLServerInstance, and then click the […] icon in the Expressions field. This will bring up the Property
Expressions Editor. Select the Property value we wish to dynamically populate—ServerName, in this case—and
enter @[User::SQLServerInstanceName] in the Expression field, as demonstrated in Figure 1-13. Optionally,
you can also click the […] icon in the Expression field to open the Expression Builder, which is helpful if you are
not very familiar with Expression syntax.

Figure 1-13.  Property Expressions Editor

The properties of your connection should now resemble those shown in Figure 1-14.

CHAPTER 1 ■ metadata collection

14

At this point, we now have a reusable framework for iterating through a list of SQL Server instances and
doing something on each server. This in and of itself is a very valuable design pattern. However, because this
is a chapter on metadata collection, I would be remiss if I did not actually demonstrate collecting and storing
metadata. The next section will walk you through setting up two useful metadata extracts.

Metadata Collection
We’re now ready to retrieve metadata from our list of servers. But what should we collect? An incredible wealth of
information is available for retrieval, including security information, usage data, table schema snapshots, failed
job details, fragmentation levels, and performance counters, to name just a few. For this first example, let’s keep
it simple and retrieve current database and log file size. This information is useful for historical database growth
and capacity planning.

To accomplish this, we will create Data Flows within our Foreach Loop Container to retrieve the metadata
from each server and store it in our dbaCentralLogging database. The Data Flow task is arguably the most

Figure 1-14.  Dynamic connection properties

CHAPTER 1 ■ metadata collection

15

frequently used task in Integration Services. It allows you to easily move data between servers and, if necessary,
perform data conversions or cleansing.

Drag a Data Flow task from the SSIS Toolbox into the Foreach Loop Container and rename it Database Size.
Double-clicking the Data Flow task will open the Data Flow Designer tab. Notice that the objects available within
the Toolbox change once you are inside the Data Flow Designer. Drag the OLE DB Source icon into the Designer
and rename it Dynamic SQL Source. Double-click it to edit its properties.

Select DynamicSQLServerInstance in the OLE DB Connection Manager drop-down. Change the Data
Access Mode to SQL Command, and then copy the code from Listing 1-5 into the SQL Command Text box.

Listing 1-5.  Example of T-SQL to Retrieve Current Data and Log File Sizes for All Databases on the Server

SELECT GETDATE()	 AS [captureDate]
 , @@SERVERNAME	 AS [serverName]
 , instance_name	 AS [databaseName]
 , SUM(
 CASE
	 WHEN counter_name = 'Data File(s) Size (KB)'
	 THEN cntr_value
 END
)			 AS 'dataSizeInKB'
 , SUM(
 CASE
	 WHEN counter_name = 'Log File(s) Size (KB)'
	 THEN cntr_value
 END
)			 AS 'logSizeInKB'
FROM sys.dm_os_performance_counters
WHERE counter_nameIN ('Data File(s) Size (KB)'
 , 'Log File(s) Size (KB)')

 /* optional: remove _Total to avoid accidentially
 double-counting in queries */
 AND instance_name<>'_Total'

GROUPBYinstance_name;

This query will produce results similar to the following.

captureDate 	 serverName databaseName	 dataSizeInKB	 logSizeInKB
-----------------------	 ---------- --------------------------	 ------------	 -----------
2012-04-29 19:52:21.543	 LOCALHOST _Total	 1320896	 274288
2012-04-29 19:52:21.543	 LOCALHOST AdventureWorks2012	 193536	 496
2012-04-29 19:52:21.543	 LOCALHOST dbaCentralLogging	 1048576	 262136
2012-04-29 19:52:21.543	 LOCALHOST master	 4096	 760
2012-04-29 19:52:21.543	 LOCALHOST model	 2112	 760
2012-04-29 19:52:21.543	 LOCALHOST msdb	 14080	 760
2012-04-29 19:52:21.543	 LOCALHOST mssqlsystemresource	 40960	 504
2012-04-29 19:52:21.543	 LOCALHOST ReportServer$SQL2012	 5184	 7032
2012-04-29 19:52:21.543	 LOCALHOST ReportServer$SQL2012TempDB	 4160	 1080
2012-04-29 19:52:21.543	 LOCALHOST tempdb	 8192	 760

(10 row(s) affected)

CHAPTER 1 ■ metadata collection

16

Your OLE DB Source Editor should now resemble the Editor in Figure 1-15. Click Parse Query to ensure the
SQL syntax is correct, and then click Preview at the bottom of the Editor to see a sample of the results. Click OK
to exit the OLE DB Source Editor.

Figure 1-15.  OLE DB Source Editor

Let’s take a moment to discuss this code. We are using the sys.dm_os_performance_counters DMV to
retrieve data file and log file sizes. This DMV stores data and log sizes in a separate row for each database, so we
are pivoting the data to return one row for each database, with the file size and log size in separate columns. As
a reminder, DMVs were introduced in SQL Server 2005, so this example will only work in SQL Server 2005 and
newer editions.

It is generally a best practice to create stored procedures for these types of administrative queries and
to deploy them to each server, typically into a database like dbaToolBox. This introduces some maintenance
overhead, but benefits of stored procedures—such as visibility into dependencies, usage, performance tuning,
and troubleshooting—typically outweigh the overhead. Also, it allows a DBA or developer to manually execute
these same queries on each server without having to search for the code within an Integration Services package.
However, in the interests of simplicity, we will just input the code directly into our Data Flow task.

CHAPTER 1 ■ metadata collection

17

Tip ■■   The sys.dm_os_performance_counters DMV is very useful for database monitoring and contains much
more information than just data and log file sizes. You can easily modify the preceding code to include additional
performance counters. However, you should be aware that there are several types of cntr_type values (such as
Value/Base, Per Second, and Point-In-Time), and the preceding code only works for the Point-In-Time counter type
(cntr_type = 65792). Refer to SQL Server Books Online for more information on the types of information available in
this DMV and how to work with each counter type.

Now that we know what our query footprint will look like, we need to create a table to store the results in.
From within SSMS, execute the T-SQL statement in Listing 1-6 within the dbaCentralLogging database.

Listing 1-6.  Example of T-SQL Code to Create a Table to Store Data and Log File Size Information

USE dbaCentralLogging;
GO

CREATE TABLE dbo.dba_monitor_databaseGrowth
(
 log_id INT IDENTITY(1,1)
 ,captureDate DATETIME
 ,serverName NVARCHAR(128)
 ,databaseName SYSNAME
 ,fileSizeInKB BIGINT
 ,logSizeInKB BIGINT

 CONSTRAINT PK_dba_monitor_databaseGrowth
 PRIMARY KEY NONCLUSTERED(log_id)
);

CREATE CLUSTERED INDEX CIX_dba_monitor_databaseGrowth
 ON dbo.dba_monitor_databaseGrowth(captureDate,serverName,databaseName);

We can now return to our Integration Services package. We do not need to perform any data cleansing or
data transformations in this Data Flow task, so we’ll proceed straight to storing our results. Select the OLE DB
Destination item from the Toolbox and rename it Central Logging Destination. Connect it to the OLE DB
Source by dragging the blue data flow arrow from the source to the destination. Double-clicking the OLE DB
Destination brings up another Editor. This time, select your dbaCentralLogging connection from the OLE DB
Connection Manager drop-down. Leave Table or view – fast load selected in the Data Access Mode drop-down.
In the “Name of the table or the view” drop-down, select [dbo].[dba_monitor_databaseGrowth], as seen in
Figure 1-16.

CHAPTER 1 ■ mETADATA CoLLECTion

18

When you’re done with the Connection Manager, click the Mappings menu. You’ll notice that Integration
Services has taken the liberty to perform an initial mapping based on column names. While this is a nice time-
saving feature, be wary in environments where the same column name is used for multiple data elements.
Because the log_id column is an identity value that is populated during data insertion, we will ignore it in our
mappings. Confirm that your mappings resemble those shown in Figure 1-17, and then click OK to return to the
Data Flow designer.

Figure 1-16. Editing the OLE DB destination connection manager

CHAPTER 1 ■ metadata collection

19

Our first Data Flow is complete, as seen in Figure 1-18.

Figure 1-17.  Editing the OLE DB destination mappings

Figure 1-18.  The completed Data Flow task

CHAPTER 1 ■ metadata collection

20

We are now ready to create our second Data Flow. From the Control Flow tab, copy and paste the existing
Data Flow into the Foreach Loop Container. Drag the green arrow—the Success Precedence Constraint—from
the Database Size Data Flow to our new Data Flow. Rename the new Data Flow as Unused Indexes, and then
double-click it to return to the Data Flow designer.

Double-click the Dynamic SQL Source OLE DB Source to edit its properties. We need to change the SQL
command to use the code in Listing 1-7.

Listing 1-7.  Example of T-SQL Query to Retrieve Unused Indexes

/* Create a variable to hold a list of indexes */
DECLARE@Indexes TABLE
(serverName NVARCHAR(128)
, schemaName SYSNAME
, schemaID INT
, databaseName SYSNAME
, databaseID INT
, tableName SYSNAME
, objectID INT
, indexName SYSNAME
, indexID INT
, indexType NVARCHAR(60)
, isPrimaryKey BIT
, isUnique BIT
, isFiltered BIT
, isPartitioned BIT
, numberOfRows BIGINT
, totalPages BIGINT);

/* Iterate through all databases */
INSERT INTO@Indexes(serverName,schemaName,schemaID,databaseName,databaseID,tableName,
objectID,indexName,indexID,indexType,isUnique,isPrimaryKey,isFiltered,isPartitioned,
numberOfRows,totalPages)
EXECUTE sys.sp_MSforeachdb
' USE ?;
SELECT @@SERVERNAME
 , SCHEMA_NAME(t.schema_id)
 , t.schema_id
 , DB_NAME()
 , DB_ID()
 , t.name
 , t.object_id
 , i.name
 , i.index_id
 , i.type_desc
 , i.is_primary_key
 , i.is_unique
 , i.has_filter
 , CASE WHEN COUNT(p.partition_id) > 1 THEN 1 ELSE 0 END
 , SUM(p.rows)
 , SUM(au.total_pages)
FROM sys.tables AS t WITH (NOLOCK)
JOIN sys.indexes AS i WITH (NOLOCK)

4

CHAPTER 1 ■ metadata collection

21

ON i.object_id = t.object_id
JOIN sys.partitions AS p WITH (NOLOCK)
ON p.object_id = i.object_id
AND p.index_id = i.index_id
JOIN sys.allocation_units AS au WITH (NOLOCK)
ON au.container_id = p.partition_id
WHERE i.index_id <> 0 /* exclude heaps */
GROUP BY SCHEMA_NAME(t.schema_id)
, t.schema_id
, t.name
, t.object_id
, i.name
, i.index_id
, i.type_desc
, i.has_filter
, i.is_unique
, i.is_primary_key;';

/* Retrieve index stats for return to our central repository */
SELECTGETDATE() AS [captureDate]
 , i.serverName
 , i.schemaName
 , i.databaseName
 , i.tableName
 , i.indexName
 , i.indexType
 , i.isFiltered
 , i.isPartitioned
 , i.numberOfRows
 , ddius.user_seeks AS [userSeeksSinceReboot]
 , ddius.user_scans AS [userScansSinceReboot]
 , ddius.user_lookups AS [userLookupsSinceReboot]
 , ddius.user_updates AS [userUpdatesSinceReboot]
 , (i.totalPages * 8) / 1024 AS [indexSizeInMB]/* pages are 8KB */
 , dosi.sqlserver_start_time AS [lastReboot]
FROM @Indexes AS i
JOIN sys.dm_db_index_usage_stats AS ddius
 ON i.databaseID = ddius.database_id
 AND i.objectID = ddius.object_id
 AND i.indexID = ddius.index_id
CROSS APPLY sys.dm_os_sys_info AS dosi
WHERE /* exclude system databases */
 i.databaseName NOT IN ('master','msdb','tempdb','model')
 /* exclude unique indexes; assume they are serving a business function */
 AND i.isUnique  = 0
 /* exclude primary keys; assume they are serving a business function */
 AND i.isPrimaryKey  = 0
 /* no seeks have been performed since the last server reboot */
 AND user_seeks  = 0;

CHAPTER 1 ■ metadata collection

22

Tip ■■   The T-SQL in Listing 1-7 is just a starting point. This query can be easily modified to return information
such as which clustered indexes may warrant redesign, which tables have the most updates, and which tables are
the most frequently queried.

An example of the output follows.

captureDate 	 serverName	 schemaName	 databaseName	 tableName
-----------------------	 -----------	 -----------	 ------------------	 ------------------
2012-04-29 19:37:36.927	 LOCALHOST	 Production	 AdventureWorks2012	 TransactionHistory
2012-04-29 19:37:36.927	 LOCALHOST	 Production	 AdventureWorks2012	 TransactionHistory
2012-04-29 19:37:36.927	 LOCALHOST	 Sales	 AdventureWorks2012	 SalesOrderDetail

indexName	 indexType	 isFiltered	 isPartitioned	 numberOfRows
--------------------------------------	 ------------	 ----------	 -------------	 ------------
IX_TransactionHistory_ProductID	 NONCLUSTERED	 0	 0	 1134431
IX_TransactionHistory_ReferenceOrderID	 NONCLUSTERED	 0	 0	 1134431
IX_SalesOrderDetail_ProductID	 NONCLUSTERED	 0	 1	 1213178

userSeeksSinceReboot	 userScansSinceReboot	 userLookupsSinceReboot	 userUpdatesSinceReboot
--------------------	 --------------------	 ----------------------	 ----------------------
0	 0	 0	 98
0	 8	 0	 98
0	 2	 0	 124

indexSizeInMB	 lastReboot
-------------	 ------------
9 2012-04-28	 19:15:28.837
21 2012-04-28	 19:15:28.837
28 2012-04-28	 19:15:28.837

As you can see, this query is a bit more complex than the last one. Let’s discuss what we’re doing. Developers
are usually very good at identifying performance issues. Why? When a query is slow, someone is usually
complaining about it! It’s not uncommon for the fix to involve the creation of an index, which can reduce IO and
improve query duration. Over time, however, the query may change—resulting in a different indexing being used
by the optimizer—or perhaps the query is no longer needed. Unlike the more attention-getting performance
issue, these types of changes tend to creep up silently over time. Eventually that same index, which was so
beneficial when it was being used, is now consuming unnecessary resources—namely, it slows down inserts,
consumes precious disk space, and inflates backups.

One way to stay on top of unused indexes is to search the sys.dm_db_index_usage_stats DMV. This DMV
keeps track of index usage information, including how many times an index has been seeked or scanned and
how many updates have been performed. This information is refreshed after every reboot, so please note that
a server that has been restarted recently may show an inaccurately high number of “unused” indexes. Also,
this information is merely a starting point for further research into whether an index should be dropped or

CHAPTER 1 ■ metadata collection

23

redesigned; many organizations may have indexes that are not called frequently but are necessary for important
monthly or annual reports.

One other important thing to note is that this script makes use of the undocumented sp_MSforeachdb stored
procedure. This stored procedure iterates through every database, executing whatever command is
passed to it. For numerous reasons—not the least of which is the fact that it is an undocumented, and therefore
unsupported, stored procedure that may occasionally skip databases—I recommend using Aaron Bertrand’s
sp_foreachdb stored procedure instead. However, once more in the interests of simplicity, we will use the
sp_MSforeachdb procedure in our example.

Tip ■■   Aaron Bertrand’s sp_foreachdb stored procedure can be found at www.mssqltips.com/
sqlservertip/2201/making-a-more-reliable-and-flexible-spmsforeachdb/ or by searching
for “MSSQLTips sp_foreachdb” in your favorite search engine.

Now that we understand a little more about the metadata we are retrieving, let’s return to our package. Click
Parse Query to ensure you do not have any errors in your syntax, and then click Preview to see a sample of the
results. Click the Columns page to ensure that the column list has been successfully updated. Then, click OK to
return to the Data Flow designer.

You should now see an error in your Data Flow, as illustrated in Figure 1-19. This is expected because we’ve
changed the columns that our data source is providing, but our destination still expects the old column list.

Figure 1-19.  The completed Data Flow task

Before we can fix this error, we need to return to SSMS to create the table we will use to store our unused
index data, dba_monitor_unusedIndexes. Do so now, using the code in Listing 1-8.

Listing 1-8.  T-SQL Code to Create the dba_monitor_unusedIndexes Table

USE dbaCentralLogging;
GO

CREATE TABLE dbo.dba_monitor_unusedIndexes
(log_id INT IDENTITY(1,1)
,captureDate DATETIME
,serverName NVARCHAR(128)
,schemaName SYSNAME

http://www.mssqltips.com/sqlservertip/2201/making-a-more-reliable-and-flexible-spmsforeachdb/
http://www.mssqltips.com/sqlservertip/2201/making-a-more-reliable-and-flexible-spmsforeachdb/

CHAPTER 1 ■ metadata collection

24

,databaseName SYSNAME
,tableName SYSNAME
,indexName SYSNAME
,indexType NVARCHAR(60)
,isFiltered BIT
,isPartitioned BIT
,numberOfRows BIGINT
,userSeeksSinceReboot BIGINT
,userScansSinceReboot BIGINT
,userLookupsSinceReboot BIGINT
,userUpdatesSinceReboot BIGINT
,indexSizeInMB BIGINT
,lastReboot DATETIME

 CONSTRAINT PK_dba_monitor_unusedIndexes
 PRIMARY KEY NONCLUSTERED(log_id)
);

CREATE CLUSTERED INDEX CIX_dba_monitor_unusedIndexes
 ON dbo.dba_monitor_unusedIndexes(captureDate);

Returning to Integration Services, double-click the Central Logging Database OLE DB Destination to edit its
properties. Change the “Name of the table or the view” value to [dbo].[dba_monitor_unusedIndexes], and then
click the Mappings page. Because our source and destination are using the same column names, we can easily
update the mappings by right-clicking in the space between Available Input Columns and Available Destination
Columns and then selecting Map Items by Matching Names. Figure 1-20 illustrates this option.

Figure 1-20.  The Map Items by Matching Names option in the Mappings page

CHAPTER 1 ■ metadata collection

25

Once more, the log_idcolumn will not map to anything because it is an identity column. Click OK to return to
the Data Flow designer, and then click the Control Flow tab.

See how quickly that second Data Flow went? You can continue to easily add more metadata collection tasks
using this same method. All that we have left to do is to update our Last Monitored column in the dba_monitor_
SQLServerInstances table.

Tip ■■  I t may be tempting to create a one-size-fits-all package. However, it is generally a better idea to separate
metadata collections into separate packages organized by frequency requirements. For example, the metadata
we have collected in this chapter only requires periodic samples, such as daily or weekly collection. Metadata that
requires more frequent collection, such as an hourly check for failed SQL Agent jobs, should be stored in a separate
package.

Add an Execute SQL Task to our Foreach Loop Container and rename it Update LastMonitored. Connect
the Unused Indexes Data Flow to the Update Last Monitored Execute SQL Task. Double-click the Execute SQL
Task to edit its properties. Select the dbaCentralLogging connection in the Connection drop-down, and then
enter the code from Listing 1-9 in the SQLStatement field.

Listing 1-9.  T-SQL Code to Update the LastMonitored Value in dba_monitor_SQLServerInstances

UPDATEdbo.dba_monitor_SQLServerInstances
SETLastMonitored = GETDATE()
WHERESQLServerInstance = ?;

The question mark (?) tells the Execute SQL Task that we are passing a parameter to this SQL statement. Now
we just need to map our variable to our parameter. To do this, click the Parameter Mapping page and click Add.
Edit the properties as follows:

Variable Name = User::SQLServerInstanceName•	

Direction = Input•	

Data Type = NVARCHAR•	

Parameter Name = 0•	

Parameter Size = 128•	

Confirm that your mappings match those shown in Figure 1-21, and then click OK.

CHAPTER 1 ■ metadata collection

26

We are now ready to execute our package! To do this, you can select Debug➤Start Debugging from the
menu, click the green Run icon in the toolbar, or press F5. Your package should resemble Figure 1-22 upon
successful execution.

Figure 1-21.  Parameter mapping in the Execute SQL Task Editor

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ metadata collection

27

Congratulations! You have now collected metadata from a list of servers and stored the results in your
dbaCentralLogging database.

This concludes our walk-through on collecting metadata via SSIS. However, there are many more tasks that a
diligent developer or DBA may want to consider. First, as we discussed early on in this chapter, this package does
not contain any exception handling or logging, which is outside the scope of this chapter. However, a best practice
is to include some sort of exception handling and logging on every package. Second, we have only tipped the
proverbial iceberg when it comes to collecting metadata. There is much more information to consider, such as
security audits, error logs, SQL Server Agent job statuses, and much, much more. If you’re not sure where to start,
consider ranking metadata tasks by criticality and working in descending order of importance. As a last piece
of homework, you may want to consider setting up monitors to alert when unfavorable conditions are met (for
example, a SQL Server agent job has failed or available space is getting low).

Figure 1-22.  Successful execution of the MetadataCollection package

CHAPTER 1 ■ mETADATA CoLLECTion

28

Summary
In this chapter, we discussed the importance of metadata. We explored some of the metadata that exists within
SQL Server and provided two examples of valuable T-SQL metadata queries. We identified a very flexible and
reusable pattern for collecting database metadata in an enterprise environment. Lastly, we created an Integration
Services package that does the following:

1. Identify a list of SQL Server instances on our network.

2. Iterate through the list of instances and

a. Connect to each SQL Server Instance.

b. Retrieve one or more pieces of information.

c. Log the results to our centralized repository.

29

CHAPTER 2

Execution Patterns

To have a full understanding of SQL Server 2012 Integration Services execution, you must first understand the
different Deployment models. There are two: the Package Deployment Model and the Project Deployment
Model. Each exposes and supports a different functionality. The Package Deployment Model primarily supports
legacy functionality. It is the model used in SSIS 2005 through SSIS 2008 R2. The new way of doing things involves
the Project Deployment Model. Certain execution methods, but not all, are available to both deployment models.

You can build awesome SQL Server Integration Services (SSIS) packages, but they do no good until you
execute them! SSIS provides several methods for package execution. In this chapter, we will examine:

Debug Execution•	

Command-line execution•	

Execute Package Utility•	

The SQL Server 2012 Integration Service service•	

Integration Server Catalogs•	

Integration Server Catalog Stored Procedures•	

Scheduling SSIS Package Execution•	

The Execute Package Task•	

Metadata-Driven Execution•	

Execution from Managed Code•	

We’ll begin by creating a simple SSIS package to use for demonstration purposes.

Building the Demonstration SSIS Package
Create a new SSIS solution named “Chapter2”. Rename the SSIS package, changing the name from Package.dtsx
to Chapter2.dtsx.

For more information on creating SSIS solutions and packages, see Professional SQL Server 2012 Integration
Services by Michael Coles and Francis Rodrigues (Apress, 2012).

Drag a Script Component onto the Control Flow canvas and open the editor. Choose your language
of choice in the ScriptLanguage property on the Script page. Select the System::PackageName variable in
ReadOnlyVariables, and then click the Edit Script button.

CHAPTER 2 ■ Execution Patterns

30

If you selected Microsoft Visual Basic 2010 as the ScriptLanguage property setting for the Script Task, replace
the code in Public Sub Main with the following:
 Public Sub Main()

 Dim sPackageName As String = Dts.Variables("PackageName").Value.ToString
 Dim sMsg As String = "Package Name: "& sPackageName

 MsgBox(sMsg, , sPackageName)

 Dts.TaskResult = ScriptResults.Success
 End Sub

If you selected Microsoft Visual C# 2010 as the ScriptLanguage property setting for the Script Task, replace
the code in public void Main() with the following :
 public void Main()
 {
 string sPackageName = Dts.Variables["PackageName"].Value.ToString();
 string sMsg = "Package Name: " + sPackageName;

 MessageBox.Show(sMsg, sPackageName);

 Dts.TaskResult = (int)ScriptResults.Success;
 }

Save the package, project, and solution. You’re ready to run!

Debug Execution
Executing the package from within SQL Server Business Intelligence Development Studio (BIDS) is
straightforward. It works the same regardless of the Deployment Model selected. However, as with everything in
the Visual Studio Integrated Development Environment (VS IDE), you have several ways to accomplish this.

When you execute an SSIS package inside BIDS, you are invoking the SSIS Debugger. The SSIS Debugger
file is named DtsDebugHost.exe and it’s stored in the < drive>:\Program Files\Microsoft SQL Server\110\DTS\
Binn folder. It’s important to realize you’re executing the SSIS package inside a debug host process. Why? There is
overhead associated with debugging – those boxes don’t change color for free!

To execute the Chapter2.dtsx package in BIDS, press the F5 key. The debug host loads, then loads the
package, and executes it. You should see a message box proclaiming the package name. When you press the OK
button on the message box, the Script Task in the Chapter2 package Control Flow turns from yellow to green. A
link appears beneath the Connections Managers tab to indicate package execution has completed. However, the
DtsDebugHost.exe process is still executing. It continues executing until the BIDS Debugger is stopped.

Here are some ways to start the BIDS Debugger:

Press the F5 key•	

Click the “VCR Play button” (green arrow pointing right) on the toolbar•	

Click the Debug dropdown menu and select “Start Debugging”•	

Actually, selecting “Step Into” or “Step Over” from the Debug dropdown menu also ○○
starts the BIDS Debugger

In Solution Explorer, right-click the package and select “Execute Package” from the menu•	

When the package has completed execution in Debug mode, restart the package:•	

By holding Ctrl + Shift and pressing the F5 key○○

Using the VCR Restart button on the toolbar○○

Clicking the Debug dropdown menu and clicking “Restart”○○

CHAPTER 2 ■ Execution Patterns

31

Here are some ways to stop the Debugger once the package execution completes (or whenever a Debug
mode Stop is desired):

Hold Shift and press the F5 key•	

Click the “VCR Stop button” (the square) on the toolbar•	

Click the Debug dropdown menu and select “Stop Debugging”•	

Click the Debug dropdown menu and select “Terminate All”•	

Click the “Package execution completed” link beneath the Connection Managers tab•	

Command-Line Execution
Command-line SSIS package execution uses the DtExec.exe utility. DtExec supports Project and Package
Deployment Models. You can manually invoke DtExec from inside BIDS by clicking the Debug dropdown menu
and selecting “Start Without Debugging” (or by holding the Ctrl key and pressing F5). You can also manually start
DtExec from a command prompt.

DtExec isn’t often invoked manually. Instead it’s common to see DtExec command-lines used with
scheduling software to execute SSIS packages in Production environments. For example, when you schedule an
SSIS package using SQL Server Agent (covered later in this chapter), DtExec is instantiated.

To execute the Chapter2.dtsx SSIS package using DtExec, open a command prompt and enter the following
command:

dtexec /FILE "G:\Projects\SSIS Design Patterns\SSIS Design Patterns\Chapter2.dtsx"

This command executes the Chapter2.dtsx SSIS package located in the G:\Projects\SSIS Design Patterns\
SSIS Design Patterns folder. Edit the command line to reflect the location of your SSIS package if you’re playing
along at home.

When you execute the package from the command line, the message box displays the package name – as
when the package is executed from inside the BIDS debugger.

If the SSIS package is deployed to the new SSIS catalog, you can still execute it from the command line using
a command similar to:

dtexec.exe /ISSERVER "\"\SSISDB\Chapter2\Chapter2\Chapter2.dtsx\"" /SERVER "\"SSISMVP-RC0\""
/Par "\"$ServerOption::SYNCHRONIZED(Boolean)\"";True /REPORTING E /CALLERINFO Andy

Execute Package Utility
The Execute Package Utility (DtExecUI) runs in its own process and executes SSIS packages. I like using the
Execute Package Utility to build DtExec command lines, but it only supports the Package Deployment Model. You
can invoke the Execute Package Utility in at least three ways:

Click Start•	 All ProgramsMicrosoft SQL ServerIntegration ServicesExecute
Package Utility

Click Start•	 Run and type “dtexecui” (without the double-quotes) in the Open textbox

Double-click on a dtsx file (if you haven’t re-mapped the default application settings for •	
dtsx files)

My favorite option is double-clicking the dtsx file. This not only opens the Execute Package Utility, but it sets
the General page settings to indicate that the Package Source is the File System and configures the Package path
textbox with the full path of the dtsx file I double-clicked. Neat.

CHAPTER 2 ■ Execution Patterns

32

If I execute Package2.dtsx using the Execute Package Utility, the Package Execution Progress form displays,
informing me of the package’s execution progress (how appropriate) and the message box appears as it had when
I executed using the BIDS debugger and the command line.

See Professional SQL Server 11 Integration Services by Michael Coles and Francis Rodrigues (Apress, 2012) for more
information about the Execute Package Utility.

The SQL Server 2012 Integration Services Service
The SQL Server Integration Services 11.0 service installs with SQL Server. To connect, open SQL Server
Management Studio (SSMS). If prompted to connect with the Connect To Server window at SSMS startup, make
sure Server Type is set to Integration Services. Enter the name of the server in the Server Name dropdown.
Please note there aren’t named instances of SSIS: there’s one per server (for now, anyway). You can also enter
“localhost” (without the double-quotes) to connect to the local server’s default instance of SSIS.

Once the connection is configured, click the Connect button. Navigate to the package you desire to execute.
SSIS packages stored in the File System or the MSDB database can be executed from the SSIS 2012 Service.

SQL Server 2012 provides a new way to manage and execute Integration Services packages: Integration
Server Catalogs. We explore this method next.

Integration Server Catalogs
You can only manage SSIS projects that use the Project Deployment Model in Integration Services Catalogs.
To execute a package in the catalog, use SSMS to connect to the instance of SQL Server hosting the SSISDB
database. Expand the Integration Services Catalogs node, and then expand the SSISDB node. Drill into the folder
containing the SSIS project and package(s). Right-click the package you wish to execute and click Execute, as
shown in Figure 2-1.

Figure 2-1.  Executing an SSIS Package deployed to the SSIS Catalog

The Execute Package Window displays, as shown in Figure 2-2. It allows you to override Parameter values,
ConnectionString properties of Connection Managers built at design-time, or any other externalize-able property
accessible from a Package Path (via the Advanced tab) for this execution instance of the SSIS package stored in
the SSIS Catalog.

CHAPTER 2 ■ Execution Patterns

33

Integration Server Catalog Stored Procedures
Please note the Script button above the Parameters tab in Figure 2-2. This button allows you to generate Transact-
SQL statements that will execute the SSIS package. For the Chapter2.dtsx package stored in the SSIS Catalog, the
scripts will appear similar to that in Listing 2–1.

Listing 2–1.   Transact-SQL Script Generated From the Execute Package Window

Declare @execution_id bigint
EXEC [SSISDB].[catalog].[create_execution]
 @package_name = N'Chapter2.dtsx'
 ,@execution_id = @execution_id OUTPUT
 ,@folder_name = N'Chapter2'
 ,@project_name = N'Chapter 2'
 ,@use32bitruntime = False
 ,@reference_id = Null
Select @execution_id
DECLARE @var0 smallint = 1
EXEC [SSISDB].[catalog].[set_execution_parameter_value]
 @execution_id
 ,@object_type = 50
 ,@parameter_name = N'LOGGING_LEVEL'
 ,@parameter_value = @var0
EXEC [SSISDB].[catalog].[start_execution] @execution_id
GO

You can use these same stored procedures to execute SSIS Packages in the SSIS Catalog! In fact, I designed
a script to create a wrapper stored procedure that will call the Transact-SQL statements executed when an SSIS
Package is executed in the SSIS Catalog. You can see that script in Listing 2–2.

Figure 2-2.  Execute Package Window

CHAPTER 2 ■ Execution Patterns

34

Listing 2–2.   Script to Build a Wrapper Stored Procedure for Executing SSIS Packages in the SSIS Catalog

 /* Select the SSISDB database */
Use SSISDB
Go

 /* Create a parameter (variable) named @Sql */
Declare @Sql varchar(2000)

 /* Create the Custom schema if it does not already exist */
print 'Custom Schema'
If Not Exists(Select name
 From sys.schemas
 Where name = 'custom')
 begin
 /* Create Schema statements must occur first in a batch */
 print ' - Creating custom schema'
 Set @Sql = 'Create Schema custom'
 Exec(@Sql)
 print ' - Custom schema created'
 end
Else
 print ' - Custom Schema already exists.'
print ''

 /* Drop the Custom.execute_catalog_package Stored Procedure if it already exists */
print 'Custom.execute_catalog_package Stored Procedure'
 If Exists(Select s.name + '.' + p.name
 From sys.procedures p
 Join sys.schemas s
 On s.schema_id = p.schema_id
 Where s.name = 'custom'
 And p.name = 'execute_catalog_package')
 begin
 print ' - Dropping custom.execute_catalog_package'
 Drop Procedure custom.execute_catalog_package
 print ' - Custom.execute_catalog_package dropped'
 end
 /* Create the Custom.execute_catalog_package Stored Procedure */
 print ' - Creating custom.execute_catalog_package'
go

/*

 Stored Procedure: custom.execute_catalog_package
 Author: Andy Leonard
 Date: 4 Mar 2012
 Description: Creates a wrapper around the SSISDB Catalog procedures
 used to start executing an SSIS Package. Packages in the
 SSIS Catalog are referenced by a multi-part identifier
 - or path - that consists of the following hierarchy:
 Catalog Name: Implied by the database name in Integration Server 2012
 |-Folder Name: A folder created before or at Deployment to contain the SSIS project
 |-Project Name: The name of the SSIS Project deployed
 |-Package Name: The name(s) of the SSIS Package(s) deployed

CHAPTER 2 ■ Execution Patterns

35

 Parameters:
 @FolderName [nvarchar(128)] {No default} –
 contains the name of the Folder that holds the SSIS Project
 @ProjectName [nvarchar(128)] {No default} –
 contains the name of the SSIS Project that holds the SSIS Package
 @PackageName [nvarchar(260)] {No default} –
 contains the name of the SSIS Package to be executed
 @ExecutionID [bigint] {Output} –
 Output parameter (variable) passed back to the caller
 @LoggingLevel [varchar(16)] {Default} –
 contains the (case-insensitive) name of the logging level
 to apply to this execution instance
 @Use32BitRunTime [bit] {Default} –
 1 == Use 64-bit run-time
 0 == Use 32-bit run-time
 @ReferenceID [bigint] {Default} – contains a reference to an Execution
Environment
 @ObjectType [smallint] – contains an identifier that appears to be related to
the SSIS PackageType property
 Guessing: @ObjectType == PackageType.ordinal (1-based-array) * 10
 Must be 20, 30, or 50 for catalog.set_execution_parameter_value
 stored procedure

 Test:
 1. Create and deploy an SSIS Package to the SSIS Catalog.
 2. Exec custom.execute_catalog_package and pass it the
 following parameters: @FolderName, @ProjectName, @PackageName, @ExecutionID Output
 @LoggingLevel, @Use32BitRunTime, @ReferenceID, and @ObjectType are optional and
 defaulted parameters.

 Example:
 Declare @ExecId bigint
 Exec custom.execute_catalog_package
 'Chapter2'
 ,'Chapter 2'
 ,'Chapter2.dtsx'
 ,@ExecId Output
 3. When execution completes, an Execution_Id value should be returned.
 View the SSIS Catalog Reports to determine the status of the execution
 instance and the test.

*/
Create Procedure custom.execute_catalog_package
 @FolderName nvarchar(128)

CHAPTER 2 ■ Execution Patterns

36

 ,@ProjectName nvarchar(128)
 ,@PackageName nvarchar(260)
 ,@ExecutionID bigint Output
 ,@LoggingLevel varchar(16) = 'Basic'
 ,@Use32BitRunTime bit = 0
 ,@ReferenceID bigint = NULL
 ,@ObjectType smallint = 50
As

 begin

 Set NoCount ON

 /* Call the catalog.create_execution stored procedure
 to initialize execution location and parameters */
 Exec catalog.create_execution
 @package_name = @PackageName
 ,@execution_id = @ExecutionID Output
 ,@folder_name = @FolderName
 ,@project_name = @ProjectName
 ,@use32bitruntime = @Use32BitRunTime
 ,@reference_id = @ReferenceID

 /* Populate the @ExecutionID parameter for OUTPUT */
 Select @ExecutionID As Execution_Id

 /* Create a parameter (variable) named @Sql */
 Declare @logging_level smallint
 /* Decode the Logging Level */
 Select @logging_level = Case
 When Upper(@LoggingLevel) = 'BASIC'
 Then 1
 When Upper(@LoggingLevel) = 'PERFORMANCE'
 Then 2
 When Upper(@LoggingLevel) = 'VERBOSE'
 Then 3
 Else 0 /* 'None' */
 End
 /* Call the catalog.set_execution_parameter_value stored
 procedure to update the LOGGING_LEVEL parameter */
 Exec catalog.set_execution_parameter_value
 @ExecutionID
 ,@object_type = @ObjectType
 ,@parameter_name = N'LOGGING_LEVEL'
 ,@parameter_value = @logging_level

 /* Call the catalog.start_execution (self-explanatory) */
 Exec catalog.start_execution
 @ExecutionID

 end
GO

If you execute this script to create the custom schema and stored procedure in your instance of the SSISDB
database, you can test it using the statement in Listing 2–3.

CHAPTER 2 ■ Execution Patterns

37

Listing 2–3.   Testing the SSISDB.custom.execute_catalog_package Stored Procedure

Declare @ExecId bigint
Exec SSISDB.custom.execute_catalog_package 'Chapter2','Chapter 2','Chapter2.dtsx',
@ExecId Output

Adding a Data Tap
The SSISDB.custom.execute_catalog_package stored procedure can be modified slightly to create a data tap – a
new feature for packages executed from the SSISDB Catalog in SSIS 2012. Adding a few parameters and some
T-SQL to the stored procedure allows it to execute an SSIS package and export a comma-separated values (CSV)
file filled with some or all of the rows that flowed through a point in a Data Flow Task. Data taps provide a much-
needed window on the state of data as they move through an SSIS Data Flow, facilitating root-cause analysis
and troubleshooting in Production environments without altering the package code. Data taps are one of the
most important enhancements to Integration Services 2012. Listing 2–4 contains the script to build
SSISDB.custom.execute_catalog_package_with_data_tap:

Listing 2–4.  Script to Build a Wrapper Stored Procedure for Executing SSIS Packages in the SSIS Catalog

/* Select the SSISDB database */
Use SSISDB
Go

 /* Create a parameter (variable) named @Sql */
Declare @Sql varchar(2000)

 /* Create the Custom schema if it does not already exist */
print 'Custom Schema'
If Not Exists(Select name
 From sys.schemas
Where name = 'custom')
 begin
 /* Create Schema statements must occur first in a batch */
 print ' - Creating custom schema'
 Set @Sql = 'Create Schema custom'
 Exec(@Sql)
 print ' - Custom schema created'
 end
Else
 print ' - Custom Schema already exists.'
print ''

 /* Drop the Custom.execute_catalog_package_with_data_tap
 Stored Procedure if it already exists */
print 'Custom.execute_catalog_package_with_data_tap Stored Procedure'
 If Exists(Select s.name + '.' + p.name
 From sys.procedures p
 Join sys.schemas s
 On s.schema_id = p.schema_id
 Where s.name = 'custom'
 And p.name = 'execute_catalog_package_with_data_tap')
 begin

CHAPTER 2 ■ ExECuTion PATTERns

38

 print ' - Dropping custom.execute_catalog_package_with_data_tap'
 Drop Procedure custom.execute_catalog_package_with_data_tap
 print ' - Custom.execute_catalog_package_with_data_tap dropped'
 end

 /* Create the Custom.execute_catalog_package_with_data_tap Stored Procedure */
 print ' - Creating custom.execute_catalog_package_with_data_tap'
go

/*

 Stored Procedure: custom.execute_catalog_package_with_data_tap
 Author: Andy Leonard
 Date: 4 Apr 2012
 Description: Creates a wrapper around the SSISDB Catalog procedures
 used to start executing an SSIS Package and create a
 data tap. Packages in the
 SSIS Catalog are referenced by a multi-part identifier
 - or path - that consists of the following hierarchy:
 Catalog Name: Implied by the database name in Integration Server 2012
 |-Folder Name: A folder created before or at Deployment to contain the SSIS project
 |-Project Name: The name of the SSIS Project deployed
 |-Package Name: The name(s) of the SSIS Package(s) deployed
Parameters:
 @FolderName [nvarchar(128)] {No default} - contains the name of the
 Folder that holds the SSIS Project
 @ProjectName [nvarchar(128)] {No default} - contains the name of the
 SSIS Project that holds the SSIS Package
 @PackageName [nvarchar(260)] {No default} - contains the name of the
 SSIS Package to be executed
 @ExecutionID [bigint] {Output} - Output parameter (variable) passed back
 to the caller
 @LoggingLevel [varchar(16)] {Default} - contains the (case-insensitive)
 name of the logging level to apply to this execution instance
 @Use32BitRunTime [bit] {Default} - 1 == Use 64-bit run-time
 0 == Use 32-bit run-time
 @ReferenceID [bigint] {Default} - contains a reference to an Execution Environment
 @ObjectType [smallint] - contains an identifier that appears to be related
 to the SSIS PackageType property

 Guessing: @ObjectType == PackageType.ordinal (1-based-array) * 10
 Must be 20, 30, or 50 for catalog.set_execution_parameter_value
 stored procedure

CHAPTER 2 ■ Execution Patterns

39

 @DataFlowTaskName [nvarchar(255)] - contains the name of the Data Flow Task in which to
 to apply the data tap.
 @IdentificationString [nvarchar(255)] - contains the Data Flow Path Identification string
 in which to apply the data tap.
 @DataTapFileName [nvarchar(4000)] - contains the name of the file to create to contain
 the rows captured from the data tap.
 Saved in the < drive>:\Program Files\Microsoft SQL Server\110\DTS\DataDumps folder.
 @DataTapMaxRows [int] - contains the maximum number of rows to send to the data tap file.

 Test:
 1. Create and deploy an SSIS Package to the SSIS Catalog.
 2. Exec custom.execute_catalog_package_with_data_tap and pass it the
 following parameters: @FolderName, @ProjectName, @PackageName,
 @DataFlowTaskName, @IdentificationString, @DataTapFileName,
 @ExecutionID Output
 @LoggingLevel, @Use32BitRunTime, @ReferenceID, @ObjectType,
 and @DataTapMaxRows are optional and defaulted parameters.

 Example:
 Declare @ExecId bigint
 Exec custom.execute_catalog_package_with_data_tap
 'SSISConfig2012','SSISConfig2012','Child1.dtsx',
 'Data Flow Task', 'OLESRC Temperature.OLE DB Source Output',
 'Child1_DataFlowTask_OLESRCTemperature_OLEDBSourceOutput.csv',@ExecId Output

 3. When execution completes, an Execution_Id value should be returned.
 View the SSIS Catalog Reports to determine the status of the
 execution instance and the test.

*/
Create Procedure [custom].[execute_catalog_package_with_data_tap]
 @FolderName nvarchar(128)
 ,@ProjectName nvarchar(128)
 ,@PackageName nvarchar(260)
 ,@DataFlowTaskName nvarchar(255)
 ,@IdentificationString nvarchar(255)
 ,@DataTapFileName nvarchar(4000)
 ,@ExecutionID bigint Output
 ,@LoggingLevel varchar(16) = 'Basic'
 ,@Use32BitRunTime bit = 0
 ,@ReferenceID bigint = NULL
 ,@ObjectType smallint = 50
 ,@DataTapMaxRows int = NULL
As

 begin

 Set NoCount ON

CHAPTER 2 ■ Execution Patterns

40

 /* Call the catalog.create_execution stored procedure
 to initialize execution location and parameters */
 Exec catalog.create_execution
 @package_name = @PackageName
 ,@execution_id = @ExecutionID Output
 ,@folder_name = @FolderName
 ,@project_name = @ProjectName
 ,@use32bitruntime = @Use32BitRunTime
 ,@reference_id = @ReferenceID

 /* Populate the @ExecutionID parameter for OUTPUT */
 Select @ExecutionID As Execution_Id

 /* Configure Data Tap parameters */
 If (Left(@DataFlowTaskName, 9) <> '\Package\')
 Set @DataFlowTaskName = '\Package\' + @DataFlowTaskName

 If Left(@IdentificationString,6) <> 'Paths['
 Set @IdentificationString = 'Paths[' + @IdentificationString + ']'

 /* Create the Data Tap */
 EXEC [SSISDB].[catalog].add_data_tap @ExecutionID, @DataFlowTaskName,
 @IdentificationString, @DataTapFileName, @DataTapMaxRows

 /* Create a parameter (variable) named @Sql */
 Declare @logging_level smallint
 /* Decode the Logging Level */
 Select @logging_level = Case
 When Upper(@LoggingLevel) = 'BASIC'
 Then 1
 When Upper(@LoggingLevel) = 'PERFORMANCE'
 Then 2
 When Upper(@LoggingLevel) = 'VERBOSE'
 Then 3
 Else 0 /* 'None' */
 End
 /* Call the catalog.set_execution_parameter_value stored
 procedure to update the LOGGING_LEVEL parameter */
 Exec catalog.set_execution_parameter_value
 @ExecutionID
 ,@object_type = @ObjectType
 ,@parameter_name = N'LOGGING_LEVEL'
 ,@parameter_value = @logging_level

 /* Call the catalog.start_execution (self-explanatory) */
 Exec catalog.start_execution
 @ExecutionID

 end

CHAPTER 2 ■ Execution Patterns

41

Creating a Custom Execution Framework
SSIS Execution Frameworks support repeatable and reliable SSIS package execution. The SSISDB.custom.
execute_catalog_package stored procedure can be used as the centerpiece for an SSIS Execution Framework.
To create the tables to support this framework, execute the statements in Listing 2–5.

Listing 2–5.   Tables to Support a Custom SSIS Execution Framework

/* Switch to SSISDB database */
Use SSISDB
Go

/* Build custom Schema */
print 'Custom Schema'
/* Check for existence of custom Schema */
If Not Exists(Select name
 From sys.schemas
 Where name = 'custom')

 begin
 /* Build and execute custom Schema SQL
 if it does not exist */
 print ' - Creating custom schema'
 declare @CustomSchemaSql varchar(32) = 'Create Schema custom'
 exec(@CustomSchemaSql)
 print ' - Custom schema created'
 end
Else
 /* If the custom schema exists, tell us */
 print ' - Custom schema already exists.'
 print ''
Go

/* Build custom.Application table */
print 'Custom.Application Table'
/* Check for existence of custom.Application table */
If Not Exists(Select s.name +  '.'  + t.name
 From sys.tables t
 Join sys.schemas s
 On s.schema_id = t.schema_id
 Where s.name = 'custom'
 And t.name = 'Application')
 begin
 /* Create custom.Application table
 if it does not exist */
 print ' - Creating custom.Application Table'
 Create Table custom.Application
 (
 ApplicationID int identity(1,1)
 Constraint PK_custom_Application Primary Key Clustered

CHAPTER 2 ■ Execution Patterns

42

 ,ApplicationName nvarchar(256) Not Null
 Constraint U_custom_ApplicationName Unique
 ,ApplicationDescription nvarchar(512) Null
)
 print ' - Custom.Application Table created'
 end
Else
 /* If the custom.Application table exists, tell us */
 print ' - Custom.Application Table already exists.'
print ''

/* Build custom.Package table */
print 'Custom.Package Table'
/* Check for existence of custom.Package table */
If Not Exists(Select s.name + '.' + t.name
 From sys.tables t
 Join sys.schemas s
 On s.schema_id = t.schema_id
 Where s.name = 'custom'
 And t.name = 'Package')

 begin
 /* Create custom.Package table
 if it does not exist */
 print ' - Creating custom.Package Table'
 Create Table custom.Package
 (
 PackageID int identity(1,1)
 Constraint PK_custom_Package Primary Key Clustered
 ,FolderName nvarchar(128) Not Null
 ,ProjectName nvarchar(128) Not Null
 ,PackageName nvarchar(256) Not Null
 ,PackageDescription nvarchar(512) Null
)
 print ' - Custom.Package Table created'
 end
Else
 /* If the custom.Package table exists, tell us */
 print ' - Custom.Package Table already exists.'
print ''

/* Build custom.ApplicationPackage table */
print 'Custom.ApplicationPackage Table'
/* Check for existence of custom.ApplicationPackage table */
If Not Exists(Select s.name + '.' + t.name
 From sys.tables t
 Join sys.schemas s
 On s.schema_id = t.schema_id
 Where s.name = 'custom'
 And t.name = 'ApplicationPackage')

CHAPTER 2 ■ Execution Patterns

43

 begin
 /* Create custom.ApplicationPackage table
 if it does not exist */
 print ' - Creating custom.ApplicationPackage Table'
 Create Table custom.ApplicationPackage
 (
 ApplicationPackageID int identity(1,1)
 Constraint PK_custom_ApplicationPackage Primary Key Clustered
 ,ApplicationID int Not Null
 Constraint FK_custom_ApplicationPackage_Application
 Foreign Key References custom.Application(ApplicationID)
 ,PakcageID int Not Null
 Constraint FK_custom_ApplicationPackage_Package
 Foreign Key References custom.Package(PackageID)
 ,ExecutionOrder int Not Null
 Constraint DF_custom_ApplicationPackage_ExecutionOrder
 Default(10)
 ,ApplicationPackageEnabled bit Not Null
 Constraint DF_custom_ApplicationPackage_ApplicationPackageEnabled
 Default(1)
)
 print ' - Custom.ApplicationPackage Table created'
 end
Else
 /* If the custom.ApplicationPackage table exists, tell us */
 print ' - Custom.ApplicationPackage Table already exists.'
print ''
/* Build custom.GetApplicationPackages stored procedure */
print 'Custom.GetApplicationPackages'
/* Check for existence of custom.GetApplicationPackages stored procedure */
If Exists(Select s.name + '.' + p.name
 From sys.procedures p
 Join sys.schemas s
 On s.schema_id = p.schema_id
 Where s.name = 'custom'
 And p.name = 'GetApplicationPackages')
 begin
 /* If custom.GetApplicationPackages stored procedure
 exists, drop it */
 print ' - Dropping custom.GetApplicationPackages Stored Procedure'
 Drop Procedure custom.GetApplicationPackages
 print ' - custom.GetApplicationPackages Stored Procedure dropped'
 end
print ' - Creating custom.GetApplicationPackages Stored Procedure'
go

/*

 Procedure: custom.GetApplicationPackages
 Author: Andy Leonard
 Parameter(s): ApplicationName [nvarchar(256)]
 - contains the name of the SSIS Application
 for which to retrieve SSIS Packages.

CHAPTER 2 ■ Execution Patterns

44

 Description: Executes against the custom.ApplicationPackages
 table joined to the custom.Application
 and custom.Packages tables. Returns a
 list of enabled Packages related to the
 Application ordered by ExecutionOrder.
 Example: exec custom.GetApplicationPackages 'TestSSISApp'

*/
Create Procedure custom.GetApplicationPackages
 @ApplicationName nvarchar(256)
As
 begin

 Set NoCount On

 Select p.FolderName, p.ProjectName, p.PackageName, ap.ExecutionOrder
 From custom.ApplicationPackage ap
 Join custom.Package p
 On p.PackageID = ap.PackageID
 Join custom.Application a
 On a.ApplicationID = ap.ApplicationID
 Where a.ApplicationName = @ApplicationName
 And ap.ApplicationPackageEnabled = 1
 Order By ap.ExecutionOrder
 end
go
print ' - Custom.GetApplicationPackages Stored Procedure created.'
print ''

/* Build custom.AddApplication stored procedure */
print 'Custom.AddApplication'
If Exists(Select s.name + '.' + p.name
 From sys.procedures p
 Join sys.schemas s
 On s.schema_id = p.schema_id
 Where s.name = 'custom'
 And p.name = 'AddApplication')
 begin
 /* If custom.AddApplication stored procedure
 exists, drop it */
 print ' - Dropping custom.AddApplication Stored Procedure'
 Drop Procedure custom.AddApplication
 print ' - custom.AddApplication Stored Procedure dropped'
 end
print ' - Creating custom.AddApplication Stored Procedure'
go

/*

CHAPTER 2 ■ Execution Patterns

45

 Procedure: custom.AddApplication
 Author: Andy Leonard
 Parameter(s): ApplicationName [nvarchar(256)]
 - contains the name of the SSIS Application
 to add to the Framework database.
 ApplicationDescription [nvarchar(512)]
 - contains a description of the SSIS Application.
 Description: Stores an SSIS Application.
 Example: exec custom.AddApplication 'TestSSISApp', 'A test SSIS Application.'
*/
Create Procedure custom.AddApplication
 @ApplicationName nvarchar(256)
 ,@ApplicationDescription nvarchar(512) = NULL
As
 begin

 Set NoCount On

 Insert Into custom.Application
 (ApplicationName
 ,ApplicationDescription)
 Output inserted.ApplicationID
 Values
 (@ApplicationName
 ,@ApplicationDescription)

 end
go
print ' - Custom.AddApplication Stored Procedure created.'
print ''

/* Build custom.AddPackage stored procedure */
print 'Custom.AddPackage'
If Exists(Select s.name + '.' + p.name
 From sys.procedures p
 Join sys.schemas s
 On s.schema_id = p.schema_id
 Where s.name = 'custom'
 And p.name = 'AddPackage')
 begin
 /* If custom.AddPackage stored procedure
 exists, drop it */
 print ' - Dropping custom.AddPackage Stored Procedure'
 Drop Procedure custom.AddPackage
 print ' - custom.AddPackage Stored Procedure dropped'
 end
print ' - Creating custom.AddPackage Stored Procedure'
go

/*

CHAPTER 2 ■ Execution Patterns

46

 Procedure: custom.AddPackage
 Author: Andy Leonard
 Parameter(s): FolderName [nvarchar(128)]
 - contains the name of the SSISDB Catalog
 folder containing the SSIS Package.
 ProjectName [nvarchar(128)]
 - contains the name of the SSISDB Catalog
 project containing the SSIS Package.
 PackageName [nvarchar(128)]
 - contains the name of the SSISDB Catalog
 SSIS Package.
 PackageDescription [nvarchar(512)]
 - contains a description of the SSIS Package.
 Description: Stores an SSIS Package.
 Example: exec custom.AddPackage 'Chapter2', 'Chapter 2'
 , 'Chapter2.dtsx', 'A test SSIS Package.'

*/
Create Procedure custom.AddPackage
 @FolderName nvarchar(128)
 ,@ProjectName nvarchar(128)
 ,@PackageName nvarchar(256)
 ,@PackageDescription nvarchar(512) = NULL
As
 begin

 Set NoCount On

 Insert Into custom.Package
 (FolderName
 ,ProjectName
 ,PackageName
 ,PackageDescription)
 Output inserted.PackageID
 Values
 (@FolderName
 ,@ProjectName
 ,@PackageName
 ,@PackageDescription)

 end
go
print ' - Custom.AddPackage Stored Procedure created.'
print ''

/* Build custom.AddApplicationPackage stored procedure */
print 'Custom.AddApplicationPackage'
If Exists(Select s.name + '.' + p.name
 From sys.procedures p
 Join sys.schemas s

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ Execution Patterns

47

 On s.schema_id = p.schema_id
 Where s.name = 'custom'
 And p.name = 'AddApplicationPackage')
 begin
 /* If custom.AddApplicationPackage stored procedure
 exists, drop it */
 print ' - Dropping custom.AddApplicationPackage Stored Procedure'
 Drop Procedure custom.AddApplicationPackage
 print ' - custom.AddApplicationPackage Stored Procedure dropped'
 end
print ' - Creating custom.AddApplicationPackage Stored Procedure'
go

/*

 Procedure: custom.AddApplicationPackage
 Author: Andy Leonard
 Parameter(s): ApplicationID [int]
 - contains the ID returned from the execution
 of custom.AddApplication.
 PackageID [int]
 - contains the ID returned from the execution
 of custom.AddPackage.
 ExecutionOrder [int]
 - contains the order the package will execute
 within the SSIS Application.
 ApplicationPackageEnabled [bit]
 - 1 == Enabled and will run as part of the SSIS Application.
 0 == Disabled and will not run as part of the SSIS Application.
 Description: Links an SSIS Package to an SSIS Application
 Example: exec custom.AddApplicationPackage 1, 1, 10, 1

*/
Create Procedure custom.AddApplicationPackage
 @ApplicationID int
 ,@PackageID int
 ,@ExecutionOrder int = 10
 ,@ApplicationPackageEnabled bit = 1
As
 begin

 Set NoCount On

 Insert Into custom.ApplicationPackage
 (ApplicationID
 ,PackageID
 ,ExecutionOrder
 ,ApplicationPackageEnabled)
 Values
 (@ApplicationID

CHAPTER 2 ■ ExECuTion PATTERns

48

 ,@PackageID
 ,@ExecutionOrder
 ,@ApplicationPackageEnabled)

 end
go
print ' - Custom.AddApplicationPackage Stored Procedure created.'
print ''

Create a new SSIS Package in the Chapter2 project and rename it Parent.dtsx. Click the Parameters tab on
the Package – it’s the third tab from the left (Control Flow, Data Flow, Parameters). Click the Add Parameter
button and create a parameter named ApplicationName, String data type, with a default value of “testSSISApp”
(without the double-quotes). Set the Required property to True.

Add an Execute SQL Task to the Control Flow and rename it “Get Packages”. Open the editor and set the
ConnectionType property to ADO.NET. In the Connection property dropdown, select (or create a connection
to) the SSISDB database. In the SQLStatement property, enter “custom.GetApplicationPackages” without
the double-quotes. Set the IsQueryStoredProcedure property to True. Change the ResultSet property to “Full
result set”.

Navigate to the Parameter Mapping page and click the Add button. Click the Variable Name dropdown and
select “$Package::ApplicationName” at the very top of the list. Change the Data Type to String and the Parameter
Name to “ApplicationName” (without the double-quotes). This maps the value in the Parent package Parameters
into the ApplicationName parameter sent to the custom.GetApplicationPackages stored procedure when it is
called by the Execute SQL Task.

Navigate to the Result Set page and click the Add button. If the Add button is disabled, you did not change
the ResultSet property on the General page from the default setting (“None”). If ResultSet is set to any other
setting, the Add button is enabled. Enter “0” (without the double-quotes)for the Result Name. In the Variable
Name dropdown, create a Variable named Packages. For this variable, set the Value Type property to Object.

Note:   Object is an interesting data type. Akin to a variant, Object can contain a scalar like a date or integer.
it can also hold a collection or string array. in this example, Object will contain an ADO.Net Dataset value. if we
had set the ConnectionType property to oLEDB (the default), this result set variable would be populated with an ADo
Recordset. Yes, that is a CoM object – in 2012. CoM (and CoBoL) will never die . . .

Let’s review. First, the task will use an ADO.Net connection to the SSISDB database to execute the custom.
GetApplicationPackages stored procedure we created earlier. Because we set the IsQueryStoredProcedure
to True, we do not need to add placeholders for parameters or the “exec” command. Since we used ADO.Net,
we can address parameters by name instead of ordinal (“ApplicationName” instead of “0”) on the Parameter
Mapping page. Finally, we configured the Execute SQL Task to push the results of the stored procedure execution
into an object variable named Packages.

Click the Ok button to close the Execute SQL Task editor. Drag a Foreach Loop Container onto the Control
Flow surface and open its editor. On the General page, change the Name property to “Foreach Package in
Packages”. On the Collection page, select the Foreach ADO Enumerator. In the ADO Object Source Variable
dropdown, select the Packages variable. Leave the Enumeration Mode default option “Rows in the first table”
selected.

I can hear you thinking, “So what would I need to do if I had an ADO Recordset in the Packages object
variable?” That is an excellent question. The answer is, “Nothing different.” Even though object variables can

CHAPTER 2 ■ Execution Patterns

49

hold ADO Recordsets and ADO.Net datasets (and other collections and scalars), the Foreach ADO Enumerator
is smart enough to detect the type of object inside the SSIS object variable – and then read it. Isn’t that cool? I
thought so too.

Navigate to the Variable Mappings page. Create four variables at Package scope. These variables match the
fields returned from the custom.GetApplicationPackages stored procedure; and subsequently loaded into the
first table in an ADO.Net dataset now housed inside the Packages SSIS variable. If you didn’t get that sentence,
reread it (I’ll wait). That’s a lot to take in, but it is vital to understanding what we’re doing here. Got it? Good.

I will walk you through creating the first variable listed as follows using the method I prefer for variable
creation. Click the Variable dropdown and select “<New variable . . .>” at the very top of the list. When the Add
Variable window displays, make sure the Container property is set to Parent (the name of the package). This
ensures the variable has package scope. Enter “FolderName” (without the double-quotes) in the Name textbox.
Click the Ok button and change the Index property to “0” (without the double-quotes). I almost always create
SSIS Variables in this fashion. I have more control over scope, and I am creating and configuring the Variable
where it will be used. This functionality saves time and simply rocks.

Create the variables in the following order:

Container: Parent
Name: FolderName
Namespace: User
Value Type: String
Value:

Container: Parent
Name: ProjectName
Namespace: User
Value Type: String
Value:

Container: Parent
Name: ChildPackageName
Namespace: User
Value Type: String
Value:

Container: Parent
Name: ExecutionOrder
Namespace: User
Value Type: Int32
Value: 0

Make sure the Index values align as shown here:

FolderName: 0
ProjectName: 1
PackageName: 2
ExecutionOrder: 3

CHAPTER 2 ■ Execution Patterns

50

The fields do not have to be listed in this order, but the Index values have to align with the (zero-based)
ordinal value of the fields returned by the custom.GetApplicationPackages.

Click the Ok button to close the Foreach Loop Container editor. Drag an Execute SQL Task into the
Foreach Loop Container and rename it “Execute Package”. Set the ConnectionType to ADO.NET and select the
SSISDB connection you created earlier. Set the IsQueryStoredProcedure property to True and SQL Statement
property to custom.execute_catalog_package. On the Parameter Mapping page, add and create a new variable
named ExecutionID, Int32 data type, package scope, default value: 0. Change the Direction of the parameter
to Output and couple the SSIS variable you just created to the ExecutionID parameter by supplying the
Parameter Name: ExecutionID. Add three more parameter mappings; one each for FolderName, ProjectName,
and ChildPackageName. Map them to the stored procedure parameters FolderName, ProjectName, and
PackageName; respectively. The custom.execute_catalog_package stored procedure accepts other parameters:
LoggingLevel, Use32BitRunTime, ReferenceID, and ObjectType; but these parameters all contain default values
that will serve our purposes. Click the Ok button to close the Execute SQL Task editor.

Your Parent.dtsx SSIS package should appear as shown in Figure 2-3.

Figure 2-3.  Parent Package Control Flow

Return to SQL Server Management Studio (SSMS). Let’s provide our simple execution framework with
metadata to execute. Execute the T-SQL statements in Listing 2–6.

CHAPTER 2 ■ Execution Patterns

51

Listing 2–6.   Building the Metadata for an SSIS Application

Use SSISDB
Go
Set NoCount On

Declare @ApplicationName nvarchar(256)
Declare @ApplicationDescription nvarchar(512)
Declare @ApplicationID int
Declare @FolderName nvarchar(256)
Declare @ProjectName nvarchar(256)
Declare @PackageName nvarchar(256)
Declare @PackageDescription nvarchar(512)
Declare @PackageID int
Declare @ExecutionOrder int
Declare @ApplicationPackageEnabled bit
Declare @ApplicationTbl table(ApplicationID int)
Declare @PackageTbl table(PackageID int)

begin tran

 -- Build Application --
Select @ApplicationName = 'TestSSISApp'
 ,@ApplicationDescription = 'A test SSIS application'

Insert Into @ApplicationTbl
Exec custom.AddApplication
 @ApplicationName
 ,@ApplicationDescription

 Select @ApplicationID = ApplicationID
 From @ApplicationTbl

 -- Build Package --
Select @FolderName = 'Chapter2'
 ,@ProjectName = 'Chapter 2'
 ,@PackageName = 'Chapter2.dtsx'
 ,@PackageDescription = 'A test SSIS package'

Insert Into @PackageTbl
Exec custom.AddPackage
 @FolderName
 ,@ProjectName
 ,@PackageName
 ,@PackageDescription

 Select @PackageID = PackageID
 From @PackageTbl

 -- Build ApplicationPackage --
Select @ExecutionOrder = 10
 ,@ApplicationPackageEnabled = 1

CHAPTER 2 ■ Execution Patterns

52

 Exec custom.AddApplicationPackage
 @ApplicationID
 ,@PackageID
 ,@ExecutionOrder
 ,@ApplicationPackageEnabled

 Delete @PackageTbl

 -- Build Package --
Select @FolderName = 'Chapter2'
 ,@ProjectName = 'Chapter 2'
 ,@PackageName = 'Chapter2.dtsx'
 ,@PackageDescription = 'Another test SSIS package'

Insert Into @PackageTbl
Exec custom.AddPackage
 @FolderName
 ,@ProjectName
 ,@PackageName
 ,@PackageDescription

 Select @PackageID = PackageID
 From @PackageTbl

 -- Build ApplicationPackage --
Select @ExecutionOrder = 20
 ,@ApplicationPackageEnabled = 1

 Exec custom.AddApplicationPackage
 @ApplicationID
 ,@PackageID
 ,@ExecutionOrder
 ,@ApplicationPackageEnabled

 Delete @PackageTbl

Commit

The T-SQL in Listing 2–6 builds a simple SSIS Application in the execution framework. It calls our Chapter2.
dtsx SSIS package twice. If you return to SQL Server Data Tools (SSDT) and execute the Parent package, you will
note the Chapter2.dtsx SSIS package executes twice in quick succession. You can see that execution in Figure 2-4.

CHAPTER 2 ■ Execution Patterns

53

It is important to understand that the framework is a “fire and forget” design. The screenshot in Figure 2-4
shows both instances of Chapter2.dtsx showing their respective message boxes, yet the tasks in the background
have completed. This approach works well if your SSIS packages can be executed in parallel. But what if there
are dependencies between packages? This framework does not facilitate dependent package execution, but I
will show you a way to couple the framework with the SQL Agent Job scheduler in the next section. Coupling will
allow you to execute the parent package for each “step” of a process, calling an SSIS Application each step, and in
turn calling one or more SSIS Packages in parallel.

Note ■■   Appendix A contains information on building a serial SSIS framework that was originally built for SSIS
2005. It works in SSIS 2012 if you use the Package Deployment Model.

 Scheduling SSIS Package Execution
There are many commercially available software execution schedulers on the market. They range from relatively
simple to highly complex, allowing time- or event-based execution. Many include metadata collection capabilities
that track metrics such as execution time. SQL Server Agent is a fairly robust job scheduling application included
with SQL Server. We will use SQL Server Agent to schedule the execution of our demo package.

Caution■■   Before proceeding, deploy the Chapter2 project to the SSIS Catalog. Doing so will deploy Chapter2.
dtsx and Parent.dtsx.

Scheduling an SSIS Package
Open SQL Server Management Studio (SSMS) and connect to an instance of SQL Server 2012. Open Object
Explorer and expand the SQL Server Agent node. Right-click the Jobs virtual folder and click New→Job. When the
New Job window displays, name the job “Ch2” and select “SQL Server Integration Services Package” from the Type
dropdown. Click on the Steps page and click the New button. Name the new step “Execute Chapter 2 Package”.

Figure 2-4.  Chapter2.dtsx executing twice without waiting

CHAPTER 2 ■ Execution Patterns

54

Clicking the Ok button will complete the scheduling procedure.

Scheduling a File System Package
To schedule a package stored in the file system, select “File system” in the Package Source dropdown. Click the
ellipsis beside the Package textbox and navigate to the desired SSIS package file. Once configured, the step will
appear as shown in Figure 2-6.

Select a Package Source from the dropdown. The options are:

SQL Server•	

File system•	

SSIS Package Store•	

SSIS Catalog•	

Let’s schedule an SSIS package from the catalog to start. Type “localhost”, or the name of the SSIS server that
contains the SSIS Catalog, into the Server dropdown. Click the ellipsis beside the Package textbox and navigate to
the demonstration package, Chapter2.dtsx, as shown in Figure 2-5.

Figure 2-5.  Configuring a SQL Server Agent Job to execute an SSIS package in the SSIS Catalog

CHAPTER 2 ■ Execution Patterns

55

You can test the job by right-clicking the job name in SSMS and then clicking “Start job at step.”

Running SQLAgent Jobs with the Custom Execution Framework
We can run a SQL Agent Job with our Custom Execution Framework. To demonstrate, create a new SQL Agent job
named “Framework Execution”. On the Steps page, add a new step named “TestSSISApp Framework Execution”.
Select the SSIS Package Step Type and accept the default Package Source property of “SSIS Catalog.” Enter or
select the name of your server in the Server dropdown and click the ellipsis beside the Package textbox to open
the “Select an SSIS Package” window. Navigate to the Parent.dtsx SSIS Package, and then click the Ok button.

Click the Configuration tab on the New Job Step window. The package parameter ApplicationName should
appear in the Parameters list. To enter a value for this parameter, click the ellipsis beside the Value textbox, and
then enter “TestSSISApp” without the double-quotes. Click the Ok button to close and save the New Job Step
window, and then click the Ok button again to close and save the New Job window.

To test, right click the Framework Execution SQL Agent Job and click “Start Job at Step . . .” The SQL Agent job
will execute and succeed, but I have bad news: the package executions will fail. I can hear you thinking, “Wait,
what?” I kid you not. Remember that note previously about this being a “fire and forget” execution framework?
That fact haunts us here – and elsewhere in SSIS execution. It’s better for you to become aware of this now – trust

Figure 2-6.  SQL Server Agent job step configured to execute an SSIS Package from the file system

CHAPTER 2 ■ Execution Patterns

56

me on this. The other way to gain this knowledge involves arguing with your boss (or worse, your client) that “the
job succeeded!” and being wrong.

How do you know the package execution failed? Let’s go look. Expand the Integration Services Catalogs
virtual folder in SQL Server Management Studio (SSMS) Object Explorer. Right-click SSISDB and hover over
Reports, then Standard Reports, and click Integration Services Dashboard. If you have followed my instructions,
you will see a large, reddish-colored “2” above the word Failed. If you click the “2,” the reports will take you
to a page containing a list of failed executions. If you then click the All Messages link, you will see an error
message informing you that the Script Task experienced an error (Exception has been thrown by the target of an
invocation). That message means (among other things) that you used a message box in a script task. No, I am not
making this up.

Note: ■■   “Are message boxes bad?” Absolutely not! In fact, they’re the only way to troubleshoot a certain class of
errors in SSIS. I use them all the time, but I qualify the MsgBox calls in an If/Then statement. If you don’t do this, the
message box calls will execute and cause SQL Agent Jobs to either fail or lie to you about execution success.

All is not lost. The problem here is that a service account is providing the security context for the execution.
The account used to start the SQL Agent service is the account used to execute the packages from SQL Agent jobs.
That account typically does not have the InteractWithDesktop role assigned, and you have to admit– a desktop is
handy for displaying message boxes. The caveat is: You cannot include unqualified calls to message box displays
in SSIS packages. Use a parameter or variable (I use one called Debug) and make sure its value is external to the
package so you can turn it on and off when you want to display message boxes.

You can also execute the Parent.dtsx package from the SSIS Catalog. In SSMS Object Explorer, continue
drilling into the Chapter2 folder. Open Projects, then Chapter 2, then Packages, and right-click the Parent.dtsx
package. Click Execute and supply “TestSSISApp” for the ApplicationName parameter. When you click the Ok
button, the package executes and the two message boxes appear. Why? Because you are no longer running the
security context of the service account that starts the SQL Agent service; you are running in the security context
with which you connected to SSMS Object Explorer. This is most likely a domain or machine account that uses
Windows Authentication and your personal credentials. If you’ve been watching a desktop all this time, you (and
all the other users in your domain or machine) have the InteractWithDesktop role assigned.

Running the Custom Execution Framework with SQL Agent
You can run SQL Agent jobs with the custom execution framework. You just cannot pop up message boxes. For
example, you can create an SSIS Application for each “step” in your process. The SSIS Application can contain
SSIS Packages that can execute in parallel. You then build a SQL Agent job with several Job Steps – one for each
SSIS Application. A SQL Agent job executes its steps serially, waiting for one to succeed (by default) before
starting the next step.

Most data warehouses require an extraction step that stages all data – from dimension and fact sources – to a
staging database. Next, dimension data are loaded into the data warehouse. Finally, fact data are loaded from the
staging database into the data warehouse.

The precedence of operations is as follows: Extract Fact and Extract Dimensions can run concurrently (in
parallel). You can design one package for each dimension and fact source table extract operation, add them to the
Extract SSIS Application, and execute that SSIS Application as Step 1 of your DW ETL Job. Once that completes,
Step 2 can load the dimension data from the stage database to the data warehouse. Once that completes, Step 3
can load the fact data from the staging database to the data warehouse. So while relatively simple and somewhat
limited, our custom execution framework can facilitate configurable parallel and serial ETL operations. Execute
Package Task.

CHAPTER 2 ■ Execution Patterns

57

The Execute Package Task is best understood in action. To demonstrate, create a new SSIS package and
rename it “Parent.dtsx”. Add an Execute Package Task to the Control Flow. Open the editor and observe the
selections for the ReferenceType property as shown in Figure 2-7.

Figure 2-7.  The Execute Package Task Reference Property

If the ReferenceType property is set to Project Reference, the Execute Package Task can be used to start
packages in the SSIS project, supporting the Project Deployment Model. Setting this property to External
Reference allows executing SSIS packages stored in either the MSDB database or file system, supporting the
Package Deployment Model. Figure 2-8 shows the Execute Package Task configured to execute the Chapter2.dtsx
package.

Figure 2-8.  Selecting the Project Reference Package

You can close the editor after selecting the package. Test it by executing Parent.dtsx in the SSIS debugger.

CHAPTER 2 ■ ExECuTion PATTERns

58

Metadata-Driven Execution
I have used all of the methods for SSIS package execution listed in this chapter. They each have advantages and
disadvantages. How then, do you select which method to use? I’m glad you asked! That is an excellent question.
I consider the following:

•	 Troubleshooting – At some time in the future, someone will have to figure out why a
package failed execution. Facilitating troubleshooting is not something to be tacked onto
the end of a data integration development project; it needs to be considered up front.
It is as important as security. I select an SSIS package execution method that supports
troubleshooting in each enterprise.

•	 Code maintenance – The SSIS project will possibly be modified in the future. This means
the packages, projects, and execution methodology need to be documented. It also means
I need to consider the skills and comfort -levels of the individuals or team maintaining
this code. If the individuals or team are skilled .Net developers, I lean towards using the
Script Task and Component for complex operations. I also attempt to develop in the .Net
language of choice, if this is the case. If they found their way to SSIS via a role as a database
administrator, I use more Transact-SQL in developing the solution. If they have DTS, SSIS,
or other ETL development platform experience, I develop packages slightly differently to
match their comfort zones. Again, this is different for different enterprises.

•	 Enterprise requirements – I often encounter “best practices” at enterprises. I enclose the
terms in quotations because, well, some of them aren’t actually best. They exist because
something bad happened and someone reacted. Sometimes the reactions make sense from
an SSIS point-of-view, sometimes they are security matters that vex the SSIS developers, and
sometimes they just do not make good sense for anyone.

•	 Complexity – I do not like complex solutions. I tolerate them if they are the only way to
accomplish what needs to be done, but I strive to keep solutions as simple as possible. Fewer
moving parts means there is less to break, less to troubleshoot, and less to maintain. That
said, flexibility and complexity are often proportional. That means highly flexible solutions
are likely to be complex solutions.

I write this here, especially the bullet about complexity, to introduce Execution from Managed Code.
Complexity is the only disadvantage of executing SSIS from .Net. Executing SSIS from managed code offers
maximum flexibility: If you can think it, you can find a way to build it in .Net. In my opinion, knowing .Net is no
longer optional for the data integration developer in the Microsoft space.

Execution from Managed Code
There is a ton (or tonne, if you prefer) of benefit from executing SSIS packages from .Net managed code. There are
various limitations to executing SSIS in other ways. Without exception, they can all be overcome by controlling
execution from .Net. In this section, we will demonstrate the basics of using VB.Net to execute SSIS packages.

The Demo Application
For this demonstration, I used Visual Basic 2010 and the .Net Framework 4. Unless otherwise specified, I accepted
the default settings for VB applications in the Visual Studio 2010 Integrated Development Environment (IDE).

CHAPTER 2 ■ Execution Patterns

59

In the “SSIS Package in the Catalog” groupbox, add five labels, five textboxes, and two buttons. Change the
Text properties of the labels to “Server:”, “Catalog:”, “Folder:”, “Project:”, and “Package:”. Position each textbox to
the right of each labels and name them “txtSSISCatalogServer”, “txtCatalog”, “txtFolder”, “txtCatalogProject”, and
“txtCatalogPackage”, respectively. Name one of the buttons “btnOpenSSISPkgInCatalog” and set its Text property
to “ . . . ”. Name the other button “btnStartCatalog” and set its Text property to “Start”.

Add a textbox beneath the “SSIS Package in the Catalog” groupbox. Name it “txtStatus”, set the MultiLine
property to True, BackColor to “ButtonFace”, and the BorderStyle to “None”. Position the controls similar to the
way shown in Figure 2-9. Finally, add a FileOpenDialog control to the form, leaving it configured to defaults.

It will likely surprise no one to learn that I was first exposed to design patterns while a software developer.
The pattern I use in this application puts a minimum amount of code behind the form. The code that is in the

To begin, create a new VB Windows Forms project in Visual Studio 2010. Add references for the following
assemblies:

Microsoft.SqlServer.ConnectionInfo•	

Microsoft.SqlServer.DTSRuntimeWrap•	

Microsoft.SqlServer.Management.IntegrationServices•	

Microsoft.SqlServer.Management.Sdk.Sfc•	

Microsoft.SqlServer.Smo•	

The frmMain Form
Rename Form1 to frmMain. Add two GroupBox controls to the form, arranged with one over the other as
shown in Figure 2-9. Change the Text property of the top groupbox to “SSIS Package in the File System” and
the Text property of the lower groupbox to “SSIS Package in the Catalog”. In the upper groupbox, add a label,
textbox, and two buttons. Change the Text property of the label to “Package Path:”. Name one of the buttons
“btnOpenSSISPkg” and change its Text property to “ . . . . ”. Name the other button “btnStartFile” and set its Text
property to “Start”.

Figure 2-9.  The frmMain controls layout

CHAPTER 2 ■ Execution Patterns

60

form calls code in a form-specific module. You can view the code for frmMain by right-clicking frmMain in
Solution Explorer and selecting View Code. Replace the code displayed with the following:
'
' frmMain code
'
' I use a Helper Pattern when developing interfaces.
' Each form is named frm_____ and there is a corresponding module named
'  frm_____Helper.vb.
' Each event method calls a subroutine in the Helper module.
'

Public Class frmMain

 Private Sub frmMain_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles MyBase.Load
 InitFrmMain()
 End Sub

 Private Sub btnStartFile_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnStartFile.Click
 btnStartFileClick()
 End Sub

 Private Sub btnOpenSSISPkg_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles _
btnOpenSSISPkg.Click
 btnOpenSSISPkgClick()
 End Sub

 Private Sub btnStartCatalog_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles _
btnStartCatalog.Click
 btnStartCatalogClick()
 End Sub

 Private Sub btnOpenSSISPkgInCatalog_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles _
btnOpenSSISPkgInCatalog.Click
 btnOpenSSISPkgInCatalogClick()
 End Sub
End Class

Again, the code behind the form is sparse. Most of the real work is done elsewhere. Let’s build that part now.
Add a module to the solution and name it frmMainHelper. Add the following code to the new module:

'
' frmMainHelper module
'
' I use a Helper Pattern when developing interfaces.
' Each form is named frm_____ and there is a corresponding module named frm_____Helper.vb.
' Each event method calls a subroutine in the Helper module.
'
' This module supports frmMain.
'
Imports System
Imports System.Windows

CHAPTER 2 ■ Execution Patterns

61

Imports System.Windows.Forms
Imports Microsoft.SqlServer.Dts.Runtime.Wrapper
Imports Microsoft.SqlServer.Management.IntegrationServices
Imports Microsoft.SqlServer.Management.Smo

Module frmMainHelper

 Public Sub InitFrmMain()

 ' initialize and load frmISTree

 ' define the version
 Dim sVer As String = System.Windows.Forms.Application.ProductName & " v" & _
System.Windows.Forms.Application.ProductVersion

 ' display the version and startup status
 With frmMain
 .Text = sVer
 .txtStatus.Text = sVer & ControlChars.CrLf & "Ready"
 End With

 End Sub

 Public Sub btnStartFileClick()

 ' configure an SSIS application and execute the selected SSIS package file

 With frmMain
 .Cursor = Cursors.WaitCursor
 .txtStatus.Text = "Executing " & .txtSSISPkgPath.Text
 .Refresh()
 Dim ssisApp As New Microsoft.SqlServer.Dts.Runtime.Wrapper.Application
 Dim ssisPkg As Package = ssisApp.LoadPackage(.txtSSISPkgPath.Text, _
AcceptRejectRule.None, Nothing)
 ssisPkg.Execute()
 .Cursor = Cursors.Default
 .txtStatus.Text = .txtSSISPkgPath.Text & " executed."
 End With

 End Sub

 Public Sub btnOpenSSISPkgClick()

 ' allow the user to navigate to an SSIS package file

 With frmMain
 .OpenFileDialog1.DefaultExt = "dtsx"
 .OpenFileDialog1.ShowDialog()
 .txtSSISPkgPath.Text = .OpenFileDialog1.FileName
 .txtStatus.Text = .txtSSISPkgPath.Text & " package path loaded."
 End With

 End Sub

 Sub btnOpenSSISPkgInCatalogClick()

 ' allow the user to navigate to an SSIS package stored in a catalog

 frmISTreeInit()

CHAPTER 2 ■ Execution Patterns

62

 Dim sTmp As String = sFullSSISPkgPath
 Dim sServerName As String = Strings.Left(sTmp, Strings.InStr(sTmp, ".") - 1)
 Dim iStart As Integer = Strings.InStr(sTmp, ".") + 1
 Dim iEnd As Integer = Strings.InStr(sTmp, "\")
 Dim iLen As Integer
 Dim sCatalogName As String
 Dim sFolderName As String
 Dim sProjectName As String
 Dim sPackageName As String

 If iEnd > iStart Then
 iLen = iEnd - iStart
 sCatalogName = Strings.Mid(sTmp, iStart, iLen)
 sTmp = Strings.Right(sTmp, Strings.Len(sTmp) - iEnd)

 iStart = 1
 iEnd = Strings.InStr(sTmp, "\")
 If iEnd > iStart Then
 iLen  = iEnd - iStart
 sFolderName = Strings.Mid(sTmp, iStart, iLen)
 sTmp = Strings.Right(sTmp, Strings.Len(sTmp) - iEnd)

 iStart = 1
 iEnd = Strings.InStr(sTmp, "\")
 If iEnd > iStart Then
 iLen = iEnd - iStart
 sProjectName = Strings.Mid(sTmp, iStart, iLen)
 sTmp = Strings.Right(sTmp, Strings.Len(sTmp) - iEnd)
 sPackageName  = sTmp
 End If
 End If
 End If

 With frmMain
 .txtSSISCatalogServer.Text = sServerName
 .txtCatalog.Text = sCatalogName
 .txtFolder.Text = sFolderName
 .txtCatalogProject.Text = sProjectName
 .txtCatalogPackage.Text  = sPackageName
 .txtStatus.Text = sFullSSISPkgPath & " metadata loaded and parsed."
 End With

 End Sub

 Sub btnStartCatalogClick()

 ' configure an SSIS application and execute the selected SSIS package from the
 ' catalog

 With frmMain
 .Cursor = Cursors.WaitCursor
 .txtStatus.Text = "Loading " & sFullSSISPkgPath
 .Refresh()
 Dim oServer As New Server(.txtSSISCatalogServer.Text)
 Dim oIS As New IntegrationServices(oServer)

CHAPTER 2 ■ Execution Patterns

63

 Dim cat As Catalog = oIS.Catalogs(.txtCatalog.Text)
 Dim fldr As CatalogFolder = cat.Folders(.txtFolder.Text)
 Dim prj As ProjectInfo = fldr.Projects(.txtCatalogProject.Text)
 Dim pkg As PackageInfo = prj.Packages(.txtCatalogPackage.Text)
 .txtStatus.Text = sFullSSISPkgPath & " loaded. Starting validation . . ."
 .Refresh()
pkg.Validate(False, PackageInfo.ReferenceUsage.UseAllReferences, Nothing)
 .txtStatus.Text = sFullSSISPkgPath & " validated. Starting execution . . ."
 .Refresh()
pkg.Execute(False, Nothing)
 .txtStatus.Text = sFullSSISPkgPath & " execution started."
 .Cursor = Cursors.Default
 End With

 End Sub

End Module

Let’s walk through the portion of this code that executes an SSIS package in the file system. In Figure 2–9, we
are looking at the functionality represented in the upper groupbox.

The application works when the user either enters the full path to an SSIS package in the file system or clicks
the ellipsis to browse to a SSIS package (dtsx) file. After selecting a file, the full path will display in the Package
Path textbox. To execute the package, click the Start button in the “SSIS Package in the File System” groupbox.
When the Start button is pressed, the form code in the btnStartFile_Click subroutine is executed, and it executes a
single line of code that calls the btnStartFileClick subroutine in the frmMainHelper module.

The btnStartFileClick subroutine first changes the form cursor to a WaitCursor. Next it updates the txtStatus
textbox to display the text “Executing” followed by the full path of the SSIS package in the Package Path textbox.
The Refresh statement causes the form to update, displaying the WaitCursor and the message in txtStatus. The
code then creates an instance of an SSIS Application (Microsoft.SqlServer.Dts.Runtime.Wrapper.Application)
in the form of the ssisApp variable. ssisPkg is an instance of an SSIS Package object. It is created by calling the
LoadPackage method of the SSIS Application object (ssisApp). We use the Package object’s Execute method to
start the SSIS Package. The remainder of the subroutine resets the form cursor and updates the txtStatus message
to indicate the package executed.

Were I to harden this code for Production, I would wrap much of the code in this subroutine in a large
Try-Catch block. In the Catch section, I would reset the cursor and update txtStatus with the error message.
I like logging – a lot. In a Production-hardened version, I would log my intention to execute the package and
include the full path displayed in the Package Path textbox. I would also log the result of the attempted execution,
whether it succeeded or failed.

The code that executes an SSIS package stored in the SSIS Catalog is found in the frmMainHelper module’s
btnStartCatalogClick subroutine. The code that manages the cursor and messaging to the txtStatus textbox is
comparable to that found in the btnStartFileClick subroutine.

There are a few more moving parts to an SSIS package stored in the SSIS Catalog, shown in Figure 2-10.

CHAPTER 2 ■ Execution Patterns

64

Integration Services is contained by a Server and, in turn, contains a Catalog. In SQL Server 2012,
Integration Services contains a single catalog named “SSISDB”. SSISDB is also the name of the database
used to manage SSIS metadata in the catalog. A catalog contains one or more Folders. Folders contain one
or more Projects, which contain one or more Packages.

In the btnStartCatalogClick subroutine, the code declares variables for the objects in this hierarchy (using
Dim statements) and sets their value based on the names supplied in the five textboxes: txtSSISCatalogServer,
txtCatalog, txtFolder, txtCatalogProject, and txtCatalogPackage. As you can see by comparing the names of the
textboxes to Figure 2-10, an SSIS package stored in the catalog can be uniquely identified using this hierarchy.
How are the textboxes populated? The user can enter the information manually if desired. But the application
contains a second form, launched by the ellipsis in the “SSIS Package in the Catalog” groupbox, to facilitate SSIS
catalog navigation.

To build it, add a second form to the application and name it frmISTree. Add a groupbox control to the form
and position it near the top. Change the Text property of the groupbox to “Connection”. Add a label, textbox, and
button to the groupbox. Change the Text property of the label to “Server:”. Name the textbox “txtServer”. Name
the button “btnConnect” and change its Text property to “Connect”. Add a TreeView control to the lower portion
of the form and name it “tvCatalog”. Add a button just below the treeview, name it “btnSelect” and change its
Text property to “Select”. Add an ImageList control and name it “ilSSDB”. You will either have to rustle up your
own images or download the demo project containing the four images I used for treeview node levels. Set the
treeview’s ImageList property to “ilSSDB”. The form should appear as shown in Figure 2-11.

Figure 2-10.  A representation of the SSIS Catalog

CHAPTER 2 ■ Execution Patterns

65

Replace the code behind the form with the following code:

'
' frmISTree code
'
' I use a Helper Pattern when developing interfaces.
' Each form is named frm_____ and there is a corresponding module named frm_____Helper.vb.
' Each event method calls a subroutine in the Helper module.
'
Public Class frmISTree

 Private Sub btnConnect_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnConnect.Click
 btnConnectClick()
 End Sub

 Private Sub btnSelect_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnSelect.Click
 btnSelectClick()
 End Sub

 Private Sub tvCatalog_AfterSelect(ByVal sender As System.Object, _
 ByVal e As System.Windows.Forms.TreeViewEventArgs) _
Handles tvCatalog.AfterSelect

 End Sub

 Private Sub tvCatalog_DoubleClick(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
Handles tvCatalog.DoubleClick
 tvCatalogDoubleClick()
 End Sub
End Class

Figure 2-11.  ISTree Form

CHAPTER 2 ■ Execution Patterns

66

Again, this code merely points to the Helper module, in this case frmISTreeHelper. Add a new module, so
named, and replace it with the following code:

'
' frmISTreeHelper module
'
' I use a Helper Pattern when developing interfaces.
' Each form is named frm_____ and there is a corresponding module named frm_____Helper.vb.
' Each event method calls a subroutine in the Helper module.
'
' This module supports frmISTree.
'

Imports Microsoft.SqlServer.Management.IntegrationServices
Imports Microsoft.SqlServer.Management.Smo

Module frmISTreeHelper

 ' variables
 Public sFullSSISPkgPath As String

 Sub frmISTreeInit()

 ' initialize and load frmISTree

 With frmISTree
 .Text = "Integration Services"
 .txtServer.Text = "localhost"
 .ShowDialog()
 End With

 End Sub

 Sub btnConnectClick()

 ' connect to the server indicated in the txtServer textbox
 ' hook into the SSISDB catalog
 ' build out the SSISDB node by iterating the objects stored therein
 ' load the node and display it

 With frmISTree
 Dim oServer As New Server(.txtServer.Text)
 Dim oIS As New IntegrationServices(oServer)
 Dim cat As Catalog = oIS.Catalogs("SSISDB")
 Dim L1Node As New TreeNode("SSISDB")
 L1Node.ImageIndex = 0
 Dim L2Node As TreeNode
 Dim L3Node As TreeNode
 Dim L4Node As TreeNode

 For Each f As CatalogFolder In cat.Folders
 L2Node = New TreeNode(f.Name)
 L2Node.ImageIndex  = 1
 L1Node.Nodes.Add(L2Node)
 '.tvCatalog.Nodes.Add(L2Node)
 For Each pr As ProjectInfo In f.Projects
 L3Node = New TreeNode(pr.Name)
 L3Node.ImageIndex = 2

CHAPTER 2 ■ Execution Patterns

67

 L2Node.Nodes.Add(L3Node)
 '.tvCatalog.Nodes.Add(L3Node)
 For Each pkg As PackageInfo In pr.Packages
 L4Node = New TreeNode(pkg.Name)
 L4Node.ImageIndex = 3
 L3Node.Nodes.Add(L4Node)
 '.tvCatalog.Nodes.Add(L4Node)
 Next
 Next
 Next

 .tvCatalog.Nodes.Add(L1Node)
 End With

 End Sub

 Sub btnSelectClick()

 ' if the image index level indicates a package,
 ' select this node, populate the sFullSSISPkgPath variable,
 ' and close the form

 With frmISTree
 If Not .tvCatalog.SelectedNode Is Nothing Then
 If .tvCatalog.SelectedNode.ImageIndex = 3 Then
sFullSSISPkgPath = .txtServer.Text& "." &_
.tvCatalog.SelectedNode.FullPath
 .Close()
 End If
 End If
 End With

 End Sub

 Sub tvCatalogDoubleClick()

 ' run the Select Click logic

 With frmISTree
 btnSelectClick()
 End With

 End Sub

End Module

All the action in this module happens in the subroutines that populate the treeview control
(btnConnectClick) and select the node (btnSelectClick). The code defaults the name of the server to
“localhost”. The user can change it before clicking the Connect button. Once the button is clicked, the code calls
btnConnectClick.

The btnConnectClick subroutine creates objects for the Server, Integration Services, and Catalog objects in
the model. Next, it builds a hierarchy of four levels of nodes starting with the catalog. The variables – L1Node,
L2Node, L3Node, and L4Node – represent the Catalog, Folder, Project, and Package levels of the hierarchy. The
code uses a series of nested For Each loops to iterate the SSIS Catalog and populate the sub-nodes under L1Node
(Catalog), and then the L1Node is added to the tvCatalogtreeview.

The btnSelectClick subroutine builds a string the represents the unique path to the SSIS package in the
Catalog hierarchy. The code checks to see if a node is selected, and then checks to see if the selected node is at
the package level. If all is right with the treeview, the variable sFullSSISPkgPath is populated with the path to the

CHAPTER 2 ■ ExECuTion PATTERns

68

SSIS package in the catalog. Immediately thereafter, the frmISTree form closes. Users can also double-click on a
package node in the treeview and invoke the btnSelectClick subroutine.

Execute the application to test it! You should see results as in Figure 2-12.

Figure 2-12. Executing a package from the file system

Selection of a package in the SSIS Catalog appears as shown in Figure 2-13.

Figure 2-13. Selecting a package in the SSIS Catalog

Execute a package selected from the SSIS Catalog as illustrated in Figure 2-14.

CHAPTER 2 ■ Execution Patterns

69

Summary
In this chapter, we surveyed many ways to execute an SSIS package. We examined the many built-in ways for
convenient execution of SSIS packages. Then we kicked things up a notch by extending the SSISDB functionality.
In the end, we produced a simple, yet functional, custom execution framework and demonstrated how to couple
it to the scheduling capabilities of SQL Agent jobs to produce a custom parallel-/serial-capable execution engine.
We built a .Net application to demonstrate the flexibility (and complexity) of executing SSIS packages from
managed code.

Figure 2-14.  Executing an SSIS Package stored in the SSIS Catalog

71

Chapter 3

Scripting Patterns

As I have shown throughout this book, SQL Server Integration Services is a multifaceted product, with many
native capabilities that can handle even the most difficult of data challenges. With highly flexible transformations,
such as the Lookup, Conditional Split, Derived Column, and Merge Join, the data flow is well-equipped to
perform a limitless number of transformations to in-flight data. On the control flow side, tools including the File
System Task, For Each Loop (and its cousin, the For Loop), File System Task, and Data Profiling Task provide
critical services to support fundamental ETL operations. Right out of the box, you get a toolbox that’s full of
flexible and powerful objects.

However, even the most casual ETL developer will eventually encounter scenarios that requiremore
flexibility than what is afforded in the native components. Dealing with data movement and transformation is
often ugly and unpredicListing, and requires a level of extensibility that would be difficult to build into general-
purpose tools. Fortunately, there is a solution for these uncommon ETL needs: custom .NET scripting.

The Toolset
SQL Server Integration Services has the capability to build very powerful ETL logic directly into your SSIS
packages. Through Visual Studio and its various niceties (familiar development environment, Intellisense, and
project-based development, among many others), the burden of embedding custom logic in your ETL processes
is made significantly easier.

Unlike its predecessor Data Transformation Services (DTS), SQL Server Integration Services exposes the
entire .NET runtime within its scripting tools. Gone is the requirement to use only ActiveX scripts within ETL
packages (although this capability does still in SSIS, for those loyal to VBScript). With the introduction of the rich
scripting environments in SSIS, you now have the ability to access the same framework features used in “real”
software development. True object-oriented development, events, proper error handling, and other capabilities
are now fully accessible within custom scripts in SSIS.

SQL Server Integration Services includes two different vehicles for leveraging .NET code into your packages,
each designed to allow different types of custom behaviors. The Script Task, which resides in the control flow
toolbox, is a broad general-purpose tool intended to perform support and administrative tasks. Within the data
flow toolbox, you’ll find the Script Component, a versatile yet precise data movement and manipulation tool.

If you’re new to scripting in SSIS, you might wonder why there are two different script tools in SSIS.
Beyond that, the critical design pattern will include a decision on which of these tools to use in a given
scenario. The short answer: it depends. As mentioned, the Script Task is typically the better choice for

CHAPTER 3 ■ Scripting Patterns

72

operational behavior, and is most commonly used for operations affecting overall package flow (as opposed to
data movement). On the other hand, if your ETL needs require generating, consuming, or manipulating rows of
data, then the Script Component is normally the better tool.

Although they have nearly identical interfaces, the Script Task and Script Component differ greatly in their
default design. As you explore each of these tools, you’ll find that there is a significant amount of code automatically
added to the script project when you introduce it to your work surface. As a tool designed for direct data interaction,
the script component will include preconfigured code defining inputs and/or outputs to allow data to flow through
the component. In contrast, the behaviors built into the script task have no facilities for either inputs or puts, further
illustrating that this tool was built for purposes other than data flow.

The Script Task and Script Component share many similarities. Both tools feature a script designer that
resembles the familiar Visual Studio development environment used for mainstream software development. In
both of these, you’ll find the workspace organized into a virtual solution (displayed very similarly to the solution
container found in Visual Studio development) that may include multiple files and folders. Also common to both
script tools is the ability to include external code or services within the virtual solution. This capability allows
you to leverage code that has already been written and compiled elsewhere, whether it’s a DLL file you include
with the project or some external resource such as a web service. The language behaviors in both tools will be
identical; functionality such as error handling, compiler directives, and core framework functionality is shared
between these two scripting tools.

Should I Use Script?
Before we get started exploring the inner workings of the script tools in SSIS, a fundamental question should be
answered: should I be using the scripting tools at all?

As much as I believe in using the script tools in SSIS to solve difficult problems, there’s one piece of advice I
almost always dish out when talking or writing about this topic: only use the Script Task or Script Component in
situations where existing tools can’t easily address the problem you’re trying to solve. Although you gain a great
deal in terms of flexibility, you also lose a few things— design-time validation, easy reusability, and a GUI settings
editor, among others— when you deploy an instance of script into your packages.

Now don’t take any of this to mean that scripting is bad, or that is reflective of poor package design (after
all, this is a chapter describing recommended practices for using script!). Quite the opposite, in fact—I’ve found
many situations where the only tool that could satisfy the ETL requirement was a well-designed script instance.
The point is that the Script Task and Script Component are complex tools. Native components are much simpler
to use and maintain. In situations where one or more native elements of SSIS can easily dispatch any ETL issues,
don’t complicate the issue by reinventing the wheel with a script.

The Script Editor
Though their purposes differ greatly, you can expect a similar experience in the script editor for both the Script
Task and the Script Component tools. Features of both tools include

The ubiquitous code window•	

Project Explorer•	

Full .NET runtime•	

Compiler•	

I’ll cover the semantics of writing code in each of these tools later in the chapter. Now, I’ll explore some of
the other features shared by the Script Task and the Script Component.

CHAPTER 3 ■ Scripting Patterns

73

Project Explorer
Software development elements in Visual Studio are stored in logical groups called projects. The Visual Studio
environment in SQL Server Data Tools (SSDT) in SQL Server 2012 or Business Intelligence Development Studio
(BIDS) in SQL Server 2008 and earlier will behave in much the same way; as shown in Figure 3-1, the file(s) for
a given script are represented in the Project Explorer window. In the same figure, you can see that the project
has a rather lengthy and arbitrary name. This is a system-generated identifier used to identify the project and
the namespace in which it resides, but it can be changed if you prefer to have a more standardized naming
convention in your script.

Figure 3-1.  Script Task Project Explorer

It’s worth pointing out that the C# and VB.NET files that you create in Project Explorer are not physically
materialized in your project. Rather, the filenames exist only to logically separate the code files within the
project—the code itself is embedded inline within the XML of the package (the .dtsx file).

Also included in the Project Explorer is a virtual folder named References. In this folder, you will find the
assembly references for core functionality required by the script. In addition, you can add your own references to
this list to further extend the capability of the Script Task or Script Component.

Because each instance of the Script Task or Script Component in your package is surfaced as a Visual Studio
project, you have a significant amount of control over the properties of that project. Much like a full-featured
software development project, an instance of the Script Task or Script Component allows the ETL developer the
ability to control various parameters of behavior, including the version of the .NET framework, the compilation
warning level, and the assembly name. The project properties window is shown in Figure 3-2, and can be accessed
by right-clicking the project name in Project Explorer and choosing Properties. Do keep in mind, however, that the
scope of any changes you make is limited to the single instance of the script task or script component with which
you’re currently working.

CHAPTER 3 ■ Scripting Patterns

74

In practice, it’s quite rare to have to modify the project-level properties of instances of the Script Task or
Script Component. In the majority of cases, the default project settings will suffice.

Full .NET Runtime
Both scripting tools in SSIS have full access to the objects, methods, and events within the .NET framework
runtime. This level of accessibility allows the ETL developer to leverage exiting assemblies—including network
libraries, filesystem tools, advanced mathematical operations, and structured error handling, among many
others—as part of their scripts. Need to create a complex multidimensional array? Looking for an easier way to
perform tricks with string manipulation? All this and more is easily accessible, just below the covers of the .NET
runtime environment.

Compiler
Finding errors in code is critical, and is generally easier to do early in the development process. To understand
how this works in SSIS scripting, it’s useful to understand the life cycle of script development.

When SSIS first surfaced with SQL Server 2005, the ETL developer could choose to store the code text
in a Script Task or Script Component without actually building (compiling) the script project. By opting
not to precompile the script, a trivial amount of processing resources would be saved (or more specifically,
delayed) by forcing the SSIS design environment to accept the code as written. Two problems arose from
this behavior: first, there was a performance penalty, however slight, caused by compiling the script on the

Figure 3-2.  Script Task Project Properties

CHAPTER 3 ■ Scripting Patterns

75

fly during the execution of the package. Second, the risk of runtime errors increased, due to the minimized
up-front validation in the designer.

Starting with SQL Server 2008, script precompilation is required. Now when you write a script, it is compiled
in the background and the resulting binary output is serialized and stored inline within the package XML. As
soon as you modify your script and close the editor, the .NET compiler is invoked and creates the serialized
binary data. If you’ve made an error in your code that prevents compilation, you’ll be presented with a validation
error on the Script Task or Script Component indicating that the binary code cannot be found (see Figure 3-3).

This validation step is a safety mechanism to make sure your packages don’t make it to deployment with
uncompilable code. However, it’s also possible to build the script project from within the script editor, so you
can periodically check your code for compilation errors before closing the editing window. In the menu bar of
the script editor, you’ll find the option to Build - > Build [script project name] (or my favorite, the shortcut
method of Control + Shift + B) to compile all of the code in your script project. When you build the project in this
manner, any errors found during compilation will be reported in the Error List window (Figure 3-4).

Figure 3-3.  Compilation error with a script task

Figure 3-4.  Error List

Also present in the Error List windows are any warnings generated by the compiler; although they don’t
prevent the code from being compiled, it’s always a wise idea to perform a thorough review of any warnings that
appear in this list before sending the code any further down the development process.

The Script Task
Within the control flow pane, the workspace for writing custom code is the Script Task. The Script Task can
be used for many jobs that are not typically associated directly with ETL operations; although it technically
can be used for direct data manipulation, this tool is best suited for supporting operations that can’t easily be
accomplished using data flow components. Think of the Script Task as a helper object to be used to tie together
other data-centric operations within the package.

CHAPTER 3 ■ Scripting Patterns

76

The following are a few requirements frequently served by the script task:

Checking for the existence and accessibility of source or destination files•	

Using a file archive utility API to zip or unzip files•	

Generating custom event messages (such as HTML-formatted e-mail messages)•	

Setting variable values•	

Performing cleanup operations upon package completion or if an error occurs•	

Inspecting environmental data, such as available disk space, the status of Windows •	
services, etc.

Because it’s not designed for manipulating data, there is no need to define input or output metadata,
which makes the Script Task relatively easy to configure. As shown in Figure 3-5, there are just a few required
configuration elements for this task: specify the programming language you want to use, choose the variables you
want to make visible within the script, and you’re ready to write code!

Figure 3-5.  Script Task Editor

 Note: ■■   For both the Script Task and the Script Component, the decision to use either C# or VB.NET should
be considered permanent. Once you’ve selected a language and opened the script editor, the language selector is
disabled. This behavior is by design; although both languages compile to the same intermediate language (MSIL)
code, it would be difficult for any tool to convert source code from one language to another. The default language for
both tools is C#, so those who prefer VB.NET will have to change the ScriptLanguage property.

Once the language and variables are set, you’re ready to open up the code editor. When you click the Edit
Script . . . button, you’ll be presented with the familiar Visual Studio development environment. If you have
written code using this IDE in the past (to develop Windows applications, web apps, etc.), you’ll recognize
many entities—the Solution Explorer, the code window, the properties window, and many other common
components. Although the behaviors will be a bit different in this minimized version of Visual Studio, the
concepts remain the same.

CHAPTER 3 ■ Scripting Patterns

77

The Script Component
Although both SSIS scripting tools have similar properties, they serve very different roles. Unlike the Script
Task, which is intended mostly for administrative and operational programmability, the Script Component is
designed for the more traditional moving parts of ETL: retrieving data from a source, performing some manner of
transformation or validation on said data, and loading data to destination.

Common uses of the Script Component include:

Connecting to sources of data for which there is no suiListing native source component•	

Sending data to destinations that do not offer a native destination, or are structured •	
differently than the typical columnar layout

Performing advanced data manipulation that requires functionality not offered with the •	
built-in SSIS transformations

Complex splitting, filtering, or aggregating of the in-pipeline data•	

The Script Component is built with the versatility to behave in one of three modes: transformation, source,
or destination. When you introduce an instance of the Script Component into your data flow workspace, you’ll be
prompted to select a configuration, as shown in Figure 3-6. This is an important choice, as the selection you make
will determine which code template is used to initially configure the component. I’ll dig more into each of these
roles momentarily.

Figure 3-6.  Script Component Configuration

CHAPTER 3 ■ Scripting Patterns

78

Note: ■■   You should consider the selection of the script component role (transformation, source, or destination)
to be permanent. If you mistakenly select the wrong configuration role, it’s usually easier to delete and recreate the
script instance rather than trying to reconfigure it.

Chances are good that you’ll use the script component in each of these roles (source, transformation, and
destination) from time to time. However, my experience has been that transformation is the most frequently used
role for the Script Component.

Script Maintenance Patterns
Designing custom logic in your ETL processes is a hard but rewarding task. However, the job is not done once
the code is promoted from development to testing or even to production. The effective ETL developer maintains
a long-term vision when designing script solutions, as the packages often survive well beyond the tenures of the
ETL developers who create those solutions.

To that end, an integral part of the solution design process should be evaluating the flexibility,
maintainability, and reusability of the project as a whole, making specific allowances for the project-within-a-
project instances of script.

Code Reuse
Laziness is a good thing. (Pause for effect.) To clarify: all great technologists find ways to avoid solving the same
problems repeatedly. Let’s say you’ve spent some time working with script tasks and script components, and you
come up with a whiz-bang idea for The Next Big ETL Thing. The Thing is so narrowly focused that it adds behavior
not present in native SSIS tools, but it’s also versatile enough to be used in multiple packages across several
domains. Since you worked so hard on it once, you’ll want to avoid reinventing The Thing again. The solution:
find a way to make The Thing reusable.

To that end, there are several ways to reuse code within SSIS, from the old-fashioned copy/paste to fancy
modularization.

Copy/Paste
No further definition is needed here: code reuse via copy/paste is exactly as it sounds. Although copying and
pasting code as a reuse mechanism is a bit crude and unstructured, it’s also the simplest and most commonly
used means to do so within SSIS. The upside is a quick and easy deployment with few administrative limitations.
However, this simplicity comes at a cost. Deployed in this manner, each copy of the code exists in its own silo and
must be independently maintained.

External Assemblies
As I mentioned earlier in the chapter, both the Script Task and the Script Component allow you to reference
external assemblies (compiled code generated from a separate project) to import supplemental behavior into the
instance of the script task/component. The details of creating an external assembly are beyond the scope of this
chapter, but in a nutshell, you would use a separate development environment to code and compile the classes,
methods, and events to be used in your ETL processes. The resulting binary file, known as an assembly, would be
deployed to the development machine and any server machine(s) that would execute the package. The assembly

s

79

would then be added to the list of script references, and the result would be that the behaviors defined in the
assembly would be accessible from within the instance of the script task or script component.

There are several upsides to this approach. First of all, it’s a more modular way of handling code reuse within
your package. Rather than relying on rudimentary copy/paste operations, this method permits a single point
of administration and development for the shared custom functions of your ETL processes. Since all references
to the custom behavior would point to a single assembly on each development machine or server, any updates
to the code would be addressed at the machine level rather than having to touch every script in every package.
In addition, the behaviors built into the external assemblies could be used by other processes or applications;
because these standalone assemblies are built using the Common Language Runtime, their use could be
leveraged beyond the borders of SSIS.

There are a few limitations to this approach. First, you cannot use SSDT or BIDS to create custom assemblies.
Although both tools use the Visual Studio shell, they are only installed with the templates to create business
intelligence projects and do not natively support other project types. To create an assembly containing custom
code, you’d need to use a version of Visual Studio that was configured to generate Class Library projects
(the Standard and Professional versions, or even the language-specific free Express versions)—or, for highly
experienced developers, plain old Notepad and the .NET compiler. Another limitation is that any assemblies
referenced in your script must be deployed to and registered in the GAC on the machine(s) that will execute the
package. This deployment and registration process is not complex, but it does add to the total of moving parts in
your ETL infrastructure.

Custom Tasks/Components
At the top of the SSIS reusability food chain you will find the custom task and custom component. As with a
custom assembly, the ability to add your own tasks and components to SSIS allows you create highly customized
behaviors within SSIS. In addition, custom tasks and components enable you to create a more customized user
interface for these behaviors, allowing for relatively simple drag-and-drop use in your SSIS packages. In the
interest of brevity, we won’t detail the use of custom tasks or custom components in this chapter, but it is worth
mentioning that if there is script behavior that is often repeated in many of your packages, it’s worth considering
converting the script task or script component into a custom tool that can easily integrate into SSDT or BIDS.

Source Control
Ask any good developer for their short list of required project elements, and source control will almost always
be near the top of the list. Because any SSIS project really is software development – albeit in a mostly graphical
environment – the same consideration must be made by ETL developers as well. Being that the storage for an SSIS
package is simply an XML file, it’s not difficult to add SSIS packages to most any existing source control system.

To some, the Script Task and Script Component have the appearance of residing outside the SSIS package –
after all, both of these are managed through what appears to be a separate Visual Studio project. This thinking
sometimes brings up the question of how integrate SSIS script logic into source control. The easy answer is that
there is no requirement above and beyond source controlling the package itself. Because all of the code is stored
inline within the package XML, there is no need to separately track in source control the code within instances of
the script task or script component.

Scripting Design Patterns
As a born-and-raised Southerner, I was always taught that there’s more than one way to skin a cat. Although I’ve
never attempted this particular exercise, I can confirm that for any given problem (in life, as well as in SSIS) there
may be dozens or perhaps even hundreds of correct solutions.

CHAPTER 3 ■ Scripting Patterns

80

Because of the highly flexible nature of scripting solutions, it’s not possible to predict every possible
permutation of logic that could find its way into SSIS code. However, as Integration Services has evolved, some
commonly used design patterns have emerged. In this section, I’ll look at some of these patterns.

Connection Managers and Scripting
Connection Managers are built into SQL Server Integration Services as a modular way to reuse connections to
databases, data files, and other sources of information. Most everyone with even a little experience using SSIS
is aware of connection managers and how they relate to conventional components such as OleDB Source/
Destination and Flat File Source/Destination, as well as tasks such as the FTP Task and the Execute SQL Task. You
can instantiate a connection object once as a package-level entity (as shown in Figure 3-7) and use it throughout
the remainder of the package.

Figure 3-7.  Connection Manager objects

Not as widely known is the fact that you can access most connection manager objects within instances of
the Script Task and the Script Component as well. Connecting to a data source is a very common task in SSIS
scripting, particularly within instances of the Script Component used as a source or destination. However, it’s
quite common for the ETL developer to create a new instance of a connection within the script, even if the
package already has a connection manager.

If a connection manager object already exists in your SSIS package for for a particular connection, it’s
preferable to use that existing connection manager object when connecting to a data store from within a script. If
the connection manager does not yet exist, consider creating one: there are numerous benefits to abstracting the
connection from the script, including ease of change and the ability for the connection to engage in transactions
within SSIS.

Note: ■■   For an in-depth analysis on why to use connection manager objects as opposed to connections created
entirely in script, you can review an excellent blog post on this topic by Todd McDermid here: http://toddmcdermid.
blogspot.com/2011/05/use-connections-properly-in-ssis-script.html. In this post, the author
specifically discusses the use of connection managers in the Script Task, but most of the same principles would
apply to the use of connection managers within the Script Component as well.

Although it’s possible to reuse connection managers for most any connection type within a script, to keep
things simple I’ll limit my discussion to SQL Server database connections. With some modification, many of
these principles would apply to other connection types as well.

http://toddmcdermid.blogspot.com/2011/05/use-connections-properly-in-ssis-script.html
http://toddmcdermid.blogspot.com/2011/05/use-connections-properly-in-ssis-script.html

CHAPTER 3 ■ Scripting Patterns

81

Using Connection Managers in the Script Task
Although not entirely intuitive, the coding syntax to reference an existing connection manager in the Script Task
is relatively easy to understand. I’ll look at examples for the two most common ways to connect to SQL Server—
through the OleDB connection, and the ADO.NET connection.

Connecting to an ADO.NET connection manager through the Script Task is a two-step process, as shown in
Listing 3-1. First, create a reference to your existing ConnectionManager object (using the name you gave it in the
SSIS package), and acquire a connection from that object in code.

Listing 3-1. Use an existing ADO.NET connection in the Script Task

// Create the ADO.NET database connection
ConnectionManager connMgr = Dts.Connections["ADONET_PROD"];
System.Data.SqlClient.SqlConnection theConnection

 = (System.Data.SqlClient.SqlConnection)connMgr.AcquireConnection(Dts.Transaction);

Using an OLE DB connection manager in the script task requires a little more effort, but is a similar exercise
to its ADO.NET counterpart. As shown in Listing 3-2, we have to add an intermediate object to make the
appropriate data type cast when using the OLE DB provider:

Listing 3-2. Using an existing OLE DB connection in the Script Task

// Create the OLEDB database connection
ConnectionManager cm = Dts.Connections["OLEDB_PROD"];
Microsoft.SqlServer.Dts.Runtime.Wrapper.IDTSConnectionManagerDatabaseParameters100 cmparams
 = cm.InnerObject AS
Microsoft.SqlServer.Dts.Runtime.Wrapper.IDTSConnectionManagerDatabaseParameters100;
System.Data.OleDb.OleDbConnection conn  = 
(System.Data.OleDb.OleDbConnection)cmParams.GetConnectionForSchema();

 Note: ■■  I t’s worth mentioning that it is technically possible to reference a connection by number rather than
by name (e.g., using Dts.Connections[3] rather than Dts.Connections["Conn_Name"]). I strongly recommend
against this practice! It makes for rather ambiguous connection references, and since the order of connection
managers cannot be guaranteed, you might end up with a runtime error at best—and at worst, wildly unexpected
behavior in your package.

Using Connection Managers in the Script Component
As I mentioned in the previous section, many of the same concepts apply to the reuse of connection managers,
whether you’re working in the Script Task or the Script Component. For the same reasons, it’s almost always
a best practice to reuse an existing connection manager object (or create a new one if necessary) rather than
building a connection object from scratch within code.

Logistically, connection managers are a little easier to use in the Script Component. Because the purpose of
this tool is to move data (which is not always the case with the Script Task), some additional functionality comes
baked in to make the job of reusing connection managers less cumbersome. In the Script Component, you can
declare the use of one or more connections within the script’s graphical editor (much like you declare the use of

CHAPTER 3 ■ Scripting Patterns

82

read-only or read-write variables, to be discussed shortly). As shown in Figure 3-8, this interface allows you easily
reference an existing connection.

Figure 3-8.  Declaring connection managers in the Script Component

Once they are referenced here, the syntax to use the connection within your code is much simpler as well.
Rather than using the connection name as an indexer, you can access any of these connections through the
UserComponent.Connections collection. For example:

Listing 3.3. Using a previously declared connection manager in Script Component

// Create the OLEDB database connection
SqlConnection conn  = Connections.ADONET_PROD.AcquireConnection(null);

Variables
In many—if not most—instances of the Script Task and Script Component, you’ll need to inspect or manipulate
values stored in SSIS variables. Because they are so prevalent in these implementations, it’s important to
understand how best to address SSIS variables within the scripting tools.

 Note: ■■  I t is important to draw a distinction between variables in SSIS and variables declared within the script
task and script component. Although there’s some commonality in their usage, they are separate and distinct entities
with very different properties. SSIS variables are defined as part of the SSIS package, and may be used across many
different tasks and components. Script variables, on the other hand, are declared within individual instances of the
Script Task or Script Component and are only valid within the instance in which they are defined.

Variable Visibility
In both the Script Task and Script Component, you can explicitly expose one or more variables using the GUI
editor for each. In Figure 3-9, you can see that we have the option of including SSIS variables in the script, and
can specify whether those variables will be surfaced as read-only or read-write.

CHAPTER 3 ■ Scripting Patterns

83

It is possible to read or modify SSIS variables with a script even if you don’t explicitly include them. However,
it’s usually preferable to declare any required variables as shown, as the syntax within the script is much simpler
when references to the SSIS variables are declared ahead of time in this manner.

Variable Syntax in Code
Declaring read-only or read-write variables is a similar experience whether you’re using the Script Task or the
Script Component. However, the syntax to address these variables in code is different depending on the tool
you’re using. As shown in Listing 3-4, SSIS variables within a script task instance are addressed by using a string
indexer to specify the name of the variable.

Listing 3-4. Script Task Variable Syntax

public void main()
{

 // Get the current RunID
 int runID = int.Parse(Dts.Variables["RunID"].Value.ToString());

 // Set the ClientID
 Dts.Variables["ClientID"].Value = ETL.GetClientID(runID);

 Dts.TaskResult = (int)ScriptResults.Success;
}

When using an instance of the script component, the syntax is noticeably different. Rather than using
an indexer to read from or write to the referenced SSIS variables, you can use the Variables. < Variable
Name > syntax as shown in Listing 3-5:

Listing 3-5. Script Component Variable Syntax

public override void Input0_ProcessInputRow(Input0Buffer Row)
{

 // Push the SSIS variable ClientName to the value in the current row
 Row.ClientName = Variables.ClientName;

}

Figure 3-9.  Including Variables in Script

CHAPTER 3 ■ Scripting Patterns

84

It is possible to access variables within instances of the Script Task or the Script Component even if you do
not explicitly declare their use in the graphical settings editor. Within the SSIS scripting toolset, you will find a
couple of functions that will allow you to programmatically lock and unlock variables for either read-only or
read-write access. As shown in Listing 3-6, you can use the VariableDispenser.LockOneForRead() function to
capture the value of a variable that was not previously declared.

Listing 3-6. Manually lock a variable

// Programmatically lock the variable we need
Variable vars = null;
Dts.VariableDispenser.LockOneForRead("RunID", ref vars);

// Assign to script variable
runID = int.Parse(vars["RunID"].Value.ToString());

// Unlock the variable object
vars.Unlock();

Using a method similar to the one shown above, you can manipulate variable values by using the
function VariableDispenser.LockOneForWrite(), which would allow you to write to as well as read from the
variable value.

Variable Data Types
As you may have derived from Listing 3-4 and Listing 3-5 above, the interpreted data type for variable values will
differ between the Script Task and the Script Component. With the latter, any variable that you declare in the
graphical settings editor will surface as the .NET data type equivalent of the SSIS variable type, and there is no
need to perform a type cast. When using the Script Task (and the Script Component, if you opt to use either the
LockOneForRead() or LockOneForWrite() method), variables are presented as the generic Object type, and most
of the time you’ll have to cast to an appropriate type any variable used in script code. As shown in Figure 3-10,
you’ll get a compiler error if you forget to cast a variable value to the appropriate type.

Figure 3-10.  Script Task variables must be cast

CHAPTER 3 ■ Scripting Patterns

85

Naming Patterns
If you have worked as a software developer in the past, the following section will be nothing more than a review.
If you haven’t, I’ll share an important tidbit of information: naming conventions are important.

I’ve known many a developer in my time, and I’ve never found one who wasn’t loyal to some type of naming
convention. Why? It’s familiar. It’s predicListing. When patterns emerge in the way you develop software, it
becomes easier to maintain—by others as well as yourself. Technically, there’s no difference between code
written in camel case, Hungarian notation, mnemonic notation, or Pascal Style. This is purely a matter of clarity,
readability, and maintainability. By finding and sticking with a style (even if it’s a hybrid of other styles), you’ll
have more navigable code, and will likely find that your fellow developers appreciate the approach.

A few suggestions regarding naming conventions:

Be consistent. This is the number-one rule and should be followed above all others. •	
Whatever style you develop, stick with it. You can change or modify your naming
convention style later, but at least be consistent within each project.

Be clear. I can’t tell you how many times I’ve had to debug code (and yes, sometimes it •	
was my own) littered with single-character object names, ambiguous function names,
and other pull-your-hair-out kinds of practices. Now, don’t go overboard here. Most
object names don’t need to read like bool database_write_failed_and_could_not_
display_interactive_error, but there’s probably some happy medium between that
and bool f.

Be a follower. If you don’t have your own style, do as those around you do. Some •	
organizations, especially larger ones, may dictate the naming convention style you’ll use.

Summary
The scripting tools in SQL Server Integration Services are both capable and complex. When scripting for
ETL first surfaced with DTS many years ago, it was a quick-and-dirty way to solve some data movement and
manipulation problems. With SSIS, the latest generation of scripting tools is robust and enterprise-ready. With a
few recommended practices, it can be a great addition to any ETL developer’s toolkit.

87

Chapter 4

SQL Server Source Patterns

In the first section of this book, we looked at patterns focused on the Control Flow area of SQL Server Integration
Services, including metadata, workflow execution, and scripting. The second section focuses on the Data Flow
area of SQL Server Integration Services. This and the following chapters will discuss source, transformation, and
logging patterns in the pipeline area of an Integration Services package.

Integration Services supports a wide variety of sources, including SQL Server, Oracle, and SAP. In addition,
developers and third-party vendors have the ability to create custom sources for providers not included out-of-
the-box. This technology-agnostic approach creates a very flexible system for loading all sorts of data. Even with
all of the potential sources, loading data into or out of a SQL Server database is a very common occurrence, as a
company that owns Integration Services typically uses all Microsoft products.

This chapter discusses different patterns associated with using SQL Server as a source. Due to the common
occurrence of SQL Server databases in shops using Integration Services, we have a defined set of patterns for
extracting data from SQL Server. Specifically, we will look at the best way to connect to a SQL Server database,
how to choose the data you will use, and how to more easily use the rest of the Data Flow’s objects. Finally, we
will look at a new component in SQL Server 2012 that helps jump start your development when connecting to
any source.

Setting up a Source
When connecting to external data, Integration Services uses a few objects to help make the connection, retrieve
the correct data, and start any necessary data manipulations. Every time an Integration Services developer
creates a package, the developer will need to select the correct objects and ensure they have all been created.
The objects that will need to be set up are as follows:

•	 Connection Manager: The object that tells Integration Services where to get data. Can be
used in the Control Flow, Data Flow, and Event Handlers.

•	 Provider: The object that the connection manager uses to talk to the data source.

•	 Source Component: The object that sets the properties to tell Integration Services what
data to get. The matching Connection Manager object is set in this object.

•	 Source Component Query: The information the external data source needs to give
Integration Services data. The query is stored in the Source Component object.

Let’s take a look at the important factors associated with each of these items. We’ll begin in the next section
by looking at connection managers.

CHAPTER 4 ■ SQL Server Source Patterns

88

Selecting a SQL Server Connection Manager and Provider
Between ADO.NET, ODBC, and OLE DB, there are enough connection managers to make you want to pull your
hair out! All of these connection managers will connect to SQL Server, so how do we know when we should use
which one? To answer that question, let’s talk about what the connection manager is actually doing, and then
look at each connection manager type that can be used to connect to SQL Server.

A connection manager is the object that holds connection information for an external source, akin to
an application data source or a Reporting Services shared data source. The connection manager provides an
abstraction layer between Integration Services and the rest of the components, so that information about the
external source can be modified in one place to affect all tasks and components. To see all of the connection
manager types available, see Figure 4-1.

Figure 4-1.  Connection manager types

The three connection manager types that can be used to connect to a SQL Server database are:

ADO.NET•	

ODBC•	

OLE DB•	

CHAPTER 4 ■ SQL Server Source Patterns

89

Let’s take a look at each connection manager type individually.

ADO.NET
The ADO.NET connection manager type is used to make a connection through the .NET framework. Not only
can this type be used for SQL Server, but it also provides access to other applications and other databases.
The ADO.NET layer quickly retrieves data from the source using a DataReader object in the .NET framework.

The ADO.NET connection manager for SQL Server is best used as a source when you are using it elsewhere
in the package. For example, the Lookup component uses an ADO.NET connection manager to connect, so then
use it as a source. On the other hand, if a component uses another connection manager type, stick with that
connection manager type. Consistency is really the key here. For a sample connection manager property window
set to connect to the AdventuresWorks2008R2 database on the same server, see Figure 4-2.

Figure 4-2.  ADO.NET connection manager property screen

s

90

Then add the DSN name or connection string. For our local AdventureWorks2008R2 database, the
connection string will look like Listing 4-1.

Listing 4-1. ODBC Connection String

Driver = {SQL Server Native Client 11.0};
Server = localhost;
Database = AdventureWorks2008R2;
Trusted_Connection = yes

Our completed connection manager screen for an ADO.NET connection with an ODBC provider looks like
Figure 4-4.

ODBC
ODBC is the open database connectivity standard. Its purpose is to allow connections from any application to
any database, regardless of the vendor. Often, an organization will use DSNs (data source names), to create an
abstraction layer between the application and the connection string the ODBC provider uses. If you have an
organization that really wants to use DSNs with SQL Server, ODBC is the option for you. Otherwise, stick with an
ADO.NET or OLE DB connection manager.

If you decide that ODBC is the way to go, don’t be fooled into using the ODBC connection manager. No
Integration Services source uses this connection manager. Instead, use the ADO.NET connection manager with
a few tweaks. After creating the ADO.NET connection manager, change the provider at the top of the window to
Odbc Data Provider, as shown in Figure 4-3.

Figure 4-3. ADO.NET providers

CHAPTER 4 ■ SQL Server Source Patterns

91

OLE DB
Finally, we move on to what is arguably the most common connection manager used to connect to SQL Server:
OLE DB. The OLE DB protocol was written by Microsoft as the next version of the ODBC provider. In addition to
SQL Server databases, it can be used to connect to file-based databases or Excel spreadsheets.

OLE DB tends to be my default when connecting to a SQL Server database. If you did not fall into the
category of using mostly components that use an ADO.NET connection manager, and you did not fall into the
category of having an organization that wants to use a DSN, you will want to use an OLE DB connection manager.

You can fill out the property screen of the OLE DB connection manager as shown in Figure 4-5.

Figure 4-4.  ODBC ADO.NET connection manager property screen

CHAPTER 4 ■ SQL Server Source Patterns

92

Creating a SQL Server Source Component
Once we’ve picked the correct connection manager and provider, we need to use them in a Source Component for
our data pull. We begin by looking at the SSIS Toolbox when on the Data Flow tab. If you have not rearranged the
SSIS Toolbox, you will see all possible sources under the Other Sources grouping, as seen in Figure 4-6.

Figure 4-5.  OLE DB connection manager property screen

CHAPTER 4 ■ SQL Server Source Patterns

93

Figure 4-6 shows all the possible sources. Now it’s time to choose one.
Most of the hard decision-making was already completed when we set up the connection manager. If we

used an OLE DB connection manager, then we must use the OLE DB source. If we decided to use an ADO.NET
connection manager with either an ADO.NET or ODBC provider, we must use the ADO NET source.

Once we drag the desired source onto the Data Flow design window, the data flow contains one component,
as shown in Figure 4-7. Integration Services lets the developer know that there is an issue with the source through
the red circle with the white X in it. In this case, the issue is that we have not yet set any of the source’s properties,
starting with the destination table, as shown in the tooltip.

Figure 4-6.  Other Sources grouping in SSIS Toolbox

Figure 4-7.  Data flow task with new source

To open the source component, either double-click the component or right-click and select Edit. Inside
the source component, we can fill in the connection manager property. The first connection manager of the
appropriate type will automatically be populated, but selecting the drop-down list arrow will let you select any of
the other connection managers that match. The source component property screen up to this point can be seen
in Figure 4-8.

CHAPTER 4 ■ SQL Server Source Patterns

94

While most of the decision-making work was done when we created the connection manager, it is important
to understand the part the source plays in the Integration Services package. The source is the glue that holds all of
the other pieces together and ensures that we have one place to go to for future maintenance issues or changes.
Setting up the SQL Server source was an easy step before we move on to the creating and optimization of the
query that the source uses.

Writing a SQL Server Source Component Query
After walking through the creation of the connection manager and provider and deciding which source
component to use, we need to set up the metadata for pulling the data. We do this by selecting what type of
access we want to make and then adding the query information to the source component. In addition, there are a
few patterns that we will want to review when setting up the query and column metadata. Let’s get started.

Figure 4-8.  Initial OLE DB Source Editor screen

CHAPTER 4 ■ SQL Server Source Patterns

95

ADO.NET Data Access
If we decided to use the ADO.NET source component, either with the ADO.NET or ODBC provider, we have two
options to select what data we want to see:

•	 Table or view: Select which table or view from which you want to receive data. The list
of tables and views should be prepopulated and listed based on your access. We do not
recommend this option because it includes unnecessary columns, even if you restrict the
column list in the component.

•	 SQL Command: Enter text that will be executed on the SQL Server database.

Because the Table or view option is not our recommended option, let’s dig into the SQL Command option a
little deeper. You can enter either a direct SQL query that returns a dataset or a stored procedure using the EXEC
statement.

Whether you are using a SQL query or executing a stored procedure, you will need to be aware that the ADO.
NET source does not allow you to use parameters in your query. If you need to modify the query that gets used,
you will need to use an expression. Expressions are only set at the Control Flow level, so we will need to take a
look there to set up our expression. Follow these steps to set a new SQL command at design time:

1.	 When in Data Flow Task, click the background to ensure no components are selected
and look in the Properties menu for the Expressions property.

2.	� Once the Expression Property window is open, select the [ADO NET Source].
[SqlCommand] option in the Property field and click the ellipses button next to the
Expression field.

3.	� In the Expression Editor, create your command using variables. For example, if you
were to run a stored procedure where you wanted to pass in an end date, you could
use the following expression: "EXEC GetCustomerData '" + (DT_STR, 29, 1252)@
[System::ContainerStartTime] + " '".

4.	� Once the expression has been validated, select the OK button. The final Expression
screen should look like Figure 4-9.

CHAPTER 4 ■ SQL Server Source Patterns

96

Figure 4-9.  Property Expressions Editor with SQLCommand property

When the package runs, it will now use the expression you just created.

OLE DB Data Access
If we’ve selected the OLE DB source component, we have four options for how to retrieve data:

•	 Table or view: Similar to access in the ADO.NET source, this option allows you to
select a table or view to pull all columns of data into the package. This option is not
recommended for the same reason explained in the ADO.NET source.

•	 Table name or view name variable: Instead of hardcoding the name of the table or view,
you can instead point to a user-created variable that contains that information. This
option is not recommended.

•	 SQL Command: Similar to access in the ADO.NET source, you can enter the SQL query or
execution of a stored procedure once you’ve selected this option.

•	 SQL Command from variable: If you want to create a query to change at runtime or to
pass a variable to a stored procedure, this is the option you will want to use. Instead of
creating an expression to modify the SQL Command, as we did with ADO.NET, we will
create a variable that creates our expression. We can then select the variable we created
after selecting this option.

Picking one of these options will determine how the data is returned from SQL Server. After you select the
type of data retrieval, you’ll want to add the appropriate properties. For example, if you select the Table or view
option, you’ll need to select the object that contains the data. If you select the SQL Command option, you’ll need
to enter the SQL query or stored procedure execution that returns the data. Once that is set, you can move on to
designing the rest of your data flow.

CHAPTER 4 ■ SQL Server Source Patterns

97

Source Assistant
Once we have retrieved data from SQL Server the hard way, we’re going to learn the easy way to do the same
thing. The Source Assistant is a new wizard introduced in SQL Server 2012 that takes a developer through the
steps of setting up their Source objects without having to make many of the same decisions that we just had to go
through. This is a great way for people who are just getting started with Integration Services to get up and running
quickly.

To begin, create a new Data Flow task. As seen in Figure 4-10, the Source Assistant appears in the SSIS
Toolbox. Initially it will be in the Favorites grouping, unless someone has moved the items around.

Waste Not, Want Not
As data professionals, we often think that the more data we can get, the better. This isn’t always the best scenario
when we are dealing with sources. When we are talking about the amount of data to pull, you will want to follow a
different pattern.

No matter which query option you selected, it is important to only ask for the columns that are needed in
your data load process. Requesting all columns is similar to running a select * from table query against a
database. Not only are you asking the database and network to do more work, but you are also asking Integration
Services to do more work. All of that unnecessary data will get stored in memory or even cause paging if there
isn’t enough memory, using up space that could be used to grab more data for the important columns and
slowing down the overall package execution.

All source components give you the option to pick a subset of columns on the Columns menu. Be sure to make
the column reduction in the query itself rather than in the Columns menu to reap the full benefit of a faster package.

Data Translations
Another Integration Services source trap that is easy to fall into is to perform the majority of the data
transformations in the source query itself. Because Integration Services developers often have a SQL background,
we tend to want to use a familiar tool to accomplish our task.

The types of data transformations that can be undertaken in either the source query or the rest of the data
flow include merging of datasets, case statements, string concatenation, and more. Remember that SQL Server
is very good at set-based actions, while Integration Services is very good at computationally expensive tasks that
use a lot of memory. While you should test your individual situation, these are good rules of thumb to follow.

Follow the pattern listed in Table 4-1 when deciding where to put your data translation logic.

Table 4-1.  Data Translation Locations

Data Translation Concern Location

Merge datasets Set-based Source Component

Case statements Memory intensive Data Flow

String concatenation Procedural Data Flow

Sorting data Set-based Source Component

CHAPTER 4 ■ SQL Server Source Patterns

98

Dragging the Source Assistant component onto the Data Flow design area will start the wizard. The first
screen can be seen in Figure 4-11.

Figure 4-10.  Source Assistant in Favorites grouping in SSIS Toolbox

Figure 4-11.  Add New Source screen in Source Assistant

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4 ■ SQL Server Source Patterns

99

To begin, we can see that there are only a few types listed for us to use: SQL Server, Excel, Flat File, and
Oracle. If we want to see a list of components available if we install the providers, we can uncheck the Show
installed only option. By only offering the one SQL Server choice, Integration Services is making our life easier
by directing us to the correct provider immediately. Selecting the Source Assistant’s SQL Server type will use the
OLE DB connection manager, which is also our go-to connection manager!

Once we select the SQL Server type, we have the option of selecting an existing connection manager from
the pane on the right or creating a new one. Creating a new connection manager will take us through the exact
steps we looked at previously for setting up an OLE DB connection manager.

Finally, we will pick our new or existing connection manager and select the OK button. This will create the
connection manager and add the SQL Server source to the Data Flow task. We can then immediately pick up our
development with creating and optimizing the SQL query. The Source Assistant is a great way to get started with
developing your Integration Services package, especially if you are new to Integration Services. If you know that
you want to use one of the other types of connections, you can just create the connection manager and source
directly, without having to use the Source Assistant. Either way, you have a few ways to start your development as
quickly as possible.

Summary
At this point, we described why we would want to use certain SQL Server sources over others, how to set up the
source, and how to clean up the source query to get the best performance out of our package. We also covered
sources in general to set up the rest of the source chapters.

While all of the principles described in this chapter are patterns for SQL Server, many of them can be applied
to other source types as well. Be sure to review the rest of the source chapters for patterns that can be used for
SQL Server in addition to what we have already discussed.

101

Chapter 5

Data Cleansing with Data
Quality Services

Data Quality Services (DQS) is a new product in SQL Server 2012 that provides data cleansing functionality – a
key component for most ETL processes. This chapter describes how DQS integrates with SSIS, and provides
patterns that enable you to achieve reliable, low effort data cleansing within your ETL packages.

Note  The Data Quality Services product requires some manual steps post-installation to create the DQS
databases, and set default permissions. See the “Installing Data Quality Services” page in books online for more
information: http://msdn.microsoft.com/en-us/library/gg492277(v=SQL.110).aspx

Overview of Data Quality Services
The data cleansing and matching operations you perform with DQS revolve around the use of a Knowledge
Base. A Knowledge Base (or KB) is made up of one or more Domains. An example Domain for doing address
cleansing would be City, State, or Country. Each of these fields would be a separate Domain. Two or more
related domains can be grouped together to form a Composite Domain (or CD). Composite Domains allow
you to validate multiple fields as a single unit. For example, a Company composite domain could be made up
of Name, Address, City, State, and Country domains. Using a Composite Domain would allow you to validate
that “Microsoft Corporation” (Name) exists at “One Redmond Way” (Address), “Redmond” (City), “WA” (State),
“USA” (Country). If the DQS KB has all of the relevant knowledge, it would be able to flag the entry as incorrect if
you had “Las Vegas” as the City – even though “Las Vegas” is a valid city name, the knowledge base has defined
that the Microsoft office is located in “Redmond”.

Data Quality Services has three main components: the client utility (shown in Figure 5-1), which allows you
to build and manage your knowledge bases; an SSIS Data Flow transform for bulk data cleansing; and a server
component where the actual cleansing and matching takes place. The DQS server is not a standalone instance – is
it essentially a set of user databases (DQS_MAIN, DQS_PROJECTS, DQS_STAGING_DATA) with a stored procedure based
API - much like the SSIS Catalog in SQL Server 2012.

http://msdn.microsoft.com/en-us/library/gg492277(v=SQL.110).aspx

CHAPTER 5 ■ Data Cleansing with Data Quality Services

102

Using the Data Quality Client
The Data Quality Client application is used to build and manage your knowledge bases. It can also be used as a
standalone tool for cleansing data. The tool is targeted towards Data Stewards and IT Professionals who own and
manage data within your organization. Users of the tool will fall into three different roles (shown in Table 5-1),
which map to roles within the main DQS database. The functionality you can access through the tool will depend
on what role you are currently assigned to.

Figure 5-1.   The Data Quality Client application

Table 5-1.   Data Quality Services Roles

Name SQL Role Description
DQS KB Operator dqs_kb_operator User can edit and execute an existing data quality project.

DQS KB Editor dqs_kb_editor User can perform project functions, and create and edit
knowledge bases.

DQS Administrator dqs_administrator User can perform project and knowledge functions, as well as
administer the system.

CHAPTER 5 ■ Data Cleansing with Data Quality Services

103

Note■■   Members of the sysadmin role on the SQL Server instance on which DQS is hosted have the same level of
permissions as a DQS Administrator by default. It is recommended that you still associate users with one of the three
DQS roles.

Knowledge Base Management
The options under the Knowledge Base Management section allow you to create and maintain your knowledge
bases. When creating a new knowledge base, you have the option to create an empty knowledge base, or to base
it on an existing knowledge base, which will prepopulate the new knowledge base with the domains from the
original. Knowledge bases can also be created from a DQS file (.dqs extension), allowing you to back up or share
knowledge bases across systems.

You’ll perform three main activities when interacting with your knowledge bases through this UI (shown in
Figure 5-2). These activities are available after you’ve created a new knowledge base, or have opened an existing one.

Figure 5-2.  Knowledge base management activities

When doing Domain Management, you can verify and modify the domains within the knowledge base. This
includes changing domain properties (shown in Figure 5-3), configuring online reference data, as well as viewing
and modifying rules and values. You also have the option to export the knowledge base or individual domains to
a DQS file, as well as import new domains from a DQS file.

CHAPTER 5 ■ Data Cleansing with Data Quality Services

104

The Matching Policy activity is used to prepare DQS for the data de-duplication process. From this UI, a data
steward can create a policy that contains one or more matching rules that DQS will use to determine how rows of
data should be compared. DQS Matching functionality is not currently available through SSIS. You can perform
this type of work using the DQS Client, and it is also available through the Excel add-in for noun phrases Services.

Knowledge Discovery is a computer-assisted process to build knowledge base information. You supply
source data (from a SQL Server table or view, or Excel file), and map the input columns to knowledge base
domains. This data will be imported into DQS, and stored as a set of known Domain Values.

Data Quality Projects
A data quality project is one where you interactively cleanse or match your data. You’ll select the source of your
data (SQL Server or an Excel file, which you can upload through the client), and then map source columns
to domains within your knowledge base. Figure 5-4 shows a data quality project that will attempt to cleanse
the EnglishCountryRegionName and CountryRegionCode columns against domains from the default DQS
knowledge base.

Figure 5-3.  The Domain Properties tab of the Domain Management activity in the DQS Client

CHAPTER 5 ■ Data Cleansing with Data Quality Services

105

After you’ve mapped your columns to domains, DQS will process your data and provide you with the
results of the cleansing operation. When you review the results, you have the option to approve or reject certain
corrections, add new values to the list of known domain values, and specify correction rules. For example, as
the data steward for your organization, you know that “Jack Ryan” and “John Ryan” is the same person. After
approving the corrections, you can export the results to a SQL Server table, Excel file, or CSV file. DQS does not
give you the option to correct the value in-place – you will need a separate process to update the original source
data you examined.

At various times during the process you can save your data quality project. The project status is saved to the
DQS server, allowing you to resume at a later point. This is especially useful when working with large sets of data
that can take a while to scan. It also allows you to come back to the correction results in case you need to do some
research on what the correct values should be for a particular domain.

To manage your active data quality projects, click on the Open Data Quality Project button on the home page
of the client. From here, you can see all projects that are currently in progress. Right clicking on a project gives
you management options, such as renaming the project or deleting it if it is no longer needed.

Administration
The Administration section is available to users in the DQS Administrator’s role. From here, you can monitor
all activity on the DQS server (such as Domain Management, and Cleansing projects), and set system wide
configuration options. From these pages, you can set logging levels for various operations, as well as set the
minimum confidence scores for suggestions, and automatic corrections. If you are using online reference data
from the Azure DataMarket, you’d configure your account information and service subscriptions from this page

Figure 5-4.  Creating a new data cleansing project

CHAPTER 5 ■ Data Cleansing with Data Quality Services

106

as well (as shown in Figure 5-5). More information about online reference data providers can be found later in
this chapter.

Figure 5-5.  Configuration for online reference data in the SQL Azure DataMarket

Using the Default Knowledge Base
DQS comes with a default knowledge base containing domains related to cleansing and validation of Countries
and locations within the United States. Figure 5-6 shows the Domain Values for the “US – State” domain. In this
figure, you can see that “Alabama” has synonyms defined for it – it will automatically correct “AL” to “Alabama,”
and mark “Ala.” as an error.

CHAPTER 5 ■ Data Cleansing with Data Quality Services

107

Online Reference Data Services
DQS has two types of data it will use to perform cleansing and matching operations; local data, and reference
data. Local data make up the values shown on the Domain Values page in the DQS Client – these are known
values that are imported into DQS as part of the Knowledge Discovery process. The values are stored along with
the knowledge base in the DQS_MAIN database. If these values change, you must update your domain with the
new values. Reference data is not stored in the knowledge base – it is queried from an Online Reference Data
Service. Using online reference data may impact performance, as your cleansing process will need to call out to
an external system, but it requires less maintenance as you don’t need to worry about keeping values in sync.

The Online Reference Data Services (RDS) that can be linked to your domains are configured on the
Administration page in the DQS Client. There are two types of data providers: DataMarket providers, and
Direct Online 3rd Party providers. DataMarket providers require that you have a DataMarket Account ID and
subscription to the data set you wish to use. The Direct Online provider option allows you to point to other 3rd
party web services that support the DQS provider interface.

Using DQS with SSIS
While you can’t use SSIS for DQS Matching, you are able to take advantage of its data correction capabilities
through the new DQS Cleansing transform. The DQS Cleansing transform can be found in the Data Flow Toolbox
(shown in Figure 5-7). It will appear under the Other Transforms section by default.

Figure 5-6.  The US – State domain from the default DQS knowledge base

CHAPTER 5 ■ Data Cleansing with Data Quality Services

108

After dragging the DQS Cleansing transform onto the designer, you can double click the component to bring
up its editor UI.

The first thing you need to set in the DQS Cleansing Transformation Editor is the Data Quality Connection
Manager (as shown in Figure 5-8). This will point to a DQS installation residing on a SQL Server instance.
Once the connection manager has been created, you select the Knowledge Base you want to use. Selecting the
Knowledge Base you want to use will bring up its list of domains.

Figure 5-7.  The DQS Cleansing transform.

CHAPTER 5 ■ Data Cleansing with Data Quality Services

109

As mentioned earlier in the chapter, there are two types of domains in this list; regular Domains (ex. City,
State, Zip), and Composite Domains, which are made up of two or more regular domains. When using the DQS
Cleansing transform, you can map columns from your data flow to domains in the knowledge base. You can also
make use of Composite Domains in two ways:

1.	 A single (string) column – for this to work, all values must appear in the same order
as the domains do. So using the “Company” example above, your column values
would need to look like this: Microsoft Corporation, One Redmond Way, Redmond,
WA, USA.

2.	 Multiple columns – Individual columns are always cleansed by the knowledge and
rules stored within the DQS knowledge base. If you map a column to each domain of
a composite domain, the row will also be cleansed using the composite domain logic.

Figure 5-8.  The DQS Connection Manager and Cleansing Transformation Editor

CHAPTER 5 ■ Data Cleansing with Data Quality Services

110

Note■■   There is currently no indicator in the DQS Cleansing transform UI to show when you’ve mapped columns
to all domains within a composite domain. You need to double check that each domain is mapped; otherwise, each
column will be validated and cleansed individually.

The Mapping tab (Figure 5-9) allows you to select the columns you want to cleanse, and map them to
domains in your knowledge base. Note that the Domain dropdown will automatically filter out columns with
incompatible data types. For example, it won’t show domains with a String data type if you are using a DT_I4
(four-byte signed integer) column. A domain can only be mapped once – if you have multiple columns for the
same domain, you’ll need to use two separate DQS Cleansing transforms in your data flow.

Figure 5-9.  Mapping DQS knowledge base domains to columns in your data flow

ices

111

Note  If your data contains multiple columns with values from the same domain, consider using the linked
Domain feature when creating your knowledge base. For more information, see the “Create a linked Domain” page
in books online: http://msdn.microsoft.com/en-us/library/hh479582(v=SQL.110).aspx

Each column you map causes at least three additional columns to be added to your data flow – Source,
Output, and Status. More columns may be added, depending on the advanced options you select (more on that
to follow). The list of columns created by the DQS Cleansing transform can be found in Table 5-2. Each additional
column will be prefixed with the name of the original column by default, and can be renamed on the Mapping
tab. In addition to the columns that are prefixed with the name of the original, a Record Status column is
added to record the overall status of the row. Details on how to handle the columns added by the DQS Cleansing
transform are covered later in this chapter.

Table 5-2. Additional Columns Created by the DQS Cleansing Transform

Column Default Description
Record Status Yes The overall status of the record, based on the status of each mapped column. The

overall status is based on the following algorithm:

If one or more columns is:

•	 Invalid, the record status is Invalid

•	 Auto suggest, the record status is Auto suggest

•	 Corrected, the record status is Corrected

If all columns are Correct or New, then the record status will be Correct.

If all columns are New, then the record status will be New.

See Table 5-3 for possible Status values.

_Source Yes This column contains the original value passed to the transform.

_Output Yes If the original value was modified during the cleansing process, this column
contains the corrected value. If the value was not modified, this column contains
the original value. When doing bulk cleansing through SSIS, downstream
components will typically make use of this column.

_Status Yes The validation or cleansing status of the value.

See Table 5-3 for possible values of the Status column.

_Confidence No This column contains a score that is given to any correction or suggestion. The
score reflects to what extent the DQS server (or the relevant Reference Data
Source) has confidence in the correction/suggestion. Most ETL packages will
want to include this field, and use a conditional split to redirect values that do
not meet the minimum confidence threshold so they can be manually inspected.

_Reason No This column explains the reason for the column’s cleansing status. For example,
if a column was Corrected, the reason might be due to the DQS Cleansing
algorithm, knowledge base rules, or a change due to standardization.

(continued)

http://msdn.microsoft.com/en-us/library/hh479582(v=SQL.110).aspx

CHAPTER 5 ■ Data Cleansing with Data Quality Services

112

The Advanced tab (as shown in Figure 5-10) has number of different options, most of which add new columns
to the data flow when selected. The Standardize output option is an exception to this. When enabled, DQS will
modify the output values according to the domain settings defined in the DQS client application. You can see
how the standardization settings are defined in the DQS Client on the Domain Management | Domain Properties
tab (shown earlier in Figure 5-3).

Figure 5-10.  Advanced tab of the DQS Cleansing Transformation Editor

Column Default Description
_Appended Data No This column is populated when there are domains attached to a Reference Data

Provider. Certain reference data providers will return additional information as part
of the cleansing– not only values associated with the mapped domains. For example,
when cleansing an address, the reference data provider might also return Latitude
and Longitude values.

_Appended Data
Schema

No This column is related to the Appended Data setting (above). If the RDS returned
additional information in the Appended Data field, this column contains a
simple schema which can be used to interpret that data.

Table 5-2.  (continued)

CHAPTER 5 ■ Data Cleansing with Data Quality Services

113

There are two kinds of standardization:

Reformatting operations. These include operations such as conversion to uppercase,
to lowercase, and to capitalized words in a string.

Correction to a leading value. For example, if multiple values (or synonyms) are
defined for a term, the current value will be replaced with the leading term (as defined
in the KB).

The DQS Cleansing transformation logs Information events that indicate when it sends rows to the DQS server.
There will be one event for each batch, and one event at the end, with a summary for all records. The messages
contain details about how long the cleansing process took to process the batch, and the counts for each status.
Listing 5-1 shows an example of what these messages look like. The transform processes data in 1000 row chunks.
The chunk size is currently hardcoded – there is no way to configure the size of the batch sent to the DQS server.

Note■■   The default chunk size for data sent from the DQS Cleansing transform to the DQS server was changed
from 1,000 rows to 10,000 rows in SQL Server 2012 CU1.

Listing 5-1.   DQS Cleansing Transform Log Messages

[DQS Cleansing] Information: The DQS Cleansing component received 1000 records from the DQS
server. The data cleansing process took 7 seconds.
[DQS Cleansing] Information: DQS Cleansing component records chunk status count - Invalid:
0, Autosuggest: 21, Corrected: 979, Unknown: 0, Correct: 0.
[DQS Cleansing] Information: DQS Cleansing component records total status count - Invalid:
0, Autosuggest: 115, Corrected: 4885, Unknown: 0, Correct: 0.

Cleansing Data in the Data Flow
The following section contains design patterns for cleansing data in the SSIS data flow using the DQS Cleansing
transform. There are two key issues to keep in mind when cleansing data:

The cleansing process is based on the rules within your knowledge base. The better the •	
cleansing rules are, the more accurate your cleansing process will be. You may want to
reprocess your data as the rules in your knowledge base improve.

Cleansing large amounts of data can take a long time. See the Performance •	
Considerations section below for patterns which can be used to reduce overall processing
time.

Handling the Output of the DQS Cleansing Transform
The DQS Cleansing transform adds a number of new columns to the data flow (as described earlier in this
chapter). The way you’ll handle the processed rows will usually depend on the status of the row, which is
set in the Record Status column. A Conditional Split transformation can be used to redirect rows down the
appropriate data flow path. Figure 5-11 shows what the Conditional Split transformation would look like with a
separate output for each Record Status value. Table 5-3 contains a list of possible status values.

CHAPTER 5 ■ Data Cleansing with Data Quality Services

114

Figure 5-11.  Conditional Split transformation configured to process the DQS Record Status

CHAPTER 5 ■ Data Cleansing with Data Quality Services

115

Note■■   The column status values are localized - they actual string will change depending on the language of your
SQL Server installation. This might require you to add additional processing logic to your Conditional Split expres-
sions if you expect your packages to run under different system locales. For more information about the status
values, see the Data Cleansing (DQS) page in books online: http://msdn.microsoft.com/en-us/library/
gg524800(v=SQL.110).aspx

The status values you handle and downstream data flow logic you use will depend on the goals of your
data cleansing process. Typically, you will want to split your rows into two paths. Correct, Corrected, and Auto
suggest rows will go down a path that will update your destination table with the cleansed data values (found
in the < column_name > _Output column). New and Invalid rows will usually go into a separate table so someone
can examine them later on, and either correct the data (in the case of Invalid rows), or update the Knowledge
Base (in the case of New rows) so that these values can be handled automatically in the future. You may wish to
include a check against the confidence level (<column_name > _Confidence) of the Auto suggest rows to make
sure it meets a minimum threshold. Figure 5-12 shows an SSIS data flow with logic to process rows from the DQS
Cleansing transform.

Table 5-3.  Column Status Values

Option Description

Correct The value was already correct, and needs no further modification. The Corrected column will
contain the original value.

Invalid The domain contained validation rules that marked this value as invalid.

Corrected The value was incorrect, but DQS was able to correct it. The Corrected column will contain the
modified value.

New The value wasn’t in the current domain, and did not match any domain rules. DQS is unsure
whether or not it is valid. The value should be redirected, and manually inspected.

Auto suggest The value wasn’t an exact match, but DQS has provided a suggestion. If you include the
Confidence field, you could automatically accept rows above a certain confidence level, and
redirect others to a separate table for later review.

Figure 5-12.   Data Flow processing logic following a DQS Cleansing transform

http://msdn.microsoft.com/en-us/library/gg524800(v=SQL.110).aspx
http://msdn.microsoft.com/en-us/library/gg524800(v=SQL.110).aspx

CHAPTER 5 ■ Data Cleansing with Data Quality Services

116

Note■■   Although the Confidence columns output by the DQS Cleansing transforms are numeric, they are output as
DT_WSTR(100) columns (strings). To check the confidence level against a minimum threshold, you’ll need to cast the
value to a DT_R4 (float) or DT_R8 (double).

Performance Considerations
Data cleansing can be a CPU and memory intensive operation, and may take some time to complete. Domains
that rely on online reference data services may round trip incoming data to the Azure Data Marketplace, which
will have a further impact on the time it takes to cleanse your data. As a result, when processing large amounts of
data, you will typically want to reduce your dataset before passing it through the DQS Cleansing transform.

The DQS Cleansing transform sends incoming data to the DQS server (running within a SQL Server
instance), where the actual cleansing operations are performed. While this may offload a lot of the work being
done by the SSIS machine, there may be some overhead in sending the data across the network to another server.
Another thing to note is that the DQS Cleansing transform is an Asynchronous component, which means it
makes copies of data flow buffers at runtime. This can further impact the performance of your data flow, and is
another reason for only passing through the rows that need to be cleansed.

The following sections describe some package design tips that can be used to improve overall performance
when cleansing data with the DQS Cleansing transform.

Parallel Processing
The DQS Cleansing transform sends its rows to the DQS server one batch at a time. This single threaded approach
isn’t ideal if you have a lot of spare CPU power on your system, so designing your packages in a way that allows
DQS to send multiple batches to the server in parallel will give you a performance boost. You have two main
options for parallel processing. First, you can split the incoming rows down multiple paths, and have a separate
DQS Cleansing transform on each path, performing the same set of work. If your data set has a key or row that
can be easily split using SSIS Expressions, you can use a Conditional Split transform. Otherwise, you can consider
using a third party component like the Balanced Data Distributor. The second approach is to design your data
flow in such a way that multiple instances of your package can be run in parallel. For this approach to work, you
will need to partition your source query so that it pulls back a certain key range, and each instance of the package
will work on a different range. This approach gives you a bit more flexibility, as you can dynamically control how
many package instances you run in parallel by playing with the key ranges.

Note■■  Y ou might find that the DQS Client performs its cleansing operations faster than the DQS Cleansing
transform in SSIS. This is because the client processes multiple batches in parallel by default, while the DQS
Cleansing transform processes them one at a time. To get the same performance in SSIS as you do in the DQS
Client, you’ll need to add your own parallelism.

Tracking Which Rows Have Been Cleansed
You can track which rows have already been cleansed, and when the cleansing operation was performed. This
allows you to filter-out rows that have already been cleansed, so you don’t need to process them a second
time. By using a date value for this marker, you can also determine which rows need to be reprocessed if your
knowledge base gets updated. Remember, as your knowledge base changes and your cleansing rules improve,
you will get more accurate results each time data is processed by the DQS Cleansing transform.

CHAPTER 5 ■ Data Cleansing with Data Quality Services

117

To track when a row has been cleansed, add a new datetime column to your destination table
(DateLastCleansed). A NULL or very early date value can be used to indicate that a row has never been processed.
Alternatively, you can track dates in a separate table, linked to the original row with a foreign key constraint. Your
SSIS package will contain the following logic:

1.	 Retrieve the date the DQS knowledge base was last updated using an Execute SQL
Task. This value should be stored in a package variable (@[User::DQS_KB_Date]).

2.	 Inside of a Data Flow task, retrieve the data to be cleansed with the appropriate
source component. The source data should contain a DateLastCleansed column to
track when the row was last processed with the DQS Cleansing transform.

3.	 Use a Conditional Split transform to compare the DQS knowledge base date
against the date the row was last processed. The expression might look like this:
[DateLastCleansed] < @[User::DQS_KB_Date]. Rows matching this expression will
be directed to a DQS Cleansing transformation.

4.	 Handle the cleansed rows according to their status.

5.	 Use a Derived Column transform to set a new DateLastCleansed value.

6.	 Update the destination table with any corrected values and the new
DateLastCleansed value.

Figure 5-13 shows the data flow for the package logic described in the steps above.

Figure 5-13.  Example Data Flow when pre-filtering rows that have already been cleansed

Filtering Rows with the Lookup Transform
You can reduce the number of rows you need to cleanse by validating the data with a faster data flow component,
such as the Lookup Transform. Using one or more Lookup Transforms, you can check if values exist in a
reference table using quick, in-memory comparisons. Rows that match existing values can be filtered out. Rows
with values that aren’t found in the reference table can then be sent to Data Quality Services for cleansing.
Pre-filtering rows this way means you won’t be able to take advantage of the standardized formatting that DQS
provides, and this makes it difficult to do complex validation that involves relationships between multiple fields.
This approach works best when you are working with a small number of unrelated fields that don’t require any
special formatting as part of the cleansing process.

CHAPTER 5 ■ Data Cleansing with Data Quality Services

118

To use this pattern, your data flow will use the following logic:

1.	 Retrieve the data containing the fields to be cleansed using a source component.

2.	 Set the component to Ignore failure when there are no matching entries.

3.	 Add a Lookup Transform for each field you are going to cleanse. Each Lookup
Transform will use a SQL query that pulls in a unique set of values for that field, and a
static Boolean (bit) value. This static value will be used as a flag to determine whether
the value was found. Since you are ignoring lookup failures, the flag value will be NULL
if the lookup failed to find a match. Listing 5-2 shows what the query would look like
for the CountryRegionCode field, coming from the DimGeography table.

Listing 5-2.   Sample Lookup Query for the CountryRegionCode Field

SELECT DISTINCT CountryRegionCode, 1 as [RegionCodeFlag]
FROM DimGeography

4.	 On the Columns tab, map the field to the related lookup column, and add the static
flag value as a new column in your data flow (as shown in Figure 5-14).

Figure 5-14.  Column mapping for the Lookup Transform.

CHAPTER 5 ■ Data Cleansing with Data Quality Services

119

5.	 Repeat steps 2-4 for each field you will be cleansing. The Lookup transforms should
be connected using the Lookup Match Outputs.

6.	 Add a Conditional Split transform with a single expression that checks each of the
flag fields. If any of the flag fields are NULL, the row should be sent to DQS for proper
cleansing. For example, the expression to check the RegionCodeFlag for a NULL value
would be: ISNULL([RegionCodeFlag]).

7.	 Connect the Conditional Split output you created to the DQS Cleansing transform.
Rows going to the Conditional Split’s default output can be ignored (as their values
were successfully validated using the Lookup transforms).

8.	 Complete the rest of the data flow based on the appropriate logic for handling the
output of the DQS Cleansing transform.

Figure 5-15  shows a screenshot of a data flow to cleanse a single field using the logic described above.

Figure 5-15.  Completed Data Flow using Lookup transforms to pre-filter rows

CHAPTER 5 ■ Data Cleansing with Data Quality Services

120

Note■■   This approach works especially well when looking up key fields that are part of an entity in Master Data
Services (MDS), another product that ships with SQL Server 2012. Using an MDS Subscription View, you can expose
your dimension as a view that can be queried by a Lookup Transform. For more information about Master Data
Services, see the books online entry: http://msdn.microsoft.com/en-us/library/ee633763.aspx

Approving and Importing Cleansing Rules
When a data flow with a DQS Cleansing transform is run, a cleansing project is created on the DQS Server. This
allows the KB editor to view the corrections performed by the transform, and approve or reject rules. A new
project is created automatically each time the package is run, and can be viewed using the DQS Client. When
performing parallel cleansing with multiple DQS Cleansing transforms in a single data flow, a project will be
created for each transform you are using.

Once correction rules have been approved by the KB editor, they can be imported into the knowledge base
so they can be automatically applied the next time cleansing is performed. This process can be done with the
following steps:

1.	 Run the SSIS package containing the DQS Cleansing transform.

2.	 Open the DQS Client, and connect to the DQS server used by the SSIS package.

3.	 Click on the Open Data Quality Project button.

4.	 The newly created project will be listed on the left hand pane (as shown in
Figure 5-16). The project’s name will be generated using the name of the package,
the name of the DQS Cleansing transform, a timestamp of when the package
was executed, the unique identifier of the Data Flow Task which contained the
transformation, and another unique identifier for the specific execution of the
package.

Figure 5-16.  Running the DQS Cleansing transform will create a project on the DQS server

5.	 Selecting the project name will display details in the right hand pane (shown in
Figure 5-17), such as the domains that were used in this cleansing activity.

http://msdn.microsoft.com/en-us/library/ee633763.aspx

ices

121

6. Click Next to open the project.

7. Select the domains you would like to review the corrections for.

8. Click the Approve or Reject radio buttons for each correction, or change the
“Correct to” value for the entry.

9. Click the Next button when you have finished with the rules.

10. (Optional) Export the corrected data to SQL Server, CSV or Excel. You will be able to
skip this step in most scenarios, as your SSIS package will be responsible for handling
the corrected data.

11. Click the Finish button to close the project.

12. From the home screen, select your knowledge base, and choose the Domain
Management activity.

13. Select the domain you have defined new rules for.

Figure 5-17. Selecting the project will display the domains used in this activity

CHAPTER 5 ■ Data Cleansing with Data Quality Services

122

14.	 Click the Domain Values tab.

15.	 Click the Import Values button, and select Import project values (as shown in
Figure 5-18).

Figure 5-18.  Importing domain values from an existing project

16.	 Repeat steps 13-15 for each domain you wish to update.

17.	 Click the Finish button to publish your knowledge base changes.

18.	 If you have modified any of the correction rules, you may want to re-run your SSIS
package to pick up the new values.

Summary
This chapter described the new DQS Cleansing transform, and how you can use it to take advantage of the
advanced data cleansing functionality provided by Data Quality Services in SQL Server 2012. The design
patterns detailed in this chapter will help you get the best possible performance while doing data cleansing
with SSIS.

123

Chapter 6

DB2 Source Patterns

In the previous chapters in this section, you learned about patterns that relate to SQL Server and Oracle Sources.
In this chapter, I will move on to patterns that relate to sourcing data from the IBM DB2 database. DB2 describes
a variety of databases, so it is essential to learn about the different databases I will discuss, as well as how to use
each database as an Integration Services source.

As I described in Chapter 4, setting up a source entails four different objects: connection manager, provider,
source component, and a source component query. While this remains true for the DB2 database, you need the
additional first step of determining what type of database you own. DB2 has a number of types, providers, and
ways to query data. As we look at the different patterns associated with each of these components, picture how
they will work with other sources as well. Combining these steps will put you on the right path to pulling data
from your DB2 database.

This chapter highlights patterns that may be of use while connecting to a DB2 database, but does not cover
every possible scenario that you may run into in your environment.

DB2 Database Family
There are several different types of DB2 databases available on the market today. How you connect to the
database depends on the DB2 version. DB2 separates its products into three groups:

•	 DB2 for i: This version has gone through multiple names over the years, including DB2
for AS/400, iSeries, System I, and Power Systems. DB2 is included in this server, so people
commonly refer to this version when they think of DB2.

•	 DB2 for z/OS: This DB2 version is the main database available for the z/OS platform and
is only available in 64-bit mode.

•	 DB2 for LUW: This version of DB2 is a later addition to the DB2 family. The Linux, UNIX,
and Windows (LUW) version comes in multiple editions, depending on the purpose
of your database instance. More information on these editions can be found on IBM’s
website.

The different product types affect how you query data from Integration Services. As I walk you through
setting up your connection, I will point out some of the differences you need to be aware of based on the product
type. The first thing you need to do is pick a provider to use in your connection manager.

http://dx.doi.org/10.1007/978-1-4302-3771-6_4

CHAPTER 6 ■ DB2 source patterns

124

Selecting a DB2 Provider
The first step in pulling data from DB2 is to select a provider that can be used in your environment. There are two
steps to accomplishing this:

1.	 Find Database Version

2.	 Pick Provider Vendor

Find Database Version
The first step in selecting your DB2 provider is to learn what version you own. Combining the version information
with the product type will help you choose what provider to use. If you’re not sure what type of server you’re
working with, you have a couple of options. The first option is to use a DB2 administration tool to check the
properties of your instance. For example, if you use Control Center, you can right-click on the instance name, and
click the About menu option. This will show something similar to Figure 6-1.

Figure 6-1.  Control Center About window showing database version and information

If you don’t have access to connect directly to the instance, you can run a query against the database instead
to pull the same information. A sample query that shows this information can be seen in Listing 6-1, with the
results shown in Figure 6-2.

Listing 6-1.  Sample query to show database version and information

SELECT inst_name
 , release_num
 , service_level
 , bld_level
 , ptf
 , fixpack_num
FROM TABLE (sysproc.env_get_inst_info())

CHAPTER 6 ■ DB2 source patterns

125

Pick Provider Vendor
While it is possible to use ODBC or ADO.NET to connect to a DB2 database, we will focus on OLE DB providers in
this chapter to ensure that we can use the connection for all transformations. Here are two of the more common
providers and when you would use each one.

•	 IBM OLE DB Provider for DB2: IBM produces their own OLE DB provider, which can
be used in applications such as Integration Services. You can download this provider
from IBM’s website, www.ibm.com. This provider can be used for all versions and the latest
products.

•	 Microsoft OLE DB Provider for DB2 Version 4.0: Microsoft created a provider that uses
OLE DB to connect to DB2. You can download this provider separately, or as part of the
Microsoft SQL Server Denali CTP 3 Feature Pack, found here: http://www.microsoft.com/
download/en/details.aspx?id=26726. This provider can be used for all versions of DB2.
See the latest documentation for which product numbers it supports.

Don’t forget to make sure you’ve selected either the 32-bit or 64-bit version, based on the database server.
Also ensure that the database version matches the supported version and product for the provider you want to
use. I recommend using the provider most often used in your organization to facilitate ease of development and
maintenance. If you are trying a provider for the first time, try the different versions to see what works best for
you, as the performance and security discrepancies may vary per environment.

Connecting to a DB2 Database
For this chapter, we’ll use the Microsoft OLE DB Provider for DB2. No matter what provider you choose, the next
step is to make a connection to the DB2 database. To do this, you need to create a connection manager, select the
correct provider, and fill out the appropriate server information.

Once you download your desired provider, you will install it on the server where you will develop and
execute your Integration Services packages. If the provider has installed correctly, you can see it by opening up
the Source Assistant. A correctly installed provider can be seen in Figure 6-3.

Figure 6-2.  Query results showing database version and information

http://www.ibm.com
http://www.microsoft.com/download/en/details.aspx?id=26726
http://www.microsoft.com/download/en/details.aspx?id=26726

CHAPTER 6 ■ DB2 source patterns

126

Begin by creating a shared OLE DB connection manager in the Solution Explorer of your package. In the
provider dropdown list at the top of the Connection Manager window, change the provider to Microsoft OLE DB
Provider for DB2, as seen in Figure 6-4.

Figure 6-3.  Source Assistant’s Add New Source window

Figure 6-4.  Connection Manager window Provider List

CHAPTER 6 ■ DB2 source patterns

127

Next, you can add the name of the database instance, the correct authentication method, and the database
you want to connect to. If you prefer, you can directly enter a connection string in the Connection property of the
Source.

Note■■   If you ever have a question on the correct connection string to use,
http://www.connectionstrings.com is a great resource to answer your question.

In additional to telling Integration Services how to connect to the DB2 database, you also need to tell
Integration Services how to view the data. To store data, databases use an encoding scheme and character
codeset. The two encoding schemes that you need to understand are:

•	 ASCII: The American Standard Code for Information Interchange is a 7-bit encoding
scheme that contains 128 printable and non-printable characters.

•	 EBCDIC: The Extended Binary Coded Decimal Interchange Code was created by IBM
and is an 8-bit encoding scheme used in their mainframe servers.

Both DB2 for i and DB2 for z/OS use the EBCDIC encoding scheme, and DB2 for LUW uses the ASCII
encoding scheme. Typically, the EBCDIC schemes use the codeset number 37, and the DB2 for LUW uses the
ANSI-1252 codeset. Using the Microsoft OLE DB Provider for DB2, the next step is to modify the codeset for
whichever version you are using.

Begin by clicking on the Data Links… button next to the Provider name in the Connection Manager, seen in
Figure 6-5.

Figure 6-5.  Data Links button on the Connection Manager window

The Data Link Properties window should open. Under the Advanced tab > Host CCSID property, you can
use the default value of EBCDIC – U.S./Canada [37] or change it to ANSI – Latin I [1252], as shown in Figure 6-6.
In addition, you may find it necessary to check the Process binary as character option if you are seeing output
that looks like data type names rather than your data.

http://www.connectionstrings.com

CHAPTER 6 ■ DB2 source patterns

128

Querying the DB2 Database
The final set of DB2 Source patterns covers querying the DB2 database. Because the Integration Services package
uses an OLE DB provider, it will also need an OLE DB source component. As with any other database, the
source component should point to the DB2 connection manager already created. Once the package successfully
connects to the database, it is time to query the database.

Note ■■   A number of companies provide alternatives to the Integration Services connection managers and source
components. They provide a different interface and different functionality than the OLE DB source component. If you
need additional functionality, such as EBCDIC to ASCII conversion, see aminoSoftware’s Lysine EBCDIC source.

All source component queries are written in whatever brand of SQL the database uses. DB2’s RDBMS-
specific language is called SQL PL, and PL/SQL can also be used for later versions. If you receive an error
message about syntax, be sure that your syntax matches the guidelines found on IBM’s website: http://publib.
boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=/com.ibm.db2.luw.apdv.plsql.doc/doc/
c0053607.html.

Figure 6-6.  Data Link Properties window with Host CCSID List

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=/com.ibm.db2.luw.apdv.plsql.doc/doc/c0053607.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=/com.ibm.db2.luw.apdv.plsql.doc/doc/c0053607.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=/com.ibm.db2.luw.apdv.plsql.doc/doc/c0053607.html

CHAPTER 6 ■ DB2 source patterns

129

In certain cases, you may want to use parameters to limit the data returned from the database. Let’s take a
look at parameterizing your queries now.

DB2 Source Component Parameters
An important part of writing source queries is the ability to filter the data that enters the pipeline. There are
a number of reasons why you would want to do this, including loading data incrementally, reusing the same
package for different departments, or reducing the amount of data that is run at one time. When using the
Microsoft OLE DB Provider for DB2, you need to set the Derive Parameters property to True. This property is
found in the connection manager, under the Data Links… button, and the All tab, as shown in Figure 6-7.

Figure 6-7.  Edit Property Value window on the Data Link Properties window

i

CHAPTER 6 ■ DB2 source patterns

130

Once the Derive Parameters property is set, you will write your query using question marks, similar to
Listing 6-2. Put the query in the SQL command in the source component.

Listing 6-2.  Sample query to illustrate DB2 parameters

SELECT col1
 , col2
 , col3
FROM tab1
WHERE col4 = ?

Be sure to click the Parameters button next to the query in the source to assign variables to each parameter
that you set. It is important that the list of variables in the Parameters window matched the correct order in the
query.

There are some scenarios where using query parameters won’t work. Let’s look at when you can’t use query
parameters, and what to do instead.

DB2 Source Component Dynamic Queries
Parameterized queries will not work if the content of the source query needs to be changed for any reason. The
table, schema, or column names could change as part of the query content. A typical example of this in DB2 is
when you have different schemas in each environment. To fix this, we set an expression on a variable and use the
variable in the SQLStatement property. Let’s walk through the steps of setting this up.

Begin by creating two string variables: environment and query. Set the following properties on the query
variable:

EvaluateAsExpression: True
Value: "select col1, col2 from" + @environment + ".tab1"

Note■■   In Integration Services’s editions prior to SQL Server 2012, expressions had a limit of 4000 characters.
This restriction is now removed, allowing you to create strings as long as needed.

CHAPTER 6 ■ DB2 souRCE PATTERns

131

When this package runs, use a package parameter to pass in the correct environment schema name.
The expression on the query variable will be set to the new query and execute correctly. Make sure to set the
ValidateExternalMetadata property on the OLE DB Source to False to ensure that the package will validate
successfully.

Figure 6-8. OLE DB Source Editor with dynamic query properties

In the OLE DB source component, change the query type to SQL Statement as Variable, and pick the query
variable that you just selected, as shown in Figure 6-8.

CHAPTER 6 ■ DB2 source patterns

132

Summary
This chapter has covered many of the patterns necessary to connect to the different types of the IBM DB2
database. You’ve learned how to determine what type of DB2 database you own, how to pick the appropriate
provider, and different ways of querying the database. Note that sometimes organizations go a different route
when dealing with DB2: exporting the data into a file and then loading the file using SSIS. This is a perfectly valid
option, and might make sense for you if you have network latencies or problems with connectivity to your DB2
database. If you decide to go this route instead, you can learn how to load the data using Flat File Source Patterns,
which I will discuss in Chapter 7.

133

Chapter 7

Flat File Source Patterns

A common way to transfer data between systems is to export the source data to a flat file and then import the
contents of this file into the destination database. Flat files come in all shapes, sizes, and types. There are no row-
length limitations. File size is limited by the maximum size allowed by the operating system. When examining flat
file types, there are two initial considerations: file format and schema. Common file formats of flat file sources
include:

Comma-Separated Values (CSV)•	

Tab-Delimited File (TDF)•	

Fixed Width•	

In a flat file, as in a database, schema includes columns and data types. Schema options also allow for more
exotic file format options such as “ragged right” and “variable-length rows” flat files.

In this chapter, we’ll examine a common pattern for loading a vanilla flat file source into SQL Server,
then we’ll expand that pattern to load a variable-length row flat file source. We will next examine creating and
consuming flat file header rows, which are found in some flat file formats. Finally, we will construct an extremely
useful SSIS design pattern: Archive File.

Flat File Sources
Let’s begin with a simple flat file source. You can copy and paste the data below into a text editor such as Notepad
and save it as MyFlatFile.csv:

RecordType,Name,Value
A,Simple One,11
B,Simple Two,22
C,Simple Three,33
A,Simple Four,44
C,Simple Five,55
B,Simple Six,66

The column names are in the first row. This is convenient but you don’t always get column names in the first
row – or anywhere inside a source flat file.

Before leaving the setup phase of our demo project, let’s create a database named StagingDB that we can use
as a destination. I use the following re-executable T-SQL script to create the StagingDB database:

use master
go

CHAPTER 7 ■ Flat File Source Patterns

134

If Not Exists(Select name
 From sys.databases
	 Where name='StagingDB')
 begin
 print 'Creating StagingDB database'
 Create Database StagingDB
 print 'StagingDB database created'
 end
Else
 print 'StagingDb database already exists.'

Execute this script on a server you can use for testing and development. Now we’re all set to begin building
the demo!

Moving To SSIS!
Open SQL Server Data Tools and create a new SSIS project named “Chapter 7”, and rename the initial package to
Chapter7.dtsx. Drag a Data Flow Task onto the Control Flow canvas and double-click it to open the editing tab.

There are a couple ways to create a Flat File Source for the Data Flow. You can use the Source Assistant or
you can you can expand Other Sources in the Data Flow SSIS Toolbox and configure a Flat File Source adapter.
Let’s utilize the latter method: Drag a Flat File Source adapter from the Data Flow toolbox onto the Data Flow
canvas and open the editor. Figure 7-1 shows the Connection Manager page for the Flat File Source Editor:

Figure 7-1.  Flat File Source Editor Connection Manager configuration

CHAPTER 7 ■ Flat File Source Patterns

135

Note the warning near the bottom of the window: Columns are not defined for this connection manager.
For a properly formatted simple CSV file, SSIS now has enough information to read the schema of the flat file
and complete the mapping for the connection manager. Figure 7-3 shows the Columns page used to define the
column and row delimiters:

Since there are no connection managers defined in this new SSIS project, click the New button beside the
Flat File Connection Manager dropdown to open the Flat File Source Editor. On the General page, name
the connection manager “My Flat File.” Click the Browse button beside the File Name textbox and navigate to
the location you saved MyFlatFile.csv. As shown in Figure 7-2, check the “Column names in the first data row”
checkbox:

Figure 7-2.  Configuring the “My Flat File” Connection Manager

CHAPTER 7 ■ Flat File Source Patterns

136

All data in a flat file are text by default.
Click the OK button to close the Flat File Connection Manager Editor, and then click the OK button to close

the Flat File Source Editor.

Strong-Typing the Data
Why would you want to use strongly typed data? Consider the Value column in our example. Right now, Value
is a DT_WSTR data type but the column contains numeric data. In fact, the numeric data is integers. In Sql
Server, the INT data type consumes 4 bytes and covers the range from -2^31 (-2,147,483,648) through 2^31 - 1
(2,147,483,647) according to Books Online. If we wanted to store the integer value -2,147,483,600 as text, this
would consume at least one byte per character. In this case, that’s a minimum of 11 bytes (not counting the
commas), and it could be more bytes depending on the data type chosen. Converting these data to the DT_I4
data type allows me to store that value in 4 bytes. As an added bonus, the data are numeric, so sorts on this field
will outperform sorts on a string data type.

Figure 7-3.  The Flat File Connection Manager Columns page

CHAPTER 7 ■ Flat File Source Patterns

137

Let’s manipulate the data types provided by the Flat File connection manager and source adapter. Drag
a Derived Column Transformation onto the Data Flow canvas and connect a data flow path from the Flat File
Source to the new Derived Column Transformation. Double-click it to open the editor.

Expand the Type Casts virtual folder in the SSIS Expression Language functions provided in the listbox in the
upper right section of the Derived Column Editor. Drag a DT_STR type cast into the Expression cell of the first row
of the Derived Column grid in the lower section of the Editor. The Derived Column column of the grid defaults
to “<add as new column>” but allows you to choose to replace the value in any of the rows flowing through the
transformation. You can make changes to the values as rows flow through the Derived Column transformation,
but you cannot change the data type (which is precisely what we’re going to do here), so we need to add a new
column to the Data Flow. The default Derived Column Name is Derived Column n, where n is a 1-based array of
columns configured in the transformation. Change the default derived column name to strRecordType. Return
to the Expression column and complete the DT_STR cast function by replacing the “«length»” placeholder text
with the desired length of the field: 1. Next, replace the “«code_page»” placeholder with the number that matches
your Window Code Page identifier. For US English, this number is 1252. To complete the configuration, expand
the Columns virtual folder in the Available Inputs listbox located in the upper left section of the Derived Column
Transformation Editor, and drag the RecordType column into the Expression cell to the right of the DT_STR cast
function that you just configured.

When you click anywhere else in the editor, the logic of the transformation validates the expression. This
has been happening all along, changing the text color in the Expression to red when an issuewas encountered
with the state of the expression. When you navigate off the Expression cell now, the expression (DT_STR, 1, 1252)
[RecordType] should pass muster. The text should return to black to indicate a valid expression.

You can similarly create additional columns with casting expressions to manipulate the data types of the
other fields moving through the Data Flow. Figure 7-4 shows how my example looks when I’ve completed editing
the Derived Column Transformation:

Figure 7-4.  Derived Column Transformation, Configured

CHAPTER 7 ■ Flat File Source Patterns

138

Introducing a Data-Staging Pattern
Data staging is an important concept. Every ETL developer has thoughts and opinions about the best way to stage
data, and each thinks their way is best! (This is as it should be... we want and need confident ETL developers.) In
my opinion, the data integration requirements drive the amount and type of staging.

For flat files, copying all the data into staging tables represents one pattern. Once the data are captured in a
query-able format (a relational database), they can be manipulated and shaped by numerous transformations
before they are loaded into the destination data warehouse or data mart.

Beyond flat files, staging supports a key tenet of the Extraction phase of any ETL solution: Impact the source
system-of-record as little as possible. Often, an important business driver for building an ETL solution in the first
place is the difficulty of querying data in the system-of-record for reporting purposes. ETL’s first goal is similar to
that of the Hippocratic Oath: “Primum non nocere” (First, do no harm).

Staging requirements for some ETL lend themselves to storing a copy of all source data, whether from flat
files or not. Other requirements allow for applying some transformative logic prior to staging. Which is the correct
answer? “It depends.” In my opinion, the very act of copying data from a text source and landing it in a relational
database represents a transformation.

This, then, becomes a pattern of staging data: copying data straight from a flat file into a database. To that
end, let’s complete the example we’ve started.

Drag an OLE DB Destination adapter onto the Data Flow canvas and connect a Data Flow Path from the
Derived Column Transformation to the OLE DB Destination. Before we proceed, double-click on the Data Flow
Path to open its editor, and then click on the Metadata page. You’ll see something that looks like Figure 7-5:

Figure 7-5.  Inside the Data Flow Path

CHAPTER 7 ■ Flat File Source Patterns

139

I often describe the buffers inside the Data Flow as “table-ish.” It’s an adjective I made up, but it fits. This
peek under the hood of a data flow path is evidence. We’ll come back to this diversion shortly. Click OK to close
the Data Flow Path editor.

Rename the OLE DB Destination adapter “FlatFileDest” without the double-quotes. Open the OLE DB
Destination editor and click the New button beside the OLE DB Connection Manager dropdown to configure
an OLE DB Connection Manager. When the Configure OLE DB Connection Manager window displays, click
the New button to create a new OLE DB Connection Manager. Add the name of your testing and development
server/instance (the same server/instance you used earlier to create the StagingDB database) in the Server
Name dropdown. In the “Select or enter a database name” dropdown, select StagingDB. Click the Ok button
to complete the OLE DB Connection Manager configuration, and click the next Ok button to select this new
connection manager for use with the OLE DB Destination adapter. Set the Data Access Mode property to “Table
or view – fast load” and accept the default properties configured. Click the New button beside the “Name of the
table or the view” dropdown. The Create Table window displays containing the following T-SQL Data Definition
Language (DDL) statement:

CREATE TABLE [FlatFileDest] (
 [RecordType] varchar(50),
 [Name] varchar(50),
 [Value] varchar(50),
 [strRecordType] varchar(1),
 [strName] varchar(50),
 [intValue] int
)

The name of the table the OLE DB Destination is going to create is “FlatFileDest” – the name we gave the
OLE DB Destination adapter. Where did the column names come from? That’s right! From the Data Flow Path
metadata we viewed earlier. This functionality is pretty cool, when you think about it.

We don’t need all these columns to store our data in our StagingDB. Since we are using this table to stage
data from the flat file, let’s use the same column names found in the source file. However, let’s also use the strong
data types we created in our Derived Column Transformation. Fortunately for us, our naming convention makes
these changes relatively painless. Simply delete the DDL for the first three columns (RecordType, Name, and
Value); and then remove the first three letters of the remaining columns, which will rename them to RecordType,
Name, and Value:

CREATE TABLE [FlatFileDest] (
 [RecordType] varchar(1),
 [Name] varchar(50),
 [Value] int
)

When you click the OK button, the DDL statement is executed against StagingDB – creating the FlatFileDest
table. That’s a good thing, because our OLE DB Dastination adapter is warning us we need to complete Input-to-
Output mappings, shown in Figure 7-6:

Figure 7-6.  The Columns have not been mapped

CHAPTER 7 ■ Flat File Source Patterns

140

As shown in Figure 7-7, when we click on the Mappings page to begin this mapping, auto-mapping kicks in
and finds it can auto-complete some of the mappings:

Figure 7-7.  OLE DB Destination Auto-Mapping

One issue is that these fields don’t contain the data we want to load. We want to load the Derived Columns
instead. There a couple ways to correct the mapping, but I like dragging and dropping the fields I want mapped
to the columns where I wish them mapped. Since mapping is, by definition, field-to-field, the existing (auto-)
mappings will be overwritten by the new. Try it! Drag the strRecordType field from Available Input Columns to
the RecordType cell in Available Output Columns. See? The old mapping is updated. Now map strName to Name
and itnValue to Value, as shown in Figure 7-8:

Figure 7-8.  Overwriting the auto-mappings

s

141

In this introductory section, I’ve introduced concepts of staging and we built a pattern to stage data from a
flat file into a database table. Along the way, we delved into some data warehousing thinking and peeked under
the hood of the Data Flow Task. Next up: loading another format of flat file – one with variable-length rows.

Variable-Length-Rows
A variable-length row flat file is a text source file. It can be a comma-separated values (CSV) file or a tab-
delimited file (TDF). It can be a fixed-length file where columns are identified positionally or by ordinal. The
major difference between a “normal” flat file and a variable-length row flat file is that the number of text positions
is fixed in a normal flat file, and that number can change with each row in a variable-length flat file.

Let’s look at an example of a variable-length flat file:

RecordType,Name1,Value1,Name2,Value2,Name3,Value3
A,Multi One,11
B,Multi Two,22,Multi Two A,23
C,Multi Three,33,Multi Three A,34,Multi Three B,345
A,Multi Four,44
C,Multi Five,55,Multi Five A,56,Multi Five B,567
B,Multi Six,66,Multi Six A,67

There are seven potential columns: RecordType, Name1, Value1, Name2, Value2, Name3, and Value3. Not all
rows contain seven values. In fact, the first row contains only 3 values:

A,Multi One,11

In this format, the RecordType is in the first column and this indicates how many columns of data to expect
in the row. Rows of RecordType A contain three values, rows of RecordType B contain five values, and those of
RecordType C contain seven values.

Click the OK button, we’re finished configuring the OLE DB Destination adapter. Press the F5 key to execute
the SSIS package in the SSDT debugger. Hopefully, your Data Flow Task succeeds and appears as in Figure 7-9:

Figure 7-9. A successful Data Flow!

CHAPTER 7 ■ Flat File Source Patterns

142

Reading into a Data Flow
It’s typical to load data from a flat file into an SSIS data flow using a Flat File connection manager. Let’s walk
through configuring a flat file connection manager for this file.

If you want to sing along, add a new SSIS package named VariableLengthRows.dtsx to your SSIS project.
Add a Data Flow Task to the Control Flow and open the Data Flow editor (tab). Drag a Flat File Source adapter
onto the Data Flow Task canvas and open its editor. Click the New button to create a new Flat File Connection
Manager.

I named my Flat File Connection Manager “Variable-Length File.” I created a text file with the data from
above and named it VarLenRows.csv. I saved it and browsed to that location for the File Name property. I also
checked the “Column names in the first data row” checkbox. When I click on the Columns page, the Flat File
Connection manager Editor appears as shown here in Figure 7-10:

Figure 7-10.  Configuring the Flat File Connection Manager for a flat file with Variable-Length Rows

CHAPTER 7 ■ Flat File Source Patterns

143

This behavior is different from earlier editions of SSIS. In previous versions, the Flat File Connection
Manager would raise an error. I blogged about this in a post entitled SSIS Design Pattern: Loading Variable-
Length Rows (http://sqlblog.com/blogs/andy_leonard/archive/2010/05/18/ssis-design-pattern-
loading-variable-length-rows.aspx). That post inspired this chapter in this book.

Splitting Record Types
Thanks to the new functionality in the SSIS 2012 Flat File Connection Manager, we have all the data coming
in as separate rows. But the data rows contain information of different types. The rows need to be filtered
based on Record Type. I can hear you thinking “Great, Andy. Now what?” I’m glad you asked! Now we need to
parse the data as it flows through the Data Flow Task. There are a couple ways to approach this, but I like the
Conditional Split.

Drag a Conditional Split Transformation onto the Data Flow Task canvas and connect a data flow path from
the Flat File Source adapter to the Conditional Split.Open the editor for the transformation. In the Output Name
column of the grid, enter “TypeA”. Into the corresponding Condition, drag (or type) the RecordType column,
appending the text ‘ == “A” ’ (note that the “A” is in double-quotes. Do not type the single-quotes). Repeat this for
each RecordType; “B” and “C,” as shown in Figure 7-11:

Figure 7-11.  Configuring the Script Component Inputs

http://sqlblog.com/blogs/andy_leonard/archive/2010/05/18/ssis-design-pattern-loading-variable-length-rows.aspx
http://sqlblog.com/blogs/andy_leonard/archive/2010/05/18/ssis-design-pattern-loading-variable-length-rows.aspx

CHAPTER 7 ■ Flat File Source Patterns

144

Click the OK button to close the Conditional Split transformation Editor. It is important to note that this
would have required a Script Component in earlier versions of SSIS because the Flat File Connection Manager in
previous versions couldn’t parse files containing rows with a varying number of columns.

Terminating the Streams
You can use several Data Flow components to terminate a data flow path. In a Production environment, this
would likely be an OLE DB Destination adapter. In a development or test environment, you may want to
terminate with a component that doesn’t require database connectivity or database object creation.

You can use the Trash Destination (www.sqlis.com/post/Trash-Destination-Adapter.aspx) adapter. You
can also use any component that doesn’t require configuration to execute and succeed in the Data Flow Task,
such as a Derived Column or Multicast Transformation. Here, I will use multicast transformations to terminate
the data flow path streams.

Drag three Multicast Transformations onto the Data Flow Task canvas. Connection an output from the Script
Component to the TypeA multicast. When prompted, select the TypeA output buffer for the Script Component,
as shown in Figure 7-12:

Figure 7-12.  Terminating the “Record Type A” Output from the Script Component

http://www.sqlis.com/post/Trash-Destination-Adapter.aspx

CHAPTER 7 ■ Flat File Source Patterns

145

Repeat this process for TypeB and TypeC connections. When complete, your Data Flow could appear as
shown in Figure 7-13:

Let’s run it! Execution should succeed, and when it does, the results will be the green checkmarks that you
see in Figure 7-14.

Figure 7-13.  The Script Component’s Outputs, Terminated

This isn’t the only way to address loading files of this format. It is one way, and it has the advantage of
offering a lot of flexibility.

Figure 7-14.  Happiness is Green Checks

CHAPTER 7 ■ Flat File Source Patterns

146

Header and Footer Rows
Header and footer rows are included in extract files from many sources. I regularly see these rows in flat files
delivered from mainframe-based database systems.

A header row contains metadata about the contents of the extract file – a summary of information of the
extract. At a minimum, it will include the extract date. There is usually a field containing a row count for the
extract. When you think about it, this is very practical instrumentation – it provides a way to check for the proper
number of rows. This check can be performed immediately after the extract or immediately after loading the
extract – both are valid uses of this metadata.

A footer row is identical in concept. The only difference is location: header rows appear first in a file; footer
rows appear last. If you’re including row counts to validate that the correct number of rows have been written
or read, writing this information first is a good way toincrease fault-tolerance. Why? Imagine a failure: the write
operation is interrupted or the extract ends abnormally. The header row may indicate 100 rows, for example,
but only 70 rows of data follow. If the row count metadata is included in the header row, it’s possible to calculate
exactly how many data rows are missing. In contrast, a footer row would simply be missing. While a missing
footer would indicate that the extract had failed, that’s all it would indicate. Having the rowcount metadata
present would allow you to glean more and better information regarding the failure.

In this section, we will look at creating and consuming header and footer rows using SQL Server Integration
Services 2012.

Consuming a Footer Row
We begin by looking at how to consume a footer row. To start, create a file containing a footer row. My file looks
like this:

ID,Name,Value
11,Andy,12
22,Christy,13
33,Stevie Ray,14
44,Emma Grace,15
55,Riley Cooper,16
5 rows, extracted 10/5/2011 10:22:12 AM

To demonstrate, create your own file and name it MyFileFooterSource.csv. Create a new SSIS package and
rename it ParseFileFooter.dtsx. Add a Data Flow task and switch to the Data Flow tab. Add a Flat File Source
adapter and double-click it to open the Flat File Source Editor. On the Connectin Manager page, click the
New button to create a new Flat File Connection Manager and open the editor. Name the Flat File Connection
Manager “My File Footer Source File” and set the File Path property to the location of MyFileFooterSource.
csv. Check the “Column names in the first data row” checkbox. Navigate to the Columns page to verify your
configuration matches that shown here in Figure 7-15:

CHAPTER 7 ■ Flat File Source Patterns

147

Figure 7-15.  Flat File Connection Manager Columns page for a File Containing a Footer Row

You can see the footer row contents in the preview show above. You may or may not be able to view the
footer row on the Columns page of the Flat File Connection Manager Editor.

The next step is to separate the footer row from the data rows. To accomplish this, we will use a Condition
Split Transformation to isolate the footer row. There are a lot of different ways to detect the footer row, but the
trick is to pick something unique about that row. In the SSIS Expression Language expression I define in Figure 7-16,
I search for the term “rows” in the ID column. This condition will work as long as there’s never a chance that the
term “rows” will legitimately show up in the ID column of the data rows. Never is a very long time.

CHAPTER 7 ■ Flat File Source Patterns

148

To terminate the data rows pipeline – which flows from the Conditional Split Transformation’s Default
output – I use a Derived Column Transformation.

The Footer Row output requires more parsing. We send it to another Derived Column Transformation
named “der Parse Footer.”

Note:■■   Jamie Thomson wrote a great post entitled “SSIS: Suggested Best Practices and Naming Conventions”
(http://sqlblog.com/blogs/jamie_thomson/archive/2012/01/29/suggested-best-practises-
and-naming-conventions.aspx). I often use Jamie’s naming conventions.

We want the number of rows and the datetime of the extraction. I use the expressions in Figure 7-17 to parse
the Footer Row Count and Footer Extract DateTime:

Figure 7-16.  Configuring the Conditional Split Transformation

Figure 7-17.  Parsing the Row Count and Extract Date

http://consultingblogs.emc.com/jamiethomson/archive/2006/01/05/SSIS_3A00_-Suggested-Best-Practices-and-naming-conventions.aspx
http://consultingblogs.emc.com/jamiethomson/archive/2006/01/05/SSIS_3A00_-Suggested-Best-Practices-and-naming-conventions.aspx

CHAPTER 7 ■ Flat File Source Patterns

149

Now we have the footer row metadata in the Data Flow pipeline. We can terminate this branch of the
pipeline using another Derived Column transformation: “der Trash Destination Footer.” Connect “der Parse
Footer” to “der Trash Destination Footer.” Right-click the data flow path and click Enable Data Viewer. Execute
the package in the Debugger to view the contents of the footer row, as shown in Figure 7-18:

Figure 7-18.  Footer Row, Parsed

You can see from the figure above that five (5) data rows exited the Conditional Split transformation named
“cspl Detect Footer.” We can observe the contents of the footer row after parsing in the Data Viewer.

Consuming a Header Row
Header rows are even easier to read. Let’s start with a look at the source file named MyFileHeaderSource.csv:

5 rows, extracted 10/5/2011 10:22:12 AM

ID,Name,Value
11,Andy,12
22,Christy,13
33,Stevie Ray,14
44,Emma Grace,15
55,Riley Cooper,16

You can read header rows a few different ways. In this solution, we utilize one Flat File Connection Manager
and one Data Flow to parse the header row the data. We rely heavily on Script Component logic for parsing and
buffering operations.

Begin by creating a new SSIS package. I named mine ParseFileHeader2.dtsx.

Note:■■  I n the demo code, there is a messy solution for loading file headers and data – a package named
ParseFileHeader.dtsx. It avoids the Script Component at the expense of loading the file contents twice. Yuck! It’s
suitable for very small files, but even then it’s not optimal. I left this package in the solution to demonstrate that
some patterns function but don’t scale. In my career, I have written many SSIS packages that do not scale. It is
how I learned to write packages that do scale!

CHAPTER 7 ■ Flat File Source Patterns

150

Add a Data Flow Task and open the Data Flow Task editor. Add a Flat File Source adapter and open its editor.
Use the New button to create a new Flat File Connection Manager aimed at MyFileHeaderSource.csv. Uncheck
the “Column names in the first data row” checkbox. Be sure to click the Advanced page of the Connection
Manager Editor and change the names of Column 0 and Column 1 to ID and Name, respectively.

Close the Connection Manager and Source adapter editors and drag a Script Component onto the Data Flow
canvas. When prompted, select Transformation as the use of this Script Component. Open the Script Component
editor and change the Name property to “scr Parse Header and Data.” Click the Input Columns page and select
both columns (ID and Name). Click on the Inputs and Outputs page. Rename “Output 0” to “Header” and
change the SynchronousInputID property to None. Expand the Header output and click the Output Columns
virtual folder. Click the Add Column button, name it ExtractDateTime, and change the Data Type to “database
timestamp [DT_DBTIMESTAMP].” Click the Add Column button again, name this new column RowCount, and
leave the Data Type set to the default (“four-byte unsigned integer [DT_UI4]”).

Click the Add Output button and name this new output Data. Expand the output virtual folder and select the
Output Columns virtual folder. As you did for the Header output, create two columns with the following properties:

ID, four-byte unsigned integer [DT_UI4]•	

Name, string [DT_STR]•	

Return to the Script page and set the ScriptLanguage property to Microsoft Visual Basic 2010. Click the Edit
Script button. When the editor opens, add a variable declaration at the top of the class:

Public Class ScriptMain
 Inherits UserComponent

Dim iRowNum As Integer = 0

Replace the code in the Input0_ProcessInputRow subroutine with the following code:

 Public Overrides Sub Input0_ProcessInputRow(ByVal Row As Input0Buffer)

' increment rownum
 iRowNum += 1

 Select Case iRowNum
 Case 1
 ' parse
 Dim sTmpCount As String = Row.ID
 sTmpCount = Strings.Trim(Strings.Left(Row.ID, Strings.InStr(Row.ID, " ")))
 Dim sTmpDate As String = Row.Name
 sTmpDate = Strings.Replace(Row.Name, " extracted ", " ")

 ' header row
 With HeaderBuffer
 .AddRow()
 .RowCount = Convert.ToInt32(sTmpCount)
 .ExtractDateTime = Convert.ToDateTime(sTmpDate)
 End With
 Case 2
 ' ignore
 Case 3
 'column names
 Case Else
 ' data rows

s

151

 With DataBuffer
 .AddRow()
 .ID = Convert.ToInt32(Row.ID)
 .Name = Row.Name
 End With
 End Select
 End Sub

This script counts the rows flowing through the Script Component and uses the number of the row to decide
the disposition of the output row. A Select Case statement is driven by row number detection, and each row
increments the row number incrementor (iRowNum). The first row is the header row and contains the extract
metadata. The next two rows contain a scratch row of dashes and the Column Names, respectively. The remainder
of the file contains data rows, and is addressed in the Select Case Else condition of the Select Case statement.

Close the VSTA Projects script editor and click the OK button on the Script Component editor. Terminate the
Header and Data pipelines with the Data Flow component of your choice (I use Derived Column transformations
named “der Header” and “der Data”).

Test the package by executing it in the Debugger. Your results should be similar to those shown in Figure 7-19:

Figure 7-19. Green checks rock!

Producing a Footer Row
Let’s look at producing a footer row and adding it to the data file. For this pattern, we will leverage project
and package parameters. We will also leverage the Parent-Child pattern, which will be discussed in detail in
another chapter. We are not going to build the package that creates a flat file containing data. We will start with
the assumptions that an extract file exists and we know the number of rows and the extract date. We will use
parameters to transmit metadata from the parent package to the child package. Let’s get started!

Create a new SSIS package and name it WriteFileFooter.dtsx. Click on the Parameters tab and add the
following parameters:

CHAPTER 7 ■ Flat File Source Patterns

152

Name			 Data Type	 Value		 Required
AmountSum		 Decimal		 0		 False
DateFormat		 String				 True
Debug			 Boolean		 True		 False
Delimiter		 String		 ,		 True
ExtractFilePath		 String				 True
LastUpdateDateTime	 DateTime	 1/1/1900	 True
RecordCount		 Int32		 0		 True

The parameters, when entered, appear as shown in Figure 7-20:

Figure 7-20.  Parameters for the WriteFileFooter.dtsx Package

The Sensitive property for each parameter is set to False. The Description is optional and available in the image.
We’re going to do the heavy lifting in a Script Task. Return to the Control Flow and drag a Script Task onto the

canvas. Change the name to “scr Append File Footer” and open the editor. On the Script page, click the ellipsis in
the ReadOnlyVariables property’s value textbox. When the Select Variables window displays, select the following
variables:

System::PackageName•	

System::TaskName•	

$Package::AmountSum•	

$Package::DateFormat•	

$Package::Debug•	

$Package::Delimiter•	

$Package::ExtractFilePath•	

$Package::LastUpdateDateTime•	

$Package::RecordCount•	

The Select Variables window will not appear exactly as shown in Figure 7-21, but these are the variables you
need to select for use inside the “scr Append File Footer” Script Task:

CHAPTER 7 ■ Flat File Source Patterns

153

Click the OK button to close the Select Variables window. Set the ScriptLanguage property to Microsoft
Visual Basic 2010. Click the Edit Script button to open the VstaProjects window. At the top of the ScriptMain.vb
code window, you will find an “Import” region. Add the following lines to that region:

Imports System.IO
Imports System.Text

Just after the Partial Class declaration, add the variable declaration for the bDebug variable (the Dim
statement below):

Partial Public Class ScriptMain
 Inherits Microsoft.SqlServer.Dts.Tasks.ScriptTask.VSTARTScriptObjectModelBase

Dim bDebug As Boolean

Replace the code in Public Sub Main with the following:

 Public Sub Main()

 ' 1: detect Debug setting ...
 bDebug = Convert.ToBoolean(Dts.Variables("Debug").Value)

 ' 2: declare and initialize variables ...
 ' 2a: generic variables ...
 Dim sPackageName As String = Dts.Variables("PackageName").Value.ToString
 Dim sTaskName As String = Dts.Variables("TaskName").Value.ToString
 Dim sSubComponent As String = sPackageName & "." & sTaskName
 Dim sMsg As String
 ' 2b: task-specific variables ...

Figure 7-21.  Selecing Variables for the Footer File

CHAPTER 7 ■ Flat File Source Patterns

154

 Dim sExtractFilePath As String = Dts.Variables("ExtractFilePath").Value.ToString
 Dim iRecordCount As Integer = Convert.ToInt32(Dts.Variables("RecordCount").Value)
 Dim sAmountSum As String = Dts.Variables("AmountSum").Value.ToString
 Dim sDateFormat As String = Dts.Variables("DateFormat").Value.ToString
 Dim sDelimiter As String = Dts.Variables("Delimiter").Value.ToString
 Dim sLastUpdateDateTime As String= _
 Strings.Format(Dts.Variables("LastUpdateDateTime").Value, sDateFormat) _
'"yyyy/MM/dd hh:mm:ss.fff")
 Dim sFooterRow As String
 Dim s As Integer = 0

 ' 3: log values ...
 sMsg = "Package Name.Task Name: " & sSubComponent & ControlChars.CrLf & _
 ControlChars.CrLf & _
 "Extract File Path: " & sExtractFilePath & ControlChars.CrLf & _
ControlChars.CrLf & _
 "Record Count: " & iRecordCount.ToString & ControlChars.CrLf & _
ControlChars.CrLf & _
 "Amount Sum: " & sAmountSum & ControlChars.CrLf & ControlChars.CrLf & _
 "Date Format: " & sDateFormat & ControlChars.CrLf & ControlChars.CrLf & _
 "Delimiter: " & sDelimiter & ControlChars.CrLf & ControlChars.CrLf & _
 "LastUpdateDateTime: " & sLastUpdateDateTime & ControlChars.CrLf & _
ControlChars.CrLf & _
 "Debug: " & bDebug.ToString
 Dts.Events.FireInformation(0, sSubComponent, sMsg, "", 0, True)
 If bDebug Then MsgBox(sMsg)

 ' 4: create footer row ...
 sFooterRow = iRecordCount.ToString & sDelimiter & sAmountSum & sDelimiter & _
sLastUpdateDateTime

 ' 5: log...
 sMsg = "Footer Row: " & sFooterRow
 Dts.Events.FireInformation(0, sSubComponent, sMsg, "", 0, True)
 If bDebug Then MsgBox(sMsg)

 ' 6: check if the file is in use ...
 While FileInUse(sExtractFilePath)
 ' 6a: if file is in use, sleep for a second ...
 System.Threading.Thread.Sleep(1000)
 ' 6b: incrementor ...
 s += 1
 ' 6c: if incrementor reaches 10 (10 seconds),
 If s > 10 Then
 ' exit the loop ...
 Exit While
 End If 's > 10
 End While 'FileInUse(sExtractFilePath)

CHAPTER 7 ■ Flat File Source Patterns

155

 ' 7: log...
 If s = 1 Then
 sMsg = "File was in use " & s.ToString & " time."
 Else ' s = 1
 sMsg = "File was in use " & s.ToString & " times."
 End If ' s = 1
 Dts.Events.FireInformation(0, sSubComponent, sMsg, "", 0, True)
 If bDebug Then MsgBox(sMsg)

 ' 8: if the file exists...
 If File.Exists(sExtractFilePath) Then
 Try
 ' 8a: open it for append, encoded as built, using a streamwriter ...
 Dim writer As StreamWriter = New StreamWriter(sExtractFilePath, True, _
Encoding.Default)
 ' 8b: add the footer row  ...
 writer.WriteLine(sFooterRow)
 ' 8c: clean up ...
 writer.Flush()
 ' 8d: get out ...
 writer.Close()
 ' 8e: log ...
 sMsg = "File " & sExtractFilePath & " exists and the footer row has " & _
"been appended."
 Dts.Events.FireInformation(0, sSubComponent, sMsg, "", 0, True)
 If bDebug Then MsgBox(sMsg)
 Catch ex As Exception
 ' 8f: log ...
 sMsg = "Issue with appending footer row to " & sExtractFilePath & _
" file: " & ControlChars.CrLf & ex.Message
 Dts.Events.FireInformation(0, sSubComponent, sMsg, "", 0, True)
 If bDebug Then MsgBox(sMsg)
 End Try
 Else
 ' 8g: log ...
 sMsg = "Cannot find file: " & sExtractFilePath
 Dts.Events.FireInformation(0, sSubComponent, sMsg, "", 0, True)
 If bDebug Then MsgBox(sMsg)
 End If ' File.Exists(sExtractFilePath)

 ' 9: return success ...
 Dts.TaskResult = ScriptResults.Success

 End Sub

Add the following function after Public Sub Main():

 Function FileInUse(ByVal sFile As String) As Boolean

 If File.Exists(sFile) Then
 Try

CHAPTER 7 ■ Flat File Source Patterns

156

 Dim f As Integer = FreeFile()
 FileOpen(f, sFile, OpenMode.Binary, OpenAccess.ReadWrite, _
OpenShare.LockReadWrite)
 FileClose(f)
 Catch ex As Exception
 Return True
 End Try
 End If
 End Function

This script builds the footer row and appends it to the Extract file. The first thing we do – at the comment
labeled 1 – is assign a value to the Debug variable. I use the Debug variable to control message boxes displaying
variable values and other pertinent information. I describe why in the chapter on Execution Patterns.

At comment 2, we declare and initialize variables. I break variables into two categories: generic and task-
specific variables. At comment 3, we build a message in the variable sMsg. This message contains the values of
each variable used in the Script thus far. If we are running in Debug mode (if bDebug is True), the code displays a
message box (via the MsgBox function) containing the contents of sMsg. Whether we’re running in Debug Mode or
not, I use the Dts.Events.FireInformation method to raise an OnInformation event, passing it the contents of sMsg.
This means the information is always logged and is optionally displayed by a message box. I like options (a lot).

Comment 4 has us constructing the actual footer row and placing its text in the String variable
sFooterRow. Note the delimiter is also dynamic. The String variable sDelimiter contains the value passed to the
WriteFileFooter into the Package Parameter named $Package::Delimiter. At comment 5, we log the contents of
the footer row.

At comment 6, we initiate a check to make sure the Extract File is not marked as “in use” by the operating
system. There are many ways to detect the state of the file in the file system, so I created a Boolean function
named FileInUse to encapsulate this test. If the function I created doesn’t work for you, you can construct your
own. If the file is in use, the code initiates a While loop that sleeps the thread for one second. Each iteration
through the loop causes the variable s (the incrementor in this example) to increment at comment 6b. If s
exceeds ten, the loop exits. We will only wait 10 seconds for the file to be usable. Note that if the file remains in
use at this juncture, we still move on. We’ll deal with the file in use matter later, but we will not hang ourselves in
a potentially endless loop waiting for the file’s availability. We will instead fail. Whether the file is in use or not in
use, the script logs its state at comment 7.

At comment 8, we check for the existence of the file and begin a Try-Catch. If the file doesn’t exist, I opt to
log a status message (via Dts.Events.FireInformation) and continue (see comment 8g). The Try-Catch enforces
the final test of the file’s usability. If the file remains in use here, the Catch fires and logs the status message at
comment 8f. At 8f and / or 8g, you may very well decide to raise an error using the Dts.Events.FireError method.
Raising an error causes the Script Task to fail, and you may want this to happen. At comments 8a through 8d, we
open the file, append the footer row, close the file, and clean up. At comment 8e, the code logs a status message.
If anything fails when executing 8a through 8e, code execution jumps to the Catch block.

If all goes well, the code returns Success to the SSIS Control Flow via the Dts.TaskResult function (comment 9).
The Script Task does all the work in this pattern.

CHAPTER 7 ■ Flat File Source Patterns

157

If you’re playing along at home, you should adjust the path of the ExtractFooterFilePath variable.
I added a Sequence Container named “seq Test WriteFileFooter” and included an Execute Package

Task named “ept Execute WriteFileFooter Package.” On the Package page of the Execute Package Task
Editor, set the ReferenceType property to “Project Reference” and select WriteFileFooter.dtsx from the
PackageNameFromProjectReference property dropdown. Map the TestParent package variables to the
WriteFileFooter package parameters as shown in Figure 7-23:

Figure 7-23.  Mapping Package Parameters

Figure 7-22.  Variables in the TestParent.dtsx Package

Execute TestParent.dtsx to test the functionality. The package executes successfully and the footer row is
appended to the file as shown in Figure 7-24:

I created a test package called TestParent.dtsx to test this package. The package has variables that align with
the parameters of the WriteFileFooter.dtsx package, as shown in Figure 7-22:

CHAPTER 7 ■ Flat File Source Patterns

158

Producing a Header Row
Producing a header row is a very simple operation in SSIS 2012, provided you know the number of rows to be
loaded in advance. You simply load the destination flat file with the header row in one Data Flow Task, and then
load the data rows to the same flat file in a subsequent Data Flow Task. As we say in Farmville, Virginia: “dog
simple.” There are some subtle complexities in this design, though.

We’ll start with a simple file named MyFileHeaderExtract.csv that contains the following data:

ID,Name,Value
11,Andy,12
22,Christy,13
33,Stevie Ray,14
44,Emma Grace,15
55,Riley Cooper,16

Add a new SSIS package named WriteFileHeader.dtsx to your SSIS project. Add the package parameters
shown in Figure 7-25:

Figure 7-24.  Mission Accomplished

Figure 7-25.  WriteFileHeader.dtsx Parameters

CHAPTER 7 ■ Flat File Source Patterns

159

Add two Data Flow Tasks to the Control Flow. Name the first “dft Write Header Row” and the second “dft
Write Data Rows.” Open the editor for “dft Write Header Row” and add a Script Component named “scrc Build
Header Row” to the Data Flow Task. When prompted, configure the Script Component to act as a Source. Open
the editor and set the ScriptLanguage property to Microsoft Visual Basic 2010. Set the ReadOnlyVariables
property to reference:

$Package::AmountSum•	

$Package::Delimiter•	

$Package::LastUpdateDateTime•	

$Package::RecordCount•	

On the Inputs and Outputs page, change the SynchronousInputID property of Output 0 to None and add an
output column named HeaderRow (String datatype, 500 length) to Output 0. Click the Script page and the Edit
Script button. Replace the code in the CreateNewOutputRows() subroutine:

 Public Overrides Sub CreateNewOutputRows()

 ' create header row ... ' Get variable values ...
 Dim iRecordCount As Integer = Me.Variables.RecordCount
 Dim sDelimiter As String = Me.Variables.Delimiter
 Dim dAmountSum As Decimal = Convert.ToDecimal(Me.Variables.AmountSum)
 Dim dtLastUpdateDateTime As DateTime = _
Convert.ToDateTime(Me.Variables.LastUpdateDateTime)
 
 Dim sHeaderRow As String = iRecordCount.ToString & sDelimiter & _
 dAmountSum.ToString & sDelimiter & _
dtLastUpdateDateTime.ToString

 With Output0Buffer
 .AddRow()
 .HeaderRow = sHeaderRow
 End With
 End Sub

Add a Flat File Destination adapter and connect a Data Flow Path from the Script Component to it. Open the
Flat File Destination Editor and click the New button beside the Flat File Connection Manager dropdown. When
the Flat File Format window displays, select Delimited and click the OK button. Name the Flat File Connection
Manager “Flat File Header Output” and supply (or select) a file path. On the Columns page, configure a landing
column for the HeaderRow column from the “scrc Build Header Row” Script Component. Click the OK button to
return to the Flat File Destination Editor. Make sure the “Overwrite data in the file” checkbox (in the Connection
Manager page) is checked. It should be; this is the default. Click on the Mappings page and complete the
Destination configuration. This Data Flow Task will construct and load the Header Row.

On the Control Flow, add a Success Precedence Constraint from “dft Write Header Row” to the “dft Write
Data Rows” Data Flow Task. Open the editor for “dft Write Data Rows” and add a Flat File Source adapter.
Open the Flat File Source Editor and click the New button to create a new Flat File Connection Manager. When
prompted, select Delimited. Name it “Extract File Input” and navigate to the MyFileHeaderExtract.csv file you
created earlier. On the Columns page, delete the value in the Column Delimiter dropdown. To refresh the view,
click the Refresh button. On the Advanced page, rename the column from “ID,Name,Value” to “Row” and set the
OutputColumnWidth property to 500. Click the Ok buttons to close the Flat File Connection Manager Editor and
the Flat File Source Editor.

CHAPTER 7 ■ Flat File Source Patterns

160

Add a Flat File Destanation adapter and connect a Data Flow Path from the Flat File Source adapter to the
Flat File Destination adapter. Open the Flat File Destination adapter and set its Connection Manager to the Flat
File Header Output. Be sure to uncheck the “Overwrite the data in the file” checkbox on the Connection Manager
page. On the Mappings page, map the Row column from the Available input Columns to the HeaderRow in the
Available Destination Columns. Close the Flat File Destination Editor.

Let’s make these Connection Managers dynamic! Click the Extract File Input Flat File Connection Manager,
and then press the F4 key to display Properties. Click the Expressions property and click the ellipsis in the
value textbox. Click the dropdown in the Property column of the first row and click ConnectionString. In the
corresponding Expression value textbox, click the ellipsis to display the Expression Builder. Expand the Variables
and Parameters virtual folder in Expression Builder and drag $Package::ExtractFilePath into the Expression
textbox. Click the Ok button to close the Expression Builder. The Property Expressions Editor window will appear
as shown in Figure 7-26:

Figure 7-26.  Dynamic ConnectionString Property

Close the Property Expressions Editor. You have now assigned the ConnectionString property to the value
passed to the ExtractFilePath package parameter passed to this package when it is called from another package.
Repeat this process to dynamically assign the value of the $Package::OutputFilePath package parameter to the
ConnectionString property of the Flat File Header Output Flat File Connection Manager.

To test this package, return to TestParent.dtsx. Let’s add a couple of variables to use with the parameters we
just mapped to Connection Manager expressions: ExtractHeaderFilePath and OutputPath. Supply a value for the
OutputPath variable that represents the location of the file you want to create. (Note: this file may not exist!) Also,
supply the path to the MyFileHeaderExtract.csv as the default value for the ExatrctHeaderFilePath cariable. On
the Control Flow, add a Sequence Container and rename it “seq Test WriteHeader.. Add an Execute Package Task
to the Sequence Container and rename it “ept Execute WriteFileHeader Package.” Open the Execute Package Task
Editor and configure a Project Reference to execute the WriteFileHeader.dtsx package. Configure the Parameter
Bindings page as shown in Figure 7-27:

s

161

Close the Execute Package Task Editor and disable the “seq Test WriteFileFooter” Sequence Container.
Execute the package and observe the results. You should results like those shown in Figure 7-28:

Figure 7-27. Parameter Mapping in the Execute Package Task

Figure 7-28. Success!

I like this pattern because it utilizes SSIS components without resorting to too much scripting. I don’t like
everything about this pattern, though. I need to know the number of rows before calling this package, which isn’t
hard to acquire – I can simply add a Row Count Transformation to a Data Flow and count the rows as they are
loaded into the extract file. But then I must reload the extract file, after the fact. For large files and scalability, I would
attempt to ascertain the number of rows before loading the file and then integrate the functionality demonstrated
in this package into the loader package. For smaller loads of data that will not scale, this package is acceptable.

CHAPTER 7 ■ Flat File Source Patterns

162

The Archive File Pattern
The Archive File Pattern is largely responsible for the book you are now reading. How? It was the first widely
adopted design pattern package that I built. After re-using this pattern in several locations, I became convinced
SSIS lent itself to design pattern-based architectures. Shortly after this realization, I discussed the idea over
dinner in Bellevue, Washington with friends who work with SSIS and who also write books. We agreed Design
Patterns offer interesting solutions to many data integration problems.

The ArchiveFile package is designed to copy a flat data file from one directory to another, appending a date-
time stamp to the original file name. The full path of the original file is supplied in the SourceFilePath parameter,
the format of the date-time stamp in the DateStampFormat parameter. The destination, or Archive, directory is
supplied to the ArchiveDirectory parameter. Should the target file already exist, you can control overwrites of
the destination file via the OverwriteDestination parameter. The package usually deletes the original file, but the
CopyOnly parameter controls this function. If the SourceFilePath is not found, you can raise an error or simply
log this condition. The ExceptionOnFileNotFound parameter controls whether the package raises an error if the
source file is not found. Finally, the Debug parameter controls whether the package is being executed in Debug
mode (something I cover in more detail in the Execution Patterns chapter). The ArchiveFile package parameters,
when configured, will appear as in Figure 7-29:

Figure 7-29.  ArchiveFile Package Parameters

Be sure you include default values for an existing folder for the ArchiveDirectory parameter and a path to
a valid file for the SourceFilePath parameter. For all other parameter default values, use what I have supplied in
Figure 7-29.

There are a couple ways to design this package. You can rely heavily on scripting or utilize the File System
Task. Which should you choose? When consulting, I ask questions to determine the comfort-level of those
charged with maintaining the packages. Some data integration developers are comfortable with .Net coding;
others are not. Since SSIS gives me a choice, I build packages so they are easily maintained by the team charged
with maintenance.

In this package, I am choosing a hybrid of scripting and the File System Task, leaning away from scripting.
Add the following variables to the package:

User::FormattedFileName [String]•	

User::OkToProceed [Boolean]•	

User::SourceFileDirectory [String]•	

User::WorkingCopyFileName [String]•	

CHAPTER 7 ■ Flat File Source Patterns

163

Add a Script Task to the Control Flow and name it “scr Apply Format.” Open the editor and change the
ScriptLanguage property to Microsoft Visual Basic 2010. Add the following variables and parameters to
the ReadOnlyVariables property:

System::TaskName•	

System::PackageName•	

$Package::CopyOnly•	

$Package::DateStampFormat•	

$Package::Debug•	

$Package::ExceptionOnFileNotFound•	

$Package::SourceFilePath•	

Add the following variables and parameters to the ReadWriteVariables property:

User::FormattedFileName•	

User::OkToProceed•	

User::SourceFileDirectory•	

User::WorkingCopyFileName•	

Click the Edit Script button to open the VSTAProjects script editor. At the top of the ScriptMain.vb file, add
the following statement to the Imports region:

Imports System.IO

Replace the code in Public Sub Main() with the following:

	 ' 1: declare bDebug
	 Dim bDebug As Boolean

 Public Sub Main()

 ' 2: detect Debug mode ...
 bDebug = Convert.ToBoolean(Dts.Variables("Debug").Value)

 ' 3:variables declaration ...
 Dim sPackageName As String = Dts.Variables("System::PackageName").Value.ToString
 Dim sTaskName As String = Dts.Variables("System::TaskName").Value.ToString
 Dim sSubComponent As String = sPackageName & "." & sTaskName
 Dim sDateStampFormat As String = _
Dts.Variables("$Package::DateStampFormat").Value.ToString
 Dim sSourceFilePath As String = _
Dts.Variables("$Package::SourceFilePath").Value.ToString
 Dim bExceptionOnFileNotFound As Boolean = _
Convert.ToBoolean(Dts.Variables("ExceptionOnFileNotFound").Value)
 Dim bCopyOnly As Boolean = Convert.ToBoolean(Dts.Variables("CopyOnly").Value)
 Dim sFileName As String
 Dim sBaseFileName As String
 Dim sExtension As String
 Dim sSourceFileDirectory As String

CHAPTER 7 ■ Flat File Source Patterns

164

 Dim sWorkingCopyFileName As String
 Dim sFormattedFileName As String
 Dim sMsg As String

	 ' 4: work with the file
 Try
 ' 4a: parse the source file directory ...
 sSourceFileDirectory = Strings.Trim(Strings.Left(sSourceFilePath, _
 Strings.InStrRev(sSourceFilePath, "\")))
 ' 4b: parse the filename ...
 sFileName = Strings.Trim(Strings.Right(sSourceFilePath, _
Strings.Len(sSourceFilePath) - Strings.InStrRev(sSourceFilePath, "\")))
 ' 4c: parse the filepath minus the extension...
sBaseFileName = Strings.Left(sSourceFilePath, Strings.InStrRev(sSourceFilePath, _
".") - 1)
 ' 4d: build working copy file name ...
 sWorkingCopyFileName = sSourceFileDirectory & "_" & sFileName

 ' 4e: parse extension ...
 sExtension = Strings.Trim(Strings.Right(sSourceFilePath, _
Strings.Len(sSourceFilePath) - Strings.InStrRev(sSourceFilePath, ".")))
 ' 4f: apply formatting to filename and set the output value of FormattedFileName
 sFormattedFileName = sBaseFileName & _
Strings.Format(Date.Now, sDateStampFormat) & "." & sExtension
 ' 4g: assign external varables ...
 Dts.Variables("User::FormattedFileName").Value = sFormattedFileName
 Dts.Variables("SourceFileDirectory").Value = sSourceFileDirectory
 Dts.Variables("WorkingCopyFileName").Value = sWorkingCopyFileName

 ' 4h: check for valid file ...
 If File.Exists(sSourceFilePath) Then
 ' 4i: set OkToProceed flag ...
 Dts.Variables("OkToProceed").Value = True
 Else
 ' 4j: if raising an exception on file not found ...
 If bExceptionOnFileNotFound Then
 ' 4k: fire an error ...
 Dts.Events.FireError(1001, sSubComponent, "cannot locate file " & _
sSourceFilePath, "", 0)
 End If
 ' 4l: set OkToProceed flag ...
 Dts.Variables("OkToProceed").Value = False
 sMsg = "file " & sSourceFilePath & " not found."
 If bDebug Then MsgBox(sMsg, MsgBoxStyle.OkOnly, sSubComponent)
 ' 4m: log file not found, exception or not ...
 Dts.Events.FireInformation(2001, sSubComponent, sMsg, "", 0, True)
 End If

 Catch ex As Exception
 ' 4n: log error message ...
 Dts.Events.FireError(1001, sSubComponent, ex.Message, "", 0)
 End Try

CHAPTER 7 ■ Flat File Source Patterns

165

 ' 5: log information
 sMsg = "DateStampFormat: " & sDateStampFormat & ControlChars.CrLf & _
ControlChars.CrLf & _
 "ExceptionOnFileNotFound: " & bExceptionOnFileNotFound.ToString & _
ControlChars.CrLf & ControlChars.CrLf & _
 "CopyOnly: " & bCopyOnly.ToString & ControlChars.CrLf & ControlChars.CrLf & _
 "OkToProceed: " & Dts.Variables("OkToProceed").Value.ToString & _
ControlChars.CrLf & ControlChars.CrLf & _
 "SourceFileDirectory: " & sSourceFileDirectory & ControlChars.CrLf & _
ControlChars.CrLf & _
 "FileName: " & sFileName & ControlChars.CrLf & ControlChars.CrLf & _
 "Extension: " & sExtension & ControlChars.CrLf & ControlChars.CrLf & _
 "BaseFileName: " & sBaseFileName & ControlChars.CrLf & ControlChars.CrLf & _
 "FormattedFileName: " & sFormattedFileName & ControlChars.CrLf & _
ControlChars.CrLf & _
 "WorkingCopyFileName: " & sWorkingCopyFileName & ControlChars.CrLf & _
ControlChars.CrLf

 If bDebug Then MsgBox(sMsg, MsgBoxStyle.OkOnly, sSubComponent)
 Dts.Events.FireInformation(2001, sSubComponent, sMsg, "", 0, True)
 ' 6: output
 Dts.TaskResult = ScriptResults.Success
 End Sub

As in other scripts, we declare (Dim) a variable named bDebug to detect whether the package is executing
in Debug Mode at comments 1 and 2. At comment 3, the script declares the remainder of the variables used,
assigning some values passed in from SSIS package variables and parameters. At comments 4a through 4c,
the code picks the Source File Path variable apart, parsing the source directory, filename with extension, and
filename without extension. At comments 4d through 4f, the filename extension is parsed and a filename for a
“working copy” is created and formatted with the date time-stamp supplied from the SSIS package parameters.
At comment 4g, the script assigns variable values to SSIS package variables. The code between comments 4h
and 4m tests and responds to the existence of the source file. If an exception is encountered in any of the steps
between comments 4a and 4m, the Catch block at comment 4n is executed and logs the exception as an error,
which halts the execution of the Script Task. The code at comment 5 builds, displays (if running in Debug Mode),
and logs a message containing the variable values inside the Script Task. This is extremely useful information
when troubleshooting. At comment 6, the Script returns a Success result to the Dts.TaskResult object.

The remaining steps in the file archive process are as follows:

1.	 Create a working copy of the source file

2.	 Rename the working copy to the Formatted File Name (including the date time-stamp)

3.	 Move the newly-renamed file to the archive directory

4.	 Delete the orginal file (unless this is a CopyOnly operation)

If the OkToProceed (Boolean) package variable is set to True (this is accomplished in the Script code at
comment 4i), the remaining steps in the process are managed by File System Tasks.

Drag four File System Tasks onto the Control Flow canvas. Rename the first “fsys Copy Working File” and
open its editor. Change the Operation property to “Copy File.” Set the IsSourcePathVariable property to True and
the SourceVariable property to “$Package::SourceFilePath.” Set the IsDestinationPathVariable to True and set the
DestinationVariable property to “User::WorkingCopyFileName.” Set the OverwriteDestination property to True.
Close the File System Task Editor.

Rename the second File System Task “fsys Rename File” and open its editor. Set the Operation
property to “Rename File”.Set the IsSourcePathVariable property to True and the SourceVariable property to

CHAPTER 7 ■ Flat File Source Patterns

166

At issue is the content of the WorkingCopyFileName variable. The error is correct; the variable value is
currently empty. However, since we wrote the code, we know that, in section 4d of the code listing, the script will
populate the content of an internal string variable named sWorkingCopyFile. In section 4g of the code, the content
of this interal variable will be assigned to the value of the SSIS package variable named WorkingCopyFileName.
We know that, but the SSIS Package does not. It is doing its level best to inform us of this issue. In fact, we cannot
execute the package in its current state without raising an error message, as shown in Figure 7-31:

“User::WorkingCopyFileName.” Set the IsDestinationPathVariable to True and set the DestinationVariable
property to “User::FormattedFileName.” Set the OverwriteDestination property to True. Close the File System
Task Editor.

Rename the third File System Task “fsys Move File” and open its editor. Set the Operation property
to “Move File.” Set the IsSourcePathVariable property to True and the SourceVariable property to
“User::FormattedFileName.” Set the IsDestinationPathVariable to True and set the DestinationVariable property to
“$Package::ArchiveDirectory.” Set the OverwriteDestination property to True. Close the File System Task Editor.

Rename the fourth File System Task “fsys Delete Original File” and open its editor. Set the Operation
property to “Delete File.” Set the IsSourcePathVariable property to True and the SourceVariable property to
“$Package::SourceFilePath.” Close the File System Task Editor.

Use a Success Precedence Constraint to connect the “scr Apply Format” Script Task to the “fsys Copy
Working File” File System Task. Double-click the precedence constraint to open the editor and set the Evaluation
Option property to “Expression and Constraint.” Set the Value property to “Success” and the Expression property
to “@[User::OkToProceed].” This constraint will only fire if the “scr Apply Format” Script Task completes
execution successfully and sets the OkToProceed (Boolean) variable to True. Connect Success Precedence
Constraints between the “fsys Copy Working File” File System Task and the “fsys Rename File” File System Task,
the “fsys Rename File” File System Task and the “fsys Move File” File System Task, and the “fsys Move File”
File System Task and the “fsys Delete Original File” File System Task. Double-click the Precedence Constraint
between the “fsys Move File” File System Task and the “fsys Delete Original File” File System Task to open the
editor. Set the Evaluation Option property to “Expression and Constraint.” Set the Value property to “Success”
and the Expression property to “!@[$Package::CopyOnly]” (this equates to NOT [!] $Package::CopyOnly, or when
$Package::CopyOnly is False). For the “fsys Delete Original File” File System Task to fire, the “fsys Move File” File
System Task must succeed and the $Package::CopyOnly package parameter must be False. This makes sense, if
you only want to copy the file to the archive directory; you don’t want to delete the original.

In many versions of this design pattern, I also “variable-ize” the OverwriteDestination properties
of the various File System Tasks, managing these values on the Expressions pages by setting the
OverwriteDestinationFile dynamic property expressions with Boolean package parameters. I do this because
some enterprises have requirements regarding keeping or discarding data files regardless of whether they are
temporary or not.

Your File System tasks may be marked with error indicators (red circles containing white “X”’s). Hovering
over a task so marked will display the error. For example, I see the error show in Figure 7-30: “Variable
‘WorkingCopyFileName’ is used as a source or destination and is empty.”

Figure 7-30.  The WorkingCopyFileName Variable is Empty

CHAPTER 7 ■ Flat File Source Patterns

167

Summary
In this chapter, we examined a common pattern for loading a basic flat source file into SQL Server, a pattern
to load a variable-length rows, patterns for creating and consuming flat file header and footer rows, and an
extremely useful SSIS design pattern for archiving flat files.

The validation is accurate. Now what? There’s a clue in the error, near the very top. This is a “Package
Validation Error.” To address this, click on the “fsys Copy Working File” File System Task and press the F4 key
to display Properties. In the Execution group of properties, at the top of the list, we find the DelayValidation
property. This property’s default setting is False and that makes sense. There is a lot of design-time validation in
SSIS and it is mostly a good thing. Change this property value to True. Change DelayValidation to True for the
“fsys Rename File” and “fsys Move File” File System Tasks as well.

Now, try executing the ArchiveFile.dtsx SSIS package. My results are shown in Figure 7-32:

Figure 7-31.  Package Validation Error

Figure 7-32.  Successful Execution of the ArchiveFile.dtsx SSIS Package

169

Chapter 8

Parallel Data
Warehouse Patterns

Microsoft’s SQL Server Parallel Data Warehouse (PDW) appliance was introduced with SQL Server 2008 R2
and is Microsoft’s first massively parallel processing (MPP) offering. Although PDW is built upon the SQL Server
platform, it is a completely different product. As the name suggests, MPP uses multiple servers working as
one system, called an appliance, to achieve much greater performance and scan rates than in traditional SMP
systems. SMP refers to symmetric multi-processing; most database systems, such as all other versions of SQL
Server, are SMP.

To obtain a better understanding of the difference between SMP and MPP systems, let’s examine a common
analogy. Imagine you are handed a shuffled deck of 52 playing cards and asked to retrieve all of the Queens. Even
at your fastest, it would take you several seconds to retrieve the requested cards. Let’s now take that same deck
of 52 cards and divide it across ten people. No matter how fast you are, these ten people working together can
retrieve all of the Queens much faster than you can by yourself.

As you may have inferred, you represent the SMP system, and the ten people represent the MPP system. This
divide-and-conquer strategy is why MPP appliances are particularly well suited for high-volume, scan-intensive
data warehousing environments, especially ones that need to scale to hundreds of terabytes of storage. There are
other MPP appliance vendors available besides Microsoft; however, close integration with the Microsoft business
intelligence stack (SQL Server, Integration Services, Analysis Services, and Reporting Services) and a compelling
cost-per-terabyte make PDW a natural progression for organizations needing to take their SQL Server data
warehouse to the next level. In this chapter, we will walk through how to load data into the PDW appliance using
Integration Services. But first we will need to discuss some of the differences between PDW and SMP SQL Server.

PDW is built upon the SQL Server platform but has an architecture entirely its own. While the details of this
architecture could easily consume a book in its own right, we will only cover the most pertinent parts to ensure
you have the foundation necessary for loading data.

Tip■■   Learn more about Microsoft’s Parallel Data Warehouse at http://microsoft.com/pdw and
http://sqlpdw.com.

Before we proceed, it is important to note that only SQL Server 2008 R2 Business Intelligence Studio (BIDS) was
supported at the time of writing for the creation of Integration Services packages to load data into PDW. Thus, this
chapter will depart from the rest of the book in that it uses BIDS for its screenshots. Also, an actual PDW appliance
is required to execute the samples in this chapter. For those who do not have a PDW appliance, there is still much
information that can be gathered from this chapter regarding PDW architecture and loading best practices.

http://microsoft.com/pdw
http://sqlpdw.com

CHAPTER 8 ■ Parallel Data Warehouse Patterns

170

PDW Architecture Overview
Each PDW appliance has one control rack and one or more data racks. The control rack contains the following
nodes:

Control Node – Perhaps the most critical node in the appliance, the Control Node is •	
responsible for managing the workload, creating distributed query plans, orchestrating
data loads, and monitoring system operations.

Management Node – Among other administrative functions, the management node is •	
responsible for authentication, software updates, and system monitoring.

Backup Node – As the name suggests, this is where backups are stored.•	

Landing Zone Node – This is the node that is most relevant to this chapter. The Landing •	
Zone node is the only node in the entire appliance that is accessible for loading data.

Tip■■   Microsoft recommends running Integration Services packages from an external server. This best practice
reduces memory contention on the Landing Zone. If this type of server is not within your budget, you can purchase
and install SQL Server Integration Services on the Landing Zone to facilitate package execution and job scheduling
through SQL Agent Jobs.

Figure 8-1 depicts a single data-rack PDW configuration. Each PDW appliance is comprised of one or more
data racks but only a single control rack. In every data rack are ten Compute Nodes, plus one hot-spare standby
Compute Node for high availability.

CHAPTER 8 ■ Parallel Data Warehouse Patterns

171

At the core of PDW is the concept of “shared-nothing” architecture, where a single logical table is broken up
into numerous smaller pieces. The exact number of pieces depends on the number of data racks you have. Each of
these smaller pieces is then stored on a separate Compute Node. Within a single Compute Node, each data piece is
then split across 8 distributions. Furthermore, each of these 8 distributions has its own dedicated CPU, memory, and
LUNs (hence the term “shared-nothing”). There are numerous benefits that a shared-nothing architecture enables,
such as more linear scalability. But perhaps PDW’s greatest power is its ability to scan data at incredible speeds.

Let’s do some math. Assume we have a PDW appliance with one data rack, and we need to store a table
with one billion rows. Each Compute Node will store 1/10th of the rows, and each Compute Node will split its
data across 8 distributions. Thus, the one billion row table will be split into 80 pieces (10 Compute Nodes x 8
distributions each). That means each distribution will store 12,500,000 rows.

But what does this mean from the end-user’s standpoint? Let’s look at a hypothetical situation. You are
a user who needs to submit a query that joins two tables together: a Sales table with one billion rows, and a
Customer table with 50 million rows. And, as luck would have it, there are no indexes available that will cover
your query. This means you will need to scan, or read, every row in each table.

In an SMP system – where memory, storage, and CPU are shared – this query could take hours or days to
run. On some systems, it might not even be feasible to attempt this query, depending on factors such as the
server hardware and the amount of activity on the server. Suffice it to say, the query will take a considerable
amount of time to return and will most likely have a negative impact on other activity on the server.

In PDW, these kinds of queries often return in minutes – and a well-designed schema can even execute this
query in seconds. This is because the hardware is optimized for scans; PDW expects to scan every row in the table.
Remember how we said that every distribution has its own dedicated CPU, memory, and storage? Well, when you
submit the query to join one billion rows to 50 million rows, each distribution is performing a scan on its own Sales
table of 12,500,000 rows and Customer table with 625,000 rows. Not nearly as intimidating, is it? The data is then sent
back to the Control Node across an ultra-fast Dual-Infiniband channel to consolidate the results and return the data
to the end user. It is this divide-and-conquer strategy that results in PDW significantly outperforming SMP systems.

Control Rack

Management Node
Active/Passive

Control Node
Active/Passive

SQL

SQL

SQL

SQL

SQL

SQL

SQL

SQL

User Queries

Data Loading

Data Backup

Landing Zone

Backup Node
Passive Server

Dual Fibre
Channel

Dual
Infiniband

Private NetworkCorporate Network

Data Rack

Compute Node

Active Server Dedicated Storage

Figure 8-1.  A single data-rack PDW configuration

CHAPTER 8 ■ PARALLEL DATA WAREHousE PATTERns

172

PDW is also able to load data very efficiently. As previously mentioned, data is brought into the appliance
through the Landing Zone. Each Compute Node then uses a hashing algorithm to determine where to store
the data – down to the individual distribution and associated LUNs. A relatively small amount of overhead is
associated with this process. Because this overhead is incurred on every single load, transactional load patterns
(i.e., singleton inserts) should be avoided. PDW performs at its best when data is loaded in large, incremental
batches – you will see much better performance loading 10 files with 100,000 rows each than loading 1,000,000
rows individually, but you will see the best performance loading one file with 1,000,000 rows.

Data can be imported from numerous platforms, including from Oracle, SQL Server, MySQL, and flat files.
There are two primary methods of loading data into the PDW appliance: DWLoader and Integration Services. We
will briefly discuss when to use DWLoader versus Integration Services. After that, we will actually walk through
an example of loading data from SQL Server using Integration Services.

DWLoader vs. Integration Services
DWLoader is a command-line utility that ships with PDW. Those familiar with SQL Server BCP (bulk copy
program) will have an easy time learning DWLoader, as both utilities share a very similar syntax. One very
common pattern for loading data into PDW from SQL Server is to:

1. Export data from SQL Server to a flat file using BCP

2. Relocate the data file to the Landing Zone

3. Import the data file to PDW using DWLoader

This is a very efficient method for loading data, and it is very easy to generate scripts for table DDL, BCP
commands, and DWLoader commands. For this reason, you may want to consider DWLoader for performing
initial and incremental loading of the large quantity of small dimensional tables that often exist in data
warehouses. Doing so can greatly speed up data warehouse migration. This same load pattern can also be used
with flat files generated from any system, not just SQL Server.

For your larger tables, you may instead want to consider Integration Services. Integration Services offers
greater functionality and arguably more end-to-end convenience. This is because Integration Services is able
to connect directly to the data source and load the data into the PDW appliance without having to stop at a file
share. Integration Services can also perform transformations in flight, which DWLoader does not support.

It’s important to note that each Data Flow within Integration Services is single-threaded and can bottleneck
on IO. Typically, a single-threaded Integration Services package will perform up to ten times slower than
DWLoader. However, a multi-threaded Integration Services package – similar to the one we will create shortly –
can mitigate that limitation. For large tables requiring data type conversions, an Integration Services package
with 10 parallel Data Flows provides the best of both worlds: similar performance to DWLoader and all the
advanced functionality that Integration Services offers.

A number of variables should be considered when deciding whether to use DWLoader or Integration
Services. In addition to table size, the network speed and table design can have an impact. At the end of the day,
most PDW implementations will use a combination of both tools. The best idea is to test the performance of each
method in your environment and use the tool that makes the most sense for each table.

ETL vs. ELT
Many Integration Services packages are designed using an Extract, Transform, and Load (ETL) process. This is
a practical model that strives to lessen the impact of moving data on the source and destination servers – which
are traditionally more resource-constrained – by placing the burden of data filtering, cleansing, and other such
activities on the (arguably more easy-to-scale) ETL server. Extract, Load, and Transform (ELT) processes, in
contrast, place the burden on the destination server.

CHAPTER 8 ■ Parallel Data Warehouse Patterns

173

While both models have their place and while PDW can support both models, ELT clearly performs
better with PDW from both a technical and business perspective. On the technical side, PDW is able to utilize
its massively parallel processing power to more efficiently load and transform large volumes of data. From
the business aspect, having more data co-located allows more meaningful data to be gleaned during the
transformation process. Organizations with MPP systems often find that the ability to co-locate and transform
large quantities of disparate data allows them to make the leap from reactive data marts (How much of this
product did we sell?) to predictive data modeling (How can we sell more of this product?).

Deciding on an ELT strategy does not necessarily mean your Integration Services package will not have to
perform any transformations, however. In fact, many Integration Services packages may require transformations
of some sort to convert data types. Table 8-1 illustrates the data types supported in PDW and the equivalent
Integration Services data types.

Table 8-1.  Data Type Mappings for PDW and Integration Services

SQL Server PDW Data Type Integration Services Data Type(s) That Map to the SQL Server PDW Data Type

BIT DT_BOOL

BIGINT DT_I1, DT_I2, DT_I4, DT_I8, DT_UI1, DT_UI2, DT_UI4

CHAR DT_STR

DATE DT_DBDATE

DATETIME DT_DATE, DT_DBDATE, DT_DBTIMESTAMP, DT_DBTIMESTAMP2

DATETIME2 DT_DATE, DT_DBDATE, DT_DBTIMESTAMP, DT_DBTIMESTAMP2

DATETIMEOFFSET DT_WSTR

DECIMAL DT_DECIMAL, DT_I1, DT_I2, DT_I4, DT_I4, DT_I8, DT_NUMERIC,

DT_UI1, DT_UI2, DT_UI4, DT_UI8

FLOAT DT_R4, DT_R8

INT DT_I1, DTI2, DT_I4, DT_UI1, DT_UI2

MONEY DT_CY

NCHAR DT_WSTR

NUMERIC DT_DECIMAL, DT_I1, DT_I2, DT_I4, DT_I8, DT_NUMERIC,

DT_UI1, DT_UI2, DT_UI4, DT_UI8

NVARCHAR DT_WSTR, DT_STR

REAL DT_R4

SMALLDATETIME DT_DBTIMESTAMP2

SMALLINT DT_I1, DT_I2, DT_UI1

SMALLMONEY DT_R4

TIME DT_WSTR

TINYINT DT_I1

VARBINARY DT_BYTES

VARCHAR DT_STR

CHAPTER 8 ■ Parallel Data Warehouse Patterns

174

Also, it is worth noting that PDW does not currently support the following data types at the time of this writing:

DT_DBTIMESTAMPOFFSET•	

DT_DBTIME2•	

DT_GUID•	

DT_IMAGE•	

DT_NTEXT•	

DT_TEXT•	

Any of these unsupported data types will need to be converted to a compatible data type using the Data
Conversion transformation. We will walk through how to perform such a transformation in just a moment.

Installing the PDW Destination Adapter
As we have previously discussed, data is loaded into the PDW through the Landing Zone. All Integration Services
packages will either be run from the Landing Zone node or, preferably, from a non-appliance server with access to
the Landing Zone. The 32-bit destination adapter is required for Integration Services and should be installed on the
server running the packages. If you are using a 64-bit machine, you will need to install both the 32-bit and 64-bit
adapters. The Windows Installer packages are accessible from C:\PDWINST\media\msi on both the Management
node and the Landing Zone node, or from the network share at \\ < Landing Zone IP Address > \redistr.

Once the PDW destination adapter has been installed, you will need to add it to the Integration Services
Toolbox. Let’s walk through how to do this now. Start a new Integration Services Project and name it
PDW_Example. After the project loads, select Tools from the main menu, and then navigate to
Choose Toolbox Items, as illustrated in Figure 8-2.

Figure 8-2.  Select “Choose Toolbox Items . . .” to add the PDW adapter to Integration Services

Once the Choose Toolbox Items modal appears, click on the SSIS Data Flow Items tab. Navigate down to
SQL Server PDW Destination and check the box to the left of the adapter, as illustrated in Figure 8-3. Click OK.

CHAPTER 8 ■ Parallel Data Warehouse Patterns

175

The PDW Destination Adapter is now installed. Let’s move on to setting up our data source.

The Data Source
In preparation for moving data from SQL Server to PDW, we need to create a database in SQL Server and
populate it with some test data. Execute the T-SQL code in Listing 8-1 from SQL Server Management Studio
(SSMS) to create a new database called PDW_Source_Example.

Listing 8-1.  Example of T-SQL Code to Create a SQL Server Database

USE [master];
GO

/* Create a database to experiment with */
CREATE DATABASE [PDW_Source_Example]
	 ON PRIMARY
	 (
			 NAME = N'PDW_Source_Example'
		� ,	FILENAME = N'C:\Program Files\Microsoft SQL Server\
MSSQL11.MSSQLSERVER\MSSQL\DATA\PDW_Source_Example.mdf'
		 ,	SIZE = 1024MB
		 ,	MAXSIZE = UNLIMITED
		 ,	FILEGROWTH = 1024MB
)

Figure 8-3.  The “SSIS Data Flow Items” toolbox

CHAPTER 8 ■ Parallel Data Warehouse Patterns

176

	 LOG ON
	 (
			 NAME = N'PDW_Source_Example_log'
		� ,	FILENAME = N'C:\Program Files\Microsoft SQL Server\
MSSQL11.MSSQLSERVER\MSSQL\DATA\PDW_Source_Example_log.ldf'
		 ,	SIZE = 256MB
		 ,	MAXSIZE = UNLIMITED
		 ,	FILEGROWTH = 256MB
);
GO

Please note that your database file path may vary depending on the details of your particular installation.
Now let’s create a table and populate it with some data. As we discussed before, Integration Services works

best with large tables that can be multi-threaded. One good example of this is a Sales Fact table that is partitioned
by year. Listing 8-2 will provide the T-SQL code to create the table and partitioning dependencies.

Listing 8-2.  Example of T-SQL Code to Create a Partitioned Table in SQL Server

USE PDW_Source_Example;
GO

/* Create your partition function */
CREATE PARTITION FUNCTION example_yearlyDateRange_pf
(DATETIME) AS RANGE RIGHT
FOR VALUES('2010-01-01', '2011-01-01', '2012-01-01');
GO

/* Associate your partition function with a partition scheme */
CREATE PARTITION SCHEME example_yearlyDateRange_ps
AS PARTITION example_yearlyDateRange_pf ALL TO([Primary]);
GO

/* Create a partitioned fact table to experiment with */
CREATE TABLE PDW_Source_Example.dbo.FactSales (
		 orderID	 INT IDENTITY(1,1)
	 ,	orderDate	 DATETIME
	 ,	customerID	 INT
	 ,	webID	 UNIQUEIDENTIFIER DEFAULT (NEWID())

	 CONSTRAINT PK_FactSales
		 PRIMARY KEY CLUSTERED
		 (
				 orderDate
			 ,	orderID
)
) ON example_yearlyDateRange_ps(orderDate);

CHAPTER 8 ■ Parallel Data Warehouse Patterns

177

 Note■■   Getting an error on the above syntax? Partitioning is a feature only available in SQL Server Enterprise and
Developer editions. You can comment out the partitioning in the last line:

ON example_yearlyDateRange_ps(orderDate);

and replace it with:

ON [Primary];

Next, we need to generate data using the T-SQL in Listing 8-3. This is the data we will be loading into PDW.

Listing 8-3.  Example of T-SQL Code to Populate a Table with Sample Data

/* Declare variables and initialize with an arbitrary date */
DECLARE @startDate DATETIME = '2010-01-01';

/* Perform an iterative insert into the FactSales table */
WHILE @startDate < GETDATE()
BEGIN

INSERT INTO PDW_Source_Example.dbo.FactSales
(orderDate, customerID)

	 SELECT @startDate
	 ,	DATEPART(WEEK, @startDate) + DATEPART(HOUR, @startDate);

/* Increment the date value by hour; for more test data,
replace HOUR with MINUTE or SECOND */

	 SET	 @startDate = DATEADD(HOUR, 1, @startDate);

END;

This script will generate roughly twenty thousand rows in the FactSales table, although you can easily increase
the number of rows generated by replacing HOUR in the DATEADD statement with MINUTE or even SECOND.

Now that we have a data source to work with, we are ready to start working on our Integration Services package.

The Data Flow
We are now going to configure the Data Flow that will move data from SQL Server to PDW. We will first create a
connection to our data source via an OLE DB Source. We will transform the UNIQUEIDENTIFIER to a Unicode
string (DT_WSTR) using a Data Conversion. We will then configure our PDW Destination Adapter to load data
into the PDW appliance. Lastly, we will multi-thread the package to improve load performance.

One easy way to multi-thread is to create multiple Data Flows that execute in parallel for the same table. You can
have up to 10 simultaneous loads – 10 Data Flows – for a table. However, you want to be careful not to cause too much
contention. You can limit contention by querying on the clustered index or, if you have SQL Server Enterprise
Edition, separating the loads by partition. This latter method is preferable and is the approach our example will use.

The Data Source
If you have not already done so, create a new Integration Services Project named PDW_Example (File ➤ New ➤
Project ➤ Integration Services Project).

Add a Data Flow Task to the Control Flow designer surface. Name it PDW Import.

CHAPTER 8 ■ Parallel Data Warehouse Patterns

178

Add an OLE DB Source to the designer surface from the SSIS Toolbox. Edit the properties of the OLE DB
Source by double-clicking on the icon. You should see the source editor shown in Figure 8-4.

You will need to create an OLE DB Connection Manager that points to the PDW_Source_Example
database. Once this is done, change the Data Access Mode to SQL Command, then enter the code in
Listing 8-4. You should see results similar to those in Figure 8-4. Click OK when finished entering the code.

Listing 8-4.  Example SQL Command

/* Retrieve sales for 2010 */

SELECT
		 orderID
	 ,	orderDate
	 ,	customerID
	 ,	webID
FROM PDW_Source_Example.dbo.FactSales
WHERE orderDate  > = '2010-01-01'
	 AND orderDate < '2011-01-01';

Figure 8-4.  The OLE DB Source Editor

CHAPTER 8 ■ Parallel Data Warehouse Patterns

179

Let’s take a minute to discuss what we’re doing. By searching our FactSales table on orderDate – the column we
specified as our partitioning key in Listing 8-2 – we are able to achieve partition elimination. This gives us a clean way
to divide the multiple Data Flows while also minimizing resource contention. We can achieve a similar result even
without partitioning FactSales, because we would still be performing the search on our clustered index. But what if
FactSales was clustered on just orderID instead? We can apply the same principles and achieve good performance
by searching for an evenly distributed number of rows in each Data Flow. For example, if FactSales has one million
rows and we are using 10 Data Flows, each OLE DB Source should search for 100,000 rows (i.e. orderID > = 1 and
orderID < 100000; orderID > = 100000 and orderID < 200000; and so on). These types of design considerations
can have a significant impact on the overall performance of your Integration Services package.

Tip■■  N ot familiar with partitioning? Table partitioning is particularly well suited for large data warehouse
environments and offers more than just the benefits briefly mentioned here. More information is available in the
whitepaper, “Partitioned Table and Index Strategies Using SQL Server 2008,” at http://msdn.microsoft.com/
en-us/library/dd578580.aspx.

The Data Transformation
Remember how PDW does not currently support DT_GUID? Our source table has a UNIQUEIDENTIFIER
column that is stored as a CHAR(38) column in PDW. In order to load this data, we will need to transform our
UNIQUEIDENTIFER to a Unicode string. To do this, drag the Data Conversion icon from the SSIS Toolbox to the
designer surface. Next, connect the green line from OLE DB Source to Data Conversion, as shown in Figure 8-5.

Figure 8-5.  Connecting the OLE DB Source to the Data Conversion

Double-click on the Data Conversion icon to open the Data Conversion Transformation Editor. Click on
the box to the left of webID, then edit its properties to reflect the following values:

Input Column: webID
Output Alias: converted_webID
Data Type: string [DT_WSTR]
Length: 38

Confirm that the settings match those in Figure 8-6, then click OK.

http://msdn.microsoft.com/en-us/library/dd578580.aspx
http://msdn.microsoft.com/en-us/library/dd578580.aspx

CHAPTER 8 ■ Parallel Data Warehouse Patterns

180

Figure 8-6.  The Data Conversion Transformation Editor

Tip■■   Wonder why we use a string length of 38 when converting a UNIQUEIDENTIFIER to a CHAR? This is because
the global representation of a GUID is {00000000-0000-0000-0000-000000000000}. The curly brackets are stored
implicitly in SQL Server for UNIQUEIDENTIFIER columns. Thus, during conversion, Integration Services materializes
the curly brackets for export to the destination system. That is why, while a UNIQUEIDENTIFIER may look like it would
only consume 36 bytes, it actually requires 38 bytes to store in PDW.

CHAPTER 8 ■ Parallel Data Warehouse Patterns

181

The Data Destination
The next few tasks, which prepare the PDW appliance for receiving FactSales data, will take place in the Nexus
Query Chameleon – or just Nexus, for short. Nexus, illustrated in Figure 8-7, is a 3rd party tool used for connecting
to the PDW appliance. This is currently the recommended graphical query editor for working with PDW,
although SQL Server Management Studio (SSMS) will support PDW in future releases.

Figure 8-7.  The Nexus Query Tool

Please refer to the section “Connect With Nexus Query Chameleon” in the PDW Books Online for more
information on installing and configuring Nexus.

Before we go any further, we should discuss the use of a staging database. While it is not required, Microsoft
recommends the use of a staging database during incremental loads to reduce table fragmentation. When a
staging database is used, the data is first loaded into a temporary table in the staging database before insertion
into the permanent table in the destination database.

Tip■■  U sing a staging database? Make sure your staging database has enough space available to accommodate
all tables being loaded concurrently. If you do not allocate enough space initially, don’t worry; you’ll still be okay –
the staging database will autogrow. Your loads may just slow down while the autogrow is occurring. Also, your
staging database will likely need to be larger when you perform the initial table loads during system deployment and
migration. However, once your system becomes more mature and the initial ramp-up is complete, you can recover
some space by dropping and recreating a smaller staging database.

From within Nexus, execute the code in Listing 8-5 on your PDW appliance to create a staging database.

Listing 8-5.  PDW Code to Run from Nexus to Create a Staging Database

CREATE DATABASE StageDB_Example
WITH
(
		 AUTOGROW	 = ON
	 ,	REPLICATED_SIZE	 = 1 GB

CHAPTER 8 ■ PARALLEL DATA WAREHousE PATTERns

182

, DISTRIBUTED_SIZE = 5 GB
, LOG_SIZE = 1 GB

);

PDW introduces the concept of replicated and distributed tables. In a distributed table, the data is split across
all nodes using a distribution hash specified during table creation. In a replicated table, the full table data exist
on every Compute Node. This is done to improve join performance. As a hypothetical example, consider a small
DimCountry dimension table with 200 rows. DimCountry would likely be replicated, whereas a much larger
FactSales table would be distributed. This design allows any joins between FactSales and DimCountry to take
place locally on each node. Although we would essentially be creating ten copies of DimCountry – one on each
Compute Node – because the dimension table is small, the benefit of performing the join locally outweighs the
minimal cost of storing duplicate copies of the data.

Let’s take another look at our CREATE DATABASE code in Listing 8-5. REPLICATED_SIZE specifies space
allocation for replicated tables on each Compute Node, whereas DISTRIBUTED_SIZE specifies space allocation
for distributed tables across the appliance. That means StageDB_Example actually has 16 GB of space allocated:
10 GB for replicated tables (10 Compute Nodes with 1 GB each), 5 GB for distributed tables, and 1 GB for the log.

All data is automatically compressed using page-level compression during the PDW load process. This is
not optional, and the amount of compression will vary greatly from customer-to-customer and table-to-table. If
you have SQL Server Enterprise or Developer Editions, you can execute the command in Listing 8-6 to estimate
compression results.

Listing 8-6. Code to Create the Destination Database and Table Inside of PDW

/* Estimate compression ratio */
EXECUTE sp_estimate_data_compression_savings
'dbo', 'FactSales', NULL, NULL, 'PAGE';

You can generally use 2:1 as a rough estimate. With a 2:1 compression ratio, the 5 GB of distributed data we
specified in Listing 8-5 actually stores 10 GB of uncompressed SQL Server data.

We still need a place to store our data. Execute the code in Listing 8-7 in Nexus to create the destination
database and table for FactSales.

Listing 8-7. PDW Code to Create the Destination Database and Table

CREATE DATABASE PDW_Destination_Example
WITH
(

REPLICATED_SIZE = 1 GB
, DISTRIBUTED_SIZE = 5 GB
, LOG_SIZE = 1 GB

);

CREATE TABLE PDW_Destination_Example.dbo.FactSales
(

orderID INT
, orderDate DATETIME
, customerID INT
, webID CHAR(38)

)

CHAPTER 8 ■ Parallel Data Warehouse Patterns

183

WITH
(
		 CLUSTERED INDEX (orderDate)
	 ,	DISTRIBUTION = HASH (orderID)
);

Now that we have our destination objects created, we can return to our Integration Services package. From
within BIDS, drag the SQL Server PDW Destination from the Toolbox to the Data Flow pane. Double-click on
the PDW Destination, illustrated in Figure 8-8, to edit its configuration.

Figure 8-8.  The SQL Server PDW Destination

Next, click on the down arrow next to Connection Manager and select Create a New Connection, as shown
in Figure 8-9.

Figure 8-9.  The SQL Server PDW Destination Editor

CHAPTER 8 ■ Parallel Data Warehouse Patterns

184

Enter your connection information in the SQL Server PDW Connection Manager Editor using the items
described in Table 8-2.

Table 8-2.  PDW Connection Information

Server The IP address of the Control Node on your appliance (Best practice
is to use the clustered IP address to support Control Node failover)

User Your login name for authenticating to the appliance

Password Your login password

Destination Database PDW_Destination_Example

Staging Database StageDB_Example

Let’s discuss a few best practices relating to this connection information. First, you should specify the
IP address of the Control Node cluster instead of the IP address of the active Control Node server. Using the
clustered IP address will allow your connection to still resolve without manual intervention in the event of a
Control Node failover.

Secondly, although Figure 8-10 shows the sa account being used for authentication, best practice is to use an
account other than sa. Doing so will improve the security of your PDW appliance.

Lastly, as we previously discussed, Microsoft recommends the use of a staging database for data loads. The
staging database is selected in the Staging Database Name drop-down. This tells PDW to first load the data to a
temporary table in the specified staging database before loading the data into the final destination database. This
is optional, but loading directly into the destination database will increase fragmentation.

When you are done, your SQL Server PDW Connection Manager Editor should resemble Figure 8-10. Click
on Test Connection to confirm your information was entered correctly, then click OK to return to the SQL Server
PDW Destination Editor.

Figure 8-10.  The SQL Server PDW Connection Manager Editor

CHAPTER 8 ■ Parallel Data Warehouse Patterns

185

Note■■   If the Staging Database is not specified, SQL Server PDW will perform the load operation directly within
the destination database, causing high levels of table fragmentation.

Clicking on the Destination Table field will bring up a modal for Select Destination Table. Click on
FactSales, as depicted in Figure 8-11.

Figure 8-11.  The Select Destination Table modal

There are four loading modes available, as listed in Table 8-3.

CHAPTER 8 ■ Parallel Data Warehouse Patterns

186

Let’s take a moment to discuss how to use the modes from Table 8-3 with two common load patterns. If
you are performing regular, incremental loads on a large table (say, updating a transactional sales table with the
previous day’s orders), you should load the data directly using Append, since no transformations are required.
Now let’s say you’re loading the same data, but you plan to instead transform the data and load into a mart before
deleting the temporary data. This second example would be better suited to the FastAppend mode. Or, to say it
more concisely, use FastAppend any time you are loading into an empty, intermediate working table.

There is one last option we need to discuss. Underneath the Loading Mode is a checkbox for “Roll-back
load on table update or insert failure.” In order to understand this option, you need to understand a little about
how data is loaded into PDW. When data is loaded using the Append, Reload, or Upsert modes, PDW performs a
2-phase load. In Phase 1, the data is loaded into the staging database. In Phase 2, PDW performs an
INSERT/SELECT of the sorted data into the final destination table. By default, data is loaded in parallel on all
Compute Nodes, but loaded serially within a Compute Node to each distribution. This is necessary in order to
support rollback. Roughly 85-95% of the load process is spent in Phase 1. When “Roll-back load on table update
or insert failure” is de-selected, each distribution is loaded in parallel instead of serially during Phase 2. So, in
other words, deselecting this option will improve performance but only affects 5-15% of the overall process. Also,
deselecting this option removes PDW’s ability to roll back; in the event of a failure during Phase 2, you would be
responsible for cleaning up any partially-inserted data.

Because of the potential risk and minimal gain, it is best practice to deselect this option only when loading
to an empty table. FastAppend is unaffected by this option because it always skips Phase 2 and loads directly into
the final table, which is why FastAppend also does not support rollback.

Tip■■   “Roll-back load on table update or insert failure” is also available in dwloader using the –m option.

Let’s return to our PDW Destination Editor and select Append in the Loading Mode field. Because our
destination table is currently empty, deselect the “Roll-back load on table update or insert failure” option to get a
small, risk-free performance boost. Your PDW Destination Editor should now look similar to Figure 8-12.

Table 8-3.  The four loading modes

Append Inserts the rows at the end of existing data in the destination table. This is the mode you are
probably most used to.

Reload Truncates the table before load.

Upsert Performs a MERGE on the destination table, where new data is inserted and existing data is
updated. You will need to specify the one or more columns that will be used to join the data on.

FastAppend As its name implies, FastAppend is the fastest way to load data into a destination table. The
trade-off is that it does not support rollback; in the case of a failure, you are responsible for
removing any partially-inserted rows. FastAppend will also bypass the staging database,
causing high levels of fragmentation.

CHAPTER 8 ■ Parallel Data Warehouse Patterns

187

Figure 8-12.  The SQL Server PDW Destination Editor

Figure 8-13.  The SQL Server PDW Destination Editor

We are almost done with our first Data Flow. All we have left to do is to map our data. Drag the green arrow
from the Data Conversion box to the SQL Server PDW Destination box, and then double-click on SQL Server
PDW Destination. You should see results like those in Figure 8-13.

CHAPTER 8 ■ Parallel Data Warehouse Patterns

188

Map your input and destination columns. Make sure to map webID to our transformed converted_webID
column. Click OK.

We have now successfully completed our first Data Flow connecting SQL Server to PDW. All we have left is to
multi-thread our package.

Multi-Threading
We have completed our Data Flow for 2010, but we still need to create identical Data Flows for 2011 and 2012. We
can do this easily by using copy and paste.

First, click on the Control Flow tab and rename the first Data Flow “SalesMart 2010.” Then, copy and paste
“SalesMart 2010” and rename it “SalesMart 2011.”

Double-click on “SalesMart 2011” to return to the Data Flow designer, then double-click on the OLE DB
Source. Replace the SQL Command with the code in Listing 8-8.

Listing 8-8.  SQL Command for 2011 data

/* Retrieve sales for 2011 */
SELECT
		 orderID
	 ,	orderDate
	 ,	customerID
	 ,	webID
FROM PDW_Source_Example.dbo.FactSales
WHERE orderDate > = '2011-01-01'
	 AND orderDate < '2012-01-01';

Return to the Control Flow tab and copy the “SalesMart 2010” Data Flow again. Rename it “Sales Mart 2012.”
Using the code in Listing 8-9, replace the SQL Command in the OLE DB Source.

Listing 8-9.  SQL Command for 2012 Data

/* Retrieve sales for 2012 */
SELECT
		 orderID
	 ,	orderDate
	 ,	customerID
	 ,	webID
FROM PDW_Source_Example.dbo.FactSales
WHERE orderDate > = '2012-01-01'
	 AND orderDate < '2013-01-01';

We are now ready to execute the package! Press F5 or navigate to Debug ➤ Start Debugging. Your
successfully executed package should look similar to Figure 8-14.

CHAPTER 8 ■ Parallel Data Warehouse Patterns

189

Summary
We’ve covered a lot of material in this chapter. You have learned about the architecture of Microsoft SQL Server
Parallel Data Warehouse (PDW) and some of the differences between SMP and MPP systems. You have learned
about different loading methods and discussed how to improve load performance. You have also discovered
some best practices along the way. Lastly, you walked through a step-by-step exercise to load data from SQL
Server into PDW.

Figure 8-14.  The successfully executed package

191

Chapter 9

XML Patterns

XML is a popular format for exchanging data between systems. SSIS provides an XML Source adapter, but
because of the flexible nature of XML, it can sometimes be tricky to get your data to fit into the tabular format
that the SSIS data flow expects. This chapter describes the formats that work best with the XML Source and two
alternative patterns for reading XML data with SSIS.

Using the XML Source
Like most Data Flow components, the XML Source component requires column metadata to be set at design
time. This is done using an XML schema file (.xsd). The XML Source component uses the XML structure defined
in the schema to create one or more outputs, and it also uses the element and attribute data types to set the
column metadata. Changing the schema file will refresh the component’s metadata and may cause validation
errors if you have already mapped some of its outputs.

If you don’t already have an XML schema defined for your document, SSIS can generate one for you. Click
the Generate Schema button on the XML Source editor UI, and the component will infer the schema from the
current document. Note that while this schema is guaranteed to work with the current XML file, it might not work
for others if there are optional elements or values that are longer than expected. You may need to modify the
generated schema file by hand to ensure that the minOccurs and maxOccurs attribute values are correct for each
element and that the data types were set correctly.

The XML Source is easiest to use when your input file has a simple element/subelement structure.
Listing 9-1 shows an example of that structure.

Listing 9-1.  Simple XML Format Using Elements

<root>
 <node>
 <subnode> value</subnode>
 <anothersubnode> 1</anothersubnode>
 </node>
 <node>
 <subnode> value</subnode>
 <anothersubnode> 2</anothersubnode>
 </node>
</root>

Alternatively, the XML Source works well when values are listed as attributes, as shown in Listing 9-2. This
format is similar to the output you would get from a SELECT . . . FROM XML RAW statement in SQL Server.

CHAPTER 9 ■ XML Patterns

192

Listing 9-2.  Simple XML Format Using Attributes

<root>
 <row CustomerID = "1" TerritoryID = "1" AccountNumber = "AW00000001" />
 <row CustomerID = "2" TerritoryID = "1" AccountNumber = "AW00000002" />
</root>

Dealing with Multiple Outputs
The XML samples in Listings 9-1 and 9-2 will produce a single output in the XML Source. If your XML format has
multiple levels of nested elements, the XML Source will start to produce more than one output. These outputs
will be linked by automatically generated _Id columns, which you may need to join further down stream using a
Merge Join transform.

Note■■   This pattern works well if you have a single level of nested XML elements that you need to join. If you have
multiple levels of XML elements and you need to join more than two of the XML Source outputs, you’ll need to use
the Sort transformation.

Listing 9-3 contains an XML document with customer information. We’ll use this document as our example
for the remainder of the chapter.

Listing 9-3.  Sample XML Document

<?xml version = "1.0" encoding = "utf-8"?>
<Extract Date = "2011-07-04">
 <Customers>
 <Customer Key = "11000">
 <Name>
 <FirstName> Jon</FirstName>
 <LastName> Yang</LastName>
 </Name>
 <BirthDate> 1966-04-08</BirthDate>
 <Gender> M</Gender>
 <YearlyIncome> 90000</YearlyIncome>
 </Customer>
 <Customer Key = "11001">
 <Name>
 <FirstName> Eugene</FirstName>
 <LastName> Huang</LastName>
 </Name>
 <BirthDate> 1965-05-14</BirthDate>
 <Gender> M</Gender>
 <YearlyIncome> 60000</YearlyIncome>
 </Customer>
 </Customers>
</Extract>

The XML Source component will generate a separate output for each nested XML element. There will be
three outputs for the XML document in Listing 9-3: Customers, Customer, and Name. Each output contains the

CHAPTER 9 ■ XML PATTERns

193

elements and attributes that were defined in the schema, as well as an < element_name> _Id column, which acts
as a primary key for the row. Outputs generated for child elements will contain an _Id column for their parent
element’s output, which allows the data to be joined later in your data flow if needed.

Figure 9-1 shows the outputs and column names generated by the XML Source component for the XML
document in Listing 9-3.

Figure 9-1. Outputs and columns generated for the Name element

Note  The XML source will not pick up any attribute values found on the root element of the document. To
include this value in your output, you’ll need to reformat the document to include a new root element node.

CHAPTER 9 ■ XML Patterns

194

Figure 9-2 shows the schema of the destination table we will be storing the customer data in. As we can see,
the table wants all of the columns shown in a single row, which means we’ll have to merge the Customer and
Name outputs before we can insert the data. The Merge Join transform is well suited for this, but it requires that
both of its inputs are sorted the same way. We could add a Sort transform on each path before the Merge Join, but
performing a sort can adversely affect performance and we should try to avoid doing so.

Figure 9-2.  Customers database table schema

Although the XML Source component doesn’t set any sort information on the columns it produces, the
output is already sorted on the generated _Id columns. To get the Merge Join to accept these inputs without using
the Sort transform, we’ll have to manually set the IsSorted and SortKeyPosition properties using the Advanced
Editor for the XML Source component, as follows:

Right-click the XML Source component and select Show Advanced Editor.•	

Select the Input and Output Properties tab.•	

Select the Name output and set the •	 IsSorted property to True, as shown in Figure 9-3.

CHAPTER 9 ■ XML Patterns

195

Figure 9-3.  Setting the IsSorted property value in the Advanced Editor for the XML Source

CHAPTER 9 ■ XML Patterns

196

Figure 9-4.  Setting the SortKeyPosition property value in the Advanced Editor for the XML Source

Expand the Name output and then expand the Output Columns folder.•	

Select the Customer_Id field and set the •	 SortKeyPosition property to 1, as shown in
Figure 9-4.

CHAPTER 9 ■ XML Patterns

197

Repeat steps 3–5 for the Customer output.•	

Click OK to save the changes and return to the designer.•	

By setting the SortKeyPosition value for the Customer_Id columns in the Name and Customer outputs,
we’ve told SSIS that the rows will be sorted. We can now map both outputs directly to the Merge Join transform
(as shown in Figure 9-5), and select the columns we want for our destination table (as shown in Figure 9-6).

Figure 9-5.  Connecting the XML Source component to a Merge Join transform

CHAPTER 9 ■ XML Patterns

198

Making Things Easier with XSLT
You can simplify the handling of complex XML documents by preprocessing a source file with XSLT. Using XSLT,
you can shape the XML to a format that closely resembles the destination schema, remove the fields that you
don’t need to capture, or transform it into a simple format that is easily handled by the XML Source component.

The sample XML from Listing 9-3 produced three separate outputs for the XML Source component. To insert
the data into our destination, we had to merge the outputs into the format we wanted. Using the XSLT script in
Listing 9-4, we can “flatten” or denormalize the data so that the XML Source component will have a single output.

Figure 9-6.  Mapping columns from the Merge Join transform

CHAPTER 9 ■ XML Patterns

199

Listing 9-4.  XSLT Script to Simplify Our XML Sample

<?xml version = "1.0" encoding = "utf-8"?>
<xsl:stylesheet version = "1.0" xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
<xsl:output method = "xml" indent = "yes"/>
<xsl:template match = "/Extract">
 <Customers>
 <xsl:for-each select = "Customers/Customer">
 <Customer>
 <Key>
 <xsl:value-of select = "@Key"/>
 </Key>
 <FirstName>
 <xsl:value-of select = "Name/FirstName"/>
 </FirstName>
 <LastName>
 <xsl:value-of select = "Name/LastName"/>
 </LastName>
 <BirthDate>
 <xsl:value-of select = "BirthDate"/>
 </BirthDate>
 <Gender>
 <xsl:value-of select = "Gender"/>
 </Gender>
 <YearlyIncome>
 <xsl:value-of select = "YearlyIncome"/>
 </YearlyIncome>
 </Customer>
 </xsl:for-each>
 </Customers>
</xsl:template>
</xsl:stylesheet>

We can apply this XSLT using an XML Task. Here is the process for doing that:

1.	 Save your XSLT script to a file.

Add an XML Task to your package.•	

Double-click the task to open the editor.•	

�Set the •	 OperationType property to XSLT and the SaveOperationResult property to
True.

�Set the •	 SecondOperandType and SecondOperand properties to point to your XSLT
script file.

2.	 Enter the appropriate connection information for SourceType, Source,
DestinationType, and Destination, similar to what is shown in Figure 9-7.

CHAPTER 9 ■ XML Patterns

200

Note■■   The XML Task was updated in the SQL Server 2012 release to use the latest .NET XML technologies. The
performance of applying XSLT scripts is much better than in previous versions.

Listing 9-5 shows us what our sample XML document looks like after applying the XSLT script from
Listing 9-4. We can see that all of the fields we need to extract are now under a single parent element. The
schema for this new XML format gives us a single output with the XML Source component, removing the
need to join outputs later on in the data flow.

Listing 9-5.  Simplified XML Document

<?xml version = "1.0" encoding = "utf-8"?>
<Customers>

Figure 9-7.  XML Task configuration

CHAPTER 9 ■ XML Patterns

201

 <Customer>
 <Key> 11000</Key>
 <FirstName> Jon</FirstName>
 <LastName> Yang</LastName>
 <BirthDate> 1966-04-08</BirthDate>
 <Gender> M</Gender>
 <YearlyIncome> 90000</YearlyIncome>
 </Customer>
 <Customer>
 <Key> 11001</Key>
 <FirstName> Eugene</FirstName>
 <LastName> Huang</LastName>
 <BirthDate> 1965-05-14</BirthDate>
 <Gender> M</Gender>
 <YearlyIncome> 60000</YearlyIncome>
 </Customer>
</Customers>

Using a Script Component
An alternatve to processing an XML document with the XML Source is to use a Script Component. This pattern
requires some custom coding, but it gives you full control over the way the data is output. The .NET Framework
provides a number of ways to parse and load an XML document, each with their own strengths and performance
characteristics. This section describes two separate patterns for processing XML documents with a Script
Component.

The first pattern uses the XML Schema Definition Tool (Xsd.exe) to generate a set of .NET classes that can be
used by an SSIS Script Component. It uses the XmlSerializer class to convert the source XML document into
a set of easy-to-use .NET objects. While XmlSerializer is not the fastest way to process an XML document in
.NET, the strongly typed classes allow for code that is straightforward and easy to maintain. This approach is a
recommended alternative to the XML Source when you’re working with complex XML documents that can easily
fit into memory (for example, smaller than 100MB).

The second pattern uses a combination of LINQ to XML and the XmlReader class to process XML documents
in a streaming manner. This approach is more sensitive to changes to the XML format; it may be harder to
maintain, but it will output scripts that use the XmlSerializer class. This pattern is recommended when you are
processing very large XML documents, or when performance is critical.

Configuring the Script Component
The Script Components in both patterns are configured the same way, but they will contain different code. Both
will use a file connection manager to locate the source XML file at runtime, and both will define the same set of
output columns. Use the following steps to configure your Script Component:

1.	 Add a file connection manager to your package.

�Set Usage type to •	 Existing file and set the path to our XML source file as shown in
Figure 9-8.

CHAPTER 9 ■ XML Patterns

202

Add a data flow to your package, and drag a Script Component transform from the •	
toolbox.

Select •	 Source from the Select Script Component Type dialog as shown in Figure 9-9.

Figure 9-8.  Configure the File Connection Manager

Figure 9-9.  Creating a new Script Component source

CHAPTER 9 ■ XML PATTERns

203

Double-click the component to bring up the Script Transform editor.•	

Click the Inputs and Outputs page.•	

Rename your output from “Output 0” to something more meaningful. Since our •	
sample XML is outputting a set of “Customers,” that is the name we’ll use for this
example.

Define the columns as you’d like them to be output. Make sure the data types for •	
the columns match what has been defined in your schema. Your column definition
should look similar to Figure 9-10.

Figure 9-10. Configured output columns

CHAPTER 9 ■ XML Patterns

204

Go to the Script page and click the Edit Script button to launch the VSTA editor.•	

We’ll be adding code to the PreExecute and CreateNewOutputRows methods of the ScriptMain class, as well
as overriding two additional methods from the base class: AcquireConnection and ReleaseConnection.

The AcquireConnection method will retrieve the path to our XML file from the connection manager we
configured in step 10.

The PreExecute method will verify that the file actually exists, and it will raise an error if it is not found.

Go to the Connection Managers page and add a reference to the file connection •	
manager you created in step 1.

Give the connection manager a meaningful name, such as “CustomerFile.” The page •	
will look similar to Figure 9-11.

Figure 9-11.  Configured connection manager

CHAPTER 9 ■ XML Patterns

205

The CreateNewOutputRows method does the majority of the script’s work. It is responsible for extracting data
from our source document and outputting it to the data flow. The code that goes in here will depend on which
pattern you select.

Finally, the ReleaseConnection method will release the file connection, indicating to the runtime that we
are finished with it.

Note■■   While calling ReleaseConnection for a file connection manager isn’t needed, it’s good to get into the
habit of calling ReleaseConnection anytime you have a matching call to AcquireConnection. Certain connection
managers, such as the OLE DB connection manager, will leave the underlying database connections open and keep
resources in memory until the connection object has been released.

Listing 9-6 shows the code that we will be using for both Script Component patterns.

Listing 9-6.  Full Source Code Listing

using System;
using System.Data;
using Microsoft.SqlServer.Dts.Pipeline.Wrapper;
using Microsoft.SqlServer.Dts.Runtime.Wrapper;
using System.IO;
using System.Xml.Serialization;
using System.Xml;

[Microsoft.SqlServer.Dts.Pipeline.SSISScriptComponentEntryPointAttribute]
public class ScriptMain : UserComponent
{
 string pathToXmlFile;

 public override void AcquireConnections(object Transaction)
 {
 // Call the base class
 base.AcquireConnections(Transaction);

 // The file connection manager's AcquireConnection() method returns us the path as a
string.
 pathToXmlFile = (string)Connections.CustomerFile.AcquireConnection(Transaction);
 }

 public override void PreExecute()
 {
 // Call the base class
 base.PreExecute();

 // Make sure the file path exists
 if (!File.Exists(pathToXmlFile))
 {
 string errorMessage = string.Format("Source XML file does not exist. Path: {0}",
pathToXmlFile);
 bool bCancel;

CHAPTER 9 ■ XML Patterns

206

 ComponentMetaData.FireError(0, ComponentMetaData.Name, errorMessage, string.Empty,
0, out bCancel);
 }
 }
 public override void CreateNewOutputRows()
 {
 // TODO - This is where we will load our XML document
 }

 public override void ReleaseConnections()
 {
 // Call the base class
 base.ReleaseConnections();

 // Release our connection
 Connections.CustomerFile.ReleaseConnection(pathToXmlFile);
 }
}

Once your script component is configured, you can plug in the CreateNewOutputRows logic from one of the
following patterns.

Processing XML with XmlSerializer
To process the XML file using the XmlSerializer class, we’ll use the XML Schema Definition Tool to generate
a set of .NET classes from our XML Schema file. From the command line, we’ll specify that we want to generate
classes (/classes), the language we’d like to use (in this example, we’ll use C#, but VB could be used as well), the
namespace of the resulting class, and the path to our schema file. We’ll use the schema file (Customer.xsd) for
the customer data XML from Listing 9-3. The command line and xsd.exe output is shown in Listing 9-7.

Listing 9-7.  XML Schema Definition Tool Command Line

C:\demos> xsd.exe /classes /language:CS /namespace:DesignPatterns.Samples Customer.xsd

Microsoft (R) Xml Schemas/DataTypes support utility
[Microsoft (R) .NET Framework, Version 2.0.50727.3038]
Copyright (C) Microsoft Corporation. All rights reserved.
Writing file 'Customer.cs'.

The resulting Customer.cs file will have the classes we’ll use in our Script Component. When used with the
XmlSerializer class, we can read the entire XML source file into an easy-to-manipulate set of objects.

Note■■   The XML Schema Definition Tool is part of the Windows SDK. On most machines, it will be found in the
C:\Program Files (x86)\Microsoft SDKs\Windows\v7.0A\Bin directory. For more information on the XML
Schema Definition Tool, see its MSDN entry at http://msdn.microsoft.com/en-us/library/x6c1kb0s.aspx.

http://msdn.microsoft.com/en-us/library/x6c1kb0s.aspx

CHAPTER 9 ■ XML Patterns

207

Before we begin writing the CreateNewOutputRows logic, we’ll need to include the Customer.cs file that we
generated using xsd.exe. To do this, perform the following steps from within the VSTA script editor environment:

1.	 Right-click the project node in the solution explorer (this will start with “sc_”, followed
by a string of numbers) and choose Add ➤ Existing Item.

Browse to the •	 Customer.cs file that you generated with xsd.exe.

Open •	 main.cs from the Solution Explorer.

Include the namespace for the •	 Extract class by adding Using DesignPatterns.
Samples; to the top of the file.

Once the file has been added to your project, you can write the code in CreateNewOutputRows that will read
and manipulate the XML data. The source code for the CreateNewOutputRows function is in Listing 9-8.

Listing 9-8.  Script Logic for Using the XmlSerializer Class

public override void CreateNewOutputRows()
{
 // Load our XML document
 Extract extract = (Extract) new XmlSerializer(typeof(Extract)).Deserialize(XmlReader.
Create(pathToXmlFile));

 // Output a new row for each Customer in our file
 foreach (ExtractCustomer customer in extract.Customers)
 {
 CustomersBuffer.AddRow();

 CustomersBuffer.Key = customer.Key;
 CustomersBuffer.FirstName = customer.Name.FirstName;
 CustomersBuffer.LastName = customer.Name.LastName;
 CustomersBuffer.BirthDate = customer.BirthDate;
 CustomersBuffer.Gender = customer.Gender;
 CustomersBuffer.YearlyIncome = customer.YearlyIncome;
 }
}

Processing XML with XmlReader and LINQ to XML
This pattern makes use of the XmlReader class to stream in an XML document, as well as LINQ to XML
functionality to extract the values you want to keep. It is ideal for processing large XML documents, as it does not
require the entire document to be read into memory. It is also well suited for scenarios where you want to extract
certain fields from the XML document and ignore the rest.

Note■■   The idea for this pattern came from a post from SQL Server MVP, Simon Sabin. Sample code and other
great SSIS content can be found on his blog at http://sqlblogcasts.com/blogs/simons/.

http://sqlblogcasts.com/blogs/simons/

CHAPTER 9 ■ XML Patterns

208

The key to this pattern is the use of the XmlReader class. Instead of using the XDocument class to read our
source XML file (which is the typical approach when using LINQ to XML), we’ll create a special function that
returns the XML as a collection of XElements. This allows us to make use of the LINQ syntax while taking
advantage of the streaming functionality provided by XmlReader.

Before adding the code, you’ll need to make the following changes to your script project:

1.	 Add a reference to the System.Xml.Linq assembly.

Add the following namespaces to your Using statements:•	

2.	 System.Collections.Generic

3.	 System.Linq

4.	 System.Xml.Linq

Listing 9-9 contains the code for the XmlReader function (StreamReader), as well as the
CreateNewOutputRows logic to consume the XML document.

Listing 9-9. Script Logic for Using the XmlReader Class

public override void CreateNewOutputRows()
{
 foreach (var xdata in (
 from customer in StreamReader(pathToXmlFile, "Customer")
 select new
 {
 Key = customer.Attribute("Key").Value,
 FirstName = customer.Element("Name").Element("FirstName").Value,
 LastName = customer.Element("Name").Element("LastName").Value,
 BirthDate = customer.Element("BirthDate").Value,
 Gender = customer.Element("Gender").Value,
 YearlyIncome = customer.Element("YearlyIncome").Value,
 }
))
 {
 try
 {
 CustomersBuffer.AddRow();
 CustomersBuffer.Key = Convert.ToInt32(xdata.Key);
 CustomersBuffer.FirstName = xdata.FirstName;
 CustomersBuffer.LastName = xdata.LastName;
 CustomersBuffer.BirthDate = Convert.ToDateTime(xdata.BirthDate);
 CustomersBuffer.Gender = xdata.Gender;
 CustomersBuffer.YearlyIncome = Convert.ToDecimal(xdata.YearlyIncome);
 }

CHAPTER 9 ■ XML Patterns

209

 catch (Exception e)
 {
 string errorMessage = string.Format("Error retrieving data. Exception message: {0}",
e.Message);
 bool bCancel;
 ComponentMetaData.FireError(0, ComponentMetaData.Name, errorMessage, string.Empty,
0, out bCancel);
 }
 }
}

static IEnumerable < XElement> StreamReader(String filename, string elementName)
{
 using (XmlReader xr = XmlReader.Create(filename))
 {
 xr.MoveToContent();

 while (xr.Read())
 {
 while (xr.NodeType == XmlNodeType.Element && xr.Name == elementName)
 {
 XElement node = (XElement)XElement.ReadFrom(xr);
 yield return node;
 }
 }
 xr.Close();
 }
}

Summary
The XML Source component lets you process XML documents from an SSIS Data Flow without writing any code.
Although it can handle most XML schemas, it tends to work best with simple XML documents. When dealing
with complex XML formats, consider using XSLT to reformat the source document to a format that is easily
parsed. If you don’t mind writing and maintaining .NET code, consider using one of the Script Component
patterns described in this chapter when you need more control over how a document is parsed, are working with
large XML documents, or have specific performance requirements.

h

211

Chapter 10

Expression Language Patterns

Expression language in SSIS might appropriately be referred to as the “glue” that holds the product together.
Expressions in SSIS provide a relatively simple and easy-to-use interface to allow data developers to introduce
dynamic logic into the ETL infrastructure. Thinking through the various moving parts within Integration Services,
it’s safe to say that they can all be manipulated in one way or another through the use of expressions.

Expressions provide a fast, effective, and—dare I say—fun way to solve specific ETL challenges. In this
chapter, we’ll look into some of the basics of the expression language, and I’ll describe a few instances where SSIS
expressions are ideal (and a few where they might not be) for effectively solving difficult ETL problems.

Getting to Know the Expression Language
Before diving into the design patterns around the SSIS expression language, let’s spend a little time defining and
getting familiar with the nuances of the language. Since its behavior and syntax differ significantly from any other
type of interpreted code, a review of the language-specific patterns can be of value here.

What is Expression Language?
The SSIS expression language is an interpreted language built into the SSIS runtime environment. This specialized
language is used to craft scalar-valued snippets of code (individually referred to as expressions) that may be used
at various points within the SSIS environment.

The SSIS designer exposes dozens of interfaces where expressions can be used in place of hard-coded
values, allowing the BI professional to leverage that flexibility to create dynamic and reusable elements within
SSIS. Conceptually, it’s not unlike the product-specific dialects that exist in other Microsoft development
environments. For example, when developing reports in SSDT or BIDS for deployment to SQL Server Reporting
Services, one can use Visual Basic for Applications (VBA) code to generate dynamic behavior during report
execution and rendering.

As you explore the expression language, you’ll find it to be a very powerful addition to the natural
capabilities of SQL Server Integration Services. It has a rich library of functionality that will be familiar to both
developers and DBAs. Among the functional domains of the SSIS expression language is

A full complement of mathematical functions and operators•	

An impressive set of string functions that may be used in comparisons, analysis, and •	
value manipulation

Common date and time functionality, including date part extraction, date arithmetic, and •	
comparison

The expression language serves two different roles within the package life cycle:

CHAPTER 10 ■ Expression Language Patterns

212

•	 Evaluation: Expressions can be used to determine whether a specified condition is true, and
to change the behavior of the package accordingly. When used as part of the control flow,
an expression used as an evaluation may check a certain value and dynamically alter the
execution path based on the results of that comparison. Within the data flow, expressions
allow the evaluation of data a row at a time to determine how to proceed in the ETL.

•	 Assignment: In addition to expressions as decision-making elements, we can use SSIS
expressions to programmatically modify data during package execution. Typical uses of
this include expression-based property settings, and transformation of in-process data
within the data flow.

Expressions in SSIS may derive their comparisons or assignments from several fronts. Built-in system
variables permit visibility into software environmental data such as package and container start times, machine
environment information, package versioning metadata, and more. We can interrogate and manipulate the
values of user-defined SSIS variables by using expressions and access values of package parameters to be
leveraged elsewhere during package execution. In the data flow, expressions may interact with running data at
the cellular level.

Expressions are value-driven at runtime. Unlike settings that are generally only configurable at design
time (think: data flow column definitions), expressions will calculate their values when the package is actually
executed. Further, a single expression may be evaluated many times (perhaps with a different result each
time) during the execution life cycle of the package. Consider the case of the For Each Loop, a container that
loops through a specified set of objects or values until it reaches the end of said collection. Expressions that are
manipulated within the loop may be updated dozens or even hundreds of times during this process.

Why Use Expressions?
The ability to use expressions is one of the greatest strengths of SQL Server Integration Services. Simply put,
expressions help to fill in the small gaps. Expression language isn’t a tool in itself, but is rather an interface that
helps other SSIS tools more effectively perform their respective functions. That’s well and good, but in the interest
of simplicity, why would an ETL developer choose to use expressions instead of other languages such as T-SQL,
C#, or VB.NET? There are a few compelling reasons to employ the expression language in your SSIS packages:

•	 Simplicity. Expressions language can be used to quickly add flow logic or make small
changes to in-pipeline data in the data flow. Small ETL changes that might otherwise be
relegated to a script task or component can often be handled inline without the need to
introduce extra code to the package.

•	 Consistency. Use of the expression language can lead to a consistent approach to data or
program flow challenges. For example, if your ETL requires that you convert blank strings
to NULLs, the approach and syntax would otherwise be different for flat files, Access
databases, and relational database sources. Applying expression language to the same
task would reduce the amount of distinct code one would have to write by relying on the
built-in string manipulation functions in expression language.

•	 Maintenance scope. By applying the design pattern of using expression language for
cleansing needs, you can eliminate much of the sleuth work required to track down and
change cleansing rules as your business expectations change. Using expressions in the
package itself provides a single point of maintenance rather than forcing you to inspect
the upstream data sources each time you need to make a change.

I’ve done a number of presentations for novice SSIS developers, and when I bring up the topic of expression
language, one question almost always seems to come up: Where do I use this expression language stuff? My
answer: Everywhere! Part of the beauty of expressions is that they can be used almost anywhere within SSIS
packages. You can employ expressions on the control flow in precedence constraints. It’s convenient to make

CHAPTER 10 ■ Expression Language Patterns

213

your SSIS package variables dynamic by replacing their static values with expressions. One can leverage
expressions within the data flow to manipulate data and even control the execution path. The bottom line is that
many of the common properties of packages, tasks, constraints, and data flow elements can be manipulated
through the use of expressions.

Although its syntax is very unique, the expression language isn’t difficult to learn. Anyone with logical
scripting experience (even if that experience is limited to T-SQL) can quickly pick up on the basics and should be
able to master the language with a reasonable amount of practice.

Language Essentials
Even for those who have experience scripting in other Microsoft development environments, the first exposure
to the SSIS expression language can be a little unsettling. The syntax and functionality are unlike any other
language, either interpreted or compiled. It appears to be a strange hybrid of several languages and is certainly a
dialect all its own.

Developers who have spent time using the C-style languages (C, C++, C#, Java) will recognize some of the
syntactical nuances within expression language, including

Case sensitive column and variable names•	

Case sensitive string comparisons•	

Double-equal (==) comparison operator•	

Simplified conditional (if/then/else) operator•	

Data types•	

Similarly, anyone experienced in T-SQL will find a great deal of familiar behavior within the SSIS expression
language:

Case insensitive function names•	

Date arithmetic and string manipulation functions much like those in T-SQL•	

The SSIS expression language is quite powerful, with its wide variety of functions and operators. With native
behavior including equality tests, type casts, string manipulation, and date arithmetic, the use of expressions
within SSIS packages can help to overcome ETL challenges both large and small.

Limitations
As useful as the expression language is, there are a few key limitations to its use. Bear in mind that these are
relatively minor hang-ups; the SSIS expression language is not intended to be a full-featured programming
language, but rather a lightweight tool to supplement the behavior of existing SSIS task and components.
Among some of the challenges are the following:

•	 Expressions are limited to single-value statements. This almost goes without saying since
it’s an expression language and not a programming language. Still, it’s worth mentioning
that one can’t, for example, use a single expression to iterate through a list or process a
string character-by-character.

•	 No Intellisense. Unlike other scripting/expression environments, there is no built-in
Intellisense within the native expression editors. Although the expression editor in SSIS
does have field, variable, and function lists, the convenience and coding reliability of
Intellisense has not yet made it into the product.

CHAPTER 10 ■ ExPREssion LAnguAgE PATTERns

214

•	 No error handling. This limitation is most visible when attempting to change data type
or length. Because there is no try/catch or TryParse() behavior found in the .NET
based languages, you cannot, for example, attempt to cast a text value to a number and
programmatically handle any type cast errors in the same expression.

•	 No comments allowed. The fact that there is no provision for code comments can be
a significant downside when using lengthy or complex expressions. Any comments
documenting the purpose of the expression would have to be done peripherally; for
example, on the data flow or control flow surface as an SSIS annotation.

•	 Complex statements can be difficult. Simple assignments or comparisons are easy to do,
and usually easy to understand after the fact. However, introducing even a moderate
amount of complexity to an expression can make for a lengthy and convoluted statement.
Consider the case of a multiconditional if statement. In most other dialects, one could
simply perform an if/then/else if. . . operation to account for more than one test
condition. However, the expression language doesn’t have such behavior, so to build
such logic requires one to nest conditional operators. Figure 10-1 shows how one might
easily address four possible conditions in a CASE operation in Transact-SQL. By contrast,
Figure 10-2 shows a similar example using expression language (note that I manually
wrapped the text to fit it on the page). Although the result of the operation is the same, the
latter has conditional operators nested two levels deep and is more difficult to develop
and maintain.

SELECT CASE WHEN @TestCase = 3 THEN 'Test case = Solid'
 WHEN @TestCase = 2 THEN 'Test case = Liquid'
 WHEN @TestCase = 1 THEN 'Test case = Gas'
 ELSE 'Unknown test case' END [TestCaseType]

Figure 10-1. Multi-condition evaluation in T-SQL

(TestCase == 1) ? "Test case = Gas" : (TestCase == 2 ? "Test case = Liquid" : (TestCase == 3 ?
"Test case = Solid" : "Unknown Test Case"))

Figure 10-2. Multiconditional evaluation in expression language

Despite its minor shortcomings, the SSIS expression language remains an integral part of the product, and as
we’ll see later in this chapter, has some very practical uses in a well-designed ETL ecosystem.

Putting Expression Language to Work
With an understanding of what the expression language is (and is not), let’s talk about some design patterns
where one might use it.

Package Expressions
Although not as common as other uses, it is possible to use SSIS expressions to configure package-level
properties. There are a handful of properties that may be set at the package level by using expressions, including

Disable•	

Disable Event Handlers•	

CHAPTER 10 ■ Expression Language Patterns

215

CheckpointFileName•	

MaxConcurrentExecutables•	

DelayValidation•	

Description•	

Consider the example of MaxConcurrentExecutables, which defines how many executables (packages,
tasks, etc.) can run concurrently. Setting of this property through an expression would allow the ETL developer to
dynamically control this value based on any criteria visible through an expression.

Although these properties are configurable by using expressions, it’s far more common to find package-level
options set by using package parameters (with SQL Server 2012) or package configurations (SQL Server 2008
and earlier). The sharing of common values across package ancestries is usually best done using parameters or
configurations, which allows for greater flexibility and easier maintenance. I expose this particular design pattern
more for the purpose of identifying it as an antipattern than for defining parameters for its use. Unless there’s
some business case or regulation dictating otherwise, it’s a better long-term solution to externalize these values
rather than relying on expressions.

Variable Expressions
As shown in Figure 10-3, you can configure each variable with a static value in the Value field, or define a value
expression that will be evaluated at runtime. Note that the variable window was improved starting in SQL Server
2012— in older versions, static values were shown in the variable window, but you had to use the Properties
window to view or alter an expression for a variable.

Figure 10-3.  Expressions with variables

In practice, I often see expressions applied to variable values, and then using the resulting variable as a
property on a task or component (as opposed to using an expression to set the property directly). I’m a fan of this
design pattern for one simple reason: reusability. It’s not uncommon for components to share certain properties,
and building expressions on each of those shared properties for every applicable component is both redundant
and unnecessary. For those properties that will be shared across multiple tasks or components, it’s far easier to
centralize the expression logic into a variable and then use that variable to set the shared properties. This approach
allows for faster development as well as easier maintenance should the logic require changes down the road.

When using this design pattern, don’t forget that you can also “stack” variable values. In the expression
statement, you can leverage other variables to set the value of the current variable.

Connection Managers
One of the most practical and common places to use SSIS expressions is the Connection Managers tray.
Generally speaking, it’s typically preferable to store dynamic connection properties not in expressions but rather
as parameters, particularly when dealing with structured data. Because of the sensitive and frequently changing
nature of connection metadata (server names, user names, and passwords), most ETL professionals choose to

CHAPTER 10 ■ Expression Language Patterns

216

externalize those settings to keep them stored securely and externally to the package so they can be globally
changed (rather than modified package by package).

One recurring exception to this pattern is connections that interact with the file system. There are several
cases where using expressions helps to lighten the load of processing file-based sources or destinations:

When working with flat files, the files are to be named according to the current date •	
and/or timestamp (such as Medicare_2012_03_01.txt, for example).

The files are expected to be filed in the filesystem according to the date (such as •	
 D:\Data\2012\03\01\Medicare.txt).

A scheduled job loads a text file that always has the same filename, but a copy of each •	
day’s file needs to be saved without overwriting the file processed on the previous day.

For the cases above, a little dab of expression language can be used to dynamically build directory paths and
file names to be used by our connections in SSIS. Let’s assume that we’re generating a flat text file from within
our package, and we want to use a dynamic file name based on the current date. By setting the ConnectionString
property from within the Properties window of the instance of the Flat File Connection Manager, we can
manipulate the runtime value of the file name. As shown in Figure 10-4 below, we’re specifying the base filename
and then appending the elements of the current date to build a customized file name.

Figure 10-4.  Dynamic file name using expression

Note that the pattern above could be further extended to include elements of time (hours/minutes/seconds)
should your ETL requirements include a restraint for that level of granularity.

Since we’re not going in-depth into all the syntactical elements of the expression language, I’ll just point out
a couple of things I’ve done here:

Because the backslash (•	 \) is a special character in the expression language, I have to
“escape” it (to negate its status as a special character) by using a double backslash when
including it as a string literal.

Using (DT_STR, n, 1252), I’m converting the integer value returned by the DATEPART •	
function to ASCII text. In this case, I’m using codepage 1252 with a maximum length of
either 2 or 4 depending on the component of the date element.

Using the RIGHT function, I’ll pad any single-digit month or day value with zeroes (e.g., so •	
that “3” becomes “03”) to maintain consistency.

Remember that this pattern is highly flexible. It can be utilized with most any file connection, whether it’s
to be used as a source or a destination. We’re not limited to just flat file connections here either; this logic can
be extended to some of the other SSIS connections as well. I’ve used this same design pattern when dealing with

CHAPTER 10 ■ Expression Language Patterns

217

FTP data as both a source and destination. By embedding the same logic within the properties of an FTP source,
one can programmatically “walk” the directory structure of a remote server when it is in a known and predictable
format such as this.

Project-level Connection Managers
With the introduction of SQL Server 2012, we now have a new way to expose connection information across
multiple packages in the same project by way of project connection managers. Using the traditional, pre-2012
model, any connection manager defined within a package is independent of those in other packages. Starting
with SSIS in SQL Server 2012, however, we now have the ability to attach a connection manager to our workspace
at the project level. These are accessible to all packages within the same project.

We’ll not go deeply into the new deployment model in this chapter, but it is important to point out how the
use of expressions impacts project connection managers. Because they are attached to the project and not one
particular package, the properties of these shared connections are common to all packages in the project. As
such, any property setting on these project connection managers—including the use of expressions—would be
immediately reflected in all packages in the project. This is a welcome and much needed improvement to the way
packages interact with one another, but for those who have worked with previous versions of SSIS, it’s a bit of a
paradigm shift. Don’t get caught off guard when an expression applied to a project connection in one package
gets applied to the other packages in the project!

Control Flow
Within the control flow, there are a couple of different ways to implement SSIS expressions. First, each of the tasks
and containers will expose several properties which are configurable using expressions. In addition, the paths
between them (known as precedence constraints) allow ETL developers to customize the decision path when
moving from one task/container to another.

Conditional Execution Through Expressions and Constraints
The essential function of the control flow is to manage the execution of package elements. Through the use of
precedence constraints, one can design a package so that tasks and containers are fired in the proper order and
with the correct dependencies intact. For a simple example of this, think about a package that truncates and
then loads a staging table. Both of these tasks can be performed in the same package, but without a precedence
constraint to cause the insert operation to occur after the TRUNCATE TABLE execution, you run the risk of
inadvertently loading and then deleting the same data.

Precedence constraints can be configured to manage flow-based successful completion of the preceding
task (the default behavior), or may be set to cause the task to execute only if the preceding task fails. In addition,
the constraint can be set to Completion, allowing the downstream task to fire when the upstream task is finished,
regardless of its outcome. Tasks may have multiple precedence constraints, and these may be set such that all
any or all of them must be satisfied before the task to which they are attached will execute. Figure 10-5 shows a
fairly typical use of precedence constraints; note that the unlabeled arrows represent Success constraints, and
the others are labeled as to their purpose. The dashed lines indicate that the task is configured to execute upon
completion of either of the preceding tasks.

CHAPTER 10 ■ Expression Language Patterns

218

As useful as precedence constraints are, the domain of variability that they address is fairly limited: the only
conditions that can be tested are whether a task completed as well as the success or failure of said task. In the
brief example shown in Figure 10-5, you can probably infer that we’re downloading one or more files from an
external source, loading the data from those files into staging tables, and then merging (upserting) the data into
a database table. Although there’s nothing technically wrong here, there is room for improvement. For example,
what happens if there are no files to be processed? In the example shown, the truncation of the staging table, the
loop through the filesystem to find the downloaded files (even if none exist), and the merge operation will all be
executed even if there are no files to process.

In the first job I ever held, I was responsible for, among other things, gathering stray shopping carts from the
store parking lot and bringing them back inside. My boss once told me, “This job requires an excessive amount of
walking, so do what you can to save steps.” All these years later, that advice still holds true today. Why run through
extra steps when we can simply skip past them if they are not needed? For the previous example, including a
relatively simple expression can bypass the execution of the majority of the package when no files are found to
process. Saving those steps saves CPU cycles, disk I/O, and other resources.

Precedence constraints also have the ability to use expressions to enforce proper package flow. In
Figure 10-6, you’ll see that the evaluation operation is set to Expression and Constraint to enforce both the
execution value of the prior task as well as the value defined in the Expression box. For purposes of illustration,
we’re going to assume that we’ve populated an SSIS variable to store the number of files downloaded in the script
task operation, and we’re using the expression to confirm that at least one file was processed. From here, you can
either type the expression into the window manually or use the ellipsis button to open the expression editor (note

Figure 10-5.  Precedence constraints

CHAPTER 10 ■ Expression Language Patterns

219

that the latter is new to SQL Server 2012—when using earlier versions of the product, you will have to enter the
expression by hand without the benefit of the expression editor).

Referring back to our original package, you’ll see that the precedence constraint between the first script task
and the truncation SQL task now reflects the presence of an expression in the constraint Figure 10-7).

Figure 10-6.  Precedence constraint editor

Figure 10-7.  Expression notation in precedence constraint

It’s worth noting that the example in Figure 10-7 shows a non-standard notation on the constraint. By
default, only the function icon (f

x
) will appear when using an expression as part of a constraint. Assuming

that the expression is not a lengthy one, I typically change the ShowAnnotation option of the constraint to
ConstraintOptions, which will include the expression itself on the label of the constraint. This is an easy reminder of
the expression used in the constraint, and it doesn’t require opening the properties window to see the expression.

CHAPTER 10 ■ Expression Language Patterns

220

Task-Level Expressions
In addition to the control flow uses of expressions, most every task and container in SSIS has its own properties
that can be configured using expressions. The options for configuration using expressions will vary from one
executable to the next, but there are elements common to most tasks and containers:

Description•	

Disable•	

DisableValidation•	

TransactionOption•	

FailPackageOnFailure•	

FailParentOnFailure•	

A common design pattern using a task-level expression is to employ the SqlStatementSource property of
the Execute SQL Task. In most cases, you can use this task combined with query parameters to create dynamic
statements in T-SQL. However, some language constructs (such as subqueries) don’t always work well with
parameters, exposing a need to build the SQL string in code. By using an expression instead of static text for the
SqlStatementSource property, the ETL developer can have complete control of the T-SQL statement when query
parameters don’t fit.

Data Flow Expressions
Moving from the control flow into the data flow, we find the more traditional use of expressions as part of our
ETL strategy. Like the higher-level executables, we find that every component in the data flow is affected either
directly or indirectly by SSIS expressions.

Data Cleansing
Lightweight data cleansing is one of the most common uses of the expression language within the data flow
of SSIS. Most frequently used within the derived column transformation, expressions can be used for certain
cleanup tasks, including

Changing the case of data•	

Grabbing a substring from within a longer string•	

Trimming extraneous space•	

Replacing inappropriate characters (such as removing letters from text)•	

Changing data length or type•	

Often, one can minimize the need for data cleansing in the data flow simply through well-designed query
statements in the extraction from the various data sources. However, sometimes cleanup at the source is just
not an option. Many sources of data are nonrelational: consider text files and web services as data sources, for
example, which generally do not have the option of cleaning up the data before its arrival into the SSIS space.
Sometimes even relational sources fit in this box as well: I’ve encountered a number of scenarios where the only
interface to the data was through a predefined stored procedure that could neither be inspected nor changed by
the ETL developer. For cases such as these where source cleansing is not possible, using expressions within the
data flow is a good second-level defense.

CHAPTER 10 ■ Expression Language Patterns

221

One design pattern that I use frequently is to trim out extra whitespace and convert blank strings to
NULL values. As shown in the following, such an operation could be performed with a single, relatively simple
expression:

(LEN(TRIM([Street_Address])) > 0) ? TRIM([Street_Address]) : (DT_WSTR, 100)NULL(DT_WSTR, 100)

Regarding data cleansing using the expression language, I will offer a brief word of caution: if you find
yourself needing to do complex, multi-step cleansing operations within your SSIS packages, consider using some
other means to do the heavy lifting. As I mentioned earlier, the expression language is best suited for lightweight
data cleansing; because complex expressions can be difficult to develop and debug, you might instead use a
richer tool such as the Script Task or Script Component, or perhaps Data Quality Services, for these advanced
transformations.

Branching
Sometimes there arises the need to create forks in the road with ETL data flow. There are several reasons you
might need to create branches within your data flow:

•	 Different outputs: For data that exists in a single data flow but is bound for different
destinations, creating branches is an effective solution. I recall a case I worked on
several years back when we were building a system to distribute data to several financial
vendors. Each of these vendors required the same type of data, but each vendor would
get a different “slice” of the data based on several criteria, and each required the data
in a slightly different format. Rather than design multiple end-to-end data flows that
would essentially duplicate much of the logic, I created a single package that employed a
conditional split transformation to split the data flow based on a specified condition, and
from there, the data branched out to the respective outputs.

•	 Inline cleansing: A very common ETL scenario in SSIS is to split “good” data from “bad”
data within a single data flow, attempt to clean the bad data, and then merge the cleansed
data with the good data. This allows you to leave intact any data that does not require
cleansing, which may help to conserve processing resources.

•	 Disparate data domains: In cases where data is structurally similar but syntactically
different, you might want to employ branching to handle the data differently within
your data flow. Consider the example of geographical address data: although they both
describe a physical address, you might need to process domestic addresses differently
than you would handle international addresses. By using branching tools such as the
conditional split, various address types from a single source types can be handled within
one data flow task.

•	 Varying metadata: Although relatively rare, there will be the occasion where a source may
contain rows with varying metadata. Consider a text file with a ragged structure in which
some rows are missing columns at the end of the line. By splitting the data based on the
absence of certain columns, you can account for the metadata differences inline.

Figure 10-8 exposes this design pattern by showing the use of expression logic to break apart a data
stream into multiple outputs. In this case, we process a billing file by using comparison expressions within the
conditional split transformation (see the callout) to determine whether each row is paid on time, not yet due, or
past due, and then send it to the appropriate output accordingly.

CHAPTER 10 ■ Expression Language Patterns

222

One interesting caveat regarding the application of expressions within the data flow is the way in which SSIS
exposes component-level expressions. Although the expression language is very useful within the pipeline of the
data flow, most components do not actually expose properties that can be set using expressions. For those that do
allow expressions on certain properties, these expressions are surfaced as elements of the data flow itself, and will
appear as part of the options in the Data Flow Properties window while working in the control flow.

As shown in Figure 10-9, we are using the expression properties of the data flow to access the ADO.NET data
source within that data flow. As you can see, the identifier in the Property column shows that this expression

Figure 10-8.  Using expressions to define multiple paths

Figure 10-9.  Data flow expression

CHAPTER 10 ■ Expression Language Patterns

223

belongs to the data source within the data flow, allowing us to set the SqlCommand property of that source.
It’s useful to note here that I used the ADO.NET source purposefully in this example. As this source does not
currently allow the use of parameters, setting the SqlCommand property is often an acceptable substitute for
dynamically retrieving data from a relational database using this component.

Application of Business Rules
Although they share some of the same methods, the application of business rules differs conceptually from data
cleansing. For the most part, data cleansing is considered to be universal: misspelled words, inconsistent casing,
extraneous spacing, and the NULL-versus-blank-versus-zero quandary are all common problems that must be
dealt with in most every ETL process. Business rules, on the other hand, are specific use cases in which data is
manipulated, extrapolated, or discarded based on custom logic that is specific to the business at hand. These
rules may be general enough to apply to an entire industry (healthcare billing workflows, for example) or as
specific as the arrangement of data to suit the preferences of an individual manager.

Generally speaking, the use of expressions to apply business logic works best when limited to a small
number of simple business rule cases. As mentioned earlier, the expression language is not ideal for multiple test
conditions, and therefore may not be ideally suited for multifaceted and complex business rules. For enterprise-
level business rule application, consider other tools in SSIS such as the script component or Execute SQL task
(for operations that can be performed at the relational database level), or perhaps a separate tool such as SQL
Server Data Quality Services or Master Data Services.

CHOOSING BETWEEN COMPLEX EXPRESSIONS AND OTHER TOOLS

In my experience, the majority of uses of SSIS expressions involve short, simple expressions. Interrogating
the value of a variable, modifying the contents of an existing column, comparing two variables, and other
similar operations tend to require relatively brief and uncomplicated logic as an SSIS expression. However,
there are many cases where a short-and-sweet expression just won’t get it done.

In these cases of more complicated logic, is an SSIS expression still the best choice? In some instances,
the answer is no. As mentioned earlier, there are instances in the ETL cycle where the expression language
is ill-suited to solve the problem. In cases where the logic required involves complexity that exceeds
that which is practical or convenient for the SSIS expression language, a common pattern is to engage a
separate tool to address the problem hand. Some of the other methods for handling these complex logical
scenarios are as follows:

•	 Data source component : Especially when working with relational source data, it can
be simpler and faster (both design time and runtime) to build the necessary logic
into the source component instead of using an expression in SSIS.

•	 Execute SQL task : Sometimes it’s easier to load the data to a relational store and
then perform transformation and cleansing there rather than doing it inline within
the SSIS package. This methodology differs slightly from that of traditional ETL and
is typically branded as ELT (extract/load/transform). Using this model, the Execute
SQL Task could be used to transform the data once it has been loaded from the
source to the relational database in which it will be transformed.

•	 Script task : When working in the control flow, you can substitute an instance of the
script task in place of an overly complex SSIS expression. When using a script task
for this purpose, you get the added benefits of Intellisense, error handling, multistep
operations, and the ability to include comments in your code.

CHAPTER 10 ■ ExPREssion LAnguAgE PATTERns

224

•	 Script component : Replaces complex expressions within the data flow, for the
same reasons as above. in addition, the script component may be used as a source,
transformation, or destination in the data flow surface, giving you even greater
control of the manipulation of data than by strictly using expressions.

•	 Custom task/component : if you find yourself reusing the same complex logic in many
packages, consider creating a custom task or component that you can distribute to
multiple packages without having to copy and paste script code to each package.

•	 Third party task/component : sometimes it’s easier to buy (or borrow) than to build.
There are hundreds, perhaps even thousands, of third party tasks and components
designed to extend the native behaviors of ssis. in fact, many of these tools are
freely available—often with the underlying source code in case you need to further
customize the behavior of the tool.

There are no hard-and-fast rules defining when an expression may not be the best solution. However, there
are a few design patterns that i tend to follow when deciding whether to use an expression or some other tool
when applying dynamic logic in my ssis packages. Typically, i will avoid using expressions in situations where

•	 The expression will be exceptionally lengthy. if the logic required in an expression
would exceed more than a few hundred characters, a script or other tool is often a
better choice.

•	 The expression requires more than three levels of nesting. Especially in cases where
if/then/else logic is required, there’s frequently a need to respond to more than one
condition (if/then/elseif/then/else), and unfortunately, the only way to accomplish this
in the ssis expression language is by nesting conditional operators.

•	 Complex string interrogation or manipulation is required. simple string manipulation
is easy enough through ssis expressions with the use of well-known functions such
as SUBSTRING, REPLACE, LEFT/RIGHT, UPPER/LOWER, and REVERSE. However, more
advanced operations (extracting text from the middle of a string, replacing multiple
patterns of character(s), extracting numbers embedded in text, etc.) usually requires
overly complex expressions. Further, some text operations such as regular expression
(RegEx) matching are not natively supported in the ssis expression language.

•	 The logic requires a volatile type cast. Because the ssis expression language has no
error handling in itself, a conversion that is prone to failure (text to number, unicode
to AsCii, moving from a larger to smaller capacity of the same type) may cause an
undesired interruption in your package flow. often, i’ll wrap these into a script task
or script component using a TryParse() method or a try/catch block, which allows a
greater amount of flexibility in the event of a type cast failure.

The bottom line is that not every ETL challenge within ssis should be solved using expressions. The
expression language was intended as a lightweight solution, and used in that context, is an outstanding
supplement to the product line. Try to think of ssis expressions as spackle; small, light, elegant, and used
pervasively, but in small doses. As effective as spackle is, a building contractor would never think of building
an entire house using only spackle. As with any tool, expressions in ssis are best used in proper context and
should not be considered as a one-size-fits-all solution to every problem.

CHAPTER 10 ■ Expression Language Patterns

225

Summary
ETL can be hard. Often, it’s not the big design problems but the small “how do I...?” tactical questions that
collectively cause the most friction during SSIS development. The SSIS expression language was designed for
these types of questions. Its small footprint, somewhat familiar syntax, and extensive usability across the breadth
of SSIS make it an excellent addition to the capabilities within Integration Services. Used properly, it can help to
address a variety of problem domains and hopefully ease the burden on the ETL developer.

227

chapter 11

Data Warehouse Patterns

SQL Server Integration Services is an excellent general-purpose ETL tool. Its versatility finds it used by DBAs,
developers, BI professionals, and even business principals in many different scenarios. Sometimes it’s a dump
truck, used for the wholesale movement of enormous amounts of data. Other times it’s more like a scalpel,
carving out with precision just the right amount of data.

Though it is a great tool in other areas, SSIS truly excels when used as a data warehouse ETL tool. It would
be hard to argue that data warehousing isn’t its primary purpose in life. From native slowly changing dimension
(SCD) elements to the new CDC processing tasks and components, SSIS has all the hooks it needs to compete
with data warehouse ETL tools at much higher price points.

In this chapter, we’ll discuss design patterns applicable to loading a data warehouse using SQL Server
Integration Services. From incremental loads to error handling and general workflow, we’ll investigate
methodologies and best practices that can be applied in SSIS data warehouse ETL.

Incremental Loads
Anyone who has spent more than 10 minutes working in the data warehouse space has heard the term
incremental load. Before we demonstrate design patterns for performing incremental loads, let’s first touch on
the need for an incremental load.

What Is an Incremental Load?
As the name implies, an incremental load is one that processes a partial set of data based only on what is new or
changed since the last execution. While many consider incremental loads to be purely time based (for example,
grabbing just the data processed on the prior business day), it’s not always that simple. Sometimes, changes
are made to historical data that should be reflected in downstream systems, and unfortunately it’s not always
possible to detect when changes were made. (As an aside, those ubiquitous “last update timestamp” fields are
notorious for being wrong.)

Handling flexible data warehouse structures that allow not only inserts but updates as well can be a
challenging proposition. In this chapter, we’ll surface a few design patterns in SSIS that can be used when dealing
with changing data in your data warehouse.

Why Incremental Loads?
Imagine you are hired by a small shoe store to create a system through which the staff can analyze their sales
data. Let’s say the store averages 50 transactions a day, amounting to an average of 100 items (2 items per
transaction). If you do simple math on the row counts generated by the business, you’ll end up with fewer
than 200 rows of data per day being sent to the analysis system. Even over the course of the entire year, you’re

CHAPTER 11 ■ Data Warehouse Patterns

228

looking at less than 75,000 rows of data. With such a small volume of data, why would one want to perform
an incremental load? After all, it would be almost as efficient to simply dump and reload the entire analytical
database each night rather than try to calculate which rows are new, changed, or deleted.

In a situation like the one just described, the best course of action probably would be to perform a full load
each day. However, in the real world, few, if any, systems are so small and simple. In fact, it’s not at all uncommon
for data warehouse developers to work in heterogeneous environments that generate millions of rows of data per
day. Even with the best hardware money can buy, attempting to perform a daily full load on that volume of data
simply isn’t practical.

The incremental load seeks to solve this problem by allowing the systematic identification of data to be
moved from transactional systems to the data warehouse. By selectively carving out only the data that requires
manipulation—specifically, the rows that have been inserted, updated, or deleted since the last load—we can
eliminate a lot of unnecessary and duplicate data processing.

The Slowly Changing Dimension
When you consider the application of incremental data loads in a data warehouse scenario, there’s no better
example than the slowly changing dimension (SCD). The nature of dimensional data is such that it often does
require updates by way of manipulating existing rows in the dimension table (SCD Type 1) or expiring the current
record and adding a new row for that value, thus preserving the history for that dimension attribute (SCD Type 2).

Although the slowly changing dimension is certainly not the only data warehouse structure to benefit from
an incremental load, it is one of the most common species of that animal. As such, we’ll focus mostly on SCD
structures for talking points around incremental loads.

Incremental Loads of Fact Data
Although it is a less frequently used design pattern, some data warehouse scenarios require the changing of fact
data after it has been loaded to the data warehouse. This scenario is typically handled through a secondary load
with a negating entry and a delta record, but some designs require the original fact record to be corrected.

In such cases, the same methodology used for slowly changing dimension data may also apply to fact
data. However, be aware that careful consideration for performance must be paid to applying SCD methods
to fact data. Fact data is exponentially more voluminous than dimension data and typically involves millions,
and sometimes billions, of records. Therefore, apply the SCD pattern to fact data only if you must. If there’s any
flexibility at all in the DW design, use the delta record approach instead.

Incremental Loads in SSIS
Microsoft SQL Server, and SSIS specifically, have several tools and methodologies available for managing
incremental data loads. This section discusses design patterns around the following vehicles:

Native SSIS components (Lookup + Conditional Split)•	

Slowly Changing Dimension Wizard•	

MERGE statement in T-SQL•	

Change data capture (CDC)•	

Each of these tools is effective when used properly, though some are better suited than others for different
scenarios. We’ll step through the design patterns with each of these below.

CHAPTER 11 ■ Data Warehouse Patterns

229

Native SSIS Components
The first incremental load pattern we’ll explore is that of using native components within SSIS to perform the
load. Through the use of lookups, conditional splits, and OLEDB command components, we can create a simple
data path through which we can processes new and changed data from our source system(s).

This design pattern is one of the most common ways to perform an incremental load using SSIS. Because all
of the components used in this pattern have been around since SSIS was introduced in 2005, it’s a very mature
and time-tested methodology. Of all of the incremental methodologies we’ll explore, this is certainly the most
flexible. When properly configured, it can perform reasonably well. This is also the design pattern with the fewest
external dependencies; almost any data can be used as a source, it does not require the enabling of database
engine features such as CDC, and it does not require any third-party components to be installed.

The Moving Parts
Using this design pattern, the most common operations will include the following steps:

1.	 Extract data from the data source(s). If more than one source is used, they can be brought together
using the appropriate junction component (Merge, Merge Join, or Union All transformation).

2.	 Using the lookup transformation, join the source data with the target table based on the business key(s).

3.	 Route changed rows to the target table. Unmatched rows from the above step can then be routed
directly to the target table using the appropriate database destination component.

4.	 For the source rows that have a business key match in the target table, compare the other values that
may change. If any of those source values differs from the value found for that row in the destination
table, those rows in the destination table will be updated with the new values.

Figure 11-1 shows a typical data flow design for these operations. You can see in the first callout that we need to
set the option on the lookup transformation to “Redirect rows to no match output.” Using this setting, any source
rows that are not resolved to an existing row in the destination table are sent down an alternate path—in this
case, directly to the destination table.

CHAPTER 11 ■ Data Warehouse Patterns

230

Next, we’ll apply the conditional split transformation to the matched rows. As shown in the snippet within the
callout on the lower left, we’ll use a bit of the SSIS expression language to compare equivalent columns between
source and destination. Any rows with an exact match will not go through any further processing (though you could
send them to a row count transformation if you want to capture the count of source rows with no action taken).

Finally, the rows that matched the business key but not the subsequent attribute values will be sent to the
OLEDB command transformation. The callout on the lower right in Figure 11-1 shows a snippet of the SQL code
in which we perform a parameterized update of each row in the destination table. It is important to note that
the OLEDB command transformation performs a row-by-row update against the target table. We can typically
leverage this pattern as shown because most incremental operations are heavy on new rows and have far fewer
updates than inserts. However, if a particular implementation requires the processing of a very large amount of
data, or if your data exploration indicates that the number of updates is proportionally high, consider modifying
this design pattern to send those rows meant for update out to a staging table where they can be more efficiently
processed in a set-based operation.

Typical Uses
As mentioned previously, this incremental load design pattern is quite useful and mature. This pattern fits especially
well when dealing with non-relational source data, or when it’s not possible to stage incoming data before
processing. This is often the go-to design for incremental loads, and it fits most such scenarios reasonably well.

Do keep in mind that, because we’re performing the business key lookup and the column equivalency
tests within SSIS, some resource costs are associated with getting the data into the SSIS memory space and then
performing said operations against the data. Therefore, if a particular implementation involves a very large
amount of data, and the source data is already in a SQL Server database (or could be staged there), another
design pattern such as the T-SQL MERGE operation (to be covered shortly) might be a better option.

The following subsections describe components of the incremental load pattern and configuration options
for each.

Figure 11-1.  Incremental load using atomic SSIS components

CHAPTER 11 ■ Data Warehouse Patterns

231

Lookup Caching Options

When performing lookup operations, you want to consider the many options available for managing lookup
caching. Depending on the amount of data you’re dealing with, one of the following caching design patterns may
help to reduce performance bottlenecks.

Table Cache
A table cache for lookups is populated prior to executing a Data Flow Task requiring the lookup operation. The
table can be created and dropped as needed by SSIS using Execute SQL Tasks. It can be populated via Execute
SQL Task or a Data Flow Task. Most of the time, the data needed to build a table cache is local to the destination
and contains data from the destination, so I often use T-SQL in an Execute SQL Task to populate it.

Maintaining the table cache can be accomplished via truncate-and-load. For larger sets of lookup data,
you may wish to consider maintaining the table cache using incremental load techniques. This may sound like
overkill, but when you need perform a lookup against a billion-row table (it happens, trust me), the incremental
approach starts to make sense.

Cache Transformation and Cache Connection Manager
If you find you need to look up the same data in multiple Data Flow Tasks, consider using the Cache
Tranformation along with the Cache Connection Manager. The Cache Connection Manager provides a memory-
resident copy of the data supplied via the Cache Transformation. The Cache is loaded prior to the first Data Flow
Task that will consume the lookup data, and the data can be consumed directly by a Lookup Transformation.
Pre-caching data in this manner supports lookups, but it also provides a way to “mark” sets of rows for other
considerations such as loading. Later in this chapter, we will explore late-arriving data and discuss patterns for
managing it. One way to manage the scenario of data continuing to arrive after the load operation has started is
to create a cache of primary and foreign keys that represent completed transactions, and then join to those keys
in Data Flow Tasks throughout the load process. Will you miss last-second data loading in this way? Yes, you will.
But your data will contain complete transactions. One benefit of executing incremental loads with table-caches is
the ability to execute the load each month, week, evening, or every five minutes; only complete transactions that
have arrived since the last load executed will be loaded.

If you find you need to use the same lookup data across many SSIS packages (or that the cache is larger than
the amount of available server RAM), the Cache Connection Manager can persist its contents to disk. The Cache
Connection Manager makes use of the new and improved RAW file format, a proprietary format for storing data
directly from a Data Flow Task to disk, completely bypassing Connection Managers. Reads and writes are very
fast as a result, and the new format persists column names and data types.

Load Staging

Another pattern worth mentioning here is Load Staging. Consider the following scenario: a data warehouse
destination table is large and grows often. Since the destination is used during the load window, dropping keys
and indexes is not an option to improve load performance. All related data must become available in the data
warehouse at roughly the same time to maintain source-transactional consistency. By nature, the data does not
lend itself to partitioning. What to do?

Consider load staging, where all the data required to represent a source-transaction is loaded into stage
tables on the destination. Once these tables are populated, you can use Execute SQL Tasks to insert the staged
rows into the data warehouse destination table. If timed properly, you may be able to use a bulk insert to
accomplish the load. Often, data loads between tables in the same SQL Server instance can be accomplished
more efficiently using T-SQL rather than the buffered SSIS Data Flow Task. How can you tell which will perform
better? Test it!

CHAPTER 11 ■ Data Warehouse Patterns

232

The Slowly Changing Dimension Wizard
The Slowly Changing Dimension Wizard is another veteran of the SSIS incremental load arsenal. As its name
implies, it is designed specifically for managing SCD elements in a data warehouse. However, its use is certainly
not limited to dimension processing.

The SCD Wizard has been a part of SSIS ever since the product’s introduction in 2005. At first glance, it is
the natural choice for handling slowly changing dimension data in SSIS. This tool is built right into Integration
Services, and it is designed specifically for the purpose of SCD processing.

The SCD Wizard is surfaced as a transformation in SSIS and is leveraged by connecting the output of a data
source (the incoming data) to the input of the SCD transformation. Editing the SCD transformation will kick off
the wizard, as shown in Figure 11-2.

Figure 11-2.  The SCD Wizard showing alignment of columns between source and destination

CHAPTER 11 ■ Data Warehouse Patterns

233

From there, the wizard will guide you through the selection of the necessary elements of the slowly changing
dimension configuration, including the following:

Which columns should be engaged as part of the slowly changing dimension, along with •	
the option to handle changes as simple updates (Type 1) or historical values (Type 2)

How to identify current vs. expired rows, if any Type 2 columns are present; you can •	
specify either a flag or a date span to indicate currency of SCD records

How to handle inferred members (discussed in more depth shortly)•	

Upon completion of the SCD Wizard, several new elements are automagically added to the data flow.
Figure 11-3 shows an example of the transformations and destinations added when using a combination of Type
1 and Type 2 fields, fixed attribute (static) fields, and inferred member support. The SCD Wizard adds only those
components pertinent to the design specified, so the final result may look a bit different than the example in this
figure depending on how the wizard is configured.

Figure 11-3.  SCD Wizard output

CHAPTER 11 ■ Data Warehouse Patterns

234

Of all of the slowly changing dimension design patterns, the SCD Wizard is arguably the easiest to use for
simple SCD scenarios, and it offers the fastest turnaround at design time. For small, simple dimensions, the
wizard can be an effective tool for managing changing data.

However, the SCD Wizard does have some significant drawbacks.

•	 Performance. The wizard performs reasonably well against small sets of data. However,
because many of the operations are performed on a row-by-row basis, leveraging
this transformation against sizeable dimensions can cause a significant performance
bottleneck. Some data warehouse architects have strong feelings against the SCD Wizard,
and this is often the chief complaint.

•	 Destructive changes. As I mentioned, when you run the wizard, all of the required
transformations and destinations are created automatically. Similarly, if you reconfigure
the SCD transformation (for example, changing a column type from a Type 1 to a Type 2
historical), the existing design elements are removed and added back to the data flow. As
a result, any changes that you’ve made to that data path will be lost if you make a change
to the SCD transformation.

•	 No direct support for auditing. Although you can add your own auditing logic, it’s
not a native function of this component. Further, because any changes to the SCD
transformation will delete and re-create the relevant elements of the data flow, you’ll have
to reconfigure that auditing logic if any changes are made to the SCD transformation.

As a result of these shortcomings (especially the performance implications), the SCD Wizard doesn’t see a
lot of action in the real world. I don’t want to beat up on this tool too much because it does have some usefulness,
and I don’t necessarily recommend that you avoid it completely. However, like any specialty tool, it should be
used only where appropriate. For small sets of slowly changing dimension data that do not require complex logic
or specialized logging, it can be the most effective option for SCD processing.

The MERGE Statement
Although technically not a function of SSIS, the MERGE statement has become such a large part of incremental
data loads that any discussion around data warehousing design patterns would not be complete without
coverage of this tool.

A Little Background
Prior to version 2008, there was no native upsert (UPdate/inSERT) in Microsoft SQL Server. Any operation
that blended updates and inserts required either the use of a cursor (which often performs very poorly) or two
separate queries (usually resulting in duplicate logic and redundant effort). Other relational database products
have had this capability for years—in fact, it has been present in Oracle since version 9i (around 2001). Naturally,
SQL Server professionals were chomping at the bit for such capabilities.

Fortunately, they got their wish with the release of SQL Server 2008. That version featured the debut of the
new MERGE statement as part of the T-SQL arsenal. MERGE allows three simultaneous operations (INSERT,
UPDATE, and DELETE) against the target table.

The anatomy of a MERGE statement looks something like this:

1.	 Specify the source data.

2.	 Specify the target table.

3.	 Choose the columns on which to join the source and target data.

CHAPTER 11 ■ DATA WAREHousE PATTERns

235

4. Indicate the column alignment between the two sets of data, to be used for determining whether
matched records are different in some way.

5. Define the logic for cases when the data is changed, or if it exists in only either the source or the
destination.

The new MERGE capabilities are useful for DBAs and database developers alike. However, for data warehouse
professionals, MERGE was a game changer in terms of managing slowly changing dimension data. Not only did
this new capability provide an easier way to perform upsert operations, but it also performed very well.

MERGE in Action
Since there are no native (read: graphical) hooks to the MERGE statement in Integration Services, the
implementation of MERGE in an SSIS package is done through an Execute SQL task.

To explore this design pattern, let’s first examine the typical flow for using the T-SQL MERGE functionality
within a data warehouse SSIS load package. Again, we’ll use the slowly changing dimension scenario as a basis
for exploration, but much of the same logic would apply to other uses of MERGE.

As part of an SCD MERGE upsert process, our SSIS package would contain tasks to perform the following
functions:

1. Remove previously staged data from the staging table.

2. Load the staging table from the source system.

3. Clean up the staged data (if required).

4. Execute the MERGE statement to upsert the staged data to the dimension table.

5. Log the upsert operation (optional).

A typical control flow design pattern is shown in Figure 11-4.

CHAPTER 11 ■ Data Warehouse Patterns

236

Also note the large callout in Figure 11-4 with the T-SQL code used for the MERGE statement. In the interest
of maintaining focus, I won’t try to provide comprehensive coverage of the MERGE statement here, but I’ll point
out a couple of the high points:

The •	 ON clause (third line) indicates the field on which we join the source data with the
destination data. Note that we can use multiple fields on which to align the two sets.

The 10-line code block following •	 WHEN MATCHED AND NOT… indicates which of the
fields will be checked to see if the data in the destination table differs from the source
data. In this case, we’re checking ten different fields, and we’ll process an update to the
destination if any of those fields is different between source and destination. Also note the
liberal use of the ISNULL() function against the destination table. This is recommended to
ensure that NULL values in the destination table are not inadvertently skipped during the
MERGE.

Figure 11-4.  Using MERGE against a slowly changing dimension table

CHAPTER 11 ■ Data Warehouse Patterns

237

In the code block immediately following, we’ll update rows in the target table •	
that have a valid match against the source but have one or more values that differ
between the two.

In the code block beginning with •	 WHEN NOT MATCHED BY target …, any source rows
not matched to the specified key column(s) of an existing dimension record will be
written as new rows to that dimension table.

Finally, we use the OUTPUT clause to select the action description and insert •	
data. We can use the output of this to write to our auditing table (more on that
momentarily).

You’ll notice that we’re handling this dimension processing as a Type 1 dimension, in which we intentionally
overwrite the previous values and do not maintain an historical record of past values. It is possible to use the
MERGE command to process Type 2 dimensions that retain historical values, or even those with a mixture of
Type 1 and Type 2 attributes. In the interest of brevity I won’t try to cover the various other uses of MERGE as it
applies to slowly changing dimensions, but I think you’ll find that it’s flexible enough to handle most Type 1 and
Type 2 dimensions.

Also worth noting is that the MERGE statement can also be used to delete data in addition to performing
inserts and updates. It’s not as common in data warehouse environments as in other settings to delete data, but it
may occasionally be necessary to delete data from the target table.

Auditing with MERGE
As with other data warehouse operations, it’s considered a best practice to audit, at a minimum, the row counts
of dimensional data that is added, deleted, or changed. This is especially true for MERGE operations. Because
multiple operations can occur in the same statement, it’s important to be able to track those operations to assist
with troubleshooting, even if comprehensive auditing is not used in a given operation.

The MERGE statement does have a provision for auditing the various data operations. As shown in the
example in Figure 11-4, we can use the OUTPUT clause to select out of the MERGE statement the insert, update,
or delete operations. This example shows a scenario where the data changes would be selected as a result set
from the query, which could subsequently be captured into a package variable in SSIS and processed from there.
Alternatively, one could modify the OUTPUT clause to insert data directly into an audit table without returning a
result set to SSIS.

Change Data Capture (CDC)
Along with the MERGE capability, another significant incremental load feature first surfaced in SQL Server
2008: change data capture. CDC is a feature of the database engine that allows the collection of data changes to
monitored tables.

Without jumping too far off track, here’s just a bit about how CDC works. CDC is a supply-side incremental
load tool that is enabled first at the database level and then implemented on a table-by-table basis via capture
instances. Once enabled for a table, the database engine uses the transaction log to track all DML operations
(inserts, updates, and deletes), logging each change to the change table for each monitored table. The change
table contains not only the fact that there was a change to the data, but it also maintains the history of those
changes. Downstream processes can then consume just the changes (rather than the entire set of data) and
process the inserts, updates, and deletes in any dependent systems.

CHAPTER 11 ■ Data Warehouse Patterns

238

CDC in Integration Services
SSIS can consume CDC data in a couple of different ways. First, using common native SSIS components, you
can access the change table to capture the data changes. Keeping track of which changes have been processed
by SSIS can be done by capturing and storing the log sequence number (LSN) by using a set of system stored
procedures created when CDC is enabled.

The manual methods are still valid; however, new to SSIS in SQL Server 2012 is an entirely new set of tools for
interfacing with CDC data. Integration Services now comes packaged with a new task and two new components
that help to streamline the processing of CDC data:

•	 CDC Control Task. This task is used for managing the metadata around CDC loads. Using
the CDC Control Task, you can track the start and end points of the initial (historical)
load, as well as retrieve and store the processing range for an incremental load.

•	 CDC Source. The CDC Source is used to retrieve data from the CDC change table. It
receives the CDC state information from the CDC Control Task by way of an SSIS variable,
and it will selectively retrieve the changed data using that marker.

•	 CDC Splitter. The CDC Splitter is a transformation that will branch the changed data out
into its various operations. Effectively a specialized conditional split transformation, it
will use the CDC information received from the CDC Source and send the rows to the
Insert, Update, Delete, or Error path accordingly.

For the purposes of reviewing CDC capabilities as part of an SSIS incremental load strategy, we’ll stick
with the new task and components present in SSIS 2012. In systems using SQL Server 2008, know that the same
objectives can be met by employing the manual extraction and LSN tracking briefly described previously.

Change Detection in General
Detecting changes in data is a sub-science of data integration. Much has been written on the topic from
sources too numerous to list. Although CDC provides handy change detection in SQL Server, it was possible
(and necessary!) to achieve change detection before the advent of CDC. It is important to note that CDC is not
available in all editions of SQL Server; it is also not available in other relational database engines.

Do not fear: CDC is not required to detect data changes!

Checksum-Based Detection

One early pattern for change detection was using the Transact-SQL Checksum function. Checksum accepts
a string as an argument and generates a numeric hash value. But Checksum performance has proven less
than ideal, generating the same number for different string values. Steve Jones blogged about this behavior
in a post entitled SQL Server Encryption - Hashing Collisions (www.sqlservercentral.com/blogs/steve_
jones/2009/06/01/sql-server-encryption-hashing-collisions/). Michael Coles provided rich evidence to
support Steve’s claims in the post’s comments (www.sqlservercentral.com/blogs/steve_jones/2009/06/01/
sql-server-encryption-hashing-collisions/#comments). In short, the odds of collision with Checksums are
substantial, and you should not use the Checksum function for change detection.

What can you use?

Detection via Hashbytes

One good alternative to Checksum is the Hashbytes function. Like Checksum, Hashbytes provides value hashing
for a string value or variable. Checksum returns an integer value; Hashbytes returns a binary value. Checksum
uses an internal algorithm to calculate the hash; Hashbytes uses standard encryption algorithms. The sheer

http://www.sqlservercentral.com/blogs/steve_jones/2009/06/01/sql-server-encryption-hashing-collisions/
http://www.sqlservercentral.com/blogs/steve_jones/2009/06/01/sql-server-encryption-hashing-collisions/
http://www.sqlservercentral.com/blogs/steve_jones/2009/06/01/sql-server-encryption-hashing-collisions/#comments
http://www.sqlservercentral.com/blogs/steve_jones/2009/06/01/sql-server-encryption-hashing-collisions/#comments

CHAPTER 11 ■ Data Warehouse Patterns

239

number of values available to each function is one reason Hashbytes is a better choice. Checksum’s int data
type can return roughly +/–231 values, whereas Hashbytes can return +/-2127 values for MD2, MD4, and MD5
algorithms and +/–2159 values for SHA and SHA1 algorithms.

Brute Force Detection

Believe it or not, a “brute force” value comparison between sources and destinations remains a viable option
for change detection. How does it work? You acquire the destination values by way of either a second Source
component or a Lookup Transformation in the SSIS Data Flow Task. You match the rows in source and
destination by alternate (or business) key—a value or combination of values that uniquely identifies the row in
both source and destination—and then compare the non-key column values in the source row to the non-key
values in the destination row.

Remember, you are attempting to isolate changes. It is assumed you have separated the new rows—data that
exists in the source and not in the destination—and perhaps you have even detected deleted rows that exist in
the destination but are no longer found in the source. Changed and unchanged rows remain. Unchanged rows
are just that: the alternate keys align as do every other value in each source and destination column. Changed
rows, however, have identical alternate keys and one or more differences in the source and destination columns.
Comparing the column values as shown in Figure 1-1 earlier in this chapter—accounting for the possibility of
NULLs—remains an option.

Historical Load
There should be a separate process to populate the historical data for each of the tracked CDC tables. This
historical load is designed to be executed just once, and it would load data to the destination system from as far
back as is required. As shown in Figure 11-5, two CDC control tasks are required. The first one (configured as
shown in the callout) is used to set the beginning boundary of the data capture. With this information, the CDC
Control Task writes the CDC state to the specified state table. The second CDC Control Task marks the end point of
the initial load, updating the state table so the appropriate starting point will be used on subsequent incremental
loads. Between these two tasks sits the data flow, which facilitates the historical load of the target table.

CHAPTER 11 ■ Data Warehouse Patterns

240

Incremental Load
Because of the inherent differences between historical loads and incremental loads, it’s almost always preferable
to create separate packages (or package groups) for each of these. Although there are similarities, there are
enough differences to justify separating the logic into different sandboxes.

For the control flow elements of the historical load, this incremental load pattern will also use two CDC
Control Tasks with a data flow between them. We’ll need to slightly change the configuration of these tasks so that
we retrieve and then update the current processing range of the CDC operation. As shown in Figure 11-6, we’ll
set the operation for the first of these as “Get processing range,” which would be followed by “Update processing
range” after the incremental load is complete.

Figure 11-5.  CDC task for an initial historical load

Figure 11-6.  Get processing range for CDC incremental load

CHAPTER 11 ■ Data Warehouse Patterns

241

Note■■   The CDC Control Task is a versatile tool that includes several processing modes to handle various CDC
phases, including dealing with a snapshot database or quiescence database as a source. A complete listing of the
processing modes can be found here: http://msdn.microsoft.com/en-us/library/hh231079.aspx

Within the data flow, the CDC source should be set with the table from which to capture, the capture
instance, and the processing mode. In this case, we’re going to use “Net” to retrieve the net changes to the CDC
table. See Figure 11-7.

Figure 11-7.  CDC source

The CDC Splitter breaks apart the data stream and sends rows out to the insert, update, and delete
outputs. From there, we’ll write the update and delete rows to a staging table so we can process those as high-
performance, set-based operations. The insert records can go directly into the output table.

It’s worth mentioning here that several CDC processing modes are available through the CDC Source
component. The example in Figure 11-7 illustrated the use of the Net setting, which is the most common mode
in most data warehouse scenarios. However, depending on the ETL requirements and source system design, you
may opt for one of the other processing modes, as follows:

•	 All: Lists each change in the source, not just the net result

•	 All with old values: Includes each change plus the old values for updated records

•	 Net with update mask: Is for monitoring changes to a specific column in the monitored
table

•	 Net with merge: Is similar to Net, but the output is optimized for consumption by the
T-SQL MERGE statement

http://msdn.microsoft.com/en-us/library/hh231079.aspx

CHAPTER 11 ■ Data Warehouse Patterns

242

Typical Uses
CDC represents a shift in the incremental load methodology. The other methods described here apply a
downstream approach to incremental loading, with a minimally restrictive extraction from the source and a
decision point late in the ETL flow. CDC, on the other hand, processes the change logic further upstream, which
can help lighten the load on SSIS and other moving parts in the ETL.

If CDC is in place (or could be implemented) in a source system, it’s certainly worth considering using this
design pattern to process incremental loads. It can perform well, can reduce network loads due to processing
fewer rows from the source, and requires fewer resources on the ETL side. It’s not appropriate for every situation,
but CDC can be an excellent way to manage incremental loads in SQL Server Integration Services.

Keep in mind that the use of CDC as a design pattern isn’t strictly limited to Microsoft SQL Server databases.
CDC may also be leveraged against CDC-enabled Oracle database servers.

Data Errors
Longfellow once wrote, “Into each life some rain must fall.” The world of ETL is no different, except that rain
comes in the form of errors, often as a result of missing or invalid data. We don’t always know when they’re
going to occur. However, given enough time, something is going to go wrong: late-arriving dimension members,
packages executed out of order, or just plain old bad data. The good news is that there are data warehousing
design patterns that can help mitigate the risk of data anomalies that interrupt the execution of Integration
Services packages.

To address patterns of handling missing data, we’re going to concentrate mostly on missing dimension
members, as this is the most frequent cause of such errors. However, you can extend some of the same patterns to
other elements that are part of or peripheral to data warehousing.

Simple Errors
The vast majority of errors can and should be handled inline, or simply prevented before they occur. Consider
the common case of data truncation: you have a character type field that’s expected to contain no more than 50
characters, so you set the data length accordingly. Months later, you get a late-night phone call (most likely when
you’re on vacation or when you’re out at a karaoke bar with your fellow ETL professionals) informing you that the
SSIS package has failed because of a truncation error. Yep, the party’s over.

We’ve all been bitten before by the truncation bug or one of its cousins—the invalid data type error, the
unexpected NULL/blank value error, or the out-of-range error. In many cases, however, these types of errors
can be handled through defensive ETL strategies. By using tasks and components that detect and subsequently
correct or redirect nonconforming rows, we can handle minor data errors such as this without bubbling up a
failure that stops the rest of the ETL from processing.

Missing Data
With respect to data warehousing, a more common example of handling errors inline is the case of late arriving
dimension data. As shown in Figure 11-8, the typical pattern is to load the dimensions first, followed by a load of
the fact tables. This helps to ensure that the fact records will find a valid dimension key when the former is loaded
to the data warehouse.

CHAPTER 11 ■ Data Warehouse Patterns

243

However, this pattern breaks down when attempting to process fact records that reference dimension data
that does not yet exist in the data warehouse. Consider the case of holiday retail sales: because things happen
so quickly at the retail level during the end-of-year holiday season, it’s not uncommon for last-minute items to
appear at a store’s dock with little or no advance notice. Large companies (retailers included) often have multiple
systems used for different purposes that may or may not be in sync, so a last-minute item entered in the point-
of-sale (POS) system may not yet be loaded in the sales forecasting system. As a result, an attempt to load a data
warehouse with both POS and forecasting data may not fit this model because we would have fact data from the
sales system that does not yet have the required dimension rows from the forecasting system.

At this point, if the decision is made to handle this issue inline, there are a few different methodogies we can
use. These are described next.

Use the Unknown Member
The fastest and simplest pattern to address the issue of missing dimension members is to push fact records with
missing dimension data into the fact table while marking that dimension value as unknown. In this case, the fact
records in question would be immediately available in the data warehouse; however, all of the unknowns would,
by default, be grouped together for analytical purposes. This pattern generally works best when the fact record
alone does not contain the required information to create a unique new dimension record.

This design pattern is fleshed out in Figure 11-9. Using the No Match output of the lookup transformation,
we’re sending the fact records not matched to an existing [Item] dimension member to an instance of the derived
column transformation, which sets the value of the missing dimension record to the unknown member for that
dimension (in most cases, represented by a key value of –1). The matched and unmatched records are then
brought back together using the “union all” transformation.

Figure 11-8.  Typical data warehouse methodology of loading dimensions, then facts

Figure 11-9.  Using Unknown Member for missing dimension member

CHAPTER 11 ■ Data Warehouse Patterns

244

It is important to note that this design pattern should also include a supplemental process (possibly
consisting of just a simple SQL statement) to periodically attempt to match these modified facts with their proper
dimension records. This follow-up step is required to prevent the fact data in question from being permanently
linked to the unknown member for that dimension.

Add the Missing Dimension Member
Using this design pattern, missing dimension records are added on the fly as part of the fact package, using as
much dimension data as is provided by the fact data. In this scenario, the fact records are immediately available
in the data warehouse, just like the previous design pattern, but this methodology has the added benefit of
matching the fact record to its proper dimension member. In most cases, this allows the immediate association to
the correct dimension data rather than grouping the unmatched data into the unknown member bucket.

Like the previous pattern, this method does come with a couple of caveats. First of all, the fact record must
contain all of the information to 1) satisfy the table constraints (such as NOT NULL restrictions) on the dimension
table, and 2) create a uniquely identifiable dimension row using the business key column(s). Also, since we’re
deriving the newly added dimension member from the incoming fact records, it can be reasonably assumed in
most cases that the incoming fact data will not completely describe the dimension member. For that reason,
this design pattern should also be complemented with a process that attempts to fill in the missing dimension
elements (which may already be addressed as part of a comprehensive slowly changing dimension strategy).

As shown in Figure 11-10, we use a methodology similar to the previous example. However, instead of simply
assigning the value of the unknown member using the derived column transformation, we leverage an instance
of the OLEDB command transformation to insert into the dimension table the data for that missing dimension
record in the fact table. The SQL statement is shown in the callout, and in the properties of the OLEDB command
we map the placeholders (indicated by question marks) to the appropriate values from the fact record.

After adding the missing member, we send those rows to a secondary ItemID lookup, which will attempt
(successfully, unless something goes terribly wrong) to match the previously unmatched data with the newly

Figure 11-10.  Add missing dimension member

added dimension records in the DimItem table. It is important to remember to set the cache mode to either
Partial Cache or No Cache when using a secondary lookup in this manner. The default lookup cache setting
(Full Cache) will buffer the contents of the Item dimension table before the data flow is initiated, and as a result
none of the rows added during package execution would be present in this secondary lookup. To prevent all of
these redirected fact rows from failing the secondary Item dimension lookup, use one of the non-default cache
methods to force the package to perform an on-demand lookup to include the newly added dimension values.

Regarding the secondary lookup transformation methodology, one might wonder if the second lookup
is even necessary. After all, if we perform the insert in the previous step (OLEDB command), couldn’t we just
collect the new Item dimension key value (a SQL Server table identity value, in most cases) using that SQL

CHAPTER 11 ■ DATA WAREHousE PATTERns

245

statement? The answer is a qualified yes, and in my experience that is the simpler of the two options. However,
I’ve also found that some ETL situations—in particular, the introduction of parallel processes performing the
same on-the-fly addition of dimension members—can cloud the issue of collecting the identity value of the most
recently inserted record. From that perspective, I lean toward using the secondary lookup in cases such as this.

Triage the Lookup Failures
For missing dimension records, the most common approaches typically involve one of the preceding. However,
on occasion it will be necessary to delay the processing of fact records that do not match an existing dimension
record. In cases such as this, you’ll need to create a triage table that will store the interim records until they can
be successfully matched to the proper dimension.

As shown in Figure 11-11, we’re adding a couple of additional components to the ETL pipeline for this
design pattern. At the outset, we need to use two separate sources of data: one to bring in the new data from the
source system, and the other for reintroducing previously triaged data into the pipeline. Further into the data
flow, the example shows that we are redirecting the unmatched fact records to another table rather than trying to
fix the data inline.

Figure 11-11. Use triage table to store unmatched fact data

As an aside, this pattern could be modified to support manual intervention for correcting failed lookups as
well. If the business and technical requirements are such that the unmatched fact data must be reviewed and
corrected by hand (as opposed to a systematic cleanup), you could eliminate the triage source so that the triage
data is not reintroduced into the data flow.

Coding to Allow Errors
Although it may sound like an oxymoron, it’s actually a common practice to code for known errors. In my
experience, the nature of most ETL errors dictates that the package execution can continue, and any errors or
anomalies that cannot be addressed inline are triaged as shown in the previous example (with the appropriate
notification to the person responsible, if manual intervention is required) for later resolution. However, there are
situations where the data warehouse ETL process should be designed to fail if error conditions arise.

Consider the case of financial data. Institutions that store or process financial data are subject to frequent
and comprehensive audits, and for inconsistent data to appear in a governmental review of the data could spell
disaster for the organization and its officers. Even though a data warehouse may not be subject to the same to-
the-penny auditing scrutiny as OLTP systems, there is still an expectation of consistency when matters of money
and governmental regulation are involved. In the case of a data warehouse load where nonconforming data is
encountered, quite possibly the best thing to occur is that the package would fail gracefully, rolling back any
changes made as part of the load.

CHAPTER 11 ■ Data Warehouse Patterns

246

Fail Package on Error
Extending the financial data example mentioned previously, let’s examine the design pattern to facilitate a
failure in the event of a lookup error. In reality, this is the default behavior. As shown in Figure 11-12, we use the
default setting of Fail component on the lookup components, which stops the execution of the package if a row is
encountered that cannot be matched to either the GL Account or GL Subaccount lookup.

Figure 11-12.  Allow package to fail upon error

It’s worth noting here that a proper use of this design pattern does require the inclusion of some logic to roll
back changes due to a partial load. If a fact row not matching one of the lookup components is encountered, the
package will still fail; however, rows preceding the errored row that have already been sent to the destination may
be commited to that table before the failure and could cause the whole of the data to be in an inconsistent state.

There are several ways to accomplish this rollback behavior:

•	 SSIS transactions: Integration Services natively has the ability to wrap tasks and
containers into transactions and, in theory, will reverse any durable changes to the
relational database in the event of an error in the scope of that transaction. In practice,
however, I’ve found that using the SSIS transaction functionality can be challenging even
on a good day. Leveraging transactions directly in SSIS requires a lot of things to align
at once: all involved systems must support DTC transactions, the DTC service must be
running and accessible at each of those endpoints, and all relevant tasks and connections
in SSIS must support transactions.

•	 Explicit SQL transactions: This method involves manually creating a transaction in SSIS
by executing the T-SQL command to engage a relational transaction on the database
engine. Using this method, you essentially create your own transaction container by
explicitly declaring the initialization and COMMIT point (or ROLLBACK, in the event
of an error) using the Execute SQL Task. On the database connection, you’ll need to set
the RetainSameConnection property to True to ensure that all operations reuse the same
connection and, by extension, the same transaction. Although this method does require
some additional work, it’s the more straightforward and reliable of the two transactional
methods of strategic rollback.

CHAPTER 11 ■ Data Warehouse Patterns

247

•	 Explicit cleanup: This design pattern involves creating your own environment-specific
cleanup routines to reverse the changes due to a failed partial load, and it typically does
not engage database transactions for rollback purposes. This method requires the most
effort in terms of development and maintenance, but it also allows the greatest amount of
flexibility if you need to selectively undo changes made during a failed package execution.

Unhandled Errors
I’m certain that the gentleman who came up with Murphy’s Law was working as a data warehouse ETL developer.
Dealing with data from disparate systems is often an ugly process! Although we can defensively code around
many common issues, eventually some data anomaly will introduce unexpected errors.

To make sure that any error or other data anomaly does not cause the ETL process to abruptly terminate,
it’s advisable to build in some safety nets to handle any unexpected errors. You’ll find more information about
capturing errors in Appendix A.

Data Warehouse ETL Workflow
Most of what has been covered in this chapter so far has been core concepts about the loading of data
warehouses. I’d like to briefly change gears and touch on the topic of SSIS package design with respect to
workflow. Data warehouse ETL systems tend to have a lot of moving parts, and the workload to develop those
pieces is often distributed to multiple developers. Owing to a few lessons learned the hard way, I’ve developed a
workflow design pattern of package atomicity.

Dividing Up the Work
I’ve told this story in a couple of presentations I’ve done, and it continues to be amusing (to me, anyway) to think
about ever having done things this way. The first production SSIS package of any significance that I deployed was
created to move a large amount of data from multiple legacy systems into a new SQL Server database. It started
off rather innocently; it initially appeared that the ETL logic would be much simpler than what it eventually
became, so I wrapped everything into a single package. I realized once I was well into the project that it might get
ugly, but, like pulling at a loose thread on a fine sweater, I couldn’t find a smooth point at which to stop.

In the end, the resulting SSIS package was enormous. There were 30, maybe 40, different data flows
(some with multiple sources/destinations and complex transformation logic) and dozens of other helper tasks
intermingled. The resulting .dtsx file size was about 5MB just for the XML metadata! Needless to say, every time I
opened this package in Visual Studio, it would take several minutes to run through all of the validation steps.

This extremely large SSIS package worked fine, and technically there was nothing wrong with the design. Its
sheer size did bring to light some challenges that are present in working with large, do-everything packages, and
as a result of that experience I reengineered my methodology for atomic package design.

One Package = One Unit of Work
With respect to data warehouse ETL, I’ve found that the best solution in most cases is to break apart logical
units of work into separate packages, in which each package does just one thing. By splitting up the workload,

CHAPTER 11 ■ Data Warehouse Patterns

248

you can avoid a number of potential snags and increase your productivity as an ETL developer. Some of the
considerations for smaller SSIS packages include the following:

•	 Less time spent waiting on design-time validation. SQL Server Data Tools has a rich
interface that provides, among other things, a near real-time evaluation of potential
metadata problems in the SSDT designer. If, for example, a table that is accessed by the
SSIS package is changed, the developer will be presented with a warning (or an error, if
applicable) in SSDT indicating that metadata accessed by the package has changed. This
constant metadata validation is beneficial in that it can help to identify potential problems
before they are pushed out for testing. There’s also a performance cost associated with this.
The length of time required for validation increases as the size of the package increases, so
naturally keeping the packages as small as practical will cut down on the amount of time
you’re drumming your fingers on your desk waiting for validation to complete.

•	 Easier testing and deployment. A single package that loads, say, 10 dimensions has a lot of
moving parts. When developing each of the dimensions within the package, there is no
easy way to test just one element of the package (apart from manually running it in the
SSDT designer, which isn’t a completely realistic test for a package that will eventually
be deployed to the server). The only realistic test for such a package would be to test the
entire package as a server-based execution, which may be overkill if you’re only interested
in one or two changed properties. Further, it’s not uncommon for organizations with
formal software testing and promotion procedures to require that the entire thing be
retested, not just the new or changed elements. By breaking up operations into smaller
units, testing and deployment are usually less of a burden because you are only operating
on one component at a time.

•	 Distributed development. If you work in an environment where you are the only person
developing SSIS packages, this is less of a concern. However, if your shop has multiple
ETL developers, those do-everything packages are quite inconvenient. Although it’s
much easier in SQL Server 2012 than in previous releases to compare differences between
versions of the same package file, it’s still a mostly manual process. By segmenting the
workload into multiple packages, it’s much easier to farm out development tasks to
multiple people without having to reconcile multiple versions of the same package.

•	 Reusability. It’s not uncommon for the same logic to be used more than once in the
same ETL execution, or for that same logic to be shared among multiple ETL processes.
By encapsulating these logical units of work into their own packages, it’s much easier to
share that logic and avoid duplicate development.

It is possible to go overboard here. For example, if, during the course of the ETL execution, you need to drop
or disable indexes on 20 tables, you probably don’t need to create a package for each index! Break operations up
into individual packages, but be realistic about what constitutes a logical unit of work.

These aren’t hard and fast rules, but with respect to breaking up ETL work into packages, here are a few
design patterns that I’ve found work well when populating a data warehouse:

Each dimension has a separate package.•	

Each fact table has a separate package.•	

Staging operations (if used) each have their own package.•	

Functional operations unrelated to data movement (for example, dropping or disabling •	
indexes on tables before loading them with data) are separated as well. Some of these
operations can be grouped together in common packages where appropriate; for
example, if you truncate tables and drop indexes in a staging database, those operations
typically reside in the same package.

CHAPTER 11 ■ Data Warehouse Patterns

249

Further, it’s often a good practice to isolate in separate packages any ETL logic that is significantly different
in terms of scope or breadth of data. For example, an historical ETL process that retrieves a large chunk of old
data will likely have different performance expectations, error handling rules, and so on than a more frequently
executed package that collects just the most recent incremental data. As such, creating a separate package
structure to address those larger sets of data helps to avoid the issue of trying to force a single package to handle
these disparate scenarios.

Summary
SQL Server Integration Services isn’t just another ETL tool. At its root, it is ideally suited for the unique challenges
of data warehouse ETL. This chapter has shown some specific methodologies for how to leverage SSIS against
common and realistic DW challenges.

251

Chapter 12

Logging Patterns

In any effective ETL system, there lies an unseen but valuable system of event and error logging designed to aid
in troubleshooting problems, heading off potential issues, and tracking historical trends in data movement and
transformation.

In this chapter, we’re going to discuss logging patterns. If you are a lumberjack and are looking for career
tips, you can stop reading now—this is a different type of logging.

Essentials of Logging
Let’s be honest—event and error logging probably isn’t at the top of the list when the average ETL professional
thinks of his or her favorite things. Consider the types of things we brag about: “I moved 100 million rows in 19
minutes;” “I cleaned up this ugly mess of data without a single line of code;” “I integrated twelve different sources
of data into this fact table.” These are the things that, in our geeky culture, would result in a pat on the back or at
least an “Attaboy.” For people like us, this is the home run in the bottom of the ninth, the last-second winning
field goal, or the goal from center ice.

Event and error logging, on the other hand, rarely evokes such emotion. I doubt if anyone has ever given
a high-five over an effective logging strategy. In the board room or the sales pitch, logging gets about as much
attention as the color of ink that will be used to sign the contract.

However, when it comes to tasks that can make or break a successful ETL implementation, having an
effective and understandable logging strategy is near the top of the list. While not an outwardly visible element of
the project deliverables, error and event logging provides a means with which ETL professionals can measure the
health of the data pipeline. Capturing the necessary information during ETL execution will allow easier analysis
of the fidelity of the downstream data stores.

Why Logging?
Before diving into the discussion of logging patterns, it’s essential to understand why error and event logging is so
critical in an ETL project.

It tells you what has happened in the past
Consider for a moment that you fire up SQL Server Management Studio on Monday morning and discover your
central SSIS package ran for 23 minutes yesterday, processing a total of ten million records. On their own, those
numbers sound very reasonable. But what if this process typically runs for 30 seconds? What if the typical run

CHAPTER 12 ■ Logging Patterns

252

processes 100 million rows? It’s important to monitor when packages fail, but in the space between package
success and failure is the stuff you really need to worry about. An SSIS package that fails on execution instantly
tells me that something bad has happened. However, packages that complete without any errors may still present
issues that need to be investigated, and only properly logging key metrics will provide the information necessary
to track down these latent clues.

Capturing and storing logging information allows you to evaluate over time the expected runtimes, row
counts, and anomalies. This is important not only as a troubleshooting mechanism but for proper capacity
planning. Capturing data volume patterns over time is essential for ensuring that your organization is proactive
about addressing disk space and other capacity constraints.

It tells you what’s happening now
Although the greatest value of logging resides in the ability to analyze execution data over time, another benefit of
an effective logging strategy is that it tells you what’s happening right now in your ETL domain. Consider the case
of a package that is running for much longer than expected. What tasks are currently running right now? Have
any tasks failed? How much data have I processed so far? Without a good system of information logging, it’s going
to be difficult to answer these questions while the ETL process is still running.

Properly logged, however, your in-progress SSIS packages and other ETL elements will no longer be a
mystery. Good logging practices ensure that you won’t have to wait until the package actually fails before you
know something is wrong.

Elements of Logging
Logging consists of the following elements:

•	 Error logging. The most common and visible element of logging is the capturing
of information about any errors that occur during process execution. Sadly, this is
sometimes the only logging done. Accurate error logging should ideally contain not just a
declaration of failure but an accurate description of the cause of the failure.

•	 Event logging. Event logging takes error logging to the next level. Rather than simply
capturing when something generates a failure in the ETL, a well-designed event logging
system will store enough information about the ETL flow that its execution can be
evaluated, not just on a Boolean succeed/fail state but on its overall health.

•	 Start and ending information (for the entire process as well as elements therein).

•	 Amount of information processed, generally described in terms of row counts. Note that
this can be especially useful to log at the data flow or component level, particularly if your
packages have allowances for dropping or generating rows during transformation.

•	 Notifications. Though not purely a function of the logging system, having a means by
which system administrators or other responsible individuals can be notified of sentinel
events is crucial to ensuring timely response to ETL anomalies. Notifications are typically
associated with error events; when a package fails, someone gets notified. However, in
mission-critical systems, other scenarios may also need to generate a notification to
the ETL administrator. Consider a long-running ETL process that threatens to impact
contracted service level agreements (SLAs): even though it may not generate a failure,
such a delay would probably need to be dealt with immediately rather than allowing that
SLA to fall into breach. With a system of appropriate notifications, support personnel can
quickly respond to potential issues before they get out of hand.

CHAPTER 12 ■ Logging Patterns

253

Logging in SSIS
As with other tedious tasks, SQL Server Integration Services has integrated facilities to eliminate some of the
time and guesswork involved with error and event logging. Starting with the first version of SSIS in 2005, package-
level logging was provided as a way to associate executable objects with events, allowing the logging of those
intersections to database or file destinations. Starting with SQL Server 2012, the SSIS catalog was introduced,
bringing along with it a brand new way to log information. Using the SSIS catalog to log information adds more to
the logging footprint.

In addition to these native logging platforms, many ETL developers choose to craft their own homegrown
logging solutions to either replace or, more frequently, supplement the information provided by the built-in SSIS
logging tools.

A question that comes up frequently about logging is whether or not the native SSIS logging elements
are sufficient for capturing all of the information necessary to properly track the inner workings of the ETL
operations. In prior versions of SQL Server, the logging capabilities built into SSIS provided some of the
information required by ETL logging systems but failed to accommodate the direct logging of other information
(most notably, the row counts for various data flow operations). As a result, for capturing logging information,
many enterprising SSIS professionals built their own frameworks that blended native SSIS logging with custom
logging processes.

For those working with a SQL Server 2012 ETL environment, the integrated logging facilities are greatly
improved. In addition to the replacement of package-level logging with server-wide logging, ETL professionals
can now enjoy row count logging among the improvements for the current version.

The bottom line is to find the right combination of logging tools to suit the needs of your organization. For
shops using older versions of Integration Services or that have highly specialized logging requirements, native
logging supplemented by a custom solution may be the best bet. In most cases, though, the logging facilities built
into SQL Server 2012 will suffice for common logging needs.

SSIS Catalog Logging
Any conversation about event and error logging in SSIS should begin with server-based logging through the SSIS
catalog. Introduced with SQL Server 2012, this vehicle helps to automate and make consistent the process of
logging information and events during package execution. With logging in the SSIS catalog, keeping track of the
ETL goings-on no longer requires logic embedded in the package.

When packages stored in the catalog are executed, event and error logging information is written to special
tables in the SSIS catalog database (SSISDB). Information stored in those tables can then be accessed through
a series of views created specifically for reporting from the SSISDB event log tables. Among the key views in this
scenario:

•	 [catalog].[executions]: This view exposes the high-level details of each executable
that runs during the ETL operation. The information stored here includes the start time
and end time of the execution, the current status of the execution, and metadata about
the executable itself.

•	 [catalog].[event_messages]: This view shows the logged messages associated with
each execution. Depending on the size of the SSIS package and the specified logging
level (more on the latter momentarily), the number of entries for each execution could be
sizeable.

•	 [catalog].[execution_data_statistics]: This view shows an entirely new segment
of native logging capabilities: intrapackage row counts. The data presented through this
view includes the names of the source and destination components, the name of the data
path itself, and the number of rows transferred.

CHAPTER 12 ■ Logging Patterns

254

As you explore the catalog views in the SSISDB database, you’ll find that these are just a few of many such
views. Because these are simply views in a user database, you can consume the information logged here just as
you would any other data in the system. You can use the SSIS catalog views to build SSRS reports, expose the
information through Excel, generate alerts, etc.

Logging Levels
First introduced in SQL Server 2012, the concept of the logging levels eliminates much of the guesswork from
selecting which events to log. These predefined levels allow the ETL professional to specify at a broad level how
much information should be written to the logging tables in the SSIS catalog.

Before the SSIS catalog was introduced, native logging involved the selection of specific tasks and events for
which information would be logged. While this does allow a lot of flexibility, it also lends itself to an all-or-nothing
logging approach (especially for beginners—spoken from experience!). Unless one chooses to log all events for all
components—which can be expensive in terms of performance overhead and storage—it takes some experience
and tweaking to get all of the settings right.

With the introduction of logging levels, ETL professionals can now choose from one of four settings to
specify how much information will be captured and stored during execution.

•	 None. As the name implies, no detailed logging will be performed. It’s important to note
that this does not mean that there will be no logging for that execution; a record will still
be added to the [catalog].[executions] table to track the package execution, but the
details (specifically those tracked in the [catalog].[event_messages] table) are not
stored when the logging level is set to None.

•	 Basic. This is the default logging level, providing a reasonable starting point for SSIS
catalog logging.

•	 Performance. This logging level resides between None and Basic in terms of the logging
detail.

•	 Verbose. This gets you everything and the kitchen sink. Verbose logging is a great way to
capture everything you might possibly need regarding the execution of SSIS packages.
The downsides are that this level of logging can hurt performance and that it requires
more attention to the amount of space required to store those logs. It’s important to note
that the Verbose setting is the only level that captures row count information.

 Note:■■   For an excellent walk-through the new features of SSIS catalog logging, I recommend a blog post by
Jamie Thompson—it’s an older post based on a CTP version of SQL Server, but it provides a great overview of the
internals of this platform. You can find that post here: http://sqlblog.com/blogs/jamie_thomson/
archive/2011/07/16/ssis-logging-in-denali.aspx.

Built-In Reports
Although having the flexibility to craft your own custom ETL process reports is great, I suspect that many such custom
reports look very much alike: Package Name, Start Time, End Time, Execution Status. Maybe even a Duration column
for those who can’t do date math in their heads. Fortunately, SQL Server Management Studio comes equipped with
canned reports that display a common set of execution data for packages stored in the SSIS catalog.

CHAPTER 12 ■ Logging Patterns

255

As shown in Figure 12-1, SSMS offers a built-in dashboard report that provides a high-level snapshot of the
current status and recent history. Other reports include execution detail report, failed connections report, and
one of my favorites, the execution history report shown in Figure 12-2. This report outlines the recent history on a
given package, including the most recent execution stats (complete with a data flow component analysis), and a
chart showing the execution duration over time.

Figure 12-1.  Integration Services Dashboard

CHAPTER 12 ■ Logging PATTERns

256

If there is a downside to be found in these integrated reports, it’s that they are designed purely for
consumption within SQL Server Management Studio—there’s no path to push the reports to a standard format
(for example, an .rdl file for use in Reporting Services). Furthermore, the information in these reports cannot be
directly exported, though it is possible to print the report to a format such as PDF with the right client software.

On the plus side, however, these built-in reports will likely eliminate much of the need to craft custom
reports around the SSIS logging subsystem. Almost every ETL professional who has gone through the exercise of
adding logging information to an ETL system has also performed the simple but tedious task of creating reports
to access said information. Couple these standard reports with the catalog logging, and there’s the potential for
significant time savings on each ETL project. Having built from scratch a number of reports very similar to these, I
can attest that the built-in execution reports in SSMS are one of the most convenient features of this version of the
product.

Package Logging
In addition to the server-based SSIS catalog event logging in SQL Server 2012, ETL developers also have the
option of logging events and errors at the package level. Although designed with a similar purpose, the package-
level logging in SSIS is a completely separate beast from the catalog logging mentioned earlier.

Package logging has been around since SSIS was first introduced, and is an effective way to track basic
information about executions in SSIS. It has been, and remains for many legacy packages, the default mechanism
for logging when custom event and error logging is not required.

Figure 12-2. Package Execution Performance report

CHAPTER 12 ■ Logging Patterns

257

Although very mature and heavily-used, this type of logging does come with a few downsides:

The responsibility of logging package events rests on the shoulders of the ETL developers. •	
This is a process that must be repeated for every package, and although the logic can be
wrapped into a reusable template, almost any change to the logging specification would
require the modification of every package.

There’s no easy way to add or change logging at runtime. Changing the logging properties •	
on a per-execution basis is technically possible, but to do this, the ETL developer must
have set up a logging connection in the package.

There is no server-wide repository for logging. Unlike logging to the SSIS catalog, which •	
logs to the SSISDB databaseon the SQL Server instance on which the package is executed,
package-level logging requires the specification of a destination provider. On the plus
side, package logging affords more flexibility than logging to the SSIS catalog. While
the latter stores information only in SSISDB, the former allows you to specify both the
destination type (SQL Server database, text file, XML file, etc.) and the location (local or
remote file or database). To that end, package logging provides a standout benefit not
offered through the SSIS catalog: centralized enterprise logging.

There is no row count logging in the data flow. Given that row count logging is one of the •	
most significant elements of effective ETL data collection, this is a significant downside.

For those working with SSIS versions earlier than 2012, package logging is the only native option available to
you; the SSIS catalog first appears in SQL Server 2012.

Package logging is largely unchanged since the first version of SSIS in 2005. To engage logging at the package
level, the ETL developer will specify the logging provider, either a file or a SQL Server database, and the events
that will be logged to said provider. As shown in Figure 12-3, this provides a great deal of flexibility in terms of
which ETL elements should be logged and to what degree.

CHAPTER 12 ■ Logging Patterns

258

So let’s assume that you’ve got an existing ETL infrastructure using package-level logging. You’re happy with
what it gives you, but you’re wondering if it’s worth leaning on server logging in the SSIS catalog instead. What’s
the tipping point at which you should upgrade?

Based on what I’ve seen, I’m inclined to recommend the SSIS catalog logging in most cases over native
package logging. Admittedly you lose some measure of flexibility, but catalog logging is more straightforward,
easier to configure at runtime, and provides more coverage. However, if you’re dependent on having task-level
configuration for logging events, consider sticking with the package-level logging.

Also worth noting is that there is no restriction against using both SSIS catalog logging in addition to
package-level logging. However, if you blend two different logging methods, make sure you take some time to
evaluate what you’re capturing to avoid any unnecessary duplication.

Custom Logging
There comes a time in every ETL developer’s life when he or she must drive off the paved road. In terms of
logging, creating your own custom logging elements is the equivalent of leaving the pavement. Even though
creating these customized structures represents a departure from the “proper” native logging components in
SSIS, it’s actually quite common, particularly in shops with a large number of SSIS packages.

Figure 12-3.  Configure package-level logging

CHAPTER 12 ■ Logging Patterns

259

Almost every custom logging scenario has its own purpose, its own nuances, and its own dedicated
resources. However, after observing many different custom SSIS logging setups, I find that there is a common
component fingerprint found in many of them:

Parameterized, reusable stored procedures that write logging information are created in •	
the database to which the logging information will be written.

Execute SQL Tasks designed to log informational messages are created in SSIS packages. •	
These are either added inline in the control flow of the package, or added to an event
handler (usually the OnPostExecute event).

Separately, additional Execute SQL Tasks are added to log errors or anomalies in the •	
package. These are most often added to OnError event handlers for tasks or the package
itself, though they are sometimes used at the business end of a failure constraint in the
control flow.

Occasionally, highly customized logging requirements may introduce the need for a •	
script task or script component to assist with meeting those requirements.

Custom logging is the most difficult to create and maintain because you’re essentially on your own in terms
of metadata. However, because there is no real framework (apart from whatever native SSIS tasks you use), you
have very few constraints on what you can and can’t do. It certainly takes more elbow grease to get it done, but
custom logging allows for flexibility not found in native logging facilities.

Although custom logging has been a part of SSIS since it was SSIS (and even earlier, as DTS), I suspect
that the need for custom logging design patterns will diminish as improvements are made in the native logging
capabilities of SSIS. Now that one of the principal deficiencies in prior versions regarding logging—the inability
to capture row counts—has been addressed in SQL Server 2012, it could be expected that native logging will take
the place of custom structures as the go-to mechanism for package execution information.

What to Capture?
The quintessential question: Now that I’ve decided to log information in my SSIS packages, what information
should I capture? This question is central to every ETL project. Gather too much information and you waste
processing time and storage space. Capture too little data and you risk not getting enough to properly
troubleshoot errors or head off potential problems.

Every scenario will have different requirements, but the answer to the question “How much information
should I log?” will always be the same: Capture the information required. No more, no less.

I realize this isn’t a silver-bullet answer, but it does tell you that the decision of what to capture in your
logging strategy isn’t quick or easy. You need to get all of the data you’ll need to figure out what happened in
the event of a package failure, analyze patterns to discover data anomalies or other irregularities, and abide by
governmental regulations and/or company policies. However, every additional logging element adds processing
time and storage to your system, so it’s usually not practical to take a “log everything just in case” approach,
particularly on high-volume systems.

To find the right strategy for you, think about the following:

What do you hope to accomplish by logging? Do you just want to know where and •	
when the ETL process failed, or do you expect to consume the logging information in a
proactive system intended to head off problems before they occur?

How much horsepower do you have? If you have state of the art ETL hardware and •	
network, you can be more liberal in your logging expectations. However, if your SSIS
server is a virtual machine on a shared set of disks, you need to be much more careful.

CHAPTER 12 ■ Logging Patterns

260

Are you in a highly-regulated environment? Healthcare and financial institutions are •	
under particular scrutiny, but other shops may have similar reporting and/or auditing
requirements. As a rule, I’m a big fan of doing things that keep me from going to jail, so
I’m happy to recommend that you design your ETL logging in such a way that it fully
complies with federal law. If you need to make shortcuts in logging, this isn’t something
you want to play around with.

Creating an effective logging strategy that balances the need for information with the need to maintain a
stable and well-performing system isn’t always done on the first swipe. Know that designing a proper logging
pattern, like the core ETL process itself, tends to be an iterative process.

Logging Systems
We discussed three different logging platforms—SSIS catalog logging, package logging, and custom logging—earlier
in the chapter. Early in the process of designing your logging system, you’ll need to pick which of these will be used
to capture logging information from your packages.

There are no hard and fast rules for selecting which logging system should be used in a given scenario.
However, the following tips may help point you in the right direction:

Remember that you’re not limited to a single logging mechanism. You can add custom •	
logging to either package logging or SSIS catalog logging, or even mix all three of them
together if you’re daring. When using multiple logging vehicles, take care that you don’t
log the same information in multiple ways.

If you are in a SQL Server 2012 environment, seriously consider using the SSIS catalog for •	
event and error logging. The improvements over prior versions are significant and can
address many of the scenarios previously left for custom logging.

If you need to centralize logging across multiple SSIS servers, you’ll need to lean on •	
package logging or custom logging.

Consider using custom logging to supplement another logging platform, not as a single •	
means through which to log all required data. As mentioned, custom logging takes
significantly more effort than the native facilities, so don’t reinvent the wheel if you don’t
have to.

Summary
In this chapter, we’ve discussed design patterns around logging in SSIS, including an exploration of the various
high-level approaches to error and event logging. Even though event and error logging isn’t one of the more
exciting aspects of data movement, it’s still a critical piece of the puzzle. Effective logging works as an insurance
policy, a troubleshooting tool, and even a capacity planning guide. The time invested in building proper logging
is rarely wasted.

261

Chapter 13

Slowly Changing Dimensions

Processing Slowly Changing Dimensions (SCDs) is a common ETL operation when dealing with Data
Warehouses. The SSIS Data Flow has a Slowly Changing Dimension Transform, which provides a wizard that
outputs a set of transforms needed to handle the multiple steps of processing SCDs. While the built-in SCD
Transform can be useful, it is not ideal for all data loading scenarios. This chapter describes how to make the
most of the SCD Transform, and provides a couple of alternative patterns you can use.

Note■■   There are many different types of SCD, but this chapter will focus on the two most common types: Type 1
and Type 2. For more information about the different types of Slowly Changing Dimensions, see the Wikipedia entry
at http://en.wikipedia.org/wiki/Slowly_changing_dimensions

Slowly Changing Dimension Transform
To best understand the SCD Transform, let’s consider two key scenarios it was designed for.

Type 1 - A small number of change rows. You are performing change data capture
(CDC) at the source, or as close to the source as possible. Unless you are dealing with a
very active dimension, most SCD processing batches will contain a small number of rows.

Type 2 - Large dimension. You are working against large dimensions, but only
processing a small number of change rows. You will want to avoid operations which
cause full table scans of your dimension.

Because of these target scenarios, the SCD Transform does not cache the existing dimension data (like a
Lookup Transform does), and performs all of its comparisons row-by-row against the destination table. While
this allows the transform to avoid full scans of the destination dimension, and reduces memory usage, it does
affect performance when processing a large number of rows. If your scenario does not match the ones listed
above, you might want to consider using one of the other patterns in this chapter. If it does match, or if you prefer
using in-the-box components over third party solutions (or would just like to avoid hand crafted SQL statements
required for the Merge Pattern), consider applying the optimizations listed at the end of this pattern.

http://en.wikipedia.org/wiki/Slowly_changing_dimensions

CHAPTER 13 ■ Slowly Changing Dimensions

262

Running the Wizard
Unlike other SSIS Data Flow components, when you drop the Slowly Changing Dimension Transform onto the
design surface in BIDS, a wizard pops up and walks you through the steps of setting up your SCD processing.

The first page of the Wizard (Figure 13-1) allows you to select the dimension you’ll be updating, and select
the column or columns that make up the business key (also known as the natural key).

Figure 13-1.  Selecting the dimension table and keys in the Slowly Changing Dimension Wizard

On the next page (Figure 13-2) you specify the columns that you’ll be processing, and determine how you’d
like the wizard to treat them. You have the three choices (as shown in Table 13-1).

CHAPTER 13 ■ Slowly Changing Dimensions

263

Figure 13-2.  Selecting the dimension table and keys in the Slowly Changing Dimension Wizard

Table 13-1.  Column Change Types

Change Type Dimension Type When to Use

Fixed Attribute -- Fixed Attributes are columns that should not change, or require
special handling when changes are made. By default, a change on
one of these columns is treated as an error.

Changing Attribute Type 1 When a change is made to a Changing Attribute column, existing
records are updated to reflect the new value. These are typically
columns that aren’t used as part of business logic or time sensitive
reporting queries, such as a Product Description.

Historical Attribute Type 2 Historical Attributes are columns for which you need to maintain
history for. These are frequently numeric columns that are used in
time sensitive reporting queries, such as a Sales Price, or Weight.

CHAPTER 13 ■ Slowly Changing Dimensions

264

On this page, you should not map columns that will not be updated as part of your SCD processing, such as
foreign keys to other dimension tables, or columns related to the tracking of historical changes, such a Start and
End Date columns, an expiry flag, and the surrogate key. The SCD Transform does not support LOB columns
(columns that would be treated as DT_IMAGE, DT_TEXT and DT_NTEXT types in the SSIS Data Flow), so these
columns should be handled separately, and also not mapped here.

The next pages of the wizard allow you to configure options for how you’d like to handle Fixed Attributes
(Figure 13-3), as well as Type 1 and Type 2 changes (Figure 13-4). When dealing with Historical Attributes, the
wizard knows how to generate the logic needed to update the dimension in two different ways; using a single
column, or using start and end date columns to indicate whether the record is current or expired. If your table is
using a combination of these, or some other method of tracking the current record, you will need to update the
generated transforms to contain this logic.

Figure 13-3.  Fixed and Changing Attribute Options

CHAPTER 13 ■ Slowly Changing Dimensions

265

The final page of the wizard (Figure 13-5) lets you enable support for inferred members. An inferred
member is created with minimal information, typically just the business and surrogate keys. It’s expected that
the remaining fields will be populated in subsequent loading of the dimension data. Although the wizard enables
inferred member support by default, most forms of SCD processing will not need it.

Figure 13-4.  Historical Attribute Options

s

266

Using the Transformations
When the wizard completes, it will output a number of different data flow components in addition to the main
“Slowly Changing Dimension” component (Figure 13-6). The main component checks incoming data against
the destination table, and sends incoming rows down one of its outputs if the record is new or modified. Records
without any changes are ignored. The components connected to these outputs will be configured according to
the options you selected in the wizard dialogs.

Figure 13-5. Inferred Dimension Members

CHAPTER 13 ■ Slowly Changing Dimensions

267

You can further customize the SCD processing logic by modifying these components. Double clicking the
main “Slowly Changing Dimension” transform will re-launch the wizard. The wizard remembers your settings
from the previous run; however, it will overwrite any changes or customizations you’ve made to the existing
transforms. This includes any layout and resizing changes you might have done.

Note■■   When re-running the SCD Wizard, the default options selected in the UI are not inferred from the
components. Instead, they are persisted as part of the package in  < designTime >  elements. If you have a deploy-
ment process which removes package layout information, note that you will also lose your choices in the wizard.

Optimizing Performance
The components output from the SCD Wizard are not configured for optimal performance. By changing some
settings and moving to a set based pattern, you can drastically improve the performance of your SCD processing.

Figure 13-6.  Wizard output for Type 1 and Type 2 changes, and no inferred member support

CHAPTER 13 ■ Slowly Changing Dimensions

268

Slowly Changing Dimension Transform
The main transform does not cache any row results from the reference dimension, so every incoming row results
in a query against the database. By default, the wizard will open a new connection to the database on each query.
For a gain in performance (as well as lower resource usage), you can set the RetainSameConnection property of
the connection manager used by the wizard to True so that the same connection is reused on each query.

OLE DB Command Transforms
The wizard will output two (or three if you’re processing inferred members) OLE DB Command transforms. These
transforms perform row-by-row updates, which greatly degrade performance. You will get a big performance
boost by placing these rows in staging tables and performing the updates in a single batch once the data flow
completes.

OLE DB Destination
Since the main Slowly Changing Dimension transform and the destination use the same connection manager,
the destination component will have the Fast Load option disable by default to avoid deadlocking your Data
Flow. If you are processing a small number of rows (for example, a single Data Flow Buffer’s worth of data), you
enable Fast Load on the destination component for an immediate performance gain. To avoid deadlocking issues
when processing a larger number of rows, consider using the staging pattern once again. Bulk load the data
into a temporary staging table and update the final destination once the data flow is complete, using an INSERT
INTO . . . SELECT statement.

Third Party SCD Components
A couple of popular third party alternatives to the SCD Transform are available. Both have similar architectures
and usage patterns, but offer different capabilities.

The Table Difference component is available through CozyRoc.com. This transform •	
takes in the source and destination tables as inputs, and does row by row comparisons
in memory. It has three outputs – New, Updated, and Deleted. It can also be used to do
general purpose table comparisons, in addition to SCD processing.

Note■■   For more information about the Table Difference component, please see the CozyRoc web page at
http://www.cozyroc.com/ssis/table-difference.

The Dimension Merge SCD component is available through PragmaticWorks.com. It •	
was designed to handle dimension loading as per the Kimball Method. Like the Table
Difference component, it takes in the source and destination dimension tables and
does the comparisons in memory. Also like the Table Difference component, it does not
modify the destination table directly. It will apply row updates in memory, and provides a
number of outputs that you hook up your own destination tables to.

http://www.cozyroc.com/ssis/table-difference

CHAPTER 13 ■ Slowly Changing Dimensions

269

Note■■   For more information about the Dimension Merge SCD component, please see the Pragmatic Works
web site page at http://pragmaticworks.com/Products/Business-Intelligence/TaskFactory/Features.
aspx#TSDimensionMergeSCD.

The main draw of these components is their performance. Since the transforms take both source and
destination tables into memory, they are able to do fast in-memory comparisons, without multiple queries to the
destination server. They also provide additional functionality over the SCD Transform, such as detecting deleted
rows, and can be easier to maintain as all of the logic is contained within a single component.

However, bringing in both the source and destination dimension tables means that you’re doing a full table
scan of the destination (and typically the source as well). As the Data Flow does not end until all sources are done
reading their rows, the entire destination dimension will be read even if you are only processing a small number
of changed source rows. While the third party components will perform well in many cases, you should consider
if they will be ideal for your scenario.

MERGE Pattern
SQL Server 2008 introduced support for the T-SQL MERGE statement. This statement will perform insert, update,
and delete operations on a destination table based on the results of a join with a source table. It is very efficient,
and provides a good alternative for SCD processing.

Note■■   For more information about MERGE, please see the Books Online entry “Using MERGE in Integration
Services Packages” at http://technet.microsoft.com/en-us/library/cc280522.aspx

There are three steps to using MERGE from within SSIS:

1.	 Stage the data in a Data Flow

2.	 Optimize the staging table (optional)

3.	 Run the MERGE statement(s) using an Execute SQL Task

MERGE allows a single statement to be run when it detects a row has been updated (“matched” using the
MERGE terminology), and when a row is new (“not matched”). Since processing Type 1 and Type 2 changes
require different types of processing, we’ll use two MERGE statements to complete the SCD processing (as shown
in Figure 13-7).

http://pragmaticworks.com/Products/Business-Intelligence/TaskFactory/Features.aspx#TSDimensionMergeSCD
http://pragmaticworks.com/Products/Business-Intelligence/TaskFactory/Features.aspx#TSDimensionMergeSCD
http://technet.microsoft.com/en-us/library/cc280522.aspx

CHAPTER 13 ■ Slowly Changing Dimensions

270

Handling Type 1 Changes
Listing 13-1 shows the first MERGE statement we’ll run to update all of our Type 1 columns in the destination
table. The ON () section specifies the keys that we’ll be matching on (in this case, the business key for the table).
In the WHEN MATCHED section, we include DEST.EndDate is NULL to ensure that we are only updating the current
record (this is optional – in many cases you do want to update all records, and not just the current one). The THEN
UPDATE section contains the list of our Type 1 columns that we want to update.

Listing 13-1.  MERGE Statement for Type 1 Columns

MERGE INTO [DimProduct] AS DEST
USING [Staging] AS SRC
ON (
 DEST.ProductAlternateKey = SRC.ProductAlternateKey
)
WHEN MATCHED AND DEST.EndDate is NULL -- update the current record
THEN UPDATE SET
 DEST.[ArabicDescription] = SRC.ArabicDescription
 ,DEST.[ChineseDescription] = SRC.ChineseDescription
 ,DEST.[EnglishDescription] = SRC.EnglishDescription

Figure 13-7.  Control flow for the MERGE Pattern

CHAPTER 13 ■ Slowly Changing Dimensions

271

 ,DEST.[FrenchDescription] = SRC.FrenchDescription
 ,DEST.[GermanDescription] = SRC.GermanDescription
 ,DEST.[HebrewDescription] = SRC.HebrewDescription
 ,DEST.[JapaneseDescription] = SRC.JapaneseDescription
 ,DEST.[ThaiDescription] = SRC.ThaiDescription
 ,DEST.[TurkishDescription] = SRC.TurkishDescription
 ,DEST.[ReorderPoint] = SRC.ReorderPoint
 ,DEST.[SafetyStockLevel] = SRC.SafetyStockLevel
;

Handling Type 2 Changes
Since the MERGE statement allows a single statement for each action, updating Type 2 columns is a little more
challenging. Remember, for Type 2 changes we need to perform two operations: 1) mark the current record as
expired and 2) insert the new record as current. To accomplish this, we’ll use the MERGE inside of a FROM clause,
and use its OUTPUT to feed an INSERT INTO statement (as shown in Listing 13-2)

Listing 13-2.  MERGE Statement for Type 2 Columns

INSERT INTO [DimProduct]
([ProductAlternateKey],[ListPrice],[EnglishDescription],[StartDate])
SELECT [ProductAlternateKey],[ListPrice],[EnglishDescription],[StartDate]
FROM (
 MERGE INTO [DimProduct] AS FACT
 USING [Staging] AS SRC
 ON (FACT.ProductAlternateKey = SRC.ProductAlternateKey)
 WHEN NOT MATCHED THEN
 INSERT VALUES (
 SRC.ProductAlternateKey
 ,SRC.ListPrice
 ,SRC.EnglishDescription
 ,GETDATE() -- StartDate
 ,NULL -- EndDate
)
 WHEN MATCHED AND FACT.EndDate is NULL
 THEN UPDATE SET FACT.EndDate = GETDATE()
 OUTPUT $Action Action_Out
 ,SRC.ProductAlternateKey
 ,SRC.ListPrice
 ,SRC.EnglishDescription
 ,GETDATE() StartDate
) AS MERGE_OUT
WHERE MERGE_OUT.Action_Out = 'UPDATE'

Summary
There are many ways to process Slowly Changing Dimensions in SSIS. While the built-in SCD Transform can
get you up and running quickly, it may not perform as well as the alternatives. You may prefer using the Merge
Pattern due to its overall performance, but the maintenance of the SQL statements may be an inhibitor in the
long run. If you prefer a visual designer experience, consider trying one of the third party component options.

CHAPTER 13 ■ Slowly Changing Dimensions

272

Table 13-2 summarizes the advantages and disadvantages described in this chapter.

Table 13-2.  Slowly Changing Dimension Processing Patterns

Pattern Use For
Slowly Changing Dimension Transform •	 Quick prototyping

•	 Processing a small number of rows

•	 Very large dimensions

Third Party Components •	 Full or historical dimension loads

•	 Small-medium sized dimensions

•	 Non-SQL Server destinations

Merge Pattern •	 Best overall performance

•	 Cases when you don’t mind hand-crafting SQL
statements

273

chapter 14

Loading the Cloud

It is 2012 and cloud technology is becoming ubiquitous. As more applications are hosted in various cloud
service providers, the desire to locate their associated data in the cloud increases. Thanks to forethought and
good engineering, Microsoft SQL Server is well-positioned to assist. The user experience when interacting with
Microsoft SQL Azure databases is nearly identical to interacting with local servers or servers on the enterprise
network. Make no mistake, this is by design – and it is good design.

In this chapter, we will consider SSIS design patterns used to integrate data in the cloud. These patterns are
useful when connecting to any repository that shares cloud technology characteristics. Because interacting with
data in the cloud is similar to interacting with data that are more local, the patterns aren’t revolutionary. “So why
write a chapter about loading the cloud?” Excellent question.

First, the cloud is here to stay – the djin will not fit back into the bottle. The more we, as data professionals,
learn about using the cloud, the better. Second, the cloud offers interesting challenges to data integration;
challenges to be addressed and solved by the data integration developer. Loading the cloud isn’t just about
interacting with buzz-worthy technology. It is an opportunity to design good architecture.

Interacting with the Cloud
For the purposes of this chapter, “the cloud” will refer to “containers of data” or data repositories that:

Reside off-enterprise-premises•	

Are hosted by a third party•	

Are outside of the physical enterprise domain•	

I understand these points are subject to debate. I will not debate them here. This definition will likely not
survive the years following this writing (2012). And even now, there is ambiguity and a blurring of lines between
what is and is not considered “in the cloud”.

For demonstration, I am using data collected from my local weather station in Farmville, Virginia. The
weather data are exposed and available at AndyWeather.com. AndyWeather.com is hosted by a large hosting
company that provides remotely-accessible SQL Server database connectivity. As such, the data are stored in the
cloud (according to my definition).

I also host weather data using Microsoft SQL Azure: the same data, stored in a different location. “Why?”
The simple answer: Fault tolerance. Fault tolerance is the same reason DBAs perform database backups and test
database restores. The difference between a technician and an engineer – or a developer and an architect – is
that a technician builds systems that succeed while engineers build systems that don’t fail. It’s about mindset.
Technicians get it working and stop there. Engineers consider many ways the system can fail and try to fix these
things before they break.

CHAPTER 14 ■ Loading the Cloud

274

Incremental Loads to SQL Azure
An incremental load is one in which only new or updated rows (and sometimes deleted) rows are loaded or
changed. Incremental loads can be contrasted with the truncate-and-load pattern, where the existing data in the
destination is deleted and all data is reloaded from the source. Sometimes truncate-and-load is most efficient.
As data scale – especially at the destination – truncate-and-load performance often suffers. How do you know
which will perform best? Test, measure, rinse, and repeat.

One benefit to truncate-and-load is simplicity. It is difficult to mess up a simple mechanism. Imcremental
loads introduce complexity, and Change Detection is the first place complexity to enter the solution.

Note■■   Chapter 11 discusses some incremental load patterns.

Change Detection
Change detection is functionality designed to separate rows that have never been sent from the source (New
Rows) to the destination from rows that have been sent. Change detection also separates source rows that exist
in the destination into rows that have changed in the source (Changed Rows) and rows that remain unchanged
since they were last loaded or updated in the destination (Unchanged Rows). Change detection can also
encompass rows that have been deleted from the destination that need to be deleted (or “soft-deleted”) from the
source. We will ignore the Deleted Rows use case in this chapter.

We will consider using change detection to determine and discriminate between Unchanged Rows, Changed
Rows, and New Rows. The block diagram for an incremental load pattern is shown in Figure 14-1:

Figure 14-1.  Incremental Load Block Diagram

New Rows (Only)
You would think detecting new rows would be simple, regardless of the technology behind the destination
database. You would be right. But when loading SQL Azure, there is an economic consideration. As I write this
in 2011, uploads are free. As a data provider, you are charged when your data is consumed. How does this fact
impact your incremental load?

CHAPTER 14 ■ Loading the Cloud

275

Here is where good data integration architecture and design comes in. Part of the job of the data integration
architect is to know your data. This goes beyond knowing there is a column in the CleanTemperature table that
contains the Average Dew Point for a given hour. Knowing your data means that you understand how and when it
changes – or if. Certain types of data, like weather data, do not get updated after they are captured and recorded.

If you have read Tim’s description of a typical incremental load pattern in Chapter 11, you will note a Lookup
Transformation configured to connect to the destination and read data. In SQL Azure, you will pay for that
reading. At the time of this writing, there are almost 30,000 rows present in my SQL Azure AndyWeather database.
If I load all the rows from my source into a Data Flow Task and use a Lookup Transformation to “join” between
my source and SQL Azure, I pay for reading rows that haven’t changed. What’s more, I know they will never
change. One ramification: there will be no Changed Rows.

Each hour, a few rows of new data are generated for each subject area in the AndyWeather database. If I use a
Lookup, I load all 30,000 rows for no good reason – and I pay for the privilege. No thank you.

To limit the amount of data read, and thereby lower the costs of the solution, I could execute a query that
selects a “marker” indicating the latest or last row loaded. For this, I could select the maximum value from a field
containing the date and time the table was last load; something like Max(LastUpdatedDateTime) or even a data
integration lineage or metadata field like Max(LoadDate). I could similarly select another marker such as the
Max(ID) from an integer column reliably maintained by either a sequence, identity, trigger, or other mechanism.
The reliability of the mechanism represents the maximum confidence a data integration architect can place in
the value. I will demonstrate building an incremental loader using an identity column maintained on the
source data.

Before I do, I wish to point out that Chapter 11 contains a great section on the Incremental Load design
pattern. There is a discussion of another solution I will not touch upon: Change Data Capture. I encourage you to
review Chapter 11 before you complete your data integration design.

Building the Cloud Loader
To demonstrate, you will need a SQL Azure account and database. Creating the account and database is beyond
the scope of this book, but you can learn more at www.windowsazure.com/en-us/home/features/sql-azure.
Once SQL Azure is set up and configured, create a database. In this database, create a table named “dbo.
LoadMetrics” using the T-SQL shown in Listing 14-1.

Listing 14-1.  Creating the LoadMetrics Table

Create Table dbo.LoadMetrics
 (ID int identity(1,1)
 Constraint PK_LoadMetrics_ID Primary Key Clustered
 ,LoadDate datetime
 Constraint DF_LoadMetrics_LoadDate Default(GetDate())
 ,MetricName varchar(25)
 ,MetricIntValue int)

The LoadMetrics table will hold the last ID loaded for each table in the cloud destination. We will write
this row once, read and update it each load cycle. Accessing this table in this manner is the simplest and least
processor-intensive manner to acquire the information we seek: the value of the last ID column loaded for a
particular table. Why store this value in a table? Why not simply execute a Max(ID) select statement on the data
table? Currently, SQL Azure charges for reads and not writes. Billing may change – it has in the past. What if we’re
billed according to cycles or execution plans? You never know.

While connected to the SQL Azure instance, create a table to hold your data. My data table will hold
temperature information collected from my weather station in Farmville Virginia. The table I use contains
temperature and humidity related data and is shown in Listing 14-2.

http://www.windowsazure.com/en-us/home/features/sql-azure

CHAPTER 14 ■ LoAding THE CLoud

276

Listing 14-2. Creating the CleanTemperature Table

Create Table dbo.CleanTemperature
 (ID int identity(1,1)
 Constraint PK_Cleantemperature_ID Primary Key Clustered
 ,MeasDateTime datetime
 ,MinT real
 ,MaxT real
 ,AvgT real
 ,MinH smallint
 ,MaxH smallint
 ,AvgH smallint
 ,ComfortZone smallint
 ,MinDP real
 ,MaxDP real
 ,AvgDP real
 ,MinHI varchar(7)
 ,MaxHI varchar(7)
 ,AvgHI varchar(7)
 ,LoadDate datetime
 ,LowBatt bit
 ,SensorID int)

Once the cloud tables have been created, we can begin work on an SSIS loader.
Locally, create a new SSIS solution and project named “CloudLoader”. Rename the default SSIS package

“SimpleCloudLoader.dtsx”. Add a Sequence Container and rename it “SEQ Pre-Load Operations”. Add an Execute
SQL Task to the Sequence Container and rename it “Get AWCleanTempMaxID From AndyWeather”. Set the
ResultSet property to “Single row” and change the ConnectionType property to “ADO.Net”. Create the ADO.
Net connection manager using information from your SQL Azure account. To acquire the latest ID from the
LoadMetrics table, I use the following query.

Select Coalesce(MetricIntValue, 0) As CleanTempMaxID
From dbo.LoadMetrics
Where MetricName = 'CleanTempMaxID'

On the Result Set page, I store the value in an SSIS variable of Int32 data type named
“SQLAzureCleanLoadMaxID”.

Add another Execute SQL Task to the Sequence Container and rename it “Get CleanTempMaxID from the
local table”. Configure the connectionto your source database and table. For me, it’s a local default instance of
SQL Server hosting the WeatherData database and the clean.CleanTemperature table. I use the following T-SQL
to extract the current maximum value from the table, configuring a single row result set to push this value into the
CleanTempLocalMaxID SSIS variable (Int32 data type).

Select Max(ID) As CleanTempLocalMaxID
From clean.CleanTemperature

Add a Data Flow Task outside the “SEQ Pre-Load Operations” Sequence Container and rename it “Load SQL
Azure”. Connect an OnSuccess precedence constraint between the Sequence Container and the Data Flow Task.
Open the Data Flow Task editor and add an OLE DB Source adapter. Connect the OLE DB Source adapter to a
local source database you wish to load in the cloud and write a query to pull the latest data from the desired table.
In my case, I am pulling data from my “clean.CleanTemperature” table. To accomplish the load, I use the source
query shown in Listing 14-3.

CHAPTER 14 ■ Loading the Cloud

277

Listing 14-3.  WeatherData Source Query

SELECT ID
 ,MeasDateTime
 ,MinT
 ,MaxT
 ,AvgT
 ,MinH
 ,MaxH
 ,AvgH
 ,ComfortZone
 ,MinDP
 ,MaxDP
 ,AvgDP
 ,MinHI
 ,MaxHI
 ,AvgHI
 ,LoadDate
 ,LowBatt
 ,SensorID
 FROM clean.CleanTemperature
WHERE ID Between ? And ?

Click the Parameters button and map Parameter0 and Parameter1 to the SQLAzureCleanLoadMaxID
and CleanTempLocalMaxID variables as shown in Figure 14-2.

Figure 14-2.  Mapping the SQLAzureCleanLoadMaxID variable to Parameter0

The question marks in the source query shown in Listing 14-3 are replaced with the values stored in the
respective mapped variables. This query will only return rows where the ID is greater than the value stored in
the cloud. Why do we grab the maximum ID from the source table before the load? In a word, latency. In the
WeatherData database, the latency is minimal. But think about loading highly active systems – latency can be
an issue.For example, suppose several transactions per second are entering the source table and it takes a few
second to load the destination. If we wait until the load is complete to capture the source table’s Max ID value
that value will likely include data we didn’t load. The technical term for that is “bad”. So we design the package to
grab the Max ID value before the load starts and only load rows between the last ID loaded into SQL Azure and
the Max ID value captured at the start of the SSIS package. And we never miss a row.

CHAPTER 14 ■ Loading the Cloud

278

Returning to the demo package, add an ADO.Net Destination adapter and rename it “SQL Azure ADO NET
Destination”. Connect a Data Flow Path from the OLE DB Source adapter to the ADO.Net Destination. Why an
ADO.Net Destination? SQL Azure only allows ADO.Net connections.

Connect a data flow path between the source and destination adapters, edit the destination, and map the
columns.

The last step is to update the LoadMetrics table in the SQL Azure database. To accomplish this update, add
an Execute SQL Task to the Control Flow and rename it appropriately and descriptively. I named mine “Update
AndyWeather LoadMetrics Table” and configured it to use ADO.Net to connect to my SQL Azure database. My
query looks like this one shown in Listing 14-4.

Listing 14-4.  Updating the SQL Azure LoadMetrics Table

Update dbo.LoadMetrics
Set MetricIntValue = (@MaxID + 1)
, LoadDate = GetDate()
Where MetricName = 'CleanTempMaxID'

Map the value of CleanTempLocalMaxID into the @MaxID parameter on the Parameter Mapping page.
And that’s it. This script makes the current maximum ID the minimum ID of the next load.

Summary
In this chapter we examined aspects of the architecture and design for loading cloud destinations. We designed
a sound solution after weighing the architectural and economic considerations.

279

Chapter 15

Logging and Reporting Patterns

An essential part of managing any application is knowing what happens during the day-to-day usage of the
application. This theme holds especially true in ETL solutions, in which the data being manipulated can be used
for reporting, analysis, or financial reporting. Administrators satisfy this need through logging and reporting of
the executions, errors, and statuses of the applications, which fits perfectly into the management framework
concept.

The past few chapters have discussed how to set up other pieces of the management framework, including
how to execute parent-child packages and how to implement centralized custom logging. This chapter will
describe how to use the built-in logging in Integration Services to report on all aspects of an Integration Services
application.

Integration Services provides two primary methods to help satisfy the logging and reporting need.

Package logging and reporting•	

Catalog logging and reporting•	

Let’s walk through how to set up each of these methods and then utilize patterns that best highlight these
methods.

Package Logging and Reporting
The package logging and reporting method has been around since the first edition of Integration Services. This
method is characterized by setting up logging during development of the package. A logging provider can log to
different outputs, including SQL server tables, text files, and more. The log information is stored in one object,
such as one file or the sysssislog table.

Each log can be restricted to store only certain types of events, such as OnError, OnPreExecute, and
OnVariableValueChanged. An administrator can then look at the logs to see what happened during the execution
of the package. Once the package has been deployed to the server, you cannot change the type or amount of
logging that occurs.

Package logging is the best and only option when using Integration Services 2005 or 2008 or when using
Integration Services 2012 in Package Deployment mode. In Integration Services 2012’s Project Deployment
mode, you can use package logging on a regular basis to keep track of errors that may occur or to ensure that
packages are executing when expected. For more in-depth logging and reporting, you will want to use catalog
logging and reporting, which will be discussed later in this chapter.

Let’s take a look at setting up package logging and then how to use the output.

CHAPTER 15 ■ Logging and Reporting Patterns

280

Setting Up Package Logging
To set up logging at a package level, you will go to the package itself and turn on logging. Each package needs
to be set up separately to log to the database. You can do this by right-clicking on the package and selecting
the Logging option or going to the SSIS menu at the top of the SQL Server Data Tools (SSDT) and selecting the
Logging option.

Within the Logging menu, you will decide what type of logging you want to use. Among the options are text
files, XML files, and SQL Server tables. Once the type of logging has been decided, you will select which events
you want to log and at what level you want to log these events. If you select events at the highest package level,
you will be able to see all events for all lower containers, too. The logging menu with the SQL Server option set is
shown in Figure 15-1.

Figure 15-1.  The SSIS logging menu

Note■■   While this chapter focuses on package logging to a SQL Server database table to facilitate reporting, you
can learn more about all logging methods in Chapter 12.

When the package runs, Integration Services creates a new table, if one is not already available, and stores the
logging information within it. The table sysssislog contains the data for all recorded events.

CHAPTER 15 ■ Logging and Reporting Patterns

281

Reporting on Package Logging
Once you’ve run the package with logging, you’ll want to know what happened! The table that contains all of the
information you need is called sysssislog. By default, it will be created in the msdb database on the server of the
connection manager you selected in the Logging menu; however, you can change the database by specifying it
directly in the connection manager.

Let’s take a look at the data in the table once we’ve run the package by running the following SQL query:

select * from msdb.dbo.sysssislog

This statement returns results similar to those in Figure 15-2.

Figure 15-2.  Results from the SSIS log table

Design Pattern: Package Executions
While it is possible to use the information in the table directly, you can also combine the information to make it a
little more readable. If you want to see the package executions and how long each page took to run, you can use
the following query, in Listing 15-1:

Listing 15-1.  Query to Return Package Durations

select ssis.source
 , min(starttime) as package_start
 , max(endtime) as package_end
 ,DATEDIFF(ms, min(starttime), max(endtime)) as duration_ms
from msdb.dbo.sysssislog ssis
where event in ('PackageStart', 'PackageEnd')
group by ssis.source, ssis.executionid

Catalog Logging and Reporting
The catalog logging and reporting method is new in Integration Services 2012 and is the best logging method to
use if available. It can be used only if you have set up the Project Deployment Model type. The nice thing about
this type of logging is you don’t need to prepare anything in the package to utilize it. Let’s jump right into how to
set up the logging and design patterns to report on that data.

Setting Up Catalog Logging
As I mentioned earlier, the benefit of catalog logging is that you don’t need to modify the package at all to use the
logging output. The only preparation you need is to make sure your package is set to project deployment type and
deploy the package to the SSIS catalog.

CHAPTER 15 ■ Logging and Reporting Patterns

282

To begin setting up catalog logging and reporting, you will create an SSIS catalog. You can do this by
connecting to the database instance. If Integration Services is installed, you will see a node entitled Integration
Services Catalogs. If you create a new catalog named SSISDB, it will look like Figure 15-3.

Figure 15-3.  The SSISDB catalog

Figure 15-4.  A project in project deployment mode

At this point, you are ready to deploy your package. First, though, you should make sure the project is
set to use the Project Deployment Model. You can do this by right-clicking on the project. If you see Package
Deployment Model, as shown in Figure 15-4, you are in this mode.

Finally, you will deploy the package to the SSIS catalog. This stores the package in the msdb database and
allows for some default and some configurable logging.

Next, we will look at the tables where the information for both types of logging is stored.

CHAPTER 15 ■ Logging and Reporting Patterns

283

Catalog Tables
When a package runs, all of the information is stored in a set of tables that reside in the SSISDB database on the
same server where the Integration Services package was deployed. While there is a series of internal tables, you
will do most of your reporting from the catalog views. Figure 15-5 shows a database diagram of the SSIS internal
tables, while Figure 15-6 shows a list of the SSIS catalog views.

Figure 15-5.  SSIS catalog internal tables

Figure 15-6.  SSIS catalog views

CHAPTER 15 ■ Logging and Reporting Patterns

284

Changing Logging Levels After the Fact
Even after the package has been deployed to the Integration Services server, you can change the amount of
logging that occurs. But why would you want to do this? If you initially set up your package with a defined set of
logging events, you will see only that set of data. However, you may want to include more events if you are doing
more advanced troubleshooting or if you have a specific error you need to track down. On the other hand, you
may want to increase the performance of a package by reducing the number of events that are recorded.

Modifying logging at the package level is not a best practice. By opening up the package to change even
the slightest item, you increase the risk of a breaking change, whether it be fat-fingering a value or choosing an
unavailable logging option. In some organizations, this may even result in the package having to go through the
change control process again. Ideally, we want to make logging changes in an external location without touching
the package at all.

In Integration Services 2012, you can choose from four different logging levels, as described in Table 15-1.

Table 15-1.  SSIS Logging Levels

Logging Level ID Level Events Notes

0 None None Captures enough information to say whether the
package succeeded or failed but does not log any
messages to the [operation_messages] view

1 Basic OnPreValidate Captures similar information to what is displayed
on the console by the default when a package is run
with dtexec

OnPostValidate

OnPreExecute

OnPostExecute

OnInformation

OnWarning

OnError

2 Performance OnWarning Required to track the performance information
for the run (how long it took to run each task or
component, how many rows were processed, etc.)
but does not log all of the events captured by the
Basic log level

OnError

3 Verbose All events Captures all log events, including performance and
diagnostic events; can introduce some overhead on
performance

CHAPTER 15 ■ Logging and Reporting Patterns

285

Design Patterns
Now that you know how to set up and log information, let’s walk through the following design patterns:

1.	 Changing the logging level

2.	 Utilizing existing reports

3.	 Creating new reports

Changing the Logging Level
Now that you know what the different logging levels are and when you would use each one, let’s walk through
changing the logging level. You can do this in either of two ways: through the execution interface or through a
command-line execution.

To modify the logging level through the execution interface, you will connect your Integration Services
catalog, right-click on the desired package, and select Execute. On the execution wizard, you will see the Logging
option on the Advanced tab. By default, the option is set to Basic, as shown in Figure 15-7. Alternatively, you can
modify this value to another logging level to see more or less in the logging tables.

Figure 15-7.  Execute package screen

CHAPTER 15 ■ Logging And REPoRTing PATTERns

286

The other option is to modify logging through the command line. All packages can be executed through the
command line, and you can set a logging level associated with an individual execution.

Note  Much of the functionality associated with administering integration services packages can be accessed
through a command-line interface. By using the command line, you can integrate your integration services adminis-
tration with your other maintenance tasks.

Run the following code in Listing 15-2 to change the logging level to log all Verbose records for a new
execution:

Listing 15-2. Statement to Modify the Logging Level for an Execution

DECLARE @execution_id INT
EXECUTE [catalog].[create_execution]
 @folder_name = 'DesignPatterns'
 ,@project_name = 'DesignPatterns'
 ,@package_name = 'Ch15_Reporting.dtsx'
 ,@reference_id = null
 ,@use32bitruntime = false
 ,@execution_id = @execution_id OUTPUT
EXECUTE [catalog].[set_execution_parameter_value]
 @execution_id
 ,@object_type = 50
 ,@parameter_name = 'LOGGING_LEVEL'
 ,@parameter_value = 3 --Verbose

EXECUTE [catalog].[start_execution]
 @execution_id

Once you’ve done this, you can see the output from the newly set logging level by running the query in
Listing 15-3:

Listing 15-3. Query to Return All Messages

select * from catalog.event_messages
where operation_id =
 (select max(execution_id) from catalog.executions)

Utilizing Existing Reports
Our next design pattern is an important one: use what is provided to you. Included in the SSIS catalog are reports
that use the logging information we have just discussed. The information in these reports includes an in-depth
view of all of your packages’ executions. These reports are a great start for you to see when your packages run, if
any errors occur, and potential trouble areas for you to investigate.

Figure 15-8 shows all of the reports available to you. You can access all reports through the Management
Studio interface and the Integration Services Catalog node.

CHAPTER 15 ■ Logging and Reporting Patterns

287

Figure 15-8.  Available catalog reports

If you are looking at a specific execution, you will always want to start with the Overview report, which can
be run by selecting the Overview link on any of the provided reports. In fact, at the end of an execution through
the interface, you will be asked if you want to see this report. If you select yes, you will see something similar to
Figure 15-9.

Figure 15-9.  An overview report

Creating New Reports
Now that you’ve seen the reports that are available to you without doing any work, you may be perfectly happy. If
not, you may want to dig into the data a little deeper. You can create new reports by looking at the catalog views
that were described earlier. Particular reasons why you may want to do this include

1.	 Seeing the longest-running executions

2.	 Finding out why a package failed

3.	 Understanding the inner workings of a particular component

CHAPTER 15 ■ Logging and Reporting Patterns

288

Let’s start with the first reason. This report is interesting because it uses the main output view, but based
on the query and transformations, it becomes a helpful little tool. Listing 15-4 shows the query that lists the five
longest-running packages over the past day:

Listing 15-4.  Query for Five Longest-Running Packages

select top 5 e.execution_id, e.package_name, DATEDIFF(ms, start_time, end_time) as
duration_ms
from catalog.executions e
where e.start_time > DATEADD(dd, -1, getdate())
order by duration_ms desc

The second reason you may want a new report is to see why a package failed. You will use an additional view
for this information, the catalog.event_messages view. Restricting the data on both the executions and the event_
messages view will ensure that you get only packages that failed entirely and see only the events that caused them
to fail. This query can be seen in Listing 15-5:

Listing 15-5.  Failed-Packages Query

select e.execution_id, e.package_name, em.*
from catalog.executions e
inner join catalog.event_messages em on e.execution_id = em.operation_id
where e.status = 4 and em.event_name = 'OnError'

The final reason is to understand the inner workings of a particular component. You can see the individual
steps that occurred during the execution of each component in the data flow. For example, the query in Listing
15-6 returns each step that occurs in the execution of the sources, transformations, and destinations and how
long each step takes.

Listing 15-6.  Query to Return Component Phases and Times

select subcomponent_name, phase
 , DATEDIFF(ms, start_time, end_time) as duration_ms
from catalog.execution_component_phases
where package_name = 'Ch15_Reporting.dtsx'
 and task_name = 'Data Flow Task'

Once you have your desired query, you can either run it directly from Management Studio or embed it into
a Reporting Services report to make it look like the Standard reports available in the solution. To make the report
through Management Studio, you can store the folders in your local Documents folder, under the structure SQL
Server Management Studio\Custom Reports. To access them, you will then select the Custom Reports option
under the Reports menu on the Integration Services node, as shown in Figure 15-10.

CHAPTER 15 ■ Logging and Reporting Patterns

289

Summary
This chapter has discussed many ways to monitor your Integration Services packages. Whether you are using
an older version of the tool or the latest and greatest, you will be able to understand the internal workings of the
package by following the design patterns described here. Discussions of both package logging and reporting and
catalog logging and reporting have shown you how to modify the types of events you log and how to retrieve that
information.

Figure 15-10.  Selection of custom reports

291

chapter 16

Parent-Child Patterns

In earlier versions of Integration Services, the data movement platform did not include a management
framework, which is the implementation of the execution, logging, and deployment of the Integration
Services packages. To try to fill this hole, developers created their own management framework to use in their
organizations. As with any custom solution, the management framework needed to be cared for and upgraded
when new versions or new packages were introduced into the system.

Previous chapters have covered ETL instrumentation, focusing on metadata collection and validation. The
metadata discussed include key information necessary to manage your packages. Not only can these metadata
be used standalone, they can also be used as part of a management framework. This chapter starts the Integration
Services Framework section, where we will discuss management frameworks. Specifically, Chapter Four covers
parent-child patterns, where an Integration Services package can execute another package from within its own
execution.

Integration Services 2012 contains its own management framework, including logging and execution
through the Integration Services service. In this and subsequent chapters, we will show how to use the available
framework and enhance it to provide more information while still working around the issues we discussed.

The following are the three parent-child patterns we’ll discuss in this chapter:

Master Package Pattern•	

Dynamic Child Package Pattern•	

Child to Parent Variable Pattern•	

Using these patterns, you can implement the Integration Services management functionality out of the box.

Master Package Pattern
When setting up a framework, one of the first things we want to do is find a way to organize how our packages
execute. This organization could include parallel versus serial processing, conditional execution, and categorical
batching. While some of this organization could occur in a job scheduler such as SQL Agent or Tivoli, wouldn’t it
be easier if we could manage our package execution in an environment we already know?

Luckily for us, Integration Services already provides this ability! By using the workflow designer and the
Execute Package Task, we can execute other packages, creating a “Parent-Child” package relationship. When we
use the parent-child relationship to execute a series of packages, we call this a master package. There are two
steps we need to complete in order to set up one child package for our master package:

1.	 Assign the child package

2.	 Configure parameter binding

CHAPTER 16 ■ Parent-Child Patterns

292

Assign the Child Package
Once we have created our initial package, we begin by using the Execute Package Task from the SSIS Toolbox.
Drag the task to the Control Flow, and open the task to see multiple menus that we can modify. Let’s begin by
configuring the Package menu, as shown in Figure 16-1.

Figure 16-1.  Execute Package Task Editor Package Screen

This is where we set up the package that we want to execute. A new addition to the Execute Package Task
is the ReferenceType property, which enables developers to use the master package to run a package that is
included in this project or a package that is external to the project. For this example, we will just use an existing
package in our solution.

At this point, we could click the OK button and have a perfectly acceptable master package. Before we do
that; however, we should delve into passing information between the packages using parameters in the next
menu, Parameter bindings.

CHAPTER 16 ■ Parent-Child Patterns

293

Configure Parameter Binding
Just calling a child package isn’t very exciting. What is exciting is tying the child package into something that the
master package is doing! We do this through parent package parameters. This option can only be used if we are
using a child package from the same project as the master package. Once we complete the setup for our package
parameters, we should see the screen shown in Figure 16-2.

Figure 16-2.  Execute Package Task Editor Parameter Bindings Screen

To achieve the result shown in Figure 16-2, we need to look at the Execute Package Task Editor and go to the
Parameter bindings menu. Click the Add button to set up a parameter. For the Child Package Parameter, we can
either select a parameter that has already been created or add our own parameter, in case we have not created
the child package’s parameter yet. Keep in mind that this will not automatically create the variable in the child
package. That is up to you to do! Next, we will assign either a parameter or variable from the master package to
be stored in the child parameter. In the scenario shown in Figure 16-2, we are storing the name of the parent
package in a parameter in the child package, which could be used to record the package that called the child
package.

CHAPTER 16 ■ Parent-Child Patterns

294

If we want to test the package, we can create a Script Task in the child package, using the code shown in
Listing 16-1. Make sure to put the $Package::ParentPackageName parameter in the ReadOnlyVariables property.
If everything is mapped correctly, when we run the package, we should see the name of the parent package in a
message box, as shown in Figure 16-3.

Listing 16-1.  Visual Basic Code to Display the Parent Package Name

Public Sub Main()
 MsgBox("The name of the parent package is: " & _
 Dts.Variables("$Package::ParentPackageName").Value.ToString)
 Dts.TaskResult = ScriptResults.Success
End Sub

Figure 16-3.  Message box showing the name of the Parent Package

Now that we have a working parent child package, let’s take it to the next level by creating a dynamic child
package.

Dynamic Child Package Pattern
One of the nice things about Integration Services is the flexibility it provides if you want to do something a little
different. For example, if you are not sure exactly which packages need to run, you can create a master package
that has a dynamic child package which will only execute the desired packages. This is a great idea if you have
a series of files coming in, but you’re not sure which files come in at a certain time. Our end goal is to create a
package that looks like Figure 16-4. Let’s walk through an example of creating the master package and list of the
dynamic packages that we want to execute.

CHAPTER 16 ■ Parent-Child Patterns

295

To create the table that contains the package names, run the Create and Insert statements found in
Listing 16-2.

Listing 16-2.  T-SQL Code to Create and Populate a Package List Table

USE [DesignPatterns]
GO

CREATE TABLE [dbo].[PackageList](
	 [ChildPackageName] [varchar](50) NULL
)
GO

INSERT INTO [dbo].[PackageList] ([ChildPackageName])
 VALUES ('ChildPackage.dtsx')
GO

INSERT INTO [dbo].[PackageList] ([ChildPackageName])
 VALUES ('ChildPackage2.dtsx')
GO

Now we will create the master package. Starting with a blank SSIS package, create a variable that is scoped to
the package level. The variable should be named packageListObject and have a data type of Object. You do not

Figure 16-4.  Completed Dynamic Child Package Pattern Package

CHAPTER 16 ■ Parent-Child Patterns

296

need to put a value for the variable. Secondly, add a variable, also scoped to the package level, which is named
packageName. This is data type String and also contains an empty value.

Next, add an Execute SQL Task in the Control Flow. Use the query in the Execute SQL Task shown in
Listing 16-3 against the database you just created your table.

Listing 16-3.  T-SQL Code to Query the Package List Table

SELECT [ChildPackageName] FROM [dbo].[PackageList]

In addition to the SQL query, ensure the ResultSet property is set to return a Full result set and store it in the
variable we just created called packageListObject. This property screen can be seen in Figure 16-5.

Figure 16-5.  Execute SQL Task Editor Screen

CHAPTER 16 ■ PAREnT-CHild PATTERns

297

Then, we need to tell Integration Services what to do with the value it retrieves when enumerating through
the object list. On the Variable Mappings menu, set the variable to User::packageName and the Index to 0. This
will put each value into the variable.

Finally, we’re at a point to add the part that executes the package. Similar to the creation of the master-child
package, we want to use an Execute Package Task. Begin by setting the DelayValidation property to True to allow
us to make the decision of what package to run at runtime. Rather than walk through the same steps as we did in
the master-child package, we will go directly to the Expressions menu in the Execute Package Task Editor. This is
where we set up the dynamic portion of the package. Set the Package Name Property to use the Expression
@[User::packageName]. The final Expressions screen should look like Figure 16-7.

Attach a ForEach Loop Container to the Execute SQL Task. This is where we will execute the package.
Within the Collection menu of the ForEach Loop Container, set the enumerator to use Foreach ADO
Enumerator, which will loop through the variable object. The ADO object source variable field should contain
User::packageListObject. This screen can be seen in Figure 16-6.

Figure 16-6. Foreach Loop Editor Screen that enumerates through each row in the packageListObject variable

CHAPTER 16 ■ Parent-Child Patterns

298

When the package runs, it will loop through each row in the PackageList table, set the package name
property of the Execute SQL Task to the current row, and execute only the packages that you need. Keep in mind
that this will always run the child packages serially, unless you create multiple loops and specifically code your
master package to handle parallelism.

Next, we will describe how a child package can send information back to the parent package in the Child to
Parent Variable pattern.

Child to Parent Variable Pattern
Parent-child patterns are an essential part of a management framework. For example, you could use the master
package pattern to group similar packages together and make sure they are executed in the correct order. You
could also use the dynamic child package pattern to run a variable number of packages. To ensure that we store
all of this information, it is important to pass important information between packages, not only from the parent
to the child, but also from the child back to the parent. While this feature is not readily known, it is possible to do
this using the Script Task. Let’s use our existing packages to show how to pass the name of a file from the child
package to its parent.

Figure 16-7.  Execute Package Task Editor Expressions Screen

CHAPTER 16 ■ Parent-Child Patterns

299

The first step is to create a variable in the parent package. In our scenario, we are going to create a variable
named ChildFileName of datatype String that is scoped at the package level. Attached to the Execute Package
Task we created previously in this chapter, we’ll add a Script Task. Add the ChildFileName variable as a ReadOnly
variable, and add the code in Listing 16-4 inside the Visual Basic script.

Listing 16-4.  Visual Basic Script to Display the Child File Name

Public Sub Main()
 MsgBox("The name of the child file is: " & _
 Dts.Variables("User::ChildFileName").Value.ToString)
 Dts.TaskResult = ScriptResults.Success
End Sub

Next, we will modify our child package. In the Script Task, add the variable User::ChildFileName to the
ReadWriteVariables property list. Add the line of code found in Listing 16-5 to the Visual Basic script task.

Listing 16-5.  Visual Basic Script to Set the Child File Name Value

Dts.Variables("User::ChildFileName").Value = "SalesFile.txt"

Once run, the package will finish with the figure seen in Figure 16-8.

Figure 16-8.  Child To Parent Variable Pattern Execution

The passing of variable values from child to parent package works because of how containers work in
Integration Services. Inside of a package, any child container, such as a Sequence Container, can access its
parent’s properties. Likewise, any child task, such as an Execute SQL Task, can access its parent’s properties.
This paradigm allows us to use variables and properties without having to recreate them for every object in our
package. When we add a child package using the Execute Package Task, we add another layer to the parent-child
hierarchy, and allow the child package to set the parent package’s variable.

CHAPTER 16 ■ Parent-Child Patterns

300

Summary
SQL Server enthusiasts everywhere embraced Integration Services when it was first introduced as part of SQL
Server 2005. The latest edition of Integration Services has been enhanced to make ETL developers even more
excited than before. Integration Services 2012 includes the basis for a management framework and the ability
to create parent child relationships, as this chapter discussed. We also discussed master package patterns and
management frameworks.

301

chapter 17

Business Intelligence
Markup Language

You likely purchased this book to learn how to be a more productive SQL Server Integration Services developer.
I applaud your desire and decision, and I sincerely hope the information contained herein has provided ideas
and information to help you be more productive. I am always on the lookout for ways to become a better data
integration developer. Specifically, I seek out ways to improve code quality and reduce the amount of time
required to build solutions. Those goals motivated me to begin practicing patterns-based development in the first
place, which eventually led to the idea for this book.

Business Intelligence Markup Language – or Biml – represents SSIS packages using XML. By storing
metadata that describes SSIS packages in XML, Biml approaches data integration development from the
perspective of a domain-specific language. Business Intelligence Markup Language provides another means to
materialize SSIS design patterns – something other than an SSIS package library containing template packages.
Regardless of which mechanism used, storing design patterns facilitates code production at a consistent and
repeatable quality. That may sound innocuous but I assure it is important; and it is one of the primary reasons to
use design patterns in the first place.

Biml is a complex language. You would do well to gain an understanding of domain-specific languages,
XML, and .Net development before diving into Biml development proper. I will not delve into the underlying
architecture of Biml in this chapter. I will show you some of the mechanisms and direct you to the Biml
documentation website: www.varigence.com/documentation/biml/. I believe this is enough to whet your
appetite while demonstrating the power of Biml.

A Brief History of Business Intelligence Markup Language
In early 2007, the Microsoft Customer Service and Support (CSS) business incubated a new approach to building
business intelligence solutions. As the organization responsible for managing all front-line customer support
interactions, CSS has significant analytical and predictive business intelligence needs – across data from a wide
variety of sources. To accelerate the development of its internal solutions, CSS began the development of the
Vulcan project, which used an XML-based markup language to describe a subset of SQL Server Integration
Services packages. This created a model where business intelligence solutions could be developed more rapidly
and iteratively by globally distributed teams of BI developers.

After a period of significant success building new BI capabilities, CSS and the SQL Server product team
decided to publish the source code for the Vulcan project on CodePlex to enable customers to try the technology
and begin building a community around it (http://vulcan.codeplex.com). Feedback from customers
recognized that the approach was powerful and promising, but that the implementation reflected the project’s
status as an internal tool used to accelerate an operational delivery team. Without documentation and training

http://www.varigence.com/documentation/biml/
http://vulcan.codeplex.com

CHAPTER 17 ■ Business Intelligence Markup Language

302

resources, usability considerations, and additional features, the cost of adopting Vulcan was prohibitive for all but
the most determined customers.

In late 2008, Scott Currie, who worked with the Vulcan technology in CSS, founded Varigence, Inc.
Varigence created the Business Intelligence Markup Language (Biml), along with tools to enable its design and
development. While Biml didn’t directly use any code or technology from Vulcan, the approach taken by the
Vulcan project inspired the Varigence team to build Bimlas an Xml-based markup language with rapid, iterative
global team development capabilities in mind.

Biml is now available in proprietary products, open source projects, and has been published as an open
language specification. Varigence has developed a Biml-compiler that enables a wide variety of automation
and multi-targeting capabilities. Additionally, Varigence offers an Integrated Development Environment (IDE)
for Biml called Mist. Mist enables rapid and visual design and debugging features for Biml. The open source
BIDSHelper project includes Biml functionality, enabling anyone to write and execute Biml code for free.1

In this chapter, we will leverage the free Biml functionality included with BIDSHelper to dynamically
generate SSIS packages.

Note■■   An object containing Business Intelligence Markup Language is a “Biml File”. Biml files are “executed” to
generate SSIS Packages.

Building Your First Biml File
Before we get started with Business Intelligence Markup Language, you will need to download and install the
latest version of BIDSHelper from http://bidshelper.codeplex.com. Once installed, create a new SSIS solution
and project named “Biml.” In Solution Explorer, right-click the project name and click “Add New Biml File.” The
new file, BimlScript.biml, will be created and assigned to the Miscellaneous virtual folder in Solution Explorer.
Double-click the file to open it in the editor.

The file begins with the most basic Biml construct, as shown in Listing 17-1.

Listing 17-1.  Initial Biml Code

<Biml xmlns = "http://schemas.varigence.com/biml.xsd">
</Biml>

Add XML so that your Biml file reads as shown in Listing 17-2.

Listing 17-2.  Biml After Adding Package XML Metadata

<Biml xmlns = "http://schemas.varigence.com/biml.xsd">
 <Packages>
 <Package Name = "TestBimlPackage" ConstraintMode = "Parallel">
 </Package>
 </Packages>
</Biml>

Save the file, right-click BimlScript.biml in Solution Explorer, and then click “Generate SSIS Packages.”
Figure 17-1 shows a new SSIS package named TestBimlPackage.dtsx is created in the project and file system.
The packageshows up in Solution Explorer as part of this project:

1 From an interview with Scott Currie of Varigence, Inc.

http://bidshelper.codeplex.com

CHAPTER 17 ■ Business Intelligence Markup Language

303

Let’s return to the BimlScript.biml file and add a task. Create a new XML node beneath the < Package > tag
named “Tasks.” Between the < Tasks > and </Tasks > tags, add a new node named “ExecuteSQL”.

Tip■■  I f you are not seeing Intellisense with Biml, follow this link: http://bidshelper.codeplex.com/
wikipage?title=Manually%20Configuring%20Biml%20Package%20Generator&referringTitle=

xcopy%20deploy for Biml Intellisense configuration instructions.

Add an attribute to the ExecuteSQL root node named “Name” and set its value to “Test Select”. Create
a new XML node between the < ExecuteSQL > and </ExecuteSQL > tags named “DirectInput”. Between
the < DirectInput > and </DirectInput > add the T-SQL statement “Select 1 As One”. If you are playing along at
home, your BimlScript.biml file should look like Listing 17-3.

Listing 17-3.  Biml After Adding Initial Metadata Describing an Execute SQL Task

<Biml xmlns="http://schemas.varigence.com/biml.xsd">
 <Packages>
 <Package Name="TestBimlPackage" ConstraintMode="Parallel">
 <Tasks>
 <ExecuteSQL Name="Test Select">
 <DirectInput>Select 1 As One</DirectInput>
 </ExecuteSQL>
 </Tasks>
 </Package>
 </Packages>
</Biml>

To test, save the file and generate the SSIS package from BimlScript.biml in Solution Explorer. Do you get an
error similar to that displayed in Figure 17-2? You should get such an error.

Figure 17-1.  TestBimlPackage.dtsx

http://bidshelper.codeplex.com/wikipage?title=Manually%20Configuring%20Biml%20Package%20Generator&referringTitle=xcopy%20deploy
http://bidshelper.codeplex.com/wikipage?title=Manually%20Configuring%20Biml%20Package%20Generator&referringTitle=xcopy%20deploy
http://bidshelper.codeplex.com/wikipage?title=Manually%20Configuring%20Biml%20Package%20Generator&referringTitle=xcopy%20deploy

CHAPTER 17 ■ Business Intelligence Markup Language

304

The Business Intelligence Markup Language engine includes validation functionality and it caught the error
in Figure 17-2. You can invoke a validation from Solution Explorer; simply right-click BimlScript.biml and then
click “Check Biml for Errors.”

To fix the error we need to add a Connection Name attribute to the “ExecuteSQL” tag. But we don’t have
a connection specified at this time. To create a connection, return to the top of BimlScript.biml and add a new
line just after the “Biml” tag and before the “Packages” tag. On this line, add the “Connections” XML node.
Inside the < Connections > and </Connections > tags, add a “Connection” XML node. A Connection requires
two attributes, Name and ConnectionString. I created a connection to the AdventureWorks2012 database
on the default instance of the local SQL Server. Once the Connection metadata is configured, I added a
ConnectionName attribute to the “ExecuteSQL” tag. My BimlScript.biml file now contains the code listed
in Listing 17-4.

Listing 17-4.  Biml After Adding Connection Metadata

<Biml xmlns="http://schemas.varigence.com/biml.xsd">
 <Connections>
 <Connection Name="AdventureWorks2012" ConnectionString="Data Source=.;Initial
Catalog=AdventureWorks2012;Provider=SQLNCLI10.1;Integrated Security=SSPI;Auto Translate=False;" />
 </Connections>
 <Packages>
 <Package Name="TestBimlPackage" ConstraintMode="Parallel">
 <Tasks>
 <ExecuteSQL Name="Test Select" ConnectionName="AdventureWorks2012">
 <DirectInput>Select 1 As One</DirectInput>
 </ExecuteSQL>
 </Tasks>
 </Package>
 </Packages>
</Biml>

Let’s test by regenerating the TestBimlPackage.dtsx SSIS package from BimlScript.biml. When we attempt to
generate the SSIS package, we see a dialog that confirms we would like to overwrite the existing TestBimlPackage.
dtsx SSIS package. When you confirm this intention, the TestBimlPackage.dtsx SSIS package is regenerated from
the metadata contained in the updated BimlScript.biml file. Open the TestBimlPackage.dtsx SSIS package: it
should appear as shown in Figure 17-3.

Figure 17-2.  Missing “ConnectionName” attribute

CHAPTER 17 ■ Business Intelligence Markup Language

305

Building a Basic Incremental Load SSIS Package
The Incremental Load Pattern is fundamental in data integration solutions; especially Extract, Transform, and
Load (ETL) solutions. Biml provides a mechanism for codifying the Incremental Load pattern in a repeatable
fashion.Creating Databases and Tables.

Let’s prepare for this demo by building a couple databases and tables. Execute the T-SQL statements from
Listing 17-5 to build and populate the test databases and tables.

Listing 17-5.  Building and Populating Demo Databases and Tables

Use master
Go

If Not Exists(Select name
 From sys.databases
 Where name = 'SSISIncrementalLoad_Source')
 CREATE DATABASE [SSISIncrementalLoad_Source]

If Not Exists(Select name
 From sys.databases
 Where name = 'SSISIncrementalLoad_Dest')
 CREATE DATABASE [SSISIncrementalLoad_Dest]

Use SSISIncrementalLoad_Source
Go

If Not Exists(Select name
 From sys.tables
 Where name = 'tblSource')

Figure 17-3.  A Biml-Generated SSIS package

CHAPTER 17 ■ Business Intelligence Markup Language

306

CREATE TABLE dbo.tblSource
 (ColID int NOT NULL
 ,ColA varchar(10) NULL
 ,ColB datetime NULL constraint df_ColB default (getDate())
 ,ColC int NULL
 ,constraint PK_tblSource primary key clustered (ColID))

Use SSISIncrementalLoad_Dest
Go

If Not Exists(Select name
 From sys.tables
 Where name = 'tblDest')
CREATE TABLE dbo.tblDest
 (ColID int NOT NULL
 ,ColA varchar(10) NULL
 ,ColB datetime NULL
 ,ColC int NULL)

 If Not Exists(Select name
 From sys.tables
 Where name = 'stgUpdates')
 CREATE TABLE dbo.stgUpdates
 (ColID int NULL
 ,ColA varchar(10) NULL
 ,ColB datetime NULL
 ,ColC int NULL)

Use SSISIncrementalLoad_Source
Go
 -- insert an "unchanged", a "changed", and a "new" row
INSERT INTO dbo.tblSource
 (ColID,ColA,ColB,ColC)
 VALUES
 (0, 'A', '1/1/2007 12:01 AM', -1),
 (1, 'B', '1/1/2007 12:02 AM', -2),
 (2, 'N', '1/1/2007 12:03 AM', -3)

Use SSISIncrementalLoad_Dest
Go

-- insert a "changed" and an "unchanged" row
INSERT INTO dbo.tblDest
 (ColID,ColA,ColB,ColC)
 VALUES
 (0, 'A', '1/1/2007 12:01 AM', -1),
 (1, 'C', '1/1/2007 12:02 AM', -2)

The T-SQL statements in Listing 17-5 create two databases; SSISIncrementalLoad_Source and
SSISIncrementalLoad_Dest. A table named tblSource is created in SSISIncrementalLoad_Source database and
populated with three rows. Another table named tblDest is created in the SSISIncrementalLoad_Dest database
and populated with two rows.

The configuration created by Listing 17-5 is a basic setup for an incremental load. ColID is the business key.
This value should never change and should also uniquely identify the row in the Source and Destination systems.

e

307

The character values in ColA of the Source and Destination tables indicate clues to the type of row. The “A” row
is present and identical in both the Source and Destination tables. It is an Unchanged row. The row with a ColID
value of 1 contains the ColA value “B” in the Source and the ColA value “C” in the Destination table. This row
has Changed in the Source since it was initially loaded into the Destination table. The row with a ColID value of 2
exists only in the Source. It is a New row.

Adding Metadata
In this section, we will:

Add metadata that defines the Connection Managers used in the Incremental Load SSIS •	
design pattern

Add a new Biml file to the Biml project and rename it “IncrementalLoad.biml”•	

Add a “Connections” XML node just after the •	 < Biml > tag

Add two “Connection” XML nodes configured to connect with the SSISIncremental_•	
Source and SSISIncremental_Dest databases.

Your code should appear as shown in Listing 17-6.

Listing 17-6. Configured Connections for IncrementalLoad.biml

<Biml xmlns="http://schemas.varigence.com/biml.xsd">
 <Connections>
 <Connection Name="SSISIncrementalLoad_Source" ConnectionString="Data Source=(local);Initial
Catalog=SSISIncrementalLoad_Source;Provider=SQLNCLI11.1;Integrated Security=SSPI; " />
 <Connection Name="SSISIncrementalLoad_Dest" ConnectionString="Data Source=(local);Initial
Catalog=SSISIncrementalLoad_Dest;Provider=SQLNCLI11.1;OLE DB Services=1;Integrated
Security=SSPI; " />
 </Connections>
</Biml>

Add a “Packages” node between the </Connections > and </Biml > tags. Just after, add a “Package” XML
node, followed by a “Tasks” node. Immediately thereafter, add an “ExecuteSQL” node configured as shown in
Listing 17-7.

Listing 17-7. Configured Packages, Package, Tasks, and ExecuteSQL Nodes

<Packages>
 <Package Name="IncrementalLoadPackage" ConstraintMode="Parallel"
ProtectionLevel="EncryptSensitiveWithUserKey">
 <Tasks>
 <ExecuteSQL Name="Truncate stgUpdates" ConnectionName="SSISIncrementalLoad_Dest">
 <DirectInput>Truncate Table stgUpdates</DirectInput>
 </ExecuteSQL>
 </Tasks>
 </Package>
</Packages>

The Execute SQL Task defined in the Biml in Listing 17-7 will truncate a staging table that will hold rows that
have been changed in the Source table since being loaded into the Destination table.

CHAPTER 17 ■ Business Intelligence Markup Language

308

Specifying a Data Flow Task
After the </ExecuteSQL > tag, add a “Dataflow” XML node. Include a “Name” attribute and set the value
of the Name attribute to “Load tblDest”. Inside the < Dataflow > tag, add a “PrecedenceConstraints” node.
Place an “Inputs” node inside the < PrecedenceConstraints > tag, and an “Input” node that includes an
“OutputPathName” attribute with the value “Truncate stgUpdates.Output” inside the < Inputs > tag – as shown
in Listing 17-8.

Listing 17-8.  Adding a Precedence Constraint from the “Truncate stgUpdates” Execute SQL Task to the “Load
tblDest” Data Flow Task

<Dataflow Name="Load tblDest">
 <PrecedenceConstraints>
 <Inputs>
 <Input OutputPathName="Truncate stgUpdates.Output" />
 </Inputs>
 </PrecedenceConstraints>
</Dataflow>

This code defines an OnSuccess Precedence Constraint between the “Truncate stgUpdates” Execute SQL
Task to the “Load tblDest” Data Flow Task.

Adding Transformations
We are now ready to add metadata that define transformations, the heart of a Data Flow Task. In this section, we
will design an Incremental Load that includes an OLEDB Source adapter, Lookup transformation, Condition Split
transformation, and a couple OLEDB Destination adapters.

To begin, Add a “Transformations” node just after the </PrecedenceConstraints > tag. Inside
the < Transformations > tags, add an “OleDbSource” tag with following the attribute and value pairs:

Name: tblSource Source•	

ConnectionName: SSISIncrementalLoad_Source•	

Inside the < OleDbSource > tag, add an “ExternalTableInput” node with a “Table” attribute whose value is
“dbo.tblSource”. This metadata constructs an OLEDB Source adapter named “tblSource Source” that connects to
the SSISIncrementalLoad_Source Connection defined above inside the < Connections > tag. The OLE DB Source
adapter will connect to the table “dbo.tblSource” as specified in the “ExternalTableInput” tag. The “Dataflow”
XML node will now appear as shown in Listing 17-9.

Listing 17-9.  The Dataflow Node Containing an OLEDB Source Adapter

<Dataflow Name="Load tblDest">
 <PrecedenceConstraints>
 <Inputs>
 <Input OutputPathName="Truncate stgUpdates.Output" />
 </Inputs>
 </PrecedenceConstraints>
 <Transformations>
 <OleDbSource Name="tblSource Source" ConnectionName="SSISIncrementalLoad_Source">
 <ExternalTableInput Table="dbo.tblSource" />
 </OleDbSource>
 </Transformations>
</Dataflow>

CHAPTER 17 ■ Business Intelligence Markup Language

309

To continue, add a “Lookup” XML node immediately after the </OleDbSource > tag. Include the following
attribute and value pairs in the < Lookup > tag:

Name: Correlate•	

OleDbConnectionName: SSISIncrementalLoad_Dest•	

NoMatchBehavior: RedirectRowsToNoMatchOutput•	

The Name attribute sets the name of the Lookup transformation. The OleDbConnectionName instructs
Biml to use the Connection Manager defined in the < Connections > tag above. The NoMatchBehavior attribute is
configured to redirect non-matching rows to the “NoMatch” output of the Lookup transformation.

Continue configuring the metadata that define the Lookup transformation by adding a “DirectInput” node
immediately after the < InputPath > tag. Enter the following T-SQL statement between the < DirectInput > and
 </DirectInput > tags.

SELECT ColID, ColA, ColB, ColC FROM dbo.tblDest

Add an “Inputs” node immediately following the </DirectInput > tag. Inside the < Inputs > tag, add a
“Column” node. Include the following attribute name: value pairs.

SourceColumn: ColID•	

TargetColumn: ColID•	

The preceding metadata provides the mapping between the Available Input Columns and Available Lookup
Columns on the Columns page of the Lookup transformation.

Add an “Outputs” node immediately following the </Inputs > tag. Inside the < Outputs > tag, add three
“Column” nodes with the following attribute name and value pairs.

1.	
a.	 SourceColumn: ColA

b.	 TargetColumn: Dest_ColA

2.
a.	 SourceColumn: ColB

b.	 TargetColumn: Dest_ColB

3.
a.	 SourceColumn: ColC

b.	 TargetColumn: Dest_ColC

The preceding metadata “selects” the columns returned from the Lookup transformation’s Available Lookup
Columns on the Columns page. Once added, the Lookup transformation metadata should appear as shown in
Listing 17-10.

Listing 17-10.  Transformations Including Lookup Metadata

<Transformations>
 <OleDbSource Name="tblSource Source" ConnectionName="SSISIncrementalLoad_Source">
 <ExternalTableInput Table="dbo.tblSource" />
 </OleDbSource>
 <Lookup Name="Correlate" OleDbConnectionName="SSISIncrementalLoad_Dest"
NoMatchBehavior="RedirectRowsToNoMatchOutput">
 <InputPath OutputPathName="tblSource Source.Output" />

CHAPTER 17 ■ Business Intelligence Markup Language

310

 <DirectInput>SELECT ColID, ColA, ColB, ColC FROM dbo.tblDest</DirectInput>
 <Inputs>
 <Column SourceColumn="ColID" TargetColumn="ColID" />
 </Inputs>
 <Outputs>
 <Column SourceColumn="ColA" TargetColumn="Dest_ColA" />
 <Column SourceColumn="ColB" TargetColumn="Dest_ColB" />
 <Column SourceColumn="ColC" TargetColumn="Dest_ColC" />
 </Outputs>
 </Lookup>
</Transformations>

Immediately following the </Lookup > tag, add an “OleDbDestination” XML node with the following
attribute name and value pairs.

Name: tblDest Destination•	

ConnectionName: SSISIncrementalLoad_Dest•	

Inside the < OleDbDestination > tag, add an “InputPath” node with an “OutputPathName” attribute set to
the value “Correlate.NoMatch”. After the < InputPath > tag, add an “ExternalTableOutput” node with a “Table”
attribute set to the value “dbo.tblDest.”

The preceding metadata defines an OLEDB Destination adapter and configures it to connect the Lookup
transformation’s “NoMatch” output to the “SSISIncrementalLoad_Dest” Connection defined above.

Add a “ConditionalSplit” XML node immediately after the </OleDbDestination > tag. Add an attribute
called “Name” and set its value to “Filter”. Inside the < ConditionalSplit > tags, add an “InputPath” XML node
with an “OutputPathName” attribute set to “Correlate.Match”. Now we need to add a conditional output path.
Immediately following the < InputPath > tag, add an “OutputPaths” node, followed in turn by a “OutputPath”
node containing an “Name” attribute set to “Changed Rows”. Inside the < OutputPaths > tags, create an
“Expression” node. Between the < Expression > and </Expression > tags, add the following SSIS Expression.

(ColA != Dest_ColA) || (ColB != Dest_ColB) || (ColC != Dest_ColC)

Once this step is complete, the “Transformations” XML should appear as shown in Listing 17-11.

Listing 17-11.  Transformations Node Including an OLEDB Source, Lookup, Conditional Split, and one OLEDB
Destination

<Transformations>
 <OleDbSource Name="tblSource Source" ConnectionName="SSISIncrementalLoad_Source">
 <ExternalTableInput Table="dbo.tblSource" />
 </OleDbSource>
 <Lookup Name="Correlate" OleDbConnectionName="SSISIncrementalLoad_Dest"
NoMatchBehavior="RedirectRowsToNoMatchOutput">
 <InputPath OutputPathName="tblSource Source.Output" />
 <DirectInput>SELECT ColID, ColA, ColB, ColC FROM dbo.tblDest</DirectInput>
 <Inputs>
 <Column SourceColumn="ColID" TargetColumn="ColID" />
 </Inputs>
 <Outputs>
 <Column SourceColumn="ColA" TargetColumn="Dest_ColA" />
 <Column SourceColumn="ColB" TargetColumn="Dest_ColB" />
 <Column SourceColumn="ColC" TargetColumn="Dest_ColC" />
 </Outputs>
 </Lookup>

CHAPTER 17 ■ Business Intelligence Markup Language

311

 <OleDbDestination Name="tblDest Destination" ConnectionName="SSISIncrementalLoad_Dest">
 <InputPath OutputPathName="Correlate.NoMatch" />
 <ExternalTableOutput Table="dbo.tblDest" />
 </OleDbDestination>
 <ConditionalSplit Name="Filter">
 <InputPath OutputPathName="Correlate.Match"/>
 <OutputPaths>
 <OutputPath Name="Changed Rows">
 <Expression>(ColA != Dest_ColA) || (ColB != Dest_ColB) ||
(ColC != Dest_ColC)</Expression>
 </OutputPath>
 </OutputPaths>
 </ConditionalSplit>
</Transformations>

The Conditional Split metadata most recently added configures a single output named “Changed Rows”
and assigns an SSIS Expression designed to detect changes in rows that exist in both the Source and Destination
tables.

The final component in our Data Flow Task is an OLEDB Destination adapter designed to stage rows that will
be updated after the data flow completes execution. Immediately following the </ConditionalSplit > tag, add an
“OleDbDestination” node with the following attribute name and value pairs.

Name: stgUpdates•	

ConnectionName: SSISIncrementalLoad_Dest•	

Inside the < OleDbDestination > tag, add a new node named “InputPath” with an attribute named
“OutputPathName” and the value set to “Filter.Changed Rows”. Immediately thereafter, add a node named
“ExternalTableOutput” that includes a “Table” attribute set to “dbo.stgUpdates”. This metadata defines an OLEDB
Destination adapter that connects the “Changed Rows” output of the Conditional Split named “Filter” to a table
named “dbo.stgUpdates” in the database defined by the “SSISIncrementalLoad_Dest” Connection defined above.

The complete Data Flow Task metadata is shown in Listing 17-12.

Listing 17-12.  The Completed Dataflow XML Node

<Dataflow Name="Load tblDest">
 <PrecedenceConstraints>
 <Inputs>
 <Input OutputPathName="Truncate stgUpdates.Output" />
 </Inputs>
 </PrecedenceConstraints>
 <Transformations>
 <OleDbSource Name="tblSource Source" ConnectionName="SSISIncrementalLoad_Source">
 <ExternalTableInput Table="dbo.tblSource" />
 </OleDbSource>
 <Lookup Name="Correlate" OleDbConnectionName="SSISIncrementalLoad_Dest"
NoMatchBehavior="RedirectRowsToNoMatchOutput">
 <InputPath OutputPathName="tblSource Source.Output" />
 <DirectInput>SELECT ColID, ColA, ColB, ColC FROM dbo.tblDest</DirectInput>
 <Inputs>
 <Column SourceColumn="ColID" TargetColumn="ColID" />
 </Inputs>

CHAPTER 17 ■ Business Intelligence Markup Language

312

 <Outputs>
 <Column SourceColumn="ColA" TargetColumn="Dest_ColA" />
 <Column SourceColumn="ColB" TargetColumn="Dest_ColB" />
 <Column SourceColumn="ColC" TargetColumn="Dest_ColC" />
 </Outputs>
 </Lookup>
 <OleDbDestination Name="tblDest Destination" ConnectionName="SSISIncrementalLoad_Dest">
 <InputPath OutputPathName="Correlate.NoMatch" />
 <ExternalTableOutput Table="dbo.tblDest" />
 </OleDbDestination>
 <ConditionalSplit Name="Filter">
 <InputPath OutputPathName="Correlate.Match"/>
 <OutputPaths>
 <OutputPath Name="Changed Rows">
 <Expression>(ColA != Dest_ColA) || (ColB != Dest_ColB) || (ColC !=
Dest_ColC)</Expression>
 </OutputPath>
 </OutputPaths>
 </ConditionalSplit>
 <OleDbDestination Name="stgUpdates" ConnectionName="SSISIncrementalLoad_Dest">
 <InputPath OutputPathName="Filter.Changed Rows" />
 <ExternalTableOutput Table="dbo.stgUpdates" />
 </OleDbDestination>
 </Transformations>
</Dataflow>

There remains one more Execute SQL Task to complete our Incremental Load SSIS package. This task will
update the Destination table by applying the rows stored in the “dbo.stgUpdates” table using a single Update
T-SQL statement. Applying the updates in this fashion is generally faster than updating each row individually.

To continue developing the demo code, add an “ExecuteSQL” XML node immediately following the
</Dataflow > tag with the following attribute name and value pairs.

Name: Apply stgUpdates•	

ConnectionName: SSISIncrementalLoad_Dest•	

Immediately following the < ExecuteSQL > tag, add a “PrecedenceConstraints” node, followed by an “Inputs”
node. Inside the < Inputs > tag add an “Input” node containing an attribute named “OutputPathName” set to the
value “Load tblDest.Output”. Add a “DirectInput” node immediately following the
</PrecedenceConstraints > tag. Inside the < DirectInput > tags, add the following T-SQL statement.

Update Dest
Set Dest.ColA = Upd.ColA
 ,Dest.ColB = Upd.ColB
 ,Dest.ColC = Upd.ColC
From tblDest Dest
Join stgUpdates Upd
 On Upd.ColID = Dest.ColID

Believe it or not, that’s it! If your Biml looks like Listing 17-13, you should have compilable metadata.

Listing 17-13.  The Complete IncrementalLoad.biml Listing

<Biml xmlns="http://schemas.varigence.com/biml.xsd">
 <Connections>

CHAPTER 17 ■ Business Intelligence Markup Language

313

 <Connection Name="SSISIncrementalLoad_Source" ConnectionString="Data Source=(local);
Initial Catalog=SSISIncrementalLoad_Source;Provider=SQLNCLI11.1;Integrated Security=SSPI" />
 <Connection Name="SSISIncrementalLoad_Dest" ConnectionString="Data Source=(local);
Initial Catalog=SSISIncrementalLoad_Dest;Provider=SQLNCLI11.1;OLE DB Services=1;Integrated
Security=SSPI;" />
 </Connections>
 <Packages>
 <Package Name="IncrementalLoadPackage" ConstraintMode="Parallel" ProtectionLevel="EncryptSe
nsitiveWithUserKey">
 <Tasks>
 <ExecuteSQL Name="Truncate stgUpdates" ConnectionName="SSISIncrementalLoad_Dest">
 <DirectInput>Truncate Table stgUpdates</DirectInput>
 </ExecuteSQL>
 <Dataflow Name="Load tblDest">
 <PrecedenceConstraints>
 <Inputs>
 <Input OutputPathName="Truncate stgUpdates.Output" />
 </Inputs>
 </PrecedenceConstraints>
 <Transformations>
 <OleDbSource Name="tblSource Source" ConnectionName="SSISIncrementalLoad_Source">
 <ExternalTableInput Table="dbo.tblSource" />
 </OleDbSource>
 <Lookup Name="Correlate" OleDbConnectionName="SSISIncrementalLoad_Dest"
NoMatchBehavior="RedirectRowsToNoMatchOutput">
 <InputPath OutputPathName="tblSource Source.Output" />
 <DirectInput>SELECT ColID, ColA, ColB, ColC FROM dbo.tblDest</DirectInput>
 <Inputs>
 <Column SourceColumn="ColID" TargetColumn="ColID" />
 </Inputs>
 <Outputs>
 <Column SourceColumn="ColA" TargetColumn="Dest_ColA" />
 <Column SourceColumn="ColB" TargetColumn="Dest_ColB" />
 <Column SourceColumn="ColC" TargetColumn="Dest_ColC" />
 </Outputs>
 </Lookup>
 <OleDbDestination Name="tblDest Destination" ConnectionName=
"SSISIncrementalLoad_Dest">
 <InputPath OutputPathName="Correlate.NoMatch" />
 <ExternalTableOutput Table="dbo.tblDest" />
 </OleDbDestination>
 <ConditionalSplit Name="Filter">
 <InputPath OutputPathName="Correlate.Match"/>
 <OutputPaths>
 <OutputPath Name="Changed Rows">
 <Expression>(ColA != Dest_ColA) || (ColB != Dest_ColB) ||
(ColC != Dest_ColC)</Expression>
 </OutputPath>
 </OutputPaths>
 </ConditionalSplit>
 <OleDbDestination Name="stgUpdates" ConnectionName="SSISIncrementalLoad_Dest">
 <InputPath OutputPathName="Filter.Changed Rows" />

i

CHAPTER 17 ■ Business Intelligence Markup Language

314

 <ExternalTableOutput Table="dbo.stgUpdates" />
 </OleDbDestination>
 </Transformations>
 </Dataflow>
 <ExecuteSQL Name="Apply stgUpdates" ConnectionName="SSISIncrementalLoad_Dest">
 <PrecedenceConstraints>
 <Inputs>
 <Input OutputPathName="Load tblDest.Output" />
 </Inputs>
 </PrecedenceConstraints>
 <DirectInput>
 Update Dest
 Set Dest.ColA = Upd.ColA
 ,Dest.ColB = Upd.ColB
 ,Dest.ColC = Upd.ColC
 From tblDest Dest
 Join stgUpdates Upd
 On Upd.ColID = Dest.ColID
 </DirectInput>
 </ExecuteSQL>
 </Tasks>
 </Package>
 </Packages>
</Biml>

We are now ready to test!

Testing the Biml
Testing the Biml will consist of generating the SSIS package, then executing it. We will look at the data to see
if the Incremental Load executed as expected. To begin, I have prepared a T-SQL Reset Rows script shown in
Listing 17-14.

Listing 17-14.  Resetting the Incremental Load Source and Destination Values

Use SSISIncrementalLoad_Source
Go

TRUNCATE TABLE dbo.tblSource

-- insert an "unchanged" row, a "changed" row, and a "new" row
INSERT INTO dbo.tblSource
(ColID,ColA,ColB,ColC)
VALUES
 (0, 'A', '1/1/2007 12:01 AM', -1),
 (1, 'B', '1/1/2007 12:02 AM', -2),
 (2, 'N', '1/1/2007 12:03 AM', -3)

Use SSISIncrementalLoad_Dest
Go

TRUNCATE TABLE dbo.stgUpdates
TRUNCATE TABLE dbo.tblDest

CHAPTER 17 ■ Business Intelligence Markup Language

315

-- insert an "unchanged" row and a "changed" row
INSERT INTO dbo.tblDest
(ColID,ColA,ColB,ColC)
VALUES
 (0, 'A', '1/1/2007 12:01 AM', -1),
 (1, 'C', '1/1/2007 12:02 AM', -2)

Listing 17-15 contains the test script we will use to examine and compare the contents of the Source and
Destination.

Listing 17-15.  Test Script for the IncrementalLoad.dtsx SSIS Package

Use SSISIncrementalLoad_Source
Go

SELECT TableName = 'tblSource'
 ,ColID
 ,ColA
 ,ColB
 ,ColC
 FROM dbo.tblSource
Go

Use SSISIncrementalLoad_Dest
Go

SELECT TableName = 'tblDest'
 ,[ColID]
 ,[ColA]
 ,[ColB]
 ,[ColC]
 FROM [dbo].[tblDest]

SELECT TableName = 'stgUpdates'
 ,[ColID]
 ,[ColA]
 ,[ColB]
 ,[ColC]
 FROM [dbo].[stgUpdates]
Go

Executing the Test script after executing the Reset script yields the results pictured in Figure 17-4.

CHAPTER 17 ■ Business Intelligence Markup Language

316

Return to Solution Explorer in SQL Server Data Tools. Right-click IncrementalLoad.biml and click
“Generate SSIS Packages.” If you receive no error, your Biml is sound and you should see an SSIS package named
IncrementalLoadPackage.dtsx in the SSIS Packages virtual folder in Solution Explorer. If the SSIS package opens
with no errors, press the F5 key to execute it in the Debugger. If all is as it should be, you should see results similar
to those shown in Figure 17-5.

Figure 17-4.  Pre-SSIS-Package-Execution results of test script

e

317

Executing the Test script now returns evidence that SSISIncrementalLoad_Dest.dbo.tblDest has received the
updates loaded from SSISIncrementalLoad_Source.dbo.tblSource, as shown in Figure 17-6.

Figure 17-5. Debug execution for IncrementalLoadPackage.dtsx

Figure 17-6. Results of a successful execution of IncrementalLoadPackage.dtsx

CHAPTER 17 ■ Business Intelligence Markup Language

318

By examining the results and comparing to Figure 17-4, we can see SSISIncrementalLoad_Dest.dbo.tblDest
has been updated to match SSISIncrementalLoad_Source.dbo.tblSource. We can also see the updated row, with
ColID = 1, was sent to the SSISIncrementalLoad_Dest.dbo.stgUpdates table.

Cool. But just wait: this is about to get awesome.

Using Biml as an SSIS Design Patterns Engine
Let’s do something really cool and interesting with Biml. Using the IncrementalLoad.biml file as a template, and
applying .Net integration found in the Biml library supplied to BISDHelper, we are going to add flexibility and
versatility to a new Biml file that will build an Incremental Load SSIS Package between all the tables in a source
and staging database. This is an example of the capital “E” in ETL; this is an Extraction SSIS Design Pattern.

Note■■   This pattern requires that the Source and Stage tables must exist prior to expanding the Biml file to cre-
ate the SSIS Packages. Even with this caveat – which can be addressed, automated, and overcome – I believe this
example demonstrates the power and game-changing attributes of Biml.

Let’s begin by adding new tables to the SSISIncrementalLoad_Source database and creating – and
populating – a new database named SSISIncrementalLoad_Stage. First, add new tables to SSISIncrementalLoad_
Source by executing the T-SQL script shown in Listing 17-16.

Listing 17-16.  Adding and Populating New SSISincrementalLoad_Source Tables

USE SSISIncrementalLoad_Source
GO

 -- Create Source1
If Not Exists(Select name
 From sys.tables
 Where name = 'Source1')
CREATE TABLE dbo.Source1
 (ColID int NOT NULL
 ,ColA varchar(10) NULL
 ,ColB datetime NULL
 ,ColC int NULL
 ,constraint PK_Source1 primary key clustered (ColID))
 Go

 -- Load Source1
 INSERT INTO dbo.Source1
 (ColID,ColA,ColB,ColC)
 VALUES
 (0, 'A', '1/1/2007 12:01 AM', -1),
 (1, 'B', '1/1/2007 12:02 AM', -2),
 (2, 'C', '1/1/2007 12:03 AM', -3),
 (3, 'D', '1/1/2007 12:04 AM', -4),
 (4, 'E', '1/1/2007 12:05 AM', -5),
 (5, 'F', '1/1/2007 12:06 AM', -6)

CHAPTER 17 ■ Business Intelligence Markup Language

319

 -- Create Source1
If Not Exists(Select name
 From sys.tables
 Where name = 'Source2')
CREATE TABLE dbo.Source2
 (ColID int NOT NULL
 ,Name varchar(25) NULL
 ,Value int NULL
 ,constraint PK_Source2 primary key clustered (ColID))
 Go

 -- Load Source2
 INSERT INTO dbo.Source2
 (ColID,Name,Value)
 VALUES
 (0, 'Willie', 11),
 (1, 'Waylon', 22),
 (2, 'Stevie Ray', 33),
 (3, 'Johnny', 44),
 (4, 'Kris', 55)

 -- Create Source3
If Not Exists(Select name
 From sys.tables
 Where name = 'Source3')
CREATE TABLE dbo.Source3
 (ColID int NOT NULL
 ,Value int NULL
 ,Name varchar(100) NULL
 ,constraint PK_Source3 primary key clustered (ColID))
 Go

 -- Load Source3
 INSERT INTO dbo.Source3
 (ColID,Value,Name)
 VALUES
 (0, 101, 'Good-Hearted Woman'),
 (1, 202, 'Lonesome, Onry, and Mean'),
 (2, 303, 'The Sky Is Crying'),
 (3, 404, 'Ghost Riders in the Sky'),
 (4, 505, 'Sunday Morning, Coming Down')

The T-SQL in Listing 17-16 creates and populates three new tables.

dbo.Source1•	

dbo.Source2•	

dbo.Source3•	

Execute the T-SQL shown in Listing 17-17 to build and populate the SSISIncrementalLoad_Stage database.

CHAPTER 17 ■ Business Intelligence Markup Language

320

Listing 17-17.  Building and Populating the SSISIncrementalLoad_Stage Database

Use master
Go

If Not Exists(Select name
 From sys.databases
 Where name = 'SSISIncrementalLoad_Stage')
 Create Database SSISIncrementalLoad_Stage
Go

Use SSISIncrementalLoad_Stage
Go

CREATE TABLE dbo.tblSource(
 ColID int NOT NULL,
 ColA varchar(10) NULL,
 ColB datetime NULL,
 ColC int NULL
)

CREATE TABLE dbo.stgUpdates_tblSource(
 ColID int NOT NULL,
 ColA varchar(10) NULL,
 ColB datetime NULL,
 ColC int NULL
)
Go

INSERT INTO dbo.tblSource
 (ColID,ColA,ColB,ColC)
 VALUES
 (0, 'A', '1/1/2007 12:01 AM', -1),
 (1, 'B', '1/1/2007 12:02 AM', -2),
 (2, 'N', '1/1/2007 12:03 AM', -3)
Go

CREATE TABLE dbo.Source1(
 ColID int NOT NULL,
 ColA varchar(10) NULL,
 ColB datetime NULL,
 ColC int NULL
)

CREATE TABLE dbo.stgUpdates_Source1(
 ColID int NOT NULL,
 ColA varchar(10) NULL,
 ColB datetime NULL,
 ColC int NULL
)
Go

 INSERT INTO dbo.Source1
 (ColID,ColA,ColB,ColC)
 VALUES
 (0, 'A', '1/1/2007 12:01 AM', -1),

CHAPTER 17 ■ Business Intelligence Markup Language

321

 (1, 'Z', '1/1/2007 12:02 AM', -2)
Go

CREATE TABLE dbo.Source2(
 ColID int NOT NULL,
 Name varchar(25) NULL,
 Value int NULL
)

CREATE TABLE dbo.stgUpdates_Source2(
 ColID int NOT NULL,
 Name varchar(25) NULL,
 Value int NULL
)
Go

 INSERT INTO dbo.Source2
 (ColID,Name,Value)
 VALUES
 (0, 'Willie', 11),
 (1, 'Waylon', 22),
 (2, 'Stevie', 33)
Go

CREATE TABLE dbo.Source3(
 ColID int NOT NULL,
 Value int NULL,
 Name varchar(100) NULL
)

CREATE TABLE dbo.stgUpdates_Source3(
 ColID int NOT NULL,
 Value int NULL,
 Name varchar(100) NULL
)
Go

 INSERT INTO dbo.Source3
 (ColID,Value,Name)
 VALUES
 (0, 101, 'Good-Hearted Woman'),
 (1, 202, 'Are You Sure Hank Done It This Way?')
Go

Let’s continue by adding a new Biml file to the Biml project. Rename this file GenerateStagingPackages.biml.
Before the < Biml > tag, add the code snippet shown in Listing 17-18.

Listing 17-18.  Adding .Net Namespaces and Initial Method Calls to Biml

<#@ import namespace = "System.Data" #>
<#@ import namespace = "Varigence.Hadron.CoreLowerer.SchemaManagement" #>
<# var connection = SchemaManager.CreateConnectionNode("SchemaProvider", "Data
Source = (local);Initial Catalog = SSISIncrementalLoad_Source;Provider = SQLNCLI11.1;
Integrated Security = SSPI;"); #>
<# var tables = connection.GenerateTableNodes(); #>

CHAPTER 17 ■ Business Intelligence Markup Language

322

The code in Listing 17-18 imports the System.Data and Varigence.Hadron.CoreLowerer.
SchemaManagement namespaces into the Biml file. A variable named “connection” is created and assigned
the value of a SchemaManager ConnectionNode object which is aimed at the SSISIncrementalLoad_Source
database. The “Connection” variable supports another variable named “tables”. The “tables” variable is populated
from a call the “connection” variable’s “GenerateTableNodes()” method which populates “tables” with the list of
tables found in the SSISIncremetalLoad_Source database.

After the < Biml > tag, add a “Connections” XML Node that contains two “Connection” child nodes so that
your Biml file now appears as shown in Listing 17-19.

Listing 17-19.  Adding Connections to the GenerateStagingPackages.biml File

<#@ import namespace = "System.Data" #>
<#@ import namespace = "Varigence.Hadron.CoreLowerer.SchemaManagement" #>
<# var connection = SchemaManager.CreateConnectionNode("SchemaProvider", "Data
Source = (local);Initial Catalog = SSISIncrementalLoad_Source;Provider = SQLNCLI11.1;
Integrated Security = SSPI;"); #>
<# var tables = connection.GenerateTableNodes(); #>
<Biml xmlns = "http://schemas.varigence.com/biml.xsd">
<Connections>
 <Connection Name = "SSISIncrementalLoad_Source" ConnectionString = "Data Source = (local);
Initial Catalog = SSISIncrementalLoad_Source;Provider = SQLNCLI11.1;Integrated Security = SSPI;" />
 <Connection Name = "SSISIncrementalLoad_Stage" ConnectionString = "Data Source = (local);
Initial Catalog = SSISIncrementalLoad_Stage;Provider = SQLNCLI11.1;OLE DB Services = 1;Integrated
Security = SSPI;" />
</Connections>

As in the IncrementalLoad.biml file we designed in the last section, the Connection nodes are the templates
for SSIS Connection Managers in the SSIS Package. Next, add a “Package” node immediately after the
</Connections > tag. Here we will make a crucial modification to this Biml file and its capability. We begin
a C# loop here that spans all but the last two lines of this Biml file. Your Biml file should now include the code
from Listing 17-20, immediately after the </Connections > tag.

Listing 17-20.  Adding the Packages Node and Starting a Loop

<Packages>
 <# foreach (var table in tables) { #>

The loop defined in Listing 17-20 will drive the Biml engine as it creates an SSIS Package for each table found
in the SSISIncrementalLoad_Source database. Because we are using the SSIS Incremental Load Design Pattern
as the template for this package, this Biml file will construct an Incremental Load SSIS Package for each of these
tables.

The variables defined above are used later in the Biml file. Immediately after these variable declarations, add
the “Package” node shown in Listing 17-21.

Listing 17-21.  The Package Node with .Net Replacements

 <Package Name = "IncrementalLoad_ < # = table.Name# > " ConstraintMode = "Linear"
ProtectionLevel = "EncryptSensitiveWithUserKey">

This Biml code, like much in this Biml file, is copied from the IncrementalLoad.biml file and modified to
accept .Net overrides from the foreach loop. Each SSIS Package generated when this Biml is expanded will be
named consistently: “IncrementalLoad_ < Source Table Name>”.

Also note the “ConstraintMode” attribute of the ‘Package” node is set to “Linear.” In the IncrementalLoad.
biml file, this was set to “Parallel.” The differences are subtle but powerful. First, the Biml compiler will

CHAPTER 17 ■ Business Intelligence Markup Language

323

automatically create precedence constraints for you. Specifically, it will create an OnSuccess precedence
constraint in the Control Flow from one task to the next, based on the order they appear in the Biml file. This
functionality makes scripting and simple file authoring extremely quick. Second, you can eliminate InputPath
nodes in the Data Flow Task because the InputPath will connect to the default output path of the transformation
that appears directly before it.

Immediately following the < Package > tag, add a “Tasks” node, followed by an “ExecuteSQL” node configured
as shown in Listing 17-22.

Listing 17-22.  Adding Tasks and the “Truncate Staging Table” Execute SQL Task

<Tasks>
 <ExecuteSQL Name = "Truncate stgUpdates_ < # = table.Name# > "
ConnectionName = "SSISIncrementalLoad_Stage">
 <DirectInput > Truncate Table stgUpdates_ < # = table.Name# > </DirectInput>
 </ExecuteSQL>

Again, note the generic naming of the Execute SQL Task that performs the truncate operation on the
staging table. The name of the Source table will replace the < # = table.Name# > placeholder when the Biml file is
expanded. It will be named differently for each table in the Source database, but it will also be descriptive and
accurate.

In the next listing (Listing 17-23), I am simply going to show you the Biml for the incrementally loading Data
Flow Task. Each component includes .Net code where necessary to make the Biml generic enough to respond to
different Source table schemas.

Listing 17-23.  The Generic Data Flow Task

<Dataflow Name="Load <#=table.Name#>">
 <Transformations>
 <OleDbSource Name="<#=table.Name#> Source" ConnectionName="SSISIncrementalLoad_Source">
 <DirectInput>SELECT <#=table.GetColumnList()#> FROM <#=table.SchemaQualifiedName#>
</DirectInput>
 </OleDbSource>
 <Lookup Name="Correlate" OleDbConnectionName="SSISIncrementalLoad_Stage"
NoMatchBehavior="RedirectRowsToNoMatchOutput">
 <DirectInput>SELECT <#=table.GetColumnList()#> FROM dbo.<#=table.Name#></DirectInput>
 <Inputs>
 <# foreach (var keyColumn in table.Keys[0].Columns) { #>
 <Column SourceColumn="<#=keyColumn.Column#>" TargetColumn="<#=keyColumn.Column#>" />
 <# } #>
 </Inputs>
 <Outputs>
 <# foreach (var col in table.Columns) { #>
 <Column SourceColumn="<#=col#>" TargetColumn="Dest_<#=col#>" />
 <# } #>
 </Outputs>
 </Lookup>
 <ConditionalSplit Name="Filter">
 <OutputPaths>
 <OutputPath Name="Changed Rows">
 <# string exp ="";
 foreach (var colex in table.Columns) { exp += "(" + colex + " != Dest_" + colex +
") || "; } #>

CHAPTER 17 ■ Business Intelligence Markup Language

324

 <Expression><#=exp.Substring(0, exp.Length - 4)#></Expression>
 </OutputPath>
 </OutputPaths>
 </ConditionalSplit>
 <OleDbDestination Name="stgUpdates_<#=table.Name#>"
ConnectionName="SSISIncrementalLoad_Stage">
 <InputPath OutputPathName="Filter.Changed Rows" />
 <ExternalTableOutput Table="dbo.stgUpdates_<#=table.Name#>" />
 </OleDbDestination>
 <OleDbDestination Name="<#=table.Name#> Destination"
ConnectionName="SSISIncrementalLoad_Stage">
 <InputPath OutputPathName="Correlate.NoMatch" />
 <ExternalTableOutput Table="dbo.<#=table.Name#>" />
 </OleDbDestination>
 </Transformations>
</Dataflow>

The Biml / .Net code shown in Listing 17-24 dynamically generates an incrementally loading Data Flow
Task, given the caveats listed near the beginning of this section. Let’s complete the Biml file by creating a generic
template for the final Execute SQL Task that performs the set-based update for Changed Rows between the
staging table and destination, shown in Listing 17-24.

Listing 17-24.  The Generic “Apply Staged Updates” Execute SQL Task

<ExecuteSQL Name="Apply stgUpdates_<#=table.Name#>"
ConnectionName="SSISIncrementalLoad_Stage">
 <# string upd ="Update Dest Set ";
 foreach (var colex in table.Columns.Where(column =>
!table.Keys[0].Columns.Select(keyColumn => keyColumn.Column).Contains(column))) {
 upd = upd + "Dest." + colex + " = Upd." + colex + ",";
 }
 var updc = upd.Substring(0,upd.Length-1) + " From " + table.SchemaQualifiedName + " Dest
Join [" + table.Schema.Name + "].[stgUpdates_" + table.Name + "] Upd On Upd." +
table.Keys[0].Columns[0].Column + " = Dest." + table.Keys[0].Columns[0].Column;#>
 <DirectInput><#=updc#></DirectInput>
</ExecuteSQL>

The final instructions contained in the Biml file are shown in Listing 17-25 and close out the “Tasks,”
“Package,” “Packages,” loop, and “Biml” nodes.

Listing 17-25.  Closing out the Last Nodes and Loop in the Biml File

 </Tasks>
 </Package>
 <# } #>
 </Packages>
</Biml>

Time for a Test
In Solution Explorer, right-click the GenerateStagingPackages.biml file and click “Generate SSIS Packages”. If all
goes as planned, your Solution Explorer window should appear similar to that shown in Figure 17-7.

CHAPTER 17 ■ Business Intelligence Markup Language

325

Conduct further testing by executing (and re-executing) each of the four SSIS Packages created by the Biml
expansion. When I execute the SSIS package named “IncrementalLoad_tblSource.dtsx” I see results (shown in
Figure 17-8) remarkably similar to those observed earlier (in Figure 17-5).

Figure 17-7.  Four SSIS packages from one Biml file!

Figure 17-8.  Dynamically-Built Incremental Load SSIS package

CHAPTER 17 ■ Business Intelligence Markup Language

326

Testing will reveal the other SSIS packages perform similarly.

Summary
In this chapter, we have taken a brief tour of some of the functionality of Business Intelligence Markup Language.
We have demonstrated its usefulness as a domain-specific language for generating SSIS Design Patterns,
focusing on the Incremental Load pattern. In the final example, we demonstrated how Bimls are integrated .Net
functionality can be used to create a patterns-based approach to building four SSIS packages using a tried and
true data integration pattern (Incremental Load). On my machine, the four packages were generated in a matter
of seconds. I assure you, based on testing, that Biml can produce hundreds of Incremental Load SSIS packages
in a matter of minutes. This is game-changing technology, for generating hundreds of SSIS packages – even using
templates and patterns – can easily consume data integration developer-months.

327

Chapter 18

Configuration

SQL Server 2012 introduces Parameters – a new configuration model for SSIS. This new model is meant to
simplify the configuration process, and make it easier for users to identify where values are coming from
at runtime. While 2005/2008 style Package Configurations are still supported in SQL Server 2012, the two
configuration models are not meant to be mixed. In fact, the menu option to use them will only appear when
using the File Deployment Model, and on packages that have been upgraded from previous versions. New
packages created in 2012 will use the new Parameter model by default.

This chapter describes the new Parameter model, and how it can be used to configure package properties
at runtime. We’ll look at how Parameters are exposed in the SSIS Catalog, and how you can set Parameter
values as part of your build process using Visual Studio Configurations. Finally, we’ll look at design patterns that
can used to augment the functionality provided by the built-in Parameter model, providing dynamic runtime
configuration.

Parameters
SSIS Parameters allow packages to define an explicit contract, much like function parameters do in programming
languages like C#. Unlike package configurations, parameters are exposed to the callers, like SQL Agent, or the
Execute Package Task, so users are able to see exactly what a package needs to run. Parameters are essentially
read-only package variables in a special namespace. They follow the same type system as package variables, and
will appear in all of the same UIs that variables do (for example, for setting property expressions). You’ll make
use of parameter values through Expressions, or by reading them in a Script Task. Parameter values are set before
package execution begins, and their value cannot be changed while the package is running.

Parameters can be defined at the package level, and the project level. Package level parameters are visible
only to tasks and components within that package – much like package variables. Package parameters are
defined in the $Package namespace. Parameters defined at the Project level are global – all packages within the
project are able to make use of them. Project parameters are defined in the $Project namespace.

CHAPTER 18 ■ ConFIguration

328

Figure 18-1 shows the new Parameters tab in BIDS, which displays parameters defined at the package
level. In addition to the standard properties you’d find on a package variable (such as Name, Type, and Value),
Parameters expose three new properties: Description, Sensitive, and Required.

Figure 18-1.  Package level parameters are created and displayed on their own tab in BIDS

The Description field provides an easy way for the SSIS package developer to document the arguments for
their packages. It’s recommended that you provide descriptions for your parameters, especially in cases where
the person running or configuring the packages is not the same person that developed them.

If a parameter is marked as Sensitive, its value will be stored in an encrypted format within the package.
Its value will also be masked when it is displayed in the UI, and will not be displayed in execution logs. Sensitive
parameters can only be used in Expressions for properties that are marked as Sensitive (such as the Password
property of a Connection Manager).

Parameters that are marked as Required must have their values specified at runtime. All parameters
(and variables) need values set at design time for validation purposes. Required parameters will not use this
design time value when the package runs – a new value must be specified by the caller (i.e., SQL Agent, or
the parent Execute Package Task). If a parameter’s Required property is set to False, the parameter becomes
optional – its design time value will be used if no other value is supplied. Parameters that have no logical default
value (such as a BatchID, or path to an input file) should be marked as Required.

Project level parameters can be found by accessing the new node in the Solution Explorer (as shown in
Figure 18-2). Project parameters appear in their own node because they are stored in a separate file (Project.
params) within the solution directory. Double clicking this node brings up the same parameter designer used for
package parameters, with all of the same properties and options.

CHAPTER 18 ■ ConFIguration

329

Configuring Your Package Using Parameters
Parameter values are used in your package via SSIS Expressions. Expressions can be set on most Task properties,
variables, and certain component properties in a Data Flow Task. To set an expression on a Task, open the
Property Expressions Editor dialog (shown in Figure 18-3) by clicking on the Expressions property in a Task’s

Figure 18-3.  The Property Expressions Editor shows all properties that have expressions set on them

Figure 18-2.  Project level parameters can be found in the Project.params node in Solution Explorer

CHAPTER 18 ■ ConFIguration

330

Properties window. Expressions can be set on variables directly from the Variables window (as shown in
Figure 18-4). In SQL Server 2012, adding an expression to a variable automatically sets its EvaluateAsExpression
property to True – in previous versions of the product, you had to perform this step yourself. You can disable
expression evaluation for a variable by setting this property back to False.

Figure 18-5.  Expressionable Data Flow Component properties will show up as properties on the Data Flow Task

Figure 18-4.  Expressions can be set directly from the Variables window in SQL Server 2012. Variables that have an
expression set on them appear with a special icon.

Figure 18-4 also shows a new feature in SQL Server 2012 – Expression Adorners. The icons for Tasks,
Connection Managers, and Variables will change if any of the object’s properties is set via expression, providing a
visual way for a developer to identify which parts of a package are being set dynamically.

Setting expressions for Data Flow components is less straightforward than setting them on Tasks. The main
differences are that the expressions are set on the Data Flow Task itself, and not all component properties are
expressionable. Figure 18-5 shows how expressionable properties on a Lookup Transform “bubble up” and
appear as properties on the Data Flow Task.

CHAPTER 18 ■ ConFIguration

331

Package and Project level parameters will appear in all of the UIs that display the list of available Variables. On
the Expression Builder dialog (Figure 18-6), all parameters appear under the “Variables and Parameters” folder.

Figure 18-6.  Parameters appear alongside variables in the Expression Builder dialog

Certain Tasks and Data Flow components are able to make use of variable and parameter values without the
use of expressions. For example, the OLE DB Source provides a “SQL command from variable” data access mode
that allows you to set the source query from a variable. Parameters can be used instead of variables for all such
properties.

CHAPTER 18 ■ ConFIguration

332

Using the Parametrize Dialog
SSIS provides a Parameterize UI (shown in Figure 18-7), which acts as a shortcut for making use of parameters in
your packages. From this UI, you can create a new parameter, or make use of one that already exists. When you
click OK, SSIS will automatically add an expression to the selected property. To launch the Parameterize UI, right
click on and select “Parameterize” from the context menu.

Figure 18-7.  The Parameterize UI is a shortcut for making use of parameters in your package

Creating Visual Studio Configurations
Another new SSIS feature in SQL Server 2012 is the use of Visual Studio Configurations, which allow you to create
multiple sets of parameter values within BIDS. Switching between configurations allows you to easily change
parameter values during development, and also allows you to build multiple versions of your project deployment
file with different default parameter values. Visual Studio Configurations are a way for developers to maintain
their own settings in multi-developer or team environments.

CHAPTER 18 ■ ConFIguration

333

When you first create a project within BIDS, you will have a default configuration called Development.
You can create additional from the Configuration Manager dialog (shown in Figure 18-8). You can launch the
Configuration Manager dialog from the Solution Configurations combo box on the Standard toolbar, or by
right clicking on the project node in the Solution Explorer, selecting Properties, and clicking the Configuration
Managers button. To create a new configuration, select the < New ...  > option from the Active solution
configuration drop down.

Figure 18-8.  Visual Studio Configurations can be managed from the Configuration Manager dialog

To add a parameter to a configuration, click the Add Parameters to Configurations button on the
package Parameters tab. Figure 18-9 shows the Manage Parameter Values dialog that will be displayed when
adding package parameters to configurations. Clicking the Add button allows you to select a parameter – once
a parameter is added, it will appear in all configurations in the solution. The Remove button will remove the
selected parameter from configurations (which means it will always have the same default value at design time).
The Sync button will apply the same value to all configurations – use this button as a shortcut when you’re sure
that the parameter’s default value should change across all configurations. Currently only package parameters
and project parameters can be added to Visual Studio Configurations, but they are configured from separate
dialogs. To manage project level parameters, click the Add Parameters to Configurations button from the
Project Parameters designer (Project.params). To manage a Connection Manager’s settings with Visual Studio
Configurations, you will first need to parameterize the Connection Manager. Shared Connection Managers
cannot be configured using Visual Studio Configurations.

CHAPTER 18 ■ ConFIguration

334

Note■■   When a parameter is controlled by Visual Studio Configurations, its value is saved out to the Visual Studio
project file (.dtproj). Be sure to save the project file after making updates to your configurations to make sure that
the changes are not lost.

Specifying Entry Point Packages
SQL Server 2012 introduces another new concept for SSIS – Entry-point Packages. This feature allows the package
developer to indicate that special attention should be paid to certain packages. This is very useful in projects that
contain a small number of “master” packages that run a number of child packages. Note that packages that are
not marked as entry point packages can still be run – the setting is meant to be a hint for the person configuring
parameter values in the SSIS Catalog. Most SSIS UIs in SSMS allow you to quickly filter out parameters on
non-entry point packages, allowing you to view only the parameters they need to set.

Packages are marked as entry points by default. To remove this setting, right click on the package name in
the Solution Explorer, and unselect the Entry-point Package option.

Connection Managers
Most Connection Managers will require some form of configuration, and in SQL Server 2012 all Connection
Manager properties are configurable when packages are run through the SSIS Catalog. As these properties are
already exposed, in most cases you will not need to expose additional parameters for your Connection Managers.

Figure 18-9.  The Manage Parameter Values dialog displays all parameter currently set via configurations

CHAPTER 18 ■ ConFIguration

335

However, you may encounter some scenarios where parameterized Connection Managers will be beneficial.
Note that any Connection Manager property that is set via expression will not be exposed through the SSIS
Catalog, which prevents a DBA from accidentally overriding property values are set at runtime.

Note■■   In previous versions of SQL Server Integration Services, it was very common for child packages to
configure Connection Managers with variable values from the parent package. You may wish to keep this pattern
in SQL Server 2012 if the connection string is determined at runtime; however, in many cases you’ll want to use
Shared Connection Managers instead.

Parameters can be set on Connection Managers using property expressions. The most common property
to set via expression is the ConnectionString, as many Connection Managers derive their properties by parsing
the ConnectionString value. When configuring Connection Managers, be sure to set expressions on either the
ConnectionString, or individual properties – the order that expressions are resolved cannot be guaranteed, and
certain properties may be overwritten when the ConnectionString is applied.

To parameterize a Shared Connection Manager, open up one of the packages in the project and right click on
the Shared Connection Manager’s name in the Connection Managers area of the design surface. Note that since
Shared Connection Managers are declared at the project level, you can only use project level parameters or static
strings in any property expressions on Shared Connection Managers. The expression dialog will not give you the
option to use package parameters or variables.

Parameter Configuration on the Server
Parameters were designed to make it easier for the person scheduling and running SSIS packages. In many
environments, this is typically a DBA or IT operations person – not the person who originally developed
the package. By including descriptions with the parameters, an ETL developer can create self-documenting
packages, making it very easy for whoever is configuring the package to see exactly what it needs to run.

This section describes how packages are configured through the SSIS Catalog, and how parameters are
surfaced through SSMS. It covers how to set default parameter values after a project is deployed, the various
package execution options, and how the built in reporting functionality in SQL Server 2012 make it easier to
determine the exact configuration values set when the package was run.

Default Configuration
Default values for all parameters and connection managers are saved within the SSIS project deployment file
(.ispac) when the file is built. These become the default values for the project once it is deployed to the SSIS
Catalog. To change the default configuration, right click on the project name (or individual package names) and
select Configure ... within the SSMS Object Explorer (as shown in Figure 18-10).

CHAPTER 18 ■ ConFIguration

336

Figure 18-11 shows the parameter configuration dialog in SSMS. Through this dialog, you can set default
values for all parameters and connection manager properties for packages within this project. The Scope
dropdown allows you to filter your view of the parameters and connection managers. The default view will
display Entry-point packages only, but you can also view parameters for individual packages, and for the entire
project. To change the value for parameter or connection manager property, click the ellipse button at the end
of the row. You will have three options when changing a value: use the project default; set a literal value; or use a
server environment variable. For more information about environments, see the next section.

Figure 18-10.  The default configuration for a project can be changed through SSMS after the project is deployed

CHAPTER 18 ■ ConFIguRATIon

337

Server Environments
Server Environments contain a set of variables – essentially name value pairs – that you can map to parameters
and connection manager properties within your project. When you run a package through the SSIS Catalog, you
can select an Environment to run it in. When a value is mapped to a server environment variable, its value will be
determined by the environment is it currently running in.

Before you can map a value to server environment variable, you must associate the environment with the
project. Figure 18-12 shows the References tab of the project configuration dialog which allows you to associate a
project with one or more environments.

Figure 18-11. Parameter configuration dialog

CHAPTER 18 ■ ConFIguration

338

Like Projects, Environments are contained within a Folder in the SSIS Catalog. A project may reference an
environment in any folder in the Catalog – references are not limited to the current folder only. If you plan to use
Environments throughout your projects, you might consider creating a separate folder as an area to store all of
the common environments.

Environments support row-level security. Like Projects and Folders, you can configure which users or roles
have access to individual Environments. Users will not be able to see Environments they do not have access to.

Once a project has been associated with one or more server environments, you are able to map parameter
and connection manager values to variables contained within those environments.

Note■■   Environments can contain any number of Server Variables, and two environments might not contain
variables with the same name. If a parameter or connection manager value is mapped to a Server Variable, only
Environments which contain a variable with that name (and matching data type!) will be available when selecting the
Environment to run the package in.

Figure 18-12.  The References tab of the Configure dialog lets you associate a project with environments

CHAPTER 18 ■ ConFIguration

339

Default Parameter Values Using T-SQL
Default parameter values and connection manager properties can be set through the SSIS Catalog’s T-SQL API.
This allows a DBA to automate the setting of parameter values after a deployment, or after a project is moved to
a new SSIS Catalog. An easy way to create a script is to make the changes through the parameter configuration
UI, and then clicking the Script button. Listing 18-1 shows the T-SQL used to set default values for a two items; a
package parameter (MaxCount) is to set 100, and a connection manager property
(CM.SourceFile.ConnectionString) is set to 'C:\Demos\Data\RaggedRight.txt'.

Listing 18-1.  Setting parameter values using T-SQL

DECLARE @var sql_variant = N'C:\Demos\Data\RaggedRight.txt'
EXEC [SSISDB].[catalog].[set_object_parameter_value]
	 @object_type = 20,
	 @parameter_name = N'CM.SourceFile.ConnectionString',
	 @object_name = N'ExecutionDemo',
	 @folder_name = N'ETL',
	 @project_name = N'ExecutionDemo',
	 @value_type = V,
	 @parameter_value = @var
GO

DECLARE @var bigint = 100
EXEC [SSISDB].[catalog].[set_object_parameter_value]
	 @object_type = 30,
	 @parameter_name = N'MaxCount',
	 @object_name = N'LongRunning.dtsx',
	 @folder_name = N'ETL',
	 @project_name = N'ExecutionDemo',
	 @value_type = V,
	 @parameter_value = @var
GO

Note■■   For more information, see the set_object_parameter_value stored procedure entry in Books Online:
http://msdn.microsoft.com/en-us/library/ff878162(sql.110).aspx

Package Execution through the SSIS Catalog
Default values for parameters and connection manager properties can be overridden when a package is
executed. The Execute Package UI in SSMS (shown in Figure 18-13) allows you to specify the values to use for that
specific execution of the package. Project and package level parameters are displayed on the Parameters tab, and
shared connection managers and package level connection managers are shown in the Connection Managers
tab. The advanced tab allows you to override property values that were not exposed as parameters. This feature – called
Property Overrides – allows a DBA to make a quick configuration change to a value within a package without
having to redeploy the entire project. The functionality is similar to using the /Set command line option with
DTEXEC.

The Execute Package UI also has a Script button, which allows you to script out the creation of a package
execution to T-SQL. Listing 18-2 provides an example of creating a new package execution and overriding a
number of settings. This procedure involves a number of steps:

http://msdn.microsoft.com/en-us/library/ff878162(sql.110).aspx

CHAPTER 18 ■ ConFIguration

340

1.	 Create a new Execution instance using [catalog].[create_execution]

2.	 Override parameter or connection manager values using
[catalog].[set_execution_parameter_value]

3.	 Set property overrides using [catalog].[set_execution_property_override_value]

4.	 Start the package execution using [catalog].[start_execution]

Listing 18-2.  Running a Package Using T-SQL

-- Create the package execution
DECLARE @exec_id bigint
EXEC [SSISDB].[catalog].[create_execution]
	 @execution_id = @exec_id OUTPUT,
	 @package_name = N'LoadCustomers.dtsx',
	 @folder_name = N'ETL',
	 @project_name = N'ExecutionDemo',
	 @use32bitruntime = 0

-- Set a new value for the AlwaysCheckForRowDelimiters property of the
-- SourceFile connection manager
EXEC [SSISDB].[catalog].[set_execution_parameter_value]
	 @execution_id = @exec_id,

Figure 18-13.  Interactive package execution through SSMS

CHAPTER 18 ■ ConFIguration

341

	 @object_type = 20,
	 @parameter_name = N'CM.SourceFile.AlwaysCheckForRowDelimiters',
	 @parameter_value = 0

-- Set the logging level for this execution
EXEC [SSISDB].[catalog].[set_execution_parameter_value]
	 @execution_id = @exec_id,
	 @object_type = 50,
	 @parameter_name = N'LOGGING_LEVEL',
	 @parameter_value = 1

-- Create a property override for the MaxConcurrentExecutables property
EXEC [SSISDB].[catalog].[set_execution_property_override_value]
	 @execution_id = @exec_id,
	 @property_path = N'\Package.Properties[MaxConcurrentExecutables]',
	 @property_value = N'1',
	 @sensitive = 0

-- Start the package execution
EXEC [SSISDB].[catalog].[start_execution] @exec_id

-- Return the execution ID
SELECT @exec_id

GO

The Integration Services job steps in SQL Agent has been enhanced in SQL Server 2012 to support running
packages stored in an SSIS Catalog. The user interface is the same as when you run a package interactively
through SSMS, and provides the same configuration options. Alternatively, you can run SSIS packages using the
T-SQL job step. However, as this step does not support the use of Proxy Accounts, you will be limited to running
the packages as the SQL Server Agent service account.

Parameters with DTEXEC
The command prompt utility to run SSIS packages (DTEXEC) has been updated to support projects and
parameters. DTEXEC is able to run packages stored within an SSIS project file (.ispac), as well as start a
server-based execution of a package stored within an SSIS Catalog (local or remote). Both modes use different
command line switches to set parameter values, and are described in separate sections below.

Note■■   When working with individual SSIS package files (.dtsx), DTEXEC behaves the same as it did in previous
versions of SQL Server. For more information on the various command line options for DTEXEC, see its entry in Books
Online: http://msdn.microsoft.com/en-us/library/ms162810.aspx

http://msdn.microsoft.com/en-us/library/ms162810.aspx

CHAPTER 18 ■ ConFIguration

342

Projects on the File System
While the new Project Deployment Model is primarily meant for use with the SSIS Catalog, it is possible to run
packages within a project file using DTEXEC. Packages run this way are executed locally by the DTEXEC process.
Individual parameter values can be set using the /Set option, and /ConfigFile can be used to set a number of
parameter values from a 2005/2008 style XML configuration file. Table 18-1 provides a summary of the options
related to running packages from projects stored on the file system.

Table 18-1.  DTEXEC Command Line Options for Using Project Files (.ispac)

Parameter Description

Proj[ect] = path_to_project This option provides the path to the SSIS project file (.ispac).

Example: /Proj c:\demo\project.ispac

Pack[age] = package_name The name of the package within the project file you want to run. The value
should include the .dtsx extension.

Example: /Pack MyPackage.dtsx

Set = parameter_name;value This option allows you to set a value for a parameter within the project. The
syntax is similar to what you’d use to override package variable values on the
command line. Use the $Project namespace to set values for parameters defined
at the Project scope, and $Package for parameters defined at the Package scope.

Example: /Set = \Package.Variables[$Project::IntParameter];1

Conf[igFile] = path_to_file This option allows you to set multiple parameter values from an XML
configuration file. The syntax for each parameter value is similar to what is
used for the /Set option.

Example: /Conf parameters.xml

Listing 18-3 provides an example of running a package (MyPackage.dtsx) contained within a project file
(project.ispac). It sets the values for two parameters – BatchNumber, an integer parameter defined at the Project
level, and HostName, a string parameter defined at the Package level.

Listing 18-3.  Running Packages Within a Project File Using DTEXEC

dtexec.exe /Project c:\demo\project.ispac /Package MyPackage.dtsx /Set
\Package.Variables[$Project::BatchNumber];432 /Set
\Package.Variables[$Package::HostName];localhost

Note■■   Although the syntax for setting parameter values is similar to setting values for variables and other
package properties, there is one key difference. To set parameter values, you should not include the name of the
property (i.e., ".Value") – you only specify the name of the parameter itself.

CHAPTER 18 ■ ConFIguration

343

Listing 18-4 provides an example of running a package (MyPackage.dtsx) contained within a project
(ETLProject) in a folder (MyFolder) on a remote SSIS Catalog server (ETLServer). It sets the values for two
parameters – BatchNumber, an integer parameter defined at the Project level, and HostName, a string parameter
defined at the Package level. It also sets the SYNCHRONIZED server option to True, which tells DTEXEC to run in
a synchronous mode – more details on synchronous vs. asynchronous execution can be found below.

Listing 18-4.  Running Packages Within an SSIS Catalog Using DTEXEC

C:\ > dtexec.exe /Ser ETLServer /IS \SSISDB\MyFolder\ETLProject\MyPackage.dtsx /Par
$Project::BatchNumber;432 /Par $Package::HostName;localhost /Par
"$ServerOption::SYNCHRONIZED(Boolean)";True

Projects in the SSIS Catalog
DTEXEC has been extended in SQL Server 2012 to support running packages contained within an SSIS Catalog.
Unlike other execution modes, when running a package from a Catalog, the execution takes place on the SSIS
Catalog’s server, and not by the DTEXEC process. In this mode, you will use the /ISServer command line option
to specify the path to the package you want to run, the /Parameter option to set parameter values, and the
/EnvReference option if you wish to run your package in a specific server environment. Table 18-2 contains a full
list of command line options for SSIS Catalog based execution with DTEXEC.

Table 18-2.  DTEXEC Command Line Options for the SSIS Catalog

Parameter Description

Ser[ver] = server_instance The name of the SQL instance containing the SSIS Catalog. If this option is
not specified, the default instance on the localhost is assumed.

Example: /Ser ETLSERVER1

IS[Server] = path_to_package The path of the package in the SSIS Catalog. This will contain the name of
the catalog (SSISDB), the folder name, the project name, and the name of
the package you want to run. This option cannot be used with the /DTS, /
SQL, or /FILE options.

Example: /IS \SSISDB\MyFolder\ETLProject\MyPackage.dtsx

Par[ameter] = name[(type)];value Set a value for the given parameter. Include the namespace of the
parameter along with the name to distinguish parameter scope ($Project
for project level parameters, $Package for package level parameters, $CM
for connection manager properties, and $ServerOption for server specific
options). If the namespace is not included, the parameter is assumed to be
at the package scope.

Example: /Par $Project::BatchNumber;432

Env[Reference] = environment_id This option allows you to specify a server environment to use when running a
package. Any parameter values that have been bound to server environment
variables will be resolved automatically. To get the ID for an environment,
query for its name in the [catalog].[environments] view in SSISDB.

Example: /Env 20

CHAPTER 18 ■ ConFIguration

344

Microsoft (R) SQL Server Execute Package Utility
Version 11.0.2100.60 for 64-bit
Copyright (C) Microsoft Corporation. All rights reserved.

Started: 4:46:44 PM
Execution ID: 4.
To view the details for the execution, right-click on the Integration Services Catalog,
and open the [All Executions] report
Started: 4:46:44 PM
Finished: 4:49:45 PM
Elapsed: 3 seconds

Note■■   You must use Windows Authentication to connect to your SQL Server instance when running packages
contained in an SSIS Catalog. The /User and /Password command line options cannot be used with the /ISServer
option. If you need to impersonate another user account, you can use the RunAs DOS command with DTEXEC.

When you run an SSIS Catalog package with DTEXEC, it will run in an asynchronous mode by default.
This means that the process will return immediately, and will not tell you whether the package actually ran
successfully. To get synchronous execution behavior (e.g., the same that you would get when running packages
from the file system, or MSDB), you need to include the /Par "$ServerOption::SYNCHRONIZED(Boolean)";
True command line switch. When synchronous execution is used, the DTEXEC process will not return until the
package has finished running.

Another difference between SSIS Catalog and other forms of DTEXEC execution is that the events that
occur while the package is running are not displayed on the command line. Listing 18-4 shows a sample output
from running a package in the SSIS Catalog – as you can see, there is only a single message telling you the server
execution ID, and pointing you to the catalog reports.

Dynamic Configurations
Parameters on an entry point package allow a user to specify values, but they require that the values be known
before the package starts running. There may be times where you’ll need to determine configurations at runtime,
or dynamically pull in values from other sources (such as an external file, or database table). The following
sections provide design patterns that can be used to augment the capabilities provided by the Parameter model.

Configuring from a Database Table
The SSIS Catalog provides a central location for package configuration values, but your environment may already
have alternative locations that store metadata that your packages need at runtime. This pattern shows how to retrieve
values from a database table using an Execute SQL Task and configure properties within the package using property
expressions. For this example, you’ll be reading a directory and file name from a database, storing the values in
variables, and then using them to dynamically set the ConnectionString for a Flat File Connection Manager.

Creating the Database Table
Listing 18-5 shows the SQL for the table that you will be reading your configuration values from. Each row in the
table is a new flat file that you will want to process with this package. The two main columns you are interested

CHAPTER 18 ■ ConFIguration

345

in are directory and name – the id column is a surrogate key to uniquely identify each row in the table, and the
processed column lets us easily filter out files that have already been processed. Sample values are shown in
Table 18-3.

Listing 18-5.  SQL definition of the table our package will read its configuration values from

CREATE TABLE [dbo].[PackageConfiguration]
(
	 [id] int IDENTITY(1,1) NOT NULL,
	 [directory] nvarchar(255) NOT NULL,
	 [name] nvarchar(255) NOT NULL,
	 [processed] bit NOT NULL
)

Table 18-3.  Sample Rows from the PackageConfiguration Table

id Directory Name processed

1 C:\ETL\Development File1.txt False

2 C:\ETL\Development File2.txt False

3 C:\ETL\Test File1.txt False

Retrieving Configuration Values with an Execute SQL Task
You will retrieve the list of files you need to process from the PackageConfiguration table you created using an
Execute SQL Task. You will store the result set in a package variable, and then loop through each row with a
Foreach Loop Container. You will use the processed field to mark the files that have already been processed – you
will set the processed value to True once you have successfully loaded the file.

Note■■   This example assumes that all of the flat files listed in the PackageConfiguration table have the same
schema. It does not cover the logic needed to actually load the flat file into the database – it is meant to illustrate the
pattern that you’d use as a template for processing a number of items in a loop.

Setting up the package takes the following steps:

1.	 Add four package variables

a.	 FileID (Int32) – the row id for the file you are currently processing

b.	 Directory (String) – the directory containing the flat file you need to process

c.	 FileName (String) – the name of the file you are processing

d.	 FilesToProcess (Object) – the result set of the Execute SQL Task

2.	 Add an Execute SQL Task to your package – name it “Retrieve File List”

3.	 Double click the Task to open its editor

4.	 Ensure the ConnectionType is OLE DB

CHAPTER 18 ■ ConFIguration

346

5.	 Click on the Connection drop down and select < New connection ... >

6.	 Click New, and configure the connection manager to point to the database containing the
PackageConfiguration table

7.	 Select all of the files that have not been processed from the PackageConfiguration table (as shown in
Listing 18-6)

Listing 18-6.  Query to Pull Out All Entries in the Configuration Table that Have Not Been Processed Yet

SELECT * FROM [PackageConfiguration] WHERE [processed] = 0

8.	 Set the ResultSet value to Full Result Set. This means that the Execute SQL Task will retrieve the
values as an ADO Recordset that can be processed by the Foreach Loop. Note that you could also use
an ADO.NET Connection Manager here, which would cause the results to be returned as an ADO.
NET DataTable.

9.	 Click on the Result Set tab

10.	 Click Add, and use these mappings

a.	 Result Name – 0

b.	 Variable Name – User::FilesToProcess

11.	 Click OK to save the changes to the Execute SQL Task

12.	 Add a Foreach Loop container to your package

13.	 Connect the Execute SQL Task to the Foreach Loop Container

14.	 Add a Data Flow task inside of the Foreach Loop Container

15.	 Add a new Execute SQL task inside of the Foreach Loop Container

16.	 Connect the Data Flow task to the Execute SQL Task

17.	 Double click the Execute SQL Task to open its editor

18.	 Set the Connection to the same connection manager you created in step 5

19.	 Listing 18-7 shows the SQLStatement to mark a row in the table as processed. Note that the statement
contains a parameter marker (the question mark). You will map a variable value to this parameter in
the next step.

Listing 18-7.  SQL statement to mark the file as processed

UPDATE [PackageConfiguration] SET [processed] = 1 WHERE id = ?

20.	 Click the Parameter Mapping tab

21.	 Click Add, and use these mappings

a.	 Variable Name – User::FileID

b.	 Data Type - LONG

c.	 Parameter Name – 0

CHAPTER 18 ■ ConFIguRATIon

347

22. Click OK to save the changes to the Execute SQL Task

23. Add a new Flat File Connection Manager, and point it to an existing flat file

24. Right click on the Flat File Connection Manager, and select Properties

25. Select the Expression property, and bring up the Property Expression Editor

26. Set an expression on the ConnectionString property which makes use of the variable values
retrieved from the PackageConfiguration table. Listing 18-8 provides an example of the expression.

Listing 18-8. Expression to Set the Path to the Input File on the Connectionstring Property

@[User::Directory] + "\\" + @[User::FileName]

Your package should now look like Figure 18-14.

Figure 18-14. Package configured for Execute SQL Task based dynamic configurations

CHAPTER 18 ■ ConFIguration

348

Setting Values using a Script Task
An alternative to retrieving your configuration with an Execute SQL Task and setting package properties through
expressions is to use a Script Task. This approach can be useful if your values aren’t coming from a database, or
they require additional processing logic – for example, if they are coming from an encrypted source. From within
a Script, you can easily read values from external configuration files (such as an XML file), and access shared
configuration resources that might be used by other, non-SSIS parts of your data integration solution. The Script
Task is able to read and modify package properties at runtime, including the variable values and all connection
manager properties.

Listing 18-9 provides sample code a Script Task that sets a Connection Manager’s ConnectionString at
runtime.

Listing 18-9.  Sample code to set package properties using a Script Task

public void Main()
{
 // TODO: This would be set from an external configuration file
 const string SourceSystemConnectionString = " ... ";

 Dts.TaskResult = (int)ScriptResults.Success;

 if (Dts.Connections.Contains("SourceSystem"))
 {
 ConnectionManager cm = Dts.Connections["SourceSystem"];
 cm.ConnectionString = SourceSystemConnectionString;
 }
 else
 {
 // The expected connection manager wasn't found - log is and set an error status
 Dts.Events.FireError(0, "Script Task",
 "Could not find the SourceSystem connection manager",
 string.Empty, 0);

 Dts.TaskResult = (int)ScriptResults.Failure;
 }
}

Dynamic Package Executions
In this approach, you will use the same table from Listing 18-5, but instead of reading the configuration values
with an SSIS package, you’ll use T-SQL to create dynamic package executions on the SSIS Catalog. The code in
Listing 18-10 implements the following steps:

1.	 Declare script variables. Note that in a real world script, these values would be set through
parameters, or from an external source.

2.	 Read the list of files to process from the PackageConfiguration table, and store the results in a table
variable (@FileList).

3.	 Loop through the list of files. For each file, the code will:

a.	 Retrieve the id and parameter values from the table variable.

b.	 Create a new SSIS Catalog package execution.

CHAPTER 18 ■ ConFIguration

349

c.	 Set the parameter Directory and FileName parameter values.

d.	 Start the execution.

e.	 Update the PackageConfiguration table to mark that the file has been processed.

Listing 18-10.  Dynamic Package Execution Script

DECLARE @FolderName NVARCHAR(50) = N'ExecutionDemo'
DECLARE @ProjectName NVARCHAR(50) = N'ETL'
DECLARE @DirectoryParameter NVARCHAR(50) = N'Directory'
DECLARE @FileNameParameter NVARCHAR(50) = N'FileName'
DECLARE @PackageName NVARCHAR(100) = N'LoadCustomers.dtsx'

DECLARE @PackageList TABLE
(
 RowNum smallint,
 Id int,
 Directory nvarchar(255),
 Name nvarchar(255)
)

INSERT INTO @FileList (RowNum, Id, Directory, Name)
	 SELECT ROW_NUMBER() OVER (ORDER BY id), id, Directory, Name
	 FROM [dbo].[PackageConfiguration]
	 WHERE processed = 0

DECLARE @maxCount int = (SELECT MAX(RowNum) FROM @FileList)
DECLARE @count int = (SELECT MIN(RowNum) FROM @FileList)

WHILE (@count < = @maxCount)
BEGIN
	 DECLARE @Id NVARCHAR(255) = (SELECT Id FROM @FileList WHERE RowNum = @count)
	 DECLARE @DirectoryValue NVARCHAR(255) = (SELECT Directory FROM @FileList WHERE
RowNum = @count)
	 DECLARE @NameValue NVARCHAR(255) = (SELECT Name FROM @FileList WHERE RowNum = @count)

	 -- Create the package execution
	 DECLARE @exec_id bigint
	 EXEC [SSISDB].[catalog].[create_execution]
		 @execution_id = @exec_id OUTPUT,
		 @package_name = @PackageName,
		 @folder_name = @FolderName,
		 @project_name = @ProjectName

	 -- Set the Directory parameter value
	 EXEC [SSISDB].[catalog].[set_execution_parameter_value]
		 @execution_id = @exec_id,
		 @object_type = 20,
		 @parameter_name = @DirectoryParameter,
		 @parameter_value = @DirectoryValue

CHAPTER 18 ■ ConFIguration

350

	 -- Set the File Name parameter value
	 EXEC [SSISDB].[catalog].[set_execution_parameter_value]
		 @execution_id = @exec_id,
		 @object_type = 20,
		 @parameter_name = @FileNameParameter,
		 @parameter_value = @NameValue

	 -- Start the package execution
	 EXEC [SSISDB].[catalog].[start_execution] @exec_id

	 -- Return the execution ID
	 SELECT N'Started package execution ' +  CONVERT(nvarchar(20), @exec_id)

	 -- Mark the file as processed
	 DECLARE @UpdateSql nvarchar(1024) = N'UPDATE [dbo].[PackageConfiguration] SET processed = 1
WHERE id = ' + CONVERT(nvarchar(20), @Id)
	 EXEC sp_sqlexec @UpdateSql

	 SET @count = @count + 1
END

Summary
This chapter has covered some of the usage patterns for the new Parameter model, as well as some dynamic
configuration scenarios. While the configuration patterns and best practices that were commonly used in SQL
2005 and 2008 continue to work in the latest version of SSIS, most users will see a benefit in migrating to the new
model. The clarity of the Parameter model was designed to help everyone involved with an SSIS solutions life
cycle, from those who develop the packages to those who deploy and schedule them.

351

Chapter 19

Deployment

SQL Server 2012 has made great strides towards simplifying the deployment process for Integration Services
projects. Projects within Visual Studio can now target two different deployment models – the Package
Deployment Model, which is similar to what was used in previous versions of the product, and the Project
Deployment Model, which was designed for the new SSIS Catalog.

This chapter will focus on patterns associated with the new Project Deployment Model and server
based deployment. While the Project Model and SSIS Catalog are the recommended way to do deployment,
organizations upgrading from previous versions may already have package execution frameworks that rely on file
system based deployment.

Project Deployment Model
The new Project Model is the default target when creating SSIS projects in SQL Server 2012. With this model,
packages and other project items such as Shared Connection Managers are bundled into a single file with
an .ispac extension during the project’s Build phase. This file can then be deployed to the SSIS Catalog using the
Deployment Wizard, or executed directly using dtexec.exe.

If your project is targeting the Package Deployment Model, you can convert to the Project Deployment
Model within Visual Studio. Right click on the project name in the Solution Explorer window, and select Convert
to Project Deployment Model (as shown in Figure 19-1). Converting to the Project Deployment Model brings up
the Project Conversion Wizard. The wizard helps you convert to the new model by updating Execute Package
Tasks to use Project References, and changing Configurations to Parameters.

CHAPTER 19 ■ Deployment

352

Integration Services projects in the Project Deployment Model can make use of new features such as
Parameters, Shared Connection Managers, and Project References. Project References allow the Execute Package
Task to locate child packages without the use of connection managers, and greatly simply the deployment
process.

SSIS Catalog
The SSIS Catalog is a new feature in SQL Server 2012, and is the recommended deployment target for Integration
Services projects. Deployment to the catalog is typically done using the SSIS Deployment Wizard, which can
be launched from within SSDT, SSMS, double clicking an SSIS project file (.ispac) from windows explorer, or by
running ISDeploymentWizard.exe.

Figure 19-1.  SSDT provides an option to convert to the Project Deployment Model

CHAPTER 19 ■ Deployment

353

To launch the Deployment Wizard from SSDT, right click on the project in the Solution Explorer and select
the Deploy option. The wizard will automatically load your project file, putting you on the Select Destination page
(as show in Figure 19-2).

Figure 19-2.  The Integration Services Deployment Wizard can be launched from SSDT

Note■■   The Deployment Wizard is typically used to deploy files to the SSIS Catalog, but it can also be used to
move projects between servers. To do this, choose the Integration Services catalog option on the Select Source page.

The Deployment Wizard allows you to select the server and folder you wish to deploy the project to. On
the final page, the project file is sent to the server and stored in the SSIS Catalog. Note that, during deployment,
the wizard indicates that it is changing the project’s protection level (Figure 19-3). During this phase, sensitive

CHAPTER 19 ■ Deployment

354

Figure 19-3.  The Deployment Wizard status page

data within the project is decrypted, and the project is converted to the Server Storage protection level. The
server relies on database encryption to protect packages and parameter values – these tables are automatically
encrypted in the SSIS Catalog.

Note■■  M ore information about package protection levels and secure deployments can be found in Books Online
at http://msdn.microsoft.com/en-us/library/bb522558(v=SQL.110).aspx

Deployment Methods
This section describes the different deployment methods supported by the SSIS Catalog. The method you choose
will depend on your environment, and what the people doing the deployment – whether they are developers, ETL
operators, or DBAs – are most comfortable with. The deployment methods described here include:

Deployment from the command line•	

Deployment using custom code•	

http://msdn.microsoft.com/en-us/library/bb522558(v=SQL.110).aspx

CHAPTER 19 ■ Deployment

355

Deployment using PowerShell•	

Deployment using SQL•	

Deployment from the Command Line
The Deployment Wizard (ISDeploymentWizard.exe) provides a command line interface, which allows you
to deploy to the SSIS Catalog without a UI. This is very useful for deploying from scripts, or as part of a batch
process. Table 19-1 shows the list of supported parameters. Listing 19-1 provides an example command line that
deploys a project (C:\SSIS\Project.ispac) to a folder named MyFolder on a local SSIS Catalog.

Table 19-1.  Integration Services Deployment Wizard command line parameters

Parameter Short Version Description

Silent[+|-] S When this option is true, the deployment will be done in a UI-less
mode (command line only). Use this option when deploying from
batch files. The default value is ‘-‘, which will display the UI.

Example: /Silent+

SourceType:{File|Server} ST This option specifies whether the source project comes from the
file system, or another SSIS Catalog. The default value is “File.”

Example: /SourceType:File

SourcePath:path_to_project SP The path to the .ispac file being deployed (when using the File source),
or the path to the project name (when using the Server source).

Example: /SourcePath:C:\ETL\project.ispac

SourceServer:server_
instance

SS The name of the server instance when the SourceType is set to
Server.

Example: /SourceServer:localhost\SQL1

ProjectPassword:password PP If the source .ispac file is password protected, this parameter can
be used to supply the password. Note that specifying a password
on the command line is not recommended, as other users on the
system might be able to see the arguments. If your project file is
using password encryption, consider specifying the password in
the response file (see the @ < file > option for more information)

DestinationServer:server_
instance

DS The name of the server instance you are deploying to.

Example: /DestinationServer:localhost

DestinationPath:path DP The path you want to deploy the project to on the destination
server. The format of the path is “/<catalog>/<folder>/<project>”.

Example: /DestinationPath:/SSISDB/MyFolder/Project

@ < file> This option allows you to specify all of your command line
arguments in a text file, instead of entering them directly on the
command line.

Example: @arguments.txt

CHAPTER 19 ■ Deployment

356

Listing 19-1.  Deploying a project from the command line

ISDeploymentWizard.exe /Silent /SourcePath:"C:\ETL\Project.ispac"
/DestinationServer:"localhost" /DestinationPath:"/SSISDB/MyFolder/Project"

Note■■   When the Deployment Wizard is run in interactive (UI) mode, the Review page displays the equivalent
parameters to do a command line based deployment. This can be a handy shortcut – simply copy the command line
arguments into a batch file to perform automatic deployments in the future.

Deployment Using Custom Code
The SSIS Catalog has a managed .NET API called the Management Object Model (or MOM). This API allows you
to programmatically perform that same management tasks that would normally be done through SQL Server
Management Studio (SSMS), including Folder creation, and deployment of projects.

Listing 19-2 provides a sample C# application that makes use of the MOM to create a new Folder in an SSIS
Catalog, and deploys a project to it. The core functionality can be found in the Microsoft.SqlServer.Management.
IntegrationServices assembly, which is installed with SSMS and found in the Global Assembly Cache (GAC).

Listing 19-2.  Deploying a project using the MOM

class Program
{
 const string ProjectFileLocation = @"C:\ETL\Project.ispac";

 static void Main(string[] args)
 {
 // Connect to the default instance on localhost
 var server = new Server("localhost");
 var store = new IntegrationServices(server);

 // Check that we have a catalog
 if (store.Catalogs.Count == 0)
 {
 Console.WriteLine("SSIS catalog not found on localhost.");
 }

 // Get the SSISDB catalog - note that there should only
 // be one, but the API may support multiple catalogs
 // in the future
 var catalog = store.Catalogs["SSISDB"];

 // Create a new folder
 var folder = new CatalogFolder(catalog,
 "MyFolder",
 "Folder that holds projects");
 folder.Create();

 // Make sure the project file exists
 if (!File.Exists(ProjectFileLocation))
 {
 Console.WriteLine("Project file not found at: {0}",
 ProjectFileLocation);
 }

t

357

 // Load the project using the SSIS API
 var project = Project.OpenProject(ProjectFileLocation);

 // Deploy the project to the folder we just created
 folder.DeployProject(project);
 }
}

Deployment Using PowerShell
The SSIS Management Object Model (MOM) is accessible via PowerShell, which makes it possible to fully
automate your deployment (and other management tasks) using PowerShell scripts. Listing 19-3 shows the
PowerShell version of the simple deployment application from Listing 19-2.

Listing 19-3. Deploying a project using PowerShell

Variables
$ProjectFilePath = "C:\ETL\Project.ispac"
$ProjectName = "Project"
$FolderName = "MyFolder"

Load the IntegrationServices Assembly
$loadStatus =
[Reflection.Assembly]::Load("Microsoft.SqlServer.Management.IntegrationServices,
Version = 11.0.0.0, Culture = neutral, PublicKeyToken = 89845dcd8080cc91")

Store the IntegrationServices Assembly namespace to avoid typing it every time
$ISNamespace = "Microsoft.SqlServer.Management.IntegrationServices"

Write-Host "Connecting to server ... "

Create a connection to the server
$sqlConnectionString = "Data Source = localhost;Initial Catalog = master;Integrated Security = SSPI;"
$sqlConnection = New-Object System.Data.SqlClient.SqlConnection $sqlConnectionString

Create the Integration Services object
$integrationServices = New-Object $ISNamespace".IntegrationServices" $sqlConnection
$catalog = $integrationServices.Catalogs["SSISDB"]

Write-Host "Creating Folder" $FolderName " ... "

Create a new folder
$folder = New-Object $ISNamespace".CatalogFolder" ($catalog, $FolderName, "This is a folder
description")
$folder.Create()

Write-Host "Deploying" $ProjectName "project ... "

Read the project file, and deploy it to the folder
[byte[]] $projectFile = [System.IO.File]::ReadAllBytes($ProjectFilePath)
$project = $folder.DeployProject($ProjectName, $projectFile)

Write-Host "All done."

CHAPTER 19 ■ Deployment

358

Deployment Using SQL
If you prefer to do all of your database management and deployments using T-SQL, the SSIS Catalog exposes
a full management interface through a set of Views and Stored Procedures. Listing 19-4 provides a sample
that loads a project file in binary format, deploys it to a folder using the [catalog].[deploy_project] stored
procedure, and then queries the status of the deployment from the [catalog].[operations] view.

Listing 19-4.  Deploying a project using the SQL API

use SSISDB

DECLARE @ProjectBinary as varbinary(max)
DECLARE @OperationID as bigint

-- load the project file
SET @ProjectBinary =
(
 SELECT *
 FROM OPENROWSET
 (
 BULK 'C:\ETL\Project.ispac',
 SINGLE_BLOB
) as BinaryData
)

-- deploy the project
EXEC [catalog].[deploy_project]
	 'MyFolder', -- folder
	 'Project', -- project name
	 @ProjectBinary, -- binary data
	 @OperationID out -- operation id

--
-- Get the status of the last deployment
--

DECLARE @LastDeployment_id bigint;
SET @LastDeployment_id =
(
 SELECT MAX(operation_id)
 FROM	 [catalog].[operations]
 WHERE	 operation_type = 101	 -- deploy
)

SELECT [object_name], start_time, end_time, [status], [value] =
 case
	 when [status] = 1 then N'Created'
	 when [status] = 2 then N'Running'
	 when [status] = 3 then N'Canceled'
	 when [status] = 4 then N'Failed'
	 when [status] = 5 then N'Pending'
	 when [status] = 6 then N'Unexpected Termination'
	 when [status] = 7 then N'Succeeded'
	 when [status] = 8 then N'Stopping'

CHAPTER 19 ■ Deployment

359

	 when [status] = 9 then N'Completed'
 end
FROM [catalog].[operations]
WHERE [operation_id] = @LastDeployment_id

Package Deployment Model
SSIS projects created in SQL Server 2012 will default to the Project Deployment Model, but some users may want
to continue using the Package Deployment Model from SQL Server 2005 and 2008. You can convert from the
Project Deployment Model to the Package Deployment Model in Visual Studio by right clicking on the project
name in Solution Explorer, and selecting Convert to Package Deployment Model (as shown in Figure 19-4).
Projects that were originally created in previous versions of SQL Server will automatically start off in the Package
Deployment Model when you open them in SSDT.

Figure 19-4.  Converting to the Package Deployment Model

Note■■   When using the Package Deployment Model, you will not be able to use some of the new functionality
introduced in SQL Server 2012, such as Parameters and Project References. If any of your packages are using these
features, SSDT will not let you convert to the Package Deployment Model.

Table 19-2 lists the deployment locations you would use with the Package Deployment Model, and briefly
describes the advantages of each approach.

CHAPTER 19 ■ Deployment

360

Note■■  Y ou cannot use the Package Store interface to manage packages deployed to the SSIS Catalog. The
service is only able to interact with packages stored in MSDB (the 2005, and 2008 deployment model), and is there
to continue supporting users who have not migrated to the new Project Deployment Model. It may be depreciated in
the future.

Summary
The deployment process for SSIS packages has been greatly simplified in SQL Server 2012. Although the
deployment model used in SQL Server 2005 and 2008 (now called the Package Deployment Model) is still fully
supported, moving to the new Project Deployment Model is highly recommended for new data integration
projects. SSIS provides a number of ways to deploy to the SSIS Catalog, providing the flexibility you need to fit the
deployment process into your environment.

Table 19-2.  Deployment locations when using the Package Deployment Model

Location Notes
File System •	 Mirrors the structure you have when developing in SSDT

•	 Doesn’t require database permissions

•	 Deployment is a simple file copy

SQL Server (MSDB) •	 Backup and maintenance part of regular SQL functionality

•	 Finer control over package access and security

•	 Deploys through DTSInstall.exe (legacy deployment wizard), the SSIS object
model, or dtutil.exe

Package Store (SSIS Service) •	 Provides a façade over the File System and MSDB storage locations, allowing
you to change the physical location of a package, yet keep the same logical
path

•	 Manages multiple storage locations from a single place

•	 Deploys through SSMS, the SSIS object model, or dtutil.exe

•	 Requires special DCOM permission configuration for access

361

Chapter 20

Estimating ETL Projects

Out of the various duties assigned to the ETL project manager or architect, one of the most critical is the
establishment of a project estimate. When considering a new project of any type, executives, managers, and other
decision makers will ask first, “How long will it take?” Appropriately setting time frame expectations is critical to
the success of the project.

In this chapter, I’ll discuss the challenges and the various components of effective project estimation.
Although I won’t define a silver-bullet formula here, you should walk away with some things to keep in mind
when constructing estimates for level of effort.

What is being measured?
When I talk about estimating ETL projects, I mean setting an expectation of the level of effort required to
complete the initiative. Depending on the type of organization and the type of projects, one or more of the
following metrics may be used to measure the expected effort:

•	 Number of hours to complete the project. In ETL projects where the work is hired out to a
separate vendor, the sum of hours required to complete the work is most often the chief
metric used for estimating the project effort.

•	 Time to market. ETL projects that are handled internally are most often estimated by
the calendar time until the solution is implemented. Time to market may also be a key
metric used to monitor outsourced projects where rapid development could lead to a
competitive advantage.

•	 Level of staff engagement. Conscientious business leaders also take into account the
impact of ETL projects on their internal staff, regardless of whether the development is
handled internally or through a service provider. Even for outsourced projects, executives
and other stakeholders will often demand to know how much time their nontechnical
resources (those providing business input, testing, and validating results) must spend
supporting the development initiative.

Why estimate?
Estimating the level of effort for ETL projects is as much a part of the process as deploying the SSIS package.
Even in the smallest of organizations, responsible project owners will demand to know the impact of any such
proposed solution. They will ask the following questions:

CHAPTER 20 ■ Estimating ETL Projects

362

•	 How much will it cost?

•	 How will my staff be impacted?

•	 How long will it take?

Challenges
Any good project manager will tell you that the hardest part of almost any initiative (not just ETL projects) is
properly estimating the level of effort and amount of time involved in getting to the finish line. Why is it so
difficult?

It’s difficult because it requires—communication
A large part of the reason that project estimation is hard is that a project requires excellent communication.
Now, don’t get me wrong—I don’t want to paint the picture of the stereotypical computer geek sitting in a closet
slinging code for 18 hours a day while his superiors toss in pizza and Mountain Dew to keep him fueled. Today’s
computer nerd is smart, eloquent, and good with people. (Okay, not all of them, but you get where I’m going.)

Even for the most skilled people person, finding the appropriate amount of communication for a project is
difficult. Spend too much time talking and you don’t get the work done; spend too little, and the developers work
from specs that are pure fiction. Among the chief challenges and downfalls with regard to communication are the
following:

•	 Not asking enough of the right questions. Properly engaging stakeholders (project
champions, executives, and end users) to assess their expectations and business needs
is critical. One of the most significant challenges—and most frequent mistakes—is a
breakdown between those architecting ETL projects and those who will be impacted by
them.

•	 Incorrect assumptions. The last point notwithstanding, it’s almost impossible to
interrogate stakeholders about every possible decision that will need to be made during
architecture and development. Assumptions are a natural part of the project life cycle
and are critical to the efficiency of any such initiative. At the risk of stating the obvious,
the difficulty here is making the correct assumptions. There’s a significant element of
guesswork involved here, and the key to overcoming this challenge is making intelligent,
fact-based assumptions.

•	 Changing requirements. Solution developers often point to this as the chief cause of
blown timelines, and too often it is assumed to be caused by either incompetence
or malice. Though I have seen a few occasions where project sponsors try to add to
the required deliverables as a way to get a little extra work out of the developers, my
experience tells me that changing requirements are generally the result of an evolution of
understanding as the project moves along.

•	 Language differences. Here I’m referring not to technical programming languages,
but to the way we communicate. Any project will likely engage a blend of technical
and nontechnical personnel with various facets and depths of experience. As such,
the languages we speak can be vastly different. Techies tend to speak geek, financial
professionals have their own lingo, marketing folks use acronyms and industry terms, and
so forth.

CHAPTER 20 ■ Estimating ETL Projects

363

•	 Engaging an inappropriate number of people. There is a correct number of people for
each ETL project. What is that number? As with everything else in the database world, it
depends. Too few people and you risk not getting enough user perspective to address the
possible points of failure.

Before becoming a consultant, I spent several years in the healthcare industry, and learned first-hand that
even the most fundamental understandings can be fouled up by differences in communication. Think about
the concept of a day: the most commonly accepted definition of a day is the period defined by the calendar
and clock, from midnight to midnight. However, there are segments of business that use different definitions
of a day. In my time in healthcare, I found that a day often is defined differently by business units within the
same organization, especially when the day applies to a patient visit. Some divisions considered a day to be the
common midnight-to-midnight calendar period. Others considered a day to be any 24-hour period, regardless
of when it started or ended (for example, a patient visit lasting from 7 p.m. on a Friday to 6 p.m. on the following
Saturday would be considered one day). Still others did not recognize the concept of multiple-day periods, and
would consider any multi-day patient visit to be a series of single-day visits.

Needless to say, reconciling these differences in communication can be difficult, and just as importantly,
can cost valuable time. As ETL professionals, a big part of our job is to integrate data from multiple sources and
provide for accurate and consistent reporting across multiple domains of information. Certainly the alignment
of these various data sets is a problem that can be solved, but getting out in front of this problem early is critical
for an ETL project. If different groups of stakeholders expect differing definitions of something as fundamental as
a day, it’s essential to design the ETL solution with these expectations in mind. Otherwise, any project timeline
estimate is likely to be completely off, since a retrofit would likely require far more effort than designing it
properly the first time.

It’s difficult because it requires guesswork
Those who develop ETL processes are, to some extent, scientists—we deal with rules, formulas, and algorithms
that can usually be leveraged to predict output based on various input factors. Applying a specific mix of inputs in
the right order ought to, within a small margin of error, result in predictable and reproducible output.

However, the same cannot always be said for predicting the life cycle of a development initiative. Although
there are ways to predict some elements of ETL projects, the sheer number of unknowns—specifically, those
things that cannot be fully known until the project is well underway—makes the process of building an accurate
time sequence very difficult.

When estimating the effort required for a successful ETL initiative, we base our figures on all of the
information we have at the time to create the best approximation possible. But even in the best-case scenario, it’s
still a guess (albeit an educated one).

It’s difficult because it relies on technology
It goes without saying that any successful ETL endeavor requires reliable hardware and software. Getting the right
tools, sharpening the skillset required to use those tools, and keeping everything up and running is essential. This
is especially true when blending architectures during system consolidation or as part of a merger or acquisition.

CHAPTER 20 ■ Estimating ETL Projects

364

Systems that speak different languages require the right blend of hardware and software tools to work well. The
same could be said for very large ETL initiatives, where the sheer volume of data can bring even world-class
systems to their knees. Further complicating matters, technical challenges are sometimes discovered late in the
project, forcing a retrofit and costing valuable time.

Note that in the list of difficulties in ETL project estimation, I placed technical challenges at the end. I
did so with a purpose. I don’t want to diminish the role that technology plays in a successful and efficient ETL
initiative: without the proper systems, professionals’ ability to effectively do their jobs is inhibited, and the project
timeline will suffer. However, in most cases, the technical components of an ETL project present far less risk than
communication issues. Technical problems can usually be solved by writing a check (assuming the organization
has deep enough pockets), but the same cannot be said for deficiencies in communication.

The secret to estimating ETL project timelines is….
... that there is no secret. As I mentioned earlier, there is no secret sauce, no multiplier, no algorithm that can
determine with certainty the amount of time and effort required to bring an ETL project to completion.

Though there is no magic formula for creating an accurate estimate, there are some best practices that can
help to make the process of creating realistic timelines a little easier.

Don’t forget the little things
An ETL initiative is a development project. It’s easy to get caught up in the “development” part and lose sight
of the “project” component. Think about it—the typical picture of a development effort is a team of developers
staring a bank of monitors, slinging code by the kilobyte. Although this is a realistic expectation, this is certainly
not the only element of an ETL project.

Every project is different. However, there are groups of activities that are common to most any development
iniative. Some of the elements you will need to consider include:

•	 Requirements gathering. Getting the green light to start on a project does not imply a
license to start development. In most projects, the project manager, business analyst,
and/or developer will need to research and document the required behaviors of the final
product. This phase typically requires a number of user interviews, so don’t be surprised
by the amount of time required here.

•	 Documentation. I’ll confess: I don’t like creating documentation. (News flash: nobody
does.) However, accurate documentation is essential for the long-term supportability
of any ETL initiative, and in many cases will be contractually required as a deliverable.
Remember to budget sufficient time not just to create the documentation, but to update it
as the technical elements of the solution evolve during the development life cycle.

•	 Testing. This is one of the most frequently underestimated components of an ETL project.
Testing an ETL solution often presents difficulties that don’t necessarily exist in other
development projects. For example, when developing a Windows application, it is
usually possible to outsource wholesale testing to users who don’t necessarily have deep
knowledge of the information domain. On the other hand, testing and validating the
results of an ETL process generally requires personnel who are deeply knowledgeable
about the underlying data. The testing and validation cycles can be time-consuming.
Don’t underestimate here—be sure to allow enough wiggle room to adequately test and
validate the results.

CHAPTER 20 ■ Estimating ETL Projects

365

•	 Environmental promotion. ETL development may require you to move the solution
between environments—for example, moving from development to testing to staging
and finally to production. In some organizations, especially large companies, there are
specific requirements that must be met before promoting a solution (particularly when
targeting the final production environment). Furthermore, moving or changing code
ad-hoc is usually disallowed; instead, specific deployment windows provide structure
and documentation for any code changes.

•	 Multiple iterations. Depending on the chosen development methodology, the project
may iterate over various cycles. Be sure to include the iterations in your timeline. Even
if an iterative methodology is not used, these types of projects will still have repetitive
components. For example, if the code has to go back through development for a
correction or feature addition, remember that the solution will also have to go back
through testing as well.

Plan for the unexpected
Let me lead by saying that I don’t advocate the arbitrary padding of project estimates. Any knucklehead can
create a rough timeline and multiply it by 100 just to be safe. You can get away with ridiculously padded
estimates—but only for a little while.

Here’s how it plays out: you create a bloated project timeline that gives enough time to complete the ETL
initiative even if you were transforming the data with a chisel and stone tablets. The project hits a few bumps
along the way but completes in a reasonable time, well ahead of your estimate. Next time you create the estimate,
the project sponsor has less faith in your estimate, and encourages you to cut it down. From there, every time
you come in ridiculously ahead of schedule you cut into your credibility, and project sponsors will no longer take
seriously any of your estimates.

That being said, any project estimate should have some amount of wiggle room for the inevitable unexpected
snafu. I’ve never worked on a single ETL initiative that didn’t have some hiccup outside the scope and timeline
of the initial estimate. It happens—regularly. The important thing here is to know the elements of the project
that are most at risk for slowdowns, and take those risks into account when constructing the proposed timeline.
Timelines can be impacted by various causes, but a few of the particularly risky elements include:

•	 Key people who are unavailable, overworked, or disengaged. ETL solutions are not
developed in isolation. Even if the construction of the technical elements occurs quickly,
if stakeholders critical to the success of the project can’t get into it, the timeline is likely to
swell. As much as possible, stay linked up with people. Know where they are in terms of
their involvement, and make it easy for them to stay engaged.

•	 Weak project champion. The project champion is the one driving the bus, and typically
has the most to gain or lose on the project. This is the person who keeps executives
excited about the project, and generally serves as the cheerleader for the initiative
(among other duties). If this person is lackadaisical or less than enthusiastic about the
process, consider it a significant risk.

•	 Many moving parts. It goes without saying that integrating systems with three sources is far
easier than a solution with 30 sources. Keep in mind that, in many cases, adding sources or
destinations causes an exponential rather than a linear increase in the level of effort.

•	 Previous failures. Has this initiative been unsuccessfully attempted before? If it failed, are
the key causes of failure still present? Don’t underestimate a history of failure, especially if
the conditions have not changed since the last attempt.

CHAPTER 20 ■ Estimating ETL Projects

366

•	 Technical time bombs. Sometimes, technical problems lie in wait, eager to rear their ugly
heads at the most inopportune moment. How’s the disk space on the affected systems? Is
the network burdened by slow links or excessive traffic? Is there a piece of equipment that
represents a single point of failure in the ETL pipeline?

Sometimes these risks turn out to be benign, but don’t be caught off guard. The more you understand how
timelines can be affected by anomalies caused by these and other situations, the better you’ll get at creating
accurate project estimates.

Know the personalities involved
“If you think working with data is difficult, try working with people.” Although this stereotypical geek speak is
neither constructive nor politically correct, the fact remains that the personalities involved in a project present
a significant element of unpredictability that can have a great deal of impact on the timeline of a project. It’s
not always possible to know which specific people will be taking part in a project when putting together your
estimate. However, if that information is available, it’s prudent to consider the abilities, temperament, and prior
history of the people you know will be engaged on the project. Will you be working with a business liaison known
for being unnecessarily difficult? Is the project manager a rock star with a history of on-time project delivery? If
good fortune gives you access to this information before you create your estimate, it’s perfectly reasonable to bias
your estimate based on past performance of key players.

Learn to do it right by doing it wrong
There is no substitute for experience. Spending time getting to know the ETL process will help to create a better
understanding of what is required for a successful ETL initiative, and will help to improve the accuracy of level-
of-effort estimates. Whether the estimate is performed by the ETL developer, architect, project manager, or a
combination of all three, experience is the most useful tool available.

Don’t be overly afraid of being wrong. I mentioned earlier that estimates are essentially guesses. Sometimes
when you guess, you’re right. Sometimes you’re wrong. You’ll make mistakes in estimation, and you’ll learn
from them. The more mistakes you make, the more you’ll learn how those little nuances, previously hidden or
otherwise insignificant, can affect your project timeline.

When the timeline slips, communicate early and often
Bad news is never good, but it’s easier to handle with a little warning. In the inevitable case where a risk event
turns into a slipping point for the project, get out in front of it! Communicate with project staff members, the
project champion, and other stakeholders as necessary. With some advance warning, it may be possible to
realign resources or change the sequence of events to minimize or even neutralize a hiccup in the schedule.

Summary
Creating accurate project estimates is both difficult and necessary. It is a fragile process which often relies on sketchy
information and many unknowns. Estimating project timelines will always require a significant bit of guesswork,
but it doesn’t have to be a complete shot in the dark. Accept that there are some things you cannot predict, but use
the information you do have to craft a reasonable project timeline. Rarely will an estimate be 100 % correct, but with
experience, attentiveness, and good communication, you can build your own estimating success story.

367

Appendix A

Evolution of an SSIS Framework

SSIS Frameworks are the next logical step after SSIS Design Patterns because frameworks comprise many
patterns. At a minimum, an SSIS Framework should provide package execution control and monitoring. That
sounds simple but we assure you, it is not. Execution control requires a working knowledge of the Integration
Services Runtime API. An understanding of the subtleties of tight- and loose-coupling is not merely helpful; it can
make or ruin your day (or data integration solution).

SSIS monitoring changed with the release of SSIS 2012. The SSIS Catalog, as discussed in Chapter 2, provided
built-in support and instrumentation.

Instrumentation is a term used by engineers to describe devices—called “instruments”—placed into or near
machinery or processes to measure pertinent indicators.

Why would anyone need an SSIS Framework if SSIS 2012 includes the SSIS Catalog? That is an excellent
question. The SSIS 2012 Catalog utilizes the Project Deployment Model—the default for SSIS projects developed in
SQL Server Data Tools (SSDT). But SSIS 2012 also includes the Package Deployment Model to support upgrading
legacy SSIS projects to SSIS 2012. There are use cases for using the SSIS Catalog for execution and monitoring.
There are also use cases for using a serial framework and the Package Deployment Model. As a data integration
architect, I am very grateful to the Microsoft SSIS Team for both options.

In this appendix, we will walk you through designing and building a serial SSIS Execution and Monitoring
Framework that will work with SSIS 2012’s Package Deployment Model, complete with a SQL Server Reporting
Services solution. Building an SSIS Framework is an advanced task, but we will build it from the ground up, using
some of the design patterns covered earlier in this book.

Starting in the Middle
We begin at the heart of execution control with the Parent–Child Pattern. Create a new SSIS Solution and Project
named “SSISConfig2012.” Rename the default Package.dtsx to “Child1.dtsx.” Open the Child1 SSIS package and
add a Script Task to the Control Flow. Rename the Script Task “Who Am I?” and open the Script Task’s editor.
On the Script page, set the ScriptLanguage property to “Microsoft Visual Basic 2010.” Click the ellipsis in the
ReadOnlyVariables property value textbox and add the System::TaskName and System::PackageName variables.
Open the script editor and add the following code in Sub Main().

 Public Sub Main()

 Dim sPackageName As String = Dts.Variables("PackageName").Value.ToString
 Dim sTaskName As String = Dts.Variables("TaskName").Value.ToString

 MsgBox("I am " & sPackageName, , sTaskName)

 Dts.TaskResult = ScriptResults.Success
 End Sub

http://dx.doi.org/10.1007/978-1-4302-3771-6_2

Appendix A ■ Evolution of an ssis framework

368

Listing A-1.  Sub Main From Who Am I? Script Task in Child1.dtsx Package

The code shown in Listing A-1 pops up a message box that informs an observer of the name of the package
from which the message box originates. This is reusable code. Copy and paste this script task into any SSIS
package and it will perform the same way each time.

Close the editor and execute the Child1.dtsx package in the SSDT debugger. When we execute the package,
we see a message box similar to the one shown in Figure A-1.

Figure A-1.  Message Box from Child1.dtsx

Child.dtsx will be our first test package. We will use Child1.dtsx going forward to conduct tests of our SSIS
Execution and Monitoring Framework.

Before we proceed, let’s change the Deployment Model for the SSIS from “Project Deployment Model”—the
default—to Package Deployment Model. To accomplish the conversion, right-click the SSIS Project in Solution
Explorer and click “Convert to Package Deployment Model,” as shown in Figure A-2.

Appendix A ■ Evolution of an ssis framework

369

You will need to click the OK button on the dialog to acknowledge you understand that this will change
the features available to use in SSIS. Once the conversion is complete, you will see a result pane informing you
the project Child1.dtsx was converted to Package Deployment Model. The project in Solution Explorer will also
indicate that the non-default deployment model has been selected, as shown in Figure A-3.

Figure A-2.  Converting the Project to Package Deployment Model

Figure A-3.  Package Deployment Model

Add a new SSIS Package and rename it “Parent.dtsx.” Add an Execute Package Task to the Control Flow of
Parent.dtsx. Rename the Execute Package Task “Execute Child Package” and open the editor. On the Package
page, set the Location property to “File System” and click the dropdown for the Connection property value. Click
“<New connection . . . >” to configure a new File Connection Manager. Set the File Connection Manager Editor’s
Usage Type property to “Existing File.” Browse to the location of your SSISConfig2012 project and select Child1.
dtsx. Click the OK button to close the File Connection Manager editor and OK again to close the Execute Package
Task editor. Note the File Connection Manager that was created during configuring the Execute Package Task. It is
named “Child1.dtsx”–rename it “Child.dtsx.”

Test the Parent.dtsx package by executing it in the SSDT debugger. If all goes as planned, then Child1.
dtsx will execute and display the message box shown in Figure A-1. Acknowledge the message box and stop the
debugger.

Appendix A ■ Evolution of an ssis framework

370

This is the Parent-Child pattern in action. We can improve upon the Parent-Child with a little metadata.
How? We’re glad you asked. First, add an SSIS Variable named ChildPackagePath (String). Click on the
Child.dtsx Connection Manager, and then press F4 to display properties. The ConnectionString property
of the File Connection Manager is the path to the file. Select the ConnectionString property, copy it to the
clipboard, and then paste it into the Value property of the ChildPackagePath SSIS Variable. Return to the
properties of the File Connection Manager named “Child.dtsx” and click the ellipsis in the Value textbox of the
Expressions property. When the Property Expressions Editor displays, select ConnectionString from the
Property dropdown, as shown in Figure A-4.

Figure A-4.  The File Connection Manager Property Expressions Editor

Click the ellipsis in the Expression textbox beside the ConnectionString property. Expand the Variables and
Parameters virtual folder in the upper left of the Expression Builder. Drag the variable “User::ChildPackagePath”
from the virtual folder to the Expression textbox and click the Evaluate Expression button, as shown in Figure A-5.

Appendix A ■ Evolution of an ssis framework

371

Click the OK button to close the Expression Builder and then click the OK button to close the Property
Expressions Editor. At this point, the ConnectionString property of the “Child.dtsx” File Connection Manager is
managed by the User::ChildPackagePath SSIS Variable. We can test this functionality by creating a second test
child package. Fortunately, creating a second test child package is relatively simple.

In Solution Explorer, right-click the Child1.dtsx SSIS package and then click Copy. Right-click the “SSIS
Packages” virtual folder and click Paste. Change the name of the new package from “Child1 1.dtsx” to “Child2.dtsx.”

Return to the Parent.dtsx package and change the value of the ChildPackagePath variable, substituting
“Child2.dtsx” for “Child1.dtsx.” Execute Parent.dtsx in the SSDT debugger and observe the results, as shown
in Figure A-6.

Figure A-5.  Assigning the User::ChildPackagePath Variable to the ConnectionString Expression

Appendix A ■ Evolution of an ssis framework

372

Pretty cool, huh? We’re just getting started!
Let’s create a database to hold package metadata. Open SQL Server Management Studio (SSMS) and execute

the T-SQL script shown in Listing A-2.

Use master
go

/* SSISConfig database */
If Not Exists(Select name
 	 From sys.databases
 	 Where name = 'SSISConfig')
 begin
 print 'Creating SSISConfig database'
 Create Database SSISConfig
 print 'SSISConfig database created'
 end
Else
 print 'SSISConfig database already exists.'
print ''
go

Listing A-2.  Creating the SSISConfig Database

The script in Listing A-2 is re-executable. Plus, it informs the person executing the script about its actions
via Print statements. The first time you execute this script, you will see the following messages in the SSMS
Messages tab:

Creating SSISConfig database
SSISConfig database created

The second time—and each subsequent time—you execute the same script, you will see this message:

SSISConfig database already exists.

Figure A-6.  Executing Child2.dtsx in the Parent-Child Pattern

Appendix A ■ Evolution of an ssis framework

373

Writing re-executable T-SQL is not always feasible but when feasible, it is a good idea. Now that we have the
database, let’s build a table to hold SSIS package metadata. Listing A-3 contains T-SQL for such a table.

Use SSISConfig
go

/* cfg schema */
If Not Exists(Select name
 From sys.schemas
 Where name = 'cfg')
 begin
 print 'Creating cfg schema'
 declare @sql varchar(100) = 'Create Schema cfg'
 exec(@sql)
 print 'Cfg schema created'
 end
Else
 print 'Cfg schema already exists.'
print ''

/* cfg.Packages table */
If Not Exists(Select s.name + '.' + t.name
 From sys.tables t
 Join sys.schemas s
 On s.schema_id = t.schema_id
 Where s.name = 'cfg'
 And t.name = 'Packages')
 begin
 print 'Creating cfg.Packages table'
 Create Table cfg.Packages
 (
 PackageID int identity(1,1)
 Constraint PK_Packages
 Primary Key Clustered
 ,PackageFolder varchar(255) Not Null
 ,PackageName varchar(255) Not Null
)
 print 'Cfg.Packages created'
 end
Else
 print 'Cfg.Packages table already exists.'
print ''

Listing A-3.  Building the Cfg Schema and Cfg.Packages Table

The script in Listing A-3 creates a schema named “cfg” if one doesn’t already exist; it then creates a table
named “cfg.Packages,” which contains three columns:

PackageID is an identity column that serves as the Primary Key•	

PackageFolder is a VarChar(255) column that holds the path to the folder containing the •	
SSIS Package

PackageName is a VarChar(255) column that contains the name of the SSIS Package.•	

Appendix A ■ Evolution of an ssis framework

374

I recently began identifying the stored procedures, functions, and views that support such a repository as a
Database Programmers Interface, or DPI. Not an Applications Programmers Interface, or API because databases
are not applications. Let’s begin building the SSISConfig DPI with a stored procedure to load data into the cfg.
Packages table, as shown in Listing A-4.

/* cfg.AddSSISPackage stored procedure */
If Exists(Select s.name + '.' + p.name
 From sys.procedures p
 Join sys.schemas s
 On s.schema_id = p.schema_id
 Where s.name = 'cfg'
 And p.name = 'AddSSISPackage')
 begin
 print 'Dropping cfg.AddSSISPackage stored procedure'
 Drop Procedure cfg.AddSSISPackage
 print 'Cfg.AddSSISPackage stored procedure dropped'
 end
print 'Creating cfg.AddSSISPackage stored procedure'
print ''
go

Create Procedure cfg.AddSSISPackage
 @PackageName varchar(255)
 ,@PackageFolder varchar(255
 ,@PkgID int output
As

 Set NoCount On

 declare @tbl table (PkgID int)

 If Not Exists(Select PackageFolder + PackageName
 From cfg.Packages
 Where PackageFolder = @PackageFolder
 And PackageName = @PackageName)
 begin
 Insert Into cfg.Packages
 (PackageName
 ,PackageFolder)
 Output inserted.PackageID Into @tbl
 Values (@PackageName, @PackageFolder)
 end
 Else
 insert into @tbl
 (PkgID)
 (Select PackageID
 From cfg.Packages
 Where PackageFolder = @PackageFolder
 And PackageName = @PackageName)

 Select @PkgID = PkgID From @tbl
go
print 'Cfg.AddSSISPackage stored procedure created.'
print ''

Appendix A ■ Evolution of an ssis framework

375

Listing A-4.  The Cfg.AddSSISPackages Stored Procedure

Note the cfg.AddSSISPackage stored procedure returns an integer value that represents the identity
column—PackageID—from the cfg.Packages table. We will use this integer value later. Once this stored
procedure is in place, we can use the T-SQL script in Listing A-5 to add the packages in our project.

/* Variable Declaration */
declare @PackageFolder varchar(255) = 'F:\SSIS 2012 Design
Patterns\SSISConfig2012\SSISConfig2012\'
declare @PackageName varchar(255) = 'Child1.dtsx'
declare @PackageID int

/* Add the Child1.dtsx SSIS Package*/
If Not Exists(Select PackageFolder + PackageName
 From cfg.Packages
 Where PackageFolder = @PackageFolder
 And PackageName = @PackageName)
 begin
 print 'Adding ' + @PackageFolder + @PackageName
 exec cfg.AddSSISPackage @PackageName, @PackageFolder, @PackageID output
 end
Else
 begin
 Select @PackageID = PackageID
 From cfg.Packages
 Where PackageFolder = @PackageFolder
 And PackageName = @PackageName
 print @PackageFolder + @PackageName + ' already exists in the Framework.'
 end

set @PackageName = 'Child2.dtsx'
/* Add the Child2.dtsx SSIS Package*/
If Not Exists(Select PackageFolder + PackageName
 From cfg.Packages
 Where PackageFolder = @PackageFolder
 And PackageName = @PackageName)
 begin
 print 'Adding ' + @PackageFolder + @PackageName
 exec cfg.AddSSISPackage @PackageName, @PackageFolder, @PackageID output
 end
Else
 begin
 Select @PackageID = PackageID
 From cfg.Packages
 Where PackageFolder = @PackageFolder
 And PackageName = @PackageName
 print @PackageFolder + @PackageName + ' already exists in the Framework.'
 End

Listing A-5.  Adding our Packages to the Cfg.Packages Table

We now have enough to test the next step of our Execution and Monitoring SSIS Framework so let’s return
to SSDT. Add an Execute SQL Task to the Control Flow and rename it Get Package Metadata. Open the editor
and change the ResultSet property to “Single row.” Change the ConnectionType property to “ADO.Net.” Click the

Appendix A ■ Evolution of an ssis framework

376

dropdown in the Connection property and click “<New connection . . . >”. Configure an ADO.Net connection to
the SSISConfig database. Set the SQLStatement property to the following T-SQL script:

Select PackageFolder + PackageName
From cfg.Packages
Where PackageName = 'Child1.dtsx'

On the Result Set page, add a resultset. Set the Result Name to 0 and the Variable Name to
User::ChildPackagePath. Execute the Parent.dtsx package to test it. What happens? The Execute SQL Task runs
a query that returns the full path to the Child1.dtsx package stored in the SSISConfig.cfg.Packages table. The
returned path is sent into the ChildPackagePath variable. Remember, this variable controls the Child.dtsx File
Connection Manager, which is used by the Execute Package Task.

Alter the query in the “Get Package Metadata” Execute SQL Task to return Child2.dtsx and retest.

Introducing SSIS Applications
An SSIS Application is a collection of SSIS Packages that execute in a specified order. Let’s start by adding a
couple tables and supporting stored procedures to the SSISConfig database.

First, create a table named cfg.Applications, and a stored procedure to add them, in SSISConfig using the
T-SQL in Listing A-6.

/* cfg.Applications table */
If Not Exists(Select s.name + '.' + t.name
 From sys.tables t
 Join sys.schemas s
 On s.schema_id = t.schema_id
 Where s.name = 'cfg'
 And t.name = 'Applications')
 begin
 print 'Creating cfg.Applications table'
 Create Table cfg.Applications
 (
 ApplicationID int identity(1,1)
 Constraint PK_Applications
 Primary Key Clustered
 ,ApplicationName varchar(255) Not Null
 Constraint U_Applications_ApplicationName
 Unique
)
 print 'Cfg.Applications created'
 end
Else
 print 'Cfg.Applications table already exists.'
print ''

/* cfg.AddSSISApplication stored procedure */
If Exists(Select s.name + '.' + p.name
 From sys.procedures p
 Join sys.schemas s
 On s.schema_id = p.schema_id
 Where s.name = 'cfg'
 And p.name = 'AddSSISApplication')

Appendix A ■ evolution of An ssis frAmework

377

 begin
 print 'Dropping cfg.AddSSISApplication stored procedure'
 Drop Procedure cfg.AddSSISApplication
 print 'Cfg.AddSSISApplication stored procedure dropped'
 end
print 'Creating cfg.AddSSISApplication stored procedure'
print ''
go

Create Procedure cfg.AddSSISApplication
 @ApplicationName varchar(255)
 ,@AppID int output
As

 Set NoCount On

 declare @tbl table (AppID int)

 If Not Exists(Select ApplicationName
 From cfg.Applications
 Where ApplicationName = @ApplicationName)
 begin
 Insert Into cfg.Applications
 (ApplicationName)
 Output inserted.ApplicationID into @tbl
 Values (@ApplicationName)
 end
 Else
 insert into @tbl
 (AppID)
 (Select ApplicationID
 From cfg.Applications
 Where ApplicationName = @ApplicationName)

 Select @AppID = AppID from @tbl
go
print 'Cfg.AddSSISApplication stored procedure created.'
print ''

Listing A-6. Building cfg.Applications and cfg.AddSSISApplication

Note the cfg.AddSSISApplication stored procedure returns an integer value that represents the identity
column—ApplicationID—from the cfg.Applications table. We will use this integer value later. Let’s add an SSIS
Application to the table using the following T-SQL in Listing A-7.

declare @ApplicationName varchar(255) = 'SSISApp1'
declare @ApplicationID int

/* Add the SSIS First Application */
If Not Exists(Select ApplicationName
 From cfg.Applications
 Where ApplicationName = @ApplicationName)

 begin
 print 'Adding ' + @ApplicationName
 exec cfg.AddSSISApplication @ApplicationName, @ApplicationID output

Appendix A ■ Evolution of an ssis framework

378

 print @ApplicationName + ' added.'
 end
Else
 begin
 Select @ApplicationID = ApplicationID
 From cfg.Applications
 Where ApplicationName = @ApplicationName
 print @ApplicationName + ' already exists in the Framework.'
 end
print ''

Listing A-7.  Adding an SSIS Application

The script in Listing A-7 uses the cfg.AddSSISApplication stored procedure to add the “SSISApp1” SSIS
Application to the cfg.Applications table in the SSISConfig database.

A Note About Relationships
An SSIS Application is a collection of SSIS Packages that execute in a prescribed order, so it is pretty easy to
determine that the relationship between SSIS Application and SSIS Packages is one-to-many. What may not be
as obvious is the relationship between SSIS Packages and SSIS Applications. Herein is a key benefit for choosing
patterns-based development: code reusability, specifically in reference to the SSIS Package code. Consider the
Archive File Pattern from the end of the Flat File Design Patterns chapter. In an enterprise that loads data from
dozens or hundreds of flat file sources, this package may be called many times by different SSIS Applications.
From this, we gather that the relationship between SSIS Packages and SSIS Applications is also one-to-many. If
you do the math, these relationships combine to create a many-to-many relationship between the Applications
and Packages tables. This means we need a bridge or resolver table between them to create mappings between
SSIS Applications and SSIS Packages.

We call this table cfg.AppPackages. Listing A-8 contains the T-SQL script that creates cfg.AppPackages and a
stored procedure with which it is loaded.

/* cfg.AppPackages table */
If Not Exists(Select s.name + '.' + t.name
 From sys.tables t
 Join sys.schemas s
 On s.schema_id = t.schema_id
 Where s.name = 'cfg'
 And t.name = 'AppPackages')
 begin
 print 'Creating cfg.AppPackages table'
 Create Table cfg.AppPackages
 (
 AppPackageID int identity(1,1)
 Constraint PK_AppPackages
 Primary Key Clustered
 ,ApplicationID int Not Null
 Constraint FK_cfgAppPackages_cfgApplications_ApplicationID
 Foreign Key References cfg.Applications(ApplicationID)
 ,PackageID int Not Null
 Constraint FK_cfgAppPackages_cfgPackages_PackageID
 Foreign Key References cfg.Packages(PackageID)

Appendix A ■ Evolution of an ssis framework

379

 ,ExecutionOrder int Null
)
 print 'Cfg.AppPackages created'
 end
Else
 print 'Cfg.AppPackages table already exists.'
print ''

/* cfg.AddSSISApplicationPackage stored procedure */
If Exists(Select s.name + '.' + p.name
 From sys.procedures p
 Join sys.schemas s
 On s.schema_id = p.schema_id
 Where s.name = 'cfg'
 And p.name = 'AddSSISApplicationPackage')
begin
 print 'Dropping cfg.AddSSISApplicationPackage stored procedure'
 Drop Procedure cfg.AddSSISApplicationPackage
 print 'Cfg.AddSSISApplicationPackage stored procedure dropped'
 end
print 'Creating cfg.AddSSISApplicationPackage stored procedure'
go

Create Procedure cfg.AddSSISApplicationPackage
 @ApplicationID int
 ,@PackageID int
 ,@ExecutionOrder int = 10
As

 Set NoCount On

 If Not Exists(Select AppPackageID
 From cfg.AppPackages
 Where ApplicationID = @ApplicationID
 And PackageID = @PackageID)
 begin
 Insert Into cfg.AppPackages
 (ApplicationID
 ,PackageID
 ,ExecutionOrder)
 Values (@ApplicationID, @PackageID, @ExecutionOrder)
 end
go
print 'Cfg.AddSSISApplicationPackage stored procedure created.'
print '

Listing A-8.  Creating Cfg.AppPackages and Cfg.AddSSISApplicationPackage

To create the mappings between SSIS Applications and SSIS Packages, we need the IDs of each. Executing
the following queries returns the information we need:

Select * from cfg.Applications
Select * from cfg.Packages

Appendix A ■ Evolution of an ssis framework

380

We will now use that information to execute the cfg.AddSSISApplicationPackage stored procedure, building
“SSISApp1” in the metadata of the SSISConfig database and assigning it “Child1.dtsx” and “Child2.dtsx”—in that
order. We use the T-SQL script shown in Listing A-9 to accomplish the mapping.

declare @ExecutionOrder int = 10
declare @ApplicationID int = 1
declare @PackageID int = 1
declare @ApplicationName varchar(255) = 'SSISApp1'
declare @PackageFolder varchar(255) = 'F:\SSIS 2012 Design
Patterns\SSISConfig2012\SSISConfig2012\'
declare @PackageName varchar(255) = 'Child1.dtsx'

If Not Exists(Select AppPackageID
 From cfg.AppPackages
 Where ApplicationID = @ApplicationID
 And PackageID = @PackageID
 And ExecutionOrder = @ExecutionOrder)
 begin
 print 'Adding ' + @ApplicationName + '.' + @PackageName + ' to Framework with ExecutionOrder
' + convert(varchar, @ExecutionOrder)
 exec cfg.AddSSISApplicationPackage @ApplicationID, @PackageID, @ExecutionOrder
 print @PackageName + ' added and wired to ' + @ApplicationName
 end
Else
 print @ApplicationName + '.' + @PackageName + ' already exists in the Framework with
ExecutionOrder ' + convert(varchar, @ExecutionOrder)

/*Child2.dtsx */
set @PackageName = 'Child2.dtsx'
set @ExecutionOrder = 20
set @PackageID = 2

If Not Exists(Select AppPackageID
 From cfg.AppPackages
 Where ApplicationID = @ApplicationID
 And PackageID = @PackageID
 And ExecutionOrder = @ExecutionOrder)
 begin
 print 'Adding ' + @ApplicationName + '.' + @PackageName + ' to Framework with ExecutionOrder
' + convert(varchar, @ExecutionOrder)
 exec cfg.AddSSISApplicationPackage @ApplicationID, @PackageID, @ExecutionOrder
 print @PackageName + ' added and wired to ' + @ApplicationName
 end
Else
 print @ApplicationName + '.' + @PackageName + ' already exists in the Framework with
ExecutionOrder ' + convert(varchar, @ExecutionOrder)

Listing A-9.  Coupling the “Child1” and “Child2” SSIS Packages to the “SSISApp1” SSIS Application

One note about the T-SQL script shown in Listing A-9. This is not the way we would load this metadata
into Production (or even Test) environments. We would not “re-declare” the ApplicationName, PackageFolder,
PackageName, ApplicationID, and PackageID variables; rather, we would reuse these values from the previous
T-SQL scripts. We alluded to this earlier when we mentioned we will use the ApplicationID and PackageID values
later. We will provide a full T-SQL Metadata Load script later in this appendix.

Appendix A ■ Evolution of an ssis framework

381

Retrieving SSIS Applications in T-SQL
We now have SSIS Application metadata stored in the SSISConfig database. Awesome, now what? Let’s build
a stored procedure to return the SSIS Package metadata we want for a given SSIS Application. Listing A-10
contains the T-SQL Data Definition Language (DDL) script to build such a stored procedure named cfg.
GetSSISApplication.

/* cfg.GetSSISApplication stored procedure */
If Exists(Select s.name + '.' + p.name
 From sys.procedures p
 Join sys.schemas s
 On s.schema_id = p.schema_id
 Where s.name = 'cfg'
 And p.name = 'GetSSISApplication')
 begin
 print 'Dropping cfg.GetSSISApplication stored procedure'
 Drop Procedure cfg.GetSSISApplication
 print 'Cfg.GetSSISApplication stored procedure dropped'
 end
print 'Creating cfg.GetSSISApplication stored procedure'
go

/*
 (c) 2011,2012 Linchpin People, LLC
*/
Create Procedure cfg.GetSSISApplication
 @ApplicationName varchar(255)
As

Select p.PackageFolder + p.PackageName As PackagePath
 , ap.ExecutionOrder
 , p.PackageName
 , p.PackageFolder
 , ap.AppPackageID
From cfg.AppPackages ap
Inner Join cfg.Packages p on p.PackageID = ap.PackageID
Inner Join cfg.Applications a on a.ApplicationID = ap.ApplicationID
Where ApplicationName = @ApplicationName
Order By ap.ExecutionOrder
go
print 'Cfg.GetSSISApplication stored procedure created.'
print ''

Listing A-10.  Creating the Cfg.GetSSISApplication Stored Procedure

The Cfg.GetSSISApplication stored procedure shown in Listing A-10 accepts a single parameter—
ApplicationName—and uses this value to look up the SSIS Packages associated with the SSIS Application of that
name. Note the columns returned are:

PackagePath•	

ExecutionOrder•	

PackageName•	

PackagePath•	

Appendix A ■ Evolution of an ssis framework

382

Also not the SSIS Packages are returned in the order specified by ExecutionOrder.
We can test the stored procedure using the existing metadata in the SSISConfig database by executing the

following T-SQL statement:

exec cfg.GetSSISApplication 'SSISApp1'

My results appear as shown in Figure A-7.

Figure A-7.  Results of Cfg.GetSSISApplication Statement

Figure A-7 shows the results of the stored procedure statement execution, a result containing two rows
of data, and this data represents the SSIS Packages metadata associated with the SSIS Application named
“SSISApp1” in the SSISConfig database.

That was a lot of work! Fortunately, most of it will not need to be repeated. When we want to add SSIS
Packages and associate them with SSIS Applications in the future, our script will look like the T-SQL shown in
Listing A-11.

Use SSISConfig
go

/* Variable Declaration */
declare @PackageFolder varchar(255) = 'F:\SSIS 2012 Design
Patterns\SSISConfig2012\SSISConfig2012\'
declare @PackageName varchar(255) = 'Child1.dtsx'
declare @PackageID int
declare @ExecutionOrder int = 10

 declare @ApplicationName varchar(255) = 'SSISApp1'
 declare @ApplicationID int

/* Add the SSIS First Application */
If Not Exists(Select ApplicationName
 From cfg.Applications
 Where ApplicationName = @ApplicationName)
 begin
 print 'Adding ' + @ApplicationName
 exec cfg.AddSSISApplication @ApplicationName, @ApplicationID output
 print @ApplicationName + ' added.'
 end
Else
 begin
 Select @ApplicationID = ApplicationID
 From cfg.Applications

Appendix A ■ Evolution of an ssis framework

383

 Where ApplicationName = @ApplicationName
 print @ApplicationName + ' already exists in the Framework.'
 end
print ''

/* Add the Child1.dtsx SSIS Package*/
If Not Exists(Select PackageFolder + PackageName
 From cfg.Packages
 Where PackageFolder = @PackageFolder
 And PackageName = @PackageName)
 begin
 print 'Adding ' + @PackageFolder + @PackageName
 exec cfg.AddSSISPackage @PackageName, @PackageFolder, @PackageID output
 end
Else
 begin
 Select @PackageID = PackageID
 From cfg.Packages
 Where PackageFolder = @PackageFolder
 And PackageName = @PackageName
 print @PackageFolder + @PackageName + ' already exists in the Framework.'
 end

 If Not Exists(Select AppPackageID
 From cfg.AppPackages
 Where ApplicationID = @ApplicationID
 And PackageID = @PackageID
 And ExecutionOrder = @ExecutionOrder)
 begin
 print 'Adding ' + @ApplicationName + '.' + @PackageName + ' to Framework with ExecutionOrder
' + convert(varchar, @ExecutionOrder)
 exec cfg.AddSSISApplicationPackage @ApplicationID, @PackageID, @ExecutionOrder
 print @PackageName + ' added and wired to ' + @ApplicationName
 end
Else
 print @ApplicationName + '.' + @PackageName + ' already exists in the Framework with
ExecutionOrder ' + convert(varchar, @ExecutionOrder)

/*Child2.dtsx */
set @PackageName = 'Child2.dtsx'
set @ExecutionOrder = 20

If Not Exists(Select PackageFolder + PackageName
 From cfg.Packages
 Where PackageFolder = @PackageFolder
 And PackageName = @PackageName)
 begin
 print 'Adding ' + @PackageFolder + @PackageName
 exec cfg.AddSSISPackage @PackageName, @PackageFolder, @PackageID output
 end
Else
 begin
 Select @PackageID = PackageID
 From cfg.Packages

q

Appendix A ■ Evolution of an ssis framework

384

 Where PackageFolder = @PackageFolder
 And PackageName = @PackageName
 print @PackageFolder + @PackageName + ' already exists in the Framework.'
 end

If Not Exists(Select AppPackageID
 From cfg.AppPackages
 Where ApplicationID = @ApplicationID
 And PackageID = @PackageID
 And ExecutionOrder = @ExecutionOrder)
 begin
 print 'Adding ' + @ApplicationName + '.' + @PackageName + ' to Framework with ExecutionOrder
' + convert(varchar, @ExecutionOrder)
 exec cfg.AddSSISApplicationPackage @ApplicationID, @PackageID, @ExecutionOrder
 print @PackageName + ' added and wired to ' + @ApplicationName
 end
Else
 print @ApplicationName + '.' + @PackageName + ' already exists in the Framework with
ExecutionOrder ' + convert(varchar, @ExecutionOrder)

Listing A-11.  The Complete T-SQL Script for Adding “SSISApp1” and Associated SSIS Packages

Retrieving SSIS Applications in SSIS
Return to SQL Server Data Tools and open the editor for the “Get Package Metadata” Execute SQL Task. Change
the ResultSet property from “Single row” to “Full result set” and change the SQLStatement property to “cfg.
GetSSISApplication.” Set the IsQueryStoredProcedure property to True. On the Parameter Mapping page, click
the Add button. Click the dropdown in the Variable Name column and select “<New variable . . . >” (you will
probably need to scroll up to find “<New variable . . . >”). In the Add Variable window, make sure the Container
property is set to Parent. Change the Name property to “ApplicationName.” The NameSpace should be “User” and
the Value Type property should be “String.” For the Value property, enter “SSISApp1” without the double-quotes.
Your Add Variable window should appear as shown in Figure A-8.

Appendix A ■ Evolution of an ssis framework

385

Click the OK button to close the Add Variable window and change the Data Type of the ApplicationName
variable to “String.” Change the Parameter Name to “ApplicationName.” Navigate to the Result Set page and
change the “0” Result Name Variable from “User::ChildPackagePath” to a new variable with the following
settings:

Container: Parent•	

Name: Packages•	

Namespace: User•	

Value Type: Object•	

Click the OK button to close the Add Variable window, and the OK button to close the Execute SQL Task
Editor. Delete the precedence constraint between the “Get Package Metadata” Execute SQL Task and the
“Execute Child Package” Execute Package Task. Drag a Foreach Loop Container onto the Control Flow and
then drag the “Execute Child Package” Execute Package Task inside it. Add a precedence constraint from the
“Get Package Metadata” Execute SQL Task to the new Foreach Loop Container, and rename the Foreach Loop
Container “Foreach Child Package.” Open the “Foreach Child Package” Foreach Loop Container’s editor and
navigate to the Collection page. Change the Enumerator to “Foreach ADO Enumerator.” In the “ADO object
source variable” dropdown, select the “User::Packages” variable. Accept the default Enumeration Mode: “Rows
in the first table.”

Navigate to the Variable Mappings page in the Foreach Loop Editor. Click on the Variable dropdown and
select the “User::ChildPackagePath” variable. The Index property will default to 0—do not change it.

The changes we just made accomplish the following:

1.	 Execute the cfg.GetSSISApplications stored procedure in the SSISConfig database,
passing it the value contained in the ApplicationName variable.

Figure A-8.  Adding the ApplicationName Variable

Appendix A ■ Evolution of an ssis framework

386

2.	 Push the full result set returned by the stored procedure execution into an SSIS Object
Variable named “Packages.”

3.	 Configure a Foreach Loop to point at each row stored in the “Packages” variable in the
order returned.

4.	 Push the value contained in the first column (Column “0”) of the row to which the
Foreach Loop points into the “User::ChildPackagePath” variable.

When the value of the ChildPackagePath variable changes, the ConnectionString property of the “Child.
dtsx” File Connection Manager is dynamically updated, aiming the connection manager at the path contained in
“User::ChildPackagePath.”

Click the OK button to close the Foreach Loop Container Editor and execute the Parent.dtsx SSIS package
in the SSDT debugger. When we do this, we get two message boxes. The first states “I am Child1” and the second
appears as shown in Figure A-9.

Figure A-9.  Executing a Test Serial SSIS Framework

This code, as it stands, composes an SSIS Execution Framework. The database contains the metadata and
the Parent package executes the SSIS packages. Monitoring is next.

Monitoring Execution
Most experienced Business Intelligence developers will tell you to start with the reports and work your way back
to the source data. The source data in this particular case is information collected from the data integration
process. What kind of information? Things like start and end execution times, execution status, error and event
messages.

Appendix A ■ evolution of An ssis frAmework

387

Instance data is recorded for each SSIS Application and SSIS Package execution. Each entry represents an
execution, and there are two tables that hold these entries: Log.SSISAppInstance to hold execution metrics about
SSIS Application instances; and Log.SSISPkgInstance to hold execution metrics for SSIS Child Package instances.
When an SSIS Application starts, a row is inserted into the log.SSISAppInstance table. When the SSIS Application
completes, the row is updated. Log.SSISPkgInstance works the same way for each SSIS package in an SSIS
Application. An SSIS Application Instance is logically comprised of an Application ID and a start time. An SSIS
Package Instance is comprised of an Application Instance ID, Application Package ID, and a start time.

Error and event logging is relatively straightforward. We store a Description of the error or event, the time it
occurred, and the instance IDs. That’s what the reports will reflect, and that’s all there is to logging.

Building Application Instance Logging
Let’s return to SSMS to build the tables and stored procedures to support logging. Execute the T-SQL script shown
in Listing A-12 to build the Instance tables and stored procedures.

/* log schema */
If Not Exists(Select name
 From sys.schemas
 Where name = 'log')
 begin
 print 'Creating log schema'
 declare @sql varchar(100) = 'Create Schema [log]'
 exec(@sql)
 print 'Log schema created'
 end
Else
 print 'Log schema already exists.'
print ''

/* log.SSISAppInstance table */
If Not Exists(Select s.name + '.' + t.name
 From sys.tables t
 Join sys.schemas s
 On s.schema_id = t.schema_id
 Where s.name = 'log'
 And t.name = 'SSISAppInstance')
 begin
 print 'Creating log.SSISAppInstance table'
 Create Table [log].SSISAppInstance
 (
 AppInstanceID int identity(1,1)
 Constraint PK_SSISAppInstance
 Primary Key Clustered
 ,ApplicationID int Not Null
 Constraint FK_logSSISAppInstance_cfgApplication_ApplicationID
 Foreign Key References cfg.Applications(ApplicationID)
 ,StartDateTime datetime Not Null
 Constraint DF_cfgSSISAppInstance_StartDateTime
 Default(GetDate())
 ,EndDateTime datetime Null
 ,[Status] varchar(12) Null
)

Appendix A ■ Evolution of an ssis framework

388

 print 'Log.SSISAppInstance created'
 end
Else
 print 'Log.SSISAppInstance table already exists.'
print ''

/* log.LogStartOfApplication stored procedure */
If Exists(Select s.name + '.' + p.name
 From sys.procedures p
 Join sys.schemas s
 On s.schema_id = p.schema_id
 Where s.name = 'log'
 And p.name = 'LogStartOfApplication')
 begin
 print 'Dropping log.LogStartOfApplication stored procedure'
 Drop Procedure [log].LogStartOfApplication
 print 'Log.LogStartOfApplication stored procedure dropped'
 end
print 'Creating log.LogStartOfApplication stored procedure'
go

Create Procedure [log].LogStartOfApplication
 @ApplicationName varchar(255)
As

declare @ErrMsg varchar(255)
declare @AppID int = (Select ApplicationID
 From cfg.Applications
 Where ApplicationName = @ApplicationName)

If (@AppID Is Null)
 begin
 set @ErrMsg = 'Cannot find ApplicationName ' + Coalesce(@ApplicationName, '<NULL>')
 raiserror(@ErrMsg,16,1)
 return-1
 end

Insert Into [log].SSISAppInstance
 (ApplicationID, StartDateTime, Status)
 Output inserted.AppInstanceID
 Values
 (@AppID, GetDate(), 'Running')
go
print 'Log.LogStartOfApplication stored procedure created.'
print ''

/* log.LogApplicationSuccess stored procedure */
If Exists(Select s.name + '.' + p.name
 From sys.procedures p
 Join sys.schemas s
 On s.schema_id = p.schema_id
 Where s.name = 'log'
 And p.name = 'LogApplicationSuccess')

Appendix A ■ Evolution of an ssis framework

389

 begin
 print 'Dropping log.LogApplicationSuccess stored procedure'
 Drop Procedure [log].LogApplicationSuccess
 print 'Log.LogApplicationSuccess stored procedure dropped'
 end
print 'Creating log.LogApplicationSuccess stored procedure'
go

Create Procedure [log].LogApplicationSuccess
 @AppInstanceID int
As

 update log.SSISAppInstance
 set EndDateTime = GetDate()
 , Status = 'Success'
 where AppInstanceID = @AppInstanceID
go
print 'Log.LogApplicationSuccess stored procedure created.'
print ''

/* log.LogApplicationFailure stored procedure */
If Exists(Select s.name + '.' + p.name
 From sys.procedures p
 Join sys.schemas s
 On s.schema_id = p.schema_id
 Where s.name = 'log'
 And p.name = 'LogApplicationFailure')
 begin
 print 'Dropping log.LogApplicationFailure stored procedure'
 Drop Procedure [log].LogApplicationFailure
 print 'Log.LogApplicationFailure stored procedure dropped'
 end
print 'Creating log.LogApplicationFailure stored procedure'
go

Create Procedure [log].LogApplicationFailure
 @AppInstanceID int
As

 update log.SSISAppInstance
 set EndDateTime = GetDate()
 , Status = 'Failed'
 where AppInstanceID = @AppInstanceID
go
print 'Log.LogApplicationFailure stored procedure created.'
print ''

Listing A-12.  Building the Application Instance Tables and Stored Procedures

Return to SSDT and let’s add Application Instance logging to the Parent.dtsx package. Drag a new Execute
SQL Task to the Control Flow and rename it “Log Start of Application.” Set the ResultSet property to “Single row.”
Set the ConnectionType property to “ADO.Net” and the Connection to the SSISConfig connection manager. Set
the SQLStatement property to “log.LogStartOfApplication” and the IsQueryStoredProcedure property to “True.”
Navigate to the Parameter Mapping page and add a new parameter: mapping the User::ApplicationName SSIS
variable to the ApplicationName parameter for the log.LogStartOfApplication stored procedure. On the Result Set

Appendix A ■ Evolution of an ssis framework

390

page, add a new Result named “0” and map it to a new Int32 variable named “AppInstanceID.” Close the Execute
SQL Task Editor and connect a precedence constraint from the “Log Start of Application” Execute SQL Task to the
“Get Package Metadata” Execute SQL Task.

Drag another Execute SQL Task onto the Control Flow beneath the “Foreach Child Package” Foreach
Loop Container and rename it “Log Application Success.” Open the editor, change the ConnectionType
property to “ADO.Net,” and set the Connection property to the SSISConfig connection manager. Enter “log.
LogApplicationSuccess” in the SQLStatement property and set the IsQueryStoredProcedure property to “True.”
Navigate to the Parameter Mapping page and add a mapping between the User::AppInstanceID SSIS variable and
the Int32 AppInstanceID parameter for the log.LogApplicationSuccess stored procedure. Close the Execute SQL
Task Editor and connect a precedence constraint from the “Foreach Child Package” Foreach Loop Container to
the “Log Application Success” Execute SQL Task.

What did we just accomplish? We added SSIS Application Instance logging to the Control Flow of the Parent.
dtsx SSIS Package. Execute Parent.dtsx in the SSDT debugger to test.

Once execution completes, execute the following query to observe the logged results:

Select * From [log].SSISAppInstance

When we execute this query, we get the results that are shown in Figure A-10.

Figure A-10.  Observing the Results of Querying the Application Instance Log

What happens when an SSIS Application fails? We want to update the log.SSISAppInstance row with an
EndDateTime and set the Status to “Failed.” For this, we will us an Execute SQL Task configured to execute the
log.LogApplicationFailure stored procedure. The question is: Where? The answer is: The Parent.dtsx package’s
OnError Event Handler.

In SSDT, click the Event Handlers tab on Parent.dtsx. In the Executable dropdown, select “Parent”; in the
Event Handler dropdown, select “OnError” as shown in Figure A-11.

Figure A-11.  Configuring the Parent Package’s OnError Event Handler

Click the “Click here to create an ‘OnError’ event handler for executable ‘Parent’” link on the surface of
the Event Handler to create the OnError event handler for the Parent.dtsx package. We could walk you through
building another Execute SQL Task to log the SSIS Application failure; however, it’s easier and simpler to copy the
“Log Application Success” Execute SQL Task from the bottom of the Control Flow and paste it into the Parent.dtsx
OnError event handler. Change the name to “Log Application Failure” and the SQLStatement property to
log.LogApplicationFailure.

We are now ready to test, but we have no real way to test the application failure unless we modify a
package—and that just seems tragic. We are likely going to need to test errors after this, too. So why not build an
ErrorTest.dtsx SSIS package and add it to our SSIS Application? We like this plan. Let’s do it!

Appendix A ■ Evolution of an ssis framework

391

Create a new SSIS Package and rename it “ErrorTest.dtsx.” Add a Script Task to the Control Flow and rename
it “Succeed or Fail?” Open the editor and add the “System::TaskName” and “System::PackageName” variables to
the ReadOnlyVariables property. Open the Script Editor and add the code shown in Listing A-13 to Sub Main().

 Public Sub Main()

 Dim sPackageName As String = Dts.Variables("PackageName").Value.ToString
 Dim sTaskName As String = Dts.Variables("TaskName").Value.ToString
 Dim sSubComponent As String = sPackageName & "." & sTaskName

 Dim iResponse As Integer = MsgBox("Succeed Package?", MsgBoxStyle.YesNo,
sSubComponent)
 If iResponse = vbYes Then
 Dts.TaskResult = ScriptResults.Success
 Else
 Dts.TaskResult = ScriptResults.Failure
 End If

 End Sub

Listing A-13.  Code to Succeed or Fail SSIS Package

Let’s unit-test by executing ErrorTest.dtsx in the SSDT debugger, as shown in Figure A-12.

Figure A-12.  Unit-testing the ErrorTest.dtsx SSIS Package

To add this SSIS Package to the “SSISApp1” SSIS Application, append the T-SQL script in Listing A-14 to the
T-SQL script in Listing A-11.

/*ErrorTest.dtsx */
set @PackageName = 'ErrorTest.dtsx'
set @ExecutionOrder = 30

If Not Exists(Select PackageFolder + PackageName
 From cfg.Packages
 Where PackageFolder = @PackageFolder
 And PackageName = @PackageName)

Appendix A ■ Evolution of an ssis framework

392

 begin
 print 'Adding ' + @PackageFolder + @PackageName
 exec cfg.AddSSISPackage @PackageName, @PackageFolder, @PackageID output
 end
Else
 begin
 Select @PackageID = PackageID
 From cfg.Packages
 Where PackageFolder = @PackageFolder
 And PackageName = @PackageName
 print @PackageFolder + @PackageName + ' already exists in the Framework.'
 end

If Not Exists(Select AppPackageID
 From cfg.AppPackages
 Where ApplicationID = @ApplicationID
 And PackageID = @PackageID
 And ExecutionOrder = @ExecutionOrder)
 begin
 print 'Adding ' + @ApplicationName + '.' + @PackageName + ' to Framework with ExecutionOrder
' + convert(varchar, @ExecutionOrder)
 exec cfg.AddSSISApplicationPackage @ApplicationID, @PackageID, @ExecutionOrder
 print @PackageName + ' added and wired to ' + @ApplicationName
 end
Else
 print @ApplicationName + '.' + @PackageName + ' already exists in the Framework with
ExecutionOrder ' + convert(varchar, @ExecutionOrder)

Listing A-14.  Append this T-SQL Script to Listing A-11 to Add the ErrorTest.dtsx SSIS Package to the “SSISApp1”
SSIS Application

Open Parent.dtsx and execute it in the SSDT debugger. Once prompted by the ErrorTest.dtsx message box,
click the No button to cause the ErrorTest.dtsx to fail. This should cause the Parent.dtsx package OnError event
handler to fire, as shown in Figure A-13.

Figure A-13.  I Have Mixed Emotions About Successful OnError Event Handlers.

A couple successful and failed executions later, and the log.SSISAppInstance table contains the rows shown
in Figure A-14.

Appendix A ■ Evolution of an ssis framework

393

That’s a wrap on Application Instance logging! Next, let’s build out Child Package Instance logging.

Building Package Instance Logging
Package Instance logging works like Application Instance logging, only on a different scale. An Application
Instance consists of an Application ID and an execution start time. A Package Instance consists of an Application
Package ID, an Application Instance ID, and an execution start time.

Let’s start by creating the log.SSISPkgInstance table and stored procedures. Listing A-15 contains these
database objects.

/* log.SSISPkgInstance table */
If Not Exists(Select s.name + '.' + t.name
 From sys.tables t
 Join sys.schemas s
 On s.schema_id = t.schema_id
 Where s.name = 'log'
 And t.name = 'SSISPkgInstance')
 begin
 print 'Creating log.SSISPkgInstance table'
 Create Table [log].SSISPkgInstance
 (
 PkgInstanceID int identity(1,1)
 Constraint PK_SSISPkgInstance Primary Key Clustered
 ,AppInstanceID int Not Null
 Constraint FK_logSSISPkgInstance_logSSISAppInstance_AppInstanceID
 Foreign Key References [log].SSISAppInstance(AppInstanceID)
 ,AppPackageID int Not Null
 Constraint FK_logSSISPkgInstance_cfgAppPackages_AppPackageID
 Foreign Key References cfg.AppPackages(AppPackageID)
 ,StartDateTime datetime Not Null
 Constraint DF_cfgSSISPkgInstance_StartDateTime
 Default(GetDate())
 ,EndDateTime datetime Null
 ,[Status] varchar(12) Null
)
 print 'Log.SSISPkgInstance created'
 end

Figure A-14.  Successes and Failures of SSISApp1

Appendix A ■ Evolution of an ssis framework

394

Else
 print 'Log.SSISPkgInstance table already exists.'
print ''

/* log.LogStartOfPackage stored procedure */
If Exists(Select s.name + '.' + p.name
 From sys.procedures p
 Join sys.schemas s
 On s.schema_id = p.schema_id
 Where s.name = 'log'
 And p.name = 'LogStartOfPackage')
 begin
 print 'Dropping log.LogStartOfPackage stored procedure'
 Drop Procedure [log].LogStartOfPackage
 print 'Log.LogStartOfPackage stored procedure dropped'
 end
print 'Creating log.LogStartOfPackage stored procedure'
go

Create Procedure [log].LogStartOfPackage
 @AppInstanceID int
,@AppPackageID int
As

declare @ErrMsg varchar(255)

Insert Into log.SSISPkgInstance
 (AppInstanceID, AppPackageID, StartDateTime, Status)
 Output inserted.PkgInstanceID
 Values
 (@AppInstanceID, @AppPackageID, GetDate(), 'Running')
go
print 'Log.SSISPkgInstance stored procedure created.'
print ''

/* log.LogPackageSuccess stored procedure */
If Exists(Select s.name + '.' + p.name
 From sys.procedures p
 Join sys.schemas s
 On s.schema_id = p.schema_id
 Where s.name = 'log'
 And p.name = 'LogPackageSuccess')
 begin
 print 'Dropping log.LogPackageSuccess stored procedure'
 Drop Procedure [log].LogPackageSuccess
 print 'Log.LogPackageSuccess stored procedure dropped'
 end
print 'Creating log.LogPackageSuccess stored procedure'
go

Create Procedure [log].LogPackageSuccess
 @PkgInstanceID int
As

 update log.SSISPkgInstance

Appendix A ■ Evolution of an ssis framework

395

 set EndDateTime = GetDate()
 , Status = 'Success'
 where PkgInstanceID = @PkgInstanceID
go
print 'Log.LogPackageSuccess stored procedure created.'
print ''

/* log.LogPackageFailure stored procedure */
If Exists(Select s.name + '.' + p.name
 From sys.procedures p
 Join sys.schemas s
 On s.schema_id = p.schema_id
 Where s.name = 'log'
 And p.name = 'LogPackageFailure')
 begin
 print 'Dropping log.LogPackageFailure stored procedure'
 Drop Procedure [log].LogPackageFailure
 print 'Log.LogPackageFailure stored procedure dropped'
 end
print 'Creating log.LogPackageFailure stored procedure'
go

Create Procedure [log].LogPackageFailure
 @PkgInstanceID int
As

 update log.SSISPkgInstance
 set EndDateTime = GetDate()
 , Status = 'Failed'
 where PkgInstanceID = @PkgInstanceID
go
print 'Log.LogPackageFailure stored procedure created.'
print ''

Listing A-15.  Building the Package Instance Logging Table and Stored Procedures

The log.SSISPkgInstance table will hold the SSIS Package Instance data. Log.LogStartofPackage inserts a row
into the Package Instance table; log.LogPackageSuccess updates the row with an EndDateTime and a “Success”
status, while log.LogPackageFailure updates the record with an EndDateTime and a “Failed” status.

In Parent.dtsx, open the editor for the “Foreach Child Package” Foreach Loop Container. Navigate to the
Variable Mappings page and add a new variable. Configure the following settings in the Add Variable window:

Container: Parent•	

Name: AppPackageID•	

Namespace: User•	

Value Type: Int32•	

Value: 0•	

Click the OK button to close the Add Variable window. The AppInstanceID—which exists in the dataset inside
the “User::Packages” SSIS variable—is returned from executing the cfg.GetSSISApplication stored procedure. The
AppPackageID column is returned as the fifth column. Therefore, the AppPackageID variable’s Index column on the
Variable Mappings page of the “Foreach Child Package” Foreach Loop Container should be set to 4 (the fifth value
in a 0-based array). Click the OK button to close the “Foreach Child Package” Foreach Loop Container Editor.

Appendix A ■ Evolution of an ssis framework

396

Add an Execute SQL Task to the “Foreach Child Package” Foreach Loop Container. Rename the new
Execute SQL Task “Log Start of Package.” Open the editor and set the ResultSet property to “Single row.”
Set the ConnectionType property to “ADO.Net” and the Connection to the SSISConfig connection manager. Set
the SQLStatement property to “log.LogStartOfPackage” and the IsQueryStoredProcedure property to “True.”
Navigate to the Parameter Mapping page and add two new parameters:

Variable Name: User::AppInstanceID•	

Direction: Input•	

Data Type: Int32•	

Parameter Name: AppInstanceID•	

Variable Name: User::AppPackageID•	

Direction: Input•	

Data Type: Int32•	

Parameter Name: AppPackageID•	

On the Result Set page, add a new Result named “0” and map it to a new Int32 variable named
“PkgInstanceID.” Close the Execute SQL Task Editor. Connect a precedence constraint from the “Log Start of
Package” Execute SQL Task to the “Execute Child Package” Execute Package Task.

Add two more Execute SQL Tasks to the “Foreach Child Package” Foreach Loop Container. Rename
the first “Log Package Success,” set the connection properties from the ADO.Net connection manager used
to connect to the SSISConfig database, the SQLStatement property to “log.LogPackageSuccess,” and the
IsQueryStoredProcedure property to True. On the Parameter Mapping page, add a parameter and map the
User::PkgInstanceID variable to the PkgInstanceID parameter for the log.LogStartofPackage stored procedure.
Connect a precedence constraint (OnSuccess) from the “Execute Child Package” Execute Package Task to the
“Log Package Success” Execute SQL Task.

Rename the second “Log Package Failure,” set the connection properties from the ADO.Net connection
manager used to connect to the SSISConfig database, the SQLStatement property to “log.LogPackageFailure,”
and the IsQueryStoredProcedure property to True. On the Parameter Mapping page, add a parameter and
map the User::PkgInstanceID variable to the PkgInstanceID parameter for the log.LogStartofPackage stored
procedure. Connect a precedence constraint (OnFailure) from the “Execute Child Package” Execute Package Task
to the “Log Package Failure” Execute SQL Task.

Test the Package Instance logging by running a few test executions. Allow one to succeed and the other to fail.
When we check the Application and Package Instance tables, the results should appear as shown in Figure A-15.

Figure A-15.  Examining the Application and Package Instance Logs

Appendix A ■ evolution of An ssis frAmework

397

We can tell by examining the Application Instance and Package Instance log tables that AppInstanceID 5
started at 5:24:28 PM 25 Apr 2012. We can also see three SSIS packages—with PkgInstanceID’s 1, 2, and 3—were
executed as part of the SSIS Application. Each package succeeded, and the SSIS Application succeeded as well.
We also know AppInstanceID 6 started at 5:24:46 PM 25 Apr 2012 and executed PkgInstanceID’s 4, 5, and 6.
PkgInstanceID’s 4 and 5 succeeded, but PkgInstanceID 6 failed; failing the SSIS Application.

Cool? Cool. Let’s move to Error and Event logging.

Building Error Logging
Instrumenting data integration processes to capture and preserve error and exception metadata is the most
important and useful type of logging. Exceptions and errors are going to happen. SSIS provides a fairly robust
model for capturing and reporting errors as long as you realize you can mostly ignore the error codes. The error
descriptions, however, are mostly good. So it balances out.

Before we demonstrate how to capture error messages in SSIS, let’s discuss why. I used to manage a team
of data integration developers. The team ranged in size from 28 to 40 developers and we built very large ETL
solutions for US government interests. Part of my job was to figure out best practices. Having all SSIS packages log
error data in the same format to the same location is a best practice. But how do you do this with 40 developers?
Have you ever tried to get 40 developers to do the same thing the same way? It’s like herding cats. The problem
was half of them thought they were smarter than me; and half of those were correct in thinking that. But this isn’t
the kind of problem that required deep thinking; this required strategy. So what’s the best strategy for getting
every developer to build the exact same kind of log for every SSIS package every time? You guessed it: Don’t let
them. Take error logging completely out of their hands.

Soon after learning how to use the Execute Package Task, I learned events “bubble” from child to parent
packages. For the purposes of error logging, this means we can capture and record any error at the parent
package. Even better, it means we can do this with no code in the child package. Problem solved.

Let’s take a look at how to implement this functionality into an SSIS Framework. First, let’s add a table and a
stored procedure to record and preserve errors, as shown in Listing A-16.

/* log.SSISErrors table */
If Not Exists(Select s.name + '.' + t.name
 From sys.tables t
 Join sys.schemas s
 On s.schema_id = t.schema_id
 Where s.name = 'log'
 And t.name = 'SSISErrors')
 begin
 print 'Creating log.SSISErrors table'
 Create Table [log].SSISErrors
 (
 ID int identity(1,1)
 Constraint PK_SSISErrors Primary Key Clustered
 ,AppInstanceID int Not Null
 Constraint FK_logSSISErrors_logSSISAppInstance_AppInstanceID
 Foreign Key References [log].SSISAppInstance(AppInstanceID)
 ,PkgInstanceID int Not Null
 Constraint FK_logSSISErrors_logPkgInstance_PkgInstanceID
 Foreign Key References [log].SSISPkgInstance(PkgInstanceID)
 ,ErrorDateTime datetime Not Null
 Constraint DF_logSSISErrors_ErrorDateTime

Appendix A ■ Evolution of an ssis framework

398

 Default(GetDate())
 ,ErrorDescription varchar(max) Null
 ,SourceName varchar(255) Null
)
 print 'Log.SSISErrors created'
 end
Else
 print 'Log.SSISErrors table already exists.'
print ''

/* log.LogError stored procedure */
If Exists(Select s.name + '.' + p.name
 From sys.procedures p
 Join sys.schemas s
 On s.schema_id = p.schema_id
 Where s.name = 'log'
 And p.name = 'LogError')
 begin
 print 'Dropping log.LogError stored procedure'
 Drop Procedure [log].LogError
 print 'Log.LogError stored procedure dropped'
 end
print 'Creating log.LogError stored procedure'
go

Create Procedure [log].LogError
 @AppInstanceID int
,@PkgInstanceID int
,@SourceName varchar(255)
,@ErrorDescription varchar(max)
As

 insert into log.SSISErrors
 (AppInstanceID, PkgInstanceID, SourceName, ErrorDescription)
 Values
 (@AppInstanceID
,@PkgInstanceID
,@SourceName
,@ErrorDescription)
go
print 'Log.LogError stored procedure created.'
print ''

Listing A-16.  Building the Error Logging Table and Stored Procedure

Each row in the log.SSISErrors table contains an AppInstanceID and PkgInstanceID for identification
purposes. Why both? It is designed to capture and preserve errors that originate in both the Parent and Child
Packages. An error in the Parent.dtsx package will have a PkgInstanceID of 0. The remaining columns capture
metadata about the error proper: the date and time the error occurred (ErrorDateTime), the error message
(ErrorDescription), and the SSIS task from which the error originated (SourceName).

Adding a row to the log.SSISErrors table with a PkgInstanceID of 0 will actually raise a foreign key constraint
violation at this time, but we will address this matter later in the appendix.

Appendix A ■ Evolution of an ssis framework

399

It is important to note that Error Events are “raised” by SSIS tasks. When an error event is instantiated,
its fields are populated with information such as the Error Description and Source Name (the name of
the task raising the error). These data do not change as the event navigates—“bubbles”—inside the SSIS
package execution stack. When the event arrives at the Parent.dtsx package in our framework, it will contain
the name of the task that originated the error (SourceName) and the description of the error from that task
(ErrorDescription).

When the error “bubbles” to the Parent.dtsx package, we will call the log.LogError stored procedure to
populate the log.SSISErrors table. In SSDT, return to the Parent.dtsx package’s On Error event handler we
configured earlier. Add an Execute SQL Task and rename it “Log Error.” Open the editor and configure the
ConnectionType and Connection properties to connect to the SSISConfig database via ADO.Net. Set the
SQLStatement property to “log.LogError” and the IsQueryStoredProcedure property to True. Navigate to the
Parameter Mapping page and add the following parameters:

Variable Name: User::AppInstanceID•	

Direction: Input•	

Data Type: Int32•	

Parameter Name: AppInstanceID•	

Variable Name: User::PkgInstanceID•	

Direction: Input•	

Data Type: Int32•	

Parameter Name: PkgInstanceID•	

Variable Name: System::SourceName•	

Direction: Input•	

Data Type: String•	

Parameter Name: SourceName•	

Variable Name: System::ErrorDescription•	

Direction: Input•	

Data Type: String•	

Parameter Name: ErrorDescription•	

We created the AppInstanceID and PkgInstanceID SSIS variables earlier in this appendix. We are using the
two variables from the System namespace—SourceName and ErrorDescription—which are two of the fields
populated when an Error event is first raised by the originating task.

Once these parameters are mapped, close the Execute SQL Task Editor and connect a precedence constraint
from the “Log Error” Execute SQL Task to the “Log Application Failure” Execute SQL Task, as shown in Figure A-16.

Appendix A ■ Evolution of an ssis framework

400

Test the new error logging functionality by running Parent.dtsx in the SSDT debugger. When prompted from
the ErrorTest.dtsx package, click the “No” button to generate an error. In SSMS, execute the following query to
examine the error metadata:

Select * From log.SSISErrors

Your results should appear similar to those shown in Figure A-17.

Figure A-16.  Adding the Log Error Execute SQL Task to the Parent Package OnError Event Handler

Figure A-17.  Error Metadata in the Log.SSISErrors Table

As you can see from the preceding image (and hopefully your own code at this point), error logging can
make troubleshooting SSIS issues much simpler.

Event logging is very similar to error logging in SSIS. Part of the reason is SSIS reuses the object model for the
OnError event handler in the OnInformation event handler.

Let’s begin by adding another table and stored procedure to the SSISConfig database. The T-SQL script in
Listing A-17 accomplishes this task.

/* log.SSISEvents table */
If Not Exists(Select s.name + '.' + t.name

Appendix A ■ Evolution of an ssis framework

401

 From sys.tables t
 Join sys.schemas s
 On s.schema_id = t.schema_id
 Where s.name = 'log'
 And t.name = 'SSISEvents')
 begin
 print 'Creating log.SSISEvents table'
 Create Table [log].SSISEvents
 (
 ID int identity(1,1)
 Constraint PK_SSISEvents Primary Key Clustered
 ,AppInstanceID int Not Null
 Constraint FK_logSSISEvents_logSSISAppInstance_AppInstanceID
 Foreign Key References [log].SSISAppInstance(AppInstanceID)
 ,PkgInstanceID int Not Null
 Constraint FK_logSSISEvents_logPkgInstance_PkgInstanceID
 Foreign Key References [log].SSISPkgInstance(PkgInstanceID)
 ,EventDateTime datetime Not Null
 Constraint DF_logSSISEvents_ErrorDateTime
 Default(GetDate())
 ,EventDescription varchar(max) Null
 ,SourceName varchar(255) Null
)
 print 'Log.SSISEvents created'
 end
Else
 print 'Log.SSISEvents table already exists.'
print ''

/* log.LogEvent stored procedure */
If Exists(Select s.name + '.' + p.name
 From sys.procedures p
 Join sys.schemas s
 On s.schema_id = p.schema_id
 Where s.name = 'log'
 And p.name = 'LogEvent')
 begin
 print 'Dropping log.LogEvent stored procedure'
 Drop Procedure [log].LogEvent
 print 'Log.LogEvent stored procedure dropped'
 end
print 'Creating log.LogEvent stored procedure'
go

Create Procedure [log].LogEvent
 @AppInstanceID int
,@PkgInstanceID int
,@SourceName varchar(255)
,@EventDescription varchar(max)
As

 insert into [log].SSISEvents
 (AppInstanceID, PkgInstanceID, SourceName, EventDescription)

Appendix A ■ Evolution of an ssis framework

402

 Values
 (@AppInstanceID
,@PkgInstanceID
,@SourceName
,@EventDescription)
go
print 'Log.LogEvent stored procedure created.'
print ''

Listing A-17.  Building the Event Logging Table and Stored Procedure

With the exception of the column names, the log.SSISEvents table is precisely the same design as the log.
SSISErrors table. Return to SSDT and copy the “Log Error” Execute SQL Task from the Parent.dtsx OnError event
handler. Change the Event Handler dropdown from OnError to OnInformation and create the OnInformation
event handler by clicking the link. Next, paste the contents of the clipboard onto the OnInformation event
handler surface. Open the editor and change the name of the task to “Log Event.” Edit the SQLStatement property
to read “log.LogEvent.” On the Parameter Mapping page, change the “ErrorDescription” Parameter Name from
“ErrorDescription” to “EventDescription.” Close the Execute SQL Task Editor and you are done.

But what about all that ‘Error’ stuff in the parameter mapping? The OnInformation event handler message
is conveyed via an SSIS variable named “System::ErrorDescription.” That is not a typo. You might expect it to be
InformationDescription, but it’s not, which makes less work for us.

If we execute Parent.dtsx now to test the new Event logging functionality, then we don’t see any events
logged. Bummer. How do we get events from SSIS? Several tasks provide information via OnInformation events.
The Data Flow Task, for example, provides lots of helpful metadata about rows read from sources and written to
destinations; and lookup cache sizes, rows, and time to populate, for example. You can also inject OnInformation
events into the execution stream using a Script Task.

We like to include Script Tasks that summarize the information we have about a SSIS Applications and
Packages in SSIS Framework Parent packages. Let’s add those now.

Drag a Script Task onto the Parent.dtsx package’s Control Flow and rename it “Log Application Variables.”
Open the editor and change the ScriptLanguage to “Microsoft Visual Basic 2010.” Add the following variables to
the ReadOnlyVariables property:

System::TaskName•	

System::PackageName•	

User::AppInstanceID•	

User::ApplicationName•	

Edit the script and place the code shown in Listing A-18 in Sub Main().

Public Sub Main()

 Dim sPackageName As String = Dts.Variables("PackageName").Value.ToString
 Dim sTaskName As String = Dts.Variables("TaskName").Value.ToString
 Dim sSubComponent As String = sPackageName & "." & sTaskName
 Dim sApplicationName As String = Dts.Variables("ApplicationName").Value.ToString
 Dim iAppInstanceID As Integer = _
Convert.ToInt32(Dts.Variables("AppInstanceID").Value)

 Dim sMsg As String = "ApplicationName: " & sApplicationName & vbCrLf & _
 "AppInstanceID: " & iAppInstanceID.ToString
 Dts.Events.FireInformation(1001, sSubComponent, sMsg, "", 0, True)

Appendix A ■ Evolution of an ssis framework

403

 Dts.TaskResult = ScriptResults.Success
 End Sub

Listing A-18.  Raising an Information Event from a Script Task

The purpose of the script is the Dts.Events.FireInformation call near the end. The first argument for this
function is the InformationCode. Depending on the nature and purpose of the SSIS Framework, we may or may not
enter a value (other than 0) here. The SubComponent argument is next and we usually construct a string identifying
the names of the package and task. The description argument follows and this contains the message we want to inject
into the log.SSISEvents table. The next two arguments are help-related—we usually blank and zero them, respectively.
The last argument is FireAgain, and we are uncertain if it does anything (anymore); we always set it to True.

Close the script editor and the Script Task Editor. Connect a precedence constraint from the “Log Start of
Application” Execute SQL Task to the “Log Application Variables” Script Task and another precedence constraint
from the “Log Application Variables” Script Task to the “Get Package Metadata” Execute SQL Task.

Drag another Script Task into the “Foreach Child Package” Foreach Loop Container and rename it “Log
Package Variables.” Open the editor and change the ScriptLanguage to “Microsoft Visual Basic 2010.” Add the
following variables to the ReadOnlyVariables property:

System::TaskName•	

System::PackageName•	

User::PkgInstanceID•	

User::ChildPackagePath•	

User::AppPackageID•	

Edit the script and place the code shown in Listing A-19 in Sub Main().

 Public Sub Main()

 Dim sPackageName As String = Dts.Variables("PackageName").Value.ToString
 Dim sTaskName As String = Dts.Variables("TaskName").Value.ToString
 Dim sSubComponent As String = sPackageName & "." & sTaskName
 Dim sChildPackagePath As String = Dts.Variables("ChildPackagePath").Value.ToString
 Dim iAppPackageID As Integer = Convert.ToInt32(Dts.Variables("AppPackageID").Value)
 Dim iPkgInstanceID As Integer = _
Convert.ToInt32(Dts.Variables("PkgInstanceID").Value)

 Dim sMsg As String = "ChildPackagePath: " & sChildPackagePath & vbCrLf & _
 "AppPackageID: " & iAppPackageID.ToString & vbCrLf & _
 "PkgInstanceID: " & iPkgInstanceID.ToString
 Dts.Events.FireInformation(1001, sSubComponent, sMsg, "", 0, True)

 Dts.TaskResult = ScriptResults.Success
 End Sub

Listing A-19.  Raising an Information Event from a Script Task

If you execute Parent.dtsx now, you will get a foreign key constraint error when you try to log the Application
Variables. Why? PkgInstanceID is set to a default value, “0”, and there is no “0” row in the log.SSISPkgInstance
table. Let’s remedy that now with the following script shown in Listing A-20.

/* Add "0" rows */
If Not Exists(Select ApplicationID

Appendix A ■ Evolution of an ssis framework

404

 From cfg.Applications
 Where ApplicationID = 0)
 begin
 print 'Adding 0 row for cfg.Applications'
 Set Identity_Insert cfg.Applications ON
 Insert Into cfg.Applications
 (ApplicationID
 ,ApplicationName)
 Values
 (0
 ,'SSIS Framework')
 Set Identity_Insert cfg.Applications OFF
 print '0 row for cfg.Applications added'
 end
Else
 print '0 row already exists for cfg.Applications'
print ''

If Not Exists(Select PackageID
 From cfg.Packages
 Where PackageID = 0)
 begin
 print 'Adding 0 row for cfg.Packages'
 Set Identity_Insert cfg.Packages ON
 Insert Into cfg.Packages
 (PackageID
 ,PackageFolder
 ,PackageName)
 Values
 (0
 ,'\'
 ,'parent.dtsx')
 Set Identity_Insert cfg.Packages OFF
 print '0 row for cfg.Packages added'
 end
Else
 print '0 row already exists for cfg.Packages'
print ''

If Not Exists(Select AppPackageID
 From cfg.AppPackages
 Where AppPackageID = 0)
 begin
 print 'Adding 0 row for cfg.Packages'
 Set Identity_Insert cfg.AppPackages ON
 Insert Into cfg.AppPackages
 (AppPackageID
 ,ApplicationID
 ,PackageID
 ,ExecutionOrder)
 Values
 (0
 ,0

Appendix A ■ Evolution of an ssis framework

405

 ,0
 ,10)
 Set Identity_Insert cfg.AppPackages OFF
 print '0 row for cfg.AppPackages added'
 end
Else
 print '0 row already exists for cfg.AppPackages'
print ''

If Not Exists(Select AppInstanceID
 From [log].SSISAppInstance
 Where AppInstanceID = 0)
 begin
 print 'Adding 0 row for cfg.Packages'
 Set Identity_Insert [log].SSISAppInstance ON
 Insert Into [log].SSISAppInstance
 (AppInstanceID
 ,ApplicationID
 ,StartDateTime
 ,EndDateTime
 ,[Status])
 Values
 (0
 ,0
 ,'1/1/1900'
 ,'1/1/1900'
 ,'Unknown')
 Set Identity_Insert [log].SSISAppInstance OFF
 print '0 row for log.SSISAppInstance added'
 end
Else
 print '0 row already exists for log.SSISAppInstance'
print ''

If Not Exists(Select PkgInstanceID
 From [log].SSISPkgInstance
 Where PkgInstanceID = 0)
 begin
 print 'Adding 0 row for cfg.Packages'
 Set Identity_Insert [log].SSISPkgInstance ON
 Insert Into [log].SSISPkgInstance
 (PkgInstanceID
 ,AppInstanceID
 ,AppPackageID
 ,StartDateTime
 ,EndDateTime
 ,[Status])
 Values
 (0
 ,0
 ,0
 ,'1/1/1900'
 ,'1/1/1900'

Appendix A ■ Evolution of an ssis framework

406

 ,'Unknown')
 Set Identity_Insert [log].SSISPkgInstance OFF print '0 row for log.SSISPkgInstance added'
 end
Else
 print '0 row already exists for log.SSISPkgInstance'
print ''

Listing A-20.  Adding “0” ID Rows to Selected Tables in the SSISConfig Database

Now that these event-generating Script Tasks are in place, test-execute the Parent.dtsx package and then
observe the log.LogEvents table by executing the following T-SQL in SSMS:

Select * From [log].SSISEvents

My results appear as shown in Figure A-18.

Figure A-18.  SSIS Framework Events!

Viewing the log.SSISEvents table in SSMS is disappointing. The data is accurate and SSMS is doing its job,
but the user experience could be better for this type of data. Fortunately, SQL Server 2012 ships with SQL Server
Reporting Services, which provides a better user experience! Let’s look at building reports to display this data.

Reporting Execution Metrics
SQL Server Reporting Services (SSRS) allows us to create reports that display SSIS Framework metadata and
metrics in a more user-friendly format. We can add visualizations to the reports that will assist in identifying the
status of SSIS Applications and SSIS Packages.

To begin, open a new instance of SQL Server Data Tools (SSDT) and create a new Report Server project
named “SSISConfig2012Reports.” In Solution Explorer, right-click Shared Data Source and click “Add New Data
Source.” When the Shared Data Source Properties window displays, set the Name property to “SSISConfig” and
click the Edit button to configure the connection to your instance of the SSISConfig database. When we configure
the Shared Data Source, it appears as shown in Figure A-19.

Appendix A ■ evolution of An ssis frAmework

407

We are now ready to build reports! Let’s begin by creating a report to display Application Instance data.
Before we jump into report development, let’s create supporting objects in the SSISConfig database. Listing

A-21 contains the T-SQL script required to build the “rpt” schema and the “rpt.ReturnAppInstanceHeader”
stored procedure.

/* rpt schema */
If Not Exists(Select name
 From sys.schemas
 Where name = 'rpt')
 begin
 print 'Creating rpt schema'
 declare @sql varchar(100) = 'Create Schema rpt'
 exec(@sql)
 print 'Rpt schema created'
 end
Else
 print 'Rpt schema already exists.'
print ''

/* rpt.ReturnAppInstanceHeader stored procedure */
If Exists(Select s.name + '.' + p.name
 From sys.procedures p
 Join sys.schemas s
 On s.schema_id = p.schema_id
 Where s.name = 'rpt'
 And p.name = 'ReturnAppInstanceHeader')
 begin
 print 'Dropping rpt.ReturnAppInstanceHeader stored procedure'
 Drop Procedure rpt.ReturnAppInstanceHeader
 print 'Rpt.ReturnAppInstanceHeader stored procedure dropped'
 end

Figure A-19. Configuring the SSISConfig Shared Data Source

Appendix A ■ Evolution of an ssis framework

408

print 'Creating rpt.ReturnAppInstanceHeader stored procedure'
go

Create Procedure rpt.ReturnAppInstanceHeader
 @ApplicationName varchar(255) = NULL
As

 Select a.ApplicationID
 ,ap.AppInstanceID
 ,a.ApplicationName
 ,ap.StartDateTime
 ,DateDiff(ss,ap.StartDateTime,Coalesce(ap.EndDateTime,GetDate())) As RunSeconds
 ,ap.Status
 From log.SSISAppInstance ap
 Join cfg.Applications a
 On ap.ApplicationID = a.ApplicationID
 Where a.ApplicationName = Coalesce(@ApplicationName,a.ApplicationName)
 Order by AppInstanceID desc

go
print 'Rpt.ReturnAppInstanceHeader stored procedure created.'
print ''

Listing A-21.  Creating the Rpt Schema and Rpt.ReturnAppInstanceHeader Stored Procedure

Return to SSDT, right-click the Reports virtual folder in Solution Explorer, and click “Add New Report.” If the
welcome screen displays, then click the “Next” button. On the “Select the Data Source” screen, select the Shared
Data Source named “SSISConfig” and click the “Next” button. The “Design the Query” window displays next; add
“rpt.ReturnAppInstanceHeader” (without the double-quotes) to the Query String textbox and click the “Next”
button. Select “Tabular” on the “Select the Report type” page and click the “Next” button. When the “Design
the Table” page displays, multi-select all the columns listed in the Available Fields listbox and click the “Details”
button. Your Report Wizard will appear as shown in Figure A-20.

Appendix A ■ Evolution of an ssis framework

409

Figure A-20.  Selecting All Available Fields as Details

Click the “Next” button. Select a theme on the “Choose the Table Style” page and click the “Next” button. On
the “Completing the Wizard” page, enter “Application Instance” in the Report Name property textbox and click
the “Finish” button.

The SSRS Report Wizard will generate the report, but it doesn’t manage stored procedures effectively. We need
to change this so we get the maximum performance out of the reports. Click View → Report Data to display the Report
Data sidebar. Expand the Datasets virtual folder. Right-click “DataSet1” and click “Dataset Properties.” When the
Dataset Properties window displays, rename the dataset “rpt_ReturnAppInstanceHeader” (the Dataset Name property
does not like periods . . .). Copy “rpt.ReturnAppInstanceHeader” out of the Query property and click the “Stored
Procedure” option in the Query Type property. Paste “rpt.ReturnAppInstanceHeader” into the “Select or enter stored
procedure name” dropdown. Your Dataset Properties window should appear similar to what is shown in Figure A-21.

Appendix A ■ Evolution of an ssis framework

410

Click the “OK” button to close the Dataset Properties window. If you click the Preview tab, the report will
prompt you for an Application Name as shown in Figure A-22.

Figure A-21.  Configuring the Dataset to Use the Rpt.ReturnAppInstanceHeader Stored Procedure

Figure A-22.  Prompting for Application Name

Supply “SSISApp1” to the textbox (without the double-quotes) and click the “View Report” button in the
upper right corner. We don’t want the user to supply an SSIS Application each time they use the report, so let’s
configure the Report Parameter named “@ApplicationName.” Return to the Report Data sidebar and expand the
Parameters virtual folder. Double-click “@ApplicationName” to open the Report Parameter Properties window.
On the General page, check the “Allow null value” checkbox and change the “Select parameter visibility” option
to “Hidden.” On the Default Values page, select the “Specify values” option and click the “Add” button. A “(Null)”
row will be added to the Value grid, which is what we want. Click the “OK” button to close the Report Parameter
Properties window.

Test the changes by clicking the Preview tab. The report should display all Application Instance rows stored
in the database, as shown in Figure A-23.

Appendix A ■ Evolution of an ssis framework

411

We do not want to see the "0" rows displayed in these reports. Modify the rpt.ReturnAppinstanceHeader stored
procedure to eliminate these records from the returned results by executing the T-SQL shown in Listing A-22.

/* rpt.ReturnAppInstanceHeader stored procedure */
If Exists(Select s.name + '.' + p.name
 From sys.procedures p
 Join sys.schemas s
 On s.schema_id = p.schema_id
 Where s.name = 'rpt'
 And p.name = 'ReturnAppInstanceHeader')
 begin
 print 'Dropping rpt.ReturnAppInstanceHeader stored procedure'
 Drop Procedure rpt.ReturnAppInstanceHeader
 print 'Rpt.ReturnAppInstanceHeader stored procedure dropped'
 end
print 'Creating rpt.ReturnAppInstanceHeader stored procedure'
go

Create Procedure rpt.ReturnAppInstanceHeader
 @ApplicationName varchar(255) = NULL
As

 Select a.ApplicationID
 ,ap.AppInstanceID
 ,a.ApplicationName
 ,ap.StartDateTime
 ,DateDiff(ss,ap.StartDateTime,Coalesce(ap.EndDateTime,GetDate())) As RunSeconds
 ,ap.Status
 From log.SSISAppInstance ap
 Join cfg.Applications a
 On ap.ApplicationID = a.ApplicationID
 Where a.ApplicationName = Coalesce(@ApplicationName,a.ApplicationName)
 And a.ApplicationID > 0
 Order by AppInstanceID desc

Figure A-23.  Displaying the Application Instance Data

Appendix A ■ Evolution of an ssis framework

412

go
print 'Rpt.ReturnAppInstanceHeader stored procedure created.'
print ''

Listing A-22.  Updating the Rpt.ReturnAppInstanceHeader Stored Procedure

Refresh the Application Instance report Preview and it now appears as shown in Figure A-24.

Figure A-24.  Refreshed Application Instance Report, sans the “0” Row

Color helps identify the state better than most visual cues. To add background color to the data rows,
return to the Design tab and select the row that displays data values (the bottom row) in the table. Press the F4
key to display Properties and click on the BackgroundColor property. In the BackgroundColor property’s value
dropdown, select “Expression” When the Expression window opens, change the text in the “Set expression
for: BackgroundColor” textbox from “No Color” (the default) to the following expression:

=Switch(Fields!Status.Value = "Success", "LightGreen"
, Fields!Status.Value = "Failed", "LightCoral"
, Fields!Status.Value = "Running", "Yellow")

By cleaning up the report by resetting font sizes, changing text alignment, and adjusting column widths, our
report appears as shown in Figure A-25:

Figure A-25.  Application Instance—in Color!

Appendix A ■ Evolution of an ssis framework

413

By cleaning up the report by removing ID columns (which mean little to the user), resetting font sizes,
changing text alignment, and adjusting column widths, our report appears as shown in Figure A-25.

We call this Operational Intelligence. An enterprise operations person can look at this report and glean lots
of information about the current state of enterprise data integration processes.

The Package Instance report is remarkably similar. Let’s begin by adding the stored procedure to the
database, as shown in Listing A-23.

/* rpt.ReturnPkgInstanceHeader stored procedure */
If Exists(Select s.name + '.' + p.name
 From sys.procedures p
 Join sys.schemas s
 On s.schema_id = p.schema_id
 Where s.name = 'rpt'
 And p.name = 'ReturnPkgInstanceHeader')
 begin
 print 'Dropping rpt.ReturnPkgInstanceHeader stored procedure'
 Drop Procedure rpt.ReturnPkgInstanceHeader
 print 'Rpt.ReturnPkgInstanceHeader stored procedure dropped'
 end
print 'Creating rpt.ReturnPkgInstanceHeader stored procedure'
go

Create Procedure rpt.ReturnPkgInstanceHeader
 @AppInstanceID int
As

 SELECT a.ApplicationName
 ,p.PackageFolder + p.PackageName As PackagePath
 ,cp.StartDateTime
 ,DateDiff(ss,cp.StartDateTime,Coalesce(cp.EndDateTime,GetDate())) As
RunSeconds
 ,cp.Status
 ,ai.AppInstanceID
 ,cp.PkgInstanceID
 ,p.PackageID
 ,p.PackageName
 FROM log.SSISPkgInstance cp
 Join cfg.AppPackages ap
 on ap.PackageID = cp.AppPackageID
 Join cfg.Packages p
 on p.PackageID = ap.AppPackageID
 Join log.SSISAppInstance ai
 on ai.AppInstanceID = cp.AppInstanceID
 Join cfg.Applications a
 on a.ApplicationID = ap.ApplicationID
 WHERE ai.AppInstanceID = Coalesce(@AppInstanceID,ai.AppInstanceID)
 And a.ApplicationID > 0
 Order By cp.PkgInstanceID desc
go
print 'Rpt.ReturnPkgInstanceHeader stored procedure created.'
print ''

Listing A-23.  Adding the Rpt.ReturnPkgInstanceHeader Stored Procedure

Appendix A ■ Evolution of an ssis framework

414

In SSDT, add a new report named "Package Instance" just like you added the "Application Instance" report.
Make sure you use the "rpt.ReturnPkgInstanceHeader" stored procedure. To get the Report Wizard to recognize
a query that expects parameters, you need to add default parameter values on the "Design the Query" page. My
Query String textbox reads as follows:

exec rpt.ReturnPkgInstanceHeader NULL

This allows the query builder to locate the columns list returned from the stored procedure (which is what
the Report Wizard needs to continue). Once the report is built, remember to first update the Dataset, then the
Report Parameter as you did for the Application Instance report. One cool thing about this particular design is
that we can reuse the expression for BackgroundColor on the data rows. Once complete, the Package Instance
report appears, as shown in Figure A-26.

Figure A-26.  The Package Instance Report

Package Instances are “children” of Application Instances. To reflect that relationship, return to the
Application Instance report and add a column to the table to contain “Packages” links. Enter “Packages” in the
column header and as text in the data cell. Right-click the data cell and click “Text Box Properties . . . ”. On the Font
page, change the font color to Blue and set the Effects property to Underline. On the Action page, select the “Go to
report” option for the “Enable as an action” property and set the “Specify a report” property to “Package Instance.”
In the “Use these parameters to run the report” grid, click the “Add” button and map the AppInstanceID parameter
to the “[AppinstanceID]” value. Click the “OK” button to close the Text Box Properties editor.

Click the Preview tab to display the Application Instance report. Select one of the “Packages” links to
navigate to the Package Instance report that will contain only the Package Instances related to that particular
Application Instance. Your Package Instance report should appear similar to the Package Instance report
displayed in Figure A-27.

Figure A-27.  Package Instances for a Single Application Instance

Appendix A ■ Evolution of an ssis framework

415

Building the reports in this fashion makes sense. The Application Instance report becomes a “gateway” for
the Package Instance report; a “dashboard,” if you will. More in a bit . . .

Let’s turn our attention to the Error log data. To retrieve it, let’s use the T-SQL script shown in Listing A-24.

/* rpt.ReturnErrors stored procedure */
If Exists(Select s.name + '.' + p.name
 From sys.procedures p
 Join sys.schemas s
 On s.schema_id = p.schema_id
 Where s.name = 'rpt'
 And p.name = 'ReturnErrors')
 begin
 print 'Dropping rpt.ReturnErrors stored procedure'
 Drop Procedure rpt.ReturnErrors
 print 'Rpt.ReturnErrors stored procedure dropped'
 end
print 'Creating rpt.ReturnErrors stored procedure'
go

Create Procedure rpt.ReturnErrors
 @AppInstanceID int
 ,@PkgInstanceID int = NULL
As

 Select
 a.ApplicationName
 ,p.PackageName
 ,er.SourceName
 ,er.ErrorDateTime
 ,er.ErrorDescription
 From log.SSISErrors er
 Join log.SSISAppInstance ai
 On ai.AppInstanceID = er.AppInstanceID
 Join cfg.Applications a
 On a.ApplicationID = ai.ApplicationID
 Join log.SSISPkgInstance cp
 On cp.PkgInstanceID = er.PkgInstanceID
 And cp.AppInstanceID = er.AppInstanceID
 Join cfg.AppPackages ap
 On ap.AppPackageID = cp.AppPackageID
 Join cfg.Packages p
 On p.PackageID = ap.PackageID
 Where er.AppInstanceID = Coalesce(@AppInstanceID, er.AppInstanceID)
 And er.PkgInstanceID = Coalesce(@PkgInstanceID, er.PkgInstanceID)
 Order By ErrorDateTime Desc
go
print 'Rpt.ReturnErrors stored procedure created.'
print ''

Listing A-24.  Building the Rpt.ReturnErrors Stored Procedure

The T-SQL in Listing A-24 constructs the “rpt.ReturnErrors” stored procedure, which will supply data to a
new report. Let’s build that report now in SSDT.

Appendix A ■ Evolution of an ssis framework

416

Add a new report named “Errors” to the SSISConfig2012Reports solution. Use the “rpt.ReturnErrors” stored
procedure as the source. Remember to update the Dataset and both report parameters: AppinstanceID and
PkgInstanceID.

On the table's data row, edit the BackgroundColor property, adding the following expression:

=Iif(RowNumber(Nothing) Mod 2 = 0,"White","WhiteSmoke")

We are not coloring the background of each cell here to reflect Status; the report would be filled with
LightCoral if we did so. But we do need to break up these rows visually, so we use subtle shading to help keep the
eyes moving across the row at 2:15 AM some dark and dreary morning.

Open the Application Instance report. Right-click on the “Status” data field and click “Text Box Properties.”
Navigate to the Font page and click the f(x) button beside the Color property dropdown. In the “Set expression
for: Color” textbox, enter the following expression:

=Iif(Fields!Status.Value = "Failed", "Blue", "Black")

If the Status is “Failed,” then this expression will change the color of the Status text blue. Click the f(x) button
beside the Effects property dropdown. In the “Set expression for: TextDecoration” textbox, add the following
expressiocv n:

=Iif(Fields!Status.Value = "Failed", "Underline", "Default")

This expression will decorate a “Failed” status with an underline. This and the previous property combine to
make “Failed” status appear as a hyperlink. Where does the hyperlink take us? Let’s configure that property now.
Navigate to the Action page and select the “Go to report” option for the “Enable as an action” property. Click the
f(x) button beside the “Specify a report” dropdown and add the following expression to the “Set expression for:
ReportName” textbox:

=Iif(Fields!Status.Value = "Failed", "Errors", Nothing)

Click the “Add” button and map the “AppInstanceID” parameter Name to the “[AppInstanceID]” parameter
Value. Click the f(x) button in the “Omit” column of the parameter mapping and add the following expression to
the “Set expression for: Omit” textbox:

=Iif(Fields!Status.Value = "Failed", False, True)

The two previous property settings configure the Action property of the Status value. If the Status is “Failed,”
clicking the word “Failed,” which will appear to be a hyperlink, will cause the Errors report to display. When it
displays, it will only show those error rows associated with the Application Instance displayed in that row of data.

Let’s test it! When we run the Application Instance report, it now appears as shown in Figure A-28.

Figure A-28.  The Application Instance Report, Including Status, and Packages Decoration

Appendix A ■ evolution of An ssis frAmework

417

Quickly isolating the source of an error in an SSIS package is one way to improve overall operational
efficiency. These reports, working in tandem, facilitate efficient root cause analysis.

The Events report is very similar to the Errors report. The T-SQL script for creating the “rpt.ReturnEvents”
stored procedure is shown in Listing A-25.

/* rpt.ReturnEvents stored procedure */
If Exists(Select s.name + '.' + p.name
 From sys.procedures p
 Join sys.schemas s
 On s.schema_id = p.schema_id
 Where s.name = 'rpt'
 And p.name = 'ReturnEvents')
 begin
 print 'Dropping rpt.ReturnEvents stored procedure'
 Drop Procedure rpt.ReturnEvents
 print 'Rpt.ReturnEvents stored procedure dropped'
 end
print 'Creating rpt.ReturnEvents stored procedure'
go

Create Procedure rpt.ReturnEvents
 @AppInstanceID int
 ,@PkgInstanceID int = NULL
As

 Select
 a.ApplicationName
 ,p.PackageName
 ,ev.SourceName
 ,ev.EventDateTime
 ,ev.EventDescription
 From log.SSISEvents ev
 Join log.SSISAppInstance ai
 On ai.AppInstanceID = ev.AppInstanceID
 Join cfg.Applications a
 On a.ApplicationID = ai.ApplicationID
 Join log.SSISPkgInstance cp
 On cp.PkgInstanceID = ev.PkgInstanceID
 And cp.AppInstanceID = ev.AppInstanceID
 Join cfg.AppPackages ap
 On ap.AppPackageID = cp.AppPackageID
 Join cfg.Packages p
 On p.PackageID = ap.PackageID

Clicking one of the “Failed” hyperlinks takes me to the Errors report for that Application Instance. Your
report should appear similar to that shown in Figure A-29.

Figure A-29. Displaying an Error

Appendix A ■ Evolution of an ssis framework

418

Clicking the Events hyperlink takes us to the Events report, which should be to similar the report shown in
Figure A-31.

 Where ev.AppInstanceID = Coalesce(@AppInstanceID, ev.AppInstanceID)
 And ev.PkgInstanceID = Coalesce(@PkgInstanceID, ev.PkgInstanceID)
 Order By EventDateTime Desc
go
print 'Rpt.ReturnEvents stored procedure created.'
print ''

Listing A-25.  Building the Rpt.ReturnEvents Stored Procedure

Add a new report named "Events," use the "rpt.ReturnEvents" stored procedure, and remember to configure
the Dataset and report parameters. Add the alternating row shading we demonstrated in the Errors report. The
same expression will work in the Events report:

=Iif(RowNumber(Nothing) Mod 2 = 0,"White","WhiteSmoke")

Return to the Application Instance Report and add another column to the data table. Label it “Events” and
set the data grid value to “Events” as well. Open the Text Box Properties for the Events data field and navigate to
the Font page. Change the Color property to “Blue” and the Effects property to “Underline.” On the Actions page,
change the “Enable as an action” property to “Go to report” and the “Specify a report” dropdown to “Events.” Add
a parameter mapping and map the “AppInstanceID” parameter Name to the “[AppinstanceID]” parameter Value.
Click the “OK” button to close the Text Box Properties Editor. Let’s test it!

The Application Instance report now appears, as shown in Figure A-30.

Figure A-30.  The New and Improved Application Instance Report

Figure A-31.  The Events Report for an Application Instance

Appendix A ■ Evolution of an ssis framework

419

This latest round of reports and updates to the Application Instance report reinforce its status as the
Operational Intelligence Dashboard. Similar changes can be made to the Package Instance report. Let’s add the
“Failed” link functionality and the “Events” column now.

On the Package Instance report, open the Text Box Properties for the “Status” data field. As we did for the
“Status” data field in the Application Instance report, navigate to the Font page and click the f(x) button beside
the Color property dropdown. In the “Set expression for: Color” textbox, enter the following expression:

=Iif(Fields!Status.Value = "Failed", "Blue", "Black")

This expression will change the color of the Status text blue if the Status is “Failed.” Click the f(x) button
beside the Effects property dropdown. In the “Set expression for: TextDecoration” textbox, add the following
expression:

=Iif(Fields!Status.Value = "Failed", "Underline", "Default")

As with the Application Instance report, this expression will decorate a “Failed” status with an underline.
This and the previous property combine to make “Failed” status appear as a hyperlink. Where does the hyperlink
take us? Let’s configure that property now. Navigate to the Action page and select the “Go to report” option for
the “Enable as an action” property. Click the f(x) button beside the “Specify a report” dropdown and add the
following expression to the “Set expression for: ReportName” textbox:

=Iif(Fields!Status.Value = "Failed", "Errors", Nothing)

Click the “Add” button and map the “AppInstanceID” parameter Name to the “[AppInstanceID]” parameter
Value. Click the “Add” button again and map the “PkgInstanceID” parameter Name to the “[PkgInstanceID]”
parameter Value. Click the f(x) button in the “Omit” column of each parameter mapping and add the following
expression to each “Set expression for: Omit” textbox:

=Iif(Fields!Status.Value = "Failed", False, True)

As with the Application Instance report, the two previous property settings configure the Action property of
the Status value. If the Status is “Failed,” clicking the word “Failed,” which will appear to be a hyperlink, will cause
the Errors report to display. When it displays, it will only show those error rows associated with the Application
Instance displayed in that row of data.

Let’s test it! When we run the Package Instance report, it now appears as shown in Figure A-32.

Appendix A ■ Evolution of an ssis framework

420

Clicking a “Failed” “link” takes us to the Errors report for that Package Instance. Cool. Now let’s add the
“Events” column to the Package Instance report. Add a column with the header and data field hard-coded
“Events.” Open the Text Box Properties for the “Events” data field and navigate to the Font page. Set the Color
property to “Blue” and the Effects property to “Underline.” Navigate to the Action page and set the “Enable as an
action” property to “Go to report.” Select the Events report from the “Specify a report” dropdown and click the
“Add” button twice to map two parameters. Map the “AppInstanceID” parameter Name to the “[AppInstanceID]”
parameter Value and the “PkgInstanceID” parameter Name to the “[PkgInstanceID]” parameter Value. Close
the Text Box Properties window and click the Preview tab to test. Your Package Instance report should appear as
shown in Figure A-33.

Figure A-32.  Failed “Hyperlinks” for the Package Instance Report

Figure A-33.  The finished Package Instance Report

Appendix A ■ Evolution of an ssis framework

421

Clicking the “Events” link will take us to the Events report and display only the events for the Package
Instance on the referenced row.

To wrap it up, you can start at the Application Instance report; it is on the dashboard. You can click the
Packages “link” to view all the SSIS Child Packages that executed as part of the selected SSIS Application
Instance. From there, you can drill into the Errors report and observe the errors that caused a Package to fail, or
you can view all of the events recorded by the OnInformation event handler for the selected Package Instance
on the Events report. You can reach all errors and events for an SSIS Application Instance from the Application
Instance report, as well.

Summary
This isn’t an exhaustive example of an SSIS Framework, but it does demonstrate the utility of patterns-based data
integration development using SSIS. This framework provides repeatable, metadata-driven SSIS execution without
leaving the SSIS and SQL Server database realms. Monitoring is provided by a set of SQL Server Reporting Services
reports driven by stored procedures that read metadata automatically captured by the Framework’s Parent.dtsx
SSIS package. Zero lines of code are required in child packages to capture error and event information, and this
information is logged centrally in a consistent format, which makes it perfect for reporting.

423

Index

n A
ADO.NET

connection manager, 89
integration server catalog stored procedures, 48
providers, 90
script task, 81
source component query, 95–96

American Standard Code for Information Interchange
(ASCII), 127

Application Instance logging
failures, 392–393
instance tables and stored procedures, 387–389
logged results, 389–390
parent package and event handler, 390
SSIS application and package, 391–392
unit-testing, 391

Application monitoring. See Monitoring execution

n B
Brute force detection, 239
Business Intelligence Markup Language (BIML)

file
connect metadata, 304
error message, 303–304
metadata, 303–304
SSIS package, 304
TestBimlPackage.dtsx, 302
XML metadata, 302

history, 301–302
incremental load pattern

add metadata, 307
BIML testing, 314–318
data flow task, 308
test databases and tables, 305–307
transformations, 308–314

SSIS design patterns engine, 318–324
testing BIML file, 324–326

n C
Catalog logging

built-in reports
integration services dashboard,

254–255
package execution report, 256

change, 284
design patterns

level changes, 285–286
report creation, 287–289
utilization reports, 286–287

logging level eliminates, 254
setting up, 281–282
SSIS

levels, 284
views, 283

SSISDB, 253–254
tables, 283

Change data capture (CDC)
detection

brute force, 239
checksum-based detection, 238
detection via hashbytes, 238–239

DML operations, 237
historical data, 239–240
incremental loads, 240–241
integration services, 237–238
log sequence number (LSN), 238
usage, 242

Checksum-based detection, 238
Cloud technology

incremental loads
block diagram, 274
detection, 274
new rows, 274–275

interact, 273
loader, 275–278

Command-line execution, 31

■ Index

424

Connection manager
design patterns, script

objects, 80
script component, 81–82
script task, 81

DQS, 109
expression language patterns, 215–217
flat file sources, 134
metadata collection framework, 8, 9
objects, 80
OLE DB, 91–92
parameter model, 334–335
script component, XML configuration, 204
scripting patterns, design, 80–82
script task, 81
SQL Server source patterns

ADO.NET, 89
ODBC, 90–91
OLE DB, 91–92
types, 88

window provider list, DB2 database, 126
Customer Service and Support (CSS), 301
Custom logging, 258–259

n D
Database table

configuration, 344
creation, 344–345
Execute SQL Task, 345–347

Data definition language (DDL), 381
Data flow cleansing

issues, 113
output handling, DQS cleansing transform

column status values, 113, 115
conditional split transformation, 113, 114
processing logic, 115

parallel processing, 116
row filtering, with Lookup Transforms

column mapping, 118
completed data flow, pre-filter rows, 119
pattern, 117, 118

row tracking, 116–117
Data Quality Client application

administration section, 105–106
default knowledge base, 106–107
DQS roles, 102
knowledge base management

activities, 103
domain management, 104

online RDS, 107
projects, 104–105

Data Quality Services (DQS)
cleansing rules, 120–122
cleansing transformation editor

additional columns, 111–112
advanced tab, 112
cleansing rules, 120–122
data flow toolbox, 107, 108
log messages, 113
standardization, 113

components, 101
data flow cleansing

issues, 113
output handling, DQS Cleansing transform,

113–115
parallel processing, 116
row filtering, with Lookup Transforms,

117–120
row tracking, 116–117

Data Quality Client application
administration section, 105–106
default knowledge base, 106–107
knowledge base management, 103–104
online RDS, 107
projects, 104–105

domains, 101
roles, 102
with SSIS

cleansing transform editor, 111–113
composite domains, 109
connection manager, 109
data flow toolbox, 107, 108
mapping tab, 110

Data taps, 37–40
Data Transformation Services (DTS), 71
Data translations, 97
Data warehouse patterns

coding errors
cleanup, 247
failure, 246–247
meaning, 245
SQL transactions, 246
SSIS transactions, 246
unhandled errors, 247

data errors, 242
ETL workflow

one package = one unit, 247–249
work division, 247

incremental load
fact data, 228
meaning, 227
slowly changing dimension, 228
systematic identification, 228

missing data
add dimension member, 244–245
dimension members, 243–244
loading dimensions, 242–243
triage table, 245

simple errors, 242

■ Index

425

DB2 database
connection manager window provider list,

126
data link properties window, with Host CCSID list,

127, 128
encoding schemes, 127
family

AS/400, iSeries, System I, and Power Systems,
123

Linux, UNIX, and Windows (LUW) version,
123

z/OS platform, 123
query

source component dynamic queries,
130–131

source component parameters, 129–130
Source Assistant, source window, 125, 126

Debug execution, 30–31
Deployment models

execution patterns (see Execution patterns)
Integration Services Deployment Wizard

command line parameters, 355
methods

command line, 355–356
using custom code, 356–357
using PowerShell, 357
using SQL, 358–359

package deployment model
conversion, 359
deployment locations, 359, 360

project deployment model, 351–352
SSIS catalog

deployment wizard status page, 353, 354
descritpion, 352
Integration Services Deployment Wizard,

353
Design patterns. See also Data warehouse patterns

catalog logging and reporting
logging levels, 285–286
report creation, 287–289
types, 285
utilization reports, 286–287

package logging and reporting, 281
script

connection managers, 80–82
naming patterns, 85
variables, 82–84

DTEXEC
description, 341
file system projects, 342
SSIS catalog projects, 343–344

Dynamic management functions (DMFs), 3
Dynamic management views (DMVs), 3

n E
Entry-point packages, 334
Error logging

bubble event, 397–398
error metadata, 400
execute SQL task editor, 398–399
parameters, 399
ReadOnlyVariables property, 400–402
script task, 403
SSIS

framework events, 406
task, 398

SSISConfig database, 400–406
Event and error logging. See Logging patterns
Execute package utility, 31–32
Execute SQL Task editor

metadata collection, 7–8
parameter mapping, 26

Execution patterns
managed code

demo application, 58–59
frmMain form, 59–69

metadata-driven execution, 58
SSIS packages

command-line execution, 31
Custom Execution Framework, with SQL

Agent, 56–57
debug execution, 30–31
execute package utility, 31–32
file system package schedule, 54–55
integration server catalogs, 32–33
integration server catalog stored procedures,

33–37
schedule, 53–54
SQLAgent Jobs, with custom execution

framework, 55–56
Expression language patterns

assignment, 212
connection managers, 215–217
control flow

constraints, 217–219
editor, 219
non-standard notation, 219
precedence constraints, 219
tasks and containers, 220

C-style languages, 213
custom task/component, 224
data flow

branches, 221–223
business rules, 223
data cleansing, 220–221
multiple paths, 221–223

■ Index

426

data source component, 223
definition, 211–212
evaluation, 212
Execute SQL Task, 223
functional domains, 211
limitations, 213–214
package level, 214–215
project connection managers, 217
script task and component, 223–224
third party task/component, 224
tools, 223–224
T-SQL, 213
use of, 212–213
variables, 215

Expressions, parameter model
expressionable data flow component properties,

330
property expressions editor, 329
variables, Expression Builder dialog, 331
variables window, 330

Extended Binary Coded Decimal Interchange Code
(EBCDIC), 127

Extract, transform and load (ETL) projects
communication, 362–363
estimation, 361–362
measurement, 361
processes, 363
technology, 363–364
timelines

elements, 364–365
experience, 366
personalities, 366
schedule, 366
unexpectation, 365–366

n F, G
File connection manager

parent-child pattern, 369–370
XML configuration, 201, 202

File system package, 54–55
Flat file sources

archive file pattern
error message, 166–167
parameters, 162
script, 162
source/destination, 166
SSIS package, 167
steps, 165
variables and parameters, 163
VSTA projects script editor, 163–165

data types, 136–137
demo project, 133–134
derived column transformation, 136–137
footer row

consume, 146–149
meaning, 146
produce, 151–158

header row
consume, 149–151
meaning, 146
produce, 158–161

SSIS
columns page, 136
configuration, 135
connection manager page, 134

staging data
auto-mapping, 140
data flow task, 141
ETL developer, 138
input-to-output mappings, 139
metadata page, 138
overwritting, 140
T-SQL DDL statement, 139

variable-length row
CSV and TDF, 141
data flow, 142
script component, termination, 145
splitting record types, 143–144
stream termination, 144–145

Footer row, flat files
consume

columns page, 146–147
configuration, 148
debugg, 149
row count and extract date, 148

meaning, 146
produce

class and variable declaration, 153–156
execution, 157–158
mapping package parameters, 157
parameters, 152
SSIS package, 151–152
test package, 157
variables, 152–153

Foreach Loop editor, 11

n H
Header row, flat files

consume
debugg, 151
Input0_ProcessInputRow, 150–151
source file, 149

meaning, 146
produce

bindings page, 160–161
data flow tasks, 159
dynamic connectionString properties, 160
execution, 161
parameters, 158

Expression language patterns (cont.)

■ Index

427

n I, J
IBM OLE DB provider, 125
Integration server catalogs, 32–33

n K
Knowledge base management

activities, 103
domain management, 104

n L
LINQ to XML functionality, 207–209
Logging patterns

essentials
capturing data patterns, 252
elements, 252
error and events, 251
ETL domain, 252

SSIS
capture data, 259–260
catalog, 253–254
custom logging, 258–259
logging platforms, 260
package-levels, 253
package logging, 256–258

n M
Managed code execution

demo application, 58–59
frmMain form

btnStartFileClick subroutine, 63
code, 60–63
ISTree form, 64–67
layout, 59
package selection and execution, 67–69
SSIS catalog representation, 63, 64
SSISDB, 64

Management Object Model (MOM)
custom code, 356–357
PowerShell, 357

Massively parallel processing (MPP), 169
Merge Join transform, 197–198
MERGE pattern, SCD

control flow, 269, 270
steps, 269
Type 1 changes, 270–271
Type 2 changes, 271

Metadata collection
central repository set up, 4–6
current data and log file sizes retrieval, 15
Data Flow task, 15, 19
DBA, 1

dba_monitor_unusedIndexes table creation, 23–24
dbaToolBox, 16
description, 1
DMFs, 3
DMVs, 3
framework

connection manager, 8, 9
dynamic connection properties, 14
editing, result set, 10
Execute SQL Task Editor, 7–8
Foreach Loop Container, 11
Foreach Loop Editor, 11
new integration services project, 6
package-scoped variables, 7
Property Expressions Editor, 13
Retrieve SQL Server Instances statement, 9
variable mappings, 12
variables menu, 6, 7

Integration Services package, 1–2
Mappings page, 24
OLE DB

destination connection manager, 17, 18
destination mappings, 18, 19
Source editor, 16

package execution, 26, 27
parameter mapping, 25, 26
SQL Server

catalogs, 3
Management Studio 2012, 5
metadata, 3

SSDT, 1
table creation, 17
Unused Indexes retrieval, 20–22

Metadata-driven execution, 58
Microsoft OLE DB provider, 25
MOM. See Management Object Model (MOM)
Monitoring execution

application instance logging
failures, 392–393
instance tables and stored procedures,

387–389
logged results, 389–390
OnError event handler, 392
parent package and event handler, 390
SSIS application and package, 391–392
Sub Main(), 390–391
unit-testing, 391

error logging
bubble event, 397–398
error metadata, 400
execute SQL task editor, 398–399
framework events, 406
parameters, 399
ReadOnlyVariables property, 400–402
script task, 403

■ Index

428

SSISConfig database, 400–406
task, 398

Log.SSISAppInstance and Log.SSISPkgInstance,
386–387

package instance logging
log.SSISPkgInstance table, 395
parameters, 396
Parent.dtsx, 395
table and stored procedures, 393–395
test executions, 396

n N
Naming patterns, script, 85

n O
OLE DB

command transforms, 268
connection manager, 91–92
destination

connection manager, 17, 18
mappings, 18, 19

source component query, 96
Source editor, 16

Online Reference Data Services (RDS), 107
Open database connectivity (ODBC), 90–91

n P, Q
Package-application relationships

Cfg.AppPackages and Cfg.
AddSSISApplicationPackage, 379–380

coupling method, 380
mappings, 379–380
T-SQL script, 378–379

Package deployment model
conversion, 359
deployment locations, 359, 360

Package logging
instance logging

log.SSISPkgInstance table, 395
parameters, 396
Parent.dtsx, 395
table and stored procedures, 393–395
test executions, 396

reporting method
design patterns, 281
log information, 279
results, 281
set up logging, 280
SSIS logging menu, 280
SSIS log table, 281

SSIS, 256–258

Package-scoped variables, 7
Parallel Data Warehouse (PDW)

architecture overview, 170–172
BIDS, 169
data destination

connection, 184
editor, 187
loading modes, 186
modal, 185
multi-threading, 188–189
Nexus query tool, 181
replicated and distributed tables, 182
roll-back load, 186–187
SQL Server, 183
staging database, 181–182

data flow
data source, 177–179
destination, 181–188
OLE DB source editor, 178
transformation, 178–179

data source, 175–177
destination adapter installation, 174–175
DWLoader vs. integration services, 172
ETL vs. ELT, 172–174
scan, 171
shared-nothing architecture, 171
SMP and MPP, 169

Parameter model
configuration

default configuration, 335–337
package execution, SSIS catalog,

339–341
parameter values using T-SQL, 339
server environments, 337–338

connection managers, 334–335
description, 327
DTEXEC

description, 341
file system projects, 342
SSIS catalog projects, 343–344

dynamic configurations
database table, 344–347
dynamic package executions, 348–350
script task, 348

entry-point packages, 334
expressions

expressionable data flow component
properties, 330

property expressions editor, 329
variables, Expression Builder dialog, 331
variables window, 330

package level parameters, 328
project level parameters, 328–329
UI parametrization, 332
Visual Studio configurations

Monitoring execution (cont.)

■ Index

429

Configuration Manager dialog, 333
description, 332
development, 333
manage parameter values dialog, 333, 334

Parent-child patterns
add packages, 375–376
cfg.Packages, 373
cfg Schema and cfg.Packages table, 373–374
child-parent variable pattern, 298–299
conversion, 368–369
dynamic child package

create and insert statements, 295–296
execution page, 294–295
expressions screen, 298
foreach loop editor screen, 297

execution, 371–372
expression textbox, 370–371
master package

child package, 291–292
parameter binding configuration, 293–294
parent package, 294

message box, 368
package deployment model, 369
SSISConfig database, 372–373
stored procedure, 375
Sub Main(), 367–368
T-SQL script, 372–376

Project deployment model, 351–352
Property Expressions editor, 13

n R
Reporting patterns. See also Logging patterns

catalog logging
change, 284
design patterns, 285–289
setting up, 281–282
tables, 283

package method
design patterns, 281
log information, 279
results, 281
set up logging, 280
SSIS logging menu, 280
SSIS log table, 281

n S
Script components

configuration, XML
connection manager, 204
file connection manager, 201, 202
output columns, 203
script component patterns code, 205–206
script component source creation, 202

connection managers, 81–82
external assemblies, 78–79
LINQ to XML functionality,

207–209
types of modes, 77
uses, 77

Scripting patterns
design

connection managers, 80–82
naming patterns, 85
variables, 82–84

DTS, 71
maintenance

code reuse, 78
copy/paste, 78
custom tasks/components, 79
external assemblies, 78–79
source control, 79

script component
configuration, 77, 78
types of modes, 77
uses, 77

script editor
compiler, 74–75
Full .NET runtime, 74
project explorer, 73–74

script task
configuration, 76
requirements, 76

toolset, 71–72
Script maintenance patterns

code reuse, 78
copy/paste, 78
custom tasks/components, 79
external assemblies, 78–79
source control, 79

Script task
compilation error, 75
configuration, 76
dynamic configurations, 348
external assemblies, 78–79
project explorer, 73
project properties, 74
requirements, 76

Service level agreements (SLAs), 252
Slowly changing dimensions (SCDs)

disadvantages, 234
elements, 233
incremental load, 228
key scenarios, 261
MERGE pattern

control flow, 269, 270
steps, 269
Type 1 changes, 270–271
Type 2 changes, 271

■ Index

430

OLE DB
command transforms, 268
destination, 268

output result, 233
performance, 267–268
processing patterns, 272
third party components, 268–269
using transformations, 266–267
wizard

column change types, 263
dimension table and keys selection, 262–263
fixed and changing attribute options, 264
historical attribute options, 265
inferred dimension members, 265, 266

Source Assistant, SQL Server, 97–99
Source editor, XML

attributes, 192
customers database table schema, 194
element/sub-element structure, 191
IsSorted property value setting, 194, 195
Merge Join transform, 197–198
outputs and column names generation, 193
SortKeyPosition property value setting, 196
XSLT

script, 198, 199
simplified XML document, 200
XML task configuration, 199, 200

Source patterns, DB2
database

connection manager window provider list,
126

data link properties window, with Host CCSID
list, 127, 128

encoding schemes, 127
family, 123
query, 128–131
Source Assistant, source window, 125, 126

IBM OLE DB provider, 125
Microsoft OLE DB provider, 125
provider

find database version, 124–125
pick provider vendor, 125

Source patterns, SQL Server
connection manager

ADO.NET, 89
ODBC, 90–91
OLE DB, 91–92
types, 88

set up, 87
source component

data flow task, 93
OLE DB Source editor screen, 93, 94
SSIS toolbox, 92, 93

source component query

ADO.NET, 95–96
data translations, 97
OLE DB, 96
waste not, want not, 97

SQL Server Data Tools (SSDT), 1, 280
SQL Server Integration Services (SSIS)

applications
add data, 377–378
cfg.Applications and cfg.AddSSISApplication,

376–377
execution, 385–386
T-SQL, 381
variable window, 384

capture data, 259–260
catalog

built-in reports, 254–255
logging levels eliminates, 254
SSISDB, 253–254

change data capture
detection, 238–239
historical data, 239–240
incremental loads, 240–241
integration services, 237–238
usage, 242

command-line execution, 31
custom execution framework, with SQL Agent

description, 56
execute package task reference property, 57
project reference package, 57

custom logging, 258–259
debug execution, 30–31
deployment models catalog

deployment wizard status page, 353, 354
descritpion, 352
Integration Services Deployment Wizard, 353

DQS
cleansing transform editor, 111–113
composite domains, 109
connection manager, 109
data flow toolbox, 107–108
mapping tab, 110

ETL logging systems, 253
execute package utility, 31–32
execution schedule, 53–54
file system package schedule, 54–55
integration server catalog stored procedures

ADO.NET connection, 48
Connection property, 48
custom execution framework creation, 41–53
data taps, 37–40
package execution twice, 53
parameter mapping page, 48
parent package control flow, 50
Result Set page, 48
Transact-SQL Script, 33

Slowly changing dimensions (SCDs) (cont.)

■ Index

431

variable mappings page, 49
wrapper stored procedure script, 34–37

logging platforms, 260
lookup caching options

load staging, 231
table, 231
transformation and connection manager, 231

managed code
demo application, 58–59
frmMain form, 59–69

merge statement
action, 235–237
audit table, 237
control flow design pattern, 235–237
insert, update and delete, 234–235

metadata-driven execution, 58
monitoring execution

application instance logging, 387–389
error logging, 397–398
package instance logging, 393–395

native components
design pattern, 229
operations, 229–230
useful and mature, 230

package-application relationships
Cfg.AppPackages and Cfg.

AddSSISApplicationPackage, 378–379
coupling method, 380
mappings, 379–380
T-SQL script, 378–379

package logging, 253, 256–258
parent-child pattern

add packages, 375–376
cfg.Packages, 373
cfg Schema and cfg.Packages table, 373–374
conversion, 368–369
execution, 371–372
expression textbox, 370–371
file connection manager, 369–370
message box, 368
package deployment model, 369
SSISConfig database, 372–373
stored procedure, 375
Sub Main(), 367–368
T-SQL script, 372–376

SCD
disadvantages, 234
elements, 233
output result, 233
wizard, 232

SQLAgent Jobs, with Custom Execution
Framework, 55–56

tools and methodologies, 228
SQL Server Management Studio (SSMS), 372–376
SQL Server Reporting Services (SSRS)

application instance data, 410–411
Application Name, 410
color, 412
dataset, 409–410
error, 417
error log data, 415
events hyperlink, 418
expression, 416
failed hyperlinks, 419–420
final result, 420–421
new application, 418
Package Instance report, 413–414
report preview, 412
report wizard, 408–409
rpt.ReturnEvents, 417–418
Rpt Schema and Rpt.ReturnAppInstanceHeader,

407–408
shared data source, 406–407
status and packages decoration, 416
updation, 411–412

SSIS catalog database (SSISDB), 253–254
Symmetric multi-processing (SMP), 169

n T
T-SQL

Cfg.GetSSISApplication statement, 382–384
DDL script, 381
SSIS Packages, 382–384
stored procedure, 381–382

n U
User interface parametrization, 332

n V, W
Variables

data types, 84
mapping, 12
syntax in code, 83–84
visibility, 82–83

Visual Studio Configurations
Configuration Manager dialog, 333
description, 332
development, 333
manage parameter values dialog, 334

n X, Y, Z
XML

description, 191
script component

configuration, 201–206
description, 201

■ Index

432

XmlReader and LINQ to XML, 207–209
XmlSerializer, 206–207

source component
attributes, 192
customers database table schema, 194

element/sub-element structure, 191
IsSorted property value setting, 194, 195
Merge Join transform, 197–198
outputs and column names generation, 193
SortKeyPosition property value setting, 196
XSLT, 198–201

XML (cont.)

SQL Server 2012
Integration Services

Design Patterns

Andy Leonard
Matt Masson
Tim Mitchell
Jessica M. Moss
Michelle Ufford

SQL Server 2012 Integration Services Design Patterns

Copyright © 2012 by Andy Leonard, Matt Masson, Tim Mitchell, Jessica M. Moss, and Michelle Ufford

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on
microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation
are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being
entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version,
and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-3771-6

ISBN-13 (electronic): 978-1-4302-3772-3

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every occurrence of
a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and to the benefit of the
trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such,
is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the
authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The
publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Jonathan Gennick
Developmental Editor: Richard Carey
Technical Reviewers: David Dye, Sergio Filho, Allan Mitchell, and David Stein
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel, Jonathan Gennick,

Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson, Jeffrey
Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Adam Heath
Copy Editor: Chandra Clarke
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com/9781430237716. For detailed information about how to locate your book’s source code,
go to www.apress.com/source-code.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com/9781430237716
http://www.apress.com/source-code

For my loving wife, Christy.

--Andy Leonard

vii

Contents

Foreword... xvii

About the Authors... xix

About the Technical Reviewers.. xxi

Acknowledgments.. xxiii

Chapter 1: Metadata Collection■■ ..1

Introducing SQL Server Data Tools.. 1

A Peek at the Final Product... 1

SQL Server Metadata.. 3

Setting Up the Central Repository... 4

The Iterative Framework... 6

Metadata Collection.. 14

Summary... 28

Chapter 2: Execution Patterns■■ ..29

Building the Demonstration SSIS Package.. 29

Debug Execution... 30

Command-Line Execution... 31

Execute Package Utility.. 31

The SQL Server 2012 Integration Services Service... 32

Integration Server Catalogs.. 32

Integration Server Catalog Stored Procedures... 33

■ Contents

viii

 Scheduling SSIS Package Execution.. 53

Scheduling an SSIS Package.. 53

Scheduling a File System Package... 54

Running SQLAgent Jobs with the Custom Execution Framework.. 55

Running the Custom Execution Framework with SQL Agent.. 56

Metadata-Driven Execution... 58

Execution from Managed Code... 58

The Demo Application... 58

The frmMain Form.. 59

Summary... 69

Chapter 3: Scripting Patterns■■ ...71

The Toolset.. 71

Should I Use Script?.. 72

The Script Editor.. 72

Project Explorer.. 73

Full .NET Runtime... 74

Compiler... 74

The Script Task... 75

The Script Component.. 77

Script Maintenance Patterns... 78

Code Reuse... 78

Copy/Paste.. 78

External Assemblies... 78

Custom Tasks/Components.. 79

Source Control.. 79

Scripting Design Patterns.. 79

Connection Managers and Scripting.. 80

Using Connection Managers in the Script Task.. 81

Using Connection Managers in the Script Component... 81

Variables... 82

■ Contents

ix

Variable Visibility ... 82

Variable Syntax in Code ... 83

Variable Data Types ... 84

Naming Patterns .. 85

Summary .. 85

■Chapter 4: SQL Server Source Patterns87 Setting up a Source .

... 87

Selecting a SQL Server Connection Manager and Provider 88

ADO.NET ... 89

ODBC.. 90

OLE DB ... 91

Creating a SQL Server Source Component 92

Writing a SQL Server Source Component Query . .. 94

ADO.NET Data Access .. 95

OLE DB Data Access .. 96

Waste Not, Want Not .. 97

Data Translations ... 97

Source Assistant 97

Summary . .. 99

■Chapter 5: Data Cleansing with Data Quality Services .

..101 Overview of Data Quality Services .

... 101

Using the Data Quality Client ... 102

Using DQS with SSIS .. 107

Cleansing Data in the Data Flow . .. 113

Handling the Output of the DQS Cleansing Transform ... 113

Performance Considerations ... 116

Approving and Importing Cleansing Rules 120

Summary .. 122

■ Contents

x

Chapter 6: DB2 Source Patterns■■ ...123

DB2 Database Family.. 123

Selecting a DB2 Provider... 124

Find Database Version.. 124

Pick Provider Vendor... 125

Connecting to a DB2 Database.. 125

Querying the DB2 Database.. 128

DB2 Source Component Parameters.. 129

DB2 Source Component Dynamic Queries.. 130

Summary... 132

Chapter 7: Flat File Source Patterns■■ ...133

Flat File Sources.. 133

Moving To SSIS!.. 134

Strong-Typing the Data... 136

Introducing a Data-Staging Pattern.. 138

Variable-Length-Rows... 141

Reading into a Data Flow.. 142

Splitting Record Types.. 143

Terminating the Streams.. 144

Header and Footer Rows... 146

Consuming a Footer Row... 146

Consuming a Header Row.. 149

Producing a Footer Row... 151

Producing a Header Row.. 158

The Archive File Pattern.. 162

Summary... 167

Chapter 8: Parallel Data Warehouse Patterns■■ ...169

PDW Architecture Overview.. 170

DWLoader vs. Integration Services... 172

ETL vs. ELT.. 172

■ Contents

xi

Installing the PDW Destination Adapter... 174

The Data Source.. 175

The Data Flow... 177

The Data Source... 178

The Data Transformation.. 179

The Data Destination.. 181

Multi-Threading... 188

Summary... 189

Chapter 9: XML Patterns■■ ...191

Using the XML Source... 191

Dealing with Multiple Outputs.. 192

Making Things Easier with XSLT... 198

Using a Script Component... 201

Configuring the Script Component... 201

Processing XML with XmlSerializer.. 206

Processing XML with XmlReader and LINQ to XML.. 207

Summary... 209

Chapter 10: Expression Language Patterns■■ ..211

Getting to Know the Expression Language.. 211

What is Expression Language?... 211

Why Use Expressions?.. 212

Language Essentials... 213

Limitations.. 213

Putting Expression Language to Work... 214

Package Expressions.. 214

Variable Expressions.. 215

Connection Managers... 215

Project-level Connection Managers.. 217

Control Flow... 217

Data Flow Expressions... 220

Summary... 225

■ Contents

xii

Chapter 11: Data Warehouse Patterns■■ ..227

Incremental Loads... 227

What Is an Incremental Load?.. 227

Why Incremental Loads?.. 227

The Slowly Changing Dimension.. 228

Incremental Loads of Fact Data.. 228

Incremental Loads in SSIS.. 228

Native SSIS Components.. 229

The Slowly Changing Dimension Wizard.. 232

The MERGE Statement.. 234

Change Data Capture (CDC).. 237

Data Errors.. 242

Simple Errors.. 242

Missing Data... 242

Coding to Allow Errors.. 245

Data Warehouse ETL Workflow.. 247

Dividing Up the Work.. 247

One Package = One Unit of Work.. 247

Summary... 249

Chapter 12: Logging Patterns■■ ...251

Essentials of Logging.. 251

Why Logging?... 251

Elements of Logging... 252

Logging in SSIS... 253

SSIS Catalog Logging... 253

Package Logging.. 256

Custom Logging.. 258

What to Capture?.. 259

Logging Systems.. 260

Summary... 260

■ Contents

xiii

Chapter 13: Slowly Changing Dimensions■■ ..261

Slowly Changing Dimension Transform... 261

Running the Wizard.. 262

Using the Transformations.. 266

Optimizing Performance... 267

Third Party SCD Components.. 268

MERGE Pattern.. 269

Handling Type 1 Changes... 270

Handling Type 2 Changes... 271

Summary... 271

Chapter 14: Loading the Cloud■■ ...273

Interacting with the Cloud... 273

Incremental Loads to SQL Azure... 274

Change Detection... 274

New Rows (Only).. 274

Building the Cloud Loader... 275

Summary... 278

Chapter 15: Logging and Reporting Patterns■■ ...279

Package Logging and Reporting... 279

Setting Up Package Logging... 280

Reporting on Package Logging... 281

Design Pattern: Package Executions.. 281

Catalog Logging and Reporting... 281

Setting Up Catalog Logging.. 281

Catalog Tables.. 283

Changing Logging Levels After the Fact... 284

Design Patterns.. 285

Summary... 289

■ Contents

xiv

Chapter 16: Parent-Child Patterns■■ ..291

Master Package Pattern.. 291

Assign the Child Package... 292

Configure Parameter Binding... 293

Dynamic Child Package Pattern.. 294

Child to Parent Variable Pattern.. 298

Summary... 300

Chapter 17: Business Intelligence Markup Language■■ ..301

A Brief History of Business Intelligence Markup Language.. 301

Building Your First Biml File.. 302

Building a Basic Incremental Load SSIS Package... 305

Adding Metadata.. 307

Specifying a Data Flow Task... 308

Adding Transformations.. 308

Testing the Biml... 314

Using Biml as an SSIS Design Patterns Engine... 318

Time for a Test... 324

Summary... 326

Chapter 18: Configuration■■ ..327

Parameters.. 327

Configuring Your Package Using Parameters... 329

Using the Parametrize Dialog... 332

Creating Visual Studio Configurations.. 332

Specifying Entry Point Packages.. 334

Connection Managers... 334

Parameter Configuration on the Server... 335

Default Configuration.. 335

Server Environments.. 337

Default Parameter Values Using T-SQL... 339

Package Execution through the SSIS Catalog.. 339

■ Contents

xv

Parameters with DTEXEC.. 341

Projects on the File System.. 342

Projects in the SSIS Catalog... 343

Dynamic Configurations.. 344

Configuring from a Database Table.. 344

Setting Values using a Script Task.. 348

Dynamic Package Executions... 348

Summary... 350

Chapter 19: Deployment■■ ...351

Project Deployment Model.. 351

SSIS Catalog.. 352

Deployment Methods.. 354

Deployment from the Command Line... 355

Deployment Using Custom Code.. 356

Deployment Using PowerShell... 357

Deployment Using SQL... 358

Package Deployment Model.. 359

Summary... 360

Chapter 20: Estimating ETL Projects■■ ..361

What is being measured?.. 361

Why estimate?... 361

Challenges... 362

It’s difficult because it requires—communication... 362

It’s difficult because it requires guesswork.. 363

It’s difficult because it relies on technology... 363

The secret to estimating ETL project timelines is…... 364

Don’t forget the little things.. 364

Plan for the unexpected.. 365

■ Contents

xvi

Know the personalities involved... 366

Learn to do it right by doing it wrong... 366

When the timeline slips, communicate early and often.. 366

Summary... 366

Appendix A: Evolution of an SSIS Framework■■ ..367

Starting in the Middle.. 367

Introducing SSIS Applications... 376

A Note About Relationships.. 378

Retrieving SSIS Applications in T-SQL.. 381

Retrieving SSIS Applications in SSIS.. 384

Monitoring Execution.. 386

Building Application Instance Logging.. 387

Building Package Instance Logging.. 393

Building Error Logging.. 397

Reporting Execution Metrics... 406

Summary... 420

Index■■ ...423

xvii

Foreword

For me, one of the great pleasures of working at Microsoft was shepherding new products from concept to
release. However, it was even more fulfilling to witness the birth and growth of new communities of users, for
what is a product without a user? Just bits and bytes on a disk. In my role as Group Product Manager of the SQL
Server Integration Services team, it was my privilege to watch the evolution of both the SSIS application and the
social network of users.

The Integration Services team, under the exceptional leadership of Kamal Hathi, delivered a product in
2005– SQL Server Integration Services– that was intended to be not only a powerful application in its own right,
but a platform for customers and partners to extend and expand as their data integration needs changed and
grew over time. Over the years (and through several versions of the product) SQL Server Integration Services has
grown to become an industry-leading technology.

When we started developing what users now call SSIS, anyone building a data warehouse had only two
choices: expensive, highly specialized tools for Extraction Transformation and Loading (ETL), or tedious,
difficult-to-maintain, custom coding. With SSIS we wanted to break through those traditional restrictions: to
deliver a truly scalable tool, simple enough for the beginner, but with the extensibility and programmability of a
platform for the expert.

Little did we anticipate how eagerly the SQL Server user community would embrace this tool! Our user
base grew quickly, and, as in any group endeavor, natural leaders emerged. The authors of this splendid book
are, quite simply, among the most outstanding contributors to the SSIS social network. They are leaders not only
because of their skills, but because of their tireless support and commitment to helping others. This book distills
that learning, and that community focus, into a volume to keep by your keyboard for years.

The challenge with a tool such as SSIS is that there are simply so many possibilities facing the user. If I can
choose a prebuilt component, which one do I choose? If I can extend the capabilities with script, when should
I do that? How do I choose between the many ways to load a slowly-changing-dimension table, or for handling
XML?

SQL Server 2012 Integration Services Design Patterns not only provides solutions to such problems; even
more usefully, this book channels the authors’ extensive experience into patterns. In recent years, design patterns
have proved their value to software developers as flexible templates for addressing recurring problems that still
need specific implementation details. SQL Server 2012 Integration Services Design Patterns takes this approach,
quite uniquely, into the world of data warehousing and ETL.

The result is a collaborative work by experts, suitable for beginners and advanced users alike.
Even though I moved on from the SSIS team, and from Microsoft, some years ago now, it is a pleasure for me

to remain in touch with the user community I admire so much. And it is a honor for me to introduce you to this
much-anticipated and valuable book.

Happy integrating!

Donald Farmer
VP Product Management, QlikTech

xix

About the Authors

Andy Leonard is a SSIS trainer and consultant, SQL Server database and
Integration Services developer, SQL Server data warehouse developer,
community mentor, SQLBlog.com blogger, and engineer. He is co-author
of Professional SQL Server 2005 Integration Services and SQL Server MVP
Deep Dives. His background includes web application architecture and
development, Visual Basic, ASP, SQL Server Integration Services (SSIS), and
data warehouse development using SQL Server 2000, 2005 and 2008.

Matt Masson is a software development engineer working with the SQL Server
Integration Services (SSIS) team. Matt has worked on many aspects of the SSIS
product, including upgrade, performance, and overall user experience. He is a
frequent presenter at Microsoft conferences, and maintains the SSIS Team blog
(http://blogs.msdn.com/b/mattm/). Prior to joining Microsoft in 2006, Matt was a
developer on a number of business intelligence reporting and analytical products.
He lives in Montreal, Quebec, and works remotely with his Redmond-based team.

Tim Mitchell is a business intelligence consultant, database developer, speaker,
and trainer. He has been working with SQL Server for more than eight years,
primarily in business intelligence, ETL/SSIS, database development, and reporting.
He has earned a number of industry certifications, holds a bachelor’s degree in
computer science from Texas A&M University at Commerce, and is a Microsoft SQL
Server “Most Valuable Professional.” Tim is a business intelligence consultant for
Artis Consulting in the Dallas, Texas area. As an active member of the community,
Tim has spoken at venues including numerous SQL Saturday events, Houston Tech
Fest, and various user groups and PASS virtual chapters. He is a board member and
speaker at the North Texas SQL Server User Group in Dallas, serves as the co-chair
of the PASS BI Virtual Chapter, and is an active volunteer for PASS. Tim is an author
and forum contributor on SQLServerCentral.com and has published dozens of
SQL Server training videos on SQLShare.com. You can visit his website and blog at
TimMitchell.net or follow him on Twitter at @Tim_Mitchell.

xx

■ about the authors

Jessica M. Moss is a well-known author, and speaker on Microsoft SQL Server
business intelligence. She has created numerous data warehouse and business
intelligence solutions for companies in different industries, and has delivered
training courses on Integration Services, Reporting Services, and Analysis
Services. While working for a major clothing retailer, Jessica participated in
the SQL Server 2005 TAP program, where she developed best implementation
practices for Integration Services. Jessica has authored technical content for
multiple magazines, websites, and books, and has spoken internationally at
conferences such as the PASS Community Summit, SharePoint Connections,
and the SQLTeach International Conference. As a strong proponent of
developing user-to-user community relations, Jessica actively participates
in local user groups and code camps in central Virginia. In addition, Jessica
volunteers her time to help educate people through the PASS organization.

Michelle Ufford is a SQL Server database developer, Integration Services
developer, Microsoft SQL Server MVP, and self-proclaimed scripting junkie.
She specializes in performance tuning and high-volume VLDB (very large
database) development, although her experience also includes database
automation, operational predictive analytics, and all stages of the data
lifecycle— from OLTP to data warehousing. Michelle is an active member of
the SQL Server community and a frequent presenter, most notably at PASS
Summit. Michelle has a very popular blog at SQLFool.com and can be found on
Twitter at @sqlfool.

xxi

About the Technical Reviewers

David Stein is a Senior Business Intelligence Consultant, specializing in
designing, developing, and maintaining data warehouses using Microsoft
BI Tools focusing on the health care sector. He enjoys helping others as an
active volunteer with his local PASS Chapter, contributor to SQL University,
and presenting at the local and regional level. He also blogs regularly at
Made2Mentor.com.

Allan Mitchell is the joint owner of Copper Blue Consulting Ltd. Copper Blue
Consulting focus on getting the right data to the right people at the right time
and in the right format. We are passionate about data integrity and suitability.
We have worked all over the world in a variety of industries and on projects
both large and small. We specialise in Extract, Transform and Load Complex
Event Processing Master Data Management Data Visualisation Operational and
Predictive Analytics. We offer training as well as consultancy.

David Dye is a Microsoft SQL Server MVP, instructor, and author specializing
in relational database management systems, business intelligence systems,
reporting solutions, and Microsoft SharePoint. For the past 9 years
David’s expertise has been focused on Microsoft SQL Server development
and administration. His work has earned him recognition as: a Microsoft
MVP in 2009 and 2010, a moderator for the Microsoft Developer Network for
SQL Server forums, Innovator of the Year runner-up in 2009 by SQL Server
Magazine, and in the Training Associates Technical Trainer Spotlight in
April 2011. David currently serves as a technical reviewer and coauthor
with APress Publishing in the SQL Server 2012 series, and as an author with
Packt Publishing.

xxiii

Acknowledgments

I would like to thank my coauthors for agreeing to work with me on this project: Matt Masson, Tim Mitchell,
Jessica Moss, and Michelle Ufford are awesome people and outstanding technologists, as this book will bear
out. Our editorial team at Apress is top-shelf. I sincerely appreciate the leadership of Jonathan Gennick who
shepherded this project through many months of writing, editing, and rewriting to deliver this manuscript in
its current form. Kudos to Adam Heath and Mark Powers for their help and communications, and to several
unnamed - yet vital - people at Apress for making this book possible.

I would like to extend special thanks to Donald Farmer for leading the Microsoft program to develop SSIS,
and the many members of the SSIS team - past and present - who have labored to produce and support an
outstanding enterprise data integration product. Many thanks to the members of the SSIS Community who
selflessly share their expertise with me and others on forums and social media.

Whenever I sign up for a book project, Christy signs up, as well. For her unwavering love and dedication to
me and our family, I thank her. I would also like to thank Stevie Ray, Emma, and Riley for as much patience as
children their age can muster; and Steve and Tina Smith for their support and help.

–Andy Leonard

I am incredibly grateful to the large group of people who contributed to making this book a reality. To Andy
Leonard, who first approached me about this idea some 2 years before its printing, I express my thanks for
including me in this project. To Jessica Moss, Matt Masson, and Michelle Ufford, I am honored just to be named
in the same publication as all of you. To Jonathan Gennick, Adam Heath, Mark Powers, and rest of the team at
Apress, thank you for believing in us, and for keeping us on task and on schedule.

Just as importantly, I’d like to thank a smaller team closer to home. To my wife Rachel, to my kids Ryan, Evan,
and Kaylee: thank you for being patient through this whole process. Even though your names aren’t on the cover,
you had as much invested in this book as I did.

–Tim Michell

The writing of this book has been a great experience with a dedicated team. Thank you to my wonderful
coauthors: Andy Leonard, Matt Masson, Tim Mitchell, and Michelle Ufford and the Apress team:
Jonathan Gennick, Adam Heath, and Mark Powers. Thank you to my friends and family for their patience as
I disappeared to write for hours on end and the SQL community for letting me share my knowledge.

– Jessica M. Moss

First and foremost, I want to extend my deepest thanks to Andy Leonard for his efforts on this book. Andy is one
of the smartest and nicest people I know, and I am deeply honored he invited me to be a part of this project. I also
want to thank John Hoang and Brian Davis for their time and invaluable contributions to my chapters; the entire
SSIS, PDW, and SQLCAT teams for building such incredible products and for sharing their knowledge with me;
and Chris Leonard, who encouraged me to get involved in the SQL Server community one afternoon on our way
to Starbucks. Little did I know the impact his advice would have on my life and career. I dedicate my writing to
my children, Chloe and Ethan, who constantly amaze me and fill my life with such love and joy. To Eliza, whose
inquisitive mind inspires me. And most of all, to my husband John, who is the most remarkable father, supportive
friend, and loving husband anyone could hope for.

–Michelle Ufford

	SQL Server 2012 Integration Services Design Patterns
	Contents
	Foreword
	About the Authors
	About the Technical Reviewers
	Acknowledgments
	Chapter 1: Metadata Collection
	Introducing SQL Server Data Tools
	A Peek at the Final Product
	SQL Server Metadata
	Setting Up the Central Repository
	The Iterative Framework
	Metadata Collection
	Summary

	Chapter 2: Execution Patterns
	Building the Demonstration SSIS Package
	Debug Execution
	Command-Line Execution
	Execute Package Utility

	The SQL Server 2012 Integration Services Service
	Integration Server Catalogs
	Integration Server Catalog Stored Procedures
	Adding a Data Tap
	Creating a Custom Execution Framework

	Scheduling SSIS Package Execution
	Scheduling an SSIS Package
	Scheduling a File System Package
	Running SQLAgent Jobs with the Custom Execution Framework
	Running the Custom Execution Framework with SQL Agent

	Metadata-Driven Execution
	Execution from Managed Code
	The Demo Application
	The frmMain Form

	Summary

	Chapter 3: Scripting Patterns
	The Toolset
	Should I Use Script?
	The Script Editor
	Project Explorer
	Full .NET Runtime
	Compiler

	The Script Task
	The Script Component

	Script Maintenance Patterns
	Code Reuse
	Source Control

	Scripting Design Patterns
	Connection Managers and Scripting
	Using Connection Managers in the Script Task
	Using Connection Managers in the Script Component

	Variables
	Variable Visibility
	Variable Syntax in Code
	Variable Data Types

	Naming Patterns
	Summary

	Chapter 4: SQL Server Source Patterns
	Setting up a Source
	Selecting a SQL Server Connection Manager and Provider
	ADO.NET
	ODBC
	OLE DB

	Creating a SQL Server Source Component
	Writing a SQL Server Source Component Query
	ADO.NET Data Access
	OLE DB Data Access
	Waste Not, Want Not
	Data Translations

	Source Assistant
	Summary

	Chapter 5: Data Cleansing with Data Quality Services
	Overview of Data Quality Services
	Using the Data Quality Client
	Knowledge Base Management
	Data Quality Projects
	Administration
	Using the Default Knowledge Base
	Online Reference Data Services

	Using DQS with SSIS

	Cleansing Data in the Data Flow
	Handling the Output of the DQS Cleansing Transform
	Performance Considerations
	Parallel Processing
	Tracking Which Rows Have Been Cleansed
	Filtering Rows with the Lookup Transform

	Approving and Importing Cleansing Rules
	Summary

	Chapter 6: DB2 Source Patterns
	DB2 Database Family
	Selecting a DB2 Provider
	Find Database Version
	Pick Provider Vendor

	Connecting to a DB2 Database
	Querying the DB2 Database
	DB2 Source Component Parameters
	DB2 Source Component Dynamic Queries

	Summary

	Chapter 7: Flat File Source Patterns
	Flat File Sources
	Moving To SSIS!
	Strong-Typing the Data
	Introducing a Data-Staging Pattern

	Variable-Length-Rows
	Reading into a Data Flow
	Splitting Record Types
	Terminating the Streams

	Header and Footer Rows
	Consuming a Footer Row
	Consuming a Header Row
	Producing a Footer Row
	Producing a Header Row

	The Archive File Pattern
	Summary

	Chapter 8: Parallel Data Warehouse Patterns
	PDW Architecture Overview
	DWLoader vs. Integration Services
	ETL vs. ELT
	Installing the PDW Destination Adapter
	The Data Source
	The Data Flow
	The Data Source
	The Data Transformation
	The Data Destination

	Multi-Threading
	Summary

	Chapter 9: XML Patterns
	Using the XML Source
	Dealing with Multiple Outputs
	Making Things Easier with XSLT

	Using a Script Component
	Configuring the Script Component

	Processing XML with XmlSerializer
	Processing XML with XmlReader and LINQ to XML

	Summary

	Chapter 10: Expression Language Patterns
	Getting to Know the Expression Language
	What is Expression Language?
	Why Use Expressions?
	Language Essentials
	Limitations

	Putting Expression Language to Work
	Package Expressions
	Variable Expressions
	Connection Managers
	Project-level Connection Managers
	Control Flow
	Conditional Execution Through Expressions and Constraints
	Task-Level Expressions

	Data Flow Expressions
	Data Cleansing
	Branching
	Application of Business Rules

	Summary

	Chapter 11: Data Warehouse Patterns
	Incremental Loads
	What Is an Incremental Load ?
	Why Incremental Loads?
	The Slowly Changing Dimension
	Incremental Loads of Fact Data

	Incremental Loads in SSIS
	Native SSIS Components
	The Moving Parts
	Typical Uses
	Lookup Caching Options
	Table Cache
	Cache Transformation and Cache Connection Manager

	Load Staging

	The Slowly Changing Dimension Wizard
	The MERGE Statement
	A Little Background
	MERGE in Action
	Auditing with MERGE

	Change Data Capture (CDC)
	CDC in Integration Services
	Change Detection in General
	Checksum-Based Detection
	Detection via Hashbytes
	Brute Force Detection

	Historical Load
	Incremental Load
	Typical Uses

	Data Errors
	Simple Errors
	Missing Data
	Use the Unknown Member
	Add the Missing Dimension Member
	Triage the Lookup Failures

	Coding to Allow Errors
	Fail Package on Error
	Unhandled Errors

	Data Warehouse ETL Work ﬂ ow
	Dividing Up the Work
	One Package = One Unit of Work

	Summary

	Chapter 12: Logging Patterns
	Essentials of Logging
	Why Logging?
	It tells you what has happened in the past
	It tells you what’s happening now

	Elements of Logging

	Logging in SSIS
	SSIS Catalog Logging
	Logging Levels
	Built-In Reports

	Package Logging
	Custom Logging
	What to Capture ?
	Logging Systems

	Summary

	Chapter 13: Slowly Changing Dimensions
	Slowly Changing Dimension Transform
	Running the Wizard
	Using the Transformations
	Optimizing Performance
	Slowly Changing Dimension Transform
	OLE DB Command Transforms
	OLE DB Destination

	Third Party SCD Components
	MERGE Pattern
	Handling Type 1 Changes
	Handling Type 2 Changes

	Summary

	Chapter 14 Loading the Cloud
	Interacting with the Cloud
	Incremental Loads to SQL Azure
	Change Detection
	New Rows (Only)

	Building the Cloud Loader
	Summary

	Chapter 15
Logging and Reporting Patterns
	Package Logging and Reporting
	Setting Up Package Logging
	Reporting on Package Logging
	Design Pattern : Package Executions

	Catalog Logging and Reporting
	Setting Up Catalog Logging
	Catalog Tables
	Changing Logging Levels After the Fact
	Design Patterns
	Changing the Logging Level
	Utilizing Existing Reports
	Creating New Reports

	Summary

	Chapter 16 Parent-Child Patterns
	Master Package Pattern
	Assign the Child Package
	Configure Parameter Binding

	Dynamic Child Package Pattern
	Child to Parent Variable Pattern
	Summary

	Chapter 17 Business Intelligence Markup Language
	A Brief History of Business Intelligence Markup Language
	Building Your First Biml File
	Building a Basic Incremental Load SSIS Package
	Testing the Biml
	Using Biml as an SSIS Design Patterns Engine
	Time for a Test
	Summary

	Chapter 18 Configuration
	Parameters
	Configuring Your Package Using Parameters
	Using the Parametrize Dialog
	Creating Visual Studio Configurations

	Specifying Entry Point Packages

	Connection Managers
	Parameter Configuration on the Server
	Default Configuration
	Server Environments
	Default Parameter Values Using T-SQL
	Package Execution through the SSIS Catalog

	Parameters with DTEXEC
	Projects on the File System
	Projects in the SSIS Catalog

	Dynamic Configurations

	Configuring from a Database Table
	Creating the Database Table
	Retrieving Configuration Values with an Execute SQL Task

	Setting Values using a Script Task
	Dynamic Package Executions

	Summary

	Chapter 19: Deployment
	Project Deployment Model
	SSIS Catalog
	Deployment Methods
	Deployment from the Command Line
	Deployment Using Custom Code
	Deployment Using PowerShell
	Deployment Using SQL

	Package Deployment Model
	Summary

	Chapter 20: Estimating ETL Projects
	What is being measured?
	Why estimate?
	Challenges
	It’s difficult because it requires—communication

	It’s difficult because it requires guesswork

	It’s difficult because it relies on technology

	The secret to estimating ETL project timelines is….
	Don’t forget the little things
	Plan for the unexpected
	Know the personalities involved
	Learn to do it right by doing it wrong
	When the timeline slips, communicate early and often

	Summary

	Appendix A
 Evolution of an SSIS Framework
	Starting in the Middle
	Introducing SSIS Applications
	A Note About Relationships
	Retrieving SSIS Applications in T-SQL
	Retrieving SSIS Applications in SSIS

	Monitoring Execution
	Building Application Instance Logging
	Building Package Instance Logging
	Building Error Logging

	Reporting Execution Metrics
	Summary
	Index

