
Sarah Drasner

 SVG
Animations
FROM COMMON UX IMPLEMENTATIONS TO
COMPLEX RESPONSIVE ANIMATION

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Praise for SVG Animations

Few people are as passionate about animation on the web as Sarah, and her new book is a
treasure trove of knowledge. If you want to animate SVG on the web, you simply must

read this book.
—Jack Doyle, GreenSock

“I find Sarah Drasner’s animations a delight to see—expressive, fluid, and graceful. But
not only is she a superb animator, she can also explain exactly why and how to use the
tools at your disposal to create the animations you desire. Her cogent and lucid prose

guides you through the concepts you will need to understand, and she recommends the
best libraries to use for robust, cross-browser development. Even if you think you know

SVG and animation inside-out, you will not regret owning this essential book.”
—Chris Lilley, inventor of SVG

“SVG Animations is a must-read for anyone working with SVG. Sarah Drasner has put all
the most useful things she knows about animating SVG in one place, showing you how to

make good design decisions around animation and
how to pull it off with expert technical skill.”

—Val Head, author of Designing Interface Animation

“Sarah Drasner is both an incredibly artistic animator and a pragmatic, detail-oriented
web developer. SVG Animations provides practical solutions for animating vector

graphics on the web, using the tools available today, without letting technical limitations
cramp your creativity.”

—Amelia Bellamy-Royds, coauthor of SVG Colors, Patterns &
Gradients, SVG Essentials (second edition), SVG Text Layout,

and Using SVG with CSS3 and HTML5 (O’Reilly)

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Sarah Drasner

SVG Animations
From Common UX Implementations to

Complex Responsive Animation

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

www.allitebooks.com

http://www.allitebooks.org

978-1-491-93970-3

[LSI]

SVG Animations
by Sarah Drasner

Copyright © 2017 Sarah Drasner. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Meg Foley
Production Editor: Shiny Kalapurakkel
Copyeditor: Molly Ives Brower
Proofreader: Rachel Head

Indexer: Wendy Catalano
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

April 2017: First Edition

Revision History for the First Edition
2017-03-16: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491939703 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. SVG Animations, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.allitebooks.com

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491939703
http://www.allitebooks.org

This book is dedicated to Dizzy, my spappem.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Foreword. xi

Preface. xiii

1. The Anatomy of an SVG. 1
SVG DOM Syntax 2
viewBox and preserveAspectRatio 2
Drawing Shapes 4
Responsive SVG, Grouping, and Drawing Paths 5
SVG on Export, Recommendations, and Optimization 9
Reduce Path Points 11
Optimization Tools 12

2. Animating with CSS. 15
Animating with SVG 17
Benefits of Drawing with SVG 19
Silky-Smooth Animation 21

3. CSS Animation and Hand-Drawn SVG Sprites. 23
Keyframe Animation with steps() and SVG Sprites, Two Ways 23

The “Drawing in Illustrator with a Template” Way 27
The “Drawing in an SVG Editor or on Paper Frame-by-Frame and Using

Grunticon to Sprite” Way 28
Simple Code for Complex Movement 29
Simple Walk Cycle 30

4. Creating a Responsive SVG Sprite. 35
SVG Sprites and CSS for Responsive Development 37
Grouping and DRYing It Out 39
The viewBox Trick 41
Responsive Animation 42

5. UI/UX Animations with No External Libraries. 45
Context-Shifting in UX Patterns 45

vii

www.allitebooks.com

http://www.allitebooks.org

Morphing 48
Revealing 48
Isolation 49
Style 50
Anticipatory Cues 52
Interaction 53
Space Conservation 54

Putting It All Together 55
Icons That Transform 55

6. Animating Data Visualizations. 63
Why Use Animation in Data Visualization? 64
D3 with CSS Animation Example 66
Chartist with CSS Animation Example 70
Animating with D3 73

Chaining and Repeating 75

7. A Comparison of Web Animation Technologies. 77
Native Animation 78

CSS/Sass/SCSS 78
requestAnimationFrame() 79
Canvas 79
Web Animations API 80

External Libraries 81
GreenSock (GSAP) 81
Mo.js 82
Bodymovin’ 83

Not Suggested 83
SMIL 83
Velocity.js 83
Snap.svg 84

React-Specific Workflows 84
React-Motion 84
GSAP in React 85
Canvas in React 85
CSS in React 86

Covering Ground 86

8. Animating with GreenSock. 87
Basic GreenSock Syntax 88

TweenMax/TweenLite 88
.to/.from/.fromTo 88

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Staggering 89
Elements 91
Duration 91
Delay 91
Properties to Animate 91
Easing 93

9. GreenSock’s Timeline. 97
A Simple Timeline 97
Relative Labels 99
Nested and Master Timelines 103

Organization 103
Loops 105
Pausing and Events 108
Other Timeline Methods 108

10. MorphSVG and Motion Along a Path. 111
MorphSVG 111

findShapeIndex() 112
Motion Along a Path 114

11. Stagger Effects, Tweening HSL, and SplitText for Text Animation. 121
Staggered Animations 121
Relative HSL Color Animation 125

SplitText 129

12. DrawSVG and Draggable. 133
Draggable 133

Drag Types 135
hitTest() 135
Using Draggable to Control a Timeline 136

DrawSVG 138

13. Mo.js. 143
Base Premises 143
Shapes 143
Shape Motion 146

Chaining 147
Swirls 148
Burst 149
Timeline 151
Tween 151

Table of Contents | ix

Path Easing 152
Mo.js Tools 153

14. React-Motion. 157
<Motion /> 158
<StaggeredMotion /> 163

15. Animating the Unanimatable: Motion with
Attributes and Bare-Metal Implementations. 167
requestAnimationFrame() 167
GreenSock’s AttrPlugin 172
Practical Application: Animating the viewBox 175

Another Demo: A Guided Infographic 182

16. Responsive Animation. 185
Some Quick Responsive Tips 185
GreenSock and Responsive SVG 185
Responsive SVG, with or without GreenSock 190
Responsive Reorganization by Updating the ViewBox 191
Responsive Reorganization with Multiple SVGs and Media Queries 195

Less Pizzazz on Mobile 199
Have a Plan 199

17. Designing, Prototyping, and Animation in Component Libraries. 201
Designing an Animation 201

Working with the Language of Motion 202
Rein It In 203
Have an Opinion 204
Elevate This 205

Prototyping 206
Backward to Move Forward 206
Tools 208
“Murder Your Darlings” 210
Design and Code Workflows 211

Animations in Component Libraries 211
Buy-in 213
Time Is Money 215
The Sky’s the Limit 216

Index. 217

x | Table of Contents

Foreword

Have you ever learned a new word, then had the opportunity to use that word in the
perfect situation come up a number of times that week? That’s what it feels like when
you start learning SVG. To layer on the metaphors, it’s like discovering your toolbox
has been missing a tool all this time.

As a designer and developer, now that I’ve dug into SVG, I can tell you I work with it
almost every single day. Not necessarily because I’m jamming SVG into projects
because I can, but because it’s so often the right tool for the job. After you read this
book and SVG becomes your tool too, I think you too will find yourself reaching for
it regularly. It will pop to mind when you’re working, just like that satisfying moment
when a new word you’ve learned comes in useful.

Perhaps you’ll think of SVG when you need to replace a logo with one that will dis‐
play crisply on screens of any pixel density. Perhaps you’ll think of SVG when you
need an icon system, a chart or graph, or a vector background pattern. Now that
you’re holding this book in your hands, you’ll almost certainly think of SVG when
you think of animation.

SVG is uniquely qualified for animation. It’s the single most powerful tool there is for
animation on the web. Partly that’s because SVG is made of numbers. SVG essentially
draws with geometry. And on the web, numbers are easy and intuitive to manipulate
and animate. Perhaps you know that you can “fade out” an element—a rudimentary
animation—by animating opacity from 1 to 0. So too you could animate the radius of
a circle, the coordinates of a rectangle, or a point along a path.

Another reason SVG animation is so compelling is how many ways there are to do it.
There are a variety of native technologies to choose from, and libraries built on top of
those to help. How do you know what to choose? It requires some knowledge and
consideration. Fortunately, you’ve made the perfect purchase.

Sarah is the ultimate tour guide for all of this. She’s not just an experienced technical
writer, but an accomplished vector artist and frontend developer as well. She has been

xi

bringing her own SVG art to life through animation for years and years. She knows
the tools. She knows the landscape. She knows how to get to the meat of what is
important about all this and explain it.

I’m not gasconading for Sarah without reason. I’ve worked with Sarah and ingurgita‐
ted her knowledge on SVG animation much to my benediction. If you’re thinking
“I’m a frontend developer already, and have gotten by just fine without this,” remem‐
ber that you don’t reach for what you don’t know. Read on, and become an SVG opsi‐
math.

— Chris Coyier

xii | Foreword

Preface

SVG Animation: Where Art and Code Intersect
People joke that working with Scalable Vector Graphics, one must be an archaeolo‐
gist, and as funny as it is, there’s a lot of truth there. SVG has long lain dormant, put
aside for its previous lack of support and understanding. But a few twists in the web
plot have allowed for its resurgence, now-excellent support, and now-strong standing
in the community:

Data visualization
Being able to visually express concepts with the actual data is vital for communi‐
cation of complex concepts.

Responsive
In a world of thousands of devices, viewports, and pixel densities, the ability to
use one graphic and have it be crisp and scale to all of them is a game-changer.

Performance
When SVG is built properly, with reduced path points and simple shapes, it can
offer tiny file sizes that bitmaps can’t compete with. With properly constructed
SVGs we can make our web lightning-fast and available to all.

A navigable DOM
This point is a sleeper hit: you might not immediately notice it as a boon to
development, but SVG’s integration into the DOM means you have the ability to
offer more information to screen readers and make your graphics truly accessi‐
ble. You can also reach right inside and animate or manipulate small sections at a
time. In this book, you’ll discover how powerful a feature this is indeed. No crazy
z-indexing and absolute positioning required!

SVG can move smoothly, freely. We’ve only just hit the surface of its potential. As a
developer, you can feel the rush of dopamine as you watch this flexible medium
bounce and snap. You can create realistic movements or stylized motions that com‐

xiii

plement your branding. The amazing thing about SVG is that you get to draw with
math.

In this book, we’ll cover SVG from start to finish. This means we’ll look at the SVG
DOM, so that working with it doesn’t feel so daunting. We’ll talk about designing
SVGs for performance so that you have lean, clean graphics that help your site and
don’t hurt it. We’ll talk about animating with CSS, go into some theory, and then dive
deeper into some truly advanced techniques with JavaScript for beautiful and inter‐
esting effects. If you’d like to learn about designing SVGs, you’ll do better with the
first part of the book, while JavaScript developers will probably favor the second half.
SVG brings together the worlds of design and development, so the book was written
to accommodate both. I would recommend you read the first chapter, though, either
way: it lays the foundation for a lot of understanding.

Animating SVGs is one of the most exciting parts of the web for me: unlocking the
potential for performance, accessibility, beauty, and creativity, while avoiding some of
the code ugliness and graphic hacks that responsive design sometimes entails. Work‐
ing with this medium has allowed me to create amazing data visualizations that com‐
municate clearly, tell stories, or even just make a user interaction feel a bit more
refined.

Having worked for over 10 years in frontend development, learning SVG animation
has helped me stave off burnout by exciting me when I fell into a rut. I hope you’ll
enjoy working along with the book and producing dynamic graphics for the web. It’s
an exciting time, and there is so much potential… only the smallest part of which has
been fulfilled in web design and development to this point. I look forward to seeing
the work you make with the new skills you will learn here, so that together we can
push the web forward one creation at a time.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

xiv | Preface

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “SVG Animations by Sarah Drasner
(O’Reilly). Copyright 2017 Sarah Drasner, 978-1-491-93970-3.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

Preface | xv

mailto:permissions@oreilly.com
http://oreilly.com/safari

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/2nouksg.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
I’d like to thank Meg Foley for being an incredible editor, whose guidance and
thoughtfulness are always appreciated. Without her, this book would not have been
possible.

I’d also like to thank the tech reviewers, Amelia Bellamy-Royds, Dudley Storey, and
Val Head, whose feedback helped wrangle the book into legible shape! Thank you so
much for your hard work. I’d like to thank Jack Doyle and Carl Schooff of GreenSock,
Cheng Lou of React-Motion, and Oleg Solomka of mo.js too, for reviewing the con‐
tent that addresses use of their libraries. Thanks also for making such amazing tools
for motion on the web! I’m so grateful. Thank you Chris Lilley for inventing SVG,
you’re an inspiration! And thanks to Chris Coyier for the wonderful foreword as well
as for being such a great mentor to me in technical writing, for CSS-Tricks and other‐
wise.

The biggest thanks go to Dizzy Smith, Meagan French, and Donna Ferriero for their
ongoing support, especially when my ambition eyes are too big for my time-in-the-

xvi | Preface

http://www.oreilly.com/safari
http://oreil.ly/2nouksg
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

day stomach. Thank you for your care during the tough times and celebration during
the milestones. You’re the best!

Preface | xvii

CHAPTER 1

The Anatomy of an SVG

Scalable Vector Graphics are becoming increasingly popular as a means of serving
images on the web. The format’s advantages can be deduced from its name:

• SVG images are scalable, which in an age of increasingly varied viewport sizes is a
huge boon to development. With SVG we have one graphic to rule them all that
scales to all devices, and therefore can save us from subsequent HTTP requests.
Even the newer CSS properties such as srcset and picture require different
images to be cut for different viewports, but SVG avoids all of that extra work.

• Vector (rather than raster) means that, because they are drawn with math, SVGs
tend to have greater performance and smaller file sizes.

SVG is an XML file format, and we can use it to succinctly describe shapes, lines, and
text while still offering a navigable DOM; this means it can be performant and acces‐
sible.

In this first chapter, we’ll lay the foundation for an understanding of what this DOM
comprises, because we’ll be reaching within it in order to create complex animations.
We’ll be going over some of the syntax within the SVG DOM so that you know
exactly what you’re manipulating and can debug as needed. We won’t be doing a deep
dive into everything that the SVG DOM has to offer, because it’s out of the scope of
this book. If you’d like more backstory, SVG Essentials by J. David Eisenberg and SVG
Colors, Patterns, and Gradients by Amelia Bellamy-Royds and Kurt Cagle, both from
O’Reilly, are great resources.

1

http://shop.oreilly.com/product/9780596002237.do
http://shop.oreilly.com/product/0636920043065.do
http://shop.oreilly.com/product/0636920043065.do

SVG DOM Syntax
Consider Figure 1-1, and the code that produces it:

<svg x="0px" y="0px" width="450px" height="100px" viewBox="0 0 450 100">
 <rect x="10" y="5" fill="white" stroke="black" width="90" height="90"/>
 <circle fill="white" stroke="black" cx="170" cy="50" r="45"/>
 <polygon fill="white" stroke="black" points="279,5 294,35 328,40 303,62
 309,94 279,79 248,94 254,62 230,39 263,35"/>
 <line fill="none" stroke="black" x1="410" y1="95" x2="440" y2="6"/>
 <line fill="none" stroke="black" x1="360" y1="6" x2="360" y2="95"/>
</svg>

Figure 1-1. The result of the SVG code

Looking at the SVG structure, most of the markup may appear familiar to you. The
syntax is easy to read because of the commonalities with HTML. In the root <svg>
 element, we see a declaration of x and y values—both set to 0 here, for the points in
the coordinate matrix that we’re starting at. The width and height are both designa‐
ted, and you’ll see that they correspond to the last two values in the viewBox.

viewBox and preserveAspectRatio
The SVG viewBox is a very powerful attribute, as it allows the SVG canvas to truly be
infinite, while controlling and refining the viewable space. The four parameters it
takes as a value are as follows: x, y, width, and height. This space is not defined in
pixels, but rather is a more malleable space that can be adjusted to many different
scales. Think of this as mapping out shapes and drawings on a piece of graph paper
(see Figure 1-2).

2 | Chapter 1: The Anatomy of an SVG

Figure 1-2. The SVG viewBox

We can define coordinates based on this system, and the system itself can be self-
contained. We can then alter the size of this sheet of paper, and everything within it.
If we were to designate half the width and height for the SVG, but retain the same
viewBox, the result would be what is shown in Figure 1-3.

Figure 1-3. The result of the viewBox alteration

This is part of the reason why SVG is such a powerful tool for responsive develop‐
ment—it can adjust to multiple viewports very easily.

SVG also stores information outside the viewBox area. If we move a shape outside
this space, we’ll see what’s shown in Figure 1-4.

Figure 1-4. The result of moving a shape outside of the viewBox space

The white area is what the viewer sees, while the white and gray area together hold
the information that the SVG actually contains. This feature allows the SVG to be

viewBox and preserveAspectRatio | 3

both scalable and easy to crop on the fly. This comes in very handy in responsive
applications, particularly sprites.

There is one more aspect of viewBox you should be aware of, invisible in this exam‐
ple. Most SVGs you will see on the web won’t even specify it because the default, pre
serveAspectRatio="xMidYMid meet, is what most people will want more than 9
times out of 10. This forces the drawing area to adjust itself with uniform scaling.

There are several other options as well. The first parameter, xMidYMid, determines
whether or not to uniformly scale the element, and which part of the viewport to
scale from, in camel case (styled like this: camelCase). The default is to scale from the
center, or Mid, but there are several other alignment options, such as xMinYMax. You
may also designate none, in which case the aspect ratio at its default percentages will
be ignored, and the element will be squashed or stretched to fill the available space.

The second parameter can be either meet or slice. meet will attempt to scale the
graphic as much as possible to fit inside the containing viewBox, while keeping the
aspect ratio consistent. This functionality is similar to background-size: contain in
that the image will stay contained in the boundaries of the containing unit.

slice will allow the graphic within the viewBox to expand beyond what the user sees
in the direction specified, while filling up the available area. You can think about it
like background-size: cover in that the image will push beyond the boundaries of
the containing unit to fill up the available user space.

Further Resources

Sara Soueidan has an extremely intuitive and helpful interactive
demo for you to play with in order to see this system in action.
Amelia Bellamy-Royds has a great resource on CSS-Tricks with
tons of cool demos.
Joni Trythall has a really nice resource about the viewBox and view‐
port as well.

Drawing Shapes
Within our SVG, we’ve defined five shapes. rect refers to a rectangle or square. The x
and y values, just as with the SVG itself, are where the shape begins: in this case, its
upper-left corner. The shape’s width and height use the same coordinate system:

<rect x="10" y="5" fill="white" stroke="black" width="90" height="90"/>

The fill and the stroke are designated here as white and black; if nothing was speci‐
fied here, the fill would default to black and the stroke would be none (i.e., invisible).

4 | Chapter 1: The Anatomy of an SVG

http://bit.ly/2lNbuJv
http://bit.ly/2lNbuJv
https://css-tricks.com/scale-svg/
https://css-tricks.com/scale-svg/
http://bit.ly/2m8bULb
http://bit.ly/2m8bULb

circle refers to—you guessed it—a circle:

<circle fill="white" stroke="black" cx="170" cy="50" r="45"/>

cx is the point where the center of the circle lies on the x-axis, cy is the point where
the center of the circle lies on the y-axis, and r is the radius. You can also use ellipse
for oval shapes, the only difference being there are two radius values: rx and ry.

polygon passes an array of values in a space-separated list, defined by points:

<polygon fill="white" stroke="black" points="279,5 294,35 328,40 303,62 309,94
 279,79 248,94 254,62 230,39 263,35"/>

As you might assume, the first value refers to the x coordinate position, comma-
separated from its matching y value to plot the points of this shape.

Lines are fairly straightforward:

<line fill="none" stroke="black" x1="410" y1="95" x2="440" y2="6"/>

<line fill="none" stroke="black" x1="360" y1="6" x2="360" y2="95"/>

The first point of a line is plotted at the x1 and y1 values, and the end of the line at the
x2 and y2 values. I’ve shown two lines here so you can see that the syntax stays con‐
sistent whether the line is straight or diagonal. In terms of code, I didn’t want you
looking at lines sideways.

Responsive SVG, Grouping, and Drawing Paths
Now let’s consider Figure 1-5 and the code that generates it:

<svg viewBox="0 0 218.8 87.1">
 <g fill="none" stroke="#000">
 <path d="M7.3 75L25.9 6.8s58.4-6.4 33.5 13-41.1 32.8-11.2 30.8h15.9v5.5s42.6
 18.8 0 20.6" />
 <path d="M133.1 58.2s12.7-69.2 24.4-47.5c0 0 4.1 8.6 9.5.9 0 0 5-10 10.4.9 0
 0 12.2 32.6 13.6 43 0 0 39.8 5.4 15.8 15.4-13.2 5.5-53.8
 13.1-77.4 5.9.1 0-51.9-15.4 3.7-18.6z" />
 </g>
</svg>

Responsive SVG, Grouping, and Drawing Paths | 5

Figure 1-5. The result of removing width and height definitions

The first thing to notice about this SVG is that we’ve removed the width and height
definitions. You can declare these elsewhere (usually in the CSS, or on the or
<object> element you use to embed the SVG), which makes it very malleable, espe‐
cially for responsive development.

Width and Height Overrides

It’s nice and easy to have CSS control all of the sizing and keep it in
one place, but I sometimes leave the width and height in if I’m wor‐
ried about the CSS not loading properly. If there’s no fallback for
the width and height inline, the SVG will scale to the available
space, which can look pretty ostentatious. For that reason, you may
consider writing these values inline as well. The CSS will override
the presentational attributes (but not inline styles).

The SVG can now scale in percentage or viewport units, and can even be affected by
media queries. The one catch is that you must declare a viewBox in this instance: it is
no longer optional. The default behavior of an SVG with width and height removed
and a viewBox declared is to scale to the maximum parameters of the containing ele‐
ment, which may be the body, a div, or just about anything else.

The second thing I’d like to point out is the <g> element. g stands for group, and it’s a
way to nest and assemble multiple elements together in the SVG DOM. You may also
notice that rather than defining the fill and stroke on elements themselves, we’ve done
so on the group, and you can see it applied across the descendants.

The last and very pertinent thing to note is the path syntax. The path begins with d,
for data, and is always designated with the M or m (for moveTo) command as the first
value. This establishes a new point. Unlike when creating a polygon/polyline, how‐
ever the coordinates specified here are not always points on the final line.

6 | Chapter 1: The Anatomy of an SVG

Table 1-1 shows what each letter in a path means. Letters may be capital or lowercase.
Capital letters specify an absolute coordinate, while lowercase establishes a relative
coordinate.

Table 1-1. Path syntax

Letter Meaning Image, where applicable
M, m moveTo Start of the path
L, l lineTo

H, h Horizontal line drawn from current
position

V, v Vertical line drawn from current
position

Z, z Joins the end of a path to the most
recent moveTo command

End of the path

Curve commands

Responsive SVG, Grouping, and Drawing Paths | 7

Letter Meaning Image, where applicable
C, c Cubic Bézier

S, s Reflecting cubic Bézier

Q, q Quadratic Bézier—where both sides
share the same control point

T, t Command control point that’s been
reflected

A,a Elliptical arc

8 | Chapter 1: The Anatomy of an SVG

Revisiting Figure 1-5 and its code, you can see the difference between the paths by
noting which one has a z at the end of its path data.

Delving further into path data is out of the scope of this book, but there is a great
interactive demo on how path syntax works on CodePen, courtesy of Sten Hougaard.

SVG on Export, Recommendations, and Optimization
You can absolutely create an SVG by hand, or create an SVG drawing with JavaScript
with tools like D3. However, there are times when you may want to design and build
an SVG in a graphics editor such as Adobe Illustrator (see Figure 1-6), Sketch, or
Inkscape. Layers in the graphic will be exported as groups, complete with id values
derived from the layer names. You may find, though, that upon export, your SVG has
a lot of information that the code in the preceding examples does not:

<?xml version="1.0" encoding="utf-8"?>
<!-- Generator: Adobe Illustrator 18.1.1, SVG Export Plug-In . SVG Version:
 6.00 Build 0) -->
<svg version="1.1" id="Layer_1" xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
 width="218.8px" height="87.1px" viewBox="0 0 218.8 87.1"
 enable-background=
 "new 0 0 218.8 87.1" xml:space="preserve">
 <g>
 <path fill="#FFFFFF" stroke="#000000" stroke-miterlimit="10"
 d="M133.1,58.2c0,0,12.7-69.2,24.4-47.5c0,0,4.1,8.6,9.5,0.9
 c0,0,5-10,10.4,0.9c0,0,12.2,32.6,13.6,43c0,0,39.8,5.4,15.8,
 15.4c-13.2,5.5-53.8,13.1-77.4,5.9C129.5,76.8,77.5,61.4,133.1
 ,58.2z"/>
 <path fill="#FFFFFF" stroke="#000000" stroke-miterlimit="10"
 d="M6.7,61.4c0,0-3.3-55.2,20.8-54.8s-7.2,18.1,4.1,29.9
 s8.6-31.2,32.1-15.8S86.7,41,77.2,61.8C70.4,76.8,76.8,79,37.9,
 79c-0.4,0-0.9,0.1-1.3,0.1C9,81,40.1,58.7,40.1,58.7" />
 </g>
</svg>

Here’s the earlier code again for comparison:

<svg viewBox="0 0 218.8 87.1">
 <g fill="none" stroke="#000">
 <path d="M7.3 75L25.9 6.8s58.4-6.4 33.5 13-41.1 32.8-11.2 30.8h15.9v5.5s42.6
 18.8 0 20.6" />
 <path d="M133.1 58.2s12.7-69.2 24.4-47.5c0 0 4.1 8.6 9.5.9 0 0 5-10 10.4.9 0
 0 12.2 32.6 13.6 43 0 0 39.8 5.4 15.8 15.4-13.2 5.5-53.8 13.1-77
 .4 5.9.1 0-51.9-15.4 3.7-18.6z" />
 </g>
</svg>

SVG on Export, Recommendations, and Optimization | 9

http://codepen.io/netsi1964/pen/pJzWoz
http://codepen.io/netsi1964/pen/pJzWoz
https://d3js.org/

You can see it’s much smaller: without proper optimization, you can easily bloat SVG
code.

Illustrator Tip
When using Illustrator, be sure to use File → Export → SVG to save an SVG rather
than using Save As. (This is only available in Illustrator CC 2015.2 or later.) This will
bring up the SVG Options dialog in Figure 1-6.

Figure 1-6. Illustrator SVG export settings

Export will give you a much smaller and more precise output than Save As, which is
not optimized for SVG. I personally always retain a copy or several copies of the .ai
source, because sometimes heavily modified SVGs don’t backport well into Illustrator.

Some of this information is useful, and some we can do away with. The comment
about Illustrator generating the code can certainly be removed. We also do not need
the version or layer information, as the web will not use it and we’re trying to trans‐
mit as few bytes as possible.

If x and y are defined as 0 (usually the case), we can strip those out, too. The only case
where we’d want to leave them in is if we’re working with a child SVG nested inside
another SVG.

We can also strip away the XML definitions if we are using an SVG inline. I will rec‐
ommend using inline SVGs for animations throughout this book because the support
for animation is stronger and there are fewer gotchas. However, there are times when
using an SVG as a background image works well for animation (you’ll see this in

10 | Chapter 1: The Anatomy of an SVG

www.allitebooks.com

http://www.allitebooks.org

Chapters 3 and 4, when we talk about sprites). If you decide to use the SVG in an
object or image, you should keep this XML markup because leaving it out can cause
issues in older browsers:

xmlns="http://www.w3.org/2000/svg"

If you’re not sure whether to use it or not, it’s better to leave it in.

You can also optimize paths. Illustrator will export path data with unnecessary deci‐
mal places that can be removed, and may also export group markup that will clutter
your code. These are only a few examples of the possibilities for compression.

Reduce Path Points
If you’re going to create a hand drawing, you can trace it, but past that point you
should use Object → Path → Simplify. See Figure 1-7 for a shot of the Simplify dialog
box. You will need to check the Preview box, as changes made at this stage can poten‐
tially ruin the image. The image quality will tend to degrade quickly as the curve pre‐
cision is lowered, so 91% is usually the lowest you can get away with. The number of
points removed at this level still reduces the file size dramatically.

Figure 1-7. With the Simplify dialog box in Illustrator, you can reduce the size of your
files dramatically

Reduce Path Points | 11

This is also probably the quickest way to accomplish this type of reduction. A more
labor-intensive way that I use for smaller, unnecessarily complex pieces is to redraw
them with the Pen tool. Sometimes this is very little effort for a large payoff, but it
really depends on the shape.

It may seem intimidating at first, but you can use the Pen tool to quickly make more
complex areas, using the Pathfinder tool to merge them all together (see Figure 1-8).
If it doesn’t look quite right, don’t fear! You can reduce the opacity a little (so that you
can see what you’re trying to emulate in the shape underneath), then use the Direct
Selection tool, (A in quick keys, or the white arrow on the toolbar) to drag the points
of the shape around until you get a more refined result. It also never hurts to zoom in
a bit to see fine details.

Figure 1-8. Draw shapes quickly and merge them together to create complex paths
without a lot of path points

Optimization Tools
You don’t need to strip this information out by hand, though. There are many great
tools for optimizing SVGs and they offer more ways to help trim your code, such as
rounding and rewriting numbers, merging path data, removing unneeded groups,
and more.

The following list includes some of the available open source tools. The ones that vis‐
ually show the output tend to be the most useful, as you can see how optimization
may change the result:

12 | Chapter 1: The Anatomy of an SVG

SVGOMG
Jake Archibald has created a really nice web-based GUI for the terminal-based
SVGO (see below). This tool is the most robust and easy to work with, and
includes many toggle optimization options. SVGOMG shows the relative visual
output and the byte-saving comparison after optimization.

SVG Editor
Peter Collingridge’s SVG Editor is very similar to SVGOMG, with slightly fewer
options. A nice feature is that you can edit the SVG right in another panel in case
you need to adjust the output just slightly. It’s web-based, with a nice visual inter‐
face.

SVGO
SVGO is terminal-based, with no visual GUI; however, you can add one with
SVGO-GUI (https://github.com/svg/svgo-gui). This requires a bit more setup but
is a workflow boon if you’re more comfortable working in your terminal than
popping in and out of the browser. The functionality powers SVGOMG as well.

Please be aware that you will need to change and adjust optimization settings depend‐
ing on what you’re trying to achieve in your animation. Get comfortable with adjust‐
ing these options rather than settling for the defaults, as doing so will save you
considerable time later. You may find that a very busy animation requires repeated
optimizations while you’re developing; for this reason, I recommend leaving your
graphics editor and optimization tool open while working with your code editor to
make your workflow as seamless as possible.

Default Export Settings to Be Aware Of

Be mindful of some of the defaults when you’re exporting. The
ones that I find myself checking and unchecking the most are:

• Clean IDs—This will remove any carefully named layers you
may have.

• Collapse useless groups—You might have grouped them to ani‐
mate them all together, or just to keep things organized.

• Merge paths—Nine times out of 10 this one is OK, but some‐
times merging a lot of paths keeps you from being able to
move elements in the DOM around independently.

• Prettify—This is only necessary when you need to continue
working with the SVG code in an editor.

Optimization Tools | 13

https://jakearchibald.github.io/svgomg/
http://petercollingridge.appspot.com/svg-editor-
https://github.com/svg/svgo-
https://github.com/svg/svgo-gui

CHAPTER 2

Animating with CSS

You may find working with SVG code feels very familiar, mostly because an SVG has
a DOM, just like standard HTML markup. This is hugely valuable when working
with CSS animations, as manipulating markup with CSS is already a very comfortable
process for most frontend developers.

For a very brief review, let’s first establish that a CSS animation is created by defining
two parameters. First, there are the keyframes themselves:

@keyframes animation-name-you-pick {
 0% {
 background: blue;
 transform: translateX(0);
 }
 50% {
 background: purple;
 transform: translateX(50px);
 }
 100% {
 background: red;
 transform: translateX(100px);
 }
}

Keyframe Syntax Hint

You can also define from and to instead of percentages. If you
declare nothing in either the initial keyframe or the ending key‐
frame, the animation will use the default or declared properties on
the element. It may be worth double-checking your work in all
browsers if you do remove them, though, due to strange and
inconsistent browser bugs.

15

After you define the keyframe values, you have two options for animation syntax dec‐
laration. Here’s an example of the long form, with each declaration defined separately:

.ball {
 animation-name: animation-name-you-pick;
 animation-duration: 2s;
 animation-delay: 2s;
 animation-iteration-count: 3;
 animation-direction: alternate;
 animation-timing-function: ease-in-out;
 animation-fill-mode: forwards;
}

And here’s the shorthand (my preferred method, as it uses less code):

.ball {
 animation: animation-name-you-pick 2s 2s 3 alternate ease-in-out forwards;
}

The order of the declarations is interchangeable in a space-separated list, except for
the number values, which must be defined in this order: duration, delay, and iteration
count.

Let’s apply this animation to this very simple .ball div (shown in Figure 2-1):

.ball {
 border-radius: 50%;
 width: 50px;
 height: 50px;
 margin: 20px; // so that it's not hitting the edge of the page
 background: black;
}

Figure 2-1. The result of applying .ball div

We get the result in Figure 2-2, with interstitial states shown less opaque.

16 | Chapter 2: Animating with CSS

Figure 2-2. The result of adjusting the ball div

You can see all the code in action in a demo I created.

For more information and further detail about each animation property, such as what
animation-fill-mode is, what eases are available in CSS, and which properties are
animatable, see Transitions and Animations in CSS by Estelle Weyl (O’Reilly).

You can also consult Pro CSS3 Animation, by Dudley Storey (Apress).

Animating with SVG
Let’s say instead of drawing the ball with CSS, we had drawn it with SVG. We know
how to do that from the last chapter. To get the same black circle as in Figure 2-1, we
would write:

<svg width="70px" height="70px" viewBox="0 0 70 70">
 <circle fill="black" cx="45" cy="45" r="25"/>
</svg>

We define the radius as half of 50, so 25 px. Then we move the center of the circle on
both the x- and y-axes (cx and cy) to half the radius, plus that 20 px margin we added
in the CSS. We could also use margin on the SVG element to move it, but here I’m
illustrating that you can draw coordinates directly in the SVG itself. If we move the
circle over, though, the viewBox has to be larger to accommodate these coordinates:
it’s the width plus the margin of space to the edge.

Now, if we place a class on the whole SVG called ball, using the same animation dec‐
laration, we get what’s shown in Figure 2-3.

Animating with SVG | 17

http://bit.ly/2lSB8KZ
http://shop.oreilly.com/product/0636920041658.do

Figure 2-3. The result of placing the ball class on the SVG

What happened here? It still moved across, as we were expecting. But the background
is filling in the full background of the SVG, thus the entire viewBox. That’s not really
what we want. So what happens if we move that class and target the circle instead? See
Figure 2-4.

Figure 2-4. The result of moving the ball class

You may have guessed why we have this output. There are two reasons:

1. The circle is moving inside the viewBox. Remember, if we move an internal
SVG attribute, the viewBox will quite literally be a window through which we
view these elements. So if we move the circle without making the viewBox large
enough to accommodate those coordinates, it will be cut off when the circle
moves out of the viewBox.

2. The SVG DOM looks like the HTML DOM, but it’s slightly different. We don’t
use background on SVG attributes; we use fill and stroke. An external style‐
sheet will also have a hard time overriding what is defined inline within the SVG.
So let’s take out the fill definition, and move that into our stylesheet.

The resulting code should be this:

<svg width="200px" height="70px" viewBox="0 0 200 70">
 <circle class="ball3" cx="45" cy="45" r="25"/>
</svg>

And here’s the CSS:

18 | Chapter 2: Animating with CSS

.ball3 {
 animation: second-animation 2s 2s 3 alternate ease-in-out forwards;
}

@keyframes second-animation {
 0% {
 fill: blue;
 transform: translateX(0);
 }
 50% {
 fill: purple;
 transform: translateX(50px);
 }
 100% {
 fill: red;
 transform: translateX(100px);
 }
}

The result is Figure 2-5, but with an SVG instead of an HTML div.

Figure 2-5. The result of taking out the fill definition and moving it to the stylesheet

Benefits of Drawing with SVG
So, why learn SVG when you could build something in CSS-styled HTML and ani‐
mate that way?

First of all, even that small, simple circle was four lines less than the CSS version. SVG
was built for drawing—unlike CSS, which was built for presentational format‐
ting. Let’s look at the code for the star from the first chapter of this book:

<polygon fill="white" stroke="black" points="279,5 294,35 328,40
 303,62 309,94 279,79 248,94 254,62 230,39 263,35 "/>

It would be incredibly difficult to draw a star in CSS with such a small amount of
code, and impossible for the code to be that concise once compiled, if using a prepro‐
cessor.

Figure 2-6 is something I drew in Illustrator.

Benefits of Drawing with SVG | 19

Figure 2-6. An example of the ease of Illustrator

We could also probably draw this in CSS, but to what end? If you’re working with a
designer on a project, having them draw something for you in CSS is not typically an
option, and drawings that you want to animate can get much more complex than this.
In SVG you can also make the whole image scale easily, and therefore, your whole
animation can be responsive.

All of the information for the illustration is just 2 KB gzipped, and it can fill up a
whole screen. That’s pretty amazing if you consider raster image alternatives.

Applying what we just learned about the circle, we can look at some of these shapes
and think about what we can do with them. We could group all of the parts of the
cow together and make it jump over the moon. We could make the astronaut’s “sur‐
prised” expression disappear and appear. We can even make the helmet go up and
down so it looks like the astronaut is looking up. (That is actually what I did in the
final animation.)

20 | Chapter 2: Animating with CSS

Silky-Smooth Animation
It’s tempting to use all of the same properties that you use to affect layout with CSS:
margin, top, left, etc. But browsers do not update values for all properties equally.
To animate cheaply, your best bet is to use transforms and opacity. That might seem
limiting, but transforms offer translation (positioning), scale, and rotation. Using
these in combination with opacity can be extremely powerful. It’s surprising how
much can be achieved with these properties in standard animations.

Throughout this book, I will use these properties wherever possible while demon‐
strating various techniques. It is important to note that SVG DOM elements are cur‐
rently hardware-accelerated only in some browsers (for instance, hardware
acceleration is supported in Firefox but not Chrome), but you should still be moving
the SVG DOM with transforms, not margins or other CSS positioning.

At the time of publishing, Microsoft Internet Explorer (IE) and Edge did not support
transforms on SVG elements at all—but you can vote on these issues and more on the
Windows Developer Feedback site.

Until this is supported, your best bet for Edge is using either native SVG transforms
(which are a pain and you’ll need JavaScript for) or the GreenSock Animation API,
which has support back to IE9.

For more information on how to properly keep your layout repaint costs low (these
are Chrome-specific resources), check out Jank Free and High Performance Anima‐
tions.

For information on the costs of individual properties, see CSS Triggers.

Silky-Smooth Animation | 21

http://bit.ly/2lkk4f8
http://bit.ly/2lkk4f8
http://jankfree.org/
http://bit.ly/2lPFlRo
http://bit.ly/2lPFlRo
http://csstriggers.com/

CHAPTER 3

CSS Animation and Hand-Drawn
SVG Sprites

SVG performs extremely well as an icon format, but we’ll move a step further and use
SVG sprites in performant complex animations using three different techniques. The
first two are closely related to cel animation, while the third, detailed in Chapter 4, is
a technique I recommend for more complex responsive animations and interactive
SVGs.

From a design perspective, this is a more advanced animation technique. We’re dis‐
cussing it at this point in the book because the actual animation can be created purely
with CSS. The book follows a progression based on animation technology (first CSS,
then JavaScript libraries, then bare-metal JS), but feel free to skip around; Chapter 7
offers a comparison of animation techniques.

Keyframe Animation with steps() and SVG Sprites, Two
Ways
If you’ve ever seen a Looney Tunes or old Disney animation, you might have been
impressed with the fluid movement, considering that every frame was hand-drawn.
Such effects are possible on the web with SVG sprites, and we can stand on the
shoulders of previous animators while employing new development techniques.

Of all web-based animation techniques, step animation most closely resembles these
old hand-drawn cel animations. Cel is short for “celluloid,” a type of transparent
material used by animators to draw on top of their previous drawings, thereby defin‐
ing a sequence and creating the illusion of movement. This technique functioned a
bit like a flip book. Each drawing was captured on film, frame by frame. There were

23

usually several layers to these drawings to save time—you wouldn’t want to redraw
the background again and again just to show the same scene.

In order to save steps in drawing, the background would be painted, and then the
character or sometimes even just pieces of the character’s face, like the mouth or eyes
—would be adjusted. See Figures 3-1 and 3-2 for an example of the layering.

Figure 3-1. Hand-painted cel with transparency (image courtesy of John Gunn)

Cel Animations as Scoping

You can think of this technique like writing web page templates:
you start from the base template and create smaller pieces, so you
can manage an individual thing that’s happening in one piece sepa‐
rately from everything else.

24 | Chapter 3: CSS Animation and Hand-Drawn SVG Sprites

Figure 3-2. Hand-painted cel with painted background behind (image courtesy of John
Gunn)

We can mimic this analog process by using a single motionless background, then
quickly showing a series of images on top. This gives the illusion of movement
without any real interpolation. Instead of a series of separate image files, we will
simultaneously reduce the number of HTTP requests and simplify our keyframes by
using a single SVG sprite sheet (Figure 3-3). This technique is great for more complex
shapes and expressive movement than simple transforms can offer.

Because this technique relies heavily on design, we’ll go through the design workflow
first, and then go through the code. You can find what the final animation looks like
on my CodePen page.

Typically when showing interpolated (i.e., rapidly changing) images on the web, we
should push the maximum frames per second (fps) possible to achieve the silkiest
animation. This technique is one exception to that rule. Since we have to draw every
single frame, we’re going to try to get as much bang for our hand-drawn buck as pos‐
sible (see Figure 3-4). Years ago, animators spent a lot of time trying to find a good
balance between realistic movement and the fewest number of drawings. Old film
was shot at 24 fps, and animators largely regarded “shooting on twos” (meaning one
drawing over two frames, or 12 fps) as the standard for an illusion of movement.
Drop to anything lower than this, and your eye will discern a slight choppiness
(which some animators even used as a creative decision!). We’ll use their work in
finding these bounds of illusion to our benefit, stick to the 12 fps rule, and create a
21-part drawing for a 1.8 s animation. The 21 here comes from the number of frames
that we chose, but can be any number you like.

Keyframe Animation with steps() and SVG Sprites, Two Ways | 25

http://codepen.io/sdras/pen/LEzdea/

Figure 3-3. Stills for our splash animation

26 | Chapter 3: CSS Animation and Hand-Drawn SVG Sprites

Figure 3-4. Our artboard with guides and frame-by-frame drawing

The “Drawing in Illustrator with a Template” Way
There are two ways of creating the series of drawings for this type of animation; both
work equally well, but they use different automation processes for the images. The
challenge we face in each workflow is keeping the drawing steadily placed in the cen‐
ter of the frame throughout a large sprite; even the best drawing will look flawed if
the drawing jumps as we run through each frame.

I use Illustrator for this technique, but you could theoretically use Sketch or any other
graphics editor. First, we decide how big the animation is and multiply that number
by 21 in one direction (the number of frames in our animation), determining the
length of our artboard. We drag a box around that area and choose Object → Path →
Split Into Grid. Then we enter the number of rows we want (or columns, if we wish to
make a horizontal sprite sheet) and click OK. Finally, we choose View → Guides →
Make Guides, and our template is all set.

If you’re drawing directly in the graphics editor, I recommend placing your first
drawing within the first box, and creating a box around it that frames it within the
guides. You can then copy everything into the next box (including the box frame)
using the alignment line or Shift + drag, which will keep it steady. Use the box frame
again to fit it into the next guide’s space.

Keyframe Animation with steps() and SVG Sprites, Two Ways | 27

Using the Direct Selection tool (the white arrow), you can then drag and reshape the
pieces of your image for each frame. Fair warning: don’t be tempted to front-load
your work here by copying and pasting it all at the start—this process works best if
you build each frame from the previous one.

You can also do a screencast of something so that you can walk through the stills and
place each image in the Illustrator doc and trace it, either with Illustrator’s native
trace functionality, or with the Pen tool for a hand-drawn feel and more concise
paths.

At the end of this process we will have a long sprite sheet. We can export that directly
as an SVG as well as a PNG, which we’ll use as a fallback with a body class hook in
Modernizr (for more about Modernizr, see “Using Modernizr” on page 30):

.splash {
 background: url('splash-sprite2.svg');
 ...
 animation: splashit 1.8s steps(21) infinite;
}

/* fallback */
.no-svg .splash {
 background: url('splash-sprite2.png');
}

At this point, though, fallbacks might not be necessary, so it’s recommended you
check your analytics and consult the caniuse.com tables for SVG support.

The “Drawing in an SVG Editor or on Paper Frame-by-
Frame and Using Grunticon to Sprite” Way
The first process will still look like an Illustrator drawing, but you may want a hand-
drawn feel. If this is the case, it’s very easy to draw by hand and scan it in. Old anima‐
tion studios used lightboxes and celluloid sheets so that they could trace their
previous drawing incrementally. You don’t necessarily need these materials to try this
technique, though. By placing a lamp underneath a glass table, you can easily make a
poor man’s lightbox. This setup shines enough light so that you can see through even
regular opaque copy paper. To create each new frame, place a piece of paper or vellum
over your last drawing and change the drawing slightly until you have a series. You
can then scan this set of drawings and vectorize them, placing them correctly with
reduced opacity and guides.

If you’d rather draw each piece frame by frame in the editor but don’t know how
many frames you will be creating, you can draw each one separately, shifting the
image slightly each time and saving every new version to a folder. Illustrator’s new
export settings are good enough that that you can do so without all the old cruft and

28 | Chapter 3: CSS Animation and Hand-Drawn SVG Sprites

http://caniuse.com/

comments. Be sure to export with Export → SVG rather than Save As → SVG. You
must make sure that what you’re initially saving is indeed an SVG and not an AI (or
any other) file type. You can then use Grunticon to compress and sprite them auto‐
matically. There’s a great article on CSS-Tricks explaining how to do so. Notably,
Grunticon also generates a fallback PNG automatically.

Personally, I think if you draw each frame by hand, it makes the most sense to just
make sure the placement on each artboard is consistent and use Grunticon, but the
Illustrator template technique has the benefit of allowing you to see all of your work
at once, which gives you more of a holistic understanding of what you’re making.

Simple Code for Complex Movement
This type of sprite makes use of the smallest amount of code for the most amount of
believable movement. We intentionally keep the code DRY (an acronym that means
don’t repeat yourself), simple, and clean. The greatest thing about this type of move‐
ment is that we rely enough on the sprite to not need a lot of code to achieve an illu‐
sion of movement through space.

We absolutely position a smaller area of movement because we want to show a con‐
sistent experience across desktop and mobile. Our aim is to cycle through the entire
image, but stop momentarily at each individual picture in the image, and thankfully,
steps() in CSS allows us to do just that. We’ve already done a lot of the heavy lifting
in our design, so the code to create the effect is very small.

There’s no need for complex percentages and keyframes. All we need to do is use the
image height as a negative integer on the 100% keyframe value for the background
position:

@keyframes splashit {
 100% { background-position: 0 -3046px; }
}

Here, we don’t have to use .container-fluid, because it’s easy to have the SVG take
up the whole screen on mobile devices. In the splash div, we animate using steps()
for the number of frames we had in the SVG:

.splash {
 background: url('splash-sprite2.svg');
 ...
 animation: splashit 1.8s steps(21) infinite;
}

Using an SVG rather than a PNG gives us the advantage of a crisp image on all dis‐
plays, but it’s easy to provide a fallback. We use Modernizr to create a class hook on
body and can still animate it with the PNG we created:

Keyframe Animation with steps() and SVG Sprites, Two Ways | 29

http://www.grunticon.com
http://css-tricks.com/inline-svg-grunticon-fallback/

/* fallback */
.no-svg .splash {
 background: url(‘splash-sprite2.png’);
}

We don’t simply use the PNG because at different resolutions it will look fuzzy, while
the SVG will remain crisp.

Using Modernizr
Modernizr is a feature detection library. It allows you to work with advanced features
on the web while providing fallbacks, or progressively enhance features by checking
to see if they are available. It’s a highly customizable library that provides classes on
the body element that you can hook into for different experiences, like the .no-svg
tag in the preceding example. I highly suggest working with a custom build for your
unique purposes—the entire library is a lot of overhead, and you’ll likely only use a
small portion of it.

Simple Walk Cycle
If you take the steps() value out of the last animation, you’ll see something interest‐
ing. Instead of creating a seamless moving drawing, the background rolls through.
We can use that to our advantage for a nice layered background with spatial place‐
ment and movement.

Let’s consider a walk cycle, that shows a ghostly figure walking through a looping,
multidimensional, outlined landscape.

We can create this using the previous technique with the cels/steps, with drawings
that show a walk cycle. We’ll use a manual animation technique to change the color
by shifting the color in each frame. Alternatively, we could have used a filter with a
shift for hue-rotate, but as long as we are creating all of these frames by hand the
amount of work required to change the color here is minimal, and the cost of the fil‐
ters on performance, while not huge, is one we can do without.

30 | Chapter 3: CSS Animation and Hand-Drawn SVG Sprites

www.allitebooks.com

https://modernizr.com/
http://codepen.io/sdras/pen/azEBEZ
http://www.allitebooks.org

CSS Filter Demos
If you do choose to work with filters, there are a number of sites that demo great
capabilities with CSS filter effects. Here are just a few:

• HTML5 Demos, the source of the preceding images
• CSS Filter Playground by Bennett Feely
• CSSReflex
• My personal favorite, CSSGram by Una Kravets, which mixes filters to make

some great Instagram-like effects

Keep in mind that animating filters can be very costly. I tend to avoid animating
them, or use a setTimeout that will apply the attribute or CSS strictly for the time I
need it, and then remove it.

It’s still important that the steps() and animation-duration ratio fall around the 12
fps range. We can scroll through each version of the images presented by animating
the background position of the SVG sprite sheet. In order to keep everything consis‐
tent, we’ve made all of the background images the same size (see Figure 3-5), which
lends itself well to the use of an @extend if you’re working with Sass:

/*--extend--*/
.area {
 width: 600px;
 height: 348px;
}

.fore, .mid, .bk, .container { @extend .area; }

Keyframe Animation with steps() and SVG Sprites, Two Ways | 31

http://bit.ly/2lSARYv
http://bennettfeely.com/filters/
http://www.cssreflex.com/css-generators/filter/
http://una.im/CSSgram/

Figure 3-5. Fluidity and consistency in images

32 | Chapter 3: CSS Animation and Hand-Drawn SVG Sprites

To create the impression of fluid linear infinite movement, the three background
images must be able to repeat seamlessly on the x-axis so that when they scroll
through there are no seams. This can be achieved by making each end identical, or, as
in this case, using an image that is sparse enough that it can completely flow through
(Figure 3-6). If you’re working with the latter, it’s important to marry the beginning
state and end state in a graphics editor like Illustrator or Sketch to ensure it looks OK
while you’re building the graphic.

Figure 3-6. We’ll layer SVGs to create an illusion of depth

Keyframe Animation with steps() and SVG Sprites, Two Ways | 33

Each element uses the same keyframe values, but we set apart their animations with
an incremental decrease in seconds the further back their z-index goes. If you look
around you, things that are closer to you are in sharper contrast and appear to move
faster than things that are further away. Our animation will mimic this effect by
increasing the second integer (and thus having longer animations) for the SVGs in
the background. This yields a nice parallax effect. There are three parallaxed back‐
ground images in this example that don’t include the figure:

.fore {
 background: url('fore.svg');
 animation: bk 7s -5s linear infinite;
}

.mid {
 background: url('mid.svg');
 animation: bk 15s -5s linear infinite;
}

.bk {
 background: url('bkwalk2.svg');
 animation: bk 20s -5s linear infinite;
}

@keyframes bk {
 100% { background-position: 200% 0; }
}

We don’t need multiple intervals for this kind of animation, because keyframes will
interpolate values for us. In the event that the number of pixels in the scrolling sprite
sheets changes in the future, we don’t have to update the amounts, because we set it
with a percentage. The use of negative delays ensures that the animation is running
from the start. All of the SVGs are optimized and have a PNG fallback.

34 | Chapter 3: CSS Animation and Hand-Drawn SVG Sprites

CHAPTER 4

Creating a Responsive SVG Sprite

The “scalable” part of SVG is perhaps the most powerful aspect of the graphics for‐
mat. Using the viewBox attribute and our knowledge of shapes and paths, we can crop
an SVG to any size on the fly, knowing that our intentions within the coordinate
space will be preserved.

If we remove the width and height attributes from a common SVG, we’ll see some‐
thing interesting. The SVG expands itself to the full width of the viewport, maintain‐
ing the aspect ratio of everything within the DOM.

If we use CSS keyframes or JavaScript to move SVG elements such as circle or path
while scaling this SVG up or down, the increments that they will move will scale as
well, along with the graphic. This means that if you scale a complex SVG using percen‐
tages, a flexbox, or other techniques, your animation will scale accordingly. You don’t
have to adjust anything for mobile or other sizes; you can focus on writing the code
correctly one time.

The completed animation is completely scalable. In the following CodePen example,
you can randomly resize the animation while it’s running and watch it instantly
adjust. This is very useful for responsive development. The animation in Figure 4-1
uses a completely fluid approach.

35

http://codepen.io/sdras/full/jPLgQM/

Figure 4-1. Different states of the same animation at different sizes

We design the whole thing first, and then slowly reveal things. Figure 4-2 is what our
initial SVG (before we add any animation) looks like.

Figure 4-2. Original design in Illustrator—we design everything first, and then slowly
reveal things

We could also design for responsiveness SVG in two other ways. In this chapter, we’ll
do a deep dive into a technique that uses SVG sprites, similar to the ones we created
in Chapter 3. This is easy to work with in CSS. In Chapter 15, we’ll cover a more
advanced JavaScript approach as we hide, show, collapse, and rearrange our content.

36 | Chapter 4: Creating a Responsive SVG Sprite

SVG Sprites and CSS for Responsive Development
Joe Harrison has demonstrated a really nice way of collapsing SVG sprites for less vis‐
ual information on mobile, shown in Figure 4-3. We’re going to use that to our
advantage and create a similar, incrementally more complex sprite as we shift view‐
ports from mobile to desktop.

Figure 4-3. Joe Harrison’s very impressive SVG logo sprites

As our screen sizes shrink and grow, the graphic follows suit and condenses or reveals
visual complexity. It’s helpful to the user to not be served visually complex graphics
on small displays, where too much information can become noise. Animations can be
modified with the same considerations as the typography and layout, adjusting to the
viewport and clarifying the design.

We’re going to be working with a responsive illuminated drop-capital letter to show
how a standalone illustration can adjust (Figure 4-4). The design was inspired by the
Book of Kells, an incredibly decorated medieval manuscript, to show how a stand‐
alone drawing can adjust to different viewport sizes. We start from this design, which
we’ll use as our “map.” Other people plan differently, working in-browser or making
sketches; choose whatever method makes you most productive.

SVG Sprites and CSS for Responsive Development | 37

http://responsiveicons.co.uk/
http://responsiveicons.co.uk/
http://codepen.io/sdras/full/xbyopy/

Figure 4-4. Designing our “map”

38 | Chapter 4: Creating a Responsive SVG Sprite

Grouping and DRYing It Out
Now that we know how the final product appears, we can refactor the design to group
like sections together, based on what’s most important for the associated viewport
width. We can also simplify the design by identifying shapes used in both the first and
second versions, keeping just one copy of each shared shape.

All of the elements are assigned semantic ID names such as “mountain” or “bridge.”
The most detailed shapes also get a shared ID that we can progressively show for
larger viewports. If the first illustration is kells1, the group particular to the second
illustration is kells2, and the last is kells3.

In order to make the SVG scalable to shared container values, the last illustration
becomes the same size as the first; SVG’s built-in responsiveness will take care of the
rest.

We end up creating only two areas of the sprite sheet, with both having the same
width so that we can scale the whole image at once (Figure 4-5). The top graphic is
more complex; it holds information for both the tablet and desktop instances.

Grouping and DRYing It Out | 39

Figure 4-5. The sprite once we reduce repetition and get it ready for export

Once we have this view, we run it through SVGOMG, using the web-based GUI to
check that there’s no distortion and toggling off the option to Clean IDs and also Col‐
lapse Useless Groups. We can later change the IDs to classes if we wish and clean up

40 | Chapter 4: Creating a Responsive SVG Sprite

some of the cruft from the export. I do this by hand or with find and replace, but
there are myriad ways to accomplish it.

The optimized SVG is placed inline in the HTML rather than included as a source
URL background image like in the previous techniques. Now we can set areas to hide
and show with a mobile-first implementation:

@media screen and (min-width: 701px) {
 .kells3, .kells2 {
 display: none;
 }
}

We can also adjust the animation parameters slightly, depending on the viewport, in
order to refine the movement for each version:

[class^="mountain"], [class^="grass"] {
 ...
 transform: skew(1.5deg);
}

@media screen and (min-width: 500px) {
 [class^="mountain"], [class^="grass"] {
 transform: skew(2deg);
 }
}

At this point the width and height are removed from the SVG and we can add in
preserveAspectRatio="xMidYMid meet" (though that’s the default, so it’s not strictly
necessary) to make the SVG fluid. With these alterations, it will adjust to the con‐
tainer size instead, which we set based on percentages (a. flexbox or any other
responsive container would work here too):

.initial {
 width: 50%;
 float: left;
 margin: 0 7% 0 0;
}

The viewBox Trick
There is one catch—even if we assign the bottom layer a class and hide it, there will
be an empty gap where the viewBox still accounts for that space. In order to account
for that area, we can change the viewBox in the SVG to show only the top portion:

viewBox="0 0 490 474"

That will work, but only for the two larger versions. The smallest version is now
obscured, as the viewBox is providing a window into another portion of the SVG
sprite sheet, so we will need to adjust it. This is akin to changing the background

The viewBox Trick | 41

position in CSS to show different areas of a sprite sheet. But because we’re adjusting
an SVG attribute, we will need JavaScript, as CSS doesn’t yet have that capability:

var shape = document.getElementById("svg");

// media query event handler
if (matchMedia) {
 var mq = window.matchMedia("(min-width: 500px)");
 mq.addListener(WidthChange);
 WidthChange(mq);
}
// media query change
function WidthChange(mq) {
 if (mq.matches) {
 shape.setAttribute("viewBox", "0 0 490 474");
 } else {
 shape.setAttribute("viewBox", "0 490 500 500");
 }
};

There’s an ongoing discussion of adding these types of adjustments
into the CSS spec on the W3C’s GitHub page; Jake Archibald has
also raised the issue. If the proposal is adopted, you will be able to
update all of the viewBox changes in media queries and keep pre‐
sentation implementation in one language.

Now when we scroll the browser window horizontally the viewport will shift to dis‐
play only the part of the SVG we want to expose. Our code is now primed and ready
to animate.

Responsive Animation
When we export from a graphics editor, we have a unique ID for every different ele‐
ment. My preference for repeated elements is to use classes, so I did a find and replace
of IDs to classes (Illustrator will still add some unique numbers to the names of each
class, but we can target them using a CSS attributeStartsWith selector):

[class^="mountain"], [class^="grass"] {
 animation: slant 9s ease-in-out infinite both;
 transform: skew(2deg);
}

You’ll see here that we begin with a transform set on that element; this keeps the key‐
frame animation nice and concise. The animation will assume that the 0% keyframe
corresponds to the initial state of the element; to create a very efficient loop, we can
define only the changes halfway through the animation sequence:

42 | Chapter 4: Creating a Responsive SVG Sprite

https://github.com/w3c/fxtf-drafts/issues/7
http://bit.ly/2mANBmP
http://bit.ly/2mANBmP

@keyframes slant {
 50% { transform: skew(-2deg); }
}

Some elements, such as the dots and stars, share a common animation, so we can
reuse the declaration, adjusting the timing and delay as needed. We use a negative off‐
set for the delay because we want it to appear as though it’s running from the start,
even though the element animations are staggered. Animation keyframes will use the
default positioning set on the element as the 0% and 100% keyframes unless they are
specified otherwise. We use this to our benefit to write the least code possible:

@keyframes blink {
 50% { opacity: 0; }
}

[class^="star"] {
 animation: blink 2s ease-in-out infinite both;
}

[class^="dot"] {
 animation: blink 5s -3s ease-in-out infinite both;
}

We also need to add a viewport <meta> tag, which gives us control over the page’s
width and scaling on different devices. The most common one will do:

<meta name="viewport" content="width=device-width, initial-scale=1">

Responsive Animation | 43

CHAPTER 5

UI/UX Animations with No
External Libraries

In the previous chapters we’ve mostly covered standalone SVG animations. In this
chapter, we’ll go over more common use cases of UI and UX elements that can be
implemented with SVG and animated with CSS. In particular, we’ll work through a
common UX pattern of a transforming icon, which will allow you to see how some‐
thing is built from start to finish, integrating the workflow into your own develop‐
ment process.

Animation gets a bad rap sometimes, often because we don’t consider its power.
When users are scanning a website (or any environment, or photo), they are attempt‐
ing to build a spatial map. During this process, nothing quite commands attention
like something in motion.

We are biologically trained to notice motion: evolutionarily speaking, our survival
depends on it. For this reason, animation, when done well, can guide your users. It
can aid and reinforce these spatial maps, and give us a sense that we understand the
UX more deeply: we retrieve information and put it back where it came from instead
of something popping into and out of place.

Context-Shifting in UX Patterns
Before we get into how to build typical UI/UX interactions into SVG animations, let’s
go over the why. It’s important to get the technique down, but it’s just as important to
use animation correctly.

Have you ever had a day at work where people kept interrupting you and putting you
to different types of tasks? Work feels more frustrating when you can’t get into a flow-

45

based working style, and it makes you feel more disorganized and unproductive. It
follows that using a website works the same way.

When you visit a website, your brain uses saccades—a series of rapid eye movements
—to create spatial relationships. You never really “look” at an image: your eye moves
constantly to understand where things are placed in the picture, creating a mental
map of the image. See Figure 5-1 for an example of a saccade heatmap.

Figure 5-1. A heatmap of all eye movement across a website during saccade to create
spatial awareness

When we create a website, we’re creating a mental map for our users. Changes we
make to site interactions can break that mental map. Modals are a good example: they
often pop up out of nowhere, shattering the user’s experience, and are an example of
what I call “brute-force UX.”

46 | Chapter 5: UI/UX Animations with No External Libraries

An animation that reduces friction in context-shifting succeeds by honoring the
user’s mental map: the user will retrieve and access things from consistent areas, the
UX flows with user’s needs, and the whole experience feels more fluid. Creating ani‐
mations that help guide your users takes a bit of thinking, so let’s break down some
ways we can do it:

• Morphing
• Revealing
• Isolation
• Style
• Anticipatory cues
• Interaction
• Space conservation

Before we dive into solutions, it’s important to note that any one of these can be over‐
done. Again, our brains have evolved to take particular note of something in motion.
This evolutionary trait is in place to keep us safe and alert; the part of your brain that
kicks up adrenaline is also triggered when something unexpected moves on the
screen. The web is a static, dull site without animation; but when it comes to UX ani‐
mation, subtlety is key.

To show how an animation can retain context for a user, I’ve built an example that
we’ll be referring back to repeatedly as we cover these premises (see Figure 5-2).

Figure 5-2. All of these states come from and return to one element

Context-Shifting in UX Patterns | 47

http://codepen.io/sdras/full/qOdwdB/

Morphing
Morphing is probably the simplest way to help users retain context. Morphing means
that the same element can become multiple pieces of information in different con‐
texts, guiding the user’s flow without changing anything very abruptly. Consider the
animation in Figure 5-2. There are many forms of morphing in the one interactive
element used in the CodePen example. In this example, one frame morphs into the
next: the pin expands to create the dialog, the contact button becomes the title, the
text boxes shrink to become the loader dots, and so on, to provide a smooth user
experience.

Both SVG and CSS are good options for these kinds of UI animations. I’ve found
from working with both that each has its strengths and weaknesses. CSS easily inter‐
polates round to square and back again with border-radius. It can also handle large
quantities of scale transforms gracefully; SVG, beyond a few great numbers, will
appear pixelated before recovering. However, SVG is built for drawing. It is well
suited for complex shapes.

You can tween path or even shape data with JavaScript and GreenSock’s MorphSVG
plug-in. This is an unbeatable tool for this kind of technique: unlike Snap.svg or even
the poorly supported SMIL, MorphSVG allows you to easily transform between
uneven amounts of path data, which allows for tons of wonderful effects. If you’re
interested in learning more about what you can do with SVG morphing, please refer
to Chapter 10 of this book, where we discuss it at length.

Revealing
Revealing is a very simple method of retaining context for the user, but revealing can
be done in a way that breaks the user’s context as well. Take your typical modal, for
instance. This is an example of UX that comes when called, but it does the opposite of
retaining context for the users: it suddenly shatters their focus and the spatial maps
they’ve created. As a user, I sometimes close modals with information I need because
I find them so jarring.

Modals themselves are not the culprit here, though: it’s the way we typically imple‐
ment them. Figure 5-3 is an example of a modal that retains the context instead: it
opens from its origin and replaces itself where it was. There’s a transition between
these two states, and as a user I know where that information “lives” and where to
retrieve it again.

48 | Chapter 5: UI/UX Animations with No External Libraries

http://bit.ly/2lHGrjB
https://greensock.com/morphSVG
https://greensock.com/morphSVG
http://codepen.io/sdras/full/yOjWdO/

Figure 5-3. Open and closed states of a modal that is revealed from and collapses to its
origin

You can see this in our original example as well. We reveal information from our
location on the map, and see where it was put away. We don’t need everything on the
page at once, but we can see where it is if we need it.

Isolation
We’ve established that we’re constantly scanning to create a spatial map with saccades,
and isolating different areas helps us wade through information faster. UIs can
become cluttered: narrowing choices decreases the number of decisions, which helps
users feel more empowered.

Consider the demo in Figure 5-4. At first there’s so much information on the page
that it’s hard to focus on one thing. But if we adjust the UI slightly (in this case,
adding a :hover state), we can concentrate the user’s attention.

Context-Shifting in UX Patterns | 49

http://codepen.io/sdras/full/qOdWEP

Figure 5-4. By isolating information and obscuring the rest on hover, the user is better
able to scan and read the information provided

Style
Style, design, branding, and eases are all very closely tied. If you keep your animation
style unified across your brand (and you should), this becomes your motion design
language. Motion design languages are important for getting everyone on the same
page about what types of animations you’re going to be creating. For this very reason,
you can keep your code DRY by reusing eases in variables and interactions in func‐
tions, and keep consistent behavior across your site and even across multiple plat‐
forms. I don’t code Java for Android or Swift for iOS (yet), but I can retain
consistency across these platforms and the web by nailing down a style guide for ani‐
mations that will apply to all of them.

How do eases come into play? Eases are a strong piece of an animation’s branding. If
you work for a stoic company like a bank or financial institution, your eases are more
likely to be Sine or Circ; if you work for a more playful company like MailChimp or
Wufoo, a Bounce or Elastic ease would be more suitable. (See the sidebar “Accents in
Eases” on page 51 for a visual illustration of Sine versus Bounce eases.)

Here are some sites that allow you to pick out the eases you could be using for your
project:

• CSS: http://cubic-bezier.com/ and http://easings.net/
• GSAP: http://greensock.com/ease-visualizer
• React-Motion: http://bit.ly/2mH7nvT

50 | Chapter 5: UI/UX Animations with No External Libraries

http://cubic-bezier.com/
http://easings.net/
http://greensock.com/ease-visualizer
http://bit.ly/2mH7nvT

Accents in Eases
Eases can completely change the appearance and tone of an animation. Linear and
Sine eases are expressed mathematically as more of a line, and will have an even tran‐
sition between states, while something like a Bounce or Elastic ease will go back and
forth between those states to create a jumping-around sensation that can potentially
feel more playful.

You can use eases to draw attention to a particular action or event in the same way
that a designer uses accents in a palette (see Figure 5-5). If you visit any major web‐
site, you’ll note that one primary color tends to be used everywhere, with an accent
color that contrasts with this color. The accent is used for things like calls to action
(CTAs) prompting users to click a button. Most of those CTAs are the real money‐
makers for the site, so their ability to stand out is of utmost importance.

Figure 5-5. Just as we have accents in a palette to draw attention, we can also have
accents in eases

We can apply the same technique to eases. In the previous example (Figure 5-2), all of
the eases were Sine eases, which are closer to a smooth, Linear ease. The only time we
used a Bounce ease was for confirmation that the form had gone through completely
and was successful.

For more information on voice and tone in animation, check out Designing Interface
Animation by Val Head (Rosenfeld Media).

Context-Shifting in UX Patterns | 51

Anticipatory Cues
Eli Fitch gave a talk at CSS Dev Conf called “Perceived Performance: The Only Kind
That Really Matters,” which is one of my favorite talk titles of all time. In it, he dis‐
cussed how we tend to measure things like timelines and network requests because
they are more quantifiable—and therefore easier to measure—but that measuring
how a user feels when visiting our site is more important and well worth the time and
attention.

In his talk, he states that “humans over-estimate passive waits by 36%,” citing Richard
Larson of MIT. This means that if you’re not using animation to speed up a form sub‐
mission, users are perceiving it to be much slower than the dev tools timeline is
recording.

Users providing information to a site experience a period of unrest: they’re not sure
what has happened, who they gave their information to, or whether it worked. It
often takes more than a second for their information to be processed, which makes
anticipatory actions extremely important.

Other small examples of anticipation states are:

• A drop-down selection changing other contexts on the page
• A loading state
• A button being pushed
• A login being rejected
• Data being saved

When changes like these occur, it might not make sense to make a grand presentation
of the event, but you can still signify that the state of the page has changed or is in the
process of doing so, creating a context in and of itself. Considering the techniques I
spoke of earlier, you might ask yourself:

• Are we captivating the viewer during the transitional state, or is it simply a small
means to arrive at the end state?

• Will this transitional state be reused for other instances? Does it need to be
designed to be flexible enough for multiple placements and failure conditions?

• Does the movement need to express the activity? An example of this would be
the user saving something that’s not complete yet, in which case an anthropo‐
morphization of “wait” would help communicate this.

Giving users a loading state not only informs them that something is going on in the
background but, if it’s a custom loader, can make the wait time feel less long and
obtrusive, giving your site or app the appearance of higher performance.

Consider the image capture in Figure 5-6 of the higher-performance demo.

52 | Chapter 5: UI/UX Animations with No External Libraries

http://bit.ly/2mGXAGq
http://bit.ly/2lkBmJ0
http://bit.ly/2lkBmJ0
http://codepen.io/sdras/full/LEorev/

Figure 5-6. Form that shows morphing loading states and success state to reduce per‐
ceived wait time

The wait transforms directly from the button, providing a smooth transition state.
The user sees a bright green confirmation screen, but not before the loader animates:
the user actually waits a second or two before the final confirmation, but this delay is
almost unnoticeable.

Interaction
You learn more by doing. It’s an old adage, but an accurate one. When users engage
with your UI, they are forming more meaningful structural awareness than they
could by viewing it alone.

Rather than simply selecting an item and having it transition before the viewer’s eyes,
interconnectivity between UI states can be strongly reinforced when the user carries
the action forward. Consider these very well done drag-and-drop interactions by
Mary Lou (Manoela Ilic) on Codrops (Figure 5-7).

Context-Shifting in UX Patterns | 53

http://tympanus.net/Development/DragDropInteractions/

Figure 5-7. We move the element consistently to the same drawer, which can be fetched
from below

As a user, you know where you put the item, and you know where to retrieve it later.
It’s at the bottom, right? There is no bottom; there is no drawer; it’s just a div. But
because we built the animation and interaction in a way that makes it seem like it
occupies a space, and mimics a real-world interaction that users already know about
(a cabinet drawer), we’ve built a space that they feel they can control easily.

Space Conservation
When we use animation to hide and display information that is not persistent on the
page, we’re able to offer the user more: more to access, more tools, and more controls,
in a more limited amount of space. This becomes increasingly important as we build
out responsive environments that need to collapse a lot of material without feeling
cluttered.

Consider Figure 5-8, a screenshot of an example of conserving space on our page. We
can honor the larger touch points that are needed for a mobile build while collapsing
the navigation in a smaller space when it’s not needed. This navigation was built with
Sara Soueidan’s Circulus tool, which builds out an easily animatable circular SVG
navigation.

54 | Chapter 5: UI/UX Animations with No External Libraries

http://codepen.io/sdras/full/Kwjyzo/
https://sarasoueidan.com/tools/circulus/

Figure 5-8. Using Sara Soueidan’s tool, we can conserve space by hiding pieces that wait
to animate in until they’re called

Putting It All Together
These animation theories and concepts work best when combined. There’s no right
answer; the ability to be creative with SVG animation is part of its strength. Under‐
standing the core concepts means we have all the base understanding that we need;
the code follows naturally.

Icons That Transform
Now that we’ve discussed the “why” for animation in UI/UX patterns, let’s go over the
“how.” For this example, we’ll build out a pretty common use case so you can see step-
by-step how to create an interaction. This doesn’t mean we’ll always use the same
approach, but if you follow along, you can see how we’d break down a simple interac‐
tion like this one to build it into our site using an SVG.

Icons are a nice way to add simple, useful, and informative animations to a site. Sub‐
tlety in this type of animation is key. If it’s too verbose or flashy, it can distract rather
than serving the user.

This type of interaction should never feel like it takes too long. A common practice is
keeping the transition between 0 and 300 ms. Anything longer than that, and the user
feels like the transition is less than instantaneous.

It’s also important to remember that any common UI or UX pattern that a user might
see again and again should be subtle enough that it doesn’t feel taxing on repeated
viewing.

Putting It All Together | 55

In our example, we’re going to make a magnifying glass that morphs into a search
field. Figures 5-9 and 5-10 show the beginning and end states.

Figure 5-9. The beginning state of the magnifying glass

Figure 5-10. The end state, once the magnifying glass icon is clicked and the stem has
become the input field, and the circle of the magnifying glass has become the dismiss
area

We’re going to morph the stem into the line, and make the circle turn into the con‐
tainer for the ×. Let’s start with the magnifying glass.

In this example, we’re going to reveal the input when the event fires. In the case of
simple UI animations, we’re moving a couple of small shapes from here to there, so
simple storyboards are very helpful for planning them.

Focusing first on the stem being lengthened, let’s consider the things that need to
happen between states. The stem itself must get longer, it has to rotate slightly, and it
has to transform into place.

56 | Chapter 5: UI/UX Animations with No External Libraries

http://codepen.io/sdras/pen/BKaYyG

Let’s accommodate the change in the size of the stem by lengthening the viewBox.
Considering where we’re starting with the SVG:

 <svg class="magnifier" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 32 34">
 <circle class="cls-1" cx="12.1" cy="12.1" r="11.6"/>
 <line class="cls-1" x1="20.5" y1="20" x2="33.1" y2="32.6"/>
 </svg>

we adjust the viewBox to:

<svg class="magnifier" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 300 34">

We’ll also make sure the SVG is primed in CSS (SCSS) for the future transformation,
and back:

.magnifier {
 line {
 transform: rotate(0deg) translateY(0px);
 }
 circle {
 transform: scale(1);
 }
}

We can change the state in a few ways: in jQuery we would use a simple class opera‐
tion, and in React we would address the state directly by calling getInitialState()
and then setting state with event handlers. Because most people at the time of pub‐
lishing are more familiar with jQuery, I’ve used it to demonstrate this, though we’ll
address React in future chapters. We’ll use jQuery 3.0 (now backported to 1.X and 2.X
as well) because it supports class operations on SVG.

All we need to do to update the length of the line is alter the value of the x2 attribute.
In this case, we’ll lengthen it from 33.1 to 300:

$(document).ready(function() {
 $(".main").on("click", function() {
 var magLine = $(this).find(".magnifier line"),
 mainInput = $(this).find("input");

 if ($(this).hasClass("open")) {
 $(this).removeClass("open");
 magLine.attr("x2", 33.1);
 mainInput.blur();
 mainInput.val("");
 } else {
 $(this).addClass("open");
 magLine.attr("x2", 300);
 mainInput.focus();
 }

 });
});

Putting It All Together | 57

We’re also focusing the input when the button is clicked so that screen readers are
guided to the input for searching capabilities, and removing focus on exit. We want to
clear the selection too, in the event that the user closes the search open state. At this
point, the line is lengthened, but it’s drawn outside the viewBox because we haven’t
rotated and transformed it yet. Let’s do that in CSS:

.open .magnifier {
 line {
 transform: rotate(-2.5deg) translateY(14px);
 }
 circle {
 transform: scale(0.5);
 }
}

CSS Transforms on SVG DOM Elements

As you experiment with CSS and SVG with transforms, you might
notice that cross-browser stability begins to become hairy with
complex movement, particularly when you’re adjusting something
with transform-origin. This is a major reason I work with Green‐
Sock. GreenSock not only makes your SVG animations stable, but
also fixes some transform-origin stacking behaviors that are
defined counterintuitively in the spec.

We don’t really need a full CSS animation with keyframes to interpolate, because it’s
just from point A to point B, so we’re going to use a transition. We’ll also use a couple
of custom eases in SCSS, which we’ll reuse as variables. One nice trick—and a possi‐
ble pitfall—is that ease-out functions are nice for entrances, while ease-in functions
are great for exits. With that in mind, we’re going to use a quad easing function:

$quad: cubic-bezier(0.25, 0.46, 0.45, 0.94);
$quad-out: cubic-bezier(0.55, 0.085, 0.68, 0.53);

.open .magnifier {
 line {
 transition: 0.65s all $quad;
 transform: rotate(-2.5deg) translateY(14px);
 }
 circle {
 transition: 0.35s all $quad;
 transform: scale(0.5);
 }
}

You’ll notice we’re using the entrance animations on the open state. This part may
seem a little backward: the .open animations will be treated as our entrance anima‐
tion state while our exit animations should be added to the initial property. It’s a little

58 | Chapter 5: UI/UX Animations with No External Libraries

counterintuitive at first, but makes sense the more you work with it. The exit anima‐
tions make more visual sense when they collapse together, and we’ll make them a lit‐
tle faster because it feels better when they fade more quickly:

.magnifier {
 line {
 transition: 0.25s all $quad-out;
 transform: rotate(0deg) translateY(0px);
 }
 circle {
 transition: 0.25s all $quad-out;
 transform: scale(1);
 }
}

Next let’s work on the circle and the ×-out. In this case, we’ve added the ×-out as its
own SVG and positioned it appropriately, but we could have just as easily included it
in the initial SVG. I didn’t do so because when I was initially creating the animation, I
wasn’t sure where I would position it. Keeping it separate when creating the assets let
me retain a little more flexibility in iterations. If your storyboards and designs are
more formalized, it might provide better cross-browser stability to have all elements
contained within the same SVG DOM.

The other reason to separate the elements was the transform-origin values. If I were
using a larger SVG structure the values would be more difficult to define, but when
the line is encapsulated within its own SVG I can easily declare 50% 50% and refer to
the center of the ×:

.x-out {
 width: 6px;
 padding: 5px 6px;
 transition: 0.5s all $quad;
 cursor: pointer;
 line {
 stroke-width: 2px;
 opacity: 0;
 transform: scale(0);
 transform-origin: 50% 50%;
 }
}

// Firefox hack for padding on x, as mentioned previously in
// the warning about cross-browser stability issues
@-moz-document url-prefix() {
 .x-out {
 padding: 5px !important;
 }
}

.open .x-out line {
 opacity: 1;

Putting It All Together | 59

 transform: scale(1);
 transition: 0.75s all $quad;
}

In future chapters, I’ll cover some GreenSock features that help a great deal with
transform-origin values and designation, but for CSS, it’s worth it to tread lightly,
due to cross-browser bugs and only one option for declaration.

Finally, we can see that we’ll need to add an input for this to truly work. We’ll make
sure the SVG and the input are in the same height placement with some absolute
positioning:

.magnifier, input, .x-out {
 margin-left: 30vw;
 margin-top: 40vh;
 pointer: cursor;
 position: absolute;
}

.magnifier, input {
 width: 400px;
}

Then, we’ll make sure that the input has no default native browser styling but that the
font-size matches the size of the SVG:

input {
 font-size: 35px;
 padding-left: 30px;
 font-family: inherit;
 color: inherit;
 background: none;
 cursor: pointer;
 box-shadow: none;
 border: none;
 outline: none;
}

Figure 5-11 is the final result after all of our styling. Be sure to check out this particu‐
lar animation in action as well.

Figure 5-11. The result of our styling

60 | Chapter 5: UI/UX Animations with No External Libraries

http://codepen.io/sdras/full/BKaYyG
http://codepen.io/sdras/full/BKaYyG

If you’re morphing an entire path in SVG, please check out Chapter 10, because Java‐
Script (and GreenSock’s MorphSVG in particular) is the best option for that kind of
motion. But simple movements can be achieved without any additional libraries.

This is, of course, just one way of working with one UX pattern. You’ll find that most
UX patterns will employ this type of problem solving to achieve some nice effects.

There are some open source libraries that already do this type of interaction out of
the box, such as Sara Soueidan’s Navicon Transformicons or Dennis Gaebel’s fork.
These might be worth checking out if you don’t desire something custom.

Putting It All Together | 61

http://bit.ly/2mAJDdL
http://www.transformicons.com/

CHAPTER 6

Animating Data Visualizations

Data visualizations are an extremely useful way to present different kinds of informa‐
tion. Luckily, due to the relative popularity of some libraries, such as D3 and Chartist,
small pieces of animation are easy to create. These are not the only libraries that can
create data visualizations, but there are so many to choose from that I picked my
favorites of the many that I’ve worked with.

In this chapter, we’ll implement data visualizations with both D3 and Chartist. Chart‐
ist, at the time of publishing, uses the now-deprecated SMIL to animate, so I don’t
recommend that you use its native animation functions. D3 also offers some native
animations, but you may find that now that you’ve learned some CSS implementa‐
tions, it’s simpler and certainly more performant to draw the data visualization on the
screen and then animate it.

Chartist Versus D3 for Configuration

It’s very simple to create responsive charts and graphs in Chartist,
making it very beginner-friendly. The library creates a wrapper for
the SVG, so some JavaScript functionality becomes a little obfusca‐
ted and less straightforward. For this reason, I strongly suggest
using Chartist to draw up simple graphs with simple CSS anima‐
tions.
D3, on the other hand, is not quite as beginner-friendly, but very
easy to work with and extend. The sky is the limit on what you can
create in D3, which has made it the library of choice for many
beautiful data visualizations across the web.

Simply put, there’s no one right way, and you should work with whatever works for
your workflow and site implementation, or just what you’re the most excited about.

63

https://d3js.org/
https://gionkunz.github.io/chartist-js/

1 See the “Storytelling in Data Visualization” presentation by Emma Whitehead and Tobias Sturt, from the
Graphical Web, 2014.

Teaching how to work with either Chartist or D3 to build charts and graphs is out of
the scope of this book, but Chartist has wonderful live, interactive documentation,
and there’s another incredible O’Reilly book that’s a great resource for learning D3:
Interactive Data Visualization for the Web, by Scott Murray. I used this book to learn
this technology and I can’t recommend it highly enough.

Why Use Animation in Data Visualization?
Animation in data visualization can be extremely powerful as a performant piece of
the data’s structure. Here are a few ways that animation can aid a data visualization:

• Filtering
• Reordering
• Storytelling
• Showing change over time
• Staggering pieces for clarity

In the last chapter, we discussed the importance of retaining context for users. Filter‐
ing data allows us to retain consistent elements, while shifting their meaning by rear‐
ranging them.

Consider the data visualization in Figure 6-1. The New York Times presents the same
data in many different contexts, allowing readers to process the information in an
extremely powerful, multidimensional way. Users gain greater insight into the infor‐
mation by seeing it in a variety of different contexts, while the area of the representa‐
tion remains unchanged.

Figure 6-1. The New York Times shows the same information reassembled in four differ‐
ent ways to give the information new meaning, and adjusts between views with anima‐
tion to retain context between states

Even the most informative data lacks meaning if it is not engaging.1 That’s why story‐
telling is extremely important when it comes to data visualization.

64 | Chapter 6: Animating Data Visualizations

http://bit.ly/2lSLKtl
http://shop.oreilly.com/product/0636920026938.do
http://www.nytimes.com/interactive/2012/02/13/us/politics/2013-budget-proposal-graphic.html
http://www.nytimes.com/interactive/2012/02/13/us/politics/2013-budget-proposal-graphic.html

I live in San Francisco, where there is an ongoing housing crisis. Many families are
being thrown out of their homes through a loophole in the law called the Ellis Act.
The Ellis Act evictions are illustrated very powerfully in the data visualization in
Figure 6-2, showing the change in evictions over time in a timeline. We’ll learn how
to make interactive timeline animations like this one in Chapter 9.

Figure 6-2. As the timeline moves forward, the heat spots come in faster and faster and
fill up the city; the data visualization isn’t just showing us data here, it’s telling a story
and showing the impact

If we look under the hood, we can see that that it’s all SVG: the visualization is hiding
and displaying the bursts of evictions depending on when they occur in the timeline
(see Figure 6-3). This linear story is very effective, as more and more locations on the
map “explode” in the animation.

Figure 6-3. Under the hood this visualization uses an SVG animation, modifying and
animating these groups for the sudden bursts on the screen

Why Use Animation in Data Visualization? | 65

http://bit.ly/2lPHaOd

Let’s build out our own small version of something like this so you can see how it’s
done.

D3 with CSS Animation Example
As a starting point, D3 has a ton of nice blocks that you can work with and modify
(Figure 6-4). Blocks are demos that show the code and implementation details of a D3
example. Take care: blocks are not part of the library; they are examples individual
contributors have posted, and licenses and versions may vary.

Figure 6-4. The D3 home page

As beautiful as the ready-made blocks may be, you may still need to style them for
your own site or animate them to bring them to life.

For this demo, I chose a map of 3,000 Walmart locations across the US (see
Figure 6-5)

66 | Chapter 6: Animating Data Visualizations

Figure 6-5. The data visualization from D3 block mbostock/4330486 by Mike Bostock
that we will use to demo progressive animation

With just a few styles and a few simple SCSS functions, we can convert this static
document into something that presents itself progressively, as shown in Figures 6-6
through 6-8 and found in full animation at http://codepen.io/sdras/full/qZBgaj/.

D3 with CSS Animation Example | 67

http://codepen.io/sdras/full/qZBgaj/

Figure 6-6. Progressive rendering of hexagonal data, initial stage

Figure 6-7. Progressive rendering of hexagonal data, middle stage

68 | Chapter 6: Animating Data Visualizations

Figure 6-8. Progressive rendering of hexagonal data, rendering complete

In order to change the base styling, we will need classes to distinguish the different
types of SVG paths. In this case, the D3 code already assigns the necessary classes
using the .attr() function.

Here’s the JavaScript:

svg.append("path")
 .datum(topojson.feature(us, us.objects.land))
 .attr("class", "land")
 .attr("d", path);

svg.append("path")
 .datum(topojson.mesh(us, us.objects.states, function(a, b) {
 return a !== b;
 }))
 .attr("class", "states")
 .attr("d", path);

svg.append("g")
 .attr("class", "hexagons")
 .selectAll("path")

And here’s the SCSS:

svg {
 position: absolute;
 left: 50%;
 margin-left: -500px;
}

D3 with CSS Animation Example | 69

path {
 fill: none;
 stroke-linejoin: round;
}

.land {
 fill: #444;
}

.states {
 stroke: #555;
}

It doesn’t make much sense to add an extra class on every hexagon path in order to
animate them, as we can use the nth-child selector. Sass also helps us create a stagger
in our animations by allowing us to create a function. We set the hexagons to
opacity: 0 initially in order to bring them in slowly:

.hexagons path {
 opacity: 0;
}

$elements: 2000;
@for $i from 0 to $elements {
 .hexagons path:nth-child(#{$i}) {
 $per: $i/50;
 animation: 2s #{$per}s ease hexagons both;
 }
}

@keyframes hexagons {
 100% {
 opacity: 1;
 }
}

The result is a pretty slim amount of code for a beautiful and exciting way to progres‐
sively show data. For a timeline showing progression, please refer to Chapter 12,
where we tie a GSAP timeline together with Draggable instances to create interaction
and progression.

Chartist with CSS Animation Example
Let’s also make a simple Chartist example for comparison. Working from the point
where we have a full line chart that’s styled for our needs, we’ve decided it would be
most interesting to have these lines animate in. This allows users to see the data
unveil itself, and the staggering pieces are easier for them to process.

70 | Chapter 6: Animating Data Visualizations

2 For a full list of SVG path interface operations, MDN has a great resource.

In order create the illusion of an SVG drawing, we need to get the length of the SVG
path, which we can do with .getTotalLength():2

setTimeout (
 function() {
 var path = document.querySelector('.ct-series-d path');
 var length = path.getTotalLength();
 console.log(length);
 },
3000);

// output
a: 1060.49267578125
b: 1665.3359375
c: 1644.7210693359375
d: 1540.881103515625

We’re going to use that data to animate the path in. We can make it look like it’s draw‐
ing itself with CSS.

First, let’s set a stroke-dasharray on one of the paths:

.ct-series-a {
 fill: none;
 stroke-dasharray: 20;
 stroke: $color1;
}

The result looks like Figure 6-9.

Figure 6-9. The path with a stroke-dasharray

Chartist with CSS Animation Example | 71

https://mzl.la/2lkvTlG

That can be as long as we want it to be. We can also set a stroke-dashoffset, which
can also be as long as we want it to be. As the name suggests, stroke-dashoffset
offsets the stroke by any amount, and, thankfully, it’s also an animatable property.

We can now use the console output and our little table to create an animation that
takes the full length of the whole stroke and also offsets it by that much. This makes
our data visualization look like it was drawn into the viewBox (see Figures 6-10 and
6-11). We are using the same information a few times, so we can use a mixin to DRY
it out. We also have different values for the dashoffset and dasharray, so to keep it
DRY, we animate to 0 instead of the other way around:

@mixin pathseries($length, $delay, $strokecolor) {
 stroke-dasharray: $length;
 stroke-dashoffset: $length;
 animation: draw 1s $delay ease both;
 fill: none;
 stroke: $strokecolor;
 opacity: 0.8;
}

.ct-series-a {
 @include pathseries(1093, 0s, $color1);
}

@keyframes draw {
 to {
 stroke-dashoffset: 0;
 }
}

Figure 6-10. Here we see the progressive drawing of the stroke…

72 | Chapter 6: Animating Data Visualizations

http://codepen.io/sdras/full/oxNmRM

Figure 6-11. And here its conclusion

This is just one way we can animate Chartist visualizations. You can see many exam‐
ples on the library’s website. The way you code entrances, exits, and persistent states
in Chartist and CSS is entirely up to you—the sky’s the limit.

We’re going to get into even more exciting ways of working with data visualization in
future chapters, but for that we’ll need to learn how to work with JavaScript. Up next
is a quick comparison of animation techniques, and then we’ll switch languages.

Animating with D3
In this section we’ll go over the simplest possible example of how to animate with D3
instead of CSS. We’ll use version 4 for these examples (there are breaking changes
between versions 3 and 4, so version 3 of the library will not work with this example).

If you recall from Chapter 1 that a line is a series of points plotted on an x,y coordi‐
nate plane, you can also see why it might be useful for a very simple data visualiza‐
tion. If you look at the following code, you can probably make sense of it with your
prior knowledge of SVG:

var line = d3.line();
var data1 = [[0, 0], [200, 300], [400, 50], [500, 300],
 [550, 300], [600, 50], [700, 120], [775, 250]];
var data2 = [[0, 100], [220, 120], [300, 250], [500, 10],
 [520, 120], [575, 250], [600, 300], [775, 50]];

d3.select('#path1')
 .attr('d', line(data1))
 .transition()
 .attr('d', line(data2))
 .delay(1000)
 .duration(3000)
 .ease(d3.easeBounce);

Animating with D3 | 73

https://gionkunz.github.io/chartist-js/examples.html

We set the line to the d3.line() method, which sets the attributes of the line to the x
and y coordinates of two fields of data. We then call a transition between the two
states of the line attributes. Optionally, we can also declare delays, durations, and
eases.

The preceding code will transition this line from one state to another:

Figure 6-12.

You can apply this same method of animating with other things as well—colors, coor‐
dinates, you name it. D3 is very flexible this way.

Animating Different Path Point Amounts

Even though D3 is flexible (in that it allows for most things that
SVG is capable of), SVG is pretty finicky about animating between
different path values, and D3 inherits that quirk. If our second
dataset had a different length than the first, we’d find the transition
effect to be unwieldy, ugly, or just fail entirely. That’s why Green‐
Sock’s MorphSVG is extremely handy, and would work for this as
well. (See Chapter 10 for more details.)
d3-interpolate-path is a library built outside of D3 that allows for
graceful path animations. There’s a nice blog post about it as well.

Staggers are pretty easy in D3, and share some similarities with CSS in that you calcu‐
late a new delay for each element. If you’re familiar with for loops in JavaScript, this
implementation will likely look familiar to you:

transition.delay(function(d, i) { return i * 10; });

If we were to use this in a color interpolation, it would look something like this (we’ll
update the last code sample to a scatterplot so that the colors are easier to see):

74 | Chapter 6: Animating Data Visualizations

https://github.com/pbeshai/d3-interpolate-path
http://bit.ly/2lSOMOz

var dataset = [5, 17, 15, 13, 25, 30, 15, 17, 35, 10, 25, 15],
 w = 300,
 h = 300;

// create svg
var svg = d3.select("body")
 .append("svg")
 .attr("width", w)
 .attr("height", h);

// create shapes in svg with data
svg.selectAll("circle")
 .data(dataset)
 .enter()
 .append("circle")
 .attr("class", "circles")
 .attr("cx", function(d, i) {
 return 10 + (i * 22)
 })
 .attr("cy", function(d) {
 return 200 - (d * 5)
 })
 .attr("r", function(d) {
 return (d / 2)
 })
 .transition()
 .style("fill", "teal")
 .duration(1500)
 .delay(function(d, i) { return i * 100; });

Be sure to check out the CodePen example of this as well.

Chaining and Repeating
For more complex effects, we could also add multiple transitions, and even create
loops. To chain animations, we would add a .transition() method between two
states as we did before, but to make the whole thing repeat, we would have update our
syntax a little and use some recursion. Here’s an example of both:

.transition()
 .on("start", function repeat() {
 d3.active(this)
 .style("fill", "purple")
 .transition()
 .style("fill", "blue")
 .duration(2000)
 .transition()
 .duration(2000)
 .on("start", repeat);
 });

You can find this example on CodePen as well.

Animating with D3 | 75

http://bit.ly/2fpuPe3
http://bit.ly/2goB8mh

Please keep in mind that if you’d like to create a very complex chaining or interaction,
you might consider switching to GreenSock for animation. We’ll cover GreenSock in
later chapters. You’ll find that it plays nicely with D3’s output, while providing fine
control of timelines and sequencing.

76 | Chapter 6: Animating Data Visualizations

CHAPTER 7

A Comparison of Web Animation
Technologies

So far we’ve only really covered CSS for animation. From this point forward we’re
going to move primarily into JavaScript—but before we do, I think it’s important to
weigh all of the options you have for working in animation on the web, and the pros
and cons of each, so that you know what you’re using and can pick the best tool for
the job.

At the end of the chapter we’ll discuss the same tools in terms of their integration
with React, primarily because they work a little differently in a React environment
due to the virtual DOM.

There’s no possible way to cover every single animation library, so I will stick with
those that I’ve used or that interest me a lot. Please keep in mind that these recom‐
mendations are based on my own experiences; you may have a different experience or
opinion, and that’s OK.

TL;DR
You can read more in-depth pros and cons below, but I’ve worked with all of these
technologies for a very long time, and here is my succinct suggestion: due to the fact
that GreenSock corrects some of SVG’s cross-browser quirks, and has thought of
every different use case for animation, GreenSock is going to be the animation tech‐
nology I recommend for production sites most frequently.

77

Native Animation
Before we talk about libraries, let’s go over some native implementations. Most libra‐
ries use native animation technologies under the hood, so the more that you know
about them, the better you’ll be able to understand what’s happening when the ani‐
mation is abstracted.

CSS/Sass/SCSS
The reason we go over CSS so much in the beginning is because it can tend to be the
Occam’s razor of web animation technologies—all things being equal, the simplest
solution is sometimes the best, especially if you need to get something up and run‐
ning quickly. CSS animations make it possible to transition between different states
using a set of keyframes.

Pros:

• You don’t need an external library.
• The performance is beautiful. Preprocessors (like Sass and LESS) allow you to

produce staggering effects with nth:child pseudoclasses in functions. Variables
also allow for things like easing functions that you’d like to remain consistent.

• You can listen for onAnimationEnd and some other animation hooks with native
JavaScript.

• Motion along a path is coming down the pipeline; this is very powerful for realis‐
tic motion, which has become important because of the deprecation of SMIL.

Cons:

• The Bézier easings can be a bit limiting. Due to having a Bézier with only two
handles, you can’t produce some complex physics effects, like bounces or elastic
vibrations, that are pretty nice for realistic motion (but not necessary that often).

• If you go beyond three sequences, I suggest moving to JavaScript. Sequencing in
CSS becomes complex with delays and you end up having to do a lot of recalcula‐
tion if you adjust the timing.You can hook into the native JavaScript events I
mentioned earlier to work around this, but then you’re switching contexts
between languages, which isn’t ideal either. Long, complex, sequential animations
are easier to write and read in JavaScript.

• The support for motion along a path isn’t quite there yet. You can vote on sup‐
port for Firefox. Voting for support in Safari, as far as I can gather, is a little more
individual. I registered to fill out a bug report and requested a motion path mod‐
ule in CSS as a feature.

• CSS + SVG animation has some strange quirkiness in behavior. One example is
that in Safari browsers, opacity and transforms combined can fail or have strange
effects. Another is that the spec’s definition of transformation origin, when

78 | Chapter 7: A Comparison of Web Animation Technologies

http://codepen.io/sdras/full/PqXeMX/
http://codepen.io/sdras/full/PqXeMX/
http://bit.ly/2lPNF3G
https://mzl.la/2lSTls5
https://mzl.la/2lSTls5
http://apple.co/2kWpOQN

applied sequentially, can appear in a nonintuitive fashion. It’s the way the spec is
written. Hopefully SVG2 will help out with this, but for now, CSS and SVG on
mobile sometimes requires strange hacks to get right. This goes as well for any
library that uses CSS under the hood, unless it’s done a lot of work, like GSAP
has, to correct it.

• When you write a CSS animation, you declare keyframes and then use the ani‐
mation on the element itself. This means that you’re maintaining the code it takes
to run the animation in two places. This can be good because you can reuse an
animation, but mostly, it means legibility is compromised as you have to update
things in two places.

requestAnimationFrame()
requestAnimationFrame() (rAF for short) is a native method available on the win
dow object in JavaScript. It’s really wonderful because under the hood, it figures out
what the appropriate frame rate is for your animation in whatever environment
you’re in, and only pushes it to that level. For instance, when you’re on mobile, it
won’t use as high a frame rate as on desktop. It also stops running when a tab is inac‐
tive, to keep from using resources unnecessarily. For this reason, requestAnimation
Frame() is a really performant way of animating, and most of the libraries we’ll cover
use it internally.

requestAnimationFrame() works in a similar fashion to recursion; before it draws
the next frame in a sequence, it executes the logic, and then calls itself again to keep
going. That might sound a little complex, but what it really means is that you have a
series of commands that are constantly running, so it will interpolate how the inter‐
mediary steps are rendered for you very nicely.

There’s more information about requestAnimationFrame() in Chapter 15, so if
you’re interested in learning more, flip ahead.

Canvas
Despite the fact that canvas is raster-based and SVG is vector-based, you can still
work with SVGs in canvas. Because it is raster-based, though, the SVGs won’t look as
crisp as they normally do without a little bit of extra work:

Native Animation | 79

http://codepen.io/1Marc/full/DCvFm/
http://bit.ly/2lQqDKt
https://mzl.la/2kWzon3

var canvas = document.querySelector('canvas'),
 ctx = canvas.getContext('2d')
 pixelRatio = window.devicePixelRatio,
 w = canvas.width,
 h = canvas.height;

canvas.width = w * pixelRatio
canvas.height = h * pixelRatio

ctx.arc (
 canvas.width / 2,
 canvas.height / 2,
 canvas.width / 2,
 0,
 Math.PI * 2
)
ctx.fill();
canvas.style.width = w + 'px';

It doesn’t take much code, but if you’re used to SVG being resolution-independent,
this can be a small gotcha. There’s a great video on egghead that breaks this down.

I don’t work with SVGs in this environment much, but I’ve seen Tiffany Rayside and
Ana Tudor do some great stuff on CodePen with it. It’s worth exploring their profiles.

Web Animations API
The Web Animations API is a common language for browsers and developers to
describe animations on DOM elements, in native JavaScript. This allows you to cre‐
ate more complex sequential animations without loading any external scripts (or it
will, anyway, when support climbs—for now, you’ll probably need a polyfill). This
API was created to distill all of the great libraries and work that people were already
making with JavaScript. The Web Animations API is part of a movement to align the
performance of CSS animations and the flexibility of sequencing in JavaScript under
one roof, natively.

Pros:

• Sequencing is easy and super legible. Dan Wilson has a great example that com‐
pares CSS keyframes and the Web Animations API.

• Performance seems to be really great at this point. It’s always a good idea to run
your own performance tests, though.

80 | Chapter 7: A Comparison of Web Animation Technologies

www.allitebooks.com

http://bit.ly/2moovaE
http://bit.ly/2laHqnp
http://bit.ly/2lkYFDy
http://codepen.io/danwilson/pen/QwrZwd
http://www.allitebooks.org

Cons:

• At the time of publishing, the support was not great. There are good polyfills for
it, but it’s still changing, so until the spec is closer to final I would be cautious
about running it in a production environment. This stands to be the future of
web animation, though, so it might be worth at least playing around with in the
meantime.

• There are still a lot of things about the timeline in GSAP that are more powerful.
The important ones for me are the cross-browser stability for SVG and the ability
to animate large swaths of sequences in a line of code; you might not care about
these things, though.

External Libraries
GreenSock (GSAP)
GreenSock is currently the most sophisticated animation library on the web, and I
favor working with it. Please understand that this bias comes from working, playing
around with, and bumping my head badly on a lot of different animation tooling, so
when I give my strong endorsement, it’s through blood, sweat, and tears. I especially
like it for SVG. The GreenSock Animation API has almost too many cool benefits to
list here without missing something, but they have extensive docs and forums you
can explore.

Pros:

• It’s extraordinarily performant for something that’s not native—as in, performs as
well. Which is a big deal.

• There are still a lot of things about the GSAP timeline that are more powerful
than current implementations of the Web Animations API: for me, the important
ones are the cross-browser stability in regards to SVG and the ability to animate
long sequences in a line of code.

• GreenSock has a ton of other plug-ins if you want to do fancy things like animate
text, morph SVGs with an uneven number of points, etc.

• Motion along a path with GreenSock’s BezierPlugin has the longest tail of sup‐
port available.

• It solves SVG cross-browser woes, as mentioned previously. Thank goodness for
this one. Especially for mobile.

• GreenSock’s Ease Visualizer offers nice, realistic eases. It even allows you to create
custom eases from an SVG path.

External Libraries | 81

http://bit.ly/2kWAyPa
http://greensock.com/
http://greensock.com/docs/#/HTML5/
http://greensock.com/forums/
http://bit.ly/2lGE4fq
https://greensock.com/BezierPlugin-JS
http://greensock.com/ease-visualizer

• Since you can tween any two integers, you can do cool stuff like animate SVG
filters for some awesome effects. The sky’s the limit on what you can animate.
More on this in Chapter 15.

Cons:

• You have to pay for licensing for use of the plug-ins. But there are some
CodePen-safe versions that you can play with before you buy.

• When you’re managing external libraries, you have to watch which versions you
are using in production; because new versions come out regularly, upgrading
involves testing (this is probably true of any library, ever).

Mo.js
Mo.js is a library by an awesome fellow, Oleg Solomka, who goes by LegoMushroom.
He’s an extremely talented animator, and has already made some awesome demos for
this library that have me really excited. The library is still in beta, but it’s getting very
close to being released now. See Chapter 13 for more details on how to use it.

Pros:

• There are things like shapes, bursts, and swirls that are really easy to work with
and spin things up for you—so you don’t need to be the world’s best or most cre‐
ative illustrator to get something nice going.

• Mo.js offers some of the best and most beautiful tooling on the web, including
players, timelines, and custom path creators. This in and of itself is one of the
most compelling reasons to use it.

• There are a couple of different ways to animate—one is an object, one is plotting
a change over the course of an ease—so you can decide which way you feel more
comfortable.

Cons:

• It doesn’t yet offer the ability to use an SVG as a parent for the custom shapes (I
believe LegoMushroom is working on this), so working with coordinate systems
and scaling for responsive development is less intuitive and harder to make work
on mobile. This is a fairly advanced technique, though, so you might not need it.

• It doesn’t correct cross-browser behavior like GreenSock does yet, which means
you might need to write hacks, like you do with CSS. LegoMushroom has men‐
tioned he’s also working on this.

82 | Chapter 7: A Comparison of Web Animation Technologies

http://codepen.io/sdras/full/gaxGBB/
http://codepen.io/sdras/full/gaxGBB/
http://codepen.io/GreenSock/
http://mojs.io/
http://codepen.io/sol0mka/
http://codepen.io/sol0mka/full/ogOYJj/

Bodymovin’
Bodymovin’ is meant for building animations in Adobe After Effects that you can
easily export to SVG and JavaScript. Some of the demos are really impressive. I don’t
work with it because I really like building things from scratch with code (so this
defeats the purpose for me), but if you’re more of a designer than a developer, this
tool would probably be really great for you. The only con I really see to that part is
that if you change it later, you’d have to re-export it, so it might be a weird workflow.
Also, outputted code is usually kind of gross, but I haven’t seen that affect the perfor‐
mance too much, so it’s probably fine.

Not Suggested
SMIL
SMIL (Synchronized Multimedia Integration Language) is the native SVG animation
specification: it allows you to move, morph, and even interact with SVGs directly
within the SVG DOM. There are a ton of pros and cons to working with SMIL, but
the biggest one will lead me to omit it entirely: it’s losing support. I wrote a post on
how to transfer over to better-supported techniques to get you going, though.

Velocity.js
Velocity offers a lot of the sequencing that GreenSock does, but without a lot of the
bells and whistles. I no longer really use Velocity due to the cons listed here. Velocity’s
syntax looks a bit like jQuery, so if you’ve already been using jQuery, the familiarity
might be a big boon for you.

Pros:

• Chaining a lot of animations is much easier than with something like CSS.
• There are many out-of-the-box easings, and spring physics is available. You can

also use step-easing to pass an array.
• The documentation is comprehensive, so it’s easy to learn and get up and going.

Cons:

• The performance isn’t great. Despite some claims to the contrary, when I ran my
own tests I found that it didn’t really hold up. I suggest you run your own,
though, as the web is always moving and this chapter is frozen in time.

• GSAP has more to offer, for performance and cross-browser stability without
more weight. jQuery used to lose performance tests, but that might have changed
since their rAF adoption; Velocity isn’t bad by any means, but it loses out in com‐
parison.

Not Suggested | 83

https://adobe.ly/2l8hD4i
http://codepen.io/airnan/
http://bit.ly/2lUZS8d
http://bit.ly/2lUZS8d
http://velocityjs.org/
http://codepen.io/julianshapiro/pen/hyeDg
http://julian.com/research/velocity/#easing
http://bit.ly/2lGE4fq

Snap.svg
A lot of people think of Snap as an animation library, but it’s really not. I was going to
run performance benchmarks on Snap, but even Dmitri Baranovskiy (the incredibly
smart and talented author of this library, and its predecessor, Rafael) says on the SVG
Immersion Podcast that it’s not the correct tool for this. In a personal message to me,
he said, “Just a note: Snap is not an animation library and I always suggest to use it
with GSAP when you need a serious animation.”

That said, jQuery is not great with SVG, though it does now support class operations.
If you need to do a lot of DOM manipulation with SVG, Snap is a recommended tool.

There is a library called SnapFoo that extends Snap’s realm to animation. I haven’t
played with it myself yet, but it looks pretty cool.

React-Specific Workflows
Before we talk about React, let’s cover why we have to treat animations in React dif‐
ferently. The main difference lies in the Document Object Model (DOM), which is
how we create a structured document with objects, and is mostly expressed as a tree.

React has a virtual DOM, which is an abstraction of this structure. React does this for
a number of reasons, the most compelling of which to me is the ability to figure out
what’s changed and update only the pieces it needs to. This abstraction comes at a
price, of course, and some of the old tricks that you’re used working with will give
you trouble in a React environment. jQuery, for instance, will not play nice with
React, as its primary function is to interact with and manipulate the browser’s native
DOM. But I’ve even seen some strange CSS race conditions. Here are some of my rec‐
ommendations for nice animations in a React workflow.

React-Motion
React-Motion by Cheng Lou is considered to be the best way to animate in React, and
the community has pretty much adopted it over the old ReactCSSTransitionGroup. I
like React-Motion a lot, but there are some keys to working with it that will have you
banging your head for a little while if you don’t get them.

React-Motion is pretty similar to game-based animation, where you give an element
mass and physics and send it on its way, and it gets there when it gets there—you
aren’t specifying an amount of time like you do with CSS or any other traditional
web-based sequential motion. The motion can look realistic, which can be beautiful.
But the hard part is that if you have two different things that have to fire at the same
time and get there at the same time, it can be tough to line them up exactly.

Recently, Cheng Lou added in onRest, which allows for this kind of callback work‐
flow. It hasn’t advanced much, though, as it’s counter to the original premise of the

84 | Chapter 7: A Comparison of Web Animation Technologies

http://snapsvg.io/
http://bit.ly/2laMDf2
http://bit.ly/2laMDf2
http://bit.ly/2lUZLt5
http://yuschick.github.io/SnapFoo/
http://bit.ly/2lSUy2l
http://bit.ly/2lkVbRs
http://bit.ly/2lQv5Jf
http://codepen.io/sdras/full/pyedJE/
http://bit.ly/2lQKuJh

tool. It’s still not easy to write a loop (without writing an infinite loop, which is bad
for a whole slew of reasons). You might never come across this use case, but I did
once.

Pros:

• The animation can look really beautiful and realistic, and the spring options are
nice.

• The staggering effect is pretty unique—staggering is available in most JS libraries
(like GSAP and Velocity) but the spring is based directly off of the last element’s
movement, not duplicating the last one, so there are some nice motion possibili‐
ties.

• This is probably the animation tool that plays with React the best.

Cons:

• It’s not super plug-and-play like some other libraries or native, which means you
end up writing quite a bit more code. Some people like this about it; some people
don’t. It’s not kind to beginners, though.

• Because of the complex nature of the code, the sequencing is not as straightfor‐
ward or legible as with some of the alternatives.

• onRest still doesn’t work for staggering parameters.

GSAP in React
GreenSock has so much to offer that it’s still worth using in a React environment. It
takes a bit more finessing than usual, and some things that should work (and do with
the DOM) don’t in React. That said, I’ve gotten it working a few different ways:

• Hook into the native React component lifecycle methods.
• Hook it up to something you call for interaction.For interaction, I create a func‐

tion, and then hook it into an event like onClick.
• There’s a nice post by Chang Wang about how to hook it into ReactTransi
tionGroup, which is a pretty cool way of doing it.

• You can use a library like React-Gsap-Enhancer. React-Gsap-Enhancer seems
like a good tool for when you’re doing very complicated sequencing. For some‐
thing very simple, it’s probably overkill, and you could just use GSAP straight out
with lifecycle methods.

Canvas in React
Canvas itself works beautifully in React. You can choose to bypass the DOM entirely
and attach a single node, in which you can create all of your animations. It has the
same benefits and limitations we discussed previously (see “Canvas” on page 79). You

React-Specific Workflows | 85

http://bit.ly/2mf3hih
http://bit.ly/2lQD7Bz
http://bit.ly/2l8hTA9

can also break a canvas into React components, but the implementation details can
get much more complicated due to the virtual DOM.

There are a couple of good libraries for working with canvas in React. React-Canvas
was developed by the Flipboard team because they wanted 60 fps animation with the
DOM. The repo hasn’t been updated in a while, though, and it really does focus on
only UI elements, so any other kind of animation will take some work.

React Konva is an interesting, very declarative way of working with canvas and React.
It creates beautiful shapes incredibly easily, but the animation performance is a little
lacking. The developer acknowledges this right in the docs, so it’s possible that if
you’re willing to submit a pull request (PR) you could improve it and help him work
on it.

CSS in React
CSS has had a resurgence lately because it’s likely the easiest way to create animations
in React. I like working with CSS animations for little things like UI/UX interactions,
but have seen them behave a little strangely if you try to chain things using delays.
Other than that, they’re pretty great, especially for small UI adjustments.

Covering Ground
Unfortunately, it would be impossible to go into all of these wonderful tools in great
depth—this book would be 10 times as long! We’ll focus primarily on the GreenSock
Animation API, due to its power and multitude of uses. We’ll also cover mo.js, React-
Motion, and requestAnimationFrame() so you know how to work with JavaScript at
a bare-metal level.

86 | Chapter 7: A Comparison of Web Animation Technologies

https://github.com/lavrton/react-konva

CHAPTER 8

Animating with GreenSock

In the previous chapter, we went over some of the reasons you might choose Green‐
Sock as an animation library. In this chapter, we’ll cover the basics of how to animate.

Even if you’re more comfortable with CSS, you can still master GreenSock. You don’t
necessarily need to know everything about JavaScript to use it for animation. Cer‐
tainly people who are comfortable with JavaScript will pick it up a little faster and be
able to debug with a little more ease, but I do think the syntax is simple and straight‐
forward enough that a CSS developer will be able to get to grips with it. Heck! It’s
even easier than CSS in some ways: CSS separates concerns by putting the keyframes
in one area and applying them on the properties separately, while GreenSock allows
you to manipulate everything in one spot.

GreenSock has been under development for 10 years: it was previously a Flash tool.
This gives it an enormous leg up on the competition, as the designers are intimately
familiar with the issues users run into. They are also very approachable, and there are
some regulars around to help on the forums, so if you get stuck there’s a pretty good
community around to help you get back on your feet.

Let’s get started!

Up and Running with GreenSock
In order to use GreenSock, you need to include TweenMax in your page by including
this line of code at the base of your document: <script src="https://cdnjs.cloud
flare.com/ajax/libs/gsap/1.19.0/TweenMax.min.js"></script>.

Replace the /1.19.0/ with whatever the most recent version of the library is; you can
find that at https://cdnjs.com/.

87

https://cdnjs.com/

Or you can use yarn or npm in your terminal:

npm install gsap

yarn install gsap

Basic GreenSock Syntax
We’ll start with a really simple example, the result of which is shown in Figure 8-1:

TweenMax.to(".element", 2, { x: 100 });

Figure 8-1. If we have a ball with a class of .element, here’s what we’ll see

In this example, the ball moves to the right by 100 px. Let’s break down some of this
syntax bit by bit, and consider a few extra options.

TweenMax/TweenLite

TweenMax.to(".element", 2, { x: 100 });
The TweenMax at the start of the statement tells the browser we’re going to use the
GreenSock Animation API code that was loaded from the library we imported. This
can be interchanged with TweenLite, if you choose to use the smaller version of the
library. The advantage of TweenLite is that it’s very small, while the advantage of
TweenMax is that it comes equipped with things like loops, CSS properties (which
you will find you might need), and the TimelineMax library, which extends the
smaller TimelineLite (we’ll dig into the timeline in the next chapter). The two are
interchangeable and don’t change the way the animation works, aside from one hav‐
ing broader offerings.

.to/.from/.fromTo

TweenMax.to(".element", 2, { x: 100 });
The next piece is the .to method, which, as you might expect, tells the element to
change to a different state.

You can also use .from, which means the element originates from whatever you spec‐
ify in the curly braces (the animation object) and changes to its default values,

88 | Chapter 8: Animating with GreenSock

or .fromTo, which gives you more granular control over where something starts and
where it ends.

.fromTo becomes very useful for animations that will be retriggered, because you can
be more certain of the starting and ending points. For example, say you fire an ani‐
mation and it scales up by 50%. Then you ask it again to scale up by 50%—but it’s
already there. That animation will look like it does nothing on the secondary trigger.

When we use .fromTo, the syntax looks a little bit different:

TweenMax.fromTo(".element", 2, {
 x: 0
 }, {
 x: 100
 });

You can see I also broke things out over a few more lines so it’s a little more legible.
Now we can see fairly clearly that the element will go from the 0 coordinate on the x-
axis to 100.

Staggering
We can also use .staggerTo, .staggerFrom, or .staggerFromTo. These will take the
same animation and repeat it in a kind of cascade, applied to a group of objects that
you designate. With SVG I find it helpful to place the items in a group together and
add a class to the group to achieve this. For example, in this code, the animation will
be applied to all circles inside the group with the class .element:

TweenMax.staggerTo(".element circle", 2, {
 x: 100
}, 0.1);

This code snippet shows what we’ve changed: we’re using .staggerTo instead of .to
and have added an extra parameter at the end of the statement: 0.1. This controls the
time between each of the staggers. We’re also now targeting all of the circles in a group
with a class of .element. The output will look something like Figure 8-2.

Basic GreenSock Syntax | 89

Figure 8-2. The balls are all animating with the same values, but staggered in timing, one
after another

Reverse-Order Staggers

If you’d like the stagger to start from the last element and go to the
first, it’s very easy to do. Simply use a negative value for the interval
(shown here as the -0.1 value):

TweenMax.staggerTo(".element
 circle", 2, {
 x: 100
}, -0.1);

There are more advanced types of staggers available, including using the cycle prop‐
erty and randomized staggering values. For more information about these, check out
Chapter 11.

90 | Chapter 8: Animating with GreenSock

Elements

TweenMax.to(".element", 2, { x: 100 });
The way that GreenSock targets elements is similar to querySelector() or
querySelectorAll() in native JavaScript and even closer to the behavior of a jQuery
selector, in that you can pass in one or multiple elements, and they can be classes,
IDs, or attributes like path, circle, or rect. You don’t have to worry about nodelists;
all of that is abstracted away for you, which makes working with the DOM and cross-
browser support much simpler.

You can use a quoted selector string, like in this example, to target elements directly,
but GreenSock will happily accept variables too, if that’s your jam (for example, var
el = document.querySelector(".el");). I tend to use variables like this when I
am targeting an element multiple times, to avoid repetition and multiple lookups.

Duration

TweenMax.to(.element", 2, { x: 100, delay:
 2 });

This is probably the simplest of the values we’ll cover. We’re going to pass in an inte‐
ger, and it affects how long the animation will run. 2 is 2 seconds; 0.3 would be 0.3
seconds, or 300 milliseconds. Just like with the .element value, we can pass in a vari‐
able here too. I tend to only do that if there are multiple elements and animations that
I want firing for the same exact duration, though, and that situation is fairly rare.

Delay

TweenMax.to(.element", 2, { x: 100, delay:
 2 });

If you would like to make your animation wait for a bit before firing, you can use
delay. Delay is useful for chaining, or setting things a bit before or after one another,
but in the next chapter we will cover a much more efficient and organized way to
chain effects with the timeline tool.

Properties to Animate
We talked briefly about how our example code will move the ball to the right by 100
px, but let’s dig into that a little more. What does that x stand for? It actually stands
for transform: translateX(100px). (It should not be confused with the x attribute

Basic GreenSock Syntax | 91

in elements like rects in SVG.) Remember when I mentioned that transforms and
opacity are the most performant things to animate? Well, GreenSock’s developers
know this, so they nicely created some shorthand for us—we can use x, y, z, scale,
and rotation (instead of rotate in CSS). Handily, because they’ve broken out the
properties, we can use them individually and at different times. That saves us a lot of
typing and makes our code much easier to read.

Keep in mind that if you’re transforming within the SVG DOM, it will use the coordi‐
nate system within the viewBox, so you won’t actually be using true pixels. You might
recall from previous chapters that this is actually a really great feature, because it
means we can easily scale and create complex responsive animations (more on this in
Chapter 16).

Animating Transforms in CSS Equivalent

Because transform is one property in CSS, it’s a hassle to apply dif‐
ferent transforms at different times to one element. They end up
having a stacking order and are applied one by one, unless you
write out each value at the interpolated percentage for each change.
I’ve written more about this in an article for CSS-Tricks.
GreenSock gives us a huge life upgrade by breaking these proper‐
ties apart so we can have finer control of movement.
The CSS Working Group is planning to break transforms out into
their own properties, but at the time of publishing the timeline for
implementation and extent of browser support were unclear.
Chrome has some experimental implementations.

We also have opacity, which works like it does in CSS: we can supply values from 0
to 1, with 0 being completely transparent and 1 being completely opaque. Addition‐
ally, GreenSock offers a custom value called autoAlpha, which also takes values from
0 to 1. This value couples opacity and visibility: hidden, so it removes the ele‐
ment from/adds it into the DOM completely.

This is important because an element with opacity: 0 is still able to react to mouse/
touch/keyboard events and is included in the accessibility tree used by screen readers.
An element with visibility: hidden is not. autoAlpha ensures that when the ele‐
ment has fully faded out, it is correctly hidden from interaction as well as from view.

You can also animate any number of other CSS values. Color, width, height, perspec‐
tive—they’re all fair game. There are a few things to keep in mind, though. First, any
property with a dash in its name becomes camelCased. For example, background-
color would be backgroundColor, and border-radius would be borderRadius.

92 | Chapter 8: Animating with GreenSock

http://bit.ly/2ivvcrP

Also, any value that isn’t a number has to be passed in as a string, surrounded in
quotes. So, a color value would be color: "#333333".

When animating two properties, we separate them by commas (we treat the proper‐
ties that we’re animating like objects):

TweenMax.to(.element", 2, {
 x: 100,
 y: 50
});

Easing
Easing is optional, so I didn’t include it in the first example. But easing is perhaps the
most powerful tool in GreenSock: it brings pieces of static code to life. We can add
easing as follows:

TweenMax.to(.element", 2, {
 x: 100,
 y: 50,
 ease: Sine.easeOut
});

When we write this, ease: always stays consistent. Here, Sine is the type of ease.
Most of the easing curve types have three options: .easeIn, .easeOut,
and .easeInOut. They affect which direction the Bézier shape of the ease flows in.
There are many different types of GreenSock eases. When I was first learning, I found
the GreenSock Ease Visualizer to be an invaluable tool in visualizing and exploring all
of the different options (see Figure 8-3).

Basic GreenSock Syntax | 93

http://greensock.com/ease-visualizer

Figure 8-3. The GreenSock Ease Visualizer: an invaluable interactive tool

Recently, GreenSock introduced a new type of ease called Custom. You need to load
the CustomEase plug-in in order to use it, but it enables you to pass in SVG paths,
and you can play with the Ease Visualizer to manipulate the paths (which is especially
nice because you can watch the demo move). This is an incredible feature, as some‐
times the type of easing you use makes all the difference between awkwardness and
realistic, impressive movement.

94 | Chapter 8: Animating with GreenSock

Hot Easing Tip

Despite what their names might suggest, .easeOut is actually really
good for entrances. .easeIn is great for exits, and I tend to
use .easeInOut sparingly, often for intermediary states.
In and out in easing refer to the beginning and end of the anima‐
tion, and you want the “easy” (slower) part of the animation to be
the part that’s closer to the resting state of the object (the end for
entrances, the beginning for exits), with faster motion as it moves
offscreen.

This might seem like a lot to dig into and understand, but once you’ve worked with
the syntax a few times, it’s relatively easy to commit it to memory because you’ll use
the same general pattern again and again. I highly suggest typing out some of the
code in this chapter to keep it fresh in your mind.

In future chapters, we’ll dig into some really advanced and fun things, now that you
have the basics down!

Basic GreenSock Syntax | 95

CHAPTER 9

GreenSock’s Timeline

In the last chapter we covered some of the basic syntax for GreenSock tweening. In
this chapter, we’ll go over one of my favorite GreenSock features: the timeline.

A Simple Timeline
In the last chapter we talked about GreenSock’s syntax, focusing on the TweenMax part
of the statement. You might recall that I mentioned TweenMax includes Timeline‐
Max, GreenSock’s full-featured timeline tool. Why is this such a good thing?

TimelineMax is a really powerful tool for controlling multiple animations and
sequencing. In order to use it, you need to instantiate it. We do this by calling var tl
= new TimelineMax(); (you could also use let or const here , if you’re using ES6,
and you can call tl whatever you wish—tl tends to be the industry standard).

You could just use TweenMax for everything, but the default for TweenMax is to have
everything fire at once. You would have to add delays to each animation to get them
to fire one after another.

Let’s say we want to animate the three shapes in Figure 9-1 in a row from left to right,
one after another.

97

Figure 9-1. Animating in a row

So far, we’ve learned to express it like this:

TweenMax.to(".star", 3, {x: 300, ease: Power4.easeOut});
TweenMax.to(".circle", 3, {x: 300, delay:3, ease: Power4.easeOut});
TweenMax.to(".hex", 3, {x: 300, delay:6, ease: Power4.easeOut});

This works, but if we had more elements, we’d have to keep calculating these values. It
makes a lot more sense to use a timeline, which automatically cascades them one after
another for us (note that we don’t need the delays here):

var tl = new TimelineMax();

tl.to(".star", 3, {x: 300, ease: Power4.easeOut});
tl.to(".circle", 3, {x: 300, ease: Power4.easeOut});
tl.to(".hex", 3, {x: 300, ease: Power4.easeOut});

98 | Chapter 9: GreenSock’s Timeline

This is really great, because we can keep going all day and the timeline will automati‐
cally put our animations in order for us.

So what happens if we watch this animation and decide we want the circle to start
moving just a little before the star is done? We can use the position parameter that we
previously saw in .staggerTo animations (see “Staggering” on page 89), through rela‐
tive incrementation:

var tl = new TimelineMax();

tl.to(".star", 3, {x: 300, ease: Power4.easeOut});
tl.to(".circle", 3, {x: 300, ease: Power4.easeOut}, "-=1");
tl.to(".hex", 3, {x: 300, ease: Power4.easeOut});

Incrementing in Time

In the preceding example, we used a relative incrementor, "-=1", to
let the timeline know we wanted to push the animation up by one
second. If you’re not familiar with JavaScript, incrementors are
really useful. The syntax is +=1 (or any integer) or -=1. This lets the
compiler know we are taking the original state and adding to it, not
setting a static value. You can see this expressed in a number of
ways to work with the timeline.
For instance, we can add a delay to the timeline:

tl.to(".circle", 3, {x: 300}, "+=1");

We can set it to fire a second before it normally would (but only if
the timeline already has time on it):

tl.to(".circle", 3, {x: 300}, "-=1");

Or we can set it to fire at a specific time that’s static. This will fire
exactly 2 seconds in:

tl.to(".circle", 3, {x: 300}, "2");

My favorite, though, is setting animations on or relative to labels,
which we’ll cover next.

The cool thing about this is that the circle will now start animating one second before
the star finishes, but the hex will still follow the circle, even though we’ve adjusted the
placement in time (originally the hex would have fired at six seconds; now the hex
will fire at five).

Relative Labels
This is all well and good, but what if you have a very complex animation, and you
want multiple things firing at once, far into your timeline? Or you want a few things
to fire slightly before or after one another? That kind of logic can get a little tangled

Relative Labels | 99

and disorganized, particularly if you have to adjust the timeline (which, trust me, you
will need to do all the time).

Enter relative labels. Relative labels are incredibly useful, because you can insert them
partway into a timeline, or you can set them at the beginning and have everything fire
off of them.

Figure 9-2 is an example.

Figure 9-2. An animation where the star rotates and three circles fire at once

In this example, let’s say you want the star to rotate on itself, and then immediately
when it’s done you want three circles to fire at the same time.

Since the circles are all animated a different way, we can’t just apply the same anima‐
tion to all of them (yes, we could build a function for it, but I’ll address that later in

100 | Chapter 9: GreenSock’s Timeline

the chapter). This is when a relative label will come in really handy. Rather than writ‐
ing this:

var tl = new TimelineMax();

tl.to(".star", 3, {
 rotation: 30,
 transformOrigin: "50% 50%"
});

tl.to(".circle1", 1, {
 scale: 2.5
 x: 100,
 y: -70
});

tl.to(".circle2", 1, {
 scale: 2.5
 y: -100
}, "-=1");

tl.to(".circle3", 1, {
 scale: 2.5
 y: -70,
 x: -100
}, "-=2");

we can use a label:

var tl = new TimelineMax();

tl.to(".star", 3, {
 rotation: 30,
 transformOrigin: "50% 50%"
});

tl.add("burst");

tl.to(".circle1", 1, {
 scale: 2.5
 x: 100,
 y: -70
}, "burst");

tl.to(".circle2", 1, {
 scale: 2.5
 y: -100
}, "burst");

tl.to(".circle3", 1, {
 scale: 2.5
 y: -70,

Relative Labels | 101

 x: -100
}, "burst");

I prefer this way because it’s so much more legible to someone reading it later. It’s also
more flexible: anything can move earlier in the timeline, and the circles will all still
burst together. Their timing can also change, and there’s nothing to be recalcula‐
ted. You can even set them a little before or after one another with the relative posi‐
tioning we discussed earlier: "burst+=1".

.set to Stabilize Your Animation
You may have times when you realize that you want to animate something like the
perspective, where you actually animate the z value, but you have to set the perspec‐
tive in order to see the effects. You may also want to set a stroke on a shape that
doesn’t have one in order to animate it with DrawSVG. You can definitely set these
properties in CSS, but the nice thing about .set is that you are telling the person who
is reading your code what you’re changing in order to animate. It’s harder to do this
with the CSS in a completely different place, so this is a real maintenance boon. Basi‐
cally, you are “setting” the tween without animating it:

tl.set(".circle", {scale: 0.5});

You might not always need a set, though—if you have a .fromTo animation that des‐
ignates a different state for the element to originate from, it will carry through the
whole animation. So if you decided to do something like:

tl.fromTo(".circle", {
 scale: 0.5
}, {
 scale: 1
}, 8);

even if it’s 8 seconds into the animation, the "from" state will be applied to the whole
length of the animation before it.

That said, another good use of .set is for things you animate with
a .from or .fromTo. For instance, if you have something with opacity: 0 at the out‐
set, you’ll notice that there’s a momentary flash on the screen of the element shown
while the JavaScript is loading. It’s usually only for a split second, but discernible to
the naked eye.

Since the CSS is loaded first, a workaround would be to set the visibility to hidden in
the CSS:

.element { visibility: hidden; }

and then set it back to visible in the JavaScript, so that GSAP can handle it from
there:

102 | Chapter 9: GreenSock’s Timeline

https://greensock.com/drawSVG

TweenMax.set(".element", {visibility:"visible"});

I use this trick in almost every pen or project that I make.

Nested and Master Timelines
I don’t suggest just throwing some animations into your global scope. If you’re work‐
ing with a really simple TweenMax animation, it’s easy enough to pack your anima‐
tion into an IIFE (immediately invoked function expression), but I strongly suggest
wrapping your timelines in a function and calling that instead.

One step further would be to create a master timeline. I like using master timelines
because I can group sections of the animation into scenes. This gives me tons of con‐
trol because I can:

• Name and order my scenes so that it’s easy to find my place when I have to make
adjustments.

• Change the placement of these scenes.
• Make just one scene a little faster.
• Seek out a scene so that I don’t have to sit through the entire animation every

time.
• Restart or play the master timeline on an event, like a click.
• Keep all of my animations organized, tidy, and easy to read.

Let’s dig into how to create a master timeline, and then we’ll go through all the bells
and whistles.

Organization
Here is an example of how I set up a timeline and apply it to a master:

function sceneOne() {
 var tl = new TimelineMax();

 tl.add("begin");
 tl.to(".bubble", 2, {
 scale: 3,
 opacity: 0.5,
 rotation: 90,
 ease: Circ.easeOut
 }, "begin");
 ...

 return tl;
}

var master = new TimelineMax();
master.add(sceneOne(), "scene1");

Nested and Master Timelines | 103

In this example, we’ve placed the timeline in a function (you don’t need to call it sce
neOne()—you can name it whatever you wish). At the end of the function, we return
the timeline. We then add the scene function to a master timeline. You may notice
that I used a position label for the scene as well. I do this so that I may quickly refer‐
ence it while I’m working. (I’ll show what I mean by that in a second.)

Now, if we want to add more scenes, it’s really easy:

function sceneOne() {
 var tl = new TimelineMax();

 tl.add("begin");
 tl.to(".bubble", 2, {
 scale: 3,
 opacity: 0.5,
 rotation: 90,
 ease: Circ.easeOut
 }, "begin");
 ...

 return tl;
}

function sceneTwo() {
 var tl = new TimelineMax();

 tl.add("boom");
 tl.to(".star", 2, {
 scale: 5,
 opacity: 0,
 rotation: -360,
 ease: Circ.easeIn
 }, "boom");
 ...

 return tl;
}

var master = new TimelineMax();
master.add(sceneOne(), "scene1")
 .add(sceneTwo(), "scene2");

We can even easily change their order around if we want:

var master = new TimelineMax();
master.add(sceneTwo(), "scene2")
 .add(sceneOne(), "scene1");

104 | Chapter 9: GreenSock’s Timeline

.seek for a Better Workflow

Eventually, your animations might start getting really long. It
becomes hard to adjust a single part and keep in your mind what
you’re changing if you have to watch everything that came before
it. For this, .seek is a huge boon to your workflow. This is where
the position labels come in really handy. Sometimes when I watch a
full animation, even if it’s only seconds long, I forget exactly what I
was adjusting. This way, I can go directly into scene2, three sec‐
onds in, and watch only the one part I’m adjusting:

var master = new TimelineMax();
master.add(sceneOne(), "scene1")
 .add(sceneTwo(), "scene2");

master.seek("scene2+=3");

Fairly often, I’ll finish a really long animation and notice one scene is just a little too
fast or too slow. For this, I take advantage of the timeScale() method. This is a pretty
powerful GreenSock feature, and you’d be surprised how often it comes in handy. I’ve
even had animations where I split up the functions in a different organization so that
I could use timeScale() to refine them. Here’s an example:

function sceneOne() {
 var tl = new TimelineMax();

 tl.add("begin");
 tl.to(".bubble", 2, {
 scale: 3,
 opacity: 0.5,
 rotation: 90,
 ease: Circ.easeOut
 }, "begin");
 ...

 tl.timeScale(1.5);

 return tl;
}

This will make all of the animations in scene1 1.5 times faster. For slower animation,
we would change the scale to be less than 1: i.e., 0.5 would be slower by half.

Loops
If we wanted to repeat an animation, we would say repeat: -1, but what about if we
wanted to repeat an entire section? We would add that object in as a parameter to that
timeline. Here’s an example:

Nested and Master Timelines | 105

function sceneOne() {
 var tl = new TimelineMax({ repeat: -1 });

 tl.add("begin");
 tl.to(".bubble", 2, {
 scale: 3,
 opacity: 0.5,
 rotation: 90,
 ease: Circ.easeOut
 }, "begin");
 ...

 return tl;
}

We can also use yoyos (the syntax is a Boolean value, yoyo:true) if we want the ani‐
mation to oscillate between playing backward and forward. This can be applied to
individual tweens, full timelines, or master timelines, but yoyos will only work if the
timeline is repeated. If we wanted to apply this kind of logic to the whole master
timeline, we would add it the same way, into the master’s timeline call:

var master = new TimelineMax({repeat: -1, yoyo:true});

When we repeat things, we also have the benefit of applying a specific delay to the
whole thing. delay: 1 would delay all of the animation without a pause in between
repetitons of the animation, while repeatDelay: 1 would pause the animation in
between each iteration.

Repeat Usage

The rest of the methods described here are available to both
TimelineLite and TimelineMax, but looping, repeats, and yoyos are
exclusive to TimelineMax.
Please also be aware that if an animation is looped or retriggered,
you might consider using .fromTo instead of .to to make sure that
it starts from exactly where you need it to instead of where it left
off.

You don’t have to repeat things this way; you can also use callbacks if they make more
sense to you or if you’re changing things (like making something random) on every
loop. Callbacks also have a lot of power if you need to make things more precise. The
syntax looks like this:

 function _flyBy(el, amt) {
 TweenMax.to(el, amt, {
 x: -200,
 rotation: 360,
 onComplete: this._flyBy,
 onCompleteParams: [el, amt]

106 | Chapter 9: GreenSock’s Timeline

 });
 }

If we were to use this type of callback to create a random effect, we’d do something
like this:

function _flyBy(el) {
 TweenMax.to(el, amt, {
 x: Math.random() * 400 - 200,
 rotation: Math.random() * 360,
 onComplete: _flyBy,
 onCompleteParams: [el]
 });
 }

The onComplete option gives the name of the callback function (to be called when the
animation has completed), and the onCompleteParams option lets us declare an array
of parameters that GreenSock will use when it calls that function. In this code, we
told it to call the function _flyBy with the values stored in the el and amt variables.
This is useful because normally, if you just repeat a random number, the compiler
reads it once, and then it’s not really “random.”

There are many ways to work with callbacks, including defining the scope (changing
what this refers to in the function) and deciding when they are called. The available
options include:

• onStart

• onStartScope

• onStartParams

• onComplete

• onCompleteScope

• onCompleteParams

• onUpdate

• onUpdateScope

• onUpdateParams

• onRepeat

• onRepeatScope

• onRepeatParams

• onReverseComplete

• onReverseCompleteScope

callbackScope is a simple way of setting all of these at once: onStartScope, onUpda
teScope, onCompleteScope, onReverseCompleteScope, and onRepeatScope.

Nested and Master Timelines | 107

Pausing and Events
You may recall earlier when we restarted the whole timeline by passing repeat: -1 as
an object to the TimelineMax() constructor. Similarly, you can set a whole timeline to
be paused initially:

var master = new TimelineMax({paused: true});

This is especially useful if you want a timeline to be paused when the page is first vis‐
ited, and the animation activated with a click:

var master = new TimelineMax({paused: true});
...

var el = document.getElementById("button")
el.addEventListener('click', function(e) {
 e.preventDefault();
 master.restart();
}, false);

Pretty simple!

We can, of course, use all sorts of events here. With tools like Hammer.js, you can
have touch events on mobile retrigger timelines so that you can achieve beautiful ani‐
mation effects just like you see in native apps—on swipe, on double-tap, and so on.

In Chapter 12, I’ll show you how to use GreenSock’s Draggable to control a timeline
on drag. We could also hook a timeline up to jQuery’s slider UI to make a nice scrub‐
bing interface. Chris Gannon’s ScrubGSAPTimeline tool is awesome for timeline
workflows. There’s more information about how to use it in a pen.

Other Timeline Methods
GreenSock’s timeline tool has too many features to cover in just one section; what fol‐
lows is just a selection of what’s available to you. We’ve gone over what I consider the
most vital basics, but if any other methods are interesting to you, head over to the
GreenSock docs or forums for more information. Most of the methods are named
pretty intuitively, but the docs can help clarify usage.

Keep in mind that there’s an ActionScript version of GSAP too, so be mindful that
you’re in the JavaScript section. It’s pretty easy to tell which is which, because the
look/feel of the ActionScript section is much older and it has a grey design instead of
their usual black and green.

TimelineLite and TimelineMax methods

• add()

• addLabel()

108 | Chapter 9: GreenSock’s Timeline

http://hammerjs.github.io/
http://bit.ly/2lYp1P4
http://bit.ly/2mB4pKv
https://greensock.com/docs/#/HTML5/
https://greensock.com/docs/#/HTML5/
https://greensock.com/forums/

• addPause()

• call()

• clear()

• delay()

• duration()

• eventCallback

• exportRoot()

• from()

• fromTo()

• getChildren()

• getLabelTime()

• getTweensOf()

• invalidate()

• isActive()

• kill()

• pause()

• paused()

• play()

• progress()

• remove()

• removeLabel()

• render()

• restart()

• resume()

• reverse()

• reversed()

• seek()

• set()

• shiftChildren()

• staggerFrom()

• staggerFromTo()

• staggerTo()

• startTime()

• time()

• timeScale()

• to()

• totalDuration()

• totalProgress()

• totalTime()

• useFrames()

Nested and Master Timelines | 109

Methods exclusive to TimelineMax

• currentLabel()

• getActive()

• getLabelAfter()

• getLabelBefore()

• getlLabelsArray()

• repeat()

• repeatDelay()

• tweenFromTo()

• tweenTo()

• yoyo()

Now that you’re all set up with the basics of the GreenSock timeline and all the power
it offers, let’s move on to the really fancy and fun animation extras available to you.

110 | Chapter 9: GreenSock’s Timeline

CHAPTER 10

MorphSVG and Motion Along a Path

There are a lot of amazing features available as plug-ins for GreenSock. The first ones
we’ll go over are MorphSVG and motion along a path (BezierPlugin), because these
two features are virtual powerhouses for realistic movement in SVG.

Loading Plug-ins

MorphSVG is a paid-for plug-in, but chances are you’ll want to
play with it before you spend money. GreenSock makes this possi‐
ble by providing CodePen-safe versions of its plug-ins, which you
can use in pens as you like.
Don’t forget to load the plug-in resources and TweenMax.min.js
into your pen before you get started!

MorphSVG
One of the most exciting features of GreenSock is MorphSVG. At the time of publish‐
ing, GreenSock is the only library that supports tweening paths using an unequal
number of path points. SnapSVG, SMIL, and even D3 allow you to change a path’s
shape into another one, but if the path points are uneven, the morph either fails or
looks incredibly ugly and unwieldy. MorphSVG can mutate shapes with uneven path
points beautifully, and with findShapeIndex() you can even fine-tune the type of
morph that’s created.

In order to morph an SVG path into another, all you need to do is point from one ID
to another. Seriously, it’s just that simple. And you can create the most amazing effects.
The syntax looks like this:

TweenMax.to("#pathFrom", 1, {morphSVG:"#pathTo"});

111

http://bit.ly/2lv1xhg

MorphSVG will honor where the path is in the viewBox, so keep in mind when you
make your SVGs that you should have the paths you are morphing from and to in the
same position, or the shape will move to the other location when it starts animating.

You can also morph polyline and polygon elements, either with the preceding ID syn‐
tax or by supplying the polygon points as a string directly:

TweenLite.to("#polygon", 2, {morphSVG:"10,10 40,70 70,70 70,10"});

MorphSVG is built for paths and polygons/polylines, but you might find that some‐
times you need to animate circles, rects, or other SVG elements. The plug-in offers
the method convertToPath() to convert these easily. You can either call it using an
ID or class associated with the target element, or pass in the full element to convert
them all at once from the start:

MorphSVGPlugin.convertToPath("circle, rect, ellipse, line, polygon, polyline");

Plug-in Compatibility

MorphSVG and TweenMax are both pretty complex, and they are
worked on regularly and receive regular upgrades. It’s important to
use compatible versions of each file because a lot of care is taken to
increment the versions in tandem. I’ve seen student animations fail
when they use the latest version of TweenMax and an older version
of MorphSVG, so if you’re having trouble getting a simple morph
to work (and I would start with something simple first), you might
want to check that you’re working with compatible versions.

findShapeIndex()
Most often, MorphSVG does some really nice calculations under the hood to figure
out what kind of transition will look appropriate with the interpolation of the differ‐
ent path points, so the default of auto for the shapeIndex property will work just fine.
But every once in a while, you’ll want to fine-tune the movement between the two.

The findShapeIndex() utility function plug-in helps you pick the best type of morph
for your animation by letting you cycle through the tweening points, if you want to be
particular about the way the shape morphs. You load it up, point it from one ID to
another (e.g., findShapeIndex("#hex", "#star");), and a nice GUI appears. Don’t
leave this in your codebase, though—you should use it and then discard it before
putting things into production so you don’t add extra weight unnecessarily.

In Figure 10-1 and the corresponding demo, you can see how I’m tweening the star
into the decagon, but the index completely changes how they interpolate. The more
path points you have, the more complex your choices will be. Fewer path points pro‐
vide fewer options.

112 | Chapter 10: MorphSVG and Motion Along a Path

http://bit.ly/2g8CCyg

Figure 10-1. The two shapes we’d like to morph (top), the GUI that comes up when find‐
ShapeIndex() is loaded and shapeIndex is set to auto (middle), and a different shape
morph when we adjust the index to another integer

MorphSVG | 113

Motion Along a Path
Motion along a path is truly vital for realistic movement in animation. Interpolating
single values in the x, y, and z directions will only get you so far. Consider the move‐
ment of a firefly in a jar—living beings rarely sail along in a linear fashion. Currently,
motion along a path is not supported in CSS, though it is coming down the pipeline,
and you can vote to support its implementation in Microsoft Edge. SMIL offers
motion along a path, but no SMIL support is offered in IE or Edge.

GreenSock provides a stable way to create such an effect using the BezierPlugin,
included in TweenMax, providing support in IE8+ (for HTML content, SVG support
starts at IE9). Thus, it’s currently the most fully supported and backward-compatible
way to work with motion along a path.

In order to create a motion along a path, pass an array of coordinates as values into
the bezier definition:

TweenMax.to($firefly1, 6, {
 bezier: {
 type: "soft",
 values:[{x:10, y:30}, {x:-30, y:20}, {x:-40, y:10},
 {x:30, y:20}, {x:10, y:30}],
 autoRotate: true
 },
 ease: Linear.easeNone,
 repeat: -1
}, "start+=3");

I usually use x and y values, which are the transform coordinates we mentioned
before, but other values would work as well, such as left, top, or even rotation.
This also means you can animate along 3D Bézier paths by adding a z value! Super
flexible. But 99% of the time, I just use x, y.

When we use x and y, the coordinates refer to points relative to the element’s posi‐
tion, not the canvas itself. In other words, if you specify x:5, y:10, the motion will
be defined from 5 to the right and 10 down from where the element is currently. Sub‐
sequent points are still defined by the element’s initial position, not the last coordi‐
nate. This makes plotting points in an area much easier to map around the element.
In the case of these particular fireflies, I tweaked the path to stay within the bounds of
the light bulb, and also look slightly jumpy, as in realistic movement bugs tend to hop
around a bit (Figure 10-2).

114 | Chapter 10: MorphSVG and Motion Along a Path

http://dev.w3.org/fxtf/motion-1/
http://bit.ly/2mznqf8
http://caniuse.com/#search=smil
http://codepen.io/sdras/full/MYQxXe/

Figure 10-2. Fireflies move around in a peculiar manner; to animate them realistically,
they should not move in a linear fashion and they need to rotate along with the path

Motion Along a Path | 115

Let’s say you aren’t animating fireflies. Perhaps you’d like to use the paths as general
coordinates, but want the motion between them to be smooth and refined. There are
two ways of achieving this. The first is to set the type parameter to "soft". This will
take the paths you feed it and curve toward these points, as if being pulled in their
direction, rather than interpolating the values to one set and then the next. The other,
more nuanced way that offers more control is to set type to thru (this is the default)
and define a curviness value. 0 defines no curviness, 1 is normal, 2 is twice as curvy,
and so on. Figure 10-3 and its corresponding pen example show the effects of this
setting.

Figure 10-3. Demo showing the curve of the motion set to different curviness parameters

Note that past a value of 3 the curve begins to look less smooth overall, because each
point is beginning to loop around its own axis. You can think of the motion as being a
little like twanging a rubber band: when we set curviness to 0, the rubber band is
pulled taut. When we set it to 2, the rubber band is a little loose—just enough for the
motion to look smooth between points. When we get to 8 or so, the motion begins to
unravel.

In addition to "thru" and "soft", we have two other specifications for Bézier
types: "quadratic" and "cubic". "quadratic" allows you to define a control point
between each anchor. "cubic" is similar, but you can specify two control points
between each anchor. For both "quadratic" and "cubic", you must begin and end
the array with an anchor, though you can use as many iterations as you like.

116 | Chapter 10: MorphSVG and Motion Along a Path

http://codepen.io/sdras/full/PqEPqz

For now, you pass an array of coordinates, though I wouldn’t be surprised if in the
future GSAP added the ability to use an SVG path itself as the definition for the
movement. This library constantly adds new features; you can watch the reposi‐
tory for updates and see what’s been added in the past year.

We also mentioned rotation. In the earlier pen, I simply used autoRotate: true to
have each firefly spin on its own axis that correlates to the direction of the line while
it travels through the array. You can be more specific by setting autoRotate to an
integer rather than a Boolean, to set the initial degree of the element before it begins
spinning. You may also pass an array, to adjust these options:

1. Position property 1 (typically "x")
2. Position property 2 (typically "y")
3. Rotational property (typically "rotation", but can also be "rotationX" or "rota

tionY" if you’d like it to stay on one axis)
4. (Optional) Number of degrees (or radians) to add to the new rotation at the

onset
5. Boolean value indicating whether the rotational property should be defined in

radians rather than degrees (the default is false, which results in degrees)

Setting the array to autoRotate: ["x","y","rotation",0,false] is the same thing
as using autoRotate:true, and the element will follow the rotation trajectory of the
path it’s following. The parameter I use the most often of these five is number 4: the
number of degrees to add to the new rotation. This helps tilt the character or element
in a certain direction at the outset of the animation. This is really helpful because
realistic motion usually calls for tweaking the direction of rotation at the outset—
things don’t usually just move directly forward or start in a stable horizontal direc‐
tion.

I’ve provided a toggle for autoRotate: true and false in Figures 10-4 and 10-5 and
their corresponding example, so that you can see precisely the effect this parameter
has on the animation.

Motion Along a Path | 117

https://github.com/greensock/GreenSock-JS/
https://github.com/greensock/GreenSock-JS/
http://codepen.io/sdras/full/aOZOwj/

Figure 10-4. When autorotate: true is used, the element/character tilts to follow the path

Figure 10-5. When autorotate: false is used, the element/character doesn’t follow the
path, and the motion feels a little awkward

Here’s the code:

function lilGuyGo(autoRotate) {
 // bring playhead back to beginning and clear all tweens
 tl.progress(0).clear()
 // set the initial rotation to be close to the direction he's headed in
 .set(lilG, {
 rotation: 40
 });
 // tween added to timeline with the specified Bezier paths
 tl.to(lilG, 3, {
 bezier: {
 type: "soft",
 values: [{x: 0, y: 50}, {x: 150, y: 100}, {x: 300, y: 50},
 {x: 500, y: 200}, {x: 700, y: 100}, {x: 900, y: 80}],
 autoRotate: "true"

118 | Chapter 10: MorphSVG and Motion Along a Path

 },
 // ease for slip-n-slide-like animation-wheeee!
 ease: Circ.easeInOut
 });
}
lilGuyGo(true);

The little character looks much more alive this way than if he had statically been set
to any degree angle during the course of the tween. You can also see that I set his ini‐
tial rotation to face down toward the direction he’d be autorotating to—that’s because
if I hadn’t, there would have been a little “jump” as he tried to right himself along the
correct origin and axis. I could have also passed that in as an option in autoRotate, as
specified previously. Either way works.

Motion along a path does not just apply to character animation, of course. When
paired with other types of opacity and transform animations, there are endless possi‐
bilities for expressive yet fine-tuned control over animations.

Motion Along a Path | 119

CHAPTER 11

Stagger Effects, Tweening HSL, and
SplitText for Text Animation

Staggered Animations
The stagger feature in a lot of JavaScript animation libraries tends to be an incredibly
useful tool for creating elegant animations, which is definitely a benefit over using a
CSS workflow to create the same effect. Let’s take a look at a few different ways to
write the staggering animation illustrated in Figure 11-1.

Figure 11-1. Comparing writing the same staggering animation in CSS, Sass, and GSAP

To create a stagger effect in CSS, you increment the delay using the element or pseu‐
doelement with the same keyframes:

121

http://bit.ly/2fPAV8d

@keyframes staggerFoo {
 to {
 background: orange;
 transform: rotate(90deg);
 }
}

.css .bar:nth-child(1) { animation: staggerFoo 1s 0.1s ease-out both; }

.css .bar:nth-child(2) { animation: staggerFoo 1s 0.2s ease-out both; }

.css .bar:nth-child(3) { animation: staggerFoo 1s 0.3s ease-out both; }

.css .bar:nth-child(4) { animation: staggerFoo 1s 0.4s ease-out both; }

.css .bar:nth-child(5) { animation: staggerFoo 1s 0.5s ease-out both; }

.css .bar:nth-child(6) { animation: staggerFoo 1s 0.5s ease-out both; }

In Sass, you could DRY it out a little:

@keyframes staggerFoo {
 to {
 background: orange;
 transform: rotate(90deg);
 }
}

@for $i from 1 through 6 {
 .sass .bar:nth-child(#{$i}) {
 animation: staggerFoo 1s ($i * 0.1s) ease-out both;
 }
 }

However, with GSAP, you can create this effect with a single line of code:

TweenMax.staggerTo(".gsap .bar", 1, {
 backgroundColor: "orange",
 rotation: 90,
 ease: Sine.easeOut
}, 0.1);

The fact that it’s so concise is good for workflow, especially if things need to be adjus‐
ted down the line.

With the use of the cycle property here we can pass in multiple values to stagger
between, something that would take a lot of complex nth-child Sass operations in
CSS. The syntax calls for an array of values, and it will pass the elements between
those values:

TweenMax.staggerTo(".foo", 1, {
 cycle: {
 y: [75, 0, -75]
 },
 ease: Power4.easeInOut
}, 0.05);

122 | Chapter 11: Stagger Effects, Tweening HSL, and SplitText for Text Animation

You can also randomize these for even more interesting effects. This works better
than creating a randomizing helper function and calling it, as at runtime we’ll only
call the randomizing function once (and therefore it won’t be random). This use of
the cycle property allows us to create really beautiful and interesting effects easily. In
the following code we’re using the cycle property to randomly generate values for
each animation:

var coord = [40, 800, 70, -200];

TweenMax.staggerTo(".foo", 1, {
 cycle: {
 x: function(i) {
 return coord[Math.floor(Math.random() * coord.length)];
 }
 },
 ease: Power4.easeInOut
}, 0.1);

Understanding Math.random() for Animation

Math.random() is incredibly useful for animating in JavaScript due
to its ability to create mesmerizing random effects or spin up gen‐
erative code. Math.random() returns a number between 0 and 1, so
you can see how it would be useful out of the box for things like
opacity, where that range directly applies. In other cases, you multi‐
ply it by the maximum value you want, creating a range from 0 to
that value. In the preceding code, you might have noticed that we
placed Math.random() inside the Math.floor() method. This
causes the result to be rounded to the next lowest integer value
(Math.ceil() would round up, and Math.round() would round to
the nearest integer. Although both .floor() and .round() work in
this case, I usually opt for .floor() because I’ve read that the per‐
formance is ever so slightly better. Of course, if you don’t need to
snap to integer values, it is even more performant not to round at
all.
If you need Math.random() to scale in between a range that doesn’t
start at 0, you’ll have to multiply it by the difference between the
values and add the minimum value, like this:

Math.random() * (max - min) + min;

In Figure 11-2 and the corresponding example, I simply staggered between three val‐
ues for each target. With very little code (22 lines of JavaScript), you can accomplish
so much!

Staggered Animations | 123

http://codepen.io/sdras/pen/XmmjQb

Figure 11-2. All of this animation was possible with very little code thanks to GSAP’s
ability to tween an array of values across a lot of objects

124 | Chapter 11: Stagger Effects, Tweening HSL, and SplitText for Text Animation

Here’s the code:

var bP = $(".boggle path"),
 tl = new TimelineLite();

tl.add("start");
tl.staggerFrom(bP, 3, {
 cycle:{
 fill:["white", "yellow", "#e23e0c"],
 opacity:[0.8, 0.2, 0.5, 0.3],
 },
 ease:Elastic.easeOut
}, 0.001);
tl.staggerTo(bP, 3, {
 cycle:{
 y:[700, -700, -1000, 1000],
 x:[200, -200, -700, 700],
 rotation: function(i) {
 return i * 20
 }
 },
 opacity: 0,
 fill: "#f2bf30",
 ease:Circ.easeInOut
}, 0.001, "start+=1.25");

Relative HSL Color Animation
This one is relatively simple. Get it? Relative? Hoo boy. The ability to tween relative
HSL (hue, saturation, lightness) color amounts is fantastic, because if you want to cre‐
ate sophisticated color effects easily in animations, slightly adjusting these values
yields very powerful visuals.

Say you wanted to slowly turn a whole scene, with every element a slightly different
color, from day to night. Previously the easiest way to do so was to gradually change
the color value of each of these elements individually. You could put an overlay on the
whole container, but that lacks sophistication and realism. Or perhaps, you could use
an SVG fe- matrix filter, but this is unsemantic and not very intuitive to animate. Or
you might try using a CSS filter that doesn’t yet have a ton of support.

With GSAP, however, with one small piece of code you can uniformly, and with great
backward compatibility, grab hundreds of elements and make them slightly darker,
decrease their relative saturation, and slowly adjust their hue to turn them a slightly
different shade. Tweening HSL also has the benefit of being able to be used for
both background (for divs) or fill (for SVG), because it’s not opinionated toward a
certain type of property.

Figure 11-3 and the corresponding example show how it works.

Relative HSL Color Animation | 125

http://codepen.io/sdras/pen/zvwGKw

Figure 11-3. When you hover over a turtle, the fill of every shape in the turtle SVG is
interpolated by a relative hue, saturation, or lightness value

So many options! What’s a good use case? We can put the stagger cycle and the HSL
color tweening together with some interaction. But instead of a night scene, let’s make
it a little more wild.

We’ll make two different buttons with slightly different relative effects. Because we are
tweening relative values, we can combine effects on the buttons and get multiple out‐
puts:

// button hue
function hued() {

// keeps the fill and background consistent while relative hue changes
 var ch1 = "hsl(+=110, +=0%, +=0%)",
 tl = new TimelineMax({
 paused: true
 });

 tl.add("hu");

 tl.to(mult, 1.25, {
 fill: ch1
 }, "hu");

// tweens for background because of divs and CSS
 tl.to(body, 1.25, {
 backgroundColor: ch1
 }, "hu");

// the gauge responds to the action in the scene as if it's showing pressure

 tl.from(gauge, 2, {
 rotation: "-=70",
 transformOrigin: "50% 50%",
 ease: Bounce.easeOut
 }, "hu");

126 | Chapter 11: Stagger Effects, Tweening HSL, and SplitText for Text Animation

 return tl;
}

var hue = hued();

We’ll also make the scene stagger in with a bit more nuance using the cycle property.
But because we want all of the elements to come in and eventually look the same, it
makes more sense to use .staggerFrom than .staggerTo:

tl.staggerFrom(city, 0.75, {
 y: -50,
 scale: 0,
 cycle:{
 x:[300, 100, 200],
 opacity:[0.5, 0.3, 0.2, 0.8],
 rotation:[50, 100, 150],
 },
 transformOrigin: "50% 50%",
 ease: Back.easeOut
 }, 0.02, "in");

And that becomes our city constructor set (Figure 11-4).

Relative HSL Color Animation | 127

Figure 11-4. We can create controls to change all of the fill and background based on
relative values, and make unique color combinations

128 | Chapter 11: Stagger Effects, Tweening HSL, and SplitText for Text Animation

Here, we pair relative HSL tweening with interaction and Draggable to control a
timeline. Aside from some interesting effects that can be spun up very easily, Green‐
Sock works really well with user manipulation. We’ll talk about this in Chapter 12.

SplitText
Though SplitText is not used for SVG animation, I find it useful to animate text in
conjunction with SVG animation to tell a story. Although I’m covering it in this book,
SplitText is not meant to work with SVG <text> nodes.

SplitText is backward compatible to IE8, and works independently of GreenSock. It
works by dividing the text into characters, words, or lines, depending on which you
choose, and wrapping them into individual divs so that you can manipulate them,
either individually or progressively, in sequence.

Here’s a simple example:

new SplitText("#myTextID")

In Figure 11-5 and its corresponding demo, we’re using SplitText as an object that
we can use to access characters and words to animate.

Relative HSL Color Animation | 129

https://greensock.com/SplitText
http://codepen.io/sdras/full/RNWaMX

Figure 11-5. Animating words can help reinforce your story

130 | Chapter 11: Stagger Effects, Tweening HSL, and SplitText for Text Animation

Here’s the code:

// when you're feeling low
function sceneOne() {
 var tl = new TimelineLite(),
 mySplitText = new SplitText($text, {
 type: "chars, words"
 });

 tl.staggerFrom(mySplitText.chars, 0.8, {
 opacity: 0,
 scaleX: 0,
 ease: Power4.easeOut
 }, 0.05, "+=4")
 .staggerTo(mySplitText.words, 0.8, {
 rotationY: 60,
 y: 300,
 opacity: 0,
 ease: Power4.easeIn
 }, 0.1, "+=0.1")
 .to(person, 3, {
 rotation: -5,
 transformOrigin: "80% 50%",
 y: -10,
 ease: Circ.easeOut
 })
 .to(head, 3, {
 rotation: -10,
 transformOrigin: "0% 100%",
 y: 10,
 ease: Back.easeOut
 }, "-=3")
 .to(neck, 3, {
 rotation: -10,
 transformOrigin: "0% 100%",
 y: 10,
 ease: Back.easeOut
 }, "-=3");

 return tl;
}

SplitText is not the only library that can create text effects, but one killer feature I’ve
noticed other libraries don’t usually offer is that it honors natural line breaks.

Split elements can also have their position set as "relative" or "absolute". When
you split using position: "relative", text will be able to break and wrap naturally
as the parent element changes size. When using position: "absolute", text will not
wrap after it is split; however, this may increase animation performance.

Relative HSL Color Animation | 131

If you need to animate the text but then return it to its “unsplit” state, you can use the
revert() method. You can also add an autoincrementing class to each broken-apart
piece of text, such as .char1, .char2, .char3, etc.:

new SplitText("#myTextID", {type:"words", wordsClass:"char++"});

This allows us to create interesting effects or even target particular words, characters,
or lines for specific motion.

132 | Chapter 11: Stagger Effects, Tweening HSL, and SplitText for Text Animation

CHAPTER 12

DrawSVG and Draggable

Draggable
Dragging objects around your screen on the web is one of those things that seems like
it would be pretty easy to implement—until you try to do it from scratch. There’s a lot
to account for, with touch input, mouse events, viewports, scroll behavior, friction,
and believable physics. There are more failure conditions than you would probably
initially consider. Thankfully, GreenSock’s Draggable is a really powerful plug-in and
works perfectly on SVG as well as HTML elements.

Draggable is device-enabled for touchscreens, uses requestAnimationFrame(), and is
GPU-accelerated. Draggable works on its own but is more powerful when coupled
with the ThrowPropsPlugin, which creates really beautiful physics-like motion.

One of the best things about Draggable is its simplicity. This is all it takes to make a
box realistically draggable:

 Draggable.create(".box", {type:"x,y", edgeResistance:0.65,
 bounds:"#container", throwProps:true});

You may notice in the preceding code that we’ve defined some boundaries with
bounds. bounds is pretty flexible: you can define containing units or pixel parameters.
Something like "#container" (as in the preceding example) or section would work,
but you could also say {top:10, left:10, width:800, height:600} in an object to
restrict the movement.

You can also have it lock movement along the horizontal or vertical axis if you like by
setting lockAxis:true, which will work in both directions.

There are lots of callbacks/event listeners available to you:

133

https://greensock.com/draggable
https://greensock.com/throwpropsplugin

• onPress

• onDragStart

• onDrag

• onDragEnd

• onRelease

• onLockAxis

• onClick

so you can do things like:

myBox.addEventListener("dragend", functionName);

this refers to the Draggable instance itself, so you can easily access its target or
bounds. That’s extremely helpful, because if you are going to plug into any of Dragga‐
ble’s offerings, there’s no guessing or console logging to figure out what you’re refer‐
ring to. All of this also works on transformed elements as well, and honors
transform-origin, which is also a little hairy to write with native methods—but the
plug-in makes it simple and straightforward. Figure 12-1 and its corresponding
example are demos of this plug-in.

Figure 12-1. A really simple Mr. Potato Head pen that allows you to drag pieces of an
SVG around to mix and match its features

With all of the code you’ve learned so far, you could probably guess that the only
thing we really need to make this pen fully functional is the following code:

var features = "#top_hat, #moustache, #redhat, #curly-moustache,
 #eyes1, #lips, #toothy-lips, #toupe, #toothy, #big-ear-r,
 #big-ear-l, #shoes1, #lashed, #lash2, #lazy-eyes, #longbrown-moustache,
 #purplehat, #sm-ear-r, #sm-ear-l, #earring-r, #earring-l, #highheels,
 #greenhat, #shoes2, #blonde, #blond-mustache, #elf-r, #elf-l";

134 | Chapter 12: DrawSVG and Draggable

http://codepen.io/sdras/pen/gbERKQ
http://codepen.io/sdras/pen/gbERKQ

Draggable.create(features, {
 edgeResistance:0.65,
 type:"x,y",
 throwProps:true,
 autoScroll:true
});

Drag Types
So far we’ve only shown how to use Draggable with x and y values, meaning flicking
and dragging things around the screen up and down, left and right. But there are
other drag types to choose from, "rotation" and "scroll":

Draggable.create("#wheel", {type: "rotation"});

Using Draggable in a rotation can be fun and engaging for controls like knobs, gears,
levers, and pulleys. You can also define a minRotation and a maxRotation.

I don’t tend to mess around with scrolling unless I have to, but it’s important to men‐
tion that Draggable can be used for this as well. You can control
the scrollTop and/or scrollLeft properties of an element; pass a Boolean value for
lockAxis; and define edgeResistance, which would be a number.

One thing I do like that relates to scrolling but applies to x,y is the ability to do some‐
thing like autoScroll:1 (or autoScroll:2, etc.). What this does is allow the viewport
to be scrolled if the element that you’re moving goes outside of the display area. Let’s
say you have a box dragging around a screen. If you pass in autoScroll:1, the scroll
will follow the edge of the box, which is the behavior you’d expect, so it looks pretty
natural.

hitTest()
One of the coolest features of Draggable is its custom collision detection. This opens
up tons of possibilities for drag-and-drop UIs, interaction, and even things like
games.

In the following code, we’re checking if the elements are overlapping by more than
80%. If they are, we add a class (which will add a red border), and if not, we remove
it:

Draggable | 135

var droppables = document.querySelectorAll('.box'),
 overlapThreshold = "80%";

Draggable.create(droppables, {
 bounds:window,
 onDrag: function(e) {
 var i = droppables.length;
 while (--i > -1) {
 if (this.hitTest(droppables[i], overlapThreshold)) {
 droppables[i].classList.add("red-border");
 } else {
 droppables[i].classList.remove("red-border");
 }
 }
 }
});

You could also use hitTest() logic to detect if a mouseover happens, or any other
kind of target.

We can write code like this from scratch with native methods, and use things like
getBBox() or getBoundingClientRect() to calculate coordinate values. In fact, I’ll
show you how to work with some of these things for cool effects in Chapter 15. But if
you’re already loading and working with the Draggable plug-in for drag events, it
makes sense to make use of the awesome utilities available to you.

Using Draggable to Control a Timeline
One of my favorite ways to work with Draggable is to pair it with other effects. Plot‐
ting a timeline with Draggable can create some beautiful scenes and give the user the
power to control the progress. See Figure 12-2 and its corresponding example.

136 | Chapter 12: DrawSVG and Draggable

http://codepen.io/sdras/full/NqYGZv/

Figure 12-2. The user can choose to drag the scene in progressively by dragging the gear
in rotation or by hitting play

Draggable | 137

In the interest of brevity, I’m not showing all the code to animate everything on the
page here, but rather only focusing on how we’re creating the interaction:

var master = new TimelineMax({paused:true});
master.add(sceneOne(), "scene1");

// master.seek("scene1");

Draggable.create(gear, {
 type: "rotation",
 bounds: {
 minRotation: 0,
 maxRotation: 360
 },
 onDrag: function() {
 master.progress((this.rotation)/360);
 }
});

We pause the timeline initially, and then create a draggable instance of the gear. We
define the bounds using minRotation and maxRotation so that the user can’t keep
dragging the gear forever. We also specify that the timeline will be plotted along the
360 degrees of the rotation using progress(). progress() is incredibly useful for this
kind of timeline manipulation, because it allows you to create a range for the time‐
line’s progress or manipulate events along certain points of the timeline.

You can also plot the interaction along straight lines, or anything else you like—there
are so many possibilities!

DrawSVG
How would we make an SVG that looks like it’s drawing itself on the page? Well,
actually, we already learned this in Chapter 6 when we went over the Chartist with
CSS animation example.

Loading Plug-ins

DrawSVG is a paid-for plug-in, but chances are you’ll want to play
with it before you spend money. GreenSock makes this possible by
providing CodePen-safe versions of its plug-ins, which you can use
in pens as you like.
Don’t forget to load the plug-in resources and TweenMax.min.js
into your pen before you get started.

Let’s review this technique.

The first thing we need is an SVG element. This element has a stroke, and that stroke
is dashed (see Figure 12-3).

138 | Chapter 12: DrawSVG and Draggable

http://bit.ly/2lv1xhg

Figure 12-3. Star shape with a dashed stroke

We can use a native method in JavaScript called .getTotalLength() to get the length
of the shape:

var starID = document.getElementById('star');
console.log(starID.getTotalLength());

We’ll then set one of the dashes along the path, the stroke-dasharray, to the whole
length of the shape (the integer we got from the console output). The offset, or
stroke-dashoffset, is the distance into the pattern at which the start of the path is
positioned. Since we’re only setting one value for the array, it should be automatically
duplicated so that gaps and dashes are equal in length. This is animatable, either with
CSS without a framework or with JavaScript:

DrawSVG | 139

.path {
 stroke-dasharray: 1000;
 stroke-dashoffset: 1000;
 animation: dash 5s linear forwards;
}

@keyframes dash {
 to {
 stroke-dashoffset: 0;
 }
}

So, why would we use GreenSock to animate something that is easily animatable in
CSS without a framework? Here are a few reasons:

• You’re already loading GreenSock, and the plug-in allows you to animate these
properties easily without calculating lengths.

• It’ll work with regular rect, circle, ellipse, polyline, and polygon shapes, which
don’t have a .getTotalLength() method.

• The .getTotalLength() method is static and won’t work on scaling SVGs that
are adjusting responsively, whereas DrawSVG will.

• .getTotalLength() has some nasty bugs in IE and Firefox. If you just use it to
console.log the value and then delete it, you can work around this problem, but
not if you’d like to use this method to update dynamically.

• With GreenSock, you are not only able to animate from a beginning to an ending
integer; you can use Booleans (true means fully drawn, false means not drawn
at all) or percentages (my favorite!), or you can even have it animate in and col‐
lapse, with values like "50% 50%" (as both points start at 50%, they will not
appear at all).

DrawSVG makes it easy to do very complex and stable animations, and when it’s
paired with other features like staggering, timelines, and relative HSL tweening (cov‐
ered in the previous chapters), you can create beautiful effects easily, with only a sin‐
gle line of code:

TweenMax.staggerFromTo($draw, 4,{ drawSVG:'0' }, { drawSVG: true }, 0.1);

Figure 12-4 shows a more complex example, hinting at the possibilities.

140 | Chapter 12: DrawSVG and Draggable

http://bit.ly/2n7sUSP

Figure 12-4. A demo showing a Shel Silverstein drawing being drawn onto the page
while text is animated onto the page

Animate the Stroke!

With either CSS or DrawSVG, make sure the element has a stroke
to begin with. I’ve seen students get stumped for a while because
they didn’t create a stroke initially—there was nothing to animate,
so nothing happened, but nothing “failed” either.
This applies to groups too. If you target a group, make sure to get
the elements inside the group, not just the group itself. Even if the
stroke is applied to the group and then cascades to the other paths/
shapes, the group itself doesn’t have a stroke; only the elements do.

Working with DrawSVG is simple, and the multitude of ways to work with it make it
really flexible and useful in a broad range of contexts.

DrawSVG | 141

CHAPTER 13

Mo.js

mo.js is a JavaScript library devoted to motion for the web. It offers a declarative syn‐
tax for motion and the creation of elements for animation. Even though mo.js is still
in beta, there are already a host of amazing features to play with. Its author, Oleg
Solomka (otherwise known as LegoMushroom), creates incredibly impressive demos
and tutorials for the library’s offerings that you should check out, but in this article
we’ll run through a really quick overview of features and tutorials to get you started.

Base Premises
mo.js basically offers two ways to make something that moves. You can do what other
libraries do and reach inside the DOM or SVG DOM and move it, or you can create a
special mo.js object, which has some unique offerings. There are fundamental things
available to both ways of working, such as custom path easing and timelines. The
path easing and timelines also have pretty impressive working tools to make them
easier to adjust while you’re working.

Shapes
Depending on what you’re animating, the shapes and other objects that mo.js allows
you to make might simplify your workflow. mo.js offers a declarative syntax that
makes it very easy to create something on the fly.

Figure 13-1 and its corresponding example are basic demos of the syntax.

143

http://mojs.io/
http://bit.ly/2hiKsG4

Figure 13-1. A simple shape with a lot of nice details, including absolute centering

The code for this example is as follows:

var shape = new mojs.Shape({
 shape: 'circle', // shape "circle" is default
 radius: 50,
 fill: '#A8CABA', // default is pink
 stroke: '#5D4157',
 strokeWidth: 3,
 isShowStart: true, // show before any animation starts
});

Here are some of the base things you need to know:

• The shapes that are available to you include circle, rect, cross, equal, zigzag,
and polygon. (Default is circle).

• You define a fill, a stroke, and a strokeWidth. (Default is fill with no stroke
or strokeWidth. equal and cross don’t have space to fill, so they will not appear
unless a stroke is specified.)

• You define a radius for the shape, and adjust it on an axis with an additional
radiusX or radiusY. (Default is 50.)

• You let it know if you want to show the shape with isShowStart. This is a
Boolean—true or false. true allows you to see it even if you’re not going to ani‐
mate the shape. (Default is false.)

144 | Chapter 13: Mo.js

• polygon, zigzag., and equal allow you to pick a number of points so that you
can create different types of shapes. (Default is 3.)

• All shapes will be placed relative to the middle of the screen using absolute posi‐
tioning, unless you specify top, left, etc.

Figure 13-2 and its corresponding example demonstrate some of the shapes you can
create.

Figure 13-2. Some of the shapes that are available to you out of the box in mo.js

The code that creates the first shape (top left) is as follows:

const zigzag = new mojs.Shape({
 shape: 'zigzag',
 points: 7,
 radius: 25,
 radiusY: 50,
 top: pos.row1,
 left: pos.col1,
 fill: 'none',
 stroke: color1,
 isShowStart: true,
});

You might notice if you look into the DOM that these are SVG shapes placed inside of
a div for positioning. You can also pass a parent, like parent: '#id-to-be-placed-
under', if you’d like to put the shape somewhere within the DOM. You can pass any
DOM node as a parent, so parent: someEl would work as well. At some point, you’ll
also be able to choose between using a div or SVG, which will be awesome, because it

Shapes | 145

http://bit.ly/2hfqThp

makes it much easier to create a scaling animation for mobile if you can place it with
an SVG viewBox.

You can create custom shapes to animate as well, and add them in as the shape object:

// custom shape
class OneNote extends mojs.CustomShape {
 getShape () { return '<path d="M18.709
 ...
"/>';
 }
}
mojs.addShape('oneNote', OneNote);

const note1 = new mojs.ShapeSwirl({
 shape: 'oneNote',
 ...
});

Shape Motion
To create an animation with a shape in mo.js, you pass in an object, with the key and
value expressing what you’d like to tween from and to: { fromvalue : tovalue }.
Also worth mentioning is that in ES5 environments, this means you can’t easily use a
value stored in a variable as your “from” value. This would look like options =
{scale: {} }; options.scale[from]=to;. In ES6, it’s easier because you can use
variables for key values when you declare object literals.

We can use transform properties like scale, angle (known in CSS as rotate), and
opacity, and we can interpolate colors as well, as shown here with fill and in
Figure 13-3:

scale: { 0 : 1.5 },
angle: { 0 : 180 },
fill: { '#721e5f' : '#a5efce' },

Figure 13-3. Shape tweens pass in an object to interpolate between two states

146 | Chapter 13: Mo.js

We can also specify a few other parameters:

• duration

• delay

• repeat

• speed—1 is the default speed, so 0.5 would be half speed and 1.5 would be 1.5×
faster

• isYoyo—whether or not it tweens back and forth
• easing—written as an object, like ease.in, ease.out, or ease.inout
• backwardEasing—when using isYoyo: true, if you want the way that it eases

back (on the backswing of the yoyo) to be different from the way that it eases for‐
ward, you would specify that with this method (defaults to easing if not speci‐
fied)

• isSoftHide—whether it hides the shape with transforms rather than display
(Boolean, defaults to true)

Easy Random Generation

In other JavaScript libraries, we’d either write a helper function to
use random values, or use a bit of code that allows us to pick the
ceiling and floor values to choose between. (See the note in the
opening section of Chapter 11 for more details on Math.random().)
In mo.js, we can abstract this away very nicely. We can pass in ran‐
dom values by writing the string property : 'rand(min, max)';
for instance, angle: 'rand(0, 360)'.

Chaining
If we’d like to chain two animations on a Shape, we can call .then() on the initial
tween, like so:

const polygon = new mojs.Shape({
 shape: 'polygon',
 points: 5,
 stroke: '#A8CABA',
 scale: { 0 : 1.5 },
 angle: { 0 : 180 },
 fill: { '#721e5f' : '#a5efce' },
 radius: 25,
 duration: 1200,
 easing: 'sin.out'
}).then ({
 stroke: '#000',
 angle: [-360],
 scale: 0,

Shape Motion | 147

http://bit.ly/2gwtmpo

 easing: 'sin.in'
});

Swirls
Features like ShapeSwirl and Burst are interesting parts of mo.js; they’re pretty beau‐
tiful out of the box. A ShapeSwirl is similar to a regular Shape object, but the move‐
ment is pretty much how it sounds—the shape swirls around. You have a few
parameters to work with for a swirl, and they are all based on the sine that the swirl
works with:

• swirlSize—the amount it swirls horizontally (the deviation or amplitude of the
sine)

• swirlFrequency—the frequency of the sine
• pathScale—the scale (length) of the sine
• degreeShift—the angle of the sine, used if you’d like to make it move toward a

different direction on a 360 degree plane (especially useful for using ShapeSwirl
with a Burst)

• direction—the direction of the sine, either -1 or 1 (good for setting something
in the other direction if you want it to look a little random)

• isSwirl—whether the shape should follow a sinusoidal path (Boolean—true or
false)

These can be a little confusing to read and grok, so I’ve made a demo so you can play
with the values to understand them a little better. Figure 13-4 is a screenshot of the
demo.

Figure 13-4. Playing with the controls in this demo shows how all of the built-in options
for a mo.js ShapeSwirl work

148 | Chapter 13: Mo.js

http://codepen.io/sdras/full/mrZWqg/

Also, you can set up a few base configurations—like a custom shape, or an object,
with some configuration—to reuse for different ShapeSwirls (or any other shape)
with an ES6 spread operator like this (Figure 13-5). This is really nice if you have a
few similar objects:

const note_opts_two = {
 shape: 'twoNote',
 scale: { 5 : 20 },
 y: { 20: -10 },
 duration: 3000,
 easing: 'sin.out'
};

const note1 = new mojs.ShapeSwirl({
 ...note_opts_two,
 fill: { 'cyan' : color2 },
 swirlSize: 15,
 swirlFrequency: 20
}).then({
 opacity: 0,
 duration: 200,
 easing: 'sin.in'
});

Figure 13-5. This demo shows ShapeSwirl used for the motion of the notes

Burst
A Burst is also really quite lovely out of the box. If you use the default configuration,
you would say this:

const burst = new mojs.Burst().play();

Shape Motion | 149

http://codepen.io/sdras/pen/OReWOw

To configure a Burst, you have a few options, as shown in Figure 13-6:

• count—the number of children in the Burst (default is 5)
• degree—the number of degrees around the center that the children come from
• radius—the radius that the children spread out to (radiusX and radiusY apply

here as well)
• isSoftHide—whether it hides the children with transforms rather than display

(Boolean, defaults to true); this applies to all shapes, but I bring it up again
because it’s particularly useful for a Burst with several children

Figure 13-6. You can customize quite a lot in a Burst: size, color, even custom shapes

All of the same rules for Shape also apply to Burst, and we can apply them to the
nodes themselves as a separate object using children, like this:

const burst = new mojs.Burst({
 radius: { 0: 100 },
 count: 12,
 children: {
 shape: 'polygon',
 ...
 }
});

150 | Chapter 13: Mo.js

http://codepen.io/sdras/pen/kkqNYK

Timeline
In a Timeline, you can either .add a bunch of objects or tweens that you have previ‐
ously declared as a variable, or you can .append them, and have them fall in order:

const timeline = new mojs.Timeline({
 .add(tween)
 .append(tween)
});

.add: allows you to add any objects or shapes to the timeline. They’ll all fire at once,
but you can still use delays or staggering to adjust their timing. .append: adds objects,
but staggers them in the order they are added.

There are a few things you can do in a Timeline that are worth noting. You can
add repeat, delay, and speed, just like to the objects themselves, as object parame‐
ters, like this:

new mojs.Timeline({
 repeat: 3,
 isYoyo: true
});

You can also nest a Timeline inside another Timeline; you can even nest them infin‐
itely:

const subTimeline = new mojs.Timeline();

const master = new mojs.Timeline()
.add(subTimeline);

Tween
With all of these constructors, we haven’t really spoken too much about tweening
(animating) what already exists. All of the same parameters for shape motion (dura
tion, repeat, easing, etc.) are also available for Tweens. To use a Tween, we update
styles or attributes (whatever we’re trying to change) along a path. Here’s a simple
example:

var thingtoselect = document.querySelector('#thingtoselect');
new mojs.Tween({
 duration: 2000,
 onUpdate: function (progress) {
 square.style.transform = 'translateY(' + 200*progress + 'px)';
 }
}).play();

I used this kind of tween to create the effect on the far left side of the example in
Figure 13-7, of the little zigzags drawing themselves on repeatedly using the SVG line
drawing trick with stroke-dashoffset. I’m also using the path easing available in

Shape Motion | 151

http://codepen.io/sdras/pen/JRQXGz
http://bit.ly/2l8ns1m
http://bit.ly/2l8ns1m

mo.js, which is discussed in the next section. I made the water in the tanks appear to
move by updating SVG path attributes as well.

Figure 13-7. Raygun with mo.js swirls and path easing

Here’s the code for the laser beam:

new mojs.Tween({
 repeat: 999,
 duration: 2000,
 isYoyo: true,
 isShowEnd: false,
 onUpdate: function (progress) {
 var laser1EProgress = laser1E(progress);
 for (var i = 0; i < allSideL.length; i++) {
 allSideL[i].style.strokeDashoffset = 20*laser1EProgress + '%';
 allSideL[i].style.opacity = Math.abs(0.8*laser1EProgress);
 }
 }
}).play();

Tweens have rich callbacks available that take into account fine-tuning that can some‐
times make all the difference. Some examples of this are onStart versus onRepeat
Start, onComplete versus onRepeatComplete, and onPlaybackStart versus
onPlaybackPause. A full list is available in the docs.

Path Easing
A very cool feature of mo.js is that aside from the other built-in easing values, you
can also pass in an SVG path as an easing value. I use this feature in several demos in
this chapter, but to be honest, I could never do path easing justice like the gorgeous
tutorial LegoMushroom has prepared. I’ll simply explain the base premises to get you
started and show you how it works, but I highly recommend going through his post.

152 | Chapter 13: Mo.js

http://bit.ly/2lKXq1z
http://bit.ly/2mkI5aR
http://mojs.io/tutorials/easing/path-easing/
http://mojs.io/tutorials/easing/path-easing/

Before we go through all of path easing, it’s important to establish that if you’d like to
work with something out of the box, the base functions will get you very far. The syn‐
tax for built-in easing is written like so:

easing: 'cubic.in'

Mastering easing can be the key ingredient to bringing your animations to life, so
being able to fine-tune your motion with custom paths is helpful. If you’re comforta‐
ble animating in CSS, you might like the mo.js bezier easing, which accepts the same
curve values (without some of the same restrictions), as CSS’s cubic-bezier. Here’s
an example of this kind of easing:

easing: 'bezier(0.910, 0.000, 0.110, 1.005)'

If you’d like more refined control than what bezier easing allows, path easing is really
nice. You pass in an SVG path, and your shape is updated to work with it. Let’s look
back again at the example I pulled out earlier from the raygun. I used path easing to
interpolate the values as it updated:

const laser1E = mojs.easing.path('M0,400S58,111.1,80.5,175.1s43,286.4,
 63,110.4,46.3-214.8,70.8-71.8S264.5,369,285,225.5s16.6-209.7,
 35.1-118.2S349.5,258.5,357,210,400,0,400,0');

new mojs.Tween({
 repeat: 999,
 duration: 2000,
 isYoyo: true,
 isShowEnd: false,
 onUpdate: function (progress) {
 var laser1EProgress = laser1E(progress);
 for (var i = 0; i < allSideL.length; i++) {
 allSideL[i].style.strokeDashoffset = 20*laser1EProgress + '%';
 allSideL[i].style.opacity = Math.abs(0.8*laser1EProgress);
 }
 }
}).play();

To really get a sense of how a path ease can affect the movement and behavior of an
animation, check out the CodePen demo in the next section. The curve editor tool
that mo.js offers will help you to visualize and immediately get a sense of how an ease
can refine what you create.

Mo.js Tools
One of the most impressive things about mo.js is the tooling. To whet your palate,
there is a demonstration on Vimeo; see Figure 13-8.

Shape Motion | 153

http://cubic-bezier.com/
https://vimeo.com/185587462

Figure 13-8. Mo.js workflow demo on Vimeo

I made a quick pen to showcase both the player tool and the curve editor so that you
can play around with them (Figure 13-9). Feel free to either fork it or just adjust it
live in CodePen; it’s fun to try out. The curve tool is on the left side and the timeline
is tucked at the bottom with a little arrow.

Figure 13-9. This is a starter pen you can easily fork to play around with mo.js tooling

154 | Chapter 13: Mo.js

http://bit.ly/2gqz2mo
http://bit.ly/2gqz2mo

Here’s the coolest part: LegoMushroom isn’t done. He’s working on new tooling for
the timeline now. Check out the awesome design for this tool on GitHub. If you’re
interested in contributing to open source, here’s an opportunity to dig in and help
make a really useful tool—click on the “help wanted” label on the right!

The other finished tools are available in their own repos:

• Player: http://bit.ly/2lv7wT9
• Curve editor: http://bit.ly/2mHhW2f

There is also a Slack channel you can join if you’re interested in contributing or learn‐
ing.

If you’re the kind of person who likes playing with things more than reading, all of
the CodePen demos from this chapter are available in a collection.

There are, of course, things in the library that I didn’t cover in this chapter. I went
over some of the most useful features of mo.js in my opinion, but there are more
things to discover. Check out the docs for more information.

Shape Motion | 155

http://bit.ly/2mtJuZN
http://bit.ly/2lv7wT9
http://bit.ly/2mHhW2f
https://hamsterpad.com/chat/mojs
http://codepen.io/collection/XOEKow/
http://bit.ly/2lkK6ie

CHAPTER 14

React-Motion

There are many ways to animate an SVG in React, and any one of the techniques
we’ve covered can be altered and used in a React context. But React-Motion has some
beautiful offerings that make it stand out, making it worthwhile to spend a chapter
focusing on the features.

As mentioned in Chapter 7, React-Motion is very different from sequentially based
sequencing techniques such as CSS or the GreenSock timeline, in that we aren’t
actually using time to control our interpolation at all.

Like with game-based physics, with React-Motion we give our elements mass and
spring parameters, and send them on their way. For this reason, we can get very life‐
like motion that is interruptible (I’ll explain what I mean by this in a moment), and
can create incredibly beautiful motion in a UI.

React-Motion exports three main components: <Motion/>, <StaggeredMotion/>, and
<TransitionMotion/>.

But the full list of exports includes the following:

• spring

• Motion

• StaggeredMotion

• TransitionMotion

• presets

We’re mainly going to focus on the <Motion /> and <StaggeredMotion /> compo‐
nents in this chapter, but there is more information available in the README of the
project.

157

http://bit.ly/2lSUy2l
https://github.com/chenglou/react-motion
https://github.com/chenglou/react-motion

Getting up to Speed

If you aren’t accustomed to React or ES6, this chapter might be
confusing for you. My suggestion is to get to grips with the work‐
ing principles each of these first (which is out of the scope of this
book), and then return here to learn more about React-Motion as
an animation library. You can’t use React-Motion without React, so
understanding the base premises are important before continuing.

<Motion />
We’ll start with the <Motion /> component that React-Motion makes available to
you.

In these examples, we’ll be using integers passed through styles to change the appear‐
ance of something over time. Truly, you can animate any two values, be it a number
in a path or a color value; it’s just most common to use the style pattern. Also, brows‐
ers are pretty good at changing some style properties without incurring many layout
triggers (namely transforms and opacity), as we covered in Chapter 2, so we’ll take
advantage of that.

Let’s break down how we implement this step by step before going over some demo
code. In this example, we’ll just update some integers so you can see what’s happening
(Figure 14-1).

Figure 14-1. Interpolating a number as well as a transform

158 | Chapter 14: React-Motion

http://bit.ly/2iFJCG7

First, our initial state will be a simple Boolean:

 getInitialState() {
 return {open: false};
 },

Then we’ll change the state based on a mouse click or touch of a button:

handleMouseDown() {
 this.setState({open: !this.state.open});
 },

 handleTouchStart(e) {
 e.preventDefault();
 this.handleMouseDown();
 },

In our render method, we’ll have a button that calls the methods we just defined to
update the state:

<button
 onMouseDown={this.handleMouseDown}
 onTouchStart={this.handleTouchStart}>
 Toggle
</button>

Then we’ll use the <Motion /> component made available to us through React-
Motion to both update the integer and update the transform style directly on the div
that contains it. Consider the fact that any time you use a library like GSAP, you’re
setting inline styles with JavaScript under the hood. This isn’t that much different,
even if they are written in a different way:

<Motion style={{x: spring(this.state.open ? 600 : 0)}}>
 {
 ({x}) =>
 <div className="simple-demo" style={{
 WebkitTransform: `translate3d(${x}px, 0, 0)`,
 transform: `translate3d(${x}px, 0, 0)`,
 }}>{x}</div>
 }
</Motion>

I’ve split apart some of the syntax onto separate lines just so you can see it a little
more clearly. We start by creating a style object that takes x as a key (you can use
anything you wish here) and sets the value to a ternary operator set by whether the
state of open is true or false.

We then pass that x value down, and are able to use it as a variable for whatever inter‐
polation we wish. Here we have the style, created with ES6 template literals for legi‐
blity. Take care here, as unlike with GreenSock, where the prefixes are handled for us,
you have to write out the prefixes you need—in this case, one for WebKit for the
transform property.

<Motion /> | 159

I’ve also placed just the x variable inside the div {x} so that you can see the numbers
update along with the style moving it across.

Color and React-Motion Interpolation

Unlike styles like position properties, SVG path units, or opacity,
some properties do not accept values that aren’t full numbers.
Color is one such example, when you write it as a hexadecimal or
RGBA value. (For example, there is no color for rbga(33.2428797,
47, 52, 1).) There are some workarounds here, though. You can
either concatenate a % at the end of these numbers, or you can use a
Math.floor()/Math.round() to get around this. You can also use
hsla(), which is interpreting a full hue (h) rotation—quite lovely
because it never fails, even when going above 360—or a percentage
for s and l values.
Decimal points for color components will be supported in the
future, as the color space for web pages expands beyond sRGB to
DCI-P3 and other wider gamuts.

Now that we have the basics down, lets animate an SVG!

Take a look at Figure 14-2 and its corresponding example.

Figure 14-2. The SVG rotates in and the text draws on when you toggle

Here’s a pared-down version of the code it takes to run the demo, so that you can see
what’s going on a little more easily:

<Motion style={{
 // designate all of the differences in interpolated values in these
 // ternary operators
 ...
 dash: spring(this.state.compact ? 0 : 200),
 rotate: spring(this.state.compact ? 0 : 180),
 ...
 }}>

160 | Chapter 14: React-Motion

http://codepen.io/sdras/pen/ZWeJem

 {/* make sure the values are passed below */} {({dash, rotate, ...}) =>
 <svg viewBox="0 0 803.9 738.1" aria-labelledby="title">
 <title>React-Motion</title>
 <g>
 <path
 style={{
 WebkitTransform: `scale(${scale}) rotate(${rotate}deg)`,
 transform: `scale(${scale}) rotate(${rotate}deg)` }}
 className="polygon cls-2"
 d="M529.8,359.7l-25.1-43.5-25.4-43.9-25.7-44.4L428,183.3..." />
 </g>
 ...
 <g style={{ strokeDashoffset: `${dash}` }}
 className="react-letters"
 data-name="react motion letters">
 <path className="cls-5" d="M178.4,247a2.2,2.2,0,1,1-3.5,
 2.6l-6.5-8.7h-8.6v7.4a2.2,2.2,0,0,1-4.4,0V220.1a2.2,2.2,
 0,0,1,2.2-2.2h10.8a11.5,11.5,0,0,1,4.8,22Zm-18.6-10.3h8.6a7.3,
 7.3,0,0,0,0-14.7h-8.6v14.7Z" transform="translate(3.1 1.5)" />
 ...
 </g>
 </svg>
 }
</Motion>

We’re using pretty much the same logic here, with a toggle that will change the state
(this time referenced by the key compact, or this.state.compact). You can see how
we change the values for different style properties in the <Motion /> component—
you can actually pass a variety of values. For instance, for the stroke-dashoffset, a
technique we described in both Chapters 6 and 12, we’ll need to change the value of
the dashoffset to the length of the shape—in this case, 200:

dash: spring(this.state.compact ? 0 : 200)

rotate will alternate in 180-degree segments:

rotate: spring(this.state.compact ? 0 : 180)

Now we’re able to plot the change in state of styles over the spring. We can apply it to
any path, and even to groups, as shown in the preceding example. We’ve inlined the
SVG here directly in the JSX. All SVG properties are supported as of v15—see the pull
request from zpao that I’m hugely grateful for. The only exception is that we have
placed the gradient we will use repeatedly for the sections directly in the HTML,
because it helps with render speed and performance (as we’re not wrapping all of the
individual tags under the hood with React.createElement()):

<Motion /> | 161

https://github.com/facebook/react/pull/6243
https://github.com/facebook/react/pull/6243

<svg width="0" height="0" xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink" viewBox="0 0
 803.9 738.1">
 <defs>
 <linearGradient id="linear-gradient" x1="399.74" y1="370.41"
 x2="399.74" y2="134.33" gradientUnits="userSpaceOnUse">
 <stop offset="0" stop-color="#fff"/>
 <stop offset="1"/>
 </linearGradient>
 <linearGradient id="linear-gradient-2" x1="406.42"
 y1="415.63" x2="406.42" y2="166.91" xlink:href="#linear-gradient"/>
 </defs>
</svg>

You’ll also notice I’ve collapsed the height and width of the SVG containing the gradi‐
ent—nothing should render to the DOM with a gradient, but some browsers will
show a bit of space here, so we do this for some added insurance. I can then call the
ID of #linear-gradient inside of SVG that’s in JSX whenever I wish and it will be
available to me.

A Note on Performance

Rendering an SVG with JavaScript is ever so slightly more costly.
My rule of thumb is that if it’s under a few KB, it’s generally not that
noticeable, but anything above that, and you should try to make an
SVG sprite and reuse it in the JSX with <use>. The <use> tag comes
with its own strange animation issues, so it’s best to avoid this for
anything but icons or images that won’t move. Inlining just the
SVG that needs to move around with state changes is my personal
recommendation, but I’m happy to hear others as well. Whatever
you try, be sure to test, both with the JS timeline in dev tools and
also visually, with real users.

Interruptible Motion
One thing to note in the demo is that you can reverse it midstream: it is interruptible.
If you recall, with some of the other technologies that we covered that are sequentially
based, what you’re working with is time. React-Motion never mentions time at all.

Animation APIs parameterized by eg duration and curve are fundamentally opposed
to continuous, fluid interactivity.

—Andy Matuschak

The mechanics of this library, and the game-based physics mentioned earlier, give us
the ability to interrupt it. In a simple toggle, that might not seem like much to write
home about. But what if you’re working with a menu that opens and closes? If the

162 | Chapter 14: React-Motion

http://bit.ly/2lQv5Jf

user decides to close it while it’s opening and has to wait for it to finish, then give it a
tap again, this will feel like an error. It’s subtle, but noticeable.

Does this mean that interruptible motion is superior? In one way, yes; in other ways,
no. Both sequentially timed and interruptible motion have their place.

In some of the other demos we’ve explored (for example, the SplitText demo, “Turn it
Around” from Chapter 11), or my pen “When you’re an introvert,” this kind of fluid‐
ity wouldn’t make any sense. Aside from the fact that you can’t write a loop in React-
Motion without writing an infinite loop (please don’t do that, unless you work on a
site that harms children or puppies—then you should definitely do that), writing an
animation that makes use of timing and sequence without tools that make the fine-
tuning of sequence available to you would be silly. And not good silly, like whiskey
poured on ice cream.

On the other hand, if you had a stream of chat heads you had to move around the
screen and collapse in order to keep typing a message, that would be a perfect time to
use React-Motion, or a library that shares these principles. Not only would it work
well, it would work beautifully.

The <StaggeredMotion /> component shows the benefits of this type of motion the
best, so we’ll dive into that next.

<StaggeredMotion />
When I covered staggers previously, the effect could be summarized as: “Here is a
group of elements. I want to change them over a certain number of seconds, by
updating a property this much. But I want them to each fire a little bit after one
another.” The <StaggeredMotion /> component in React-Motion doesn’t quite work
the same way.

We’ve covered how we’re not using time-based sequencing. So how would we fire
things consecutively? Especially when the motion is interruptible? What happens is
we send something on its way, and then update the next sibling’s placement based on
where the first one is headed. In essence, it gets the motion “for free.”

This way, when you drag something around and update its placement, the elements
don’t just go with it; they scatter behind it in a really beautiful way. If you couple that
with some of the spring parameter features (which we will), the effect can be quite
lovely, as shown in Figure 14-3 and its corresponding example.

<StaggeredMotion /> | 163

http://codepen.io/sdras/pen/RNWaMX
http://codepen.io/sdras/pen/dPqRmP
http://codepen.io/sdras/pen/pyedJE

Figure 14-3. When you drag the staggered component around, you get a sense of the
interruptible motion, and the difference in the way that it staggers

If you look at only one demo on the web from this book, this is the one you should
check out, because it’s really hard to describe the motion without seeing it. Let’s break
down the code.

In getInitialState(), we have an object that starts the circle off at 250 or the x
coordinate (pageX) and 300 for the y. Part of the reason we do that is so that viewers
can see the cascade when they first visit the page and the circle orientation isn’t off to
the top left of the page. We also set rotate to 0.

When the component mounts, we listen for both mouse and touch input (for desktop
and mobile), calling different functions to set the state of the placement of the x and y
to the center of that input:

getInitialState() {
 return {x: 250, y: 300, rotate:0};
},

componentDidMount() {
 window.addEventListener('mousemove', this.handleMouseMove);
 window.addEventListener('touchmove', this.handleTouchMove);
},

// we're setting the state to be equal to the position
handleMouseMove({pageX: x, pageY: y}) {
 this.setState({x, y});
},

handleTouchMove({touches}) {
 this.handleMouseMove(touches[0]);
},

164 | Chapter 14: React-Motion

In the next method,getStyles(), we set the styles from the previous style placement.
Note that this doesn’t occur within the render() method, and we have to pass in the
original styles as a parameter.

We’re also doing something we didn’t do in the previous <Motion /> component (but
could have if we wanted to): we’re designating a stiffness and dampening. This will
change the way that the spring physics of React-Motion behaves, and how siblings
will inherit the motion in tandem:

 getStyles(prevStyles) {
 // we're using the previous style to update the next one's placement
 const endValue = prevStyles.map((_, i) => {
 let stiff = 200, damp = 15;
 return i === 0
 ? this.state
 : {
 x: spring(prevStyles[i - 1].x, {stiffness: stiff, damping: damp}),
 y: spring(prevStyles[i - 1].y, {stiffness: stiff, damping: damp}),
 rotate: spring((i * 10), {stiffness: stiff, damping: damp})
 };
 });
 return endValue;
 },

React-Motion has a nice demo page where you can play around with all of these
parameters.

Now, in the <StaggeredMotion /> component, we start initially with the default
styles that we’ve pushed onto the array, which will update to styles and the state as
soon as the component is mounted (which creates the initial cascade). After that, we
divide the length of lines in half for the x and y values so that we can be sure that the
touch or mouse input will be in the center of the ring. We also rotate the whole circle
for effect, by the i*10 specified in the getStyles() method:

render() {
 let arr = [], amtHalf = 175;
 for (var i = 0; i < 50; i++) {
 arr.push({x: 0, y:0, rotate:0});
 }
 return (
 <div>
 <StaggeredMotion
 defaultStyles = {arr}
 styles={this.getStyles}>
 {lines =>
 <div className="demo">
 {lines.map(({x, y, rotate}, i) =>
 <div
 key={i}
 className={`playthings s${i}`}

<StaggeredMotion /> | 165

http://bit.ly/2hWextu

 // we have to subtract half the amount of $amt in
 // the CSS panel so that the mouse stays in the
 // center of the object we're creating
 style={{
 WebkitTransform: `translate3d(${x - amtHalf}px,
 ${y - amtHalf}px, 0) rotate(${rotate}deg)`,
 transform: `translate3d(${x - amtHalf}px,
 ${y - amtHalf}px, 0) rotate(${rotate}deg)`
 }} />
)}
 </div>
 }
 </StaggeredMotion>
 </div>
);
},

The result is a really fun and fluid interactive animation that can change direction on
a user’s whim.

166 | Chapter 14: React-Motion

CHAPTER 15

Animating the Unanimatable: Motion with
Attributes and Bare-Metal

Implementations

One of the great powers of working with JavaScript for animation over CSS is that we
aren’t limited by what CSS considers animatable. There are a lot of attributes that can
create amazing effects when interpolated, and certainly several more where this hasn’t
even been attempted in any real way yet.

requestAnimationFrame()
Of course, you don’t need a library at all to animate an SVG. One nice and perform‐
ant way of animating is to use requestAnimationFrame() (rAF for short). rAF can be
used as a replacement for other native methods, like setInterval() (though this
method has been improved by backporting features that rAF pioneered).

The way it works is you tell the browser a function that updates the animation prior
to the next repaint. rAF calls do not create a nested call stack, which can be a perfor‐
mance problem. Instead, they add the callback to the queue managed by the browser,
and only one instance of the function is ever running at a given time.

The magic of requestAnimationFrame() is that it will run at 60 frames per second
when it can, but under the hood, it will actually figure out how fast to run based on
your device: it will run faster on desktop and slower on mobile. It will also stop work‐
ing when running in a background tab, so battery life is preserved, and it doesn’t use
resources when it doesn’t need them. This saves us work as developers—all of this
used to have to be manually handled in setInterval(), as we’d have to declare time
deltas for different browsers or inactive tabs.

167

Browser Support for rAF

You used to need to use browser prefixes and polyfills for
requestAnimationFrame(), but luckily, support has climbed, and
this is now only necessary if you need to support IE9 or older.
Opera Mini does not support rAF at all, but it also doesn’t run any
JS client-side. It just builds your site on the proxy server from your
initial JS and then sends that to the user. Just keep in mind that
Opera Mini browsing is basically like seeing a screenshot/PDF of a
web page.

The syntax for rAF looks like this:

function animateSVG() {
 // here is where your animation code would go
 requestAnimationFrame(animateSVG);
}
requestAnimationFrame(animateSVG);

You can also use rAF in an IIFE (immediately invoked function expression):

(function animate() {
 requestAnimationFrame(animate);
}());

Of course, you don’t have to put all of the code for the animation inside the function
—you can also call another function that invokes the animation updates. The callback
here would usually be dependent on some sort of test to decide whether the anima‐
tion is already “finished” (unless you want an infinite looping animation).

In the following demo (Figure 15-1), I created an object pool with SVG circles. If
you’ll recall, drawing SVG circles takes three attributes: r, for radius; cx, which plots
the middle of the circle on the x-axis in the coordinate system; and cy, which plots
the circle on the y-axis. In this demo, we’ll update the placement of the circle
with cx and cy values—two attributes that currently aren’t animatable properties in
CSS.

168 | Chapter 15: Animating the Unanimatable: Motion with Attributes and Bare-Metal Implementations

http://bit.ly/2hL5UFs

Figure 15-1. A particle fountain built with an object pool that updates SVG attributes
with requestAnimationFrame()

In this example, we first declare our variables and then drum up the attributes. We set
the width and height to the size of the page using .innerWidth and .innerHeight
(which get the page’s height and width) and use these values to create our viewBox.
We also define some gravity, friction, and an empty object to use later on:

var svg = document.createElementNS("http://www.w3.org/2000/svg", "svg"),
 svgNS = svg.namespaceURI,
 vbx = document.createElementNS(svgNS, "viewBox"),
 width = window.innerWidth,
 height = window.innerHeight,
 gravity = 0.00009,
 friction = 0.000001,
 lots = [],
 prevTime;

document.body.appendChild(svg);
document.body.style.background = '#222';
svg.setAttribute("viewBox", "0 0 " + width + " " + height);
svg.setAttribute("width", width);
svg.setAttribute("height", height);

requestAnimationFrame() | 169

Correct Namespacing

Because SVG is written in a different namespace, creating elements
has a slight gotcha. You must use document.createElementNS(),
using the SVG namespace URL, which you can always access from
the .namespaceURI property of any existing SVG element. I usually
create a variable for this, shown in the preceding code as svgNS =
svg.namespaceURI, in order to cache it and quickly reuse it.

We can now create the bubble with an object constructor function that defines the
initial state of an object created with new Bubble(). This takes two arguments: the
two things about the bubble that we want to randomize, opacity and radius. We also
append it to the SVG in the middle of the viewBox:

function Bubble(opacity, radius) {
 this.init(width/2, height/2, 0, 0);
 this.opacity = opacity;
 this.radius = radius;
 var circ = document.createElementNS(svgNS, "circle");
 svg.appendChild(circ);
 circ.setAttribute("r", this.radius);
 circ.setAttribute("fill", "none");
 circ.setAttribute("stroke-width", "1px");
 this.circ = circ;
}

We can then create an object prototype that defines two shared methods for all Bub
ble objects—the init() method that is used to set an initial position and velocity,
and the update() method that updates the placement of the bubble based on acceler‐
ation, friction (which slows the velocity), and gravity (all formulas learned from phys‐
ics texts and modified, written out in comments here):

Bubble.prototype = {
 init: function (x, y, vx, vy) {
 this.x = x;
 this.y = y;
 this.vx = vx;
 this.vy = vy;
 },
 update: function (dt) {
 // friction opposes the direction of velocity
 var acceleration = -Math.sign(this.vx) * friction;
 // distance = velocity * time + 0.5 * acceleration * (time ^ 2)
 this.x += this.vx * dt + 0.5 * acceleration * (dt ^ 2);
 this.y += this.vy * dt + 0.5 * gravity * (dt ^ 2);
 // velocity = velocity + acceleration * time
 this.vy += gravity * dt;
 this.vx += acceleration * dt;
 this.circ.setAttribute("cx", this.x);
 this.circ.setAttribute("cy", this.y);

170 | Chapter 15: Animating the Unanimatable: Motion with Attributes and Bare-Metal Implementations

 this.circ.setAttribute("stroke", "rgba(1,146,190," + this.opacity + ")");
 }
};

We are calling init() twice for each bubble. Once, the constructor creates them cen‐
tered and still, and then a separate method call randomizes the speed. We can initiate
the Bubbles with some parameters for the opacity and radius, and also push them
onto the array we created earlier (I called it lots because sometimes it’s hard to name
things—you can yell at me on Twitter about it if you like, but full disclosure: I’ll prob‐
ably send you a GIF of a cat frowning in response):

for (var i = 0; i < 150; i++) {
 setTimeout(function () {
 var single = new Bubble(0.5+Math.random()*0.5, 5 + Math.random()*10);
 initBubble(single);
 lots.push(single);
 }, i*18);
}

...

function initBubble(single) {
 single.init(width/2, height/2, -0.05 + Math.random()*0.1, -0.1 + Math.random()
 *0.1);
}

We then use requestAnimationFrame() to cycle through the lots of Bubbles array
and activate it, redrawing all of the positions using the update() method we defined
in the Bubble object prototype. We’ve made some small adjustments here, because if
the height of the page is really small we can allow the circles to fall all the way down
before updating them, but otherwise we should update more often:

(function animate(currentTime) {
 var dt;
 requestAnimationFrame(animate);
 if (!prevTime) {
 // only save previous time
 prevTime = currentTime;
 return;
 } else {
 // calculate the time difference between frames;
 // if it's more than 25 ms, assume it's because the tab
 // wasn't active, and just use 25 ms
 dt = Math.min(currentTime - prevTime, 25);
 prevTime = currentTime;
 }
 for (var i = 0; i < lots.length; i++) {
 lots[i].update(dt);

 // if the height is small, just let it start over when it gets to the bottom;
 // otherwise, at 85% (so that there aren't big gaps)

requestAnimationFrame() | 171

 if (height < 500) {
 if (lots[i].y > height) {
 initBubble(lots[i]);
 }
 } else {
 if (lots[i].y > height*0.85) {
 initBubble(lots[i]);
 }
 }
 }
}());

With requestAnimationFrame() we have a lot of flexibility in how we can build our
animations without adding any additional resources. We can also animate properties
that aren’t in the spec. Indeed, most JavaScript animation libraries use rAF under the
hood, so if you want to get close to understanding animations without abstraction,
building some with rAF is a good way to go.

Keep in mind that the abstractions that some libraries offer are useful for keeping
your code DRY, legible, and clean, so in production environments, it might make
more sense to use a library, but every site is different and has different requirements.

GreenSock’s AttrPlugin
GreenSock’s AttrPlugin comes baked into TweenMax (see Chapter 8), so you don’t
need to add in any additional resources beyond TweenMax.min.js. The syntax for
attr is slightly different than for the animatable properties:

TweenMax.to(".trial", 3, {
 attr: {
 d: "M 100 300 C 125 200 175 200 200 100 Q 250 550 300 300
 Q 350 50 400 450 C 450 550 450 50 500 300
 C 550 50 550 550 600 200 A 50 50 0 1 1 700 300"
 },
 ease: Expo.easeOut
});

You can see how we nest the properties to be animated inside attr, unlike with other
properties. For the other animatable properties that follow, we use them outside the
attr object:

TweenMax.to(".trial", 3, {
 attr: {
 d: "M 100 300 C 125 200 175 200 200 100 Q 250 550 300 300 Q 350 50 400 450 C
 450 550 450 50 500 300 C 550 50 550 550 600 200 A 50 50 0 1 1 700 300"
 },
 x: 300,
 ease: Expo.easeOut
});

172 | Chapter 15: Animating the Unanimatable: Motion with Attributes and Bare-Metal Implementations

You can see that I used this to tween a path value here. It’s easy enough to do if you
have the same amount of path points; you don’t necessarily need MorphSVG (Chap‐
ter 10). In fact, you can create some fairly sophisticated path effects by tweening path
values if you take the time to understand them.

There are other things we can now tween as well. For example, we can create an ani‐
mated gradient mask with this JavaScript:

TweenMax.fromTo("#stop1", 1.5, {
 attr:{offset:-1}
}, {
 attr:{offset:1},
 repeat: -1,
 yoyo: true,
 ease:Linear.easeNone});

TweenMax.fromTo("#stop2", 1.5, {
 attr:{offset:0}
}, {
 attr:{offset:2},
 repeat: -1,
 yoyo: true,
 ease:Linear.easeNone});

and this SVG:

<svg width="500"
 height="200"
 xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink">
 <defs>
 <linearGradient id="Gradient">
 <stop id="stop1" offset="0" stop-color="white"
 stop-opacity="0" />
 <stop id="stop2" offset="0.3" stop-color="white"
 stop-opacity="1" />
 </linearGradient>
 <mask id="Mask">
 <rect x="0" y="0" width="500" height="200"
 fill="url(#Gradient)" />
 </mask>
 </defs>

 <rect x="0" y="0" width="500" height="200" fill="#480048" />
 <rect x="0" y="0" width="500" height="200" fill="#C04848"
 mask="url(#Mask)" />
</svg>

Here, we’re essentially creating a mask that uses a gradient to define its opacity and
then moving the offset, which creates a pretty performant gradient animation. If you
compare this to a background gradient animation, it performs much better because
there aren’t as many repaints.

GreenSock’s AttrPlugin | 173

http://bit.ly/2h77stW
http://bit.ly/2h77stW

We can also animate things like filters, which can be updated by interpolating the
stdDeviation. In this pen, I’m looping through path points with MorphSVG and also
updating the stdDeviation of a blur filter to create a flame that ebbs and flows, and
has natural-looking movement (Figure 15-2).

Figure 15-2. If you animate things like filters, you can get unstable movement, which is
great for elements of nature, like flame

Here’s the relevant part of the code:

function flame() {
 var tl = new TimelineMax();

 tl.add("begin");
 tl.fromTo(blurNode, 2.5, {
 attr: {
 stdDeviation: 9
 }
 }, {
 attr: {
 stdDeviation: 3
 }
 }, "begin");
 var num = 9;
 for (var i = 1; i <= num; i++) {
 tl.to(fStable, 1, {
 morphSVG: {
 shape: "#f" + i
 },
 opacity: ((Math.random() * 0.7) + 0.7),
 ease: Linear.easeNone
 }, "begin+=" + i);

174 | Chapter 15: Animating the Unanimatable: Motion with Attributes and Bare-Metal Implementations

http://codepen.io/sdras/pen/gaxGBB

 }
 ...

 return tl;
}

Practical Application: Animating the viewBox
Controlling the way that a data visualization lays out on your page on the fly is a pow‐
erful way to convey information. In the past, we’ve talked about how we can use this
to hide and show information for responsive development. When working with SVG,
we can do this by using the viewBox as a camera, isolating the relevant information
on the page to highlight information for the viewer. There are many uses for this
technique. We’re going to look at a new way of working with it dynamically to get the
processor to do the heavy lifting for us.

Before we go into animating the viewBox, we should discuss what the viewBox in
SVG is. I’m just going to cover the basics here, but if you want a deep dive, there are
some great articles to help with that.

The viewBox acts as a window through which you see into your SVG. It’s defined with
four coordinate values: min-x, min-y, width, and height. You can see the full drawing
in Figure 15-3.

Figure 15-3. The full SVG

The black box around it is defining the viewBox. If you’re familiar with Illustrator,
this is the artboard. You can change up the artboard in Illustrator by going to File →

Practical Application: Animating the viewBox | 175

http://bit.ly/2mHuDKn
http://bit.ly/2mpCcJo
http://bit.ly/2mB09KS
http://bit.ly/2iw6sxH

Document Setup → Edit Artboards. You can then crop your image on the fly and
change the visible area. If you know that your graphic is exactly the size of your
desired viewBox, you can do this quickly with Object → Artboards → Fit to Artwork
Bounds.

When we keep the viewBox the same, and we can change the width and height of the
SVG.

You can think about it a little like the SVG DOM plotting itself along a grid. That grid
can shrink and grow, but the aspect ratio of the grid stays consistent. In Figure 15-4
we have the SVG plotted at 0 min of the x-axis of the grid and 0 min of the y-axis.
The width expands across by 384.5 and the height by 250, roughly.

Figure 15-4. The coordinates of the original viewBox

If we group those houses together, we can see where they lie as well (Figure 15-5).

176 | Chapter 15: Animating the Unanimatable: Motion with Attributes and Bare-Metal Implementations

http://bit.ly/2hKDvRl
http://bit.ly/2hKDvRl

Figure 15-5. The coordinates, and therefore, viewBox of a group within the graphic

We can crop the whole visible area to just the houses by changing the viewBox
to "215 160 42.2 20".

In order to find the viewBox coordinates for that group, we could do some measur‐
ing, editing by hand, but that’s pretty arduous and, because the viewBox is scalable,
gets tricky. Luckily for us, there’s a native method we can use called getBBox(). This
returns the bounding box at the time that the method is called, and is exclusive of
stroke, masking, or filter effects. It returns an SVGRect object at the time that it’s
called (even if it hasn’t yet been rendered).

The cool thing about the SVGRect object is that it returns four values: the x-min, y-
min, width, and height (Figure 15-6). Sounds a bit familiar, huh?

Figure 15-6. The SVGRect object

This is really handy for us, because it means in order to update the viewBox dynami‐
cally all we have to do is store the values from the object as our new viewBox string,
like so:

var newView = "" + hb.x + " " + hb.y + " " + hb.width + " " + hb.height;

Practical Application: Animating the viewBox | 177

https://www.w3.org/TR/SVG/types.html
http://bit.ly/2mpC6lf

If you’re using ES6 template literals, you can make this much more legible:

const newView = `${hb.x} ${hb.y} ${hb.width} ${hb.height}`;

We can then set the new viewBox string as the viewBox attribute on the SVG:

const houses = document.getElementById("houses");
const hb = houses.getBBox();

// check the console for the SVGRect object
console.log(hb);

// we store the values from the object as our new viewBox string
const newView = `${hb.x} ${hb.y} ${hb.width} ${hb.height}`;

// we then set the new viewBox string as the viewBox attribute on the SVG
const foo = document.getElementById("foo");
foo.setAttribute("viewBox", newView);

Now we’re cooking with gas (see Figure 15-7).

Figure 15-7. The new, updated viewBox, set by the SVGRect object

To animate to the new viewBox values, we have a few options, all using JavaScript (for
the time being):

• We can use requestAnimationFrame() with a polyfill to update the values of our
coordinates over time.

• We can use GreenSock’s AttrPlugin (bundled with TweenMax) to animate it.
• We can use React-Motion to update the attributes on a click event.

The cool thing about GreenSock is it can animate any two integers, so it’s a pretty nice
tool for this. I’m going to use GreenSock in the following example because there are a

178 | Chapter 15: Animating the Unanimatable: Motion with Attributes and Bare-Metal Implementations

http://bit.ly/2lkN4nc

number of other things I want to animate, and I’d like quick, finite control of my eas‐
ing values, but the other methods would work as well.

VGRect Returns a Rectangle

One thing to keep in mind is that SVGRect will always return a rec‐
tangle, even if the element in question is not one, and there are no
diagonals, even when it’s transformed. The bounding box you see is
what you get when you take the original bounding box of the circle,
transform it, then find the bounding box for that diagonal box in
the parent coordinate system. That’s why the boxes are sometimes
much larger than the shapes.

Figure 15-8 and its corresponding demo show some rotating shapes with a stroke
applied so that you can see what I mean.

Figure 15-8. When an SVG element is transformed, the bounding box doesn’t go with it
—there are no diagonals; the box expands and creates a rectangle, even with circles and
lines

In Figures 15-9 and 15-10 and their corresponding demo, I have a map, and when
users interact with it, I want to give more information on the specific country they
select.

Practical Application: Animating the viewBox | 179

http://codepen.io/sdras/pen/MwxRBL
http://codepen.io/sdras/pen/dXoLEJ

Figure 15-9. The Crime Statistics map with hotspots

Figure 15-10. The expanded view, with India zoomed in by adjusting the viewBox

180 | Chapter 15: Animating the Unanimatable: Motion with Attributes and Bare-Metal Implementations

I have a repeated animation for the hotspots. I’m also using some simple data
attributes on the elements themselves so that I can store and use that information to
animate. Consistent naming is important here; it’s how I’m controlling which country
is expanded and what details are shown:

<g data-name="usa" class="hotspot">
 <circle id="dot2" cx="221" cy="249" r="2.4" fill="url(#radial-gradient)"/>
 <circle id="dot1" cx="221" cy="249" r="2.4" fill="url(#radial-gradient)"/>
 <circle id="dotmid" cx="221" cy="249" r="2.3" fill="#45c6db"/>
</g>

I’ve also added some extra padding to the hotspot elements so that their click target is
large enough for mobile devices and our fingers:

.hotspot {
 cursor: pointer;
 /* make the hit targets bigger for mobile */
 padding: 20px;
}

I can then write a function that, on click, passes in the data attribute and updates the
viewBox based on the shape of the country. I’ve added 200 to the width to accommo‐
date the text beside the country:

// interaction
function zoomIn(country) {
// zooming in part
var currentCountry = document.getElementById(country),
 s = currentCountry.getBBox(),
 newView = "" + s.x + " " + s.y + " " + (s.width + 200) + " " + s.height,
 group1 = [".text-" + country, ".x-out"],
 tl = new TimelineMax();

 tl.add("zIn");
 tl.fromTo(map, 1.5, {
 attr: { viewBox: "0 0 1795.2 875.1"}
 }, {
 attr: { viewBox: newView }
 }, "zIn");
 tl.to(".text-" + country, 0.1, {
 display: "block"
 }, "zIn");
 tl.fromTo(group2, 0.25, {
 opacity: 1
 }, {
 opacity: 0,
 ease: Circ.easeIn
 }, "zIn");
 tl.fromTo(currentCountry, 0.35, {
 opacity: 0
 }, {
 opacity: 1,

Practical Application: Animating the viewBox | 181

 ease: Circ.easeOut
 }, "zIn+=0.5");
 tl.fromTo(group1, 0.5, {
 opacity: 0
 }, {
 opacity: 0.65,
 ease: Sine.easeOut
 }, "zIn+=1");
}

$(".hotspot").on("click", function() {
 var area = this.getAttribute('data-name');
 $(".x-out").attr("data-info", area);
 zoomIn(area);
});

If I wanted my code to be super slim, I could have wrapped the timeline in a function
and simply reversed it when someone clicked the ×, but when I tried that, the anima‐
tion was just a little sloppier than I liked, so I created a new function to refine the
timing a little. I could also have used tl.to instead of .fromTo, but I’ve found that
when restarting animations, offering an initial value in .fromTo helps to stabilize it a
bit (particularly if you don’t know who might be updating your code).

I used jQuery in this example instead of vanilla JavaScript, so if you find my body
later, you know the motive.

viewBox in CSS?

A proposal has been made to make viewBox a CSS property, which
I heavily support. If you want to support it too, please either add a
comment with technical feedback or add a thumbs up to one of the
existing comments (to avoid crowding the main thread). A CSS
property to control the viewBox would be wonderful, because we
could easily apply media queries and animation, perhaps even
reducing the layout triggers and repaints required for such updates.

Another Demo: A Guided Infographic
For extra fun, I made a small flowchart to show how this technique can be used to
guide users. This particular chart guides users toward choosing the right image for‐
mat for the job (Figure 15-11).

182 | Chapter 15: Animating the Unanimatable: Motion with Attributes and Bare-Metal Implementations

http://bit.ly/2lvheVD
http://codepen.io/sdras/full/VjvGJM/

Figure 15-11. An animated flowchart using the viewBox and getBBox() for dynamic
updates

Animation warning: It’s potentially dizzying, so don’t play with it if you have a vestib‐
ular disorder. If I embedded this on a production site I might have a toggle to turn the
animation off or a fallback to a simplified questionnaire.

Practical Application: Animating the viewBox | 183

CHAPTER 16

Responsive Animation

Animation on the web is particularly nuanced, as we have to adjust our work to take
into account bandwidth, code compatibility, and product design. In this chapter we’ll
go over some techniques for creating a truly responsive scalable animation. We’ll also
cover different ways of working with the animation to achieve positive user experien‐
ces and parity across our multidevice world.

Some Quick Responsive Tips
At the very least we should ensure that interaction also works well on mobile, but if
we’d like to create interactions that take advantage of all of the gestures mobile has to
offer, we can use libraries like ZingTouch or Hammer.js to work with swipe or multi‐
ple finger detection. With a bit of work, these interactions can all be created through
native detection as well.

Responsive web pages can specify initial-scale=1.0 in the <meta> tag so that the
device does not wait the default 300 ms for a second tap before calling the action.
Interactions for touch events must either start from a larger touch target (40×40 px or
greater) or use @media(pointer:coarse), as support allows.

GreenSock and Responsive SVG
The number-one reason I use GSAP has to do with cross-browser support for SVG
transforms. Stable SVG rotation is very cumbersome. In almost every browser,
transform-origin problems persist, and they are completely unsupported in IE. This
problem is clearly exacerbated when attempting to use transforms in a responsive
manner, as any small transform-origin anomalies are exaggerated and difficult to
override.

185

http://bit.ly/2m9t2Av
http://hammerjs.github.io/
http://bit.ly/2lktYgW

Not only does GreenSock correct this behavior, but with support back to IE9, it offers
a few more tools that make responsive design and development particularly solid.
Currently, transforms on SVG elements with native rendering technologies (and sub‐
sequently, other JS libraries that use them) do not support correct rendering based on
percentages. GSAP solves this issue with matrix calculations.

Let’s first establish that by removing the width and height values from the SVG itself,
defining the viewBox, and then using CSS or JS to control the width and height of the
SVG, we can easily make an SVG adjust to any kind of responsive implementation.
You can also add preserveAspectRatio="xMinYMin meet" to ensure that all corre‐
sponding dimensions will scale appropriately and respective to one another, but since
that’s the default, it’s not strictly necessary. There’s a great playground by Sara Souei‐
dan if you’d like to get more background on the viewBox and scaling.

There are three other particular strengths that GSAP with respect to SVG, all employ‐
ing the use of transforms. The first is that aside from transformOrigin, GSAP now
has built-in support for svgOrigin. This means that you can choose whether you
want your element to transform based on the element itself (i.e., rotating on its own
axis) or using a coordinate in the SVG viewBox. With svgOrigin, you declare values
according to the viewBox coordinates. In other words, if your viewBox is "0 0 400
400" and you want to spin around the SVG’s center, you would declare svgOrigin:
"200 200". Usually you will find that moving and adjusting a transformOrigin is
enough. But in the case of Figure 16-1 and its corresponding pen, I made a cow spin
around the moon at a certain part of the viewBox, and because I used an svgOri
gin coordinate it was very easy to make this animation responsive, spinning on one
solid coordinate that’s stable no matter what size the SVG is:

TweenMax.set(cow, {
 svgOrigin:"321.05, 323.3",
 rotation:50
});

186 | Chapter 16: Responsive Animation

http://bit.ly/2lNbuJv
http://codepen.io/sdras/pen/doZReX

Figure 16-1. This SVG animation is draggable and pivots on a single point inside the
SVG viewBox with svgOrigin, so it’s completely stable across responsive implementations
(size the window down horizontally to watch the animation adjust to the viewport)

The next great feature we’ll cover is smoothOrigin on SVG elements. Typically, if you
change the transform origin on elements after they’ve already been transformed, the
movement becomes complex and counterintuitive, as seen in Figure 16-2 and its cor‐
responding pen.

GreenSock and Responsive SVG | 187

http://codepen.io/1Marc/full/DCvFm
http://codepen.io/1Marc/full/DCvFm

Figure 16-2. A pen showing that the spec’s interpretation of how stacking transforms
behave is counterintuitive (courtesy of Marc Grabinski)

As explained in a video by Carl Schooff of GreenSock, smoothOrigin corrects for this
problem. It makes sure that when you change the transform origin for an SVG ele‐

188 | Chapter 16: Responsive Animation

http://bit.ly/2mpuEXo

ment and subsequently move it again, it doesn’t cause any kind of strange jumpiness
(which is what the spec will interpret).

This resolves a huge amount of counterintuitive and hair-pulling behavior when
working with a longer and more complex responsive animation. GSAP also leaves
you the option of turning this off with one line of code, in the edge case that you’d
like to use the native rendering: CSSPlugin.defaultSmoothOrigin = false;.

The last great feature for complex responsive animations in GSAP is the ability to do
percentage-based animations dependent on the SVG elements themselves. CSS and
SMIL don’t have good support for this type of behavior. Just like with the BezierPlu‐
gin, GSAP offers the most backward compatibility and cross-browser support for
percentage-based SVG transforms. Check out Figure 16-3, a pen courtesy of Green‐
Sock:

var playBtn = document.getElementById("play"),
 tl = new TimelineMax({repeat:1, yoyo:true, paused:true});

tl.staggerTo(".box", 0.5, {x:"100%"}, 0.4)

play.onclick = function() {
 tl.restart();
}

Figure 16-3. GreenSock allows you to do percentage-based transforms on SVG elements,
which is a really nice feature for responsive development

GreenSock and Responsive SVG | 189

Responsive SVG, with or without GreenSock
Percentage-based transforms on SVG elements are really impressive and useful. In
responsive development, we make good use of flexbox, percentages, and units that
allow us to scale or expand to fit containers. But even more amazing when you move
to SVG is the fact that you might not need them. SVG transforms rely on the SVG can‐
vas, not absolute, browser window–defined pixel integers. We’re moving our elements
according to the SVG DOM. And elements aren’t the only thing that’s scalable. All of
the corresponding transforms and movements are as well.

There are no media queries to be found. We move things based on the x- and y-axes,
like so:

tl.staggerFromTo($iPop, 0.3, {
 scale: 0,
 x: 0,
 y: 0
}, {
 scale: 1,
 x: 30,
 y: -30,
 ease: Back.easeOut
}, 0.1, "start+=0.3")

Figure 16-4 and its corresponding demo show the result.

190 | Chapter 16: Responsive Animation

http://codepen.io/sdras/full/jPLgQM/

Figure 16-4. The animation changes size when you click the button, but the animation
experience stays consistent

Note that we’re not moving things with percentage-based transforms. Our animation
is establishing behavior based on the viewBox, and therefore, responsive development
becomes as easy as removing the width and height and declaring it elsewhere.

It’s nice to just “squish” an animation to fit our viewport, but we all know that true
responsive development is a more involved process than that. Let’s take our new shiny
tools and couple them with some responsive development, from start to finish.

There are a few ways we can do this. One is to take a large SVG sprite and shift the
viewBox with a media query event handler.

Responsive Reorganization by Updating the ViewBox
Do you remember when people used to use infographics? Infographics became very
popular because of their impact on conversion. On the user side, they were full of
quick, easy-to-digest information. They were colorful, and when created well, clearly
illustrated comparative information that one could pick up at a glance. On the crea‐
tor’s side, they increased the ROI (return on investment) of posts and shares. The

Responsive Reorganization by Updating the ViewBox | 191

http://bit.ly/2lYYYH3
http://bit.ly/2lYYYH3
http://bit.ly/2lhds0Y

impact of the graphics on a company’s visibility and brand awareness was staggering.
The Whole Brain Blog boasted numbers such as:

• Traffic to the website increased by over 400%
• Leads increased by almost 4,500%
• Number of new visitors to the site increased by almost 78%

But one thing all of these posts have in common is that they are at least two years old.
If infographics have that kind of potential for performance, why do they seem to be
considered a played out fad?

One possible reason is the tipping point for mobile. Infographics that are exciting and
all-encompassing on the desktop become an arduous pinch-n-grab affair on a mobile
device. With the rise of mobile traffic, sharing via social media causes frustration and
a decline of the engagement potential of these images.

The next reason is a little simpler. When a concept doesn’t adjust to the present con‐
text, it fades away. With more interactivity and motion on the web, a static graphic
doesn’t have the same pull as something that is more visually exciting, and here is
where motion trumps all.

Animation shouldn’t be considered at the end of the design and development process;
it should be the bones. If we marry that idea with the concept of conveying a lot of
information visually, we can update the very basis of what an infographic is and does.
I took the text content of an infographic I found in David McCandless’s book Knowl‐
edge Is Beautiful (Harper Design) and reimagined the look, feel, and implementation
to create a responsive, animated infographic.

Please view the full pen that corresponds to Figure 16-5, as the embedded pen shows
the collapsed view. Keep in mind that the progress of the text transitions is sped up
here in order to demonstrate the animation, not necessarily the content.

192 | Chapter 16: Responsive Animation

http://bit.ly/2mDH3Tq
http://bit.ly/2lN4nkk
http://bit.ly/2m3Jth6
http://bit.ly/2lhdplV
http://codepen.io/sdras/full/JdJgrB/

Figure 16-5. The viewBox shifts for mobile and desktop views of the infographic

In terms of design, traditional infographics typically make use of a salon-style, visu‐
ally loaded method. Here, we’ve still filled the usable image area but updated the
design to feel a little more clean. We didn’t overload the graphic with many elements,
because unlike with traditional static infographics, if there are too many different
moving parts it’s disorienting for the viewer. It’s also heavier to load, so there is a per‐
formance hit.

In terms of responsive design, instead of having the entire presentation be fluid
throughout, we had the infographic stay in place until a breakpoint, and then moved
elements to different positions, allowing the main SVG to respond fluidly at that
juncture. Even though we designed desktop-first, our media queries are a mobile-first
implementation. I used an SVG that is very easy to make fluid, adjusting the viewport
slightly on mobile with JavaScript:

Responsive Reorganization by Updating the ViewBox | 193

var shape = document.getElementById("svg");

// media query event handler
if (matchMedia) {
 var mq = window.matchMedia("(min-width: 826px)");
 mq.addListener(WidthChange);
 WidthChange(mq);
}
// media query change
function WidthChange(mq) {
 if (mq.matches) {
 shape.setAttribute("viewBox", "0 0 765 587");
 } else {
 shape.setAttribute("viewBox", "0 0 592 588");
 }
};

We’re then animating it with GreenSock to take advantage of the both the timeline
and the ability to scrub the animation to find different points in time to interact with
on a slider. Here is an example of one piece of information in the graphic displaying
on the timeline. Note that we’ve added a relative time for all of these animations to
fire at using a label:

 tl.add("likely");
 tl.to($(".p1"), 0.3, {
 scale: 1.3,
 transformOrigin: "50% 100%",
 fill: $blue,
 ease: Bounce.easeOut
 }, "likely")
 .to($effect, 0.3, {
 y: -10,
 ease: Circ.easeOut
 }, "likely")
 .to($eLine, 0.3, {
 stroke: $orange,
 ease: Sine.easeOut
 }, "likely")
 .fromTo($(".d1"), 0.3, {
 opacity: 0,
 scale: 0.7
 }, {
 opacity: 1,
 scale: 1,
 ease: Back.easeOut
 }, "likely")
 .to($m1, 0.3, {
 fill: $green,
 ease: Circ.easeOut
 }, "likely");

194 | Chapter 16: Responsive Animation

We can improve the accessibility of the graphic by adding a <title> element. You can
also supply an aria-labelledby attribute in the <svg> element to reinforce the rela‐
tionship between these two elements:

<svg aria-labelledby="title" id="svg" xmlns="http://www.w3.org/2000/svg"
 viewBox="0 0 765 587">
 <title id="title" lang="en">Circle of icons that illustrate Global Warming
 Solutions</title>

If you need to, you can supply a title for any element in the SVG DOM. You can find
more information on implementation in a great article by Dudley Storey. In the case
of this demo, we kept the text separate so that it’s still completely legible to screen
readers. This is an improvement over the original infographics, which, as static
images, could not be accessed in this way.

This demo is merely a sketch, to ponder methods by which we can give shareable
information more muscle with responsive animation. The same thing could also be
achieved with PNGs, CSS, canvas, and variety of other methods. The potential that
we have with the tools now supported on the web is exciting, and they can breathe
new life into older concepts.

Responsive Reorganization with Multiple SVGs and Media
Queries
We covered one solution for this in detail in Chapter 3. Another is to design our ani‐
mation using interlocking parts, much like Tetris pieces, and use multiple SVGs that
can be reconfigured. Let’s explore the latter, as shown in Figure 16-6 and its corre‐
sponding pen.

Responsive Reorganization with Multiple SVGs and Media Queries | 195

http://bit.ly/2lrOtZR
http://codepen.io/sdras/full/waXKPw/
http://codepen.io/sdras/full/waXKPw/

Figure 16-6. An interactive Huggy Laser Panda Factory

In the Huggy Laser Panda Factory pen, there are three distinct parts to the factory. In
order to keep our code organized, each section can accept one type of user interac‐
tion, which then triggers its own timeline (Figure 16-7).

196 | Chapter 16: Responsive Animation

Figure 16-7. Each one of the SVGs interlocks and reconfigures, depending on the view‐
port size

Keeping the inline SVGs distinct from one another also allows us to collapse them
and move them according to percentages or integers on variable viewports, making
our animation flexible for both mobile and future iterations. We’ve plotted out an ini‐
tial view for desktop, as well as how it will be reconfigured for smaller displays,
including a transform: scaleX(-1); line to reflect the second portion on mobile so
it will fit gracefully, with a mobile-first implementation:

@media (max-width: 730px) {
 .second {
 width: 70%;
 top: -90px;
 margin-left: 70px;
 transform: scaleX(-1);
 }
}

@media (min-width: 731px) {
 .second {
 width: 350px;
 margin-left: 365px;
 top: 370px !important;
 }
}

Responsive Reorganization with Multiple SVGs and Media Queries | 197

Each building block has its own function, named for what part of the animation it
serves. This avoids any scoping problems and keeps everything organized and legible.
The user can only trigger behaviors relative to the same SVG, or building block, of the
animation. We pause the timeline initially, but use the button or group to restart it
here:

// create a timeline but initially pause it so that we can control it via click
var triggerPaint = new TimelineMax({paused:true});
triggerPaint.add(paintPanda());

// this button kicks off the panda painting timeline
$("#button").on("click", function(e){
 e.preventDefault();
 triggerPaint.restart();
});

We also have a looping timeline that covers many elements in the document. We set a
relative label to the beginning of it so that we can set loops on multiple objects. This is
important because if we let loops follow one another in a timeline, only the first will
fire, as it will run forever and the second one will wait to follow indefinitely:

function revolve() {
 var tl = new TimelineMax();

 tl.add("begin");
 tl.to(gear, 4, {
 transformOrigin:"50% 50%",
 rotation:360,
 repeat:-1,
 ease: Linear.easeNone
}, "begin");
 tl.to(wind, 2, {
 transformOrigin:"50% 50%",
 rotation:360,
 repeat:-1,
 ease: Linear.easeNone
}, "begin");

 // ...
 return tl;
}

var repeat = new TimelineMax();
repeat.add(revolve());

We now have four timelines in total: three that are cleanly associated with each sec‐
tion, and the global looping timeline. Our interaction and animations scale with each
individual SVG, so we are free to move and adjust them in the configurations that we
like for different viewports, and the code stays direct and organized.

198 | Chapter 16: Responsive Animation

Less Pizzazz on Mobile
Let’s face it, mobile connections (particularly in less-developed countries) can be
pretty slow. Whether you only have a few key animation interactions on your site or a
huge WebGL experience, sometimes an animation that looks beautiful on desktop
need not scale down to a mobile experience.

In the case of a large canvas animation, or even a really complex SVG animation that
is not critical to the user experience, sometimes the best thing you can do is to tone it
down or turn it off for smaller devices.

Active Theory’s site does a beautiful job of this (see Figure 16-8) by showing you a full
particle canvas animation on desktop, which is replaced with a simple polygon back‐
ground on mobile. The interactions on mobile are still very on-point, transitioning
beautifully beyond even what we expect on native.

Figure 16-8. Active Theory keeps its visual language consistent, while dropping heavy
canvas animations on mobile

The team still shows off its interaction prowess in the way you navigate the site,
which is arguably more impressive on mobile than an animated background would
be anyway. The design saves the bandwidth for what counts.

Have a Plan
Whether you design for responsiveness from start to finish or simply turn animations
off on mobile, having a concrete plan for what your viewers experience from device
to device is vital. This is particularly true in a landscape where mobile is king. Con‐
tent, type of image, and user bandwidth should all help guide animation choices for
responsive design.

Responsive Reorganization with Multiple SVGs and Media Queries | 199

CHAPTER 17

Designing, Prototyping, and Animation in
Component Libraries

Our modern frontend workflow has matured over time to include design systems and
component libraries that help us stay organized, improve workflows, and simplify
maintenance. These systems, when executed well, ensure proper documentation of
the code available and enable our systems to scale with reduced communication con‐
flicts.

But while most of these systems take a critical stance on fonts, colors, and general
building blocks, their treatment of animation remains disorganized and ad hoc. For‐
tunately, we can leverage existing structures and workflows to reduce friction when it
comes to animation and create cohesive and performant user experiences.

In this chapter, we’ll break down how to design, plan, and implement animations.

Designing an Animation
Animations, like any other facet of the web, must be designed. You can refer to the
following articles on Smashing Magazine for details as to why:

• “Functional Animation in UX Design”, by Amit Daliot
• “The State of Animation 2014”, by Rachel Nabors
• “The Guide to CSS Animation: Principles and Examples”, by Tom Waterhouse

As web developers, we think about the effects of typography, layout, interaction, and
shifting viewports, but when incorporating animation we have another factor to con‐
sider: time.

It’s not just an extra aspect to consider, either: it increases the complexity of each of
the aforementioned parameters exponentially. But rather than viewing this as a heavy

201

https://www.smashingmagazine.com
http://bit.ly/2mx04bd
http://bit.ly/2l5zpVC
http://bit.ly/2mDBHHY

mass of ideas, we can bake animation into the core of our user experience process to
create dazzling, exciting, and engaging work that pushes boundaries and collectively
elevates the medium of the web.

Working with the Language of Motion
Everyone has different ways of working and nothing is gospel, but here are a few key
points that I have discovered after working at this for a while.

First, pay attention to how stuff moves. This one might make you laugh, it’s so simple.
But how often do you really watch water pour into a glass? What makes one person’s
gait so recognizable?

Most people start with a ball bouncing, and that’s a great exercise, partly because the
simplicity can show you character, weight, and dynamism. Figure 17-1 and its corre‐
sponding demo show two balls bouncing: can you guess which is hard and which is
soft?

Figure 17-1. You can tell the difference in “character”—how soft the material is, for
instance—even though both balls are bouncing at the same rate

How do you know which is which? First, there is the elasticity of the objects. One
stays consistently round; the other is manipulated based on the impact. What else?
Well, there’s the movement: one seems fairly rigid, and the other is more playful.
Though they have the same timing, their physical motions imply different masses.
Easing functions convey the density of the object.

202 | Chapter 17: Designing, Prototyping, and Animation in Component Libraries

http://codepen.io/sdras/pen/zxJWBJ
http://codepen.io/sdras/pen/zxJWBJ

Note also that even though they have the same timing, the easing function is used in
such a way that they have different keyframes. If I placed a strobe light on these balls,
you would see them at different places during the same time period. This concept has
a term in old cel animation: spacing. See Figure 17-2 and its corresponding demo.

Figure 17-2. By showing the outline, we can see the “spacing” and the difference between
each

This can also come in the form of the motion of secondary elements. If someone
shakes a glass, how is the water inside affected? When someone kicks a rock, how
does the rock express the force of impact? There’s a great example of elemental
motion design available on Dribbble.com.

As Hans Bacher discusses in Dream Worlds (Focal Press), when animators were
working on Beauty and the Beast they were flown to London and France to observe
the styles of these places. You might not have this kind of budget (but if you do, take
me with you!); luckily, the internet has plenty of visual, historical, and spatial infor‐
mation for you to work from.

Follow your interests. If you have any leeway at all in the content of the animation,
use that to your advantage. Genuine interest and enthusiasm are easily conveyed.
You’re more likely to follow a project through if the content excites you.

Rein It In
Unlike fonts, colors, and so on, we tend to add animation in as a last step, which leads
to disorganized implementations that lack overall cohesion. If you asked a designer or

Designing an Animation | 203

http://codepen.io/sdras/pen/MYdQor
http://bit.ly/2l8r97e
http://bit.ly/2l8r97e

developer to create a mockup or build a UI without knowing the fonts they were
working with, they would dislike the idea. Not knowing the building blocks they’re
working with—leaving out something so fundamental at the start—means that the
design can fall apart or the development can break. It’s the same with good animation.
Avoid the temptation to load up your design with flashy animations at the end; with
animation, less is often more.

The first step in reining in your use of animation is to perform an animation audit.
Look at all the places you are using animation on your site, or the places you aren’t
using animation but probably should be. (Hint: perceived performance of a loader on
a form submission can dramatically change your bounce rates.)

Not sure how to perform a good audit? Val Head has a great chapter on it in her
book Designing Interface Animations (Rosenfeld Media), which contains buckets of
research and great ideas.

Even some beautiful component libraries that have animation in the docs make this
mistake. You don’t need every kind of animation, just like you don’t need every kind of
font. Having too many options bloats your code. Ask yourself questions like “Do I
really need a flip 180 degree animation?” I can’t even conceive of a place on a typical
UI where that would be useful, yet most component libraries that I’ve seen have a
mixin that does just this.

Which leads to…

Have an Opinion
Many people are confused about material design. They think that material
design is motion design, mostly because they’ve never seen anyone take a stance on
animation before and document these opinions well. But every time you use material
design as your motion design language, people look at your site and think GOOGLE.
Now that’s good branding.

By using Google’s motion design language and not your own, you’re losing out on a
chance to be memorable on your own website.

The impact of Google’s material design, in my mind, lies less with the design language
itself, and more with that it was the first major industry example of a company incor‐
porating animation guidelines in its branding. For the first time, people started think‐
ing about the style of animation as a functioning entity that had a voice—one that
must be designed in cohesion with everything else.

If your company is a well-trusted, stoic insurance company, the character of any ani‐
mation on your site is going to be less flamboyant and more formal, and you’ll tend
to use linear eases rather than bounce or elastic motion. But with branding that’s
more comfortable and friendly, on a site like Zendesk’s or MailChimp’s, the form

204 | Chapter 17: Designing, Prototyping, and Animation in Component Libraries

http://bit.ly/2lZ7MwV

should follow the branding and accordingly have more lively animation, while still
communicating effectively; something with the charm of Chris Gannon’s loaders is
simple, yet exciting.

If you think back to the first time you cried because of a fictional character, it was
likely animated. In Aarron Walters’s Designing for Emotion (A Book Apart), he dis‐
cusses how emotion is tied to the limbic system: we are more likely to remember
something that becomes part of our emotional memory. Chapter 7 of his book goes
into hard numbers on how much return on investment can be gained by focusing on
the impact of users’ emotive experiences.

If you have a static piece of content that looks like a Photoshop mock-up on a web
page, the viewer engagement stops where your CSS does. Animation allows us to
show rather than tell, a vital tactic considering users typically only scan body content.
It allows customers to attach themselves to our UIs personally, for their needs to
unfold before them. If done correctly, the potential for positive engagement is stag‐
gering.

What does having an opinion on motion look like in practice? It could mean you’ve
decided that you never flip things and that your eases are always going to glide. In
that instance, you would put your efforts toward finding an ease that looks like it
glides and pulling out any transform: scaleX(-1) animations you find on your site.
Across teams, everyone knows not to spend time mocking up flipping animations
(even if they’re working on an entirely different codebase), and to instead work on
something that feels like it glides. You save time and don’t have to communicate again
and again to make things feel cohesive.

Elevate This
Animation has to be taught to live on its own as a substantial part of the development
process. We can accomplish this in several ways:

• Animation has to be designed just as the rest of the page is: with mock-ups, color
palettes, storyboards with wireframes, and its own composition.

• Your design process should follow the same logical structure as your code.
• Animation must move toward being informative, appealing to rationality and

guiding users’ attention.
• Animation should follow branding guidelines, be part of a living style guide, and

appeal to users’ emotions.
• We shouldn’t reinvent the wheel. Animation has existed outside of the web for

ages. (Yes, you can go watch Toy Story for “research” purposes.)

Because animation is so engaging, it’s easy to overdo it, but not everything on the
screen needs to be animated. You don’t start a war with the secret weapon. Animation
can be a way of signifying the end or beginning of something, as well as directing

Designing an Animation | 205

http://bit.ly/2lPaMK1
http://bit.ly/1i6NkSX

your attention. With animation that is purposeful and planned according to viewer
engagement, performance budget, and branding, we can elevate the medium. Val
Head discusses this very clearly when she writes about invisible animation. Good ani‐
mation should not seem out of place, nor be an afterthought.

Check out Oleg Solomka’s Bubble layout demo (it’s nice with the sound on): the ani‐
mation is delightful enough to keep you engaged as you navigate, but gets out of your
way while you’re reading the content. Keep in mind that the purpose of these tutorials
is to showcase a particular method; in the wild, the implementation can even be
toned down slightly to accommodate a professional, yet engaging effect.

Prototyping
After design, the next step is planning.

Backward to Move Forward
Before you begin animating, you must storyboard. Storyboarding is a very important
part of the process because it allows you to work modularly in your code, in scenes. It
allows you to plan out timing. And it allows you to work backward: to draw some‐
thing and then slowly unveil it.

A common misconception is that your storyboards have to look like polished comics.
I think that’s often why people don’t want to make them: they’re scared of drawing;
they’re scared that their work has to look perfect; they’re scared of spending all of
their creative energy in the planning process, and they just want to start working on
the project. I understand this completely. To avoid all of it, I encourage you to forget
the Platonic ideal of a storyboard.

I was a scientific illustrator for the Field Museum of Natural History and Stanford. I
was a professor of painting at a college. Can I draw? You betcha. Figure 17-3 is what
my storyboards look like.

Am I ashamed of this? Not in the slightest. That storyboard took me 45 seconds and
allowed me to understand and edit up front what I was going to spend many days
making. Without it, my workflow would have doubled. Storyboards exist behind the
scenes and are for personal communication. I’m not saying you can’t create beautiful
standalone work like Rachel Nabors, just that you don’t have to.

206 | Chapter 17: Designing, Prototyping, and Animation in Component Libraries

http://bit.ly/2lP522O
http://codepen.io/sol0mka/full/yNOage/
http://www.fieldmuseum.org/
http://bit.ly/2lZ55v5

Figure 17-3. Ugly storyboards are really helpful

Let’s revisit our discussion about user empathy. You can accomplish this with story‐
boarding all of a user’s interaction, from beginning to end, as well. Consider the arti‐
cle “Story Map” by James Buckhouse. A story map takes you through the entire
experience of visiting your site and becoming a customer, from beginning to end. It’s
a storyboard with muscle, one where you see the whole picture of a user’s visit and
therefore can make purposeful decisions based on desired direction and outcome.

It’s probably not new to hear about storyboards in animation: little comics that allow
animators to break down tasks scene by scene. But did you know that there are
also color scripts? Just as you design color and overall branding for your site, anima‐
tors at Disney and other animation houses create color scripts that work well with the
colors of their main characters and inform the scene. You should be doing this, too.

This means you should spend some time on Adobe Kuler, crafting color swatches. It
takes a small amount of time at the start, but saves buckets while you’re working. We
all know color is meaningful. Working with it is made so much easier in CSS with
preprocessor variables; use them to your advantage.

Prototyping | 207

http://bit.ly/2lPcPOm
https://color.adobe.com/

Tools
First, let’s develop our vocabulary around planning an animation, because there are
differences in what’s available and when you want to use each tool.

Thumbnails are small notes to yourself (Figure 17-4). They don’t have to be legible at
all—even to you. They should take a matter of seconds, and are extremely basic so
that you can iterate quickly and throw out ideas without any time wasted.

Figure 17-4. Thumbnails are very sketchy notes to yourself that take seconds and can be
thrown away

Storyboards are one step up in fidelity from thumbnails. They are slightly more dis‐
cernible, but not by much (Figure 17-5). You could feasibly show them to another
person and communicate with them, but they aren’t appropriate for a presentation
unless it’s very casual. Even if they’re sketchy, they are likely to show many scenes.

Figure 17-5. Storyboards are slightly more high-fidelity, but don’t have to be full draw‐
ings; you can actually communicate an idea to others with a storyboard, even if it’s not
well drawn

Prototypes are moving versions of your proposed animation. In order to not build
out the whole thing, you have a few courses of action. One is a low-fidelity prototype,

208 | Chapter 17: Designing, Prototyping, and Animation in Component Libraries

with just basic shapes moving around to get the motion down (Figure 17-6). This is
so that you don’t have to build out or incorporate the whole site.

Figure 17-6. GIF mockup of basic UI shapes moving by Yaroslav Zubko

There’s a great read by Yaroslav Zubko about how to make prototypes with basic UI
patterns and shapes. There’s also a moving version of the GIF.

Another way of working is to take a screenshot of the site or a flattened mockup and
set it as a background image, absolutely positioning the elements that need to move
on top of it and working with the motion. That way you can get up and running
quickly with something that communicates to people in a presentation: it doesn’t
require much time, but it also looks pretty close to what it will eventually be. This can
be good for stakeholder meetings.

There are also several very good tools for prototyping available if you’re trying to col‐
laborate between design and engineering, including:

• Principle
• FramerJS
• After Effects
• Keynote

Prototyping | 209

http://bit.ly/2mnbuBr
http://bit.ly/2jhdABm
http://principleformac.com/
https://framer.com/
http://www.adobe.com/products/aftereffects.html
http://www.apple.com/keynote/

• Straight-up code

Personally, I just go with straight code—I feel that some of these tools take time to
learn that I’d rather devote to development practice. This has the added advantage
that if one of your prototypes gets buy-in, you can clean up the code and use it in the
actual codebase without having to rewrite anything or start over.

“Murder Your Darlings”
“Murder your darlings” is an old quotation traced back to Arthur Quiller-Couch, but
it’s valid in design. Don’t be afraid to remove or revise some of the aspects of your
work that seem precious. You’re never going to get things right the first time, so relax
and make some mistakes. Whether you’re a designer, a developer, or both, chances
are you weren’t as good in the beginning as you are now and it took a lot of ugly stuff
in the middle to get to where you are. That’s OK. This means trying different types of
animation on for size, and messing all of those up, too. Did you learn JavaScript by
only programming one kind of interaction using only one library? No. Did you learn
to design only using one composition? I certainly hope not. The same principles
apply to learning to animate as well.

Perhaps you can have both graphics editor and text editor open at the same time. You
need to move fluidly back and forth between them. Don’t be scared of retracing your
steps, adding things, or editing. You will need ready access to your tooling for tasks
like optimization, so you can move quickly through them. The further you put these
things away from you, the lazier and sloppier you will become about adjusting, edit‐
ing, and re-creating images or code as you need to. And you will need to.

You’re going to have to redo your timing and easing a hundred times. Personally, I
find it easiest when I’m using a tool like GreenSock’s TimelineLite to move pieces
around. It lets you stack, stagger, overlap timings, and even animate full scenes

CSS is great for very small UI interactions; in fact, I really recommend it for those use
cases because you don’t need to load other resources. However, if you have more than
two animations set on an object, you should probably consider switching over to
GSAP. The ability to move a little forward or behind the last animation, or set them
to fire at the same time no matter what, makes it too powerful a tool to avoid, particu‐
larly when you need to rehearse and readjust the timing. CSS makes you recalculate
all of your values if something in your animation changes at the start, but the GSAP
timeline does not.

This wouldn’t be such a major issue if timing weren’t so vital. Have you ever noticed
how some comics have frames where there is no action? They create the illusion of a
pause, and your brain treats it as such. Timing is vital for comedy, for whimsy, but
also for UI animation that appears seamless or natural.

210 | Chapter 17: Designing, Prototyping, and Animation in Component Libraries

http://bit.ly/2m3Mi1X
http://bit.ly/2lPUOkp
http://greensock.com/timelinelite

Just like in all design, the parts of an animation that look simple and effortless are
sometimes the hardest to accomplish.

Design and Code Workflows
It’s clear that storyboarding pays off in the design and planning stages of animations,
but it can easily reap rewards in your code architecture, too. If your code reflects the
same logical organization you use for your design, you gain all the benefits of clear,
legible structure; and the more it mirrors the design process, the easier it is to share
implementations between the two.

Functions should be named according to the scene you are in: even “sceneOne” will
do. Similarly named variables look nice and neat, but they’ll trip up you and your
team in the long run, particularly as an animation gets more complex. Naming form
elements as the characters they portray, and setting up your code in a clear way that
mirrors your design, means less worrying about scoping problems, and more con‐
crete divisions between JavaScript and Sass variables and assignments. It’s also partic‐
ularly helpful at the end when you have to go back in and adjust something: you will
easily find your place again and know what follows.

Animations in Component Libraries
Sometimes people don’t incorporate animation into a component library because they
aren’t sure how, beyond the base hover states. All animation properties can be broken
into interchangeable pieces. This allows developers and designers alike to mix and
match and iterate quickly, while still staying in the correct language. Here is a basic
boilerplate structure (in Sass) for a basic set of CSS animation patterns (apologies for
the length):

// ---- timing ----//
$class-slug: t !default;

@for $i from 1 through 7 {
 .#{$class-slug}-#{$i} {
 animation-duration: 0.8 - (0.1s * $i);
 }
}

// ---- ease ----//
$easein-quad: cubic-bezier(0.55, 0.085, 0.68, 0.53);
$easeout-quad: cubic-bezier(0.25, 0.46, 0.45, 0.94);
$easein-back: cubic-bezier(.57, .07, .6, 1.71);
$easeout-back: cubic-bezier(0.175, 0.885, 0.32, 1.275);

.entrance {
 animation-timing-function: $easeout-quad;
}

Animations in Component Libraries | 211

.entrance-emphasis {
 animation-timing-function: $easeout-back;
}
.exit {
 animation-timing-function: $easein-quad;
}
.exit-emphasis {
 animation-timing-function: $easein-back;
}

// ---- fill mode extend ---//
// we probably want this so we'll create a class that can be @extended as a
// default into our animations
.anim-fill-both {
 animation-fill-mode: both;
}

// animations
@keyframes pop {
 0% {
 transform: scale(0.9) translateZ(0);
 }
 100% {
 transform: scale(1) translateZ(0);
 }
}

.pop {
 animation-name: pop;
 @extend .anim-fill-both;
}

@keyframes unpop {
 0% {
 transform: scale(1) translateZ(0);
 }
 100% {
 transform: scale(0.9) translateZ(0);
 }
}

.unpop {
 animation-name: unpop;
 @extend .anim-fill-both;
}

You can also take a look at the full pen.

Create timing units, similar to h1, h2, h3. In a system I worked on recently, I called
these t1, t2, t3, etc. t1 was reserved for longer pieces, while t5 was a bit like h5 in
that it was the default (usually around .25 seconds or thereabouts). Keep animation
easings for entrance, exit, entrance emphasis, and exit emphasis that people can com‐

212 | Chapter 17: Designing, Prototyping, and Animation in Component Libraries

http://codepen.io/sdras/pen/qqVrxy

monly refer to. This, and the animation-fill-mode, are likely to be the only two
properties that can be reused for the entrance and exit of the animation. Use
the animation-name property to define the keyframes for the animation itself. I
would recommend starting with five or six before making a slew of them, and see if
you need more. Writing 30 different animations might seem like a nice resource, but
just like with your color palette, having too many can bulk up your codebase unnec‐
essarily and keep it from feeling cohesive. Think critically about what you need here.

The previous example is pared down, but you can see how in a robust system, having
pieces that are interchangeable cached across the whole system would save time for
iterations and prototyping, not to mention making it easy to make adjustments for
different-feeling movement on the same animation easily.

One low-hanging fruit might be a loader that leads to a success dialog. On a big site,
you might have that pattern many times, so writing up a component that does only
that helps you move faster while also allowing you to really zoom in and focus on that
pattern. You avoid throwing something together at the last minute, or using GIFs,
which are really heavy and also look mushy on a Retina display. You can make singu‐
lar pieces that look refined and are reusable.

React and Vue implementations are great for reusable components, as you can create a
building block with a common animation pattern, and once created, it can be a resource
for all. Remember to take advantage of things like props to allow for timing and eas‐
ing adjustments like we have in the previous example!

Buy-in
Sometimes people don’t create animation resources simply because it gets depriori‐
tized. But design systems were also something we once had to fight for. At the CSS
Dev Conf in 2016, Rachel Nabors demonstrated how to plot out animation wants ver‐
sus needs on a graph (reproduced with her permission) to help prioritize them (Fig‐
ures 17-7 and 17-8).

Animations in Component Libraries | 213

http://rachelnabors.com/

Figure 17-7. Wants versus needs (courtesy of Rachel Nabors)

Figure 17-8. Level of difficulty in implementation (courtesy of Rachel Nabors)

This helps people you’re working with figure out the relative necessity and workload
of the addition of these animations and think more critically about it. You’re also

214 | Chapter 17: Designing, Prototyping, and Animation in Component Libraries

more likely to get something through if you’re proving that what you’re making is
needed and can be reused.

Good compromises can be made this way: “We’re not going to go all out and create
an animated ‘About Us’ page like you wanted, but I suppose we can let our users know
their contact email went through with a small progress and success notification.”

Successfully pushing smaller projects through helps build trust with your team, and
lets them see what this type of collaboration can look like. This builds up the type of
relationship necessary to push through projects that are more involved. It can’t be
overstressed that good communication is key.

Time Is Money
Animation is often considered an afterthought in the corporate development process.
We make mock-ups, pass them, develop them, and at the very end add an animation
on top. Because of this, animated components can often look like what they are:
whipped-cream fluff. It is only when animation is baked into the substance of layout,
storyboard, and development processes that it holds meaning as a performant and
substantial piece of a web experience.

Studios like Active Theory get away with engaging their clients with this conversation
earlier in the design process because of their own branding: “We make bold things for
the big guys.” Clients who seek out Active Theory’s work know they are paying for a
blockbuster, knock-your-socks-off kind of web experience. This isn’t going to be the
case 98% of the time.

How do we change this? Again, the way that we usually do. In salesman’s terms, that
means “increase the ROI.” In developer terms it means elevating the product to some‐
thing that’s useful, increases engagement, or has a positive experience, and then it
won’t be a waste of time or money. For more information on how to communicate
with clients effectively, check out Mike Monteiro’s books You’re My Favorite Cli‐
ent or Design Is a Job (A Book Apart).

Before we gleefully skip into the sunset and make everything on the page move, we
need to commit to some action items to make an effective change.

The first is communicating effectively with our clients. This does not mean railroad‐
ing them into adhering to our beliefs. It means explaining the possible gains, assuring
them we will A/B test our interfaces and produce measurable results, and meeting
them halfway on time allowances.

Consider the form we worked on earlier. Show your client prototypes of two forms—
you can show them other people’s work as an example if you don’t have the time to
build; CodePen has a great design patterns resource. One form will present itself
without feedback on the button or progress, or a snappy success UX; the other will

Animations in Component Libraries | 215

http://bit.ly/2mDMZvS
http://codepen.io/patterns

incorporate all the lessons we’ve learned here. Or better yet, use A/B testing (usability
testing with different variants) to prove the form with animation to be a more effec‐
tive tool. Solid numbers are always better than subjective opinion, which can be sha‐
ped around trends, ignorance, or past bad experiences due to poor implementation.

Once you get the go-ahead, you can plan. You have performance budget allowances
in new categories now:

• Time
• Experience
• Performance
• Color
• Composition
• User’s time

This may seem overly complicated, but you should be able to give yourself basic ball‐
park figures within seconds for each of these, and they should be considered before
you move on. Do you lack experience? Then you’ll need a little more time, as with
most things. Do you currently have a lot of other heavy assets on the page? You will
need to be very careful loading up images, SVGs, scripts, and animation libraries.
Does your site already have a very rich palette? You’ll need to reuse those color vari‐
ables.

The Sky’s the Limit
Frank Thomas and Ollie Johnston’s Disney Animation: The Illusion of Life (Disney
Editions) begins with one of my all-time favorite quotes from Walt Disney: “Anima‐
tion can explain whatever the mind of man can conceive.” This quotation is so spot-
on because it really is animation’s strength: you can make anything happen. You can
create and destroy worlds, excite or condemn.

That said, there is a lot to consider. Animation will never be more than empty calories
if we don’t design it the way we do other aspects of UX. As with our other tooling, it is
a loss leader: we’ll spend more time getting the variables and parameters set up at the
start. But with that preparation, the character will tell us which road it would like to
take during implementation, even if the character is a UI or branding.

216 | Chapter 17: Designing, Prototyping, and Animation in Component Libraries

Index

A
Active Theory, 215
Adobe Illustrator (see Illustrator)
Adobe Kuler, 207
animation audits, 203
animation design (see designing an animation)
animation, in data visualizations (see data visu‐

alization)
animation-duration, 31
animation-fill-mode, 213
animation-name property, 213
anticipatory cues, 52-53
.attr() function, 69
attributeStartsWith, 42
AttrPlugin, 172-175, 178-182
autoAlpha, 92
autorotate, 117-119
autoScroll, 135

B
bezier definition, 114
Bézier easings, 78
bezier easings, 153
bezier types, 116
bloated code, 10
blocks, 66
Bodymovin', 83
border-radius, 48
Bounce eases, 50, 51
bounds, 133
branding, 215
budgeting and ROI, 215-216

C
callbacks, 106-107, 152
calls to action (CTAs), 51
camelCase, 4, 92
canvas, 79, 85
cel animations, 23-27
chaining, 75, 83, 147
Chartist, 63-64

with CSS, 70-73
Circ eases, 50
circle, 5
Circulus tool, 54
classes, 42
clean IDs, 13
code optimization, 9-11
collapse useless groups, 13
color scripts, 207
component library animations, 211-216

budget and ROI planning, 215-216
prioritizing, 213-215

#container, 133
convertToPath(), 112
CSS animations, 15-21

achieving a hand-drawn feel, 28-29
border-radius, 48
CSS + SVG, 78
example with Chartist, 70-73
example with D3, 66-70
filter effects, 31
in React, 86
keyframe value definitions, 15
keyframes, 35, 79
pros and cons, 78, 210
sequencing in, 78

217

simple code for complex movement, 29-30
versus SVG, 17-20
syntax declarations, 16-17
viewBox in, 182
viewport shifting, 37-41
walk cycle, 30-34

CSS Filter Demos, 31
CSS Gram, 31
CSS Reflex, 31
curviness value, 116
cycle property
CycleStagger, 121-125

D
D3 animation, 9, 63-64, 111

animating different path point amounts, 74
chaining and repeating, 75
example with CSS, 66-70
instead of CSS, 73-76

d3-interpolate-path, 74
d3.line(), 74
dashoffset, 161
data visualizations, 63-76

Chartist, 63-64
D3, 63-64
interactive timeline animations, 65
reasons for animation in, 64-66

default export settings, 13
delay, 91, 106
designing an animation, 201-206

animation audits, 203
best practices, 205
branding decisions, 204-205
conveying emotion, 205
language of motion, 202-203
material design, 204
revisions and learning, 210

Direct Selection tool, 12, 28
DOM (Document Object Model)

elements, 21
manipulation with SVG, 84
virtual versus native, 84

drag-and-drop interactions, 53
Draggable, 133-138

callbacks and event listeners, 133
custom collision detection, 135
hitTest(), 135-136
timeline control with, 136-138
types, 135

DrawSVG, 138-141, 140
DRY (Don't Repeat Yourself), 29, 50, 72
durations, 91

E
eases, 50-51, 151

in GreenSock (GSAP), 93-95
path easing, 152-153
quad easing, 58

Edge, 21
edgeResistance, 135
Elastic, 50
Elastic eases, 51
elasticity, 202
empathy, 207
Export as, 29
export settings, 10, 13
@extend, 31
external libraries

Bodymovin', 83
GreenSock (GSAP) (see GreenSock

(GSAP))
mo.js, 82

F
fill, 4, 18-19
filters, 174
findShapeIndex(), 111-113
flexbox, 35, 41, 190
Flipboard, 86
.floor, 123
fork, 61
.from, 88, 102
.fromTo, 89, 102, 106

G
g element, 6
game-based animation, 84
getBBox(), 136, 177
getBoundingClientRect(), 136
getInitialState(), 57, 164
.getTotalLength(), 71, 139, 140
GreenSock (GSAP), 21, 58, 76, 87-95

ActionScript version, 108
animation properties, 91-93
AttrPlugin, 172-175, 178-182
autoAlpha, 92
background, 87

218 | Index

basic syntax, 88-95
BezierPlugin, 114
cycle property, 122-123
delay, 91, 106
Draggable (see Draggable)
duration, 91
easing, 93-95
element, 91
in React, 85
MorphSVG plugin (see MorphSVG)
onComplete, 107
onCompleteParams, 107
opacity, 92, 102
pros and cons, 81, 210
repeatDelay, 106
and responsive SVG, 185-190
rotation, 92
running, 87
scale, 92
seek, 105
staggering, 89-90
staggerTo, 99
svgOrigin support, 186
timeline (see GreenSock (GSAP) timeline)
timeScale() method, 105
to/from/fromTo, 88-89
transforms, 92
TweenMax, 87-95, 97
visibility: hidden, 92
x, 92
y, 92
z, 92

GreenSock (GSAP) timeline, 97-110
delays, 99
instantiating, 97
master timelines, 103-110

loops, 105-107
organization, 103-105
pausing and events, 108

relative incrementations, 99
relative labels, 99-103
TimelineLite, 97, 210
TimelineLite and TimelineMax methods

list, 108-110
TimelineMax, 97

Grunticon, 29
GSAP, 79

H
hammer.js, 108, 185
High Performance Animations, 21
hitTest(), 135-136
HSL (hue, saturation, lightness), 125-129
HTML5-Demos, 31

I
icons, 55-61
IIFE (immediately invoked function expres‐

sion), 103
Illustrator, 9, 10

artboard, 175
drawing in with a template, 27-28
Simplify dialog box, 11

incrementing in time, 99
infographics, 191-195
init method, 170-171
Inkscape, 9
.innerHeight, 169
.innerWidth, 169
interaction, 53
interactive timeline animations, 65
interchangeable pieces of animation, 211-213
Internet Explorer (IE), 21
interpolation, 114, 146
interruptible motion, 162
isolation, 49

J
Jank Free, 21
JavaScript, 35, 48, 69, 78

.getTotalLength(), 139
incrementors, 99
mo.js (see mo.js)
performance issues, 162
requestAnimationFrame (rAF), 79
visible, 102

jQuery, 57, 83

L
lightbox, 28
Linear eases, 51
lines, 5
lockAxis, 135

M
MailChimp, 50, 204

Index | 219

master timelines, 103-110
callbacks, 106-107
loops, 105-107
organization, 103-105
pausing and events, 108
yoyos, 106

material design, 204
Math.floor, 123
Math.random, 123
maxRotation, 135
meet, 4
merge paths, 13
minRotation, 135
mo.js, 82, 143-155

base premises, 143
bezier easing, 153
burst parameters, 149-151
callbacks, 152
chaining, 147
custom shapes, 146
parameters in, 147
path easing, 152-153
random values, 147
shape motion, 146-155
shapes, 143-146
swirl parameters, 148-149
timeline parameters, 151
tools, 153-155
tweening, 151-152

mobile browser issues, 79
mobile/desktop shift, 37, 192, 199
modals, 48
modernizr, 28, 30
morphing, 48-48
MorphSVG, 111-114

compatibility with TweenMax, 112
convertToPath(), 112
findShapeIndex(), 111-113

motion along a path, 114-119
motion component, 158-163
motion design language, 50
moveTo, 6

N
namespacing, 170
native animation, 78-81

canvas, 79
CSS/Sass/SCSS, 78-79
requestAnimationFrame (rAF), 79

Web Animations API, 80
Navicon Transformations, 61
nth-child selector, 70
nth:child pseudo-classes, 78

O
onAnimationEnd, 78
onClick, 85
onComplete, 107
onCompleteParams, 107
onRest, 84
opacity, 21, 92, 102
optimization tools, 12-13

P
parallax effect, 34
path data optimization, 11
path eases, 151-153
Pathfinder tool, 12
paths, 6-9
Pen tool, 12
percentage, 35
percentage-based SVG transforms, 189
perception of wait times, 52
picture, 1
polyfill, 80
polygon, 5
polyline, 73
position elements, 131
preserveAspectRatio="xMidYMidmeet", 4, 41
prettify, 13
progression, 70
prototyping, 206-211

color scripts, 207
design and code workflows, 211
revisions and learning, 210
story maps, 207
storyboards, 206-208
tools for, 208-210

R
random values, 147
raster, 79
React Konva, 86
React-Gsap-Enhancer, 85
React-Motion, 84-85, 157-166, 178, 213

color in, 160
export components, 157

220 | Index

interruptible motion, 162
motion component, 158-163
StaggeredMotion component, 163-166

React-specific workflows, 84-86
canvas in React, 85
CSS in React, 86
GreenSock (GSAP) in React, 85
React-Motion, 84-85

ReactTransitionGroup(), 85
rect, 4
recursion, 79
relative HSL color animation, 125-129, 140
relative incrementations, 99
relative labels, 99-103
repeatDelay, 106
repeated elements, 42
requestAnimationFrame (rAF), 79, 167-172,

178
browser support, 168
demo, 168-172
syntax, 168

resizing (see scalability)
responsive animation, 42-43, 185-199

GSAP and, 185-190
reorganization by updating the viewBox,

191-195
reorganization with multiple SVGs and

media queries, 195-199
responsive SVG, 185-191

return on investment (ROI), 215-216
revealing, 48-49
reverse order staggers, 90
revert() method, 132
rotation, 92
.round, 123

S
saccade, 46, 49
Sass, 31
Save as, 10, 29
scalability, 1, 35-36, 190
scale, 92
scopes, 107
scrollLeft, 135
scrollTop, 135
SCSS, 67, 70
section, 133
seek, 105
.set, 102

setInterval, 167
setTimeout, 31
shapes

drawing, 4-5
shapes, drawing
Simplify dialog box, 11
Sine eases, 50-51
Sketch, 9
slice, 4
SMIL (Synchronized Multimedia Integration

Language), 48, 83, 111
smoothOrigin, 187-189
Snap.svg, 48, 84
SnapFoo, 84
SnapSVG, 111
space conservation, 54-54
spacing, 203
SplitText, 129-132
spring physics, 83
sprites (see SVG sprites)
srcset, 1
StaggeredMotion component, 163-166
.staggerFrom, 89, 127
.staggerFromTo, 89
staggers, 74, 89-90, 121, 140

(see also CycleStagger)
.staggerTo, 89, 99
stdDeviation, 174
step animation, 23-27
step-easing, 83
steps(), 30, 31
story maps, 207
storyboarding, 206-208
stroke, 4
stroke-dasharray, 71-73, 139
stroke-dashoffset, 72-73, 139, 161
strokes, animating, 141
style, 50-50
SVG DOM, 1-2
SVG Editor, 13
SVG element, 2
SVG sprites, 23, 25

collapsing, 37
viewport shifting, 37-41

SVG2, 79
SVGO, 13
SVGO-GUI, 13
SVGOMG, 13, 40
svgOrigin, 186

Index | 221

SVGRect object, 177, 179
SVGs

advantages, 1
benefits of drawing with, 19-20
in canvas, 79
overview, 1
path interface operations list, 71

T
.then(), 147
this, 134
ThrowPropsPlugin, 133
thumbnails, 208
TimelineLite, 106
TimelineMax, 106
timelines, 140, 198

(see also master timelines)
timeScale() method, 105
timing units, 212
.to, 88, 106
transform-origin, 134
transforms, 21, 42, 55, 92

cross-browser support for, 185
and GSAP strengths, 186-190
in mo.js, 146
percentage-based, 189
and smoothOrigin, 187-189
stacking behaviors, 58
transform-origin values, 59

.transition(), 75
transitional states, 52
tweening HSL, 125-129
TweenLite, 88
TweenMax, 87-95, 97

AttrPlugin, 172
BezierPlugin, 114
compatibility with MorphSVG, 112

type parameter, 116

U
UI/UX animations, 45-61

anticipatory cues, 52-53
example use case with icons, 55-61
interaction, 53

isolation, 49
morphing, 48
revealing, 48-49
space conservation, 54
style, 50

update method, 170-171
<use> tag, 162
user empathy, 205, 207

V
variables, 91
VelocityJS, 83
viewBox, 2-4, 35, 175-183

adjusting, 41-42
animating, 178-182
as CSS property, 182
declaring, 6
sizing, 17-18, 57
svgOrigin coordinate, 186

viewport shifting, 37-41
visibility, 102
visibility: hidden, 92
Vue, 213

W
Web Animations API, 80
width/height definitions, 6-9
workflows, 211
Wufoo, 50

X
x, 91, 114
xMidYMid, 4
xml definitions, 10

Y
y, 92, 114
yoyos, 106

Z
z, 92, 114
Zendesk, 204
zingtouch, 185

222 | Index

About the Author
Sarah Drasner is an award-winning speaker, consultant, and staff technical writer at
CSS-Tricks. Sarah is also the cofounder of Web Animation Workshops, with Val
Head. She’s given a Frontend Masters workshop on Advanced SVG Animations, and
was formerly manager of UX design and engineering at Trulia (Zillow). Sarah has
won a number of awards, including CSS Dev Conf ’s “Best of the Best Award,” as well
as “Best Code Wrangler” from CSS Design Awards. She has worked for 15 years as a
web developer and designer, and at points worked as a scientific illustrator and
undergraduate professor and tutored a Byzantine icon painter in Santorini.

Colophon
The animal on the cover of SVG Animations is a Knysna turaco (Tauraco corythaix).
It is part of the Musophagidae family (which translates to “banana-eaters”), and can
be found in forests of South Africa and Swaziland.

The Knysna turaco is a distinguishable bird given its markings and coloring. Averag‐
ing 15 to 17 inches long (including their long tail), they are mostly green in plum‐
mage, which helps them blend in with treetops, but also have red flight feathers and
shades of blue on the tops of their wings. Their bills are a bright orangish-red and
come close to matching the color of their eye rings, which are lined with white bor‐
ders along the bottom and part of the top of their eyes. Except for juveniles, their
green crests are also topped with a streak of white.

Like other exotic birds, the Knysna turaco’s diet relies heavily on insects and fruit, as
well as earthworms. Food seems to be in great supply, so the Knysna turaco popula‐
tion is holding steady.

These birds build shallow nests in trees where breeding will take place. Breeding sea‐
son varies based on region. One to two eggs are laid per cycle and are incubated for
12 to 21 days by both the male and female of a pair. It’s not uncommon for just one of
the two eggs to hatch. The young will venture outside of the nest after 18 days of
hatching, but aren’t mature and independent for an additional three weeks.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from Wood’s Illustrated Natural History. The cover fonts are URW Typewriter and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Cover
	Copyright
	Table of Contents
	Foreword
	Preface
	SVG Animation: Where Art and Code Intersect
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	Chapter 1. The Anatomy of an SVG
	SVG DOM Syntax
	viewBox and preserveAspectRatio
	Drawing Shapes
	Responsive SVG, Grouping, and Drawing Paths
	SVG on Export, Recommendations, and Optimization
	Reduce Path Points
	Optimization Tools

	Chapter 2. Animating with CSS
	Animating with SVG
	Benefits of Drawing with SVG
	Silky-Smooth Animation

	Chapter 3. CSS Animation and Hand-Drawn SVG Sprites
	Keyframe Animation with steps() and SVG Sprites, Two Ways
	
	
	
	

	Chapter 4. Creating a Responsive SVG Sprite
	SVG Sprites and CSS for Responsive Development
	Grouping and DRYing It Out
	The viewBox Trick
	Responsive Animation

	Chapter 5. UI/UX Animations with No External Libraries
	Context-Shifting in UX Patterns
	Morphing
	Revealing
	Isolation
	Style
	Anticipatory Cues
	Interaction
	Space Conservation

	Putting It All Together
	Icons That Transform

	Chapter 6. Animating Data Visualizations
	Why Use Animation in Data Visualization?
	D3 with CSS Animation Example
	Chartist with CSS Animation Example
	Animating with D3
	Chaining and Repeating

	Chapter 7. A Comparison of Web Animation Technologies
	Native Animation
	CSS/Sass/SCSS
	requestAnimationFrame()
	Canvas
	Web Animations API

	External Libraries
	GreenSock (GSAP)
	Mo.js
	Bodymovin’

	Not Suggested
	SMIL
	Velocity.js
	Snap.svg

	React-Specific Workflows
	React-Motion
	GSAP in React
	Canvas in React
	CSS in React

	Covering Ground

	Chapter 8. Animating with GreenSock
	Basic GreenSock Syntax
	TweenMax/TweenLite
	.to/.from/.fromTo
	Staggering
	Elements
	Duration
	Delay
	
	

	Chapter 9. GreenSock’s Timeline
	A Simple Timeline
	Relative Labels
	Nested and Master Timelines
	Organization
	Loops
	Pausing and Events
	Other Timeline Methods

	Chapter 10. MorphSVG and Motion Along a Path
	MorphSVG
	findShapeIndex()

	Motion Along a Path

	Chapter 11. Stagger Effects, Tweening HSL, and SplitText for Text Animation
	Staggered Animations
	Relative HSL Color Animation
	

	Chapter 12. DrawSVG and Draggable
	Draggable
	Drag Types
	hitTest()
	Using Draggable to Control a Timeline

	DrawSVG

	Chapter 13. Mo.js
	Base Premises
	Shapes
	Shape Motion
	Chaining
	Swirls
	Burst
	Timeline
	Tween
	Path Easing
	

	Chapter 14. React-Motion
	<Motion />
	<StaggeredMotion />

	Chapter 15. Animating the Unanimatable: Motion with Attributes and Bare-Metal Implementations
	requestAnimationFrame()
	GreenSock’s AttrPlugin
	Practical Application: Animating the viewBox
	Another Demo: A Guided Infographic

	Chapter 16. Responsive Animation
	Some Quick Responsive Tips
	GreenSock and Responsive SVG
	Responsive SVG, with or without GreenSock
	Responsive Reorganization by Updating the ViewBox
	Responsive Reorganization with Multiple SVGs and Media Queries
	Less Pizzazz on Mobile
	Have a Plan

	Chapter 17. Designing, Prototyping, and Animation in Component Libraries
	Designing an Animation
	Working with the Language of Motion
	Rein It In
	Have an Opinion
	Elevate This

	Prototyping
	Backward to Move Forward
	Tools
	“Murder Your Darlings”
	Design and Code Workflows

	Animations in Component Libraries
	Buy-in
	Time Is Money
	The Sky’s the Limit

	Index
	About the Author
	Colophon

