A Problem - Solution Approach

Mike Driscoll

o]
O
%)
N
o}
)
Rl
o]
=
®
2
S

http://www.allitebooks.org

wxPython Recipes
A Problem - Solution Approach

Mike Driscoll

Apress’

vww allitebooks.cond

http://www.allitebooks.org

wxPython Recipes

Mike Driscoll
Ankeny, New York, USA

ISBN-13 (pbk): 978-1-4842-3236-1 ISBN-13 (electronic): 978-1-4842-3237-8
https://doi.org/10.1007/978-1-4842-3237-8

Library of Congress Control Number: 2017963132

Copyright © 2018 by Mike Driscoll

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr

Editorial Director: Todd Green

Acquisitions Editor: Todd Green

Development Editor: James Markham

Technical Reviewer: Kevin Ollivier and Andrea Gavana
Coordinating Editor: Jill Balzano

Copy Editor: Lori Jacobs

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484232361. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

vww allitebooks.conl

https://doi.org/10.1007/978-1-4842-3237-8
http://www.allitebooks.org

This book is dedicated to the wxPython community

vww allitebooks.conl

http://www.allitebooks.org

Table of Contents

About the AUROKccccssmmmssmnmssnsssssnnssssssssssssssasnssssnsssssnsssssnnssssnnssssnnssssnnsnssnnnnns Xvii
About the Technical REVIEWEI'Succsssssmsssssnsssssnsssssnsssssnsssssnsssssnsssssanssssanssssanssssas Xix
Acknowledgments........ccccuussemmmsssnsmsssnnmsssnnmsssnsssssnsssssnsssssnsssssnnssssnnssssnnssssnnssssnnssnsas XXi
Chapter 1: IntroducCtion.........ccccvciiinmssmssnmmmmmmmssssssssnsressssssss s 1
Who Should Read ThiS BOOKccccerrenerrnsesrnenesssessssessse s sesssssssssessssessssessssssssssssssssssssssssssnnes 1
ADOUL the AUTROL ... ——————— 2
0] 11T 0P 2
L0 LT 11T 1 S 3
BOOK SOUICE COUR......ccueereecrereserieneriec s se s e e e e e e s re e e s e nnnnens 4
Reader FEEUDACKcccoveeerrerereser e nnnnens 4
1 - OSSR 5
Chapter 2: Working with IMagescccvussemnmmssssnnnmmsssssnnsssssssnssesssssnssssssssnnsssssssnnnsssss 7
Recipe 2-1. How to Take a Screenshot of Your WXPython Appccccvvevvvrvnennnnsensenesessessensenns 7
PrOBIBM ... ——————————————— 7
SOIULION .t s 8

HOW [EWOTKS ...t s s s 10

The Snapshot Printer SCHPt ... 11
Recipe 2-2. How to Embed an Image in the Title Barcccvivvrvniennnnsnseness s sessessennes 14
PrODIBM ...t —————————— 14
SOIULION <.t s 15

HOW [EWOTKS ...t 15
USING YOUF OWN IMAQJE......eiriererrerirsereressesessesessesessessessesssssssessessessssessessesssssssessessesssssssessens 17
Create the Image in PYthon COUEccvvvvieririerenirserie e e se e sse e s s saesessessesnens 18

v

vww allitebooks.conl

http://www.allitebooks.org

TABLE OF CONTENTS

Recipe 2-3. How to Put a Background Image on a Panelc.cccvvvvnininsnnnsensenseesensennens 20
PrODIBIM ... s 20
LN S (o I o= 1o S 20
RST8] 11 R 22
A Better EXAMPI......co ettt r e sa e s s e e e 22
Chapter 3: Special EffeCtScccrussmmnmmmsssnnnmmsssssnnsmsssssssssssssnssssssssnssssssssnsnssssssnnnsnss 27
Recipe 3-1. Resetting the Background COIOrccccrrcvnienrescrnse e sens 27
(0] T 27
£ 10 0SS 27
HOW [EWOTKS ...t s 29
Recipe 3-2. How to Create a “Dark Mode” ..o ssessssessesnes 30
(0]] T 30
ST 11 0] T 30
HOW [EWOTKS ...t e 33
Trying Out Dark MOGE.......c..coiciirererirrre e s 33
Recipe 3-3. How to Fade-in @ Frame/Dialog.........ccovererrrrerenseserenersssesesesessesesessesessesessesesessesenns 37
(0]] T 37
S0 11 0] P 37
03 LT 38
Recipe 3-4. Making YOUr TeXt FIaShccccveermenmreserese e 39
(0]] T P 39
ST 11 0] T 39
HOW [EWOTKS ... s s s 40
Creating Changing TEXL.........ccovrrerreserrese s 41
Chapter 4: The Publish-Subscribe Pattern...........cccusccmmmnnemmmnnssennmmmsssnmmmsssnns 43
Recipe 4-1. An INtro t0 PUDSUDcoerverir e sr e 43
PrODIBM ... ——————— 43
SOIULION <. s 43
HOW [EWOTKS ... 45

vi

vww allitebooks.conl

http://www.allitebooks.org

TABLE OF CONTENTS

Recipe 4-2. Using PyDispatcher Instead of PUDSUD.........cccccvvevrvnininnvnsre e 46
PrODIBIM ... s 46
£S04 47
HOW [EWOTKS ...t 49

Chapter 5: Wizard RECIPES .uuieerrrrsssnnssrssssnnsssssssnssssssssnssssssssnsssssssssnsssssssnnnsssssnnnnssnss 51

Recipe 5-1. Creating a Simple WIizardcccovvevrrrnincnnic s sens 51
(0] T 51
£S04 OSSR 52
HOW [EWOTKS ...t s 53
USING PYWIZArdPage.......cccevuerierierriecercirses st ses s sse s s sse e se s s e s saese s s e snesaesssssnesnessennes 54

Recipe 5-2. How to Disable a Wizard’s Next Buttoncccvvcnininnnnsnnnnss s sessensennas 58
(0] T T 58
S0 11 70 P 59
0L L0 60
Getting It to Work with wxPython 4/PROENIXcccvrerrererrccrncrere s 63

Recipe 5-3. How to Create a Generic Wizardc.cccvvvnvnnnnnsni s sessesnes 66
(0]] T 66
S0 11 0] T 66
0L L0 67

Chapter 6: Creating Simple Widgets........ccciummmmmmmmmmsnnmmmssssnsnmmssssssnmsssssssnssssssssssnns 71

Recipe 6-1. Creating an ADOUL BOXcccuererrirerrnenmnesnsssse s ssssessssssessssssssssssssssessssessnns 71
PrODIBIM ... e e 7
RS0 10 OSSPSR 4l
HOW HEWOIKS ...t s s s 7
Using HtmIWindow for an ADOUE BOX........cccevenmrrnnemnsesnsesesssesesesssssssssssessssesssssssssssessssessnns 73
Updating the Code for WxPython 4/PROENIXccvveererenernsernsesssessssse s seses s sessssesessesenns 78

Recipe 6-2. Creating Graphs With PYPIOL..........cccvinnnini s ses s e 79
PrODIBM ... ——————————————— 79
R 0] 0] ST 80
HOW HEWOIKS ...t s 82

vii

vww allitebooks.conl

http://www.allitebooks.org

TABLE OF CONTENTS

Graphing Using SAved Data..........ccvcveerernienseniesessssenessessesessessessessssessessesssssssessessessssessessens 83
Point Plot with Thousands of POINtS ... 86
Creating a Sine/COSINE GraPN.........ceovvererrererserieresessessessessesessessessessssessessessesessessessesssnessessens 89
Recipe 6-3. Creating a Simple NOtehOOK.........ccovevrenrnirnrir e 91
o 10]] T N L

B30 11 TP 92
HOW [EWOTKS ...t 93
The Refactored NOtEDOOK ... 94
Chapter 7: Using Config FileS......ccurmmmrmmssmmnmmsssssnnmmssssssssssssssssssssssssnssssssnssssssssnnnsnss 97
Recipe 7-1. Generating a Dialog from @ Config File..........ccoveorerrecnnerrerereereree e 97
(0]] T T 97
S0 11 0] T 98
HOW [EWOTKS ... e 101
Recipe 7-2. Saving Data to @ Config File..........coourrrnrnrenereserrsessesese e 102
10] T TS 102

£ 0] 11 0] ST 102
Creating @ CONMIOIIEN ..o s 103
HOW [EWOTKS ... se e s sse s s srs e 104
Creating the VIBW ... e sss s se s ses s snsenenns 104
Chapter 8: Working with EVentsccccccmmmmmnmmmssssssssssmmmmsmmsssssssssssssssssssssssssssssssnnss 111
Recipe 8-1. Binding Multiple Widgets to the Same Handlerccocvvevricrninnenenesesenennnns 111
PrODIBIM ... e 111

B30 0] OSSPSR 112
HOW IEWOIKS ... s s s 113
Recipe 8-2. How to Fire Multiple Event HANAIEISccocvverevrsenienennsersene s sessessessessssessesaens 114
PrODIBM ... —————————————— 114
SOIULION .ttt ————————— 114
HOW [EWOTKS ...t s s s 115

viil

vww allitebooks.conl

http://www.allitebooks.org

TABLE OF CONTENTS

Recipe 8-3. Get the Event Name Instead of an INtEQEr........coovvvvvrerevnienvennesesesseressesessesenaens 116
PrODIBIM ... s 116
£S04 116
HOW [EWOTKS ... s s 118

Recipe 8-4. Catching Key and Char EVENES.........cccvvevvrrrnrenienessenseressssessessessssessessessessssessenaens 119
o0] T T 119
£S04 119
HOW [EWOTKS ...t 120
Catching Char EVENTScccvvverererriresessssessessesessessessesaessssessessesssssssessesaesssssssessesssnsssesaees 124

Recipe 8-5. Learning About FOCUS EVENLScccceiriininncrr s sesennens 125
g 10] T 125
£ 10 10§ 126
HOW [EWOTKS ... s 127
LOSING FOCUS ..ottt s b e st s e p e e e 130

Chapter 9: Drag and Dropccccesrsssssssnmsssssssnmssssssssssssssnnsssssssnnnssssssnnnsssssnnnsssssnnnnnss 133

Recipe 9-1. How to Use Drag and Dropcccovcrvrennninninenie s sesse s ssssessessessesssssssessens 133
(0]] T TS 133
£ o] 11 70 OSSR 133
Creating @ FileDropTarget........coocoveernerereserensesesese e ses e s sesnsessenes 134
HOW [EWOTKS ... s nns s 136
Creating @ TeXIDrOPTArgetccocoereeerrererese s 137
Custom DnD with PyDropTargetcoeceerenrnnmrenesesesesessesese s s sesssessnnes 139
Creating a Custom Drag-and-Drop ApPp ... s sss e ens 142

Recipe 9-2. How to Drag and Drop a File from Your App to the OS........cccconvininininniniennens 146
(0] T TSSO 146
B30 0] P 146
HOW [EWOTKSecececerrcerree e se s s s se s s sessssesss s s ssssssssssnsnsssnenas 149

ix

vww allitebooks.conl

http://www.allitebooks.org

TABLE OF CONTENTS

Chapter 10: Working with Frames.......ccuuseummmmsssmmmmsssssssmssssssssssssssssssssssssssssssssnnnss 151
Recipe 10-1. USing WX.Frame SLYIESccoverrrrrnicrre s sessesens 151
(0]] T 151
T 111 1T0] 11 () O S 152
HOW [EWOTKS ...t s s 153
Create a Frame Without @ Caption ..o 154
Create a Frame with a Disabled Close BUHION...........ccoeornennennesc e 156
Create a Frame Without Maximize/Minimizeccccvveerinnennenenns s 157
Create @ Un-ResSizable FramEc.cccvveimnenennesnnesessse s s ss s ssssssessssesessssenns 158
Create a Frame Without @ SyStem MeNU..........cccverirnnnninennsnsese s s ssessssessesaes 159
Create a Frame That Stays 0N TOPccvevrereveererrereresesseressesessessessessesessessessessssessessessssessessesaes 160
Recipe 10-2. Making Your Frame Maximize or Full SCreenc.cccvvvnvnirnsnsessesessnsensennens 162
10] T T 162
£ 10 10O 162
HOW [EWOTKS ... s 163
Making Your Application FUll SCIEEN........c.ccoevicrrrre e 164
Recipe 10-3. Ensuring Only One Instance per Frameccccovvvnvennnenesesesssesessesesesesesesenns 165
(0]] T TS 165
3o 11 0] T 165
Chapter 11: wxPython and the System Tray.......cccccumemmmmmsssnmnmnsssssnnmnsssssnsssssssnnns 169
Recipe 11-1. Creating Taskbar ICONSccccvevvvervrerrsirrere s sese s s e s ssesassessesnens 169
PrODIBM ... ———————————— 169
SOIULION <.t 169
Creating the TaskBarlcon iN ClaSSIC.......cvcevererrersereressnsersessessssessessessessssessessessssessessesssssssessesses 169
HOW [EWOTKS ... e s 171
Creating the TaskBarlcon in WXPYNON 4ocverivniniere e s s e se e ssesessessesees 172
Recipe 11-2. Minimizing to the System Tray..........ccccvirninininnsnn s 175
18]] T T 175
S0 11 0] 175
HOW [EWOTKS ... e 176
Making the Application Minimize 10 Traycocceerrrrerrnererese e 178
X

vww allitebooks.conl

http://www.allitebooks.org

TABLE OF CONTENTS

Chapter 12: Fun with Panels.......cccucemmmmnssmmmmmmmsssnmmmssssnmmssssssssssssssssssssssssssssns 181
Recipe 12-1. Making a Panel Self-DeStruct..........ccouovrerresrnrrnrcrre s sens 181

g 10]] T O 181

£ 10 10§ 181

HOW [EWOTKS ... s s 183
Recipe 12-2. How to Switch Between Panels..........coocvcvninnsnncsssinsesess s sesennens 184
g0] T 184

£ 0] 11 0] 185

HOW [EWOTKS ...t e 188
Chapter 13: Using Objects in Widgetsccccumsmmmmmmssssnnmmsssssnsnmssssssnnsssssssnssssssnnnnss 189
Recipe 13-1. Using ObjectListView Instead of LiStCHrl...........ccovernrennieneresernscsessenes e 189
18]] T TS 189

£ 0] 11 0] T 190

HOW [EWOTKS ... s nns e 192
Recipe 13-2. Storing Objects in ComboBoX Or LiStBOXccccvvrernnenenenerssersseseseses e 194
(0]] T ST RTOT 194

R0 0] OSSPSR 195

HOW [EWOTKS ...t s s nna e 197
Adding Objects 10 the WX.COMDOBOX.........cccueernrerereneresennsessse s se s sr s ssnnes 197
Chapter 14: XML and XRO........couuummmmmmmmmmnmmmmmmmmmsssssssssssmssmssssssssssssssssssssssssnsssssssess 201
Recipe 14-1. Extracting XML from the RiChTEXICEr].........ccveevievrirrererrrersere e senenaens 201
PrODIBIM ... 201
£S04 201

HOW [EWOTKS ... e e 202
Updating for WXPYINON 4...........eooeee et s e se e s n e s 203
Recipe 14-2. An Introduction t0 XRC........cccociiirnninnsnsne s s e ssssessesnens 204

g 10] T 204

£ 0] 11 0] 205

HOW [EWOTKS ... e 207

xi

TABLE OF CONTENTS

Creating a NotebooK With XRC........ccccvvrrriererennerserersssssessessessssessessesssssssessesssssssessessesssssssessens 208
Adding Controls QULSIAE XRC.......ccouerrinerirerinenire s se s s st se s sse s 212
Recipe 14-3. An Introduction t0 XRCed..........ccverrrierinnnne s se s e s sessesnens 214
g 10] T T 214
830 0] T 214
HOW [EWOTKS ... s 216
Creating Something More COMPIEXc.eccvrererenernserrerere e 218
Using XRCed to Generate Python Code..........ccoverrrnrernenmnesersse e sessesenns 220
Recipe 14-4. How to Create a Grid in XRCcccccvvrernnenmnesennse s se s sessesens 222
PrODIBIM ... s 222
B30 0] OSSPSR 224
HOW HEWOIKS ...t e s s s s 225

Recipe 15-1. How to Get Children Widgets from @ Sizer.........cocvvcvverrevnnnseriesnnensensesensssessenens 227
PrODIBIM ...t e 227
£S04 228
HOW [EWOTKS ...t s 229

Recipe 15-2. How to Center @ Widget........ccooerrivrninnncnne s sese s sessesens 229
PIODIBIM ...t e 229
Solution #1—USING FAUX SPACEIS.....cererrererreriererrersersersessessssessessessssessessessessssessesssssssessessens 230
HOW [EWOTKS ...t s 231
Solution #2—Using an AddStretCRSPACETcccvvervrveriererrrerere s s e saessssessessens 231
HOW [EWOTKS ...t s 232
Solution #3—Centering Without Nested SizZers........ccccvrevvrmirierinnnsensessesssessesesessssessessens 232

Recipe 15-3. How to Make Widgets Wrap..........cccuriinnnneniess s ssssessesss s ssessessssessesnens 233
g 10]] T T 233
£ 10 10O 234
HOW [EWOTKS ... s s s 235

Recipe 15-4. Adding/Removing Widgets Dynamicallycccocvcvrnienninnnsesnnsnsessesessssensensens 236
18]] T TS 236
£ 0] 11 0] 237

xii

TABLE OF CONTENTS

Chapter 16: Threads and TiMEerSccciussssennmsssssnnsmssssssssesssssnssesssssnnsssssssnsssssssnnnnss 241
Recipe 16-1. How to Update a Progress Bar from a Threadcccocevvvrininnsnincnnscniennens 241
L 10]] T T 241
Solution for wxPython 2.8.12 and Earliercccovvvrenrnncrncnnse s e e 242
HOW [EWOTKS ... s s 244
Solution for WXPYthon 3 and NEWEFccveererererrerieressesessesessessssesessesssssssessesssssssessessens 246
HOW [EWOTKS ... s e 248
WX.POSTEVENt @Nd THIEAUS........coeeeeereeererere e 248
Recipe 16-2. How to Update a Progress Bar from a Threadcccocevvvnininnsniniennscnsennens 252
g (0]] T T 252
30 11 0] 252
Updating the Code for wxPython 3.0.2.0 and NEWETcccccvveernrenenenesesesessessseses e sessesenns 257
Recipe 16-3. A WX.TIMEr TULOHALccviviererinirrere st sae s 260
PrODIBIM ... e 260

B30 10 OSSPSR 261
HOW IEWOIKS ... s s e s 262
USING MUIEIDIE TIMEKS ...cuvvereeriesereresie s se s s e sae e se e s st e saesaese s e saesaese s e saenaens 264
Chapter 17: Redirecting TeXtccuusemmrmssssnnmmsssssnnnssssssnsnsssssssnsssssssnnsssssssnnssssssnnnnss 269
Recipe 17-1. Redirect Python’s Logging Module t0 a TeXtCtrl.........ccocevevervcrnicnrccncrieccrinenen, 269
g 10] T 269

£ 10 10§ 269
HOW [EWOTKS ... s s 272
Recipe 17-2. Redirecting stdout/Stderr.........ovorvrii s 273
18]] T 273
Solution—The Thread-Safe Method...........oocoreerrennerre e 274
HOW [EWOTKS ...t e 275
Solution—The Non-Thread-Safe Method.............ccoeerrerrerrncrrere e 276
Recipe 17-3. How 1o Use the Cliphoardcccuvrrnininnesnsnenesssisses s sessessens 279
(0]] T 279

£ 0] 11 0] S 280
HOW [EWOTKS ... e 282

TABLE OF CONTENTS

Chapter 18: Grid RECIPeS ..uuvurueerrrssssnnsrsssssnnsssssssnssssssssnssssssssnnnssssssnnssssssnnnnsssssnnnnss 283
Recipe 18-1. Syncing Scrolling Between TWO Gridscccceerevvnrenniesenisscrssesese s eesesenenns 283

g 10]] T T 283

£ 10 10§ 283

HOW [EWOTKS ...t s s 285
Recipe 18-2. How to Get Selected Cells in @ Gridcccocerievninreniesinsnsnse s sesesnens 286
10] T 286

£ 0] 11 0] 287

HOW [EWOTKS ...t 290
Chapter 19: Working with Your Application........cccccccimmirrnnsssssssssnnssnmsssssssssssssnsnnns 291
Recipe 19-1. How to Edit Your GUI Interactively UsSing reload()........cocureserrenerensesessenesseserenenenns 291
(0]] T TS 291
30 11 0] TS 292

HOW [EWOTKS ...t nns s 294
Recipe 19-2. Updating Your Application With ESKYccccuvriinnininennsinsnesssessesessesessesesaens 295
(0]] T TSSO 295

£ 0] 11 170 SRS 295

HOW [EWOTKS ... se s se s s nns s 301
Recipe 19-3. How to Create a Log-in Dialog.........ccourerrnermresersnsesssesssesesssessssessssesessssesessesenns 310
PrODIBIM ... e 310

£ 0] 111 110 OSSOSO 311
Using an InStance Variable...........ccoccvevrinienennsirrine s sesse e ssssessessessesessessessessssessesnens 314
Chapter 20: BoNUS RECIPES...icueurrrssssnnmrsssssnnsesssssnnsssssssnnssssssssnsssssssnnssssssnnnssssssnnnnss 317
Recipe 20-1. Catching Exceptions from ANYWhEIE..........ccceeerrccrnrenineseneseres s sessesenns 317

g 10]] T 317

£ 10 10§ 317

HOW [EWOTKS ... s s 319
Creating an Exception-Catching Decorator ... 319

Xiv

TABLE OF CONTENTS

Recipe 20-2. wxPython’s Context MANAQgErsSccverererrerreresessessessessssessessessessssessessessssessessens 325
PrODIBIM ... 325
£S04 326
HOW [EWOTKS ...t s s 327

Recipe 20-3. Converting wx.DateTime to Python datetimecccccvvvvvrvrinnvnvncnevsrenienens 331
g £0]] T O 331
£ 10 10O 331
HOW [EWOTKS ... s 332

Recipe 20-4. Creating @ URL SNOIENEN ..o snens 333
g 10] T T 333
£ 10 10T 333

Shortening URLs with Other SNOMENErS ... 336

INO@X . uuerisssnnnsssnnnsssnnssssanssssanssssanssssannsssannssssnnssssnnssssnnssssnnssssnnssssnnssssnnssssnnssssnnnsssnns 343

About the Author

Mike Driscoll started coding in Python in 2006, where his
first assignments included porting Windows log-in scripts
and VBA to Python, which introduced him to wxPython.
He’s done back-end programming and front-end user
interfaces, writes documentation for wxPython, and
currently maintains an automated testing framework in
Python. He also owns the popular site “Mouse vs Python” at
pythonlibrary.org and has written for the Python Software
Foundation and DZone and published Python 101 and
Python 201.

xvii

About the Technical Reviewers

Kevin Ollivier is a software developer who has been
working with Python for nearly 20 years. He has been an avid
supporter of open source and has contributed to numerous
projects, including wxPython. When he’s not coding, he’s
usually either reading, catching up on the latest anime and
superhero shows, or gaming. In addition to coding work that
he performs for various clients, he is currently working on an
educational role-playing game (RPG) called BrightSparc. You
can learn more about him and his projects at his company
web site: http://kosoftworks.com.

Andrea Gavana has been programming Python for
almost 15 years, and dabbling with other languages since the
late 1990s.
He graduated from university with a Master’s Degree
in Chemical Engineering, and he is now a Senior Reservoir
Engineer working for Maersk Oil in Copenhagen, Denmark.
Andrea enjoys programming at work and for fun, and
he has been involved in multiple open source projects, all
Python-based.
One of his favorite hobbies is Python coding, but he is

also fond of cycling, swimming, and cozy dinners with family
and friends.
This is his first book as technical reviewer.

http://kosoftworks.com/

Acknowledgments

I just wanted to take a moment and say thank you to some of the people who have
helped me in writing this book.

My technical reviewers, Andrea Gavana and Kevin Ollivier, were very helpful both in
the polishing of this book and in my growth as a Python programmer from practically the
beginning of my learning of the language.

The wxPython community itself inspired me to write about Python in general and
wxPython in particular. They were always encouraging me when I was just starting out
learning Python and wxPython and they still are.

I'would also like to thank all my blog readers who have reached out to me over the
years and asked me to start writing books.

Robin Dunn, the creator of wxPython, has been very helpful to me personally in
figuring out wxPython and in the writing of this work. I have asked him repeatedly for
help in regard to some of my code examples that worked in one version of wxPython and
not in another, or code that worked in one operating system, but didn't behave the same
way somewhere else. He has always been patient with me and pointed me in the right
direction.

Finally, I would like to thank my family for their support.

And special thanks to you, dear reader, for picking this book up and giving it a
chance.

xxi

CHAPTER 1

Introduction

Welcome to my wxPython recipes book! As with most cookbooks, this one is made up
of a series of recipes. Some recipes will be more involved than others, but most of the
time, the recipe will be a nice bite-sized chunk of information that only covers three to
five pages or so. There are more than 50 recipes in this book. I have compiled them over
the last eight years from people who have asked questions on the wxPython mailing list,
StackOverflow, or e-mailed me directly.

Normally Iwould spend a lot of time in the introduction going over each section of
the book, but since this book is a series of recipes, it won’t actually be split into sections.
Instead, the recipes will be grouped where possible. For example, I have a number of
XRC-related recipes, so they will be kept together as a single chapter.

The recipes will include screenshots of the interfaces that you will be creating. There
will be additional screenshots included if and when we change the code inside a recipe.
A good example of this is in the Frame Styles recipe where we try out various flags that
affect how wx.Frame is displayed.

Who Should Read This Book

This book is targeted at people who are already familiar with the Python programming
language and also have a basic understanding of wxPython. At the very least, it would be
helpful if the reader understands event loops and the basics of creating user interfaces
(Uls) with another Python UI toolkit, such as Tkinter or PyQt.

© Mike Driscoll 2018
M. Driscoll, wxPython Recipes, https://doi.org/10.1007/978-1-4842-3237-8_1

CHAPTER 1 INTRODUCTION

About the Author

You may be wondering who I am and why I might be knowledgeable enough about
Python to write about it, so I thought I'd give you a little information about myself. I
started programming in Python in Spring 2006 for a job. My first assignment was to port
Windows log-in scripts from Kixtart to Python. My second project was to port VBA code
(basically a graphical user interface, or GUI, on top of Microsoft Office products) to
Python, which is how I first got started in wxPython. I've been using Python ever since,
doing a variation of back-end programming and desktop front-end Uls. Currently I am
writing and maintaining an automated test framework in Python.

Irealized that one way for me to remember how to do certain things in Python
was to write about them and that’s how my Python blog came about: www.blog.
pythonlibrary.org/. As I wrote, I would receive feedback from my readers and I ended
up expanding the blog to include tips, tutorials, Python news, and Python book reviews.
I work regularly with Packt Publishing as a technical reviewer, which means that I get to
try to check for errors in the books before they’re published. I also have written for the
Developer Zone (DZone) and i-programmer web sites as well as the Python Software
Foundation. In November 2013, DZone published The Essential Core Python Cheat
Sheet, which I coauthored. Finally, I have also self-published the following two books:

e Python 101, which came out in June 2014.

o Python 201: Intermediate Python, which came out in September
2016

Conventions

As with most technical books, this one includes a few conventions that you need to be
aware of. New topics and terminology will be in bold. You will also see some examples
that look like the following:

>>> myString = "Welcome to Python!"

[NENEN

The >>> is a Python prompt symbol. You will see this in the Python interpreter and
in IDLE. Other code examples will be shown in a similar manner, but without the >>>.

http://www.blog.pythonlibrary.org/
http://www.blog.pythonlibrary.org/

CHAPTER 1 INTRODUCTION

Requirements

You will need a working Python 2 or Python 3 installation. Most Linux and Mac
machines come with Python already installed; however, they might not have Python in
their path. This is rare, but if it happens there are lots of tutorials on the Internet that
explain how to add Python to your path for your particular operating system. If you
happen to find yourself without Python, you can download a copy from http://python.
org/download/. There are up-to-date installation instructions on the web site, so I won't
include any installation instructions in this book for Python itself.

The wxPython toolkit is not included with Python. We will look at how to install it
here. You will want to use the latest version of wxPython, which at the time of writing, is
version 4. It also based on the Phoenix branch of wxPython instead of Classic. You don'’t
really need to know the differences between these other than Phoenix supports Python 2
and 3 while Classic does not.

To install wxPython 4, you can just use pip:

pip install wxPython

This works great on Windows and Mac. I have noticed that on some versions of
Linux, you may see an error or two about missing dependencies, such as webkit. You will
need to install the listed dependency and then try installing wxPython again.

Once you're done installing wxPython, we can check to make sure it works with the
following script:

import platform
import wx

class MyFrame(wx.Frame):

def _init (self):

Constructor

wx.Frame. init (self, None, size=(500, 200),
title="Version Info')

panel = wx.Panel(self)

py_version = 'Python version: ' + platform.python version()

wx_version = 'wxPython version: ' + wx.version()

+ platform.platform()

0s_version

'Operating System:

http://python.org/download/
http://python.org/download/

CHAPTER 1 INTRODUCTION

main sizer = wx.BoxSizer(wx.VERTICAL)
size = (20, -1)
main_sizer.Add(

wx.StaticText(panel, label=py version), 0, wx.ALL, 5)
main_sizer.Add(

wx.StaticText(panel, label=wx version), 0, wx.ALL, 5)
main_sizer.Add(

wx.StaticText(panel, label=os version), 0, wx.ALL, 5)
panel.SetSizer(main sizer)

self.Show()

if name_ ==" main_"':
app = wx.App(False)
frame = MyFrame()
app.MainLoop()

This code should run without error and you will see a simple UI appear on screen.
Any additional requirements will be explained later on in the book.

Book Source Code

The book’s source code can be found on Github:

https://github.com/driscollis/wxPython_recipes book_code

Reader Feedback

I welcome feedback about my writings. If you'd like to let me know what you thought of

the book, you can send comments to the following address:

comments@pythonlibrary.org

https://github.com/driscollis/wxPython_recipes_book_code

CHAPTER 1 INTRODUCTION

Errata

I try my best not to publish errors in my writings, but it happens from time to time. If
you happen to see an error in this book, feel free to let me know by e-mailing me at the

following:
errata@pythonlibrary.org

Now let’s get started!

CHAPTER 2

Working with Images

Recipe 2-1. How to Take a Screenshot of Your
wxPython App

Problem

Have you ever thought that it would be cool to have your wxPython code take a
screenshot of itself? Well, Andrea Gavana (one of wxPython'’s core developers) figured
out a cool way to do just that and between what he told us on the wxPython mailing
list and what I learned from other sources, you will soon learn how to not only take the
screenshot but send it to your printer! Once it’s all done, you'll have an application that

looks like Figure 2-1.

Take Screenshot | ‘ Print Screenshot

Figure 2-1. Taking a screenshot

© Mike Driscoll 2018
M. Driscoll, wxPython Recipes, https://doi.org/10.1007/978-1-4842-3237-8_2

CHAPTER 2 WORKING WITH IMAGES

Solution

You can tackle this project in several different ways. You could create the code that

actually takes the screenshot or you could write an application that calls that code. We

will start by creating an application that takes screenshots. Let’s take a look.

Listing 2-1. The Code for Taking a Screenshot

import sys

import wx

import snapshotPrinter

class MyForm(wx.Frame):

def

def

__init_ (self):
wx.Frame. init (self, None, title="Screenshot Tutorial")

panel = wx.Panel(self)

screenshotBtn = wx.Button(panel, label="Take Screenshot")
screenshotBtn.Bind(wx.EVT BUTTON, self.onTakeScreenShot)
printBtn = wx.Button(panel, label="Print Screenshot")
printBtn.Bind(wx.EVT BUTTON, self.onPrint)

sizer = wx.BoxSizer(wx.HORIZONTAL)
sizer.Add(screenshotBtn, 0, wx.ALL|wx.CENTER, 5)
sizer.Add(printBtn, 0, wx.ALL|wx.CENTER, 5)
panel.SetSizer(sizer)

onTakeScreenShot(self, event):

Takes a screenshot of the screen at given pos & size (rect).

Method based on a script by Andrea Gavana

print('Taking screenshot...")
rect = self.GetRect()

adjust widths for Linux (figured out by John Torres
http://article.gmane.org/gmane.comp.python.wxpython/67327)

CHAPTER 2 WORKING WITH IMAGES

if sys.platform == 'linux2':
client x, client y = self.ClientToScreen((0, 0))
border width = client x - rect.x
title bar height = client y - rect.y
rect.width += (border width * 2)
rect.height += title bar_height + border width

Create a DC for the whole screen area
dcScreen = wx.ScreenDC()

On Windows and Mac, we can just call GetAsBitmap on the
wx.ScreenDC

and it will give us what we want.

bmp = dcScreen.GetAsBitmap().GetSubBitmap(rect)

if not bmp.IsOk():
Create a Bitmap that will hold the screenshot image later on
Note that the Bitmap must have a size big enough to hold the
screenshot
-1 means using the current default colour depth
bmp = wx.EmptyBitmap(rect.width, rect.height)

#Create a memory DC that will be used for actually taking the
screenshot
memDC = wx.MemoryDC()

Tell the memory DC to use our Bitmap
all drawing action on the memory DC will go to the Bitmap now
memDC. SelectObject (bmp)

Blit (in this case copy) the actual screen on the memory DC
and thus the Bitmap
memDC.Blit(0, # Copy to this X coordinate

0, # Copy to this Y coordinate

rect.width, # Copy this width

rect.height, # Copy this height

dcScreen, # Where to copy from

CHAPTER 2 WORKING WITH IMAGES

rect.x, # What's the X offset in the original DC?
rect.y # What's the Y offset in the original DC?

)

Select the Bitmap out of the memory DC by selecting a new
uninitialized Bitmap
memDC. SelectObject (wx.NullBitmap)

img = bmp.ConvertToImage()

fileName = "myImage.png"
img.SaveFile(fileName, wx.BITMAP_TYPE_PNG)
print('...saving as png!")

def onPrint(self, event):

Send screenshot to the printer
printer = snapshotPrinter.SnapshotPrinter()
printer.sendToPrinter()

Run the program

if _name__ == " main_ ":
app = wx.App(False)
frame = MyForm()
frame. Show()

app.MainLoop()

How It Works

This piece of code creates a frame with two buttons in it. It’s a bit boring, but this is

just a simple example after all. The part we care about most is the onTakeScreenShot
method. As I mentioned earlier, it is based on a script by Andrea Gavana. However, I
added a conditional from John Torres that makes this script behave better on Linux since
it was originally written for Windows. The comments tell the story of the code, so take
your time reading them and when you're done, we can move on to how we can send our
result to the printer.

10

CHAPTER 2 WORKING WITH IMAGES

The Snapshot Printer Script

Creating a simple application that can take a screenshot and print it isn’t that much
more work than just taking a screenshot. You will be able to combine this script with the
previous one to make a complete screenshot and printing utility.

The printing utility will end up looking something as shown in Figure 2-2.

_Takse Screenshot Print Screenshot

Page Setup | [Print | [Cancel

Figure 2-2. Printing a screenshot

This initial script actually has the image hard-coded into it, so if you'd like to save the
image with a different name, you’ll need to add that feature yourself. Let’s take a moment
to read through the code though, as shown in Listing 2-2:

11

CHAPTER 2 WORKING WITH IMAGES

Listing 2-2. The Application Code That Calls the Screenshot Code

snapshotPrinter.py

import os
import wx
from wx.html import HtmlEasyPrinting, HtmlWindow

class SnapshotPrinter(wx.Frame):

def init (self, title='Snapshot Printer'):
wx.Frame. init (self, None, title=title,
size=(650,400))

self.panel = wx.Panel(self)
self.printer = HtmlEasyPrinting(
name='Printing', parentWindow=None)

self.html = HtmlWindow(self.panel)
self.html.SetRelatedFrame(self, self.GetTitle())

if not os.path.exists('screenshot.htm'):
self.createHtml()
self.html.LoadPage('screenshot.htm")

pageSetupBtn = wx.Button(self.panel, label='Page Setup')
printBtn = wx.Button(self.panel, label='Print")
cancelBtn = wx.Button(self.panel, label='Cancel)

self.Bind(wx.EVT _BUTTON, self.onSetup, pageSetupBtn)
self.Bind(wx.EVT BUTTON, self.onPrint, printBtn)
self.Bind(wx.EVT BUTTON, self.onCancel, cancelBtn)

sizer = wx.BoxSizer(wx.VERTICAL)
btnSizer = wx.BoxSizer(wx.HORIZONTAL)

sizer.Add(self.html, 1, wx.GROW)
btnSizer.Add(pageSetupBtn, 0, wx.ALL, 5)
btnSizer.Add(printBtn, 0, wx.ALL, 5)

12

CHAPTER 2 WORKING WITH IMAGES

btnSizer.Add(cancelBtn, 0, wx.ALL, 5)
sizer.Add(btnSizer)

self.panel.SetSizer(sizer)
self.panel.SetAutoLayout(True)

def createHtml(self):
Creates an html file in the home directory of the application
that contains the information to display the snapshot

print('creating html...")

html = ""'<html>\n<body>\n<center>

</center>\n</body>\n</html>"""

with open('screenshot.htm', 'w') as fobj:
fobj.write(html)

def onSetup(self, event):
self.printer.PageSetup()

def onPrint(self, event):
self.sendToPrinter()

def sendToPrinter(self):
self.printer.GetPrintData().SetPaperId(wx.PAPER LETTER)
self.printer.PrintFile(self.html.GetOpenedPage())

def onCancel(self, event):
self.Close()

if _name__ == "' main_ ':
app = wx.App(False)
frame = SnapshotPrinter()
frame.Show()
app.MainLoop()

vww allitebooks.conl

13

http://www.allitebooks.org

CHAPTER 2 WORKING WITH IMAGES

This little script uses the HtmlWindow widget and the HtmlEasyPrinting method to
send something to the printer. Basically, you can create some really simple HTML code
(see the createHtml method) and then use the HtmIWindow to view it. Next you use
HtmlEasyPrinting to send it to a printer. It will actually display the printer dialog and let
you choose which printer you want to send the document to.

Being able to save a screenshot of your application can be quite valuable for
debugging purposes. For example, if you were writing an automated test of your
software, you would be able to save from a screenshot when your application crashed
or threw a warning and you might be able to diagnose what happened. I hope you have
found this recipe useful. I know it’s helped me out from time to time.

Recipe 2-2. How to Embed an Image in the Title Bar
Problem

There are times when you just want to add something custom to your application’s

title bar. One fun item to add is an image. Most applications on Windows have the
application’s logo in the upper left-hand corner of the title bar. When you run a
wxPython script it will just use a generic default icon. In this recipe, we will look at three
different methods of adding a custom image to our title bar.

The first method is to get an embedded image out of an executable. The second
method is to take some image you have and just embed it. The last and final method is
to take your image and turn it into a Python file that can be imported. I'm sure you could
also mess with the Python Image Library (a.k.a. Pillow) or maybe even use the paint
handler too, but I won't cover that in this recipe.

Note This recipe is Windows only.

14

CHAPTER 2 WORKING WITH IMAGES

Solution

Let’s start by learning how to extract an image from an executable. It’s actually pretty
simple. Here’s a super simple example:

Import sys
import wx

class MyForm(wx.Frame):

def init (self):
wx.Frame. init (self, None, title='Image Extractor')

self.panel = wx.Panel(self)

loc = wx.IconlLocation(sys.executable, 0)
self.SetIcon(wx.Icon(loc))

if _name__ == ' main_ ':
app = wx.App(False)
frame = MyForm().Show()

app.MainLoop()

How It Works

In this example, I'm grabbing the Python 3.5 icon out of the python.exe using the
following line:

loc = wx.Icon(r'C:\Python35\python.exe', 0)

Then I set the frame’s icon using SetIcon(). Notice that all I need is wx.Icon to
extract the icon from the IconLocation instance. In wxPython Classic, you would need
to replace the call to wx.Icon with wx.IconFromLocation for this to work.

When you run this code, you should see the screen in Figure 2-3.

15

CHAPTER 2 WORKING WITH IMAGES

Figure 2-3. Title bar with custom image from python.exe

You will note that you can see the Python logo in the corner in this screenshot. Now
go and comment out the last two lines in the class’s __init__ method and rerun the code.
You should end up seeing something as shown in Figure 2-4.

Figure 2-4. Title bar with generic default image

That image in the upper left-hand corner is the generic icon that wxPython uses
when you don’t set the icon yourself.

16

CHAPTER 2 WORKING WITH IMAGES

Using Your Own Image

Using your own image is actually a bit simpler than extracting it from the executable. The
primary difference between the following code and the code in the previous example
is that I've gotten rid of the calls to wx.IconLocation and added a wx.Icon object. The
wx.Icon object just needs a path to the icon and the wx.BITMAP_TYPE_ICO flag.

Let’s take a look at how this changes the code.

import wx
class MyForm(wx.Frame):

def init (self):
wx.Frame. init (self, None, title='Custom Image')

self.panel = wx.Panel(self, wx.ID ANY)

ico = wx.Icon('py.ico', wx.BITMAP_TYPE_ICO)
self.SetIcon(ico)

if _name_ == "' main_ ':
app = wx.App(False)
frame = MyForm().Show()
app.MainLoop()

Before you run this code, you will need to find an icon (.ico) file of your own and
modify this code to use it. I grabbed a Python icon I had handy on my machine for this
example. It's actually the logo of the wxPython framework which you can probably find
yourself once you have wxPython installed on your own machine.

When I ran this code, I ended up getting the following application generated (shown
in Figure 2-5).

Now we can move on to the final method of adding an image to the title bar!

17

CHAPTER 2 WORKING WITH IMAGES

Figure 2-5. Adding a custom image

Create the Image in Python Code

The final way I would do this may be the best. In it, I take an icon or image and turn it
into a python file using wxPython’s img2py utility. Why might this be the best? Because
by embedding the image file in a Python file, you simplify the process of distributing
your application with py2exe. At least, that’s been my experience.

On my machine, the img2py utility can be found in your Python Scripts folder. I have
also found it in Python’s site-packages under site-packages\wx-4.0-msw\wx\tools
(Modify this path as appropriate for your version of wxPython).

To make things simpler, I would highly recommend opening a terminal and
navigating to the folder that holds your icon file. Then all you need to do is run the
following command:

img2py python.ico my_icon.py

The first argument is the path to the icon file. The last argument that you give is the
name of the Python file that you want img2py to create (i.e., embed the icon into). Now,
copy the Python file you just created over to the folder that contains your wxPython
script so it can import it (or you can just copy the code out of the Python file into the text
of the application you're creating).

Note If you are on Windows, there is an img2py.exe in your Python installation's
Scripts folder. Otherwise you will need to go to your wxPython installation location
and navigate to the tools folder to run the script directly.

18

CHAPTER 2 WORKING WITH IMAGES

By the way, img2py has a few command line switches you can use. Try running
img2py without any arguments to see its man page so you can read up on its options.

I'm going to import our new image module for this example. To get the icon, you call
the GetIcon() method of the icon file’s PyEmbeddedImage instance that I imported.
Check out the code that follows to see what I'm doing. You might also want to open the
Python file I generated to see what that looks like.

import wx
import my icon

class MyForm(wx.Frame):

def init (self):
wx.Frame. init (self, None, title='Python Image Title')

self.panel = wx.Panel(self, wx.ID ANY)

ico = my icon.PyEmbeddedImage(my icon.py)
self.SetIcon(ico.data.GetIcon())

Run the program

__main__ ':
app = wx.App(False)
frame = MyForm().Show()
app.MainLoop()

if _name ==

The application that this code creates should look the same as the one we created
earlier except for the title text.

Ideally, this recipe has helped you learn how to use your icon in your application.
Remember, you can use these techniques for any image you want to insert into your
application—not just for the title bar icon, but for any static image you'd use in your
application, such as a taskbar icon or a toolbar icon. Good luck!

19

CHAPTER 2 WORKING WITH IMAGES

Recipe 2-3. How to Put a Background Image
on a Panel

Problem

I receive a lot of e-mails from people who are learning Python and wxPython. In one of
those e-mails, I received a request to create a graphical user interface (GUI) with Tkinter
or wxPython that had an image for the background with buttons on top. After looking

at Tkinter, I discovered that its PhotoImage widget only supported two formats: gif and
pgm (unless I installed the Pillow package). Because of this, I decided to give wxPython a
whirl. Here’s what I found out.

A Bad Example

Using some of my Google-Fu, I found a thread on daniweb that seemed like it might
work. I'll reproduce a variation of the example here.

create a background image on a wxPython panel
and show a button on top of the image
import wx

class Panel1(wx.Panel):

A subclass of wx.Panel

def init (self, parent, id):
wx.Panel. init (self, parent, id)
try:
pick an image file you have in the working
folder you can load .jpg .png .bmp or
.gif files
image file = 'roses.jpg'
bmp1 = wx.Image(
image file,
wx.BITMAP_TYPE_ANY).ConvertToBitmap()
image's upper left corner anchors at panel
coordinates (0, 0)

20

CHAPTER 2 WORKING WITH IMAGES

self.my bitmap = wx.StaticBitmap(
self, -1, bmp1, (0, 0))
show some image details
stra = "%s %dx%d" % (image file, bmpi1.GetWidth(),
bmp1.GetHeight())
parent.SetTitle(str1)
except IOError:
print("Image file %s not found" % imageFile)
raise SystemExit

self.my button = wx.Button(
self.my bitmap, label='Buttoni',

pOS=(8, 8))

if name_ ==" main_":

app = wx.App(False)

my frame = wx.Frame(None, -1, "An image on a panel",
size=(350, 400))

create the class instance

panel = Paneli(my frame, -1)

my frame.Show(True)

app.MainLoop()

My first thought when I saw this was something like the following: “This is probably
bad” Why would I think that? Well, the guy who posted this was using a wx.StaticBitmap
for the parent of the button. The StaticBitmap widget is not a container widget like a
Panel or Frame is, so I figured this was probably not a good idea. Thus, I asked Robin
Dunn on the #wxPython IRC channel what he thought. He said thatif I did it as in
the aforementioned example, I'd probably have tab traversal issues and such,so he
recommended that I use the EVT_ERASE_BACKGROUND event to do some custom
drawing. Since Robin Dunn is the creator of wxPython, I ended up going this route.

Note When I ran this code on a Windows 7 box with wxPython Phoenix, it actually
had major issues trying to draw the widget and | had some trouble actually killing
the process. Use at your own risk!

21

CHAPTER 2 WORKING WITH IMAGES

Solution
A Better Example

Adhering to Robin’s advice, I ended up with the following code:

import wx

class MainPanel(wx.Panel):

22

def init (self, parent):

def

Constructor
wx.Panel. init_ (self, parent=parent)
self.frame = parent

sizer = wx.BoxSizer(wx.VERTICAL)
hSizer = wx.BoxSizer(wx.HORIZONTAL)

for num in range(4):
label = "Button %s" % num
btn = wx.Button(self, label=label)
sizer.Add(btn, 0, wx.ALL, 5)
hSizer.Add((1,1), 1, wx.EXPAND)
hSizer.Add(sizer, 0, wx.TOP, 100)
hSizer.Add((1,1), 0, wx.ALL, 75)
self.SetSizer(hSizer)
self.Bind(wx.EVT_ERASE_BACKGROUND, self.OnEraseBackground)

OnEraseBackground(self, evt):

Add a picture to the background

yanked from ColourDB.py
dc = evt.GetDC()

CHAPTER 2 WORKING WITH IMAGES

if not dc:
dc = wx.ClientDC(self)
rect = self.GetUpdateRegion().GetBox()
dc.SetClippingRect(rect)
dc.Clear()
bmp = wx.Bitmap("big cat.jpg")
dc.DrawBitmap(bmp, 0, 0)

class MainFrame(wx.Frame):

def init (self):
"""Constructor"""
wx.Frame. init (self, None, size=(600,450))
panel = MainPanel(self)
self.Center()

class Main(wx.App):

def _init (self, redirect=False, filename=None):

Constructor
wx.App. init (self, redirect, filename)
dlg = MainFrame()

dlg.Show()

__main__":

if __name__ ==
app = Main()
app.MainLoop()
Figure 2-6 is an example screenshot using a fun big cat picture I took over the

summer for my background image.

23

CHAPTER 2 WORKING WITH IMAGES

|
Yo i '
-

Figure 2-6. Adding a background image

The main piece of code to care about is the following:

def OnEraseBackground(self, evt):

Add a picture to the background
yanked from ColourDB.py
dc = evt.GetDC()

if not dc:
dc = wx.ClientDC(self)
rect = self.GetUpdateRegion().GetBox()
dc.SetClippingRect(rect)
dc.Clear()
bmp = wx.Bitmap("big cat.jpg")
dc.DrawBitmap(bmp, 0, 0)

24

CHAPTER 2 WORKING WITH IMAGES

I copied this example from the ColourDB.py demo which you can find in the
wxPython Demo and edited it a bit to make it work for my application. Basically, you just
bind the panel to EVT_ERASE_BACKGROUND and in that handler, you grab the device
context (DC), which in this case is the panel (I think). I call it a Clear method mainly
because in my real application I used an image with a transparency and it was letting the
background bleed through. By clearing it, I got rid of the bleed. Anyway, the conditional
checks to see if the DC is None or empty (I'm not quite sure which) and if not, it updates
the region (or dirty area-which is any part of the application that was “damaged” by
moving another window over it). Then I grab my image and use DrawBitmap to apply it
to the background. It’s kind of funky and I don’t completely understand what'’s going on,
but it does work.

Feel free to try them both out and see which one works the best for you. It’s kind of
like Robin Dunn’s method in that it uses DCs too, but not the same type that I'm using.

At this point, you will have gained the knowledge you need to add a background
image to your panel. I still see people asking about how to do this sort of thing from time
to time, so I still think it’s an important topic to understand. You may use this recipe to
create a custom splash screen, for example. Regardless, have fun with this code and play
around with it to see what you can do.

25

CHAPTER 3

Special Effects

Recipe 3-1. Resetting the Background Color
Problem

There are times when you want to change the background color of a Panel widget or
some other widget in the wxPython GUI toolkit. Changing the background color is pretty
handy for making an error more prominent or just for differentiating states in your
application. But what'’s not so obvious is how you might change the color back. When

I first dug into resetting the background color of a Panel, I thought the following would
work great:

color = wx.SystemSettings.GetColour(wx.SYS COLOUR_BACKGROUND)
panel. SetBackgroundColour(color)

Unfortunately, that won’t work in all cases. Instead, Robin Dunn (creator of
wxPython) recommended that I use wx.NullColor instead . According to Mr. Dunn, the
reason is that (wx.NullColor) will tell wx that the widget has no specific color set and
so it will use whatever the platform wants to use, which may be controlled by the active
theme and may not be a solid color at all. This is a little different from using the system
settings color as then wx will act as if a custom color has been set and it doesn’t care if it
happens to be the same as the system color.

Solution

Let’s take that information and write a simple script that demonstrates changing the
background color of a Panel object and then resetting it to the normal gray color. We'll
also change the background color of a TextCtrl and reset it too just to be thorough.

27
© Mike Driscoll 2018

M. Driscoll, wxPython Recipes, https://doi.org/10.1007/978-1-4842-3237-8_3

CHAPTER 3

SPECIAL EFFECTS

import wx

class MyForm(wx.Frame):

28

def

def

def

__init_ (self):
wx.Frame. init (self, None, wx.ID ANY,
"Background Reset Tutorial")

Add a panel so it looks the correct on all platforms
self.panel = wx.Panel(self, wx.ID ANY)

self.txt = wx.TextCtrl(self.panel)
self.txt.SetBackgroundColour("Yellow")

blueBtn = wx.Button(self.panel,

label="Change Background Color")
blueBtn.Bind(wx.EVT_BUTTON, self.onChangeBackground)
resetBtn = wx.Button(self.panel, label="Reset")
resetBtn.Bind(wx.EVT BUTTON, self.onReset)

wx.BoxSizer (wx.VERTICAL)
wx.BoxSizer (wx.HORIZONTAL)

topSizer
btnSizer

btnSizer.Add(blueBtn, 0, wx.ALL|wx.CENTER, 5)
btnSizer.Add(resetBtn, 0, wx.ALL|wx.CENTER, 5)

topSizer.Add(self.txt, 0, wx.ALL, 5)
topSizer.Add(btnSizer, 0, wx.CENTER)
self.panel.SetSizer(topSizer)

onChangeBackground(self, event):

Change the background color of the panel

self.panel.SetBackgroundColour("Blue")
self.panel.Refresh()

onReset(self, event):

Reset the color of the panel to the default color

CHAPTER 3 SPECIAL EFFECTS

self.panel.SetBackgroundColour(wx.NullColour)
self.txt.SetBackgroundColour(wx.NullColour)
self.panel.Refresh()

if name_ ==" main_":
app = wx.App(False)
frame = MyForm()
frame.Show()
app.MainLoop()

How It Works

In this code, you will notice that I have set the text control with the initial background
color of yellow and I allow the also user to change the panel’s background through a
button event handler.

The user may also reset the background color of both widgets by pressing the “Reset”
button.

Figures 3-1 and 3-2 show the before and after pictures.

K Background Reset Tutorial

Change Background Color m

Figure 3-1. Before the reset

29

CHAPTER 3 SPECIAL EFFECTS

® 0 Background Reset Tutorial

Change Background Color Reset

Figure 3-2. After the reset

At this point, you now know how to reset the color of wxPython’s standard widgets.
This can be quite useful in certain cases, but it’s probably not something that you'll need
all that often. However, it’s nice to have this knowledge when you need it.

Recipe 3-2. How to Create a "Dark Mode"
Problem

One day, at a previous job, I was told that we had a feature request for one of my
programs. They wanted a “dark mode” when they used my application at night, as the
normal colors were kind of glaring. My program is used on laptops for law enforcement,
so I could understand their frustration about having a very bright application running in
a car at night. I spent some time looking into the matter and I found a solution that works
for most widgets.

Solution

Getting the widgets to change color in wxPython is quite easy. The only two methods
you need are SetBackgroundColour and SetForegroundColour. The only major problem
I ran into when I was doing this was getting my ListCtrl / ObjectListView widget to
change colors appropriately. You need to loop over each Listltem and change their
colors individually. I alternate row colors, so that made things more interesting. The
other problem I had was restoring the ListCtrl’s background color. Normally you can

30

CHAPTER 3 SPECIAL EFFECTS

set a widget’s background color to wx.NullColour and it will go back to its default
color. However, some widgets don’t work that way and you have to actually specify
a color. It should also be noted that some widgets don’t seem to pay any attention to
SetBackgroundColour at all. One such widget that that doesn’t work as expected is wx.
ToggleButton.

Now that the introduction to the problem is out of the way, let’s look at the solution.
Save the following code in a file named “dark_mode.py”:

dark _mode.py
import wx

try:

from ObjectListView import ObjectlListView
except:

ObjectListView = False

def getWidgets(parent):

Return a list of all the child widgets
items = [parent]
for item in parent.GetChildren():
items.append(item)
if hasattr(item, "GetChildren"):
for child in item.GetChildren():
items.append(child)
return items

def darkRowFormatter(listctrl, dark=False):

Toggles the rows in a ListCtrl or ObjectlListView widget.

listItems = [listctrl.GetItem(i) for i
in range(listctrl.GetItemCount())]
for index, item in enumerate(listItems):

31

CHAPTER 3 SPECIAL EFFECTS

if dark:
if index % 2:
item.SetBackgroundColour("Dark Grey")
else:
item.SetBackgroundColour("Light Grey")
else:
if index % 2:
item.SetBackgroundColour("Light Blue")
else:
item.SetBackgroundColour("Yellow")
listctrl.SetItem(item)

def darkMode(self, normalPanelColor):

Toggles dark mode
widgets = getWidgets(self)
panel = widgets[o]
if normalPanelColor == panel.GetBackgroundColour():
dark _mode = True
else:
dark_mode = False
for widget in widgets:
if dark mode:
if isinstance(widget, wx.ListCtrl) or (ObjectListView and
isinstance(widget, ObjectListView)):
darkRowFormatter(widget, dark=True)
widget.SetBackgroundColour("Dark Grey")
widget.SetForegroundColour("White")
else:
if isinstance(widget, wx.ListCtrl) or (ObjectListView and
isinstance(widget, ObjectListView)):
darkRowFormatter(widget)
widget.SetBackgroundColour("White")
widget.SetForegroundColour("Black")
continue

32

CHAPTER 3 SPECIAL EFFECTS

widget.SetBackgroundColour (wx.NullColour)
widget.SetForegroundColour("Black™)
self.Refresh()
return dark_mode

How It Works

This code is a little convoluted, but it gets the job done. Let’s break it down a bit and
see how it works. First, let’s try to import ObjectListView, a neat third-party widget that
wraps wx.ListCtrl and makes it a lot easier to use. However, it’'s not part of wxPython
right now, so you need to test for its existence. I just set it to False if it doesn’t exist.

The GetWidgets function takes a parent parameter, which would usually be a
wx.Frame or wx.Panel, and goes through all of its children to create a list of widgets,
which it then returns to the calling function. The main function is darkMode. It takes two
parameters, too, self, which refers to a parent widget, and a default panel color. It calls
GetWidgets and then uses a conditional statement to decide if dark mode should be
enabled or not. Next it loops over the widgets and changes the colors accordingly. When
it'’s done, it will refresh the passed-in parent and return a bool to let you know if dark
mode is on or off.

There is one more function called darkRowFormatter that is only for setting the
colors of the ListItems in a wx.ListCtrl or an ObjectListView widget. Here we use a list
comprehension to create a list of wx.ListItems that we then iterate over, changing their
colors. To actually apply the color change, we need to call SetItem and pass it a wx.
ListItem object instance.

Trying Out Dark Mode

So now you're probably wondering how to actually use the aforementioned script. This
section will answer that question. Here’s a simple program with a list control in it and a
toggle button too!

import wx
import dark_mode

class MyPanel(wx.Panel):

33

CHAPTER 3 SPECIAL EFFECTS

def _init (self, parent):
nn "Constructor" nn

wx.Panel. init (self, parent)
self.defaultColor = self.GetBackgroundColour()

rows = [("Ford", "Taurus", "1996", "Blue"),
("Nissan", "370Z", "2010", "Green"),
(Ilporche", ||911||’ "2009", IIRed")

]
self.list ctrl

wx.ListCtrl(self, style=wx.LC REPORT)

self.list ctrl.InsertColumn(0, "Make")
self.list ctrl.InsertColumn(1, "Model")
self.list ctrl.InsertColumn(2, "Year")
self.list ctrl.InsertColumn(3, "Color")

index = 0
for row in rows:
self.list ctrl.InsertStringItem(index, row[O]
self.list ctrl.SetStringItem(index, 1, row[1]
self.list ctrl.SetStringItem(index, 2, row[2]
self.list ctrl.SetStringItem(index, 3, row[3]
if index % 2:
self.list ctrl.SetItemBackgroundColour(index, "white")
else:
self.list ctrl.SetItemBackgroundColour(index, "yellow")
index += 1

btn = wx.ToggleButton(self, label="Toggle Dark")
btn.Bind(wx.EVT TOGGLEBUTTON, self.onToggleDark)
normalBtn = wx.Button(self, label="Test")

sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(self.list ctrl, 0, wx.ALL|wx.EXPAND, 5)
sizer.Add(btn, 0, wx.ALL, 5)

sizer.Add(normalBtn, 0, wx.ALL, 5)
self.SetSizer(sizer)

34

vww allitebooks.conl

http://www.allitebooks.org

def onToggleDark(self, event):

CHAPTER 3 SPECIAL EFFECTS

dark_mode.darkMode(self, self.defaultColor)

class MyFrame(wx.Frame):

def _init (self):
nn llconstructor" nn
wx.Frame. init (self, None,

title="MvP ListCtrl Dark Mode Demo",

size=(400, 400))
panel = MyPanel(self)
self.Show()

if _name__ == " main_":
app = wx.App(False)
frame = MyFrame()
app.MainLoop()

If you run this code, you should see something like Figure 3-3.

@ @) MvP ListCtrl Dark Mode Demo
Make Model Year Color
Ford Taurus 1996 Blue
Nissan 3702 2010 Green
Porche 911 2009 Red
Toggle Dark
Test

Figure 3-3. Before toggling Dark Mode

35

CHAPTER 3 SPECIAL EFFECTS

If you click the ToggleButton, you should see something like the screen in Figure 3-4.

O O MvP ListCtrl Dark Mode Demo

Nissan 370Z 2010

Figure 3-4. After toggling Dark Mode

Notice how the toggle button was unaffected by the SetBackgroundColour
method. Also notice that the list control’s column headers don’t change colors either.
Unfortunately, wxPython doesn’t expose access to the column headers, so there’s no way
to manipulate their color.

Anyway, let’s take a moment to see how the dark mode code is used. First we need
to import it. In this case, the module is called dark_mode. To actually call it, we need to
look at the ToggleButton’s event handler.

darkMode.darkMode(self, self.defaultColor)

Asyou can see, all we did was call darkMode.darkMode with the panel object and a
defaultColor that we set at the beginning of the wx.Panel’s init method. That’s all we had
to do too. We should probably set it up with a variable to catch the returned value, but for
this example we don’t really care.

Note In wxPython 4 (Phoenix), the methods InsertStringltem and SetStringltem
are deprecated. Starting in wxPython 4, you should use Insertltem and Setltem
respectively instead.

36

CHAPTER 3 SPECIAL EFFECTS

Now we're done and you too can create a dark mode for your applications. At some
point, I'd like to generalize this some more to make into a color changer script where I
can pass whatever colors I want to it. What would be really cool is to make it into a mix-
in. But that’s something for the future. For now, enjoy!

Recipe 3-3. How to Fade-in a Frame/Dialog
Problem

Microsoft Outlook and several other programs have a neat little visual trick wherein
they will show a status dialog that fades into view, solidifies, and then fades back out.
The wxPython toolkit provides a simple way to accomplish this feat by changing the
alpha transparency of any top-level widget. Any widgets that are children of said widget
will also inherit its transparency so you won'’t end up with just the background of your
application fading in and out.

Solution

For this example I will use a frame object as the top-level object and a timer to change
the alpha transparency by a unit of 5 every second. The timer’s event handler will cause
the frame to fade into view and then back out again. The range of values is 0-255 with 0
being completely transparent and 255 being completely opaque.

import wx
class Fader(wx.Frame):

def _init (self):
wx.Frame. init (self, None, title='Fader Example')
self.amount = 5
self.delta = 5
panel = wx.Panel(self, wx.ID ANY)

self.SetTransparent(self.amount)

Fader Timer
self.timer = wx.Timer(self, wx.ID ANY)

37

CHAPTER 3 SPECIAL EFFECTS

self.timer.Start(60)
self.Bind(wx.EVT TIMER, self.AlphaCycle)

def AlphaCycle(self, evt):

Fade the frame in and out

self.amount += self.delta

if self.amount >= 255:
self.delta = -self.delta

self.amount = 255
if self.amount <= 0:
self.amount = 0

self.delta = 5
self.SetTransparent(self.amount)

if _name_ =="'_main_ ':
app = wx.App(False)
frm = Fader()
frm. Show()
app.MainLoop()

How It Works

As you can see, all you need to do to change the transparency of the top-level widget is
to call the SetTransparent() method of that widget and pass it the amount to set. I have
actually used this method in some of my past applications when I needed to fade in an
alert, such as when I needed to let a user know that they had received a new e-mail.

While this recipe isn’t something that you'll be using in all your applications, it is
quite useful if you need a way to pop up a custom message to the user. There is also the
ToasterBox widget in wx.lib.agw. It’s a custom widget that is written in pure Python and
has a lot of handy built-in features so you don’t have to roll your own as we do in this
recipe. You should check it out!

38

CHAPTER 3 SPECIAL EFFECTS

Recipe 3-4. Making Your Text Flash
Problem

Back in the early days of the Internet, there were a lot of web sites that had flashing text
and banner ads that were supposed to get your attention. I was even asked to create one
in my brief stint as a web developer. Some people want the blinky text in their desktop
applications too. So in this recipe we will learn how to do this (see Figure 3-5).

(e @ Flashing text!
| flash a LOT!

L

Figure 3-5. Text that changes colors

Solution

For our first trick, we will do exactly as requested and just create some text that changes
colors “randomly.” Let’s take a look.

import random
import time
import wx

class MyPanel(wx.Panel):

def _init (self, parent):

Constructor
wx.Panel. init (self, parent)

self.font = wx.Font(12, wx.DEFAULT, wx.NORMAL, wx.NORMAL)
self.label = "I flash a LOT!"

39

CHAPTER 3 SPECIAL EFFECTS

self.flashingText = wx.StaticText(self, label=self.label)
self.flashingText.SetFont(self.font)

self.timer = wx.Timer(self)
self.Bind(wx.EVT_TIMER, self.update, self.timer)
self.timer.Start(1000)

def update(self, event):
colors = ["blue", "green", "red", "yellow"]
self.flashingText.SetLabel(self.label)
self.flashingText.SetForegroundColour(random.choice(colors))

class MyFrame(wx.Frame):

def init (self):
"""Constructor"""

wx.Frame. init_(self, None, title="Flashing text!")

panel = MyPanel(self)

self.Show()

if _name__ == "_ main_":
app = wx.App(False)
frame = MyFrame()

app.MainLoop()

How It Works

Basically all you need is a wx.StaticText instance and a wx.Timer. In this example, the
text will “flash” once a second and change to different colors.

Note The SetForegroundColour method doesn’t work in all widgets on all
platforms as the native widget on some platforms does not implement this method.

40

CHAPTER 3 SPECIAL EFFECTS
Creating Changing Text

) @) Flashing text!
Current time: 1473729677

[

Figure 3-6. Changing text

Some managers might want to give the application some extra bling by making the text
change (see Figure 3-6) as will as blink. Let’s update our previous example so it can do
that:

import random
import time
import wx

class MyPanel(wx.Panel):

def init (self, parent):
"""Constructor

wx.Panel. init (self, parent)

self.font = wx.Font(12, wx.DEFAULT, wx.NORMAL, wx.NORMAL)
self.flashingText = wx.StaticText(self, label="I flash a LOT!")
self.flashingText.SetFont(self.font)

self.timer = wx.Timer(self)
self.Bind(wx.EVT TIMER, self.update, self.timer)
self.timer.Start(1000)

41

CHAPTER 3 SPECIAL EFFECTS

def update(self, event):
now = int(time.time())
mod = now % 2
print (now)
print (mod)
if mod:
self.flashingText.SetLabel("Current time: %i" % now)
else:
self.flashingText.SetLabel("Oops! It's mod zero time!")
colors = ["blue", "green", "red", "yellow"]
self.flashingText.SetForegroundColour (random.choice(colors))

class MyFrame(wx.Frame):

def init (self):
Constructor"""
wx.Frame. init (self, None, title="Flashing text!")

panel = MyPanel(self)
self.Show()

if _name__ == " main_":
app = wx.App(False)
frame = MyFrame()

app.MainLoop()

Here we just use Python’s modulus operator to determine what text to change to.
However, you could just create a list of possible text strings and use Python’s random
module to choose one or just skip random and loop over them in sequence.

Now you have a new trick in your arsenal that you can use with old-school managers
or bosses. You may even find the techniques used in this chapter useful for doing
something completely different as well. It may not be the most interesting feature, but
learning how to use a wx.Timer effectively can be quite useful.

42

CHAPTER 4

The Publish-Subscribe
Pattern

Recipe 4-1. An Intro to Pubsub
Problem

The Publish-Subscribe (PubSub) pattern is a common design pattern in computer
science that is used to communicate with different parts of your application. The basic
idea for this is that you will create one or more listeners that are known as subscribers.
The subscribers are listening for a specific message type that you can send via your
publisher.

The wxPython GUI toolkit includes an implementation of the Publish-Subscribe
pattern in wx.lib.pubsub.

Solution

I always find it helpful to actually write some code and see how all these various pieces

work. So let’s go ahead and write some simple code to see if we can understand the logic.

import wx
from wx.lib.pubsub import pub

class OtherFrame(wx.Frame):

def init (self):
"""Constructor
wx.Frame. init (self, None, wx.ID ANY, "Secondary Frame")
panel = wx.Panel(self)

© Mike Driscoll 2018
M. Driscoll, wxPython Recipes, https://doi.org/10.1007/978-1-4842-3237-8_4

43

CHAPTER 4 THE PUBLISH-SUBSCRIBE PATTERN

msg = "Enter a Message to send to the main frame"
instructions = wx.StaticText(panel, label=msg)
self.msgTxt = wx.TextCtrl(panel, value="")

closeBtn = wx.Button(panel, label="Send and Close")
closeBtn.Bind(wx.EVT BUTTON, self.onSendAndClose)

sizer = wx.BoxSizer(wx.VERTICAL)
flags = wx.ALL|wx.CENTER
sizer.Add(instructions, 0, flags, 5)
sizer.Add(self.msgTxt, 0, flags, 5)
sizer.Add(closeBtn, 0, flags, 5)
panel.SetSizer(sizer)

def onSendAndClose(self, event):

Send a message and close frame

msg = self.msgTxt.GetValue()

pub.sendMessage("panellListener”, message=msg)
pub.sendMessage("panellListener", message="test2", arg2="2nd argument!")
self.Close()

class MyPanel(wx.Panel):

def init (self, parent):
nn "Constructor" nn

wx.Panel. init (self, parent)
pub.subscribe(self.myListener, "panellListener")

btn = wx.Button(self, label="Open Frame")
btn.Bind(wx.EVT BUTTON, self.onOpenFrame)

def mylListener(self, message, arg2=None):

Listener function

44

CHAPTER 4 THE PUBLISH-SUBSCRIBE PATTERN

print("Received the following message: " + message)
if arg2:
print("Received another arguments:

+ str(arg2))

def onOpenFrame(self, event):

Opens secondary frame
frame = OtherFrame()
frame.Show()

class MyFrame(wx.Frame):

def init (self):

Constructor"""

wx.Frame. init (self, None, title="New PubSub API Tutorial")
panel = MyPanel(self)

self.Show()

if _name__ == "_ main_":
app = wx.App(False)
frame = MyFrame()

app.MainLoop()

How It Works

As we have already discussed, the import is different. Let’s see what else has changed. In
the panel class, we create a listener as follows:

pub.subscribe(self.myListener, "panellistener")

The myListener method can accept one or more arguments. In this case, we set it
up to always require one argument (message) and an optional argument (arg2). Next
we turn to the OtherFrame class where we need to take a look at the onSendAndClose
method. In this method, we find that it sends out two messages.

45

CHAPTER 4 THE PUBLISH-SUBSCRIBE PATTERN

msg = self.msgTxt.GetValue()

pub.sendMessage("panellListener”, message=msg)
pub.sendMessage("panellListener”, message="test2", arg2="2nd argument!")
self.Close()

The first one just sends the required information whereas the second one sends
both. You will note that the new application programming interface (API) requires the
use of explicit keyword arguments. If you change the first sendMessage command to
pub.sendMessage(“panelListener’, msg), you will receive a TypeError exception.

Now you know the basics of how to use PubSub in your wxPython application. I
want to note that PubSub is not thread-safe, so be sure to keep that in mind. If you use
PubSub in a thread, you will need to use a thread-safe method such as wx.CallAfter or
wx.PostEvent to post a message to your listeners without having to worry about strange
errors occurring in your code. I use PubSub a lot in my programs and have found it quite
useful.

Recipe 4-2. Using PyDispatcher Instead of PubSub
Problem

In the previous recipe, we learned how to use wxPython’s built-in version of PubSub to
send messages within the application. Now we will learn about an alternative to PubSub
called PyDispatcher. It follows the same idea of Publish-Subscribe that the PubSub
module does. Let’s take a look!

46

CHAPTER 4 THE PUBLISH-SUBSCRIBE PATTERN

Solution
[NON | PyDispatcher Tutorial
Open Frame

Figure 4-1. PyDispatcher example application

First of all, you will need to go get PyDispatcher and install it on your system. If you have
pip installed, you can do the following:

pip install PyDispatcher

Otherwise, go to the project’s sourceforge page and download it from there. One of
the benefits of using PubSub in wxPython is that it’s already included with the standard
wxPython distribution. However, if you want to use PubSub ouiside wxPython, you
would have to download its stand-alone code base and install it too. There are many
developers who do not like to download more dependencies than they need to.

Anyway, now that we have PyDispatcher, let’s port the code from PubSub and see
what we end up with!

import wx
from pydispatch import dispatcher

class OtherFrame(wx.Frame):

def _init (self):
"""Constructor

wx.Frame. init (self, None, wx.ID ANY, "Secondary Frame")
panel = wx.Panel(self)

msg = "Enter a Message to send to the main frame"
instructions = wx.StaticText(panel, label=msg)

47

CHAPTER 4 THE PUBLISH-SUBSCRIBE PATTERN

self.msgTxt = wx.TextCtrl(panel, value="")
closeBtn = wx.Button(panel, label="Send and Close")
closeBtn.Bind(wx.EVT BUTTON, self.onSendAndClose)

sizer = wx.BoxSizer(wx.VERTICAL)
flags = wx.ALL|wx.CENTER
sizer.Add(instructions, 0, flags, 5)
sizer.Add(self.msgTxt, 0, flags, 5)
sizer.Add(closeBtn, 0, flags, 5)
panel.SetSizer(sizer)

def onSendAndClose(self, event):

Send a message and close frame

msg = self.msgTxt.GetValue()

dispatcher.send("panellListener", message=msg)
dispatcher.send("panelListener”, message="test2", arg2="2nd argument!")
self.Close()

class MyPanel(wx.Panel):

def init (self, parent):
Constructor"""
wx.Panel. init (self, parent)

dispatcher.connect(self.myListener, signal="panellistener",
sender=dispatcher.Any)

btn = wx.Button(self, label="Open Frame")
btn.Bind(wx.EVT_BUTTON, self.onOpenFrame)

def myListener(self, message, arg2=None):

Listener function

48

CHAPTER 4 THE PUBLISH-SUBSCRIBE PATTERN

print("Received the following message: " + message)
if arg2:
print("Received another arguments:

+ str(arg2))

def onOpenFrame(self, event):

Opens secondary frame
frame = OtherFrame()
frame.Show()

class MyFrame(wx.Frame):

def init (self):

Constructor"""

wx.Frame. init (self, None, title="PyDispatcher Tutorial")
panel = MyPanel(self)

self.Show()

if _name__ == "_ main_":
app = wx.App(False)
frame = MyFrame()

app.MainLoop()

How It Works

Let’s break this down a bit. First we import dispatcher from the pydispatch package.
Then we edit the OtherFrame’s onSendAndClose method so it will send messages to our

panel listener. Following is the first piece we need to change:

def onSendAndClose(self, event):

Send a message and close frame

msg = self.msgTxt.GetValue()

dispatcher.send("panellListener”, message=msg)
dispatcher.send("panellListener"”, message="test2", arg2="2nd argument!")
self.Close()

49

CHAPTER 4 THE PUBLISH-SUBSCRIBE PATTERN
Next we need to change the MyPanel class to setup our new listener:

dispatcher.connect(self.myListener, signal="panellistener",
sender=dispatcher.Any)

This code tells pydispatcher to listen for any sender that has a signal of
panelListener. If it has that signal, then it will call the panel’s myListener method. That
was a pretty simple change.

As I mentioned at the beginning, the PyDispatcher package follows the same idea
as the PubSub package but just does it in a slightly different manner under the hood.

I personally like PubSub because a version of it is included with wxPython so I don’t
need any extra dependencies. However, you should take a look at both of their APIs to
determine which one makes the most sense to you when you go to program. Sometimes
having a nicer API is worth the cost of another dependency.

50

CHAPTER 5

Wizard Recipes

Recipe 5-1. Creating a Simple Wizard
Problem

Sometimes you will find that you have a need for your users to walk through setting up
your application or installing a plug-in. The standard interface to do these sorts of things
is called a wizard!

Note The code in this recipe was adapted from the wxPython Demo application

51
© Mike Driscoll 2018

M. Driscoll, wxPython Recipes, https://doi.org/10.1007/978-1-4842-3237-8_5

CHAPTER 5 WIZARD RECIPES
Solution
X
Page 1

< Back I Next > I Cancel

Figure 5-1. A simple wizard example

When you need to use a wizard in wxPython, you’ll want to import it in a special way.
Instead of just importing wx, you will have to do the following:

import from wx.adv import Wizard, WizardPage

Side note: In wxPython 3 and earlier, the Wizard class was found in wx.wizard.
Wizard instead of wx.adv.Wizard. We will see an example of this in the second recipe in
this chapter.

There are two primary types of wizard pages: WizardPageSimple and
PyWizardPage. The former is the easiest, so we’ll use that in our simple example.

Here’s the code.

import wx
from wx.adv import Wizard, WizardPageSimple

class TitledPage(WizardPageSimple):

52

CHAPTER5 WIZARD RECIPES

def _init (self, parent, title):
"""Constructor
WizardPageSimple. init (self, parent)

sizer = wx.BoxSizer(wx.VERTICAL)
self.SetSizer(sizer)

title = wx.StaticText(self, -1, title)
title.SetFont(wx.Font(18, wx.SWISS, wx.NORMAL, wx.BOLD))
sizer.Add(title, 0, wx.ALIGN CENTRE|wx.ALL, 5)
sizer.Add(wx.StaticLine(self, -1), 0, wx.EXPAND|wx.ALL, 5)

def main():

wizard = Wizard(None, -1, "Simple Wizard")
pagel = TitledPage(wizard, "Page 1")

page2 = TitledPage(wizard, "Page 2")
page3 = TitledPage(wizard, "Page 3")
page4 = TitledPage(wizard, "Page 4")

WizardPageSimple.Chain(pagel, page2)
WizardPageSimple.Chain(page2, page3)
WizardPageSimple.Chain(page3, page4)
wizard.FitToPage(pagel)

wizard.RunWizard(page1)

wizard.Destroy()

if name_ ==" main_":
app = wx.App(False)
main()
app.MainLoop()

How It Works

That’s a fair bit of code. Let’s take it apart and see if we can figure it out. First off, we
import wx and the Wizard classes. Next, we create a TitledPage class that subclasses
WizardPageSimple. This class will be the basis for all the pages in our wizard. It
basically just defines a page that has a centered title in 18 point font with a line
underneath.

53

CHAPTER5 WIZARD RECIPES

In the main function we find the real meat. Here we create the wizard using
the following syntax: wx.wizard.Wizard(None, -1, “Simple Wizard”). This gives
the wizard a parent of None, an id, and a title. Then we create four pages which are
instances of the TitledPage class that we mentioned earlier. Finally, we use wx.wizard.
WizardPageSimple.Chain to chain the pages together. This allows us to use a couple of
automatically generated buttons to page forward and backward through the pages. The
last couple of lines of code will run the wizard and, when the user is done, destroy the
wizard. Pretty simple, right? Now let’s move on to the more advanced example.

Using PyWizardPage

Dynamic Wizard

[ﬂ'_'l Page 1

ot
i
i

< Back Next >

Cancel

Figure 5-2. A more advanced wizard

In this section, we will create a subclass of PyWizardPage. We will also have a
WizardPageSimple subclass so that we can mix and match the two to create a series of

different pages. Let’s just jump to the code so you can see it for yourself!

54

CHAPTER5 WIZARD RECIPES

import images

import wx

from wx.

adv import Wizard, WizardPageSimple, PyWizardPage

class TitledPage(WizardPageSimple):

def

__init_ (self, parent, title):

Constructor
WizardPageSimple. init (self, parent)

sizer = wx.BoxSizer(wx.VERTICAL)
self.sizer = sizer
self.SetSizer(sizer)

title = wx.StaticText(self, -1, title)
title.SetFont(wx.Font(18, wx.SWISS, wx.NORMAL, wx.BOLD))
sizer.Add(title, 0, wx.ALIGN CENTRE|wx.ALL, 5)
sizer.Add(wx.StaticLine(self, -1), 0, wx.EXPAND|wx.ALL, 5)

class UseAltBitmapPage(PyWizardPage):

def

def

__init_ (self, parent, title):
PyWizardPage. init (self, parent)
self.next = self.prev = None
self.sizer = wx.BoxSizer(wx.VERTICAL)

title = wx.StaticText(self, label=title)
title.SetFont(wx.Font(18, wx.SWISS, wx.NORMAL, wx.BOLD))
self.sizer.Add(title)

self.sizer.Add(wx.StaticText(self, -1,
"This page uses a different bitmap"),
0, wx.ALL, 5)
self.sizer.Layout()

SetNext(self, next):
self.next = next

55

CHAPTER5 WIZARD RECIPES

def SetPrev(self, prev):
self.prev = prev

def GetNext(self):
return self.next

def GetPrev(self):
return self.prev

def GetBitmap(self):

You usually wouldn't need to override this method
since you can set a non-default bitmap in the
wxWizardPageSimple constructor, but if you need to
dynamically change the bitmap based on the
contents of the wizard, or need to also change the

H o B OB B R

next/prev order then it can be done by overriding
GetBitmap.
return images.WizTest2.GetBitmap()

def main():

wizard = Wizard(None, -1, "Dynamic Wizard",
images.WizTest1.GetBitmap())

pagel = TitledPage(wizard, "Page 1")
page2 = TitledPage(wizard, "Page 2")
page3 = TitledPage(wizard, "Page 3")
page4 = UseAltBitmapPage(wizard, "Page 4")
page5 = TitledPage(wizard, "Page 5")

wizard.FitToPage(pagel)
page5.sizer.Add(wx.StaticText(page5, -1, "\nThis is the last page."))

Set the initial order of the pages
pagel.SetNext (page2)
page2.SetPrev(pagel)
page2.SetNext(page3)
page3.SetPrev(page2)
page3.SetNext (page4)

56

CHAPTER5 WIZARD RECIPES

page4.SetPrev(page3)
page4.SetNext(page5)
pages.SetPrev(page4)

wizard.GetPageAreaSizer().Add(pagel)
wizard.RunWizard(page1)
wizard.Destroy()

if name_ ==" main_":
app = wx.App(False)
main()

app.MainLoop()

This code starts out in much the same way that the previous code did. In this
example, we also import an images module that contains a couple PyEmbeddedImage
objects that we will use to demonstrate how to add bitmaps to our wizard page.

Anyway, the first class is exactly the same as the previous one. Next we create a
UseAltBitmapPage class that is a subclass of the PyWizardPage. We have to override a
few methods to make it work correctly, but they're pretty self-explanatory. This page will
just be used to change the bitmap image of one page.

In the main function, we create a wizard in a slightly different way than we did
previously.

wizard = wiz.Wizard(None, -1, "Dynamic Wizard",
images.WizTest1.GetBitmap())

As you can see, this method allows us to add a bitmap that will appear along the left-
hand side of the wizard pages. Anyway, after that, we create five pages with four of them
being instances of the TitledPage and one being an instance of a UseAltBitmapPage.
We fit the wizard to page one and then we see something odd.

page5.sizer.Add(wx.StaticText(page5, -1, "\nThis is the last page."))

What does that do? Well, it’s a silly way to append a widget to a page. To let the user
know that they’ve reached the last page, we add a StaticText instance to it that explicitly
tells them that they have reached the end. The next few lines set up the order of the
pages using SetNext and SetPrev. While these methods give you more granular control
over the order of the pages, they're not as convenient as the WizardPageSimple.Chain
method. The last few lines of code are the same as in the previous example.

57

CHAPTER5 WIZARD RECIPES

Now you know how to create the two types of wizards that are included with
wxPython. You also have learned a fun hack to change the labels of the buttons in the
wizard. Let me know if you think I forgot something and I'll update the post or write a
follow-up.

Recipe 5-2. How to Disable a Wizard’s Next Button
Problem

® Disable Next

test

Cancel
Figure 5-3. Disabling the next button in the wizard

Wizards are wonderful when they work. They can also be very aggravating. A lot of
wizards will disable their Next button until you have completed a configuration or
finished filling out a form. We will be looking at how to do just that in this recipe.

58

CHAPTER5 WIZARD RECIPES

Solution

The idea that the original person had when they posted the question was that they
wanted the user to fill out two text controls before being able to continue. That means
that we need to disable the Next button until both text widgets have something in them.
I came up with an idea where I use a wx.Timer to check the text controls once a second
to see if they have data in them. If they do, then the timer’s event handler will enable the
Next button. Let’s take a look at the wizard page class first. The following example is for
wxPython Classic:

wxPython Classic Edition

import wx
import wx.wizard

class WizardPage(wx.wizard.PyWizardPage):

def init (self, parent, title):
wx.wizard.PyWizardPage. init (self, parent)
self.next = None
self.prev = None
self.initializeUI(title)

def initializeUI(self, title):
create grid layout manager
self.sizer = wx.GridBagSizer()
self.SetSizerAndFit(self.sizer)

def addWidget(self, widget, pos, span):
self.sizer.Add(widget, pos, span, wx.EXPAND)

getters and setters
def SetPrev(self, prev):
self.prev = prev

def SetNext(self, next):
self.next = next

59

CHAPTER5 WIZARD RECIPES

def GetPrev(self):
return self.prev

def GetNext(self):
return self.next

How It Works

This is a pretty standard subclass of PyWizardPage. It just initializes the Previous and
Next buttons in preparation for actually adding a page. Let’s move on and see how we
can actually use this class.

Add the following code to the same file that you put the previous code into:

class MyWizard(wx.wizard.Wizard):

def _init (self):

Constructor

wx.wizard.Wizard. init (self, None,
title="Disable Next")

self.SetPageSize((500, 350))

mypagel = self.create pagel()

forward btn = self.FindWindowById(wx.ID FORWARD)
forward btn.Disable()

self.timer = wx.Timer(self)
self.Bind(wx.EVT_TIMER, self.onUpdate, self.timer)
self.timer.Start(1)

self.RunWizard(mypage1)
def create pagei(self):
pagel = WizardPage(self, "Page 1")

d = wx.StaticText(page1l, label="test")
pagel.addWidget(d, (2, 1), (1,5))

60

def

def

CHAPTER5 WIZARD RECIPES

self.textl = wx.TextCtrl(pagel)
pagel.addWidget(self.text1, (3,1), (1,5))

self.text2 = wx.TextCtrl(pagel)
pagel.addWidget(self.text2, (4,1), (1,5))

page2 = WizardPage(self, "Page 2")

page2.SetName("page2")

self.text3 = wx.TextCtrl(page2)
self.Bind(wx.wizard.EVT_WIZARD PAGE CHANGED, self.onPageChanged)
page3 = WizardPage(self, "Page 3")

Set links

page2.SetPrev(pagel)
pagel.SetNext(page2)
page3.SetPrev(page2)
page2.SetNext(page3)

return pagel

onPageChanged(self, event):

page = event.GetPage()

if page.GetName() == "page2":
self.text3.SetValue(self.text2.GetValue())

onUpdate(self, event):

Enables the Next button if both text controls have values
value one = self.text1.GetValue()
value two = self.text2.GetValue()
if value_one and value_two:
forward btn = self.FindWindowById(wx.ID FORWARD)
forward btn.Enable()
self.timer.Stop()

61

CHAPTER5 WIZARD RECIPES

def main():

wizard = MyWizard()

if name_ ==" main_":
app = wx.App(False)
main()
app.MainLoop()

Let’s break this down a bit. The first class we’ll look at is MyWizard, which is where
all the action is anyway. MyWizard is a subclass of wxPython'’s Wizard class. In the __
init__, we create a page and we find the Next button so we can disable it. Then we create
and start our timer object while binding it to the onUpdate method. Finally, we run the
wizard. When we create a wizard page, we instantiate the WizardPage class. That class
is actually pretty self-explanatory. Anyway, we end up creating several widgets that we
place on the wizard page. The only other interesting bit is in the onUpdate method. Here
we check to see if the user has entered data into both of the text controls.

If they have, then we find the Next button, enable it, and stop the timer. There is
a potential bug here. What happens if the user goes and removes some content after
they have filled them both out? The Next button doesn’t disable itself again. Here’s an
updated version of the onUpdate method that fixes that issue.

def onUpdate(self, event):

Enables the Next button if both text controls have values
self.text1.GetValue()
value two = self.text2.GetValue()
forward_btn = self.FindWindowById(wx.ID_ FORWARD)
if value one and value two:

forward btn.Enable()
else:

if forward btn.IsEnabled():

forward btn.Disable()

value one

Here we never stop the timer. Instead, the timer is constantly checking the values of
the text controls and if it finds that one of them doesn't have data and the next button is
enabled, the handler will disable the button.

62

CHAPTER5 WIZARD RECIPES

Getting It to Work with wxPython 4/Phoenix

Now that you understand how the code works, let’s modify the code so it will work in the
latest version of wxPython. In wxPython 4, the wx.wizard module was moved to wx.adv.
So we need to edit the code accordingly, as follows:

import wx
from wx.adv import Wizard, WizardPage

class MyWizardPage(WizardPage):

def init (self, parent, title):
WizardPage. init (self, parent)
self.next = None
self.prev = None
self.initializeUI(title)

def initializeUI(self, title):
create grid layout manager
self.sizer = wx.GridBagSizer()
self.SetSizer(self.sizer)

def addWidget(self, widget, pos, span):
self.sizer.Add(widget, pos, span, wx.EXPAND)

getters and setters
def SetPrev(self, prev):
self.prev = prev

def SetNext(self, next):
self.next = next

def GetPrev(self):
return self.prev

def GetNext(self):
return self.next

class MyWizard(Wizard):

63

CHAPTER5 WIZARD RECIPES

def _init (self):
"""Constructor"""
Wizard. init (self, None,
title="Disable Next")

self.SetPageSize((500, 350))
mypagel = self.create pagel()

forward btn = self.FindWindowById(wx.ID FORWARD)
forward btn.Disable()

self.timer = wx.Timer(self)
self.Bind(wx.EVT_TIMER, self.onUpdate, self.timer)
self.timer.Start(1)

self.RunWizard(mypagel)

def create pagei(self):
pagel = MyWizardPage(self, "Page 1")
d = wx.StaticText(page1l, label="test")
pagel.addWidget(d, (2, 1), (1,5))

self.textl = wx.TextCtrl(pagel)
pagel.addWidget(self.text1, (3,1), (1,5))

self.text2 = wx.TextCtrl(pagel)
pagel.addWidget(self.text2, (4,1), (1,5))

page2 = MyWizardPage(self, "Page 2")

page2.SetName("page2")

self.text3 = wx.TextCtrl(page2)
self.Bind(wx.adv.EVT WIZARD PAGE CHANGED, self.onPageChanged)

page3 = MyWizardPage(self, "Page 3")

Set links

page2.SetPrev(pagel)
pagel.SetNext(page2)
page3.SetPrev(page2)
page2.SetNext (page3)

64

CHAPTER 5 WIZARD RECIPES
return pagel

def onPageChanged(self, event):

page = event.GetPage()

if page.GetName() == "page2":
self.text3.SetValue(self.text2.GetValue())

def onUpdate(self, event):

Enables the Next button if both text controls have values

self.text1.GetValue()

value two = self.text2.GetValue()

if value_one and value_two:
forward btn = self.FindWindowById(wx.ID FORWARD)
forward btn.Enable()
self.timer.Stop()

value one

def main():

wizard = MyWizard()

__main__ ":
app = wx.App(False)
main()

if _name ==

app.MainLoop()

You will note that now we import the Wizard and WizardPage classes directly. The
other change is to the event binding. We went from wx.wizard. EVT_WIZARD_PAGE _
CHANGED to wx.adv.EVT_WIZARD_PAGE_CHANGED. Otherwise the code is the
same.

65

CHAPTER5 WIZARD RECIPES

Recipe 5-3. How to Create a Generic Wizard
Problem

Sometimes you will find that you want to create a wizard with functionality that isn’t easy
to shoehorn into wxPython'’s Wizard implementation. When that situation arises, you
can actually just create your own wizard using some of wxPython’s other widgets.

Solution

If you look at how wxPython’s Wizard is designed, you will quickly realize that it is just

a series of panels with some buttons on the bottom that are used as navigation. This
sounds like all you would need to do is write a panel class that will contain the navigation
buttons and have wizard panels (or pages) nested inside it. Let’s try writing our own
simple wizard using this idea. We will start with the nested wizard page:

import wx

class WizardPage(wx.Panel):

A Simple wizard page

def init (self, parent, title=None):

Constructor
wx.Panel. init (self, parent)

sizer = wx.BoxSizer(wx.VERTICAL)

self.SetSizer(sizer)
if title:
title = wx.StaticText(self, -1, title)

title.SetFont(wx.Font(18, wx.SWISS, wx.NORMAL, wx.BOLD))
sizer.Add(title, 0, wx.ALIGN CENTRE|wx.ALL, 5)
sizer.Add(wx.StaticLine(self, -1), 0, wx.EXPAND|wx.ALL, 5)

66

CHAPTER5 WIZARD RECIPES

How It Works

All this code does is create a simple panel with a label on it if the title parameter is set to

something other than None. Now let’s add the master panel to the same file that you put

the above code into.

class WizardPanel(wx.Panel):

def init (self, parent):

def

Constructor
wx.Panel. init (self, parent=parent)
self.pages = []

self.page num = 0

self.mainSizer = wx.BoxSizer(wx.VERTICAL)
self.panelSizer = wx.BoxSizer(wx.VERTICAL)
btnSizer = wx.BoxSizer(wx.HORIZONTAL)

add prev/next buttons

self.prevBtn = wx.Button(self, label="Previous")
self.prevBtn.Bind(wx.EVT_BUTTON, self.onPrev)
btnSizer.Add(self.prevBtn, 0, wx.ALL|wx.ALIGN RIGHT, 5)

self.nextBtn = wx.Button(self, label="Next")
self.nextBtn.Bind(wx.EVT_BUTTON, self.onNext)
btnSizer.Add(self.nextBtn, 0, wx.ALL|wx.ALIGN RIGHT, 5)

finish layout
self.mainSizer.Add(self.panelSizer, 1, wx.EXPAND)
self.mainSizer.Add(btnSizer, 0, wx.ALIGN RIGHT)
self.SetSizer(self.mainSizer)

addPage(self, title=None):

panel = WizardPage(self, title)
self.panelSizer.Add(panel, 2, wx.EXPAND)
self.pages.append(panel)

if len(self.pages) > 1:

67

CHAPTER5 WIZARD RECIPES

hide all panels after the first one
panel.Hide()
self.Layout()

def onNext(self, event):

pageCount = len(self.pages)

if pageCount-1 != self.page num:
self.pages[self.page num].Hide()
self.page _num += 1
self.pages[self.page num].Show()
self.panelSizer.Layout()

else:
print("End of pages!")

if self.nextBtn.GetlLabel() == "Finish":
close the app
self.GetParent().Close()

if pageCount == self.page num+1:
change label
self.nextBtn.SetLabel("Finish")

def onPrev(self, event):

pageCount = len(self.pages)

if self.page num-1 != -1:
self.pages[self.page num].Hide()
self.page_num -= 1
self.pages[self.page num].Show()
self.panelSizer.Layout()

else:
print("You're already on the first page!")

class MainFrame(wx.Frame):

68

CHAPTER5 WIZARD RECIPES

def _init (self):
Constructor"""
wx.Frame. init (self, None, title="Generic Wizard", size=(800,600))

self.panel = WizardPanel(self)
self.panel.addPage("Page 1")
self.panel.addPage("Page 2")
self.panel.addPage("Page 3")

self.Show()

if name_ ==" main_":
app = wx.App(False)
frame = MainFrame()

app.MainLoop()

This part of the code is where the main action is. It will create the buttons we use for
navigation and it will allow you to add wizard pages. There is a lot more that could be
added to this code though. For example, we should probably add the ability to disable
the Next or Previous buttons in certain circumstances, such as when the user is required
to fill something out before continuing. It would also be nice to have some other Page
classes that contain other widgets besides a title label.

I will leave those changes up to you. As it is, this will give you a good start on creating
your very own custom wizard. You can add all the bells and whistles that you think are
appropriate for whatever project you are working on. Have fun!

69

CHAPTER 6

Creating Simple Widgets

Recipe 6-1. Creating an About Box
Problem

When I create an application, I usually want to include an “About” box to let the user
know more about the application and me, and to give shout-outs to anyone who may
have helped in the creation of my program. One cool feature wxPython provides is a
custom AboutBox widget. I think it looks a little odd, so I created my own About box
using the HtmIWindow widget. However, I'll show how to do it both ways in this recipe.

Solution

First, we’ll create a simple application that will allow you to see how to open the
dialog via either a button or a menu item. It will have three buttons, one to open the
wx.AboutBox, one to open my Html version of the About box, and a close button.

How It Works

Creating the AboutBox is pretty straightforward. Let’s take a look at a simple snippet
of code.

def onAboutDlg(self, event):
info = wx.AboutDialogInfo()
info.Name = "My About Box"
info.Version = "0.0.1 Beta"
info.Copyright = "(C) 2016 Python Geeks Everywhere"
info.Description = wordwrap(

71

© Mike Driscoll 2018
M. Driscoll, wxPython Recipes, https://doi.org/10.1007/978-1-4842-3237-8_6

CHAPTER6 CREATING SIMPLE WIDGETS

"This is an example application that shows how to create"
"different kinds of About Boxes using wxPython!",
350, wx.ClientDC(self.panel))
info.WebSite = ("http://www.pythonlibrary.org", "My Home Page")
info.Developers = ["Mike Driscoll"]
info.License = wordwrap("Completely and totally open source!", 500,
wx.ClientDC(self.panel))
Show the wx.AboutBox
wx . AboutBox(info)

To begin, you instantiate an instance of wx.AboutDIgInfo. This gives you a way to
set the various pieces of information you want to display in your AboutBox, such as
application name, version, copyright, and so on. When you have that all filled in, you
create the wx.AboutBox and pass it that information. Notice that this does not require
you to explicitly “show” it; that’s done automatically.

When done, you should see something like the image in Figure 6-1.

Now we can move on and learn how to create an about dialog using HTML.

® @ About My About Box

My About Box 0.0.1 Beta

© 2008 Python Geeks Everywhere

This is an example application that shows how to
create different kinds of About Boxes using wxPython!

My Home Page

» License
» Developers

Figure 6-1. An example of wx.AboutDIgInfo

72

CHAPTER 6 CREATING SIMPLE WIDGETS

Using HtmIWindow for an About Box

Creating the HTML version is a little bit more complex. I prefer splitting the code up into
two classes. The two top-level widgets I recommend using to base your About Box on
would be wx.Frame or wx.Dialog. In this example I'll use a wx.Frame widget. The second
class is only to catch mouse clicks on URLSs, if you have some. Let’s take a look at the code:

class AboutDlg(wx.Frame):
def init (self, parent):

wx.Frame. init (self, parent, wx.ID ANY, title="About",
size=(400,400))

html = wxHTML(self)

html.SetPage(

"<h2>About the About Tutorial</h2>"

"<p>This about box is for demo purposes only. It was created in
June 2006"

"by Mike Driscoll.</p>"
"<p>Software used in making this demo:</h3></p>"
"<p>Python 2.4</p>"

'<p>wxPython 2.8</p>"
)

class wxHTML(wx.html.HtmlWindow):

def OnLinkClicked(self, link):
webbrowser.open(link.GetHref())

The reason I like this so much is that it allows me to specify font sizes, use html
tables, insert photos, and more very easily, plus it’s completely cross-platform. One
definite disadvantage is that this widget doesn’t allow advanced html, such as css or
javascript. Anyway, when you get done, it should turn into something that looks similar
to the screenshot in Figure 6-2.

73

CHAPTER6 CREATING SIMPLE WIDGETS

'@ ® About
About the About Tutorial

This about box is for demo purposes only. It was created in June
2006 by Mike Driscoll.

Software used in making this demo:
Python 2.4
wxPython 2.8

Figure 6-2. An about box created using the HTMLWindow widget

Here’s the full source for my demo program, which I used to activate my two

About Boxes.

Import webbrowser
import wx

import wx.html

from wx.lib.wordwrap import wordwrap

class MyForm(wx.Frame):

74

def init (self):

wx.Frame. init (self, None, wx.ID ANY, title='The About Box")

Add a panel so it looks correct on all platforms
self.panel = wx.Panel(self, wx.ID ANY)

Create buttons

aboutBtn = wx.Button(self.panel, wx.ID ANY, "Open wx.AboutBox")
self.Bind(wx.EVT_BUTTON, self.onAboutDlg, aboutBtn)
aboutHtmlBtn = wx.Button(self.panel, wx.ID_ANY, "Open
HtmlAboutBox")

self.Bind(wx.EVT_BUTTON, self.onAboutHtmlDlg, aboutHtmlBtn)

closeBtn = wx.Button(self.panel, wx.ID ANY, "Close")

def

CHAPTER 6 CREATING SIMPLE WIDGETS

self.Bind(wx.EVT _BUTTON, self.onClose, closeBtn)

Create Sizers
topSizer = wx.BoxSizer(wx.VERTICAL)

Add widgets to sizers

topSizer.Add(aboutBtn, 0, wx.ALL|wx.CENTER, 5)
topSizer.Add(aboutHtmlBtn, 0, wx.ALL|wx.CENTER, 5)
topSizer.Add(closeBtn, 0, wx.ALL|wx.CENTER, 5)

Create the menu
self.createMenu()
self.statusBar = self.CreateStatusBar()

self.panel.SetSizer(topSizer)
self.SetSizeHints(250,300,500,400)
self.Fit()

self.Refresh()

createMenu(self):
""" Create the application's menu

menubar = wx.MenuBar()

Create the file menu
fileMenu = wx.Menu()

Append the close item
Append takes an id, the text label, and a string
to display in the statusbar when the item is selected
close menu_item = fileMenu.Append(wx.NewId(),
"8&Close",
"Closes the application")
Bind an event to the menu item
self.Bind(wx.EVT_MENU, self.onClose, close menu_item)
Add the fileMenu to the menu bar
menubar.Append(fileMenu, "&File")

Create the help menu
helpMenu = wx.Menu()

75

CHAPTER6 CREATING SIMPLE WIDGETS

def

def

def

about_menu_item = helpMenu.Append(wx.NewId(),

"8About",

"Opens the About Box")
self.Bind(wx.EVT_MENU, self.onAboutDlg, about_menu_item)
menubar . Append(helpMenu, "8Help")

Add the menu bar to the frame
self.SetMenuBar (menubar)

onAboutHtmlDlg(self, event):
aboutDlg = AboutDlg(None)
aboutD1g. Show()

onAboutDlg(self, event):
info = wx.AboutDialogInfo()
info.Name = "My About Box"
info.Version = "0.0.1 Beta"
info.Copyright = "(C) 2008 Python Geeks Everywhere"
info.Description = wordwrap(
"This is an example application that shows how to create "
"different kinds of About Boxes using wxPython!",
350, wx.ClientDC(self.panel))
info.WebSite = ("http://www.pythonlibrary.org", "My Home Page")
info.Developers = ["Mike Driscoll"]
info.License = wordwrap("Completely and totally open source!", 500,
wx.ClientDC(self.panel))
Show the wx.AboutBox
wx.AboutBox(info)

onClose(self, event):
self.Close()

class AboutDlg(wx.Frame):

def

76

__init_ (self, parent):

wx.Frame. init_ (self, parent, wx.ID _ANY, title="About",
size=(400,400))

CHAPTER 6 CREATING SIMPLE WIDGETS

html = wxHTML(self)

html.SetPage(

"<h2>About the About Tutorial</h2>"

"<p>This about box is for demo purposes only. It was created in
June 2006 "

"by Mike Driscoll.</p>"
"<p>Software used in making this demo:</h3></p>"

'<p>Python 2.7 / 3.5¢
</p>'

'<p>wxPython 3.0.2.0 /
Phoenix</p>"

)
class wxHTML(wx.html.HtmlWindow):

def init (self, *args, **kwargs):
wx.html.HtmlWindow. init (self, *args, **kwargs)
self.Bind(wx.html.EVT HTML LINK CLICKED, self.OnLinkClicked)

def OnLinkClicked(self, link):
webbrowser.open(link.GetLinkInfo().GetHref())

Run the program

if _name_ =="'_ main_ ':
app = wx.App(False)
frame = MyForm().Show()

app.MainLoop()

The main things to take note of here is how I handle the setup of the menu bar and
the related menu bar events. If you're not familiar with hooking those up, then you'll
probably find this helpful. I'll be going over this process in more detail in a later post, but
suffice it to say that you need to create ar wx.MenuBar object and some wx.Menu objects.
The wx.Menu objects are used for the headings of the menu (i.e. “File,” “About,” etc).

77

CHAPTER6 CREATING SIMPLE WIDGETS

The wx.Menu objects are then appended to the menu bar. Finally you do a self.
SetMenuBar () command to attach the menu bar to your application’s wx.Frame.

Updating the Code for wxPython 4/Phoenix

In wxPython Phoenix, you will need to change the code a bit. The first thing you will
need to do is add the following import to the beginning of the file: import wx.adv.
You see, in Phoenix, the wx.AboutBox is now in wx.adv.AboutBox and the wx.
AboutDialogInfo is now wx.adv.AboutDialogInfo. What this means is that you will
need to update the onAboutDIg method to the following for Phoenix:

def onAboutDlg(self, event):
info = wx.adv.AboutDialogInfo()
info.Name = "My About Box"
info.Version = "0.0.1 Beta"
info.Copyright = "(C) 2008 Python Geeks Everywhere"
info.Description = wordwrap(
"This is an example application that shows how to create
"different kinds of About Boxes using wxPython!",
350, wx.ClientDC(self.panel))
info.WebSite = ("http://www.pythonlibrary.org", "My Home Page")
info.Developers = ["Mike Driscoll"]
info.License = wordwrap("Completely and totally open source!", 500,
wx.ClientDC(self.panel))
Show the wx.AboutBox
wx.adv.AboutBox(info)

The code should now work in Python 3 with wxPython 4!
Now you have the knowledge to create your own About Box. These widgets are quite
useful for communicating to the end-user information about your program such as what
version they are using. Some developers use the About Box for displaying information
about their company or the product. They also use them to allow the user to manually
check for updates. You can use yours as you see fit as they are completely customizable.

78

CHAPTER 6 CREATING SIMPLE WIDGETS

Recipe 6-2. Creating Graphs with PyPlot
Problem

Some people learn through doing it; others are better with visual stimuli. At least, that’s
what we're told. So in the spirit of what we’ve been taught, we’re going to take a look at the
visual half of the equation and see how we can make graphs with wxPython. You may not
know this, but wxPython includes a widget just for this purpose. Its name is PyPlot. PyPlot
is great at doing simple plots and it’s super fast too! If you need to do weird or complicated
plotting, then you'll want to use matplotlib instead. Fortunately, wxPython and matplotlib
play well with each other, but we won'’t be looking at matplotlib in this recipe.

Note The examples in this chapter do not work in wxPython 3.0.2.0 Classic as
there is a known bug (http://trac.wxwidgets.org/ticket/16767).

€ ® My First Plot (to take over the world!)
Bar Graph - (Turn on Grid, Legend)

20
18

£ 16

3

212

‘s 10

v 8

£ 6

Z 4
1 |
0 - - - = —
1.0 15 2.0 25 3.0 35 40 45 50 55 6.0

Months
Show Grid Show Legend

Figure 6-3. PyPlot’s bar graph

79

http://trac.wxwidgets.org/ticket/16767

CHAPTER6 CREATING SIMPLE WIDGETS

Solution

If you look at the plot.py file in the wxPython distribution you’ll discover that PyPlot
requires Numeric, numarray, or numpy (in reverse order), so make sure you have one
of those installed to be able to use this widget. You can use pip to install numpy, which
makes things really simple. Open up cmd.exe on Windows or a terminal on your Mac or

Linux machine and run the following command:
pip install numpy

Now that you have NumPy installed, we can take some code from the wxPython
demo and create a bar graph!

import wx
from wx.lib.plot import Polyline, PlotCanvas, PlotGraphics

def drawBarGraph():

Bar graph

pointsi=[(1,0), (1,10)]

line1l = PolylLine(pointsi, colour='green', legend='Feb.', width=10)
pointsig=[(2,0), (2,4)]

linelg = PolyLine(pointsig, colour='red', legend='Mar.', width=10)
pointsib=[(3,0), (3,6)]

lineib = PolylLine(pointsib, colour='blue', legend='Apr.', width=10)

points2=[(4,0), (4,12)]

line2 = PolyLine(points2, colour='Yellow', legend='May', width=10)
point52g=[(5,o), (5,8)]

line2g = PolylLine(points2g, colour='orange', legend='June', width=10)
points2b=[(6,0), (6,4)]

line2b = PolyLine(points2b, colour="brown', legend='July', width=10)

return PlotGraphics([line1, linelg, lineib, line2, line2g, line2b],
"Bar Graph - (Turn on Grid, Legend)", "Months",
"Number of Students")

class MyGraph(wx.Frame):

80

CHAPTER 6 CREATING SIMPLE WIDGETS

def _init (self):
wx.Frame. init (self, None, wx.ID ANY,
'My First Plot (to take over the world!)")

Add a panel so it looks the correct on all platforms
panel = wx.Panel(self, wx.ID ANY)

create some sizers
mainSizer = wx.BoxSizer(wx.VERTICAL)
checkSizer = wx.BoxSizer(wx.HORIZONTAL)

create the widgets

self.canvas = PlotCanvas(panel)
self.canvas.Draw(drawBarGraph())

toggleGrid = wx.CheckBox(panel, label="Show Grid")
toggleGrid.Bind(wx.EVT_CHECKBOX, self.onToggleGrid)
toggleLegend = wx.CheckBox(panel, label="Show Legend")
togglelegend.Bind(wx.EVT CHECKBOX, self.onTogglelLegend)

layout the widgets
mainSizer.Add(self.canvas, 1, wx.EXPAND)
checkSizer.Add(toggleGrid, 0, wx.ALL, 5)
checkSizer.Add(togglelLegend, 0, wx.ALL, 5)
mainSizer.Add(checkSizer)
panel.SetSizer(mainSizer)

def onToggleGrid(self, event):

self.canvas.SetEnableGrid(event.IsChecked())

def onTogglelLegend(self, event):

self.canvas.SetEnableLegend(event.IsChecked())

if name_ =="_ main_"':
app = wx.App(False)
frame = MyGraph()
frame.Show()
app.MainLoop()

81

CHAPTER6 CREATING SIMPLE WIDGETS

How It Works

The drawBarGraph function is pulled directly from the plot.py file that was
mentioned earlier. For this example, the function name was changed from
“_draw60bjects” to “drawBarGraph” to make the code easier to follow. Let’s take a
look at it. The points are the points on the graph: [(x1, y1), (x2, y2)]. They tell PyPlot
where to plot via the PolyLine method. As you can see, PolyLine takes a list of tuples
of graph points, and optionally, a color, legend, width, and style (not shown). We
create a series of PolyLines and then add them to a PlotGraphics instance. The
PlotGraphics first method is a list of PolyLines (or other PolyXXX objects), title,
xLabel, and yLabel. We return the PlotGraphics object back to the caller which is in
our wxPython class.

Now we turn our attention to that class, which has the bland name of MyGraph. The
first few lines are pretty familiar if you've used wxPython before, so let’s skip those and
jump right down to the widget creation section. Here we see how to create a PlotCanvas
with just a plain wx.Panel as its parent. To draw the bar graph, we call our canvas
object’s Draw method, passing in the PlotGraphics object that was returned from the
drawBarGraph function. Feel free to reread that as many times as needed to understand
what’s going on before continuing.

Are you ready? Then let’s continue! After we draw the bar graph, we create a
couple of check boxes to allow us to toggle the graph’s grid and legend. Then we lay
out the widgets on the frame. The check box’s methods are pretty self-explanatory,
so you can figure those out on your own. Hint: IsChecked() returns a Boolean.

82

CHAPTER 6 CREATING SIMPLE WIDGETS

Plotting File Data
Bar Graph of Temperatures

0o oo W
o v O

h ~ o~
A=
——
i—

(=1]
L]

Temperatures

1w
o v
]

-9
(%]

NN
L=

19.0 19.5 20.0 20.5 21.0 21.5 22.0
Days

Figure 6-4. Bar graph created using saved data

Graphing Using Saved Data

Normally you’ll want to read the data from a saved file, database, or a web service rather
than using hard-coded data. Here we'll look at using some saved data to create a graph.
Following is the data we’ll be using (you’ll probably want to download the archives from
the book’s source code on Github):

http://www.wunderground.com/history/airport/KMIN/2010/9/22/WeeklyHistory.
html?format=1
CDT,Max TemperatureF,Mean TemperatureF,Min TemperatureF,Max Dew
PointF,MeanDew PointF,Min DewpointF,Max Humidity, Mean Humidity, Min
Humidity, Max Sea Level PressurelIn, Mean Sea Level Pressureln, Min
Sea Level PressureIn, Max VisibilityMiles, Mean VisibilityMiles, Min
VisibilityMiles, Max Wind SpeedMPH, Mean Wind SpeedMPH, Max Gust
SpeedVMPH, PrecipitationIn, CloudCover, Events

2010-9-19,56,52,47,55,49,44,100,97,93,30.21,30.17,30.11,10,5,2,14,9, 20,
0.34,8,Rain-Thunderstorm

2010-9-20,88,72,56,71,62,55,100,73,46,30.10,29.94,29.77,10,6,0,25,12,
32,T,4,Fog-Rain

83

CHAPTER6 CREATING SIMPLE WIDGETS

2010-9-21,75,70,64,66,64,63,93,83,73,29.89,29.83,29.75,10,7,0,22,7,30,
1.79,5,Fog-Rain-Thunderstorm

2010-9-22,75,70,64,68,64,63,100,93,69,30.00,29.96,29.86,10,5,1,15,4,,
0.26,8,Rain

<l--0.481:1 -->

The first line is the web site, the second tells us what the comma delimited lines
that follow are. The last four lines are plain data with some junk HTML at the end of
each ling. The last line is also something we’ll want to ignore. Let’s create some code to
actually plot this data!

import wx
from wx.lib.plot import Polyline, PlotCanvas, PlotGraphics

class MyGraph(wx.Frame):

def init (self):
wx.Frame. init_ (self, None, wx.ID_ ANY,
'Plotting File Data')

Add a panel so it looks the correct on all platforms
panel = wx.Panel(self, wx.ID ANY)

self.canvas = PlotCanvas(panel)
self.canvas.Draw(self.createPlotGraphics())

sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(self.canvas, 1, wx.EXPAND)
panel.SetSizer(sizer)

def readFile(self):

Reads the hard-coded file

normally you would want to pass a file path in, NOT hard code it!
with open("data.txt") as fobj:

skip the first two lines of text in the file
data = fobj.readlines()[2:-1]

temps = []

84

CHAPTER 6 CREATING SIMPLE WIDGETS

for line in data:
parts = line.split(","
date = parts[o].split("-")
day = date[2]
points = [(day, parts[3]), (day, parts[1])]
temps.append(points)

return temps

def createPlotGraphics(self):

Create the plot's graphics

self.readFile()
[]
for temp in temps:
tempInt = int(temp[1][1])
if tempInt < 60:
color = "blue"
elif tempInt >=60 and tempInt <= 75:
color = "orange"
else:

temps
lines

color = "red"
lines.append(PolyLine(temp, colour=color, width=10))

return PlotGraphics(lines, "Bar Graph of Temperatures",
"Days", "Temperatures")

if name_ ==" main_"':
app = wx.App(False)
frame = MyGraph()
frame.Show()
app.MainLoop()

Just like in our previous example, we import a few things and create a wx.Frame with
a panel and a PlotCanvas. We have a simple readFile method and a createPlotGraphics
method too. These two methods are what we will focus on.

85

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER6 CREATING SIMPLE WIDGETS

The readFile method is called by the createPlotGraphics method. All it does is
read a file. For this example, we have the “path” to the file hard-coded. What you would
normally want to do is use some kind of file browser to load the file, but we’re going the
super-simple route. When we read the lines from the file, we skip over the first two by
using the following syntax:

data = f.readlines()[2:-1]

What that does is read in all the lines in the file via the readlines() method. The
readlines method returns a list object, so we use list slicing (the [2:-1] part) to exclude
the first two lines in the file and read to the end, minus one line. By doing it this way, we
skip the junk at the beginning and the end. Isn’t Python cool? Next we create a simple
“for loop” to pull out the data we want, which is just the day and the low and the high
temperatures. The rest we just throw away.

In the createPlotGraphics method, we take the list of temps returned from the
readFile method and loop over those, creating a new list of PolyLines. We use the some
“if statements” to decide what color to make each bar in the bar graph. Finally, we put
all the PolyLines into a PlotGraphics instance and return that to the called in the __init__
method. That’s all there is to it!

Point Plot with Thousands of Points

© @ It Looks Like a Line Graph!

25,000 Points
1000000
950000
900000
850000
800000
750000
700000
650000
600000
550000

2 OOUDDUO\J{] (550006000(6500(7000C7500(8000(8500(9000(950011000000

Value X
Show Grid Show Legend

Figure 6-5. A point plot

86

CHAPTER 6 CREATING SIMPLE WIDGETS

Now we're going to look at how to create a point plot with 25,000 points! This one is also
from the demo. Following is the code:

import numpy as _Numeric
import wx
from wx.lib.plot import PlotCanvas, PlotGraphics, Polyline, PolyMarker

def drawLinePlot():
25,000 point line
datal = Numeric.arange(5e5,1e6,10)
data1.shape = (25000, 2)
linel = PolylLine(datal, legend='Wide Line', colour='green', width=5)

A few more points...

markers2 = PolyMarker(datail, legend='Square', colour='blue’,
marker="square")

return PlotGraphics([line1, markers2], "25,000 Points", "Value X", "")

class MyGraph(wx.Frame):

def init (self):
wx.Frame. init (self, None, wx.ID ANY,
"It Looks Like a Line Graph!")

Add a panel so it looks the correct on all platforms
panel = wx.Panel(self, wx.ID ANY)

create some sizers
mainSizer = wx.BoxSizer(wx.VERTICAL)
checkSizer = wx.BoxSizer(wx.HORIZONTAL)

create the widgets

self.canvas = PlotCanvas(panel)
self.canvas.Draw(drawLinePlot())

toggleGrid = wx.CheckBox(panel, label="Show Grid")
toggleGrid.Bind(wx.EVT _CHECKBOX, self.onToggleGrid)
toggleLegend = wx.CheckBox(panel, label="Show Legend")
toggleLegend.Bind(wx.EVT_CHECKBOX, self.onTogglelegend)

87

CHAPTER6 CREATING SIMPLE WIDGETS

if _name_ == "' main_ ':

def

def

app

layout the widgets
mainSizer.Add(self.canvas, 1, wx.EXPAND)
checkSizer.Add(toggleGrid, 0, wx.ALL, 5)
checkSizer.Add(toggleLegend, 0, wx.ALL, 5)
mainSizer.Add(checkSizer)
panel.SetSizer(mainSizer)

onToggleGrid(self, event):

self.canvas.SetEnableGrid(event.IsChecked())

onToggleLegend(self, event):

self.canvas.SetEnablelLegend(event.IsChecked())

= wx.App(False)

frame = MyGraph()
frame.Show()

app.

MainLoop()

We reuse most of the wxPython code that we saw in our original example and just

call a different function here. The drawLinePlot function is pretty simple. For this

example, we use numpy to create the 25,000 plot points and then create a PolyLine with

them. If you zoom in, you will see that some of the points are square instead of round.

That’s what the PolyMarker class is for. It sets the style of the “marker” Now we’re ready

to look at our next example! (see Figure 6-6).

88

CHAPTER 6 CREATING SIMPLE WIDGETS

© ® Sin / Cos Plot
Graph Title

Y Axis

X Axis
Show Grid Show Legend

Figure 6-6. A sine/cosine plot

Creating a Sine/Cosine Graph

This example shows you how to take a Sine and a Cosine and graph them. It kind of looks
like a horizontal double-helix. Anyway, here’s the code.

import numpy as _Numeric
import wx
from wx.lib.plot import PlotCanvas, PlotGraphics, PolylLine, PolyMarker

def drawSinCosWaves():
100 points sin function, plotted as green circles
datal = 2.* Numeric.pi* Numeric.arange(200)/200.
datal.shape = (100, 2)
datai[:,1] = Numeric.sin(datai[:,0])
markers1i = PolyMarker(datail, legend='Green Markers', colour='green',
marker="circle',size=1)

50 points cos function, plotted as red line
datal = 2.* Numeric.pi* Numeric.arange(100)/100.
data1.shape = (50,2)

datai[:,1] = Numeric.cos(data1[:,0])

89

CHAPTER6 CREATING SIMPLE WIDGETS
lines = PolyLine(datal, legend= 'Red Line', colour='red")

A few more points...

pi = Numeric.pi

markers2 = PolyMarker([(0., 0.), (pi/4., 1.), (pi/2, 0.),
(3.*pi/4., -1)], legend='Cross Legend',
colour="blue',
marker="cross")

return PlotGraphics([markersi, lines, markers2],"Graph Title", "X
Axis", "Y Axis")

class MyGraph(wx.Frame):

def init (self):
wx.Frame. init (self, None, wx.ID ANY,
'Sin / Cos Plot")

Add a panel so it looks the correct on all platforms
panel = wx.Panel(self, wx.ID ANY)

create some sizers
mainSizer = wx.BoxSizer(wx.VERTICAL)
checkSizer = wx.BoxSizer(wx.HORIZONTAL)

create the widgets

self.canvas = PlotCanvas(panel)
self.canvas.Draw(drawSinCosWaves())

toggleGrid = wx.CheckBox(panel, label="Show Grid")
toggleGrid.Bind(wx.EVT_CHECKBOX, self.onToggleGrid)
toggleLegend = wx.CheckBox(panel, label="Show Legend")
toggleLegend.Bind(wx.EVT_CHECKBOX, self.onTogglelegend)

layout the widgets
mainSizer.Add(self.canvas, 1, wx.EXPAND)
checkSizer.Add(toggleGrid, 0, wx.ALL, 5)
checkSizer.Add(togglelLegend, 0, wx.ALL, 5)
mainSizer.Add(checkSizer)
panel.SetSizer(mainSizer)

90

CHAPTER 6 CREATING SIMPLE WIDGETS

def onToggleGrid(self, event):

self.canvas.SetEnableGrid(event.IsChecked())

def onTogglelLegend(self, event):

self.canvas.SetEnableLegend(event.IsChecked())

if name_ =="_ main_"':
app = wx.App(False)
frame = MyGraph()
frame. Show()
app.MainLoop()

This example is for the math geeks out there. I haven’t done trigonometry or
geometry in quite a while, so I won’t explain the equations here. You can look up that
sort of thing with your favorite search engine. This example uses one PolyLine and two
PolyMarkers to create the graph. It's mostly like the other examples though, so there’s
really not much to say.

By now you should be more than ready to undertake doing graphs on your own with
wxPython. If you get stuck, there are several other examples in the plot.py file and the
wxPython mailing list members are quite friendly and will probably help you if you ask
nicely. Let me know if you create anything cool!

Recipe 6-3. Creating a Simple Notebook
Problem

The wx.Notebook widget allows us to create a tabbed user interface. Most examples that
you see online tend to be fairly complex, so it’s always good to start with something that’s
super simple. Let’s start by looking at something that’s really easy to follow and then we’ll
take that example and refactor it a bit to make it easier to extend in the future.

91

CHAPTER6 CREATING SIMPLE WIDGETS

Solution

Our simple notebook widget will consist of two tabs that have a pseudo-random
background color (see Figure 6-7).

-

® @ Notebook Tutorial

Figure 6-7. A simple notebook

Let’s take a look.

import random
import wx

class TabPanel(wx.Panel):

def init (self, parent):

wx.Panel. init (self, parent=parent)

colors = ["red", "blue", "gray", "yellow", "green"]
self.SetBackgroundColour(random.choice(colors))

btn = wx.Button(self, label="Press Me")
sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(btn, 0, wx.ALL, 10)
self.SetSizer(sizer)

92

CHAPTER 6 CREATING SIMPLE WIDGETS

class DemoFrame(wx.Frame):

Frame that holds all other widgets

def _init (self):

Constructor
wx.Frame. init (self, None, wx.ID ANY,
"Notebook Tutorial",
size=(600,400)

)

panel = wx.Panel(self)

notebook = wx.Notebook(panel)
tabOne = TabPanel(notebook)
notebook.AddPage(tabOne, "Tab 1")

tabTwo = TabPanel(notebook)
notebook.AddPage(tabTwo, "Tab 2")

sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(notebook, 1, wx.ALL|wx.EXPAND, 5)
panel.SetSizer(sizer)

self.Layout()

self.Show()

if name_ ==" main_":
app = wx.App(False)
frame = DemoFrame()
app.MainLoop()

How It Works

That code is pretty short and sweet. Let’s take a moment and unpack this example. In the
DemoFrame class, we have a main panel which is the only child widget of the Frame.
Inside that, we have the Notebook control. Each page of the Notebook is an instance of
our TabPanel class, which should have a “random” background color and one button

93

CHAPTER6 CREATING SIMPLE WIDGETS

that doesn’t do anything. We add the Notebook to a sizer and set it to expand with a
proportion of 1. This means that it will fill the panel, and since the panel fills the frame,
the notebook will fill the frame too. To be honest, that’s really all there is to it.

Another topic of note is that the Notebook events, such as EVT_NOTEBOOK_PAGE _
CHANGED, may need to have an “event.Skip()” call in their event handler to make them
function properly. The event hierarchy in wxPython is a little hard to grasp, but think
of it as air bubbles in a pond. If you bind a widget to a particular event and don’t call
Skip(), then your event is handled ONLY in that particular handler. This is like having the
bubble popped part way from the bottom of the pond. However, occasionally you'll need
the event to be handled higher up, as in the widget’s parent or grandparent. If so, call
Skip() and your event “bubble” will rise to the next handler. The wxPython wiki has more
on this as does the “wxPython in Action” book by Robin Dunn.

That covers the simple Notebook example, so let’s spend a few moments refactoring
it a bit!

The Refactored Notebook

You might be wondering why we want to refactor code that’s already simple and easy to
follow.

The main reason is that we want to make sure our code can handle changing
requirements that will likely come later on in the project. We also want to be able to
write the code in such a way that we can extend it easily, such as when a new feature is
requested. One of the simplest ways of refactoring the code is to make it more modular.
To do that, we can subclass the major widgets. Let’s take a look.

import random
import wx

class TabPanel(wx.Panel):

The panel class to derive the tabs of the Notebook from

def init (self, parent):

wx.Panel. init (self, parent=parent)

94

CHAPTER 6 CREATING SIMPLE WIDGETS

colors = ["red", "blue", "gray", "yellow", "green"]
self.SetBackgroundColour(random.choice(colors))

btn = wx.Button(self, label="Press Me")
sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(btn, 0, wx.ALL, 10)
self.SetSizer(sizer)

class DemoNotebook(wx.Notebook):

Our Notebook class

def init (self, parent):
wx.Notebook. init (self, parent)

tabOne = TabPanel(self)
self.AddPage(tabOne, "Tab 1")

tabTwo = TabPanel(self)
self.AddPage(tabTwo, "Tab 2")

class DemoPanel(wx.Panel):

The main panel used by the frame

def _init (self, parent):

wx.Panel. init (self, parent=parent)

notebook = DemoNotebook(self)

sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(notebook, 1, wx.ALL|wx.EXPAND, 5)
self.SetSizer(sizer)

class DemoFrame(wx.Frame):

Frame that holds all other widgets

95

CHAPTER6 CREATING SIMPLE WIDGETS

def _init (self):

Constructor"""

wx.Frame. init (self, None, wx.ID ANY,
"Notebook Tutorial",
size=(600,400)
)

panel = DemoPanel(self)

self.Layout()

self.Show()

if _name__ == " main_":
app = wx.App(False)
frame = DemoFrame()

app.MainLoop()

Here we take the wx.Panel that we had before and put it into its own subclass,
DemoPanel. We do the same thing with our wx.Notebook widget when we put it into
our DemoNotebook class. Take note of the fact that when we do this, we can change
our references from the instance names (panel or notebook) to simply self. This change
greatly reduced the DemoFrame class.

Now that everything is in a different class, we can move the various classes into separate
modules and import them as needed. This makes the code easier to share across projects
and easier to manage in that we no longer need to store everything in one module. Go
ahead and take a few moments and try putting some of these new classes into separate
modules that you can import. You will quickly see how easy it is to use and how useful
this concept can be.

96

CHAPTER 7

Using Config Files

Recipe 7-1. Generating a Dialog from a Config File

Problem

After writing an article about the wonderful ConfigObj package on my blog, one of my
readers asked if there was a way to use a config file to generate a dialog. I took this idea

and decided to give it a try. For this recipe, you will need to install ConfigObj in addition

to wxPython. If you don’t already have ConfigObj, all you need to do is use pip to install it:

pip install configobj

Now that you have ConfigObj installed, we can continue. The first thing we need to

do is to create some sort of configuration file that we can use to generate our dialog. Put

the following into a file called config.ini:

[Labels]

server = Update Server:
username = Username:
password = Password:

update interval = Update Interval:
agency = Agency Filter:
filters = ""

[Values]
server = http://www.someCoolWebsite/hackery.php

nn

username =

nn

password =
update interval = 2

© Mike Driscoll 2018
M. Driscoll, wxPython Recipes, https://doi.org/10.1007/978-1-4842-3237-8_7

97

CHAPTER 7 USING CONFIG FILES

agency choices = Include all agencies except, Include all agencies except,
Exclude all agencies except
filters = ""

This configuration file has two sections: Labels and Values. The Labels section has
the labels we will use to create wx.StaticText controls with. The Values section has some
sample values we can use for the corresponding text control widgets and one combo box.
Note that the agency_choices field is a list. The first item in the list will be the default
option in the combo box and the other two items are the real contents of the widget.

Solution

® Preferences

Update Server: i/ www.someCoolWebsite/hackery.php
Username:

Password:

Update Interval:

Agency Filter: 2

Include all agencies except E

Cancel Save

Figure 7-1. A dialog generated from a configuration file

Now that we know what we’re going to base our user interface on, we can write our code.
When the code is finished you'll end up with a dialog that looks like that in Figure 7-1.
Let’s dive into the code itself now.

import configobj
import wx

class PreferencesDialog(wx.Dialog):

Creates and displays a preferences dialog that allows the user to

98

CHAPTER 7

change some settings.

def

def

__init_ (self):

Initialize the dialog

wx.Dialog. init (self, None, title='Preferences’,
size=(550,300))

self.createlWidgets()

createlWidgets(self):

Create and layout the widgets in the dialog
1b1Sizer = wx.BoxSizer(wx.VERTICAL)
valueSizer = wx.BoxSizer(wx.VERTICAL)
wx.StdDialogButtonSizer()
colSizer = wx.BoxSizer(wx.HORIZONTAL)
mainSizer = wx.BoxSizer(wx.VERTICAL)

btnSizer

iniFile = "config.ini"
self.config = configobj.ConfigObj(iniFile)

labels = self.config["Labels"]

values = self.config["Values"]

self.widgetNames = values

font = wx.Font(12, wx.SWISS, wx.NORMAL, wx.BOLD)

for key in labels:
value = labels[key]
1bl = wx.StaticText(self, label=value)
1bl.SetFont(font)
1b1Sizer.Add(1bl, 0, wx.ALL, 5)

for key in values:
print(key)
value = values[key]

USING CONFIG FILES

99

CHAPTER 7 USING CONFIG FILES

if isinstance(value, list):
default = value[0]
choices = value[1:]
cbo = wx.ComboBox(self, value=value[0],
size=wx.DefaultSize, choices=choices,
style=wx.CB_DROPDOWN |wx.CB_READONLY,
name=key)
valueSizer.Add(cbo, 0, wx.ALL, 5)
else:
txt = wx.TextCtrl(self, value=value, name=key)
valueSizer.Add(txt, 0, wx.ALL|wx.EXPAND, 5)

saveBtn = wx.Button(self, wx.ID OK, label="Save")
saveBtn.Bind(wx.EVT BUTTON, self.onSave)
btnSizer.AddButton(saveBtn)

cancelBtn = wx.Button(self, wx.ID CANCEL)
btnSizer.AddButton(cancelBtn)
btnSizer.Realize()

colSizer.Add(1blSizer)

colSizer.Add(valueSizer, 1, wx.EXPAND)
mainSizer.Add(colSizer, 0, wx.EXPAND)
mainSizer.Add(btnSizer, 0, wx.ALL | wx.ALIGN RIGHT, 5)
self.SetSizer(mainSizer)

def onSave(self, event):

Saves values to disk
for name in self.widgetNames:
widget = wx.FindWindowByName (name)
if isinstance(widget, wx.ComboBox):
selection = widget.GetValue()
choices = widget.GetItems()
choices.insert(0, selection)
self.widgetNames[name] = choices

100

CHAPTER 7 USING CONFIG FILES

else:
value = widget.GetValue()
self.widgetNames[name] = value
self.config.write()
self.EndModal(0)

class MyApp(wx.App):

def OnInit(self):

Constructor
dlg = PreferencesDialog()
dlg.ShowModal()
dlg.Destroy()

return True

__main__":

app = MyApp(False)
app.MainLoop()

if __name__ ==

How It Works

To start, we subclass a wx.Dialog and use its createWidgets method. This method will
read our config file and use the data therein to create the display. Once the config is read,
we loop over the keys in the Labels section and create static text controls as needed. Next,
we loop over the values in the other section and use a conditional to check the type of
widget. In this case, we only care about wx.TextCtrl and wx.Combobox. This is where
ConfigObj helps since it actually can typecast some of the entries in our configuration file.
If you use a configspec, you can get even more granular and that may be the way you'll
want to go to extend this tutorial. Note that for the text controls and combo box, I set the
name field. This is important for saving the data, which we’ll be seeing in just a moment.
Anyway, in both loops, we use vertical BoxSizers to hold our widgets. You may
want to swap this for a GridBagSizer or FlexGridSizer for your specialized interface. I
personally really like BoxSizers. I also used a StdDialogButtonSizer for the buttons. If you
use the correct standard ids for the buttons, this sizer will place them in the right order in
a cross-platform way. It’s quite handy, although it doesn’t take many arguments.

101

CHAPTER 7 USING CONFIG FILES

The next method that we care about is onSave. Here is where we save whatever the
user has entered.

Earlier in the program, I grabbed the widget names from the configuration and we
loop over those now. We call wx.FindWindowByName to find the widget by name. Then
we use isinstance again to check what kind of widget we have. Once that’s done, we grab
the value that the widget holds using GetValue and assign that value to the correct field
in our configuration. When the loop finishes, we write the data to disk. The last step is to
call EndModal(0) to close the dialog and, in turn, the application.

Now you know the basics of generating a dialog from a configuration file. I think
using some kind of dictionary with widget-type names (probably in strings) might be an
easy way to make this script work with other widgets. You will also note that I have no
validation in this example at all! This is something for you to do to extend this piece of
code. Use your imagination and let me know what you come up with.

Recipe 7-2. Saving Data to a Config File
Problem

There are lots of ways for you to persist your data in your application. When you

are writing a user interface, there are many times that you will want to save the

user’s preferences. You could use a simple database, like SQLite, or you could use a
configuration file. For this example, we will opt for the configuration file. Python has
a handy library built into it called configparser, which you can use for creating and
manipulating config files. However, I prefer using ConfigObj, which is a package that
you’ll have to download and install.

Solution

ConfigObij is a bit easier to use than configparser and provides validation too. ConfigObj
can also return Python types from the config file, while configparser just returns strings.
If you don’t have ConfigObj installed then you can do so with pip.

pip install configobj

Once that’s installed, we can go ahead and create a simple controller for creating and
accessing our configuration file with ConfigObj.

102

CHAPTER 7 USING CONFIG FILES

Creating a Controller

It is common when designing a user interface to follow the model-view-controller
paradigm. The controller usually houses the code that actully does something, like reading
and writing data from a config file. The model is usually a description of a database or even
the widgets themselves, which wxPython supports via XRC. The view is the code that draws
the interface for the user, so in this case, it will be the majority of the wxPython code. We
don’t need to concern ourselves with a model this time, so we'll start off with the controller.

controller.py
import configobj
import os
import sys

appPath = os.path.abspath(os.path.dirname(os.path.join(sys.argv[0])))
inifile

os.path.join(appPath, "example.ini")

def create _config():

Create the configuration file

config = configobj.ConfigObj()
config.filename = inifile

config['update server'] = "http://www.someCoolWebsite/hackery.php"
config['username'] = ""

config['password'] = ""

config['update interval'] = 2

config['agency filter'] = 'include'

config['filters'] = ""

config.write()

def get_config():

Open the config file and return a configobj

if not os.path.exists(inifile):
create _config()
return configobj.ConfigObj(inifile)

103

CHAPTER 7 USING CONFIG FILES

How It Works

This piece of code is pretty straightforward. In the create_config function, it creates

an example.ini file in the same directory as the one that this script is run from. The
config file gets six fields but no sections. In the get_config function, the code checks for
the existence of the configuration file and creates it if it does not exist. Regardless, the
function returns a ConfigObj object to the caller. We'll put this script into controller.py.

Creating the View

Update Server:

Username:

Password:

Update Interval: 2 minutes

Agency Filter: Include all agencies except o

Figure 7-2. Saving a configuration file with wxPython

All we need to do for our view is to subclass the wx.Dialog class to create a preferences
dialog. This piece of code is a bit long, so let’s go over it in pieces instead.

import controller

import os

import sys

import wx

from wx.lib.buttons import GenBitmapTextButton

appPath = os.path.abspath(os.path.dirname(os.path.join(sys.argv[0])))

class CloseBtn(GenBitmapTextButton):

104

CHAPTER 7 USING CONFIG FILES

Creates a reusable close button with a bitmap

def init (self, parent, label="Close"):

Constructor"""

font = wx.Font(16, wx.SWISS, wx.NORMAL, wx.BOLD)

img = wx.Bitmap(r"%s/images/cancel.png"” % appPath)

GenBitmapTextButton. init (self, parent, wx.ID CLOSE, img,
label=1abel, size=(110, 50))

self.SetFont(font)

This first chunk just creates a simple button to close the application. We abstracted it
out to make sharing this code simpler. You could even put this code into its own module
that could be imported by multiple applications, for example. Now let's take a look at the
main dialog code.

class PreferencesDialog(wx.Dialog):

Creates and displays a preferences dialog that allows the user to
change some settings.

def init (self):

Initialize the dialog
wx.Dialog. init (self, None, wx.ID ANY, 'Preferences', size=(550,400))
appPath = controller.appPath

Create widgets

font = wx.Font(12, wx.SWISS, wx.NORMAL, wx.BOLD)
serverLbl = wx.StaticText(self, label="Update Server:")
self.serverTxt = wx.TextCtrl(self)
self.serverTxt.Disable()

usernamelLbl = wx.StaticText(self, label="Username:")
self.usernameTxt = wx.TextCtrl(self)
self.usernameTxt.Disable()

105

CHAPTER 7 USING CONFIG FILES

106

passwordLbl = wx.StaticText(self, label="Password:")

self.passwordTxt = wx.TextCtrl(self,
style=wx.TE_PASSWORD)

self.passwordTxt.Disable()

updatelbl = wx.StaticText(self, label="Update Interval:")
self.updateTxt = wx.TextCtrl(self)
minutesLbl = wx.StaticText(self, label="minutes")

agencylLbl = wx.StaticText(self, label="Agency Filter:")
choices = ["Include all agencies except”,
"Exclude all agencies except"]

self.agencyCbo = wx.ComboBox(

self, value="Include all agencies except",

choices=choices,

style=wx.CB_DROPDOWN |wx.CB_READONLY)
self.agencyCbo.SetFont(font)
self.filterTxt = wx.TextCtrl(self, wx.ID ANY, "")

img = wx.Bitmap(r"%s/images/filesave.png" % appPath)
saveBtn = GenBitmapTextButton(

self, wx.ID ANY, img, "Save", size=(110, 50))
saveBtn.Bind(wx.EVT _BUTTON, self.savePreferences)
cancelBtn = CloseBtn(self, label="Cancel")
cancelBtn.Bind(wx.EVT BUTTON, self.onCancel)

Set the widgets font

widgets = [serverlLbl, usernamelbl, passwordLbl,
updatelbl, agencylLbl, minutesLbl,
self.serverTxt, self.usernameTxt,
self.passwordTxt, self.updateTxt,
self.agencyCbo, self.filterTxt, saveBtn,
cancelBtn]

for widget in widgets:

widget.SetFont(font)

CHAPTER 7 USING CONFIG FILES

layout widgets

mainSizer = wx.BoxSizer(wx.VERTICAL)

updateSizer = wx.BoxSizer(wx.HORIZONTAL)

btnSizer = wx.BoxSizer(wx.HORIZONTAL)

prefSizer = wx.FlexGridSizer(cols=2, hgap=5, vgap=5)
prefSizer.AddGrowableCol(1)

prefSizer.Add(serverLbl, 0, wx.ALIGN LEFT | wx.ALIGN CENTER_
VERTICAL)

prefSizer.Add(self.serverTxt, 0, wx.EXPAND)
prefSizer.Add(usernamelbl, 0, wx.ALIGN LEFT | wx.ALIGN CENTER_
VERTICAL)

prefSizer.Add(self.usernameTxt, 0, wx.EXPAND)
prefSizer.Add(passwordLbl, 0, wx.ALIGN LEFT | wx.ALIGN CENTER_
VERTICAL)

prefSizer.Add(self.passwordTxt, 0, wx.EXPAND)
prefSizer.Add(updatelLbl, 0, wx.ALIGN LEFT | wx.ALIGN CENTER_
VERTICAL)

updateSizer.Add(self.updateTxt, 0, wx.RIGHT, 5)
updateSizer.Add(minutesLbl, 0, wx.ALIGN LEFT | wx.ALIGN CENTER_
VERTICAL)

prefSizer.Add(updateSizer)

prefSizer.Add(agencylLbl, 0, wx.ALIGN _LEFT | wx.ALIGN CENTER_
VERTICAL)

prefSizer.Add(self.agencyCbo, 0, wx.EXPAND)
prefSizer.Add((20,20))

prefSizer.Add(self.filterTxt, 0, wx.EXPAND)

mainSizer.Add(prefSizer, 0, wx.EXPAND|wx.ALL, 5)
btnSizer.Add(saveBtn, 0, wx.ALL, 5)
btnSizer.Add(cancelBtn, 0, wx.ALL, 5)
mainSizer.Add(btnSizer, 0, wx.ALL | wx.ALIGN RIGHT, 10)
self.SetSizer(mainSizer)

load preferences
self.loadPreferences()

107

CHAPTER 7 USING CONFIG FILES

All this code does is initialize and lay out all the widgets that we'll need to create our
application. It also sets up event handlers and sets the same font characteristics across
all the widgets. The final chunk we will look at is the event handlers section.

def loadPreferences(self):

Load the preferences and fill the text controls
config = controller.get config()

updateServer = config['update server']

username = config['username"]

password = config['password’]

interval = config['update interval']

agencyFilter = config['agency filter']
filters = config['filters']

self.serverTxt.SetValue(updateServer)
self.usernameTxt.SetValue(username)
self.passwordTxt.SetValue(password)
self.updateTxt.SetValue(interval)
self.agencyCbo.SetValue(agencyFilter)
self.filterTxt.SetValue(filters)

def onCancel(self, event):

Closes the dialog

self.EndModal(0)

def savePreferences(self, event):

Save the preferences

config = controller.get config()

config['update interval'] = self.updateTxt.GetValue()
config['agency filter'] = str(self.agencyCbo.GetValue())
data = self.filterTxt.GetValue()

108

CHAPTER 7 USING CONFIG FILES

if "," in data:
filters = [i.strip() for i in data.split(',")]
elif " " in data:
filters = [i.strip() for i in data.split(' ')]
else:
filters = [data]
text = ""
for f in filters:
text += " " + f
text = text.strip()
config['filters'] = text
config.write()

dlg = wx.MessageDialog(
self, "Preferences Saved!", 'Information’,
wX.OK |wx.ICON INFORMATION)

dlg.ShowModal()

dlg.EndModal(0)

if _name__ == "_ main_":
app = wx.App(False)
dlg = PreferencesDialog()
dlg.ShowModal()

dlg.Destroy()

The previous code allows us to load a configuration from a file using ConfigObj. You
can see how that works by reading the code in the loadPreferences method. The other
major piece is how the code saves the preferences when the user changes them. For that,
we need to look at the savePreferences method. This is a pretty straightforward method
in that all it does is grab the various values from the widgets using wx’s specific getter
functions. There’s also a conditional that does some minor checking on the filter field.
The main reason for that is that in my original program, I use a space as the delimiter
and the program needed to convert commas and such to spaces. This code is still a work
in progress though as it does not cover all the cases that a user could enter. Feel free to
expand it to cover more edge cases.

109

CHAPTER 7 USING CONFIG FILES

Anyway, once we have the values inside the ConfigObj'’s dict-like interface, we write
the ConfigObj instance’s data to file. Then the program displays a simple dialog to let the
user know that’s saved.

You will also note that to close our Dialog correctly, we called EndModal in our
onCancel method.

Now, let’s say that our program’s specifications change such that we need to add or
remove a preference. All that is required to do so is to add or delete it in the configuration
file. ConfigObj will pick up the changes and we just need to remember to add or remove
the appropriate widgets in our graphical user interface (GUI). One of the best things
about ConfigObj is that it won't reset the data in your file; it will just add the changes as
appropriate. Give it a try and find out just how easy it is!

At this point, you should be able to create your own preferences dialog and use
ConfigObj to populate it. I find ConfigObj to be more “Pythonic” when it comes to
reading and writing configuration files. I think you will too. If you'd like a challenge,
you should try opening some preference dialogs in some popular applications, such
as Microsoft Word, and then try emulating them using wxPython. It’s a great learning
exercise as you'll have to learn how to use new widgets and get more creative with your
configuration file too.

110

CHAPTER 8

Working with Events

Recipe 8-1. Binding Multiple Widgets
to the Same Handler

Problem

From time to time, you will find that you need to have multiple buttons call the same
event handler. Usually this happens when you have more than one button that does very
similar things. Other times, you'll want to bind a Close button and a Close menu item to
the same event handler so you don’t have multiple functions that do the same thing. This
followd the Don’t Repeat Yourself (DRY) Principle.

111
© Mike Driscoll 2018

M. Driscoll, wxPython Recipes, https://doi.org/10.1007/978-1-4842-3237-8_8

CHAPTER 8 WORKING WITH EVENTS

Solution
o0 ® Binding Multiple Widgets
One
Two
Three

Figure 8-1. Binding multiple widgets to the same handler

To begin, we will write some code that contains multiple buttons. We will go through an
example that shows two different ways to get the button object so you can manipulate
your program as needed. Following is the code you've been waiting for:

import wx
class MyForm(wx.Frame):

def init (self):
wx.Frame. init (
self, None, title="Binding Multiple Widgets")
panel = wx.Panel(self, wx.ID ANY)

sizer = wx.BoxSizer(wx.VERTICAL)

buttonOne = wx.Button(panel, label="One", name="one")
buttonTwo = wx.Button(panel, label="Two", name="two")
buttonThree = wx.Button(panel, label="Three", name="three")
buttons = [buttonOne, buttonTwo, buttonThree]

112

CHAPTER 8 WORKING WITH EVENTS

for button in buttons:
self.buildButtons(button, sizer)

panel.SetSizer(sizer)

def buildButtons(self, btn, sizer):
btn.Bind(wx.EVT_BUTTON, self.onButton)
sizer.Add(btn, 0, wx.ALL, 5)

def onButton(self, event):

This method is fired when its corresponding button is pressed
button = event.GetEventObject()

print("The button you pressed was labeled: " + button.GetlLabel())
print("The button's name is " + button.GetName())

button_id = event.GetId()

button by id = self.FindWindowById(button id)

print("The button you pressed was labeled: " + button by
id.GetLabel())

print("The button's name is " + button by id.GetName())

if name_ ==" main_":
app = wx.App(False)
frame = MyForm()
frame.Show()
app.MainLoop()

How It Works

To start, we create three button objects. Then to make things slightly less messy, we put
them into a list and iterate over the list to add the buttons to a sizer and bind them to an
event handler. This is a good way to cut down on spaghetti code (i.e., copied and pasted
code) and makes it a little cleaner and easier to debug. Some people go ahead and create
some elaborate helper methods, like buildButtons, that can handle other widgets and
are more flexible.

113

CHAPTER 8 WORKING WITH EVENTS

The part we really care about though is the event handler itself. The easiest way to
get the widget in the event handler is by calling the event object’s GetEventObject()
method. That will return the widget and then you can do whatever you like. Some people
will change the widget’s value or label; others will use the widget’s ID or unique name
and set up some conditional structures to do something if this button is pressed and to
do something else if a different button is pressed. The functionality is up to you.

The second way to get the widget is a two-step process where we need to extract
the ID from the event using its GetID() method. Then we pass that result to our frame
object’s FindWindowByld() method and we once again have the widget in question.

Now you know the “secret” of binding multiple widgets to the same event handler.
All you really need to know is that if you write two functions that do the same thing or
you copy and paste a function and only make minimal changes, then you should refactor
your code to prevent issues down the road.

Recipe 8-2. How to Fire Multiple Event Handlers
Problem

There are a few occasions where you will want to fire a series of event handlers. While
this is not something that you’ll use in most of your programes, it’s a nice feature to have.
Fortunately, wxPython makes it very easy to accomplish.

Solution

Firing multiple event handlers is actually quite trivial. As usual, it is useful to take a look
at a simple example that demonstrates how to do this.

import wx

class MyPanel(wx.Panel):

def init (self, parent):
ll"llconstructorllllll

wx.Panel. init (self, parent)
btn = wx.Button(self, label="Press Me")

114

CHAPTER 8 WORKING WITH EVENTS

btn.Bind(wx.EVT BUTTON, self.HandlerOne)
btn.Bind(wx.EVT BUTTON, self.HandlerTwo)

def HandlerOne(self, event):
print("handler one fired!")
event.Skip()

def HandlerTwo(self, event):
print("handler two fired!")
event.Skip()

class MyFrame(wx.Frame):

def init (self):

Constructor"""

wx.Frame. init (self, None, title="Test")
panel = MyPanel(self)

self.Show()

if _name__ == "_ main_":
app = wx.App(False)
frame = MyFrame()

app.MainLoop()

How It Works

As you can see, all you had to do was call the widget’s Bind() method twice and pass it
the same event but different handlers. The next key piece is that you have to use event.
Skip(). Skip will cause wxPython to look for other handlers that may need to handle
the event. Events travel up the hierarchy to the parents until either they’re handled or
nothing happens. The book, wxPython in Action by Robin Dunn, explains this concept
really well.

You can also bind a widget to different events at the same time. This is more
common with something like a wx.TextCtrl or a Grid widget where you might need to
bind to focus and text events.

115

CHAPTER 8 WORKING WITH EVENTS

While this recipe is on the short side, it demonstrates one of the many powerful
features of the wxPython GUI graphical user interface) toolkit. That feature is the ability
to bind a widget to multiple event handlers. You might find this useful if you need to save
some information to a database while also calling a long-running process, for example.
Take a few moments and I'm sure you can think of your own scenarios where this
concept might prove useful.

Recipe 8-3. Get the Event Name Instead
of an Integer

Problem

A few years ago I saw a post on the StackOverflow web site that I thought was interesting.
It asked how to get the event name from the event object, such as EVT_BUTTON, rather
than the event’s ID number. So I did some investigation into the subject and there is
nothing built in to wxPython that does this task. Robin Dunn, creator of wxPython,
recommended that I create a dictionary of the events and their IDs to accomplish this
feat. So in this tutorial, we'll take a look at how to go about that.

Solution

I tried to figure this out myself, but then I decided to make sure that someone else hadn’t
already done it. After a brief Google search, I found a forum thread where Robin Dunn
described how to do it. Following is the basic gist:

import wx

eventDict = {}
for name in dir(wx):
if name.startswith('EVT '):
evt = getattr(wx, name)
if isinstance(evt, wx.PyEventBinder):
eventDict[evt.typeld] = name

That only gets the general events though. There are special events in some of the
sublibraries in wx, such as in wx.grid. You will have to account for that sort of thing.

116

CHAPTER 8 WORKING WITH EVENTS

While I haven’t come up with a general solution yet I can show you how to add those grid

events. Let’s take a look!

import wx

import wx.grid

class MyForm(wx.Frame):

def init (self):

def

wx.Frame. init_(self, None, title="Tutorial")

self.eventDict = {}
evt _names = [x for x in dir(wx) if x.startswith("EVT_")]
for name in evt names:
evt = getattr(wx, name)
if isinstance(evt, wx.PyEventBinder):
self.eventDict[evt.typeId] = name

grid evt names = [x for x in dir(wx.grid) if x.startswith("EVT_")]
for name in grid evt names:
evt = getattr(wx.grid, name)
if isinstance(evt, wx.PyEventBinder):
self.eventDict[evt.typeId] = name

panel = wx.Panel(self, wx.ID ANY)
btn = wx.Button(panel, wx.ID ANY, "Get POS")

btn.Bind(wx.EVT BUTTON, self.onEvent)
panel.Bind(wx.EVT_LEFT DCLICK, self.onEvent)
panel.Bind(wx.EVT RIGHT DOWN, self.onEvent)

onEvent(self, event):

Print out what event was fired

evt_id = event.GetEventType()
print(self.eventDict[evt id])

117

CHAPTER 8 WORKING WITH EVENTS

if _name_ == " main_":
app = wx.App(redirect=True)
frame = MyForm().Show()

app.MainLoop()

How It Works

As you can see, we changed the loop slightly. We took the loop in the first example and
combined it with the first IF statement to create a list comprehension. This returns a

list of event name strings. Then we loop over that using the other conditionals to add to
the dictionary. We do it twice, once for the regular events and then again for the wx.grid
events. Then we bind a few events to test our event dictionary. If you run this program,
you will see that if you execute any of the bound events, it will print those event names to
stdout. Since we set the wx.App object to redirect stdout, wxPython will open a special

window to display what gets printed out as in Figure 8-2.

Get POS

e o]

= wxPython: stdout/stderr
EVT_BUTTON

Figure 8-2. Getting the event name

118

CHAPTER 8 WORKING WITH EVENTS

Now you know how to get the event name of the event instead of just the integer. This
can be helpful when debugging as sometimes you want to bind multiple events to one
handler and you need to check and see which event was fired.

Recipe 8-4. Catching Key and Char Events
Problem

In this recipe, I'll detail how to catch specific key presses and why this can be useful.
There really isn’t much to catching key presses, but it can be a little confusing when one
widget behaves slightly differently from another. The really complicated stuff comes in
when you need to capture the character events (i.e., wx.EVT_CHAR).

Note The examples in this recipe do not work on Mac OSX El Capitan.

First I'll cover the key events, wx.EVT_KEY_DOWN and wx.EVT_KEY_UP and then
I'll go over the intricacies of wx.EVT_CHAR.

Solution

Catching key events is very easy to do in wxPython. All you need to do is look up what
key code you want to catch in wxPython’s documentation or catch all keys and note the
key codes of the buttons as you press them. Let’s take a look.

import wx
class MyForm(wx.Frame):

def init (self):
wx.Frame. init (self, None, title="Key Press Tutorial")

panel = wx.Panel(self, wx.ID ANY)
btn = wx.Button(panel, label="0K")

btn.Bind(wx.EVT_KEY_DOWN, self.onKeyPress)

def onKeyPress(self, event):

119

CHAPTER 8 WORKING WITH EVENTS

keycode = event.GetKeyCode()
print(keycode)
if keycode == wx.WXK SPACE:

print("you pressed the spacebar!")
event.Skip()

if name_ ==" main_":
app = wx.App(True)
frame = MyForm()
frame.Show()

app.MainLoop()

How It Works

You will notice that the only widgets of consequence in this piece of code are a panel and
a button.

I bind the button to the event, EVT_KEY_DOWN, and in the handler I check if the
user has pressed the spacebar. The event only fires if the button has focus. You'll notice
that I also call event.Skip at the end. If you don't call Skip, then the key will get “eaten”
and there won’t be a corresponding char event. This won’t matter on a button, but you
might care in a text control as char events are the proper way of catching upper and
lower case, accents, umlauts, and the like.

I've used a similar method to catch arrow key presses in a spreadsheet-type
application of mine. I wanted to be able to detect these keys so that if I was editing a cell,
an arrow key press would make the selection change to a different cell. That is not the
default behavior. In a grid, each cell has its own editor and pressing the arrow keys just
moves the cursor around within the cell.

120

CHAPTER 8 WORKING WITH EVENTS

° Key Press Tutorial - O X

OK

Figure 8-3. Catching key presses

When you run the previous code and press the spacebar, you will see something
similar to the following screenshot (Figure 8-3):

Just for fun, I created a similar example to the one above where I bound to the key-up
and the key-down events, but with two different widgets. Check it out in the following
code:

import wx
class MyForm(wx.Frame):

def init (self):
wx.Frame. init (self, None, title="Key Press Tutorial 2")

panel = wx.Panel(self, wx.ID ANY)
sizer = wx.BoxSizer(wx.VERTICAL)

btn = self.onWidgetSetup(wx.Button(panel, label="0K"),

121

CHAPTER 8 WORKING WITH EVENTS

if name_ ==" main_":

122

wx.EVT_KEY_UP,
self.onButtonKeyEvent, sizer)

txt = self.onWidgetSetup(wx.TextCtrl(panel, value=""),
wx.EVT_KEY_DOWN, self.onTextKeyEvent,
sizer)

panel.SetSizer(sizer)

def onWidgetSetup(self, widget, event, handler, sizer):
widget.Bind(event, handler)
sizer.Add(widget, 0, wx.ALL, 5)
return widget

def onButtonKeyEvent(self, event):
keycode = event.GetKeyCode()
print(keycode)
if keycode == wx.WXK_SPACE:
print("you pressed the spacebar!")
event.Skip()

def onTextKeyEvent(self, event):
keycode = event.GetKeyCode()
print(keycode)
if keycode == wx.WXK DELETE:
print("you pressed the delete key!")
event.Skip()

app = wx.App(True)
frame = MyForm()
frame.Show()
app.MainLoop()

CHAPTER 8 WORKING WITH EVENTS

® " Key Press Tutorial 2 = O X

OK

Figure 8-4. Catching additional key presses

If you run the previous code, try clicking the button and then pressing the spacebar.
Then change the focus to the text control and hit your delete key. If you do that, you
should see something like the following screenshot (Figure 8-4):

Try pressing other keys and you will see the key codes printed out for each key.

Admittedly, this code is mostly for illustration. The main thing to know is that you
really don’t use EVT_KEY_UP unless you need to keep track of multi-key combinations,
like CTRL+K+Y or something (on a semirelated note, see the wx.AcceleratorTable).
While I'm not doing this in my example, it is important to note that if you are
checking for the CTRL key, then it’s best to use event.CmdDown() rather than event.
ControlDown—the reason being that CmdDown is the equivalent of ControlDown on
Windows and Linux, but on a Mac it simulates the Command key. Thus, CmdDown is
the best cross-platform way of checking if the CTRL key has been pressed.

123

CHAPTER 8 WORKING WITH EVENTS

And that’s really all you need to know about key events. Let’s go on and see what we
can learn about char events.

Catching Char Events

Catching char events is a little bit harder, but not by much. Let’s take a look at an
example to see how it differs.

import wx
class MyForm(wx.Frame):

def init (self):
wx.Frame. init (self, None, title="Char Event Tutorial")

Add a panel so it looks the correct on all platforms
panel = wx.Panel(self, wx.ID ANY)
btn = wx.TextCtrl(panel, value="")

btn.Bind(wx.EVT _CHAR, self.onCharEvent)

def onCharEvent(self, event):
keycode = event.GetKeyCode()
controlDown = event.CmdDown()
altDown = event.AltDown()
shiftDown = event.ShiftDown()

print(keycode)
if keycode == wx.WXK SPACE:

print("you pressed the spacebar!")
elif controlDown and altDown:

print(keycode)
event.Skip()
if name_ ==" main_":

app = wx.App(True)
frame = MyForm()
frame.Show()
app.MainLoop()

124

CHAPTER 8 WORKING WITH EVENTS

I think the main thing that is different is that you want to check for accents or
international characters. Thus, you'll have complex conditionals that check if certain
keys are pressed and in what order. Robin Dunn (creator of wxPython) said that wxSTC
checks for both key and char events. If you plan on supporting users outside the United
States, you'll probably want to learn how this all works.

Robin Dunn went on to say that “if you want to get the key events in order to handle
‘commands’ within the application, then using the raw values in a EVT_KEY_DOWN
handler is appropriate. However if the intent is to handle the entry of ‘text’ then the
application should use the cooked values in an EVT_CHAR event handler in order to get
the proper handling for non US keyboards and input method editors.* (Note: key up and
key down events are considered ‘raw’ whereas char events have been ‘cooked’ for you.) As
Robin Dunn explained it to me, *on non-US keyboards then part of cooking the key events
into char events is mapping the physical keys to the national keyboard map, to produce
characters with accents, umlauts, and such.

When you're actually playing around with this demo, you will see that it prints out
the key codes as you press them. If you want to see special key combination codes, try
pressing CTRL or SHIFT plus another key. You should be able to catch ALT here as well,
but I noticed that this does not work on my Windows 7 machine or my Macbook.

At this point you should be capable of writing your own desktop application that can
capture key and char events. You might also want to use Google to look up wxPython’s
AcceleratorTable. This class allows the developer to capture key combinations that the
user strikes while running your program. Check it out when you get a chance.

Recipe 8-5. Learning About Focus Events
Problem

There are really only two focus events that I've ever seen used: wx.EVT_SET_FOCUS
and wx.EVT_KILL_FOCUS. The event EVT_SET_FOCUS is fired when a widget receives
focus, such as when you click a blank panel or put your cursor inside a TextCtrl widget.
When you tab or click a widget that has focus, then the EVT_KILL_FOCUS is fired.

125

CHAPTER 8 WORKING WITH EVENTS

One of the few “gotchas” that I've seen mentioned on the wxPython mailing list is
that the wx.Panel only accepts focus when it does not have a child widget that can accept
focus. The best way to explain this is with a series of examples.

' O @ Focus Tutorial 1

Figure 8-5. Getting the panel to focus

Solution

Let’s try writing some code that will attempt to catch the focus event on a wx.Panel object.
import wx
class MyForm(wx.Frame):

def _init (self):
wx.Frame. init (self, None, title="Focus Tutorial 1")

panel = wx.Panel(self)
panel.Bind(wx.EVT SET FOCUS, self.onFocus)

def onFocus(self, event):
print("panel received focus!")

Run the program

126

CHAPTER 8 WORKING WITH EVENTS

if _name_ == " main_":
app = wx.App(False)
frame = MyForm().Show()

app.MainLoop()

How It Works

@ @ Focus Tutorial 1a

Figure 8-6. Getting the text control to focus

Now this code will display a blank panel with nothing on it. You'll notice that stdout
immediately gets panel received focus! printed to it if you run this on Windows or Mac.
You will see the same message on Linux if you happen to click the Panel. Now if we add
a TextCtrl or a Button, they will receive focus and the OnFocus event handler will not get
fired. Try running the code that follows to see this in action:

import wx
class MyForm(wx.Frame):

def init (self):
wx.Frame. init (self, None, title="Focus Tutorial 1a")

panel = wx.Panel(self)

127

CHAPTER 8 WORKING WITH EVENTS

panel.Bind(wx.EVT_SET FOCUS, self.onFocus)
txt = wx.TextCtrl(panel, wx.ID ANY, "")

def onFocus(self, event):
print("panel received focus!")

__main__":
app = wx.App(False)
frame = MyForm().Show()
app.MainLoop()

if _name_ ==

® ® Focus Finder
This label cannot receive focus

Figure 8-7. Getting the text control to focus

Just for fun, try putting a StaticText control in there instead of a TextCtrl. Which
widget do you expect will get the focus? Depending on which platform you run the
following code on, you may end up finding that nothing is in focus. This happened to me
on Linux. On Windows 7, the panel was in focus. Back when I had Windows XP, it was
the Frame that got the focus. Anywayj, let’s take a look at the code.

128

CHAPTER 8 WORKING WITH EVENTS
import wx
class MyForm(wx.Frame):

def _init (self):
wx.Frame. init (self, None, title="Focus Finder")

panel = wx.Panel(self, wx.ID ANY)
panel.Bind(wx.EVT SET FOCUS, self.onFocus)
txt = wx.StaticText(

panel, label="This label cannot receive focus")

self.timer = wx.Timer(self)
self.Bind(wx.EVT_TIMER, self.onTimer)
self.timer.Start(1000)

def onFocus(self, event):
print("panel received focus!")

def onTimer(self, evt):

print('Focused window:", wx.Window.FindFocus())

if name_ ==" main_":
app = wx.App(False)
frame = MyForm().Show()
app.MainLoop()

The main takeaway here is that wx.Window.FindFocus() is a very useful function
and quite helpful when trying to figure out why the focus isn’t where you expect it to be.
Of course, some people would rather know when the mouse enters the frame and that
information can be had with EVT_ENTER_WINDOW (which I won’t be covering here).

129

CHAPTER 8 WORKING WITH EVENTS

® ® Losing Focus]

Test

Figure 8-8. Losing focus

Losing Focus

Now let’s take a quick look at wx.EVT_KILL_FOCUS. I've created a simple example with
just two controls. Try to guess what will happen if you tab between them.

import wx
class MyForm(wx.Frame):

def init (self):
wx.Frame. init_ (self, None, title="Losing Focus")

Add a panel so it looks the correct on all platforms
panel = wx.Panel(self, wx.ID ANY)

txt = wx.TextCtrl(panel, value="")
txt.Bind(wx.EVT _SET FOCUS, self.onFocus)
txt.Bind(wx.EVT_KILL FOCUS, self.onKillFocus)
btn = wx.Button(panel, wx.ID ANY, "Test")

130

CHAPTER 8 WORKING WITH EVENTS

sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(txt, 0, wx.ALL, 5)
sizer.Add(btn, 0, wx.ALL, 5)
panel.SetSizer(sizer)

def onFocus(self, event):
print("widget received focus!")

def onKillFocus(self, event):
print("widget lost focus!")

if name_ ==" main_":
app = wx.App(False)
frame = MyForm().Show()
app.MainLoop()

As you've probably surmised, as you tab between them, the TextCtrl is either firing
a kill focus or a set focus event. How do you know which widget is firing those events?
Look at my Bind methods. Only the text control is bound to focus events. As an exercise,
try binding the button to those handlers too and print out which widget is firing what.

The last focus event I'm going to mention is wx.EVT_CHILD_FOCUS, something
I've never used. This event is used to determine when a child widget has received focus
and to figure out which child it is. According to Robin Dunn, wx.lib.scrolledpanel uses
this event. One of my readers told me of about a handy use-case for wx.EVT_CHILD_
FOCUS: “you can use it on the frame to simply clear the Statusbar when you click any
other child widget. This way you don’t have an old ‘Error’ message or some such text in
the statusbar when you click a different child widget.”

At this point, you should know enough about how focusing works in wxPython that
you can use it yourself. You learned how to acquire focus in various circumstances. We
also created an application that can tell when it is in focus and when it is not. Finally we
learned about losing focus, which is also quite handy in certain circumstances.

131

CHAPTER 9

Drag and Drop

Recipe 9-1. How to Use Drag and Drop
Problem

Most computer users of this day and age use drag and drop (DnD) instinctively. You
probably used it to transfer some files from one folder to another this week! The
wxPython GUI (graphical user interface) toolkit provides DnD functionality baked in. In
this recipe, we’ll see just how easy it is to implement!

Solution

wxPython provides several different kinds of drag and drop. You can have one of the
following types:

o wx.FileDropTarget
o wx.TextDropTarget
¢ wx.PyDropTarget

The first two are pretty self-explanatory. The last one, wx.PyDropTarget, is just
a loose wrapper around wx.DropTarget itself. It adds a couple of extra convenience
methods that the plain wx.DropTarget doesn’t have. We'll start with a wx.FileDropTarget

example.

133
© Mike Driscoll 2018

M. Driscoll, wxPython Recipes, https://doi.org/10.1007/978-1-4842-3237-8_9

CHAPTER9 DRAG AND DROP

Creating a FileDropTarget

® ® DnD Tutorial

Drag some files here:

Figure 9-1. A FileDropTarget example

The wxPython toolkit makes the creation of a drop target pretty simple. You do have to
override a method to make it work right, but other than that, it’s pretty straightforward.
Let’s take a moment to look over this example code and then I'll spend some time
explaining it.

import wx

class MyFileDropTarget(wx.FileDropTarget):

def init (self, window):
nn "Constructorll nn

wx.FileDropTarget. init_(self)
self.window = window

def OnDropFiles(self, x, y, filenames):

When files are dropped, write where they were dropped and then
the file paths themselves

134

CHAPTER9 DRAG AND DROP

self.window.SetInsertionPointEnd()
self.window.updateText("\n%d file(s) dropped at %d,%d:\n" %
(len(filenames), x, y))
for filepath in filenames:
self.window.updateText(filepath + "\n")

return True

class DnDPanel(wx.Panel):

def init (self, parent):
"""Constructor
wx.Panel. init_ (self, parent=parent)

file drop_target = MyFileDropTarget(self)

1bl = wx.StaticText(self, label="Drag some files here:")
self.fileTextCtrl = wx.TextCtrl(self,
style=wx.TE_MULTILINE|wx.HSCROLL|wx.TE_READONLY)
self.fileTextCtrl.SetDropTarget(file drop target)

sizer = wx.BoxSizer(wx.VERTICAL)

sizer.Add(1bl, 0, wx.ALL, 5)
sizer.Add(self.fileTextCtrl, 1, wx.EXPAND|wx.ALL, 5)
self.SetSizer(sizer)

def SetInsertionPointEnd(self):

Put insertion point at end of text control to prevent overwriting

self.fileTextCtrl.SetInsertionPointEnd()

def updateText(self, text):

Write text to the text control

self.fileTextCtrl.WriteText(text)

135

CHAPTER9 DRAG AND DROP

class DnDFrame(wx.Frame):

def init (self):
"""Constructor
wx.Frame. init_ (self, parent=None, title="DnD Tutorial")
panel = DnDPanel(self)
self.Show()

if name_ ==" main_":
app = wx.App(False)
frame = DnDFrame()
app.MainLoop()

How It Works

That wasn’t too bad, was it? The first thing to do is to subclass wx.FileDropTarget,
which we do with our MyFileDropTarget class. Inside that we have one overridden
method, OnDropFiles. It accepts the x/y position of the mouse and the file paths that
are dropped, and then it writes those out to the text control. To hook up the drop target
to the text control, you'll want to look in the DnDPanel class where we call the text
control’s SetDropTarget method and set it to an instance of our drop target class. We
have two more methods in our panel class that the drop target class calls to update the
text control: SetInsertionPointEnd and updateText. Note that since we are passing the
panel object as the drop target, we can call these methods whatever we want to. If the
TextCtrl had been the drop target, we'd have to do it differently, which we will see in our

next example!

136

CHAPTER9 DRAG AND DROP
Creating a TextDropTarget

@ ® DnD Text Tutorial

Figure 9-2. A TextDropTarget example

The wx.TextDropTarget is used when you want to be able to DnD some selected text
into a text control. Probably one of the most common examples is dragging a URL on a
web page up to the address bar or some text up into the search box in Firefox. Let’s spend
some time learning how to create one of these kinds of drop targets in wxPython!

import wx
class MyTextDropTarget(wx.TextDropTarget):

def _init (self, textctrl):
wx.TextDropTarget. init (self)
self.textctrl = textctrl

def OnDropText(self, x, y, text):
self.textctrl.WriteText("(%d, %d)\n%s\n" % (x, y, text))
return True

def OnDragOver(self, x, y, d):
return wx.DragCopy

137

CHAPTER9 DRAG AND DROP

class DnDPanel(wx.Panel):

def init (self, parent):
Constructor"""
wx.Panel. init_ (self, parent=parent)

1bl = wx.StaticText(self, label="Drag some text here:")
self.myTextCtrl = wx.TextCtrl(

self, style=wx.TE_MULTILINE |wx.HSCROLL |wx.TE_READONLY)
text _dt = MyTextDropTarget(self.myTextCtrl)
self.myTextCtrl.SetDropTarget(text dt)

sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(self.myTextCtrl, 1, wx.EXPAND)
self.SetSizer(sizer)

def WriteText(self, text):
self.text.WriteText(text)

class DnDFrame(wx.Frame):

def init (self):
"""Constructor"""
wx.Frame. init (
self, parent=None, title="DnD Text Tutorial")
panel = DnDPanel(self)

self.Show()

if _name__ == " main_":
app = wx.App(False)
frame = DnDFrame()

app.MainLoop()

Once again we have to subclass our drop target class. In this case, I call it
MyTextDropTarget. In that class, we have to override OnDropText and OnDragOver.
I'was unable to find satisfactory documentation on the latter, but I'm guessing it just
returns a copy of the data dragged. The OnDropText method writes text out to the text

138

CHAPTER9 DRAG AND DROP

control. Note that since we've bound the drop target directly to the text control (see the
panel class) we have to use a method named WriteText to update the text control. If you
change it, you'll receive an error message.

Custom DnD with PyDropTarget

e e DnD URL Tutorial
Drag some URLS from your browser here:

Drag this URL to your browser: 4o mousevspython.com

Figure 9-3. A PyDropTarget Example

In case you haven'’t guessed yet, these examples have been slightly modified versions of
the DnD demos from the official wxPython demo. We’ll be using some code based on
their URLDragAnd-Drop demo to explain PyDropTarget. The fun bit about this demo is
that you not only get to create a widget that can accept dragged text but you also can drag
some text from another widget back to your browser! Let’s take a look.

import wx
class MyURLDropTarget(wx.PyDropTarget):

def init (self, window):
wx.PyDropTarget. init (self)
self.window = window

self.data = wx.URLDataObject();
self.SetDataObject(self.data)

def OnDragOver(self, x, y, d):
return wx.Draglink

def OnData(self, x, y, d):

139

CHAPTER9 DRAG AND DROP

if not self.GetData():
return wx.DragNone

url = self.data.GetURL()
self.window.AppendText(url + "\n")

return d

class DnDPanel(wx.Panel):

140

def _init (self, parent):

Constructor
wx.Panel. init (self, parent=parent)
font = wx.Font(12, wx.SWISS, wx.NORMAL, wx.BOLD, False)

create and setup first set of widgets
1bl = wx.StaticText(self,
label="Drag some URLS from your browser here:")
1bl.SetFont(font)
self.dropText = wx.TextCtrl(
self, size=(200,200),
style=wx.TE_MULTILINE|wx.HSCROLL|wx.TE_READONLY)
dt = MyURLDropTarget(self.dropText)
self.dropText.SetDropTarget(dt)
firstSizer = self.addWidgetsToSizer([1lbl, self.dropText])

create and setup second set of widgets

1bl = wx.StaticText(self, label="Drag this URL to your browser:")

1bl.SetFont(font)

self.draggableURLText = wx.TextCtrl(self,
value="http://www.mousevspython.com")

self.draggableURLText.Bind(wx.EVT_MOTION, self.OnStartDrag)

secondSizer = self.addwWidgetsToSizer([1bl, self.draggableURLText])

Add sizers to main sizer

mainSizer = wx.BoxSizer(wx.VERTICAL)
mainSizer.Add(firstSizer, 0, wx.EXPAND)
mainSizer.Add(secondSizer, 0, wx.EXPAND)
self.SetSizer(mainSizer)

CHAPTER9 DRAG AND DROP

def addWidgetsToSizer(self, widgets):

Returns a sizer full of widgets
sizer = wx.BoxSizer(wx.HORIZONTAL)
for widget in widgets:
if isinstance(widget, wx.TextCtrl):
sizer.Add(widget, 1, wx.EXPAND|wx.ALL, 5)
else:
sizer.Add(widget, 0, wx.ALL, 5)
return sizer

def OnStartDrag(self, evt):
if evt.Dragging():
url = self.draggableURLText.GetValue()
data = wx.URLDataObject()
data.SetURL(url)

dropSource = wx.DropSource(self.draggableURLText)
dropSource.SetData(data)
result = dropSource.DoDragDrop()

class DnDFrame(wx.Frame):

def init (self):
"""Constructor"""
wx.Frame. init (self, parent=None,
title="DnD URL Tutorial", size=(800,600))
panel = DnDPanel(self)

self.Show()

if name_ ==" main_":
app = wx.App(False)
frame = DnDFrame()

app.MainLoop()

141

CHAPTER9 DRAG AND DROP

The first class is our drop target class. Here we create a wx.URLDataObject that
stores our URL information. Then in the OnData method we extract the URL and
append it to the bound text control. In our panel class, we hook up the drop target in the
same way that we did in the other two examples, so we'll skip that and go on to the new
stuff. The second text control is where we need to pay attention. Here we bind the text
control to mouse movement via EVT_MOTION. In the mouse movement event handler
(OnStartDrag), we check to make sure that the user is dragging. If so, then we grab the
value from the text box and add it to a newly created URLDataObject. Next we create an
instance of a DropSource and pass it our second text control since it is the source. We
set the source’s data to the URLDataObject. Finally we call DoDragDrop on our drop
source (the text control) which will respond by moving, copying, canceling, or failing. If
you dragged the URL to your browser’s address bar, it will copy. Otherwise it probably
won’t work. Now let’s take what we’ve learned and create something original!

Note Some web browsers may not work with this code. For example, | was able
to make it work fine with Google Chrome on Linux but not with Mozilla Firefox.

Creating a Custom Drag-and-Drop App

[BON OLV DnD Tutorial

Name Date created Date modified Size
cat_o.jpg 08/16/2016 08:35 PM 08/16/2016 08:34 PM 229.97 KB
config.ini 08/22/2016 08:35 PM 08/22/2016 08:35 PM 369
darkMode.py 08/22/2016 08:31 PM 08/22/2016 08:31PM 194 KB
darkMode.pyc 08/22/2016 08:31 PM 08/22/2016 08:31PM 211 KB
generic.py 08/22/2016 08:45 PM 08/22/2016 08:45PM 2.80 KB
get_titles.py 08/17/2016 08:44 PM 08/17/2016 08:44 PM 245

Figure 9-4. A custom drag-and-drop application

I thought it would be fun to take the file drop target demo and make it into something

with an ObjectListView widget (a ListCtrl wrapper) that can tell us some information

about the files we're dropping into it. We'll be showing the following information: file

name, creation date, modified date, and file size. Here's the code.

142

CHAPTER9 DRAG AND DROP

import os
import stat
import time
import wx

from ObjectlListView import ObjectlListView, ColumnDefn

class MyFileDropTarget(wx.FileDropTarget):

def init (self, window):
Constructor"""
wx.FileDropTarget. init_ (self)
self.window = window

def OnDropFiles(self, x, y, filenames):

When files are dropped, update the display

self.window.updateDisplay(filenames)
return True

class FileInfo(object):

def _init (self, path, date created, date modified, size):

nn "Constructor" nn
self.name = os.path.basename(path)
self.path = path

self.date created = date created
self.date modified = date modified
self.size = size

class MainPanel(wx.Panel):

def init (self, parent):

Constructor"""

wx.Panel. init_(self, parent=parent)
self.file list = []

143

CHAPTER9 DRAG AND DROP

file drop target = MyFileDropTarget(self)
self.olv = ObjectListView(

self, style=wx.LC REPORT|wx.SUNKEN_BORDER)
self.olv.SetDropTarget(file drop target)
self.setFiles()

sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(self.olv, 1, wx.EXPAND)
self.SetSizer(sizer)
def updateDisplay(self, file list):
for path in file list:
file stats = os.stat(path)
creation time = time.strftime(
"%m/%d/%Y KL:%M %p",
time.localtime(file stats[stat.ST CTIME]))
modified time = time.strftime(
"%m/%d/%Y KL:%M %p",
time.localtime(file stats[stat.ST MTIME]))
file size = file stats[stat.ST SIZE]
if file size > 1024:
file size = file_size / 1024.0
file size = "%.2f KB" % file size

self.file list.append(FileInfo(path,
creation_time,
modified time,
file size))

self.olv.SetObjects(self.file list)

def setFiles(self):

self.olv.SetColumns ([
ColumnDefn("Name", "left", 220, "name"),
ColumnDefn("Date created", "left", 150, "date created"),

144

CHAPTER9 DRAG AND DROP

ColumnDefn("Date modified", "left", 150, "date modified"),
ColumnDefn("Size", "left", 100, "size"

D
self.olv.SetObjects(self.file list)

class MainFrame(wx.Frame):

def init (self):
Constructor"""
wx.Frame. init (self, None,
title="OLV DnD Tutorial", size=(800,600))
panel = MainPanel(self)
self.Show()

def main():
app = wx.App(False)
frame = MainFrame()
app.MainLoop()

if _name_ == " main_":

main()

Most of this stuff you've seen before. We have our FileDropTarget subclass, we
connect the panel to it, and then we connect the ObjectListView widget to the drop
target instance. We also have a generic class for holding our file-related data. If you
run this program and drop folders into it, you won’t receive the correct file size. You
would probably need to walk the folder and add up the sizes of the files therein to get
that to work. Feel free to fix that on your own. Anyway, the meat of the program is in the
updateDisplay method. Here we grab the file’s vital statistics and convert them into more
readable formats as most people don’t understand dates that are in seconds since the
epoch. Once we've massaged the data a bit, we display it. Now wasn'’t that pretty cool?

You should now know how to do at least three different types of DnD in wxPython.
Ideally, you will use this new information responsibly and create some fresh open source
applications in the near future. Good luck!

145

CHAPTER9 DRAG AND DROP

Recipe 9-2. How to Drag and Drop a File from Your
App to the 0S

Problem

A somewhat common use case that you will come across is the need to be able to drag
and drop a file from your own custom application to the file system. In the previous
recipe you saw an example of dragging files into your application. Now we'll be looking

at dragging them out.

Solution
® 0 DnD Files
Name Ext Size Modified
cat.jpg .jpg 95082 B 2016-08-16 20:43
cat_o.jpg Jpg 235491 B 2016-08-16 20:34
config.ini .ini 369 B 2016-08-22 20:35
darkMode.py .py 1985 B 2016-08-22 20:31
darkMode.pyc .pyc 2163 B 2016-08-22 20:31
generic.py .py 2464 B 2016-08-22 20:40
get_titles.py .py 245 B 2016-08-17 20:44
wxcook.wpr wpr 537 B 2016-08-16 20:13
wxcook.wpu wpu 19199 B 2016-08-22 20:40

Figure 9-5. A custom DnD application

You will probably want to use a wx.ListCtrl or an ObjectListView widget as they would
be the most common widgets to display file information with. For this example, we will
use the wx.ListCtrl. Let’s take a look at some code.

import wx
import os
import time
class MyListCtrl(wx.ListCtrl):
def init (self, parent, id):
wx.ListCtrl. init (self, parent, id,
style=wx.LC_REPORT)

146

CHAPTER9 DRAG AND DROP

files = os.listdir('.")

self.InsertColumn(0, 'Name")
self.InsertColumn(1, "Ext')
self.InsertColumn(2, 'Size',

wx.LIST FORMAT RIGHT)
self.InsertColumn(3, 'Modified")

self.SetColumnWidth(o, 220)
self.SetColumnWidth(1, 70)
self.SetColumnWidth(2, 100)
self.SetColumnWidth(3, 420)

j=0
for i in files:
(name, ext) = os.path.splitext(i)

size = os.path.getsize(i)
sec = os.path.getmtime(i)
self.InsertStringItem(j, "{}{}".format(name, ext))
self.SetStringItem(j, 1, ext)
self.SetStringItem(j, 2, str(size) + ' B')
self.SetStringItem(

j, 3, time.strftime('%Y-%m-%d %H:%M",

time.localtime(sec)))

if os.path.isdir(i):
self.SetItemImage(j, 1)
elif 'py' in ext:
self.SetItemImage(j, 2)
elif 'jpg' in ext:
self.SetItemImage(j, 3)
elif 'pdf' in ext:
self.SetItemImage(j, 4)
else:
self.SetItemImage(j, 0)

147

CHAPTER9 DRAG AND DROP

if (§ %2) == o:
self.SetItemBackgroundColour(j, 'light blue')
j=j+1

class DnDFrame(wx.Frame):

def init (self):
wx.Frame. init_ (self, None, title='DnD Files')
panel = wx.Panel(self)

pl = MyListCtrl(panel, -1)
p1.Bind(wx.EVT _LIST BEGIN DRAG, self.onDrag)
sizer = wx.BoxSizer()

sizer.Add(p1, 1, wx.EXPAND)
panel.SetSizer(sizer)

self.Center()
self.Show(True)

def onDrag(self, event):
data = wx.FileDataObject()
obj = event.GetEventObject()
id = event.GetIndex()
filename = obj.GetItem(id).GetText()
dirname = os.path.dirname(os.path.abspath(
os.listdir(".")[0]))
fullpath = os.path.join(dirname, filename)

data.AddFile(fullpath)

dropSource = wx.DropSource(obj)
dropSource.SetData(data)

result = dropSource.DoDragDrop()
print(fullpath)

if name_ ==" main_"':
app = wx.App(False)
frame = DnDFrame()
app.MainLoop()

148

CHAPTER9 DRAG AND DROP

How It Works

There are a couple of important points here. First, you need to bind to EVT_LIST_
BEGIN_DRAG to catch the appropriate event. Then, in your handler, you need to create
a wx.FileDataObject object and use its AddFile method to append a full path to its
internal file list. According to the wxPython documentation, AddFile is Windows-only;
however, since Robin Dunn (creator of wxPython) recommends this method, I went
with it. I will note that it also worked for me on Xubuntu 14.04. Anyway, we also need to
define the DropSource and call its DoDragDrop method and you're done.

At this point you should have an idea of how you might make your own application
be able to drag a file from it to your Desktop. It’s really slick and I think it’s a really neat
little addition to your application.

149

CHAPTER 10

Working with Frames

Recipe 10-1. Using wx.Frame Styles
Problem

The wxPython Frame widget is used in almost all wxPython applications. It has the
Minimize, Maximize, and Close buttons on it as well as the caption along the top that
identifies the application. The wx.Frame class allows you to modify its styles in such

a way that you can remove or disable various buttons and features. In this chapter, we
will look at some of the ways that you can change the behavior of the wx.Frame widget.
Specifically, I will cover the following:

o Different ways to create a default frame

e How to create a frame without a caption (i.e., no title bar)

e How to create a frame with a disabled Close button

¢ How to create a frame without a Maximize or Minimize button
o How to create a frame that cannot be resized

e How to create a frame without the system menu

e How to make your frame stay on top of other windows

151
© Mike Driscoll 2018

M. Driscoll, wxPython Recipes, https://doi.org/10.1007/978-1-4842-3237-8_10

CHAPTER 10 WORKING WITH FRAMES

Solution(s)

' © ® Default Frame

Figure 10-1. The default frame style

It’s always a good idea to look at how the default style works and then modify that to
see what happens. So let’s start with the frame’s default style: wx. DEFAULT_FRAME _
STYLE. You can create a frame that uses wx.DEFAULT_FRAME_STYLE (or its
equivalent) in three different ways. The first and easiest is to just do something like the
following:

import wx

class DefaultFrame(wx.Frame):

The default frame

def init (self):

Constructor
wx.Frame. init (self, None, title="Default Frame")
panel = wx.Panel(self)

self.Show()

if _name__ == "_ main_":
app = wx.App(False)
frame = DefaultFrame()

app.MainLoop()

152

CHAPTER 10 WORKING WITH FRAMES

How It Works

This will create a normal frame with all the normal functionality any user would expect.
Now let’s change it slightly by passing it the wx. DEFAULT_FRAME_STYLE.

import wx

class DefaultFrame(wx.Frame):

The default frame

def init (self):

Constructor

wx.Frame. init (self, None, title="Default Frame",
style=wx.DEFAULT FRAME_STYLE)

panel = wx.Panel(self)

self.Show()

if name_ ==" main_":
app = wx.App(False)
frame = DefaultFrame()
app.MainLoop()

This code does EXACTLY the same thing as the previous code. Now if you do a little
research, you'll find out that wx. DEFAULT_FRAME_STYLE is the equivalent of passing
the following:

wx.MINIMIZE BOX | wx.MAXIMIZE BOX | wx.RESIZE BORDER | wx.SYSTEM MENU
| wx.CAPTION | wx.CLOSE BOX | wx.CLIP CHILDREN

So let’s modify our code one more time to show how that would work.
import wx

class DefaultFrame(wx.Frame):

The default frame

153

CHAPTER 10 WORKING WITH FRAMES

def _init (self):
"""Constructor"""
default = (wx.MINIMIZE BOX | wx.MAXIMIZE BOX | wx.RESIZE BORDER
| wx.SYSTEM MENU | wx.CAPTION | wx.CLOSE_BOX
| wx.CLIP_CHILDREN)
wx.Frame. init (self, None, title="Default Frame", style=default)
panel = wx.Panel(self)
self.Show()

if _name__ == "_ main_":
app = wx.App(False)
frame = DefaultFrame()
app.MainLoop()

That was easy. Now we’re ready to start experimenting!

Create a Frame Without a Caption

Figure 10-2. A frame with no caption

Let’s create a frame that doesn’t have a caption (see Figure 10-2). The caption is what
holds the buttons along the top of the frame along with the title of the application.

154

CHAPTER 10 WORKING WITH FRAMES

import wx

class NoCaptionFrame(wx.Frame):

def init (self):

Constructor"""

no_caption = (wx.MINIMIZE BOX | wx.MAXIMIZE BOX | wx.RESIZE BORDER
| wx.SYSTEM MENU | wx.CLOSE_BOX | wx.CLIP CHILDREN)

wx.Frame. init (self, None, title="No Caption", style=no caption)

panel = wx.Panel(self)

self.Show()

__main_ ":

if name ==
app = wx.App(False)
frame = NoCaptionFrame()
app.MainLoop()

When this code is run, the panel is squashed up in the upper left-hand corner of the
frame. You can resize the frame and the panel will “snap” into place, but it’s kind of weird
looking. You might also note that you cannot close this application since there is no
Close button on it. You will need to kill your Python process to close this application.

Note This particular piece of code does not remove the caption on Mac 0S X El
Capitan.

155

CHAPTER 10 WORKING WITH FRAMES

Create a Frame with a Disabled Close Button

@ No Close

Figure 10-3. A frame with a disabled Close button

Some programmers think they need a frame where there’s no Close button. Well you
can’t really remove the Close button (on Windows) and keep the other buttons at

the same time, but you can disable the Close button. On Linux, the Close button actually
does get removed. Here’s the code.

import wx

class NoCloseFrame(wx.Frame):

This frame has no close box and the close menu is disabled

def init (self):

Constructor

no_close = (wx.MINIMIZE BOX | wx.MAXIMIZE BOX | wx.RESIZE BORDER
| wx.SYSTEM MENU | wx.CAPTION | wx.CLIP_CHILDREN)

wx.Frame. init (self, None, title="No Close", style=no _close)

panel = wx.Panel(self)

self.Show()

if _name__ == " main_":
app = wx.App(False)
frame = NoCloseFrame()

app.MainLoop()

156

CHAPTER 10 WORKING WITH FRAMES

Of course, on Windows you cannot close this application either, so this is a rather
annoying application. You'll probably want to add a wx.Button that can close it instead.
On Linux, you can close it by double-clicking the top left corner.

Create a Frame Without Maximize/Minimize

® | No Max/Min ﬁ

A

Figure 10-4. A frame without a Maximize or Minimize button

Sometimes you’ll want to create an application that you cannot minimize or maximize.
If you're going to go that far, let’s make an application that also doesn’t show up in the
taskbar!

import wx

class NoMaxMinFrame(wx.Frame):

This frame does not have maximize or minimize buttons

def init (self):

Constructor
no_caption = (wx.RESIZE BORDER | wx.SYSTEM MENU | wx.CAPTION

157

CHAPTER 10 WORKING WITH FRAMES

| wx.CLOSE BOX | wx.CLIP CHILDREN

| wx.FRAME_NO TASKBAR)
wx.Frame. init_ (self, None, title="No Max/Min", style=no_caption)
panel = wx.Panel(self)
self.Show()

__main_ ":
app = wx.App(False)
frame = NoMaxMinFrame()

if name ==

app.MainLoop()

Asyou can see, we just removed the wx.MINIMIZE_BOX and wx.MAXIMIZE_BOX
style flags and added the wx.FRAME_NO_TASKBAR style flag. This works just fine on
Windows 7, but on Linux and Mac OS X I noticed that the Maximize button wasn’t removed.

Create a Un-Resizable Frame

@ No Resize

Figure 10-5. A frame that cannot be resized

Occasionally you'll want to create a frame that cannot be resized. You could use
SetSizeHints or you could just set some frame style flags. We’ll be doing the latter here.

import wx

class NoResizeFrame(wx.Frame):
This frame cannot be resized. It can only be minimized
and closed

158

CHAPTER 10 WORKING WITH FRAMES

def _init (self):
"""Constructor
no_resize = wx.DEFAULT FRAME STYLE & ~ (wx.RESIZE BORDER |
wx .MAXIMIZE BOX)
wx.Frame. init (self, None, title="No Resize", style=no resize)
panel = wx.Panel(self)
self.Show()

if _name__ == " main_":

app = wx.App(False)
frame = NoResizeFrame()
app.MainLoop()

Note that here we use bitwise operators to remove three style flags from the
wx.DEFAULT FRAME_STYLE. As you can see, this gives us a frame that we cannot resize
in any way.

Create a Frame Without a System Menu

No System Menu

Figure 10-6. A frame without a system menu

This is a rather silly requirement, but I've seen people ask for it. Basically, they want to
remove all the buttons, but leave the title. Here’s how to do that.

import wx

class NoSystemMenuFrame(wx.Frame):

There is no system menu, which means the title bar is there, but
no buttons and no menu when clicking the top left hand corner

159

CHAPTER 10 WORKING WITH FRAMES

of the frame

def init (self):
"""Constructor"""
no_sys_menu = wx.CAPTION
wx.Frame. init (self, None, title="No System Menu",

style=no_sys menu)
panel = wx.Panel(self)
self.Show()

__main_ ":

if name ==
app = wx.App(False)
frame = NoSystemMenuFrame()

app.MainLoop()
You will note that all we changed was the reduction of the style flags down to just

one: wx.CAPTION.

Create a Frame That Stays on Top

i EET)

| Stay on top

.

Figure 10-7. A frame that stays on top of other applications

160

CHAPTER 10 WORKING WITH FRAMES

A lot of programmers ask about this one. They want their application to stay on top of
all the others. While there isn’t a completely foolproof way to accomplish this, the little
recipe that follows will work most of the time:

import wx

class StayOnTopFrame(wx.Frame):

A frame that stays on top of all the others

def _init (self):

Constructor
on_top = wx.DEFAULT FRAME_STYLE | wx.STAY ON_TOP
wx.Frame. init (self, None, title="Stay on top", style=on_top)
panel = wx.Panel(self)

self.Show()

__main_ ":
app = wx.App(False)
frame = StayOnTopFrame()
app.MainLoop()

if _name ==

Here we just use the default style flag and add on wx.STAY_ON_TOP.

Note This example does not work on Mac OS X El Capitan.

At this point, you should know how to edit almost all the frame’s styles. There are a
couple of other style flags that are OS dependent (like wx.ICONIZE) or just aren’t that
useful. To learn about those flags, I recommend checking out the documentation. In the
meantime, go forth and use your knowledge wisely.

161

CHAPTER 10 WORKING WITH FRAMES

Recipe 10-2. Making Your Frame Maximize or Full
Screen

Problem

Sometimes you will create an application that you want to load so that it’s maximized
right when it opens. While we will look at how that is accomplished in this recipe, we
will also take it one step further and learn how to make our application full screen. A full
screen application will actually run in such a way that you cannot see anything else on
that screen (i.e., not even the taskbar).

Solution

As I mentioned in the introduction, occasionally you will want your wxPython
application to be maximized when you first load it. Or perhaps you’ll want to have a
subframe maximized. This is really easy to do in wxPython, but there is a little “gotcha” to
watch out for. Let’s look at the code before we discuss the gotcha though.

import wx

class MyPanel(wx.Panel):

def init (self, parent):

wx.Panel. init (self, parent)

class MyFrame(wx.Frame):

def init (self):
wx.Frame. init (self, None, title="Test Maximize")
panel = MyPanel(self)
self.Show()
self.Maximize(True)

162

CHAPTER 10 WORKING WITH FRAMES

if _name_ == " main_":
app = wx.App(False)
frame = MyFrame()

app.MainLoop()

How It Works

Here we have a pretty standard setup using two classes, one a subclass of wx.Panel
and the other a subclass of wx.Frame. To get it to Maximize, we just call the frame’s
Maximize() method. Here’s where the gotcha comes in though. If you call Maximize
before you call Show(), you may see a glitch. For example, when I called Maximize
first on Windows 7, the panel didn’t stretch to fully cover the frame correctly (see the
screenshot in Figure 10-8).

e S e, s e

Figure 10-8. A glitch in maximizing the frame

As you can see, the frame is showing a little on the right-hand side and along the
bottom (the darker gray). So if you run the aforementioned code, the panel will cover the
frame like it’s supposed to and it will look uniform. T am only aware of this problem on
Windows. It works fine on Mac OS X El Capitan.

Occasionally you might need to also call your frame’s Raise() method to make it
show up on top or at least cause the taskbar to blink a bit to get the user’s attention.

163

CHAPTER 10 WORKING WITH FRAMES

Making Your Application Full Screen

Personally, I haven’t found many good use cases for going full screen (i.e., covering up
the entire screen) except for maybe a screen saver type of application or perhaps a photo

viewer. But regardless, following is the usual way to accomplish this task:

import wx

class MyPanel(wx.Panel):

def

def

__init_ (self, parent):

Constructor
wx.Panel. init (self, parent)

self.Bind(wx.EVT_KEY DOWN, self.onKey)

onKey(self, event):

Check for ESC key press and exit is ESC is pressed
key code = event.GetKeyCode()
if key code == wx.WXK_ESCAPE:
self.GetParent().Close()
else:
event.Skip()

class MyFrame(wx.Frame):

def _init (self):

if name ==

Constructor
wx.Frame. init (self, None, title="Test FullScreen")
panel = MyPanel(self)

self.ShowFullScreen(True)

__main_ ":

app = wx.App(False)
frame = MyFrame()

app.MainLoop()

164

CHAPTER 10 WORKING WITH FRAMES

Note that because the application is full screen, there is no title bar with a Close
button, so there’s no good way to close the application. Thus I added an event handler
for key events such that the user can press ESC to close the application.

Note This example may not work on all platforms.

At this point, you should be familiar with how to make your own wxPython
application go into a maximized state or even full screen right after starting. I think Mac
users will probably find this particular recipe the most useful as I have seen a lot of Mac
power users who like to full screen their applications.

Recipe 10-3. Ensuring Only One Instance per Frame
Problem

The other day, I came across an interesting StackOverflow question where the fellow
was trying to figure out how to open a subframe only once. Basically he wanted a single
instance of the subframe (and other subframes). After digging around a bit on Google, I
found an old thread from the wxPython Google Group that had an interesting approach
to doing what was needed.

Solution

Basically it required a bit of meta-programming, but it was a fun little exercise that I
thought the readers of this book would find it interesting. Here’s the code.

import wx

class MyPanel(wx.Panel):

def _init (self, parent):

Constructor
wx.Panel. init (self, parent)

165

CHAPTER 10 WORKING WITH FRAMES

class SingleInstanceFrame(wx.Frame):

instance = None
init = 0
def new (self, *args, **kwargs):
if self.instance is None:
self.instance = wx.Frame. new (self)

elif not self.instance:
self.instance = wx.Frame. new (self)

return self.instance

def _init (self):

Constructor
print(id(self))
if self.init:
return
self.init = 1

wx.Frame. init (self, None, title="Single Instance Frame")
panel = MyPanel(self)
self.Show()

class MainFrame(wx.Frame):

def init (self):
"""Constructor
wx.Frame. init_ (self, None, title="Main Frame")
panel = MyPanel(self)
btn = wx.Button(panel, label="Open Frame")
btn.Bind(wx.EVT_BUTTON, self.open_frame)
self.Show()

166

CHAPTER 10 WORKING WITH FRAMES

def open_frame(self, event):
frame = SingleInstanceFrame()

if name_ ==" main_"':
app = wx.App(False)
frame = MainFrame()
app.MainLoop()

The meat of this code is in the SingleInstanceFrame class, specifically in the
new__ method. Here we check to see if the variable self.instance is set to None. If so,
we create a new instance. We will also create a new instance if the user closes the frame.
This is what the elif statement is for. It checks to see if the instance has been deleted and
if it has, it creates a new instance.

You will also notice that we have a variable called self.init. This is used to check if
the instance has already been initialized. If so, __init__ will just return instead of re-
instantiating everything. Anyway, I hope you found that enlightening.

This recipe demonstrates the singleton pattern of programming which proves to be
quite useful in solving this problem. When you want only one frame to be opened on a
button press, using the singleton pattern is the way to go.

167

CHAPTER 11

wxPython and
the System Tray

Recipe 11-1. Creating Taskbar Icons
Problem

Have you ever wondered how to create those little status icons in the Windows System
Tray that usually appear on the lower right of your screen? The wxPython toolkit provides
a pretty simple way to do just that and this chapter will walk you through the process.

You will need to find an icon file to use or create a Python image file via the img2py
utility that was mentioned in Recipe 2-2 back in Chapter 2.

Solution

We will look at how to create the TaskBarIcon in both Classic wxPython and in the new
wxPython 4 (Phoenix).

Creating the TaskBarlcon in Classic

Creating a TaskBarIcon subclass is your first step to using it in your application. The
subclass is not particularly hard to create, but you do need to know which methods to
override to make it work correctly. Let’s look at an example for wxPython Classic.

import wx

class PythonIcon(wx.TaskBarIcon):
TBMENU_RESTORE = wx.NewId()
TBMENU CLOSE = wx.NewId()

169
© Mike Driscoll 2018

M. Driscoll, wxPython Recipes, https://doi.org/10.1007/978-1-4842-3237-8_11

CHAPTER 11 WXPYTHON AND THE SYSTEM TRAY

170

TBMENU_CHANGE
TBMENU_REMOVE

def

def

def

def

wx.NewId()
wx.NewId()

__init_ (self, frame):
wx.TaskBarIcon. init (self)
self.frame = frame

Set the image
icon = wx.Icon('python.ico', wx.BITMAP TYPE ICO)

self.SetIcon(icon, "Python")

bind some events
self.Bind(wx.EVT _MENU, self.OnTaskBarClose, id=self.TBMENU CLOSE)
self.Bind(wx.EVT_TASKBAR LEFT DOWN, self.OnTaskBarLeftClick)

CreatePopupMenu(self, evt=None):

This method is called by the base class when it needs to popup
the menu for the default EVT RIGHT DOWN event. Just create
the menu how you want it and return it from this function,
the base class takes care of the rest.

menu = wx.Menu()

menu.Append(self.TBMENU_RESTORE, "Open Program")
menu.Append(self.TBMENU CHANGE, "Show all the Items")
menu.AppendSeparator()

menu.Append(self.TBMENU_CLOSE, "Exit Program")

return menu

OnTaskBarActivate(self, evt):

pass

OnTaskBarClose(self, evt):

Destroy the taskbar icon and frame from the taskbar icon itself

self.frame.Close()

CHAPTER 11 WXPYTHON AND THE SYSTEM TRAY

def OnTaskBarLeftClick(self, evt):

Create the right-click menu
menu = self.CreatePopupMenu()
self.PopupMenu(menu)
menu.Destroy()

How It Works

This first class is based on one that you can find in the wxPython demo package. As
mentioned earlier, you will note that we are subclassing wx.TaskBarIcon. We set its icon
to something and also set its mouse-over help string. If you mouse-over the image in
your toolbar, you should see the text appear. Then we bind a few events. One event will
open a pop-up menu on a right-click. Yes, I know it says you're binding to the left-click
button, but that’s not how it works in this case. Anyway we also set it up such that when
you right-click, you can choose to do a few options. We only have a couple of the options
actually do anything though. You will note that we call the frame’s Close method to close
the frame.

Let’s actually add a class that utilizes our task bar icon.

class MyForm(wx.Frame):

def init (self):
wx.Frame. init (self, None, title="TaskBarIcon Tutorial",
size=(500,500))
panel = wx.Panel(self)
self.tbIcon = PythonIcon(self)
self.Bind(wx.EVT_CLOSE, self.onClose)

def onClose(self, evt):

Destroy the taskbar icon and the frame

self.tbIcon.RemoveIcon()
self.tbIcon.Destroy()
self.Destroy()

171

CHAPTER 11 WXPYTHON AND THE SYSTEM TRAY

if _name_ == " main_":
app = wx.App(False)
frame = MyForm().Show()

app.MainLoop()

Here we basically just instantiate the TaskBarIcon class that we created earlier
and we bind the frame to EVT_CLOSE. You might wonder about this. There are some
“gotchas” with using the TaskBarIcon on Windows. If I just tell the frame to close, it
closes just fine, but the icon remains and Python just kind of hangs in la la land. If you
only allow the user to close using the task bar icon’s right-click menu, then you could
just add a Removelcon method and a self.Destroy() there and you'd be good to go (for
some reason, Removelcon isn’t enough to get rid of the TaskBarIcon, so you also need
to tell it to Destroy itself too) But if you allow the user to press the little “X” in the upper
right-hand corner, then you’ll need to catch EVT_CLOSE and deal with it appropriately.
When you do catch this event, you cannot just call self.Close() or you'll end up in an
infinite loop, which is why we call self.Destroy() instead.

Creating the TaskBarlcon in wxPython 4

Creating a TaskBarIcon in wxPython 4 is slightly different than it was in Classic due to the
fact that the TaskBarIcon class was moved to wx.adv. For completeness, I am including
an updated example for wxPython 4 in the code that follows:

import wx
import wx.adv

class PythonIcon(wx.adv.TaskBarIcon):

TBMENU_RESTORE = wx.NewId()
TBMENU _CLOSE = wx.NewId()
TBMENU_CHANGE = wx.NewId()
TBMENU_REMOVE = wx.NewId()

def init (self, frame):
wx.adv.TaskBarIcon. init (self)
self.frame = frame

172

def

def

def

def

CHAPTER 11 WXPYTHON AND THE SYSTEM TRAY

Set the image
icon = wx.Icon('python.ico", wx.BITMAP TYPE ICO)

self.SetIcon(icon, "Python")

bind some events
self.Bind(wx.EVT_MENU, self.OnTaskBarClose, id=self.TBMENU CLOSE)
self.Bind(wx.adv.EVT_TASKBAR_LEFT_DOWN, self.OnTaskBarLeftClick)

CreatePopupMenu(self, evt=None):

This method is called by the base class when it needs to popup
the menu for the default EVT RIGHT DOWN event. Just create
the menu how you want it and return it from this function,
the base class takes care of the rest.

menu = wx.Menu()

menu.Append(self.TBMENU RESTORE, "Open Program")
menu.Append(self.TBMENU_CHANGE, "Show all the Items")
menu.AppendSeparator ()

menu.Append(self.TBMENU CLOSE, "Exit Program")

return menu

OnTaskBarActivate(self, evt):

pass

OnTaskBarClose(self, evt):

Destroy the taskbar icon and frame from the taskbar icon itself

self.frame.Close()

OnTaskBarLeftClick(self, evt):

173

CHAPTER 11 WXPYTHON AND THE SYSTEM TRAY

Create the right-click menu
menu = self.CreatePopupMenu()
self.PopupMenu(menu)
menu.Destroy()

class MyForm(wx.Frame):

def init (self):
wx.Frame. init (self, None, title="TaskBarIcon Tutorial",
size=(500,500))
panel = wx.Panel(self)
self.tbIcon = PythonIcon(self)
self.Bind(wx.EVT_CLOSE, self.onClose)

def onClose(self, evt):

Destroy the taskbar icon and the frame
self.tbIcon.RemoveIcon()
self.tbIcon.Destroy()

self.Destroy()

if _name__ == "_ main_":
app = wx.App(False)
frame = MyForm().Show()

app.MainLoop()

The main difference here is where we import wx.adv and then use that when we
define and initialize the TaskBarIcon. The other change is in the binding of the
EVT_TASKBAR_LEFT _DOWN which was also moved into wx.adv. Once that’s done,
the rest of the code remains the same and everything just works!

Now you should be able to create your own application that includes a TaskBarIcon.
I'highly recommend looking at the wxPython demo to see what else you can do with it.
I think adding an icon can add a bit of polish to your application, especially if you need
to have it running hidden for a while and then make it pop up at the user’s command.

174

CHAPTER 11 WXPYTHON AND THE SYSTEM TRAY

Recipe 11-2. Minimizing to the System Tray
Problem

This recipe is on a topic that I know users ask about every once in a while. Making
wxPython minimize the frame to the system tray is really quite simple. We'll start out by
looking at the code to create a TaskBarIcon and then we’ll move on to creating a simple

application that can be minimized to the system tray.

Note This recipe does not work on Mac OS.

Solution

Creating a task bar icon is very easy to do in wxPython, especially if you already have an
icon file.
Let’s take a look at one simple approach.

import wx

class CustomTaskBarIcon(wx.TaskBarIcon):

def _init_ (self, frame):
Constructor"""
wx.TaskBarIcon. init (self)
self.frame = frame

icon = wx.Icon('python.ico', wx.BITMAP_TYPE_ICO)
self.SetIcon(icon, "Restore")
self.Bind(wx.EVT_TASKBAR LEFT DOWN, self.OnTaskBarLeftClick)

def OnTaskBarActivate(self, evt):

pass

def OnTaskBarClose(self, evt):

175

CHAPTER 11 WXPYTHON AND THE SYSTEM TRAY

Destroy the taskbar icon and frame from the taskbar icon itself

self.frame.Close()

def OnTaskBarLeftClick(self, evt):

Create the right-click menu

self.frame.Show()
self.frame.Restore()

How It Works

As you can see here, all we needed to do was pass the path of the icon file to wx.Icon and
tell it what file type we gave it. Then we just call the wx.TaskBarIcon’s SetIcon() method
to set the icon. If you don’t have an icon file, then you could use the following alternate
method to create one from another image type:

img = wx.Image(“24x24.png’, wx.BITMAP_TYPE_ANY)
bmp = wx.BitmapFromImage(img)

self.icon = wx.Emptylcon()
self.icon.CopyFromBitmap(bmp)
self.Setlcon(self.icon, “Restore”)

In this case, we have to jump through a couple of hoops to turn a PNG file into
a format that can be used by wx’s icon methods. You'll note that we bind to EVT_
TASKBAR_LEFT _DOWN so that when the user clicks the icon, we can restore the
window.

Note As mentioned in the previous recipe, you will need to update this code to
make it work in wxPython 4 as the TaskBarlcon class was moved into wx.adv.
If you are using wxPython 4, then you’ll want the code to look as follows:

176

CHAPTER 11 WXPYTHON AND THE SYSTEM TRAY

custTray.py

import wx

import wx.adv

class CustomTaskBarIcon(wx.adv.TaskBarIcon):

def

def

def

def

__init_ (self, frame):
"""Constructor

wx.adv.TaskBarIcon. init (self)
self.frame = frame

icon = wx.Icon('python.ico", wx.BITMAP TYPE ICO)
self.SetIcon(icon, "Restore")
self.Bind(wx.adv.EVT _TASKBAR LEFT DOWN, self.OnTaskBarLeftClick)

OnTaskBarActivate(self, evt):

pass

OnTaskBarClose(self, evt):

Destroy the taskbar icon and frame from the taskbar icon itself

self.frame.Close()

OnTaskBarLeftClick(self, evt):

Create the right-click menu

self.frame.Show()
self.frame.Restore()

There are examples of both in the book’s code examples. Let’s move on to creating

the application that actually minimizes!

177

CHAPTER 11 WXPYTHON AND THE SYSTEM TRAY

Making the Application Minimize to Tray

Now we're ready to create an application that can minimize to the system tray. Let’s write
some code.

import custTray
import wx

class MainFrame(wx.Frame):

def init (self):
"""Constructor"""

wx.Frame. init (self, None, title="Minimize to Tray")

panel = wx.Panel(self)

self.tbIcon = custTray.CustomTaskBarIcon(self)

self.Bind(wx.EVT ICONIZE, self.onMinimize)
self.Bind(wx.EVT _CLOSE, self.onClose)

self.Show()

def onClose(self, evt):

Destroy the taskbar icon and the frame
self.tbIcon.RemoveIcon()
self.tbIcon.Destroy()

self.Destroy()

def onMinimize(self, event):

When minimizing, hide the frame so it "minimizes to tray"

if self.IsIconized():
self.Hide()

def main():

178

CHAPTER 11 WXPYTHON AND THE SYSTEM TRAY

app = wx.App(False)
frame = MainFrame()
app.MainLoop()

if name_ ==" main_":

main()

Here we have two event bindings: one for EVT_CLOSE and the other for EVT_ICONIZE.
The latter fires when the user minimizes the frame, so we use that to minimize to the
tray, which is really just hiding the frame. The other event fires when you close the frame
and it’s a little more important. Why? Well you need to catch the close event in case
the user tries to close the application via the tray icon. And you need to make sure you
remove the icon and destroy it or your application will appear to close but actually just
hang in the background.

Now you know how to minimize your wxPython application to the system tray
area. I've used this for a simple e-mail checking program before. You could use it for
lots of other things, such as a monitor that responds to events by raising the frame to
prominence.

179

CHAPTER 12

Fun with Panels

Recipe 12-1. Making a Panel Self-Destruct
Problem

A few years ago I saw a question on the popular StackOverflow web site asking how to
dynamically destroy and create panels after a certain amount of time has passed. It was
such an interesting idea that I decided to go ahead and write about how to do it. All you
really need is a wx.Timer and the panel object. For this piece of code, I used a panel
that displays a countdown with a wx.StaticText widget, destroys itself, and is promptly
replaced with another panel.

Solution

Let’s take a look at the following code to do this little piece of magic:
import wx

class PanelOne(wx.Panel):

def _init (self, parent):
"""Constructor
wx.Panel. init (self, parent)

msg = "This panel will self-destruct in 10 seconds”
self.countdown = wx.StaticText(self, label=msg)

class PanelTwo(wx.Panel):

181
© Mike Driscoll 2018

M. Driscoll, wxPython Recipes, https://doi.org/10.1007/978-1-4842-3237-8_12

CHAPTER 12 FUN WITH PANELS

def _init (self, parent):
"""Constructor
wx.Panel. init (self, parent)

txt = wx.StaticText(self, label="Panel Two")

class MainFrame(wx.Frame):

def _init (self):

"""Constructor"""

wx.Frame. init (self, None, title="Panel Smacker")
self.panelOne = PanelOne(self)

self.time2die = 10

self.timer = wx.Timer(self)
self.Bind(wx.EVT _TIMER, self.update, self.timer)
self.timer.Start(1000)

self.sizer = wx.BoxSizer(wx.VERTICAL)
self.sizer.Add(self.panelOne, 1, wx.EXPAND)
self.SetSizer(self.sizer)

def update(self, event):

if self.time2die < 0:
self.panelOne.Destroy()
self.panelTwo = PanelTwo(self)
self.sizer.Add(self.panelTwo, 1, wx.EXPAND)
self.Layout()
self.timer.Stop()

else:
msg = "This panel will self-destruct in %s seconds" % self.
time2die
self.panelOne.countdown.SetLabel(msg)

self.time2die -= 1

182

CHAPTER 12 FUN WITH PANELS

if _name_ == " main_":

app = wx.App(False)
frame = MainFrame()
frame.Show()
app.MainLoop()

How It Works

When you run this code, you should see something like the image in Figure 12-1.

| NN) Panel Smacker
This panel will self-destruct in 0 seconds

Figure 12-1. Before panel destruction

It will then count down for ten seconds and you'll see the panel change into
something like the image in Figure 12-2.

183

CHAPTER 12 FUN WITH PANELS

' @ @ Panel Smacker
Panel Two

e —————————————————— |
Figure 12-2. After panel one is destroyed

Pretty neat, eh? All we needed to do was call the first panel’s Destroy() method when
the timer event fired. Then we created and added the second panel to the main sizer and
called the frame’s Layout() method to make it display correctly.

I thought this was a fun exercise and great for learning how to do something new. It
also demonstrates how easy it is to swap out wx.Panel objects when you need to. In fact,
switching panels is so useful that it is something that we'll be looking at some more in
the next recipe!

Recipe 12-2. How to Switch Between Panels
Problem

Every couple of months, I'll see someone asking how to switch between two views or
panels in a wxPython application that they’re working on. Since this is such a common
question and because someone asked it recently on the wxPython channel on IRC,

I wrote up a quick script that shows how it’s done. Note that, in most cases, the user will
probably find one of the many notebook widgets to be more than sufficient for their
needs. Anyway, let’s take a look at how to do this thing!

184

CHAPTER 12 FUN WITH PANELS

Solution

In this example, we’ll use a menu to toggle between two panels. The first panel will have
just a text control on it and the second panel will just have a grid widget.
Figure 12-3 shows the first panel.

@ Python File
® © Panel One Showing

Figure 12-3. Before switching panels

And Figure 12-4 shows the panel you can switch to.

185

CHAPTER 12 FUN WITH PANELS

@ Python File
® @ Panel Two Showing

A B Cc D

[]

W 00 N O OO B W N =

a
2

I e T S 7 4%, Wb 74 WA]

Figure 12-4. After switching to panel two

Now that you know that the end result will look like, let's take a look at the code that
will actually allow us to switch panels.

import wx
import wx.grid as gridlib

class PanelOne(wx.Panel):

def _init (self, parent):
"""Constructor

wx.Panel. init_(self, parent=parent)
txt = wx.TextCtrl(self)

class PanelTwo(wx.Panel):

def init (self, parent):
"""Constructor

wx.Panel. init_ (self, parent=parent)

186

CHAPTER 12

grid = gridlib.Grid(self)
grid.CreateGrid(25,12)

sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(grid, 0, wx.EXPAND)
self.SetSizer(sizer)

class MyForm(wx.Frame):

def

def

__init_ (self):
wx.Frame. init (self, None, wx.ID ANY,
"Panel Switcher Tutorial")

self.panel one = PanelOne(self)
self.panel two = PanelTwo(self)
self.panel two.Hide()

self.sizer = wx.BoxSizer(wx.VERTICAL)
self.sizer.Add(self.panel one, 1, wx.EXPAND)
self.sizer.Add(self.panel two, 1, wx.EXPAND)
self.SetSizer(self.sizer)

menubar = wx.MenuBar()
fileMenu = wx.Menu()
switch _panels menu_item = fileMenu.Append(
wx.ID ANY,
"Switch Panels",
"Some text")
self.Bind(wx.EVT_MENU, self.onSwitchPanels,
switch panels menu_item)
menubar.Append(fileMenu, '&File')
self.SetMenuBar (menubar)

onSwitchPanels(self, event):

Event handler called when we want to switch panels

if self.panel one.IsShown():
self.SetTitle("Panel Two Showing")

FUN WITH PANELS

187

CHAPTER 12 FUN WITH PANELS

self.panel one.Hide()
self.panel two.Show()
else:
self.SetTitle("Panel One Showing")
self.panel one.Show()
self.panel two.Hide()
self.Layout()

Run the program

if name_ ==" main_":
app = wx.App(False)
frame = MyForm()
frame.Show()

app.MainLoop()

How It Works

The only code that we care about is located in the onSwitchPanels event handler. Here
we use a conditional to check which panel is showing and then Hide the current one and
Show the other. We also set the frame’s title to make it obvious which panel is which. We
also need to call the frame’s Layout() method to make the panels visible. Otherwise, you
might see some weird visual anomalies like nothing really showing in the frame unless
you resize it slightly.

Now you know how to switch panels too. If you plan to do a lot of visual work, like
adding or deleting widgets, then you might want to look into the Freeze and Thaw
methods and then use Layout. They help hide the flickering that can be seen when you
modify a panel’s children.

Another common method of switching panels is to use tabs. The wxPython package
has a wx.Notebook widget that is made for just this sort of thing. In fact, wxPython
includes several other “Book” controls, such as wx.Toolbook and the AUI Notebook.
Check out the wxPython demo to see them in action!

188

CHAPTER 13

Using Objects in Widgets

Recipe 13-1. Using ObjectListView Instead
of ListCtrl

Problem

The wxPython ListCtrl is a very handy widget. Unfortunately, it can be a pain to use
as well. This discovery caused Phillip Piper, missionary to Mozambique, to write
ObjectListView, a wrapper for the wx.ListCtrl. It is now maintained by others in the
wxPython community.

ObjectListView actually adds functionality because it uses objects to create its
rows, and thus, it makes getting information from multiple columns much easier.
Mr. Piper also added lots of other conveniences that make adding custom editors easier,
alternating the color of rows, automatically sorting rows, and much, much more! This
chapter will help you learn some of the basics of using ObjectListView so that you'll
be able to use it in your future projects. It is not meant to be an exhaustive look at the
control as it is actually very well documented.

It should be noted that ObjectListView is not a drop-in replacement for a standard
list control. The setup is quite a bit different. Fortunately, you can install ObjectListView
with pip:

pip install objectlistview

189
© Mike Driscoll 2018

M. Driscoll, wxPython Recipes, https://doi.org/10.1007/978-1-4842-3237-8_13

CHAPTER 13 USING OBJECTS IN WIDGETS

Solution

Let’s look at a fairly simple example. We'll start by creating a simple class that
ObjectListView will use as its data model.

class Book(object):

Model of the Book object

Contains the following attributes:
"ISBN', 'Author', 'Manufacturer', 'Title'

def _init (self, title, author, isbn, mfg):
self.isbn = isbn
self.author = author
self.mfg = mfg
self.title = title

You can put this code into a separate file or add it to the wxPython code that we’ll be
looking at next. All this class does is define our data model, which will match up with the
columns in our ObjectListView widget. Now we're ready to look at the wxPython code.

import wx
from ObjectlListView import ObjectlListView, ColumnDefn

class MainPanel(wx.Panel):

def init (self, parent):
wx.Panel. init (self, parent=parent, id=wx.ID ANY)
self.products = [Book("wxPython in Action", "Robin Dunn",
"1932394621", "Manning"),
Book("Hello World", "Warren and Carter Sande",
"1933988495", "Manning")
]

self.dataOlv = ObjectListView(self, wx.ID_ ANY,

style=wx.LC_REPORT |wx.SUNKEN BORDER)
self.setBooks()

190

CHAPTER 13 USING OBJECTS IN WIDGETS

Allow the cell values to be edited when double-clicked (see
explanation after the code)
self.dataOlv.cellEditMode = ObjectlListView.CELLEDIT SINGLECLICK

create an update button
updateBtn = wx.Button(self, wx.ID ANY, "Update OLV")
updateBtn.Bind(wx.EVT BUTTON, self.updateControl)

Create some sizers
mainSizer = wx.BoxSizer(wx.VERTICAL)

mainSizer.Add(self.dataOlv, 1, wx.ALL|wx.EXPAND, 5)
mainSizer.Add(updateBtn, 0, wx.ALL|wx.CENTER, 5)
self.SetSizer(mainSizer)

def updateControl(self, event):

Update the object list view widget
print("updating...")
product dict = [
{"title":"Core Python Programming", "author":"Wesley Chun",
"isbn":"0132269937", "mfg":"Prentice Hall"},
{"title":"Python Programming for the Absolute Beginner",
"author":"Michael Dawson", "isbn":"1598631128",
"mfg":"Course Technology"},
{"title":"Learning Python", "author":"Mark Lutz",
"is data = self.products + product dict
self.dataOlv.SetObjects(data)

def setBooks(self, data=None):
self.data0lv.SetColumns([
ColumnDefn("Title", "left", 220, "title"),
ColumnDefn("Author", "left", 200, "author"),
ColumnDefn("ISBN", "right", 100, "isbn"),
ColumnDefn("Mfg", "left", 180, "mfg")

191

CHAPTER 13 USING OBJECTS IN WIDGETS

self.data0Olv.SetObjects(self.products)
class MainFrame(wx.Frame):

def _init (self):
wx.Frame. init (self, parent=None, id=wx.ID ANY,
title="ObjectListView Demo", size=(800,600))
panel = MainPanel(self)

class GenApp(wx.App):

def _init (self, redirect=False, filename=None):
wx.App. init (self, redirect, filename)

def OnInit(self):
create frame here
frame = MainFrame()
frame.Show()
return True

def main():

Run the demo

app = GenApp()
app.MainLoop()

if _name_ == " main_":

main()

How It Works

If you run this code, you should end up seeing an application that looks like the image in
Figure 13-1.

192

CHAPTER 13 USING OBJECTS IN WIDGETS

o0 @ ObjectListView Demo
Title Author ISBN Mfg
wxPython in Action Robin Dunn 1932394621 Manning
Hello World Warren and Carter Sande 19339884895 Manning
Update OLV

Figure 13-1. An example of the ObjectListView widget in action

Now let’s take a look at what all this does. First, I create a generic Book class with
some properties: isbn, author, mfg, and title. We’ll use this class for creating rows in
the ObjectListView. Next we create a standard panel and put an ObjectListView and
a button widget on it. You'll also notice that there’s a short list of “Book” objects. The
ObjectListView is set to report mode with the LC_REPORT style flag. It has other modes
too, but ITwon’t be covering those. The report mode looks most like the details mode in
Windows Explorer.

The next piece is a little weird.

self.dataOlv.cellEditMode = ObjectlListView.CELLEDIT SINGLECLICK

This code tells our widget to allow editing of all the cells in the row (except the first)
by double-clicking them. I don’t know why it was designed this way as it looks like all
you should have to do is single-click one. Even the documentation says that a single click
should be enough. Maybe it's a Windows limitation. Anyway, to edit the first cell of any
row, just select it and hit F2.

The last few lines in the initialization method just put the widgets into sizers. The
next piece of interesting code is in the updateControl method, where we actually update
our ObjectListView’s contents. I show two different ways to do the update here. The first
is to just use the product list of Book objects and call the ObjectListView’s SetObjects
method with the list passed in. The second way is to use a dictionary. The dictionary’s
keys must match the ColumnDefn’s valueGetter name (which we'll see in the setBooks
method). The dictionary values can be whatever you want. In my example, I actually
combine the list of Book objects and the list of dictionaries and call SetObjects on the
result.

193

CHAPTER 13 USING OBJECTS IN WIDGETS

In the setBooks method, we define the ObjectListView’s columns. This is done by
passing a list of ColumnDefn objects to the ObjectListView’s SetColumns method.
The ColumnDefn has many parameters, but we’re only going to cover the first four.
Argument one is the title for the column; argument two is the alignment for the column
as a whole; argument three is the width of the column; and argument four is the
valueGetter name. This name must match either the keys in the dictionary method
mentioned previously or the properties of the class that you use (in this case, my Book
class). Otherwise, some data will not appear in the widget.

If you want to learn about accessing some of the row object’s data, then add another
button to this application and bind it to the following function:

def getRowInfo(self, event):
rowObj = self.dataOlv.GetSelectedObject()
print(rowObj.author)
print(rowObj.title)

Now you can select a row and use the ObjectListView’s GetSelectedObject method
to get the row object. Once you have that, you can access the object’s properties, like the
author and title and whatever else you have defined. This is much easier than the ListCtrl
where you have to get the column and row to find the information for each item.

That covers the basics of using an ObjectListCtrl. Be sure to download the source as
it has a bunch of interesting demos including one that allows the user to edit some cells
with an owner-drawn combobox! The documentation is also quite thorough and well put
together. If I ever need a ListCtrl, I always opt for using the ObjectListView as I feel it has
alot more features and is just easier to use.

Recipe 13-2. Storing Objects in ComboBox or ListBox
Problem

This recipe came about because of a discussion on the wxPython IRC channel about
how to store objects in wx.ListBox. Then, later on that day, there was a question on
StackOverflow about the same thing, but in relation to the wx.ComboBox. Fortunately,
both of these widgets inherit from wx.ItemContainer and contain the Append method,
which allows you to associate an object with an item in these widgets. In this chapter,
you will find out how it is done.

194

CHAPTER 13 USING OBJECTS IN WIDGETS

Solution

00 @ ListBox Obj Tutorial

F-150
Camaro
370Z

Figure 13-2. Adding objects to wx.ListBox

We'll start with the ListBox (see Figure 13-2). Let’s just jump into the code as I think you
will understand it faster that way.

import wx

class Car(object):

def init (self, id, model, make, year):
"""Constructor
self.id = id
self.model = model

self.make = make
self.year = year

class MyForm(wx.Frame):

def init (self):
wx.Frame. init (self, None, title="ListBox Obj Tutorial")

195

CHAPTER 13 USING OBJECTS IN WIDGETS

panel = wx.Panel(self, wx.ID ANY)

ford = Car(o, "Ford", "F-150", "2008")
chevy = Car(1, "Chevrolet", "Camaro", "2010")
nissan = Car(2, "Nissan", "370Z", "2005")

sampleList = []

1b = wx.ListBox(panel,
size=wx.DefaultSize,
choices=samplelist)

self.1lb = 1b

1b.Append(ford.make, ford)

1b.Append(chevy.make, chevy)

1b.Append(nissan.make, nissan)

1b.Bind(wx.EVT _LISTBOX, self.onSelect)

sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(1b, 0, wx.ALL, 5)
panel.SetSizer(sizer)

def onSelect(self, event):
selection = self.lb.GetStringSelection()
if selection:
print("You selected: " + selection)
obj = self.lb.GetClientData(self.lb.GetSelection())
text - nmmnn
The object's attributes are:
%s %S %s %S
""" % (obj.id, obj.make, obj.model, obj.year)
print(text)
if name_ ==" main_":
app = wx.App(False)

196

frame = MyForm()
frame.Show()

app.

MainLoop()

CHAPTER 13 USING OBJECTS IN WIDGETS

How It Works

Now, how does this work? Let’s take some time and unpack this example. First, we'll
create a super-simple Car class where we define four attributes: an ID, model, make,
and year. Then we create a simple frame with a panel and the ListBox widget. As you
can see, we use the ListBox’s inherited Append method to add each Car object’s “make”
string and then the object itself. This allows us to associate each item in the list box to an
object. Finally, we bind the ListBox to EVT_LISTBOX so we can find out how to access
that object when we select an item from the widget.

To see how this is accomplished, check out the onSelect method. Here we can
see that we need to call the ListBox’s GetClientData method and pass it the current
selection. This will return the object that we associated earlier. Now we can access each
of the method’s attributes. In this example, we just print all that out to stdout. Now let’s

look at how it is done with the wx.ComboBox.

Adding Objects to the wx.ComboBox

o ® Tutorial

Figure 13-3. Adding objects to wx.ComboBox

The code for the wx.ComboBox is practically the same, so for fun we’ll do a little

refactoring. Take a look.

197

CHAPTER 13 USING OBJECTS IN WIDGETS

import wx
class Car:
def init (self, id, model, make, year):

nn llconstructorll nmn
self.id = id
self.model = model
self.make = make
self.year = year

class MyForm(wx.Frame):

198

def

def

__init_ (self):

wx.Frame. init (self, None, title="Tutorial")
panel = wx.Panel(self, wx.ID ANY)

cars = [Car(0o, "Ford", "F-150", "2008"),
Car(1, "Chevrolet", "Camaro", "2010"),
Car(2, "Nissan", "370Z", "2005")]

sampleList = []

self.cb = wx.ComboBox(panel,
size=wx.DefaultSize,
choices=samplelist)

self.widgetMaker(self.cb, cars)

sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(self.cb, 0, wx.ALL, 5)
panel.SetSizer(sizer)
widgetMaker(self, widget, objects):
for obj in objects:

widget.Append(obj.make, obj)
widget.Bind(wx.EVT_COMBOBOX, self.onSelect)

CHAPTER 13 USING OBJECTS IN WIDGETS

def onSelect(self, event):
print("You selected: " + self.cb.GetStringSelection())
obj = self.cb.GetClientData(self.cb.GetSelection())
text = """
The object's attributes are:
%s %s %s %s

% (obj.id, obj.make, obj.model, obj.year)
print(text)

if name_ ==" main_":
app = wx.App(False)
frame = MyForm()
frame. Show()

app.MainLoop()

In this example, the steps are exactly the same. But what if we had multiple
ComboBoxes that we had to do this sort of thing for? That would be a lot of redundant
code. Thus, we'll write up a simple helper method called widgetMaker that will do the
appending and event binding for us. We could make it build the widget, add it to a sizer,
and other things too, but we’ll keep it simple for this example. Anyway, to make it work,
we pass in the ComboBox widget along with a list of objects that we want to add to the
widget. The widgetMaker will append those objects to the ComboBox for us. The rest of
the code is the same, except for the slightly different event that we needed to bind to.

As you can see, this is a pretty straightforward little exercise, but it makes your
graphical user interfaces more robust. You might do this for database applications. I can
see myself using this with SqlAlchemy result sets. Be creative and I'm sure you'll find
good uses for it as well.

199

CHAPTER 14

XML and XRC

Recipe 14-1. Extracting XML from the RichTextCtrl
Problem

The RichTextCtrl gives you the ability to use styled text. It also provides a few different
handlers to save the data it contains into various formats. One of those happens to be
XML. In this recipe, we will learn how to extract XML from the RichTextCtrl.

Solution

The RichTextCtrl is a part of wx.richtext which you will need to import in addition to the
wx module. It’s easiest to understand if we just go ahead and code an example.

wxPython Classic version

import wx
import wx.richtext

from StringIO import StringIO
class MyFrame(wx.Frame):

def init (self):
wx.Frame. init_ (self, None, title='Richtext Test')

sizer = wx.BoxSizer(wx.VERTICAL)
self.rt = wx.richtext.RichTextCtrl(self)
self.rt.SetMinSize((300,200))

201
© Mike Driscoll 2018

M. Driscoll, wxPython Recipes, https://doi.org/10.1007/978-1-4842-3237-8_14

CHAPTER 14 XML AND XRC

save button = wx.Button(self, label="Save")
save_button.Bind(wx.EVT BUTTON, self.on save)

sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(self.rt, 1, wx.EXPAND|wx.ALL, 6)
sizer.Add(save button, 0, wx.EXPAND|wx.ALL, 6)

self.SetSizer(sizer)
self.Show()

def on_save(self, event):
out = StringIO()
handler = wx.richtext.RichTextXMLHandler()
rt_buffer = self.rt.GetBuffer()
handler.SaveStream(rt _buffer, out)
self.xml:content = out.getvalue()
print(self.xml:content)

if name_ ==" main_":
app = wx.App(False)
frame = MyFrame()

app.MainLoop()

How It Works

Let’s break this down a bit. First we create our lovely application and add an instance of
the RichTextCtrl widget to the frame along with a button for saving whatever we happen
to write in said widget. Next we set up the binding for the button and lay out the widgets.
Finally, we create our event handler. This is where the magic happens. Here we create
the RichTextXMLHandler and grab the RichTextCtrl’s buffer so we can write out the
data. But instead of writing to a file, we write to a file-like object, which is our StringlO
instance. We do this so we can write the data to memory and then read it back out. The
reason we do this is because the person on StackOverflow wanted a way to extract the
XML that the RichTextCtrl generates and write it to a database. We could have written it
to disk first and then read that file, but this is less messy and faster.

202

CHAPTER 14 XML AND XRC

Note, however, that if someone had written a novel into the RichTextCtrl, then, it
would have been a bad idea! While it’s not likely that we would run out of room, there are
certainly plenty of text files that exceed your computer’s memory. If you know that the
file you are loading is going to take up a lot of memory, then you wouldn’t go this route.
Instead, you would read and write the data in chunks. Anyway, this code works for what
we wanted to do. I hope you found this useful. It was certainly fun to figure out.

Unfortunately, this code example doesn’t work in wxPython 4. In this next section,
we will update the example so that it will!

Updating for wxPython 4

The first problem you’ll encounter when running the previous example in Phoenix is
that the SaveStream method no longer exists. You will need to use SaveFile instead. The
other problem is actually one introduced by Python 3. If you run this code in Python 3,
you will find that the StringIO module doesn’t exist and you'll need to use io instead. So,
for our next example, I updated the code to support both Python 3 and wxPython 4. Let’s
see how it differs.

wxPython 4 / Python 3 Version

import wx
import wx.richtext

from io import BytesIO

class MyFrame(wx.Frame):

def _init (self):
wx.Frame. init (self, None, title='Richtext Test')
sizer = wx.BoxSizer(wx.VERTICAL)

self.rt = wx.richtext.RichTextCtrl(self)
self.rt.SetMinSize((300,200))

save button = wx.Button(self, label="Save")
save_button.Bind(wx.EVT BUTTON, self.on save)

sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(self.rt, 1, wx.EXPAND|wx.ALL, 6)
sizer.Add(save button, 0, wx.EXPAND|wx.ALL, 6)

203

CHAPTER 14 XML AND XRC

self.SetSizer(sizer)
self.Show()

def on_save(self, event):
out = BytesIO()
handler = wx.richtext.RichTextXMLHandler()
rt_buffer = self.rt.GetBuffer()
handler.SaveFile(rt buffer, out)
self.xml:content = out.getvalue()
print(self.xml:content)

if name_ ==" main_":
app = wx.App(False)
frame = MyFrame()

app.MainLoop()

The main differences lie in the imports section at the beginning and the on_save
method. You will note that we are using the io module’s BytesIO class. Then we grab
the rest of the data the same way as before except for where we swap SaveStream with
SaveFile. The XML that is printed out is a binary string, so if you plan to parse that, then
you may need to cast that result into a string. I've had some XML parsers that wouldn't
work correctly with binary strings.

While this recipe only covers extracting XML, you could easily extend it to extract
the other formats that RichTextCtrl supports, such as HTML or the Rich Text Format
(RTF) itself. This can be a useful tool to have should you need to save the data in your
application to a database or some other data storage.

Recipe 14-2. An Introduction to XRC
Problem

Have you ever wondered if you could create a wxPython program using XML? Well, I
never did either, but there is a way and its name is XRC. In fact, wxPython comes with an
editor called XRCed that you can use to layout your GUI (graphical user interface) and
generate the XML code with. In this chapter, we’ll give you a quick walk-through of XRC
and how to use it to create a couple of GUI skeletons. We will look at two examples that
use only XRC controls and then a third that mixes in some additional non-XRC widgets.

204

CHAPTER 14

Solution

@ ® @ Login

Username: |

Password:

Login Cancel

Figure 14-1. A log-in dialog generated with XRC/XML

XML AND XRC

A common dialog that we often see is a log-in dialog. wxPython includes an XRC Editor
in its Documentation and Demos package called XRCed, which I used to create the

following XML code:

<?xml version="1.0" encoding="cp1252"7?>
<resource>
<object class="wxFrame" name="mainFrame">
<object class="wxPanel" name="panel">
<object class="wxBoxSizer">
<orient>wxVERTICAL</orient>
<object class="sizeritem">
<object class="wxStaticText" name="handle">
<label/>
</object>
</object>
<object class="sizeritem">
<object class="wxFlexGridSizer">
<object class="sizeritem">
<object class="wxStaticText" name="userLbl">
<label>Username:</label>
</object>
<flag>wxALL</flag>
<border>5</border>
</object>

205

CHAPTER 14 XML AND XRC

206

<object class="sizeritem">
<object class="wxTextCtrl" name="userTxt"/>
</object>
<object class="sizeritem">
<object class="wxStaticText" name="passwordLbl">
<label>Password:</label>
</object>
<flag>wxALL</flag>
<border>5</border>
</object>
<object class="sizeritem">
<object class="wxTextCtrl" name="passwordTxt">
<style>wxTE_PROCESS ENTER|wxTE_PASSWORD</style>
</object>
</object>
<object class="sizeritem">
<object class="wxButton" name="loginBtn">
<label>Login</label>
</object>
<flag>wxALL |wxALIGN_CENTRE</flag>
<border>5</border>
</object>
<object class="sizeritem">
<object class="wxButton" name="cancelBtn">
<label>Cancel</label>
</object>
<flag>wxALL |wxALIGN_CENTRE</flag>
<border>5</border>
</object>
<cols>2</cols>
<TOWS>3</TOWS>
<vgap>4</vgap>
<hgap>2</hgap>

</object>
<border>5</border>

CHAPTER 14 XML AND XRC

</object>
</object>
<style/>
</object>
<size>200,100</size>
<title>Login</title>
<centered>1</centered>
</object>
</resource>

How It Works

To use XRC code in your wxPython, all you need to do is “import wx.xrc” or use “from wx
import xrc.” Let’s see what the Python code looks like.

import wx
from wx import xrc

class MyApp(wx.App):
def OnInit(self):
res = xrc.XmlResource("login.xrc")

frame = res.LoadFrame(None, 'mainFrame")

frame.Show()
return True

if name_ ==" main_":

app = MyApp(False)
app.MainLoop()

In the foregoing code, we use xrc’s XmlResource method to open our XML file and
load it in our program. Next, we use the resulting variable to load specific widgets from
the file. In this case, we load just the frame by calling LoadFrame. Note that we passed
None into the LoadFrame call. That first argument is the parent argument and since
this frame shouldn’t have a parent, we passed it None. Finally, we call the frame’s Show
method so we can actually see our program. That’s all there is to it! Now let’'s move on to
something a little bit more complex.

207

CHAPTER 14 XML AND XRC

Creating a Notebook with XRC

Creating a Notebook widget is a little trickier than just creating a frame. For one thing,
when using a Notebook, you usually stick multiple panels on it. This can get confusing if
your panels are complex. Thus, we’ll look at how to create a simple notebook and a slightly
more complex version. Let’s start with the simple one first. If you want to follow along,
open XRCed and see if you can copy the layout in the screenshot shown in Figure 14-2.

3

@ @ XRC Notebook Demo

|iifﬁ§§ﬁ£li tabTwo

Figure 14-2. A notebook created with XRC

The trick to adding pages to your notebook in XRCed is that you need to select the
child panel and choose the NotebookPage tab that appears on the right. In there you can
set the labels for the tabs. Let’s take a look at the generated XML.

<?xml version="1.0" ?>
<resource>
<object class="wxFrame" name="DemoFrame">
<object class="wxPanel" name="DemoPanel">
<object class="wxBoxSizer"»
<orient>wxVERTICAL</orient>
<object class="sizeritem">
<object class="wxNotebook" name="DemoNotebook">
<object class="notebookpage">

208

CHAPTER 14 XML AND XRC

<object class="wxPanel" name="tabOne"/>
<label>tabOne</label>
</object>
<object class="notebookpage">
<object class="wxPanel" name="tabTwo"/>
<label>tabTwo</label>
</object>
</object>
<option>1</option>
<flag>wxALL |wxEXPAND</flag>
<border>5</border>
</object>
</object>
</object>
<title>XRC Notebook Demo</title>
</object>
</resource>

It's pretty much the same as the code we saw previously. Note that we can embed sizer
flags in the XML itself (e.g., wxALL|wx.EXPAND). That’s pretty neat! The code to load this
notebook is almost exactly the same as the code we used for the log-in dialog earlier.

notebookXrcDemo.py
import wx
from wx import xrc

class MyApp(wx.App):
def OnInit(self):
self.res = xrc.XmlResource("notebook.xrc")

self.frame = self.res.LoadFrame(None, 'DemoFrame")

self.frame.Show()
return True

__main_ ":
app = MyApp(False)
app.MainLoop()

if name ==

209

CHAPTER 14 XML AND XRC

The only differences here are the names of the frame and the XRC file. Now let’s
move on to our slightly more complex notebook example. In this example, we will create
a notebook XRC file and two panel XRC files that we can use as tabs for the notebook.
Our new notebook’s XML is pretty much like the old one, so we’ll skip that. But let’s take
a moment to check out the panel XRC code. Following is the first one:

<?xml version="1.0" ?>
<resource>
<object class="wxPanel" name="panelOne">
<object class="wxBoxSizer">
<orient>wxVERTICAL</orient>
<object class="sizeritem">
<object class="wxTextCtrl" name="txtOne"/>
<option>0</option>
<flag>wxALL</flag>
<border>5</border>
</object>
<object class="sizeritem">
<object class="wxTextCtrl" name="txtTwo"/>
<option>0</option>
<flag>wxALL</flag>
<border>5</border>
</object>
</object>
</object>
</resource>

You will note that this panel is loaded up as TabOne (note the capital T) and includes
two text controls. The other panel XRC code looks like the following:

<?xml version="1.0" ?>
<resource>
<object class="wxPanel" name="panelTwo">
<object class="wxBoxSizer"»>
<orient>wxVERTICAL</orient>
<object class="sizeritem">
<object class="wxListCtrl" name="list ctrl">

210

CHAPTER 14 XML AND XRC

<style>wxNO_BORDER |wxLC_REPORT|wxLC_EDIT LABELS</style>
</object>
<option>1</option>
<flag>wxEXPAND</flag>
</object>
</object>
</object>
</resource>

This piece of XML just creates a super-simple empty ListCtrl instance that is
expanded to fill the panel. Now we’ll turn our attention to the Python code that loads up
these XRC files.

notebookXrcDemo2.py
import wx
from wx import xrc

class MyApp(wx.App):
def OnInit(self):
res = xrc.XmlResource("notebook2.xrc")
frame = res.LoadFrame(None, "DemoFrame")
panel = xrc.XRCCTRL(frame, "DemoPanel™)
notebook = xrc.XRCCTRL(panel, "DemoNotebook")

load another xrc file

res = xrc.XmlResource("panelOne.xrc")

tabOne = res.LoadPanel(notebook, "panelOne")
notebook.AddPage(tabOne, "TabOne")

load the last xrc file

res = xrc.XmlResource("panelTwo.xrc")

tabTwo = res.LoadPanel(notebook, "panelTwo")
notebook.AddPage(tabTwo, "tabTwo")

frame.Show()
return True

211

CHAPTER 14 XML AND XRC

if _name_ == " main_":
app = MyApp(False)

app.MainLoop()

Here we just extract the frame, panel, and notebook objects from the first XRC file
and use those as our basis for adding other controls. Loading the other two panels is a
cinch as we just do what we did to load the original panel. Then we add our new panels
to the notebook using the familiar AddPage methodology. Once that’s done, we show
the frame and we’re done! The second panel has an empty ListCtrl in it and when I first
created it, I kept getting error messages because I forgot to set its style. Make sure you tell
it that you want it to be in List, Report, or one of its other modes or you'll have issues too.

Adding Controls Outside XRC

@ @® XRC Notebook Demo

Figure 14-3. Adding controls that aren’t included in XRC

One of the issues with XRC is that it only supports a small subset of the widgets available.
Fortunately, there are ways to “teach” XRC how to use new controls, but that is beyond
the scope of this introductory chapter. Instead, I'll show you how to add the controls
outside XRC. The concept is the same as using normal widgets, so it’s really easy to

212

CHAPTER 14 XML AND XRC

understand. In fact, we're going to take the second notebook example and add a
PlateButton to it.

notebookXrcDemo3.py

import wx

from wx import xrc

import wx.lib.platebtn as platebtn

class MyApp(wx.App):
def OnInit(self):
self.res = xrc.XmlResource("notebook2.xrc")

frame

self.res.LoadFrame(None, 'DemoFrame')
panel = xrc.XRCCTRL(frame, "DemoPanel")
notebook = xrc.XRCCTRL(panel, "DemoNotebook")

sizer = wx.BoxSizer(wx.VERTICAL)

btn = platebtn.PlateButton(panel, label="Test", style=platebtn.
PB_STYLE DEFAULT)

sizer.Add(notebook, 1, wx.ALL|wx.EXPAND, 5)

sizer.Add(btn)

panel.SetSizer(sizer)

frame.Show()
return True

if _name__ == " main_":

app = MyApp(False)
app.MainLoop()

Notice that all we had to do was take the XRC Panel widget and make it the
PlateButton’s parent. Then we added the notebook and the button to a vertically
oriented sizer. Now we know how to combine normal widgets with XRC widgets in our
applications.

At this point you should understand how to use XRC to create your user interface in
wxPython. It’s quite flexible and helps you to separate out your logic from your view so
you can follow the model-view-controller paradigm. I hope you've learned a lot from this
recipe and will find it helpful in your own work.

213

CHAPTER 14 XML AND XRC

Recipe 14-3. An Introduction to XRCed
Problem

If you're new to wxPython but not new to XML, you might find this recipe useful to you.
Why? Because wxPython supports XRC, an XML file format that describes the GUI in
XML, duh. In fact, wxPython’s Documentation & Demos package includes an editor just
for creating and manipulating these files, which is called, XRCed. This chapter will take
you on a journey to see XRCed’s features and general usage.

One confusing aspect of XRCed is that it used to be a project separate from wxPython
and its web site still exists here. I've been told that the old version from that web site works
really well with screen readers compared to the new version that is shipped with the
demo package. So if you have sight problems, you might find that version more suitable.
Of course, the old version hasn’t been updated since 2007 . . . so pick your poison.

Solution

File Edit View Move Help

ab 4ol = 30 X - X~)

o

Attributes

| o '

Figure 14-4. The main screen of XRCed

214

CHAPTER 14 XML AND XRC
Once you have the Demo application installed, run the tool called XRC Resource Editor.
The main screen is what you see in the screenshot in Figure 14-4 screenshot. You will
also see a second, smaller window that looks like the following in Figure 14-5:

Windows

= Frame 0O X =™ Dialog X

Y Wizard x -

Figure 14-5. XRCed's widget window

This secondary window allows you to add various widgets to your interface. To really
understand how this works, we should make a simple application!

'File Edit View Move Help

D@® s e X paBREL0eSE

Lt = = =
2 wxFrame "MainFrame classs wxButton xr
=~ wxPanel "MainPanel"

(=} 0 wxBoxSizer name: okBtn
Ll wxButton "okBtn" 7
| Attributes | Look'n'Feel 2
~ wxButton "cancelBtn”|| " L 1| Style | ExStyle | Sizeritem | Code |

pos

size

label

[default (default is OFF)

Figure 14-6. Creating an application with two buttons

215

CHAPTER 14 XML AND XRC

How It Works

Let’s create a simple two-button application with XRCed. It won’t do anything,
but it will show you how to make a quick GUI. Open XRCed and in the widget window
(see previous section) and click the Frame button.

You should see an unnamed wxFrame appear in the right application as a root in a
tree widget (see screenshot at beginning of the section). For this example, we're going to
give name the frame “MainFrame.” Now with the frame selected in the tree, add a panel
named “MainPanel” Next, in the second floating screen, there’s a row of buttons along
the top. Click the fourth from the left, the one that looks like several red rectangles, and
then choose the BoxSizer one (make sure that the panel object is highlighted in the other
screen first though).

Now with the box sizer tree item selected, click the floating window’s third button
and add two buttons to the tree, naming them as shown. Save your work with the name
twoBtns.xrc and you should end up with a file that looks like the following:

<?xml version="1.0" ?>
<resource>
<object class="wxFrame" name="MainFrame">
<object class="wxPanel" name="MainPanel">
<object class="wxBoxSizer">
<object class="sizeritem">
<object class="wxButton" name="okBtn">
<label>OK</label>
</object>
</object>
<object class="sizeritem">
<object class="wxButton" name="cancelBtn">
<label>Cancel</label>
</object>
</object>
<orient>wxHORIZONTAL</orient>
</object>

216

CHAPTER 14 XML AND XRC

</object>
</object>
</resource>

It’s shocking, but XRCed actually produces easy-to-read XML code. Now we just
need to figure out how to load the XML with wxPython. Fortunately, it’s actually quite
easy. Check this out.

import wx
from wx import xrc

class MyApp(wx.App):
def OnInit(self):
self.res = xrc.XmlResource("twoBtns.xrc")

self.frame = self.res.LoadFrame(None, 'MainFrame")

self.frame.Show()
return True

__main_ ":

app = MyApp(False)
app.MainLoop()

if _name ==

To load the XML, we need to import the xrc module from wx. Then we load the XML
with the following line: xrc.XmlResource("twoBtns.xrc"). Note that we had to pass
in the name (or path) of the xrc file. You'll probably need to change it to whatever you
called your copy. Then, to load the frame, we call the xml resource object’s LoadFrame
method, passing it None (i.e., no parent) and the name that we gave the frame in the xrc
file. This is where it’s really easy to make a mistake. You HAVE to type the name of widget
in the Python code exactly the same way that you did in the xrc file or it will not work (or
it might work, but not in the way you expect). Yes, the name is case sensitive. Anyway,
once that’s done, you just do what you normally do in a wxPython file.

217

CHAPTER 14 XML AND XRC
Creating Something More Complex
187 XRC Notebook Demo EE=x=)

tabOne Lt_ap_Tyvo}

" J

Figure 14-7. Creating a wx.Notebook in XRCed

The example in the previous section is pretty bare-bones. Let’s take a look at how we
can create part of the application in XRC and part of it in wxPython. In the screenshot in
Figure 14-7, we have a notebook with two pages and a PlateButton underneath it. The
notebook, frame, and panel are all made in XRC whereas the PlateButton is just normal
wx. Following is the XML:

<?xml version="1.0" ?>
<resource>
<object class="wxFrame" name="DemoFrame">
<object class="wxPanel" name="DemoPanel">
<object class="wxBoxSizer">
<orient>wxVERTICAL</orient>
<object class="sizeritem">
<object class="wxNotebook" name="DemoNotebook">
<object class="notebookpage">
<object class="wxPanel" name="tabOne"/>
<label>tabOne</label>
</object>
<object class="notebookpage">
<object class="wxPanel" name="tabTwo"/>
<label>tabTwo</label>
</object>

218

CHAPTER 14 XML AND XRC

</object>
<option>1</option>
<flag>wxALL |wxEXPAND</flag>
<border>5</border>
</object>
</object>
</object>
<title>XRC Notebook Demo</title>
</object>
</resource>

Now let’s add the PlateButton.

import wx
from wx import xrc
import wx.lib.platebtn as platebtn

class MyApp(wx.App):
def OnInit(self):
self.res = xrc.XmlResource("notebook.xrc")

frame = self.res.LoadFrame(None, 'DemoFrame')
panel = xrc.XRCCTRL(frame, "DemoPanel™)
notebook = xrc.XRCCTRL(panel, "DemoNotebook")

sizer = wx.BoxSizer(wx.VERTICAL)

btn = platebtn.PlateButton(panel, label="Test",
style=platebtn.PB_STYLE DEFAULT)

btn.Bind(wx.EVT BUTTON, self.onButton)

sizer.Add(notebook, 1, wx.ALL|wx.EXPAND, 5)

sizer.Add(btn)

panel.SetSizer(sizer)

frame.Show()
return True

def onButton(self, event):

print("You pressed the button!")

219

CHAPTER 14 XML AND XRC

if _name_ == " main_":
app = MyApp(False)

app.MainLoop()

As you can see, that was as simple as it is to create the application in just plain
wxPython. If there had been a wx.Button defined in XRC, we would do the same thing
that we did for the panel to create a handle of it. Once we had the handle, we could bind
events to the button as we would normally.

Using XRCed to Generate Python Code

The XRCed application includes a Python code generator that we can subclass for our
own code. To start, we'll use the first simple example in this article and then we'll expand
that example and show you how to bind events. In XRCed, load the first example and
then go to File, Generate Python. Accept the defaults and click the Generate module
button. You should now have some autogenerated code that looks like the following:

This file was automatically generated by pywxrc.
-*- coding: UTF-8 -*-

import wx
import wx.xrc as xrc

__res = None

def get resources():
""" This function provides access to the XML resources in this
module."""

global res

if _ res == None:
__init_resources()

return _ res

class xrcMainFrame(wx.Frame):
#!XRCED:begin-block:xrcMainFrame.PreCreate
def PreCreate(self, pre):
""" This function is called during the class's
initialization.

220

CHAPTER 14 XML AND XRC

Override it for custom setup before the window is created
usually to

set additional window styles using SetWindowStyle() and
SetExtraStyle().

pass

#!IXRCED:end-block:xrcMainFrame.PreCreate

def init (self, parent):
Two stage creation (see http://wiki.wxpython.org/index.
cgi/TwoStageCreation)
pre = wx.PreFrame()
self.PreCreate(pre)
get resources().LoadOnFrame(pre, parent, "MainFrame")
self.PostCreate(pre)

Define variables for the controls, bind event handlers

def _init resources():
global _ res
__res = xrc.EmptyXmlResource()

__res.Load('twoBtns.xrc")

It’s a little ugly, but if you can read normal wxPython, then you should be able to
figure this out. Now let’s create a subclass of this code. The main reason we want to do
this is so that we can change the XRC file and the subsequent generated code and our
subclass can basically just stay the same. It helps us to separate the model (the XML)
from the view (the wxPython code).

Special note: The XRC example above doesn't work in wxPython 4!

221

CHAPTER 14 XML AND XRC

Anyway, here’s the simple example code that we can use with this XRC example in
wxPython Classic:

twoBtns_xrc_subclass.py

import twoBtns_xrc
import wx

class XrcFrameSubClass(twoBtns xrc.xrcMainFrame):

def init (self):
nn "Constructor" nmn

twoBtns_xrc.xrcMainFrame. init (self, parent=None)
self.Show()

if _name_ ==" main_":
app = wx.App(False)
frame = XrcFrameSubClass()
app.MainLoop()

Notice that we import the module “twoBtns_xrc,” which is similar to what I called
the XRCfile. XRCed adds the “_xrc” part to the Python file name. Once we have that
imported, we can access the XRC Frame object and subclass it.

This covers the basics of using the XRCed application. Hopefully you know enough
now to use it wisely and will be able to create some truly amazing code using these
shortcuts. If you need help, be sure to check the links in the following section, email the
wxPython mailing list or try bugging the wx guys on the IRC channel.

Recipe 14-4. How to Create a Grid in XRC
Problem

Some widgets are harder than others to figure out how to add to your application when
using XRC. In this recipe, we will look at how to add a Grid widget to our application

222

CHAPTER 14 XML AND XRC

Adding a Grid widget from wx.grid.Grid should be just like any other widget, but if
you run the code below, you'll discover a weird issue:

import wx
from wx import xrc

class MyApp(wx.App):
def OnInit(self):
self.res = xrc.XmlResource("grid.xrc")

frame = self.res.LoadFrame(None, 'MyFrame")
panel = xrc.XRCCTRL(frame, "MyPanel")

grid = xrc.XRCCTRL(panel, "MyGrid")
print(type(grid))

grid.CreateGrid(25, 6)

sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(grid, 1, wx.EXPAND|wx.ALL, 5)

panel.SetSizer(sizer)

frame.Show()
return True

__main__":

app = MyApp(False)
app.MainLoop()

if __name__ ==

You'll note that when you run this, the type that is printed out is a “wx._windows.
ScrolledWindow,” not a Grid object. Thus you'll end up with the following traceback in
Python 2:

AttributeError: ‘ScrolledWindow’ object has no attribute ‘CreateGrid’

File "c:\Users\mdriscoll\Desktop\xrcGridDemo.py", line 26, in <module>
app = MyApp(False)
File "C:\Python26\Lib\site-packages\wx-2.8-msw-unicode\wx_core.py", line
7981, in _ init
self. BootstrapApp()
File "C:\Python26\Lib\site-packages\wx-2.8-msw-unicode\wx\ core.py", line
7555, in _BootstrapApp

223

CHAPTER 14 XML AND XRC

return _core .PyApp BootstrapApp(*args, **kwargs)
File "c:\Users\mdriscoll\Desktop\xrcGridDemo.py", line 14, in OnInit
grid.CreateGrid(25, 6)

The traceback in Python 3 is quite similar, so it won’t be reproduced here. Instead,
we'll take a look at the XRC file that we tried to load in the previous example code.

<?xml version="1.0" ?>
<resource class="">
<object class="wxFrame" name="MyFrame">
<object class="wxPanel" name="MyPanel">
<object class="wxGrid" name="MyGrid"/»>
</object>
<title>XRC Grid</title>
</object>

</resource>

As you can see, you should be getting a wxGrid back. What'’s the solution? You need
to import wx.grid! According to Robin Dunn, creator of wxPython, following is the reason
you need to do that: “You need to import wx.grid in your python code. When you do that
then some internal data structures are updated with the type info for the grid classes,
and this info is used when figuring out how to convert a C++ pointer to a Python object
of the right type for the XRCCTRL return value.”

Solution

So let’s use this information to update our code in such a way that we can add a Grid to
our application.

import wx
import wx.grid
from wx import xrc

class MyApp(wx.App):
def OnInit(self):
self.res = xrc.XmlResource("grid.xrc")

frame = self.res.LoadFrame(None, 'MyFrame')

224

CHAPTER 14 XML AND XRC

panel = xrc.XRCCTRL(frame, "MyPanel")
grid = xrc.XRCCTRL(panel, "MyGrid")
print(type(grid))

grid.CreateGrid(25, 6)

sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(grid, 1, wx.EXPAND|wx.ALL, 5)

panel.SetSizer(sizer)

frame.Show()
return True

if name_ ==" main_":
app = MyApp(False)

app.MainLoop()

How It Works

As Robin mentioned in his earlier quote, the reason this code worked versus the original
is that now we are import wx.grid. This is one of those times where working with a GUI
toolkit that wraps C++ can bite us, but overall I think you'll find that these sorts of issues
are few and far between.

When you run this code, it will look like the screen in Figure 14-8:

Figure 14-8. Adding a grid widget to your application in XRCed

225

CHAPTER 14 XML AND XRC

Creating widgets in XRC can be challenging, but it’s also a rewarding experience
as it can really help you separate your logic from your user interface. In this recipe, we
learned how to work around a fairly straightforward issue. As we saw in the previous
recipe, adding a control that’s not a part of XRC already is a bit harder.

226

CHAPTER 15

Working with Sizers

Recipe 15-1. How to Get Children Widgets
from a Sizer

Problem

@ © Get Children from Sizer

I'm a label!
blah blah

Clear

Figure 15-1. Getting children widgets from a sizer

In this recipe we will discover how to get the children widgets from a sizer object. In
wxPython, you would expect to call the sizer’s GetChildren() method. However, this
returns a list of SizerItem objects rather than a list of the actual widgets themselves. You
can see the difference if you call a wx.Panel’s GetChildren() method which will actually
give you a list of widgets.

227
© Mike Driscoll 2018

M. Driscoll, wxPython Recipes, https://doi.org/10.1007/978-1-4842-3237-8_15

CHAPTER 15 WORKING WITH SIZERS

Solution

The best way to figure these kinds of problems out is by experimenting with the code. Of

course, this being a book, you probably don’t want to see all the iterations I went through

to finally get to the solution, so I'll just show you the end result.

import wx

class MyApp(wx.Frame):

228

def

def

__init_ (self):
"""Constructor
title = 'Get Children from Sizer'
wx.Frame. init (self, None, title=title)
panel = wx.Panel(self)

1bl = wx.StaticText(panel, label="I'm a label!")
txt = wx.TextCtrl(panel, value="blah blah")

btn = wx.Button(panel, label="Clear")
btn.Bind(wx.EVT BUTTON, self.onClear)

self.sizer = wx.BoxSizer(wx.VERTICAL)
self.sizer.Add(1bl, 0, wx.ALL, 5)
self.sizer.Add(txt, 0, wx.ALL, 5)
self.sizer.Add(btn, 0, wx.ALL, 5)

panel.SetSizer(self.sizer)

onClear(self, event):

Button event handler for clearing TextCtrl widgets

children = self.sizer.GetChildren()

for child in children:
widget = child.GetWindow()
print(widget)

CHAPTER 15 WORKING WITH SIZERS

if isinstance(widget, wx.TextCtrl):
widget.Clear()

if name_ ==" main_":
app = wx.App(False)
frame = MyApp()
frame.Show()
app.MainLoop()

How It Works

The important bit is in the onClear method. Here we need to call the SizerItem’s
GetWindow() method to return the actual widget instance. Once we have that, we
can do stuff with the widget, such as change the label or value or, in this case, clear
the text control. Try adding a print(child) call in the for loop to see that we are getting
SizerItems instead of the widget itself. That can be quite illuminating and is a good
way to test out if the code is working the way you expect. In fact, that is how I quickly
discovered that I was doing it incorrectly.

This piece of code can be really handy to know how to do when you need to loop
over some children widgets that need to be hidden. Or, if you have a form and you
want to clear it, this is one of the easiest methods of doing so. Give it a try and do some
experimentation to see how useful it can be.

Recipe 15-2. How to Center a Widget
Problem

Over the years, I see people ask about how to center a widget within their frame, panel,
or dialog. The solution is actually quite easy. In most cases, you just need to nest a
Horizontal BoxSizer inside of a Vertical BoxSizer with some spacers. In this chapter, I'll
show you two or three different ways to accomplish this task.

229

CHAPTER 15 WORKING WITH SIZERS

Solution #1—Using Faux Spacers

r

Centered

Figure 15-2. Centering a button using faux spacers

The first time I learned how to center widgets, I was told I could use a tuple for my
spacer. The syntax looks a bit odd, but it works.

import wx

class MainFrame(wx.Frame):

def init (self):

Constructor
wx.Frame. init (self, None, title="Center the Button")
panel = wx.Panel(self)

h sizer = wx.BoxSizer(wx.HORIZONTAL)
main_sizer = wx.BoxSizer(wx.VERTICAL)

btn = wx.Button(panel, label="Centered")
h sizer.Add(btn, 0, wx.CENTER)

main_sizer.Add((0,0), 1, wx.EXPAND)
main _sizer.Add(h sizer, 0, wx.CENTER)
main sizer.Add((0,0), 1, wx.EXPAND)

230

CHAPTER 15 WORKING WITH SIZERS

panel.SetSizer(main sizer)

self.Show()

if _name_ == " main_":
app = wx.App(False)
frame = MainFrame()

app.MainLoop()

How It Works

Here we nest a horizontal BoxSizer inside our top-level vertical BoxSizer. But we
surround the horizontal sizer with two faux spacers that happen to be tuples that have
both their proportions set to 1 and the wx.EXPAND style flag set.

Solution #2—Using an AddStretchSpacer

wxPython’s sizer’s include the AddStretchSpacer method, which is a nice, convenient
method that does basically the same thing as the previous example. Let’s take a look.

import wx

class MainFrame(wx.Frame):

def _init (self):

Constructor"""

wx.Frame. init (self, None, title="Center the Button")
panel = wx.Panel(self)

h sizer = wx.BoxSizer(wx.HORIZONTAL)
main sizer = wx.BoxSizer(wx.VERTICAL)

btn = wx.Button(panel, label="Centered")
h sizer.Add(btn, 0, wx.CENTER)

main_sizer.AddStretchSpacer(prop=1)
main _sizer.Add(h sizer, 0, wx.CENTER)
main_sizer.AddStretchSpacer(prop=1)

231

CHAPTER 15 WORKING WITH SIZERS

if _name_ ==

panel.SetSizer(main sizer)

self.Show()

__main__":

app = wx.App(False)
frame = MainFrame()
app.MainLoop()

How It Works

You will note that the only difference here is using the AddStretchSpacer method along

with its prop parameter set to 1.

Solution #3—Centering Without Nested Sizers

One of my astute blog readers mentioned a third way to center the widget that does not
require nesting the sizers. Let’s take a look at their idea.

import wx

class MainFrame(wx.Frame):

232

def init (self):

Constructor
wx.Frame. init (self, None, title="Center the Button")
panel = wx.Panel(self)

main_sizer = wx.BoxSizer(wx.VERTICAL)

btn = wx.Button(panel, label="Centered")
main_sizer.AddStretchSpacer()
main_sizer.Add(btn, 0, wx.CENTER)
main_sizer.AddStretchSpacer()

panel.SetSizer(main sizer)

self.Show()

CHAPTER 15 WORKING WITH SIZERS

if _name_ == " main_":
app = wx.App(False)
frame = MainFrame()

app.MainLoop()

Here we just create a vertical sizer, add a stretch spacer, and then tell the button to be
centered, and then we add another stretch spacer. The code is very similar to that in the
previous example except that we don’t use a horizontal sizer at all. Special thanks goes to
a fellow named Yoriz for mentioning this to me.

Now you know several different approaches for centering widgets in your wx.Frame
or wx.Panel. You will find this quite useful for buttons that need to be centered at the
bottom of your windows. I have found that centering widgets is an extremely common
activity and something I have needed to do in my own applications, so it’s good to have
different solutions for this problems.

Recipe 15-3. How to Make Widgets Wrap
Problem

Starting in the 2.9 version of wxPython, the developers introduced the world to a new
type of sizer that can take widgets and automatically make them “wrap” around as you
resize the frame. That sizer is known as wx.WrapSizer. For some reason, it is relatively
unknown, so we'll spend a few minutes going over how to use it in this recipe. By the end
of this recipe you will be able to use this fun sizer to wrap your widgets too!

233

CHAPTER 15 WORKING WITH SIZERS
Solution

@ ® WrapSizers

B
E
H
K
N
Q
s T u
w
z |

Figure 15-3. Using a wx.WrapSizer

The wx.WrapSizer widget works in much the same way as a wx.BoxSizer. All you
need to do to use it is to instantiate it and add widgets to it. Let’s take a look at a simple

program.

import random
import wx
from wx.lib.buttons import GenButton

class MyPanel(wx.Panel):

def init (self, parent):
"""Constructor
wx.Panel. init (self, parent)

text = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

234

CHAPTER 15 WORKING WITH SIZERS

sizer = wx.WrapSizer()
for letter in text:
btn = GenButton(self, label=letter)

r = random.randint (128, 255)
g = random.randint(128, 255)
b = random.randint(128, 255)

btn.SetBackgroundColour(wx.Colour(r,g,b))
btn.Refresh()
sizer.Add(btn, 0, wx.ALL, 5)

self.SetSizer(sizer)

class MyFrame(wx.Frame):

def init (self):

Constructor
wx.Frame. init (self, None, title="WrapSizers", size=(400,500))
panel = MyPanel(self)

self.Show()

if _name_ == " main_":
app = wx.App(False)
frame = MyFrame()

app.MainLoop()

How It Works

Here we create an instance of our sizer and then loop over the letters in the alphabet,
creating a button for each letter. We also change the background color of each button
to add a little variety. If you haven’t guessed yet, this example is based on the wxPython
demo example. You will notice that as you resize the frame, the buttons will rearrange
themselves as best they can. Sometimes, they may even change size a bit. Let’s learn a bit
more about this sizer!

The wx.WrapSizer can be told its orientation and you can pass it flags at
instantiation. The orientation flags are wx.HORIZONTAL and wx.VERTICAL.
Horizontal is the default. According to the documentation “the flags parameter can

235

CHAPTER 15 WORKING WITH SIZERS

be a combination of the values EXTEND_LAST ON_EACH_LINE which will cause

the last item on each line to use any remaining space on that line and REMOVE _
LEADING_SPACES which removes any spacer elements from the beginning of a row.”
The WrapSizer also has four additional methods beyond the normal wx.Sizer method:
CalcMin (calculates minimal size), InformFirstDirection (appears not be used),
IsSpaceltem (can be used to treat some normal items as spacers), and RecalcSizes
(implements the calculation of a box sizer’s dimensions and then sets the size of its
children).

At this point you should know enough to start using the wx.WrapSizer in your
own applications. It really is a handy sizer although there probably aren’t that many
applications that you will be creating that need this sort of thing. But for the cases that
do, this sizer is really great!

Recipe 15-4. Adding/Removing Widgets
Dynamically

Problem

@ @® Add/Remove B...
Add Remove

Figure 15-4. Adding/Removing buttons

A fairly common task that many developers end up wanting to do is to create or remove
widgets at runtime. This is actually quite easy to accomplish with wxPython. I have had
to do this sort of thing myself from time to time depending on what kind of user was
accessing my program, so I could show slightly different options. For example, an admin
might get additional controls that a normal user wouldn’t be able to access. So you might
want to dynamically add or remove a panel that contains admin widgets.

236

CHAPTER 15 WORKING WITH SIZERS

Solution

For this example, I decided to make this really simple. All this application will do is allow

the user to add or remove buttons. The following script will create a window similar

to the one at the beginning of this recipe. If you press the Add button a few times, you

should see something like the screen in Figure 15-5.

® © ® Add/RemoveB... |
Add Remove
Button 1
Button 2
Button 3

Figure 15-5. Demonstration of adding widgets dynamically

As you can see, you end up with more buttons! Now let’s take a moment and read the

code. I'll explain the code as soon as you finish reading it.

import wx

class MyPanel(wx.Panel):

def _init (self, parent):

Constructor
wx.Panel. init (self, parent)
self.number of buttons = 0
self.frame = parent

self.mainSizer = wx.BoxSizer(wx.VERTICAL)
controlSizer = wx.BoxSizer(wx.HORIZONTAL)
self.widgetSizer = wx.BoxSizer(wx.VERTICAL)

CHAPTER 15 WORKING WITH SIZERS

self.addButton = wx.Button(self, label="Add")
self.addButton.Bind(wx.EVT_BUTTON, self.onAddWidget)
controlSizer.Add(self.addButton, 0, wx.CENTER|wx.ALL, 5)

self.removeButton = wx.Button(self, label="Remove")
self.removeButton.Bind(wx.EVT _BUTTON, self.onRemoveWidget)
controlSizer.Add(self.removeButton, 0, wx.CENTER|wx.ALL, 5)

self.mainSizer.Add(controlSizer, 0, wx.CENTER)
self.mainSizer.Add(self.widgetSizer, 0, wx.CENTER|wx.ALL, 10)

self.SetSizer(self.mainSizer)

def onAddWidget(self, event):
self.number of buttons += 1
label = "Button %s" % self.number of buttons
name = "button%s" % self.number of buttons
new button = wx.Button(self, label=label, name=name)
self.widgetSizer.Add(new button, 0, wx.ALL, 5)
self.frame.fSizer.Layout()
self.frame.Fit()

def onRemoveWidget(self, event):
if self.widgetSizer.GetChildren():
self.widgetSizer.Hide(self.number of buttons-1)
self.widgetSizer.Remove(self.number of buttons-1)
self.number of buttons -= 1
self.frame.fSizer.Layout()
self.frame.Fit()

class MyFrame(wx.Frame):

def _init (self):

Constructor
wx.Frame. init (self, parent=None, title="Add / Remove Buttons")

238

CHAPTER 15 WORKING WITH SIZERS

self.fSizer = wx.BoxSizer(wx.VERTICAL)
panel = MyPanel(self)
self.fSizer.Add(panel, 1, wx.EXPAND)
self.SetSizer(self.fSizer)

self.Fit()

self.Show()

if name_ ==" main_":
app = wx.App(False)
frame = MyFrame()
app.MainLoop()

I think this is pretty straightforward code, so we’ll just focus on the important bits.
The first topic I'm going to point out is that I call the frame’s Fit() method right before I
show it. I normally avoid using Fit, but I was having trouble getting the frame to change
size appropriately whenever I added or removed the buttons and Fit fixed that issue
for me. I should note that Fit always tries to make the widgets fit the container and
sometimes it ends up doing it in ways I don't like.

Anyway, the other bit is in the onAddWidget and onRemoveWidget methods. You
normally want to call the Layout() method on the container object to make it update
and lay out the controls whenever you add or remove a widget. Oddly enough, it seems
that Fit() does that automatically, so those Layout() calls that you see in the previous
code can actually be removed. I tried removing the Fit ones to see if Layout was enough,
but when you do that, the frame doesn’t update its size, so Fit seems to be required in
this case. Now, if you happened to be adding or removing widgets in such a way that it
wouldn't affect the frame’s overall size, I think Layout would be enough.

Finally, as a side note, you sometimes use Layout() at the end of a Freeze/Thaw
update as well.

At this point you should know the basics of adding and removing widgets in a
dynamic fashion. It’s actually pretty easy once you understand all the concepts. This is
one of those pieces of knowledge that I think you'll find quite useful, as I have used the
techniques in this chapter several times over the years.

239

CHAPTER 16

Threads and Timers

Recipe 16-1. How to Update a Progress Bar
from a Thread

Problem

If you use GUISs (graphical user interfaces) in Python much, you know that every now
and then you need to execute some long-running process. Of course, if you do that as
you would with a command-line program, then you'll be in for a surprise. In most cases,
you’ll end up blocking your GUT’s event loop and the user will see your program freeze.
This is true of all the Python GUI toolkits, including Tkinter, PyQt, or wxPython. What
can you do to get around such mishaps? Start the task in another thread or process,
of course! In this chapter, we'll look at how to do this with wxPython and Python’s
threading module.

In the wxPython world, there are three related “thread-safe” methods. If you do
not use one of these three when you go to update your user interface, then you may
experience weird issues. Sometimes your GUI will work just fine. Other times, it will
crash Python for no apparent reason, thus the need for the thread-safe methods:
wx.PostEvent, wx.CallAfter, and wx.CallLater. According to Robin Dunn (creator of
wxPython), wx.CallAfter uses wx.PostEvent to send an event to the application object.
The application will have an event handler bound to that event and will react according
to whatever the programmer has coded upon receipt of the event. It is my understanding
that wx.CallLater calls wx.CallAfter with a specified time limit so that you can tell it how
long to wait before sending the event.

Robin Dunn also pointed out that the Python Global Interpreter Lock (GIL) will
prevent more than one thread to be executing Python bytecodes at the same time, which
may limit how many CPU (central processing unit) cores are utilized by your program.

241
© Mike Driscoll 2018

M. Driscoll, wxPython Recipes, https://doi.org/10.1007/978-1-4842-3237-8_16

CHAPTER 16 THREADS AND TIMERS

On the flip side, he also said that “wxPython releases the GIL while making calls to wx
APIs so other threads can run at that time.” In other words, your mileage may vary when
using threads on multicore machines. I found this discussion to be interesting and
confusing.

Anyway, what this means in regard to the three wx-methods is that wx.CallLater is
the most abstract thread-safe method with wx.CallAfter next and wx.PostEvent being
the lowest level. In the following examples, you will see how to use wx.CallAfter and
wx.PostEvent to update your wxPython program.

Solution for wxPython 2.8.12 and Earlier

On the wxPython mailing list, you'll see the experts telling others to use wx.CallAfter
along with PubSub to communicate with their wxPython applications from another
thread. I've probably even told people to do that. So in the following example, that’s
exactly what we're going to do. Note that this code is using the old version of PubSub so
it will only work with wxPython 2.8.12 or older.

wxPython 2.8.12

import time
import wx

from threading import Thread
from wx.lib.pubsub import Publisher

class TestThread(Thread):
"""Test Worker Thread Class."""

def init (self):
"""Init Worker Thread Class."""
Thread. init (self)
self.daemon = True
self.start() # start the thread

def run(self):
"""Run Worker Thread."""
This is the code executing in the new thread.
for i in range(6):

242

def

CHAPTER 16 THREADS AND TIMERS

time.sleep(10)
wx.CallAfter(self.postTime, i)
time.sleep(5)
wx.CallAfter(Publisher().sendMessage, "update", "Thread finished!")

postTime(self, amt):

Send time to GUI

amtOfTime = (amt + 1) * 10
Publisher().sendMessage("update”, amtOfTime)

class MyForm(wx.Frame):

def

def

__init_ (self):
wx.Frame. init_ (self, None, wx.ID ANY, "Tutorial")

Add a panel so it looks the correct on all platforms
panel = wx.Panel(self, wx.ID ANY)
self.displaylLbl = wx.StaticText(panel,

label="Amount of time since thread started goes here")
self.btn = btn = wx.Button(panel, label="Start Thread")

btn.Bind(wx.EVT BUTTON, self.onButton)

sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(self.displayLbl, 0, wx.ALL|wx.CENTER, 5)
sizer.Add(btn, 0, wx.ALL|wx.CENTER, 5)
panel.SetSizer(sizer)

create a pubsub receiver
Publisher().subscribe(self.updateDisplay, "update")

onButton(self, event):

Runs the thread

TestThread()
self.displaylLbl.SetLabel("Thread started!")

243

CHAPTER 16 THREADS AND TIMERS

btn = event.GetEventObject()
btn.Disable()

def updateDisplay(self, msg):

Receives data from thread and updates the display
t = msg.data
if isinstance(t, int):
self.displaylLbl.SetLabel("Time since thread started: %s
seconds" % t)
else:
self.displaylLbl.SetLabel("%s" % t)
self.btn.Enable()

Run the program

if _name_ == " main_":
app = wx.App(False)
frame = MyForm().Show()

app.MainLoop()

How It Works

We'll be using Python’s time module to fake our long-running process. However, feel free
to put something better in its place. In a real-life example, I use a thread to open Adobe
Reader and send a PDF to a printer. That might not seem like anything special, but when
I didn’t use a thread, the print button in my application would stay stuck down while

the document was sent to the printer and my GUT just hung until that was done. Even a
second or two is noticeable to the user!

Anyway, let’s see how this works. In our thread class (reproduced in the code that
follows), we override the “run” method so it does what we want. This thread is started
when we instantiate it because we have self.start() in its __init__method. In the “run”
method, we loop over a range of 6, sleeping for ten seconds, in between iterations and
then update our user interface using wx.CallAfter and PubSub. When the loop finishes,

we send a final message to our application to let the user know what happened.

244

CHAPTER 16 THREADS AND TIMERS

class TestThread(Thread):
"""Test Worker Thread Class."""

def

def

def

__init_ (self):

"""Init Worker Thread Class."""
Thread. init (self)

self.daemon = True

self.start() # start the thread

run(self):
"""Run Worker Thread."""
This is the code executing in the new thread.
for i in range(6):
time.sleep(10)
wx.CallAfter(self.postTime, i)
time.sleep(5)
wx.CallAfter(Publisher().sendMessage, "update", "Thread finished!")

postTime(self, amt):

Send time to GUI

amtOfTime = (amt + 1) * 10
Publisher().sendMessage("update”, amtOfTime)

Notice that in our wxPython code, we start the thread using a button event handler.

We also disable the button so we don’t accidentally start additional threads. That would

be pretty confusing if we had a bunch of them going and the UI would randomly say

that it was done when it wasn’t. That is a good exercise for the reader though. You could

display the PID (process ID) of the thread so you'd know which was which . . . and you

might want to output this information to a scrolling text control so you can see the

activity of the various threads.

The last piece of interest here is probably the PubSub receiver and its event handler.

def updateDisplay(self, msg):

Receives data from thread and updates the display

245

CHAPTER 16 THREADS AND TIMERS

t = msg.data
if isinstance(t, int):

self.displaylLbl.SetLabel("Time since thread started: %s seconds" % t)
else:

self.displaylLbl.SetLabel("%s" % t)

self.btn.Enable()

See how we extract the message from the thread and use it to update our display? We
also use the type of data we receive to tell us what to show the user. Pretty cool, huh?

Solution for wxPython 3 and Newer

As you may recall from previous recipes, the PubSub module was changed in wxPython 2.9
so the code in the previous section won’t work with current versions of wxPython. So
let’s update the code a bit to make it work for wxPython 3.0 Classic and wxPython 4.

wxPython 3.0 and Newer

import time
import wx

from threading import Thread
from wx.lib.pubsub import pub

class TestThread(Thread):
"""Test Worker Thread Class."""

def init (self):
"""Init Worker Thread Class."""
Thread. init (self)
self.start() # start the thread

def run(self):
"""Run Worker Thread."""
This is the code executing in the new thread.
for i in range(6):
time.sleep(2)
wx.CallAfter(self.postTime, i)

246

CHAPTER 16 THREADS AND TIMERS

time.sleep(5)
wx.CallAfter(pub.sendMessage, "update", msg="Thread finished!")

def postTime(self, amt):

Send time to GUI
amtOfTime = (amt + 1) * 10
pub.sendMessage("update", msg=amtOfTime)

class MyForm(wx.Frame):

def _init (self):
wx.Frame. init (self, None, wx.ID ANY, "Tutorial")

Add a panel so it looks the correct on all platforms

panel = wx.Panel(self, wx.ID ANY)

self.displaylLbl = wx.StaticText(panel,
label="Amount of time since thread
started goes here")

self.btn = btn = wx.Button(panel, label="Start Thread")

btn.Bind(wx.EVT BUTTON, self.onButton)

sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(self.displayLbl, 0, wx.ALL|wx.CENTER, 5)
sizer.Add(btn, 0, wx.ALL|wx.CENTER, 5)
panel.SetSizer(sizer)

create a pubsub receiver
pub.subscribe(self.updateDisplay, "update")

def onButton(self, event):

Runs the thread

TestThread()
self.displaylLbl.SetLabel("Thread started!")
btn = event.GetEventObject()

btn.Disable()

247

CHAPTER 16 THREADS AND TIMERS

def updateDisplay(self, msg):

Receives data from thread and updates the display
t = msg
if isinstance(t, int):
self.displayLbl.SetLabel("Time since thread started: %s
seconds" % t)
else:
self.displaylLbl.SetLabel("%s" % t)
self.btn.Enable()

Run the program

if name_ ==" main_":
app = wx.App(False)
frame = MyForm().Show()

app.MainLoop()

How It Works

Note that we just ended up importing pub and replacing all the references to Publisher()
with pub. We also had to change the sendMessage call slightly in that we need to call it
using keyword arguments that match the function that is called by the subscriber. They're
all minor changes but necessary to get them to work in newer versions of wxPython. Now
let’s go down a level and check out how to do it with wx.PostEvent instead.

wx.PostEvent and Threads

The following code is based on an example from the wxPython wiki. It’s a little bit more
complicated than the wx.CallAfter code we just looked at, but I'm confident that we can
figure it out.

import time
import wx

from threading import Thread

248

CHAPTER 16 THREADS AND TIMERS

Define notification event for thread completion
EVT_RESULT ID = wx.NewId()

def EVT RESULT(win, func):
"""Define Result Event.
win.Connect(-1, -1, EVT RESULT ID, func)

class ResultEvent(wx.PyEvent):
"""Simple event to carry arbitrary result data.
def init (self, data):
"""Init Result Event."""
wx.PyEvent. init (self)
self.SetEventType(EVT _RESULT ID)
self.data = data

class TestThread(Thread):
"""Test Worker Thread Class."""

def _init (self, wxObject):
"""Init Worker Thread Class."""
Thread. init (self)
self.wxObject = wxObject
self.start() # start the thread

def run(self):
"""Run Worker Thread."""
This is the code executing in the new thread.
for i in range(6):
time.sleep(10)
amtOfTime = (i + 1) * 10
wx.PostEvent(self.wxObject, ResultEvent(amtOfTime))
time.sleep(5)
wx.PostEvent(self.wxObject, ResultEvent("Thread finished!"))

class MyForm(wx.Frame):

def init (self):
wx.Frame. init (self, None, wx.ID ANY, "Tutorial")

249

CHAPTER 16 THREADS AND TIMERS

Add a panel so it looks the correct on all platforms

panel = wx.Panel(self, wx.ID ANY)

self.displayLbl = wx.StaticText(panel, label="Amount of time since
thread started goes here")

self.btn = btn = wx.Button(panel, label="Start Thread")

btn.Bind(wx.EVT BUTTON, self.onButton)

sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(self.displayLbl, 0, wx.ALL|wx.CENTER, 5)
sizer.Add(btn, 0, wx.ALL|wx.CENTER, 5)
panel.SetSizer(sizer)

Set up event handler for any worker thread results
EVT_RESULT(self, self.updateDisplay)

def onButton(self, event):

Runs the thread

TestThread(self)
self.displaylLbl.SetLabel("Thread started!")
btn = event.GetEventObject()

btn.Disable()

def updateDisplay(self, msg):

Receives data from thread and updates the display
t = msg.data
if isinstance(t, int):
self.displaylLbl.SetLabel("Time since thread started: %s
seconds" % t)
else:
self.displaylLbl.SetLabel("%s" % t)
self.btn.Enable()

250

CHAPTER 16 THREADS AND TIMERS

Run the program

if name_ ==" main_":
app = wx.App(False)
frame = MyForm().Show()
app.MainLoop()

Let’s break this down a bit. For me, the most confusing stuff is the first three pieces.

Define notification event for thread completion
EVT_RESULT ID = wx.NewId()

def EVT RESULT(win, func):
"""Define Result Event.
win.Connect(-1, -1, EVT_RESULT ID, func)

class ResultEvent(wx.PyEvent):
"""Simple event to carry arbitrary result data.
def init (self, data):
"""Init Result Event."""
wx.PyEvent. init_ (self)
self.SetEventType(EVT _RESULT ID)
self.data = data

The EVT_RESULT_ID is the key here. It links the thread to the wx.PyEvent and that
weird “EVT_RESULT” function. In the wxPython code, we bind an event handler to the
EVT_RESULT function. This allows us to use wx.PostEvent in the thread to send an
event to our custom event class, ResultEvent. What does this do? It sends the data on to
the wxPython program by emitting that custom EVT_RESULT that we bound to. I hope
that all makes sense.

Once you've got that figured out in your head, read on. Are you ready? Good! You'll
notice that our TestThread class is pretty much the same as before except that we're
using wx.PostEvent to send our messages to the GUI instead of PubSub. The application
programming interface (API) in our GUI's display updater is unchanged. We still just use
the message’s data property to extract the data we want. That’s all there is to it!

Ideally, you now know how to use basic threading techniques in your wxPython
programs. There are several other threading methods too which we didn’t have a chance
to cover here, such as using wx.Yield or Queues. Fortunately, the wxPython wiki covers
these topics pretty well, so be sure to check out the links below if you're interested in
those methods.

251

CHAPTER 16 THREADS AND TIMERS

Recipe 16-2. How to Update a Progress Bar
from a Thread

Problem

A fairly common task is the need to update a progress bar every so often. In this recipe,
we will create a frame with a button. When the button is pushed, it will launch a dialog
that contains our progress bar and it will start a thread. The thread is a dummy thread in
that it doesn’t do anything in particular except send an update back to the dialog once a
second for 20 seconds. Then the dialog is destroyed.

Solution

Let’s start by looking at how we can accomplish this task using wxPython 2.8.12.1 which
is still a popular version of wxPython even though it’s pretty old.

import time
import wx

from threading import Thread
from wx.lib.pubsub import Publisher

class TestThread(Thread):
"""Test Worker Thread Class."""

def init (self):
"""Init Worker Thread Class."""
Thread. init (self)
self.daemon = True
self.start() # start the thread

def run(self):
"""Run Worker Thread."""
This is the code executing in the new thread.
for i in range(20):

252

CHAPTER 16 THREADS AND TIMERS

time.sleep(0.25)
wx.CallAfter(Publisher().sendMessage, "update"”, "")

class MyProgressDialog(wx.Dialog):

def

def

__init_ (self):

Constructor"""

wx.Dialog. init (self, None, title="Progress")
self.count = 0

self.progress = wx.Gauge(self, range=20)

sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(self.progress, 0, wx.EXPAND)
self.SetSizer(sizer)

create a pubsub listener
Publisher().subscribe(self.updateProgress, "update")

updateProgress(self, msg):

Update the progress bar

self.count += 1

if self.count >= 20:
self.EndModal(0)

self.progress.SetValue(self.count)

class MyFrame(wx.Frame):

def

__init_ (self):
wx.Frame. init (self, None, title="Progress Bar Tutorial")

Add a panel so it looks the correct on all platforms
panel = wx.Panel(self, wx.ID ANY)

self.btn = btn = wx.Button(panel, label="Start Thread")
btn.Bind(wx.EVT_BUTTON, self.onButton)

253

CHAPTER 16 THREADS AND TIMERS

sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(btn, 0, wx.ALL|wx.CENTER, 5)
panel.SetSizer(sizer)

def onButton(self, event):

Runs the thread
btn = event.GetEventObject()
btn.Disable()

TestThread()

dlg = MyProgressDialog()
d1lg.ShowModal()
dlg.Destroy()

btn.Enable()

Run the program

if name_ ==" main_":
app = wx.App(False)
frame = MyFrame()
frame. Show()

app.MainLoop()

Let’s spend a few minutes breaking this down. We'll start at the bottom. The
MyFrame class is what gets run first. When you run this script you should see something
like the screen in Figure 16-1.

254

CHAPTER 16 THREADS AND TIMERS

r -

) @) Tutorial
Start Thread

Figure 16-1. Progress bar frame

As you can see, all this code does is create a simple frame with a button on it. If you
press the button, the following dialog will be created and a new thread will start
(see Figure 16-2):

@® Progress
|

Figure 16-2. A progress bar dialog

255

CHAPTER 16 THREADS AND TIMERS

Let’s look at the portion of the code that makes the dialog.

class MyProgressDialog(wx.Dialog):

def _init (self):

Constructor
wx.Dialog. init (self, None, title="Progress")
self.count = 0

self.progress = wx.Gauge(self, range=20)

sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(self.progress, 0, wx.EXPAND)
self.SetSizer(sizer)

create a pubsub listener
Publisher().subscribe(self.updateProgress, "update")

def updateProgress(self, msg):

Update the progress bar

self.count += 1

if self.count >= 20:
self.EndModal(0)

self.progress.SetValue(self.count)

This code just creates a dialog with a wx.Gauge widget. The gauge is the actual
widget behind the progress bar. Anyway, we create a PubSub listener at the very end of
the dialog’s __init__. This listener accepts messages that will fire off the updateProgress
method. We will see the messages get sent in the thread class. In the updateProgress
method, we increment the counter and update the wx.Gauge by setting its value. We also
check to see if the count is greater than or equal to 20, which is the range of the gauge. If
it is, then we close the dialog by calling its EndModal() method. To actually Destroy() the
dialog completely, you will want to check out the frame’s onButton() method.

256

CHAPTER 16 ~ THREADS AND TIMERS
Now we're ready to look at the threading code.

class TestThread(Thread):
"""Test Worker Thread Class.™"""

def _init (self):
"""Init Worker Thread Class."""
Thread. init (self)
self.start() # start the thread

def run(self):
"""Run Worker Thread."""
This is the code executing in the new thread.
for i in range(20):
time.sleep(1)
wx.CallAfter(Publisher().sendMessage, "update", "")

Here we created a thread and immediately started it. The thread loops over a range
of 20 and uses the time module to sleep for a second in each iteration. After each sleep, it
sends a message to the dialog to tell it to update the progress bar.

Updating the Code for wxPython 3.0.2.0 and Newer

The code in the previous section was written using PubSub’s old API which has been
tossed out the window with the advent of wxPython 2.9. So if you try to run the previous
code in 2.9 or newer, you will likely run into issues. Thus for completeness, following

is a version of the code that uses the new PubSub API and also works with wxPython
Phoenix:

import time
import wx

from threading import Thread
from wx.lib.pubsub import pub

class TestThread(Thread):
"""Test Worker Thread Class."""

257

CHAPTER 16 THREADS AND TIMERS

def _init (self):

def

"""Init Worker Thread Class."""
Thread. init (self)

self.daemon = True

self.start() # start the thread

run(self):
"""Run Worker Thread."""
This is the code executing in the new thread.
for i in range(20):
time.sleep(0.25)
wx.CallAfter(pub.sendMessage, "update", msg="")

class MyProgressDialog(wx.Dialog):

258

def

def

__init_ (self):
"""Constructor

wx.Dialog. init (self, None, title="Progress")
self.count = 0

self.progress = wx.Gauge(self, range=20)
sizer = wx.BoxSizer(wx.VERTICAL)

sizer.Add(self.progress, 0, wx.EXPAND)
self.SetSizer(sizer)

create a pubsub receiver
pub.subscribe(self.updateProgress, "update")

updateProgress(self, msg):

self.count += 1

if self.count >= 20:
self.EndModal(0)

self.progress.SetValue(self.count)

CHAPTER 16 THREADS AND TIMERS

class MyForm(wx.Frame):

def init (self):
wx.Frame. init (self, None, wx.ID ANY, "Tutorial")

Add a panel so it looks the correct on all platforms
panel = wx.Panel(self, wx.ID ANY)

self.btn = btn = wx.Button(panel, label="Start Thread")
btn.Bind(wx.EVT_BUTTON, self.onButton)

sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(btn, 0, wx.ALL|wx.CENTER, 5)
panel.SetSizer(sizer)

def onButton(self, event):

Runs the thread
btn = event.GetEventObject()
btn.Disable()

TestThread()

dlg = MyProgressDialog()
d1lg.ShowModal()
dlg.Destroy()

btn.Enable()

Run the program

if _name_ == " main_":
app = wx.App(False)
frame = MyForm().Show()

app.MainLoop()

Note that now you import the pub module rather than the Publisher module. Also
note that you have to use keyword arguments. See the PubSub documentation for
additional information.

259

CHAPTER 16 THREADS AND TIMERS

At this point, you should know how to create your own progress dialog and update it
from a thread. You can use a variation of this code to create a file downloader. If you do that,
you would need to check the size of the file you are downloading and download it in chunks
so you can create the wx.Gauge with the appropriate range and update it as each chunk is
downloaded. I hope this give you some ideas for how to use this widget in your own projects.

Recipe 16-3. A wx.Timer Tutorial
Problem

The wx.Timer allows the developer to execute code at specific intervals. In this chapter,
I will cover several different ways to create timers. A timer object actually starts its own
event loop that it controls without interfering the wxPython’s main loop.

& ©) Timer Tutorial 1
Start

Figure 16-3. A simple timer example

260

CHAPTER 16 THREADS AND TIMERS

Solution

My first example is super simple. It has only one button that starts and stops a timer. Let’s

take a look at the code.

import time

import wx

class MyForm(wx.Frame):

def

def

def

__init_ (self):
wx.Frame. init (self, None, title="Timer Tutorial 1",
size=(500,500))

panel = wx.Panel(self, wx.ID ANY)

self.timer = wx.Timer(self)
self.Bind(wx.EVT_TIMER, self.update, self.timer)

self.toggleBtn = wx.Button(panel, wx.ID ANY, "Start")
self.toggleBtn.Bind(wx.EVT_BUTTON, self.onToggle)

onToggle(self, event):

btnLabel = self.toggleBtn.GetLabel()

if btnLabel == "Start":
print("starting timer...")
self.timer.Start(1000)
self.toggleBtn.SetLabel("Stop")

else:
print("timer stopped!")
self.timer.Stop()
self.toggleBtn.SetLabel("Start")

update(self, event):

print("\nupdated: ", time.ctime())

Run the program

if _name ==

app

__main__ ":
= wx.App(True)

frame = MyForm().Show()
app.MainLoop()

261

CHAPTER 16 THREADS AND TIMERS

How It Works

As you can see, I only import two modules: wx and time. I use the time module to post
the time that the wx.Timer event fires on. The two main things to pay attention to here
are how to bind the timer to an event and the event handler itself. For this example to
work, you have to bind the frame to the timer event. I tried binding the timer (i.e., self.
timer.Bind), but that didn’t work. So the logical thing to do was ask Robin Dunn what
was going on. He said that if the parent of the timer is the frame, then the frame is the
only object that will receive the timer’s events unless you derive wx.Timer and override
its Notify method. Makes sense to me.

Regardless, let’s look at my event handler. In it I grab the button’s label and then use
a conditional if statement to decide if I want to start or stop the timer as well as what
to label the button. In this way, I can have just one function that toggles the button and
the timer’s state. The part to take note of are the methods Start and Stop. They are what
control the timer.

In one of my real-life applications, I have a timer execute every so often to check
my e-mail. I discovered that if I shut my program down without stopping the timer, the
program would basically become a zombie process. Thus, you need to make sure that
you stop all your timers when your program is closed or destroyed.

Before we get to my next example, let’s take a look at refactoring this one. Robin
Dunn had some suggestions that I implemented in the following code. Can you tell
what’s different?

import wx
import time

class MyForm(wx.Frame):
def init (self):

wx.Frame. init (self, None, title="Timer Tutorial 1",
size=(500,500))

panel = wx.Panel(self, wx.ID ANY)

262

CHAPTER 16 THREADS AND TIMERS

self.timer = wx.Timer(self)
self.Bind(wx.EVT _TIMER, self.update, self.timer)

self.toggleBtn = wx.Button(panel, wx.ID ANY, "Start")
self.toggleBtn.Bind(wx.EVT _BUTTON, self.onToggle)

def onToggle(self, event):

if self.timer.IsRunning():
self.timer.Stop()
self.toggleBtn.SetLabel("Start")
print("timer stopped!")

else:
print("starting timer...")
self.timer.Start(1000)
self.toggleBtn.SetLabel("Stop")

def update(self, event):

print("\nupdated: ", time.ctime())

Run the program

if name_ ==" main_":
app = wx.App(True)
frame = MyForm().Show()
app.MainLoop()

As you can see, I've changed the event handler to check if the timer is running or not
rather than looking at the button’s label. This saves us one line, but it’s a little cleaner
and shows how to accomplish the same thing in a slightly different way.

263

CHAPTER 16 THREADS AND TIMERS

Using Multiple Timers

£5) @® Timer Tutorial 2
Start Timer 1

Start Timer 2

Figure 16-4. A simple timer example

There are many times where you will need to have multiple timers running at the same
time. For example, you might need to check for updates from one or more web APIs.
Here’s a simple example that shows how to create a couple of timers.

import wx
import time

TIMER ID1
TIMER ID2

2000
2001

class MyForm(wx.Frame):

def init (self):
wx.Frame. init_ (self, None, title="Timer Tutorial 2")

panel = wx.Panel(self, wx.ID ANY)

self.timer = wx.Timer(self, id=TIMER ID1)
self.Bind(wx.EVT TIMER, self.update, self.timer)
self.timer2 = wx.Timer(self, id=TIMER ID2)
self.Bind(wx.EVT_TIMER, self.update, self.timer2)

264

CHAPTER 16 THREADS AND TIMERS

self.toggleBtn = wx.Button(panel, wx.ID ANY, "Start Timer 1")
self.toggleBtn.Bind(wx.EVT_BUTTON, self.onStartTimerOne)
self.toggleBtn2 = wx.Button(panel, wx.ID ANY, "Start Timer 2")
self.toggleBtn2.Bind(wx.EVT BUTTON, self.onStartTimerOne)

sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(self.toggleBtn, 0, wx.ALL|wx.CENTER, 5)
sizer.Add(self.toggleBtn2, 0, wx.ALL|wx.CENTER, 5)
panel.SetSizer(sizer)

def onStartTimerOne(self, event):
buttonObj = event.GetEventObject()
btnLabel = buttonObj.GetLabel()
timerNum = int(btnLabel[-1:])
print(timerNum)

if btnLabel == "Start Timer %s" % timerNum:
if timerNum ==
print("starting timer 1...")
self.timer.Start(1000)
else:
print("starting timer 2...")
self.timer2.Start(3000)
buttonObj.SetLabel("Stop Timer %s" % timerNum)
else:
if timerNum ==
self.timer.Stop()
print("timer 1 stopped!")
else:
self.timer2.Stop()
print("timer 2 stopped!")
buttonObj.SetLabel("Start Timer %s" % timerNum)

def update(self, event):
timerId = event.GetId()
if timerId == TIMER ID1:
print("\ntimer 1 updated:

', time.ctime())

265

CHAPTER 16 THREADS AND TIMERS

else:
print("\ntimer 2 updated:

, time.ctime())

Run the program
if _name_ =="

__main_":
app = wx.App()

frame = MyForm().Show()
app.MainLoop()

To be honest, this second example is mostly the same as the first one. The main
difference is that I have two buttons and two timer instances. I decided to be geeky and
have both buttons bind to the same event handler. This is probably one of my better
tricks. To find out which button called the event, you can use the event’s GetEventObject
method. Then you can get the label off the button. If you're a real nerd, you'll notice that
I could combine lines 30 and 31 into the following one-liner:

btnLabel = event.GetEventObject().GetLabel()

I split that into two lines to make it easier to follow though. Next, I used some string
slicing to grab the button’s label number so I would know which timer to stop or start.
Then my program enters my nested if statements where it checks the button label and
then the timer number. Now you know how to start and stop multiple timers too.

Once again, Robin Dunn came up with a better way to do this second example, so
let’s see what he came up with.

import wx
import time

class MyForm(wx.Frame):

def _init (self):
wx.Frame. init (self, None, title="Timer Tutorial 2")

panel = wx.Panel(self, wx.ID ANY)

self.timer = wx.Timer(self, wx.ID ANY)
self.Bind(wx.EVT_TIMER, self.update, self.timer)
self.timer2 = wx.Timer(self, wx.ID ANY)
self.Bind(wx.EVT _TIMER, self.update, self.timer2)

266

CHAPTER 16 THREADS AND TIMERS

self.toggleBtn = wx.Button(panel, wx.ID ANY, "Start Timer 1")
self.toggleBtn.Bind(wx.EVT_BUTTON, self.onStartTimer)
self.toggleBtn2 = wx.Button(panel, wx.ID ANY, "Start Timer 2")
self.toggleBtn2.Bind(wx.EVT BUTTON, self.onStartTimer)

sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(self.toggleBtn, 0, wx.ALL|wx.CENTER, 5)
sizer.Add(self.toggleBtn2, 0, wx.ALL|wx.CENTER, 5)
panel.SetSizer(sizer)

Each value in the following dict is formatted as follows:

(timerNum, timerObj, secs between timer events)

self.objDict = {self.toggleBtn: (1, self.timer, 1000),
self.toggleBtn2: (2, self.timer2, 3000)}

def onStartTimer(self, event):

btn = event.GetEventObject()

timerNum, timer, secs = self.objDict[btn]

if timer.IsRunning():
timer.Stop()
btn.SetLabel("Start Timer %s" % timerNum)
print("timer %s stopped!" % timerNum)

else:
print("starting timer %s..." % timerNum)
timer.Start(secs)
btn.SetLabel("Stop Timer %s" % timerNum)

def update(self, event):
timerId = event.GetId()
if timerId == self.timer.GetId():
print("\ntimer 1 updated: ", time.ctime())
else:
print ("\ntimer 2 updated:

, time.ctime())

Run the program

if _name_ == " main_":
app = wx.App()
frame = MyForm().Show()

app.MainLoop()

267

CHAPTER 16 THREADS AND TIMERS

In the __init__Tadded a dictionary that is keyed on the button objects. The values
of the dictionary are the timer number, the timer object, and the number of seconds
(technically milliseconds) between timer events. Next, [updated the button event
handler to grab the button object from the event’s GetEventObject method and then
extract the respective values using said object for the dict’s key. Then I can use the same
trick I used in the refactored example I detailed previously, namely, the checking of
whether or not the timer is running.

At this point you should have a pretty good handle on how you might use a wx.Timer
in your own code base. It’s a very easy way to fire an event at a specific time interval and
it works pretty reliably. I have used timer objects in many projects. One good example
was when I needed to check for updates in an e-mail alert program I had written. [used
a timer to check my e-mail every so often to see if I had received anything new and to
alert me if I did.

268

CHAPTER 17

Redirecting Text

Recipe 17-1. Redirect Python’s Logging
Module to a TextCtrl

Problem

I get alot of interesting ideas from reading the wxPython Google group or StackOverflow.
The other day I saw someone asking about how to make Python’s logging module write
its output to file and to a TextCtrl. It turns out that you need to create a custom logging
handler to do it. At first, I tried just using a normal StreamHandler and redirecting
stdout via the sys module (sys.stdout) to my text control, but that would only redirect
my print statements, not the log messages.

Solution

Fortunately, this is not very hard to achieve in wxPython. Let’s take a look at what I
ended up with.

import logging
import logging.config
import wx

class CustomConsoleHandler(logging.StreamHandler):

def init (self, textctrl):
logging.StreamHandler. init (self)
self.textctrl = textctrl

269
© Mike Driscoll 2018

M. Driscoll, wxPython Recipes, https://doi.org/10.1007/978-1-4842-3237-8_17

CHAPTER 17 REDIRECTING TEXT

def emit(self, record):

Constructor
msg = self.format(record)
self.textctrl.WriteText(msg + "\n")
self.flush()

class MyPanel(wx.Panel):

270

def init (self, parent):

def

Constructor
wx.Panel. init (self, parent)
self.logger = logging.getLogger ("wxApp")

self.logger.info("Test from MyPanel init ")

logText = wx.TextCtrl(
self,
style = wx.TE_MULTILINE|wx.TE_READONLY |wx.HSCROLL)

btn = wx.Button(self, label="Press Me")
btn.Bind(wx.EVT BUTTON, self.onPress)

sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(logText, 1, wx.EXPAND|wx.ALL, 5)
sizer.Add(btn, 0, wx.ALL, 5)
self.SetSizer(sizer)

txtHandler = CustomConsoleHandler(logText)
self.logger.addHandler (txtHandler)

onPress(self, event):

On the press of a button, log some messages

self.logger.error("Error Will Robinson!")
self.logger.info("Informational message")

CHAPTER 17

class MyFrame(wx.Frame):

def init (self):
"""Constructor
wx.Frame. init (self, None, title="Logging test")
panel = MyPanel(self)
self.logger = logging.getLogger ("wxApp")
self.Show()

def main():

Run the program

dictlLogConfig = {
"version":1,

"handlers":{

"fileHandler":{
"class":"logging.FileHandler",
"formatter":"myFormatter”,
"filename":"test.log"

})

"consoleHandler":{
"class":"logging.StreamHandler",
"formatter":"myFormatter"

}

}’

"loggers":{
"wxApp" : {

"handlers":["fileHandler", "consoleHandler"],
"level":"INFO",

}
b

REDIRECTING TEXT

271

CHAPTER 17 REDIRECTING TEXT

"formatters":{
"myFormatter":{
"format":"%(asctime)s - %(name)s - %(levelname)s -
%(message)s"

}

}
logging.config.dictConfig(dictLogConfig)

logger = logging.getLogger ("wxApp")
logger.info("This message came from main!")

app = wx.App(False)
frame = MyFrame()
app.MainLoop()

if name_ ==" main_":

main()

How It Works

Note that I ended up using Python’s logging.config module. The dictConfig method
was added in Python 2.7. Basically you set up your logging handler and formatters and
what-not inside dictionary and then pass it to logging.config. If you run this code, you
will notice that the first couple of messages go to stdout and the log but not to the text
control. At the end of the panel class’s __init__, we add our custom handler and that’s
when redirecting logging messages to the text control begins. You can press the button to
see itin action!

Figure 17-1 shows what it looked like on my machine.

272

CHAPTER 17 REDIRECTING TEXT

00 @ Logging test

Error Will Robinson!
Informational message

Press Me

Figure 17-1. Redirecting logging to a text control
Note that you can see it logging to stdout and to our text control in the screenshot.
You should see something like the following in your terminal and in the log file:

2016-11-30 14:04:35,026 - wxApp - INFO - This message came
from main!

2016-11-30 14:04:35,026 - wxApp - INFO - Test from MyPanel __init__
2016-11-30 14:04:38,261 - wxApp - ERROR - Error Will Robinson!

At this point, you now know how to redirect Python’s logging methods to a wxPython
widget, specifically the wx.TextCtrl. This can be handy when you want to save off an
application’s output to file in addition to seeing it in “real time” in your application.

In the next recipe, we'll look at how to redirect stdout to a wx.TextCtrl too!

Recipe 17-2. Redirecting stdout/stderr
Problem

A fairly common use case when using wxPython is the need to redirect stdout or stderr
to a text control. You might find yourself launching a separate application with
wxPython, but you want to capture its output in real time. This is a pretty common

273

CHAPTER 17 REDIRECTING TEXT

need and one I have run into many times. There are a couple of different methods for
redirecting stdout. We'll look at the two most common in this recipe.

Solution—The Thread-Safe Method

The first piece of code that we need is a class that we can use to stub out the TextCtrl’s
writing application programming interface (API).
Following is a pretty standard example:

class RedirectText(object):

def _init (self, my text ctrl):
self.out = my text ctrl

def write(self,string):
self.out.WriteText(string)

Note that there’s only one method in this class (besides the initialization method, of
course). It allows us to write the text from stdout or stderr to the text control. It should be
noted that the write method is not thread-safe. If you want to redirect text from threads,
then change the write statement like the following:

def write(self, string):
wx.CallAfter(self.out.WriteText, string)

The wx.CallAfter method is thread-safe in wxPython. You could also use
wx.CallLater or wx.PostEvent if you wanted to.

Now that we know what we need to write the stdout text to the TextCtrl, let’s go ahead
and write some code that actually demonstrates how to connect all the pieces. You will
want to add the following code to the file that contains the class we just wrote. When you
run the code, you will see an application that looks like the following:

import sys
import wx

class RedirectText(object):

def _init_ (self, my text ctrl):
self.out = my text ctrl

274

CHAPTER 17 REDIRECTING TEXT

def write(self,string):
wx.CallAfter(self.out.WriteText, string)

class MyForm(wx.Frame):

def init (self):
wx.Frame. init (self, None, title="wxPython Redirect Tutorial")

Add a panel so it looks the correct on all platforms
panel = wx.Panel(self, wx.ID ANY)
log = wx.TextCtrl(panel, wx.ID ANY, size=(300,100),
style = wx.TE_MULTILINE|wx.TE_READONLY|wx.HSCROLL)
btn = wx.Button(panel, wx.ID ANY, 'Push me!")
self.Bind(wx.EVT BUTTON, self.onButton, btn)

Add widgets to a sizer

sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(log, 1, wx.ALL|wx.EXPAND, 5)
sizer.Add(btn, 0, wx.ALL|wx.CENTER, 5)
panel.SetSizer(sizer)

redirect text here
redir = RedirectText(log)
sys.stdout = redir

def onButton(self, event):
print("You pressed the button!")

__main_ ":
app = wx.App(False)
frame = MyForm().Show()
app.MainLoop()

if _name ==

How It Works

In the previous code, I created a read-only multiline text control and a button whose
sole purpose is to print some text to stdout. I added them to a BoxSizer to keep the
widgets from stacking on top of each other and to better handle resizing of the frame.

275

CHAPTER 17 REDIRECTING TEXT

Next I instantiated the RedirectText class by passing it an instance of my text control.
Finally, I set stdout to the RediectText instance, redir (i.e., sys.stdout=redir).

Ifyou want to redirect stderr as well, then just add sys.stderr=redir on the line
following sys.stdout=redir

Improvements could be made to this example such as color coding (or prepending)
which messages are from stdout and which are from stderr, but I'll leave that as an
exercise for the reader.

Solution—The Non-Thread-Safe Method

If you don’t need to worry about threads writing to your TextCtrl, then you can simplify
your code a bit because the TextCtrl has its own write method. What this means is that
you don’t need a class that follows the TextCtrl’s writing API. However, this is slightly
limiting since the write method is no longer wrapped in wxPython'’s thread-safe method:
wx.CallAfter. Let’s go ahead and dig into the code.

wxPython Classic

import sys
import wx

class MyForm(wx.Frame):

def init (self):
wx.Frame. init (self, None,
title="wxPython Redirect Tutorial")

Add a panel so it looks the correct on all platforms

panel = wx.Panel(self, wx.ID ANY)

style = wx.TE_MULTILINE |wx.TE_READONLY |wx.HSCROLL

log = wx.TextCtrl(panel, wx.ID ANY, size=(300,100),
style=style)

btn = wx.Button(panel, wx.ID ANY, 'Push me!')

self.Bind(wx.EVT BUTTON, self.onButton, btn)

Add widgets to a sizer
sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(log, 1, wx.ALL|wx.EXPAND, 5)

276

CHAPTER 17 REDIRECTING TEXT

sizer.Add(btn, 0, wx.ALL|wx.CENTER, 5)
panel.SetSizer(sizer)

redirect text here
sys.stdout = log

def onButton(self, event):
print("You pressed the button!")

if _name__ == " main_":
app = wx.App(False)
frame = MyForm().Show()

app.MainLoop()

Note that the previous code no longer references the RedirectText class because we
don’t need it. I am pretty sure that if you want to use threads, doing it this way will not be
thread-safe. You'll need to override the TextCtrl’s write method in a similar manner as
was previously mentioned to make it safe. Special thanks go to to one of my blog
(www.blog.pythonlibrary.org/) readers, carandraug, for pointing this out to me.

This code will not work in wxPython 4 as the wx.TextCtrl no longer has a write()
method. So let’s write a version of the code that will work with Phoenix!

wxPython 4

import sys

import wx

class MyCustomTextCtrl(wx.TextCtrl):

def _init_ (self, *args, **kwargs):

Initial the text control

wx.TextCtrl. init_ (self, *args, **kwargs)

def write(self, text):
self.WriteText(text)

277

http://www.blog.pythonlibrary.org/

CHAPTER 17 REDIRECTING TEXT

class MyForm(wx.Frame):

def _init (self):
wx.Frame. init (self, None,
title="wxPython Redirect Tutorial")

Add a panel so it looks the correct on all platforms

panel = wx.Panel(self, wx.ID ANY)

style = wx.TE_MULTILINE|wx.TE_READONLY|wx.HSCROLL

log = MyCustomTextCtrl(panel, wx.ID ANY, size=(300,100),
style=style)

btn = wx.Button(panel, wx.ID ANY, 'Push me!')

self.Bind(wx.EVT _BUTTON, self.onButton, btn)

Add widgets to a sizer

sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(log, 1, wx.ALL|wx.EXPAND, 5)
sizer.Add(btn, 0, wx.ALL|wx.CENTER, 5)
panel.SetSizer(sizer)

redirect text here
sys.stdout = log

def onButton(self, event):
print("You pressed the button!")

if name_ ==" main_":
app = wx.App(False)
frame = MyForm().Show()
app.MainLoop()

To make a version that works with Phoenix, we need to subclass wx.TextCtrl and
create our own write() method. The reason is that we want our custom text control to
behave as a file-like object would. That way we can redirect stdout to it properly. If you
followed this example, then this code should work the same way it did in the previous
example for Classic.

This recipe provided some great information. Here we learned how to redirect stdout
in both a thread-safe and a non-thread-safe method. I have been on several projects
where I needed to redirect stdout, and the methods in this recipe have always worked

278

CHAPTER 17 REDIRECTING TEXT

well for me. You can take the information here and combine it with the previous recipe
to redirect stdout to your widgets and to a log file.

Recipe 17-3. How to Use the Clipboard
Problem

Everyone who uses computers regularly knows that they can copy and paste text. What
they might not know is that when you copy something, it goes into a location known

as the “clipboard.” Most programs provide access to a clipboard of some sort, whether
it be just within the program itself or to the system clipboard, which allows items to be
copied to other applications. The wxPython GUI toolkit also provides clipboard access,
which you can use to copy text to and from within your program and even to the system
clipboard. You can also copy images to the clipboard. In this tutorial (see Figure 17-2),
we'll take a look at how you can do this in your own code.

N oK) Clipboard Tutorial

Enter text to copy to clipboard:

|

Copy

Copy and Flush

Figure 17-2. Using the clipboard

279

CHAPTER 17 REDIRECTING TEXT

Solution

We'll learn how to use the clipboard by utilizing a really simple example. The following
code contains two buttons, one that copies any text that’s added to the text control

and which you can then paste elsewhere, such as in the text box, in a search engine,

or whatever. The other button also copies to clipboard and then closes the application
after flushing the data. This is supposed to make the data available in the system
clipboard even after the application is closed. Both work great on Windows, but wxGTK
(i.e., the Linux version) doesn’t work in the latter case. Look up the bug ticket for more
information to see if it has been resolved since the time of writing.

Anyway, let’s look at the code!
import wx

class ClipboardPanel(wx.Panel):

def init (self, parent):
"""Constructor

wx.Panel. init (self, parent)

1bl = wx.StaticText(self, label="Enter text to copy to clipboard:")
self.text = wx.TextCtrl(self, style=wx.TE MULTILINE)

copyBtn = wx.Button(self, label="Copy")

copyBtn.Bind(wx.EVT_BUTTON, self.onCopy)

copyFlushBtn = wx.Button(self, label="Copy and Flush")
copyFlushBtn.Bind(wx.EVT BUTTON, self.onCopyAndFlush)

sizer = wx.BoxSizer(wx.VERTICAL)

sizer.Add(1bl, 0, wx.ALL, 5)
sizer.Add(self.text, 1, wx.EXPAND)
sizer.Add(copyBtn, 0, wx.ALL|wx.CENTER, 5)
sizer.Add(copyFlushBtn, 0, wx.ALL|wx.CENTER, 5)
self.SetSizer(sizer)

def onCopy(self, event):

self.dataObj = wx.TextDataObject()
self.dataObj.SetText(self.text.GetValue())

280

CHAPTER 17 REDIRECTING TEXT

if wx.TheClipboard.Open():
wx.TheClipboard. SetData(self.datalObj)
wx.TheClipboard.Close()

else:
wx.MessageBox("Unable to open the clipboard”, "Error")

def onCopyAndFlush(self, event):

Copy to the clipboard and close the application
self.dataObj = wx.TextDataObject()
self.dataObj.SetText(self.text.GetValue())
if wx.TheClipboard.Open():
wx.TheClipboard. SetData(self.datalObj)
wx.TheClipboard.Flush()
else:
wx.MessageBox("Unable to open the clipboard”, "Error")

self.GetParent().Close()

class ClipboardFrame(wx.Frame):

def init (self):

Constructor"""

wx.Frame. init (self, None, title="Clipboard Tutorial")
panel = ClipboardPanel(self)

self.Show()

if _name__ == " main_":
app = wx.App(False)
frame = ClipboardFrame()

app.MainLoop()

281

CHAPTER 17 REDIRECTING TEXT

How It Works

As you might have guessed, the guts of this script are in the button event handlers. The
main bit is wx.TextDataObject, which will store the data from the text control. Next we
attempt to open the clipboard. If we’'re successful, we add our text to the clipboard and
then close it. The data is now there for the pasting. The second event handler does the
same thing, but it Flushes to the clipboard rather than just closing it. If you wanted to
copy a bitmap instead, then you'd want to use a wx.BitmapDataObject and pass it to a
wx.Bitmap object. Otherwise, the rest is the same.

Note The copy-and-flush method may not work on all operating systems. For
example, it worked fine for me on Windows 7 but not on Xubuntu 14.04.

The clipboard is very handy and I know I use it almost unconsciously when I'm using
the computer. So when it doesn’t work it can be quite frustrating. Fortunately, making
your own application work with the clipboard in wxPython is extremely easy to do. So
now you know how to prevent clipboard frustration in your own users.

282

CHAPTER 18

Grid Recipes

Recipe 18-1. Syncing Scrolling Between Two Grids
Problem

You will occasionally need or want to have two scrolling windows synced. You might
want to have this ability when you are comparing two files, such as a diff. Or perhaps
you just want to compare two sets of data or perhaps even two photos. In this recipe,
we will put two grids in a SplitterWindow and sync them up. Note that I will only be
demonstrating syncing the scrolling when you scroll using the scrollbar itself.

"

Solution

®0e Sync Grids

A B c D A B c D

L I 1
2 2
3 3
a4 4
5 5
6 6
7 7
8 8
9 9
10 10
1 1
12 12
13 13
14 14
15 15
16 16
17 17

Figure 18-1. Syncing scrolling between two grids

283
© Mike Driscoll 2018

M. Driscoll, wxPython Recipes, https://doi.org/10.1007/978-1-4842-3237-8_18

CHAPTER 18 GRID RECIPES

Actually syncing up two grids is not that hard. Let’s write some code and find out how
easy itis.

import wx

import wx.grid as gridlib

class ScrollSync(object):
def _init (self, paneli, panel2):
self.panell = panel1
self.panel2 = panel2
self.panell.grid.Bind(wx.EVT SCROLLWIN, self.onScrollWini)
self.panel2.grid.Bind(wx.EVT_SCROLLWIN, self.onScrollWin2)

def onScrollWini(self, event):
if event.Orientation == wx.SB_HORIZONTAL:
self.panel2.grid.Scroll(event.Position, -1)
else:
self.panel2.grid.Scroll(-1, event.Position)
event.Skip()

def onScrollWin2(self, event):
if event.Orientation == wx.SB_HORIZONTAL:
self.panel1.grid.Scroll(event.Position, -1)
else:
self.panell.grid.Scroll(-1, event.Position)
event.Skip()

class GridPanel(wx.Panel):

def init (self, parent):

Constructor"""

wx.Panel. init (self, parent)

self.grid = gridlib.Grid(self, style=wx.BORDER_SUNKEN)
self.grid.CreateGrid(25,8)

sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(self.grid, 1, wx.EXPAND)
self.SetSizer(sizer)

284

CHAPTER 18 GRID RECIPES

class MainPanel(wx.Panel):

def init (self, parent):
Constructor"""
wx.Panel. init (self, parent)

split = wx.SplitterWindow(self)

GridPanel(split)
panelTwo = GridPanel(split)
ScrollSync(panelOne, panelTwo)

panelOne

split.SplitVertically(panelOne, panelTwo)
split.SetSashGravity(0.5)

sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(split, 1, wx.EXPAND)
self.SetSizer(sizer)

class MainFrame(wx.Frame):

def init (self):

Constructor"""

wx.Frame. init (self, None, title="Sync Grids",
size=(800,400))

panel = MainPanel(self)

self.Show()

if name_ ==" main_":
app = wx.App(False)
frame = MainFrame()

app.MainLoop()

How It Works

The piece we care about most is the ScrollSync class. It accepts the two panels that
the grids are on as arguments. We bind the grids to wx.EVT_SCROLLWIN and then,

285

CHAPTER 18 GRID RECIPES

during that event, we change the position of the opposite grid. Now this code has
several limitations. It only works when you are physically moving the scrollbars with
your mouse. If you use the mouse’s scroll wheel, the arrow keys, or Page up/down, the
two grids no longer sync. I attempted to add mouse wheel support via the wx.EVT_
MOUSEWHEEL event, but it doesn’t provide orientation or position in the same way as
EVT_SCROLLWIN does. In fact, its Position is a wx.Point whereas EVT_SCROLLWIN
returns an integer. Adding those bits of functionality would be fun, but they are outside
the scope of this recipe.

At this point you should have the knowledge to add the ability to synchronize the
scrolling of two windows on your own. While it's not a complete solution, it’s still a neat
little feature that you can add that is a good way to differentiate your application from
others.

Recipe 18-2. How to Get Selected Cells in a Grid
Problem

In this recipe we will be looking at how to get the selected cells from a wxPython grid
object. Most of the time, getting the selection is easy, but when the user selects more
than one cell, getting the selection becomes more complicated. We will need to create
some sample code to show how all this fits together.

0 N OObsE WN -

Get Selected Cells

Figure 18-2. Getting only the selected cells

286

CHAPTER 18 GRID RECIPES

Solution

There is an interesting article on the web that covers this topic. You can read it here:
http://ginstrom.com/scribbles/2008/09/07/getting-the-selected-cells-from-a-
wxpython-grid/ (or here's a shorter link: http://bit.1ly/2eqafsB). However, there are
several problems with the article which we will look at as well. Following is the code we'll
be looking at.

import wx

import wx.grid as gridlib

class MyPanel(wx.Panel):

def init (self, parent):

def

Constructor
wx.Panel. init (self, parent)
self.currentlySelectedCell = (0, 0)

self.myGrid = gridlib.Grid(self)

self.myGrid.CreateGrid(12, 8)
self.myGrid.Bind(gridlib.EVT_GRID SELECT CELL, self.onSingleSelect)
self.myGrid.Bind(gridlib.EVT_GRID RANGE SELECT, self.
onDragSelection)

selectBtn = wx.Button(self, label="Get Selected Cells")
selectBtn.Bind(wx.EVT _BUTTON, self.onGetSelection)

sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(self.myGrid, 1, wx.EXPAND)
sizer.Add(selectBtn, 0, wx.ALL|wx.CENTER, 5)
self.SetSizer(sizer)

onDragSelection(self, event):

Gets the cells that are selected by holding the left
mouse button down and dragging

287

http://ginstrom.com/scribbles/2008/09/07/getting-the-selected-cells-from-a-wxpython-grid/
http://ginstrom.com/scribbles/2008/09/07/getting-the-selected-cells-from-a-wxpython-grid/
http://bit.ly/2eqafsB

CHAPTER 18 GRID RECIPES

def

def

def

288

if self.myGrid.GetSelectionBlockTopLeft():
top left = self.myGrid.GetSelectionBlockTopLeft()[0]
bottom right = self.myGrid.GetSelectionBlockBottomRight()[0]
self.printSelectedCells(top_ left, bottom right)

onGetSelection(self, event):

Get whatever cells are currently selected
cells = self.myGrid.GetSelectedCells()
if not cells:
if self.myGrid.GetSelectionBlockTopLeft():
top_left = self.myGrid.GetSelectionBlockTopLeft()
bottom right = self.myGrid.GetSelectionBlockBottomRight()
self.printSelectedCells(top left[0], bottom right[o0])
else:
print(self.currentlySelectedCell)
else:
print(cells)

onSingleSelect(self, event):

Get the selection of a single cell by clicking or

moving the selection with the arrow keys

print("You selected Row %s, Col %s" % (event.GetRow(),

event.GetCol()))

self.currentlySelectedCell = (event.GetRow(),
event.GetCol())

event.Skip()

printSelectedCells(self, top left, bottom right):

Based on code from
http://ginstrom.com/scribbles/2008/09/07/getting-the-selected-
cells-from-a-wxpython-grid/

CHAPTER 18 GRID RECIPES

cells = []

rows_start = top left[0]
rows_end = bottom right[0]

cols start = top left[1]
cols_end = bottom right[1]

rows = range(rows start, rows end+1)
cols = range(cols start, cols end+1)

cells.extend([(row, col)
for row in rows
for col in cols])

print("You selected the following cells: ", cells)

for cell in cells:
row, col = cell
print(self.myGrid.GetCellValue(row, col))

class MyFrame(wx.Frame):

def init (self):

Constructor"""

wx.Frame. init (self, parent=None, title="Single Cell Selection")
panel = MyPanel(self)

self.Show()

if _name__ == "_ main_":
app = wx.App(False)
frame = MyFrame()

app.MainLoop()

289

CHAPTER 18 GRID RECIPES

How It Works

Let’s take a few moments to break this down. First of all, we created a grid object that
we're calling self.myGrid. We bind to two grid-specific events, EVT_GRID_SELECT _
CELL and EVT_GRID_RANGE_SELECT. This is for demonstration purposes as you
usually don’t need to bind to EVT_GRID_SELECT_CELL. For the single-cell selection
event, we call the onSingleSelect handler. In it we use the event object to grab the
correct row and column. If you look at the article linked to previously, you'll notice that
they are using GetGridCursorRow and GetGridCursorCol. I found that these only
return the previously selected cell, not the cell that is currently selected. This is the
reason we are using the event object’s methods instead. Also note that we are updating
the value of self.currentlySelectedCell to equal whatever the currently selected cell is.

The other grid event is bound to onDragSelection. In this event handler we
call the grid’s GetSelectionBlockTopLeft() method and check to make sure it
returns something. If it does not, then we do nothing else. But if it does return
something, then we grab its contents as well as the contents returned from
GetSelectionBlockBottomRight(). Then we pass these to our printSelectedCells()
method. This code is based on the previously mentioned article, although it has been
simplified a bit as I found the original’s for loop was throwing an error. Basically all this
method does is create two lists of values using Python’s range function. Then it extends a
list using a nested list comprehension. Finally it prints out the cells that were selected to
stdout.

Note that the printSelectedCells() method doesn’t work correctly in wxPython
Phoenix.

The last method to look at is the button event handler: onGetSelection. This method
calls the grid’s GetSelectedCells() method. This will return the selected cells that single
clicked. It will also work if the user drag selects some cells. If the user just selects one
cell, then we will print self.currentlySelectedCell as it will always equal the value of the
current selection.

As you can see, getting the selected cell or cells from the grid object can be a little
tricky. But with a bit of work, we were able to overcome. Ideally, you will find this useful
in one of your current or future projects.

290

CHAPTER 19

Working with Your
Application

Recipe 19-1. How to Edit Your GUI Interactively
Using reload()

Problem

I came across an interesting question on StackOverflow a few years ago where the author
was asking how he could write a wxPython program dynamically. In other words, he
wanted to be able to edit the code and basically refresh the application without closing

it and rerunning his code. The simplest way would be to use Python’s built-in reload()
functionality. If we go this route, then we’ll need to build a little front end to import the
code that we want to change interactively.

291
© Mike Driscoll 2018

M. Driscoll, wxPython Recipes, https://doi.org/10.1007/978-1-4842-3237-8_19

CHAPTER 19 WORKING WITH YOUR APPLICATION

Solution
@® @® Reloader
Show App
Reload

Figure 19-1. Reloading your application live

Creating the reloading application is very straightforward. All we need is some
application code to reload dynamically. Python will do the rest. Let’s look at the code for
the reloading application and then we'll look at a simple application that we want to edit
and reload

main.py
import testApp
import wx

class ReloaderPanel(wx.Panel):

def init (self, parent):

Constructor
wx.Panel. init (self, parent)
self.testFrame = None

showAppBtn = wx.Button(self, label="Show App")
showAppBtn.Bind(wx.EVT_BUTTON, self.onShowApp)

292

CHAPTER 19 WORKING WITH YOUR APPLICATION

reloadBtn = wx.Button(self, label="Reload")
reloadBtn.Bind(wx.EVT BUTTON, self.onReload)

mainSizer = wx.BoxSizer(wx.VERTICAL)
mainSizer.Add(showAppBtn, 0, wx.ALL|wx.CENTER, 5)
mainSizer.Add(reloadBtn, 0, wx.ALL|wx.CENTER, 5)
self.SetSizer(mainSizer)

def onReload(self, event):

Reload the code!
if self.testFrame:
self.testFrame.Close()
try:
reload(testApp)
except NameError:
reload doesn't exist in Python 3.
Use importlib.reload in Python 3.4+
or imp.reload in Python 3.0 - 3.3
import importlib
importlib.reload(testApp)
self.showApp()
else:
self.testFrame = None

def onShowApp(self, event):

Call the showApp() method

self.showApp()
def showApp(self):

Show the application we want to edit dynamically

self.testFrame = testApp.TestFrame()

293

CHAPTER 19 WORKING WITH YOUR APPLICATION

class ReloaderFrame(wx.Frame):

def init (self):
Constructor"""
wx.Frame. init (self, None, title="Reloader")

panel = ReloaderPanel(self)
self.Show()

if name_ ==" main_":
app = wx.App(False)
frame = ReloaderFrame()
app.MainLoop()

How It Works

Here we import the module that we're planning to edit while this script is running. In
this case, the module is called testApp (and the file is testApp.py). Next we add a couple
of buttons; one to show the testApp’s frame and the other to reload the testApp code and
reshow it with any changes made. Yes, we should probably add some exception handling
here in case we make a typo in the code and then try to reload it, but I'll leave that as an
exercise for the reader.

Now we just need to create a super simple application that we can update and then
reload it with our reloader application. Following is a little piece of code that’s pretty
simple:

testApp.py
import wx

class TestPanel(wx.Panel):

def init (self, parent):
Constructor"""
wx.Panel. init (self, parent)

class TestFrame(wx.Frame):

294

CHAPTER 19 WORKING WITH YOUR APPLICATION

def _init (self):
"""Constructor
wx.Frame. init (self, None, title="Test program")
panel = TestPanel(self)
self.Show()

if name_ ==" main_":
app = wx.App(False)
frame = TestFrame()

app.MainLoop()

Now all you have to do is edit this second file and reload it with the first file to see the
changes. I recommend adding a button in the TestPanel class, saving it, and then hitting
the Reload button in the other script to see the changes.

Creating a simple reloader application can help you go through iterations of your
code, although it’s a bit arguable whether you will actually save much time just by saving
your code and rerunning it yourself. However, this is a fun way to use wxPython and
learn how Python itself works. Besides, part of development is finding new and fun ways
to code something. I think you should enjoy yourself when you’re coding.

Recipe 19-2. Updating Your Application with Esky
Problem

The wxPython project added the ability to update your applications in a new library
called wx.lib.softwareupdate starting in version 2.9. The software updating ability is
brought to you by a mix-in class that uses the Esky package. As far as I can tell, this mix-
in only allows prompted updates, not silent updates.

Solution

If you don’t have Esky installed, you can do so using pip:

pip install esky

Depending on what platform you are on, you will also need a binary building
package. For example, if you're on Windows, you'll need py2exe whereas on Mac, you
will need py2app. We will be creating a simple image viewer application that we’ll then

295

CHAPTER 19 WORKING WITH YOUR APPLICATION

add an update to. For this recipe, we will be using Windows, but it should work the same
way on Mac. You can use pip to install py2exe and py2app.
You will also want to create a folder hierarchy that looks something like the following:

/Releases
/image_viewer0.0.1
/image_viewer0.1.0

Now we just need to create an initial version of the software and save it to the image_
viewer0.0.1 folder.

Since we know we have features that we want to add to our initial release sometime
in the future, we will want to add the ability for our initial application to update itself.
Let’s take a look at the first version of our software.

import os
import wx
from wx.lib.softwareupdate import SoftwareUpdate

class PhotoCtrl(wx.App, SoftwareUpdate):

The Photo Viewer App Class

def init (self, redirect=False, filename=None):
wx.App. init_ (self, redirect, filename)

BASEURL = "http://127.0.0.1:8000"
self.InitUpdates(BASEURL,

BASEURL + "/" + 'Changelog.txt")
self.SetAppDisplayName('Image Viewer')
self.CheckForUpdate()

self.frame = wx.Frame(None, title='Photo Control')

self.panel = wx.Panel(self.frame)
self.PhotoMaxSize = 500

self.createlWidgets()
self.frame.Show()

296

CHAPTER 19 WORKING WITH YOUR APPLICATION

def createWidgets(self):

def

instructions = 'Browse for an image'

img = wx.EmptyImage(240,240)

self.imageCtrl = wx.StaticBitmap(self.panel, wx.ID_ANY,
wx.BitmapFromImage(img))

instructlbl = wx.StaticText(self.panel, label=instructions)
self.photoTxt = wx.TextCtrl(self.panel, size=(200,-1))
browseBtn = wx.Button(self.panel, label='Browse")
browseBtn.Bind(wx.EVT BUTTON, self.onBrowse)

self.mainSizer = wx.BoxSizer(wx.VERTICAL)
self.sizer = wx.BoxSizer(wx.HORIZONTAL)

self.mainSizer.Add(wx.StaticLine(self.panel, wx.ID ANY),
0, wx.ALL|wx.EXPAND, 5)
self.mainSizer.Add(instructlLbl, 0, wx.ALL, 5)
self.mainSizer.Add(self.imageCtrl, 0, wx.ALL, 5)
self.sizer.Add(self.photoTxt, 0, wx.ALL, 5)
self.sizer.Add(browseBtn, 0, wx.ALL, 5)
self.mainSizer.Add(self.sizer, 0, wx.ALL, 5)

self.panel.SetSizer(self.mainSizer)
self.mainSizer.Fit(self.frame)

self.panel.Layout()

onBrowse(self, event):

Browse for file
wildcard = "JPEG files (*.jpg)|*.jpg"
dialog = wx.FileDialog(None, "Choose a file",
wildcard=wildcard,
style=wx.OPEN)
if dialog.ShowModal() == wx.ID_OK:
self.photoTxt.SetValue(dialog.GetPath())

297

CHAPTER 19 WORKING WITH YOUR APPLICATION

dialog.Destroy()
self.onView()

def onView(self):

Attempts to load the image and display it
filepath = self.photoTxt.GetValue()

img = wx.Image(filepath, wx.BITMAP_TYPE_ANY)

scale the image, preserving the aspect ratio

W = img.GetWidth()
H = img.GetHeight()
if W > H:
NewW = self.PhotoMaxSize
NewH = self.PhotoMaxSize * H / W
else:
NewH = self.PhotoMaxSize
NewW = self.PhotoMaxSize * W / H

img = img.Scale(NewW,NewH)

self.imageCtrl.SetBitmap (wx.BitmapFromImage(img))
self.panel.Refresh()
self.mainSizer.Fit(self.frame)

if name_ ==" main_ "':
app = PhotoCtrl()
app.MainLoop()

To enable software updating, we needed to import the SoftwareUpdate class
from wx.lib.softwareupdate. Next we need to create a subclass of both wx.App and
SoftwareUpdate because SoftwareUpdate is a mix-in class. Then in the __init__
constructor, we need to call InitUpdates with a URL of our choice plus that same URL
concatenated with ChangeLog.txt. We set the display name of the application and
finally we call CheckForUpdate. That’s it! Now we just need to package this up into an
executable.

298

CHAPTER 19 WORKING WITH YOUR APPLICATION

You will need to create a setup.py script with the following in it that you will place in
the same directory as the initial release script:

import sys, os
from esky import bdist esky
from setuptools import setup

import version

platform specific settings for Windows/py2exe
if sys.platform == "win32":
import py2exe

FREEZER = 'py2exe’
FREEZER_OPTIONS = dict(compressed = 0,
optimize = 0,
bundle files = 3,
dll excludes = ['MSVCP90.d1l",
"'mswsock.dll’',
"powrprof.dll’,
"USP10.d11',],
)

exeICON = '"mondrian.ico'

platform specific settings for Mac/py2app
elif sys.platform == "darwin":
import py2app

FREEZER = 'py2app'
FREEZER_OPTIONS = dict(argv_emulation = False,
iconfile = 'mondrian.icns',

)

exeICON = None

Common settings

NAME = "wxImageViewer"

APP = [bdist esky.Executable("image viewer.py",
gui_only=True,

299

CHAPTER 19 WORKING WITH YOUR APPLICATION

icon=exeICON,

)]
DATA FILES = ['mondrian.ico’]

ESKY OPTIONS = dict(freezer module = FREEZER,
freezer options = FREEZER_OPTIONS,
enable appdata dir = True,
bundle msvcrt = True,

)
Build the app and the esky bundle

setup(name = NAME,
scripts = APP,
version = version.VERSION,
data _files = DATA FILES,
options = dict(bdist esky=ESKY OPTIONS),
)

You'll also need a version.py file with the following:

VERSION='0.0.1'

Now you're ready to actually create the executable. Open up a terminal (cmd.exe on
Windows) and navigate to the folder in which you put these files. I have also put a couple
of icon files in my folder too, which you can find in the book’s code repository (https://
github.com/driscollis/wxPython_recipes_book_code; see the introduction for more
details). You'll want those as the setup.py script expects to find them. Okay, so now we
need to create the distribution. Type in the following in your terminal:

python setup.py bdist_esky

This command assumes that you have Python in your path. If you don’t, then you
will want to add it or just specify the full path to Python. After you run this command,
you'll see a whole bunch of output. If everything goes well, you’ll end up with two new
subfolders: build and dist. We don’t really care about the build folder. The dist folder
should have one file in it, named something like the following:

wxImageViewer-0.0.1.win32.zip

To make things simple, you should create a downloads folder to copy your new zip
file into. Now we just need to do the same thing to the new release. We'll be looking at
that next.

300

https://github.com/driscollis/wxPython_recipes_book_code
https://github.com/driscollis/wxPython_recipes_book_code

CHAPTER 19 WORKING WITH YOUR APPLICATION

How It Works

We need a reason to update our code. Fortunately, your customers love getting new
features. Our first application didn’t really allow us to do anything other than open a
Browse button to find a photo. Let’s add a couple of features to the application:

o We will add Previous and Next buttons so we can iterate over photos
in a folder

e We will also add a Slideshow capability to the application

Since this will be a new release, create a new Python script with the same name as
the first one and save it to the image_viewer0.1.0 folder that you created earlier. To make
things really easy, you can just copy the following code into your new script. Or you can
just copy the original in and update it as you go through this code. I'll leave that up to
you. The following code snippet is pretty long, so I'll break it up a bit to make it easier to
digest.

import glob

import os

import wx

from wx.lib.pubsub import Publisher

from wx.lib.softwareupdate import SoftwareUpdate

class ViewerPanel(wx.Panel):

def init (self, parent):
"""Constructor

wx.Panel. init (self, parent)

width, height = wx.DisplaySize()

self.picPaths = []

self.currentPicture = 0

self.totalPictures = 0

self.photoMaxSize = height - 200
Publisher().subscribe(self.updateImages, ("update images"))

301

CHAPTER 19 WORKING WITH YOUR APPLICATION

self.slideTimer = wx.Timer(None)
self.slideTimer.Bind(wx.EVT TIMER, self.update)

self.layout()
def layout(self):

Layout the widgets on the panel

self.mainSizer = wx.BoxSizer(wx.VERTICAL)
btnSizer = wx.BoxSizer(wx.HORIZONTAL)

img = wx.EmptyImage(self.photoMaxSize,self.photoMaxSize)
self.imageCtrl = wx.StaticBitmap(self, wx.ID ANY,
wx.BitmapFromImage(img))
self.mainSizer.Add(self.imageCtrl, 0, wx.ALL|wx.CENTER, 5)
self.imagelabel = wx.StaticText(self, label="")
self.mainSizer.Add(self.imagelLabel, 0, wx.ALL|wx.CENTER, 5)

btnData = [("Previous", btnSizer, self.onPrevious),
("Slide Show", btnSizer, self.onSlideShow),
("Next", btnSizer, self.onNext)]
for data in btnData:
label, sizer, handler = data
self.btnBuilder(label, sizer, handler)

self.mainSizer.Add(btnSizer, 0, wx.CENTER)
self.SetSizer(self.mainSizer)

def btnBuilder(self, label, sizer, handler):

Builds a button, binds it to an event handler and adds it to a sizer

btn = wx.Button(self, label=label)
btn.Bind(wx.EVT BUTTON, handler)
sizer.Add(btn, 0, wx.ALL|wx.CENTER, 5)

def loadImage(self, image):

302

def

def

CHAPTER 19 WORKING WITH YOUR APPLICATION

Load the image into the application for display

image_name = os.path.basename(image)

img = wx.Image(image, wx.BITMAP_TYPE_ANY)
scale the image, preserving the aspect ratio

W = img.GetWidth()
H = img.GetHeight()
if W > H:
NewW = self.photoMaxSize
NewH = self.photoMaxSize * H / W
else:
NewH = self.photoMaxSize
NewW = self.photoMaxSize * W / H

img = img.Scale(NewW,NewH)

self.imageCtrl.SetBitmap(wx.BitmapFromImage(img))
self.imagelabel.SetLabel(image name)
self.Refresh()

Publisher().sendMessage("resize", "")

nextPicture(self):

Loads the next picture in the directory
if self.currentPicture == self.totalPictures-1:
self.currentPicture = 0
else:
self.currentPicture += 1
self.loadImage(self.picPaths[self.currentPicture])

previousPicture(self):

Displays the previous picture in the directory

if self.currentPicture ==
self.currentPicture = self.totalPictures - 1

303

CHAPTER 19 WORKING WITH YOUR APPLICATION

else:
self.currentPicture -= 1
self.loadImage(self.picPaths[self.currentPicture])

def update(self, event):

Called when the slideTimer's timer event fires. Loads the next
picture from the folder by calling th nextPicture method

self.nextPicture()

def updateImages(self, msg):

Updates the picPaths list to contain the current folder's images

self.picPaths = msg.data
self.totalPictures = len(self.picPaths)
self.loadImage(self.picPaths[0])

def onNext(self, event):

Calls the nextPicture method

self.nextPicture()

def onPrevious(self, event):

Calls the previousPicture method

self.previousPicture()

def onSlideShow(self, event):

Starts and stops the slideshow
btn = event.GetEventObject()
label = btn.GetLabel()

if label == "Slide Show":

304

CHAPTER 19 WORKING WITH YOUR APPLICATION

self.slideTimer.Start(3000)
btn.SetLabel("Stop")

else:
self.slideTimer.Stop()
btn.SetLabel("Slide Show")

The first thing you will probably notice is that we’ve broken up the application into
a series of classes. We now have a ViewerPanel that holds all our main widgets. You can
see that we now have some buttons for navigating a directory full of images. We also have
a slide show function that will auto-advance through the images in the folder every three
seconds.

class ViewerFrame(wx.Frame):

def init (self):

Constructor
wx.Frame. init (self, None, title="Image Viewer")
panel = ViewerPanel(self)

self.folderPath = ""
Publisher().subscribe(self.resizeFrame, ("resize"))

self.initToolbar()

self.sizer = wx.BoxSizer(wx.VERTICAL)
self.sizer.Add(panel, 1, wx.EXPAND)
self.SetSizer(self.sizer)

self.Show()
self.sizer.Fit(self)
self.Center()

def initToolbar(self):

Initialize the toolbar

self.toolbar = self.CreateToolBar()
self.toolbar.SetToolBitmapSize((16,16))

305

CHAPTER 19 WORKING WITH YOUR APPLICATION

open_ico = wx.ArtProvider.GetBitmap(
wx.ART FILE OPEN, wx.ART TOOLBAR, (16,16))
openTool = self.toolbar.AddSimpleTool(wx.ID ANY, open ico,
"Open", "Open an Image Directory")
self.Bind(wx.EVT_MENU, self.onOpenDirectory, openTool)

self.toolbar.Realize()

def onOpenDirectory(self, event):

Opens a DirDialog to allow the user to open a folder with pictures
dlg = wx.DirDialog(self, "Choose a directory”,
style=wx.DD DEFAULT STYLE)

if dlg.ShowModal() == wx.ID OK:
self.folderPath = dlg.GetPath()
print self.folderPath
picPaths = glob.glob(self.folderPath + "*.jpg")
print picPaths
Publisher().sendMessage("update images", picPaths)

def resizeFrame(self, msg):

self.sizer.Fit(self)

Here we created a subclass of wx.Frame. We added a simple toolbar that allows us
to open a folder of images. It also creates our panel instance. Other than that, this class
really doesn’t do a whole lot. However, it does simply add other functionality, such as a
status bar or a menu.

class ImageApp(wx.App, SoftwareUpdate):

def _init (self):

Constructor
BASEURL = "http://127.0.0.1:8000"
self.InitUpdates(BASEURL,

BASEURL + 'Changelog.txt")

306

if name ==

CHAPTER 19 WORKING WITH YOUR APPLICATION

self.CheckForUpdate()

frame = ViewerFrame()
self.SetTopWindow(frame)
self.SetAppDisplayName('Image Viewer")
return True

__main_ ":

app = ImageApp()
app.MainLoop()

This last class is where we use the SoftwareUpdate mix-in with wx.App. It also
instantiates the frame class. This is also a pretty straightforward class, so I won’t
elaborate upon it any further.

We now need to take a look at this version’s setup.py as it is a little different.

import sys, os
from esky import bdist esky
from setuptools import setup

import version

platform specific settings for Windows/py2exe
if sys.platform == "win32":

import py2exe

includes = ["wx.lib.pubsub.*",
"wx.lib.pubsub.core.*",
"wx.1lib.pubsub.core.kwargs.*"]

FREEZER = 'py2exe’
FREEZER _OPTIONS = dict(compressed = 0,
optimize = 0,
bundle files = 3,
d11l excludes = ['MSVCP90.d11",
"mswsock.dll’',
"powrprof.dll’,
'UsP10.d11',],
includes = includes

)

exeICON = 'mondrian.ico'

307

CHAPTER 19 WORKING WITH YOUR APPLICATION

platform specific settings for Mac/py2app
elif sys.platform == "darwin":
import py2app

FREEZER = 'py2app’
FREEZER_OPTIONS = dict(argv_emulation = False,
iconfile = 'mondrian.icns',

)

exeICON = None

Common settings

NAME = "wxImageViewer"

APP = [bdist esky.Executable("image viewer.py",
gui_only=True,
icon=exeICON,

)]
DATA FILES = ['mondrian.ico’]

ESKY OPTIONS = dict(freezer module = FREEZER,
freezer options = FREEZER_OPTIONS,
enable appdata dir = True,
bundle msvcrt = True,

)
Build the app and the esky bundle
setup(name = NAME,
scripts = APP,
version = version.VERSION,
data files = DATA FILES,
options = dict(bdist _esky=ESKY OPTIONS)
)

This second script uses wxPython’s pubsub. However, py2exe won’t pick up on
that by itself, so you have to tell it explicitly to grab the PubSub parts. You do this in the
includes section, near the top of the script.

Don’t forget to make sure that your version.py file has a higher release value than the
original or we won’t be able to update. Here’s what I put in mine.

VERSION='0.0.2'

308

CHAPTER 19 WORKING WITH YOUR APPLICATION

Now do the same command-line magic as before, except this time do it in your
updated release directory.

python setup.py bdist_esky

Copy the zip file to your downloads folder. Now we just need to serve these files
on your computer’s localhost. To do that navigate into your downloads folder via the
command line and run the following command:

python -m SimpleHTTPServer

Python will now run a little HTTP server that serves those files. If you go to
http://127.0.0.1:8000 in your web browser, you'll see it for yourself. Now we’re ready
to do the upgrading process!

At this point, we are ready to try to update our initial program to the latest version!
Make sure you unzip the first version of the image viewer somewhere on your machine.
Then run the file called image_viewer.exe. If everything goes as planned, you'll see the
screen in Figure 19-2.

,e A new version of Image Viewer is available.

You are currently running verison 0.0.1, version 0.1.0 is now available for download.
Do you wish to install it now?

Recent Changes for Image Viewer Application

This is not a real change log, but more of an example
based on the Doodle example included with the wxPython
demo package.

Version 0.1.0

* Refactored the Frame, Panel and App into their own classes

Version 0.0.1

*Initial release

l Yes, install now I [No, maybe later

Figure 19-2. Your application prompts for an update

309

http://127.0.0.1:8000/

CHAPTER 19 WORKING WITH YOUR APPLICATION

Go ahead and apply the update and you'll be asked the restart the application (see
Figure 19-3).

9 The upgrade to Image Viewer 0.1.0 is ready to use, the application will need to be
restarted to begin using the new release.

Restart Image Viewer now?

Yes, restart now No, I'll restart later

Figure 19-3. After updating, your application prompts for a restart

It should restart and you’ll get the new image viewer interface. I noticed that when
I closed the application, I received an error which turned out to be a Deprecation
Warning. You can ignore that or if you want something to do, you can import the
warnings module and suppress that.

At this point, you're ready for the big time. You can also use AutoCheckForUpdate
instead of CheckForUpdate and pass it the length of days between checks so you won’t
always be phoning home every time you open the application. Or, you might want to just
put the CheckForUpdate function into an event handler that the user triggers. A lot of
applications do this where the user has to go into the menu system and press the “Check for
updates” menu item. Use your imagination and start hacking! There’s also another project
called goodasnew that seems to be a competitor of Esky that you might want to check out.
It's not integrated into wxPython right now, but it might be a viable option nonetheless.

Finally, if you'd like to see another example of this, check out the wxPython 2.9
version of the Docs and Demos package. In there you'll find a samples folder and inside
of that you'll see a doodle folder. That has another example of software updates in it.
Good luck!

Recipe 19-3. How to Create a Log-in Dialog
Problem

I've been using wxPython for quite a while now and I see that certain questions come
up on a fairly frequent basis. One of the popular ones is how to ask the user for their
credentials before loading up the rest of the application. There are several approaches to

310

CHAPTER 19 WORKING WITH YOUR APPLICATION

this, but I am going to focus on two simple solutions as I believe they can be used as the
basis for more complex solutions.

Basically what we want to happen is for the user to see a log-in dialog where they
have to enter their username and password. If they enter it correctly, then the program
will continue to load and they’ll see the main interface. You see this a lot on web sites
with a common use case being web e-mail clients. Desktop applications don’t include
this functionality as often, although you will see it for Stamps.com’s application and for
some law enforcement software. For this recipe, we will be creating a dialog that looks as
shown in Figure 19-4.

@ Login
Username:
Password:

Login

Figure 19-4. A sample log-in dialog

Solution

The first solution we will look at uses wxPython'’s built-in version of pubsub. Let’s take a
look at an example.

import wx
from wx.lib.pubsub import pub

class LoginDialog(wx.Dialog):

Class to define login dialog

311

CHAPTER 19 WORKING WITH YOUR APPLICATION

def _init (self):
nn "Constructor" nn

wx.Dialog. init (self, None, title="Login")

user info
user_sizer = wx.BoxSizer(wx.HORIZONTAL)

user_1bl = wx.StaticText(self, label="Username:")
user sizer.Add(user 1lbl, 0, wx.ALL|wx.CENTER, 5)
self.user = wx.TextCtrl(self)
user_sizer.Add(self.user, 0, wx.ALL, 5)

pass info
p_sizer = wx.BoxSizer(wx.HORIZONTAL)

p_1bl = wx.StaticText(self, label="Password:")
p_sizer.Add(p_1bl, 0, wx.ALL|wx.CENTER, 5)

self.password = wx.TextCtrl(self, style=wx.TE_PASSWORD|wx.TE_
PROCESS_ENTER)

p_sizer.Add(self.password, 0, wx.ALL, 5)

main_sizer = wx.BoxSizer(wx.VERTICAL)
main _sizer.Add(user_ sizer, 0, wx.ALL, 5)
main _sizer.Add(p_sizer, 0, wx.ALL, 5)

btn = wx.Button(self, label="Login")
btn.Bind(wx.EVT_BUTTON, self.onLogin)
main _sizer.Add(btn, 0, wx.ALL|wx.CENTER, 5)

self.SetSizer(main sizer)

def onLogin(self, event):

Check credentials and login

stupid password = "pa$$word!"

user_password = self.password.GetValue()

if user password == stupid password:
print("You are now logged in!")

312

CHAPTER 19 WORKING WITH YOUR APPLICATION

pub.sendMessage("frameListener"”, message="show")
self.Destroy()

else:
print("Username or password is incorrect!")

class MyPanel(wx.Panel):

def init (self, parent):
"""Constructor
wx.Panel. init (self, parent)

class MainFrame(wx.Frame):

def init (self):

Constructor
wx.Frame. init_ (self, None, title="Main App")
panel = MyPanel(self)

pub.subscribe(self.myListener, "framelListener")

Ask user to login
dlg = LoginDialog()
dlg.ShowModal()

def myListener(self, message, arg2=None):

Show the frame

self.Show()

__main_ ":
app = wx.App(False)
frame = MainFrame()

if name ==

app.MainLoop()

The majority of this code is taken up by the subclass of wx.Dialog that we are calling
LoginDialog. You will notice that we have set the password text control widget to use
the wx.TE_PASSWORD style, which will hide the characters that the user types into that

313

CHAPTER 19 WORKING WITH YOUR APPLICATION

control. The event handler is where the real action is. Here we define a silly password
that we use to compare to the one that the user enters. In the real world, you would
probably take a hash of the password that is entered and compare it to one that is stored
in a database. Or, you might send the credentials to your authentication server and have
it tell you if the user’s credentials are legitimate or not. For demonstration purposes,
we opt for the simple approach and just check the password. You will notice that we
completely ignore what the user enters for a username. This is not realistic, but again,
this is just an example.

Anyway, if the user enters the correct password, the event handler sends a message
via pubsub to our MainFrame object telling it to finish loading and then the dialog is

destroyed.

Using an Instance Variable

There are other ways to tell the main frame to continue, such as using a flag in the dialog
class that we can check against. Following is an implementation that demonstrates this
latter method by using an instance variable as our flag:

import wx

class LoginDialog(wx.Dialog):

Class to define login dialog

def init (self):
"""Constructor"""
wx.Dialog. init (self, None, title="Login")
self.logged in = False

user info
user_sizer = wx.BoxSizer(wx.HORIZONTAL)

user_1bl = wx.StaticText(self, label="Username:")
user sizer.Add(user 1lbl, 0, wx.ALL|wx.CENTER, 5)
self.user = wx.TextCtrl(self)
user_sizer.Add(self.user, 0, wx.ALL, 5)

314

CHAPTER 19 WORKING WITH YOUR APPLICATION

pass info
p_sizer = wx.BoxSizer(wx.HORIZONTAL)

p_1bl = wx.StaticText(self, label="Password:")
p_sizer.Add(p_1bl, 0, wx.ALL|wx.CENTER, 5)

self.password = wx.TextCtrl(self, style=wx.TE_PASSWORD|wx.TE_
PROCESS_ENTER)

self.password.Bind(wx.EVT_TEXT ENTER, self.onlogin)
p_sizer.Add(self.password, 0, wx.ALL, 5)

main_sizer = wx.BoxSizer(wx.VERTICAL)
main sizer.Add(user sizer, 0, wx.ALL, 5)
main_sizer.Add(p sizer, 0, wx.ALL, 5)

btn = wx.Button(self, label="Login")
btn.Bind(wx.EVT BUTTON, self.onlogin)
main_sizer.Add(btn, 0, wx.ALL|wx.CENTER, 5)

self.SetSizer(main sizer)

def onLogin(self, event):

Check credentials and login
stupid_password = "pa$$word!"
user password = self.password.GetValue()
if user password == stupid password:
print("You are now logged in!")
self.logged in = True
self.Close()
else:
print("Username or password is incorrect!")

class MyPanel(wx.Panel):

def init (self, parent):
"""Constructor

wx.Panel. init (self, parent)

315

CHAPTER 19 WORKING WITH YOUR APPLICATION

class MainFrame(wx.Frame):

def init (self):

Constructor
wx.Frame. init_ (self, None, title="Main App")
panel = MyPanel(self)

Ask user to login

dlg = LoginDialog()

d1lg.ShowModal()

authenticated = dlg.logged in

dlg.Destroy()

if not authenticated:
self.Close()

self.Show()

if _name__ == "_ main_":
app = wx.App(False)
frame = MainFrame()

app.MainLoop()

In this example, we added a flag in the dialog subclass that we called self.logged_in.
If the user enters the correct password, we tell the dialog to close. This causes wxPython
to return control back to the MainFrame class where we check that variable to see if the
user is logged in or not. If they are not, we close the application. Otherwise we load the
application.

There are a few enhancements we could add, such as setting the focus to the first
text control or adding a Cancel button. I'm sure you can think of a few others yourself.
Overall though, this should get you started.

316

CHAPTER 20

Bonus Recipes

Recipe 20-1. Catching Exceptions from Anywhere
Problem

If you use wxPython a lot, you will soon realize that some exceptions are difficult to
catch. The reason it is so difficult is because wxPython is a wrapper around a C++
package called wxWidgets. Thus you have a mixture of C++ and Python in your
application. What this means is that events bubble up from C++ to Python and back
again. Where an exception occurs (the C++ side or the Python side) determines whether
or not we will be able to catch it.

Solution

One solution that works in a lot of cases is using Python’s sys.excepthook. We'll spend
some time in this section digging into some code that shows how you might use this
functionality.

import sys

import traceback

import wx

import wx.lib.agw.genericmessagedialog as GMD

class Panel(wx.Panel):

def __init_ (self, parent):

Constructor
wx.Panel. init (self, parent)

btn = wx.Button(self, label="Raise Exception")
btn.Bind(wx.EVT BUTTON, self.onExcept)

317
© Mike Driscoll 2018

M. Driscoll, wxPython Recipes, https://doi.org/10.1007/978-1-4842-3237-8_20

CHAPTER 20 BONUS RECIPES

def onExcept(self, event):

Raise an error

1/0

class Frame(wx.Frame):

def init (self):
"""Constructor
wx.Frame. init (self, None, title="Exceptions")

sys.excepthook = MyExceptionHook
panel = Panel(self)
self.Show()

class ExceptionDialog(GMD.GenericMessageDialog):

The dialog to show an exception

def _init (self, msg):

"""Constructor

GMD.GenericMessageDialog. init (self, None, msg, "Exception!",
wx.OK | wx. ICON_ERROR)

def MyExceptionHook(etype, value, trace):

Handler for all unhandled exceptions.

:param “etype’: the exception type (" SyntaxError®, “ZeroDivisionError-,
etc...);

:type “etype’: “Exception”

:param string “value : the exception error message;

:param string “trace’: the traceback header, if any (otherwise, it
prints the

standard Python header: " “Traceback (most recent call last) ".

318

CHAPTER 20 BONUS RECIPES

frame = wx.GetApp().GetTopWindow()
tmp = traceback.format exception(etype, value, trace)

exception = "".join(tmp)

dlg = ExceptionDialog(exception)
dlg.ShowModal()
dlg.Destroy()

if name_ ==" main_":
app = wx.App(False)
frame = Frame()

app.MainLoop()

How It Works

In this example, we will create a panel with a button that will deliberately cause an
exception to be raised. We catch the exception by redirecting sys.excepthook to our
MyExceptionHook function.

This function will use Python’s traceback module to format the exception into some
human-readable form and then display a dialog with the exception information.

Creating an Exception-Catching Decorator

Robin Dunn, creator of wxPython, thought it would be good if someone came up with a
decorator we could use to catch exceptions, which could then be added as an example to
the wxPython wiki page. My first idea for a decorator was the following:

import logging
import wx

class ExceptionLogging(object):

def _init (self, fn):
self.fn = fn

create logging instance
self.log = logging.getLogger("wxErrors")
self.log.setLevel(logging.INFO)

319

CHAPTER 20 BONUS RECIPES

create a logging file handler / formatter

log fh = logging.FileHandler("error.log")

formatter = logging.Formatter("%(asctime)s - %(name)s - %(message)s")
log fh.setFormatter(formatter)

self.log.addHandler(log fh)

def call (self, evt):
try:
self.fn(self, evt)
except Exception, e:
self.log.exception("Exception™)

class Panel(wx.Panel):

def _init (self, parent):

Constructor
wx.Panel. init (self, parent)

btn = wx.Button(self, label="Raise Exception")
btn.Bind(wx.EVT BUTTON, self.onExcept)

@ExceptionlLogging
def onExcept(self, event):

Raise an error

1/0

class Frame(wx.Frame):

def init (self):

Constructor
wx.Frame. init (self, None, title="Exceptions")
panel = Panel(self)

self.Show()

320

CHAPTER 20 BONUS RECIPES

__main__":
app = wx.App(False)
frame = Frame()
app.MainLoop()

if _name_ ==

In this code, we create a class that creates a logging instance. Then we override the
call__ method to wrap a method call in an exception handler so we can catch exceptions.
Basically what we’re doing here is creating a class decorator. Next we decorate an event
handler with our exception logging class. This wasn’t exactly what Mr. Dunn wanted, as
the decorator needed to be able to wrap other functions too. So I edited it a bit and came
up with the following minor adjustment:

import logging
import wx

class ExceptionLogging(object):
def _init (self, fn, *args, **kwargs):
self.fn = fn

create logging instance
self.log = logging.getlLogger("wxErrors")
self.log.setLevel(logging.INFO)

create a logging file handler / formatter

log fh = logging.FileHandler("error.log")

formatter = logging.Formatter("%(asctime)s - %(name)s - %(message)s")
log fh.setFormatter(formatter)

self.log.addHandler(log_fh)

def _call (self, *args, **kwargs):
try:
self.fn(self, *args, **kwargs)
except Exception as e:
self.log.exception("Exception™)

class Panel(wx.Panel):

321

CHAPTER 20 BONUS RECIPES

def _init (self, parent):

Constructor
wx.Panel. init (self, parent)

btn = wx.Button(self, label="Raise Exception")
btn.Bind(wx.EVT_BUTTON, self.onExcept)

@ExceptionlLogging
def onExcept(self, event):

Raise an error

1/0

class Frame(wx.Frame):

def init (self):

Constructor
wx.Frame. init (self, None, title="Exceptions")
panel = Panel(self)

self.Show()

if _name_ == " main_":
app = wx.App(False)
frame = Frame()

app.MainLoop()

This time the __call__ method can accept any number of arguments or keyword
arguments, which gives it a bit more flexibility. This still wasn’t what Robin Dunn
wanted, so he wrote up the following example:

from _ future import print function

import logging
import wx

print(wx.version())

322

def

def

exceptionLogger(func, loggerName='"):

CHAPTER 20 BONUS RECIPES

A simple decorator that will catch and log any exceptions that may
occur

to the root logger.
assert callable(func)
mylogger = logging.getLogger(loggerName)

wrap a new function around the callable
def logger func(*args, **kw):
try:
if not kw:
return func(*args)
return func(*args, **kw)
except Exception:

mylogger.exception('Exception in %s:', func. name)

logger func. name = func. name_
logger func. doc_ = func. doc__
if hasattr(func, ' dict '):

logger func. dict .update(func. dict)

return logger func

exceptionLog2logger(loggerName):

A decorator that will catch and log any exceptions that may occur

to the named logger.

import functools

return functools.partial(exceptionLogger, loggerName=loggerName)

class Panel(wx.Panel):

323

CHAPTER 20 BONUS RECIPES

def _init (self, parent):

Constructor
wx.Panel. init (self, parent)

btn = wx.Button(self, label="Raise Exception")
btn.Bind(wx.EVT_BUTTON, self.onExcept)

@exceptionLog2logger('testLogger")
def onExcept(self, event):

Raise an error

print(self, event)
print(isinstance(self, wx.Panel))

trigger an exception
1/0

class Frame(wx.Frame):

if name_ ==" main_":

324

def _init (self):

Constructor"""

wx.Frame. init_ (self, None, title="Exceptions")
panel = Panel(self)

self.Show()

set up the default logger
log = logging.getlogger('testlLogger")
log.setLevel(logging.INFO)

create a logging file handler / formatter

log fh = logging.FileHandler("error.log")

formatter = logging.Formatter("%(asctime)s - %(name)s - %(message)s")
log fh.setFormatter(formatter)

log.addHandler(log fh)

CHAPTER 20 BONUS RECIPES

app = wx.App(False)
frame = Frame()
app.MainLoop()

His code shows a couple of different decorator examples. This example demonstrates
the more traditional methodology of decorator construction. It has a bit more
metaprogramming in it though. The first example checks to make sure what is passed to
it is actually callable. Then it creates a logger and wraps the callable with an exception
handler. Before it returns the wrapped function, the wrapped function is modified so that
it has the same name and docstring as the original function passed to it. I believe you
could drop that and use functools.wraps instead, but being explicit is probably better in a
tutorial.

Note If you run this last code example in Python 3, you can remove the
from __future__ import as it’s no longer needed. It won’t hurt anything though if
you happen to forget to remove it.

Now you know how you catch exceptions in a couple of different ways. I hope you
will find this helpful in your own application design. Have fun!

Recipe 20-2. wxPython’s Context Managers
Problem

The wxPython toolkit added context managers to its code base a few years ago, but
for some reason you don’t see very many examples of their use. In this chapter, we’ll
look at three examples of context managers in wxPython. We'll start off by rolling our
own context manager and then we’ll look at a couple of examples of built-in context
managers in wxPython.

325

CHAPTER 20 BONUS RECIPES

Solution
® OO0 wxPython Contexts
Open File

Figure 20-1. Creating a custom context manager in wxPython

Creating your own context manager in wxPython is pretty easy. We will use the
wx.FileDialog for our example of a context manager.

import os
import wx

class ContextFileDialog(wx.FileDialog):

def enter (self):

return self

def exit (self, exc_type, exc val, exc tb):
self.Destroy()

326

CHAPTER 20 BONUS RECIPES

How It Works

In this example, we subclass wx.FileDialog and all we do is override the __enter__() and
__exit__() methods. This will turn our FileDialog instance into a context manager when
we call it using Python’s with statement. Let’s add some code to utilize our brand-new

version of the File Dialog.

class MyPanel(wx.Panel):

def

def

__init_ (self, parent):

Constructor
wx.Panel. init (self, parent)

btn = wx.Button(self, label='"Open File')
btn.Bind(wx.EVT BUTTON, self.onOpenFile)

onOpenFile(self, event):
style = 0
try:
wxPython 3+ syntax
style = wx.FD_OPEN | wx.FD MULTIPLE | wx.FD_CHANGE DIR
except AttributeError:
wxPython <= 2.8
style = wx.OPEN | wx.MULTIPLE | wx.CHANGE DIR

wildcard = "Python source (*.py)|*.py|" \
"All files (*.*)|*.*"
kwargs = {'message':"Choose a file",
"defaultDir':os.path.dirname(os.path.abspath(_file)),
"defaultFile':"",
'wildcard':wildcard,
"style':style
}
with ContextFileDialog(self, **kwargs) as dlg:
if dlg.ShowModal() == wx.ID OK:
paths = dlg.GetPaths()

327

CHAPTER 20 BONUS RECIPES

print("You chose the following file(s):")
for path in paths:
print(path)

class MyFrame(wx.Frame):

def _init (self):

Constructor"""

wx.Frame. init (self, None, title='wxPython Contexts')
panel = MyPanel(self)

self.Show()

if name_ =="_ main_"':
app = wx.App(False)
frame = MyFrame()
app.MainLoop()

Take a look at the code in MyPanel. Here you can see us using Python'’s with
statement in the onOpenFile event handler within the MyPanel class. Now let’'s move on

and look at some of wxPython'’s builtin examples!

[NON | Context Managers
Open ColorDialog
Open BusylInfo

Figure 20-2. Using wxPython’s built-in context managers

328

CHAPTER 20 BONUS RECIPES

The wxPython package supports context managers in anything that subclasses

wx.Dialog as well as the following widgets:

wx.BusyInfo
wx.BusyCursor
wx.WindowDisabler
wx.LogNull
wx.DCTextColourChanger
wx.DCPenChanger
wx.DCBrushChanger
wx.DCClipper

wx.Freeze / wx.Thaw

There are probably more widgets, but this list shows the majority of the widgets with

this ability. Let’s look at a couple of examples.

import time

import wx

class MyPanel(wx.Panel):

def init (self, parent):

Constructor
wx.Panel. init (self, parent)
self.frame = parent

main_sizer = wx.BoxSizer(wx.VERTICAL)
dlg btn = wx.Button(self, label='Open ColorDialog")

dlg btn.Bind(wx.EVT BUTTON, self.onOpenColorDialog)
main _sizer.Add(dlg btn, 0, wx.ALL|wx.CENTER)

busy btn = wx.Button(self, label='Open BusyInfo')
busy btn.Bind(wx.EVT BUTTON, self.onOpenBusyInfo)
main_sizer.Add(busy btn,0, wx.ALL|wx.CENTER)

329

CHAPTER 20 BONUS RECIPES
self.SetSizer(main sizer)

def onOpenColorDialog(self, event):

Creates and opens the wx.ColourDialog
with wx.ColourDialog(self) as dlg:
if dlg.ShowModal() == wx.ID OK:
data = dlg.GetColourData()
color = str(data.GetColour().Get())
print('You selected: %s\n' % color)

def onOpenBusyInfo(self, event):

Creates and opens an instance of BusyInfo

msg = 'This app is busy right now!'

self.frame.Hide()

with wx.BusyInfo(msg) as busy:
time.sleep(5)

self.frame.Show()

class MyFrame(wx.Frame):

def init (self):
"""Constructor
wx.Frame. init_ (self, None, title='Context Managers')
panel = MyPanel(self)

self.Show()

if name_ =="_ main_"':
app = wx.App(False)
frame = MyFrame()
app.MainLoop()

330

CHAPTER 20 BONUS RECIPES

In the foregoing code, we have two examples of wxPython’s context managers. The
first one is in the onOpenColorDialog event handler. Here we create an instance of wx.
ColourDialog and then grab the selected color if the user presses the OK button. The
second example is only a bit more complex in that it hides the frame before showing
the BusyInfo instance. Frankly, I think this example could be improved a bit by putting
the frame’s hiding and showing into the context manager itself, but I'll leave that as an
exercise for the reader to try out.

wxPython’s context managers are quite handy and they’re fun to use. I hope you’ll
find yourself using them in your own code sometime soon. Be sure to try out some of the
other context managers in wxPython to see if they might suit your code base or just to
make your code a little cleaner.

Recipe 20-3. Converting wx.DateTime to Python
datetime

Problem

The wxPython GUI (graphical user interface) toolkit includes its own date/time
capabilities. Most of the time, you can just use Python’s datetime and time modules and
you'll be fine. But occasionally you'll find yourself needing to convert from wxPython's
wx.DateTime objects to Python’s datetime objects. You may encounter this when you
use the wx.DatePickerCtrl widget.

Solution

Fortunately, wxPython'’s calendar module has some helper functions that can help you
convert datetime objects back and forth between wxPython and Python. Let’s take a look.

def pydate2wxdate(date):
import datetime
assert isinstance(date, (datetime.datetime, datetime.date))
tt = date.timetuple()
dmy = (tt[2], tt[1]-1, tt[o])
return wx.DateTimeFromDMY (*dmy)

331

CHAPTER 20 BONUS RECIPES

def wxdate2pydate(date):

import datetime

assert isinstance(date, wx.DateTime)

if date.IsValid():
ymd = map(int, date.FormatISODate().split('-"))
return datetime.date(*ymd)

else:
return None

How It Works

You can use these handy functions in your own code to help with your conversions.

I would probably put these into a controller or utilities script. I would also rewrite it
slightly so I wouldn’t import Python’s datetime module inside the functions. Following
is an example:

import datetime
import wx

def pydate2wxdate(date):
assert isinstance(date, (datetime.datetime, datetime.date))
tt = date.timetuple()
dmy = (tt[2], tt[1]-1, tt[o])
return wx.DateTimeFromDMY (*dmy)

def wxdate2pydate(date):
assert isinstance(date, wx.DateTime)
if date.IsValid():
ymd = map(int, date.FormatISODate().split('-"))
return datetime.date(*ymd)
else:
return None

This makes converting from Python datetime format to wxWidgets datetime format
extremely easy.

As I mentioned at the beginning, most of the time you won’t even need to worry
about converting the date or time when using the wxPython toolkit. But if you happen

332

CHAPTER 20 BONUS RECIPES

to be using one of wxPython'’s date- or time-related widgets, then knowing how this can
be handled is quite helpful. As an aside, I should also note that databases sometimes
have their own datetime format, so that can throw an additional wrench into the mix that
you’ll have to be cognizant of.

Recipe 20-4. Creating a URL Shortener
Problem

Back in 2009, I used to be a regular reader of Ars Technica. They would occasionally post
articles about Python and I happened to see one about using PyGTK to shorten URLSs.
PyGTK was a bit of a pain to install on Windows at that time and since Windows was my
primary programming environment back then, I decided to use wxPython instead. So in
this chapter, we'll look at a really simple application that you can use to shorten a URL
and then we'll create one that’s a bit more complex.

Solution

® ® wxArsShortener

Figure 20-3. A URL shortener based on an example from Ars Technica

This simple shortener is loosely based on the one that the Ars writers wrote about.
The code is pretty short and sweet. Let’s take a look at the Python 2 version of the code.

Python 2 version

import re
import urllib
import urllib2
import wx

333

CHAPTER 20 BONUS RECIPES

class ArsShortener(wx.Frame):

def _init (self):
wx.Frame. init (self, None, wx.ID ANY,
'wxArsShortener', size=(300,70))

Add a panel so it looks the correct on all platforms
panel = wx.Panel(self, wx.ID ANY)

self.txt = wx.TextCtrl(panel, wx.ID ANY, "", size=(300, -1))
self.txt.Bind(wx.EVT_TEXT, self.onTextChange)

sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(self.txt, 0, wx.EXPAND, 5)
panel.SetSizer(sizer)

def onTextChange(self, event):

text = self.txt.GetValue()

textLength = len(text)

if re.match("~https?://[*]+", text) and textLength > 20:
apiURL = "http://is.gd/api.php?" + urllib.
urlencode(dict(longURL=text))
shortened URL = urllib2.urlopen(apiURL).read()
self.txt.SetValue(shortened URL)

if name_ ==" main_"':
app = wx.App(False)
frame = ArsShortener()
frame.Show()
app.MainLoop()

This is a pretty short piece of code. All you need is a frame, a panel, and a TextCtrl.
The BoxSizer isn’t required, but it’s nice to have as it makes the TextCtrl stretch
the entire width of the frame. The main focus should be given to our event handler,
onTextChange. Here we grab the text that is pasted into our TextCtrl and then use a
Regular Expression to determine if it’s a valid URL. We also check that the text length is
greater than 20. If both of these checks pass, then we shorten the URL using the https://
is.gd/ web site.

334

https://is.gd/
https://is.gd/

CHAPTER 20 BONUS RECIPES

Note

This example only works on Windows out of the box. Otherwise you might

receive an SSL error. If that happens to you, then you may need to upgrade and/
or configure your openSSL package. You may also need to check your Python
bindings to openSSL too.

In Python 3, the urllib libraries were consolidated into one, so the previous code

needs to change accordingly. Here’s the update.

Python 3

import re
import urllib.parse

import urllib.request

import wx

class ArsShortener(wx.Frame):

def init (self):

def

wx.Frame. init (self, None, wx.ID ANY,
'wxArsShortener', size=(300,70))

Add a panel so it looks the correct on all platforms
panel = wx.Panel(self, wx.ID ANY)

self.txt = wx.TextCtrl(panel, wx.ID ANY, "", size=(300, -1))
self.txt.Bind(wx.EVT_TEXT, self.onTextChange)

sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(self.txt, 0, wx.EXPAND, 5)
panel.SetSizer(sizer)

onTextChange(self, event):

text = self.txt.GetValue()

textLength = len(text)

if re.match("~https?://["]+", text) and textLength > 20:
apiURL = "http://is.gd/api.php?" + urllib.parse.
urlencode(dict(longURL=text))

335

CHAPTER 20 BONUS RECIPES

shortened URL = urllib.request.urlopen(apiURL).read()
self.txt.SetValue(shortened URL)

if name_ =="_ main_"':
app = wx.App(False)
frame = ArsShortener()
frame. Show()
app.MainLoop()

This is almost the same as the previous version. Just take note of how we need to
import urllib now and that we had to change all its usages in the code to match.

Shortening URLs with Other Shorteners

@ ® URL Shortener
hs.gd ﬁ

Paste long URL here

Shorten URL Copy to Clipboard

Figure 20-4. A custom URL shortener application

There are many other URL shortening services out there. For example, you might like Bit.
ly or tinyURL better. There are also Python wrappers for pretty much all of these popular
services. For our next example, we will use the tinyurl package and the bitly package.
You can install both of these with pip.

pip install tinyurl bitly

Note that for Bit.ly, you will need to get an API (application programming interface)
key for it to work. There is one other package I want to mention called pyshorteners. It
actually supports a lot of these protocols in one package. So it’s definitely worth a look
as well.

336

CHAPTER 20 BONUS RECIPES

Now let’s go ahead and look at some code! Note that this code is using Python 2’s
urllib so if you happen to have Python 3 installed, you will want to update this example
as we did in the previous section of this recipe.

Python 2

import re
import urllib
import urllib2
import wx

bitlyFlag = True
tinyURLFlag = True

try:
import bitly
except ImportError:
bitlyFlag = False

try:
import tinyurl
except ImportError:
tinyURLFlag = False

class MainPanel(wx.Panel):

def _init (self, parent):
nn "Constructor" nn

wx.Panel. init_ (self, parent=parent, id=wx.ID_ ANY)
self.frame = parent

create the widgets
self.createlayout()

def createlayout(self):

Create widgets and lay them out

337

CHAPTER 20 BONUS RECIPES

338

def

choices = ["is.gd"]

if bitlyFlag:
choices.append("bit.1ly")

if tinyURLFlag:
choices.append("tinyURL")

choices.sort()

create the widgets
self.URLCbo = wx.ComboBox(self, wx.ID ANY, "is.gd",
choices=choices,
size=wx.DefaultSize,
style=wx.CB_DROPDOWN)
self.inputURLTxt = wx.TextCtrl(self, value="Paste long URL here")
self.inputURLTxt.Bind(wx.EVT SET FOCUS, self.onFocus)
self.outputURLTxt = wx.TextCtrl(self, style=wx.TE_READONLY)

shortenBtn = wx.Button(self, label="Shorten URL")
shortenBtn.Bind(wx.EVT BUTTON, self.onShorten)
copyBtn = wx.Button(self, label="Copy to Clipboard")
copyBtn.Bind(wx.EVT BUTTON, self.onCopy)

create the sizers
mainSizer = wx.BoxSizer(wx.VERTICAL)
btnSizer = wx.BoxSizer(wx.HORIZONTAL)

layout the widgets
mainSizer.Add(self.URLCbo, 0, wx.ALL, 5)
mainSizer.Add(self.inputURLTxt, O,
wx.ALL|wx.EXPAND, 5)
mainSizer.Add(self.outputURLTxt, O,
wx.ALL |wx.EXPAND, 5)
btnSizer.Add(shortenBtn, 0, wx.ALL|wx.CENTER, 5)
btnSizer.Add(copyBtn, 0, wx.ALL|wx.CENTER, 5)
mainSizer.Add(btnSizer, 0, wx.ALL|wx.CENTER, 5)
self.SetSizer(mainSizer)

onCopy(self, event):

def

def

CHAPTER 20

Copies data to the clipboard or displays an error

dialog if the clipboard is inaccessible.
text = self.outputURLTxt.GetValue()
self.do = wx.TextDataObject()
self.do.SetText(text)
if wx.TheClipboard.Open():
wx.TheClipboard. SetData(self.do)
wx.TheClipboard.Close()
status = "Copied %s to clipboard" % text
self.frame.statusbar.SetStatusText(status)
else:

BONUS RECIPES

wx.MessageBox("Unable to open the clipboard", "Error")

onFocus(self, event):

When control is given the focus, it is cleared

self.inputURLTxt.SetValue("")

onShorten(self, event):

Shortens a URL using the service specified.
Then sets the text control to the new URL.
text = self.inputURLTxt.GetValue()
textLength = len(text)

if re.match("~https?://[*]+", text) and textLength > 20:

pass
else:

wx.MessageBox("URL is already tiny!", "Error")

return

URL = self.URLCbo.GetValue()
if URL == "is.gd":
self.shortenWithIsGd(text)

339

CHAPTER 20 BONUS RECIPES

elif URL == "bit.ly":
self.shortenWithBitly(text)

elif URL == "tinyurl":
self.shortenWithTinyURL(text)

def shortenWithBitly(self, text):

Shortens the URL in the text control using bit.ly

Requires a bit.ly account and API key
bitly.API LOGIN = "username"
bitly.API KEY = "api key"

URL = bitly.shorten(text)
self.outputURLTxt.SetValue(URL)

def shortenWithIsGd(self, text):

Shortens the URL with is.gd using URL1ib and URL1ib2

apiURL = "http://is.gd/api.php?" + urllib.
urlencode(dict(longURL=text))

shortURL = urllib2.urlopen(apiURL).read()
self.outputURLTxt.SetValue(shortURL)

def shortenWithTinyURL(self, text):

Shortens the URL with tinyURL

print("in tinyurl")
URL = tinyurl.create one(text)
self.outputURLTxt.SetValue(URL)

class URLFrame(wx.Frame):

wx.Frame class

340

CHAPTER 20 BONUS RECIPES

def _init (self):
"""Constructor
title = "URL Shortener"
wx.Frame. init_ (self, None, wx.ID_ANY,

title=title, size=(650, 220))

panel = MainPanel(self)
self.statusbar = self.CreateStatusBar()
self.SetMinSize((650, 220))

if name_ ==" main_":
app = wx.App(False)
frame = URLFrame()
frame. Show()

app.MainLoop()

This piece of code is quite a bit longer than my simple example, but it has a lot more
logic built into it. Right off the bat, I have some exception handling implemented in case
the programmer doesn’t have one of the shortener modules installed. If they do not,
then a flag is set that prevents those options from being added. You'll see this in action
in the MainPanel class’s createLayout method. That is where we add the options to the
choices list which our combobox will use. Depending on what you have installed, you
will see one to three options in the drop-down list.

The next interesting bit is where the input URL text control is bound to a focus event.
We use this to clear the text control when we paste a URL into it. Also take note that the
output text control is set to read-only mode. This prevents the user from messing up
the new URL. Finally, we reach our last two widgets: the Shorten URL and the Copy to
Clipboard buttons.

Let’s take a quick look at what happens in the onCopy method since its next.

def onCopy(self, event):
Copies data to the clipboard or displays an error
dialog if the clipboard is inaccessible.
text = self.outputURLTxt.GetValue()
self.do = wx.TextDataObject()
self.do.SetText(text)

341

CHAPTER 20 BONUS RECIPES

if wx.TheClipboard.Open():
wx.TheClipboard. SetData(self.do)
wx.TheClipboard.Close()
status = "Copied %s to clipboard" % text
self.frame.statusbar.SetStatusText(status)

else:
wx.MessageBox("Unable to open the clipboard", "Error")

As you can see, this grabs the current text from the input text control and creates a
TextDataObject out of it. Then we attempt to open the clipboard and if we’re successful,
we put the TextDataObject into it using the clipboard’s SetData method. Finally, we
alert the user to what we have done by changing the frame’s statusbar text.

In the onShorten method, I reuse the regular expression from the Ars program to
check if the user has pasted a valid URL and we also check the length to see if the URL
really needs shortening. We get the shortener URL type from the combobox and then
use a conditional that passes the URL we want shortened to the appropriate shortening
method. The shortenWithIsGd method is basically the same as the first example, so
we'll skip that one. The shortenWithBitly method shows that we need to set the LOGIN
and API_KEY properties before we can shorten the URL. Once we’ve done that, we just
call bitly’s shorten() method. In the shortenWithTinyURL method, it’s even simpler: all
you need to do here is call the tinyURL's create_one() method.

Now you know the basics for shortening your long URLSs using several methods. Feel
free to add your own features or try other shortening APIs to improve the application for
your own use. Have fun coding!

342

Index

A

AboutBox widget
disadvantage, 73
code for wxPython Phoenix, 78
using HtmlWindow, 73-78
problem, 71
solution, 71
working, 71-72
wx.AboutDlglInfo, 72
AddPage methodology, 212
Application programming interface (API),
251, 274

B

Background image
adding, 24
ColourDB.py demo, 25
StaticBitmap widget, 21
problem, 20
solution, 22-23
on wxPython panel, 20-21
BytesIO class, 204

C

__call__method, 321-325
CheckForUpdate function, 310
ColumnDefn objects, 194
Config file

© Mike Driscoll 2018

dialog from
problem, 97-98
solution, 98-101
working, 101-102
saving data
creating controller, 103
creating the view, 104-110
problem, 102
solution, 102
working, 104
config.ini, 97

D

darkRowFormatter function, 33
Destroy() method, 184
dictConfig method, 272
Don’t Repeat Yourself (DRY)
Principle, 111
Drag and drop (DnD)
file from app to OS
ObjectListView widget, 146
problem, 146
solution, 146-148
working, 149
using
custom app, 142-145
FileDropTarget,
creating, 134-135
problem, 133

M. Driscoll, wxPython Recipes, https://doi.org/10.1007/978-1-4842-3237-8

https://doi.org/10.1007/978-1-4842-3237-8

INDEX

Drag and drop (DnD) (cont.)
solution, 133
TextDropTarget,

creating, 137-139
with PyDropTarget, 139-142
working, 136

E

Esky
CheckForUpdate, 310
build and dist, 300
downloads folder, 309
setup.py script, 299-300
SoftwareUpdate class, 296-298
features, 296, 301
folder creation, 296
image_viewer.exe, 309
installation, 295
Python script, 301-304
restart, 310
setup.py, 307-308
status bar, 306-307
Event handlers
binding multiple widgets
problem, 111
solution, 112-113
working, 113-114
firing
problem, 114
solution, 114-115
working, 115-116
Events
catching char, 124-125
catching key
problem, 119
solution, 119-120
working, 120-123

344

focus
losing, 130-131
problem, 125
solution, 126-127
working, 127-129
name
problem, 116
solution, 116-117
working, 118-119
Exception-Catching
__call__method, 321-325
class decorator, 321-322
sys.excepthook, 317-318
wxPython wiki
page, 319, 321
wxWidgets, 317

F

Faux spacers, 230
Frames
disabled Close button, 156
maximize of full screen
problem, 162
solution, 162
working, 163-165
single instance
problem, 165
solution, 165-167
stays on top, 160-161
un-resizable, 158-160
without caption, 154-155
without Maximize/Minimize button,
157-158
wx.Frame styles
problem, 151
solution, 152
working, 153-154

G, H
GetEventObject method, 266, 268
GetID() method, 114
GetSelectedCells method, 290
Global Interpreter Lock (GIL), 241
Graphical user interfaces
(GUIs), 133, 241

Grids

cell selection, 286, 288-290

syncing scrolling, 283-285

,J, K
InsertStringltem method, 36
Instance variable, 314-316

L, M

Layout() method, 184, 188, 239
ListBox widget, 197
LoadFrame method, 217
loadPreferences method, 109
Log-in dialog, 310-312, 314

N

Non-thread-safe method, 276-278

O

Objects

ObjectListView
problem, 189
solution, 190-192
working, 192-194

wx.ComboBox, 197-199

wx.ListBox
problem, 194

INDEX

solution, 195-196

working, 197
onCancel method, 110
onCopy method, 341
onDragSelection, 290
onGetSelection, 290
onShorten method, 342
onSwitchPanels event handler, 188

PQ

Panels
self-destruct
problem, 181
solution, 181-183
working, 183-184
switch between
problem, 184
solution, 185-188
working, 188
printSelectedCells() method, 290
Publish-Subscribe (PubSub) pattern
myListener method, 45
onSendAndClose method, 45
sendMessage command, 46
problem, 43
PyDispatcher, 46-50
solution, 43-45
PyDispatcher
myListener method, 50
onSendAndClose method, 49
problem, 46-48
PyPlot
bar graph, 79
drawBarGraph function, 82
graphing using saved data, 83-86
PlotCanvas, 82
PlotGraphics instance, 82

345

INDEX

PyPlot (cont.)

point plot with thousands of points,

86-88
PolyLine method, 82
problem, 79
sine/cosine graph, 89-91
solution, 80-81
PyQt toolkit, 1
Python 2, 3
Python 3, 3
Python’s datetime and time modules,
331-333

R

Raise() method, 163
reload() functionality, 291-295
Rich Text Format (RTF), 204

S

savePreferences method, 109
ScrollSync class, 283-285
SetData method, 342
SetForegroundColour method, 40
SetStringltem method, 36
shortenWithBitly method, 342
shortenWithIsGd method, 342
Simple notebook widget

DemoFrame class, 93

events, 94

problem, 91

refactored, 94-96

solution, 92-93
Sizers

adding/removing widgets dynamically

problem, 236
solution, 237-239
centering a widget

346

AddStretchSpacer method, 231-232

problem, 229
solution, 230-231
without nested sizers, 232-233
working, 231-232
children widgets
problem, 227
solution, 228-229
working, 229
widgets wrap
problem, 233
solution, 234
working, 235-236
Slide show function, 305-306
SoftwareUpdate class, 296-298
Special effects
background color, resetting
problem, 27
solution, 27-29
working, 29-30
dark mode, toggle button
after toggling, 36
before toggling, 35
importing, 33, 35
problem, 30
solution, 30-31, 33
working, 33
fade-in a frame/dialog
SetTransparent() method, 38
problem, 37
solution, 37-38
text flash
changing text, 41-42
problem, 39
solution, 39-40
working, 40
StringlO module, 203
Subscribers, 43

System tray, minimizing
application, 178-179
problem, 175
solution, 175
working, 176-177

T

Taskbar icons
classic, 169-171
problem, 169
working, 171-172
wxPython 4, 172-174
TestThread class, 251
Text
clipboard, 279-280, 282
redirecting stdout/stderr
non-thread-safe method, 276-278
thread-safe method, 274-276
TextDataObject, 342
Threads and timers
multiple timers, 264-268
process ID, 245
progress bar
dialog box, 255
MyFrame class, 254-255
onButton() method, 256
wxPython 2.8.12.1, 252
PubSub, 244
self.start(), 244
wx.CallAfter, 242-244
wx.PostEvent, 248, 250-251
wxPython 3.0.2.0 and Newer, 257-260
wxPython 3.0 Classic and Newer,
246-247
wx.Timer
coding, 261
creation, 260

INDEX

Notify method, 262
implementation, 262-263
Title bar, image
python code, 18-19
problem, 14
solution, 15
using own image, 17-18
working, 15-16
Tkinter toolkit, 1

uv

updateControl method, 193

URL Shortener
application, 336
Ars Technica, 333
coding, 333-334
bitly package, 336
onCopy method, 341
onShorten method, 342
shortenWithBitly method, 342
shortenWithIsGd method, 342
tinyurl package, 336
urllib libraries, 335-336
PyGTK, 333
Python 2 code, 337-341
TextDataObiject, 342

User interfaces (Uls), 1

W

Wizard
disabling, Next button
onUpdate method, 62
problem, 58
solution, 59
working, 60-62
wxPython 4/phoenix, 63-65

347

INDEX

Wizard (cont.) XY,Z
generic XML
problem, 66

extract from RichTextCtrl
problem, 201
solution, 201-202
updating for wxPython 4, 203-204
working, 202-203
XmlResource method, 207
XRC
adding controls outside, 212-213
creating notebook with, 208-212

solution, 66
working, 67-69
simple
problem, 51
PyWizardPage, 54-58
solution, 52-53
working, 53
WrapSizer, 236
write() method, 278

wxPython 4, 63-65 gridin
TaskBarlcon, 172-174 problem, 222-224
updating, 203-204 solution, 224
wxPython app working, 225-226
screenshot problem, 204
onTakeScreenShot method, 10 solution, 205, 207
problem, 7 working, 207
snapshot printer script, 11-14 XRCed
solution, 8-9 creating wx.Notebook, 218
wxPython ListCtrl, 189 Documentation and Demos
wxPython’s Context Managers package, 205
creation, 325-326 generate Python
MyPanel class, 328 code, 220-222
onOpenColorDialog event handler, 331 GUI, 204
wx.Dialog, 329 PlateButton, 218-219
wx.FileDialog, 326-328 problem, 214
wxPython toolkit, 3 solution, 215
wx.StaticText widget, 181 widget window, 215
wx.WrapSizer, 233, 235 working, 216-217

348

	Table of Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Chapter 1: Introduction
	 Who Should Read This Book
	 About the Author
	 Conventions
	 Requirements
	 Book Source Code
	 Reader Feedback
	 Errata

	Chapter 2: Working with Images
	 Recipe 2-1. How to Take a Screenshot of Your wxPython App
	 Problem
	 Solution
	 How It Works
	 The Snapshot Printer Script

	 Recipe 2-2. How to Embed an Image in the Title Bar
	 Problem
	 Solution
	 How It Works
	 Using Your Own Image
	 Create the Image in Python Code

	 Recipe 2-3. How to Put a Background Image on a Panel
	 Problem
	 A Bad Example
	 Solution
	 A Better Example

	Chapter 3: Special Effects
	 Recipe 3-1. Resetting the Background Color
	 Problem
	 Solution
	 How It Works

	 Recipe 3-2. How to Create a "Dark Mode"
	 Problem
	 Solution
	 How It Works
	 Trying Out Dark Mode

	 Recipe 3-3. How to Fade-in a Frame/Dialog
	 Problem
	 Solution
	 How It Works

	 Recipe 3-4. Making Your Text Flash
	 Problem
	 Solution
	 How It Works
	 Creating Changing Text

	Chapter 4: The Publish–Subscribe Pattern
	 Recipe 4-1. An Intro to Pubsub
	 Problem
	 Solution
	 How It Works

	 Recipe 4-2. Using PyDispatcher Instead of PubSub
	 Problem
	 Solution
	 How It Works

	Chapter 5: Wizard Recipes
	 Recipe 5-1. Creating a Simple Wizard
	 Problem
	 Solution
	 How It Works
	 Using PyWizardPage

	 Recipe 5-2. How to Disable a Wizard’s Next Button
	 Problem
	 Solution
	 How It Works
	 Getting It to Work with wxPython 4/Phoenix

	 Recipe 5-3. How to Create a Generic Wizard
	 Problem
	 Solution
	 How It Works

	Chapter 6: Creating Simple Widgets
	 Recipe 6-1. Creating an About Box
	 Problem
	 Solution
	 How It Works
	 Using HtmlWindow for an About Box
	 Updating the Code for wxPython 4/Phoenix

	 Recipe 6-2. Creating Graphs with PyPlot
	 Problem
	 Solution
	 How It Works
	 Graphing Using Saved Data
	 Point Plot with Thousands of Points
	 Creating a Sine/Cosine Graph

	 Recipe 6-3. Creating a Simple Notebook
	 Problem
	 Solution
	 How It Works
	 The Refactored Notebook

	Chapter 7: Using Config Files
	 Recipe 7-1. Generating a Dialog from a Config File
	 Problem
	 Solution
	 How It Works

	 Recipe 7-2. Saving Data to a Config File
	 Problem
	 Solution
	 Creating a Controller
	 How It Works
	 Creating the View

	Chapter 8: Working with Events
	 Recipe 8-1. Binding Multiple Widgets to the Same Handler
	 Problem
	 Solution
	 How It Works

	 Recipe 8-2. How to Fire Multiple Event Handlers
	 Problem
	 Solution
	 How It Works

	 Recipe 8-3. Get the Event Name Instead of an Integer
	 Problem
	 Solution
	 How It Works

	 Recipe 8-4. Catching Key and Char Events
	 Problem
	 Solution
	 How It Works
	 Catching Char Events

	 Recipe 8-5. Learning About Focus Events
	 Problem
	 Solution
	 How It Works
	 Losing Focus

	Chapter 9: Drag and Drop
	 Recipe 9-1. How to Use Drag and Drop
	 Problem
	 Solution
	 Creating a FileDropTarget
	 How It Works
	 Creating a TextDropTarget
	 Custom DnD with PyDropTarget
	 Creating a Custom Drag-and-Drop App

	 Recipe 9-2. How to Drag and Drop a File from Your App to the OS
	 Problem
	 Solution
	 How It Works

	Chapter 10: Working with Frames
	 Recipe 10-1. Using wx.Frame Styles
	 Problem
	 Solution(s)
	 How It Works

	 Create a Frame Without a Caption
	 Create a Frame with a Disabled Close Button
	 Create a Frame Without Maximize/Minimize
	 Create a Un-Resizable Frame
	 Create a Frame Without a System Menu
	 Create a Frame That Stays on Top
	 Recipe 10-2. Making Your Frame Maximize or Full Screen
	 Problem
	 Solution
	 How It Works

	 Making Your Application Full Screen
	 Recipe 10-3. Ensuring Only One Instance per Frame
	 Problem
	 Solution

	Chapter 11: wxPython and the System Tray
	 Recipe 11-1. Creating Taskbar Icons
	 Problem
	 Solution

	 Creating the TaskBarIcon in Classic
	 How It Works

	 Creating the TaskBarIcon in wxPython 4
	 Recipe 11-2. Minimizing to the System Tray
	 Problem
	 Solution
	 How It Works

	 Making the Application Minimize to Tray

	Chapter 12: Fun with Panels
	 Recipe 12-1. Making a Panel Self-Destruct
	 Problem
	 Solution
	 How It Works

	 Recipe 12-2. How to Switch Between Panels
	 Problem
	 Solution
	 How It Works

	Chapter 13: Using Objects in Widgets
	 Recipe 13-1. Using ObjectListView Instead of ListCtrl
	 Problem
	 Solution
	 How It Works

	 Recipe 13-2. Storing Objects in ComboBox or ListBox
	 Problem
	 Solution
	 How It Works

	 Adding Objects to the wx.ComboBox

	Chapter 14: XML and XRC
	 Recipe 14-1. Extracting XML from the RichTextCtrl
	 Problem
	 Solution
	 How It Works

	 Updating for wxPython 4
	 Recipe 14-2. An Introduction to XRC
	 Problem
	 Solution
	 How It Works

	 Creating a Notebook with XRC
	 Adding Controls Outside XRC
	 Recipe 14-3. An Introduction to XRCed
	 Problem
	 Solution
	 How It Works

	 Creating Something More Complex
	 Using XRCed to Generate Python Code
	 Recipe 14-4. How to Create a Grid in XRC
	 Problem
	 Solution
	 How It Works

	Chapter 15: Working with Sizers
	 Recipe 15-1. How to Get Children Widgets from a Sizer
	 Problem
	 Solution
	 How It Works

	 Recipe 15-2. How to Center a Widget
	 Problem
	 Solution #1—Using Faux Spacers
	 How It Works
	 Solution #2—Using an AddStretchSpacer
	 How It Works
	 Solution #3—Centering Without Nested Sizers

	 Recipe 15-3. How to Make Widgets Wrap
	 Problem
	 Solution
	 How It Works

	 Recipe 15-4. Adding/Removing Widgets Dynamically
	 Problem
	 Solution

	Chapter 16: Threads and Timers
	 Recipe 16-1. How to Update a Progress Bar from a Thread
	 Problem
	 Solution for wxPython 2.8.12 and Earlier
	 How It Works
	 Solution for wxPython 3 and Newer
	 How It Works

	 wx.PostEvent and Threads
	 Recipe 16-2. How to Update a Progress Bar from a Thread
	 Problem
	 Solution

	 Updating the Code for wxPython 3.0.2.0 and Newer
	 Recipe 16-3. A wx.Timer Tutorial
	 Problem
	 Solution
	 How It Works

	 Using Multiple Timers

	Chapter 17: Redirecting Text
	 Recipe 17-1. Redirect Python’s Logging Module to a TextCtrl
	 Problem
	 Solution
	 How It Works

	 Recipe 17-2. Redirecting stdout/stderr
	 Problem
	 Solution—The Thread-Safe Method
	 How It Works
	 Solution—The Non-Thread-Safe Method

	 Recipe 17-3. How to Use the Clipboard
	 Problem
	 Solution
	 How It Works

	Chapter 18: Grid Recipes
	 Recipe 18-1. Syncing Scrolling Between Two Grids
	 Problem
	 Solution
	 How It Works

	 Recipe 18-2. How to Get Selected Cells in a Grid
	 Problem
	 Solution
	 How It Works

	Chapter 19: Working with Your Application
	 Recipe 19-1. How to Edit Your GUI Interactively Using reload()
	 Problem
	 Solution
	 How It Works

	 Recipe 19-2. Updating Your Application with Esky
	 Problem
	 Solution
	 How It Works

	 Recipe 19-3. How to Create a Log-in Dialog
	 Problem
	 Solution

	 Using an Instance Variable

	Chapter 20: Bonus Recipes
	 Recipe 20-1. Catching Exceptions from Anywhere
	 Problem
	 Solution
	 How It Works

	 Creating an Exception-Catching Decorator
	 Recipe 20-2. wxPython’s Context Managers
	 Problem
	 Solution
	 How It Works

	 Recipe 20-3. Converting wx.DateTime to Python datetime
	 Problem
	 Solution
	 How It Works

	 Recipe 20-4. Creating a URL Shortener
	 Problem
	 Solution

	 Shortening URLs with Other Shorteners

	Index

