
ptg20087099

 www.allitebooks.com

http://www.allitebooks.org

ptg20087099

Scala for the Impatient
Second Edition

 www.allitebooks.com

http://www.allitebooks.org

ptg20087099

This page intentionally left blank

 www.allitebooks.com

http://www.allitebooks.org

ptg20087099

Scala for the Impatient
Second Edition

Cay S. Horstmann

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town

Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

 www.allitebooks.com

http://www.allitebooks.org

ptg20087099

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or
in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No
liability is assumed for incidental or consequential damages in connection with or arising out
of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to your
business, training goals, marketing focus, or branding interests), please contact our corporate
sales department at corpsales@pearsoned.com or (800) 382–3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2016954825

Copyright © 2017 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms and the appropriate contacts within the Pearson Education Global
Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-454056-6
ISBN-10: 0-13-454056-5

Text printed in the United States of America.
1 16

 www.allitebooks.com

http://www.allitebooks.org

ptg20087099

To my wife, who made writing this book possible,

and to my children, who made it necessary.

 www.allitebooks.com

http://www.allitebooks.org

ptg20087099

This page intentionally left blank

 www.allitebooks.com

http://www.allitebooks.org

ptg20087099Foreword to the First Edition xvii

Preface xix

About the Author xxi

THE BASICS A1 11
The Scala Interpreter 11.1
Declaring Values and Variables 41.2
Commonly Used Types 51.3
Arithmetic and Operator Overloading 61.4
More about Calling Methods 81.5
The apply Method 91.6
Scaladoc 101.7
Exercises 15

CONTROL STRUCTURES AND FUNCTIONS A1 172
Conditional Expressions 182.1
Statement Termination 192.2
Block Expressions and Assignments 202.3

vii

Contents

 www.allitebooks.com

http://www.allitebooks.org

ptg20087099

Input and Output 212.4
Loops 222.5
Advanced for Loops 242.6
Functions 252.7
Default and Named Arguments L1 262.8
Variable Arguments L1 262.9
Procedures 282.10
Lazy Values L1 282.11
Exceptions 292.12
Exercises 31

WORKING WITH ARRAYS A1 353
Fixed-Length Arrays 353.1
Variable-Length Arrays: Array Buffers 363.2
Traversing Arrays and Array Buffers 373.3
Transforming Arrays 383.4
Common Algorithms 403.5
Deciphering Scaladoc 413.6
Multidimensional Arrays 423.7
Interoperating with Java 433.8
Exercises 44

MAPS AND TUPLES A1 474
Constructing a Map 484.1
Accessing Map Values 484.2
Updating Map Values 494.3
Iterating over Maps 504.4
Sorted Maps 504.5
Interoperating with Java 504.6
Tuples 514.7
Zipping 524.8
Exercises 52

Contents

viii

 www.allitebooks.com

http://www.allitebooks.org

ptg20087099

CLASSES A1 555
Simple Classes and Parameterless Methods 555.1
Properties with Getters and Setters 565.2
Properties with Only Getters 595.3
Object-Private Fields 605.4
Bean Properties L1 615.5
Auxiliary Constructors 625.6
The Primary Constructor 635.7
Nested Classes L1 665.8
Exercises 68

OBJECTS A1 716
Singletons 716.1
Companion Objects 726.2
Objects Extending a Class or Trait 736.3
The apply Method 736.4
Application Objects 746.5
Enumerations 756.6
Exercises 77

PACKAGES AND IMPORTS A1 797
Packages 807.1
Scope Rules 817.2
Chained Package Clauses 837.3
Top-of-File Notation 837.4
Package Objects 837.5
Package Visibility 847.6
Imports 857.7
Imports Can Be Anywhere 857.8
Renaming and Hiding Members 867.9
Implicit Imports 867.10
Exercises 87

ix

Contents

 www.allitebooks.com

http://www.allitebooks.org

ptg20087099

INHERITANCE A1 918
Extending a Class 918.1
Overriding Methods 928.2
Type Checks and Casts 938.3
Protected Fields and Methods 948.4
Superclass Construction 948.5
Overriding Fields 958.6
Anonymous Subclasses 978.7
Abstract Classes 978.8
Abstract Fields 978.9
Construction Order and Early Definitions L3 988.10
The Scala Inheritance Hierarchy 1008.11
Object Equality L1 1028.12
Value Classes L2 1038.13
Exercises 105

FILES AND REGULAR EXPRESSIONS A1 1099
Reading Lines 1099.1
Reading Characters 1109.2
Reading Tokens and Numbers 1119.3
Reading from URLs and Other Sources 1119.4
Reading Binary Files 1129.5
Writing Text Files 1129.6
Visiting Directories 1129.7
Serialization 1139.8
Process Control A2 1149.9
Regular Expressions 1169.10
Regular Expression Groups 1179.11
Exercises 118

TRAITS L1 12110
Why No Multiple Inheritance? 12110.1
Traits as Interfaces 12310.2
Traits with Concrete Implementations 12410.3

Contents

x

ptg20087099

Objects with Traits 12510.4
Layered Traits 12510.5
Overriding Abstract Methods in Traits 12710.6
Traits for Rich Interfaces 12710.7
Concrete Fields in Traits 12810.8
Abstract Fields in Traits 13010.9
Trait Construction Order 13010.10
Initializing Trait Fields 13210.11
Traits Extending Classes 13310.12
Self Types L2 13410.13
What Happens under the Hood 13510.14
Exercises 137

OPERATORS L1 14111
Identifiers 14211.1
Infix Operators 14311.2
Unary Operators 14311.3
Assignment Operators 14411.4
Precedence 14411.5
Associativity 14511.6
The apply and update Methods 14611.7
Extractors L2 14711.8
Extractors with One or No Arguments L2 14911.9
The unapplySeq Method L2 14911.10
Dynamic Invocation L2 15011.11
Exercises 153

HIGHER-ORDER FUNCTIONS L1 15712
Functions as Values 15712.1
Anonymous Functions 15912.2
Functions with Function Parameters 16012.3
Parameter Inference 16012.4
Useful Higher-Order Functions 16112.5
Closures 16212.6

xi

Contents

ptg20087099

SAM Conversions 16312.7
Currying 16412.8
Control Abstractions 16612.9
The return Expression 16712.10
Exercises 168

COLLECTIONS A2 17113
The Main Collections Traits 17213.1
Mutable and Immutable Collections 17313.2
Sequences 17413.3
Lists 17513.4
Sets 17713.5
Operators for Adding or Removing Elements 17813.6
Common Methods 18013.7
Mapping a Function 18213.8
Reducing, Folding, and Scanning A3 18413.9
Zipping 18713.10
Iterators 18813.11
Streams A3 18913.12
Lazy Views A3 19013.13
Interoperability with Java Collections 19113.14
Parallel Collections 19313.15
Exercises 194

PATTERN MATCHING AND CASE CLASSES A2 19714
A Better Switch 19814.1
Guards 19914.2
Variables in Patterns 19914.3
Type Patterns 20014.4
Matching Arrays, Lists, and Tuples 20114.5
Extractors 20214.6
Patterns in Variable Declarations 20314.7
Patterns in for Expressions 20414.8
Case Classes 20514.9

Contents

xii

ptg20087099

The copy Method and Named Parameters 20514.10
Infix Notation in case Clauses 20614.11
Matching Nested Structures 20714.12
Are Case Classes Evil? 20814.13
Sealed Classes 20914.14
Simulating Enumerations 20914.15
The Option Type 21014.16
Partial Functions L2 21114.17
Exercises 212

ANNOTATIONS A2 21515
What Are Annotations? 21615.1
What Can Be Annotated? 21615.2
Annotation Arguments 21715.3
Annotation Implementations 21815.4
Annotations for Java Features 21915.5
15.5.1 Java Modifiers 219
15.5.2 Marker Interfaces 220
15.5.3 Checked Exceptions 220
15.5.4 Variable Arguments 221
15.5.5 JavaBeans 221
Annotations for Optimizations 22215.6
15.6.1 Tail Recursion 222
15.6.2 Jump Table Generation and Inlining 223
15.6.3 Eliding Methods 224
15.6.4 Specialization for Primitive Types 225
Annotations for Errors and Warnings 22615.7
Exercises 227

XML PROCESSING A2 22916
XML Literals 23016.1
XML Nodes 23016.2
Element Attributes 23216.3
Embedded Expressions 23316.4

xiii

Contents

ptg20087099

Expressions in Attributes 23416.5
Uncommon Node Types 23516.6
XPath-like Expressions 23516.7
Pattern Matching 23716.8
Modifying Elements and Attributes 23816.9
Transforming XML 23916.10
Loading and Saving 23916.11
Namespaces 24216.12
Exercises 243

FUTURES A2 24717
Running Tasks in the Future 24817.1
Waiting for Results 25017.2
The Try Class 25117.3
Callbacks 25117.4
Composing Future Tasks 25217.5
Other Future Transformations 25517.6
Methods in the Future Object 25617.7
Promises 25817.8
Execution Contexts 26017.9
Exercises 260

TYPE PARAMETERS L2 26518
Generic Classes 26618.1
Generic Functions 26618.2
Bounds for Type Variables 26618.3
View Bounds 26818.4
Context Bounds 26818.5
The ClassTag Context Bound 26918.6
Multiple Bounds 26918.7
Type Constraints L3 26918.8
Variance 27118.9
Co- and Contravariant Positions 27218.10

Contents

xiv

ptg20087099

Objects Can’t Be Generic 27418.11
Wildcards 27518.12
Exercises 275

ADVANCED TYPES L2 27919
Singleton Types 28019.1
Type Projections 28119.2
Paths 28219.3
Type Aliases 28319.4
Structural Types 28319.5
Compound Types 28419.6
Infix Types 28519.7
Existential Types 28619.8
The Scala Type System 28719.9
Self Types 28819.10
Dependency Injection 28919.11
Abstract Types L3 29119.12
Family Polymorphism L3 29319.13
Higher-Kinded Types L3 29619.14
Exercises 299

PARSING A3 30320
Grammars 30420.1
Combining Parser Operations 30520.2
Transforming Parser Results 30720.3
Discarding Tokens 30820.4
Generating Parse Trees 30920.5
Avoiding Left Recursion 31020.6
More Combinators 31120.7
Avoiding Backtracking 31420.8
Packrat Parsers 31420.9
What Exactly Are Parsers? 31520.10
Regex Parsers 31620.11

xv

Contents

ptg20087099

Token-Based Parsers 31720.12
Error Handling 31920.13
Exercises 320

IMPLICITS L3 32321
Implicit Conversions 32421.1
Using Implicits for Enriching Existing Classes 32421.2
Importing Implicits 32521.3
Rules for Implicit Conversions 32621.4
Implicit Parameters 32821.5
Implicit Conversions with Implicit Parameters 32921.6
Context Bounds 32921.7
Type Classes 33121.8
Evidence 33321.9
The @implicitNotFound Annotation 33421.10
CanBuildFrom Demystified 33421.11
Exercises 336

Index 338

Contents

xvi

ptg20087099When I met Cay Horstmann some years ago he told me that Scala needed a better
introductory book. My own book had come out a little bit earlier, so of course I
had to ask him what he thought was wrong with it. He responded that it was
great but too long; his students would not have the patience to read through the
eight hundred pages of Programming in Scala. I conceded that he had a point.
And he set out to correct the situation by writing Scala for the Impatient.

I am very happy that his book has finally arrived because it really delivers on
what the title says. It gives an eminently practical introduction to Scala, explains
what’s particular about it, how it differs from Java, how to overcome some
common hurdles to learning it, and how to write good Scala code.

Scala is a highly expressive and flexible language. It lets library writers use
highly sophisticated abstractions, so that library users can express themselves
simply and intuitively. Therefore, depending on what kind of code you look at,
it might seem very simple or very complex.

A year ago, I tried to provide some clarification by defining a set of levels for
Scala and its standard library. There were three levels each for application pro-
grammers and for library designers. The junior levels could be learned quickly
and would be sufficient to program productively. Intermediate levels would
make programs more concise and more functional and would make libraries
more flexible to use. The highest levels were for experts solving specialized tasks.
At the time I wrote:

xvii

Foreword to the First Edition

ptg20087099

I hope this will help newcomers to the language decide in what order to pick
subjects to learn, and that it will give some advice to teachers and book authors
in what order to present the material.

Cay’s book is the first to have systematically applied this idea. Every chapter is
tagged with a level that tells you how easy or hard it is and whether it’s oriented
towards library writers or application programmers.

As you would expect, the first chapters give a fast-paced introduction to the basic
Scala capabilities. But the book does not stop there. It also covers many of the
more “senior” concepts and finally progresses to very advanced material which
is not commonly covered in a language introduction, such as how to write parser
combinators or make use of delimited continuations. The level tags serve as a
guideline for what to pick up when. And Cay manages admirably to make even
the most advanced concepts simple to understand.

I liked the concept of Scala for the Impatient so much that I asked Cay and his ed-
itor, Greg Doench, whether we could get the first part of the book as a free
download on the Typesafe web site. They have gracefully agreed to my request,
and I would like to thank them for that. That way, everybody can quickly access
what I believe is currently the best compact introduction to Scala.

Martin Odersky

January 2012

Foreword to the First Edition

xviii

ptg20087099The evolution of traditional languages such as Java, C#, and C++ has slowed
down considerably, and programmers who are eager to use more modern lan-
guage features are looking elsewhere. Scala is an attractive choice; in fact, I think
it is by far the most attractive choice for programmers who want to improve their
productivity. Scala has a concise syntax that is refreshing after the Java boilerplate.
It runs on the Java virtual machine, providing access to a huge set of libraries
and tools. And Scala doesn’t just target the Java virtual machine. The ScalaJS
project emits JavaScript code, enabling you to write both the server-side and
client-side parts of a web application in a language that isn’t JavaScript. Scala
embraces the functional programming style without abandoning object orienta-
tion, giving you an incremental learning path to a new paradigm. The Scala in-
terpreter lets you run quick experiments, which makes learning Scala very enjoy-
able. Last but not least, Scala is statically typed, enabling the compiler to find
errors, so that you don’t waste time finding them—or not—later in the running
program.

I wrote this book for impatient readers who want to start programming in Scala
right away. I assume you know Java, C#, or C++, and I don’t bore you with ex-
plaining variables, loops, or classes. I don’t exhaustively list all the features of
the language, I don’t lecture you about the superiority of one paradigm over
another, and I don’t make you suffer through long and contrived examples. In-
stead, you will get the information that you need in compact chunks that you
can read and review as needed.

xix

Preface

ptg20087099

Scala is a big language, but you can use it effectively without knowing all of its
details intimately. Martin Odersky, the creator of Scala, has identified levels of
expertise for application programmers and library designers—as shown in the
following table.

Overall Scala LevelLibrary DesignerApplication Programmer

BeginningBeginning A1

IntermediateJunior L1Intermediate A2

AdvancedSenior L2Expert A3

ExpertExpert L3

For each chapter (and occasionally for individual sections), I indicate the experi-
ence level required. The chapters progress through levels A1 , L1 , A2 , L2 , A3 , L3 .
Even if you don’t want to design your own libraries, knowing about the tools that
Scala provides for library designers can make you a more effective library user.

This is the second edition of this book, and I updated it thoroughly for Scala 2.12.
I added coverage of recent Scala features such as string interpolation, dynamic
invocation, implicit classes, and futures, and updated all chapters to reflect current
Scala usage.

I hope you enjoy learning Scala with this book. If you find errors or have sugges-
tions for improvement, please visit http://horstmann.com/scala and leave a comment.
On that page, you will also find a link to an archive file containing all code
examples from the book.

I am very grateful to Dmitry Kirsanov and Alina Kirsanova who turned my
manuscript from XHTML into a beautiful book, allowing me to concentrate on
the content instead of fussing with the format. Every author should have it
so good!

Reviewers include Adrian Cumiskey, Mike Davis, Rob Dickens, Steve Haines,
Susan Potter, Daniel Sobral, Craig Tataryn, David Walend, and William Wheeler.
Thanks so much for your comments and suggestions!

Finally, as always, my gratitude goes to my editor, Greg Doench, for encouraging
me to write this book, and for his insights during the development process.

Cay Horstmann

San Francisco, 2016

Prefacexx

ptg20087099Cay S. Horstmann is author of Core Java™, Volumes I & II, Tenth Edition (Prentice
Hall, 2016), as well as a dozen other books for professional programmers and
computer science students. He is a professor of computer science at San Jose State
University and a Java Champion.

xxi

About the Author

ptg20087099Topics in This Chapter A1

1.1 The Scala Interpreter — page 1
1.2 Declaring Values and Variables — page 4
1.3 Commonly Used Types — page 5
1.4 Arithmetic and Operator Overloading — page 6
1.5 More about Calling Methods — page 8
1.6 The apply Method — page 9
1.7 Scaladoc — page 10
Exercises — page 15

The Basics

ptg20087099In this chapter, you will learn how to use Scala as an industrial-strength pocket
calculator, working interactively with numbers and arithmetic operations. We
introduce a number of important Scala concepts and idioms along the way. You
will also learn how to browse the Scaladoc documentation at a beginner’s level.

Highlights of this introduction are:

• Using the Scala interpreter

• Defining variables with var and val

• Numeric types

• Using operators and functions

• Navigating Scaladoc

1.1 The Scala Interpreter
To start the Scala interpreter:

1. Install Scala.

2. Make sure that the scala/bin directory is on the PATH.

3. Open a command shell in your operating system.

4. Type scala followed by the Enter key.

1

1Chapter

ptg20087099

Now type commands followed by Enter. Each time, the interpreter displays the
answer, as shown in Figure 1–1. For example, if you type 8 * 5 + 2 (as shown in
boldface below), you get 42.

scala> 8 * 5 + 2
res0: Int = 42

The answer is given the name res0. You can use that name in subsequent
computations:

scala> 0.5 * res0
res1: Double = 21.0
scala> "Hello, " + res0
res2: java.lang.String = Hello, 42

As you can see, the interpreter also displays the type of the result—in our
examples, Int, Double, and java.lang.String.

Figure 1–1 The Scala Interpreter

TIP: Don’t like the command shell? Several integrated development environ-
ments that support Scala have a “worksheet” feature for entering expressions
and displaying their result whenever the sheet is saved. Figure 1–2 shows a
worksheet in the Eclipse-based Scala IDE.

Chapter 1 The Basics2

ptg20087099

Figure 1–2 A Scala Worksheet

When calling methods, try using tab completion for method names. Type res2.to
and then hit the Tab key. If the interpreter offers choices such as

toCharArray toLowerCase toString toUpperCase

this means tab completion works in your environment. Type a U and hit the Tab
key again. You now get a single completion:

res2.toUpperCase

Hit the Enter key, and the answer is displayed. (If you can’t use tab completion
in your environment, you’ll have to type the complete method name yourself.)

Also try hitting the ≠ and Ø arrow keys. In most implementations, you will see
the previously issued commands, and you can edit them. Use the ¨, Æ, and Del
keys to change the last command to

res2.toLowerCase

As you can see, the Scala interpreter reads an expression, evaluates it, prints it,
and reads the next expression. This is called the read-eval-print loop, or REPL.

31.1 The Scala Interpreter

ptg20087099

Technically speaking, the scala program is not an interpreter. Behind the scenes,
your input is quickly compiled into bytecode, and the bytecode is executed by
the Java virtual machine. For that reason, most Scala programmers prefer to call
it “the REPL”.

TIP: The REPL is your friend. Instant feedback encourages experimenting,
and you will feel good whenever something works.

It is a good idea to keep an editor window open at the same time, so you can
copy and paste successful code snippets for later use. Also, as you try more
complex examples, you may want to compose them in the editor and then
paste them into the REPL.

TIP: In the REPL, type :help to see a list of useful commands. All commands
start with a colon. For example, the :warnings command gives more detailed
information about the most recent compiler warning.You only have to enter
the unique prefix of each command. For example, :w is the same as
:warnings—at least for now, since there isn’t currently another command
starting with w.

1.2 Declaring Values and Variables
Instead of using res0, res1, and so on, you can define your own names:

scala> val answer = 8 * 5 + 2
answer: Int = 42

You can use these names in subsequent expressions:

scala> 0.5 * answer
res3: Double = 21.0

A value declared with val is actually a constant—you can’t change its contents:

scala> answer = 0
<console>:6: error: reassignment to val

To declare a variable whose contents can vary, use a var:

var counter = 0
counter = 1 // OK, can change a var

In Scala, you are encouraged to use a val unless you really need to change the
contents. Perhaps surprisingly for Java or C++ programmers, most programs
don’t need many var variables.

Chapter 1 The Basics4

ptg20087099

Note that you need not specify the type of a value or variable. It is inferred from
the type of the expression with which you initialize it. (It is an error to declare a
value or variable without initializing it.)

However, you can specify the type if necessary. For example,

val greeting: String = null
val greeting: Any = "Hello"

NOTE: In Scala, the type of a variable or function is written after the name of
the variable or function.This makes it easier to read declarations with complex
types.

As I move back and forth between Scala and Java, I find that my fingers write
Java declarations such as String greeting on autopilot, so I have to rewrite
them as greeting: String.This is a bit annoying, but when I work with complex
Scala programs, I really appreciate that I don’t have to decrypt C-style type
declarations.

NOTE: You may have noticed that there were no semicolons after variable
declarations or assignments. In Scala, semicolons are only required if you
have multiple statements on the same line.

You can declare multiple values or variables together:

val xmax, ymax = 100 // Sets xmax and ymax to 100
var greeting, message: String = null
 // greeting and message are both strings, initialized with null

1.3 Commonly Used Types
You have already seen some of the data types of Scala, such as Int and Double. Like
Java, Scala has seven numeric types: Byte, Char, Short, Int, Long, Float, and Double, and
a Boolean type. However, unlike Java, these types are classes. There is no distinction
between primitive types and class types in Scala. You can invoke methods on
numbers, for example:

1.toString() // Yields the string "1"

or, more excitingly,

1.to(10) // Yields Range(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

(We will discuss the Range class in Chapter 13. For now, just view it as a collection
of numbers.)

51.3 Commonly Used Types

ptg20087099

In Scala, there is no need for wrapper types. It is the job of the Scala compiler to
convert between primitive types and wrappers. For example, if you make an array
of Int, you get an int[] array in the virtual machine.

As you saw in Section 1.1, “The Scala Interpreter,” on page 1, Scala relies on the
underlying java.lang.String class for strings. However, it augments that class with
well over a hundred operations in the StringOps class. For example, the intersect
method yields the characters that are common to two strings:

"Hello".intersect("World") // Yields "lo"

In this expression, the java.lang.String object "Hello" is implicitly converted to a
StringOps object, and then the intersect method of the StringOps class is applied. So,
remember to look into the StringOps class when you use the Scala documentation
(see Section 1.7, “Scaladoc,” on page 10).

Similarly, there are classes RichInt, RichDouble, RichChar, and so on. Each of them has
a small set of convenience methods for acting on their poor cousins—Int, Double,
or Char. The to method that you saw above is actually a method of the RichInt class.
In the expression

1.to(10)

the Int value 1 is first converted to a RichInt, and the to method is applied to that
value.

Finally, there are classes BigInt and BigDecimal for computations with an arbitrary
(but finite) number of digits. These are backed by the java.math.BigInteger and
java.math.BigDecimal classes, but, as you will see in the next section, they are much
more convenient because you can use them with the usual mathematical operators.

NOTE: In Scala, you use methods, not casts, to convert between numeric
types. For example, 99.44.toInt is 99, and 99.toChar is 'c'. Of course, as in
Java, the toString method converts any object to a string.

To convert a string containing a number into the number, use toInt or toDouble.
For example, "99.44".toDouble is 99.44.

1.4 Arithmetic and Operator Overloading
Arithmetic operators in Scala work just as you would expect in Java or C++:

val answer = 8 * 5 + 2

The + - * / % operators do their usual job, as do the bit operators & | ^ >> <<. There
is just one surprising aspect: These operators are actually methods. For example,

Chapter 1 The Basics6

ptg20087099

a + b

is a shorthand for

a.+(b)

Here, + is the name of the method. Scala has no silly prejudice against non-
alphanumeric characters in method names. You can define methods with just
about any symbols for names. For example, the BigInt class defines a method
called /% that returns a pair containing the quotient and remainder of a division.

In general, you can write

a method b

as a shorthand for

a.method(b)

where method is a method with two parameters (one implicit, one explicit). For
example, instead of

1.to(10)

you can write

1 to 10

Use whatever you think is easier to read. Beginning Scala programmers tend to
stick to the Java syntax, and that’s fine. Of course, even the most hardened Java
programmers seem to prefer a + b over a.+(b).

There is one notable difference between Scala and Java or C++. Scala does not
have ++ or -- operators. Instead, simply use +=1 or -=1:

counter+=1 // Increments counter—Scala has no ++

Some people wonder if there is any deep reason for Scala’s refusal to provide a
++ operator. (Note that you can’t simply implement a method called ++. Since the
Int class is immutable, such a method cannot change an integer value.) The Scala
designers decided it wasn’t worth having yet another special rule just to save
one keystroke.

You can use the usual mathematical operators with BigInt and BigDecimal objects:

val x: BigInt = 1234567890
x * x * x // Yields 1881676371789154860897069000

That’s much better than Java, where you would have had to call
x.multiply(x).multiply(x).

71.4 Arithmetic and Operator Overloading

 www.allitebooks.com

http://www.allitebooks.org

ptg20087099

NOTE: In Java, you cannot overload operators, and the Java designers
claimed this is a good thing because it stops you from inventing crazy op-
erators like !@$&* that would make your program impossible to read. Of course,
that’s silly; you can make your programs just as unreadable by using crazy
method names like qxywz. Scala allows you to define operators, leaving it up
to you to use this feature with restraint and good taste.

1.5 More about Calling Methods
You have already seen how to call methods on objects, such as

"Hello".intersect("World")

If the method has no parameters, you don’t have to use parentheses. For example,
the API of the StringOps class shows a method sorted, without (), which yields a
new string with the letters in sorted order. Call it as

"Bonjour".sorted // Yields the string "Bjnooru"

The rule of thumb is that a parameterless method that doesn’t modify the object
has no parentheses. We discuss this further in Chapter 5.

In Java, mathematical methods such as sqrt are defined as static methods of the
Math class. In Scala, you define such methods in singleton objects, which we will
discuss in detail in Chapter 6. A package can have a package object. In that case,
you can import the package and use the methods of the package object without
any prefix:

import scala.math._ // In Scala, the _ character is a “wildcard,” like * in Java
sqrt(2) // Yields 1.4142135623730951
pow(2, 4) // Yields 16.0
min(3, Pi) // Yields 3.0

If you don’t import the scala.math package, add the package name:

scala.math.sqrt(2)

NOTE: If a package that starts with scala., you can omit the scala prefix. For
example, import math._ is equivalent to import scala.math._, and math.sqrt(2)
is the same as scala.math.sqrt(2). However, in this book, we always use the
scala prefix for clarity.

You can find more information about the import statement in Chapter 7. For now,
just use import packageName._ whenever you need to import a particular package.

Often, a class has a companion object whose methods act just like static methods
do in Java. For example, the BigInt companion object to the scala.math.BigInt class

Chapter 1 The Basics8

ptg20087099

has a method probablePrime that generates a random prime number with a given
number of bits:

BigInt.probablePrime(100, scala.util.Random)

Here, Random is a singleton random number generator object, defined in the
scala.util package. Try this in the REPL; you’ll get a number such as
1039447980491200275486540240713.

1.6 The apply Method
In Scala, it is common to use a syntax that looks like a function call. For example,
if s is a string, then s(i) is the ith character of the string. (In C++, you would write
s[i]; in Java, s.charAt(i).) Try it out in the REPL:

val s = "Hello"
s(4) // Yields 'o'

You can think of this as an overloaded form of the () operator. It is implemented
as a method with the name apply. For example, in the documentation of the StringOps
class, you will find a method

def apply(n: Int): Char

That is, s(4) is a shortcut for

s.apply(4)

Why not use the [] operator? You can think of a sequence s of element type T as
a function from { 0, 1, . . . , n – 1 } to T that maps i to s(i), the ith element of the
sequence.

This argument is even more convincing for maps. As you will see in Chapter 4,
you look up a map value for a given key as map(key). Conceptually, a map is a
function from keys to values, and it makes sense to use the function notation.

CAUTION: Occasionally, the () notation conflicts with another Scala feature:
implicit parameters. For example, the expression

"Bonjour".sorted(3)

yields an error because the sorted method can optionally be called with an
ordering, but 3 is not a valid ordering.You can use parentheses:

("Bonjour".sorted)(3)

or call apply explicitly:

"Bonjour".sorted.apply(3)

91.6 The apply Method

ptg20087099

When you look at the documentation for the BigInt companion object, you will
see apply methods that let you convert strings or numbers to BigInt objects. For
example, the call

BigInt("1234567890")

is a shortcut for

BigInt.apply("1234567890")

It yields a new BigInt object, without having to use new. For example:

BigInt("1234567890") * BigInt("112358111321")

Using the apply method of a companion object is a common Scala idiom for con-
structing objects. For example, Array(1, 4, 9, 16) returns an array, thanks to the
apply method of the Array companion object.

NOTE:All through this chapter, we have assumed that Scala code is executed
on the Java virtual machine. That is in fact true for the standard Scala dis-
tribution. However, the Scala.js project (www.scala-js.org) provides tools to
translate Scala to JavaScript. If you take advantage of that project, you can
write both the client-side and the server-side code of web applications in
Scala.

1.7 Scaladoc
Java programmers use Javadoc to navigate the Java API. Scala has its own variant,
called Scaladoc (see Figure 1–3).

Using Scaladoc can be a bit more overwhelming than Javadoc. Scala classes tend
to have many more convenience methods than Java classes. Some methods use
advanced features that are more meaningful to library implementors than to
library users.

Here are some tips for navigating Scaladoc as a newcomer to the language.

You can browse Scaladoc online at www.scala-lang.org/api, but it is a good idea to
download a copy from http://scala-lang.org/download/all.html and install it locally.

Unlike Javadoc, which presents an alphabetical listing of classes, Scaladoc is or-
ganized by packages. If you know a class or method name, don’t bother navigating
to the package. Simply use the search bar on the top of the entry page (see
Figure 1–4).

Chapter 1 The Basics10

ptg20087099

Figure 1–3 The entry page for Scaladoc

111.7 Scaladoc

ptg20087099

Figure 1–4 The search bar in Scaladoc

Click on the X symbol to clear the search pattern, or click on a matching class or
method (Figure 1–5).

Chapter 1 The Basics12

ptg20087099

Figure 1–5 Class documentation in Scaladoc

Note the C and O symbols next to the class name. They let you navigate to the
class (C) or the companion object (O). For traits (which are similar to Java
interfaces), you see t and O symbols instead.

131.7 Scaladoc

ptg20087099

Keep these tips in mind:

• Remember to look into RichInt, RichDouble, and so on, if you want to know how
to work with numeric types. Similarly, to work with strings, look into StringOps.

• The mathematical functions are in the package scala.math, not in any class.

• Sometimes, you’ll see functions with funny names. For example, BigInt has a
method unary_-. As you will see in Chapter 11, this is how you define the prefix
negation operator -x.

• Methods can have functions as parameters. For example, the count method in
StringOps requires a function that returns true or false for a Char, specifying
which characters should be counted:

def count(p: (Char) => Boolean) : Int

You supply a function, often in a very compact notation, when you call the
method. As an example, the call s.count(_.isUpper) counts the number of upper-
case characters. We will discuss this style of programming in much more
detail in Chapter 12.

• You’ll occasionally run into classes such as Range or Seq[Char]. They mean what
your intuition tells you—a range of numbers, a sequence of characters. You
will learn all about these classes as you delve more deeply into Scala.

• In Scala, you use square brackets for type parameters. A Seq[Char] is a sequence
of elements of type Char, and Seq[A] is a sequence of elements of some type A.

• There are many slightly different types for sequences such as GenSeq, GenIterable,
GenTraversableOnce, and so on. The differences between them are rarely impor-
tant. When you see such a construct, just think “sequence.” For example, the
StringOps class defines a method

def containsSlice[B](that: GenSeq[B]): Boolean

This method tests whether the string contains with a given sequence. If you
like, you can pass a Range:

"Bierstube".containsSlice('r'.to('u'))
 // Yields true since the string contains Range('r', 's', 't', 'u')

• Don’t get discouraged that there are so many methods. It’s the Scala way to
provide lots of methods for every conceivable use case. When you need
to solve a particular problem, just look for a method that is useful. More often
than not, there is one that addresses your task, which means you don’t have
to write so much code yourself.

• Some methods have an “implicit” parameter. For example, the sorted method
of StringOps is declared as

def sorted[B >: Char](implicit ord: math.Ordering[B]): String

Chapter 1 The Basics14

ptg20087099

That means that an ordering is supplied “implicitly,” using a mechanism that
we will discuss in detail in Chapter 21. You can ignore these implicit
parameters for now.

• Finally, don’t worry if you run into the occasional indecipherable incantation,
such as the [B >: Char] in the declaration of sorted. The expression B >: Char
means “any supertype of Char,” but for now, ignore that generality.

• Whenever you are confused what a method does, just try it out in the REPL:

"Scala".sorted // Yields "Saacl"

Now you can clearly see that the method returns a new string that consists
of the characters in sorted order.

Exercises
1. In the Scala REPL, type 3. followed by the Tab key. What methods can be

applied?

2. In the Scala REPL, compute the square root of 3, and then square that value.
By how much does the result differ from 3? (Hint: The res variables are your
friend.)

3. Are the res variables val or var?

4. Scala lets you multiply a string with a number—try out "crazy" * 3 in the REPL.
What does this operation do? Where can you find it in Scaladoc?

5. What does 10 max 2 mean? In which class is the max method defined?

6. Using BigInt, compute 21024.

7. What do you need to import so that you can get a random prime as
probablePrime(100, Random), without any qualifiers before probablePrime and Random?

8. One way to create random file or directory names is to produce a random
BigInt and convert it to base 36, yielding a string such as "qsnvbevtomcj38o06kul".
Poke around Scaladoc to find a way of doing this in Scala.

9. How do you get the first character of a string in Scala? The last character?

10. What do the take, drop, takeRight, and dropRight string functions do? What
advantage or disadvantage do they have over using substring?

15Exercises

ptg20087099Topics in This Chapter A1

2.1 Conditional Expressions — page 18
2.2 Statement Termination — page 19
2.3 Block Expressions and Assignments — page 20
2.4 Input and Output — page 21
2.5 Loops — page 22
2.6 Advanced for Loops — page 24
2.7 Functions — page 25
2.8 Default and Named Arguments L1 — page 26
2.9 Variable Arguments L1 — page 26
2.10 Procedures — page 28
2.11 Lazy Values L1 — page 28
2.12 Exceptions — page 29
Exercises — page 31

Control Structures and Functions

ptg20087099In this chapter, you will learn how to implement conditions, loops, and functions
in Scala. You will encounter a fundamental difference between Scala and other
programming languages. In Java or C++, we differentiate between expressions
(such as 3 + 4) and statements (for example, an if statement). An expression has
a value; a statement carries out an action. In Scala, almost all constructs have
values. This feature can make programs more concise and easier to read.

Here are the highlights of this chapter:

• An if expression has a value.

• A block has a value—the value of its last expression.

• The Scala for loop is like an “enhanced” Java for loop.

• Semicolons are (mostly) optional.

• The void type is Unit.

• Avoid using return in a function.

• Beware of missing = in a function definition.

• Exceptions work just like in Java or C++, but you use a “pattern matching”
syntax for catch.

• Scala has no checked exceptions.

17

2Chapter

ptg20087099

2.1 Conditional Expressions
Scala has an if/else construct with the same syntax as in Java or C++. However,
in Scala, an if/else has a value, namely the value of the expression that follows
the if or else. For example,

if (x > 0) 1 else -1

has a value of 1 or -1, depending on the value of x. You can put that value in a
variable:

val s = if (x > 0) 1 else -1

This has the same effect as

if (x > 0) s = 1 else s = -1

However, the first form is better because it can be used to initialize a val. In the
second form, s needs to be a var.

(As already mentioned, semicolons are mostly optional in Scala—see Section 2.2,
“Statement Termination,” on page 19.)

Java and C++ have a ?: operator for this purpose. The expression

x > 0 ? 1 : -1 // Java or C++

is equivalent to the Scala expression if (x > 0) 1 else -1. However, you can’t put
statements inside a ?: expression. The Scala if/else combines the if/else and ?:
constructs that are separate in Java and C++.

In Scala, every expression has a type. For example, the expression if (x > 0) 1
else -1 has the type Int because both branches have the type Int. The type of a
mixed-type expression, such as

if (x > 0) "positive" else -1

is the common supertype of both branches. In this example, one branch is a
java.lang.String, and the other an Int. Their common supertype is called Any. (See
Section 8.11, “The Scala Inheritance Hierarchy,” on page 100 for details.)

If the else part is omitted, for example in

if (x > 0) 1

then it is possible that the if statement yields no value. However, in Scala, every
expression is supposed to have some value. This is finessed by introducing a class
Unit that has one value, written as (). The if statement without an else is
equivalent to

if (x > 0) 1 else ()

Think of () as a placeholder for “no useful value,” and of Unit as an analog of void
in Java or C++.

Chapter 2 Control Structures and Functions18

ptg20087099

(Technically speaking, void has no value whereas Unit has one value that signifies
“no value.” If you are so inclined, you can ponder the difference between an
empty wallet and a wallet with a bill labeled “no dollars.”)

NOTE: Scala has no switch statement, but it has a much more powerful
pattern matching mechanism that we will discuss in Chapter 14. For now, just
use a sequence of if statements.

CAUTION: The REPL is more nearsighted than the compiler—it only sees
one line of code at a time. For example, when you type

if (x > 0) 1
else if (x == 0) 0 else -1

the REPL executes if (x > 0) 1 and shows the answer.Then it gets confused
about the else keyword.

If you want to break the line before the else, use braces:

if (x > 0) { 1
} else if (x == 0) 0 else -1

This is only a concern in the REPL. In a compiled program, the parser will
find the else on the next line.

TIP: If you want to paste a block of code into the REPL without worrying about
its nearsightedness, use paste mode. Type

:paste

Then paste in the code block and type Ctrl+D. The REPL will then analyze
the block in its entirety.

2.2 Statement Termination
In Java and C++, every statement ends with a semicolon. In Scala—like in
JavaScript and other scripting languages—a semicolon is never required if it
falls just before the end of the line. A semicolon is also optional before an }, an
else, and similar locations where it is clear from context that the end of a statement
has been reached.

However, if you want to have more than one statement on a single line, you need
to separate them with semicolons. For example,

if (n > 0) { r = r * n; n -= 1 }

192.2 Statement Termination

ptg20087099

A semicolon is needed to separate r = r * n and n -= 1. Because of the }, no
semicolon is needed after the second statement.

If you want to continue a long statement over two lines, make sure that the first
line ends in a symbol that cannot be the end of a statement. An operator is often
a good choice:

s = s0 + (v - v0) * t + // The + tells the parser that this is not the end
 0.5 * (a - a0) * t * t

In practice, long expressions usually involve function or method calls, and then
you don’t need to worry much—after an opening (, the compiler won’t infer the
end of a statement until it has seen the matching).

In the same spirit, Scala programmers favor the Kernighan & Ritchie brace style:

if (n > 0) {
 r = r * n
 n -= 1
}

The line ending with a { sends a clear signal that there is more to come.

Many programmers coming from Java or C++ are initially uncomfortable about
omitting semicolons. If you prefer to put them in, feel free to—they do no harm.

2.3 Block Expressions and Assignments
In Java or C++, a block statement is a sequence of statements enclosed in { }. You
use a block statement whenever you need to put multiple actions in the body of
a branch or loop statement.

In Scala, a { } block contains a sequence of expressions, and the result is also an
expression. The value of the block is the value of the last expression.

This feature can be useful if the initialization of a val takes more than one step.
For example,

val distance = { val dx = x - x0; val dy = y - y0; sqrt(dx * dx + dy * dy) }

The value of the { } block is the last expression, shown here in bold. The variables
dx and dy, which were only needed as intermediate values in the computation,
are neatly hidden from the rest of the program.

In Scala, assignments have no value—or, strictly speaking, they have a value of
type Unit. Recall that the Unit type is the equivalent of the void type in Java and
C++, with a single value written as ().

Chapter 2 Control Structures and Functions20

ptg20087099

A block that ends with an assignment, such as

{ r = r * n; n -= 1 }

has a Unit value. This is not a problem, just something to be aware of when
defining functions—see Section 2.7, “Functions,” on page 25.

Since assignments have Unit value, don’t chain them together.

x = y = 1 // No

The value of y = 1 is (), and it’s highly unlikely that you wanted to assign a Unit
to x. (In contrast, in Java and C++, the value of an assignment is the value that is
being assigned. In those languages, chained assignments are useful.)

2.4 Input and Output
To print a value, use the print or println function. The latter adds a newline
character after the printout. For example,

print("Answer: ")
println(42)

yields the same output as

println("Answer: " + 42)

There is also a printf function with a C-style format string:

printf("Hello, %s! You are %d years old.%n", name, age)

Or better, use string interpolation

print(f"Hello, $name! In six months, you'll be ${age + 0.5}%7.2f years old.%n")

A formatted string is prefixed with the letter f. It contains expressions that are
prefixed with $ and optionally followed by C-style format strings. The expression
$name is replaced with the value of the variable name. The expression ${age + 0.5}%7.2f
is replaced with the value of age + 0.5, formatted as a floating-point number of
width 7 and precision 2. You need ${...} around expressions that are not variable
names.

Using the f interpolator is better than using the printf method because it is type-
safe. If you accidentally use %f with an expression that isn’t a number, the compiler
reports an error.

212.4 Input and Output

ptg20087099

NOTE: Formatted strings are one of three predefined string interpolators in
the Scala library. With a prefix of s, strings can contain expressions but not
format directives. With a prefix of raw, escape sequences in a string are not
evaluated. For example, raw"\n is a newline" starts with a backslash and the
letter n, not a newline character.

To include a $ sign in an interpolated string, double it. For example, s"$$$price"
yields a dollar sign followed by the value of price.

You can also define your own interpolators—see Exercise 11 on page 32.
However, interpolators that produce compile-time errors (such as the f
interpolator) need to be implemented as “macros,” an experimental Scala
feature that is beyond the scope of this book.

You can read a line of input from the console with the readLine method of the
scala.io.StdIn class. To read a numeric, Boolean, or character value, use readInt,
readDouble, readByte, readShort, readLong, readFloat, readBoolean, or readChar. The readLine
method, but not the other ones, takes a prompt string:

import scala.io
val name = StdIn.readLine("Your name: ")
print("Your age: ")
val age = StdIn.readInt()
println(s"Hello, ${name}! Next year, you will be ${age + 1}.")

2.5 Loops
Scala has the same while and do loops as Java and C++. For example,

while (n > 0) {
 r = r * n
 n -= 1
}

Scala has no direct analog of the for (initialize; test; update) loop. If you need such
a loop, you have two choices. You can use a while loop. Or, you can use a for
statement like this:

for (i <- 1 to n)
 r = r * i

You saw the to method of the RichInt class in Chapter 1. The call 1 to n returns a
Range of the numbers from 1 to n (inclusive).

The construct

for (i <- expr)

Chapter 2 Control Structures and Functions22

ptg20087099

makes the variable i traverse all values of the expression to the right of the <-.
Exactly how that traversal works depends on the type of the expression. For a
Scala collection, such as a Range, the loop makes i assume each value in turn.

NOTE: There is no val or var before the variable in the for loop. The type of
the variable is the element type of the collection.The scope of the loop variable
extends until the end of the loop.

When traversing a string, you can loop over the index values:

val s = "Hello"
var sum = 0
for (i <- 0 to s.length - 1)
 sum += s(i)

In this example, there is actually no need to use indexes. You can directly loop
over the characters:

var sum = 0
for (ch <- "Hello") sum += ch

In Scala, loops are not used as often as in other languages. As you will see in
Chapter 12, you can often process the values in a sequence by applying a function
to all of them, which can be done with a single method call.

NOTE:Scala has no break or continue statements to break out of a loop.What
to do if you need a break? Here are a few options:

• Use a Boolean control variable.

• Use nested functions—you can return from the middle of a function.

• Use the break method in the Breaks object:

import scala.util.control.Breaks._
breakable {
 for (...) {
 if (...) break; // Exits the breakable block
 ...
 }
}

Here, the control transfer is done by throwing and catching an exception,
so you should avoid this mechanism when time is of essence.

232.5 Loops

ptg20087099

NOTE: In Java, you cannot have two local variables with the same name and
overlapping scope. In Scala, there is no such prohibition, and the normal
shadowing rule applies. For example, the following is perfectly legal:

val n = ...
for (n <- 1 to 10) {
 // Here n refers to the loop variable
}

2.6 Advanced for Loops
In the preceding section, you saw the basic form of the for loop. However, this
construct is much richer in Scala than in Java or C++. This section covers the
advanced features.

You can have multiple generators of the form variable <- expression. Separate them
by semicolons. For example,

for (i <- 1 to 3; j <- 1 to 3) print(f"${10 * i + j}%3d")
 // Prints 11 12 13 21 22 23 31 32 33

Each generator can have a guard, a Boolean condition preceded by if:

for (i <- 1 to 3; j <- 1 to 3 if i != j) print(f"${10 * i + j}%3d")
 // Prints 12 13 21 23 31 32

Note that there is no semicolon before the if.

You can have any number of definitions, introducing variables that can be used
inside the loop:

for (i <- 1 to 3; from = 4 - i; j <- from to 3) print(f"${10 * i + j}%3d")
 // Prints 13 22 23 31 32 33

When the body of the for loop starts with yield, the loop constructs a collection
of values, one for each iteration:

for (i <- 1 to 10) yield i % 3
 // Yields Vector(1, 2, 0, 1, 2, 0, 1, 2, 0, 1)

This type of loop is called a for comprehension.

The generated collection is compatible with the first generator.

for (c <- "Hello"; i <- 0 to 1) yield (c + i).toChar
 // Yields "HIeflmlmop"
for (i <- 0 to 1; c <- "Hello") yield (c + i).toChar
 // Yields Vector('H', 'e', 'l', 'l', 'o', 'I', 'f', 'm', 'm', 'p')

Chapter 2 Control Structures and Functions24

ptg20087099

NOTE: If you prefer, you can enclose the generators, guards, and definitions
of a for loop in braces, and you can use newlines instead of semicolons to
separate them:

for { i <- 1 to 3
 from = 4 - i
 j <- from to 3 }

2.7 Functions
Scala has functions in addition to methods. A method operates on an object, but
a function doesn’t. C++ has functions as well, but in Java, you have to imitate
them with static methods.

To define a function, specify the function’s name, parameters, and body like this:

def abs(x: Double) = if (x >= 0) x else -x

You must specify the types of all parameters. However, as long as the function
is not recursive, you need not specify the return type. The Scala compiler deter-
mines the return type from the type of the expression to the right of the = symbol.

If the body of the function requires more than one expression, use a block. The
last expression of the block becomes the value that the function returns. For
example, the following function returns the value of r after the for loop.

def fac(n : Int) = {
 var r = 1
 for (i <- 1 to n) r = r * i
 r
}

There is no need for the return keyword in this example. It is possible to use return
as in Java or C++, to exit a function immediately, but that is not commonly done
in Scala.

TIP:While there is nothing wrong with using return in a named function (except
the waste of seven keystrokes), it is a good idea to get used to life without
return. Pretty soon, you will be using lots of anonymous functions, and there,
return doesn’t return a value to the caller but breaks out to the enclosing
named function.Think of return as a kind of break statement for functions, and
only use it when you want that breakout functionality.

With a recursive function, you must specify the return type. For example,

def fac(n: Int): Int = if (n <= 0) 1 else n * fac(n - 1)

252.7 Functions

ptg20087099

Without the return type, the Scala compiler couldn’t verify that the type of
n * fac(n - 1) is an Int.

NOTE: Some programming languages (such as ML and Haskell) can infer
the type of a recursive function, using the Hindley-Milner algorithm. However,
this doesn’t work well in an object-oriented language. Extending the Hindley-
Milner algorithm so it can handle subtypes is still a research problem.

2.8 Default and Named Arguments L1
You can provide default arguments for functions that are used when you don’t
specify explicit values. For example,

def decorate(str: String, left: String = "[", right: String = "]") =
 left + str + right

This function has two parameters, left and right, with default arguments "["
and "]".

If you call decorate("Hello"), you get "[Hello]". If you don’t like the defaults, supply
your own: decorate("Hello", "<<<", ">>>").

If you supply fewer arguments than there are parameters, the defaults are applied
from the end. For example, decorate("Hello", ">>>[") uses the default value of the
right parameter, yielding ">>>[Hello]".

You can also specify the parameter names when you supply the arguments. For
example,

decorate(left = "<<<", str = "Hello", right = ">>>")

The result is "<<<Hello>>>". Note that the named arguments need not be in the same
order as the parameters.

Named arguments can make a function call more readable. They are also useful
if a function has many default parameters.

You can mix unnamed and named arguments, provided the unnamed ones come
first:

decorate("Hello", right = "]<<<") // Calls decorate("Hello", "[", "]<<<")

2.9 Variable Arguments L1
Sometimes, it is convenient to implement a function that can take a variable
number of arguments. The following example shows the syntax:

Chapter 2 Control Structures and Functions26

ptg20087099

def sum(args: Int*) = {
 var result = 0
 for (arg <- args) result += arg
 result
}

You can call this function with as many arguments as you like.

val s = sum(1, 4, 9, 16, 25)

The function receives a single parameter of type Seq, which we will discuss in
Chapter 13. For now, all you need to know is that you can use a for loop to visit
each element.

If you already have a sequence of values, you cannot pass it directly to such a
function. For example, the following is not correct:

val s = sum(1 to 5) // Error

If the sum function is called with one argument, that must be a single integer, not
a range of integers. The remedy is to tell the compiler that you want the parameter
to be considered an argument sequence. Append : _*, like this:

val s = sum(1 to 5: _*) // Consider 1 to 5 as an argument sequence

This call syntax is needed in a recursive definition:

def recursiveSum(args: Int*) : Int = {
 if (args.length == 0) 0
 else args.head + recursiveSum(args.tail : _*)
}

Here, the head of a sequence is its initial element, and tail is a sequence of all
other elements. That’s again a Seq, and we have to use : _* to convert it to an
argument sequence.

CAUTION: When you call a Java method with variable arguments of type
Object, such as PrintStream.printf or MessageFormat.format, you need to convert
any primitive types by hand. For example,

val str = MessageFormat.format("The answer to {0} is {1}",
 "everything", 42.asInstanceOf[AnyRef])

This is the case for any Object parameter, but I mention it here because it is
most common with varargs methods.

272.9 Variable Arguments

 www.allitebooks.com

http://www.allitebooks.org

ptg20087099

2.10 Procedures
Scala has a special notation for a function that returns no value. If the function
body is enclosed in braces without a preceding = symbol, then the return type is Unit.
Such a function is called a procedure. A procedure returns no value, and you only
call it for its side effect. For example, the following procedure prints a string inside
a box, like

Hello

Since the procedure doesn’t return any value, we omit the = symbol.

def box(s : String) { // Look carefully: no =
 val border = "-" * (s.length + 2)
 print(f"$border%n|$s|%n$border%n")
}

Some people (not me) dislike this concise syntax for procedures and suggest that
you always use an explicit return type of Unit:

def box(s : String): Unit = {
 ...
}

CAUTION: The concise procedure syntax can be a surprise for Java and
C++ programmers. It is a common error to accidentally omit the = in a function
definition.You then get an error message at the point where the function is
called:You are told that Unit is not acceptable at that location.

2.11 Lazy Values L1
When a val is declared as lazy, its initialization is deferred until it is accessed for
the first time. For example,

lazy val words = scala.io.Source.fromFile("/usr/share/dict/words").mkString

(We will discuss file operations in Chapter 9. For now, just take it for granted
that this call reads all characters from a file into a string.)

If the program never accesses words, the file is never opened. To verify this, try it
out in the REPL, but misspell the file name. There will be no error when the ini-
tialization statement is executed. However, if you access words, you will get an
error message that the file is not found.

Chapter 2 Control Structures and Functions28

ptg20087099

Lazy values are useful to delay costly initialization statements. They can also
deal with other initialization issues, such as circular dependencies. Moreover,
they are essential for developing lazy data structures—see Section 13.12,
“Streams,” on page 189.

You can think of lazy values as halfway between val and def. Compare

val words = scala.io.Source.fromFile("/usr/share/dict/words").mkString
 // Evaluated as soon as words is defined
lazy val words = scala.io.Source.fromFile("/usr/share/dict/words").mkString
 // Evaluated the first time words is used
def words = scala.io.Source.fromFile("/usr/share/dict/words").mkString
 // Evaluated every time words is used

NOTE: Laziness is not cost-free. Every time a lazy value is accessed, a
method is called that checks, in a threadsafe manner, whether the value has
already been initialized.

2.12 Exceptions
Scala exceptions work the same way as in Java or C++. When you throw an
exception, for example

throw new IllegalArgumentException("x should not be negative")

the current computation is aborted, and the runtime system looks for an exception
handler that can accept an IllegalArgumentException. Control resumes with the
innermost such handler. If no such handler exists, the program terminates.

As in Java, the objects that you throw need to belong to a subclass of
java.lang.Throwable. However, unlike Java, Scala has no “checked” exceptions—you
never have to declare that a function or method might throw an exception.

NOTE: In Java, “checked” exceptions are checked at compile time. If your
method might throw an IOException, you must declare it. This forces
programmers to think where those exceptions should be handled, which is a
laudable goal. Unfortunately, it can also give rise to monstrous method sig-
natures such as void doSomething() throws IOException, InterruptedException,
ClassNotFoundException. Many Java programmers detest this feature and end
up defeating it by either catching exceptions too early or using excessively
general exception classes. The Scala designers decided against checked
exceptions, recognizing that thorough compile-time checking isn’t always a
good thing.

292.12 Exceptions

ptg20087099

A throw expression has the special type Nothing. That is useful in if/else expressions.
If one branch has type Nothing, the type of the if/else expression is the type of the
other branch. For example, consider

if (x >= 0) { sqrt(x)
} else throw new IllegalArgumentException("x should not be negative")

The first branch has type Double, the second has type Nothing. Therefore, the if/else
expression also has type Double.

The syntax for catching exceptions is modeled after the pattern matching syntax
(see Chapter 14).

val url = new URL("http://horstmann.com/fred-tiny.gif")
try {
 process(url)
} catch {
 case _: MalformedURLException => println(s"Bad URL: $url")
 case ex: IOException => ex.printStackTrace()
}

As in Java or C++, the more general exception types should come after the more
specific ones.

Note that you can use _ for the variable name if you don’t need it.

The try/finally statement lets you dispose of a resource whether or not an
exception has occurred. For example:

val in = new URL("http://horstmann.com/fred.gif").openStream()
try {
 process(in)
} finally {
 in.close()
}

The finally clause is executed whether or not the process function throws an
exception. The reader is always closed.

This code is a bit subtle, and it raises several issues.

• What if the URL constructor or the openStream method throws an exception? Then
the try block is never entered, and neither is the finally clause. That’s just as
well—in was never initialized, so it makes no sense to invoke close on it.

• Why isn’t val in = new URL(...).openStream() inside the try block? Then the scope
of in would not extend to the finally clause.

• What if in.close() throws an exception? Then that exception is thrown out of
the statement, superseding any earlier one. (This is just like in Java, and it
isn’t very nice. Ideally, the old exception would stay attached to the new one.)

Chapter 2 Control Structures and Functions30

ptg20087099

Note that try/catch and try/finally have complementary goals. The try/catch
statement handles exceptions, and the try/finally statement takes some action
(usually cleanup) when an exception is not handled. You can combine them into
a single try/catch/finally statement:

try { ... } catch { ... } finally { ... }

This is the same as

try { try { ... } catch { ... } } finally { ... }

However, that combination is rarely useful.

NOTE: Scala does not have an analog to the Java try-with-resources
statement. Consider using the scala-ARM library (http://jsuereth.com/
scala-arm). Then you can write

import resource._
import java.nio.file._
for (in <- resource(Files.newBufferedReader(inPath));
 out <- resource(Files.newBufferedWriter(outPath))) {
 ...
}

NOTE: The Try class is designed to work with computations that may fail with
exceptions. We will look at it more closely in Chapter 17. Here is a simple
example:

import scala.io._
val result =
 for (a <- Try { StdIn.readLine("a: ").toInt };
 b <- Try { StdIn.readLine("b: ").toInt })
 yield a / b

If an exception occurs in either of the calls to toInt, or because of division by
zero, then result is a Failure object, containing the exception that caused the
computation to fail. Otherwise, result is a Success object holding the result of
the computation.

Exercises
1. The signum of a number is 1 if the number is positive, –1 if it is negative, and

0 if it is zero. Write a function that computes this value.

2. What is the value of an empty block expression {}? What is its type?

31Exercises

ptg20087099

3. Come up with one situation where the assignment x = y = 1 is valid in Scala.
(Hint: Pick a suitable type for x.)

4. Write a Scala equivalent for the Java loop

for (int i = 10; i >= 0; i--) System.out.println(i);

5. Write a procedure countdown(n: Int) that prints the numbers from n to 0.

6. Write a for loop for computing the product of the Unicode codes of all letters
in a string. For example, the product of the characters in "Hello" is 9415087488L.

7. Solve the preceding exercise without writing a loop. (Hint: Look at the StringOps
Scaladoc.)

8. Write a function product(s : String) that computes the product, as described
in the preceding exercises.

9. Make the function of the preceding exercise a recursive function.

10. Write a function that computes xn, where n is an integer. Use the following
recursive definition:

• xn = y · y if n is even and positive, where y = xn / 2.

• xn = x · xn – 1 if n is odd and positive.

• x0 = 1.

• xn = 1 / x–n if n is negative.

Don’t use a return statement.

11. Define a string interpolator date so that you can define a java.time.LocalDate as
date"$year-$month-$day". You need to define an “implicit” class with a date method,
like this:

implicit class DateInterpolator(val sc: StringContext) extends AnyVal {
 def date(args: Any*): LocalDate = . . .
}

args(i) is the value of the ith expression. Convert each to a string and then to
an integer, and pass them to the LocalDate.of method. If you already know
some Scala, add error handling. Throw an exception if there aren’t three
arguments, or if they aren’t integers, or if they aren’t separated by dashes.
(You get the strings in between the expressions as sc.parts.)

Chapter 2 Control Structures and Functions32

ptg20087099

This page intentionally left blank

ptg20087099
Topics in This Chapter

A1

3.1 Fixed-Length Arrays — page 35
3.2 Variable-Length Arrays: Array Buffers — page 36
3.3 Traversing Arrays and Array Buffers — page 37
3.4 Transforming Arrays — page 38
3.5 Common Algorithms — page 40
3.6 Deciphering Scaladoc — page 41
3.7 Multidimensional Arrays — page 42
3.8 Interoperating with Java — page 43
Exercises — page 44

Working with Arrays

ptg20087099In this chapter, you will learn how to work with arrays in Scala. Java and C++
programmers usually choose an array or its close relation (such as array lists or
vectors) when they need to collect a bunch of elements. In Scala, there are other
choices (see Chapter 13), but for now, I’ll assume you are impatient and just want
to get going with arrays.

Key points of this chapter:

• Use an Array if the length is fixed, and an ArrayBuffer if the length can vary.

• Don’t use new when supplying initial values.

• Use () to access elements.

• Use for (elem <- arr) to traverse the elements.

• Use for (elem <- arr if . . .) . . . yield . . . to transform into a new array.

• Scala and Java arrays are interoperable; with ArrayBuffer, use scala.collection.
JavaConversions.

3.1 Fixed-Length Arrays

If you need an array whose length doesn’t change, use the Array type in Scala. For
example,

35

3Chapter

ptg20087099

val nums = new Array[Int](10)
 // An array of ten integers, all initialized with zero
val a = new Array[String](10)
 // A string array with ten elements, all initialized with null
val s = Array("Hello", "World")
 // An Array[String] of length 2—the type is inferred
 // Note: No new when you supply initial values
s(0) = "Goodbye"
 // Array("Goodbye", "World")
 // Use () instead of [] to access elements

Inside the JVM, a Scala Array is implemented as a Java array. The arrays in the
preceding example have the type java.lang.String[] inside the JVM. An array of
Int, Double, or another equivalent of the Java primitive types is a primitive type
array. For example, Array(2,3,5,7,11) is an int[] in the JVM.

3.2 Variable-Length Arrays: Array Buffers

Java has ArrayList and C++ has vector for arrays that grow and shrink on demand.
The equivalent in Scala is the ArrayBuffer.

import scala.collection.mutable.ArrayBuffer
val b = ArrayBuffer[Int]()
 // Or new ArrayBuffer[Int]
 // An empty array buffer, ready to hold integers
b += 1
 // ArrayBuffer(1)
 // Add an element at the end with +=
b += (1, 2, 3, 5)
 // ArrayBuffer(1, 1, 2, 3, 5)
 // Add multiple elements at the end by enclosing them in parentheses
b ++= Array(8, 13, 21)
 // ArrayBuffer(1, 1, 2, 3, 5, 8, 13, 21)
 // You can append any collection with the ++= operator
b.trimEnd(5)
 // ArrayBuffer(1, 1, 2)
 // Removes the last five elements

Adding or removing elements at the end of an array buffer is an efficient
(“amortized constant time”) operation.

Chapter 3 Working with Arrays

36

ptg20087099

You can also insert and remove elements at an arbitrary location, but those oper-
ations are not as efficient—all elements after that location must be shifted. For
example:

b.insert(2, 6)
 // ArrayBuffer(1, 1, 6, 2)
 // Insert before index 2
b.insert(2, 7, 8, 9)
 // ArrayBuffer(1, 1, 7, 8, 9, 6, 2)
 // You can insert as many elements as you like
b.remove(2)
 // ArrayBuffer(1, 1, 8, 9, 6, 2)
b.remove(2, 3)
 // ArrayBuffer(1, 1, 2)
 // The second parameter tells how many elements to remove

Sometimes, you want to build up an Array, but you don’t yet know how many
elements you will need. In that case, first make an array buffer, then call

b.toArray
 // Array(1, 1, 2)

Conversely, call a.toBuffer to convert the array a to an array buffer.

3.3 Traversing Arrays and Array Buffers

In Java and C++, there are several syntactical differences between arrays and
array lists/vectors. Scala is much more uniform. Most of the time, you can use
the same code for both.

Here is how you traverse an array or array buffer with a for loop:

for (i <- 0 until a.length)
 println(s"$i: ${a(i)}")

The until method is similar to the to method, except that it excludes the last
value. Therefore, the variable i goes from 0 to a.length - 1.

In general, the construct

for (i <- range)

makes the variable i traverse all values of the range. In our case, the loop variable
i assumes the values 0, 1, and so on until (but not including) a.length.

To visit every second element, let i traverse

37
3.3 Traversing Arrays and Array Buffers

ptg20087099

0 until a.length by 2
 // Range(0, 2, 4, ...)

To visit the elements starting from the end of the array, traverse

0 until a.length by -1
 // Range(..., 2, 1, 0)

TIP: Instead of 0 until a.length or 0 until a.length by -1, you can use
a.indices or a.indices.reverse.

If you don’t need the array index in the loop body, visit the array elements
directly:

for (elem <- a)
 println(elem)

This is similar to the “enhanced” for loop in Java or the “range-based” for loop
in C++. The variable elem is set to a(0), then a(1), and so on.

3.4 Transforming Arrays

In the preceding sections, you saw how to work with arrays just like you
would in Java or C++. But in Scala, you can go further. It is easy to take an array
(or array buffer) and transform it in some way. Such transformations don’t modify
the original array but yield a new one.

Use a for comprehension like this:

val a = Array(2, 3, 5, 7, 11)
val result = for (elem <- a) yield 2 * elem
 // result is Array(4, 6, 10, 14, 22)

The for/yield loop creates a new collection of the same type as the original collec-
tion. If you started with an array, you get another array. If you started with an
array buffer, that’s what you get from for/yield.

The result contains the expressions after the yield, one for each iteration of the loop.

Oftentimes, when you traverse a collection, you only want to process the elements
that match a particular condition. This is achieved with a guard: an if inside the
for. Here we double every even element, dropping the odd ones:

for (elem <- a if elem % 2 == 0) yield 2 * elem

Keep in mind that the result is a new collection—the original collection is not
affected.

Chapter 3 Working with Arrays

38

ptg20087099

NOTE: Alternatively, you could write

a.filter(_ % 2 == 0).map(2 * _)

or even

a filter { _ % 2 == 0 } map { 2 * _ }

Some programmers with experience in functional programming prefer filter
and map to guards and yield. That’s just a matter of style—the for/yield loop
does exactly the same work. Use whichever you find easier.

Suppose we want to remove all negative elements from an array buffer of integers.
A traditional sequential solution might traverse the array buffer and remove
unwanted elements as they are encountered.

var n = a.length
var i = 0
while (i < n) {
 if (a(i) >= 0) i += 1
 else { a.remove(i); n -= 1 }
}

That’s a bit fussy—you have to remember not to increment i when you remove
the element, and to decrement n instead. It is also not efficient to remove elements
from the middle of the array buffer. This loop unnecessarily moves elements that
will later be removed.

In Scala, the obvious solution is to use a for/yield loop and keep all non-negative
elements:

val result = for (elem <- a if elem >= 0) yield elem

The result is a new array buffer. Suppose that we want to modify the original
array buffer instead, removing the unwanted elements. Then we can collect their
positions:

val positionsToRemove = for (i <- a.indices if a(i) < 0) yield i

Now remove the elements at those positions, starting from the back:

for (i <- positionsToRemove.reverse) a.remove(i)

Or better, remember the positions to keep, copy them over, and then shorten the
buffer:

val positionsToKeep = for (i <- a.indices if a(i) >= 0) yield i
for (j <- positionsToKeep.indices) a(j) = a(positionsToKeep(j))
a.trimEnd(a.length - positionsToKeep.length)

39
3.4 Transforming Arrays

ptg20087099

The key observation is that it is better to have all index values together instead of
seeing them one by one.

3.5 Common Algorithms

It is often said that a large percentage of business computations are nothing but
computing sums and sorting. Fortunately, Scala has built-in functions for these
tasks.

Array(1, 7, 2, 9).sum
 // 19
 // Works for ArrayBuffer too

In order to use the sum method, the element type must be a numeric type: either
an integral or floating-point type or BigInteger/BigDecimal.

Similarly, the min and max methods yield the smallest and largest element in an
array or array buffer.

ArrayBuffer("Mary", "had", "a", "little", "lamb").max
 // "little"

The sorted method sorts an array or array buffer and returns the sorted array or
array buffer, without modifying the original:

val b = ArrayBuffer(1, 7, 2, 9)
val bSorted = b.sorted
 // b is unchanged; bSorted is ArrayBuffer(1, 2, 7, 9)

You can also supply a comparison function, but then you should use the sortWith
method:

val bDescending = b.sortWith(_ > _) // ArrayBuffer(9, 7, 2, 1)

See Chapter 12 for the function syntax.

You can sort an array, but not an array buffer, in place:

val a = Array(1, 7, 2, 9)
scala.util.Sorting.quickSort(a)
 // a is now Array(1, 2, 7, 9)

For the min, max, and quickSort methods, the element type must have a comparison
operation. This is the case for numbers, strings, and other types with the Ordered
trait.

Finally, if you want to display the contents of an array or array buffer, the mkString
method lets you specify the separator between elements. A second variant has
parameters for the prefix and suffix. For example,

Chapter 3 Working with Arrays

40

ptg20087099

a.mkString(" and ")
 // "1 and 2 and 7 and 9"
a.mkString("<", ",", ">")
 // "<1,2,7,9>"

Contrast with toString:

a.toString
 // "[I@b73e5"
 // This is the useless toString method from Java
b.toString
 // "ArrayBuffer(1, 7, 2, 9)"
 // The toString method reports the type, which is useful for debugging

3.6 Deciphering Scaladoc

There are lots of useful methods on arrays and array buffers, and it is a good
idea to browse the Scala documentation to get an idea of what’s there.

Scala has a richer type system than Java, so you may encounter some strange-
looking syntax as you browse the Scala documentation. Fortunately, you don’t
have to understand all nuances of the type system to do useful work. Use
Table 3–1 as a “decoder ring.”

Table 3–1 Scaladoc Decoder Ring

ExplanationScaladoc

This method takes a predicate, a function from A to
Boolean. It counts for how many elements the
function is true. For example, a.count(_ > 0) counts
how many elements of a are positive.

def count(p: (A) => Boolean): Int

This method takes zero or more arguments of type
A. For example, b.append(1, 7, 2, 9) appends four
elements to b.

def append(elems: A*): Unit

The xs parameter can be any collection with the
TraversableOnce trait, a trait in the Scala collections
hierarchy. Other common traits that you may
encounter in Scaladoc are Traversable and Iterable.
All Scala collections implement these traits, and
the difference between them is academic for
library users. Simply think “any collection” when
you see one of these.

def appendAll(xs: TraversableOnce[A]):
Unit

(Continues)

41
3.6 Deciphering Scaladoc

ptg20087099

Table 3–1 Scaladoc Decoder Ring (Continued)

ExplanationScaladoc

A GenSeq or Seq is a collection whose elements are
arranged in sequential order. Think “array, list,
or string.”

def containsSlice[B](that: GenSeq[B]):
Boolean

This method returns this, which allows you to
chain calls, for example: b += 4 -= 5.

When you work with an ArrayBuffer[A], you can just
think of the method as def += (elem: A) :
ArrayBuffer[A].

If someone forms a subclass of ArrayBuffer, then the
return type of += is that subclass.

def += (elem: A):
ArrayBuffer.this.type

Note that the function copies an ArrayBuffer[A] into
an Array[B]. Here, B is allowed to be a supertype of
A. For example, you can copy from an
ArrayBuffer[Int] to an Array[Any].

At first reading, just ignore the [B >: A] and replace
B with A.

def copyToArray[B >: A] (xs:
Array[B]): Unit

The element type A must have a supertype B for
which an “implicit” object of type Ordering[B] exists.
Such an ordering exists for numbers, strings, and
other types with the Ordered trait, as well as for
classes that implement the Java Comparable interface.

def sorted[B >: A] (implicit cmp:
Ordering[B]): ArrayBuffer[A]

This declaration happens when the method creates
a new collection. Most of the time, Scaladoc hides
such complex descriptions and shows a simpler
one tagged with “[use case]”. In this case, it
doesn’t. You can simplify the declaration in your
mind to a “happy day scenario,” like this:

def ++:(that: ArrayBuffer[A]) : ArrayBuffer[A]

What if that is an ArrayBuffer[B] or some other
collection? Try it out in the REPL:

ArrayBuffer('a', 'b') ++: "cd" // Yields a string "abcd"

def ++:[B >: A, That](that:
collection.Traversable[B])(implicit
bf: CanBuildFrom[ArrayBuffer[A], B,
That]): That

3.7 Multidimensional Arrays

Like in Java, multidimensional arrays are implemented as arrays of arrays. For
example, a two-dimensional array of Double values has the type Array[Array[Double]].
To construct such an array, use the ofDim method:

Chapter 3 Working with Arrays

42

ptg20087099

val matrix = Array.ofDim[Double](3, 4) // Three rows, four columns

To access an element, use two pairs of parentheses:

matrix(row)(column) = 42

You can make ragged arrays, with varying row lengths:

val triangle = new Array[Array[Int]](10)
for (i <- triangle.indices)
 triangle(i) = new Array[Int](i + 1)

3.8 Interoperating with Java

Since Scala arrays are implemented as Java arrays, you can pass them back and
forth between Java and Scala.

This works in almost all cases, except if the array element type isn’t an exact
match. In Java, an array of a given type is automatically converted to an array of
a supertype. For example, a Java String[] array can be passed to a method that
expects a Java Object[] array. Scala does not permit this automatic conversion
because it is unsafe. (See Chapter 18 for a detailed explanation.)

Suppose you want to invoke a Java method with an Object[] parameter, such as
java.util.Arrays.binarySearch(Object[] a, Object key):

val a = Array("Mary", "a", "had", "lamb", "little")
java.util.Arrays.binarySearch(a, "beef") // Does not work

This does not work because Scala will not convert an Array[String] into an
Array[Object]. You can force the conversion like this:

java.util.Arrays.binarySearch(a.asInstanceOf[Array[Object]], "beef")

NOTE: This is just an example to show how to overcome element type
differences. If you want to carry out binary search in Scala, do it like this:

import scala.collection.Searching._
val result = a.search("beef")

The result is Found(n) if the element was found at position n or InsertionPoint(n)
if the element was not found but should be inserted before position n.

If you call a Java method that receives or returns a java.util.List, you could, of
course, use a Java ArrayList in your Scala code—but that is unattractive. Instead,
import the implicit conversion methods in scala.collection.JavaConversions. Then
you can use Scala buffers in your code, and they automatically get wrapped into
Java lists when calling a Java method.

43
3.8 Interoperating with Java

ptg20087099

For example, the java.lang.ProcessBuilder class has a constructor with a List<String>
parameter. Here is how you can call it from Scala:

import scala.collection.JavaConversions.bufferAsJavaList
import scala.collection.mutable.ArrayBuffer
val command = ArrayBuffer("ls", "-al", "/home/cay")
val pb = new ProcessBuilder(command) // Scala to Java

The Scala buffer is wrapped into an object of a Java class that implements the
java.util.List interface.

Conversely, when a Java method returns a java.util.List, you can have it
automatically converted into a Buffer:

import scala.collection.JavaConversions.asScalaBuffer
import scala.collection.mutable.Buffer
val cmd : Buffer[String] = pb.command() // Java to Scala
 // You can’t use ArrayBuffer—the wrapped object is only guaranteed to be a Buffer

If the Java method returns a wrapped Scala buffer, then the implicit conversion
unwraps the original object. In our example, cmd == command.

Exercises

1. Write a code snippet that sets a to an array of n random integers between 0
(inclusive) and n (exclusive).

2. Write a loop that swaps adjacent elements of an array of integers. For example,
Array(1, 2, 3, 4, 5) becomes Array(2, 1, 4, 3, 5).

3. Repeat the preceding assignment, but produce a new array with the swapped
values. Use for/yield.

4. Given an array of integers, produce a new array that contains all positive
values of the original array, in their original order, followed by all values that
are zero or negative, in their original order.

5. How do you compute the average of an Array[Double]?

6. How do you rearrange the elements of an Array[Int] so that they appear in
reverse sorted order? How do you do the same with an ArrayBuffer[Int]?

7. Write a code snippet that produces all values from an array with duplicates
removed. (Hint: Look at Scaladoc.)

8. Suppose you are given an array buffer of integers and want to remove all but
the first negative number. Here is a sequential solution that sets a flag
when the first negative number is called, then removes all elements beyond.

Chapter 3 Working with Arrays

44

ptg20087099

var first = true
var n = a.length
var i = 0
while (i < n) {
 if (a(i) >= 0) i += 1
 else {
 if (first) { first = false; i += 1 }
 else { a.remove(i); n -= 1 }
 }
}

This is a complex and inefficient solution. Rewrite it in Scala by collecting
positions of the negative elements, dropping the first element, reversing the
sequence, and calling a.remove(i) for each index.

9. Improve the solution of the preceding exercise by collecting the positions
that should be moved and their target positions. Make those moves and
truncate the buffer. Don’t copy any elements before the first unwanted
element.

10. Make a collection of all time zones returned by java.util.TimeZone.getAvailableIDs
that are in America. Strip off the "America/" prefix and sort the result.

11. Import java.awt.datatransfer._ and make an object of type SystemFlavorMap with
the call

val flavors = SystemFlavorMap.getDefaultFlavorMap().asInstanceOf[SystemFlavorMap]

Then call the getNativesForFlavor method with parameter DataFlavor.imageFlavor
and get the return value as a Scala buffer. (Why this obscure class? It’s hard
to find uses of java.util.List in the standard Java library.)

45
Exercises

ptg20087099
Topics in This Chapter

A1

4.1 Constructing a Map — page 48
4.2 Accessing Map Values — page 48
4.3 Updating Map Values — page 49
4.4 Iterating over Maps — page 50
4.5 Sorted Maps — page 50
4.6 Interoperating with Java — page 50
4.7 Tuples — page 51
4.8 Zipping — page 52
Exercises — page 52

Maps and Tuples

ptg20087099A classic programmer’s saying is, “If you can only have one data structure, make
it a hash table.” Hash tables—or, more generally, maps—are among the most
versatile data structures. As you will see in this chapter, Scala makes it particularly
easy to use them.

Maps are collections of key/value pairs. Scala has a general notion of tuples—
aggregates of n objects, not necessarily of the same type. A pair is simply a tuple
with n = 2. Tuples are useful whenever you need to aggregate two or more values
together, and we briefly discuss the syntax at the end of this chapter.

Highlights of the chapter are:

• Scala has a pleasant syntax for creating, querying, and traversing maps.

• You need to choose between mutable and immutable maps.

• By default, you get a hash map, but you can also get a tree map.

• You can easily convert between Scala and Java maps.

• Tuples are useful for aggregating values.

47

4Chapter

ptg20087099

4.1 Constructing a Map

You can construct a map as

val scores = Map("Alice" -> 10, "Bob" -> 3, "Cindy" -> 8)

This constructs an immutable Map[String, Int] whose contents can’t be changed.
If you want a mutable map, use

val scores = scala.collection.mutable.Map("Alice" -> 10, "Bob" -> 3, "Cindy" -> 8)

If you want to start out with a blank map, you have to supply type parameters:

val scores = scala.collection.mutable.Map[String, Int]()

In Scala, a map is a collection of pairs. A pair is simply a grouping of two values,
not necessarily of the same type, such as ("Alice", 10).

The -> operator makes a pair. The value of

"Alice" -> 10

is

("Alice", 10)

You could have equally well defined the map as

val scores = Map(("Alice", 10), ("Bob", 3), ("Cindy", 8))

The -> operator is just a little easier on the eyes than the parentheses. It also
supports the intuition that a map data structure is a kind of function that maps
keys to values. The difference is that a function computes values, and a map just
looks them up.

4.2 Accessing Map Values

In Scala, the analogy between functions and maps is particularly close because
you use the () notation to look up key values.

val bobsScore = scores("Bob") // Like scores.get("Bob") in Java

If the map doesn’t contain a value for the requested key, an exception is thrown.

To check whether there is a key with the given value, call the contains method:

val bobsScore = if (scores.contains("Bob")) scores("Bob") else 0

Since this call combination is so common, there is a shortcut:

val bobsScore = scores.getOrElse("Bob", 0)
 // If the map contains the key "Bob", return the value; otherwise, return 0.

Finally, the call map.get(key) returns an Option object that is either Some(value for key)
or None. We discuss the Option class in Chapter 14.

Chapter 4 Maps and Tuples

48

ptg20087099

NOTE:Given an immutable map, you can turn it into a map with a fixed default
value for keys that are not present, or a function to compute such values.

val scores1 = scores.withDefaultValue(0)
val zeldasScore1 = scores1.get("Zelda")
 // Yields 0 since "Zelda" is not present
val scores2 = scores.withDefault(_.length)
val zeldasScore2 = scores2.get("Zelda")
 // Yields 5, applying the length function to the key that is not present

4.3 Updating Map Values

In a mutable map, you can update a map value, or add a new one, with a () to
the left of an = sign:

scores("Bob") = 10
 // Updates the existing value for the key "Bob" (assuming scores is mutable)
scores("Fred") = 7
 // Adds a new key/value pair to scores (assuming it is mutable)

Alternatively, you can use the += operation to add multiple associations:

scores += ("Bob" -> 10, "Fred" -> 7)

To remove a key and its associated value, use the -= operator:

scores -= "Alice"

You can’t update an immutable map, but you can do something that’s just as
useful—obtain a new map that has the desired update:

val newScores = scores + ("Bob" -> 10, "Fred" -> 7) // New map with update

The newScores map contains the same associations as scores, except that "Bob" has
been updated and "Fred" added.

Instead of saving the result as a new value, you can update a var:

var scores = ...
scores = scores + ("Bob" -> 10, "Fred" -> 7)

You can even use the += operator:

scores += ("Bob" -> 10, "Fred" -> 7)

Similarly, to remove a key from an immutable map, use the - operator to obtain
a new map without the key:

scores = scores - "Alice"

or

scores -= "Alice"

49
4.3 Updating Map Values

ptg20087099

You might think that it is inefficient to keep constructing new maps, but that is
not the case. The old and new maps share most of their structure. (This is possible
because they are immutable.)

4.4 Iterating over Maps

The following amazingly simple loop iterates over all key/value pairs of a map:

for ((k, v) <- map) process k and v

The magic here is that you can use pattern matching in a Scala for loop. (Chap-
ter 14 has all the details.) That way, you get the key and value of each pair in the
map without tedious method calls.

If for some reason you want to visit only the keys or values, use the keySet and
values methods, as you would in Java. The values method returns an Iterable that
you can use in a for loop.

scores.keySet // A set such as Set("Bob", "Cindy", "Fred", "Alice")
for (v <- scores.values) println(v) // Prints 10 8 7 10 or some permutation thereof

To reverse a map—that is, switch keys and values—use

for ((k, v) <- map) yield (v, k)

4.5 Sorted Maps

There are two common implementation strategies for maps: hash tables and
balanced trees. Hash tables use the hash codes of the keys to scramble entries,
so iterating over the elements yields them in unpredictable order. By default,
Scala gives you a map based on a hash table because it is usually more efficient.
If you need to visit the keys in sorted order, use a SortedMap instead.

val scores = scala.collection.mutable.SortedMap("Alice" -> 10,
 "Fred" -> 7, "Bob" -> 3, "Cindy" -> 8)

TIP: If you want to visit the keys in insertion order, use a LinkedHashMap. For
example,

val months = scala.collection.mutable.LinkedHashMap("January" -> 1,
 "February" -> 2, "March" -> 3, "April" -> 4, "May" -> 5, ...)

4.6 Interoperating with Java

If you get a Java map from calling a Java method, you may want to convert it to
a Scala map so that you can use the pleasant Scala map API. This is also useful
if you want to work with a mutable tree map, which Scala doesn’t provide.

Chapter 4 Maps and Tuples

50

ptg20087099

Simply add an import statement:

import scala.collection.JavaConversions.mapAsScalaMap

Then trigger the conversion by specifying the Scala map type:

val scores: scala.collection.mutable.Map[String, Int] =
 new java.util.TreeMap[String, Int]

In addition, you can get a conversion from java.util.Properties to a Map[String,
String]:

import scala.collection.JavaConversions.propertiesAsScalaMap
val props: scala.collection.Map[String, String] = System.getProperties()

Conversely, to pass a Scala map to a method that expects a Java map, provide
the opposite implicit conversion. For example:

import scala.collection.JavaConversions.mapAsJavaMap
import java.awt.font.TextAttribute._ // Import keys for map below
val attrs = Map(FAMILY -> "Serif", SIZE -> 12) // A Scala map
val font = new java.awt.Font(attrs) // Expects a Java map

4.7 Tuples

Maps are collections of key/value pairs. Pairs are the simplest case of tuples—
aggregates of values of different types.

A tuple value is formed by enclosing individual values in parentheses.
For example,

(1, 3.14, "Fred")

is a tuple of type

Tuple3[Int, Double, java.lang.String]

which is also written as

(Int, Double, java.lang.String)

If you have a tuple, say,

val t = (1, 3.14, "Fred")

then you can access its components with the methods _1, _2, _3, for example:

val second = t._2 // Sets second to 3.14

Unlike array or string positions, the component positions of a tuple start with 1,
not 0.

51
4.7 Tuples

ptg20087099

NOTE: You can write t._2 as t _2 (with a space instead of a period), but
not t_2.

Usually, it is better to use pattern matching to get at the components of a tuple,
for example

val (first, second, third) = t // Sets first to 1, second to 3.14, third to "Fred"

You can use a _ if you don’t need all components:

val (first, second, _) = t

Tuples are useful for functions that return more than one value. For example,
the partition method of the StringOps class returns a pair of strings, containing the
characters that fulfill a condition and those that don’t:

"New York".partition(_.isUpper) // Yields the pair ("NY", "ew ork")

4.8 Zipping

One reason for using tuples is to bundle together values so that they can be pro-
cessed together. This is commonly done with the zip method. For example,
the code

val symbols = Array("<", "-", ">")
val counts = Array(2, 10, 2)
val pairs = symbols.zip(counts)

yields an array of pairs

Array(("<", 2), ("-", 10), (">", 2))

The pairs can then be processed together:

for ((s, n) <- pairs) print(s * n) // Prints <<---------->>

TIP: The toMap method turns a collection of pairs into a map.

If you have a collection of keys and a parallel collection of values, zip them
up and turn them into a map like this:

keys.zip(values).toMap

Exercises

1. Set up a map of prices for a number of gizmos that you covet. Then produce
a second map with the same keys and the prices at a 10 percent discount.

Chapter 4 Maps and Tuples

52

ptg20087099

2. Write a program that reads words from a file. Use a mutable map to count
how often each word appears. To read the words, simply use a java.util.Scanner:

val in = new java.util.Scanner(new java.io.File("myfile.txt"))
while (in.hasNext()) process in.next()

Or look at Chapter 9 for a Scalaesque way.

At the end, print out all words and their counts.

3. Repeat the preceding exercise with an immutable map.

4. Repeat the preceding exercise with a sorted map, so that the words are
printed in sorted order.

5. Repeat the preceding exercise with a java.util.TreeMap that you adapt to the
Scala API.

6. Define a linked hash map that maps "Monday" to java.util.Calendar.MONDAY, and
similarly for the other weekdays. Demonstrate that the elements are visited
in insertion order.

7. Print a table of all Java properties reported by the getProperties method of the
java.lang.System class, like this:

java.runtime.name | Java(TM) SE Runtime Environment
sun.boot.library.path | /home/apps/jdk1.6.0_21/jre/lib/i386
java.vm.version | 17.0-b16
java.vm.vendor | Sun Microsystems Inc.
java.vendor.url | http://java.sun.com/
path.separator | :
java.vm.name | Java HotSpot(TM) Server VM

You need to find the length of the longest key before you can print the table.

8. Write a function minmax(values: Array[Int]) that returns a pair containing the
smallest and the largest values in the array.

9. Write a function lteqgt(values: Array[Int], v: Int) that returns a triple containing
the counts of values less than v, equal to v, and greater than v.

10. What happens when you zip together two strings, such as "Hello".zip("World")?
Come up with a plausible use case.

53
Exercises

ptg20087099Topics in This Chapter A1

5.1 Simple Classes and Parameterless Methods — page 55
5.2 Properties with Getters and Setters — page 56
5.3 Properties with Only Getters — page 59
5.4 Object-Private Fields — page 60
5.5 Bean Properties L1 — page 61
5.6 Auxiliary Constructors — page 62
5.7 The Primary Constructor — page 63
5.8 Nested Classes L1 — page 66
Exercises — page 68

Classes

ptg20087099In this chapter, you will learn how to implement classes in Scala. If you know
classes in Java or C++, you won’t find this difficult, and you will enjoy the much
more concise notation of Scala.

The key points of this chapter are:

• Fields in classes automatically come with getters and setters.

• You can replace a field with a custom getter/setter without changing the
client of a class—that is the “uniform access principle.”

• Use the @BeanProperty annotation to generate the JavaBeans getXxx/setXxx
methods.

• Every class has a primary constructor that is “interwoven” with the class
definition. Its parameters turn into the fields of the class. The primary
constructor executes all statements in the body of the class.

• Auxiliary constructors are optional. They are called this.

5.1 Simple Classes and Parameterless Methods
In its simplest form, a Scala class looks very much like its equivalent in Java
or C++:

55

5Chapter

ptg20087099

class Counter {
 private var value = 0 // You must initialize the field
 def increment() { value += 1 } // Methods are public by default
 def current() = value
}

In Scala, a class is not declared as public. A Scala source file can contain multiple
classes, and all of them have public visibility.

To use this class, you construct objects and invoke methods in the usual way:

val myCounter = new Counter // Or new Counter()
myCounter.increment()
println(myCounter.current)

You can call a parameterless method (such as current) with or without parentheses:

myCounter.current // OK
myCounter.current() // Also OK

Which form should you use? It is considered good style to use () for a mutator
method (a method that changes the object state), and to drop the () for an
accessor method (a method that does not change the object state).

That’s what we did in our example:

myCounter.increment() // Use () with mutator
println(myCounter.current) // Don’t use () with accessor

You can enforce this style by declaring current without ():

class Counter {
 ...
 def current = value // No () in definition
}

Now class users must use myCounter.current, without parentheses.

5.2 Properties with Getters and Setters
When writing a Java class, we don’t like to use public fields:

public class Person { // This is Java
 public int age; // Frowned upon in Java
}

With a public field, anyone could write to fred.age, making Fred younger or older.
That’s why we prefer to use getter and setter methods:

Chapter 5 Classes56

ptg20087099

public class Person { // This is Java
 private int age;
 public int getAge() { return age; }
 public void setAge(int age) { this.age = age; }
}

A getter/setter pair such as this one is often called a property. We say that the
class Person has an age property.

Why is this any better? By itself, it isn’t. Anyone can call fred.setAge(21), keeping
him forever twenty-one.

But if that becomes a problem, we can guard against it:

 public void setAge(int newValue) { if (newValue > age) age = newValue; }
 // Can’t get younger

Getters and setters are better than public fields because they let you start with
simple get/set semantics and evolve them as needed.

NOTE: Just because getters and setters are better than public fields doesn’t
mean they are always good. Often, it is plainly bad if every client can get or
set bits and pieces of an object’s state. In this section, I show you how to
implement properties in Scala. It is up to you to choose wisely when a
gettable/settable property is an appropriate design.

Scala provides getter and setter methods for every field. Here, we define a public
field:

class Person {
 var age = 0
}

Scala generates a class for the JVM with a private age field and getter and setter
methods. These methods are public because we did not declare age as private. (For
a private field, the getter and setter methods are private.)

In Scala, the getter and setter methods are called age and age_=. For example,

println(fred.age) // Calls the method fred.age()
fred.age = 21 // Calls fred.age_=(21)

In Scala, the getters and setters are not named getXxx and setXxx, but they fulfill
the same purpose. Section 5.5, “Bean Properties,” on page 61 shows how to
generate Java-style getXxx and setXxx methods, so that your Scala classes can
interoperate with Java tools.

575.2 Properties with Getters and Setters

ptg20087099

NOTE: To see these methods with your own eyes, compile the Person class
and then look at the bytecode with javap:

$ scalac Person.scala
$ javap -private Person
Compiled from "Person.scala"
public class Person extends java.lang.Object implements scala.ScalaObject{
 private int age;

public int age(); public void age_$eq(int);

 public Person();
}

As you can see, the compiler created methods age and age_$eq. (The = symbol
is translated to $eq because the JVM does not allow an = in a method name.)

TIP: You can run the javap command inside the REPL as

:javap -private Person

At any time, you can redefine the getter and setter methods yourself. For example,

class Person {
 private var privateAge = 0 // Make private and rename

 def age = privateAge
 def age_=(newValue: Int) {
 if (newValue > privateAge) privateAge = newValue; // Can’t get younger
 }
}

The user of your class still accesses fred.age, but now Fred can’t get younger:

val fred = new Person
fred.age = 30
fred.age = 21
println(fred.age) // 30

NOTE: Bertrand Meyer, the inventor of the influential Eiffel language,
formulated the Uniform Access Principle that states: “All services offered by
a module should be available through a uniform notation, which does not
betray whether they are implemented through storage or through computation.”
In Scala, the caller of fred.age doesn’t know whether age is implemented
through a field or a method. (Of course, in the JVM, the service is always
implemented through a method, either synthesized or programmer-supplied.)

Chapter 5 Classes58

ptg20087099

TIP: It may sound scary that Scala generates getter and setter methods for
every field. But you have some control over this process.

• If the field is private, the getter and setter are private.

• If the field is a val, only a getter is generated.

• If you don’t want any getter or setter, declare the field as private[this]
(see Section 5.4, “Object-Private Fields,” on page 60).

5.3 Properties with Only Getters
Sometimes you want a read-only property with a getter but no setter. If the value
of the property never changes after the object has been constructed, use a val
field:

class Message {
 val timeStamp = java.time.Instant.now
 ...
}

The Scala compiler produces a Java class with a private final field and a public
getter method, but no setter.

Sometimes, however, you want a property that a client can’t set at will, but that
is mutated in some other way. The Counter class from Section 5.1, “Simple Classes
and Parameterless Methods,” on page 55 is a good example. Conceptually, the
counter has a current property that is updated when the increment method is called,
but there is no setter for the property.

You can’t implement such a property with a val—a val never changes. Instead,
provide a private field and a property getter, like this:

class Counter {
private var value = 0

 def increment() { value += 1 }
def current = value // No () in declaration

}

Note that there are no () in the definition of the getter method. Therefore, you
must call the method without parentheses:

val n = myCounter.current // Calling myCounter.current() is a syntax error

To summarize, you have four choices for implementing properties:

1. var foo: Scala synthesizes a getter and a setter.

2. val foo: Scala synthesizes a getter.

595.3 Properties with Only Getters

ptg20087099

3. You define methods foo and foo_=.

4. You define a method foo.

NOTE: In Scala, you cannot have a write-only property (that is, a property
with a setter and no getter).

TIP: When you see a field in a Scala class, remember that it is not the same
as a field in Java or C++. It is a private field together with a getter (for a val
field) or a getter and a setter (for a var field).

5.4 Object-Private Fields
In Scala (as well as in Java or C++), a method can access the private fields of all
objects of its class. For example,

class Counter {
 private var value = 0
 def increment() { value += 1 }

 def isLess(other : Counter) = value < other.value
 // Can access private field of other object
}

Accessing other.value is legal because other is also a Counter object.

Scala allows an even more severe access restriction with the private[this] qualifier:

private[this] var value = 0 // Accessing someObject.value is not allowed

Now, the methods of the Counter class can only access the value field of the current
object, not of other objects of type Counter. This access is sometimes called
object-private, and it is common in some OO languages such as SmallTalk.

With a class-private field, Scala generates private getter and setter methods.
However, for an object-private field, no getters and setters are generated at all.

Chapter 5 Classes60

ptg20087099

NOTE: Scala allows you to grant access rights to specific classes. The
private[ClassName] qualifier states that only methods of the given class can
access the given field. Here, the ClassName must be the name of the class
being defined or an enclosing class. (See Section 5.8, “Nested Classes,” on
page 66 for a discussion of inner classes.)

In this case, the implementation will generate auxiliary getter and setter
methods that allow the enclosing class to access the field. These methods
will be public because the JVM does not have a fine-grained access control
system, and they will have implementation-dependent names.

5.5 Bean Properties L1
As you saw in the preceding sections, Scala provides getter and setter methods
for the fields that you define. However, the names of these methods are not what
Java tools expect. The JavaBeans specification (www.oracle.com/technetwork/articles/
javaee/spec-136004.html) defines a Java property as a pair of getFoo/setFoo methods
(or just a getFoo method for a read-only property). Many Java tools rely on this
naming convention.

When you annotate a Scala field with @BeanProperty, then such methods are
automatically generated. For example,

import scala.beans.BeanProperty

class Person {
 @BeanProperty var name: String = _
}

generates four methods:

1. name: String

2. name_=(newValue: String): Unit

3. getName(): String

4. setName(newValue: String): Unit

Table 5–1 shows which methods are generated in all cases.

615.5 Bean Properties

ptg20087099

Table 5–1 Generated Methods for Fields

When to UseGenerated MethodsScala Field

To implement a property that is
publicly accessible and backed by a
field.

public name
name_= (var only)

val/var name

To interoperate with JavaBeans.public name
getName()

name_= (var only)
setName(...) (var only)

@BeanProperty val/var

name

To confine the field to the methods
of this class, just like in Java. Use
private unless you really want a
public property.

private name
name_= (var only)

private val/var name

To confine the field to methods
invoked on the same object. Not
commonly used.

noneprivate[this] val/var

name

To grant access to an enclosing class.
Not commonly used.

implementation-
dependent

private[ClassName]
val/var name

NOTE: If you define a field as a primary constructor parameter (see Sec-
tion 5.7, “The Primary Constructor,” on page 63), and you want JavaBeans
getters and setters, annotate the constructor parameter like this:

class Person(@BeanProperty var name: String)

5.6 Auxiliary Constructors
As in Java or C++, a Scala class can have as many constructors as you like.
However, a Scala class has one constructor that is more important than all the
others, called the primary constructor. In addition, a class may have any number
of auxiliary constructors.

We discuss auxiliary constructors first because they are easier to understand.
They are similar to constructors in Java or C++, with just two differences.

1. The auxiliary constructors are called this. (In Java or C++, constructors have
the same name as the class—which is not so convenient if you rename the
class.)

2. Each auxiliary constructor must start with a call to a previously defined
auxiliary constructor or the primary constructor.

Chapter 5 Classes62

ptg20087099

Here is a class with two auxiliary constructors:

class Person {
 private var name = ""
 private var age = 0

 def this(name: String) { // An auxiliary constructor
 this() // Calls primary constructor
 this.name = name
 }

 def this(name: String, age: Int) { // Another auxiliary constructor
 this(name) // Calls previous auxiliary constructor
 this.age = age
 }
}

We will look at the primary constructor in the next section. For now, it is sufficient
to know that a class for which you don’t define a primary constructor has a
primary constructor with no arguments.

You can construct objects of this class in three ways:

val p1 = new Person // Primary constructor
val p2 = new Person("Fred") // First auxiliary constructor
val p3 = new Person("Fred", 42) // Second auxiliary constructor

5.7 The Primary Constructor
In Scala, every class has a primary constructor. The primary constructor is not
defined with a this method. Instead, it is interwoven with the class definition.

1. The parameters of the primary constructor are placed immediately after the
class name.

class Person(val name: String, val age: Int) {
 // Parameters of primary constructor in (...)
 ...
}

Parameters of the primary constructor turn into fields that are initialized with
the construction parameters. In our example, name and age become fields of the
Person class. A constructor call such as new Person("Fred", 42) sets the name and
age fields.

Half a line of Scala is the equivalent of seven lines of Java:

635.7 The Primary Constructor

ptg20087099

public class Person { // This is Java
private String name; private int age; public Person(String name, int age) {

this.name = name; this.age = age;

 }
public String name() { return this.name; } public int age() { return this.age; }

 ...
}

2. The primary constructor executes all statements in the class definition. For
example, in the following class

class Person(val name: String, val age: Int) {
println("Just constructed another person")

 def description = s"$name is $age years old"
}

the println statement is a part of the primary constructor. It is executed
whenever an object is constructed.

This is useful when you need to configure a field during construction. For
example:

class MyProg {
 private val props = new Properties
 props.load(new FileReader("myprog.properties"))
 // The statement above is a part of the primary constructor
 ...
}

NOTE: If there are no parameters after the class name, then the class has a
primary constructor with no parameters. That constructor simply executes all
statements in the body of the class.

TIP:You can often eliminate auxiliary constructors by using default arguments
in the primary constructor. For example:

class Person(val name: String = "", val age: Int = 0)

Primary constructor parameters can have any of the forms in Table 5–1. For
example,

class Person(val name: String, private var age: Int)

declares and initializes fields

val name: String
private var age: Int

Chapter 5 Classes64

ptg20087099

Construction parameters can also be regular method parameters, without val or
var. How these parameters are processed depends on their usage inside the class.

• If a parameter without val or var is used inside at least one method, it becomes
a field. For example,

class Person(name: String, age: Int) {
 def description = s"$name is $age years old"
}

declares and initializes immutable fields name and age that are object-private.

Such a field is the equivalent of a private[this] val field (see Section 5.4,
“Object-Private Fields,” on page 60).

• Otherwise, the parameter is not saved as a field. It’s just a regular parameter
that can be accessed in the code of the primary constructor. (Strictly speaking,
this is an implementation-specific optimization.)

Table 5–2 summarizes the fields and methods that are generated for different
kinds of primary constructor parameters.

Table 5–2 Fields and Methods Generated for Primary Constructor Parameters

Generated Field/MethodsPrimary Constructor Parameter

object-private field, or no field if no method uses
name

name: String

private field, private getter/setterprivate val/var name: String

private field, public getter/setterval/var name: String

private field, public Scala and JavaBeans
getters/setters

@BeanProperty val/var name: String

If you find the primary constructor notation confusing, you don’t need to use it.
Just provide one or more auxiliary constructors in the usual way, but remember
to call this() if you don’t chain to another auxiliary constructor.

However, many programmers like the concise syntax. Martin Odersky suggests
to think about it this way: In Scala, classes take parameters, just like methods do.

NOTE: When you think of the primary constructor’s parameters as class
parameters, parameters without val or var become easier to understand.The
scope of such a parameter is the entire class. Therefore, you can use the
parameter in methods. If you do, it is the compiler’s job to save it in a field.

655.7 The Primary Constructor

ptg20087099

TIP: The Scala designers think that every keystroke is precious, so they let
you combine a class with its primary constructor.When reading a Scala class,
you need to disentangle the two. For example, when you see

class Person(val name: String) {
 var age = 0
 def description = s"$name is $age years old"
}

take this definition apart into a class definition:

class Person(val name: String) {
 var age = 0
 def description = s"$name is $age years old"
}

and a constructor definition:

class Person(val name: String) {
var age = 0
def description = s"$name is $age years old"

}

NOTE: To make the primary constructor private, place the keyword private
like this:

class Person private(val id: Int) { ... }

A class user must then use an auxiliary constructor to construct a Person object.

5.8 Nested Classes L1
In Scala, you can nest just about anything inside anything. You can define func-
tions inside other functions, and classes inside other classes. Here is a simple
example of the latter:

import scala.collection.mutable.ArrayBuffer
class Network {
 class Member(val name: String) {
 val contacts = new ArrayBuffer[Member]
 }

 private val members = new ArrayBuffer[Member]

 def join(name: String) = {
 val m = new Member(name)
 members += m

Chapter 5 Classes66

ptg20087099

 m
 }
}

Consider two networks:

val chatter = new Network
val myFace = new Network

In Scala, each instance has its own class Member, just like each instance has its own
field members. That is, chatter.Member and myFace.Member are different classes.

NOTE: This is different from Java, where an inner class belongs to the outer
class.

The Scala approach is more regular. For example, to make a new inner object,
you simply use new with the type name: new chatter.Member. In Java, you need
to use a special syntax, chatter.new Member().

In our network example, you can add a member within its own network, but not
across networks.

val fred = chatter.join("Fred")
val wilma = chatter.join("Wilma")
fred.contacts += wilma // OK
val barney = myFace.join("Barney") // Has type myFace.Member
fred.contacts += barney
 // No—can’t add a myFace.Member to a buffer of chatter.Member elements

For networks of people, this behavior probably makes sense. If you don’t want
it, there are two solutions.

First, you can move the Member type somewhere else. A good place would be the
Network companion object. (Companion objects are described in Chapter 6.)

object Network {
 class Member(val name: String) {
 val contacts = new ArrayBuffer[Member]
 }
}

class Network {
 private val members = new ArrayBuffer[Network.Member]
 ...
}

Alternatively, you can use a type projection Network#Member, which means “a Member
of any Network.” For example,

675.8 Nested Classes

ptg20087099

class Network {
 class Member(val name: String) {
 val contacts = new ArrayBuffer[Network#Member]
 }
 ...
}

You would do that if you want the fine-grained “inner class per object” feature
in some places of your program, but not everywhere. See Chapter 19 for more
information about type projections.

NOTE: In a nested class, you can access the this reference of the enclosing
class as EnclosingClass.this, like in Java. If you like, you can establish an alias
for that reference with the following syntax:

class Network(val name: String) { outer =>
 class Member(val name: String) {
 ...
 def description = s"$name inside ${outer.name}"
 }
}

The class Network { outer => syntax makes the variable outer refer to
Network.this.You can choose any name for this variable. The name self is
common, but perhaps confusing when used with nested classes.

This syntax is related to the “self type” syntax that you will see in Chapter 19.

Exercises
1. Improve the Counter class in Section 5.1, “Simple Classes and Parameterless

Methods,” on page 55 so that it doesn’t turn negative at Int.MaxValue.

2. Write a class BankAccount with methods deposit and withdraw, and a read-only
property balance.

3. Write a class Time with read-only properties hours and minutes and a method
before(other: Time): Boolean that checks whether this time comes before the
other. A Time object should be constructed as new Time(hrs, min), where hrs is in
military time format (between 0 and 23).

4. Reimplement the Time class from the preceding exercise so that the internal
representation is the number of minutes since midnight (between 0 and 24 ×
60 – 1). Do not change the public interface. That is, client code should be
unaffected by your change.

Chapter 5 Classes68

ptg20087099

5. Make a class Student with read-write JavaBeans properties name (of type String)
and id (of type Long). What methods are generated? (Use javap to check.) Can
you call the JavaBeans getters and setters in Scala? Should you?

6. In the Person class of Section 5.1, “Simple Classes and Parameterless Methods,”
on page 55, provide a primary constructor that turns negative ages to 0.

7. Write a class Person with a primary constructor that accepts a string containing
a first name, a space, and a last name, such as new Person("Fred Smith"). Supply
read-only properties firstName and lastName. Should the primary constructor
parameter be a var, a val, or a plain parameter? Why?

8. Make a class Car with read-only properties for manufacturer, model name,
and model year, and a read-write property for the license plate. Supply four
constructors. All require the manufacturer and model name. Optionally,
model year and license plate can also be specified in the constructor. If not,
the model year is set to -1 and the license plate to the empty string. Which
constructor are you choosing as the primary constructor? Why?

9. Reimplement the class of the preceding exercise in Java, C#, or C++ (your
choice). How much shorter is the Scala class?

10. Consider the class

class Employee(val name: String, var salary: Double) {
 def this() { this("John Q. Public", 0.0) }
}

Rewrite it to use explicit fields and a default primary constructor. Which form
do you prefer? Why?

69Exercises

ptg20087099Topics in This Chapter A1

6.1 Singletons — page 71
6.2 Companion Objects — page 72
6.3 Objects Extending a Class or Trait — page 73
6.4 The apply Method — page 73
6.5 Application Objects — page 74
6.6 Enumerations — page 75
Exercises — page 77

Objects

ptg20087099In this short chapter, you will learn when to use the object construct in Scala. Use
it when you need a class with a single instance, or when you want to find a home
for miscellaneous values or functions.

The key points of this chapter are:

• Use objects for singletons and utility methods.

• A class can have a companion object with the same name.

• Objects can extend classes or traits.

• The apply method of an object is usually used for constructing new instances
of the companion class.

• To avoid the main method, use an object that extends the App trait.

• You can implement enumerations by extending the Enumeration object.

6.1 Singletons
Scala has no static methods or fields. Instead, you use the object construct. An
object defines a single instance of a class with the features that you want. For
example,

object Accounts {
 private var lastNumber = 0
 def newUniqueNumber() = { lastNumber += 1; lastNumber }
}

71

6Chapter

ptg20087099

When you need a new unique account number in your application, call
Accounts.newUniqueNumber().

The constructor of an object is executed when the object is first used. In our
example, the Accounts constructor is executed with the first call to Accounts.
newUniqueNumber(). If an object is never used, its constructor is not executed.

An object can have essentially all the features of a class—it can even extend other
classes or traits (see Section 6.3, “Objects Extending a Class or Trait,” on page 73).
There is just one exception: You cannot provide constructor parameters.

Use an object in Scala whenever you would have used a singleton object in Java
or C++:

• As a home for utility functions or constants

• When a single immutable instance can be shared efficiently

• When a single instance is required to coordinate some service (the singleton
design pattern)

NOTE: Many people view the singleton design pattern with disdain. Scala
gives you the tools for both good and bad design, and it is up to you to use
them wisely.

6.2 Companion Objects
In Java or C++, you often have a class with both instance methods and static
methods. In Scala, you can achieve this by having a class and a “companion”
object of the same name. For example,

class Account {
 val id = Account.newUniqueNumber()
 private var balance = 0.0
 def deposit(amount: Double) { balance += amount }
 ...
}

object Account { // The companion object
 private var lastNumber = 0
 private def newUniqueNumber() = { lastNumber += 1; lastNumber }
}

The class and its companion object can access each other’s private features. They
must be located in the same source file.

Chapter 6 Objects72

ptg20087099

Note that the companion object’s features are not in the scope of the class.
For example, the Account class has to use Account.newUniqueNumber() and not just
newUniqueNumber() to invoke the method of the companion object.

TIP: In the REPL, you must define the class and the object together in paste
mode. Type

:paste

Then type or paste both the class and object definitions, and type Ctrl+D.

NOTE: A companion object contains features that accompany a class. In
Chapter 7, you will see how to add features to a package using a package
object.

6.3 Objects Extending a Class or Trait
An object can extend a class and/or one or more traits. The result is an object of
a class that extends the given class and/or traits, and in addition has all of the
features specified in the object definition.

One useful application is to specify default objects that can be shared. For example,
consider a class for undoable actions in a program.

abstract class UndoableAction(val description: String) {
 def undo(): Unit
 def redo(): Unit
}

A useful default is the “do nothing” action. Of course, we only need one of them.

object DoNothingAction extends UndoableAction("Do nothing") {
 override def undo() {}
 override def redo() {}
}

The DoNothingAction object can be shared across all places that need this default.

val actions = Map("open" -> DoNothingAction, "save" -> DoNothingAction, ...)
 // Open and save not yet implemented

6.4 The apply Method
It is common to have objects with an apply method. The apply method is called for
expressions of the form

736.4 The apply Method

ptg20087099

Object(arg1, ..., argN)

Typically, such an apply method returns an object of the companion class.

For example, the Array object defines apply methods that allow array creation with
expressions such as

Array("Mary", "had", "a", "little", "lamb")

Why doesn’t one just use a constructor? Not having the new keyword is handy
for nested expressions, such as

Array(Array(1, 7), Array(2, 9))

CAUTION: It is easy to confuse Array(100) and new Array(100). The first
expression calls apply(100), yielding an Array[Int] with a single element, the
integer 100. The second expression invokes the constructor this(100). The
result is an Array[Nothing] with 100 null elements.

Here is an example of defining an apply method:

class Account private (val id: Int, initialBalance: Double) {
 private var balance = initialBalance
 ...
}

object Account { // The companion object
 def apply(initialBalance: Double) =
 new Account(newUniqueNumber(), initialBalance)
 ...
}

Now you can construct an account as

val acct = Account(1000.0)

6.5 Application Objects
Each Scala program must start with an object’s main method of type Array[String]
=> Unit:

object Hello {
 def main(args: Array[String]) {
 println("Hello, World!")
 }
}

Chapter 6 Objects74

ptg20087099

Instead of providing a main method for your application, you can extend the App
trait and place the program code into the constructor body:

object Hello extends App {
 println("Hello, World!")
}

If you need the command-line arguments, you can get them from the args property:

object Hello extends App {
 if (args.length > 0)
 println(f"Hello ${args(0)}")
 else
 println("Hello, World!")
}

If you invoke the application with the scala.time option set, then the elapsed time
is displayed when the program exits.

$ scalac Hello.scala
$ scala -Dscala.time Hello Fred
Hello, Fred
[total 4ms]

All this involves a bit of magic. The App trait extends another trait, DelayedInit, that
gets special handling from the compiler. All initialization code of a class with
that trait is moved into a delayedInit method. The main of the App trait method cap-
tures the command-line arguments, calls the delayedInit method, and optionally
prints the elapsed time.

NOTE:Older versions of Scala had an Application trait for the same purpose.
That trait carried out the program’s action in the static initializer, which is not
optimized by the just-in-time compiler. Use the App trait instead.

6.6 Enumerations
Unlike Java or C++, Scala does not have enumerated types. However, the standard
library provides an Enumeration helper class that you can use to produce
enumerations.

Define an object that extends the Enumeration class and initialize each value in your
enumeration with a call to the Value method. For example,

object TrafficLightColor extends Enumeration {
 val Red, Yellow, Green = Value
}

756.6 Enumerations

ptg20087099

Here we define three fields, Red, Yellow, and Green, and initialize each of them with
a call to Value. This is a shortcut for

val Red = Value
val Yellow = Value
val Green = Value

Each call to the Value method returns a new instance of an inner class, also called
Value.

Alternatively, you can pass IDs, names, or both to the Value method:

val Red = Value(0, "Stop")
val Yellow = Value(10) // Name "Yellow"
val Green = Value("Go") // ID 11

If not specified, the ID is one more than the previously assigned one, starting
with zero. The default name is the field name.

You can now refer to the enumeration values as TrafficLightColor.Red,
TrafficLightColor.Yellow, and so on. If that gets too tedious, use

import TrafficLightColor._

(See Chapter 7 for information on importing members of a class or object.)

Remember that the type of the enumeration is TrafficLightColor.Value and not
TrafficLightColor—that’s the type of the object holding the values. Some people
recommend that you add a type alias

object TrafficLightColor extends Enumeration {
type TrafficLightColor = Value

 val Red, Yellow, Green = Value
}

Now the type of the enumeration is TrafficLightColor.TrafficLightColor, which is
only an improvement if you use an import statement. For example,

import TrafficLightColor._
def doWhat(color: TrafficLightColor) = {
 if (color == Red) "stop"
 else if (color == Yellow) "hurry up"
 else "go"
}

The ID of an enumeration value is returned by the id method, and its name by the
toString method.

The call TrafficLightColor.values yields a set of all values:

for (c <- TrafficLightColor.values) println(s"${c.id}: $c")

Chapter 6 Objects76

ptg20087099

Finally, you can look up an enumeration value by its ID or name. Both of the
following yield the object TrafficLightColor.Red:

TrafficLightColor(0) // Calls Enumeration.apply
TrafficLightColor.withName("Red")

Exercises
1. Write an object Conversions with methods inchesToCentimeters, gallonsToLiters, and

milesToKilometers.

2. The preceding problem wasn’t very object-oriented. Provide a general super-
class UnitConversion and define objects InchesToCentimeters, GallonsToLiters, and
MilesToKilometers that extend it.

3. Define an Origin object that extends java.awt.Point. Why is this not actually a
good idea? (Have a close look at the methods of the Point class.)

4. Define a Point class with a companion object so that you can construct Point
instances as Point(3, 4), without using new.

5. Write a Scala application, using the App trait, that prints its command-line
arguments in reverse order, separated by spaces. For example, scala Reverse
Hello World should print World Hello.

6. Write an enumeration describing the four playing card suits so that the toString
method returns ß, ®, ©, or ™.

7. Implement a function that checks whether a card suit value from the preceding
exercise is red.

8. Write an enumeration describing the eight corners of the RGB color cube. As
IDs, use the color values (for example, 0xff0000 for Red).

77Exercises

 www.allitebooks.com

http://www.allitebooks.org

ptg20087099Topics in This Chapter A1

7.1 Packages — page 80
7.2 Scope Rules — page 81
7.3 Chained Package Clauses — page 83
7.4 Top-of-File Notation — page 83
7.5 Package Objects — page 83
7.6 Package Visibility — page 84
7.7 Imports — page 85
7.8 Imports Can Be Anywhere — page 85
7.9 Renaming and Hiding Members — page 86
7.10 Implicit Imports — page 86
Exercises — page 87

Packages and Imports

ptg20087099In this chapter, you will learn how packages and import statements work in Scala.
Both packages and imports are more regular than in Java; they are also a bit more
flexible.

The key points of this chapter are:

• Packages nest just like inner classes.

• Package paths are not absolute.

• A chain x.y.z in a package clause leaves the intermediate packages x and x.y
invisible.

• Package statements without braces at the top of the file extend to the entire file.

• A package object can hold functions and variables.

• Import statements can import packages, classes, and objects.

• Import statements can be anywhere.

• Import statements can rename and hide members.

• java.lang, scala, and Predef are always imported.

79

7Chapter

ptg20087099

7.1 Packages
Packages in Scala fulfill the same purpose as packages in Java or namespaces in
C++: to manage names in a large program. For example, the name Map can occur
in the packages scala.collection.immutable and scala.collection.mutable without conflict.
To access either name, you can use the fully qualified scala.collection.immutable.Map
or scala.collection.mutable.Map. Alternatively, use an import statement to provide a
shorter alias—see Section 7.7, “Imports,” on page 85.

To add items to a package, you can include them in package statements, such as:

package com {
 package horstmann {
 package impatient {
 class Employee
 ...
 }
 }
}

Then the class name Employee can be accessed anywhere as com.horstmann.
impatient.Employee.

Unlike an object or a class, a package can be defined in multiple files. The preced-
ing code might be in a file Employee.scala, and a file Manager.scala might contain

package com {
 package horstmann {
 package impatient {
 class Manager
 ...
 }
 }
}

NOTE: There is no enforced relationship between the directory of the source
file and the package.You don’t have to put Employee.scala and Manager.scala
into a com/horstmann/impatient directory.

Conversely, you can contribute to more than one package in a single file. The file
Employee.scala may contain

Chapter 7 Packages and Imports80

ptg20087099

package com {
 package horstmann {
 package impatient {
 class Employee
 ...
 }
 }
}

package net {
 package bigjava {
 class Counter
 ...
 }
}

7.2 Scope Rules
In Scala, the scope rules for packages are more consistent than in Java. Scala
packages nest just like all other scopes. You can access names from the enclosing
scope. For example,

package com {
 package horstmann {
 object Utils {
 def percentOf(value: Double, rate: Double) = value * rate / 100
 ...
 }

 package impatient {
 class Employee {
 ...
 def giveRaise(rate: scala.Double) {
 salary += Utils.percentOf(salary, rate)
 }
 }
 }
 }
}

Note the Utils.percentOf qualifier. The Utils class was defined in the parent package.
Everything in the parent package is in scope, and it is not necessary to use
com.horstmann.Utils.percentOf. (You could, though, if you prefer—after all, com is also
in scope.)

817.2 Scope Rules

ptg20087099

There is a fly in the ointment, however. Consider

package com {
 package horstmann {
 package impatient {
 class Manager {
 val subordinates = new collection.mutable.ArrayBuffer[Employee]
 ...
 }
 }
 }
}

This code takes advantage of the fact that the scala package is always imported.
Therefore, the collection package is actually scala.collection.

And now suppose someone introduces the following package, perhaps in a
different file:

package com {
 package horstmann {
 package collection {
 ...
 }
 }
}

Now the Manager class no longer compiles. It looks for a mutable member inside the
com.horstmann.collection package and doesn’t find it. The intent in the Manager class
was the collection package in the top-level scala package, not whatever collection
subpackage happened to be in some accessible scope.

In Java, this problem can’t occur because package names are always absolute,
starting at the root of the package hierarchy. But in Scala, package names are
relative, just like inner class names. With inner classes, one doesn’t usually run
into problems because all the code is in one file, under control of whoever is in
charge of that file. But packages are open-ended. Anyone can contribute to a
package at any time.

One solution is to use absolute package names, starting with _root_, for example:

val subordinates = new _root_.scala.collection.mutable.ArrayBuffer[Employee]

Another approach is to use “chained” package clauses, as detailed in the next
section.

NOTE: Most programmers use complete paths for package names, without
the _root_ prefix. This is safe as long as everyone avoids names scala, java,
com, net, and so on, for nested packages.

Chapter 7 Packages and Imports82

ptg20087099

7.3 Chained Package Clauses
A package clause can contain a “chain,” or path segment, for example:

package com.horstmann.impatient {
 // Members of com and com.horstmann are not visible here
 package people {
 class Person
 ...
 }
}

Such a clause limits the visible members. Now a com.horstmann.collection package
would no longer be accessible as collection.

7.4 Top-of-File Notation
Instead of the nested notation that we have used up to now, you can have package
clauses at the top of the file, without braces. For example:

package com.horstmann.impatient
package people

class Person
 ...

This is equivalent to

package com.horstmann.impatient {
 package people {
 class Person
 ...
 // Until the end of the file
 }
}

This is the preferred notation if all the code in the file belongs to the same package
(which is the usual case).

Note that in the example above, everything in the file belongs to the package
com.horstmann.impatient.people, but the package com.horstmann.impatient has also been
opened up so you can refer to its contents.

7.5 Package Objects
A package can contain classes, objects, and traits, but not the definitions of
functions or variables. That’s an unfortunate limitation of the Java virtual machine.

837.5 Package Objects

ptg20087099

It would make more sense to add utility functions or constants to a package than
to some Utils object. Package objects address this limitation.

Every package can have one package object. You define it in the parent package,
and it has the same name as the child package. For example,

package com.horstmann.impatient

package object people {
 val defaultName = "John Q. Public"
}

package people {
 class Person {
 var name = defaultName // A constant from the package
 }
 ...
}

Note that the defaultName value didn’t need to be qualified because it was in the
same package. Elsewhere, it is accessible as com.horstmann.impatient.people.defaultName.

Behind the scenes, the package object gets compiled into a JVM class with static
methods and fields, called package.class, inside the package. In our example, that
would be a class com.horstmann.impatient.people.package with a static field defaultName.
(In the JVM, you can use package as a class name.)

It is a good idea to use the same naming scheme for source files. Put the package
object into a file com/horstmann/impatient/people/package.scala. That way, anyone who
wants to add functions or variables to a package can find the package object
easily.

7.6 Package Visibility
In Java, a class member that isn’t declared as public, private, or protected is visible
in the package containing the class. In Scala, you can achieve the same effect with
qualifiers. The following method is visible in its own package:

package com.horstmann.impatient.people

class Person {
 private[people] def description = s"A person with name $name"
 ...
}

You can extend the visibility to an enclosing package:

private[impatient] def description = s"A person with name $name"

Chapter 7 Packages and Imports84

ptg20087099

7.7 Imports
Imports let you use short names instead of long ones. With the clause

import java.awt.Color

you can write Color in your code instead of java.awt.Color.

That is the sole purpose of imports. If you don’t mind long names, you’ll never
need them.

You can import all members of a package as

import java.awt._

This is the same as the * wildcard in Java. (In Scala, * is a valid character for an
identifier. You could define a package com.horstmann.*.people, but please don’t.)

You can also import all members of a class or object.

import java.awt.Color._
val c1 = RED // Color.RED
val c2 = decode("#ff0000") // Color.decode

This is like import static in Java. Java programmers seem to live in fear of this
variant, but in Scala it is commonly used.

Once you import a package, you can access its subpackages with shorter names.
For example:

import java.awt._

def handler(evt: event.ActionEvent) { // java.awt.event.ActionEvent
 ...
}

The event package is a member of java.awt, and the import brings it into scope.

7.8 Imports Can Be Anywhere
In Scala, an import statement can be anywhere, not just at the top of a file. The
scope of the import statement extends until the end of the enclosing block. For
example,

class Manager {
import scala.collection.mutable._

 val subordinates = new ArrayBuffer[Employee]
 ...
}

857.8 Imports Can Be Anywhere

ptg20087099

This is a very useful feature, particularly with wildcard imports. It is always a
bit worrisome to import lots of names from different sources. In fact, some Java
programmers dislike wildcard imports so much that they never use them but let
their IDE generate long lists of imported classes.

By putting the imports where they are needed, you can greatly reduce the
potential for conflicts.

7.9 Renaming and Hiding Members
If you want to import more than one member from a package, use a selector
like this:

import java.awt.{Color, Font}

The selector syntax lets you rename members:

import java.util.{HashMap => JavaHashMap}
import scala.collection.mutable._

Now JavaHashMap is a java.util.HashMap and plain HashMap is a scala.collection.mutable.
HashMap.

The selector HashMap => _ hides a member instead of renaming it. This is only useful
if you import others:

import java.util.{HashMap => _, _}
import scala.collection.mutable._

Now HashMap unambiguously refers to scala.collection.mutable.HashMap since java.util.
HashMap is hidden.

7.10 Implicit Imports
Every Scala program implicitly starts with

import java.lang._
import scala._
import Predef._

As with Java programs, java.lang is always imported. Next, the scala package is
imported, but in a special way. Unlike all other imports, this one is allowed
to override the preceding import. For example, scala.StringBuilder overrides
java.lang.StringBuilder instead of conflicting with it.

Finally, the Predef object is imported. It contains commonly used types, implicit
conversions, and utility methods. (The methods could equally well have been

Chapter 7 Packages and Imports86

ptg20087099

placed into the scala package object, but Predef was introduced before Scala had
package objects.)

Since the scala package is imported by default, you never need to write package
names that start with scala. For example,

collection.mutable.HashMap

is just as good as

scala.collection.mutable.HashMap

Exercises
1. Write an example program to demonstrate that

package com.horstmann.impatient

is not the same as

package com
package horstmann
package impatient

2. Write a puzzler that baffles your Scala friends, using a package com that isn’t
at the top level.

3. Write a package random with functions nextInt(): Int, nextDouble(): Double,
and setSeed(seed: Int): Unit. To generate random numbers, use the linear
congruential generator

next = (previous × a + b) mod 2n,

where a = 1664525, b = 1013904223, n = 32, and the initial value of previous
is seed.

4. Why do you think the Scala language designers provided the package object
syntax instead of simply letting you add functions and variables to a package?

5. What is the meaning of private[com] def giveRaise(rate: Double)? Is it useful?

6. Write a program that copies all elements from a Java hash map into a Scala
hash map. Use imports to rename both classes.

7. In the preceding exercise, move all imports into the innermost scope possible.

8. What is the effect of

import java._
import javax._

Is this a good idea?

87Exercises

ptg20087099

9. Write a program that imports the java.lang.System class, reads the user name
from the user.name system property, reads a password from the StdIn object,
and prints a message to the standard error stream if the password is not
"secret". Otherwise, print a greeting to the standard output stream. Do not
use any other imports, and do not use any qualified names (with dots).

10. Apart from StringBuilder, what other members of java.lang does the scala
package override?

Chapter 7 Packages and Imports88

ptg20087099

This page intentionally left blank

ptg20087099Topics in This Chapter A1

8.1 Extending a Class — page 91
8.2 Overriding Methods — page 92
8.3 Type Checks and Casts — page 93
8.4 Protected Fields and Methods — page 94
8.5 Superclass Construction — page 94
8.6 Overriding Fields — page 95
8.7 Anonymous Subclasses — page 97
8.8 Abstract Classes — page 97
8.9 Abstract Fields — page 97
8.10 Construction Order and Early Definitions L3 — page 98
8.11 The Scala Inheritance Hierarchy — page 100
8.12 Object Equality L1 — page 102
8.13 Value Classes L2 — page 103
Exercises — page 105

Inheritance

ptg20087099In this chapter, you will learn the most important ways in which inheritance in
Scala differs from inheritance in Java and C++. The highlights are:

• The extends and final keywords are as in Java.

• You must use override when you override a method.

• Only the primary constructor can call the primary superclass constructor.

• You can override fields.

In this chapter, we only discuss the case in which a class inherits from another
class. See Chapter 10 for inheriting traits—the Scala concept that generalizes Java
interfaces.

8.1 Extending a Class
You extend a class in Scala just like you would in Java—with the extends keyword:

class Employee extends Person {
 var salary = 0.0
 ...
}

As in Java, you specify fields and methods that are new to the subclass or that
override methods in the superclass.

91

8Chapter

ptg20087099

As in Java, you can declare a class final so that it cannot be extended. You can
also declare individual methods or fields final so that they cannot be overridden.
(See Section 8.6, “Overriding Fields,” on page 95 for overriding fields.) Note that
this is different from Java, where a final field is immutable, similar to val in Scala.

8.2 Overriding Methods
In Scala, you must use the override modifier when you override a method that
isn’t abstract. (See Section 8.8, “Abstract Classes,” on page 97 for abstract
methods.) For example,

class Person {
 ...

override def toString = s"${getClass.getName}[name=$name]"
}

The override modifier can give useful error messages in a number of common
situations, such as:

• When you misspell the name of the method that you are overriding

• When you accidentally provide a wrong parameter type in the overriding
method

• When you introduce a new method in a superclass that clashes with a subclass
method

NOTE: The last case is an instance of the fragile base class problem where
a change in the superclass cannot be verified without looking at all the sub-
classes. Suppose programmer Alice defines a Person class, and, unbeknownst
to Alice, programmer Bob defines a subclass Student with a method id yielding
the student ID. Later, Alice also defines a method id that holds the person’s
national ID. When Bob picks up that change, something may break in Bob’s
program (but not in Alice’s test cases) since Student objects now return
unexpected IDs.

In Java, one is often advised to “solve” this problem by declaring all methods
as final unless they are explicitly designed to be overridden. That sounds
good in theory, but programmers hate it when they can’t make even the most
innocuous changes to a method (such as adding a logging call). That’s why
Java eventually introduced an optional @Overrides annotation.

Invoking a superclass method in Scala works exactly like in Java, with the
keyword super:

Chapter 8 Inheritance92

ptg20087099

class Employee extends Person {
 ...
 override def toString = s"${super.toString}[salary=$salary]"
}

The call super.toString invokes the toString method of the superclass—that is, the
Person.toString method.

8.3 Type Checks and Casts
To test whether an object belongs to a given class, use the isInstanceOf method. If
the test succeeds, you can use the asInstanceOf method to convert a reference to a
subclass reference:

if (p.isInstanceOf[Employee]) {
 val s = p.asInstanceOf[Employee] // s has type Employee
 ...
}

The p.isInstanceOf[Employee] test succeeds if p refers to an object of class Employee or
its subclass (such as Manager).

If p is null, then p.isInstanceOf[Employee] returns false and p.asInstanceOf[Employee]
returns null.

If p is not an Employee, then p.asInstanceOf[Employee] throws an exception.

If you want to test whether p refers to an Employee object, but not a subclass, use

if (p.getClass == classOf[Employee])

The classOf method is defined in the scala.Predef object that is always imported.

Table 8–1 shows the correspondence between Scala and Java type checks and
casts.

Table 8–1 Type Checks and Casts in Scala and Java

JavaScala

obj instanceof Clobj.isInstanceOf[Cl]

(Cl) objobj.asInstanceOf[Cl]

Cl.classclassOf[Cl]

However, pattern matching is usually a better alternative to using type checks
and casts. For example,

938.3 Type Checks and Casts

ptg20087099

p match {
 case s: Employee => ... // Process s as an Employee
 case _ => ... // p wasn’t an Employee
}

See Chapter 14 for more information.

8.4 Protected Fields and Methods
As in Java or C++, you can declare a field or method as protected. Such a member
is accessible from any subclass, but not from other locations.

Unlike in Java, a protected member is not visible throughout the package to which
the class belongs. (If you want this visibility, you can use a package modifier—see
Chapter 7.)

There is also a protected[this] variant that restricts access to the current object,
similar to the private[this] variant discussed in Chapter 5.

8.5 Superclass Construction
Recall from Chapter 5 that a class has one primary constructor and any number
of auxiliary constructors, and that all auxiliary constructors must start with a call
to a preceding auxiliary constructor or the primary constructor.

As a consequence, an auxiliary constructor can never invoke a superclass
constructor directly.

The auxiliary constructors of the subclass eventually call the primary constructor
of the subclass. Only the primary constructor can call a superclass constructor.

Recall that the primary constructor is intertwined with the class definition. The
call to the superclass constructor is similarly intertwined. Here is an example:

class Employee(name: String, age: Int, val salary : Double) extends
 Person(name, age)

This defines a subclass

class Employee(name: String, age: Int, val salary : Double) extends
 Person(name, age)

and a primary constructor that calls the superclass constructor

class Employee(name: String, age: Int, val salary : Double) extends
 Person(name, age)

Intertwining the class and the constructor makes for very concise code. You may
find it helpful to think of the primary constructor parameters as parameters of

Chapter 8 Inheritance94

ptg20087099

the class. Here, the Employee class has three parameters: name, age, and salary, two
of which it “passes” to the superclass.

In Java, the equivalent code is quite a bit more verbose:

public class Employee extends Person { // Java
 private double salary;
 public Employee(String name, int age, double salary) {
 super(name, age);
 this.salary = salary;
 }
}

NOTE: In a Scala constructor, you can never call super(params), as you would
in Java, to call the superclass constructor.

A Scala class can extend a Java class. Its primary constructor must invoke one of
the constructors of the Java superclass. For example,

class PathWriter(p: Path, cs: Charset) extends
 java.io.PrintWriter(Files.newBufferedWriter(p, cs))

8.6 Overriding Fields
Recall from Chapter 5 that a field in Scala consists of a private field and acces-
sor/mutator methods. You can override a val (or a parameterless def) with another
val field of the same name. The subclass has a private field and a public getter,
and the getter overrides the superclass getter (or method).

For example,

class Person(val name: String) {
 override def toString = s"${getClass.getName}[name=$name]"
}

class SecretAgent(codename: String) extends Person(codename) {
override val name = "secret" // Don’t want to reveal name . . .
override val toString = "secret" // . . . or class name

}

This example shows the mechanics, but it is rather artificial. A more common
case is to override an abstract def with a val, like this:

958.6 Overriding Fields

ptg20087099

abstract class Person { // See Section 8.8 for abstract classes
 def id: Int // Each person has an ID that is computed in some way
 ...
}

class Student(override val id: Int) extends Person
 // A student ID is simply provided in the constructor

Note the following restrictions (see also Table 8–2):

• A def can only override another def.

• A val can only override another val or a parameterless def.

• A var can only override an abstract var (see Section 8.8, “Abstract Classes,”
on page 97).

Table 8–2 Overriding val, def, and var

with varwith defwith val

Error.Error.• Subclass has a private
field (with the same
name as the superclass
field—that’s OK).

• Getter overrides the
superclass getter.

Override val

A var can override a
getter/setter pair.
Overriding just a getter
is an error.

Like in Java.• Subclass has a private
field.

• Getter overrides the
superclass method.

Override def

Only if the superclass
var is abstract (see
Section 8.8).

Error.Error.Override var

NOTE: In Chapter 5, I said that it’s OK to use a var because you can always
change your mind and reimplement it as a getter/setter pair. However, the
programmers extending your class do not have that choice. They cannot
override a var with a getter/setter pair. In other words, if you provide a var, all
subclasses are stuck with it.

Chapter 8 Inheritance96

ptg20087099

8.7 Anonymous Subclasses
As in Java, you make an instance of an anonymous subclass if you include a block
with definitions or overrides, such as

val alien = new Person("Fred") {
 def greeting = "Greetings, Earthling! My name is Fred."
}

Technically, this creates an object of a structural type—see Chapter 19 for details.
The type is denoted as Person{def greeting: String}. You can use this type as a
parameter type:

def meet(p: Person{def greeting: String}) {
 println(s"${p.name} says: ${p.greeting}")
}

8.8 Abstract Classes
As in Java, you can use the abstract keyword to denote a class that cannot be in-
stantiated, usually because one or more of its methods are not defined.
For example,

abstract class Person(val name: String) {
 def id: Int // No method body—this is an abstract method
 }

Here we say that every person has an ID, but we don’t know how to compute it.
Each concrete subclass of Person needs to specify an id method. In Scala, unlike
Java, you do not use the abstract keyword for an abstract method. You simply
omit its body. As in Java, a class with at least one abstract method must be
declared abstract.

In a subclass, you need not use the override keyword when you define a method
that was abstract in the superclass.

class Employee(name: String) extends Person(name) {
 def id = name.hashCode // override keyword not required
}

8.9 Abstract Fields
In addition to abstract methods, a class can also have abstract fields. An abstract
field is simply a field without an initial value. For example,

978.9 Abstract Fields

ptg20087099

abstract class Person {
 val id: Int
 // No initializer—this is an abstract field with an abstract getter method
 var name: String
 // Another abstract field, with abstract getter and setter methods
}

This class defines abstract getter methods for the id and name fields, and an abstract
setter for the name field. The generated Java class has no fields.

Concrete subclasses must provide concrete fields, for example:

class Employee(val id: Int) extends Person { // Subclass has concrete id property
 var name = "" // and concrete name property
}

As with methods, no override keyword is required in the subclass when you define
a field that was abstract in the superclass.

You can always customize an abstract field by using an anonymous type:

val fred = new Person {
 val id = 1729
 var name = "Fred"
}

8.10 Construction Order and Early Definitions L3
When you override a val in a subclass and use the value in a superclass constructor,
the resulting behavior is unintuitive.

Here is an example. A creature can sense a part of its environment. For simplicity,
we assume the creature lives in a one-dimensional world, and the sensory data
are represented as integers. A default creature can see ten units ahead.

class Creature {
 val range: Int = 10
 val env: Array[Int] = new Array[Int](range)
}

Ants, however, are near-sighted:

class Ant extends Creature {
 override val range = 2
}

Unfortunately, we now have a problem. The range value is used in the superclass
constructor, and the superclass constructor runs before the subclass constructor.
Specifically, here is what happens:

Chapter 8 Inheritance98

ptg20087099

1. The Ant constructor calls the Creature constructor before doing its own
construction.

2. The Creature constructor sets its range field to 10.

3. The Creature constructor, in order to initialize the env array, calls the range()
getter.

4. That method is overridden to yield the (as yet uninitialized) range field of the
Ant class.

5. The range method returns 0. (That is the initial value of all integer fields when
an object is allocated.)

6. env is set to an array of length 0.

7. The Ant constructor continues, setting its range field to 2.

Even though it appears as if range is either 10 or 2, env has been set to an array of
length 0. The moral is that you should not rely on the value of a val in the body
of a constructor.

In Java, you have a similar issue when you call a method in a superclass construc-
tor. The method might be overridden in a subclass, and it might not do what you
want it to do. (In fact, that is the root cause of our problem—the expression range
calls the getter method.)

There are several remedies.

• Declare the val as final. This is safe but not very flexible.

• Declare the val as lazy in the superclass (see Chapter 2). This is safe but a bit
inefficient.

• Use the early definition syntax in the subclass—see below.

The “early definition” syntax lets you initialize val fields of a subclass before the
superclass is executed. The syntax is so ugly that only a mother could love it.
You place the val fields in a block after the extends keyword, like this:

class Ant extends { override val range = 2 } with Creature

Note the with keyword before the superclass name. This keyword is normally
used with traits—see Chapter 10.

The right-hand side of an early definition can only refer to previous early
definitions, not to other fields or methods of the class.

TIP:You can debug construction order problems with the -Xcheckinit compiler
flag. This flag generates code that throws an exception (instead of yielding
the default value) when an uninitialized field is accessed.

998.10 Construction Order and Early Definitions

ptg20087099

NOTE: At the root of the construction order problem lies a design decision
of the Java language—namely, to allow the invocation of subclass methods
in a superclass constructor. In C++, an object’s virtual function table pointer
is set to the table of the superclass when the superclass constructor executes.
Afterwards, the pointer is set to the subclass table.Therefore, in C++, it is not
possible to modify constructor behavior through overriding.The Java designers
felt that this subtlety was unnecessary, and the Java virtual machine does
not adjust the virtual function table during construction.

8.11 The Scala Inheritance Hierarchy
Figure 8–1 shows the inheritance hierarchy of Scala classes. The classes that cor-
respond to the primitive types in Java, as well as the type Unit, extend AnyVal. You
can also define your own value classes—see Section 8.13, “Value Classes,” on
page 103.

All other classes are subclasses of the AnyRef class. When compiling to the Java
virtual machine, this is a synonym for the java.lang.Object class.

Both AnyVal and AnyRef extend the Any class, the root of the hierarchy.

The Any class defines methods isInstanceOf, asInstanceOf, and the methods for
equality and hash codes that we will look at in Section 8.12, “Object Equality,”
on page 102.

AnyVal does not add any methods. It is just a marker for value types.

The AnyRef class adds the monitor methods wait and notify/notifyAll from the Object
class. It also provides a synchronized method with a function parameter. That
method is the equivalent of a synchronized block in Java. For example,

account.synchronized { account.balance += amount }

NOTE: Just like in Java, I suggest you stay away from wait, notify, and
synchronized unless you have a good reason to use them instead of higher-level
concurrency constructs.

All Scala classes implement the marker interface ScalaObject, which has no methods.

At the other end of the hierarchy are the Nothing and Null types.

Null is the type whose sole instance is the value null. You can assign null to any
reference, but not to one of the value types. For example, setting an Int to null is
not possible. This is better than in Java, where it would be possible to set an Integer
wrapper to null.

Chapter 8 Inheritance100

ptg20087099

Figure 8–1 The inheritance hierarchy of Scala classes

The Nothing type has no instances. It is occasionally useful for generic constructs.
For example, the empty list Nil has type List[Nothing], which is a subtype of
List[T] for any T.

The ??? method is declared with return type Nothing. It never returns but instead
throws a NotImplementedError when invoked. You can use it for methods that you
still need to implement:

class Person(val name: String) {
 def description = ???
}

The Person class compiles since Nothing is a subtype of every type. You can start
using the class, so long as you don’t call the description method.

1018.11 The Scala Inheritance Hierarchy

ptg20087099

CAUTION: The Nothing type is not at all the same as void in Java or C++. In
Scala, void is represented by the Unit type, the type with the sole value ().
Note that Unit is not a supertype of any other type. However, the compiler still
allows any value to be replaced by a (). Consider

def printAny(x: Any) { println(x) }
def printUnit(x: Unit) { println(x) }
printAny("Hello") // Prints Hello
printUnit("Hello")
 // Replaces "Hello" with () and calls printUnit(()), which prints ()

CAUTION: When a method has a parameter of type Any or AnyRef, and it is
called with multiple arguments, then they are placed in a tuple:

def show(o: Any) { println(s"${o.getClass}: $o") }
show(3) // Prints class java.lang.Integer: 3
show(3, 4, 5) // Prints class scala.Tuple3: (3,4,5)

If you call show() with no parameters, a Unit value is passed. However, that
behavior is deprecated.

8.12 Object Equality L1
In Scala, the eq method of the AnyRef class checks whether two references refer to
the same object. The equals method in AnyRef calls eq. When you implement a class,
you should consider overriding the equals method to provide a natural notion of
equality for your situation.

For example, if you define a class Item(val description: String, val price: Double),
you might want to consider two items equal if they have the same description
and price. Here is an appropriate equals method:

final override def equals(other: Any) = {
 other.isInstanceOf[Item] && {
 val that = other.asInstanceOf[Item]
 description == that.description && price == that.price
 }
}

Or better, use pattern matching:

final override def equals(other: Any) = other match {
 case that: Item => description == that.description && price == that.price
 case _ => false
}

Chapter 8 Inheritance102

ptg20087099

NOTE: We defined the method as final because it is generally very difficult
to correctly extend equality in a subclass.The problem is symmetry.You want
a.equals(b) to have the same result as b.equals(a), even when b belongs to
a subclass.

CAUTION: Be sure to define the equals method with parameter type Any. The
following would be wrong:

final def equals(other: Item) = { ... } // Don’t!

This is a different method which does not override the equals method of AnyRef.

Also, don’t supply an == method.You can’t override the == method defined in
AnyRef, but you could accidentally supply a different one with an Item argument:

final def ==(other: Item) = { ... } // Don’t!

When you define equals, remember to define hashCode as well. The hash code should
be computed only from the fields that you use in the equality check, so that equal
objects have the same hash code. In the Item example, combine the hash codes of
the fields.

final override def hashCode = (description, price).##

The ## method is a null-safe version of the hashCode method that yields 0 for null
instead of throwing an exception.

TIP:You are not compelled to override equals and hashCode. For many classes,
it is appropriate to consider distinct objects unequal. For example, if you have
two distinct input streams or radio buttons, you will never consider them equal.

In an application program, you don’t generally call eq or equals. Simply use the
== operator. For reference types, it calls equals after doing the appropriate check
for null operands.

8.13 Value Classes L2
Some classes have a single field, such as the wrapper classes for primitive types,
and the “rich” or “ops” wrappers that Scala uses to add methods to existing
types. It is inefficient to allocate a new object that holds just one value. Value
classes allow you to define classes that are “inlined,” so that the single field is
used directly.

1038.13 Value Classes

ptg20087099

A value class has these properties:

1. The class extends AnyVal.

2. Its primary constructor has exactly one parameter, which is a val, and no
body.

3. The class has no other fields or constructors.

4. The automatically provided equals and hashCode methods compare and hash
the underlying value.

As an example, let us define a value class that wraps a “military time” value:

class MilTime(val time: Int) extends AnyVal {
 def minutes = time % 100
 def hours = time / 100
 override def toString = f"$time04d"
}

When you construct a new MilTime(1230), the compiler doesn’t allocate a new object.
Instead, it uses the underlying value, the integer 1230. You can invoke the minutes
and hours methods on the value but, just as importantly, you cannot invoke Int
methods.

MilTime lunch = new MilTime(1230)
println(lunch.hours) // OK
println(lunch * 2) // Error

To guarantee proper initialization, make the primary constructor private and
provide a factory method in the companion object:

class MilTime private(val time: Int) extends AnyVal ...
object MilTime {
 def apply(t: Int) =
 if (0 <= t && t < 2400 && t % 100 < 60) new MilTime(t)
 else throw new IllegalArgumentException
}

CAUTION: In some programming languages, value types are any types that
are allocated on the runtime stack, including structured types with multiple
fields. In Scala, a value class can only have one field.

NOTE: If you want a value class to implement a trait (see Chapter 10), the
trait must explicitly extend Any, and it may not have fields. Such traits are called
universal traits.

Chapter 8 Inheritance104

ptg20087099

TIP: Value types were designed to make implicit conversions efficient, but
you can use them for your own overhead-free “tiny types.” For example, instead
of a class Book(val author: String, val title: String), you can wrap each
string into a separate value class Author and Title. When the class is defined
as class Book(val author: Author, val title: Title), programmers who
construct Book objects can’t accidentally switch the author and the title.

Exercises
1. Extend the following BankAccount class to a CheckingAccount class that charges $1

for every deposit and withdrawal.

class BankAccount(initialBalance: Double) {
 private var balance = initialBalance
 def currentBalance = balance
 def deposit(amount: Double) = { balance += amount; balance }
 def withdraw(amount: Double) = { balance -= amount; balance }
}

2. Extend the BankAccount class of the preceding exercise into a class SavingsAccount
that earns interest every month (when a method earnMonthlyInterest is called)
and has three free deposits or withdrawals every month. Reset the transaction
count in the earnMonthlyInterest method.

3. Consult your favorite Java or C++ textbook which is sure to have an example
of a toy inheritance hierarchy, perhaps involving employees, pets, graphical
shapes, or the like. Implement the example in Scala.

4. Define an abstract class Item with methods price and description. A SimpleItem is
an item whose price and description are specified in the constructor. Take
advantage of the fact that a val can override a def. A Bundle is an item that
contains other items. Its price is the sum of the prices in the bundle. Also
provide a mechanism for adding items to the bundle and a suitable description
method.

5. Design a class Point whose x and y coordinate values can be provided in a
constructor. Provide a subclass LabeledPoint whose constructor takes a label
value and x and y coordinates, such as

new LabeledPoint("Black Thursday", 1929, 230.07)

6. Define an abstract class Shape with an abstract method centerPoint and subclasses
Rectangle and Circle. Provide appropriate constructors for the subclasses and
override the centerPoint method in each subclass.

105Exercises

ptg20087099

7. Provide a class Square that extends java.awt.Rectangle and has three constructors:
one that constructs a square with a given corner point and width, one
that constructs a square with corner (0, 0) and a given width, and one that
constructs a square with corner (0, 0) and width 0.

8. Compile the Person and SecretAgent classes in Section 8.6, “Overriding Fields,”
on page 95 and analyze the class files with javap. How many name fields are
there? How many name getter methods are there? What do they get? (Hint:
Use the -c and -private options.)

9. In the Creature class of Section 8.10, “Construction Order and Early Definitions,”
on page 98, replace val range with a def. What happens when you also use a def
in the Ant subclass? What happens when you use a val in the subclass? Why?

10. The file scala/collection/immutable/Stack.scala contains the definition

class Stack[A] protected (protected val elems: List[A])

Explain the meanings of the protected keywords. (Hint: Review the discussion
of private constructors in Chapter 5.)

11. Define a value class Point that packs integer x and y coordinates into a Long
(which you should make private).

Chapter 8 Inheritance106

ptg20087099

This page intentionally left blank

ptg20087099Topics in This Chapter A1

9.1 Reading Lines — page 109
9.2 Reading Characters — page 110
9.3 Reading Tokens and Numbers — page 111
9.4 Reading from URLs and Other Sources — page 111
9.5 Reading Binary Files — page 112
9.6 Writing Text Files — page 112
9.7 Visiting Directories — page 112
9.8 Serialization — page 113
9.9 Process Control A2 — page 114
9.10 Regular Expressions — page 116
9.11 Regular Expression Groups — page 117
Exercises — page 118

Files and Regular Expressions

ptg20087099In this chapter, you will learn how to carry out common file processing tasks,
such as reading all lines or words from a file or reading a file containing numbers.

Chapter highlights:

• Source.fromFile(...).getLines.toArray yields all lines of a file.

• Source.fromFile(...).mkString yields the file contents as a string.

• To convert a string into a number, use the toInt or toDouble method.

• Use the Java PrintWriter to write text files.

• "regex".r is a Regex object.

• Use """...""" if your regular expression contains backslashes or quotes.

• If a regex pattern has groups, you can extract their contents using the syntax
for (regex(var1, ...,varn) <- string).

9.1 Reading Lines
To read all lines from a file, call the getLines method on a scala.io.Source object:

import scala.io.Source
val source = Source.fromFile("myfile.txt", "UTF-8")
 // The first argument can be a string or a java.io.File
 // You can omit the encoding if you know that the file uses

109

9Chapter

ptg20087099

 // the default platform encoding
val lineIterator = source.getLines

The result is an iterator (see Chapter 13). You can use it to process the lines one
at a time:

for (l <- lineIterator) process l

Or you can put the lines into an array or array buffer by applying the toArray or
toBuffer method to the iterator:

val lines = source.getLines.toArray

Sometimes, you just want to read an entire file into a string. That’s even simpler:

val contents = source.mkString

CAUTION: Call close when you are done using the Source object.

9.2 Reading Characters
To read individual characters from a file, you can use a Source object directly as
an iterator since the Source class extends Iterator[Char]:

for (c <- source) process c

If you want to be able to peek at a character without consuming it (like istream::peek
in C++ or a PushbackInputStreamReader in Java), call the buffered method on the source
object. Then you can peek at the next input character with the head method without
consuming it.

val source = Source.fromFile("myfile.txt", "UTF-8")
val iter = source.buffered
while (iter.hasNext) {
 if (iter.head is nice)

process iter.next
 else
 ...
}
source.close()

Alternatively, if your file isn’t large, you can just read it into a string and
process that:

val contents = source.mkString

Chapter 9 Files and Regular Expressions110

ptg20087099

9.3 Reading Tokens and Numbers
Here is a quick-and-dirty way of reading all whitespace-separated tokens in a
source:

val tokens = source.mkString.split("\\s+")

To convert a string into a number, use the toInt or toDouble method. For example,
if you have a file containing floating-point numbers, you can read them all into
an array by

val numbers = for (w <- tokens) yield w.toDouble

or

val numbers = tokens.map(_.toDouble)

TIP: Remember—you can always use the java.util.Scanner class to process
a file that contains a mixture of text and numbers.

Finally, note that you can read numbers from scala.io.StdIn:

print("How old are you? ")
val age = Scala.io.readInt()
 // Or use readDouble or readLong

CAUTION: These methods assume that the next input line contains a
single number, without leading or trailing whitespace. Otherwise, a
NumberFormatException occurs.

9.4 Reading from URLs and Other Sources
The Source object has methods to read from sources other than files:

val source1 = Source.fromURL("http://horstmann.com", "UTF-8")
val source2 = Source.fromString("Hello, World!")
 // Reads from the given string—useful for debugging
val source3 = Source.stdin
 // Reads from standard input

CAUTION: When you read from a URL, you need to know the character set
in advance, perhaps from an HTTP header. See www.w3.org/International/
O-charset for more information.

1119.4 Reading from URLs and Other Sources

ptg20087099

9.5 Reading Binary Files
Scala has no provision for reading binary files. You’ll need to use the Java library.
Here is how you can read a file into a byte array:

val file = new File(filename)
val in = new FileInputStream(file)
val bytes = new Array[Byte](file.length.toInt)
in.read(bytes)
in.close()

9.6 Writing Text Files
Scala has no built-in support for writing files. To write a text file, use a
java.io.PrintWriter, for example:

val out = new PrintWriter("numbers.txt")
for (i <- 1 to 100) out.println(i)
out.close()

Everything works as expected, except for the printf method. When you pass a
number to printf, the compiler will complain that you need to convert it to an
AnyRef:

out.printf("%6d %10.2f",
 quantity.asInstanceOf[AnyRef], price.asInstanceOf[AnyRef]) // Ugh

Instead, use the f interpolator:

out.print(f"$quantity%6d $price%10.2f")

9.7 Visiting Directories
There are no “official” Scala classes for visiting all files in a directory, or for
recursively traversing directories.

The simplest approach is to use the Files.list and Files.walk methods of the
java.nio.file package. The list method only visits the children of a directory, and
the walk method visits all descendants. These methods yield Java streams of Path
objects. You can visit them as follows:

import java.nio.file._
String dirname = "/home/cay/scala-impatient/code"
val entries = Files.walk(Paths.get(dirname)) // or Files.list

Chapter 9 Files and Regular Expressions112

ptg20087099

try {
 entries.forEach(p => Process the path p)
} finally {
 entries.close()
}

9.8 Serialization
In Java, serialization is used to transmit objects to other virtual machines or for
short-term storage. (For long-term storage, serialization can be awkward—it is
tedious to deal with different object versions as classes evolve over time.)

Here is how you declare a serializable class in Java and Scala.

Java:

public class Person implements java.io.Serializable {
 private static final long serialVersionUID = 42L;
 ...
}

Scala:

@SerialVersionUID(42L) class Person extends Serializable

The Serializable trait is defined in the scala package and does not require an import.

NOTE: You can omit the @SerialVersionUID annotation if you are OK with the
default ID.

Serialize and deserialize objects in the usual way:

val fred = new Person(...)
import java.io._
val out = new ObjectOutputStream(new FileOutputStream("/tmp/test.obj"))
out.writeObject(fred)
out.close()
val in = new ObjectInputStream(new FileInputStream("/tmp/test.obj"))
val savedFred = in.readObject().asInstanceOf[Person]

The Scala collections are serializable, so you can have them as members of your
serializable classes:

class Person extends Serializable {
 private val friends = new ArrayBuffer[Person] // OK—ArrayBuffer is serializable
 ...
}

1139.8 Serialization

ptg20087099

9.9 Process Control A2
Traditionally, programmers use shell scripts to carry out mundane processing
tasks, such as moving files from one place to another, or combining a set of files.
The shell language makes it easy to specify subsets of files and to pipe the output
of one program into the input of another. However, as programming languages,
most shell languages leave much to be desired.

Scala was designed to scale from humble scripting tasks to massive programs.
The scala.sys.process package provides utilities to interact with shell programs.
You can write your shell scripts in Scala, with all the power that the Scala language
puts at your disposal.

Here is a simple example:

import scala.sys.process._
"ls -al ..".!

As a result, the ls -al .. command is executed, showing all files in the parent
directory. The result is printed to standard output.

The scala.sys.process package contains an implicit conversion from strings to
ProcessBuilder objects. The ! method executes the ProcessBuilder object.

The result of the ! method is the exit code of the executed program: 0 if the
program was successful, or a nonzero failure indicator otherwise.

If you use !! instead of !, the output is returned as a string:

val result = "ls -al /".!!

NOTE: The ! and !! operators were originally intended to be used as postfix
operators without the method invocation syntax:

"ls -al /" !!

However, as you will see in Chapter 11, the postfix syntax is being deprecated
since it can lead to parsing errors.

You can pipe the output of one program into the input of another, using the #|
method:

("ls -al /" #| "grep u").!

NOTE: As you can see, the process library uses the commands of the
underlying operating system. Here, I use bash commands because bash is
available on Linux, Mac OS X, and Windows.

Chapter 9 Files and Regular Expressions114

ptg20087099

To redirect the output to a file, use the #> method:

("ls -al /" #> new File("filelist.txt")).!

To append to a file, use #>> instead:

("ls -al /etc" #>> new File("filelist.txt")).!

To redirect input from a file, use #<:

("grep u" #< new File("filelist.txt")).!

You can also redirect input from a URL:

("grep Scala" #< new URL("http://horstmann.com/index.html")).!

You can combine processes with p #&& q (execute q if p was successful) and p #|| q
(execute q if p was unsuccessful). But frankly, Scala is better at control flow than
the shell, so why not implement the control flow in Scala?

NOTE: The process library uses the familiar shell operators | > >> < && ||,
but it prefixes them with a # so that they all have the same precedence.

If you need to run a process in a different directory, or with different environment
variables, construct a ProcessBuilder with the apply method of the Process object.
Supply the command, the starting directory, and a sequence of (name, value) pairs
for environment settings:

val p = Process(cmd, new File(dirName), ("LANG", "en_US"))

Then execute it with the ! method:

("echo 42" #| p).!

NOTE: If you want to use Scala for shell scripts in a UNIX/Linux/MacOS
environment, start your script files like this:

#!/bin/sh
exec scala "$0" "$@"
!#
Scala commands

NOTE: You can also run Scala scripts from Java programs with the scripting
integration of the javax.script package. To get a script engine, call

ScriptEngine engine =
 new ScriptEngineManager().getScriptEngineByName("scala")

1159.9 Process Control

ptg20087099

9.10 Regular Expressions
When you process input, you often want to use regular expressions to analyze
it. The scala.util.matching.Regex class makes this simple. To construct a Regex object,
use the r method of the String class:

val numPattern = "[0-9]+".r

If the regular expression contains backslashes or quotation marks, then it is a
good idea to use the “raw” string syntax, """...""". For example:

val wsnumwsPattern = """\s+[0-9]+\s+""".r
 // A bit easier to read than "\\s+[0-9]+\\s+".r

The findAllIn method returns an Iterator[String] through all matches. You can use
it in a for loop:

for (matchString <- numPattern.findAllIn("99 bottles, 98 bottles"))
 println(matchString)

Alternatively, turn the iterator into an array:

val matches = numPattern.findAllIn("99 bottles, 98 bottles").toArray
 // Array("99", "98")

To find the first match in a string, use findFirstIn. You get an Option[String]. (See
Chapter 14 for the Option class.)

val firstMatch = wsnumwsPattern.findFirstIn("99 bottles, 98 bottles")
 // Some(" 98 ")

NOTE: There is no method to test whether a string matches the regex in its
entirety, but you can add anchors:

val anchoredPattern = "^[0-9]+$".r
if (anchoredPattern.findFirstIn(str) != None) ...

Alternatively, use the String.matches method:

if (str.matches("[0-9]+")) ...

You can replace the first match, all matches, or some matches. In the latter case,
supply a function Match => Option[String]. The Match class has information about the
match (see the next section for details). If the function returns Some(str), the match
is replaced with str.

numPattern.replaceFirstIn("99 bottles, 98 bottles", "XX")
 // "XX bottles, 98 bottles"

Chapter 9 Files and Regular Expressions116

ptg20087099

numPattern.replaceAllIn("99 bottles, 98 bottles", "XX")
 // "XX bottles, XX bottles"
numPattern.replaceSomeIn("99 bottles, 98 bottles",
 m => if (m.matched.toInt % 2 == 0) Some("XX") else None)
 // "99 bottles, XX bottles"

Here is a more useful application of the replaceSomeIn method. We want to replace
placeholders $0, $1, and so on, in a message string with values from an argument
sequence. Make a pattern for the variable with a group for the index, and then
map the group to the sequence element.

val varPattern = """\$[0-9]+""".r
def format(message: String, vars: String*) =
 varPattern.replaceSomeIn(message, m => vars.lift(
 m.matched.tail.toInt))
format("At $1, there was $2 on $0.",
 "planet 7", "12:30 pm", "a disturbance of the force")
 // At 12:30 pm, there was a disturbance of the force on planet 7.

The lift method turns a Seq[String] into a function. The expression vars.lift(i) is
Some(vars(i)) if i is a valid index or None if it is not.

9.11 Regular Expression Groups
Groups are useful to get subexpressions of regular expressions. Add parentheses
around the subexpressions that you want to extract, for example:

val numitemPattern = "([0-9]+) ([a-z]+)".r

You can get the group contents from a Match object. The methods findAllMatchIn
and findFirstMatchIn are analogs of the findAllIn and findFirstIn methods that return
an Iterator[Match] or Option[Match].

If m is a Match object, then m.matched is the entire match string and m.group(i) is the
ith group. The start and end indices of these substrings in the original string
are m.start, m.end, m.start(i), and m.end(i).

for (m <- numitemPattern.findAllMatchIn("99 bottles, 98 bottles"))
 println(m.group(1)) // Prints 99 and 98

CAUTION: The Match class has methods for retrieving groups by name.
However, this does not work with group names inside regular expressions,
such as "(?<num>[0-9]+) (?<item>[a-z]+)".r. Instead, one needs to supply
names to the r method: "([0-9]+) ([a-z]+)".r("num", "item")

1179.11 Regular Expression Groups

ptg20087099

There is another convenient way of extracting matches. Use a regular expression
variable as an “extractor” (see Chapter 14), like this:

val numitemPattern(num, item) = "99 bottles"
 // Sets num to "99", item to "bottles"

When you use a pattern as an extractor, it must match the string from which you
extract the matches, and there must be a group for each variable.

To extract groups from multiple matches, you can use a for statement like this:

for (numitemPattern(num, item) <- numitemPattern.findAllIn("99 bottles, 98 bottles"))
process num and item

Exercises
1. Write a Scala code snippet that reverses the lines in a file (making the last

line the first one, and so on).

2. Write a Scala program that reads a file with tabs, replaces each tab with spaces
so that tab stops are at n-column boundaries, and writes the result to the
same file.

3. Write a Scala code snippet that reads a file and prints all words with more
than 12 characters to the console. Extra credit if you can do this in a single line.

4. Write a Scala program that reads a text file containing only floating-point
numbers. Print the sum, average, maximum, and minimum of the numbers
in the file.

5. Write a Scala program that writes the powers of 2 and their reciprocals to a
file, with the exponent ranging from 0 to 20. Line up the columns:

 1 1
 2 0.5
 4 0.25

6. Make a regular expression searching for quoted strings "like this, maybe with
\" or \\" in a Java or C++ program. Write a Scala program that prints out all
such strings in a source file.

7. Write a Scala program that reads a text file and prints all tokens in the file
that are not floating-point numbers. Use a regular expression.

8. Write a Scala program that prints the src attributes of all img tags of a web
page. Use regular expressions and groups.

Chapter 9 Files and Regular Expressions118

ptg20087099

9. Write a Scala program that counts how many files with .class extension are
in a given directory and its subdirectories.

10. Expand the example in Section 9.8, “Serialization,” on page 113. Construct a
few Person objects, make some of them friends of others, and save an
Array[Person] to a file. Read the array back in and verify that the friend relations
are intact.

119Exercises

ptg20087099Topics in This Chapter L1

10.1 Why No Multiple Inheritance? — page 121
10.2 Traits as Interfaces — page 123
10.3 Traits with Concrete Implementations — page 124
10.4 Objects with Traits — page 125
10.5 Layered Traits — page 125
10.6 Overriding Abstract Methods in Traits — page 127
10.7 Traits for Rich Interfaces — page 127
10.8 Concrete Fields in Traits — page 128
10.9 Abstract Fields in Traits — page 130
10.10 Trait Construction Order — page 130
10.11 Initializing Trait Fields — page 132
10.12 Traits Extending Classes — page 133
10.13 Self Types L2 — page 134
10.14 What Happens under the Hood — page 135
Exercises — page 137

Traits

ptg20087099In this chapter, you will learn how to work with traits. A class extends one or
more traits in order to take advantage of the services that the traits provide. A
trait may require implementing classes to support certain features. However,
unlike Java interfaces, Scala traits can supply state and behavior for these features,
which makes them far more useful.

Key points of this chapter:

• A class can implement any number of traits.

• Traits can require implementing classes to have certain fields, methods, or
superclasses.

• Unlike Java interfaces, a Scala trait can provide implementations of methods
and fields.

• When you layer multiple traits, the order matters—the trait whose methods
execute first goes to the back.

10.1 Why No Multiple Inheritance?
Scala, like Java, does not allow a class to inherit from multiple superclasses. At
first, this seems like an unfortunate restriction. Why shouldn’t a class extend
multiple classes? Some programming languages, in particular C++, allow multiple
inheritance—but at a surprisingly high cost.

121

10Chapter

ptg20087099

Multiple inheritance works fine when you combine classes that have nothing in
common. But if these classes have common methods or fields, thorny issues come
up. Here is a typical example. A teaching assistant is a student and also an
employee:

class Student {
 def id: String = ...
 ...
}

class Employee {
 def id: String = ...
 ...
}

Suppose we could have

class TeachingAssistant extends Student, Employee { // Not actual Scala code
 ...
}

Unfortunately, this TeachingAssistant class inherits two id methods. What should
myTA.id return? The student ID? The employee ID? Both? (In C++, you need to
redefine the id method to clarify what you want.)

Next, suppose that both Student and Employee extend a common superclass Person:

class Person {
 var name: String = _
}

class Student extends Person { ... }
class Employee extends Person { ... }

This leads to the diamond inheritance problem (see Figure 10–1). We only want
one name field inside a TeachingAssistant, not two. How do the fields get merged?
How does the field get constructed? In C++, you use “virtual base classes,” a
complex and brittle feature, to address this issue.

Java designers were so afraid of these complexities that they took a very restrictive
approach. A class can extend only one superclass; it can implement any number
of interfaces, but interfaces can have only abstract, static, or default methods, and
no fields.

Java default methods are very restricted. They can call other interface methods,
but they cannot make use of object state. It is therefore common in Java to provide
both an interface and an abstract base class, but that just kicks the can down the
road. What if you need to extend two of those abstract base classes?

Chapter 10 Traits122

ptg20087099

Figure 10–1 Diamond inheritance must merge common fields.

Scala has traits instead of interfaces. A trait can have abstract and concrete
methods, as well as state, and a class can implement multiple traits. This neatly
solves the problem of Java interfaces. You will see in the following sections how
Scala deals with the perils of conflicting features from multiple traits.

10.2 Traits as Interfaces
Let’s start with something familiar. A Scala trait can work exactly like a Java
interface. For example:

trait Logger {
 def log(msg: String) // An abstract method
}

Note that you need not declare the method as abstract—an unimplemented method
in a trait is automatically abstract.

A subclass can provide an implementation:

class ConsoleLogger extends Logger { // Use extends, not implements
 def log(msg: String) { println(msg) } // No override needed
}

You need not supply the override keyword when overriding an abstract method
of a trait.

12310.2 Traits as Interfaces

ptg20087099

NOTE: Scala doesn’t have a special keyword for implementing a trait.As you
will see throughout this chapter, traits can be much more similar to classes
than Java interfaces.

If you need more than one trait, add the others using the with keyword:

class ConsoleLogger extends Logger with Cloneable with Serializable

Here we use the Cloneable and Serializable interfaces from the Java library, just for
the sake of showing the syntax. All Java interfaces can be used as Scala traits.

As in Java, a Scala class can have only one superclass but any number of traits.

NOTE: It may seem odd that you use the extends keyword before the first trait
but with before all the others. But that’s not the way that Scala thinks about
it. In Scala, Logger with Cloneable with Serializable is the entity that the class
extends.

10.3 Traits with Concrete Implementations
In Scala, the methods of a trait need not be abstract. For example, we can make
our ConsoleLogger into a trait:

trait ConsoleLogger {
 def log(msg: String) { println(msg) }
}

The ConsoleLogger trait provides a method with an implementation—in this case, one
that prints the logging message on the console.

Here is an example of using this trait:

class SavingsAccount extends Account with ConsoleLogger {
 def withdraw(amount: Double) {
 if (amount > balance) log("Insufficient funds")
 else balance -= amount
 }
 ...
}

Note how the SavingsAccount picks up a concrete implementation from the
ConsoleLogger trait. In Java, this is also possible by using default methods in inter-
faces. However, as you will see shortly, traits can also have state, which would
not be possible with a Java interface.

In Scala (and other programming languages that allow this), we say that the
ConsoleLogger functionality is “mixed in” with the SavingsAccount class.

Chapter 10 Traits124

ptg20087099

NOTE: Supposedly, the “mix in” term comes from the world of ice cream. In
the ice cream parlor parlance, a “mix in” is an additive that is kneaded into a
scoop of ice cream before dispensing it to the customer—a practice that may
be delicious or disgusting depending on your point of view.

10.4 Objects with Traits
You can add a trait to an individual object when you construct it. Let’s first define
this class:

abstract class SavingsAccount extends Account with Logger {
 def withdraw(amount: Double) {
 if (amount > balance) log("Insufficient funds")
 else ...
 }
 ...
}

This class is abstract since it can’t yet do any logging, which might seem pointless.
But you can “mix in” a concrete logger when constructing an object.

trait ConsoleLogger extends Logger {
 def log(msg: String) { println(msg) }
}

val acct = new SavingsAccount with ConsoleLogger

When calling log on the acct object, the log method of the ConsoleLogger trait executes.

Of course, another object can add in a different trait:

val acct2 = new SavingsAccount with FileLogger

10.5 Layered Traits
You can add, to a class or an object, multiple traits that invoke each other starting
with the last one. This is useful when you need to transform a value in stages.

Here is a simple example. We may want to add a timestamp to all logging
messages.

trait TimestampLogger extends ConsoleLogger {
 override def log(msg: String) {
 super.log(s"${java.time.Instant.now()} $msg")
 }
}

Also, suppose we want to truncate overly chatty log messages like this:

12510.5 Layered Traits

ptg20087099

trait ShortLogger extends ConsoleLogger {
 override def log(msg: String) {
 super.log(
 if (msg.length <= 15) msg else s"${msg.substring(0, 12)}...")
 }
}

Note that each of the log methods passes a modified message to super.log.

With traits, super.log does not have the same meaning as it does with classes. In-
stead, super.log calls the log method of another trait, which depends on the order
in which the traits are added.

To see how the order matters, compare the following two examples:

val acct1 = new SavingsAccount with TimestampLogger with ShortLogger
val acct2 = new SavingsAccount with ShortLogger with TimestampLogger

If we overdraw acct1, we get a message

Sun Feb 06 17:45:45 ICT 2011 Insufficient...

As you can see, the ShortLogger’s log method was called first, and its call to super.log
called the TimestampLogger.

However, overdrawing acct2 yields

Sun Feb 06 1...

Here, the TimestampLogger appeared last in the list of traits. Its log message was
called first, and the result was subsequently shortened.

For simple mixin sequences, the “back to front” rule will give you the right intu-
ition. See Section 10.10, “Trait Construction Order,” on page 130 for the gory
details that arise when the traits form an arbitrary tree and not just a chain.

NOTE: With traits, you cannot tell from the source code which method is
invoked by super.someMethod. The exact method depends on the ordering of
the traits in the object or class that uses them. This makes super far more
flexible than in plain old inheritance.

NOTE: If you want to control which trait’s method is invoked, you can specify
it in brackets: super[ConsoleLogger].log(...). The specified type must be an
immediate supertype; you can’t access traits or classes that are further away
in the inheritance hierarchy.

Chapter 10 Traits126

ptg20087099

10.6 Overriding Abstract Methods in Traits
In the preceding section, the TimestampLogger and ShortLogger traits extended
ConsoleLogger. Let’s make them extend our Logger trait instead, where we provide
no implementation to the log method.

trait Logger {
 def log(msg: String) // This method is abstract
}

Then, the TimestampLogger class no longer compiles.

trait TimestampLogger extends Logger {
 override def log(msg: String) { // Overrides an abstract method
 super.log(s"${java.time.Instant.now()} $msg") // Is super.log defined?
 }
}

The compiler flags the call to super.log as an error.

Under normal inheritance rules, this call could never be correct—the Logger.log
method has no implementation. But actually, as you saw in the preceding section,
there is no way of knowing which log method is actually being called—it depends
on the order in which traits are mixed in.

Scala takes the position that TimestampLogger.log is still abstract—it requires a con-
crete log method to be mixed in. You therefore need to tag the method with the
abstract keyword and the override keyword, like this:

abstract override def log(msg: String) {
 super.log(s"${java.time.Instant.now()} $msg")
}

10.7 Traits for Rich Interfaces
A trait can have many utility methods that depend on a few abstract ones. One
example is the Scala Iterator trait that defines dozens of methods in terms of
the abstract next and hasNext methods.

Let us enrich our rather anemic logging API. Usually, a logging API lets you
specify a level for each log message to distinguish informational messages from
warnings or errors. We can easily add this capability without forcing any policy
for the destination of logging messages.

12710.7 Traits for Rich Interfaces

ptg20087099

trait Logger {
 def log(msg: String)
 def info(msg: String) { log(s"INFO: $msg") }
 def warn(msg: String) { log(s"WARN: $msg") }
 def severe(msg: String) { log(s"SEVERE: $msg") }
}

Note the combination of abstract and concrete methods.

A class that uses the Logger trait can now call any of these logging messages, for
example:

abstract class SavingsAccount extends Account with Logger {
 def withdraw(amount: Double) {
 if (amount > balance) severe("Insufficient funds")
 else ...
 }
 ...
}

This use of concrete and abstract methods in a trait is very common in Scala. In
Java, you can achieve the same with default methods.

10.8 Concrete Fields in Traits
A field in a trait can be concrete or abstract. If you supply an initial value, the
field is concrete.

trait ShortLogger extends Logger {
 val maxLength = 15 // A concrete field
 abstract override def log(msg: String) {
 super.log(
 if (msg.length <= maxLength) msg
 else s"${msg.substring(0, maxLength - 3)}...")
 }
}

A class that mixes in this trait acquires a maxLength field. In general, a class gets a
field for each concrete field in one of its traits. These fields are not inherited; they
are simply added to the subclass. This may seem a subtle distinction, but it is
important. Let us look at the process more closely, with this version of the
SavingsAccount class:

Chapter 10 Traits128

ptg20087099

class SavingsAccount extends Account with ConsoleLogger with ShortLogger {
 var interest = 0.0
 def withdraw(amount: Double) {
 if (amount > balance) log("Insufficient funds")
 else ...
 }

Note that our subclass has a field interest. That’s a plain old field in the subclass.

Suppose Account has a field.

class Account {
 var balance = 0.0
}

The SavingsAccount class inherits that field in the usual way. A SavingsAccount object
is made up of all the fields of its superclasses, together with any fields in the
subclass. You can think of a SavingsAcccount object as “starting out” with a superclass
object (see Figure 10–2).

Figure 10–2 Fields from a trait are placed in the subclass.

In the JVM, a class can only extend one superclass, so the trait fields can’t be in-
herited in the same way. Instead, the Scala compiler adds the maxLength field to
the SavingsAccount class, next to the interest field.

CAUTION: When you extend a class and then change the superclass, the
subclass doesn’t have to be recompiled because the virtual machine un-
derstands inheritance. But when a trait changes, all classes that mix in that
trait must be recompiled.

You can think of concrete trait fields as “assembly instructions” for the classes
that use the trait. Any such fields become fields of the class.

12910.8 Concrete Fields in Traits

ptg20087099

10.9 Abstract Fields in Traits
An uninitialized field in a trait is abstract and must be overridden in a concrete
subclass.

For example, the following maxLength field is abstract:

trait ShortLogger extends Logger {
 val maxLength: Int // An abstract field
 abstract override def log(msg: String) { ... }
 super.log(
 if (msg.length <= maxLength) msg
 else s"${msg.substring(0, maxLength - 3)}...")
 // The maxLength field is used in the implementation
 }
 ...
}

When you use this trait in a concrete class, you must supply the maxLength field:

class SavingsAccount extends Account with ConsoleLogger with ShortLogger {
val maxLength = 20 // No override necessary

 ...
}

Now all logging messages are truncated after 20 characters.

This way of supplying values for trait parameters is particularly handy when
you construct objects on the fly. Let’s go back to our original savings account:

class SavingsAccount extends Account with Logger { ... }

Now, we can truncate the messages in an instance as follows:

val acct = new SavingsAccount with ConsoleLogger with ShortLogger {
 val maxLength = 20
}

10.10 Trait Construction Order
Just like classes, traits can have constructors, made up of field initializations and
other statements in the trait’s body. For example,

trait FileLogger extends Logger {
 val out = new PrintWriter("app.log") // Part of the trait’s constructor
 out.println(s"# ${java.time.Instant.now()}") // Also part of the constructor

 def log(msg: String) { out.println(msg); out.flush() }
}

Chapter 10 Traits130

ptg20087099

These statements are executed during construction of any object incorporating
the trait.

Constructors execute in the following order:

1. The superclass constructor is called first.

2. Trait constructors are executed after the superclass constructor but before the
class constructor.

3. Traits are constructed left-to-right.

4. Within each trait, the parents get constructed first.

5. If multiple traits share a common parent, and that parent has already been
constructed, it is not constructed again.

6. After all traits are constructed, the subclass is constructed.

For example, consider this class:

class SavingsAccount extends Account with FileLogger with ShortLogger

The constructors execute in the following order:

1. Account (the superclass).

2. Logger (the parent of the first trait).

3. FileLogger (the first trait).

4. ShortLogger (the second trait). Note that its Logger parent has already been
constructed.

5. SavingsAccount (the class).

NOTE:The constructor ordering is the reverse of the linearization of the class.
The linearization is a technical specification of all supertypes of a type. It is
defined by the rule:

If C extends C1 with C2 with ... with Cn, then lin(C) = C » lin(Cn) » ... »
lin(C2) » lin(C1)

Here, » means “concatenate and remove duplicates, with the right winning
out.” For example,

lin(SavingsAccount)

= SavingsAccount » lin(ShortLogger) » lin(FileLogger) » lin(Account)

= SavingsAccount » (ShortLogger » Logger) » (FileLogger » Logger) » lin(Account)

= SavingsAccount » ShortLogger » FileLogger » Logger » Account.

(For simplicity, I omitted the types ScalaObject, AnyRef, and Any that are at the
end of any linearization.)

13110.10 Trait Construction Order

ptg20087099

The linearization gives the order in which super is resolved in a trait. For
example, calling super in a ShortLogger invokes the FileLogger method, and
calling super in a FileLogger invokes the Logger method.

10.11 Initializing Trait Fields
Traits cannot have constructor parameters. Every trait has a single parameterless
constructor.

NOTE: Interestingly, the absence of constructor parameters is the only tech-
nical difference between traits and classes. Otherwise, traits can have all the
features of classes, such as concrete and abstract fields and superclasses.

This limitation can be a problem for traits that need some customization to
be useful. Consider a file logger. We would like to specify the log file, but we
can’t use a construction parameter:

val acct = new SavingsAccount with FileLogger("myapp.log")
 // Error: Can’t have constructor parameters for traits

You saw one possible approach in the preceding section. The FileLogger can have
an abstract field for the file name.

trait FileLogger extends Logger {
 val filename: String
 val out = new PrintStream(filename)
 def log(msg: String) { out.println(msg); out.flush() }
}

A class using this trait can override the filename field. Unfortunately, there is a
pitfall. The straightforward approach does not work:

val acct = new SavingsAccount with FileLogger {
 val filename = "myapp.log" // Does not work
}

The problem is the construction order. The FileLogger constructor runs before the
subclass constructor. Here, the subclass is a bit hard to see. The new statement
constructs an instance of an anonymous class extending SavingsAccount (the super-
class) with the FileLogger trait. The initialization of filename only happens in the
anonymous subclass. Actually, it doesn’t happen at all—before the subclass gets
its turn, a null pointer exception is thrown in the FileLogger constructor.

One remedy is an obscure feature that we described in Chapter 8: early definition.
Here is the correct version:

Chapter 10 Traits132

ptg20087099

val acct = new { // Early definition block after new
 val filename = "myapp.log"
} with SavingsAccount with FileLogger

It’s not pretty, but it solves our problem. The early definition happens before the
regular construction sequence. When the FileLogger is constructed, the filename
field is initialized.

If you need to do the same in a class, the syntax looks like this:

class SavingsAccount extends { // Early definition block after extends
 val filename = "savings.log"
} with Account with FileLogger {
 ... // SavingsAccount implementation
}

Another alternative is to use a lazy value in the FileLogger constructor, like this:

trait FileLogger extends Logger {
 val filename: String

lazy val out = new PrintStream(filename)
 def log(msg: String) { out.println(msg) } // No override needed
}

Then the out field is initialized when it is first used. At that time, the filename field
will have been set. However, lazy values are somewhat inefficient because they
are checked for initialization before every use.

10.12 Traits Extending Classes
As you have seen, a trait can extend another trait, and it is common to have a
hierarchy of traits. Less commonly, a trait can also extend a class. That class
becomes a superclass of any class mixing in the trait.

Here is an example. The LoggedException trait extends the Exception class:

trait LoggedException extends Exception with ConsoleLogger {
 def log() { log(getMessage()) }
}

A LoggedException has a log method to log the exception’s message. Note that the
log method calls the getMessage method that is inherited from the Exception superclass.

Now let’s form a class that mixes in this trait:

class UnhappyException extends LoggedException { // This class extends a trait
 override def getMessage() = "arggh!"
}

The superclass of the trait becomes the superclass of our class (see Figure 10–3).

13310.12 Traits Extending Classes

ptg20087099

Figure 10–3 The Superclass of a trait becomes the superclass of any class mixing in the
trait.

What if our class already extends another class? That’s OK, as long as it’s a
subclass of the trait’s superclass. For example,

class UnhappyException extends IOException with LoggedException

Here UnhappyException extends IOException, which already extends Exception. When
mixing in the trait, its superclass is already present, and there is no need to add it.

However, if our class extends an unrelated class, then it is not possible to mix in
the trait. For example, you cannot form the following class:

class UnhappyFrame extends JFrame with LoggedException
 // Error: Unrelated superclasses

It would be impossible to add both JFrame and Exception as superclasses.

10.13 Self Types L2
When a trait extends a class, there is a guarantee that the superclass is present
in any class mixing in the trait. Scala has an alternate mechanism for guaranteeing
this: self types.

When a trait starts out with

this: Type =>

then it can only be mixed into a subclass of the given type.

Let’s use this feature for our LoggedException:

trait LoggedException extends ConsoleLogger {
 this: Exception =>
 def log() { log(getMessage()) }
}

Note that the trait does not extend the Exception class. Instead, it has a self type of
Exception. That means it can only be mixed into subclasses of Exception.

Chapter 10 Traits134

ptg20087099

In the trait’s methods, we can call any methods of the self type. For example, the
call to getMessage() in the log method is valid, since we know that this must be an
Exception.

If you try to mix the trait into a class that doesn’t conform to the self type, an error
occurs.

val f = new JFrame with LoggedException
 // Error: JFrame isn’t a subtype of Exception, the self type of LoggedException

A trait with a self type is similar to a trait with a supertype. In both cases, it is
ensured that a type is present in a class that mixes in the trait.

There are a few situations where the self type notation is more flexible than traits
with supertypes. Self types can handle circular dependencies between traits. This
can happen if you have two traits that need each other.

Self types can also handle structural types—types that merely specify the methods
that a class must have, without naming the class. Here is the LoggedException using
a structural type:

trait LoggedException extends ConsoleLogger {
 this: { def getMessage() : String } =>
 def log() { log(getMessage()) }
}

The trait can be mixed into any class that has a getMessage method.

We discuss self types and structural types in more detail in Chapter 19.

10.14 What Happens under the Hood
Scala needs to translate traits into classes and interfaces of the JVM. You are not
required to know how this is done, but you may find it helpful for understanding
how traits work.

A trait that has only abstract methods is simply turned into a Java interface. For
example,

trait Logger {
 def log(msg: String)
}

turns into

public interface Logger { // Generated Java interface
 void log(String msg);
}

Trait methods become default methods. For example,

13510.14 What Happens under the Hood

ptg20087099

trait ConsoleLogger {
 def log(msg: String) { println(msg) }
}

becomes

public interface ConsoleLogger {
 default void log(String msg) { ... }
}

If the trait has fields, the Java interface has getter and setter methods.

trait ShortLogger extends Logger {
 val maxLength = 15 // A concrete field
 ...
}

is translated to

public interface ShortLogger extends Logger {
 int maxLength();
 void weird_prefix$maxLength_$eq(int);
 default void log(String msg) { ... } // Calls maxLength()
 default void $init$() { weird_prefix$maxLength_$eq(15); }
}

Of course, the interface can’t have any fields, and the getter and setter methods
are unimplemented. But the getter is called when the field value is needed.

The weird setter is needed to initialize the field. This happens in the $init$ method.

When the trait is mixed into a class, the class gets a maxLength field, and the getter
and setter are defined to get and set the field. The constructors of that class invokes
the $init$ method of the trait. For example,

class SavingsAccount extends Account with ConsoleLogger with ShortLogger

turns into

public class SavingsAccount extends Account
 implements ConsoleLogger, ShortLogger {
 private int maxLength;
 public int maxLength() { return maxLength; }
 public void weird_prefix$maxLength_$eq(int arg) { maxLength = arg; }
 public SavingsAccount() {
 super();
 ConsoleLogger.$init$();
 ShortLogger.$init$();
 }
 ...
}

Chapter 10 Traits136

ptg20087099

If a trait extends a superclass, the trait still turns into an interface. Of course, a
class mixing in the trait extends the superclass.

Exercises
1. The java.awt.Rectangle class has useful methods translate and grow that are un-

fortunately absent from classes such as java.awt.geom.Ellipse2D. In Scala, you
can fix this problem. Define a trait RectangleLike with concrete methods translate
and grow. Provide any abstract methods that you need for the implementation,
so that you can mix in the trait like this:

val egg = new java.awt.geom.Ellipse2D.Double(5, 10, 20, 30) with RectangleLike
egg.translate(10, -10)
egg.grow(10, 20)

2. Define a class OrderedPoint by mixing scala.math.Ordered[Point] into java.awt.Point.
Use lexicographic ordering, i.e. (x, y) < (x’, y’) if x < x’ or x = x’ and y < y’.

3. Look at the BitSet class, and make a diagram of all its superclasses and traits.
Ignore the type parameters (everything inside the [...]). Then give the
linearization of the traits.

4. Provide a CryptoLogger trait that encrypts the log messages with the Caesar ci-
pher. The key should be 3 by default, but it should be overridable by the user.
Provide usage examples with the default key and a key of –3.

5. The JavaBeans specification has the notion of a property change listener, a
standardized way for beans to communicate changes in their properties. The
PropertyChangeSupport class is provided as a convenience superclass for any bean
that wishes to support property change listeners. Unfortunately, a class that
already has another superclass—such as JComponent—must reimplement
the methods. Reimplement PropertyChangeSupport as a trait, and mix it into the
java.awt.Point class.

6. In the Java AWT library, we have a class Container, a subclass of Component that
collects multiple components. For example, a Button is a Component, but a Panel
is a Container. That’s the composite pattern at work. Swing has JComponent and
JButton, but if you look closely, you will notice something strange. JComponent
extends Container, even though it makes no sense to add other components to,
say, a JButton. Ideally, the Swing designers would have preferred the design
in Figure 10–4.

But that’s not possible in Java. Explain why not. How could the design be
executed in Scala with traits?

137Exercises

ptg20087099

Figure 10–4 A better design for Swing containers

7. Construct an example where a class needs to be recompiled when one of the
mixins changes. Start with class SavingsAccount extends Account with ConsoleLogger.
Put each class and trait in a separate source file. Add a field to Account. In Main
(also in a separate source file), construct a SavingsAccount and access the new
field. Recompile all files except for SavingsAccount and verify that the program
works. Now add a field to ConsoleLogger and access it in Main. Again, recompile
all files except for SavingsAccount. What happens? Why?

8. There are dozens of Scala trait tutorials with silly examples of barking dogs
or philosophizing frogs. Reading through contrived hierarchies can be tedious
and not very helpful, but designing your own is very illuminating. Make
your own silly trait hierarchy example that demonstrates layered traits,
concrete and abstract methods, and concrete and abstract fields.

9. In the java.io library, you add buffering to an input stream with a
BufferedInputStream decorator. Reimplement buffering as a trait. For simplicity,
override the read method.

10. Using the logger traits from this chapter, add logging to the solution of the
preceding problem that demonstrates buffering.

11. Implement a class IterableInputStream that extends java.io.InputStream with the
trait Iterable[Byte].

12. Using javap -c -private, analyze how the call super.log(msg) is translated to Java.
How does the same call invoke two different methods, depending on the
mixin order?

Chapter 10 Traits138

ptg20087099

This page intentionally left blank

ptg20087099Topics in This Chapter L1

11.1 Identifiers — page 142
11.2 Infix Operators — page 143
11.3 Unary Operators — page 143
11.4 Assignment Operators — page 144
11.5 Precedence — page 144
11.6 Associativity — page 145
11.7 The apply and update Methods — page 146
11.8 Extractors L2 — page 147
11.9 Extractors with One or No Arguments L2 — page 149
11.10 The unapplySeq Method L2 — page 149
11.11 Dynamic Invocation L2 — page 150
Exercises — page 153

Operators

ptg20087099This chapter covers in detail implementing your own operators—methods with
the same syntax as the familiar mathematical operators. Operators are often used
to build domain-specific languages—minilanguages embedded inside Scala. Implicit
conversions (type conversion functions that are applied automatically) are another
tool facilitating the creation of domain-specific languages. This chapter also dis-
cusses the special methods apply, update, and unapply. We end the chapter with a
discussion of dynamic invocations—method calls that can be intercepted at runtime,
so that arbitrary actions can occur depending on the method names and
arguments.

The key points of this chapter are:

• Identifiers contain either alphanumeric or operator characters.

• Unary and binary operators are method calls.

• Operator precedence depends on the first character, associativity on the last.

• The apply and update methods are called when evaluating expr(args).

• Extractors extract tuples or sequences of values from an input L2 .

• Types extending the Dynamic trait can inspect the names of methods and
arguments at runtime. L2

141

11Chapter

ptg20087099

11.1 Identifiers
The names of variables, functions, classes, and so on are collectively called iden-
tifiers. In Scala, you have more choices for forming identifiers than in Java. Of
course, you can follow the time-honored pattern: sequences of alphanumeric
characters, starting with an alphabetic character or an underscore, such as input1
or next_token.

As in Java, Unicode characters are allowed. For example, quantité or posó are valid
identifiers.

In addition, you can use operator characters in identifiers:

• The ASCII characters ! # % & * + - / : < = > ? @ \ ^ | ~ that are not letters,
digits, underscore, the .,; punctuation marks, parentheses () [] {}, or quotation
marks ' ` ".

• Unicode mathematical symbols or other symbols from the Unicode categories
Sm and So.

For example, ** and ÷ are valid identifiers. With the definition

val ÷ = scala.math.sqrt _

you can write ÷(2) to compute a square root. This may be a good idea, provided
one’s programming environment makes it easy to type the symbol.

NOTE: The identifiers @ # : = _ => <- <: <% >: fi ¨ are reserved in the
specification, and you cannot redefine them.

You can also form identifiers from alphanumerical characters, followed by an
underscore, and then a sequence of operator characters, such as

val happy_birthday_!!! = "Bonne anniversaire!!!"

This is probably not a good idea.

Finally, you can include just about any sequence of characters in backquotes. For
example,

val `val` = 42

That example is silly, but backquotes can sometimes be an “escape hatch.” For
example, in Scala, yield is a reserved word, but you may need to access a Java
method of the same name. Backquotes to the rescue: Thread.`yield`().

Chapter 11 Operators142

ptg20087099

11.2 Infix Operators
You can write

a identifier b

where identifier denotes a method with two parameters (one implicit, one explicit).
For example, the expression

1 to 10

is actually a method call

1.to(10)

This is called an infix expression because the operator is between the arguments.
The operator can contain letters, as in to, or it can contain operator characters—for
example,

1 -> 10

is a method call

1 .->(10)

To define an operator in your own class, simply define a method whose name is
that of the desired operator. For example, here is a Fraction class that multiplies
two fractions according to the law

(n1 / d1) × (n2 / d2) = (n1n2 / d1d2)

class Fraction(n: Int, d: Int) {
 private val num = ...
 private val den = ...
 ...
 def *(other: Fraction) = new Fraction(num * other.num, den * other.den)
}

11.3 Unary Operators
Infix operators are binary operators—they have two parameters. An operator
with one parameter is called a unary operator.

The four operators +, -, !, ~ are allowed as prefix operators, appearing before their
arguments. They are converted into calls to methods with the name unary_operator.
For example,

-a

means the same as a.unary_-.

If a unary operator follows its argument, it is a postfix operator. The expression

14311.3 Unary Operators

ptg20087099

a identifier

is the same as the method call a.identifier(). For example,

42 toString

is the same as

42.toString()

CAUTION: Postfix operators can lead to parsing errors. For example, the
code

val result = 42 toString
println(result)

yields the error message “too many arguments for method toString”. Since
parsing precedes type inference and overload resolution, the compiler does
not yet know that toString is a unary method. Instead, the code is parsed as
val result = 42.toString(println(result)).

For that reason, the compiler warns you if you use postfix operators.You can
turn the warning off with the compiler option -language:postfixOps, or by adding
the clause

import scala.language.postfixOps

11.4 Assignment Operators
An assignment operator has the form operator=, and the expression

a operator= b

means the same as

a = a operator b

For example, a += b is equivalent to a = a + b.

There are a few technical details.

• <=, >=, and != are not assignment operators.

• An operator starting with an = is never an assignment operator (==, ===, =/=,
and so on).

• If a has a method called operator=, then that method is called directly.

11.5 Precedence
When you have two or more operators in a row without parentheses, the ones
with higher precedence are executed first. For example, in the expression

Chapter 11 Operators144

ptg20087099

1 + 2 * 3

the * operator is evaluated first. Languages such as Java and C++ have a fixed
number of operators, and the language standard decrees which have prece-
dence over which. Scala can have arbitrary operators, so it uses a scheme that
works for all operators, while also giving the familiar precedence order to the
standard ones.

Except for assignment operators, the precedence is determined by the first character
of the operator.

Highest precedence: An operator character other than those below

* / %

+ -

:

< >

! =

&

^

|

A character that is not an operator character

Lowest precedence: Assignment operators

Characters in the same row yield operators with the same precedence. For
example, + and -> have the same precedence.

Postfix operators have lower precedence than infix operators:

a infixOp bpostfixOp

is the same as

(a infixOp b)postfixOp

11.6 Associativity
When you have a sequence of operators of the same precedence, the associativity
determines whether they are evaluated left-to-right or right-to-left. For example,
in the expression 17 – 2 – 9, one computes (17 – 2) – 9. The – operator is
left-associative.

14511.6 Associativity

ptg20087099

In Scala, all operators are left-associative except for

• operators that end in a colon (:)

• assignment operators

In particular, the :: operator for constructing lists is right-associative. For example,

1 :: 2 :: Nil

means

1 :: (2 :: Nil)

This is as it should be—we first need to form the list containing 2, and that list
becomes the tail of the list whose head is 1.

A right-associative binary operator is a method of its second argument. For
example,

2 :: Nil

means

Nil.::(2)

11.7 The apply and update Methods
Scala lets you extend the function call syntax

f(arg1, arg2, ...)

to values other than functions. If f is not a function or method, then this expression
is equivalent to the call

f.apply(arg1, arg2, ...)

unless it occurs to the left of an assignment. The expression

f(arg1, arg2, ...) = value

corresponds to the call

f.update(arg1, arg2, ..., value)

This mechanism is used in arrays and maps. For example,

val scores = new scala.collection.mutable.HashMap[String, Int]
scores("Bob") = 100 // Calls scores.update("Bob", 100)
val bobsScore = scores("Bob") // Calls scores.apply("Bob")

The apply method is also commonly used in companion objects to construct objects
without calling new. For example, consider a Fraction class.

Chapter 11 Operators146

ptg20087099

class Fraction(n: Int, d: Int) {
 ...
}

object Fraction {
 def apply(n: Int, d: Int) = new Fraction(n, d)
}

Because of the apply method, we can construct a fraction as Fraction(3, 4) instead
of new Fraction(3, 4). That sounds like a small thing, but if you have many Fraction
values, it is a welcome improvement:

val result = Fraction(3, 4) * Fraction(2, 5)

11.8 Extractors L2
An extractor is an object with an unapply method. You can think of the unapply
method as the opposite of the apply method of a companion object. An apply method
takes construction parameters and turns them into an object. An unapply
method takes an object and extracts values from it—usually the values from
which the object was constructed.

Consider the Fraction class from the preceding section. The apply method makes
a fraction from a numerator and denominator. An unapply method retrieves the
numerator and denominator. You can use it in a variable definition

var Fraction(a, b) = Fraction(3, 4) * Fraction(2, 5)
 // a, b are initialized with the numerator and denominator of the result

or a pattern match

case Fraction(a, b) => ... // a, b are bound to the numerator and denominator

(See Chapter 14 for more information about pattern matching.)

In general, a pattern match can fail. Therefore, the unapply method returns an
Option. It contains a tuple with one value for each matched variable. In our case,
we return an Option[(Int, Int)].

object Fraction {
 def unapply(input: Fraction) =
 if (input.den == 0) None else Some((input.num, input.den))
}

Just to show the possibility, this method returns None when the denominator is
zero, indicating no match.

A declaration

val Fraction(a, b) = f;

14711.8 Extractors

ptg20087099

becomes

val tupleOption = Fraction.unapply(f)
if (tupleOption == None) throw new MatchError
// tupleOption is Some((t1, t2))
val a = t1
val b = t1

NOTE: Note that in the declaration

val Fraction(a, b) = f;

neither the Fraction.apply method nor the Fraction constructor are called. In-
stead, the statement means: “Initialize a and b so that if they would be passed
to Fraction.apply, the result would be f.”

In the preceding example, the apply and unapply methods are inverses of one
another. However, that is not a requirement. You can use extractors to extract
information from an object of any type.

For example, suppose you want to extract first and last names from a string:

val author = "Cay Horstmann"
val Name(first, last) = author // Calls Name.unapply(author)

Provide an object Name with an unapply method that returns an Option[(String, String)].
If the match succeeds, return a pair with the first and last name. The components
of the pair will be bound to the variables in the pattern. Otherwise, return None.

object Name {
 def unapply(input: String) = {
 val pos = input.indexOf(" ")
 if (pos == -1) None
 else Some((input.substring(0, pos), input.substring(pos + 1)))
 }
}

NOTE: In this example, there is no Name class. The Name object is an extractor
for String objects.

Every case class automatically has apply and unapply methods. (Case classes are
discussed in Chapter 14.) For example, consider

case class Currency(value: Double, unit: String)

You can construct a Currency instance as

Currency(29.95, "EUR") // Calls Currency.apply

Chapter 11 Operators148

ptg20087099

You can extract values from a Currency object:

case Currency(amount, "USD") => println(s"$$$amount") // Calls Currency.unapply

11.9 Extractors with One or No Arguments L2
In Scala, there are no tuples with one component. If the unapply method extracts
a single value, it should just return an Option of the target type. For example,

object Number {
 def unapply(input: String): Option[Int] =
 try {
 Some(input.trim.toInt)
 } catch {
 case ex: NumberFormatException => None
 }
}

With this extractor, you can extract a number from a string:

val Number(n) = "1729"

An extractor can just test its input without extracting any value. In that case, the
unapply method should return a Boolean. For example,

object IsCompound {
 def unapply(input: String) = input.contains(" ")
}

You can use this extractor to add a test to a pattern, for example

author match {
 case Name(first, IsCompound()) => ...
 // Matches if the last name is compound, such as van der Linden
 case Name(first, last) => ...
}

11.10 The unapplySeq Method L2
To extract an arbitrary sequence of values, the method needs to be called unapplySeq.
It returns an Option[Seq[A]], where A is the type of the extracted values. For example,
a Name extractor can produce a sequence of the name’s components:

object Name {
 def unapplySeq(input: String): Option[Seq[String]] =
 if (input.trim == "") None else Some(input.trim.split("\\s+"))
}

Now you can match for any number of variables:

14911.10 The unapplySeq Method

ptg20087099

author match {
 case Name(first, last) => ...
 case Name(first, middle, last) => ...
 case Name(first, "van", "der", last) => ...
 ...
}

CAUTION: Do not supply both an unapply and an unapplySeq methods with
the same argument types.

11.11 Dynamic Invocation L2
Scala is a strongly typed language that reports type errors at compile time rather
than at runtime. If you have an expression x.f(args), and your program compiles,
then you know for sure that x has a method f that can accept the given arguments.
However, there are situations where it is desirable to define methods in a running
program. This is common with object-relational mappers in dynamic languages
such as Ruby or JavaScript. Objects that represent database tables have methods
findByName, findById, and so on, with the method names matching the table columns.
For database entities, the column names can be used to get and set fields, such
as person.lastName = "Doe".

In Scala, you can do this too. If a type extends the trait scala.Dynamic, then method
calls, getters, and setters are rewritten as calls to special methods that can inspect
the name of the original call and the parameters, and then take arbitrary actions.

NOTE: Dynamic types are an “exotic” feature, and the compiler wants your
explicit consent when you implement such a type.You do that by adding the
import statement

import scala.language.dynamics

Users of such types do not need to provide the import statement.

Here are the details of the rewriting. Consider obj.name, where obj belongs to a
class that’s a subtype of Dynamic. Here is what the Scala compiler does with it.

1. If name is a known method or field of obj, it is processed in the usual way.

2. If obj.name is followed by (arg1, arg2, ...),

a. If none of the arguments are named (of the form name=arg), pass the
arguments on to applyDynamic:

obj.applyDynamic("name")(arg1, arg2, ...)

Chapter 11 Operators150

ptg20087099

b. If at least one of the arguments is named, pass the name/value pairs on
to applyDynamicNamed:

obj.applyDynamicNamed("name")((name1, arg1), (name2, arg2), ...)

Here, name1, name2, and so on are strings with the argument names, or "" for
unnamed arguments.

3. If obj.name is to the left of an =, call

obj.updateDynamic("name")(rightHandSide)

4. Otherwise call

obj.selectDynamic("sel")

NOTE: The calls to updateDynamic, applyDynamic, and applyDynamicNamed have
two sets of parentheses, one for the selector name and one for the arguments.
This construct is explained in Chapter 12.

Let’s look at a few examples. Suppose person is an instance of a type extending
Dynamic. A statement

person.lastName = "Doe"

is replaced with a call

person.updateDynamic("lastName")("Doe")

The Person class must have such a method:

class Person {
 ...
 def updateDynamic(field: String)(newValue: String) { ... }
}

It is then up to you to implement the updateDynamic method. For example, if you
are implementing an object-relational mapper, you might update the cached
entity and mark it as changed, so that it can be persisted in the database.

Conversely, a statement

val name = person.lastName

turns into

val name = name.selectDynamic("lastName")

The selectDynamic method would simply look up the field value.

Method calls that don’t involve named parameters are translated to applyDynamic
calls. For example,

15111.11 Dynamic Invocation

ptg20087099

val does = people.findByLastName("Doe")

becomes

val does = people.applyDynamic("findByLastName")("Doe")

and

val johnDoes = people.find(lastName = "Doe", firstName = "John")

becomes

val johnDoes = people.applyDynamicNamed("find")
 (("lastName", "Doe"), ("firstName", "John"))

It is then up to you to implement applyDynamic and applyDynamicNamed as calls that
retrieve the matching objects.

Here is a concrete example. Suppose we want to be able to dynamically look up
and set elements of a java.util.Properties instance, using the dot notation:

 val sysProps = new DynamicProps(System.getProperties)
 sysProps.username = "Fred" // Sets the "username" property to "Fred"
 val home = sysProps.java_home // Gets the "java.home" property

For simplicity, we replace periods in the property name with underscores.
(Exercise 11 on page 154 shows how to keep the periods.)

The DynamicProps class extends the Dynamic trait and implements the updateDynamic and
selectDynamic methods:

class DynamicProps(val props: java.util.Properties) extends Dynamic {
 def updateDynamic(name: String)(value: String) {
 props.setProperty(name.replaceAll("_", "."), value)
 }
 def selectDynamic(name: String) =
 props.getProperty(name.replaceAll("_", "."))
}

As an additional enhancement, let us use the add method to add key/value pairs
in bulk, using named arguments:

sysProps.add(username="Fred", password="Secret")

Then we need to supply the applyDynamicNamed method in the DynamicProps class. Note
that the name of the method is fixed. We are only interested in arbitrary parameter
names.

Chapter 11 Operators152

ptg20087099

class DynamicProps(val props: java.util.Properties) extends Dynamic {
 ...
 def applyDynamicNamed(name: String)(args: (String, String)*) {
 if (name != "add") throw new IllegalArgumentException
 for ((k, v) <- args)
 props.setProperty(k.replaceAll("_", "."), v)
 }
}

These examples are only meant to illustrate the mechanism—I don’t think that
it is a good idea to use the dot notation for map access. Like operator overloading,
dynamic invocation is a feature that is best used with restraint.

Exercises
1. According to the precedence rules, how are 3 + 4 -> 5 and 3 -> 4 + 5 evaluated?

2. The BigInt class has a pow method, not an operator. Why didn’t the Scala library
designers choose ** (as in Fortran) or ^ (as in Pascal) for a power operator?

3. Implement the Fraction class with operations + - * /. Normalize fractions, for
example, turning 15/–6 into –5/2. Divide by the greatest common divisor,
like this:

class Fraction(n: Int, d: Int) {
 private val num: Int = if (d == 0) 1 else n * sign(d) / gcd(n, d);
 private val den: Int = if (d == 0) 0 else d * sign(d) / gcd(n, d);
 override def toString = s"$num/$den"
 def sign(a: Int) = if (a > 0) 1 else if (a < 0) -1 else 0
 def gcd(a: Int, b: Int): Int = if (b == 0) abs(a) else gcd(b, a % b)
 ...
}

4. Implement a class Money with fields for dollars and cents. Supply +, - operators
as well as comparison operators == and <. For example, Money(1, 75) + Money(0,
50) == Money(2, 25) should be true. Should you also supply * and / operators?
Why or why not?

5. Provide operators that construct an HTML table. For example,

Table() | "Java" | "Scala" || "Gosling" | "Odersky" || "JVM" | "JVM, .NET"

should produce

<table><tr><td>Java</td><td>Scala</td></tr><tr><td>Gosling...

153Exercises

ptg20087099

6. Provide a class ASCIIArt whose objects contain figures such as

 /_/\
(' ')
(-)
 | | |
(__|__)

Supply operators for combining two ASCIIArt figures horizontally

 /_/\ -----
(' ') / Hello \
(-) < Scala |
 | | | \ Coder /
(__|__) -----

or vertically. Choose operators with appropriate precedence.

7. Implement a class BitSequence that stores a sequence of 64 bits packed in a Long
value. Supply apply and update operators to get and set an individual bit.

8. Provide a class Matrix. Choose whether you want to implement 2 × 2 matrices,
square matrices of any size, or m × n matrices. Supply operations + and *. The
latter should also work with scalars, for example, mat * 2. A single element
should be accessible as mat(row, col).

9. Define an object PathComponents with an unapply operation class that extracts
the directory path and file name from an java.nio.file.Path. For example, the
file /home/cay/readme.txt has directory path /home/cay and file name readme.txt.

10. Modify the PathComponents object of the preceding exercise to instead define an
unapplySeq operation that extracts all path segments. For example, for the file
/home/cay/readme.txt, you should produce a sequence of three segments: home,
cay, and readme.txt.

11. Improve the dynamic property selector in Section 11.11, “Dynamic Invoca-
tion,” on page 150 so that one doesn’t have to use underscores. For example,
sysProps.java.home should select the property with key "java.home". Use a helper
class, also extending Dynamic, that contains partially completed paths.

12. Define a class XMLElement that models an XML element with a name, attributes,
and child elements. Using dynamic selection and method calls, make it pos-
sible to select paths such as rootElement.html.body.ul(id="42").li, which should
return all li elements inside ul with id attribute 42 inside body inside html.

13. Provide an XMLBuilder class for dynamically building XML elements, as
builder.ul(id="42", style="list-style: lower-alpha;"), where the method name
becomes the element name and the named arguments become the attributes.
Come up with a convenient way of building nested elements.

Chapter 11 Operators154

ptg20087099

This page intentionally left blank

ptg20087099Topics in This Chapter L1

12.1 Functions as Values — page 157
12.2 Anonymous Functions — page 159
12.3 Functions with Function Parameters — page 160
12.4 Parameter Inference — page 160
12.5 Useful Higher-Order Functions — page 161
12.6 Closures — page 162
12.7 SAM Conversions — page 163
12.8 Currying — page 164
12.9 Control Abstractions — page 166
12.10 The return Expression — page 167
Exercises — page 168

Higher-Order Functions

ptg20087099Scala mixes object orientation with functional features. In a functional program-
ming language, functions are first-class citizens that can be passed around and
manipulated just like any other data types. This is very useful whenever you
want to pass some action detail to an algorithm. In a functional language, you
just wrap that detail into a function that you pass as a parameter. In this chapter,
you will see how to be productive with functions that use or return functions.

Highlights of the chapter include:

• Functions are “first-class citizens” in Scala, just like numbers.

• You can create anonymous functions, usually to give them to other functions.

• A function argument specifies behavior that should be executed later.

• Many collection methods take function parameters, applying a function to
the values of the collection.

• There are syntax shortcuts that allow you to express function parameters in
a way that is short and easy to read.

• You can create functions that operate on blocks of code and look much like
the built-in control statements.

12.1 Functions as Values
In Scala, a function is a first-class citizen, just like a number. You can store a
function in a variable:

157

12Chapter

ptg20087099

import scala.math._
val num = 3.14
val fun = ceil _

This code sets num to 3.14 and fun to the ceil function.

The _ behind the ceil function indicates that you really meant the function, and
you didn’t just forget to supply the arguments.

When you try this code in the REPL, the type of num is, not surprisingly, Double.
The type of fun is reported as (Double) => Double—that is, a function receiving and
returning a Double.

NOTE: Technically, the _ turns the ceil method into a function. In Scala, you
cannot manipulate methods, only functions.The type of the function is (Double)
=> Double, with an arrow. In contrast, the type of the ceil method is
(Double)Double, without an arrow. There is no way for you to work with such a
type, but you will find it in compiler and REPL messages.

The _ suffix is not necessary when you use a method name in a context where
a function is expected. For example, the following is legal:

val f: (Double) => Double = ceil // No underscore needed

NOTE: The ceil method is a method of the scala.math package object. If you
have a method from a class, the syntax for turning it into a function is slightly
different:

val f = (_: String).charAt(_: Int)
 // A function (String, Int) => Char

Alternatively, you can specify the type of the function instead of the parameter
types:

val f: (String, Int) => Char = _.charAt(_)

What can you do with a function? Two things:

• Call it.

• Pass it around, by storing it in a variable or giving it to a function as a
parameter.

Here is how to call the function stored in fun:

fun(num) // 4.0

As you can see, the normal function call syntax is used. The only difference is
that fun is a variable containing a function, not a fixed function.

Chapter 12 Higher-Order Functions158

ptg20087099

Here is how you can give fun to another function:

Array(3.14, 1.42, 2.0).map(fun) // Array(4.0, 2.0, 2.0)

The map method accepts a function, applies it to all values in an array, and returns
an array with the function values. In this chapter, you will see many other
methods that accept functions as parameters.

12.2 Anonymous Functions
In Scala, you don’t have to give a name to each function, just like you don’t have
to give a name to each number. Here is an anonymous function:

(x: Double) => 3 * x

This function multiplies its argument by 3.

Of course, you can store this function in a variable:

val triple = (x: Double) => 3 * x

That’s just as if you had used a def:

def triple(x: Double) = 3 * x

But you don’t have to name the function. You can just pass it to another function:

Array(3.14, 1.42, 2.0).map((x: Double) => 3 * x)
 // Array(9.42, 4.26, 6.0)

Here, we tell the map method: “Multiply each element by 3.”

NOTE: If you prefer, you can enclose the function argument in braces instead
of parentheses, for example:

Array(3.14, 1.42, 2.0).map{ (x: Double) => 3 * x }

This is more common when a method is used in infix notation (without the dot).

Array(3.14, 1.42, 2.0) map { (x: Double) => 3 * x }

NOTE: Anything defined with def (in the REPL or a class or object) is a
method, not a function:

scala> def triple(x: Double) = 3 * x
triple: (x: Double)Double

Note the method type (x: Double)Double. In contrast, a function definition has
a function type:

scala> val triple = (x: Double) => 3 * x
triple: Double => Double

15912.2 Anonymous Functions

ptg20087099

12.3 Functions with Function Parameters
In this section, you will see how to implement a function that takes another
function as a parameter. Here is an example:

def valueAtOneQuarter(f: (Double) => Double) = f(0.25)

Note that the parameter can be any function receiving and returning a Double. The
valueAtOneQuarter function computes the value of that function at 0.25.

For example,

valueAtOneQuarter(ceil _) // 1.0
valueAtOneQuarter(sqrt _) // 0.5 (because 0.5 × 0.5 = 0.25)

What is the type of valueAtOneQuarter? It is a function with one parameter, so its
type is written as

(parameterType) => resultType

The resultType is clearly Double, and the parameterType is already given in the function
header as (Double) => Double. Therefore, the type of valueAtOneQuarter is

((Double) => Double) => Double

Since valueAtOneQuarter is a function that receives a function, it is called a
higher-order function.

A higher-order function can also produce a function. Here is a simple example:

def mulBy(factor : Double) = (x : Double) => factor * x

For example, mulBy(3) returns the function (x : Double) => 3 * x which you have
seen in the preceding section. The power of mulBy is that it can deliver functions
that multiply by any amount:

val quintuple = mulBy(5)
quintuple(20) // 100

The mulBy function has a parameter of type Double, and it returns a function of type
(Double) => Double. Therefore, its type is

(Double) => ((Double) => Double)

12.4 Parameter Inference
When you pass an anonymous function to another function or method, Scala
helps you out by deducing types when possible. For example, you don’t have to
write

valueAtOneQuarter((x: Double) => 3 * x) // 0.75

Chapter 12 Higher-Order Functions160

ptg20087099

Since the valueAtOneQuarter method knows that you will pass in a (Double) => Double
function, you can just write

valueAtOneQuarter((x) => 3 * x)

As a special bonus, for a function that has just one parameter, you can omit the
() around the parameter:

valueAtOneQuarter(x => 3 * x)

It gets better. If a parameter occurs only once on the right-hand side of the =>,
you can replace it with an underscore:

valueAtOneQuarter(3 * _)

This is the ultimate in comfort, and it is also pretty easy to read: a function that
multiplies something by 3.

Keep in mind that these shortcuts only work when the parameter types are
known.

val fun = 3 * _ // Error: Can’t infer types
val fun = 3 * (_: Double) // OK
val fun: (Double) => Double = 3 * _ // OK because we specified the type for fun

Of course, the last definition is contrived. But it shows what happens when a
function is passed to a parameter (which has just such a type).

NOTE: Specifying the type of _ is useful for turning methods into functions.
For example, (_: String).length is a function String => Int, and
(_: String).substring(_:Int, _: Int) is a function (String, Int, Int) => String.

12.5 Useful Higher-Order Functions
A good way of becoming comfortable with higher-order functions is to practice
with some common (and obviously useful) methods in the Scala collections library
that take function parameters.

You have seen map, which applies a function to all elements of a collection and
returns the result. Here is a quick way of producing a collection containing 0.1,
0.2, . . . , 0.9:

(1 to 9).map(0.1 * _)

NOTE:There is a general principle at work. If you want a sequence of values,
see if you can transform it from a simpler one.

Try this to print a triangle:

16112.5 Useful Higher-Order Functions

ptg20087099

(1 to 9).map("*" * _).foreach(println _)

The result is

*
**

Here, we also use foreach, which is like map except that its function doesn’t return
a value. The foreach method simply applies the function to each argument.

The filter method yields all elements that match a particular condition. For
example, here’s how to get only the even numbers in a sequence:

(1 to 9).filter(_ % 2 == 0) // 2, 4, 6, 8

Of course, that’s not the most efficient way of getting this result .

The reduceLeft method takes a binary function—that is, a function with two param-
eters—and applies it to all elements of a sequence, going from left to right. For
example,

(1 to 9).reduceLeft(_ * _)

is

1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9

or, strictly speaking,

(...((1 * 2) * 3) * ... * 9)

Note the compact form of the multiplication function: _ * _. Each underscore
denotes a separate parameter.

You also need a binary function for sorting. For example,

"Mary had a little lamb".split(" ").sortWith(_.length < _.length)

yields an array that is sorted by increasing length: Array("a", "had", "Mary", "lamb",
"little").

12.6 Closures
In Scala, you can define a function inside any scope: in a package, in a class, or
even inside another function or method. In the body of a function, you can access

Chapter 12 Higher-Order Functions162

ptg20087099

any variables from an enclosing scope. That may not sound so remarkable, but
note that your function may be called when the variable is no longer in scope.

Here is an example: the mulBy function from Section 12.3, “Functions with Function
Parameters,” on page 160.

def mulBy(factor : Double) = (x : Double) => factor * x

Consider these calls:

val triple = mulBy(3)
val half = mulBy(0.5)
println(s"${triple(14)} ${half(14)}") // Prints 42 7

Let’s look at them in slow motion.

1. The first call to mulBy sets the parameter variable factor to 3. That variable is
referenced in the body of the function (x : Double) => factor * x, which is stored
in triple. Then the parameter variable factor is popped off the runtime stack.

2. Next, mulBy is called again, now with factor set to 0.5. That variable is referenced
in the body of the function (x : Double) => factor * x, which is stored in half.

Each of the returned functions has its own setting for factor.

Such a function is called a closure. A closure consists of code together with the
definitions of any nonlocal variables that the code uses.

These functions are actually implemented as objects of a class, with an instance
variable factor and an apply method that contains the body of the function.

It doesn’t really matter how a closure is implemented. It is the job of the Scala
compiler to ensure that your functions can access nonlocal variables.

NOTE: Closures aren’t difficult or surprising if they are a natural part of the
language. Many modern languages, such as JavaScript, Ruby, and Python,
support closures. Java, as of version 8, has closures in the form of lambda
expressions.

12.7 SAM Conversions
In Scala, you pass a function as a parameter whenever you want to tell another
function what action to carry out. Prior to Java 8, this was not possible in Java
without defining a class and a method for the action. For example, to implement
a button callback, one had to use this Scala code (or its Java equivalent):

16312.7 SAM Conversions

ptg20087099

var counter = 0

val button = new JButton("Increment")
button.addActionListener(new ActionListener {
 override def actionPerformed(event: ActionEvent) {
 counter += 1
 }
})

In Java 8, it is possible to specify such actions with lambda expressions, which
are closely related to functions in Scala. Fortunately, that means that as of
Scala 2.12, one can pass Scala functions to Java code expecting a “SAM inter-
face”—that is, any Java interface with a single abstract method. (Such interfaces
are officially called functional interfaces in Java.)

Simply pass the function to the addActionListener method, like this:

button.addActionListener(event => counter += 1)

Note that the conversion from a Scala function to a Java SAM interface only works
for function literals, not for variables holding functions. The following does
not work:

val listener = (event: ActionListener) => println(counter)
button.addActionListener(listener)
 // Cannot convert a nonliteral function to a Java SAM interface

The simplest remedy is to declare the variable holding the function as a Java
SAM interface:

val listener: ActionListener = event => println(counter)
button.addActionListener(listener) // Ok

Alternatively, you can turn a function variable into a literal expression:

val exit = (event: ActionEvent) => if (counter > 9) System.exit(0)
button.addActionListener(exit(_))

12.8 Currying
Currying (named after logician Haskell Brooks Curry) is the process of turning
a function that takes two arguments into a function that takes one argument.
That function returns a function that consumes the second argument.

Huh? Let’s look at an example. This function takes two arguments:

val mul = (x: Int, y: Int) => x * y

This function takes one argument, yielding a function that takes one argument:

val mulOneAtATime = (x: Int) => ((y: Int) => x * y)

Chapter 12 Higher-Order Functions164

ptg20087099

To multiply two numbers, you call

mulOneAtATime(6)(7)

Strictly speaking, the result of mulOneAtATime(6) is the function (y: Int) => 6 * y. That
function is applied to 7, yielding 42.

When you use def, there is a shortcut for defining such curried methods in Scala:

def mulOneAtATime(x: Int)(y: Int) = x * y

NOTE:Recall that anything defined with def (in the REPL or a class or object)
is a method, not a function. When defining curried methods with def, you can
use multiple parentheses:

scala> def mulOneAtATime(x: Int)(y: Int) = x * y
mulOneAtATime: (x: Int)(y: Int)Int

Note the method type (x: Int)(y: Int)Int. In contrast, when you define a
function, you must use multiple arrows, not multiple parentheses:

scala> val mulOneAtATime = (x: Int) => (y: Int) => x * y
mulOneAtATime: Int => (Int => Int)

As you can see, multiple parameters are just a frill, not an essential feature of
a programming language. That’s an amusing theoretical insight, but it has one
practical use in Scala. Sometimes, you can use currying for a method parameter
so that the type inferencer has more information.

Here is a typical example. The corresponds method can compare whether two
sequences are the same under some comparison criterion. For example,

val a = Array("Hello", "World")
val b = Array("hello", "world")
a.corresponds(b)(_.equalsIgnoreCase(_))

Note that the function _.equalsIgnoreCase(_) is passed as a curried parameter, in a
separate set of (...). When you look into the Scaladoc, you will see that corresponds
is declared as

def corresponds[B](that: Seq[B])(p: (A, B) => Boolean): Boolean

The that sequence and the predicate function p are separate curried parame-
ters. The type inferencer can figure out what B is from the type of that, and then
it can use that information when analyzing the function that is passed for p.

In our example, that is a String sequence. Therefore, the predicate is expected to
have type (String, String) => Boolean. With that information, the compiler can accept
.equalsIgnoreCase() as a shortcut for (a: String, b: String) => a.equalsIgnoreCase(b).

16512.8 Currying

ptg20087099

12.9 Control Abstractions
In Scala, one can model a sequence of statements as a function with no parameters
or return value. For example, here is a function that runs some code in a thread:

def runInThread(block: () => Unit) {
 new Thread {
 override def run() { block() }
 }.start()
}

The code is given as a function of type () => Unit. However, when you call this
function, you need to supply an unsightly () =>:

runInThread { () => println("Hi"); Thread.sleep(10000); println("Bye") }

To avoid the () => in the call, use the call by name notation: Omit the (), but not
the =>, in the parameter declaration and in the call to the parameter function:

def runInThread(block: => Unit) {
 new Thread {
 override def run() { block }
 }.start()
}

Then the call becomes simply

runInThread { println("Hi"); Thread.sleep(10000); println("Bye") }

This looks pretty nice. Scala programmers can build control abstractions: functions
that look like language keywords. For example, we can implement a function that
is used exactly as a while statement. Or, we can innovate a bit and define an until
statement that works like while, but with an inverted condition:

def until(condition: => Boolean)(block: => Unit) {
 if (!condition) {
 block
 until(condition)(block)
 }
}

Here is how you use until:

var x = 10
until (x == 0) {
 x -= 1
 println(x)
}

Chapter 12 Higher-Order Functions166

ptg20087099

The technical term for such a function parameter is a call-by-name parameter.
Unlike a regular (or call-by-value) parameter, the parameter expression is not
evaluated when the function is called. After all, we don’t want x == 0 to evaluate
to false in the call to until. Instead, the expression becomes the body of a function
with no arguments. That function is passed as a parameter.

Look carefully at the until function definition. Note that it is curried: It first con-
sumes the condition, then the block as a second parameter. Without currying, the
call would look like this:

until(x == 0, { ... })

which wouldn’t be as pretty.

12.10 The return Expression
In Scala, you don’t use a return statement to return function values. The return
value of a function is simply the value of the function body.

However, you can use return to return a value from an anonymous function to
an enclosing named function. This is useful in control abstractions. For example,
consider this function:

def indexOf(str: String, ch: Char): Int = {
 var i = 0
 until (i == str.length) {
 if (str(i) == ch) return i
 i += 1
 }
 return -1
}

Here, the anonymous function { if (str(i) == ch) return i; i += 1 } is passed to
until. When the return expression is executed, the enclosing named function indexOf
terminates and returns the given value.

If you use return inside a named function, you need to specify its return type. For
example, in the indexOf function above, the compiler was not able to infer that it
returns an Int.

The control flow is achieved with a special exception that is thrown by the return
expression in the anonymous function, passed out of the until function, and
caught in the indexOf function.

CAUTION: If the exception is caught in a try block, before it is delivered to
the named function, then the value will not be returned.

16712.10 The return Expression

ptg20087099

Exercises
1. Write a function values(fun: (Int) => Int, low: Int, high: Int) that yields a collec-

tion of function inputs and outputs in a given range. For example, values(x =>
x * x, -5, 5) should produce a collection of pairs (-5, 25), (-4, 16), (-3, 9), . . . ,
(5, 25).

2. How do you get the largest element of an array with reduceLeft?

3. Implement the factorial function using to and reduceLeft, without a loop or
recursion.

4. The previous implementation needed a special case when n < 1. Show how
you can avoid this with foldLeft. (Look at the Scaladoc for foldLeft. It’s like
reduceLeft, except that the first value in the chain of combined values is supplied
in the call.)

5. Write a function largest(fun: (Int) => Int, inputs: Seq[Int]) that yields the largest
value of a function within a given sequence of inputs. For example, largest(x
=> 10 * x - x * x, 1 to 10) should return 25. Don’t use a loop or recursion.

6. Modify the previous function to return the input at which the output is largest.
For example, largestAt(x => 10 * x - x * x, 1 to 10) should return 5. Don’t use
a loop or recursion.

7. It’s easy to get a sequence of pairs, for example:

val pairs = (1 to 10) zip (11 to 20)

Now, suppose you want to do something with such a sequence—say, add
up the values. But you can’t do

pairs.map(_ + _)

The function _ + _ takes two Int parameters, not an (Int, Int) pair. Write a
function adjustToPair that receives a function of type (Int, Int) => Int and returns
the equivalent function that operates on a pair. For example, adjustToPair(_ *
_)((6, 7)) is 42.

Then use this function in conjunction with map to compute the sums of the
elements in pairs.

8. In Section 12.8, “Currying,” on page 164, you saw the corresponds method used
with two arrays of strings. Make a call to corresponds that checks whether the
elements in an array of strings have the lengths given in an array of integers.

9. Implement corresponds without currying. Then try the call from the preceding
exercise. What problem do you encounter?

10. Implement an unless control abstraction that works just like if, but with an
inverted condition. Does the first parameter need to be a call-by-name
parameter? Do you need currying?

Chapter 12 Higher-Order Functions168

ptg20087099

This page intentionally left blank

ptg20087099Topics in This Chapter A2

13.1 The Main Collections Traits — page 172
13.2 Mutable and Immutable Collections — page 173
13.3 Sequences — page 174
13.4 Lists — page 175
13.5 Sets — page 177
13.6 Operators for Adding or Removing Elements — page 178
13.7 Common Methods — page 180
13.8 Mapping a Function — page 182
13.9 Reducing, Folding, and Scanning A3 — page 184
13.10 Zipping — page 187
13.11 Iterators — page 188
13.12 Streams A3 — page 189
13.13 Lazy Views A3 — page 190
13.14 Interoperability with Java Collections — page 191
13.15 Parallel Collections — page 193
Exercises — page 194

Collections

ptg20087099In this chapter, you will learn about the Scala collections library from a library
user’s point of view. In addition to arrays and maps, which you have already
encountered, you will see other useful collection types. There are many methods
that can be applied to collections, and this chapter presents them in an
orderly way.

The key points of this chapter are:

• All collections extend the Iterable trait.

• The three major categories of collections are sequences, sets, and maps.

• Scala has mutable and immutable versions of most collections.

• A Scala list is either empty, or it has a head and a tail which is again a list.

• Sets are unordered collections.

• Use a LinkedHashSet to retain the insertion order or a SortedSet to iterate in sorted
order.

• + adds an element to an unordered collection; +: and :+ prepend or append
to a sequence; ++ concatenates two collections; - and -- remove elements.

• The Iterable and Seq traits have dozens of useful methods for common
operations. Check them out before writing tedious loops.

• Mapping, folding, and zipping are useful techniques for applying a function
or operation to the elements of a collection.

171

13Chapter

ptg20087099

13.1 The Main Collections Traits
Figure 13–1 shows the most important traits that make up the Scala collections
hierarchy.

Figure 13–1 Key traits in the Scala collections hierarchy

An Iterable is any collection that can yield an Iterator with which you can access
all elements in the collection:

val coll = ... // some Iterable
val iter = coll.iterator
while (iter.hasNext)

do something with iter.next()

This is the most basic way of traversing a collection. However, as you will see
throughout this chapter, usually there are more convenient ways.

A Seq is an ordered sequence of values, such as an array or list. An IndexedSeq allows
fast random access through an integer index. For example, an ArrayBuffer is indexed
but a linked list is not.

A Set is an unordered collection of values. In a SortedSet, elements are always
visited in sorted order.

A Map is a set of (key, value) pairs. A SortedMap visits the entries as sorted by the
keys. See Chapter 4 for more information.

This hierarchy is similar to that in Java, with a couple of welcome improvements:

1. Maps are a part of the hierarchy and not a separate hierarchy.

2. IndexedSeq is the supertype of arrays but not of lists, allowing you to tell the
two apart.

Chapter 13 Collections172

ptg20087099

NOTE: In Java, both ArrayList and LinkedList implement a common List
interface, making it difficult to write efficient code when random access is
preferred, for example when searching in a sorted sequence. This was a
flawed design decision in the original Java collections framework. In a later
version, a marker interface RandomAccess was added to deal with this problem.

Each Scala collection trait or class has a companion object with an apply method
for constructing an instance of the collection. For example,

Iterable(0xFF, 0xFF00, 0xFF0000)
Set(Color.RED, Color.GREEN, Color.BLUE)
Map(Color.RED -> 0xFF0000, Color.GREEN -> 0xFF00, Color.BLUE -> 0xFF)
SortedSet("Hello", "World")

This is called the “uniform creation principle.”

There are methods toSeq, toSet, toMap, and so on, as well as a generic to[C] method,
that you can use to translate between collection types.

val coll = Seq(1, 1, 2, 3, 5, 8, 13)
val set = coll.toSet
val buffer = coll.to[ArrayBuffer]

NOTE: You can use the == operator to compare any sequence, set, or map
with another collection of the same kind. For example, Seq(1, 2, 3) == (1 to 3)
yields true. But comparing different kinds, for example, Seq(1, 2, 3) == Set(1,
2, 3) always yields false. In that case, use the sameElements method.

13.2 Mutable and Immutable Collections
Scala supports both mutable and immutable collections. An immutable collection
can never change, so you can safely share a reference to it, even in a multi-
threaded program. For example, there is a scala.collection.mutable.Map and a
scala.collection.immutable.Map. Both have a common supertype scala.collection.Map
(which, of course, contains no mutation operations).

NOTE: When you have a reference to a scala.collection.immutable.Map, you
know that nobody can change the map. If you have a scala.collection.Map,
then you can’t change it, but someone else might.

Scala gives a preference to immutable collections. The companion objects
in the scala.collection package produce immutable collections. For example,
scala.collection.Map("Hello" -> 42) is an immutable map.

17313.2 Mutable and Immutable Collections

ptg20087099

Moreover, the scala package and the Predef object, which are always imported,
have type aliases List, Set, and Map that refer to the immutable traits. For example,
Predef.Map is the same as scala.collection.immutable.Map.

TIP: With the statement

import scala.collection.mutable

you can get an immutable map as Map and a mutable one as mutable.Map.

If you had no prior experience with immutable collections, you may wonder how
you can do useful work with them. The key is that you can create new collections
out of old ones. For example, if numbers is an immutable set, then

numbers + 9

is a new set containing the numbers together with 9. If 9 was already in the set,
you just get a reference to the old set. This is particularly natural in recursive
computations. For example, here we compute the set of all digits of an integer:

def digits(n: Int): Set[Int] =
 if (n < 0) digits(-n)
 else if (n < 10) Set(n)
 else digits(n / 10) + (n % 10)

This method starts out with a set containing a single digit. At each step, another
digit is added. However, adding the digit doesn’t mutate a set. Instead, in each
step, a new set is constructed.

13.3 Sequences
Figure 13–2 shows the most important immutable sequences.

Figure 13–2 Immutable sequences

Chapter 13 Collections174

ptg20087099

A Vector is the immutable equivalent of an ArrayBuffer: an indexed sequence with
fast random access. Vectors are implemented as trees where each node has up
to 32 children. For a vector with one million elements, one needs four layers of
nodes. (Since 103 ª 210, 106 ª 324.) Accessing an element in such a list will take
4 hops, whereas in a linked list it would take an average of 500,000.

A Range represents an integer sequence, such as 0,1,2,3,4,5,6,7,8,9 or 10,20,30. Of
course a Range object doesn’t store all sequence values but only the start, end, and
increment. You construct Range objects with the to and until methods, as described
in Chapter 2.

We discuss lists in the next section, and streams in Section 13.12, “Streams,” on
page 189.

See Figure 13–3 for the most useful mutable sequences.

Figure 13–3 Mutable sequences

We discussed array buffers in Chapter 3. Stacks, queues, and priority queues are
standard data structures that are useful for implementing certain algorithms.
If you are familiar with these structures, the Scala implementations won’t
surprise you.

13.4 Lists
In Scala, a list is either Nil (that is, empty) or an object with a head element and a
tail that is again a list. For example, consider the list

val digits = List(4, 2)

The value of digits.head is 4, and digits.tail is List(2). Moreover, digits.tail.head is
2 and digits.tail.tail is Nil.

The :: operator makes a new list from a given head and tail. For example,

9 :: List(4, 2)

17513.4 Lists

ptg20087099

is List(9, 4, 2). You can also write that list as

9 :: 4 :: 2 :: Nil

Note that :: is right-associative. With the :: operator, lists are constructed from
the end:

9 :: (4 :: (2 :: Nil))

In Java or C++, one uses an iterator to traverse a linked list. You can do this in
Scala as well, but it is often more natural to use recursion. For example, the
following function computes the sum of all elements in a linked list of integers:

def sum(lst: List[Int]): Int =
 if (lst == Nil) 0 else lst.head + sum(lst.tail)

Or, if you prefer, you can use pattern matching:

def sum(lst: List[Int]): Int = lst match {
 case Nil => 0
 case h :: t => h + sum(t) // h is lst.head, t is lst.tail
}

Note the :: operator in the second pattern. It “destructures” the list into head
and tail.

NOTE: Recursion works so naturally because the tail of a list is again a list.

Of course, for this particular example, you do not need to use recursion at all.
The Scala library already has a sum method:

List(9, 4, 2).sum // Yields 15

If you want to mutate list elements in place, you can use a ListBuffer, a data
structure that is backed by a linked list with a reference to the last node. This
makes it efficient to add or remove elements at either end of the list.

However, adding or removing elements in the middle is not efficient. For example,
suppose you want to remove every second element of a mutable list. With a Java
LinkedList, you use an iterator and call remove after every second call to next. There
is no analogous operation on a ListBuffer. Of course, removing multiple elements
by their index positions is very inefficient in a linked list. Your best bet is to
generate a new list with the result (see Exercise 3 on page 194).

NOTE: There are deprecated LinkedList and DoubleLinkedList classes and an
internal MutableList class that you should not be using.

Chapter 13 Collections176

ptg20087099

13.5 Sets
A set is a collection of distinct elements. Trying to add an existing element has
no effect. For example,

Set(2, 0, 1) + 1

is the same as Set(2, 0, 1).

Unlike lists, sets do not retain the order in which elements are inserted. By default,
sets are implemented as hash sets in which elements are organized by the value
of the hashCode method. (In Scala, as in Java, every object has a hashCode method.)

For example, if you iterate over

Set(1, 2, 3, 4, 5, 6)

the elements are visited in the order

5 1 6 2 3 4

You may wonder why sets don’t retain the element order. It turns out that you
can find elements much faster if you allow sets to reorder their elements. Finding
an element in a hash set is much faster than in an array or list.

A linked hash set remembers the order in which elements were inserted. It keeps
a linked list for this purpose. For example,

val weekdays = scala.collection.mutable.LinkedHashSet("Mo", "Tu", "We", "Th", "Fr")

If you want to iterate over elements in sorted order, use a sorted set:

val numbers = scala.collection.mutable.SortedSet(1, 2, 3, 4, 5)

A bit set is an implementation of a set of non-negative integers as a sequence of
bits. The ith bit is 1 if i is present in the set. This is an efficient implementation as
long as the maximum element is not too large. Scala provides both mutable and
immutable BitSet classes.

The contains method checks whether a set contains a given value. The subsetOf
method checks whether all elements of a set are contained in another set.

val digits = Set(1, 7, 2, 9)
digits contains 0 // false
Set(1, 2) subsetOf digits // true

The union, intersect, and diff methods carry out the usual set operations. If you
prefer, you can write them as |, &, and &~. You can also write union as ++ and
difference as --. For example, if we have the set

val primes = Set(2, 3, 5, 7)

then digits union primes is Set(1, 2, 3, 5, 7, 9), digits & primes is Set(2, 7), and
digits -- primes is Set(1, 9).

17713.5 Sets

ptg20087099

13.6 Operators for Adding or Removing Elements
When you want to add or remove an element, or a number of elements, the op-
erators to use depend on the collection type. Table 13–1 provides a summary.

Table 13–1 Operators for Adding and Removing Elements

Collection TypeDescriptionOperator

Seq, MapThe kth sequence element or the map value
for key k.

coll(k)
(i.e., coll.apply(k))

SeqA collection of the same type as coll to
which elem has been appended or
prepended.

coll :+ elem
elem +: coll

Set, MapA collection of the same type as coll to
which the given elements have been added.

coll + elem
coll + (e1, e2, ...)

Set, Map, ArrayBufferA collection of the same type as coll from
which the given elements have been
removed.

coll - elem
coll - (e1, e2, ...)

IterableA collection of the same type as coll,
containing the elements of both collections.

coll ++ coll2
coll2 ++: coll

Set, Map, ArrayBufferA collection of the same type as coll from
which the elements of coll2 have been
removed. (For sequences, use diff.)

coll -- coll2

ListA list with the element or given list
prepended to lst. Same as +: and ++:.

elem :: lst
lst2 ::: lst

ListSame as list ++: list2.list ::: list2

SetSet union, intersection, difference. | is the
same as ++, and &~ is the same as --.

set | set2
set & set2
set &~ set2

Mutable
collections

Modifies coll by adding or removing the
given elements.

coll += elem
coll += (e1, e2, ...)
coll ++= coll2
coll -= elem
coll -= (e1, e2, ...)
coll --= coll2

ArrayBufferModifies coll by prepending the given
element or collection.

elem +=: coll
coll2 ++=: coll

Chapter 13 Collections178

ptg20087099

Generally, + is used for adding an element to an unordered collection, while +:
and :+ add an element to the beginning or end of an ordered collection.

Vector(1, 2, 3) :+ 5 // Yields Vector(1, 2, 3, 5)
1 +: Vector(1, 2, 3) // Yields Vector(1, 1, 2, 3)

Note that +:, like all operators ending in a colon, is right-associative, and that it
is a method of the right operand.

These operators return new collections (of the same type as the original ones)
without modifying the original. Mutable collections have a += operator that
mutates the left-hand side. For example,

val numbers = ArrayBuffer(1, 2, 3)
numbers += 5 // Adds 5 to numbers

With an immutable collection, you can use += or :+= with a var, like this:

var numbers = Set(1, 2, 3)
numbers += 5 // Sets numbers to the immutable set numbers + 5
var numberVector = Vector(1, 2, 3)
numberVector :+= 5 // += does not work since vectors don’t have a + operator

To remove an element, use the - operator:

Set(1, 2, 3) - 2 // Yields Set(1, 3)

You can add multiple elements with the ++ operator:

coll ++ coll2

yields a collection of the same type as coll that contains both coll and coll2.
Similarly, the -- operator removes multiple elements.

TIP:As you can see, Scala provides many operators for adding and removing
elements. Here is a summary:

1. Append (:+) or prepend (+:) to a sequence.

2. Add (+) to an unordered collection.

3. Remove with the - operator.

4. Use ++ and -- for bulk add and remove.

5. Mutations are += ++= -= --=.

6. For lists, many Scala programmers prefer the :: and ::: operators.

7. Stay away from ++: +=: ++=:.

NOTE: For lists, you can use +: instead of :: for consistency, with one
exception: Pattern matching (case h::t) does not work with the +: operator.

17913.6 Operators for Adding or Removing Elements

ptg20087099

13.7 Common Methods
Table 13–2 gives a brief overview of the most important methods of the Iterable
trait, sorted by functionality.

Table 13–2 Important Methods of the Iterable Trait

DescriptionMethods

Returns the first or last element; or, that element
as an Option.

head, last, headOption, lastOption

Returns everything but the first or last element.tail, init

Returns the length, or true if the length is zero.length, isEmpty

Applies a function to all elements; see Section 13.8.map(f), flatMap(f), foreach(f),
transform(f)collect(pf)

Applies a binary operation to all elements in a
given order; see Section 13.9.

reduceLeft(op), reduceRight(op),
foldLeft(init)(op), foldRight(init)(op)

Applies a binary operation to all elements in
arbitrary order; see Section 13.15.

reduce(op), fold(init)(op),
aggregate(init)(op, combineOp)

Returns the sum or product (provided the element
type can be implicitly converted to the Numeric trait),
or the maximum or minimum (provided the
element type can be converted to the Ordered trait).

sum, product, max, min

Returns the count of elements fulfilling the
predicate; true if all elements do, or at least one
element does.

count(pred), forall(pred), exists(pred)

Returns all elements fulfilling or not fulfilling the
predicate; the pair of both.

filter(pred), filterNot(pred),
partition(pred)

Returns the first elements fulfilling pred; all but
those elements; the pair of both.

takeWhile(pred), dropWhile(pred),
span(pred)

Returns the first n elements; everything but the
first n elements; the pair of both.

take(n), drop(n), splitAt(n)

Returns the last n elements; everything but the last
n elements.

takeRight(n), dropRight(n)

Returns the elements in the range from until to, or
a view thereto; see Section 13.13.

slice(from, to), view(from, to)

(Continues)

Chapter 13 Collections180

ptg20087099

Table 13–2 Important Methods of the Iterable Trait (Continued)

DescriptionMethods

Returns pairs of elements from this collection and
another; see Section 13.10.

zip(coll2), zipAll(coll2, fill, fill2),
zipWithIndex

Returns iterators of subcollections of length n;
grouped yields elements with index 0 until n, then
with index n until 2 * n, and so on; sliding yields
elements with index 0 until n, then with index 1
until n + 1, and so on.

grouped(n), sliding(n)

Yields a map whose keys are k(x) for all elements
x. The value for each key is the collection of
elements with that key.

groupBy(k)

Makes a string of all elements, adding the given
strings before the first, between each, and after
the last element. The second method appends that
string to a string builder.

mkString(before, between, after),
addString(sb, before, between, after)

Converts the collection to a collection of the
specified type.

toIterable, toSeq, toIndexedSeq,
toArray, toBuffer, toList, toStream,
toSet, toVector, toMap, to[C]

The Seq trait adds several methods to the Iterable trait. Table 13–3 shows the most
important ones.

Table 13–3 Important Methods of the Seq Trait

DescriptionMethods

Returns true if this sequence contains the given
element or sequence; if it starts or ends with the given
sequence.

contains(elem), containsSlice(seq),
startsWith(seq), endsWith(seq)

Returns the index of the first or last occurrence of the
given element or element sequence.

indexOf(elem), lastIndexOf(elem),
indexOfSlice(seq),
lastIndexOfSlice(seq)

Returns the index of the first element fulfilling pred.indexWhere(pred)

Returns the length of the longest sequence of elements
fulfilling pred, starting with 0 or n.

prefixLength(pred),
segmentLength(pred, n)

(Continues)

18113.7 Common Methods

ptg20087099

Table 13–3 Important Methods of the Seq Trait (Continued)

DescriptionMethods

Returns a copy of this sequence, with fill appended
until the length is n.

padTo(n, fill)

Returns the “multiset” intersection or difference of
the sequences. For example, if a contains five 1s and
b contains two, then a intersect b contains two (the
smaller count), and a diff b contains three (the
difference).

intersect(seq), diff(seq)

The reverse of this sequence.reverse

The sequence sorted using the element ordering, the
binary less function, or a function f that maps each
element to an ordered type.

sorted, sortWith(less), sortBy(f)

Returns an iterator over all permutations or
combinations (subsequences of length n).

permutations, combinations(n)

NOTE: Note that these methods never mutate a collection. They return a
collection of the same type as the original. This is sometimes called the
“uniform return type” principle.

13.8 Mapping a Function
You may want to transform all elements of a collection. The map method applies
a function to a collection and yields a collection of the results. For example, given a
list of strings

val names = List("Peter", "Paul", "Mary")

you get a list of the uppercased strings as

names.map(_.toUpperCase) // List("PETER", "PAUL", "MARY")

This is exactly the same as

for (n <- names) yield n.toUpperCase

If the function yields a collection instead of a single value, you may want to
concatenate all results. In that case, use flatMap. For example, consider

def ulcase(s: String) = Vector(s.toUpperCase(), s.toLowerCase())

Then names.map(ulcase) is

 List(Vector("PETER", "peter"), Vector("PAUL", "paul"), Vector("MARY", "mary"))

Chapter 13 Collections182

ptg20087099

but names.flatMap(ulcase) is

 List("PETER", "peter", "PAUL", "paul", "MARY", "mary")

TIP: If you use flatMap with a function that returns an Option, the resulting
collection contains all values v for which the function returns Some(v).

NOTE: The map and flatMap methods are important because they are used
for translating for expressions. For example, the expression

for (i <- 1 to 10) yield i * i

is translated to

(1 to 10).map(i => i * i)

and

for (i <- 1 to 10; j <- 1 to i) yield i * j

becomes

(1 to 10).flatMap(i => (1 to i).map(j => i * j))

Why flatMap? See Exercise 9 on page 195.

The transform method is the in-place equivalent of map. It applies to mutable collec-
tions, and replaces each element with the result of a function. For example, the
following code changes all buffer elements to uppercase:

val buffer = ArrayBuffer("Peter", "Paul", "Mary")
buffer.transform(_.toUpperCase)

If you just want to apply a function for its side effect and don’t care about the
function values, use foreach:

names.foreach(println)

The collect method works with partial functions—functions that may not be defined
for all inputs. It yields a collection of all function values of the arguments on
which it is defined. For example,

"-3+4".collect { case '+' => 1 ; case '-' => -1 } // Vector(-1, 1)

The groupBy method yields a map whose keys are the function values, and whose
values are the collections of elements whose function value is the given key. For
example,

val words = ...
val map = words.groupBy(_.substring(0, 1).toUpper)

builds a map that maps "A" to all words starting with A, and so on.

18313.8 Mapping a Function

ptg20087099

13.9 Reducing, Folding, and Scanning A3
The map method applies a unary function to all elements of a collection. The
methods that we discuss in this section combine elements with a binary function.
The call c.reduceLeft(op) applies op to successive elements, like this:

 .
 .
 .
 op
 / \
 op coll(3)
 / \
 op coll(2)
 / \
coll(0) coll(1)

For example,

List(1, 7, 2, 9).reduceLeft(_ - _)

is

 -
 / \
 - 9
 / \
 - 2
 / \
 1 7

or

((1 - 7) - 2) - 9 = 1 - 7 - 2 - 9 = -17

The reduceRight method does the same, but it starts at the end of the collection.
For example,

List(1, 7, 2, 9).reduceRight(_ - _)

is

1 - (7 - (2 - 9)) = 1 - 7 + 2 - 9 = -13

Often, it is useful to start the computation with an initial element other than the
initial element of a collection. The call coll.foldLeft(init)(op) computes

Chapter 13 Collections184

ptg20087099

 .
 .
 .
 op
 / \
 op coll(2)
 / \
 op coll(1)
 / \
init coll(0)

For example,

List(1, 7, 2, 9).foldLeft(0)(_ - _)

is

0 - 1 - 7 - 2 - 9 = -19

NOTE: The initial value and the operator are separate “curried” parameters
so that Scala can use the type of the initial value for type inference in the
operator. For example, in List(1, 7, 2, 9).foldLeft("")(_ + _), the initial value
is a string, so the operator must be a function (String, Int) => String.

You can also write the foldLeft operation with the /: operator, like this:

(0 /: List(1, 7, 2, 9))(_ - _)

The /: is supposed to remind you of the shape of the tree.

NOTE: With the /: operator, the initial value is the first operand. Note that,
since the operator ends with a colon, it is a method of the second operand.

There is a foldRight or :\ variant as well, computing

 .
 .
 .
 op
 / \
coll(n-3) op
 / \
 coll(n-2) op
 / \
 coll(n-1) init

18513.9 Reducing, Folding, and Scanning

ptg20087099

These examples don’t seem to be very useful. Of course, coll.reduceLeft(_ + _) or
coll.foldLeft(0)(_ + _) computes the sum, but you can get that directly with coll.sum.

Folding is sometimes attractive as a replacement for a loop. Suppose, for example,
we want to count the frequencies of the letters in a string. One way is to visit
each letter and update a mutable map.

val freq = scala.collection.mutable.Map[Char, Int]()
for (c <- "Mississippi") freq(c) = freq.getOrElse(c, 0) + 1
// Now freq is Map('i' -> 4, 'M' -> 1, 's' -> 4, 'p' -> 2)

Here is another way of thinking about this process. At each step, combine the
frequency map and the newly encountered letter, yielding a new frequency map.
That’s a fold:

 .
 .
 .
 op
 / \
 op 's'
 / \
 op 'i'
 / \
empty map 'M'

What is op? The left operand is the partially filled map, and the right operand is
the new letter. The result is the augmented map. It becomes the input to the next
call to op, and at the end, the result is a map with all counts. The code is

(Map[Char, Int]() /: "Mississippi") {
 (m, c) => m + (c -> (m.getOrElse(c, 0) + 1))
}

Note that this is an immutable map. We compute a new map at each step.

NOTE: It is possible to replace any while loop with a fold. Build a data structure
that combines all variables updated in the loop, and define an operation that
implements one step through the loop. I am not saying that this is always a
good idea, but you may find it interesting that loops and mutations can be
eliminated in this way.

Finally, the scanLeft and scanRight methods combine folding and mapping. You
get a collection of all intermediate results. For example,

(1 to 10).scanLeft(0)(_ + _)

Chapter 13 Collections186

ptg20087099

yields all partial sums:

Vector(0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55)

13.10 Zipping
The methods of the preceding section apply an operation to adjacent elements
in the same collection. Sometimes, you have two collections, and you want
to combine corresponding elements. For example, suppose you have a list of
product prices and corresponding quantities:

val prices = List(5.0, 20.0, 9.95)
val quantities = List(10, 2, 1)

The zip method lets you combine them into a list of pairs. For example,

prices zip quantities

is a List[(Double, Int)]:

 List[(Double, Int)] = List((5.0, 10), (20.0, 2), (9.95, 1))

The method is called “zip” because it combines the two collections like the teeth
of a zipper.

Now it is easy to apply a function to each pair.

(prices zip quantities) map { p => p._1 * p._2 }

The result is a list of prices:

List(50.0, 40.0, 9.95)

The total price of all items is then

((prices zip quantities) map { p => p._1 * p._2 }) sum

If one collection is shorter than the other, the result has as many pairs as the
shorter collection. For example,

List(5.0, 20.0, 9.95) zip List(10, 2)

is

List((5.0, 10), (20.0, 2))

The zipAll method lets you specify defaults for the shorter list:

List(5.0, 20.0, 9.95).zipAll(List(10, 2), 0.0, 1)

is

List((5.0, 10), (20.0, 2), (9.95, 1))

The zipWithIndex method returns a list of pairs where the second component is the
index of each element. For example,

18713.10 Zipping

ptg20087099

"Scala".zipWithIndex

is

Vector(('S', 0), ('c', 1), ('a', 2), ('l', 3), ('a', 4))

This can be useful if you want to compute the index of an element with a certain
property. For example,

"Scala".zipWithIndex.max

is ('l', 3). The index of the value with the largest encoding is

"Scala".zipWithIndex.max._2

13.11 Iterators
You can obtain an iterator from a collection with the iterator method. This isn’t
as common as in Java or C++ because you can usually get what you need more
easily with one of the methods from the preceding sections.

However, iterators are useful for collections that are expensive to construct fully.
For example, Source.fromFile yields an iterator because it might not be efficient to
read an entire file into memory. There are a few Iterable methods that yield an
iterator, such as grouped or sliding.

When you have an iterator, you can iterate over the elements with the next and
hasNext methods.

while (iter.hasNext)
do something with iter.next()

If you prefer, you can use a for loop instead:

for (elem <- iter)
do something with elem

Both loops end up moving the iterator to the end of the collection, after which it
is no longer usable.

Sometimes, you want to be able to look at the next element before deciding
whether to consume it. In that case, use the buffered method to turn an Iterator
into a BufferedIterator. The head method yields the next element without advancing
the iterator.

val iter = scala.io.Source.fromFile(filename).buffered
while (iter.hasNext && iter.head.isWhitespace) iter.next
 // Now iter points to the first non-whitespace character

The Iterator class defines a number of methods that work identically to the
methods on collections. In particular, all Iterable methods listed in Section 13.7,
“Common Methods,” on page 180 are available, except for head, headOption, last,

Chapter 13 Collections188

ptg20087099

lastOption, tail, init, takeRight, and dropRight. After calling a method such as map,
filter, count, sum, or even length, the iterator is at the end of the collection, and you
can’t use it again. With other methods, such as find or take, the iterator is past the
found element or the taken ones.

If you find it too tedious to work with an iterator, you can use a method such as
toArray, toIterable, toSeq, toSet, or toMap to copy the values into a collection.

13.12 Streams A3
In the preceding sections, you saw that an iterator is a “lazy” alternative to a
collection. You get the elements as you need them. If you don’t need any more
elements, you don’t pay for the expense of computing the remaining ones.

However, iterators are fragile. Each call to next mutates the iterator. Streams offer
an immutable alternative. A stream is an immutable list in which the tail is
computed lazily—that is, only when you ask for it.

Here is a typical example:

def numsFrom(n: BigInt): Stream[BigInt] = n #:: numsFrom(n + 1)

The #:: operator is like the :: operator for lists, but it constructs a stream.

When you call

val tenOrMore = numsFrom(10)

you get a stream object that is displayed as

Stream(10, ?)

The tail is unevaluated. If you call

tenOrMore.tail.tail.tail

you get

Stream(13, ?)

Stream methods are executed lazily. For example,

val squares = numsFrom(1).map(x => x * x)

yields

Stream(1, ?)

You have to call squares.tail to force evaluation of the next entry.

If you want to get more than one answer, you can invoke take followed by force,
which forces evaluation of all values. For example,

squares.take(5).force

produces Stream(1, 4, 9, 16, 25).

18913.12 Streams

ptg20087099

Of course, you don’t want to call

squares.force // No!

That call would attempt to evaluate all members of an infinite stream, causing
an OutOfMemoryError.

You can construct a stream from an iterator. For example, the Source.getLines
method returns an Iterator[String]. With that iterator, you can only visit the lines
once. A stream caches the visited lines so you can revisit them:

val words = Source.fromFile("/usr/share/dict/words").getLines.toStream
words // Stream(A, ?)
words(5) // Aachen
words // Stream(A, A's, AOL, AOL's, Aachen, ?)

NOTE: Scala streams are quite different from streams in Java 8. However,
lazy views, covered in the next section, are conceptually equivalent to Java 8
streams.

13.13 Lazy Views A3
In the preceding section, you saw that stream methods are computed lazily, de-
livering results only when they are needed. You can get a similar effect with
other collections by applying the view method. This method yields a collection
on which methods are applied lazily. For example,

val palindromicSquares = (1 to 1000000).view
 .map(x => x * x)
 .filter(x => x.toString == x.toString.reverse)

yields a collection that is unevaluated. (Unlike a stream, not even the first element
is evaluated.) When you call

palindromicSquares.take(10).mkString(",")

then enough squares are generated until ten palindromes have been found,
and then the computation stops. Unlike streams, views do not cache any values.
If you call palindromicSquares.take(10).mkString(",") again, the computation starts over.

As with streams, use the force method to force evaluation of a lazy view. You get
back a collection of the same type as the original.

Chapter 13 Collections190

ptg20087099

CAUTION: The apply method forces evaluation of the entire view. Instead of
calling lazyView(i), call lazyView.take(i).last.

When you obtain a view into a slice of a mutable collection, any mutations affect
the original collection. For example,

ArrayBuffer buffer = ...
buffer.view(10, 20).transform(x => 0)

clears the given slice and leaves the other elements unchanged.

13.14 Interoperability with Java Collections
At times you may need to use a Java collection, and you will likely miss the rich
set of methods that you get with Scala collections. Conversely, you may want to
build up a Scala collection and then pass it to Java code. The JavaConversions object
provides a set of conversions between Scala and Java collections.

Give the target value an explicit type to trigger the conversion. For example,

import scala.collection.JavaConversions._
val props: scala.collection.mutable.Map[String, String] = System.getProperties()

If you are worried about unwanted implicit conversions, just import the ones
you need, for example:

import scala.collection.JavaConversions.propertiesAsScalaMap

Table 13–4 shows the conversions from Scala to Java collections.

And Table 13–5 shows the opposite conversions from Java to Scala collections.

Note that the conversions yield wrappers that let you use the target interface to
access the original type. For example, if you use

val props: scala.collection.mutable.Map[String, String] = System.getProperties()

then props is a wrapper whose methods call the methods of the underlying Java
object. If you call

props("com.horstmann.scala") = "impatient"

then the wrapper calls put("com.horstmann.scala", "impatient") on the underlying
Properties object.

19113.14 Interoperability with Java Collections

ptg20087099

Table 13–4 Conversions from Scala Collections to Java Collections

To Type in java.utilFrom Type in scala.collectionImplicit Function

CollectionIterableasJavaCollection

IterableIterableasJavaIterable

IteratorIteratorasJavaIterator

EnumerationIteratorasJavaEnumeration

ListSeqseqAsJavaList

Listmutable.SeqmutableSeqAsJavaList

Listmutable.BufferbufferAsJavaList

SetSetsetAsJavaSet

Setmutable.SetmutableSetAsJavaSet

MapMapmapAsJavaMap

Mapmutable.MapmutableMapAsJavaMap

DictionaryMapasJavaDictionary

concurrent.ConcurrentMapmutable.ConcurrentMapasJavaConcurrentMap

Table 13–5 Conversions from Java Collections to Scala Collections

To Type in scala.collectionFrom Type in java.utilImplicit Function

IterableCollectioncollectionAsScalaIterable

IterableIterableiterableAsScalaIterable

IteratorIteratorasScalaIterator

IteratorEnumerationenumerationAsScalaIterator

mutable.BufferListasScalaBuffer

mutable.SetSetasScalaSet

mutable.MapMapmapAsScalaMap

mutable.MapDictionarydictionaryAsScalaMap

mutable.MapPropertiespropertiesAsScalaMap

mutable.ConcurrentMapconcurrent.ConcurrentMapasScalaConcurrentMap

Chapter 13 Collections192

ptg20087099

13.15 Parallel Collections
It is hard to write correct concurrent programs, yet concurrency is often required
nowadays to keep all processors of a computer busy. Scala offers a particularly
attractive solution for manipulating large collections. Such tasks often parallelize
naturally. For example, to compute the sum of all elements, multiple threads can
concurrently compute the sums of different sections; in the end, these partial re-
sults are summed up. Of course it is troublesome to schedule these concurrent
activities—but with Scala, you don’t have to. If coll is a large collection, then

coll.par.sum

computes the sum concurrently. The par method produces a parallel implementation
of the collection. That implementation parallelizes the collection methods
whenever possible. For example,

coll.par.count(_ % 2 == 0)

counts the even numbers in coll by evaluating the predicate on subcollections in
parallel and combining the results.

You can parallelize a for loop by applying .par to the collection over which you
iterate, like this:

for (i <- (0 until 100000).par) print(s" $i")

Try it out—the numbers are printed in the order they are produced by the threads
working on the task.

In a for/yield loop, the results are assembled in order. Try this:

(for (i <- (0 until 100000).par) yield i) == (0 until 100000)

CAUTION: If parallel computations mutate shared variables, the result is
unpredictable. For example, do not update a shared counter:

var count = 0
for (c <- coll.par) { if (c % 2 == 0) count += 1 } // Error!

The parallel collections returned by the par method belong to types that extend
the ParSeq, ParSet, or ParMap traits. These are not subtypes of Seq, Set, or Map, and you
cannot pass a parallel collection to a method that expects a sequential collection.

You can convert a parallel collection back to a sequential one with the seq method.

val result = coll.par.filter(p).seq

Not all methods can be parallelized. For example, reduceLeft and reduceRight re-
quire that each operator is applied in sequence. There is an alternate method,
reduce, that operates on parts of the collection and combines the results. For this

19313.15 Parallel Collections

ptg20087099

to work, the operator must be associative—it must fulfill (a op b) op c = a op (b op c).
For example, addition is associative but subtraction is not: (a – b) – c π a – (b – c).

Similarly, there is a fold method that operates on parts of the collection. Unfortu-
nately, it is not as flexible as foldLeft or foldRight—both arguments of the operator
must be elements. That is, you can do coll.par.fold(0)(_ + _), but you cannot do a
more complex fold such as the one at the end of Section 13.9, “Reducing, Folding,
and Scanning,” on page 184.

To solve this problem, there is an even more general aggregate that applies an
operator to parts of the collection, and then uses another operator to combine
the results. For example, str.par.aggregate(Set[Char]())(_ + _, _ ++ _) is the equivalent
of str.foldLeft(Set[Char]())(_ + _), forming a set of all distinct characters in str.

NOTE: By default, parallel collections use a global fork-join pool, which is
well suited for processor-intensive calculations. If you carry out parallel
computation steps that block, you should choose a different “execution
context”—see Chapter 17.

Exercises
1. Write a function that, given a string, produces a map of the indexes of all

characters. For example, indexes("Mississippi") should return a map associating
'M' with the set {0}, 'i' with the set {1, 4, 7, 10}, and so on. Use a mutable map
of characters to mutable sets. How can you ensure that the set is sorted?

2. Repeat the preceding exercise, using an immutable map of characters to lists.

3. Write a function that removes every second element from a ListBuffer. Try it
two ways. Call remove(i) for all even i starting at the end of the list. Copy every
second element to a new list. Compare the performance.

4. Write a function that receives a collection of strings and a map from strings
to integers. Return a collection of integers that are values of the map corre-
sponding to one of the strings in the collection. For example, given Array("Tom",
"Fred", "Harry") and Map("Tom" -> 3, "Dick" -> 4, "Harry" -> 5), return Array(3, 5).
Hint: Use flatMap to combine the Option values returned by get.

5. Implement a function that works just like mkString, using reduceLeft.

6. Given a list of integers lst, what is (lst :\ List[Int]())(_ :: _)? (List[Int]() /:
lst)(_ :+ _)? How can you modify one of them to reverse the list?

7. In Section 13.10, “Zipping,” on page 187, the expression (prices zip quantities)
map { p => p._1 * p._2 } is a bit inelegant. We can’t do (prices zip quantities) map
{ _ * _ } because _ * _ is a function with two arguments, and we need a
function with one argument that is a tuple. The tupled method of the Function

Chapter 13 Collections194

ptg20087099

object changes a function with two arguments to one that takes a tuple. Apply
tupled to the multiplication function so you can map it over the list of pairs.

8. Write a function that turns an array of Double values into a two-dimensional
array. Pass the number of columns as a parameter. For example, with Array(1,
2, 3, 4, 5, 6) and three columns, return Array(Array(1, 2, 3), Array(4, 5, 6)).
Use the grouped method.

9. The Scala compiler transforms a for/yield expression

for (i <- 1 to 10; j <- 1 to i) yield i * j

to invocations of flatMap and map, like this:

(1 to 10).flatMap(i => (1 to i).map(j => i * j))

Explain the use of flatMap. Hint: What is (1 to i).map(j => i * j) when i is 1, 2, 3?

What happens when there are three generators in the for/yield expression?

10. The method java.util.TimeZone.getAvailableIDs yields time zones such as Africa/
Cairo and Asia/Chungking. Which continent has the most time zones? Hint: groupBy.

11. Harry Hacker reads a file into a string and wants to use a parallel collection
to update the letter frequencies concurrently on portions of the string. He
uses the following code:

val frequencies = new scala.collection.mutable.HashMap[Char, Int]
for (c <- str.par) frequencies(c) = frequencies.getOrElse(c, 0) + 1

Why is this a terrible idea? How can he really parallelize the computation?
(Hint: Use aggregate.)

195Exercises

ptg20087099
Topics in This Chapter

A2

14.1 A Better Switch — page 198
14.2 Guards — page 199
14.3 Variables in Patterns — page 199
14.4 Type Patterns — page 200
14.5 Matching Arrays, Lists, and Tuples — page 201
14.6 Extractors — page 202
14.7 Patterns in Variable Declarations — page 203
14.8 Patterns in for Expressions — page 204
14.9 Case Classes — page 205
14.10 The copy Method and Named Parameters — page 205
14.11 Infix Notation in case Clauses — page 206
14.12 Matching Nested Structures — page 207
14.13 Are Case Classes Evil? — page 208
14.14 Sealed Classes — page 209
14.15 Simulating Enumerations — page 209
14.16 The Option Type — page 210
14.17 Partial Functions L2 — page 211
Exercises — page 212

Pattern Matching and Case Classes

ptg20087099Pattern matching is a powerful mechanism that has a number of applications:
switch statements, type inquiry, and “destructuring” (getting at the parts of com-
plex expressions). Case classes are optimized to work with pattern matching.

The key points of this chapter are:

• The match expression is a better switch, without fall-through.

• If no pattern matches, a MatchError is thrown. Use the case _ pattern to
avoid that.

• A pattern can include an arbitrary condition, called a guard.

• You can match on the type of an expression; prefer this over isInstanceOf/
asInstanceOf.

• You can match patterns of arrays, tuples, and case classes, and bind parts of
the pattern to variables.

• In a for expression, nonmatches are silently skipped.

• A case class is a class for which the compiler automatically produces the
methods that are needed for pattern matching.

• The common superclass in a case class hierarchy should be sealed.

• Use the Option type for values that may or may not be present—it is safer than
using null.

197

14Chapter

ptg20087099

14.1 A Better Switch

Here is the equivalent of the C-style switch statement in Scala:

var sign = ...
val ch: Char = ...

ch match {
 case '+' => sign = 1
 case '-' => sign = -1
 case _ => sign = 0
}

The equivalent of default is the catch-all case _ pattern. It is a good idea to have
such a catch-all pattern. If no pattern matches, a MatchError is thrown.

Unlike the switch statement, Scala pattern matching does not suffer from the “fall-
through” problem. (In C and its derivatives, you must use explicit break statements
to exit a switch at the end of each branch, or you will fall through to the next
branch. This is annoying and error-prone.)

NOTE: In his entertaining book Deep C Secrets, Peter van der Linden reports
a study of a large body of C code in which the fall-through behavior was
unwanted in 97% of the cases.

Similar to if, match is an expression, not a statement. The preceding code can
be simplified to

sign = ch match {
 case '+' => 1
 case '-' => -1
 case _ => 0
}

Use | to separate multiple alternatives:

prefix match {
 case "0" | "0x" | "0X" => ...
 ...
}

You can use the match statement with any types. For example:

Chapter 14 Pattern Matching and Case Classes

198

ptg20087099

color match {
 case Color.RED => ...
 case Color.BLACK => ...
 ...
}

14.2 Guards

Suppose we want to extend our example to match all digits. In a C-style switch
statement, you would simply add multiple case labels, for example case '0': case
'1': ... case '9':. (Except that, of course, you can’t use ... but must write out all
ten cases explicitly.) In Scala, you add a guard clause to a pattern, like this:

ch match {
 case _ if Character.isDigit(ch) => digit = Character.digit(ch, 10)
 case '+' => sign = 1
 case '-' => sign = -1
 case _ => sign = 0
}

The guard clause can be any Boolean condition.

Patterns are always matched top-to-bottom. If the pattern with the guard clause
doesn’t match, the case '+' pattern is attempted next.

14.3 Variables in Patterns

If the case keyword is followed by a variable name, then the match expression is
assigned to that variable. For example:

str(i) match {
 case '+' => sign = 1
 case '-' => sign = -1
 case ch => digit = Character.digit(ch, 10)
}

You can think of case _ as a special case of this feature, where the variable
name is _.

You can use the variable name in a guard:

str(i) match {
 case ch if Character.isDigit(ch) => digit = Character.digit(ch, 10)
 ...
}

199
14.3 Variables in Patterns

ptg20087099

CAUTION: Unfortunately, variable patterns can conflict with constants, for
example:

import scala.math._
0.5 * c / r match {
 case Pi => ... // If 0.5 * c / r equals Pi . . .
 case x => ... // Otherwise set x to 0.5 * c / r . . .
}

How does Scala know that Pi is a constant, not a variable? The rule is that a
variable must start with a lowercase letter.

If you have an expression that starts with a lowercase letter, enclose it in
backquotes:

import java.io.File._ // Imports java.io.File.pathSeparator
str match {
 case `pathSeparator` => ... // If str == pathSeparator . . .
 case pathSeparator => ...
 // Caution—declares a new variable pathSeparator
}

14.4 Type Patterns

You can match on the type of an expression, for example:

obj match {
 case x: Int => x
 case s: String => Integer.parseInt(s)
 case _: BigInt => Int.MaxValue
 case _ => 0
}

In Scala, this form is preferred to using the isInstanceOf operator.

Note the variable names in the patterns. In the first pattern, the match is bound
to x as an Int, and in the second pattern, it is bound to s as a String. No asInstanceOf
casts are needed!

CAUTION:When you match against a type, you must supply a variable name.
Otherwise, you match the object:

obj match {
 case _: BigInt => Int.MaxValue // Matches any object of type BigInt
 case BigInt => -1 // Matches the BigInt object of type Class
}

Chapter 14 Pattern Matching and Case Classes

200

ptg20087099

CAUTION: Matches occur at runtime, and generic types are erased in the
Java virtual machine. For that reason, you cannot make a type match for a
specific Map type.

case m: Map[String, Int] => ... // Don’t

You can match a generic map:

case m: Map[_, _] => ... // OK

However, arrays are not erased.You can match an Array[Int].

14.5 Matching Arrays, Lists, and Tuples

To match an array against its contents, use Array expressions in the patterns,
like this:

arr match {
 case Array(0) => "0"
 case Array(x, y) => s"$x $y"
 case Array(0, _*) => "0 ..."
 case _ => "something else"
}

The first pattern matches the array containing 0. The second pattern matches any
array with two elements, and it binds the variables x and y to the elements. The
third pattern matches any array starting with zero.

If you want to bind a variable argument match _* to a variable, use the @ notation
like this:

case Array(x, rest @ _*) => rest.min

You can match lists in the same way, with List expressions. Alternatively, you
can use the :: operator:

lst match {
 case 0 :: Nil => "0"
 case x :: y :: Nil => s"$x $y"
 case 0 :: tail => "0 ..."
 case _ => "something else"
}

With tuples, use the tuple notation in the pattern:

pair match {
 case (0, _) => "0 ..."
 case (y, 0) => s"$y 0"
 case _ => "neither is 0"
}

201
14.5 Matching Arrays, Lists, and Tuples

ptg20087099

Again, note how the variables are bound to parts of the list or tuple. Since these
bindings give you easy access to parts of a complex structure, this operation is
called destructuring.

CAUTION: The same warning applies as in Section 14.3, “Variables in Pat-
terns,” on page 199. The variable names that you use in the pattern must
start with a lowercase letter. In a match against case Array(X, Y), X and Y are
deemed constants, not variables.

NOTE: If a pattern has alternatives, you cannot use variables other than an
underscore. For example,

pair match {
 case (_, 0) | (0, _) => ... // OK, matches if one component is zero
 case (x, 0) | (0, x) => ... // Error—cannot bind with alternatives
}

14.6 Extractors

In the preceding section, you have seen how patterns can match arrays, lists, and
tuples. These capabilities are provided by extractors—objects with an unapply or
unapplySeq method that extract values from an object. The implementation of these
methods is covered in Chapter 11. The unapply method is provided to extract a
fixed number of objects, while unapplySeq extracts a sequence whose length can vary.

For example, consider the expression

arr match {
 case Array(x, 0) => x
 case Array(x, rest @ _*) => rest.min
 ...
}

The Array companion object is an extractor—it defines an unapplySeq method. That
method is called with the expression that is being matched, not with what appear to
be the parameters in the pattern. The call Array.unapplySeq(arr), when successful,
results in a sequence of values, namely the two values in the array. In the first
case, the match succeeds if the array has length 2 and the second element is zero.
In that case, the initial array element is assigned to x.

Chapter 14 Pattern Matching and Case Classes

202

ptg20087099

Regular expressions provide another good use of extractors. When a regular ex-
pression has groups, you can match each group with an extractor pattern. For
example:

val pattern = "([0-9]+) ([a-z]+)".r
"99 bottles" match {
 case pattern(num, item) => ...
 // Sets num to "99", item to "bottles"
}

The call pattern.unapplySeq("99 bottles") yields a sequence of strings that match the
groups. These are assigned to the variables num and item.

Note that here the extractor isn’t a companion object but a regular expression
object.

14.7 Patterns in Variable Declarations

In the preceding sections, you have seen how patterns can contain variables. You
can use these patterns inside variable declarations. For example,

val (x, y) = (1, 2)

simultaneously defines x as 1 and y as 2. That is useful for functions that return a
pair, for example:

val (q, r) = BigInt(10) /% 3

The /% method returns a pair containing the quotient and the remainder, which
are captured in the variables q and r.

The same syntax works for any patterns with variable names. For example,

val Array(first, second, rest @ _*) = arr

assigns the first and second element of the array arr to the variables first and
second and rest to a Seq of the remaining elements.

CAUTION: The same warning applies as in Section 14.3, “Variables in Pat-
terns,” on page 199. The variable names that you use in the pattern must
start with a lowercase letter. In a declaration val Array(E, x) = arr, E is deemed
a constant and x a variable that becomes arr(1) if arr has length 2 and
arr(0) == E.

203
14.7 Patterns in Variable Declarations

ptg20087099

NOTE: The expression

val p(x1, ..., xn) = e

is, by definition, exactly the same as

val $result = e match { case p(x1, ..., xn) => (x1, ..., xn) }
val x1 = $result._1
...
val xn = $result._n

where x1, . . . , xn are the free variables in the pattern p.

This definition holds even when there are no free variables in the pattern. For
example,

val 2 = x

is perfectly legal Scala code, provided x has been defined elsewhere. When
you apply the definition, you get

val $result = x match { case 2 => () }

followed by no assignments. In other words, it is equivalent to

if (!(2 == x)) throw new MatchError

14.8 Patterns in for Expressions

You can use patterns with variables in for expressions. For each traversed value,
the variables are bound. This makes it possible to traverse a map:

import scala.collection.JavaConversions.propertiesAsScalaMap
 // Converts Java Properties to a Scala map—just to get an interesting example
for ((k, v) <- System.getProperties())
 println(s"$k -> $v")

For each (key, value) pair in the map, k is bound to the key and v to the value.

In a for expression, match failures are silently ignored. For example, the following
loop prints all keys with empty value, skipping over all others:

for ((k, "") <- System.getProperties())
 println(k)

You can also use a guard. Note that the if goes after the <- symbol:

for ((k, v) <- System.getProperties() if v == "")
 println(k)

Chapter 14 Pattern Matching and Case Classes

204

ptg20087099

14.9 Case Classes

Case classes are a special kind of classes that are optimized for use in pattern
matching. In this example, we have two case classes that extend a regular
(noncase) class:

abstract class Amount
case class Dollar(value: Double) extends Amount
case class Currency(value: Double, unit: String) extends Amount

You can also have case objects for singletons:

case object Nothing extends Amount

When we have an object of type Amount, we can use pattern matching to match the
amount type and bind the property values to variables:

amt match {
 case Dollar(v) => s"$$$v"
 case Currency(_, u) => s"Oh noes, I got $u"
 case Nothing => ""
}

NOTE: Use () with case class instances, no parentheses with case objects.

When you declare a case class, several things happen automatically.

• Each of the constructor parameters becomes a val unless it is explicitly declared
as a var (which is not recommended).

• An apply method is provided for the companion object that lets you construct
objects without new, such as Dollar(29.95) or Currency(29.95, "EUR").

• An unapply method is provided that makes pattern matching work—see
Chapter 11 for the details. (You don’t really need to know these details to
use case classes for pattern matching.)

• Methods toString, equals, hashCode, and copy are generated unless they are
explicitly provided.

Otherwise, case classes are just like any other classes. You can add methods and
fields to them, extend them, and so on.

14.10 The copy Method and Named Parameters

The copy method of a case class makes a new object with the same values as an
existing one. For example,

205
14.10 The copy Method and Named Parameters

ptg20087099

val amt = Currency(29.95, "EUR")
val price = amt.copy()

By itself, that isn’t very useful—after all, a Currency object is immutable, and one
can just share the object reference. However, you can use named parameters to
modify some of the properties:

val price = amt.copy(value = 19.95) // Currency(19.95, "EUR")

or

val price = amt.copy(unit = "CHF") // Currency(29.95, "CHF")

14.11 Infix Notation in case Clauses

When an unapply method yields a pair, you can use infix notation in the case clause.
In particular, you can use infix notation with a case class that has two parameters.
For example:

amt match { case a Currency u => ... } // Same as case Currency(a, u)

Of course, that is a silly example. The feature is meant for matching sequences.
For example, every List object is either Nil or an object of the case class ::,
defined as

case class ::[E](head: E, tail: List[E]) extends List[E]

Therefore, you can write

lst match { case h :: t => ... }
 // Same as case ::(h, t), which calls ::.unapply(lst)

In Chapter 20, you will encounter the ~ case class for combining pairs of parse
results. It is also intended for use as an infix expression in case clauses:

result match { case p ~ q => ... } // Same as case ~(p, q)

These infix expressions are easier to read when you have more than one. For
example,

result match { case p ~ q ~ r => ... }

is nicer than ~(~(p, q), r).

If the operator ends in a colon, it associates right-to-left. For example,

case first :: second :: rest

means

case ::(first, ::(second, rest))

Chapter 14 Pattern Matching and Case Classes

206

ptg20087099

NOTE: Infix notation works with any unapply method that returns a pair. Here
is an example:

case object +: {
 def unapply[T](input: List[T]) =
 if (input.isEmpty) None else Some((input.head, input.tail))
}

Now you can destructure lists using +:.

1 +: 7 +: 2 +: 9 +: Nil match {
 case first +: second +: rest => first + second + rest.length
}

14.12 Matching Nested Structures

Case classes are often used for nested structures. Consider, for example, items
that a store sells. Sometimes, we bundle items together for a discount.

abstract class Item
case class Article(description: String, price: Double) extends Item
case class Bundle(description: String, discount: Double, items: Item*) extends Item

Not having to use new makes it easy to specify nested objects:

Bundle("Father's day special", 20.0,
 Article("Scala for the Impatient", 39.95),
 Bundle("Anchor Distillery Sampler", 10.0,
 Article("Old Potrero Straight Rye Whiskey", 79.95),
 Article("Junípero Gin", 32.95)))

Patterns can match specific nestings, for example

case Bundle(_, _, Article(descr, _), _*) => ...

binds descr to the description of the first article in a bundle.

You can bind a nested value to a variable with the @ notation:

case Bundle(_, _, art @ Article(_, _), rest @ _*) => ...

Now art is the first article in a bundle and rest is the sequence of the other items.

Note that the _* is required in this example. The pattern

case Bundle(_, _, art @ Article(_, _), rest) => ...

would match a bundle with an article and exactly one additional item, bound
to rest.

As an application, here is a function that computes the price of an item:

207
14.12 Matching Nested Structures

ptg20087099

def price(it: Item): Double = it match {
 case Article(_, p) => p
 case Bundle(_, disc, its @ _*) => its.map(price _).sum - disc
}

14.13 Are Case Classes Evil?

The example in the preceding section can enrage OO purists. Shouldn’t
price be a method of the superclass? Shouldn’t each subclass override it? Isn’t
polymorphism better than making a switch on each type?

In many situations, this is true. If someone comes up with another kind of Item,
you’ll need to revisit all those match clauses. In such a situation, case classes are
not the right solution.

Case classes work well for structures whose makeup doesn’t change. For example,
the Scala List is implemented with case classes. Simplifying things a bit, a list is
essentially

abstract class List
case object Nil extends List
case class ::(head: Any, tail: List) extends List

A list is either empty, or it has a head and a tail (which may be empty or not).
Nobody is ever going to add a third case. (You’ll see in the next section how to
stop anyone from trying.)

When they are appropriate, case classes are quite convenient, for the following
reasons:

• Pattern matching often leads to more concise code than inheritance.

• It is easier to read compound objects that are constructed without new.

• You get toString, equals, hashCode, and copy for free.

Those automatically generated methods do what you think they do—print,
compare, hash, and copy each field. See Section 14.10, “The copy Method and
Named Parameters,” on page 205 for more information about the copy method.

For certain kinds of classes, case classes give you exactly the right semantics.
Some people call them value classes. For example, consider the Currency class:

case class Currency(value: Double, unit: String)

A Currency(10, "EUR") is the same as any other Currency(10, "EUR"), and that’s how
equals and hashCode are implemented. Typically, such classes are immutable.

Case classes with variable fields are somewhat suspect, at least with respect to
the hash code. With mutable classes, one should always derive the hash code
from fields that are never mutated, such as an ID.

Chapter 14 Pattern Matching and Case Classes

208

ptg20087099

CAUTION:The toString, equals, hashCode, and copy methods are not generated
for case classes that extend other case classes.You get a compiler warning
if one case class inherits from another. A future version of Scala may outlaw
such inheritance altogether. If you need multiple levels of inheritance to factor
out common behavior of case classes, make only the leaves of the inheritance
tree into case classes.

14.14 Sealed Classes

When you use pattern matching with case classes, you would like the compiler
to check that you exhausted all alternatives. To achieve this, declare the common
superclass as sealed:

sealed abstract class Amount
case class Dollar(value: Double) extends Amount
case class Currency(value: Double, unit: String) extends Amount

All subclasses of a sealed class must be defined in the same file as the class itself.
For example, if someone wants to add another class for euros,

case class Euro(value: Double) extends Amount

they must do so in the file in which Amount is declared.

When a class is sealed, all of its subclasses are known at compile time, enabling
the compiler to check pattern clauses for completeness. It is a good idea for all
case classes to extend a sealed class or trait.

14.15 Simulating Enumerations

Case classes let you simulate enumerated types in Scala.

sealed abstract class TrafficLightColor
case object Red extends TrafficLightColor
case object Yellow extends TrafficLightColor
case object Green extends TrafficLightColor

color match {
 case Red => "stop"
 case Yellow => "hurry up"
 case Green => "go"
}

Note that the superclass was declared as sealed, enabling the compiler to check
that the match clause is complete.

209
14.15 Simulating Enumerations

ptg20087099

If you find this a bit heavyweight, you may prefer the Enumeration helper class that
was described in Chapter 6.

14.16 The Option Type

The Option type in the standard library uses case classes to express values that
might or might not be present. The case subclass Some wraps a value, for example
Some("Fred"). The case object None indicates that there is no value.

This is less ambiguous than using an empty string and safer than using null for
a missing value.

Option is a generic type. For example, Some("Fred") is an Option[String].

The get method of the Map class returns an Option. If there is no value for a given
key, get returns None. Otherwise, it wraps the value inside Some.

You can use pattern matching to analyze such a value.

val alicesScore = scores.get("Alice")
alicesScore match {
 case Some(score) => println(score)
 case None => println("No score")
}

But frankly, that is tedious. Alternatively, you can use the isEmpty and get:

if (alicesScore.isEmpty) println("No score")
else println(alicesScore.get)

That’s tedious too. It is better to use the getOrElse method:

println(alicesScore.getOrElse("No score"))

If alicesScore is None, then getOrElse returns "No score".

A more powerful way of working with options is to consider them as collections
that have zero or one element. You can visit the element with a for loop:

for (score <- alicesScore) println(score)

If alicesScore is None, nothing happens. If it is a Some, then the loop executes once,
with score bound to the contents of the option.

You can also use methods such as map, filter, or foreach. For example,

val biggerScore = alicesScore.map(_ + 1) // Some(score + 1) or None
val acceptableScore = alicesScore.filter(_ > 5) // Some(score) if score > 5 or None
alicesScore.foreach(println _) // Prints the score if it exists

TIP:When you create an Option from a value that may be null, you can simply
use Option(value). The result is None if value is null and Some(value) otherwise.

Chapter 14 Pattern Matching and Case Classes

210

ptg20087099

14.17 Partial Functions

L2

A set of case clauses enclosed in braces is a partial function—a function which may
not be defined for all inputs. It is an instance of a class PartialFunction[A, B]. (A is
the parameter type, B the return type.) That class has two methods: apply, which
computes the function value from the matching pattern, and isDefinedAt,
which returns true if the input matches at least one of the patterns.

For example,

val f: PartialFunction[Char, Int] = { case '+' => 1 ; case '-' => -1 }
f('-') // Calls f.apply('-'), returns -1
f.isDefinedAt('0') // false
f('0') // Throws MatchError

Some methods accept a PartialFunction as a parameter. For example, the collect
method of the GenTraversable trait applies a partial function to all elements where
it is defined, and returns a sequence of the results.

"-3+4".collect { case '+' => 1 ; case '-' => -1 } // Vector(-1, 1)

The partial function expression must be in a context where the compiler can infer
the return type. This is the case when you assign it to a typed variable or pass it
as an argument.

NOTE: An exhaustive set of case clauses defines a Function1, not just a
PartialFunction, that you can pass whenever a function is expected.

"-3+4".map { case '+' => 1 ; case '-' => -1; case _ => 0 }
 // Vector(-1, 0, 1, 0)

A Seq[A] is a PartialFunction[Int, A], and a Map[K, V] is a PartialFunction[K, V]. For
example, you can pass a map to collect:

val names = Array("Alice", "Bob", "Carmen")
val scores = Map("Alice" -> 10, "Carmen" -> 7)
names.collect(scores) // Yields Array(10, 7)

The lift method turns a PartialFunction[T, R] into a regular function with return
type Option[R].

val f: PartialFunction[Char, Int] = { case '+' => 1 ; case '-' => -1 }
val g = f.lift // A function with type Char => Option[Int]

Now g('-') is Some(-1) and g('*') is None.

In Chapter 9, you saw that the Regex.replaceSomeIn method requires a function
String => Option[String] for the replacement. If you have a map (or some other
PartialFunction), you can use lift to produce such a function:

211
14.17 Partial Functions

ptg20087099

val varPattern = """\{([0-9]+)\}""".r
val message = "At {1}, there was {2} on {0}"
val vars = Map("{0}" -> "planet 7", "{1}" -> "12:30 pm",
 "{2}" -> "a disturbance of the force.")
val result = varPattern.replaceSomeIn(message, m => vars.lift(m.matched))

Conversely, you can turn a function returning Option[R] into a partial function by
calling Function.unlift.

NOTE: The catch clause of the try statement is a partial function.You can
even use a variable holding a function:

def tryCatch[T](b: => T, catcher: PartialFunction[Throwable, T]) =
 try { b } catch catcher

Then you can supply a custom catch clause like this:

val result = tryCatch(str.toInt,
 { case _: NumberFormatException => -1 })

Exercises

1. Your Java Development Kit distribution has the source code for much of the
JDK in the src.zip file. Unzip and search for case labels (regular expression
case [^:]+:). Then look for comments starting with // and containing [Ff]alls?
thr to catch comments such as // Falls through or // just fall thru. Assuming
the JDK programmers follow the Java code convention, which requires such
a comment, what percentage of cases falls through?

2. Using pattern matching, write a function swap that receives a pair of integers
and returns the pair with the components swapped.

3. Using pattern matching, write a function swap that swaps the first two elements
of an array provided its length is at least two.

4. Add a case class Multiple that is a subclass of the Item class. For example,
Multiple(10, Article("Blackwell Toaster", 29.95)) describes ten toasters. Of course,
you should be able to handle any items, such as bundles or multiples, in
the second argument. Extend the price function to handle this new case.

5. One can use lists to model trees that store values only in the leaves. For
example, the list ((3 8) 2 (5)) describes the tree

•
 /|\

• 2 •
 / \ |
3 8 5

Chapter 14 Pattern Matching and Case Classes

212

ptg20087099

However, some of the list elements are numbers and others are lists. In Scala,
you cannot have heterogeneous lists, so you have to use a List[Any]. Write a
leafSum function to compute the sum of all elements in the leaves, using pattern
matching to differentiate between numbers and lists.

6. A better way of modeling such trees is with case classes. Let’s start with binary
trees.

sealed abstract class BinaryTree
case class Leaf(value: Int) extends BinaryTree
case class Node(left: BinaryTree, right: BinaryTree) extends BinaryTree

Write a function to compute the sum of all elements in the leaves.

7. Extend the tree in the preceding exercise so that each node can have an arbi-
trary number of children, and reimplement the leafSum function. The tree in
Exercise 5 should be expressible as

Node(Node(Leaf(3), Leaf(8)), Leaf(2), Node(Leaf(5)))

8. Extend the tree in the preceding exercise so that each nonleaf node stores
an operator in addition to the child nodes. Then write a function eval that
computes the value. For example, the tree

 +
 /|\
 * 2 -
 / \ |
3 8 5

has value (3 ¥ 8) + 2 + (–5) = 21.

Pay attention to the unary minus.

9. Write a function that computes the sum of the non-None values in a
List[Option[Int]]. Don’t use a match statement.

10. Write a function that composes two functions of type Double => Option[Double],
yielding another function of the same type. The composition should yield
None if either function does. For example,

def f(x: Double) = if (x != 1) Some(1 / (x - 1)) else None
def g(x: Double) = if (x >= 0) Some(sqrt(x)) else None
val h = compose(g, f) // h(x) should be g(f(x))

Then h(2) is Some(1), and h(1) and h(0) are None.

213
Exercises

ptg20087099Topics in This Chapter A2

15.1 What Are Annotations? — page 216
15.2 What Can Be Annotated? — page 216
15.3 Annotation Arguments — page 217
15.4 Annotation Implementations — page 218
15.5 Annotations for Java Features — page 219

Java Modifiers. Marker Interfaces. Checked Exceptions.
Variable Arguments. JavaBeans.

15.6 Annotations for Optimizations — page 222
Tail Recursion. Jump Table Generation and Inlining.
Eliding Methods. Specialization for Primitive Types.

15.7 Annotations for Errors and Warnings — page 226
Exercises — page 227

Annotations

ptg20087099Annotations let you add information to program items. This information can be
processed by the compiler or by external tools. In this chapter, you will learn
how to interoperate with Java annotations and how to use the annotations that
are specific to Scala.

The key points of this chapter are:

• You can annotate classes, methods, fields, local variables, parameters,
expressions, type parameters, and types.

• With expressions and types, the annotation follows the annotated item.

• Annotations have the form @Annotation, @Annotation(value), or @Annotation(name1 =
value1, ...).

• @volatile, @transient, @strictfp, and @native generate the equivalent Java modifiers.

• Use @throws to generate Java-compatible throws specifications.

• The @tailrec annotation lets you verify that a recursive function uses tail call
optimization.

• The assert function takes advantage of the @elidable annotation. You can
optionally remove assertions from your Scala programs.

• Use the @deprecated annotation to mark deprecated features.

215

15Chapter

ptg20087099

15.1 What Are Annotations?
Annotations are tags that you insert into your source code so that some tools can
process them. These tools can operate at the source level, or they can process the
class files into which the compiler has placed your annotations.

Annotations are widely used in Java, for example by testing tools such as JUnit
4 and enterprise technologies such as Java EE.

The syntax is just like in Java. For example:

@Test(timeout = 100) def testSomeFeature() { ... }

@Entity class Credentials {
 @Id @BeanProperty var username : String = _
 @BeanProperty var password : String = _
}

You can use Java annotations with Scala classes. The annotations in the preceding
examples are from JUnit and JPA, two Java frameworks that have no particular
knowledge of Scala.

You can also use Scala annotations. These annotations are specific to Scala and
are usually processed by the Scala compiler or a compiler plugin. (Implementing
a compiler plugin is a nontrivial undertaking that is not covered in this book.)

Java annotations do not affect how the compiler translates source code into
bytecode; they merely add data to the bytecode that can be harvested by external
tools. In Scala, annotations can affect the compilation process. For example, the
@BeanProperty annotation that you saw in Chapter 5 causes the generation of getter
and setter methods.

15.2 What Can Be Annotated?
In Scala, you can annotate classes, methods, fields, local variables, and parameters,
just like in Java.

@Entity class Credentials
@Test def testSomeFeature() {}
@BeanProperty var username = _
def doSomething(@NotNull message: String) {}

You can apply multiple annotations. The order doesn’t matter.

@BeanProperty @Id var username = _

When annotating the primary constructor, place the annotation before the
constructor, and add a pair of parentheses if the annotation has no arguments.

class Credentials @Inject() (var username: String, var password: String)

Chapter 15 Annotations216

ptg20087099

You can also annotate expressions. Add a colon followed by the annotation, for
example:

(myMap.get(key): @unchecked) match { ... }
 // The expression myMap.get(key) is annotated

You can annotate type parameters:

class MyContainer[@specialized T]

Annotations on an actual type are placed after the type, like this:

def country: String @Localized

Here, the String type is annotated. The method returns a localized string.

15.3 Annotation Arguments
Java annotations can have named arguments, such as

@Test(timeout = 100, expected = classOf[IOException])

However, if the argument name is value, it can be omitted. For example:

@Named("creds") var credentials: Credentials = _
 // The value argument is "creds"

If the annotation has no arguments, the parentheses can be omitted:

@Entity class Credentials

Most annotation arguments have defaults. For example, the timeout argument of
the JUnit @Test annotation has a default value of 0, indicating no timeout. The
expected argument has as default a dummy class to signify that no exception is
expected. If you use

@Test def testSomeFeature() { ... }

this annotation is equivalent to

@Test(timeout = 0, expected = classOf[org.junit.Test.None])
def testSomeFeature() { ... }

Arguments of Java annotations are restricted to the following types:

• Numeric literals

• Strings

• Class literals

• Java enumerations

• Other annotations

• Arrays of the above (but not arrays of arrays)

21715.3 Annotation Arguments

ptg20087099

Arguments of Scala annotations can be of arbitrary types, but only a couple of
the Scala annotations take advantage of this added flexibility. For instance, the
@deprecatedName annotation has an argument of type Symbol.

15.4 Annotation Implementations
I don’t expect that many readers of this book will feel the urge to implement their
own Scala annotations. The main point of this section is to be able to decipher
the implementation of the existing annotation classes.

An annotation must extend the Annotation trait. For example, the unchecked annotation
is defined as follows:

class unchecked extends annotation.Annotation

A type annotation must extend the TypeAnnotation trait:

class Localized extends StaticAnnotation with TypeConstraint

CAUTION: If you want to implement a new Java annotation, you need to write
the annotation class in Java.You can, of course, use that annotation for your
Scala classes.

Generally, an annotation describes the expression, variable, field, method, class,
or type to which it is applied. For example, the annotation

def check(@NotNull password: String)

applies to the parameter variable password.

However, field definitions in Scala can give rise to multiple features in Java, all
of which can potentially be annotated. For example, consider

class Credentials(@NotNull @BeanProperty var username: String)

Here, there are six items that can be annotation targets:

• The constructor parameter

• The private instance field

• The accessor method username

• The mutator method username_=

• The bean accessor getUsername

• The bean mutator setUsername

By default, constructor parameter annotations are only applied to the parameter
itself, and field annotations are only applied to the field. The meta-annotations

Chapter 15 Annotations218

ptg20087099

@param, @field, @getter, @setter, @beanGetter, and @beanSetter cause an annotation to be
attached elsewhere. For example, the @deprecated annotation is defined as:

@getter @setter @beanGetter @beanSetter
class deprecated(message: String = "", since: String = "")
 extends annotation.StaticAnnotation

You can also apply these annotations in an ad-hoc fashion:

@Entity class Credentials {
 @(Id @beanGetter) @BeanProperty var id = 0
 ...
}

In this situation, the @Id annotation is applied to the Java getId method, which is
a JPA requirement for property access.

15.5 Annotations for Java Features
The Scala library provides annotations for interoperating with Java. They are
presented in the following sections.

15.5.1 Java Modifiers
Scala uses annotations instead of modifier keywords for some of the less
commonly used Java features.

The @volatile annotation marks a field as volatile:

@volatile var done = false // Becomes a volatile field in the JVM

A volatile field can be updated in multiple threads.

The @transient annotation marks a field as transient:

@transient var recentLookups = new HashMap[String, String]
 // Becomes a transient field in the JVM

A transient field is not serialized. This makes sense for cache data that need not
be saved, or data that can easily be recomputed.

The @strictfp annotation is the analog of the Java strictfp modifier:

@strictfp def calculate(x: Double) = ...

This method does its floating-point calculations with IEEE double values, not using
the 80 bit extended precision (which Intel processors use by default). The result
is slower and less precise but more portable.

The @native annotation marks methods that are implemented in C or C++ code.
It is the analog of the native modifier in Java.

@native def win32RegKeys(root: Int, path: String): Array[String]

21915.5 Annotations for Java Features

ptg20087099

15.5.2 Marker Interfaces
Scala uses annotations @cloneable and @remote instead of the Cloneable and
java.rmi.Remote marker interfaces for cloneable and remote objects.

@cloneable class Employee

With serializable classes, you can use the @SerialVersionUID annotation to specify
the serial version:

@SerialVersionUID(6157032470129070425L)
class Employee extends Person with Serializable

NOTE: For more information about Java concepts such as volatile fields,
cloning, or serialization, see C. Horstmann, Core Java®,Tenth Edition (Prentice
Hall, 2016).

15.5.3 Checked Exceptions
Unlike Scala, the Java compiler tracks checked exceptions. If you call a Scala
method from Java code, its signature should include the checked exceptions that
can be thrown. Use the @throws annotation to generate the correct signature. For
example,

class Book {
@throws(classOf[IOException]) def read(filename: String) { ... }

 ...
}

The Java signature is

void read(String filename) throws IOException

Without the @throws annotation, the Java code would not be able to catch the
exception.

try { // This is Java
 book.read("war-and-peace.txt");
} catch (IOException ex) {
 ...
}

The Java compiler needs to know that the read method can throw an IOException,
or it will refuse to catch it.

Chapter 15 Annotations220

ptg20087099

15.5.4 Variable Arguments
The @varargs annotation lets you call a Scala variable-argument method from Java.
By default, if you supply a method such as

def process(args: String*)

the Scala compiler translates the variable argument into a sequence

def process(args: Seq[String])

That is cumbersome to use in Java. If you add @varargs,

@varargs def process(args: String*)

then a Java method

void process(String... args) // Java bridge method

is generated that wraps the args array into a Seq and calls the Scala method.

15.5.5 JavaBeans
You have seen the @BeanProperty annotation in Chapter 5. When you annotate a
field with @scala.reflect.BeanProperty, the compiler generates JavaBeans-style getter
and setter methods. For example,

class Person {
 @BeanProperty var name : String = _
}

generates methods

getName() : String
setName(newValue : String) : Unit

in addition to the Scala getter and setter.

The @BooleanBeanProperty annotation generates a getter with an is prefix for a Boolean
method.

NOTE: The annotations @BeanDescription, @BeanDisplayName, @BeanInfo,
@BeanInfoSkip let you control some of the more obscure features of the
JavaBeans specifications.Very few programmers need to worry about these.
If you are among them, you’ll figure out what to do from the Scaladoc
descriptions.

22115.5 Annotations for Java Features

ptg20087099

15.6 Annotations for Optimizations
Several annotations in the Scala library let you control compiler optimizations.
They are discussed in the following sections.

15.6.1 Tail Recursion
A recursive call can sometimes be turned into a loop, which conserves stack
space. This is important in functional programming where it is common to write
recursive methods for traversing collections.

Consider this method that computes the sum of a sequence of integers using
recursion:

object Util {
 def sum(xs: Seq[Int]): BigInt =
 if (xs.isEmpty) 0 else xs.head + sum(xs.tail)
 ...
}

This method cannot be optimized because the last step of the computation is
addition, not the recursive call. But a slight transformation can be optimized:

def sum2(xs: Seq[Int], partial: BigInt): BigInt =
 if (xs.isEmpty) partial else sum2(xs.tail, xs.head + partial)

The partial sum is passed as a parameter; call this method as sum2(xs, 0). Since
the last step of the computation is a recursive call to the same method, it can be
transformed into a loop to the top of the method. The Scala compiler automati-
cally applies the “tail recursion” optimization to the second method. If you try

sum(1 to 1000000)

you will get a stack overflow error (at least with the default stack size of the
JVM), but

sum2(1 to 1000000, 0)

returns the sum 500000500000.

Even though the Scala compiler will try to use tail recursion optimization, it is
sometimes blocked from doing so for nonobvious reasons. If you rely on the
compiler to remove the recursion, you should annotate your method with @tailrec.
Then, if the compiler cannot apply the optimization, it will report an error.

For example, suppose the sum2 method is in a class instead of an object:

Chapter 15 Annotations222

ptg20087099

class Util {
@tailrec def sum2(xs: Seq[Int], partial: BigInt): BigInt =

 if (xs.isEmpty) partial else sum2(xs.tail, xs.head + partial)
 ...
}

Now the program fails with an error message "could not optimize @tailrec annotated
method sum2: it is neither private nor final so can be overridden". In this situation, you
can move the method into an object, or you can declare it as private or final.

NOTE: A more general mechanism for recursion elimination is “trampolining”.
A trampoline implementation runs a loop that keeps calling functions. Each
function returns the next function to be called.Tail recursion is a special case
where each function returns itself. The more general mechanism allows for
mutual calls—see the example that follows.

Scala has a utility object called TailCalls that makes it easy to implement a
trampoline. The mutually recursive functions have return type TailRec[A] and
return either done(result) or tailcall(fun) where fun is the next function to be
called.This needs to be a parameterless function that also returns a TailRec[A].
Here is a simple example:

import scala.util.control.TailCalls._
def evenLength(xs: Seq[Int]): TailRec[Boolean] =
 if (xs.isEmpty) done(true) else tailcall(oddLength(xs.tail))
def oddLength(xs: Seq[Int]): TailRec[Boolean] =
 if (xs.isEmpty) done(false) else tailcall(evenLength(xs.tail))

To obtain the final result from the TailRec object, use the result method:

evenLength(1 to 1000000).result

15.6.2 Jump Table Generation and Inlining
In C++ or Java, a switch statement can often be compiled into a jump table, which
is more efficient than a sequence of if/else expressions. Scala attempts to generate
jump tables for match clauses as well. The @switch annotation lets you check
whether a Scala match clause is indeed compiled into one. Apply the annotation
to the expression preceding a match clause:

(n: @switch) match {
 case 0 => "Zero"
 case 1 => "One"
 case _ => "?"
}

22315.6 Annotations for Optimizations

ptg20087099

A common optimization is method inlining—replacing a method call with the
method body. You can tag methods with @inline to suggest inlining, or @noinline
to suggest not to inline. Generally, inlining is done in the JVM, whose “just in
time” compiler does a good job without any annotations. The @inline and @noinline
annotations let you direct the Scala compiler, in case you perceive the need to
do so.

15.6.3 Eliding Methods
The @elidable annotation flags methods that can be removed in production code.
For example,

@elidable(500) def dump(props: Map[String, String]) { ... }

If you compile with

scalac -Xelide-below 800 myprog.scala

then the method code will not be generated. The elidable object defines the
following numerical constants:

• MAXIMUM or OFF = Int.MaxValue

• ASSERTION = 2000

• SEVERE = 1000

• WARNING = 900

• INFO = 800

• CONFIG = 700

• FINE = 500

• FINER = 400

• FINEST = 300

• MINIMUM or ALL = Int.MinValue

You can use one of these constants in the annotation:

import scala.annotation.elidable._
@elidable(FINE) def dump(props: Map[String, String]) { ... }

You can also use these names in the command line:

scalac -Xelide-below INFO myprog.scala

If you don’t specify the -Xelide-below flag, annotated methods with values below
1000 are elided, leaving SEVERE methods and assertions, but removing warnings.

Chapter 15 Annotations224

ptg20087099

NOTE: The levels ALL and OFF are potentially confusing. The annotation
@elide(ALL) means that the method is always elided, and @elide(OFF) means
that it is never elided. But -Xelide-below OFF means to elide everything, and
-Xelide-below ALL means to elide nothing.That’s why MAXIMUM and MINIMUM have
been added.

The Predef object defines an elidable assert method. For example,

def makeMap(keys: Seq[String], values: Seq[String]) = {
 assert(keys.length == values.length, "lengths don't match")
 ...
}

If the method is called with mismatched arguments, the assert method throws
an AssertionError with message assertion failed: lengths don't match.

To disable assertions, compile with -Xelide-below 2001 or -Xelide-below MAXIMUM. Note
that by default assertions are not disabled. This is a welcome improvement over
Java assertions.

CAUTION: Calls to elided methods are replaced with Unit objects. If you use
the return value of an elided method, a ClassCastException is thrown. It is best
to use the @elidable annotation only with methods that don’t return a value.

15.6.4 Specialization for Primitive Types
It is inefficient to wrap and unwrap primitive type values—but in generic code,
this often happens. Consider, for example,

def allDifferent[T](x: T, y: T, z: T) = x != y && x != z && y != z

If you call allDifferent(3, 4, 5), each integer is wrapped into a java.lang.Integer
before the method is called. Of course, one can manually supply an overloaded
version

def allDifferent(x: Int, y: Int, z: Int) = ...

as well as seven more methods for the other primitive types.

You can generate these methods automatically by annotating the type parameter
with @specialized:

def allDifferent[@specialized T](x: T, y: T, z: T) = ...

You can restrict specialization to a subset of types:

def allDifferent[@specialized(Long, Double) T](x: T, y: T, z: T) = ...

22515.6 Annotations for Optimizations

ptg20087099

In the annotation constructor, you can provide any subset of Unit, Boolean, Byte,
Short, Char, Int, Long, Float, Double.

15.7 Annotations for Errors and Warnings
If you mark a feature with the @deprecated annotation, the compiler generates a
warning whenever the feature is used. The annotation has two optional
arguments, message and since.

@deprecated(message = "Use factorial(n: BigInt) instead")
def factorial(n: Int): Int = ...

The @deprecatedName is applied to a parameter, and it specifies a former name for
the parameter.

def draw(@deprecatedName('sz) size: Int, style: Int = NORMAL)

You can still call draw(sz = 12) but you will get a deprecation warning.

NOTE: The constructor argument is a symbol—a name preceded by a single
quote. Symbols with the same name are guaranteed to be unique.Therefore,
comparing symbols is a bit more efficient than comparing strings. More im-
portantly, there is a semantic distinction: A symbol denotes a name of some
item in a program.

The @deprecatedInheritance and @deprecatedOverriding annotations generate warnings
that inheriting from a class or overriding a method is now deprecated.

The @implicitNotFound and @implicitAmbiguous annotations generates meaningful error
messages when an implicit value is not available or ambiguous. See Chapter 21
for details about implicits.

The @unchecked annotation suppresses a warning that a match is not exhaustive.
For example, suppose we know that a given list is never empty:

(lst: @unchecked) match {
 case head :: tail => ...
}

The compiler won’t complain that there is no Nil option. Of course, if lst is Nil,
an exception is thrown at runtime.

The @uncheckedVariance annotation suppresses a variance error message. For example,
it would make sense for java.util.Comparator to be contravariant. If Student is a
subtype of Person, then a Comparator[Person] can be used when a Comparator[Student]
is required. However, Java generics have no variance. We can fix this with the
@uncheckedVariance annotation:

Chapter 15 Annotations226

ptg20087099

trait Comparator[-T] extends
 java.lang.Comparator[T @uncheckedVariance]

Exercises
1. Write four JUnit test cases that use the @Test annotation with and without each

of its arguments. Run the tests with JUnit.

2. Make an example class that shows every possible position of an annotation.
Use @deprecated as your sample annotation.

3. Which annotations from the Scala library use one of the meta-annotations
@param, @field, @getter, @setter, @beanGetter, or @beanSetter?

4. Write a Scala method sum with variable integer arguments that returns the
sum of its arguments. Call it from Java.

5. Write a Scala method that returns a string containing all lines of a file. Call it
from Java.

6. Write a Scala object with a volatile Boolean field. Have one thread sleep for
some time, then set the field to true, print a message, and exit. Another thread
will keep checking whether the field is true. If so, it prints a message and exits.
If not, it sleeps for a short time and tries again. What happens if the variable
is not volatile?

7. Give an example to show that the tail recursion optimization is not valid
when a method can be overridden.

8. Add the allDifferent method to an object, compile and look at the bytecode.
What methods did the @specialized annotation generate?

9. The Range.foreach method is annotated as @specialized(Unit). Why? Look at the
bytecode by running

javap -classpath /path/to/scala/lib/scala-library.jar
 scala.collection.immutable.Range

and consider the @specialized annotations on Function1. Click on the Function1.scala
link in Scaladoc to see them.

10. Add assert(n >= 0) to a factorial method. Compile with assertions enabled and
verify that factorial(-1) throws an exception. Compile without assertions.
What happens? Use javap to check what happened to the assertion call.

227Exercises

ptg20087099
Topics in This Chapter

A2

16.1 XML Literals — page 230
16.2 XML Nodes — page 230
16.3 Element Attributes — page 232
16.4 Embedded Expressions — page 233
16.5 Expressions in Attributes — page 234
16.6 Uncommon Node Types — page 235
16.7 XPath-like Expressions — page 235
16.8 Pattern Matching — page 237
16.9 Modifying Elements and Attributes — page 238
16.10 Transforming XML — page 239
16.11 Loading and Saving — page 239
16.12 Namespaces — page 242
Exercises — page 243

XML Processing

ptg20087099Scala has built-in support for XML literals that makes it easy to generate XML
fragments in your programs. The Scala library includes support for common
XML processing tasks. In this chapter, you will learn how to put these features
to use for reading, analyzing, creating, and writing XML.

NOTE: The XML support in Scala is brilliant because it makes it possible to
slice and dice XML data easily and conveniently, in the REPL and in Scala
programs. It is also flawed because of some unfortunate design decisions
and lack of maintenance. It is difficult to remedy these issues because XML
is so tightly integrated into Scala.A future version of Scala will likely abandon
this tight integration and instead rely on string interpolation and third-party li-
braries. But for now, we can enjoy a uniquely powerful way of processing XML.

NOTE: The API documentation for Scala XML is at www.scala-lang.org/api/
current/scala-xml.

The key points of this chapter are:

• XML literals <like>this</like> are of type NodeSeq.

• You can embed Scala code inside XML literals.

• The child property of a Node yields the child nodes.

229

16Chapter

ptg20087099

• The attributes property of a Node yields a MetaData object containing the node
attributes.

• The \ and \\ operators carry out XPath-like matches.

• You can match node patterns with XML literals in case clauses.

• Use the RuleTransformer with RewriteRule instances to transform descendants of
a node.

• The XML object interfaces with Java XML methods for loading and saving.

• The ConstructingParser is an alternate parser that preserves comments and CDATA
sections.

16.1 XML Literals

In Scala, you can define XML literals, simply by using the XML code:

val doc = <html><head><title>Fred's Memoirs</title></head><body>...</body></html>

In this case, doc becomes a value of type scala.xml.Elem, representing an XML
element.

An XML literal can also be a sequence of nodes. For example,

val items = FredWilma

yields a scala.xml.NodeSeq. We will discuss the Elem and NodeSeq classes in the next
section.

CAUTION: Sometimes, the compiler suspects XML literals when none are
intended. For example,

val (x, y) = (1, 2)
x < y // OK
x <y // Error—unclosed XML literal

In this case, the remedy is to add a space after the <.

16.2 XML Nodes

The Node class is the ancestor of all XML node types. Its two most important
subclasses are Text and Elem. Figure 16–1 shows the complete hierarchy.

The Elem class describes an XML element, such as

val elem = The Scala language

The label property yields the tag name (here, "a"), and child is the child node
sequence (two Text nodes and an Elem node in this example).

Chapter 16 XML Processing

230

ptg20087099

CAUTION: Unfortunately, unlike a DOM node, a Scala Node retains no
information about its parent.

Node sequences are of type NodeSeq, a subtype of Seq[Node] that adds support for
XPath-like operators (see Section 16.7, “XPath-like Expressions,” on page 235).
You can use any of the Seq operations described in Chapter 13 with XML node
sequences. To traverse a sequence, simply use a for loop, for example:

for (n <- elem.child) process n

NOTE:The Node class extends NodeSeq.A single node is a sequence of length 1.
This is supposed to make it easier to deal with functions that can return a
single node or a sequence. (It actually creates as many problems as it solves,
so I don’t recommend using this trick in your own designs.)

There are also node classes for XML comments (<!-- ... -->), entity references
(&...;), and processing instructions (<? ... ?>). Figure 16–1 shows all node types.

Figure 16–1

XML node types

If you build node sequences programmatically, you can use a NodeBuffer, a subclass
of ArrayBuffer[Node].

231
16.2 XML Nodes

ptg20087099

val items = new NodeBuffer
items += Fred
items += Wilma
val nodes: NodeSeq = items

CAUTION: A NodeBuffer is a Seq[Node]. It can be implicitly converted to a
NodeSeq. Once this conversion has occurred, you need to be careful not to
mutate the node buffer any longer since XML node sequences are supposed
to be immutable.

16.3 Element Attributes

To process the attribute keys and values of an element, use the attributes property.
It yields an object of type MetaData which is almost, but not quite, a Map from attribute
keys to values. You can use the () operator to access the value for a given key:

val elem = The Scala language
val url = elem.attributes("href")

Unfortunately, this yields a node sequence, not a string, because the attribute
might contain entity references. For example, consider

val image = <img alt="San José State University Logo"
 src="http://www.sjsu.edu/publicaffairs/pics/sjsu_logo_color_web.jpg"/>
val alt = image.attributes("alt")

Here, the value for the key "alt" is a node sequence consisting of a text node for
"San Jos", an EntityRef for é, and another text node for " State University Logo".

Why not resolve the entity reference? There is no way to know what é
means. In XHTML it means é (the code for é), but in another document type
it can be defined as something else.

TIP: If you find it inconvenient to deal with entity references in XML literals,
you can use character references instead: <img alt="San José State
University Logo" .../>.

If you are certain you don’t have unresolved entities in your attributes, you can
simply call the text method to turn the node sequence into a string:

val url = elem.attributes("href").text

If an attribute is not present, the () operator returns null. If you dislike working
with null, use the get method, which returns an Option[Seq[Node]].

Chapter 16 XML Processing

232

ptg20087099

Unfortunately, the MetaData class has no getOrElse method, but you can apply
getOrElse to the Option that get returns:

val url = elem.attributes.get("href").getOrElse(Text(""))

To iterate over all attributes, use

for (attr <- elem.attributes)
process attr.key and attr.value.text

Alternatively, call the asAttrMap method:

val image =
val map = image.attributes.asAttrMap // Map("alt" -> "TODO", "src" -> "hamster.jpg")

16.4 Embedded Expressions

You can include blocks of Scala code inside XML literals to dynamically compute
items. For example:

{items(0)}{items(1)}

Each block is evaluated, and its result is spliced into the XML tree.

If the block yields a node sequence, the nodes are simply added to the XML.
Everything else is turned into an Atom[T], a container for a type T. In this way, you
can store arbitrary values in an XML tree. Retrieve the value from an Atom node
with the data property.

In many cases, one doesn’t care about retrieving the items from the atoms. When
the XML document gets saved, each atom is turned into a string, by calling toString
on the data property.

CAUTION: Embedded strings do not get turned into Text nodes but into
Atom[String] nodes. That is not quite the same—Text is a subclass of
Atom[String]. It doesn’t matter when saving a document. But if you later do
pattern matching on Text nodes, the match will fail. In that case, you should
insert Text nodes instead of strings:

{Text("Another item")}

Not only can you nest Scala inside XML, but the nested Scala code can again
contain XML literals. For example, if you have a list of items, you will want to
place each item inside an li element:

{for (i <- items) yield {i}}

We have a Scala block {...} inside the ul element. That block yields a
sequence of XML expressions.

233
16.4 Embedded Expressions

ptg20087099

for (i <- items) yield an XML literal

That XML literal ... contains another Scala block!

{i}

It’s Scala inside XML inside Scala inside XML. The mind reels if you think about it.
But if you don’t, it’s a very natural construction: make a ul that contains an li for
every element of items.

NOTE: To place an opening or closing brace into an XML literal, use two
braces:

<h1>The Natural Numbers {{1, 2, 3, ...}}</h1>

This produces

<h1>The Natural Numbers {1, 2, 3, ...}</h1>

16.5 Expressions in Attributes

You can compute attribute values with Scala expressions, for example:

Here, the makeURL function returns a string that becomes the attribute value.

CAUTION: Braces inside quoted strings are not evaluated. For example,

sets the src attribute to the string "{makeURL(fileName)}", which is probably not
what you want.

The embedded block can also yield a node sequence. This is potentially useful
if you want to include entity references or atoms in an attribute:

If the embedded block returns null or None, the attribute is not set. For example:

If description is the string "TODO" or null, the element will have no alt attribute.

You can get the same effect with an Option[Seq[Node]]. For example,

<img alt={if (description == "TODO" || description == null) None
 else Some(Text(description))} ... />

Chapter 16 XML Processing

234

ptg20087099

CAUTION: It is a syntax error if the block yields something other than a String,
a Seq[Node], or an Option[Seq[Node]]. This is inconsistent with blocks inside el-
ements, where the result would be wrapped in an Atom. If you want an atom
in an attribute value, you must construct it yourself.

16.6 Uncommon Node Types

Sometimes, you need to include non-XML text into an XML document. A typical
example is JavaScript code in an XHTML page. You can use CDATA markup in XML
literals:

val js = <script><![CDATA[if (temp < 0) alert("Cold!")]]></script>

However, the parser does not retain the fact that the text was marked up with
CDATA. What you get is a node with a Text child. If you want the CDATA in the output,
include a PCData node, like this:

val code = """if (temp < 0) alert("Cold!")"""
val js = <script>{PCData(code)}</script>

You can include arbitrary text in an Unparsed node. It is saved as is. You can
generate such nodes as literals or programmatically:

val n1 = <xml:unparsed><&></xml:unparsed>
val n2 = Unparsed("<&>")

I don’t recommend this technique since you can easily end up with
malformed XML.

Finally, you can group a node sequence into a single “group” node.

val g1 = <xml:group>Item 1Item 2</xml:group>
val g2 = Group(Seq(Item 1, Item 2))

Group nodes are “ungrouped” when you iterate over them. Contrast:

val items = Item 1Item 2
for (n <- <xml:group>{items}</xml:group>) yield n
 // Yields two li elements
for (n <- {items}) yield n
 // Yields one ol element

16.7 XPath-like Expressions

The NodeSeq class provides methods that resemble the / and // operators in XPath
(XML Path Language, www.w3.org/TR/xpath). Since // denotes comments and is
therefore not a valid operator, Scala uses \ and \\ instead.

235
16.7 XPath-like Expressions

ptg20087099

The \ operator locates direct descendants of a node or node sequence. For example,

val list = <dl><dt>Java</dt><dd>Gosling</dd><dt>Scala</dt><dd>Odersky</dd></dl>
val languages = list \ "dt"

sets languages to a node sequence containing <dt>Java</dt> and <dt>Scala</dt>.

A wildcard matches any element. For example,

doc \ "body" \ "_" \ "li"

finds all li elements, whether they are contained in a ul, an ol, or any other element
inside the body.

The \\ operator locates descendants at any depth. For example,

doc \\ "img"

locates all img elements anywhere inside the doc.

A string starting with @ locates attributes. For example,

img \ "@alt"

returns the value of the alt attribute of the given node, and

doc \\ "@alt"

locates all alt attributes of any elements inside doc.

NOTE: There is no wildcard notation for attributes; img \ "@_" does not return
all attributes.

CAUTION: Unlike XPath, you cannot use a single \ to extract attributes from
multiple nodes. For example, doc \\ "img" \ "@src" will not work if the document
contains more than one img element. Use doc \\ "img" \\ "@src" instead.

The result of \ or \\ is a node sequence. It might be a single node, but unless you
know that for sure, you should traverse the sequence. For example,

for (n <- doc \\ "img") process n

If you simply call text on a result of \ or \\, all texts of the result sequence will be
concatenated. For example,

(\\ "@src).text

returns a string "hamster.jpgfrog.jpg".

Chapter 16 XML Processing

236

ptg20087099

16.8 Pattern Matching

You can use XML literals in pattern matching expressions. For example,

node match {
 case => ...
 ...
}

The first match succeeds if node is an img element with any attributes and no child
elements.

To deal with child elements is a little tricky. You can match a single child with

case {_} => ...

However, if li has more than one child, for example An important
item, then the match fails. To match any number of items, use

case {_*} => ...

Note the braces—they might remind you of the embedded code notation for
XML literals. However, inside XML patterns, braces indicate code patterns, not
code to be evaluated.

Instead of the wildcard indicators, you can use variable names. The match is
bound to the variable.

case {child} => child.text

To match a text node, use a case class match like this:

case {Text(item)} => item

To bind a variable to a node sequence, use the following syntax:

case {children @ _*} => for (c <- children) yield c

CAUTION: In such a match, children is a Seq[Node] and not a NodeSeq.

You can only use one node in the case clause. For example, the following is not
legal:

case <p>{_*}</p>
 => ... // Not legal

XML patterns can’t have attributes.

case => ... // Not legal

237
16.8 Pattern Matching

ptg20087099

To match an attribute, use a guard:

case n @ if (n.attributes("alt").text == "TODO") => ...

16.9 Modifying Elements and Attributes

In Scala, XML nodes and node sequences are immutable. If you want to edit a
node, you have to create a copy of it, making any needed changes and copying
what hasn’t changed.

To copy an Elem node, use the copy method. It has five named parameters: the fa-
miliar label, attributes, and child, as well as prefix and scope which are used for
namespaces (see Section 16.12, “Namespaces,” on page 242). Any parameters
that you don’t specify are copied from the original element. For example,

val list = FredWilma
val list2 = list.copy(label = "ol")

makes a copy of list, changing the label from ul to ol. The children are shared,
but that’s OK since node sequences are immutable.

To add a child, make a call to copy like this:

list.copy(child = list.child ++ Another item)

To add or change an attribute, use the % operator:

val image =
val image2 = image % Attribute(null, "alt", "An image of a hamster", Null)

The first argument is the namespace. The last one is a list of additional metadata.
Just like Node extends NodeSeq, the Attribute trait extends MetaData. To add more than
one attribute, you can chain them like this:

val image3 = image % Attribute(null, "alt", "An image of a frog",
 Attribute(null, "src", "frog.jpg", Null))

CAUTION: Here, scala.xml.Null is an empty attribute list. It is not the
scala.Null type.

Adding an attribute with the same key replaces the existing one. The image3 element
has a single attribute with key "src"; its value is "frog.jpg".

Chapter 16 XML Processing

238

ptg20087099

16.10 Transforming XML

Sometimes, you need to rewrite all descendants that match a particular condition.
The XML library provides a RuleTransformer class that applies one or more RewriteRule
instances to a node and its descendants.

For example, suppose you want to change all ul nodes in a document to ol. Define
a RewriteRule that overrides the transform method:

val rule1 = new RewriteRule {
 override def transform(n: Node) = n match {
 case e @ {_*} => e.asInstanceOf[Elem].copy(label = "ol")
 case _ => n
 }
}

Then you can transform a tree with the command

val transformed = new RuleTransformer(rule1).transform(root)

You can supply any number of rules in the constructor of the RuleTransformer:

val transformer = new RuleTransformer(rule1, rule2, rule3);

The transform method traverses the descendants of a node, applies all rules, and
returns the transformed tree.

16.11 Loading and Saving

To load an XML document from a file, call the loadFile method of the XML object:

import scala.xml.XML
val root = XML.loadFile("myfile.xml")

You can also load from a java.io.InputStream, a java.io.Reader, or a URL:

val root2 = XML.load(new FileInputStream("myfile.xml"))
val root3 = XML.load(new InputStreamReader(
 new FileInputStream("myfile.xml"), "UTF-8"))
val root4 = XML.load(new URL("http://horstmann.com/index.html"))

The document is loaded using the standard SAX parser from the Java library.
Unfortunately, the Document Type Definition (DTD) is not made available.

239
16.11 Loading and Saving

ptg20087099

CAUTION: This parser suffers from a problem that is inherited from the Java
library. It does not read DTDs from a local catalog. In particular, fetching an
XHTML file can take a very long time, or fail altogether, as the parser retrieves
the DTDs from the www.w3.org site.

To use a local catalog, you need the CatalogResolver class that is available in
the com.sun.org.apache.xml.internal.resolver.tools package of the JDK or, if
you are squeamish about using a class outside the official API, in the Apache
Commons Resolver project (http://xml.apache.org/commons/components/
resolver/resolver-article.html).

Unfortunately, the XML object has no API for installing an entity resolver. Here
is how you can do it through the back door:

val res = new CatalogResolver
val doc = new factory.XMLLoader[Elem] {
 override def adapter = new parsing.NoBindingFactoryAdapter() {
 override def resolveEntity(publicId: String, systemId: String) = {
 res.resolveEntity(publicId, systemId)
 }
 }
}.load(new URL("http://horstmann.com/index.html"))

There is another parser that preserves comments, CDATA sections, and, optionally,
whitespace:

import scala.xml.parsing.ConstructingParser
import java.io.File
val parser = ConstructingParser.fromFile(new File("myfile.xml"), preserveWS = true)
val doc = parser.document
val root = doc.docElem

Note that the ConstructingParser returns a node of type Document. Call its docElem
method to get the document root.

If your document has a DTD and you need it (for example, when saving the
document), it is available as doc.dtd.

Chapter 16 XML Processing

240

ptg20087099

CAUTION: By default, the ConstructingParser does not resolve entities but
converts them into useless comments, such as

<!-- unknown entity nbsp; -->

If you happen to be reading an XHTML file, you can use the XhtmlParser
subclass:

val parser = new XhtmlParser(scala.io.Source.fromFile("myfile.html"))
val doc = parser.initialize.document

Otherwise, you need to add entities to the parser’s entity map. For example,

parser.ent ++= List(
 "nbsp" -> ParsedEntityDecl("nbsp", IntDef("\u00A0")),
 "eacute" -> ParsedEntityDecl("eacute", IntDef("\u00E9")))

To save an XML document to a file, use the save method:

XML.save("myfile.xml", root)

This method takes three optional parameters:

• enc specifies the character encoding (default is "ISO-8859-1").

• xmlDecl specifies whether to emit an XML declaration (<?xml...?>) at the
beginning of the output (default is false).

• doctype is an object of the case class scala.xml.dtd.DocType (default is null).

For example, to write an XHTML file, you might use

XML.save("myfile.xhtml", root,
 enc = "UTF-8",
 xmlDecl = true,
 doctype = DocType("html",
 PublicID("-//W3C//DTD XHTML 1.0 Strict//EN",
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"),
 Nil))

The last parameter in the DocType constructor lets you specify internal DTD
declarations—an obscure XML feature that I won’t discuss here.

You can also save to a java.io.Writer, but then you must specify all parameters.

XML.write(writer, root, "UTF-8", false, null)

241
16.11 Loading and Saving

ptg20087099

NOTE: When saving an XML file, elements without content are not written
with self-closing tags. For example:

If you prefer

use

val str = xml.Utility.toXML(node, minimizeTags = true)

TIP: If you want your XML code to line up prettily, use the PrettyPrinter class:

val printer = new PrettyPrinter(width = 100, step = 4)
val str = printer.formatNodes(nodeSeq)

16.12 Namespaces

In XML, namespaces are used to avoid name clashes, similar to packages in Java
or Scala. However, an XML namespace is a URI (and usually a URL), such as

http://www.w3.org/1999/xhtml

The xmlns attribute declares a namespace, for example:

<html xmlns="http://www.w3.org/1999/xhtml">
 <head>...</head>
 <body>...</body>
</html>

The html element and its descendants (head, body, and so on) are placed in this
namespace.

A descendant can introduce its own namespace, for example:

<svg xmlns="http://www.w3.org/2000/svg" width="100" height="100">
 <rect x="25" y="25" width="50" height="50" fill="#ff0000"/>
</svg>

In Scala, each element has a scope property of type NamespaceBinding. The uri property
of that class yields the namespace URI.

If you want to mix elements from multiple namespaces, it is tedious to work with
namespace URLs. An alternative is a namespace prefix. For example, the tag

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:svg="http://www.w3.org/2000/svg">

Chapter 16 XML Processing

242

ptg20087099

introduces the prefix svg for the namespace http://www.w3.org/2000/svg. All elements
prefixed with svg: belong to that namespace. For example,

<svg:svg width="100" height="100">
 <svg:rect x="25" y="25" width="50" height="50" fill="#ff0000"/>
</svg:svg>

As mentioned in Section 16.9, “Modifying Elements and Attributes,” on page 238,
each Elem object has prefix and scope values. The parser automatically computes
these values. To find out the namespace of an element, look at the scope.uri value.
If there are multiple namespaces, they are chained together through scope.parent
links. This method retrieves them all:

def namespaces(node: Node) = {
 def namespaces(scope: NamespaceBinding): List[(String, String)] =
 if (scope == null) List()
 else namespaces(scope.parent) :+ ((scope.prefix, scope.uri))
 namespaces(node.scope)
}

To get the namespace of an attribute, use the prefixedKey method.

When you produce XML elements programmatically, you need to set prefixes
and scopes. For example,

val scope = new NamespaceBinding("svg", "http://www.w3.org/2000/svg", TopScope)
val attrs = Attribute(null, "width", "100",
 Attribute(null, "height", "100", Null))
val elem = Elem(null, "body", Null, TopScope,
 Elem("svg", "svg", attrs, scope))

Exercises

1. What is <fred/>(0)? <fred/>(0)(0)? Why?

2. What is the result of

 Opening bracket: [
 Closing bracket:]
 Opening brace: {
 Closing brace: }

How do you fix it?

3. Contrast

Fred match { case {Text(t)} => t }

243
Exercises

ptg20087099

and

{"Fred"} match { case {Text(t)} => t }

Why do they act differently?

4. Read an XHTML file and print all img elements that don’t have an alt attribute.

5. Print the names of all images in an XHTML file. That is, print all src attribute
values inside img elements.

6. Read an XHTML file and print a table of all hyperlinks in the file, together
with their URLs. That is, print the child text and the href attribute of each a
element.

7. Write a function that has a parameter of type Map[String, String] and returns
a dl element with a dt for each key and dd for each value. For example,

Map("A" -> "1", "B" -> "2")

should yield <dl><dt>A</dt><dd>1</dd><dt>B</dt><dd>2</dd></dl>.

8. Write a function that takes a dl element and turns it into a Map[String, String].
This function should be the inverse of the function in the preceding exercise,
provided all dt children are distinct.

9. Transform an XHTML document by adding an alt="TODO" attribute to all img
elements without an alt attribute, preserving everything else.

10. Write a function that reads an XHTML document, carries out the transforma-
tion of the preceding exercise, and saves the result. Be sure to preserve the
DTD and any CDATA sections.

Chapter 16 XML Processing

244

ptg20087099

This page intentionally left blank

ptg20087099Topics in This Chapter A2

17.1 Running Tasks in the Future — page 248
17.2 Waiting for Results — page 250
17.3 The Try Class — page 251
17.4 Callbacks — page 251
17.5 Composing Future Tasks — page 252
17.6 Other Future Transformations — page 255
17.7 Methods in the Future Object — page 256
17.8 Promises — page 258
17.9 Execution Contexts — page 260
Exercises — page 260

Futures

ptg20087099Writing concurrent applications that work correctly and with high performance
is very challenging. The traditional approach, in which concurrent tasks have
side effects that mutate shared data, is tedious and error-prone. Scala encourages
you to think of a computation in a functional way. A computation yields a value,
sometime in the future. As long as the computations don’t have side effects, you
can let them run concurrently and combine the results when they become avail-
able. In this chapter, you will see how to use the Future and Promise traits to organize
such computations.

The key points of this chapter are:

• A block of code wrapped in a Future { ... } executes concurrently.

• A future succeeds with a result or fails with an exception.

• You can wait for a future to complete, but you don’t usually want to.

• You can use callbacks to get notified when a future completes, but that gets
tedious when chaining callbacks.

• Use methods such as map/flatMap, or the equivalent for expressions, to compose
futures.

• A promise has a future whose value can be set (once), which gives added
flexibility for implementing tasks that produce results.

• Pick an execution context that is suitable for the concurrent workload of your
computation.

247

17Chapter

ptg20087099

17.1 Running Tasks in the Future
The scala.concurrent.Future object can execute a block of code “in the future.”

import java.time._
import scala.concurrent._
import ExecutionContext.Implicits.global

Future {
 Thread.sleep(10000)
 println(s"This is the future at ${LocalTime.now}")
}
println(s"This is the present at ${LocalTime.now}")

When running this code, a line similar to the following is printed:

This is the present at 13:01:19.400

About ten seconds later, a second line appears:

This is the future at 13:01:29.140

When you create a Future, its code is run on some thread. One could of course
create a new thread for each task, but thread creation is not free. It is better to
keep some pre-created threads around and use them to execute tasks as needed.
A data structure that assigns tasks to threads is usually called a thread pool. In Java,
the Executor interface describes such a data structure. Scala uses the ExecutionContext
trait instead.

Each Future must be constructed with a reference to an ExecutionContext. The simplest
way is to import

import ExecutionContext.Implicits.global

Then the tasks execute on a global thread pool. This is fine for demos, but in a
real program, you should make another choice if your tasks block. See Section 17.9,
“Execution Contexts,” on page 260 for more information.

When you construct multiple futures, they can execute concurrently. For example,
try running

Future { for (i <- 1 to 100) { print("A"); Thread.sleep(10) } }
Future { for (i <- 1 to 100) { print("B"); Thread.sleep(10) } }

You will get an output that looks somewhat like

ABABABABABABABABABABABABABABA...AABABBBABABABABABABABABBBBBBBBBBBBBBBBB

A future can—and normally will—have a result:

Chapter 17 Futures248

ptg20087099

val f = Future {
 Thread.sleep(10000)
 42
}

When you evaluate f in the REPL immediately after the definition, you will get
this output:

res12: scala.concurrent.Future[Int] = Future(<not completed>)

Wait ten seconds and try again:

res13: scala.concurrent.Future[Int] = Future(Success(42))

Alternatively, something bad may happen in the future:

val f2 = Future {
 if (LocalTime.now.getHour > 12)
 throw new Exception("too late")
 42
}

If it is after noon, the task terminates with an exception. In the REPL, you will see

res14: scala.concurrent.Future[Int] = Future(Failure(java.lang.Exception: too late))

Now you know what a Future is. It is an object that will give you a result (or failure)
at some point in the future. In the next section, you will see one way of harvesting
the result of a Future.

NOTE: In the Play web framework, you are encouraged to return Future objects
in the “action” methods that react to web requests. Then you don’t have to
worry how the results are harvested—that’s the job of the framework.

NOTE: The java.util.concurrent package has a Future interface that is much
more limited than the Scala Future trait. A Scala future is equivalent to the
CompletionStage interface in Java 8.

NOTE: The Scala language imposes no restrictions on what you can do in
concurrent tasks. However, you should stay away from computations with
side effects. It is best if you don’t increment shared counters—even atomic
ones. Don’t populate shared maps—even threadsafe ones. Instead, have
each future compute a value. Then you can combine the computed values
after all contributing futures have completed. That way, each value is only
owned by one task at a time, and it is easy to reason about the correctness
of the computation.

24917.1 Running Tasks in the Future

ptg20087099

17.2 Waiting for Results
When you have a Future, you can use the isCompleted method to check whether it
is completed. But of course you don’t want to wait for completion in a loop.

You can make a blocking call that waits for the result.

import scala.concurrent.duration._
val f = Future { Thread.sleep(10000); 42 }
val result = Await.result(f, 10.seconds)

The call to Await.result blocks for ten seconds and then yields the result of the
future.

The second argument of the Await.result method is a Duration object. Importing
scala.concurrent.duration._ enables conversion methods from integers to Duration
objects, called seconds, millis, and so on.

If the task is not ready by the allotted time, the Await.ready method throws a
TimeoutException.

If the task throws an exception, it is rethrown in the call to Await.result. To avoid
that, you can call Await.ready and then get the result.

val f = Future { ... }
Await.ready(f, 10.seconds)
val Some(t) = f.value

The value method returns an Option[Try[T]], which is None when the future is not
completed and Some(t) when it is is. Here, t is an object of the Try class, which
holds either the result or the exception that caused the task to fail. In our situation,
the value method is only executed if the future is completed, so we can use an
extractor to get the Try object. You will see how to look inside it in the next section.

NOTE: In practice, you won’t use the Await.result or Await.ready methods
much.You run tasks concurrently when they are time-consuming and your
program can do something more useful than waiting for the result. Sec-
tion 17.4, “Callbacks,” on page 251 shows you how you can harvest the results
without blocking.

CAUTION: In this section, we used the result and ready methods of the Await
object. The Future class also has result and ready methods, but you should
not call them. If the execution context uses a small number of threads (which
is the case for the default fork-join pool), you don’t want them all to block.
Unlike the Future methods, the Await methods notify the execution context so
that it can adjust the pooled threads.

Chapter 17 Futures250

ptg20087099

NOTE: Not all exceptions that occur during execution of the future are stored
in the result. Virtual machine errors and the InterruptedException are allowed
to propagate in the usual way.

17.3 The Try Class
A Try[T] instance is either a Success(v), where v is a value of type T or a Failure(ex),
where ex is a Throwable. One way of processing it is with a match statement.

t match {
 case Success(v) => println(s"The answer is $v")
 case Failure(ex) => println(ex.getMessage)
}

Alternatively, you can use the isSuccess or isFailure methods to find out whether
the Try object represents success or failure. In the case of success, you can
obtain the value with the get method:

if (t.isSuccess) println(s"The answer is ${t.get}")

To get the exception in case of failure, first apply the failed method which turns
the failed Try[T] object into a Try[Throwable] wrapping the exception. Then call
get to get the exception object.

if (t.isFailure) println(t.failed.get.getMessage)

You can also turn a Try object into an Option with the toOption method if you want
to pass it on to a method that expects an option. This turns Success into Some and
Failure into None.

To construct a Try object, call Try(block) with some block of code. For example,

val result = Try(str.toInt)

is either a Success object with the parsed integer, or a Failure wrapping a
NumberFormatException.

There are several methods for composing and transforming Try objects. However,
analogous methods exist for futures, where they are more commonly used. You
will see how to work with multiple futures in Section 17.5, “Composing Future
Tasks,” on page 252. At the end of that section, you will see how those techniques
apply to Try objects.

17.4 Callbacks
As already mentioned, one does not usually use a blocking wait to get the result
of a future. For better performance, the future should report its result to a callback
function.

25117.4 Callbacks

ptg20087099

This is easy to arrange with the onComplete method.

f.onComplete(t => ...)

When the future has completed, either successfully or with a failure, it calls the
given function with a Try object.

You can then react to the success or failure, for example by passing a match
function to the onComplete method.

val f = Future { Thread.sleep(10000)
 if (random() < 0.5) throw new Exception
 42
}
f.onComplete {
 case Success(v) => println(s"The answer is $v")
 case Failure(ex) => println(ex.getMessage)
}

By using a callback, we avoid blocking. Unfortunately, we now have another
problem. In all likelihood, the long computation in one Future task will be followed
by another computation, and another. It is possible to nest callbacks within call-
backs, but it is profoundly unpleasant. (This technique is sometimes called
“callback hell”.)

A better approach is to think of futures as entities that can be composed, similar
to functions. You compose two functions by calling the first one, then passing
its result to the second one. In the next section, you will see how to do the same
with futures.

NOTE: There are callback methods onSuccess and onFailure that are only
called on success or failure of a future. However, these are deprecated
because they are even bigger contributors to callback hell.

17.5 Composing Future Tasks
Suppose we need to get some information from two web services and then
combine the two. Each task is long-running and should be executed in a Future.
It is possible to link them together with callbacks:

val future1 = Future { getData1() }
val future2 = Future { getData2() }

Chapter 17 Futures252

ptg20087099

future1 onComplete {
 case Success(n1) =>
 future2 onComplete {
 case Success(n2) => {
 val n = n1 + n2
 println(s"Result: $n")
 }
 case Failure(ex) => ...
 }
 case Failure(ex) => ...
}

Even though the callbacks are ordered sequentially, the tasks run concurrently.
Each task starts after the Future.apply method executes or soon afterwards. We
don’t know which of f1 and f2 completes first, and it doesn’t matter. We can’t
process the result until both tasks complete. Once f1 completes, its completion
handler registers a completion handler on f2. If f2 has already completed, the
second handler is called right away. Otherwise, it is called when f2 finally
completes.

Even though this chaining of the futures works, it looks very messy, and it will
look worse with each additional level of processing.

Instead of nesting callbacks, we will use an approach that you already know
from working with Scala collections. Think of a Future as a collection with (hope-
fully, eventually) one element. You know how to transform the values of a
collection—with map:

val future1 = Future { getData1() }
val combined = future1.map(n1 => n1 + getData2())

Here future1 is a Future[Int]—a collection of (hopefully, eventually) one value. We
map a function Int => Int and get another Future[Int]—a collection of (hopefully,
eventually) one integer.

But wait—that’s not quite the same as in the callback code. The call to getData2 is
running after getData1, not concurrently. Let’s fix that with a second map:

val future1 = Future { getData1() }
val future2 = Future { getData2() }
val combined = future1.map(n1 => future2.map(n2 => n1 + n2))

When future1 and future2 have delivered their results, the sum is computed.

25317.5 Composing Future Tasks

ptg20087099

Unfortunately, now combined is a Future[Future[Int]], which isn’t so good. That’s
what flatMap is for:

val combined = f1.flatMap(n1 => f2.map(n2 => n1 + n2))

This looks much nicer when you use a for expression instead of chaining flatMap
and map:

val combined = for (n1 <- future1; n2 <- future2) yield n1 + n2

This is exactly the same code since for expressions are translated to chains of map
and flatMap.

You can also apply guards in the for expression:

val combined =
 for (int n1 <- future1; n2 <- future2 if n1 != n2) yield n1 + n2

If the guard fails, the computation fails with a NoSuchElementException.

What if something goes wrong? The map and flatMap implementations take care of
all that. As soon as one of the tasks fails, the entire pipeline fails, and the exception
is captured. In contrast, when you manually combine callbacks, you have to deal
with failure at every step.

NOTE: If you find the for/yield construct unnatural, check out the Scala Async
library at http://github.com/scala/async. It uses Scala Macros to let you express
the flow more naturally as

val combined = async { await(future1) + await(future2) }

So far, you have seen how to run two tasks concurrently. Sometimes, you need
one task to run after another. A Future starts execution immediately when it is
created. To delay the creation, use functions.

def future1 = Future { getData() }
def future2 = Future { getMoreData() } // def, not val
val combined = for (n1 <- future1; n2 <- future2) yield n1 + n2

Now future2 is only evaluated when future1 has completed.

It doesn’t matter whether you use val or def for future1. If you use def, its creation
is slightly delayed to the start of the for expression.

This is particularly useful if the second step depends on the output of the first:

def future1 = Future { getData() }
def future2(arg: Int) = Future { getMoreData(arg) }
val combined = for (n1 <- future1; n2 <- future2(n1)) yield n1 + n2

Chapter 17 Futures254

ptg20087099

NOTE: Like the Future trait, the Try class from Section 17.3, “The Try Class,”
on page 251 has map and flatMap methods.A Try[T] is a collection of, hopefully,
one element. It is just like a Future[T], except you don’t have to wait.You can
apply map with a function that changes that one element, or flatMap if you have
Try-valued function and want to flatten the result. And you can use for
expressions. For example, here is how to compute the sum of two function
calls that might fail:

 def readInt(prompt: String) = Try(StdIn.readLine(s"$prompt: ").toInt)
 val t = for (n1 <- readInt("n1"); n2 <- readInt("n2")) yield n1 + n2

In this way, you can compose Try-valued computations and you don’t need
to deal with the boring part of error handling.

17.6 Other Future Transformations
The map and flatMap methods that you saw in the preceding section are the most
fundamental transformation of Future objects.

Table 17–1 shows several ways of applying functions to the contents of a future
that differ in subtle details.

The foreach method works exactly like it does for collections, applying a method
for its side effect. The method is applied to the single value in the future. It is
convenient for harvesting the answer when it materializes.

val combined = for (n1 <- future1; n2 <- future2) yield n1 + n2
combined.foreach(n => println(s"Result: $n"))

The recover method accepts a partial function that can turn an exception into a
successful result. Consider this call:

val f = Future { persist(data) } recover { case e: SQLException => 0 }

If a SQLException occurs, the future succeeds with result 0.

The fallbackTo method provides a different recovery mechanism. When you call
f.fallbackTo(f2), then f2 is executed if f fails, and its value becomes the value of
the future. However, f2 cannot inspect the reason for the failure.

The failed method turns a failed Future[T] into a successful Future[Throwable], just
like the Try.failed method. You can retrieve the failure in a for expression like this:

val f = Future { ... }
for (ex <- f.failed) println(ex)

Finally, you can zip two futures together. The call f1.zip(f2) yields a future whose
result is a pair (v, w) if v was the result of f1 and w the result of f2, or an exception
if either f1 or f2 failed. (If both fail, the exception of f1 is reported.)

25517.6 Other Future Transformations

ptg20087099

Table 17–1 Transformations on a Future[T] with success value v or exception ex

DescriptionResultMethod

Like map, but with a partial
function. The result fails with a
NoSuchElementException if pf(v) is not
defined.

Future[S]collect(pf:
PartialFunction[T, S])

Calls f(v) like map, but only for its
side effect.

Unitforeach(f: T => U)

Calls pf(v) for its side effect and
returns a future with v.

Future[T]andThen(pf:
PartialFunction[Try[T], U])

Calls p(v) and returns a future
with v or a NoSuchElementException.

Future[T]filter(p: T => Boolean)

A future with value v or pf(ex),
flattened in the asynchronous
case.

Future[U] (where U
is a supertype
of T)

recover(pf:
PartialFunction[Throwable, U])
recoverWith(pf:
PartialFunction[Throwable,
Future[U]])

A future with value v, or if this
future failed, with the value of f2,
or if that also failed, with
exception ex.

Future[U] (where U
is a supertype
of T)

fallbackTo(f2: Future[U])

A future with value ex.Future[Throwable]failed

Transforms both the success and
failure.

Future[S]transform(s: T => S, f:
Throwable => Throwable)
transform(f: Try[T] => Try[S])
transformWith(f: Try[T] =>
Future[Try[S]])

The zipWith method is similar, but it takes a method to combine the two results
instead of returning a pair. For example, here is another way of obtaining the
sum of two computations:

val future1 = Future { getData1() }
val future2 = Future { getData2() }
val combined = future1.zipWith(future2)(_ + _)

17.7 Methods in the Future Object
The Future companion object contains useful methods for working on collections
of futures.

Chapter 17 Futures256

ptg20087099

Suppose that, as you are computing a result, you organize the work so that you
can concurrently work on different parts. For example, each part might be a range
of the inputs. Make a future for each part:

val futures = parts.map(p => Future { compute result in p })

Now you have a collection of futures. Often, you want to combine the results.
By using the Future.sequence method, you can get a collection of all results for further
processing:

val result = Future.sequence(futures);

Note that the call doesn’t block—it gives you a future to a collection. For example,
assume futures is a Set[Future[T]]. Then the result is a Future[Set[T]]. When the results
for all elements of futures are available, the result future will complete with a set
of the results.

If any of the futures fail, then the resulting future fails as well with the exception
of the leftmost failed future. If multiple futures fail, you don’t get to see the
remaining failures.

The traverse method combines the map and sequence steps. Instead of

val futures = parts.map(p => Future { compute result in p })
val result = Future.sequence(futures);

you can call

val result = Future.traverse(parts)(p => Future { compute result in p })

The function in the second curried argument is applied to each element of parts.
You get a future to a collection of all results.

There are also reduceLeft and foldLeft operations that are analogous to the reduc-
tions and folds described in Section 13.9, “Reducing, Folding, and Scanning,” on
page 184. You supply an operation that combines the results of all futures as they
become available. For example, here is how you can compute the sum of the
results:

val result = Future.reduceLeft(futures)(_ + _)
 // Yields a future to the sum of the results of all futures

So far, we have collected the results from all futures. Suppose you are willing to
accept a result from any of the parts. Then call

Future[T] result = Future.firstCompletedOf(futures)

You get a future that, when it completes, has the result or failure of the first
completed element of futures.

The find method is similar, but you also supply a predicate.

val result = Future.find(futures)(predicate)
 // Yields a Future[Option[T]]

25717.7 Methods in the Future Object

ptg20087099

You get a future that, when it completes successfully, yields Some(r), where r is
the result of one of the given futures that fulfills the predicate. Failed futures are
ignored. If all futures complete but none yields a result that matches the predicate,
then find returns None.

CAUTION:A potential problem with firstCompletedOf and find is that the other
computations keep on going even when the result has been determined.
Scala futures do not have a mechanism for cancellation. If you want to stop
unnecessary work, you have to provide your own mechanism.

Finally, the Future object provides convenience methods for generating simple
futures:

• Future.successful(r) is an already completed future with result r.

• Future.failed(e) is an already completed future with exception e.

• Future.fromTry(t) is an already completed future with the result or exception
given in the Try object t.

• Future.unit is an already completed future with Unit result.

• Future.never is a future that never completes.

17.8 Promises
A Future object is read-only. The value of the future is set implicitly when the task
has finished or failed. A Promise is similar, but the value can be set explicitly.

Consider this method that yields a Future:

def computeAnswer(arg: String) = Future {
 val n = workHard(arg)
 n
}

With a Promise, it looks like this:

def computeAnswer(arg: String) = {
 val p = Promise[Int]()
 Future {
 val n = workHard(arg)
 p.success(n)
 workOnSomethingElse()
 }
 p.future
}

Chapter 17 Futures258

ptg20087099

Calling future on a promise yields the associated Future object. Note that the method
returns the Future right away, immediately after starting the task that will eventu-
ally yield the result. That task is run in another Future, defined by the expression
Future { ... }, that is unrelated to the promise’s future.

Calling success on a promise sets the result. Alternatively, you can call failure with
an exception to make the promise fail. As soon as one of these methods is called,
the associated future is completed, and neither method can be called again. (An
IllegalStateException is thrown otherwise.)

From the point of view of the consumer (that is, caller of the computeAnswer method),
there is no difference between the two approaches. Either way, the consumer has
a Future and eventually gets the result.

The producer, however, has more flexibility when using a Promise. As suggested
in the code sample, the producer can do other work besides fulfilling this promise.
For example, the producer might work on fulfilling multiple promises.

val p1 = Promise[Int]()
val p2 = Promise[Int]()
Future {
 val n1 = getData1()
 p1.success(n1)
 val n2 = getData2()
 p2.success(n2)
}

It is also possible to have multiple tasks that work concurrently to fulfill a single
promise. When one of the tasks has a result, it calls trySuccess on the promise.
Unlike the success method, that method accepts the result and returns true if the
promise has not yet completed; otherwise it returns false and ignores the result.

val p = Promise[Int]()
Future {
 var n = workHard(arg)
 p.trySuccess(n)
}
Future {
 var n = workSmart(arg)
 p.trySuccess(n)
}

The promise is completed by the first task that manages to produce the result.
With this approach, the tasks might want to periodically call p.isCompleted to check
whether they should continue.

25917.8 Promises

ptg20087099

NOTE:Scala promises are equivalent to the CompletableFuture class in Java 8.

17.9 Execution Contexts
By default, Scala futures are executed on the global fork-join pool. That works
well for computationally intensive tasks. However, the fork-join pool only man-
ages a small number of threads (by default, equal to the number of cores of all
processors). This is a problem when tasks have to wait, for example when com-
municating with a remote resource. A program could exhaust all available threads,
waiting for results.

You can notify the execution context that you are about to block, by placing the
blocking code inside blocking { ... }:

val f = Future {
 val url = ...
 blocking {
 val contents = Source.fromURL(url).mkString
 ...
 }
}

The execution context may then increase the number of threads. The fork-join
pool does exactly that, but it isn’t designed for perform well for many blocking
threads. If you do input/output or connect to databases, you are better off using
a different thread pool. The Executors class from the Java concurrency library gives
you several choices. A cached thread pool works well for I/O intensive workloads.
You can pass it explicitly to the Future.apply method, or you can set it as the implicit
execution context:

val pool = Executors.newCachedThreadPool()
implicit val ec = ExecutionContext.fromExecutor(pool)

Now this pool is used by all futures when ec is in scope.

Exercises
1. Consider the expression

for (n1 <- Future { Thread.sleep(1000) ; 2 }
 n2 <- Future { Thread.sleep(1000); 40 })
 println(n1 + n2)

Chapter 17 Futures260

ptg20087099

How is the expression translated to map and flatMap calls? Are the two futures
executed concurrently or one after the other? In which thread does the call
to println occur?

2. Write a function doInOrder that, given two functions f: T => Future[U] and g: U
=> Future[V], produces a function T => Future[U] that, for a given t, eventually
yields g(f(t)).

3. Repeat the preceding exercise for any sequence of functions of type T =>
Future[T].

4. Write a function doTogether that, given two functions f: T => Future[U] and
g: U => Future[V], produces a function T => Future[(U, V)], running the two
computations in parallel and, for a given t, eventually yielding (f(t), g(t)).

5. Write a function that receives a sequence of futures and returns a future that
eventually yields a sequence of all results.

6. Write a method

Future[T] repeat(action: => T, until: T => Boolean)

that asynchronously repeats the action until it produces a value that is
accepted by the until predicate, which should also run asynchronously. Test
with a function that reads a password from the console, and a function that
simulates a validity check by sleeping for a second and then checking
that the password is "secret". Hint: Use recursion.

7. Write a program that counts the prime numbers between 1 and n, as reported
by BigInt.isProbablePrime. Divide the interval into p parts, where p is the number
of available processors. Count the primes in each part in concurrent futures
and combine the results.

8. Write a program that asks the user for a URL, reads the web page at that URL,
and displays all the hyperlinks. Use a separate Future for each of these three
steps.

9. Write a program that asks the user for a URL, reads the web page at that URL,
finds all the hyperlinks, visits each of them concurrently, and locates the Server
HTTP header for each of them. Finally, print a table of which servers were
found how often. The futures that visit each page should return the header.

10. Change the preceding exercise where the futures that visit each header update
a shared Java ConcurrentHashMap or Scala TrieMap. This isn’t as easy as it sounds.
A threadsafe data structure is safe in the sense that you cannot corrupt its
implementation, but you have to make sure that sequences of reads and
updates are atomic.

261Exercises

ptg20087099

11. Using futures, run four tasks that each sleep for ten seconds and then print
the current time. If you have a reasonably modern computer, it is very likely
that it reports four available processors to the JVM, and the futures should
all complete at around the same time. Now repeat with forty tasks. What
happens? Why? Replace the execution context with a cached thread pool.
What happens now? (Be careful to define the futures after replacing the implicit
execution context.)

12. Write a method that, given a URL, locates all hyperlinks, makes a promise
for each of them, starts a task in which it will eventually fulfill all promises,
and returns a sequence of futures for the promises. Why would it not be a
good idea to return a sequence of promises?

13. Use a promise for implementing cancellation. Given a range of big integers,
split the range into subranges that you concurrently search for palindromic
primes. When such a prime is found, set it as the value of the future. All tasks
should periodically check whether the promise is completed, in which case
they should terminate.

Chapter 17 Futures262

ptg20087099

This page intentionally left blank

ptg20087099Topics in This Chapter L2

18.1 Generic Classes — page 266
18.2 Generic Functions — page 266
18.3 Bounds for Type Variables — page 266
18.4 View Bounds — page 268
18.5 Context Bounds — page 268
18.6 The ClassTag Context Bound — page 269
18.7 Multiple Bounds — page 269
18.8 Type Constraints L3 — page 269
18.9 Variance — page 271
18.10 Co- and Contravariant Positions — page 272
18.11 Objects Can’t Be Generic — page 274
18.12 Wildcards — page 275
Exercises — page 275

Type Parameters

ptg20087099In Scala, you can use type parameters to implement classes and functions that
work with multiple types. For example, an Array[T] stores elements of an arbitrary
type T. The basic idea is very simple, but the details can get tricky. Sometimes,
you need to place restrictions on the type. For example, to sort elements, T must
provide an ordering. Furthermore, if the parameter type varies, what should
happen with the parameterized type? For example, can you pass an Array[String]
to a function that expects an Array[Any]? In Scala, you specify how your types
should vary depending on their parameters.

The key points of this chapter are:

• Classes, traits, methods, and functions can have type parameters.

• Place the type parameters after the name, enclosed in square brackets.

• Type bounds have the form T <: UpperBound, T >: LowerBound, T : ContextBound.

• You can restrict a method with a type constraint such as (implicit ev: T <:<
UpperBound).

• Use +T (covariance) to indicate that a generic type’s subtype relationship is
in the same direction as the parameter T, or -T (contravariance) to indicate the
reverse direction.

• Covariance is appropriate for parameters that denote outputs, such as
elements in an immutable collection.

265

18Chapter

ptg20087099

• Contravariance is appropriate for parameters that denote inputs, such as
function arguments.

18.1 Generic Classes
As in Java or C++, classes and traits can have type parameters. In Scala, you use
square brackets for type parameters, for example:

class Pair[T, S](val first: T, val second: S)

This defines a class with two type parameters T and S. You use the type parameters
in the class definition to define the types of variables, method parameters, and
return values.

A class with one or more type parameters is generic. If you substitute actual types
for the type parameters, you get an ordinary class, such as Pair[Int, String].

Pleasantly, Scala attempts to infer the actual types from the construction
parameters:

val p = new Pair(42, "String") // It’s a Pair[Int, String]

You can also specify the types yourself:

val p2 = new Pair[Any, Any](42, "String")

18.2 Generic Functions
Functions and methods can also have type parameters. Here is a simple example:

def getMiddle[T](a: Array[T]) = a(a.length / 2)

As with generic classes, you place the type parameter after the name.

Scala infers the actual types from the arguments in the call.

 getMiddle(Array("Mary", "had", "a", "little", "lamb")) // Calls getMiddle[String]

If you need to, you can specify the type:

val f = getMiddle[String] _ // The function, saved in f

18.3 Bounds for Type Variables
Sometimes, you need to place restrictions on type variables. Consider a Pair type
where both components have the same type, like this:

class Pair[T](val first: T, val second: T)

Chapter 18 Type Parameters266

ptg20087099

Now we want to add a method that produces the smaller value:

class Pair[T](val first: T, val second: T) {
 def smaller = if (first.compareTo(second) < 0) first else second // Error
}

That’s wrong—we don’t know if first has a compareTo method. To solve this, we
can add an upper bound T <: Comparable[T].

class Pair[T <: Comparable[T]](val first: T, val second: T) {
 def smaller = if (first.compareTo(second) < 0) first else second
}

This means that T must be a subtype of Comparable[T].

Now we can instantiate Pair[java.lang.String] but not Pair[java.net.URL], since String
is a subtype of Comparable[String] but URL does not implement Comparable[URL]. For
example:

val p = new Pair("Fred", "Brooks")
println(p.smaller) // Prints Brooks

CAUTION: This example is a bit simplistic. If you try a new Pair(4, 2), you will
be told that for T = Int, the bound T <: Comparable[T] is not fulfilled. See
Section 18.4, “View Bounds,” on page 268 for a remedy.

You can also specify a lower bound for a type. For example, suppose we want
to define a method that replaces the first component of a pair with another value.
Our pairs are immutable, so we need to return a new pair. Here is a first attempt:

class Pair[T](val first: T, val second: T) {
 def replaceFirst(newFirst: T) = new Pair[T](newFirst, second)
}

But we can do better than that. Suppose we have a Pair[Student]. It should be
possible to replace the first component with a Person. Of course, then the result
must be a Pair[Person]. In general, the replacement type must be a supertype of
the pair’s component type.

def replaceFirst[R >: T](newFirst: R) = new Pair[R](newFirst, second)

Here, I included the type parameter in the returned pair for greater clarity. You
can also write

def replaceFirst[R >: T](newFirst: R) = new Pair(newFirst, second)

Then the return type is correctly inferred as new Pair[R].

26718.3 Bounds for Type Variables

ptg20087099

CAUTION: If you omit the lower bound,

def replaceFirst[R](newFirst: R) = new Pair(newFirst, second)

the method will compile, but it will return a Pair[Any].

18.4 View Bounds
In the preceding section, we had an example of an upper bound:

class Pair[T <: Comparable[T]]

Unfortunately, if you try constructing a new Pair(4, 2), the compiler complains
that Int is not a subtype of Comparable[Int]. Unlike the java.lang.Integer wrapper
type, the Scala Int type does not implement Comparable. However, RichInt does im-
plement Comparable[Int], and there is an implicit conversion from Int to RichInt. (See
Chapter 21 for more information on implicit conversions.)

A solution is to use a “view bound” like this:

class Pair[T <% Comparable[T]]

The <% relation means that T can be converted to a Comparable[T] through an implicit
conversion.

However, view bounds are on their way out in Scala. If you compile with the
-future flag, you’ll get a warning when you use them. You can replace a view
bound with a “type constraint” (see Section 18.8, “Type Constraints,” on page 269),
like this:

class Pair[T](val first: T, val second: T)(implicit ev: T => Comparable[T]) {
 def smaller = if (first.compareTo(second) < 0) first else second
 ...
}

18.5 Context Bounds
A view bound T <% V requires the existence of an implicit conversion from T to
V. A context bound has the form T : M, where M is another generic type. It requires
that there is an “implicit value” of type M[T]. We discuss implicit values in detail
in Chapter 21.

For example,

class Pair[T : Ordering]

requires that there is an implicit value of type Ordering[T]. That implicit value can
then be used in the methods of the class. When you declare a method that uses
the implicit value, you have to add an “implicit parameter.” Here is an example:

Chapter 18 Type Parameters268

ptg20087099

class Pair[T : Ordering](val first: T, val second: T) {
 def smaller(implicit ord: Ordering[T]) =
 if (ord.compare(first, second) < 0) first else second
}

As you will see in Chapter 21, implicit values are more flexible than implicit
conversions.

18.6 The ClassTag Context Bound
To instantiate a generic Array[T], one needs a ClassTag[T] object. This is required
for primitive type arrays to work correctly. For example, if T is Int, you want an
int[] array in the virtual machine. If you write a generic function that constructs
a generic array, you need to help it out and pass that class tag object. Use a context
bound, like this:

import scala.reflect._
def makePair[T : ClassTag](first: T, second: T) = {
 val r = new Array[T](2); r(0) = first; r(1) = second; r
}

If you call makePair(4, 9), the compiler locates the implicit ClassTag[Int] and
actually calls makePair(4, 9)(classTag). Then the new operator is translated to a call
classTag.newArray, which in the case of a ClassTag[Int] constructs a primitive array
int[2].

Why all this complexity? In the virtual machine, generic types are erased. There
is only a single makePair method that needs to work for all types T.

18.7 Multiple Bounds
A type variable can have both an upper and a lower bound. The syntax is this:

T >: Lower <: Upper

You can’t have multiple upper or lower bounds. However, you can still require
that a type implements multiple traits, like this:

T <: Comparable[T] with Serializable with Cloneable

You can have more than one context bound:

T : Ordering : ClassTag

18.8 Type Constraints L3
Type constraints give you another way of restricting types. There are three
relationships that you can use:

26918.8 Type Constraints

ptg20087099

T =:= U
T <:< U
T => U

These constraints test whether T equals U, is a subtype of U, or is convertible to
U. To use such a constraint, you add an “implicit evidence parameter” like this:

class Pair[T](val first: T, val second: T)(implicit ev: T <:< Comparable[T])

NOTE: See Chapter 21 for an explanation of the curious syntax, and for an
analysis of the inner workings of the type constraints.

In the example above, there is no advantage to using a type constraint over a
type bound class Pair[T <: Comparable[T]]. However, type constraints are useful in
some specialized circumstances. In this section, you will see two uses of type
constraints.

Type constraints let you supply a method in a generic class that can be used only
under certain conditions. Here is an example:

class Pair[T](val first: T, val second: T) {
 def smaller(implicit ev: T <:< Ordered[T]) =
 if (first < second) first else second
}

You can form a Pair[URL], even though URL is not ordered. You will get an error
only if you invoke the smaller method.

Another example is the orNull method in the Option class:

val friends = Map("Fred" -> "Barney", ...)
val friendOpt = friends.get("Wilma") // An Option[String]
val friendOrNull = friendOpt.orNull // A String or null

The orNull method can be useful when working with Java code where it is common
to encode missing values as null. But it can’t be applied to value types such as
Int that don’t have null as a valid value. Because orNull is implemented using a
constraint Null <:< A, you can still instantiate Option[Int], as long as you stay away
from orNull for those instances.

Another use of type constraints is for improving type inference. Consider

def firstLast[A, C <: Iterable[A]](it: C) = (it.head, it.last)

When you call

firstLast(List(1, 2, 3))

you get a message that the inferred type arguments [Nothing, List[Int]] don’t
conform to [A, C <: Iterable[A]]. Why Nothing? The type inferencer cannot figure

Chapter 18 Type Parameters270

ptg20087099

out what A is from looking at List(1, 2, 3), because it matches A and C in a single
step. To help it along, first match C and then A:

def firstLast[A, C](it: C)(implicit ev: C <:< Iterable[A]) =
 (it.head, it.last)

NOTE: You saw a similar trick in Chapter 12. The corresponds method checks
whether two sequences have corresponding entries:

def corresponds[B](that: Seq[B])(match: (A, B) => Boolean): Boolean

The match predicate is a curried parameter so that the type inferencer can first
determine the type of B and then use that information to analyze match. In
the call

Array("Hello", "Fred").corresponds(Array(5, 4))(_.length == _)

the compiler can infer that B is Int. Then it can make sense of _.length == _.

18.9 Variance
Suppose we have a function that does something with a Pair[Person]:

def makeFriends(p: Pair[Person])

If Student is a subclass of Person, can I call makeFriend with a Pair[Student]? By default,
this is an error. Even though Student is a subtype of Person, there is no relationship
between Pair[Student] and Pair[Person].

If you want such a relationship, you have to indicate it when you define the Pair
class:

class Pair[+T](val first: T, val second: T)

The + means that the type is covariant in T—that is, it varies in the same direction.
Since Student is a subtype of Person, a Pair[Student] is now a subtype of Pair[Person].

It is also possible to have variance in the other direction. Consider a generic type
Friend[T], which denotes someone who is willing to befriend anyone of type T.

trait Friend[-T] {
 def befriend(someone: T)
}

Now suppose you have a function

def makeFriendWith(s: Student, f: Friend[Student]) { f.befriend(s) }

Can you call it with a Friend[Person]? That is, if you have

27118.9 Variance

ptg20087099

class Person extends Friend[Person] { ... }
class Student extends Person
val susan = new Student
val fred = new Person

will the call makeFriendWith(susan, fred) succeed? It seems like it should. If Fred
is willing to befriend any person, he’ll surely like to be friends with Susan.

Note that the type varies in the opposite direction of the subtype relationship.
Student is a subtype of Person, but Friend[Student] is a supertype of Friend[Person]. In
that case, you declare the type parameter to be contravariant:

trait Friend[-T] {
 def befriend(someone: T)
}

You can have both variance types in a single generic type. For example, single-
argument functions have the type Function1[-A, +R]. To see why these are the
appropriate variances, consider a function

def friends(students: Array[Student], find: Function1[Student, Person]) =
 // You can write the second parameter as find: Student => Person
 for (s <- students) yield find(s)

Suppose you have a function

def findStudent(p: Person) : Student

Can you call friends with that function? Of course you can. It’s willing to take any
person, so surely it will take a Student. It yields Student results, which can be put
into an Array[Person].

18.10 Co- and Contravariant Positions
In the preceding section, you saw that functions are contravariant in their argu-
ments and covariant in their results. Generally, it makes sense to use contravari-
ance for the values an object consumes, and covariance for the values it produces.
(Aide-mémoire: contravariance consumes.)

If an object does both, then the type should be left invariant. This is generally the
case for mutable data structures. For example, in Scala, arrays are invariant.
You can’t convert an Array[Student] to an Array[Person] or the other way around.
This would not be safe. Consider the following:

val students = new Array[Student](length)
val people: Array[Person] = students // Not legal, but suppose it was . . .
people(0) = new Person("Fred") // Oh no! Now students(0) isn’t a Student

Chapter 18 Type Parameters272

ptg20087099

Conversely,

val people = new Array[Person](length)
val students: Array[Student] = people // Not legal, but suppose it was . . .
people(0) = new Person("Fred") // Oh no! Now students(0) isn’t a Student

NOTE: In Java, it is possible to convert a Student[] array to a Person[] array,
but if you try to add a nonstudent into such an array, an ArrayStoreException
is thrown. In Scala, the compiler rejects programs that could cause type errors.

Suppose we tried to declare a covariant mutable pair. This wouldn’t work. It
would be like an array with two elements, and one could produce the same kind
of error that you just saw.

Indeed, if you try

class Pair[+T](var first: T, var second: T) // Error

you get an error complaining that the covariant type T occurs in a contravariant
position in the setter

first_=(value: T)

Parameters are contravariant positions, and return types are covariant.

However, inside a function parameter, the variance flips—its parameters are
covariant. For example, look at the foldLeft method of Iterable[+A]:

foldLeft[B](z: B)(op: (B, A) => B): B
 - + + - +

Note that A is now in a covariant position.

These position rules are simple and safe, but they sometimes get in the way of
doing something that would be risk-free. Consider the replaceFirst method from
Section 18.3, “Bounds for Type Variables,” on page 266 in an immutable pair:

class Pair[+T](val first: T, val second: T) {
 def replaceFirst(newFirst: T) = new Pair[T](newFirst, second) // Error
}

The compiler rejects this, because the parameter type T is in a contravariant
position. Yet this method cannot damage the pair—it returns a new pair.

The remedy is to come up with a second type parameter for the method, like this:

def replaceFirst[R >: T](newFirst: R) = new Pair[R](newFirst, second)

Now the method is a generic method with another type parameter R. But R is
invariant, so it doesn’t matter that it appears in a contravariant position.

27318.10 Co- and Contravariant Positions

ptg20087099

18.11 Objects Can’t Be Generic
It is not possible to add type parameters to objects. Consider, for example, im-
mutable lists. A list with element type T is either empty, or it is a node with a
head of type T and a tail of type List[T]:

abstract class List[+T] {
 def isEmpty: Boolean
 def head: T
 def tail: List[T]
}

class Node[T](val head: T, val tail: List[T]) extends List[T] {
 def isEmpty = false
}

class Empty[T] extends List[T] {
 def isEmpty = true
 def head = throw new UnsupportedOperationException
 def tail = throw new UnsupportedOperationException
}

NOTE: Here I use Node and Empty to make the discussion easier to follow for
Java programmers. If you are experienced with Scala lists, just substitute ::
and Nil in your mind.

It seems silly to define Empty as a class. It has no state. But you can’t simply turn it
into an object:

object Empty[T] extends List[T] // Error

You can’t add a parameterized type to an object. In this case, a remedy is to inherit
List[Nothing]:

object Empty extends List[Nothing]

Recall from Chapter 8 that the Nothing type is a subtype of all types. Thus, when
we make a one-element list

val lst = new Node(42, Empty)

type checking is successful. Due to covariance, a List[Nothing] is convertible into
a List[Int], and the Node[Int] constructor can be invoked.

Chapter 18 Type Parameters274

ptg20087099

18.12 Wildcards
In Java, all generic types are invariant. However, you can vary the types where
you use them, using wildcards. For example, a method

void makeFriends(List<? extends Person> people) // This is Java

can be called with a List<Student>.

You can use wildcards in Scala too. They look like this:

def process(people: java.util.List[_ <: Person]) // This is Scala

In Scala, you don’t need the wildcard for a covariant Pair class. But suppose Pair
is invariant:

class Pair[T](var first: T, var second: T)

Then you can define

def makeFriends(p: Pair[_ <: Person]) // OK to call with a Pair[Student]

You can also use wildcards for contravariance:

import java.util.Comparator
def min[T](p: Pair[T])(comp: Comparator[_ >: T])

Wildcards are “syntactic sugar” for existential types, which we will discuss in
detail in Chapter 19.

CAUTION: In certain complex situations, Scala wildcards are still a work in
progress. For example, the following declaration does not work in Scala 2.12:

def min[T <: Comparable[_ >: T]](p: Pair[T]) = ...

A workaround is the following:

type SuperComparable[T] = Comparable[_ >: T]
def min[T <: SuperComparable[T]](p: Pair[T]) = ...

Exercises
1. Define an immutable class Pair[T, S] with a method swap that returns a new

pair with the components swapped.

2. Define a mutable class Pair[T] with a method swap that swaps the components
of the pair.

275Exercises

ptg20087099

3. Given a class Pair[T, S], write a generic method swap that takes a pair as its
argument and returns a new pair with the components swapped.

4. Why don’t we need a lower bound for the replaceFirst method in Section 18.3,
“Bounds for Type Variables,” on page 266 if we want to replace the first
component of a Pair[Person] with a Student?

5. Why does RichInt implement Comparable[Int] and not Comparable[RichInt]?

6. Write a generic method middle that returns the middle element from any
Iterable[T]. For example, middle("World") is 'r'.

7. Look through the methods of the Iterable[+A] trait. Which methods use the
type parameter A? Why is it in a covariant position in these methods?

8. In Section 18.10, “Co- and Contravariant Positions,” on page 272, the
replaceFirst method has a type bound. Why can’t you define an equivalent
method on a mutable Pair[T]?

def replaceFirst[R >: T](newFirst: R) { first = newFirst } // Error

9. It may seem strange to restrict method parameters in an immutable class
Pair[+T]. However, suppose you could define

def replaceFirst(newFirst: T)

in a Pair[+T]. The problem is that this method can be overridden in an unsound
way. Construct an example of the problem. Define a subclass NastyDoublePair
of Pair[Double] that overrides replaceFirst so that it makes a pair with the square
root of newFirst. Then construct the call replaceFirst("Hello") on a Pair[Any] that
is actually a NastyDoublePair.

10. Given a mutable Pair[S, T] class, use a type constraint to define a swap method
that can be called if the type parameters are the same.

Chapter 18 Type Parameters276

ptg20087099

This page intentionally left blank

ptg20087099Topics in This Chapter L2

19.1 Singleton Types — page 280
19.2 Type Projections — page 281
19.3 Paths — page 282
19.4 Type Aliases — page 283
19.5 Structural Types — page 283
19.6 Compound Types — page 284
19.7 Infix Types — page 285
19.8 Existential Types — page 286
19.9 The Scala Type System — page 287
19.10 Self Types — page 288
19.11 Dependency Injection — page 289
19.12 Abstract Types L3 — page 291
19.13 Family Polymorphism L3 — page 293
19.14 Higher-Kinded Types L3 — page 296
Exercises — page 299

Advanced Types

ptg20087099In this chapter, you will see all the types that Scala has to offer, including some
of the more technical ones. We will end with a discussion of self types and
dependency injection.

The key points of this chapter are:

• Singleton types are useful for method chaining and methods with object
parameters.

• A type projection includes inner class instances for all objects of an outer
class.

• A type alias gives a short name for a type.

• Structural types are equivalent to “duck typing.”

• Existential types provide the formalism for wildcard parameters of generic
types.

• Use a self type declaration to indicate that a trait requires another type.

• The “cake pattern” uses self types to implement a dependency injection
mechanism.

• An abstract type must be made concrete in a subclass.

• A higher-kinded type has a type parameter that is itself a parameterized type.

279

19Chapter

ptg20087099

19.1 Singleton Types
Given any reference v, you can form the type v.type, which has two values: v and
null. This sounds like a curious type, but it has a couple of useful applications.

First, consider a method that returns this so you can chain method calls:

class Document {
 def setTitle(title: String) = { ...; this }
 def setAuthor(author: String) = { ...; this }
 ...
}

You can then call

article.setTitle("Whatever Floats Your Boat").setAuthor("Cay Horstmann")

However, if you have a subclass, there is a problem:

class Book extends Document {
 def addChapter(chapter: String) = { ...; this }
 ...
}

val book = new Book()
book.setTitle("Scala for the Impatient").addChapter(chapter1) // Error

Since the setTitle method returns this, Scala infers the return type as Document. But
Document doesn’t have an addChapter method.

The remedy is to declare the return type of setTitle as this.type:

def setTitle(title: String): this.type = { ...; this }

Now the return type of book.setTitle("...") is book.type, and since book has an
addChapter method, the chaining works.

You can also use a singleton type if you want to define a method that takes an
object instance as parameter. You may wonder why you would ever want to do
that—after all, if there is just one instance, the method could simply use it instead
of making the caller pass it.

However, some people like to construct “fluent interfaces” that read like English,
for example:

book set Title to "Scala for the Impatient"

This is parsed as

book.set(Title).to("Scala for the Impatient")

For this to work, set is a method whose argument is the singleton Title:

Chapter 19 Advanced Types280

ptg20087099

object Title

class Document {
 private var useNextArgAs: Any = null
 def set(obj: Title.type): this.type = { useNextArgAs = obj; this }
 def to(arg: String) = if (useNextArgAs == Title) title = arg; else ...
 ...
}

Note the Title.type parameter. You can’t use

def set(obj: Title) ... // Error

since Title denotes the singleton object, not a type.

19.2 Type Projections
In Chapter 5, you saw that a nested class belongs to the object in which it is nested.
Here is the example:

import scala.collection.mutable.ArrayBuffer
class Network {
 class Member(val name: String) {
 val contacts = new ArrayBuffer[Member]
 }

 private val members = new ArrayBuffer[Member]

 def join(name: String) = {
 val m = new Member(name)
 members += m
 m
 }
}

Each Network instance has its own Member class. For example, here are two networks:

val chatter = new Network
val myFace = new Network

Now chatter.Member and myFace.Member are different classes.

You can’t add a member from one network to another:

val fred = chatter.join("Fred") // Has type chatter.Member
val barney = myFace.join("Barney") // Has type myFace.Member
fred.contacts += barney // Error

If you don’t want this restriction, you should simply move the Member type outside
the Network class. A good place would be the Network companion object.

28119.2 Type Projections

ptg20087099

If what you want is fine-grained classes, with an occasional loose interpretation,
use a type projection Network#Member, which means “a Member of any Network.”

class Network {
 class Member(val name: String) {
 val contacts = new ArrayBuffer[Network#Member]
 }
 ...
}

You would do that if you want the fine-grained “inner class per object” feature
in some places of your program, but not everywhere.

CAUTION:A type projection such as Network#Member is not considered a “path,”
and you cannot import it. We discuss paths in the next section.

19.3 Paths
Consider a type such as

com.horstmann.impatient.chatter.Member

or, if we nest Member inside the companion object,

com.horstmann.impatient.Network.Member

Such an expression is called a path.

Each component of the path before the final type must be “stable,” that is, it must
specify a single, definite scope. Each such component is one of the following:

• A package

• An object

• A val

• this, super, super[S], C.this, C.super, or C.super[S]

A path component can’t be a class because, as you have seen, a nested class isn’t
a single type, but it gives rise to a separate type for each instance.

Moreover, a path element can’t be a var. For example,

var chatter = new Network
...
val fred = new chatter.Member // Error—chatter is not stable

Since you might assign a different value to chatter, the compiler can’t assign a
definite meaning to the type chatter.Member.

Chapter 19 Advanced Types282

ptg20087099

NOTE: Internally, the compiler translates all nested type expressions a.b.c.T
to type projections a.b.c.type#T. For example, chatter.Member becomes
chatter.type#Member—any Member inside the singleton chatter.type. That is not
something you generally need to worry about. However, sometimes you will
see an error message with a type of the form a.b.c.type#T. Just translate it
back to a.b.c.T.

19.4 Type Aliases
You can create a simple alias for a complicated type with the type keyword,
like this:

class Book {
 import scala.collection.mutable._
 type Index = HashMap[String, (Int, Int)]
 ...
}

Then you can refer to Book.Index instead of the cumbersome type scala.collection.
mutable.HashMap[String, (Int, Int)].

A type alias must be nested inside a class or object. It cannot appear at the top
level of a Scala file. However, in the REPL, you can declare a type at the top level,
since everything in the REPL is implicitly contained in a top-level object.

NOTE: The type keyword is also used for abstract types that are made
concrete in a subclass, for example:

abstract class Reader {
 type Contents
 def read(fileName: String): Contents
}

We will discuss abstract types in Section 19.12, “Abstract Types,” on page 291.
/

19.5 Structural Types
A “structural type” is a specification of abstract methods, fields, and types that
a conforming type should possess. For example, this method has a structural
type parameter:

28319.5 Structural Types

ptg20087099

def appendLines(target: { def append(str: String): Any },
 lines: Iterable[String]) {
 for (l <- lines) { target.append(l); target.append("\n") }
}

You can call the appendLines method with an instance of any class that has an append
method. This is more flexible than defining a Appendable trait, because you might
not always be able to add that trait to the classes you are using.

Under the hood, Scala uses reflection to make the calls to target.append(...).
Structural typing gives you a safe and convenient way of making such calls.

However, a reflective call is much more expensive than a regular method call.
For that reason, you should only use structural typing when you model common
behavior from classes that cannot share a trait.

NOTE: Structural types are similar to “duck typing” in dynamically typed
programming languages such as JavaScript or Ruby. In those languages,
variables have no type. When you write obj.quack(), the runtime figures out
whether the particular object to which obj refers at this point has a quack
method. In other words, you don’t have to declare obj as a Duck as long as it
walks and quacks like one.

19.6 Compound Types
A compound type has the form

T1 with T2 with T3 ...

where T1, T2, T3, and so on are types. In order to belong to the compound type,
a value must belong to all of the individual types. Therefore, such a type is also
called an intersection type.

You can use a compound type to manipulate values that must provide multiple
traits. For example,

val image = new ArrayBuffer[java.awt.Shape with java.io.Serializable]

You can draw the image object as for (s <- image) graphics.draw(s). You can serialize
the image object because you know that all elements are serializable.

Of course, you can only add elements that are both shapes and serializable objects:

val rect = new Rectangle(5, 10, 20, 30)
image += rect // OK—Rectangle is Serializable
image += new Area(rect) // Error—Area is a Shape but not Serializable

Chapter 19 Advanced Types284

ptg20087099

NOTE: When you have a declaration

trait ImageShape extends Shape with Serializable

this means that ImageShape extends the intersection type Shape with
Serializable.

You can add a structural type declaration to a simple or compound type. For
example,

Shape with Serializable { def contains(p: Point): Boolean }

An instance of this type must be a subtype of Shape and Serializable, and it must
have a contains method with a Point parameter.

Technically, the structural type

{ def append(str: String): Any }

is an abbreviation for

AnyRef { def append(str: String): Any }

and the compound type

Shape with Serializable

is a shortcut for

Shape with Serializable {}

19.7 Infix Types
An infix type is a type with two type parameters, written in “infix” syntax, with
the type name between the type parameters. For example, you can write

String Map Int

instead of

Map[String, Int]

The infix notation is common in mathematics. For example, A × B = { (a, b) | a Œ A,
b Œ B } is the set of pairs with components of types A and B. In Scala, this type is
written as (A, B). If you prefer the mathematical notation, you can define

type ×[A, B] = (A, B)

Then you can write String × Int instead of (String, Int).

All infix type operators have the same precedence. As with regular operators,
they are left-associative unless their names end in :. For example,

String × Int × Int

28519.7 Infix Types

ptg20087099

means ((String, Int), Int). This type is similar to, but not the same, as (String, Int,
Int), which could not be written in infix form in Scala.

NOTE: An infix type name can be any sequence of operator characters,
except for a single *. This rule avoids confusion with variable argument
declarations T*.

19.8 Existential Types
Existential types were added to Scala for compatibility with Java wildcards. An
existential type is a type expression followed by forSome { ... }, where the braces
contain type and val declarations. For example,

Array[T] forSome { type T <: JComponent }

This is the same as the wildcard type

Array[_ <: JComponent]

that you saw in Chapter 18.

Scala wildcards are syntactic sugar for existential types. For example,

Array[_]

is the same as

Array[T] forSome { type T }

and

Map[_, _]

is the same as

Map[T, U] forSome { type T; type U }

The forSome notation allows for more complex relationships than wildcards can
express, for example:

Map[T, U] forSome { type T; type U <: T }

You can use val declarations in the forSome block because a val can have its own
nested types (see Section 19.2, “Type Projections,” on page 281). Here is an
example:

n.Member forSome { val n: Network }

By itself, that’s not so interesting—you could just use a type projection
Network#Member. But consider

def process[M <: n.Member forSome { val n: Network }](m1: M, m2: M) = (m1, m2)

Chapter 19 Advanced Types286

ptg20087099

This method will accept members from the same network, but reject members
from different ones:

val chatter = new Network
val myFace = new Network
val fred = chatter.join("Fred")
val wilma = chatter.join("Wilma")
val barney = myFace.join("Barney")
process(fred, wilma) // OK
process(fred, barney) // Error

NOTE: To use existential types without warnings, you must import
scala.language.existentials or use the compiler option -language:existentials.

19.9 The Scala Type System
The Scala language reference gives an exhaustive list of all Scala types, which is
reproduced in Table 19–1, with brief explanations for each type.

Table 19–1 Scala Types

NotesSyntaxType

See Chapter 5, Chapter 10class C ..., trait C ...Class or trait

Section 4.7(T1, ..., Tn)Tuple type

(T1, ..., Tn) => TFunction type

See Chapter 15T @AAnnotated type

See Chapter 18A[T1, ..., Tn]Parameterized type

See Section 19.1value.typeSingleton type

See Section 19.2O#IType projection

See Section 19.6T1 with T2 with ... with Tn {
declarations }

Compound type

See Section 19.7T1 A T2Infix type

See Section 19.8T forSome { type and val
declarations }

Existential type

28719.9 The Scala Type System

ptg20087099

NOTE: This table shows the types that you, the programmer, can declare.
There are a few types that the Scala compiler uses internally. For example,
a method type is denoted by (T1, ..., Tn)T without a =>.You will occasionally
see such types. For example, when you enter

def square(x: Int) = x * x

in the Scala REPL, it responds with

square (x: Int)Int

This is different from

val triple = (x: Int) => 3 * x

which yields

triple: Int => Int

You can turn a method into a function by appending a _. The type of

square _

is Int => Int.

19.10 Self Types
In Chapter 10, you saw how a trait can require that it is mixed into a class that
extends another type. You define the trait with a self type declaration:

this: Type =>

Such a trait can only be mixed into a subclass of the given type. In the following
example, the LoggedException trait can only be mixed into a class that extends
Exception:

trait Logged {
 def log(msg: String)
}

trait LoggedException extends Logged {
this: Exception =>

 def log() { log(getMessage()) }
 // OK to call getMessage because this is an Exception
}

If you try to mix the trait into a class that doesn’t conform to the self type, an error
occurs:

val f = new JFrame with LoggedException
 // Error: JFrame isn’t a subtype of Exception, the self type of LoggedException

Chapter 19 Advanced Types288

ptg20087099

If you want to require multiple types, use a compound type:

this: T with U with ... =>

NOTE: You can combine the self type syntax with the “alias for enclosing
this” syntax that I briefly introduced in Chapter 5. If you give a name other
than this to the variable, then it can be used in subtypes by that name. For
example,

trait Group {
 outer: Network =>
 class Member {
 ...
 }
}

The Group trait requires that it is added to a subtype of Network, and inside
Member, you can refer to Group.this as outer.

This syntax seems to have grown organically over time; unfortunately, it in-
troduces a great deal of confusion for a small amount of added functionality.

CAUTION: Self types do not automatically inherit. If you define

trait ManagedException extends LoggedException { ... }

you get an error that ManagedException doesn’t supply Exception. In this
situation, you need to repeat the self type:

trait ManagedException extends LoggedException {
 this: Exception =>
 ...
}

19.11 Dependency Injection
When building a large system out of components, with different implementations
for each component, one needs to assemble the component choices. For example,
there may be a mock database and a real database, or console logging and
file logging. A particular implementation may want the real database and console
logging for running an experiment, or the mock database and file logging for
running an automated test script.

Usually, there is some dependency among the components. For example, the
data access component may require logging.

28919.11 Dependency Injection

ptg20087099

Java has several tools that allow programmers to express dependencies through
frameworks such as Spring or module systems such as OSGi. Each component
describes on which other component interfaces it depends. References to actual
component implementations are “injected” when the application is assembled.

In Scala, you can achieve a simple form of dependency injection with traits and
self types.

For logging, suppose we have a trait

trait Logger { def log(msg: String) }

with implementations ConsoleLogger and FileLogger.

The user authentication trait has a logging dependency to log authentication
failures:

trait Auth {
 this: Logger =>
 def login(id: String, password: String): Boolean
}

The application depends on both:

trait App {
 this: Logger with Auth =>
 ...
}

Now we can assemble an application as

object MyApp extends App with FileLogger("test.log") with MockAuth("users.txt")

It’s a bit awkward to use trait composition in this way. After all, an application
isn’t an authenticator and a file logger. It has these components, and it is more
natural to use instance variables for the components than to glue them all into
one huge type. A better design is given by the cake pattern. In this pattern, you
supply a component trait for each service that contains

• Any dependent components, expressed as self types

• A trait describing the service interface

• An abstract val that will be instantiated with an instance of the service

• Optionally, implementations of the service interface

Chapter 19 Advanced Types290

ptg20087099

trait LoggerComponent {
 trait Logger { ... }
 val logger: Logger
 class FileLogger(file: String) extends Logger { ... }
 ...
}

trait AuthComponent {
 this: LoggerComponent => // Gives access to logger

 trait Auth { ... }
 val auth: Auth
 class MockAuth(file: String) extends Auth { ... }
 ...
}

Note the use of the self type to indicate that the authentication component requires
the logger component.

Now the component configuration can happen in one central place:

object AppComponents extends LoggerComponent with AuthComponent {
 val logger = new FileLogger("test.log")
 val auth = new MockAuth("users.txt")
}

Either approach is better than component wiring in an XML file because the
compiler can verify that the module dependencies are satisfied.

19.12 Abstract Types L3
A class or trait can define an abstract type that is made concrete in a subclass. For
example:

trait Reader {
 type Contents
 def read(fileName: String): Contents
}

Here, the type Contents is abstract. A concrete subclass needs to specify the type:

29119.12 Abstract Types

ptg20087099

class StringReader extends Reader {
 type Contents = String
 def read(fileName: String) = Source.fromFile(fileName, "UTF-8").mkString
}

class ImageReader extends Reader {
 type Contents = BufferedImage
 def read(fileName: String) = ImageIO.read(new File(fileName))
}

The same effect could be achieved with a type parameter:

trait Reader[C] {
 def read(fileName: String): C
}

class StringReader extends Reader[String] {
 def read(fileName: String) = Source.fromFile(fileName, "UTF-8").mkString
}

class ImageReader extends Reader[BufferedImage] {
 def read(fileName: String) = ImageIO.read(new File(fileName))
}

Which is better? In Scala, the rule of thumb is:

• Use type parameters when the types are supplied as the class is instantiated.
For example, when you construct a HashMap[String, Int], you want control over
the types.

• Use abstract types when the types are expected to be supplied in a subclass.
That is the case in our Reader example.

Nothing bad will happen if you specify type parameters as you form a subclass.
But abstract types can work better when there are many type dependencies—you
avoid long lists of type parameters. For example,

trait Reader {
 type In
 type Contents
 def read(in: In): Contents
}

class ImageReader extends Reader {
 type In = File
 type Contents = BufferedImage
 def read(file: In) = ImageIO.read(file)
}

Chapter 19 Advanced Types292

ptg20087099

With type parameters, ImageReader would extend Reader[File, BufferedImage]. That’s
still OK, but you can see that this technique doesn’t scale so well in more complex
situations.

Also, abstract types can express subtle interdependencies between types. The
next section has an example.

Abstract types can have type bounds, just like type parameters. For example:

trait Listener {
 class EventObject { ... }
 type Event <: EventObject
 ...
}

A subclass must provide a compatible type, for example:

trait ActionListener extends Listener {
 class ActionEvent extends EventObject { ... }
 type Event = ActionEvent // OK, it’s a subtype
 ...
}

Note that this example could not have been done with type parameters since the
bound is an inner class.

19.13 Family Polymorphism L3
It is a challenge to model families of types that vary together, share common
code, and preserve type safety. For example, consider event handling in client-
side Java. There are different types of events (such as ActionEvent, ChangeEvent, and
so on). Each type has a separate listener interface (ActionListener, ChangeListener,
and so on). This is an example of “family polymorphism.”

Let’s design a generic mechanism for listener management. We’ll start using
generic types, and then switch to abstract types.

In Java, each listener interface has a different name for the method called when
an event occurs: actionPerformed, stateChanged, itemStateChanged, and so on. We’ll unify
those:

trait Listener[E] {
 def occurred(e: E): Unit
}

An event source needs a collection of listeners, and a method to fire them all:

29319.13 Family Polymorphism

ptg20087099

trait Source[E, L <: Listener[E]] {
 private val listeners = new ArrayBuffer[L]
 def add(l: L) { listeners += l }
 def remove(l: L) { listeners -= l }
 def fire(e: E) {
 for (l <- listeners) l.occurred(e)
 }
}

Now consider a button firing action events. We define a listener type

trait ActionListener extends Listener[ActionEvent]

The Button class can mix in the Source trait:

class Button extends Source[ActionEvent, ActionListener] {
 def click() {
 fire(new ActionEvent(this, ActionEvent.ACTION_PERFORMED, "click"))
 }
}

Mission accomplished: The Button class didn’t need to replicate the code for listener
management, and the listeners are typesafe. You can’t add a ChangeListener to a
button.

The ActionEvent class sets the event source to this, but the type of the event source
is Object. We can make this typesafe with a self type:

trait Event[S] {
 var source: S = _
}

trait Listener[S, E <: Event[S]] {
 def occurred(e: E): Unit
}

trait Source[S, E <: Event[S], L <: Listener[S, E]] {
 this: S =>
 private val listeners = new ArrayBuffer[L]
 def add(l: L) { listeners += l }
 def remove(l: L) { listeners -= l }
 def fire(e: E) {
 e.source = this // Self type needed here
 for (l <- listeners) l.occurred(e)
 }
}

Chapter 19 Advanced Types294

ptg20087099

Note the self type this: S => that is required for setting the source to this. Other-
wise, this would only be some Source, not necessarily the one required by Event[S].

Here is how you define a button:

class ButtonEvent extends Event[Button]

trait ButtonListener extends Listener[Button, ButtonEvent]

class Button extends Source[Button, ButtonEvent, ButtonListener] {
 def click() { fire(new ButtonEvent) }
}

You can see the proliferation of the type parameters. With abstract types, this
looks a little nicer.

trait ListenerSupport {
 type S <: Source
 type E <: Event
 type L <: Listener

 trait Event {
 var source: S = _
 }

 trait Listener {
 def occurred(e: E): Unit
 }

 trait Source {
 this: S =>
 private val listeners = new ArrayBuffer[L]
 def add(l: L) { listeners += l }
 def remove(l: L) { listeners -= l }
 def fire(e: E) {
 e.source = this
 for (l <- listeners) l.occurred(e)
 }
 }
}

But there is a price to pay. You can’t have top-level type declarations. That’s why
everything is wrapped in the ListenerSupport trait.

Now when you want to define a button with a button event and a button listener,
enclose the definitions in a module that extends this trait:

29519.13 Family Polymorphism

ptg20087099

object ButtonModule extends ListenerSupport {
 type S = Button
 type E = ButtonEvent
 type L = ButtonListener

 class ButtonEvent extends Event
 trait ButtonListener extends Listener
 class Button extends Source {
 def click() { fire(new ButtonEvent) }
 }
}

To use the button, import the module:

object Main {
 import ButtonModule._

 def main(args: Array[String]) {
 val b = new Button
 b.add(new ButtonListener {
 override def occurred(e: ButtonEvent) { println(e) }
 })
 b.click()
 }
}

NOTE: In this example, I used single-letter names for the abstract types, to
show the analogy with the version that uses type parameters. It is common
in Scala to use more descriptive type names, which leads to more
self-documenting code:

object ButtonModule extends ListenerSupport {
 type SourceType = Button
 type EventType = ButtonEvent
 type ListenerType = ButtonListener
 ...
}

19.14 Higher-Kinded Types L3
The generic type List depends on a type T and produces a type. For example,
given the type Int, you get the type List[Int]. For that reason, a generic type such
as List is sometimes called a type constructor. In Scala, you can go up another
level and define types that depend on types that depend on types.

Chapter 19 Advanced Types296

ptg20087099

To see why this can be useful, consider the following simplified Iterable trait:

trait Iterable[E] {
 def iterator(): Iterator[E]
 def map[F](f: (E) => F): Iterable[F]
}

Now consider a class implementing this trait:

class Buffer[E] extends Iterable[E] {
 def iterator(): Iterator[E] = ...
 def map[F](f: (E) => F): Buffer[F] = ...
}

For a buffer, we expect that map returns a Buffer, not a mere Iterable. That means
we cannot implement map in the Iterable trait itself, which we would like to do. A
remedy is to parameterize the Iterable with a type constructor, like this:

trait Iterable[E, C[_]] {
 def iterator(): Iterator[E]
 def build[F](): C[F]
 def map[F](f : (E) => F) : C[F]
}

Now an Iterable depends on a type constructor for the result, denoted as C[_].
This makes Iterable a higher-kinded type.

The type returned by map may or may not be the same as the type of the Iterable
on which map was invoked. For example, if you invoke map on a Range, the result is
not generally a range, so map must construct a different type such as a Buffer[F].
Such a Range type is declared as

class Range extends Iterable[Int, Buffer]

Note that the second parameter is the type constructor Buffer.

To implement map in Iterable, we need a bit more support. An Iterable needs to be
able to produce a container that holds values of any type F. Let’s define a Container
trait—it is something to which you can add values:

trait Container[E] {
 def +=(e: E): Unit
}

The build method is required to yield such an object:

trait Iterable[E, C[X] <: Container[X]] {
 def build[F](): C[F]
 ...
}

29719.14 Higher-Kinded Types

ptg20087099

The type constructor C has now been constrained to be a Container, so we know
that we can add items to the object that build returns. We can no longer use a
wildcard for the parameter of C since we need to indicate that C[X] is a container
for the same X.

NOTE: The Container trait is a simpler version of the builder mechanism that
is used in the Scala collections library.

The map method can be implemented in the Iterable trait:

def map[F](f : (E) => F) : C[F] = {
 val res = build[F]()
 val iter = iterator()
 while (iter.hasNext) res += f(iter.next())
 res
}

Iterable classes no longer need to supply their own map. Here is the Range class:

class Range(val low: Int, val high: Int) extends Iterable[Int, Buffer] {
 def iterator() = new Iterator[Int] {
 private var i = low
 def hasNext = i <= high
 def next() = { i += 1; i - 1 }
 }

 def build[F]() = new Buffer[F]
}

Note that a Range is an Iterable: You can iterate over its contents. But it is not a
Container: You can’t add values to it.

A Buffer, on the other hand, is both:

class Buffer[E : ClassTag] extends Iterable[E, Buffer] with Container[E] {
 private var capacity = 10
 private var length = 0
 private var elems = new Array[E](capacity) // See note

 def iterator() = new Iterator[E] {
 private var i = 0
 def hasNext = i < length
 def next() = { i += 1; elems(i - 1) }
 }

 def build[F : ClassTag]() = new Buffer[F]

Chapter 19 Advanced Types298

ptg20087099

 def +=(e: E) {
 if (length == capacity) {
 capacity = 2 * capacity
 val nelems = new Array[E](capacity) // See note
 for (i <- 0 until length) nelems(i) = elems(i)
 elems = nelems
 }
 elems(length) = e
 length += 1
 }
}

NOTE: There is one additional complexity in this example, and it has nothing
to do with higher-kinded types. In order to construct a generic Array[E], the
type E must fulfill the ClassTag context bound that was discussed in Chapter 18.

NOTE: To use higher-kinded types without a warning, add the
statement import scala.language.higherKinds or use the compiler option
-language:higherKinds.

This example showed a typical use of higher-kinded types. An Iterator depends
on Container, but Container isn’t a type—it is a mechanism for making types.

The Iterable trait of the Scala collections library doesn’t have an explicit parameter
for making collections. Instead, Scala uses an implicit parameter to conjure up an
object for building the target collection. See Chapter 21 for more information.

Exercises
1. Implement a Bug class modeling a bug that moves along a horizontal line. The

move method moves in the current direction, the turn method makes the bug
turn around, and the show method prints the current position. Make these
methods chainable. For example,

bugsy.move(4).show().move(6).show().turn().move(5).show()

should display 4 10 5.

2. Provide a fluent interface for the Bug class of the preceding exercise, so that
one can write

bugsy move 4 and show and then move 6 and show turn around move 5 and show

299Exercises

ptg20087099

3. Complete the fluent interface in Section 19.1, “Singleton Types,” on page 280
so that one can call

book set Title to "Scala for the Impatient" set Author to "Cay Horstmann"

4. Implement the equals method for the Member class that is nested inside the Network
class in Section 19.2, “Type Projections,” on page 281. For two members to
be equal, they need to be in the same network.

5. Consider the type alias

 type NetworkMember = n.Member forSome { val n: Network }

and the function

def process(m1: NetworkMember, m2: NetworkMember) = (m1, m2)

How does this differ from the process function in Section 19.8, “Existential
Types,” on page 286?

6. The Either type in the Scala library can be used for algorithms that return either
a result or some failure information. Write a function that takes two parame-
ters: a sorted array of integers and an integer value. Return either the index
of the value in the array or the index of the element that is closest to the value.
Use an infix type as the return type.

7. Implement a method that receives an object of any class that has a method

def close(): Unit

together with a function that processes that object. Call the function and invoke
the close method upon completion, or when any exception occurs.

8. Write a function printValues with three parameters f, from, to that prints all
values of f with inputs from the given range. Here, f should be any object
with an apply method that consumes and yields an Int. For example,

printValues((x: Int) => x * x, 3, 6) // Prints 9 16 25 36
printValues(Array(1, 1, 2, 3, 5, 8, 13, 21, 34, 55), 3, 6) // Prints 3 5 8 13

9. Consider this class that models a physical dimension:

abstract class Dim[T](val value: Double, val name: String) {
 protected def create(v: Double): T
 def +(other: Dim[T]) = create(value + other.value)
 override def toString() = s"$value $name"
}

Here is a concrete subclass:

class Seconds(v: Double) extends Dim[Seconds](v, "s") {
 override def create(v: Double) = new Seconds(v)
}

Chapter 19 Advanced Types300

ptg20087099

But now a knucklehead could define

class Meters(v: Double) extends Dim[Seconds](v, "m") {
 override def create(v: Double) = new Seconds(v)
}

allowing meters and seconds to be added. Use a self type to prevent that.

10. Self types can usually be replaced with traits that extend classes, but there
can be situations where using self types changes the initialization and override
orders. Construct such an example.

301Exercises

ptg20087099Topics in This Chapter A3

20.1 Grammars — page 304
20.2 Combining Parser Operations — page 305
20.3 Transforming Parser Results — page 307
20.4 Discarding Tokens — page 308
20.5 Generating Parse Trees — page 309
20.6 Avoiding Left Recursion — page 310
20.7 More Combinators — page 311
20.8 Avoiding Backtracking — page 314
20.9 Packrat Parsers — page 314
20.10 What Exactly Are Parsers? — page 315
20.11 Regex Parsers — page 316
20.12 Token-Based Parsers — page 317
20.13 Error Handling — page 319
Exercises — page 320

Parsing

ptg20087099In this chapter, you will see how to use the “parser combinators” library to analyze
data with fixed structure. Examples of such data are programs in a programming
language or data in formats such as HTTP or JSON. Not everyone needs to write
parsers for these languages, so you may not find this chapter useful for your
work. If you are familiar with the basic concepts of grammars and parsers, glance
through the chapter anyway because the Scala parser library is a good example
of a sophisticated domain-specific language embedded in the Scala language.

NOTE: The API documentation for Scala parser combinators is at www.scala-
lang.org/api/current/scala-parser-combinators.

The key points of this chapter are:

• Alternatives, concatenation, options, and repetitions in a grammar turn into
|, ~, opt, and rep in Scala combinator parsers.

• With RegexParsers, literal strings and regular expressions match tokens.

• Use ^^ to process parse results.

• Use pattern matching in a function supplied to ^^ to take apart ~ results.

• Use ~> and <~ to discard tokens that are no longer needed after matching.

• The repsep combinator handles the common case of repeated items with a
separator.

303

20Chapter

ptg20087099

• A token-based parser is useful for parsing languages with reserved words
and operators. Be prepared to define your own lexer.

• Parsers are functions that consume a reader and yield a parse result: success,
failure, or error.

• For a practical parser, you need to implement robust error reporting.

• Thanks to operator symbols, implicit conversions, and pattern matching, the
parser combinator library makes parser writing easy for anyone who under-
stands context-free grammars. Even if you don’t feel the urge to write your
own parsers, you may find this an interesting case study for an effective
domain-specific language.

20.1 Grammars
To understand the Scala parsing library, you need to know a few concepts from
the theory of formal languages. A grammar is a set of rules for producing all
strings that follow a particular format. For example, we can say that an arithmetic
expression is given by the following rules:

• Each whole number is an arithmetic expression.

• + - * are operators.

• If left and right are arithmetic expressions and op is an operator, then left op
right is an arithmetic expression.

• If expr is an arithmetic expression, then (expr) is an arithmetic expression.

According to these rules, 3+4 and (3+4)*5 are arithmetic expressions, but 3+) or 3^4
or 3+x are not.

A grammar is usually written in a notation called Backus-Naur Form (BNF). Here
is the BNF for our expression language:

op ::= "+" | "-" | "*"
expr ::= number | expr op expr | "(" expr ")"

Here, number is undefined. We could define it as

digit ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
number ::= digit | digit number

But in practice, it is more efficient to collect numbers before parsing starts, in a
separate step called lexical analysis. A lexer discards whitespace and comments,
and forms tokens—identifiers, numbers, or symbols. In our expression language,
tokens are number and the symbols + - * ().

Note that op and expr are not tokens. They are structural elements that were in-
vented by the author of the grammar, in order to produce correct token sequences.

Chapter 20 Parsing304

ptg20087099

Such symbols are called nonterminal symbols. One of the nonterminal symbols is
at the root of the hierarchy; in our case, that is expr. It is called the start symbol.
To produce correctly formatted strings, you start with the start symbol and apply
the grammar rules until all nonterminals have been replaced and only tokens
remain. For example, the derivation

expr -> expr op expr -> number op expr ->
 -> number "+" expr -> number "+" number

shows that 3+4 is a valid expression.

The most often used “extended Backus-Naur form,” or EBNF, allows specifying
optional elements and repetition. I will use the familiar regex operators ? * + for
0 or 1, 0 or more, 1 or more, correspondingly. For example, a comma-separated
list of numbers can be described with the grammar

numberList ::= number ("," numberList)?

or with

numberList ::= number ("," number)*

As another example of EBNF, let’s make an improvement to the grammar for
arithmetic expressions to support operator precedence. Here is the revised
grammar:

expr ::= term (("+" | "-") expr)?
term ::= factor ("*" factor)*
factor ::= number | "(" expr ")"

20.2 Combining Parser Operations
To use the Scala parsing library, provide a class that extends the Parsers trait and
defines parsing operations that are combined from primitive operations, such as

• Matching a token

• Choosing between two operations (|)

• Performing two operations in sequence (~)

• Repeating an operation (rep)

• Optionally performing an operation (opt)

The following parser recognizes arithmetic expressions. It extends RegexParsers,
a subtrait of Parsers that can match tokens against regular expressions. Here, we
specify number with the regular expression "[0-9]+".r:

30520.2 Combining Parser Operations

ptg20087099

class ExprParser extends RegexParsers {
 val number = "[0-9]+".r

 def expr: Parser[Any] = term ~ opt(("+" | "-") ~ expr)
 def term: Parser[Any] = factor ~ rep("*" ~ factor)
 def factor: Parser[Any] = number | "(" ~ expr ~ ")"
}

Note that the parser is a straightforward translation from the EBNF of the
preceding section.

Simply use the ~ operator to join the parts, and use opt and rep instead of ? and *.

In our example, each function has return type Parser[Any]. This type isn’t very
useful, and we will improve it in the next section.

To run the parser, invoke the inherited parse method, for example:

val parser = new ExprParser
val result = parser.parseAll(parser.expr, "3-4*5")
if (result.successful) println(result.get)

The parseAll method receives the method to be invoked—that is, the method
associated with the grammar’s start symbol—and the string to be parsed.

NOTE: There is also a parse method that parses a prefix of a string, stopping
when it can’t find another match. That method isn’t very useful; for example,
parser.parse(parser.expr, "3-4/5") parses 3-4, then quietly stops at the / which
it cannot handle.

The output of the program snippet is

((3~List())~Some((-~((4~List((*~5)))~None))))

To interpret this output, you need to know the following:

• Literal strings and regular expressions return String values.

• p ~ q returns an instance of the ~ case class, which is very similar to a pair.

• opt(p) returns an Option, either Some(...) or None.

• rep(p) returns a List.

The call to expr returns the result from term (shown in bold) joined with something
optional—the Some(...) part which I won’t analyze.

Since term is defined as

def term = factor ~ rep(("*" | "/") ~ factor)

Chapter 20 Parsing306

ptg20087099

it returns the result from factor joined with a List. That’s an empty list because
there is no * in the subexpression to the left of the -.

Of course, this result is quite tedious. In the next section, you will see how to
transform it to something more useful.

20.3 Transforming Parser Results
Instead of having a parser build up a complex structure of ~, options, and lists,
you should transform intermediate outputs to a useful form. Consider, for exam-
ple, the arithmetic expression parser. If it is our goal to evaluate the expression,
then each of the functions expr, term, and factor should return the value of the
parsed subexpression. Let’s start with

def factor: Parser[Any] = number | "(" ~ expr ~ ")"

We want it to return an Int:

def factor: Parser[Int] = ...

When a whole number is received, we want its integer value:

def factor: Parser[Int] = number ^^ { _.toInt } | ...

Here, the ^^ operator applies the function { _.toInt } to the result of number.

NOTE: There is no particular significance to the ^^ symbol. It conveniently
has lower precedence than ~ but higher precedence than |.

Assuming that expr has been changed to return a Parser[Int], we can evaluate "("
~ expr ~ ")" simply by returning expr, which yields an Int. Here is one way of doing
that (you’ll see a simpler one in the next section):

def factor: Parser[Int] = ... | "(" ~ expr ~ ")" ^^ {
 case _ ~ e ~ _ => e
}

In this case, the argument of the ^^ operator is the partial function { case _ ~ e ~
_ => e }.

NOTE: The ~ combinator returns an instance of the ~ case class instead of
a pair to make matching easier. If ~ returned a pair, then you would have to
write case ((_, e), _) instead of case _ ~ e ~ _.

A similar pattern match yields the sum or difference. Note that opt yields an
Option: either None or Some(...).

30720.3 Transforming Parser Results

ptg20087099

def expr: Parser[Int] = term ~ opt(("+" | "-") ~ expr) ^^ {
 case t ~ None => t
 case t ~ Some("+" ~ e) => t + e
 case t ~ Some("-" ~ e) => t - e
}

Finally, to multiply the factors, note that rep("*" ~ factor) yields a List of items of
the form "*" ~ f, where f is an Int. We extract the second component of each ~
pair and compute their product:

def term: Parser[Int] = factor ~ rep("*" ~ factor) ^^ {
 case f ~ r => f * r.map(_._2).product
}

In this example, we simply computed the value of the expression. When building
a compiler or interpreter, the usual goal is to build a parse tree—a tree structure
that describes the parsed result; see Section 20.5, “Generating Parse Trees,” on
page 309.

CAUTION: If you turn off the warning against postfix operators, you can write
p? instead of opt(p) and p* instead of rep(p):

def expr: Parser[Any] = term ~ (("+" | "-") ~ expr)?
def term: Parser[Any] = factor ~ ("*" ~ factor)*

It seems a good idea to use these familiar operators, but they conflict with
the ^^ operator.You’ll have to add another set of parentheses, such as

def term: Parser[Any] = factor ~ (("*" ~ factor)*) ^^ { ... }

For that reason, I prefer opt and rep.

20.4 Discarding Tokens
As you saw in the preceding section, it can be tedious to deal with tokens when
analyzing a match. The tokens are required for parsing, but they can often be
discarded after they have been matched. The ~> and <~ operators are used to
match and discard a token. For example, the result of "*" ~> factor is just the result
of factor, not a value of the form "*" ~ f. With that notation, we can simplify the
term function to

def term = factor ~ rep("*" ~> factor) ^^ {
 case f ~ r => f * r.product
}

Chapter 20 Parsing308

ptg20087099

Similarly, we can discard the parentheses around an expression, like this:

def factor = number ^^ { _.toInt } | "(" ~> expr <~ ")"

A transformation is no longer required in the expression "(" ~> expr <~ ")", since
the value is now simply e, which already yields an Int.

Note that the “arrow tip” of the ~> or <~ operator points to the part that is retained.

CAUTION: You need to be careful when using multiple ~, ~>, and <~ in the
same expression. <~ has a lower precedence than ~ and ~>. Consider, for
example:

 "if" ~> "(" ~> expr <~ ")" ~ expr

Unfortunately, this doesn’t just discard ")", but the subexpression ")" ~ expr.
The remedy is to use parentheses: "if" ~> "(" ~> (expr <~ ")") ~ expr.

20.5 Generating Parse Trees
The parsers of the preceding examples simply computed numeric results. When
you build an interpreter or compiler, you will want to build up a parse tree in-
stead. This is usually done with case classes. For example, the following classes
can represent an arithmetic expression:

class Expr
case class Number(value: Int) extends Expr
case class Operator(op: String, left: Expr, right: Expr) extends Expr

The parser’s job is to turn an input such as 3+4*5 into a value

Operator("+", Number(3), Operator("*", Number(4), Number(5)))

In an interpreter, such an expression can be evaluated. In a compiler, it can be
used for generating code.

To generate a parse tree, use ̂ ^ with functions that yield tree nodes. For example,

class ExprParser extends RegexParsers {
 ...
 def term: Parser[Expr] = (factor ~ opt("*" ~> term)) ^^ {
 case a ~ None => a
 case a ~ Some(b) => Operator("*", a, b)
 }
 def factor: Parser[Expr] = wholeNumber ^^ (n => Number(n.toInt)) |
 "(" ~> expr <~ ")"
}

30920.5 Generating Parse Trees

ptg20087099

20.6 Avoiding Left Recursion
If a parser function calls itself without first consuming some input, the recursion
will never stop. Consider this function that is supposed to consume any sequence
of ones:

def ones: Parser[Any] = ones ~ "1" | "1"

Such a function is called left-recursive. To avoid the recursion, you can reformulate
the grammar. Here are two alternatives:

def ones: Parser[Any] = "1" ~ ones | "1"

or

def ones: Parser[Any] = rep1("1")

This problem occurs commonly in practice. For example, consider our arithmetic
expression parser:

def expr: Parser[Any] = term ~ opt(("+" | "-") ~ expr)

The rule for expr has an unfortunate effect with subtraction. The expressions are
grouped in the wrong order. When the input is 3-4-5, the expression is parsed as

 -
 / \
3 -
 / \
 4 5

That is, 3 is accepted as term, and -4-5 as "-" ~ expr. This yields a wrong answer of
4 instead of -6.

Could we turn the grammar around?

def expr: Parser[Any] = expr ~ opt(("+" | "-") ~ term)

Then we would get the correct parse tree. But that doesn’t work—this expr function
is left-recursive.

The original version eliminates the left recursion, but at a cost—it is harder to
compute the parse result. You need to collect the intermediate results and
then combine them in the correct order.

Collecting intermediate results is easier if you can use a repetition, which yields
a List of the collected values. For example, an expr is a sequence of term values,
joined by + or -:

Chapter 20 Parsing310

ptg20087099

def expr: Parser[Any] = term ~ rep(("+" | "-") ~ term)

To evaluate the expression, replace each s ~ t in the repetition with t or -t,
depending on whether s is "+" or "-". Then compute the sum of the list.

def expr: Parser[Int] = term ~ rep(
 ("+" | "-") ~ term ^^ {
 case "+" ~ t => t
 case "-" ~ t => -t
 }) ^^ { case t ~ r => t + r.sum }

If rewriting the grammar is too cumbersome, see Section 20.9, “Packrat Parsers,”
on page 314 for another remedy.

20.7 More Combinators
The rep method matches zero or more repetitions. Table 20–1 shows several
variations of this combinator. The most commonly used among them is repsep.
For example, a list of comma-separated numbers can be defined as

def numberList = number ~ rep("," ~> number)

or more concisely as

def numberList = repsep(number, ",")

Table 20–2 shows additional combinators that are occasionally useful. The into
combinator can come in handy to store information from an earlier combinator
in a variable so that it can be used later. For example, in the grammar rule

def term: Parser[Any] = factor ~ rep("*" ~> factor)

you can store the first factor in a variable, like this:

def term: Parser[Int] = factor into { first =>
 rep("*" ~> factor) ^^ { first * _.product }
}

The log combinator can help debug a grammar. Replace a parser p with log(p)(str),
and you get a printout whenever p is called. For example,

def factor: Parser[Int] = log(number)("number") ^^ { _.toInt } | ...

yields outputs such as

trying number at scala.util.parsing.input.CharSequenceReader@76f7c5
number --> [1.2] parsed: 3

31120.7 More Combinators

ptg20087099

Table 20–1 Combinators for Repetitions

NotesDescriptionCombinator

0 or more matches of p.rep(p)

rep1("[" ~> expr <~ "]") yields a list
of expressions that were included
inside brackets—for example, to
specify bounds of a
multidimensional array.

1 or more matches of p.rep1(p)

1 match of p followed by 0 or
more matches of q.

rep1(p, q),
p and q are
Parser[P]

repN(4, number) matches a sequence
of four numbers—for example,
to specify a rectangle.

n matches of p.repN(n, p)

repsep(expr, ",") yields a list of
expressions that were separated
by commas. Useful for parsing
the arguments to a function call.

0 or more/1 or more matches
of p, separated by matches of s.
The result is a List[P]; the s are
discarded.

repsep(p, s)

rep1sep(p, s)

p is a Parser[P]

chainl1(number ^^ { _.toInt }, "*" ^^^

{ _ * _}) computes the product of
a sequence of integers separated
by *.

Like rep1sep, but s must, upon
matching each separator,
produce a binary function that
is used to combine neighboring
values. If p produces values v0,
v1, v2, . . . and s produces
functions f1, f2, . . . , then the
result is (v0 f1 v1) f2 v2 . . .

chainl1(p, s)

Table 20–2 Additional Combinators

NotesDescriptionCombinator

Useful for parsing literals: "true" ^^^
true.

Like ^^, but returns a constant
result.

p ^^^ v

(number ^^ { _.toInt }) >> { n => repN(n,

number) } parses a sequence of
numbers, where the first number
indicates how many numbers follow.

f is a function whose argument
is the result of p. Useful to bind
the result of p to a variable.

p into f or

p >> f

(Continues)

Chapter 20 Parsing312

ptg20087099

Table 20–2 Additional Combinators (Continued)

NotesDescriptionCombinator

ident ^? (symbols, "undefined symbol

" + _) looks up ident in the map
symbols and reports an error if it
is not contained in the map.
Note that a map can be
converted to a partial function.

Like ̂ ^, but takes a partial function
f. Fails if f can’t be applied to the
result of p. In the second version,
error is a function from the result
type of p, yielding an error
message string.

p ^? f

p ^? (f,

error)

log(number)("number") ^^ { _.toInt }

prints a message whenever a
number is parsed.

Executes p and prints a logging
message.

log(p)(str)

Useful for looking ahead. For
example, to distinguish
between a variable and a
function call, you can use a
guard(ident ~ "(").

Calls p, succeeds or fails, then
restores the input as if p had not
been called.

guard(p)

Calls p and succeeds if p fails, or
fails if p succeeds.

not(p)

See Section 20.8.Like ~, but if the second match
fails, the failure turns into an error,
inhibiting backtracking in an
enclosing |.

p ~! q

accept("string literal",

{ case t: lexical.StringLit

=> t.chars })

Accepts an item that is accepted
by the partial function f, returning
the function result. The string descr
is used to describe the expected
item in the failure message.

accept(descr,

f)

Can be used to add a value v to
a result.

Always succeeds with value v.success(v)

See Section 20.13 on how to
improve error messages.

Fails with the given error message.failure(msg)

err(msg)

Useful for defining a parseAll
method; see, for example,
Section 20.12.

Succeeds if p succeeds and no
input is left over.

phrase(p)

Useful for reporting errors after
parsing has finished.

Adds position to the result of p
(must extend Positional).

positioned(p)

31320.7 More Combinators

ptg20087099

20.8 Avoiding Backtracking
Whenever an alternative p | q is parsed and p fails, the parser tries q on the same
input. This is called backtracking. Backtracking also happens when there is a failure
in an opt or rep. Clearly, backtracking can be inefficient. For example, consider an
arithmetic expression parser with the rules

def expr: Parser[Any] = term ~ ("+" | "-") ~ expr | term
def term: Parser[Any] = factor ~ "*" ~ term | factor
def factor: Parser[Any] = "(" ~ expr ~ ")" | number

If the expression (3+4)*5 is parsed, then term matches the entire input. Then the
match for + or - fails, and the compiler backtracks to the second alternative,
parsing term again.

It is often possible to rearrange the grammar rules to avoid backtracking. For
example:

def expr: Parser[Any] = term ~ opt(("+" | "-") ~ expr)
def term: Parser[Any] = factor ~ rep("*" ~ factor)

You can then use the ~! operator instead of ~ to express that there is no need to
backtrack.

def expr: Parser[Any] = term ~ opt(("+" | "-") ~! expr)
def term: Parser[Any] = factor ~ rep("*" ~! factor)
def factor: Parser[Any] = "(" ~! expr ~! ")" | number

When p ~! q is evaluated and q fails, no other alternatives are tried in an enclosing
|, opt, or rep. For example, if factor finds a "(" and then expr doesn’t match, the
parser won’t even try matching number.

20.9 Packrat Parsers
A packrat parser uses an efficient parsing algorithm that caches previous parse
results. This has two advantages:

• Parse time is guaranteed to be proportional to the length of the input.

• The parser can accept left-recursive grammars.

In order to use packrat parsing in Scala, follow these steps:

1. Mix the PackratParsers trait into your parser.

2. Use val or lazy val, not def, for each parser function. This is important because
the parser caches these values, and it relies on them being identical. (A def
would return a different value each time it is called.)

3. Have each parser function return PackratParser[T] instead of Parser[T].

Chapter 20 Parsing314

ptg20087099

4. Use a PackratReader and supply a parseAll method (which is annoyingly missing
from the PackratParsers trait).

For example,

class OnesPackratParser extends RegexParsers with PackratParsers {
 lazy val ones: PackratParser[Any] = ones ~ "1" | "1"

 def parseAll[T](p: Parser[T], input: String) =
 phrase(p)(new PackratReader(new CharSequenceReader(input)))
}

20.10 What Exactly Are Parsers?
Technically, a Parser[T] is a function with one argument, of type Reader[Elem], and
a return value of type ParseResult[T]. In this section, we will have a closer look at
these types.

The type Elem is an abstract type of the Parsers trait. (See Section 19.12, “Abstract
Types,” on page 291 for more information about abstract types.) The RegexParsers
trait defines Elem as Char, and the StdTokenParsers trait defines Elem as Token. (We will
have a look at token-based parsing in Section 20.12, “Token-Based Parsers,” on
page 317.)

A Reader[Elem] reads a sequence of Elem values (that is, characters or tokens) from
some source and tracks their positions for error reporting.

When a Parser[T] is invoked on a reader, it returns an object of one of three
subclasses of ParseResult[T]: Success[T], Failure, or Error.

An Error terminates the parser and anything that called it. It can arise in one of
these circumstances:

• A parser p ~! q fails to match q.

• A commit(p) fails.

• The err(msg) combinator is encountered.

A Failure simply arises from a failure to match; it normally triggers alternatives
in an enclosing |.

A Success[T] has, most importantly, a result of type T. It also has a Reader[Elem] called
next, containing the input beyond the match that is yet to be consumed.

Consider this part of our arithmetic expression parser:

val number = "[0-9]+".r
def expr = number | "(" ~ expr ~ ")"

31520.10 What Exactly Are Parsers?

ptg20087099

Our parser extends RegexParsers, which has an implicit conversion from a Regex to
a Parser[String]. The regular expression number is converted into such a parser—a
function that consumes a Reader[Char].

If the initial characters in the reader match the regular expression, the function
returns a Success[String]. The result property of the returned object is the matched
input, and the next property is the reader with the match removed.

If the initial characters in the reader don’t match the regular expression, the
parser function returns a Failure object.

The | method combines two parsers. That is, if p and q are functions, then p | q
is again a function. The combined function consumes a reader, say r. It calls p(r).
If that call returns Success or Error, then that’s the return value of p | q. Otherwise,
the return value is the result of q(r).

20.11 Regex Parsers
The RegexParsers trait, which we have used in all examples up to this point, provides
two implicit conversions for defining parsers:

• literal makes a Parser[String] from a literal string (such as "+").

• regex makes a Parser[String] from a regular expression (such as "[0-9]".r).

By default, regex parsers skip whitespace. If your notion of whitespace is different
from the default of """\s+""".r (for example, if you want to skip comments),
override whiteSpace with your definition. If you don’t want whitespace skipped, use

override val whiteSpace = "".r

The JavaTokenParsers trait extends RegexParsers and specifies five tokens, shown in
Table 20–3. None of them correspond exactly to their Java forms, which makes
that trait of limited utility.

Table 20–3 Predefined Tokens in JavaTokenParsers

Regular ExpressionToken

[a-zA-Z_]\w*ident

-?\d+wholeNumber

\d+(\.\d*)?|\d*\.\d+decimalNumber

"([^"\p{Cntrl}\\]|\\[\\/bfnrt]|\\u[a-fA-F0-9]{4})*"stringLiteral

-?(\d+(\.\d*)?|\d*\.\d+)([eE][+-]?\d+)?[fFdD]?floatingPointNumber

Chapter 20 Parsing316

ptg20087099

20.12 Token-Based Parsers
Token-based parsers use a Reader[Token] instead of a Reader[Char]. The Token type
is defined in the trait scala.util.parsing.combinator.token.Tokens. The StdTokens
subtrait defines four types of tokens that one commonly finds when parsing a
programming language:

• Identifier

• Keyword

• NumericLit

• StringLit

The StandardTokenParsers class provides a parser that produces these tokens.
Identifiers consist of letters, digits, or _ but don’t start with a digit.

CAUTION: The rules for letters and digits are subtly different from those in
Java or Scala. Digits in any script are supported, but letters in the
“supplementary” range (above U+FFFF) are excluded.

Numeric literals are sequences of digits. String literals are enclosed in "..." or
'...', with no escapes. Comments, enclosed in /* ... */ or from // to the end of
the line, are considered whitespace.

When you extend this parser, add any reserved words and special tokens to the
lexical.reserved and lexical.delimiters sets:

class MyLanguageParser extends StandardTokenParser {
 lexical.reserved += ("auto", "break", "case", "char", "const", ...)
 lexical.delimiters += ("=", "<", "<=", ">", ">=", "==", "!=", ...)
 ...
}

When a reserved word is encountered, it becomes a Keyword, not an Identifier.

The parser sorts the delimiters according to the “maximum munch” rule. For
example, when the input contains <=, you will get that as a single token, not as a
sequence of tokens < and =.

The ident function parses an identifier; numericLit and stringLit parse literals.

For example, here is our arithmetic expression grammar, using StandardTokenParsers:

class ExprParser extends StandardTokenParsers {
 lexical.delimiters += ("+", "-", "*", "(", ")")

 def expr: Parser[Any] = term ~ rep(("+" | "-") ~ term)
 def term: Parser[Any] = factor ~ rep("*" ~> factor)

31720.12 Token-Based Parsers

ptg20087099

 def factor: Parser[Any] = numericLit | "(" ~> expr <~ ")"

 def parseAll[T](p: Parser[T], in: String): ParseResult[T] =
 phrase(p)(new lexical.Scanner(in))
}

Note that you need to supply a parseAll method, which is annoyingly missing
from the StandardTokenParsers class. In that method, you use a lexical.Scanner, which
is the Reader[Token] supplied by the StdLexical trait.

TIP: If you need to process a language with different tokens, it is easy to
adapt the token parser. Extend StdLexical and override the token method to
recognize the token types you need. Consult the source code of StdLexical
for guidance—it is quite short. Then extend StdTokenParsers and override
lexical:

class MyParser extends StdTokenParsers {
 val lexical = new MyLexical
 ...
}

TIP: The token method in StdLexical is a bit tedious. It’s nicer to define tokens
with regular expressions. Add this definition when you extend StdLexical:

def regex(r: Regex): Parser[String] = new Parser[String] {
 def apply(in: Input) = r.findPrefixMatchOf(
 in.source.subSequence(in.offset, in.source.length)) match {
 case Some(matched) =>
 Success(in.source.subSequence(in.offset,
 in.offset + matched.end).toString, in.drop(matched.end))
 case None =>
 Failure("string matching regex `$r' expected but
 ${in.first} found", in)
 }
}

Then you can use regular expressions in your token method, like this:

override def token: Parser[Token] = {
 regex("[a-z][a-zA-Z0-9]*".r) ^^ { processIdent(_) } |
 regex("0|[1-9][0-9]*".r) ^^ { NumericLit(_) } |
 ...
}

Chapter 20 Parsing318

ptg20087099

20.13 Error Handling
When a parser can’t accept an input, you want to get an accurate message
indicating where the failure occurred.

The parser generates an error message that describes the position at which the
parser was unable to continue. If there were several failure points, the one that
was visited last is reported.

You may want to keep error reporting in mind when you order alternatives. For
example, if you have a rule

def value: Parser[Any] = numericLit | "true" | "false"

and the parser doesn’t match any of them, then it’s not so useful to know that
the input failed to match "false". You can add a failure clause with an explicit error
message:

def value: Parser[Any] = numericLit | "true" | "false" |
 failure("Not a valid value")

The failure combinator only reports an error when it is visited. It does not
change the error messages that another combinator reports. For example, a
RegexParser has an error message such as

string matching regex `\d+' expected but `x' found

Then use the withFailureMessage method, like this:

def value = opt(sign) ~ digits withFailureMessage "Not a valid number"

When the parser fails, the parseAll method returns a Failure result. Its msg property
is an error message that you can display to the user. The next property is the Reader
that points to the unconsumed input at the point of failure. You will want to
display the line number and column, which are available as next.pos.line and
next.pos.column.

Finally, next.first is the lexical element at which the failure occurred. If you use
the RegexParsers trait, that element is a Char, which is not very useful for error re-
porting. But with a token parser, next.first is a token, which is worth reporting.

TIP: If you want to report errors that you detect after a successful parse (such
as type errors in a programming language), use the positioned combinator to
add a position to a parse result. The result type must extend the Positional
trait. For example,

def vardecl = "var" ~ positioned(ident ^^ { Ident(_) }) ~ "=" ~ value

31920.13 Error Handling

ptg20087099

Exercises
1. Add / and % operations to the arithmetic expression evaluator.

2. Add a ^ operator to the arithmetic expression evaluator. As in mathematics,
^ should have a higher precedence than multiplication, and it should be
right-associative. That is, 4^2^3 should be 4^(2^3), or 65536.

3. Write a parser that parses a list of integers (such as (1, 23, -79)) into a List[Int].

4. Write a parser that can parse date and time expressions in ISO 8601. Your
parser should return a java.time.LocalDateTime object.

5. Write a parser that parses a subset of XML. Handle tags of the form <ident>
... </ident> or <ident/>. Tags can be nested. Handle attributes inside tags. At-
tribute values can be delimited by single or double quotes. You don’t need
to deal with character data (that is, text inside tags or CDATA sections). Your
parser should return a Scala XML Elem value. The challenge is to reject
mismatched tags. Hint: into, accept.

6. Assume that the parser in Section 20.5, “Generating Parse Trees,” on page 309
is completed with

class ExprParser extends RegexParsers {
 def expr: Parser[Expr] = (term ~ opt(("+" | "-") ~ expr)) ^^ {
 case a ~ None => a
 case a ~ Some(op ~ b) => Operator(op, a, b)
 }
 ...
}

Unfortunately, this parser computes an incorrect expression tree—operators
with the same precedence are evaluated right-to-left. Modify the parser
so that the expression tree is correct. For example, 3-4-5 should yield an
Operator("-", Operator("-", 3, 4), 5).

7. Suppose in Section 20.6, “Avoiding Left Recursion,” on page 310, we first
parse an expr into a list of ~ with operations and values:

def expr: Parser[Int] = term ~ rep(("+" | "-") ~ term) ^^ {...}

To evaluate the result, we need to compute ((t0 ± t1) ± t2) ± . . . Implement
this computation as a fold (see Chapter 13).

8. Add variables and assignment to the calculator program. Variables are created
when they are first used. Uninitialized variables are zero. To print a value,
assign it to the special variable out.

Chapter 20 Parsing320

ptg20087099

9. Extend the preceding exercise into a parser for a programming language
that has variable assignments, Boolean expressions, and if/else and while
statements.

10. Add function definitions to the programming language of the preceding
exercise.

321Exercises

ptg20087099
Topics in This Chapter

L3

21.1 Implicit Conversions — page 324
21.2 Using Implicits for Enriching Existing Classes — page 324
21.3 Importing Implicits — page 325
21.4 Rules for Implicit Conversions — page 326
21.5 Implicit Parameters — page 328
21.6 Implicit Conversions with Implicit Parameters — page 329
21.7 Context Bounds — page 329
21.8 Type Classes — page 331
21.9 Evidence — page 333
21.10 The @implicitNotFound Annotation — page 334
21.11 CanBuildFrom Demystified — page 334
Exercises — page 336

Implicits

ptg20087099Implicit conversions and implicit parameters are Scala’s power tools that do
useful work behind the scenes. In this chapter, you will learn how implicit con-
versions can be used to enrich existing classes, and how implicit objects are
summoned automatically to carry out conversions or other tasks. With implicits,
you can provide elegant libraries that hide tedious details from library users.

The key points of this chapter are:

• Implicit conversions are used to convert between types.

• You must import implicit conversions so that they are in scope.

• An implicit parameter list requests objects of a given type. They can be ob-
tained from implicit objects that are in scope, or from the companion object
of the desired type.

• If an implicit parameter is a single-argument function, it is also used as an
implicit conversion.

• A context bound of a type parameter requires the existence of an implicit
object of the given type.

• If it is possible to locate an implicit object, this can serve as evidence that a
type conversion is valid.

323

21Chapter

ptg20087099

21.1 Implicit Conversions

An implicit conversion function is a function with a single parameter that is declared
with the implicit keyword. As the name suggests, such a function is automatically
applied to convert values from one type to another.

Consider the Fraction class from Section 11.2, “Infix Operators,” on page 143 with
a method * for multiplying a fraction with another. We want to convert integers
n to fractions n / 1.

implicit def int2Fraction(n: Int) = Fraction(n, 1)

Now we can evaluate

val result = 3 * Fraction(4, 5) // Calls int2Fraction(3)

The implicit conversion function turns the integer 3 into a Fraction object. That
object is then multiplied by Fraction(4, 5).

You can give any name to the conversion function. Since you don’t call it explic-
itly, you may be tempted to use something short such as i2f. But, as you will see
in Section 21.3, “Importing Implicits,” on page 325, sometimes it is useful to import
a conversion function. I suggest that you stick with the source2target convention.

Scala is not the first language that allows the programmer to provide automatic
conversions. However, Scala gives programmers a great deal of control over
when to apply these conversions. In the following sections, we will discuss
exactly when the conversions happen, and how you can fine-tune the process.

NOTE: Even though Scala gives you tools to fine-tune implicit conversions,
the language designers realize that implicit conversions are potentially
problematic. To avoid a warning when using implicit functions, add the
statement import scala.language.implicitConversions or the compiler option
-language:implicitConversions.

NOTE: In C++, you specify implicit conversions as one-argument constructors
or member functions with the name operator Type(). However, in C++, you
cannot selectively allow or disallow these functions, and it is common to run
into unwanted conversions.

21.2 Using Implicits for Enriching Existing Classes

Did you ever wish that a class had a method its creator failed to provide? For
example, wouldn’t it be nice if the java.io.File class had a read method for reading
a file:

Chapter 21 Implicits

324

ptg20087099

val contents = new File("README").read

As a Java programmer, your only recourse is to petition Oracle Corporation to
add that method. Good luck!

In Scala, you can define an enriched class that provides what you want:

class RichFile(val from: File) {
 def read = Source.fromFile(from.getPath).mkString
}

Then, provide an implicit conversion to that type:

implicit def file2RichFile(from: File) = new RichFile(from)

Now it is possible to call read on a File object. It is implicitly converted to a RichFile.

Instead of providing a conversion function, you can declare RichFile as an implicit
class:

implicit class RichFile(val from: File) { ... }

An implicit class must have a primary constructor with exactly one argument.
That constructor becomes the implicit conversion function.

It is a good idea to declare the enriched class as a value class:

implicit class RichFile(val from: File) extends AnyVal { ... }

In that case, no RichFile objects are created. A call file.read is directly compiled
into a static method call RichFile$.read$extension(file).

CAUTION:An implicit class cannot be a top-level class.You can place it inside
the class that uses the type conversion, or inside another object or class that
you import, as explained in the next section.

21.3 Importing Implicits

Scala will consider the following implicit conversion functions:

1. Implicit functions or classes in the companion object of the source or target
type

2. Implicit functions or classes that are in scope

For example, consider the int2Fraction function. We can place it into the Fraction
companion object, and it will be available for converting fractions.

Alternatively, let’s suppose we put it inside a FractionConversions object, which we
define in the com.horstmann.impatient package. If you want to use the conversion,
import the FractionConversions object, like this:

import com.horstmann.impatient.FractionConversions._

325
21.3 Importing Implicits

ptg20087099

For an implicit conversion to be in scope, it must be imported without a prefix.
For example, if you import com.horstmann.impatient.FractionConversions or com.horstmann,
then the int2Fraction method is in scope as FractionConversions.int2Fraction or
impatient.FractionConversions.int2Fraction, to anyone who wants to call it explicitly.
But if the function is not available as int2Fraction, without a prefix, the compiler
won’t use it implicitly.

TIP: In the REPL, type :implicits to see all implicits that have been imported
from a source other than Predef, or :implicits -v to see all implicits.

You can localize the import to minimize unintended conversions. For example,

object Main extends App {
 import com.horstmann.impatient.FractionConversions._
 val result = 3 * Fraction(4, 5) // Uses imported conversion
 println(result)
}

You can even select the specific conversions that you want. Suppose you have a
second conversion

object FractionConversions {
 ...
 implicit def fraction2Double(f: Fraction) = f.num * 1.0 / f.den
}

If you prefer this conversion over int2Fraction, you can import it:

import com.horstmann.impatient.FractionConversions.fraction2Double
val result = 3 * Fraction(4, 5) // result is 2.4

You can also exclude a specific conversion if it causes you trouble:

import com.horstmann.impatient.FractionConversions.{fraction2Double => _, _}
 // Imports everything but fraction2Double

TIP: If you want to find out why the compiler doesn’t use an implicit conversion
that you think it should use, try adding it explicitly, for example by calling
fraction2Double(3) * Fraction(4, 5).You may get an error message that shows
the problem.

21.4 Rules for Implicit Conversions

In this section, you will see when implicit conversions are attempted. To illustrate
the rules, we again use the Fraction class and assume that the implicit conversions
int2Fraction and fraction2Double are both available.

Chapter 21 Implicits

326

ptg20087099

Implicit conversions are considered in three distinct situations:

• If the type of an expression differs from the expected type:

3 * Fraction(4, 5) // Calls fraction2Double

The Int class doesn’t have a method *(Fraction), but it has a method *(Double).

• If an object accesses a nonexistent member:

3.den // Calls int2Fraction

The Int class doesn’t have a den member but the Fraction class does.

• If an object invokes a method whose parameters don’t match the given
arguments:

Fraction(4, 5) * 3
 // Calls int2Fraction

The * method of Fraction doesn’t accept an Int but it accepts a Fraction.

On the other hand, there are three situations when an implicit conversion is not
attempted:

• No implicit conversion is used if the code compiles without it. For example,
if a * b compiles, the compiler won’t try a * convert(b) or convert(a) * b.

• The compiler will never attempt multiple conversions, such as convert1(
convert2(a)) * b.

• Ambiguous conversions are an error. For example, if both convert1(a) * b and
convert2(a) * b are valid, the compiler will report an error.

CAUTION: It is not an ambiguity that

3 * Fraction(4, 5)

could be either

3 * fraction2Double(Fraction(4, 5))

or

int2Fraction(3) * Fraction(4, 5)

The first conversion wins over the second, since it does not require
modification of the object to which the * method is applied.

TIP: If you want to find out which implicit conversion the compiler uses,
compile your program as

scalac -Xprint:typer MyProg.scala

You will see the source after implicit conversions have been added.

327
21.4 Rules for Implicit Conversions

ptg20087099

21.5 Implicit Parameters

A function or method can have a parameter list that is marked implicit. In that
case, the compiler will look for default values to supply with the function call.
Here is a simple example:

case class Delimiters(left: String, right: String)

def quote(what: String)(implicit delims: Delimiters) =
 delims.left + what + delims.right

You can call the quote method with an explicit Delimiters object, like this:

quote("Bonjour le monde")(Delimiters("«", "»")) // Returns «Bonjour le monde»

Note that there are two argument lists. This function is “curried”—see Chapter 12.

You can also omit the implicit parameter list:

quote("Bonjour le monde")

In that case, the compiler will look for an implicit value of type Delimiters. This
must be a value that is declared as implicit. The compiler looks for such an object
in two places:

• Among all val and def of the desired type that are in scope without a prefix.

• In the companion object of a type that is associated with the desired type. As-
sociated types include the desired type itself and, if it is a parameterized type,
its type parameters.

In our example, it is useful to make an object, such as

object FrenchPunctuation {
 implicit val quoteDelimiters = Delimiters("«", "»")
 ...
}

Then one imports all values from the object:

import FrenchPunctuation._

or just the specific value:

import FrenchPunctuation.quoteDelimiters

Now the French delimiters are supplied implicitly to the quote function.

NOTE: There can only be one implicit value for a given data type. Thus, it is
not a good idea to use implicit parameters of common types. For example,

def quote(what: String)(implicit left: String, right: String) // No!

would not work—one could not supply two different strings.

Chapter 21 Implicits

328

ptg20087099

21.6 Implicit Conversions with Implicit Parameters

An implicit function parameter is also usable as an implicit conversion. To
understand the significance, consider first this simple generic function:

def smaller[T](a: T, b: T) = if (a < b) a else b // Not quite

That doesn’t actually work. The compiler won’t accept the function because it
doesn’t know that a and b belong to a type with a < operator.

We can supply a conversion function for that purpose:

def smaller[T](a: T, b: T)(implicit order: T => Ordered[T])
 = if (order(a) < b) a else b

Since the Ordered[T] trait has a < operator that consumes a T, this version is correct.

As it happens, this is such a common situation that the Predef object defines im-
plicit values of type T => Ordered[T] for a large number of types, including all types
that already implement Ordered[T] or Comparable[T]. Therefore, you can call

smaller(40, 2)

and

smaller("Hello", "World")

If you want to call

smaller(Fraction(1, 7), Fraction(2, 9))

then you need to define a function Fraction => Ordered[Fraction] and either supply
it in the call or make it available as an implicit val. I leave this as an exercise
because it moves us too far from the point that I want to make in this section.

Here, finally, is the point. Look again at

def smaller[T](a: T, b: T)(implicit order: T => Ordered[T])

Note that order is a function that is tagged implicit and is in scope. Therefore, it is
an implicit conversion, in addition to being an implicit parameter. So, we can omit
the call to order in the body of the function:

def smaller[T](a: T, b: T)(implicit order: T => Ordered[T])
 = if (a < b) a else b // Calls order(a) < b if a doesn’t have a < operator

21.7 Context Bounds

A type parameter can have a context bound of the form T : M, where M is another
generic type. It requires that there is an implicit value of type M[T] in scope.

For example,

class Pair[T : Ordering]

329
21.7 Context Bounds

ptg20087099

requires that there is an implicit value of type Ordering[T]. That implicit value can
then be used in the methods of the class. Consider this example:

class Pair[T : Ordering](val first: T, val second: T) {
 def smaller(implicit ord: Ordering[T]) =
 if (ord.compare(first, second) < 0) first else second
}

If we form a new Pair(40, 2), then the compiler infers that we want a Pair[Int]. Since
there is an implicit value of type Ordering[Int] in the Ordering companion object, Int
fulfills the context bound. That ordering becomes a field of the class, and it is
passed to the methods that need it.

If you prefer, you can retrieve the ordering with the implicitly method in the Predef
class:

class Pair[T : Ordering](val first: T, val second: T) {
 def smaller =
 if (implicitly[Ordering[T]].compare(first, second) < 0) first else second
}

The implicitly function is defined as follows in Predef.scala:

def implicitly[T](implicit e: T) = e
 // For summoning implicit values from the nether world

NOTE:The comment is apt—the implicit objects live in the “nether world” and
are invisibly added to methods.

Alternatively, you can take advantage of the fact that the Ordered trait defines an
implicit conversion from Ordering to Ordered. If you import that conversion, you
can use relational operators:

class Pair[T : Ordering](val first: T, val second: T) {
 def smaller = {
 import Ordered._;
 if (first < second) first else second
 }
}

These are just minor variations; the important point is that you can instantiate
Pair[T] whenever there is an implicit value of type Ordering[T]. For example, if you
want a Pair[Point], arrange for an implicit Ordering[Point] value:

implicit object PointOrdering extends Ordering[Point] {
 def compare(a: Point, b: Point) = ...
}

Chapter 21 Implicits

330

ptg20087099

21.8 Type Classes

Have another look at the Ordering trait in the preceding section. We had an algo-
rithm that required the parameters to have an ordering. Normally, in object-
oriented programming, we would require the parameter types to extend a trait.
But that’s not what happened here. In order to make a class usable with the algo-
rithm, it is not necessary to modify the class at all. Instead, one provides an im-
plicit conversion. This is much more flexible than the object-oriented approach.

A trait such as Ordering is called a type class. A type class defines some behavior,
and a type can join the class by providing that behavior. (The term comes from
Haskell, and “class” is not used in the same way as in object-oriented program-
ming. Think of “class” as in a “class action”—types banding together for a
common purpose.)

To see how a type joins a type class, let us look at a simple example. We want to
compute averages, (x1 + . . . + xn) / n. To do that, we need to be able to add two
values and divide a value by an integer. There is a type class Numeric in the Scala
library, which requires that values can be added, multiplied, and compared. But
it doesn’t have any requirement that values can be divided by an integer.
Therefore, let’s define our own:

trait NumberLike[T] {
 def plus(x: T, y: T): T
 def divideBy(x: T, n: Int): T
}

Next, to make sure that the type class is useful out of the gate, let’s add some
common types as members. That’s easy to do by providing implicit objects in
the companion object:

object NumberLike {
 implicit object NumberLikeDouble extends NumberLike[Double] {
 def plus(x: Double, y: Double) = x + y
 def divideBy(x: Double, n: Int) = x / n
 }

 implicit object NumberLikeBigDecimal extends NumberLike[BigDecimal] {
 def plus(x: BigDecimal, y: BigDecimal) = x + y
 def divideBy(x: BigDecimal, n: Int) = x / n
 }
}

Now we are ready to put the type class to use. In the average method, we need an
instance of the type class so that we can call plus and divideBy. (Note that these are
methods of the type class, not the member types.)

331
21.8 Type Classes

ptg20087099

Here, we’ll just compute the average of two values. The general case is left as an
exercise. There are two ways in which we can supply the type class instance: as
an implicit parameter, or with a context bound. Here is the first approach:

def average[T](x: T, y: T)(implicit ev: NumberLike[T]) =
 ev.divideBy(ev.plus(x, y), 2)

The parameter name ev is shorthand for “evidence”—see the next section.

When using a context bound, we retrieve the implicit object from the “nether
world.”

def average[T : NumberLike](x: T, y: T) = {
 val ev = implicitly[NumberLike[T]]
 ev.divideBy(ev.plus(x, y), 2)
}

That’s all there is to it. Finally, let’s see what a type needs to do to join the NumberLike
type class. It must provide an implicit object, just like the NumberLikeDouble and
NumberLikeBigDecimal objects that we provided out of the gate. Here is how Point
can join:

class Point(val x: Double, val y: Double) {
 ...
}

object Point {
 def apply(x: Double, y: Double) = new Point(x, y)
 implicit object NumberLikePoint extends NumberLike[Point] {
 def plus(p: Point, q: Point) = Point(p.x + q.x, p.y + q.y)
 def divideBy(p: Point, n: Int) = Point(p.x * 1.0 / n, p.y * 1.0 / n)
 }
}

Here we added the implicit object to the companion object of Point. If you can’t
modify the Point class, you can put the implicit object elsewhere and import it as
needed.

The standard Scala library provides useful type classes, such as Equiv, Ordering,
Numeric, Fractional, Hashing, IsTraversableOnce, IsTraversableLike. As you have seen, it is
easy to provide your own.

The important point about type classes is that they provide an “ad-hoc” way of
providing polymorphism that is less rigid than inheritance.

Chapter 21 Implicits

332

ptg20087099

21.9 Evidence

In Chapter 18, you saw the type constraints

T =:= U
T <:< U
T => U

The constraints test whether T equals U, is a subtype of U, or is convertible to U. To
use such a type constraint, you supply an implicit parameter, such as

def firstLast[A, C](it: C)(implicit ev: C <:< Iterable[A]) =
 (it.head, it.last)

The =:= and <:< are classes with implicit values, defined in the Predef object. For
example, <:< is essentially

abstract class <:<[-From, +To] extends Function1[From, To]

object <:< {
 implicit def conforms[A] = new (A <:< A) { def apply(x: A) = x }
}

Suppose the compiler processes a constraint implicit ev: String <:< AnyRef. It looks
in the companion object for an implicit object of type String <:< AnyRef. Note that
<:< is contravariant in From and covariant in To. Therefore the object

<:<.conforms[String]

is usable as a String <:< AnyRef instance. (The <:<.conforms[AnyRef] object is also usable,
but it is less specific and therefore not considered.)

We call ev an “evidence object”—its existence is evidence of the fact that, in this
case, String is a subtype of AnyRef.

Here, the evidence object is the identity function. To see why the identity function
is required, have a closer look at

def firstLast[A, C](it: C)(implicit ev: C <:< Iterable[A]) =
 (it.head, it.last)

The compiler doesn’t actually know that C is an Iterable[A]—recall that <:< is not
a feature of the language, but just a class. So, the calls it.head and it.last are not
valid. But ev is a function with one parameter, and therefore an implicit conversion
from C to Iterable[A]. The compiler applies it, computing ev(it).head and ev(it).last.

TIP:To test whether a generic implicit object exists, you can call the implicitly
function in the REPL. For example, type implicitly[String <:< AnyRef] in
the REPL, and you get a result (which happens to be a function). But
implicitly[AnyRef <:< String] fails with an error message.

333
21.9 Evidence

ptg20087099

21.10 The @implicitNotFound Annotation

The @implicitNotFound annotation raises an error message when the compiler cannot
construct an implicit parameter of the annotated type. The intent is to give a
useful error message to the programmer. For example, the <:< class is annotated as

@implicitNotFound(msg = "Cannot prove that ${From} <:< ${To}.")
abstract class <:<[-From, +To] extends Function1[From, To]

For example, if you call

firstLast[String, List[Int]](List(1, 2, 3))

then the error message is

 Cannot prove that List[Int] <:< Iterable[String]

That is more likely to give the programmer a hint than the default

Could not find implicit value for parameter ev: <:<[List[Int],Iterable[String]]

Note that ${From} and ${To} in the error message are replaced with the type
parameters From and To of the annotated class.

21.11 CanBuildFrom Demystified

In Chapter 1, I wrote that you should ignore the implicit CanBuildFrom parameter.
Now you are finally ready to understand how it works.

Consider the map method. Simplifying slightly, map is a method of Iterable[A, Repr]
with the following implementation:

def map[B, That](f : (A) => B)(implicit bf: CanBuildFrom[Repr, B, That]): That = {
 val builder = bf()
 val iter = iterator()
 while (iter.hasNext) builder += f(iter.next())
 builder.result
}

Here, Repr is the “representation type.” That parameter will enable us to select
appropriate builder factories for unusual collections such as Range or String.

NOTE: In the Scala library, map is actually defined in the TraversableLike[A,
Repr] trait. That way, the more commonly used Iterable trait doesn’t need to
carry with it the Repr type parameter.

The CanBuildFrom[From, E, To] trait provides evidence that it is possible to create a
collection of type To, holding values of type E, that is compatible with type From.
Before discussing how these evidence objects are generated, let’s see what they do.

Chapter 21 Implicits

334

ptg20087099

The CanBuildFrom trait has an apply method that yields an object of type Builder[E,
To]. A Builder has methods += for adding elements into an internal buffer, and
result for producing the desired collection.

trait Builder[-E, +To] {
 def +=(e: E): Unit
 def result(): To
}

trait CanBuildFrom[-From, -E, +To] {
 def apply(): Builder[E, To]
}

Therefore, the map method simply constructs a builder for the target type, fills the
builder with the values of the function f, and yields the resulting collection.

Each collection provides an implicit CanBuildFrom object in its companion object.
Consider a simplified version of the standard ArrayBuffer class:

class Buffer[E : ClassTag] extends Iterable[E, Buffer[E]]
 with Builder[E, Buffer[E]] {
 private var elems = new Array[E](10)
 ...
 def iterator() = ...
 private var i = 0
 def hasNext = i < length
 def next() = { i += 1; elems(i - 1) }
 }
 def +=(e: E) { ... }
 def result() = this
}

object Buffer {
 implicit def canBuildFrom[E : ClassTag] =
 new CanBuildFrom[Buffer[_], E, Buffer[E]] {
 def apply() = new Buffer[E]
 }
}

Consider a call buffer.map(f), where f is a function of type A => B. The implicit bf
parameter is obtained by calling the canBuildFrom[B] method in the Buffer companion
object. Its apply method returns the builder, in this case a Buffer[B].

As it happens, the Buffer class already has a += method, and its result method is
defined to return itself. Therefore, a Buffer is its own builder.

However, a builder for the Range class doesn’t return a Range, and clearly it can’t.
For example, (1 to 10).map(x => x * x) has a value that isn’t a Range. In the actual

335
21.11 CanBuildFrom Demystified

ptg20087099

Scala library, Range extends IndexedSeq[Int], and the IndexedSeq companion object
defines a builder that constructs a Vector.

Here is a simplified Range class that provides a Buffer as builder:

class Range(val low: Int, val high: Int) extends Iterable[Int, Range] {
 def iterator() = ...
}

object Range {
 implicit def canBuildFrom[E : ClassTag] = new CanBuildFrom[Range, E, Buffer[E]] {
 def apply() = new Buffer[E]
 }
}

Now consider a call Range(1, 10).map(f). That method needs an implicit bf:
CanBuildFrom[Repr, B, That]. Since Repr is Range, the associated types are CanBuildFrom,
Range, B, and the unknown That. The Range object yields a match by calling its
canBuildFrom[B] method, which returns a CanBuildFrom[Range, B, Buffer[B]]. That object
is bf, and its apply method yields a Buffer[B] for building the result.

As you just saw, the implicit CanBuildFrom[Repr, B, That] parameter locates a factory
object that can produce a builder for the target collection. The builder factory is
defined as implicit in the companion object of Repr.

Exercises

1. How does -> work? That is, how can "Hello" -> 42 and 42 -> "Hello" be pairs
("Hello", 42) and (42, "Hello")? Hint: Predef.ArrowAssoc.

2. Define an operator +% that adds a given percentage to a value. For example,
120 +% 10 should be 132. Use an implicit class.

3. Define a ! operator that computes the factorial of an integer. For example, 5.!
is 120. Use an implicit class.

4. Some people are fond of “fluent APIs” that read vaguely like English sen-
tences. Create such an API for reading integers, floating-point numbers, and
strings from the console. For example: Read in aString askingFor "Your name" and
anInt askingFor "Your age" and aDouble askingFor "Your weight".

5. Provide the machinery that is needed to compute

smaller(Fraction(1, 7), Fraction(2, 9))

with the Fraction class of Chapter 11. Supply an implicit class RichFraction that
extends Ordered[Fraction].

6. Compare objects of the class java.awt.Point by lexicographic comparison.

Chapter 21 Implicits

336

ptg20087099

7. Continue the previous exercise, comparing two points according to their
distance to the origin. How can you switch between the two orderings?

8. Use the implicitly command in the REPL to summon the implicit objects de-
scribed in Section 21.5, “Implicit Parameters,” on page 328 and Section 21.6,
“Implicit Conversions with Implicit Parameters,” on page 329. What objects
do you get?

9. Explain why Ordering is a type class and why Ordered is not.

10. Generalize the average method in Section 21.8, “Type Classes,” on page 331 to
a Seq[T].

11. Make String a member of the NumberLike type class in Section 21.8, “Type
Classes,” on page 331. The divBy method should retain every nth letter, so that
average("Hello", "World") becomes "Hlool".

12. Look up the =:= object in Predef.scala. Explain how it works.

13. The result of "abc".map(_.toUpper) is a String, but the result of "abc".map(_.toInt)
is a Vector. Find out why.

337
Exercises

ptg20087099

Symbols and Numbers
- (minus sign)

in identifiers, 142
operator:

arithmetic, 6
for collections, 178–179
for maps, 49
for type parameters, 271
left-associative, 145
precedence of, 145
unary (negation), 14, 143

-- operator, 177–179
not used for arithmetic decrements, 7

-= operator
arithmetic, 7
for collections, 178–179
for maps, 49

--= operator, 178–179
_ (underscore)

as wildcard:
for XML elements, 236
in case clauses, 30, 198–199, 237
in imports, 8, 76, 85–86
in tuples, 52

for function calls, 158, 288
for function parameters, 161
in identifiers, 142, 317

_* syntax
for arrays, 201
for nested structures, 207
in function parameters, 27
in pattern matching, 237

_=, in setter methods, 57
_1, _2, _3 methods (tuples), 51
; (semicolon)

after statements, 5, 18–20
inside loops, 24–25

: (colon)
followed by annotations, 217
in case clauses, 200–201
in identifiers, 142
in implicits, 329–330
in operator names, 285

and precedence, 145
right-associative, 146, 185

in type parameters, 268–269
:: operator

for lists, 175–176, 178–179
in case clauses, 201, 206
right-associative, 146, 176

:::, :+ operators, 178–179
:\, /: operators, 185
:+= operator, 179
! (exclamation mark)

in identifiers, 142
operator:

in shell scripts, 114–115
precedence of, 145
unary, 143

!! operator, in shell scripts, 114
!= operator, 144
? (question mark)

in identifiers, 142
in parsers, 308

?: operator, 18
??? method, 101
/ (slash)

in identifiers, 142
in XPath, 235
operator, 6

precedence of, 145
//

for comments, 317
in XPath, 235

/* ... */ comments, parsing, 317

338

Index

ptg20087099

/% method (BigInt), 7, 203
`...` (backquotes), for identifiers, 142,

200
^ (caret)

in identifiers, 142
in Pascal, 153
operator, 6

precedence of, 145
^? operator, 313
^^ operator, 307–309, 312
^^^ operator, 312
~ (tilde)

in identifiers, 142
operator:

in case clauses, 206
in parsers, 305–311, 313–314
unary, 143

~! operator, 313–314
~> operator, 308–309, 312
' (single quote)

in symbols, 226
parsing, 317

" (double quote), parsing, 317
""", in regular expressions, 116
() (parentheses)

as value of Unit, 18–21
discarding, in parsers, 309
for annotations, 216
for apply method, 9–10
for array elements, 36
for curried parameters, 165
for functions, 158–161, 166
for maps, 48
for primary constructors, 63
for tuples, 51, 287
in case clauses, 201, 205
in method declarations, 8, 56, 59
in regular expressions, 117
to access XML attributes, 232

[] (square brackets)
for arrays, 36
for methods in traits, 126
for type parameters, 14, 266, 287

{} (braces)
for block expressions, 20–21
for existential types, 286
for function arguments, 159
for structural types, 283–285
in formatted strings, 21
in imports, 86
in package clauses, 83
in pattern matching, 211–212, 237

in REPL, 19
in XML literals, 234
Kernighan & Ritchie style for, 20

@ (at)
for XML attributes, 236
in case clauses, 207
in identifiers, 142

$ (dollar sign), in formatted strings, 21
* (asterisk)

as wildcard in Java, 8, 85
in identifiers, 142
in parsers, 308
operator, 6, 327

no infix notation for, 286
precedence of, 145

**
in Fortran, 153
in identifiers, 142

\ (backslash)
in identifiers, 142
operator, 235–236

\\ operator, 235–236
& (ampersand)

in identifiers, 142
operator:

arithmetic, 6
for sets, 177–179
precedence of, 145

&...; (XML), 231
&~ operator, 177–178
&#...; (XML), 232
(number sign)

for type projections, 67, 281–283, 286
in identifiers, 142

#:: operator, 189
#&&, #<, #>, #>>, #|| operators (shell scripts),

115
#| operator (shell scripts), 114
% (percent sign)

for XML attributes, 238
in identifiers, 142
operator, 6

precedence of, 145
+ (plus sign)

in identifiers, 142
operator:

arithmetic, 6
for collections, 178–179
for maps, 49
for type parameters, 271
precedence of, 145
unary, 143

339Index

ptg20087099

+: operator
for collections, 178–179
in case clauses, 207
right-associative, 146, 179

++ operator, 177–179
not used for arithmetic increments, 7

++:, ++=:, +=: operators, 178–179
++= operator

for array buffers, 36
for collections, 178–179

+= operator
arithmetic, 7
assignment, 144
for array buffers, 36, 42
for collections, 178–179, 335
for maps, 49
of Buffer, 335

< (left angle bracket)
in identifiers, 142
in XML literals, 230
operator:

and implicits, 329
precedence of, 145

<- operator, 23–24, 204
<: operator, 267–271, 286, 293
<:< operator, 269, 333
<!--...-->, <?...?> comments (XML), 231
<?xml...?> (XML), 241
<~ operator, 308–309, 312
<% operator, 268
<< operator, 6
<= operator, 144
= (equal sign)

in identifiers, 142
operator, 49, 144

precedence of, 145
=:= operator, 269, 333
== operator, 144

for collections, 173
for reference types, 103

===, =/= operators, 144
=> operator, 269

for functions, 166, 287–288
for self types, 134–135, 288–289, 295
in case clauses, 198

> (right angle bracket)
in identifiers, 142
operator, 145

-> operator, 48
precedence of, 145

>: operator, 267, 269
>= operator, 144

>> operator
arithmetic, 6
in parsers, 312

| (vertical bar)
in case clauses, 198
in identifiers, 142
operator:

arithmetic, 6
for sets, 177–178
in parsers, 304–319
precedence of, 145

÷ (square root), 142
80 bit extended precision, 219

A
abstract keyword, 97, 123, 127
abstract types, 291–293, 315

bounds for, 293
made concrete in subclass, 283, 291
naming, 296
vs. type parameters, 292

accept combinator, 313
ActionEvent class (Java), 293–294
actionPerformed method (listeners), 293
addString method

of Iterable, 181
of Iterator, 189

aggregate method
of Iterable, 180
of Iterator, 189
of parallel collections, 194

aliases
for this, 68, 289
for types, 174, 283

andThen method (Future), 256
Annotation trait, 218
annotations, 215–226, 287

arguments of, 217–218
for compiler optimizations, 222–226
for errors and warnings, 226
implementing, 218–219
in Java, 216–221
meta-annotations for, 219
order of, 216

anonymous functions, 25, 159–160, 167
Any class, 100, 103

asInstanceOf, isInstanceOf methods, 93, 100
AnyRef class, 100, 112

== method, 103
eq, equals methods, 102
notify, notifyAll, synchronized, wait methods, 100

Index340

ptg20087099

AnyVal class, 100, 104
Apache Commons Resolver project, 240
App trait, 75
append, appendAll methods, 41
Application trait, 75
application objects, 74
apply method, 9–10, 73–74, 146–148

of Array, 10, 74
of BigInt, 10
of Buffer, CanBuildFrom, 335
of case classes, 205
of collections, 173
of Future, 253, 260
of PartialFunction, 211
of Process, 115
of StringOps, 9

applyDynamic method (Dynamic), 150–152
applyDynamicNamed method (Dynamic), 151–152
args property, 75
array buffers, 36–37

adding/removing elements of, 36–37
appending collections to, 36
converting to arrays, 37
displaying contents of, 40
empty, 36
largest/smallest elements in, 40
sorting, 40
transforming, 38–40
traversing, 37–38

Array class, 35–36, 269
apply method, 74
corresponds method, 165, 271
mkString, quickSort methods, 40
ofDim method, 42
toBuffer method, 37

Array companion object, 10, 202
ArrayBuffer class, 36–37, 172, 335

max, min, mkString methods, 40
mutable, 175
serializing, 113
sorted, sortWith methods, 40
subclasses of, 42
toArray method, 37

ArrayList class (Java), 36, 43, 173
arrays, 35–44

converting to array buffers, 37
displaying contents of, 40
fixed-length, 35–36
function call syntax for, 146
generic, 269
interoperating with Java, 43–44
invariant, 272

largest/smallest elements in, 40
multidimensional, 42–43, 74
pattern matching for, 201
ragged, 43
sorting, 40
transforming, 38–40
traversing, 37–38
vs. lists, 172

Arrays class (Java), 43
ArrayStoreException, 273
asAttrMap method, 233
ASCII characters, 142
asInstanceOf method (Any), 93, 100
asJavaXxx, asScalaXxx functions (JavaConversions),

192
assert method (Predef), 225
AssertionError, 225
assignments, 20–21, 144

no chaining of, 21
precedence of, 145
right-associative, 146, 179
value of, 20–21

Async library, 254
Atom class, 233–235
Attribute trait, 238
attributes (XML), 232–233

atoms in, 234
entity references in, 232, 234
expressions in, 234–235
in pattern matching, 238
iterating over, 233
modifying, 238
namespace of, 243
no wildcard notation for, 236

attributes property, 232
automatic conversions. See implicit conversions
Await object, 250

B
backtracking, 313–314
balanced trees, 50
bash shell, 114
bean properties, 61–62
@BeanDescription, @BeanDisplayName, @BeanInfo,

@BeanInfoSkip annotations, 221
@beanGetter, @beanSetter annotations, 219
@BeanProperty annotation, 61–62, 216, 221

generated methods for, 65
BigDecimal class, 6–7
BigInt class, 6–9

/% method, 7, 203

341Index

ptg20087099

BigInt class (continued)
pow method, 153
unary_- method, 14

BigInt companion object
apply method, 10
probablePrime method, 9

binary files, reading, 112
binary functions, 162, 184
binary operators, 143–146
BitSet class, 177
blocking keyword, 260
blocking calls, 250
blocks, 20–21
BNF (Backus-Naur Form), 304
Boolean type, 5

reading, 22
@BooleanBeanProperty annotation, 221
Breaks object, break method, 23
Buffer class, 298, 335
bufferAsJavaList function (JavaConversions), 192
buffered method (Source), 110, 188
BufferedInputStream class (Java), 138
BufferedIterator trait, 188
Builder trait, 335
Byte type, 5

arrays of, 112
reading, 22

C
C++ programming language

?: operator in, 18
arrays in, 36
assignments in, 21
construction order in, 100
expressions in, 17
functions in, 25
implicit conversions in, 324
linked lists in, 176
loops in, 22, 38
methods in, 72, 94, 219
multiple inheritance in, 121–122
namespaces in, 80
operators in, 145
protected fields in, 94
reading files in, 110
singleton objects in, 72
statements in, 17–20
switch in, 198–199, 223
virtual base classes in, 122
void in, 18, 20, 102

cached thread pool, 260

cake pattern, 290
callbacks, 251–252
call-by-name parameters, 167
case clause, 198–212

_ in, 199, 237
: in, 200–201
:: in, 201, 206
`...` in, 200
~ in, 206
() in, 201
{_*} in, 237
@, +: in, 207
=>, | in, 198
catch-all pattern for, 198–199
enclosed in braces, 211–212, 252
followed by variable, 199–200
infix notation in, 206–207
variables in, 199–200
XML literals in, 237

case classes, 205–211
applicability of, 208–209
declaring, 205
default methods of, 148, 205,

208–209
extending other case classes, 209
in parsers, 306, 309
modifying properties in, 205
sealed, 209
with variable fields, 208

case objects, 205
casts, 93–94
CatalogResolver class (Java), 240
catch statement, 30–31

as a partial function, 212
CDATA markup, 235, 240
ceil method (scala.math), 158
chaining

assignments, 21
auxiliary constructors, 65
method calls, 42
packages, 82–83

chainl1 method (Parsers), 312
ChangeEvent class (Java), 293
Char type, 5, 22, 315
character references, 232
character sets, 111
characters

common, in two strings, 6
in identifiers, 142, 317
reading, 22, 110
sequences of, 14
uppercase, 14

Index342

ptg20087099

circular dependencies, 29, 135
class keyword, 55, 287
ClassCastException, 225
classes, 10, 55–68, 287

abstract, 97, 125
abstract types in, 291
and primitive types, 5
annotated, 216
combined with primary constructor, 66
companion objects to, 9, 67, 72–73, 146, 281,

325
concrete, 130
definitions of, 56

executing statements in, 64
using traits in, 125

enriching, 324–325
equality checks in, 102
extending, 73, 91–92

Java classes, 95
multiple traits, 124
only one superclass, 121, 129

final, 92
generic, 266, 270
granting access to, 61–62
immutable, 7, 208
implementing, 265
importing members of, 76, 85
inheritance hierarchy of, 100–102
inlined, 103–105
interoperating with Java, 57
linearization of, 131
mutable, 208
names of, 142
nested, 66–68, 281
properties of, 57, 59
recompiling, 129
serializable, 113, 220
type aliases in, 283
visibility of, 56
vs. traits, 132

classOf method (scala.Predef), 93
ClassTag trait, 269, 299
Cloneable interface (Java), 124, 220
@cloneable annotation, 220
close method (Source), 110
closures, 162–163
collect method

of Future, 256
of GenTraversable, 211
of Iterable, 180
of Iterator, 189
with partial functions, 183

collectionAsScalaIterable function (JavaConversions),
192

collections, 171–194
adding/removing elements of, 178–179
appending to array buffers, 36
applying functions to all elements of, 161,

180–183
combining, 187–188
companion objects of, 173, 335
constructing in a loop, 24, 38
converting to specific type, 181
filtering, 180
folding, 180, 184–186
hierarchy of, 41, 172–173
immutable, 173–174
instances of, 173
interoperating with Java, 191–192
iterators for, 188–189
methods for, 180–182
mutable, 173–174, 179, 191
ordered/unordered, 172, 179
parallel implementations of, 193–194
reducing, 180, 184
scanning, 180, 186
serializing, 113
sorted, 172
traits for, 172–173
traversing, 23, 38, 172, 222–223
unevaluated, 190
unordered, 179

com.sun.org.apache.xml.internal.resolver.tools
package, 240

combinations method (Seq), 182
combinators, 311–313
command-line arguments, 75
comma-separated lists, 311
comments

in lexical analysis, 304
in XML, 231
parsing, 240, 316–317

companion objects, 9, 67, 72–73, 281, 328
apply method in, 146
implicits in, 325
of collections, 173, 335

Comparable interface (Java), 42, 267–268, 329
Comparator interface (Java), 226
compareTo method, 267
compiler

-future flag, 268
implicits in, 327, 334
internal types in, 288
-language:existentials flag, 287

343Index

ptg20087099

compiler (continued)
-language:higherKinds flag, 299
-language:implicitConversions flag, 324
-language:postfixOps flag, 144
nested type expressions in, 283
optimizations in, 222–226
Scala annotations in, 216
-Xcheckinit flag, 99
-Xprint flag, 327

compiler plugin, 216
compile-time errors, 22
CompletableFuture class (Java), 260
CompletionStage interface (Java), 249
Component class (Java), 137
compound types, 284–287
comprehensions, 24
concurrency, 193
console

input from, 22, 111
printing to, 21

constants. See values
ConstructingParser class, 240–241
constructors

auxiliary, 62–63, 94
chaining, 65
eliminating, 64

executing, 72
order of, 98–100, 130–132
parameterless, 64, 132
parameters of, 62–66

annotated, 218–219
implicit, 269

primary, 62–66, 94
annotated, 216
default parameters in, 64
private, 66

superclass, 94–95
vals in, 99

Container trait, 298
Container class (Java), 137
contains method, 48

of BitSet, 177
of Iterator, 189
of Seq, 181

containsSlice method, 42
of Iterator, 189
of Seq, 181
of StringOps, 14

context bounds, 268–269, 329–330
control abstractions, 166–167
copy method, 238

of case classes, 205, 208–209

copyToArray method, 42
of Iterable, 181
of Iterator, 189

copyToBuffer method
of Iterable, 181
of Iterator, 189

corresponds method (Array), 165, 271
count method, 41

of Iterable, 180
of Iterator, 189
of StringOps, 14

Curry, Haskell Brooks, 164
currying, 164–165

D
debugging

implicit conversions, 326
reading from strings for, 111
reporting types for, 41

decrements, 7
def keyword, 25, 159, 165

abstract, 95
in parsers, 314
overriding, 95–96
parameterless, 95
return value of, 314

default statement, 198
definitions, 24–25
DelayedInit trait, 75
Delimiters type, 328
dependency injections, 289–291
@deprecated annotation, 219, 226
@deprecatedInheritance, @deprecatedOverriding

annotations, 226
@deprecatedName annotation, 218, 226
destructuring

of lists, 207
of tuples, 202

diamond inheritance problem, 122–123
dictionaryAsScalaMap function (JavaConversions), 192
diff method

of Iterator, 189
of Seq, 182
of sets, 177

directories
and packages, 80
naming, 15
traversing, 112–113

division, quotient and remainder of, 7, 203
do loop, 22
docElem method (ConstructingParser), 240

Index344

ptg20087099

DocType class, 241
domain-specific languages, 141, 303
Double type, 5

reading, 22
DoubleLinkedList class (deprecated), 176
drop, dropWhile methods

of Iterable, 180
of Iterator, 189

dropRight method (Iterable), 180
DTDs (Document Type Definitions), 239–241
duck typing, 284
Duration object, 250
Dynamic trait, 150
dynamic invocation, 150–153
dynamically typed languages, 284

E
early definitions, 99, 132–133
EBNF (Extended Backus-Naur Form), 305–306
Eclipse-based Scala IDE, 2
Eiffel programming language, 58
Either type, 300
Elem type, 230, 315

prefix, scope values, 238, 243
elements (XML), 230

attributes of. See attributes (XML)
child, 237–238
empty, 242
matching, 236
modifying, 238

endsWith method
of Iterator, 189
of Seq, 181

entity references, 231
in attributes, 232, 234
resolving, 241

EntityRef class, 232
Enumeration class, 75–77
enumerationAsScalaIterator function (JavaConversions),

192
enumerations, 75–77

simulating, 209
values of, 76–77

eq method (AnyRef), 102
equals method

of AnyRef, 102–103
of case classes, 205, 208–209
of value classes, 104
overriding, 103
parameter type of, 103

Equiv type, 332

err combinator, 313
Error class, 315
error messages

explicit, 319
for implicit conversions, 326, 334
generated with annotations, 226
suppressed, 226
type projections in, 283
with override modifier, 92

escape hatch, 142
evidence objects, 333
Exception trait, 288
exceptions, 29–31

catching, 30
checked, in Java, 29, 220

execution contexts, 260
ExecutionContext trait, 248
Executor interface (Java), 248
Executors, 260
existential types, 287
exists method

of Iterable, 180
of Iterator, 189

expressions
annotated, 217
conditional, 18–19
traversing values of, 23
type of, 18
vs. statements, 17

extends keyword, 91, 99, 123–124
extractors, 118, 147–149, 202–203

F
f prefix, in formatted strings, 21–22, 112
failed method

of Future object, 258
of Future trait, 255–256

failure method (Promise), 259
Failure class, 251, 315
failure combinator, 313
fallbackTo method (Future), 255
fall-through problem, 198
family polymorphism, 293–296
@field annotation, 219
fields

abstract, 97–98, 130, 132
accessing uninitialized, 99
annotated, 216
comparing, 208
concrete, 98, 128–129
copying, 208

345Index

ptg20087099

fields (continued)
for primary constructor parameters, 62, 65
getter/setter methods for, 57, 61–62, 65
hash codes of, 103, 208
immutable, 65
object-private, 60–61, 65
overriding, 91, 95–96, 130, 132
printing, 208
private, private final, 59
protected, 94
public, 56
static, 71
transient, volatile, 219

FileInputStream class (Java), 112
files

and packages, 80
appending, 115
binary, 112
naming, 15
processing, 109–115
reading, 109–111
redirecting input/output from/to, 115
saving, 241–242
writing, 112

Files class (Java), 112–113
filter method, 39, 162, 210

of Future, 256
of Iterable, 180
of Iterator, 189

final keyword, 59, 92
finally statement, 30–31
find, firstCompletedOf methods (Future object),

257–258
findAllIn, findFirstIn methods, 116
flatMap method, 182–183

of Future, 254
of Iterable, 180
of Iterator, 189
of Try, 255

Float type, 5
reading, 22

floating-point calculations, 219
fluent interfaces, 280–281
fold method

of Iterable, 180
of Iterator, 189
of parallel collections, 194

foldLeft method, 168, 184–185
of Future object, 257
of Iterable, 180, 273
of Iterator, 189
of parallel collections, 194

foldRight method, 185
of Iterable, 180
of Iterator, 189
of parallel collections, 194

for loop, 22–25
constructing collections in, 24, 38
enhanced (Java), 38
for arrays, 37–40
for futures, 254
for maps, 50
for regex groups, 118
guards in, 204, 254
pattern matching in, 204
range-based (C++), 38
regular expressions in, 116
with Option type, 210

forall method
of Iterable, 180
of Iterator, 189

force method, 190
foreach method, 162, 183, 210

of Future, 255–256
of Iterable, 180
of Iterator, 189

fork-join pool, 260
formatted strings, 21–22, 112
Fortran programming language, 153
Fraction class, 146–147, 324–327
Fraction companion object, 325
Fractional type, 332
fragile base class problem, 92
French delimiters, 328
fromString, fromURL methods (Source), 111
fromTry method (Future), 258
functional programming languages, 157
functions, 25–26, 157–167, 287

anonymous, 25, 159–160, 167
as method parameters, 14, 159
binary, 162, 184
calling, 8–9, 158
converting to Java interfaces, 164
curried, 164–167, 328
exiting immediately, 25
for all elements of a collection, 161
from methods, 288
generic, 266, 269
higher-order, 160–162
identity, 333
implementing, 265
left-recursive, 310
mapping, 182–183
names of, 14, 142, 324

Index346

ptg20087099

nested, 23
parameterless, 166–167
parameters of, 25

call-by-name, 167
default, 26
named, 26
other functions as, 160
type deduction in, 160
variable, 26–27

partial, 183, 211–212, 313
passing to another function, 159–160, 163
recursive, 25–27
return type of, 5, 25, 28
return value of, 166–167
scope of, 163
single-argument, 161, 272
storing in variables, 157–159
syntax of, 146–147
variance of, 272
vs. variables, in parsers, 313

future method (Promise), 259
Future companion object, 256–258

apply method, 253, 260
find, firstCompletedOf methods, 257–258
foldLeft, reduceLeft, traverse methods, 257
fromTry, never, successful, unit methods, 258

Future interface (Java), 249
Future trait, 248–260

andThen, collect methods, 256
failed, fallbackTo method, 255–256
filter method, 256
flatMap method, 254
foreach method, 255–256
isCompleted method, 250
map method, 253–254
onComplete, onSuccess, onFailure methods, 252
ready, result methods, 250
recover, recoverWith methods, 255–256
transform, transformWith methods, 256
value method, 250
zip, zipWith methods, 255

futures
blocking waits for, 251
chaining, 253
delaying creation of, 254
execution context of, 260
tasks of:

composing, 252–255
failing, 250
running, 248–249

transformations of, 255–256
vs. promises, 259

G
generators, 24–25
generic arrays, 269
generic classes, 266

conditionally used methods in, 270
generic functions, 266, 269
generic methods, 266
generic types

erased, in JVM, 269
variance of, 271–275

GenTraversable trait, 211
GenXxx sequences, 14
get method (Try), 251
get, getOrElse methods (Map), 48, 210, 232
getLines method (Source), 109, 190
@getter annotation, 219
getXxx methods, 57, 61, 221
grammars, 304–305

left-recursive, 314
Group type, 235
groupBy method, 183
grouped method

of Iterable, 181, 188
of Iterator, 189

guard combinator, 313
guards, 24–25, 38, 199

for pattern matching, 238
in for statements, 204, 254
variables in, 199

H
hash codes, 100, 103
hash sets, 177
hash tables, 47, 50
hashCode method, 177

of AnyRef, 103
of case classes, 205, 208–209
of value classes, 104
overriding, 103

Hashing type, 332
Haskell programming language, 26, 331
hasNext method

of Iterable, 188
of Iterator, 127

head method, 110
of Iterable, 180, 188
of lists, 175–176

headOption method (Iterable), 180
Hindley-Milner algorithm, 26
HTTP (Hypertext Transfer Protocol), 111, 303

347Index

ptg20087099

I
id method, 76
@Id annotation, 219
ident method, 317
Identifier type, 317
identifiers, 142, 317
identity functions, 333
IEEE double values, 219
if expression, in loop generators, 24, 38
if/else expression, 18–19, 30
IllegalStateException, 259
immutability, 7
implements keyword, 123
implicit conversions, 42–43, 141, 323–336

ambiguous or multiple, 327
debugging, 326
for parsers, 316
for strings to ProcessBuilder objects, 114
for type parameters, 268
importing, 325–326, 330
naming, 324
rules for, 326–327
unwanted, 191, 324, 326
uses of, 324–325

implicit evidence parameter, 270
implicit keyword, 324, 328–329
implicit parameters, 9, 14, 268, 299, 328–336

not available, 226, 334
of common types, 328

implicit values, 268–269
@implicitAmbiguous annotation, 226
implicitly method (Predef), 330, 333
@implicitNotFound annotation, 226, 334
:implicits in REPL, 326
import statement, 76, 80, 85–87

implicit, 86–87
location of, 85
overriding, 86
selectors for, 86
wildcards in, 8, 85–86

increments, 7
IndexedSeq companion object, 336
IndexedSeq trait, 172, 174–175, 336
indexXxx methods

of Iterator, 189
of Seq, 181

infix notation
for operators, 143–145

precedence of, 285
for types, 285–287
in case clauses, 206–207

in math, 285
with anonymous functions, 159

inheritance, 91–105
diamond, 122–123
hierarchy of, 100–102
multiple, 121–123

init method (Iterable), 180
@inline annotation, 224
inlining, 224
InputStream class (Java), 239
Int type, 5, 268, 270

immutability of, 7
no null value in, 100
reading, 22

int2Fraction method, 325
Integer class (Java), 225
interfaces

fluent, 280–281
rich, 127

interpolated strings. See formatted strings
InterruptedException, 251
intersect method

of Iterator, 189
of Seq, 182
of sets, 177
of StringOps, 6

intersection types. See compound types
intertwining classes and constructors, 94–95
into combinator, 311–312
isCompleted method

of Future, 250
of Promise, 259

isDefinedAt method (PartialFunction), 211
isEmpty method

of Iterable, 180
of Iterator, 189

isInstanceOf method (Any), 93, 100, 200
isSuccess, isFailure methods (Try), 251
IsTraversableXxx type classes, 332
istream::peek function (C++), 110
itemStateChanged method (listeners), 293
Iterable trait, 41, 172, 296–299

methods of, 180–182, 188, 273
iterableAsScalaIterable function (JavaConversions),

192
iterator method (collections), 188
Iterator trait, 127, 172

methods of, 189
iterators, 110, 188–189

constructing streams from, 190
fragility of, 189
turning into arrays, 116

Index348

ptg20087099

J
Java programming language

?: operator in, 18
annotations in, 216–221
arrays in, 36, 43, 173, 273
assertions in, 225
assignments in, 21
checked exceptions in, 29, 220
classes in, 91–92

hierarchy of, 67
serializable, 113

closures in, 163
collections in, 172
completable futures in, 260
construction order in, 100
dependencies in, 290
event handling in, 293
expressions in, 17
fields in:

protected, 94
public, 56

functional (SAM) interfaces in, 164
futures in, 249
generic types in, 275
hashCode method for each object in, 177
identifiers in, 142
interfaces in, 121–124, 135, 137
interoperating with Scala:

arrays, 43–44
classes, 57, 95, 216
collections, 191–192
maps, 50–51, 204
methods, 221
traits, 135, 137

lambda expressions in, 164
linked lists in, 173, 176
loops in, 22, 38
maps in, 173
methods in, 72, 92, 94

abstract, 97
overriding, 99
static, 9, 25
with variable arguments, 27

missing values in, 270
modifiers in, 219
no multiple inheritance in, 121
no operator overloading in, 8
no variance in, 226
null value in, 100
operators in, 145
packages in, 80, 82, 84

primitive types in, 36, 100
reading files in, 110–112
singleton objects in, 72
statements in, 17–20
superclass constructors in, 95
switch in, 223
synchronized in, 100
toString method in, 41
traversing directories in, 112–113
type checks and casts in, 93
void in, 18, 20, 102
wildcards in, 85, 275, 286

Java AWT library, 137
Java EE (Java Platform, Enterprise Edition),

216
java.awt.Component, java.awt.Container classes,

137
java.io.BufferedInputStream class, 138
java.io.FileInputStream class, 112
java.io.InputStream class, 239
java.io.PrintWriter class, 112
java.io.Reader class, 239
java.io.Serializable interface, 124
java.io.Writer class, 241
java.lang package, 86–87
java.lang.Cloneable interface, 124, 220
java.lang.Comparable interface, 42
java.lang.Integer class, 225
java.lang.Object class, 100
java.lang.ProcessBuilder class, 44
java.lang.String class, 6, 36
java.lang.Throwable class, 29
java.math.BigXxx classes, 6
java.nio.file.Files class, 112–113
java.rmi.Remote interface, 220
java.util package, 192
java.util.ArrayList class, 36, 43, 173
java.util.Arrays class, 43
java.util.Comparator class, 226
java.util.concurrent.CompletableFuture class, 260
java.util.concurrent.CompletionStage interface,

249
java.util.concurrent.Executor interface, 248
java.util.concurrent.Executors class, 260
java.util.concurrent.Future interface, 249
java.util.LinkedList class, 173
java.util.List interface, 43, 173
java.util.Properties class, 51, 204
java.util.RandomAccess interface, 173
java.util.Scanner class, 53, 111
JavaBeans, 61–62, 221

property change listeners in, 137

349Index

ptg20087099

JavaConversions class, 43, 51, 191–192
Javadoc, 10
javap command, 58
JavaScript, 235

closures in, 163
duck typing in, 284
translating from Scala, 10

JavaTokenParsers trait, 316
JButton, JComponent classes (Swing), 137
JDK (Java Development Kit), source code for,

212
JSON (JavaScript Object Notation), 303
jump tables, 223
JUnit framework, 216–217
JVM (Java Virtual Machine)

arrays in, 36
classes in, 129
generic types in, 269
inlining in, 224
stack size of, 222
transient/volatile fields in, 219

K
Kernighan & Ritchie brace style, 20
keySet method (Map), 50
Keyword type, 317

L
last, lastOption methods (Iterable), 180
lastIndexOf, lastIndexOfSlice methods

of Iterator, 189
of Seq, 181

lazy keyword, 28–29, 133
length method

of Iterable, 180
of Iterator, 189

lexical analysis, 304
li element (XML), 233–234
lines

iterating over, 110
reading, 109

linked hash sets, 177
LinkedHashMap class, 50
LinkedList class (deprecated), 176
LinkedList class (Java), 173
List class, 296, 306

immutable, 174
implemented with case classes, 208

List interface (Java), 43, 173
list method (java.nio.file.Files), 112

ListBuffer class, 175
lists, 175–176

adding/removing elements of, 178–179
constructing, 146, 175
destructuring, 176, 207
empty, 101
heterogeneous, 213
immutable, 189, 274
linked, 172
pattern matching for, 201–202, 206
traversing, 176
vs. arrays, 172

literals. See XML literals
loadFile method (XML), 239
log combinator, 311, 313
log messages

adding timestamp to, 125
printing, 313
truncating, 125, 130
types of, 127

LoggedException trait, 135, 288–289
Logger trait, 128
Long type, 5

reading, 22
loops, 22–25

breaking out of, 23
for collections, 23
variables within, 24
vs. folding, 186

M
main method, 74
makeURL function, 234
ManagedException trait, 289
map method, 39, 161, 210

of Future, 253–254
of Iterable, 180–184, 297–298
of Iterator, 189
of Try, 255

Map trait, 48, 172
get, getOrElse methods, 48, 210, 232
immutable, 174
keySet, values methods, 50

mapAsXxxMap functions (JavaConversions), 51,
192

maps, 47–52
blank, 48
constructing, 48

from collection of pairs, 52
function call syntax for, 146
interoperating with Java, 50–51

Index350

ptg20087099

iterating over, 50
keys of:

checking, 48
removing, 49
visiting in insertion order, 50

mutable/immutable, 48–49, 173
reversing, 50
sorted, 50
traversing, 204
updating values of, 49
values of, 48

match expression, 198–210, 224, 271
annotated, 223
processing Try instances with, 251

Match class, 117
MatchError, 198
Math class, 8
mathematical functions, 8, 14
max method, 42

of ArrayBuffer, 40
of Iterable, 180
of Iterator, 189

maximum munch rule, 317
MessageFormat.format method (Java), 27
MetaData type, 232–233, 238
method types (in compiler), 288
methods

abstract, 95–98, 123, 127, 135
abundance of, 10, 14
accessor, 56
annotated, 216
as arithmetic operators, 6
calling, 3, 5, 8–9, 56–57, 59, 126
chained, 280
clashes of, in sub- and superclasses,

92
co-/contravariant, 333
curried, 165, 271
declaring, 56
executed lazily, 189
final, 92, 103, 223
for primary constructor parameters,

65
generic, 266
getter/setter, 56–60, 98, 216, 221
inlining, 224
modifiers for, 84
mutator, 56
names of, 7

misspelled, 92
overriding, 91–93, 95–96, 127
parallelized, 193

parameterless, 8, 56, 95
parameters of, 266, 273, 280

implicit, 14, 268
using functions for, 14, 159
wrong type, 92

private, 59, 223
protected, 94
public, 57
return type of, 273, 280
return value of, 266
static, 71
turning into functions, 158, 288
used under certain conditions, 270
variable-argument, 27, 221
with two parameters, 7

Meyer, Bertrand, 58
min method

of ArrayBuffer, 40
of Iterable, 180
of Iterator, 189
of scala.math, 8

mkString method
of Array, ArrayBuffer, 40
of Iterable, 181
of Iterator, 189
of Source, 110–111

ML programming language, 26
mulBy function, 160, 163
multiple inheritance, 121–123
MutableList class (deprecated), 176
mutableXxxAsJavaXxx functions (JavaConversions),

192

N
NamespaceBinding class, 242
namespaces, 242–243
@native annotation, 219
negation operator, 14
never method (Future), 258
new keyword, 66–67

and nested expressions, 74
constructing objects without, 146
omitting, 205, 207–208

newline character
in long statements, 20
in printed values, 21
inside loops, 25

next method
of Iterable, 188
of Iterator, 127

Nil list, 101, 175–176, 226

351Index

ptg20087099

node sequences, 230
binding variables to, 237
building programmatically, 231
descendants of, 236
grouping, 235
immutability of, 232, 238
in embedded blocks, 234
traversing, 231
turning into strings, 232

Node type, 230–232
NodeBuffer class, 231–232
NodeSeq type, 230–232

XPath-like expressions in, 235–236
@noinline annotation, 224
None object, 210, 306–307
nonterminal symbols, 305
NoSuchElementException, 254
not combinator, 313
Nothing type, 30, 100, 271, 274
notify, notifyAll methods (AnyRef), 100
NotImplementedError, 101
@NotNull annotation, 218
Null type, 100, 238
null value, 100, 270
NumberFormatException, 111, 251
numbers

average value of, 332
classes for, 14
converting:

between numeric types, 6, 10
to arrays, 111

greatest common divisor of, 153
in identifiers, 317
invoking methods on, 5
parsing, 312, 317
random, 9
ranges of, 14
reading, 22, 111
sums of, 40

Numeric type, 331
numericLit method, NumericLit type, 317

O
Object class, 100
Object class (Java), 100
object keyword, 71–77, 281
objects, 71–77

adding traits to, 125
cloneable, 220
companion, 9, 67, 72–73, 146, 173, 281, 325,

328, 335

compound, 208
constructing, 10, 56, 72, 125
default methods for, 177
equality of, 102–103
extending class or trait, 73
extracting values from, 202
importing members of, 76, 85
nested, 207
nested classes in, 66–68, 281
no type parameters for, 274
of a given class, testing for, 93–94
pattern matching for, 200
remote, 220
scope of, 282
serializing, 113, 284
type aliases in, 283
variance of, 272

ofDim method (Array), 42
onComplete, onSuccess, onFailure methods (Future),

252
operators, 141–149

arithmetic, 6–8
assignment, 144–146
associativity of, 145, 194
binary, 143–146
for adding/removing elements, 178–179
infix, 143, 145
overloading, 8
parsing, 317
postfix, 143–145
precedence of, 144–145, 285, 307
unary, 143–144

opt method (Parsers), 305–306
optimization, 222–226
Option class, 48, 116, 147, 149, 180, 210, 233, 235,

306–307
orNull method, 270
using with for, 210

Ordered trait, 40, 42, 329–330
Ordering type, 42, 329–332
OSGi (Open Services Gateway initiative

framework), 290
OutOfMemoryError, 190
override keyword, 92–93, 95–96, 123, 127

omitted, 97–98
@Overrides annotation, 92

P
package objects, 8, 83–84
packages, 80–87

adding items to, 80

Index352

ptg20087099

chained, 82–83
defined in multiple files, 80
importing, 8, 85–87

always, 86–87
selected members of, 86

modifiers for, 84
naming, 82, 87
nested, 81–82
scope of, 282
top-of-file notation for, 83

packrat parsers, 314–315
PackratParsers trait, 314
PackratReader class, 315
padTo method

of Iterator, 189
of Seq, 182

Pair class, 275
par method (parallel collections), 193
parallel implementations, 193
@param annotation, 219
parameters

annotated, 216
curried, 271
deprecated, 226
implicit, 9, 14, 299
named, 205

ParMap trait, 193
parse method, 306
parse trees, 308–309
parseAll method, 306, 313, 315, 318–319
ParSeq trait, 193
parsers, 303–319

backtracking in, 313–314
combining operations in, 305–307
entity map of, 241
error handling in, 319
implicit conversions for, 316
numbers in, 312
output of, 307–308
packrat, 314–315
regex, 316, 319
skipping comments in, 316
strings in, 312
whitespace in, 316

Parsers trait, 305, 315–319
ParSet trait, 193
partial functions, 183, 211–212
PartialFunction class, 211–212
partition method

of Iterable, 180
of Iterator, 189
of StringOps, 52

Pascal programming language, 153
paths, 282–283
pattern matching, 197–211

and +: operator, 179
by type, 200–201
classes for. See case classes
extractors in, 147
failed, 147
for arrays, 201
for lists, 176, 201–202, 206
for maps, 50
for objects, 200
for tuples, 52, 201–202
guards in, 199, 238
in for expressions, 204
in variable declarations, 203–204
in XML, 237–238
jump tables for, 223
not exhaustive, 226
of nested structures, 207
regular expressions in, 203
variables in, 199–200
vs. type checks and casts, 93–94
with extractors, 202
with Option type, 210
with partial functions, 211–212

PCData type, 235
permutations method

of Iterator, 189
of Seq, 182

phrase combinator, 313
piping, 114
Play web framework, 249
Point class, 332
polymorphism, 208
Positional trait, 313, 319
positioned combinator, 313, 319
postfix operators, 143–145

in parsers, 308
pow method (scala.math), 8, 153
Predef object

always imported, 86–87, 93, 174
assert method, 225
classOf method, 93
implicitly method, 330, 333
implicits in, 329–333

prefixedKey method, 243
prefixLength method

of Iterator, 189
of Seq, 181

PrettyPrinter class, 242
primitive types, 5, 36, 225

353Index

ptg20087099

print function, 21, 111
printf function, 21, 112
println function, 21
PrintStream.printf method (Java), 27
PrintWriter class (Java), 112
PriorityQueue class, 175
private keyword, 57–68, 84
probablePrime method (BigInt), 9
procedures, 28
process control, 114–115
Process object, 115
ProcessBuilder class (Java), 44

constructing, 115
implicit conversions to, 114

processing instructions, 231
product method

of Iterable, 180
of Iterator, 189

programs
concurrent, 193
displaying elapsed time for, 75
implicit imports in, 86–87
piping, 114
readability of, 8
self-documenting, 296

Promise trait, 258–260
promises, 258–260
properties, 57

in Java. See bean properties
read-only, 59
write-only (not possible), 60

Properties class (Java), 51, 204
propertiesAsScalaMap function (JavaConversions), 51,

192
propertiesAsScalaMap method (JavaConversions), 204
property change listeners, 137
protected keyword, 84, 94
public keyword, 56, 84
PushbackInputStreamReader class (Java), 110
Python programming languages, closures in,

163

Q
Queue class, 174–175
quickSort method (Array), 40

R
r method (String), 116–117
Random object, 9
RandomAccess interface (Java), 173

Range class, 5, 14, 297–298, 336
immutable, 174–175
traversing, 23

raw prefix, in formatted strings, 22
raw string syntax, 116
readBoolean, readByte, readChar, readFloat, readLine,

readShort methods (scala.io.StdIn), 22
readDouble, readInt, readLong methods

(scala.io.StdIn), 22, 111
Reader class (Java), 239, 315
ready, result methods (Await), 250
recover, recoverWith methods (Future), 255–256
recursions, 174

for lists, 176
left, 310–311
tail, 223

reduce method
of Iterable, 180
of Iterator, 189
of parallel collections, 193

reduceLeft method, 162, 184
of Future object, 257
of Iterable, 180
of Iterator, 189
of parallel collections, 193

reduceRight method, 184
of Iterable, 180
of Iterator, 189
of parallel collections, 193

reference types
== operator for, 103
assigning null to, 100

reflective calls, 284
Regex class, 116–117

replaceXxxIn methods, 116, 211
RegexParsers trait, 305, 315–316, 319
regular expressions, 116–117

for extractors, 203
grouping, 117–118
in parsers, 316
matching tokens against, 305
raw string syntax in, 116
return value of, 306

Remote interface (Java), 220
@remote annotation, 220
rep method (Parsers), 305–306, 311–312
REPL (read-eval-print loop), 3–4

implicits in, 326, 333
nearsightedness of, 19
paste mode in, 19, 73
types in, 158, 283

replaceXxxIn methods (Regex), 116, 211

Index354

ptg20087099

repXxx methods (Parsers), 312
result method, 223
return keyword, 25, 167
reverse method

of Iterator, 189
of Seq, 182

RewriteRule class, 239
rich interfaces, 127
RichChar class, 6
RichDouble class, 6, 14
RichFile class, 325
RichInt class, 6, 14, 22, 268
root prefix, in package names, 82
Ruby programming language

closures in, 163
duck typing in, 284

RuleTransformer class, 239

S
s prefix, in formatted strings, 22
SAM (single abstract method) conversions, 163
save method (XML), 241
SAX parser, 239
scala package, always imported, 82, 86–87, 113,

174
Scala programming language

embedded languages in, 141, 303
interoperating with shell programs, 114
interpreter of, 1–4
older versions of, 75
strongly typed, 150
translating to JavaScript, 10

scala/bin directory, 1
scala. prefix, in package names, 8, 87
scala.collection package, 173, 192
Scala.js project, 10
scala.language.existentials, importing, 287
scala.language.higherKinds, importing, 299
scala.language.implicitConversions, importing,

324
scala.math package, 8, 14

ceil method, 158
scala.sys.process package, 114
scala.util package, 9
scala-ARM library, 31
scalac program. See compiler
Scaladoc, 6, 10–15, 41–42, 221
ScalaObject interface, 100
scanLeft, scanRight methods, 186
Scanner class (Java), 53, 111
sealed keyword, 209

segmentLength method
of Iterator, 189
of Seq, 181

selectDynamic method (Dynamic), 151–152
selectors, for imports, 86
self types, 68, 134–135, 288–295

dependency injections in, 290–291
no automatic inheritance for, 289
structural types in, 135
typesafe, 294
vs. traits with supertypes, 135

Seq trait, 27, 41, 172–175, 235
methods of, 181–182

seq method (parallel collections), 193
Seq[Char] class, 14
Seq[Node] class, 231–232
seqAsJavaList function (JavaConversions), 192
sequences, 14

adding/removing elements of, 179
as function parameters, 27
comparing, 165, 271
extracting values from, 149–150
filtering, 162
integer, 175
mutable/immutable, 174–175
of characters, 14
reversing, 182
sorting, 162, 182
with fast random access, 175

Serializable interface (Java), 124
Serializable trait, 113
serialization, 113
@SerialVersionUID annotation, 113, 220
Set trait, 172

immutable, 174
setAsJavaSet function (JavaConversions), 192
sets, 177

difference, intersection, union operations on,
177–178

elements of, 177–179
@setter annotation, 219
setXxx methods, 57, 61, 221
shadowing rule, 24
shell scripts, 114–115
Short type, 5

reading, 22
singleton objects, 8–9, 71–72, 281

case objects for, 205
singleton types, 280–281, 283, 287
slice, span, splitAt methods

of Iterable, 180
of Iterator, 189

355Index

ptg20087099

sliding method
of Iterable, 181, 188
of Iterator, 189

SmallTalk programming language, 60
Some class, 210, 306–307
sortBy method

of Iterator, 189
of Seq, 182

sorted method
of ArrayBuffer, 40
of Iterator, 189
of Seq, 182
of StringOps, 8, 14

sorted sets, 177
SortedMap trait, 50, 172
SortedSet trait, 172
sortWith method, 162

of ArrayBuffer, 40
of Iterator, 189
of Seq, 182

Source object, 109–111
buffered, close, toArray, toBuffer methods, 110
fromString, fromURL methods, 111
getLines method, 109, 190
mkString method, 110–111

@specialized annotation, 225–226
Spring framework, 290
sqrt method (scala.math), 8
src.zip file (JDK), 212
Stack class, 174–175
stack overflow, 222
standard input, 111
StandardTokenParsers class, 317
start symbol, 305–306
startsWith method

of Iterator, 189
of Seq, 181

stateChanged method (listeners), 293
statements

line breaks in, 20
terminating, 19–20
vs. expressions, 17

stdin method, 111
StdIn object, 22, 111
StdLexical trait, 318
StdTokenParsers trait, 315, 318
StdTokens trait, 317
Stream class, 174
streams, 189–190
@strictfp annotation, 219
String class, 116–117
String class (Java), 6, 36

string interpolation, 21
stringLit method, StringLit type, 317
StringOps class, 6, 14, 52

apply method, 9
containsSlice method, 14
sorted method, 8, 14

strings, 6
characters in:

common, 6
uppercase, 14

classes for, 14
converting:

from any objects, 6
to numbers, 10, 111
to ProcessBuilder objects, 114

formatted, 21–22, 112
parsing, 312, 317
sorting, 8
testing for sequences in, 14
traversing, 23
vs. symbols, 226

structural types, 97, 135, 283–284
adding to compound types, 285

subclasses
anonymous, 97
concrete, 98
early definitions in, 99
equality in, 103
implementing abstract methods in, 123
mixing traits into, 288–289

subsetOf method (BitSet), 177
Success class, 251, 315
success combinator, 313
success method (Promise), 259
successful method (Future), 258
sum method

of ArrayBuffer, 40
of Iterable, 180
of Iterator, 189

super keyword, 92–93, 126
super keyword (Java), 95
superclasses, 133–134

abstract fields in, 98
constructing, 94–95
extending, 137
methods of:

abstract, 97
clashing with subclass methods, 92
overriding, 96

no multiple inheritance of, 121, 124, 129
scope of, 282
sealed, 209

Index356

ptg20087099

supertypes, 18, 42, 102
Swing toolkit, 137–138
switch statement, 19, 198
@switch annotation, 223–224
symbols, 226
synchronized method (AnyRef), 100
syntactic sugar, 275, 286

T
tab completion, 3
tail method

of Iterable, 180
of lists, 175–176

TailCalls, TailRec objects, 223
@tailrec annotation, 222
take, takeWhile methods

of Iterable, 180
of Iterator, 189

takeRight method (Iterable), 180
@Test annotation, 217
Text class, 233

pattern matching for, 237
text method, 232
this keyword, 42, 62, 65, 134–135, 280, 288–289,

295
aliases for, 68, 289
scope of, 282
with private, 59
with protected, 94

thread pool, 248
threads

assigning tasks to, 248
blocking, 250–251

throw expression, 30
Throwable class (Java), 29
@throws annotation, 220
to method (RichInt), 6, 22, 175
toArray method

of ArrayBuffer, 37
of Iterable, 181
of Iterator, 189
of Source, 110

toBuffer method
of Array, 37
of Source, 110

toChar method, 6
toIndexedSeq, toIterable methods

of Iterable, 181
of Iterator, 189

toInt, toDouble methods, 6, 111
token method (StdLexical), 318

Token type, 315
tokens, 304

discarding, 308–309
matching against regular expressions, 305

Tokens trait, 317
toList, toStream methods

of Iterable, 181
of Iterator, 189

toMap method, 52, 173
of Iterable, 181
of Iterator, 189

toSeq, toSet methods, 173
of Iterable, 181
of Iterator, 189

toString method, 6, 41, 76, 233
of case classes, 205, 208–209

trait keyword, 123, 287
traits, 123–137, 287

abstract types in, 291
adding to objects, 125
construction order of, 126–127, 130–132
dependency injections in, 135, 290–291
extending, 73

classes, 133–134
superclass, 137

fields in:
abstract, 130, 132
concrete, 128–129

for collections, 172–173
for rich interfaces, 127
implementing, 124, 269
layered, 125–126
methods of, 124–126, 135

overriding, 127
unimplemented, 123

mixing into classes, 288–289
no constructor parameters in, 132–133
self types in, 134–135
type parameters in, 266
universal, 104
vs. classes, 132
vs. Java interfaces, 121–124, 135
vs. structural types, 284

trampolining, 223
transform method

of ArrayBuffer, 183
of RewriteRule, 239

transform, transformWith methods (Future), 256
@transient annotation, 219
Traversable, TraversableOnce traits, 41
TraversableLike trait, 334
traverse method (Future), 257

357Index

ptg20087099

trimEnd method, 36
Try class, 31, 251

flatMap, map methods, 255
get method, 251
isSuccess, isFailure methods, 251

try statement, 30–31
exceptions in, 167

trySuccess method (Promise), 259
tuples, 47, 51–52, 287

accessing components of, 51
converting to maps, 52
pattern matching for, 201–202
zipping, 52

type classes, 331–333
type constraints, 269–271, 333
type constructors, 296–299
type errors, 150, 273
type inference, 270
type keyword, 280–281, 283, 287
type parameters, 14, 97, 265–275, 287,

328
annotated, 217, 225
context bounds of, 329–330
implicit conversions for, 268
not possible for objects, 274
structural, 283–284
vs. abstract types, 292

type projections, 67, 281–283, 287
in forSome blocks, 286

type variables, bounds for, 266–269
TypeAnnotation trait, 218
types, 5–6, 279–299

abstract, 283, 291–293, 315
aliases for, 174, 283
annotated, 217
anonymous, 98
checking, 93–94
compound, 284–287
converting, 6, 270
dynamic, 150
equality of, 270
existential, 287
generic, 269, 271–275
implementing multiple traits, 269
infix, 285–287
invariant, 272
naming, 296
pattern matching by, 200–201
primitive, 5, 36, 225
self, 134–135, 288–295
structural, 135, 285
subtypes of, 270

supertypes of, 18, 102
wrapper, 6

U
ul element (XML), 233–234
unapply method, 147–150, 202, 206–207

of case classes, 205
unapplySeq method, 149–150, 202
unary operators, 143–144
unary_- method (BigInt), 14
unary_op methods, 143
@unchecked annotation, 218, 226
@uncheckedVariance annotation, 226
Unicode characters, 142
uniform access principle, 58
uniform creation principle, 173
uniform return type principle, 182
union method (sets), 177
Unit class, 28, 100, 102

value of, 18–21
unit method (Future), 258
universal traits, 104
Unparsed type, 235
until method, 175
until statement, 166
update method, 146–147
updateDynamic method (Dynamic), 151–152
URIs (Uniform Resource Identifiers),

242
URLs (Uniform Resource Locators)

loading files from, 239
reading from, 111
redirecting input from, 115

V
val fields, 4

declarations of, 4–5
early definitions of, 99
final, 99
generated methods for, 59, 61–62, 65
in forSome blocks, 286
in parsers, 314
initializing, 5, 20, 28–29
lazy, 28–29, 99, 133, 314
overriding, 95–96, 98
private, 62
scope of, 282
specifying type of, 5
storing functions in, 157–159

value classes, 103–105, 208

Index358

ptg20087099

Value method (enumerations), 75–76
value method (Future), 250
valueAtOneQuarter function, 160
values

binding to variables, 207
naming, 200
printing, 21

values method (Map), 50
van der Linden, Peter, 198
var fields, 4

annotated, 216
declarations of, 4–5

extractors in, 147
pattern matching in, 203–204

generated methods for, 61–62, 65
initializing, 5
no path elements in, 282
overriding, 96
private, 62
specifying type of, 5, 266
updating, 49
vs. function calls, in parsers, 313

@varargs annotation, 221
variables

binding to:
node sequences, 237
values, 207

declaring as Java SAM interfaces, 164
in case clauses, 199–200
naming, 142, 200
within loops, 24

variance, 226
Vector class, 174–175
vector type (C++), 36
view bounds, 268
view method, 190–191
void keyword (C++, Java), 18, 20, 102
@volatile annotation, 219

W
wait method (AnyRef), 100
walk method (java.nio.file.Files), 112
walkFileTree method (Java), 112–113
warnings, 226
while loop, 22, 166
whitespace

in lexical analysis, 304
parsing, 240, 316–317

wildcards, 275
for XML elements, 236
in catch statements, 30

in imports, 8, 85–86
in Java, 85, 286

with keyword, 99, 124–125, 284–287
wrapper types, 6
write method (XML), 241
Writer class (Java), 241

X
XHTML (Extensible Hypertext Markup

Language), 235
XhtmlParser class, 241
XML (Extensible Markup Language), 229–243

attributes in, 232–235, 238
character references in, 232
comments in, 231
elements in, 238, 242
entity references in, 231–232, 241
including non-XML text into, 235
indentation in, 242
loading, 239
malformed, 235
namespaces in, 242–243
nodes in, 230–232
processing instructions in, 231
saving, 233, 241–242
self-closing tags in, 242
transforming, 239

XML declarations, 241
XML literals

braces in, 234
defining, 230
embedded expressions in, 233–234
entity references in, 232
in nested Scala code, 233
in pattern matching, 237–238

XPath (XML Path language), 235–236

Y
yield keyword

as Java method, 142
in loops, 24, 38–39

Z
zip method, 52, 181, 187–189
zip, zipWith methods (Future), 255
zipAll, zipWithIndex methods, 187

of Iterable, 181
of Iterator, 189

zipping, 187–188

359Index

ptg20087099

This page intentionally left blank

ptg20087099

ptg20087099

