Spring Security
Essentials

A fast-paced guide for securing your Spring applications
effectively with the Spring Security framework

PACKT

http://www.allitebooks.org

Spring Security Essentials

A fast-paced guide for securing your Spring applications
effectively with the Spring Security framework

Nanda Nachimuthu

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

[vww allitebooks.cond

http://www.allitebooks.org

Spring Security Essentials

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2016
Production reference: 1060116

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78528-262-1

www . packtpub. com

[FM-2]

[vww allitebooks.cond

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Nanda Nachimuthu

Reviewer
Vinoth Kumar Purushothaman

Commissioning Editor
Dipika Gaonkar

Acquisition Editor
Kevin Colaco

Content Development Editor
Preeti Singh

Technical Editor
Pranil Pathare

Copy Editor
Vibha Shukla

[FM-3]

Project Coordinator
Shweta H Birwatkar

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

[vww allitebooks.cond

http://www.allitebooks.org

About the Author

Nanda Nachimuthu works as a principal architect with Emirates Airlines, Dubai.
He grew up in a joint family set up and holds an engineering degree from Tamil
Nadu Agricultural University and an advanced Internet programming certification
from IIT Kharagpur.

He has 18 years of experience in IT, which includes 12 years as an architect in
various technologies such as J2EE, SOA, ESB, Cloud, big data, and mobility. He
has designed, architected, and delivered many national and large-scale commercial
projects. He is also involved in design and development of various products in the
insurance, finance, logistics, and life sciences domains.

His hobbies include travelling, painting, and literature. He is also involved in various
pro bono consulting activities, where he finds a way to utilize his extra time and
innovative ideas in order to become practical and useful for the society. He is the
founder of JCOE. in, a portal that deals with the Java Center of Excellence (CoE)
activities, which is useful for the Java community and companies.

First, would like to thank my wife Rathi for pushing me to man

up and complete the book. Next, I would like to thank my mom
Maruthayee for her blessings, encouragement, and moral support.
cannot simply forget the cooperation of my daughter Shravanthi and
son Shashank, who have always played and fought with me since
the inception of this book, which turned out to be a great help for me
to reduce some stress.

[FM-4]

[vww allitebooks.cond

http://www.allitebooks.org

About the Reviewer

Vinoth Kumar Purushothaman, a graduate from University of Madras,
specializes in architecture design. He has 18 years of experience in design and
development of large-scale applications in banking, telecommunication, automobile,
e-commerce, and life sciences using Java, J2EE, service-oriented architecture
framework components and big data.

[FM-5]

[vww allitebooks.cond

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers,
and more

For support files and downloads related to your book, please visit www . PacktPub . com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www . Packt Pub . com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub . com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

[a]PACKT

https://www2.packtpub.com/books/subscription/packtlib

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print, and bookmark content

¢ On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www . Packt Pub . com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

[FM-6]

[vww allitebooks.cond

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

Table of Contents

Preface \
Chapter 1: Getting Started with Spring Security 1
Spring custom user realms 3
Spring custom authorization constraints 3
Spring method-based authorization 4
Spring instance-based authorization 4
Spring Security with SOAP web services 5
Spring Security with RESTful web services 5
Spring Security with JSF2.0 6
Spring Security with Wicket 6
Spring Security with JAAS 6
Spring Security with SAML 6
Spring Security with LDAP 7
Summary 7
Chapter 2: Spring Security with SAML 9
The basics and structure of SAML 2.0 10
SAML 2.0 assertions 1"
SAML 2.0 protocols 12
SAML 2.0 bindings 13
Maven Recap 14
Gradle Recap 17
Setting up Gradle with Eclipse 18
The Spring Tool Suite 19
Improving the samples 20
SAML open source implementations 21
The SAML 2.0 login flow 22
The SAML 2.0 logout flow 24
IDP selection and testing 25

[i]

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

The Spring Security SAML dependency 26
Spring Security with SAML classes 27
Spring Security SAML internals 28
Spring Security with SAML logout 29
LogoutRequest issued by SP to IDP 30
Summary 32
Chapter 3: Spring Security with LDAP 33
A quick overview of LDAP 33
LDAP implementations 35
ApacheDS 35
OpenLDAP 2.4.42 36
OpenDJ 36
The 389 Directory Server (previously Fedora Directory Server) 36
Apache Directory Server and Studio installation 37
Apache DS Studio features 42
Simple Java JNDI program to access LDAP 43
Spring LDAP Template — step by step 44
Simple LDAP search 45
Add, modify, and delete LDAP user 47
LDAP 1.3.1 features — Object Directory Mapping and LDIF parsing 48
Summary 50
Chapter 4: Spring Security with AOP 51
AOP basics 52
AOP terminologies 52
Simple AOP examples 53
AOP Alliance 60
Spring AOP using AspectJ Annotations 60
Securing Ul invocation using Aspects 66
Summary 72
Chapter 5: Spring Security with ACL 73
Spring ACL package and infrastructure classes 74
ACL implementation example and XML configuration for ACL 74
Summary 82
Chapter 6: Spring Security with JSF 83
Maven dependencies 84
Configuration files and entries 85
JSF form creation and integration 88
Spring Security implementation and execution 90
Summary 92

Lii]

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Chapter 7: Spring Security with Apache Wicket 93
Apache Wicket project with Spring Integration 94
The spring-security.xml setup 97
Execution of the Project 104
Summary 104
Chapter 8: Integrating Spring Security with SOAP
Web Services 105
Creating SOAP web service with security 106
Client creation to consume the web service 11
Executing the project 114
Summary 115
Chapter 9: Building a Security Layer for RESTful
Web Services 117
Creating a RESTful web service 118
Spring Security configurations 121
Executing the project 125
Summary 127
Chapter 10: Integrating Spring Security with JAAS 129
JAAS package basics 130
Spring Security JAAS package components 130
Spring JAAS configurations 131
Spring JAAS implementation 135
Executing the project 138
Summary 140
Index 141

[iii]

[vww allitebooks.cond

http://www.allitebooks.org

Preface

Spring Security Essentials focuses on the Spring Security framework. There are three
essential aspects to application security: authentication, authorization, and access
control list (ACL). We will be concentrating on these three aspects in this book.

This book will teach the readers the functionalities required to implement industry-
standard authentication and authorization mechanisms to secure enterprise-level
applications using the Spring Security framework. It will help the readers to explore
the Spring Security framework as a Java model and develop advanced techniques,
including custom user realms, custom authorization constraints, method-based
authorization, and instance-based authorization. It will also teach up-to-date use
cases, such as building a security layer for RESTful web services and applications.

Spring Security Essentials focuses on the need to master the security layer, which is
an area that is not often explored by a Spring developer. The IDEs that are used and
the security servers that are involved are briefly explained in the book, including
the steps to install them. Many sample projects are provided in order to help you
practice your newly developed skills. Step-by-step instructions are provided to help
you master the security layer integration with the server, and then implement the
experience gained from this book in your real-time application.

What this book covers

Chapter 1, Getting Started with Spring Security, explores the various flavors of Spring
Security implementations that are available in the Spring 4.0.3 framework, along
with the Spring 3.2.3 module. We dive into each of the options in detail with the
help of practical examples. I recommend you have a good understanding of the
application development environment (ADE) for various technologies that we will
address, such as LDAP, SAML, Wicket, and so on.

[v]

Preface

Chapter 2, Spring Security with SAML, covers the basics of the Spring 4.0 Web MVC
creation and build tools, such as Maven and Gradle, as a recap and practice session.
We create a web-based MVC project and explore the open source implementations of
SAML 2.0 that are available as Identity providers.

You will learn about Spring 4.0 SAML Extensions in order to implement single sign-on
and sign-off by connecting to the SSOCircle web-based authentication mechanism.

Chapter 3, Spring Security with LDAP, covers the basics of LDAP and the different
implementations available. It covers the features of Apache Directory Server and the
steps involved in installing ApacheDS and Studio with Spring Tool Suite. We will
create a directory and the values for different departments and users.

Chapter 4, Spring Security with AOP, explains the basic terminologies of
Aspect-Oriented Programming. We go through a few simple examples of Spring
AOP and Aspect]. The use of annotation is explained using samples and we will
implement AOP security for method-level and Ul Component creation. You can
extend the features and implementations that are described in this chapter in your
real-time applications in order to avoid the complexities that are involved in
cross-cutting concerns.

Chapter 5, Spring Security with ACL, introduces the basics of access control lists and
the available classes and interfaces in the Spring ACL package. We will see a few
working examples of the basic ACL implementation with various access privileges
for a given principal.

Chapter 6, Spring Security with JSF, covers the JSF basics and required Spring Security
configurations. We create a sample project from scratch and explain each artifact.

Chapter 7, Spring Security with Apache Wicket, starts with basic the Apache Wicket
application structure and a sample project. We cover the configurations that are
required from the Spring perspective and dependencies required in the Maven POM
file. We make the security credentials settings in the Spring Security file and execute
the sample application by entering different security credentials for different types of
user.

Chapter 8, Integrating Spring Security with SOAP Web Services, covers the basics of the
Spring Web Services package and the different types of SOAP Web service creation.
We execute and test the authentication of the SOAP message as well.

Chapter 9, Building a Security Layer for RESTful Web Services, starts with basics

of RESTful web services and their advantages. We develop a basic Spring
implementation to configure the Security credentials entry points and success
handlers. We also execute RESTful web services through the cURL command-line
utility to check Spring Security authentication in action.

[vi]

Preface

Chapter 10, Integrating Spring Security with JAAS, covers JAAS basics, Spring JAAS
Security package components and developing a Spring JAAS implementation project
and executing it.

What you need for this book

You need to have fair knowledge of Java, and knowing the basics of Spring is
recommended.

Who this book is for

If you are a developer who is familiar with Spring and are looking to explore its
security features, then this book is for you. All beginners and experienced users will
benefit from this book as it explores both the theory and practical use in detail.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: "In
these scenarios, we will have to set the security authorization constraints in a secured
way in the web . xm1 file."

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "The user
clicks on the Logout button and the instance executes the logout script."

% Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

[vii]

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http: //www.
packtpub. com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http: //www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from: https: //www.packtpub.
com/sites/default/files/downloads/26210S_ ColouredImages.pdf

[viii]

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/2621OS_ColouredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/2621OS_ColouredImages.pdf

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questionse@packtpub.com, and we will do our best to address the problem.

[ix]

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Getting Started with
Spring Security

When we talk about enterprise security, three major areas of security —authentication,
authorization, and access control list (ACL) — will play a major role. The Spring
Framework 4.0.3 has a seven-layered architecture that includes a core container,
context, Aspect-Oriented Programming (AOP), Data Access Object (DAO), Object-
relational mapping (ORM), Web, and Model-View-Controller (MVC). To provide
security features to all these layers, we have The Spring Security 3.2.3 module, which
will provide security facilities such as user authentication and authorization, role-
based authorization, database configuration, password encryption, and others.

In general, Spring developers focus on the seven layers to develop the web
applications, and most of them will not be able to master the security mechanisms
involved in different layers with different implementations as they might have to call
the abstract programs in which the security implementations are built.

Spring 3.2.3 supports various authentication approaches for different industry
standard connectivity for Java EE-based enterprise applications. Many people use
Spring Security in the layers of Java EE's Servlet Specification and Enterprise Java
Beans (EJB) Specification, which will limit the usage of proper Spring Security
implementations. Due to this, many enterprise security scenarios are left unattended.
Authentication is the process of creating a principal in the enterprise system for
which a user needs to provide credentials. The role-based access privileges will be
decided on a predefined role authorizer system from which the core system will
read the access rights for the given principal. The advanced techniques of the Spring
Security mechanisms are as follows:

* Custom user realms

e Custom authorization constraints

[11]

Getting Started with Spring Security

* Method-based authorization

* Instance-based authorization

* Building a security layer for RESTful web services
The following modules of Spring 3.2.3 support the implementation of enterprise
security:

* Spring Security Core

* Spring Security remoting

* Spring Security Web

* Spring Security configuration

* Spring Security LDAP

* Spring Security ACL

* Spring Security CAS

* Spring Security OpenlD
Additionally, we will cover specific techniques such as JavaServer Faces (JSF) 2.0,
Wicket, and Java Authentication and Authorization Service (JAAS). The following
are the new security features provided in Spring 4.0, which we will talk about later:

* Web socket support

* Test support

* Spring data integration

* Cross-Site Request Forgery (CSRF) token argument resolver

* Secure defaults
Most of these authentication levels are from third parties or developed by relevant
standard bodies such as Internet Engineering Task Force (IETF). Spring Security has
its own authentication features that will be useful to establish connections securely

with third-party request headers, protocols, and single sign-on systems. We will
have a detailed description of each system and mechanism in the following chapters.

[2]

Chapter 1

Spring custom user realms

Custom security realms facilitate you to use an existing data store such as a
directory server or database when authenticating and authorizing users to
enterprise applications, which are deployed in a standard application server, such
as WebSphere, JBoss, and so on. We will have to provide the attribute details to the
server to create the user realms such as the name, realm class name, configuration
data, and password. We can create a custom realm by providing a custom JAAS
login module class and custom realm class. However, when we use the client-side
JAAS login modules, this may not be suitable for use with the enterprise server.

There can be two different realms that cater to two different URL patterns. We can
use the same authentication logic for both the realms. The standard Spring Security
mechanism will invoke j_spring_security_check automatically when a login
form is getting called, and we can define our own URLs that are to be intercepted.
This approach is called browser-based client security realm. If the user has not been
provided with a username and password and if the principal is not created to access
this URL, then the user will be redirected to the login page by the Spring Security
checker.

Spring custom authorization constraints

There are many types of security constraints. This consists of web resource
collections such as URL patterns, HTTP methods, and authorization constraints by
providing role names. User data constraints such as web requests are passed over an
authenticated transport. A security constraint is used to define the access privileges
for a collection of resources using their URL mapping. The security token will be
given from an HTTPS request when it gets validated and will be given back to the
enterprise application server. There may be possibilities that the security token does
not return any valid roles for authorization.

In these scenarios, we will have to set the security authorization constraints in a
secured way in the web . xm1 file. The web resources can have unchecked access,
checked access, and no access. We can omit the authorization constraints so that
any web resource can access the resource. We can specify the role name for the
authorization constraint so that only these roles can access the web resource. We
can also exclude a set of web resources from accessing any request by specifying no
roles for these resources. We can also exclude particular URLs to access the specific
secured web resources.

[31]

Getting Started with Spring Security

Spring method-based authorization

Method security is a bit more complicated than a simple allow or deny rule. Custom
methods can be provided with specific security settings. In Spring, we can achieve
this by providing the proper annotations for the methods to be secured. There are
four annotations that support expression attributes to allow preinvocation and
post-invocation authorization checks and also support the filtering of the submitted
collection arguments or return values. They are @PreAuthorize, @PreFilter,
@PostAuthorize, and ePostFilter. If you want to create a custom secured
method called customCheckUser (), then you can annotate the method with the @
PreAuthorize tag for a presecurity check before execution.

While the other security methods focus on servlets and controllers, security method-
based authorization deals with the service layer components particularly. We

can control various services to be accessed by specific principals. For example, an
administrative principal can access only the database credential layer or the logging
layer can be accessed by all the principals. The global method security tag or the @
EnableGlobalMethodSecurity annotation will help developers in setting up the
method level security.

Spring instance-based authorization

At the class level, we can check whether the intended principal is authorized to
invoke the particular instance or not when we create an instance for a particular
request. This can be achieved by providing annotations before instantiating the
object in order to check the authenticity. This instance-based security is important
in handling non-application server-related code or any other code related to the
business logic that needs to be closely monitored to prevent non-privileged access.

The approach here is to define the information clearly so that the domain object-
based security restrictions can be applied accurately. The Actor who is performing
the use case action, the domain acted created internally to perform the action, and
the intended action are the three pieces of information that we need to define clearly
in order to achieve instance-based authorization. Here comes the usage of ACLs
and access control entries (ACEs), which will be elaborated on in further chapters.
The advantage of using Spring ACL and ACE here is that Spring has an internal
mechanism to manage the ACE volume by implementing the ACE inheritance
mechanism so that when a number of domain objects increases, the ACEs also will
become manageable.

[4]

Chapter 1

. Apart from these techniques, Spring provides you with options to build
a security layer for RESTful and SOAP web services, and we can create
— security layers for JAAS, JSF 2.0, and Wicket. Let's take a quick look at
these four techniques now.

Spring Security with SOAP web services

Spring Web Services (Spring-WS) packages focus mainly on the creation of
document-driven web services, where the data communication between web services
is done through XML envelopes and web services can be accessed from any other
technology application server. The features supported by Spring-WS are powerful
XML mappings, support for various XML APIs, flexible XML marshalling, support
for WS-Security, and others. WS-Security comprises of three areas —authentication,
digital signatures, and encryption/decryption.

The security flow in Spring Web Services will be as follows. The system will generate
a security token for a valid principal using a separate web service method. If the

user wants to access other web services, he or she should pass this token along with
the payload as a security key and these web services will validate this token for
authenticity and then allow the users to access the resources. If the token has expired
or is invalid, the user should go through the authentication web service once again.
This entire mechanism is called message signing.

Spring Security with RESTful web
services

To achieve Representational State Transfer (REST) services calls with basic security
authentication, we will have to depend on the libraries provided by the Spring
framework, such as the core, configuration, and web. We also need to make some
entries in the Spring application context files.

In real-time scenarios, we will have to get the credentials from Lightweight
Directory Access Protocol (LDAP), Database, and others.

[51]

Getting Started with Spring Security

Spring Security with JSF2.0

Coming to the JSF and Spring Security integration, the Spring web flow provides
you with a JSF integration that simplifies the handshake between JSF and Spring,.

A dedicated Spring Security tag library is available for JSF Security integration. To
achieve this, springsecurity.taglib.xml needs to be updated with facelet entries.
These modifications must be reflected in web.xml1 as well. We can include nested
contents based on security conditions using the authorize tags. During JSF rendering,
many expression language-based functions can be used.

Spring Security with Wicket

Apache Wicket is designed based on a component-oriented structure and less HTML
file handling. Wicket-related security settings must be handled first by modifying
the web.xm1 file for the corresponding filter mapping. As a Wicket programmer, you
will need to have a clear understanding about the pull and push concepts and form
processing life cycle of the Apache Wicket framework. There are two unique issues
to be handled from Wicket. Wicket does not manage the life cycle of its components,
and the components and models of Wicket are often serialized, which may be an
issue for Spring's dependency injection mechanism. The work around this will be
some entries in the Web and ApplicationContext XML files, but this approach will
have its own pros and cons, which we will discuss later.

Spring Security with JAAS

The Spring framework has a JAAS authentication provider, which must be
configured in an applicationcontext.xml file. We need to create an array of
entries for the URLs that need to be secured. We have to define the security policies
for different URLs of the website. JAAS will expect a callback from the user —the
username and password. Spring will have this information collected and populated
on an authentication object, which will be passed to JAAS as an input.

Spring Security with SAML

Security Assertion Markup Language (SAML) is a popular open standard, which
simplifies federated user logins. A user can provide credentials to a centralized
enterprise registry, and using this principal, the user can access other independent
applications that are mapped with the centralized registry.

[6]

Chapter 1

This is called single sign-on implementation using the Spring and SAML integration.
We can also create a common setup to make an enterprise an single sign-on (§SO)-
enabled one with the following certain standards. This is based on how we set up
Spring and SAML to pass the SAML tokens to the other applications that are using
the SSO. We can create a shared cookie that will contain the authorized SAML token.
Additionally, we can develop an internal SAML token verifier, which may frequently
assess the validity of the token. The securityContext XML file needs to be updated
with the IDP metadata. IDP is nothing but the centralized Identity provider.

Spring Security with LDAP

You must be aware of the LDAP basics, and you can refer to a popular open source
LDAP implementation called OpenLDAP if you want to further explore. Spring has
an LDAP package that is helpful in accessing many LDAP implementations without
bothering much about their internals. This is developed based on the JdbcTemplate
package design. Basic operations such as looking up, context initiation and closing,
iterating through the results, and encoding/decoding the values are taken care

of by this package. On top of this, Spring LDAP comes with various enhanced
features such as LDAP template, LDAP context, LDAP filters, LDAP transaction
management, and others.

Summary

We have seen the various flavors of the Spring Security implementations available
in the Spring Framework 4.0.3 along with the Spring 3.2.3 module. We will explore
each of these options in detail with practical examples in the coming chapters. We
recommend that you have a good understanding of the application development
environment for various technologies that we will address, such as LDAP, SAML,
Wicket, and so on. In the next chapters, we will explain the security implementations
that include the basics of the IDE setup, understanding a sample source code,
building mechanisms, and so on.

[71

Spring Security with SAML

In this chapter, we will explore the various security integration options with Spring
and SAML. Many of us are aware of the basics of Security Assertion Markup
Language (SAML), which is a standard way of providing authentication and
authorization information from an Identity provider to a service provider. For
Intranet, an application providing single sign-on (SSO) and single logout (SLO)

is possible and easy using Local Cookies Information, whereas it is difficult to
implement single sign-on for Internet-based applications. So, we need a sophisticated
web browser-based SSO implementation using standard technologies such as the
SAML open standard data format.

Spring comes with a standard extension for SAML that will facilitate the federated
applications to integrate with existing SAML implementations. Refer to the popular
SAML implementations such as Shiboleth, Kerboros, and many more, which have
identity management capabilities, and some of them are available on the cloud as
well. The Spring SAML extension is flexible in such a way that you can integrate
SAML SSO and other authentication mechanisms in a single application without
affecting each other.

We will cover the following topics in this chapter:

* The basics and structure of SAML 2.0

* Arecap of the Maven build tool

* Arecap of the Gradle build tool

* The basic project creation and execution of the Spring tool suite
* Open source SAML 2.0 implementations

* Identity provider configurations and registrations

* Spring SAML extensions usage

[o]

Spring Security with SAML

The basics and structure of SAML 2.0

SAML 2.0 is an XML-based protocol that facilitates the passing of the session
information in the form of a security token. These tokens will be carrying the
authentication and authorization information of the principal across the web
servers involved. The cross-domain single sign-on is possible using an XML
protocol such as SAML, which involves an Identity provider (SAML authority)

and service web server (SAML consumer) that will get the security tokens from the
SAML implementation. With this mechanism, we will be able to avoid maintaining
principal credential information in many areas that in turn will make the security

ecosystem a robust one.

The SAML 2.0 critical aspects are SAML conformance, SAML core module, SAML
bindings definitions, and SAML profiles information. Let's take a quick look at these

critical aspects:

* The conformance program specification ensures interoperability between

cross-domains while exchanging authentication and authorization

information. It also standardizes the conformance test development. On a
basic level, it provides a common understanding of the conformance process
and what is required to claim conformance. The SAML bindings and profiles,
which are supported by the participating applications or implementations,

must be expressed as a conformance.

* The SAML core provides you with the specifications for assertions and

protocols. This module provides you with ways to use notations, schema

organization, namespaces, and so on. SAML assertions and protocols are
typically embedded in industry-standard protocols such as HTTP POST

requests or XML-encoded SOAP messages. You can refer to the SAML
assertion schema and SAML protocol schema documents to understand
more about the keywords and conventional XML namespace prefixes.

[10]

Chapter 2

The SAML binding specifications provides you with details about

protocol binding concepts, notations, guidelines to specify additional
protocol bindings, and others. Bindings are important when using SAML
assertions and request-response messages in communication protocols and
frameworks. If we map SAML request-response message exchanges to the
HTTP protocol, then this binding will be called HTTP SAML binding. This

is to make sure that the SAML implementation software can interoperate
with the applications built on top of a standard messaging or communication
protocol.

A SAML profile is nothing but a set of rules describing how to embed a
SAML assertion in a framework or protocol and how to fetch the SAML
assertion from the framework or protocol. Another type of profile defines

a set of rules to use the specific SAML functionality such as attributes,
conditions, and bindings. The SAML provider must ensure that the profiles
are defined clearly so that the SAML consumer can interoperate with all
the details required to exchange the authentication and authorization
information.

Let's take a close look at some of the important SAML components such as
assertions, bindings, and profiles.

SAML 2.0 assertions

An assertion is nothing but a collection or package of information that is bundled
and distributed by the SAML authority to the SAML consumers. SAML 2.0 comes
with three types of assertion statements called authentication, attribute, and
authorization decision:

Authentication assertion is the user that has proven his or her identity

Attribute assertion carries specific information about the principal that will
help the system to understand the limits or parameters of the users

Authorization decision assertion has the authorization details such as
resource access and role access

[11]

Spring Security with SAML

A SAML assertion XML file may have child elements, as shown in the following
screenshot:
* saml:Issuer element: This is the unique identifier of the Identity provider
* saml:Subject element: This identifies the authenticated principal

* saml:AuthnStatement element: This is the authentication level of the

Identity provider
<saml:Assertion xmlns:saml="urn:oasis:names:tc:5AML:2.8:assertion"™ xmlns:xs="http://www.w3.org/2801/XMLSchema™
xmlns:xsi="http://www.w3.org/2801/XMLSchema-instance™

ID="b@7bB@4c-7c29-calb-7300-4F3d6F7928ac” Version="2.8" Issuelnstant="2884-12-85T89:22:85">
<saml:Issuer>https://idp.packt.org/SAML2exampled/saml:Issuers
<ds:Signature xmlns:ds="http:// ww .org/2ee8,/89/xmldsigh">...</ds:Signature>
<saml:Subject>
<saml:NameID Format="urn:casis:names:tc:SAML:2.@:nameid-format:transient">
3f7b3dcf-1674-4ecd-92cB-1544F346bafs
</saml:NameID>
<saml:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.8:cm:bearer”>
<saml:SubjectConfirmationData InResponseTo="aaf23196-1773-2113-474a-fellda412ab72"
Recipient="https://serviceprovider.packtpub.com/SAML2/550/P0OST" NotOnOrAfter="2004-12-85789:27:85"/>
</saml:SubjectConfirmation:
</saml:Subject>
¢<saml:Conditions NotBefore="2884-12-85T89:17:85" NotOnOrAfter="2864-12-85T89:27:85">
<saml:AudienceRestriction>
<saml:Audiencerhttps://serviceprovider.example.com/SAML2</saml:Audience>
</saml:AudienceRestriction>
</saml:Conditions>
<saml:AuthnStatement AuthnInstant="2884-12-85T89:22:98" SessionIndex="b@7b884c-7c29-eal6-7308-4F3d6F7928ac" >
<saml:AuthnContext>
<saml:AuthnContextClassRef>
urn:oasis:names:tc:SAML:2.8:ac:classes:PasswordProtectedTransport
</saml;AuthnContextClassRef>
</saml:AuthnContext>
</saml:Authn5statement>
<saml:AttributeStatement:
<saml:Attribute xmlns:x588="urn:ocasis:names:tc:SAML:2.8:profiles:attribute:X588" x588:Encoding="LDAP"
NameFormat="urn:oasis:names:tc:SAML:2.8:attrname- format:uri"”
Name="urn:oid:1.3.6.1.4.1.5923.1.1.1.1" FriendlyMame="eduPersonAffiliation"»
<saml:AttributeValue
xsiitype="xs:string">member</saml:AttributeValue>
<saml:AttributeValue
xsittype="xs:string">staff¢/saml:AttributeValue>
</saml:Attributes
</saml:AttributeStatements
</saml:Assertion>

SAML 2.0 protocols

In the SAML core package, assertion query and request protocol, authentication
request protocol, artifact resolution protocol, name identifier management protocol,
single logout protocol, and name identifier mapping protocol are specified. Out of
these, the authentication request protocol and artifact resolution protocol are very
important. Let's see the description of each of these:

[12]

Chapter 2

Assertion query and request protocol: We can query and request existing
assertions by passing their subject and statement types.

Authentication request protocol: An authenticated principal can fetch
assertions by sending a message element to the SAML authority. With this
protocol, the SAML consumer can establish a security context with one or
more participating applications, as follows:

<samlp:AuthnRequest xmlns:samlp="urn:oasis:names:tc:SAML:2.8:protocol” xmlns:saml="urn:oasis:names:tc:SAML:2.8:assertion"
ID="aaf23196-1773-2113-474a-fell4412ab72" Versiocn="2.8" Issuelnstant="2884-12-85T89:21:53"
AssertionConsumerServiceIndex="8" AttributeConsumingServicelndex="8">
<saml:Issuershttps://serviceprovider.packt.com/SAML2</saml: Issuers
<zamlp:NameIDPolicy AllowCreste="true" Format="urn:oasis:names:tc:SAML:2.8:nameid-format:transient™/>
</samlp:AuthnRequest>

Artifact resolution protocol: SAML protocol messages can be passed as a
SAML binding, as follows:

[~

<samlp:ArtifactResolve xmlns:samlp="urnioasis:names:tc:SAML:2.@:protocol” xmlns:saml="urn:oasis:names:tc:5AML:2.8:assertion”

ID="_cce4ee769edd78b581d688F697989d14" Version="2.8" Issuelnstant="28@4-12-85T89:21:58">
<saml:Issuer>https://identityprovider.packt.org/SAML2</saml:Issuer>

<!-- an ArtifactResolve message SHOULD be signed -->

<ds:Signature xmlns:ds="http:/ www.w3.crg/2888/89/xnldsig#">...</ds:Signatures
<samlp:Artifact>AAQAAMhAE/ 10XIM+sDo7Dh2gMp IHMAIFSDaRNmD] 6RAUML1wng IHyEgTig=</samlp: ArtiFacts>
samlp:ArtifactResolve>

Single logout protocol: A logout signal can be exchanged through a message
so that all the sessions will be logged out or terminated by the SAML
authority.

Name identifier management protocol: The SAML service consumer will be
notified if a subject or issuer is changed.

Name identifier mapping protocol: This is used to map an identity of a user
across different service providers with the consent of the issuing authority.

SAML 2.0 bindings

We have the following different types of bindings available in SAML 2.0, which
come under the binding specifications of SAMLBind:

SAML SOAP binding: The definitions of SAML request and response
message exchanges are mapped to SOAP message exchanges

Reverse SOAP binding: This is a mechanism to express the ability of an
HTTP requestor to act as a SOAP responder to a SAML consumer

HTTP redirect binding: This is suitable for short messages

[13]

vww allitebooks.conl

http://www.allitebooks.org

Spring Security with SAML

HTTP POST binding: This is suitable for long messages
HTTP artifact binding: The Identity provider or consumer will issue an

artifact

SAML URI binding: A SAML URI reference will be provided to identify a
specific SAML assertion

Maven Recap

Before we proceed with the development integration and coding part with Spring
and SAML, let's take a quick recap of the Maven build tool. We will do some hands-
on exercises that will be useful throughout this book. This is provided for readers
who are at the novice level. The experienced ones can take a speedy overview!

As I mentioned earlier, Maven is a build tool with which the developers can perform
builds, documentation, testing, reporting, release management, and so on.

others. As a first step, we may have to decide on the groupid and
L

The Maven project structure is described in an XML file called Project
Object Model (POM). The POM will have details about project
dependencies, plugins used, goals, build profiles, project version, and

artifactid. For our Spring and SAML integration, we can have these
values as com.packtpub.spring4.security and springsecurity.
I am avoiding the concepts of parent POM, plugins, repositories, and so
on at this time as we want to focus more on Spring and SAML.

Steps involved in Mavenization are as follows:

Make sure that you are exploring other concepts of Maven as well. It will
come in handy as the sole purpose is to familiarize you with the basics.

Install Java 8, complete the environment variable settings, and check the
version by running the java -version command on the command prompt.

Download apache-maven-2.0.11-bin.* and install as per the instructions.
Complete the environmental variables settings and check the installation by
running the mvn -version command.

[14]

Chapter 2

* Create a POM in your project folder, as shown in the following image:

{project xmlns="http://maven.apache.org/POMN/4.8.8" xmlns:xsi="http:// ww

JW3.0rg/2eel/XMLSchema-instance™

xsi:schemaLocation="http://maven.apache.org/PON/4.8.8
http://maven.apache.org/xsd/maven-4.8.8.xsd">
<modelVersion>4.8.8</modelVersion>
<groupld>com.packtpub.springd.security</groupIds>
<artifactIdsspringsecurity</artifactId>
<version>1.8</version>

</project>

* Runmvn post-clean from your project folder command prompt. You can

see that maven is doing all the life cycle operations.

* Modify the POM file by adding the following entries. Run mvn site and
Maven will start processing the entire site requirements. The result is given

as a screenshot for your reference:

<plugins>
<plugins

<version>l.l</version>
<executions>
<execution>
<id»id.pre-site</id>
{phase>pre-site</phase>
<goals><goal>run</goal></goals>
<configuration>

<fconfiguration>

«fexecution>

<execution>
<id»id.site</id>
<phasersite</phases
<goals»<goalrrun</goal></goals>
<configuration>

</configuration>

«fexecution>

<execution>
<id>id.post-site</ids
{phase>post-site</phase>
<goals><goal>run</goal></goals>
<configuration>

</configuration>

¢/execution:

<execution>
<id>id.site-deploy</id>
<phasersite-deploy</phases
<goals><goal>run</goal></goals>
<configuration>

</configuration>
</fexecution>
</executions>
</plugin>
</plugins>

<groupldrorg.apache.maven.plugins</grouplds
<artifactIdsmaven-antrun-plugin</artifactIds>

<tasks><echo>pre-site phase</echo></tasks>

<taskss><echo»site phase</echo></tasks>

<tasks»<echo>post-site phase</echo></tasks:>

<tasks><echo»site-deploy phase</echox></tasks>

[15]

Spring Security with SAML

* The life cycle behavior can be modified by mentioning goals in any phase. In
the preceding screenshot, we added the maven-antrun-plugin:run goal to
the preclean, clean, and post-clean phases. While running the build, we can
see the logging echo messages for each phase of the clean life cycle. Refer to
the resultant screenshot:

[INFO] Scanning for projects...
I it
[INFO] Building Unnamed - com.packtpub.spring.security:project:jar:1.8
[INFO] task-segment: [site]
0
[INFO] [antrun:run {execution: id.pre-site}]
[INFO] Executing tasks

[echo] pre-site phase
[INFO] Executed tasks
[INFO] [site:site {execution: default-site}]
[INFO] Generating “About"™ report.
[INFO] Generating "Issue Tracking" report.
[INFO] Generating "Project Team" report.
[INFO] Generating “"Dependencies" report.
[INFO] Generating "Project Plugins™ report.
[INFO] Generating “Continuous Integration” report.
[INFO] Generating “"Source Repository"” report.
[INFO] Generating “Project License™ report.
[INFO] Generating "Mailing Lists" report.
[INFO] Generating "Plugin Management" report.
[INFQ] Generating "Project Summary™ report.
[INFO] [antrun:run {execution: id.site}]
[INFO] Executing tasks

[echo] site phase
[INFO] Executed tasks
I it
[INFO] BUILD SUCCESSFUL
I it
[INFO] Total time: 3 seconds
[INFO] Finished at: Thu Aug @6 15:25:18 IST 2815
[INFO] Final Memory: 28M/189M
L

* Asa starter for Maven, we have seen some basics so far. You can explore the
following points as well:

o

Maven dependencies: Libraries required with version numbers

o

Maven profiles: Which libraries are used for which environments

* Each life cycle is made of phases. Plugins are attached to phases. A phase can
contain multiple plugins.

* Accessing a specific snapshot version of a dependency

* Library dependency explanation and installing custom libraries to the local
repository

[16]

Chapter 2

Gradle Recap

Gradle is a combination of Ant and Maven in terms of using the simplicity of

Ant and handling multiple phases of the life cycle as Maven. As Gradle has been
developed based on the Groovy Domain Specific Language (DSL), the amount of
code required to be written to handle software movement through various life cycles,
from compilation, analysis, testing, packaging, and deploying, will be reduced
considerably. The typical Gradle build file is given here for your reference:

apply plugin: 'java'

apply plugin: 'checkstyle'
apply plugin: 'findbugs'
apply plugin: ‘pmd’

apply plugin: ‘surefire’

version = '1.8°

repositories {
mavenCentrall)

¥

dependencies {
testCompile group: 'junit', name: 'junit', version: '4.11'
testCompile group: 'com.packtpub', name: 'packtpub-all', wversion: '1.23'

Some of the advantages of Gradle are as follows:

* Gradle is a programming language

* Lots of built-in tasks in the plugin code, for example, the apply plugin
declaration in Gradle will do around 15 and more tasks for us

* Gradle is JVM-based, declarative modeling, expressive, and DSL-oriented
* You must be good in Java programming to handle Gradle

* The build script size is reduced and readability is increased in Gradle
compared to Maven

* The time taken to clean, deploy, and identify the changed files is significantly
reduced

* Gradle has lots of powerful plugins that can be adopted in projects very
easily

* Mature libraries such as Spring, Hibernate, Grails, Groovy, and others
already use Gradle to power their builds

Let's see the quick steps involved in Gradle building.

[17]

Spring Security with SAML

Setting up Gradle with Eclipse
As I mentioned in the Maven Recap section, it is important for you to understand
some of the basics of Gradle. Follow these steps to integrate the Gradle Buildship
with the Eclipse IDE:
1. Download gradle-2.5-bin.zip of 42.6 MB size and unzip to your folder.
2. Set the class path settings.

3. Verify the installation by executing the gradle -vand gradle tasks -g
commands.

Download eclipse-jee-mars-R-win32-x86 64.zip of 269 MB size.

Install Gradle Buildship from the Eclipse marketplace, and then create a
Gradle project named Packt-Gradle.

6. The project structure and Gradle build file will look as follows:

@] Java EE - packt/build.gradle - Eclipse
File Ecit Navigate Search Project Run Window Help

- HrO Q- GrE- OO T @3B %] i = e e
Ly Project Explorer i3 == ‘ ¥ =08 » build.gradle &2
4 & > packt [pix NO-HEAD] 1/*

2 * This build file was auto generated by running the Gradle 'init' task
by 'Nandakumar.N' at '8/8/15 11:89 AM' with Gradle 2.5-rc-2

.3
4 & > (default package)
> |43 Library.java
4 (% = sroftest/java
> (default package)
=0, JRE System Library [jr<l 5.0 511 8 */

> sic/mainfjava

*
®
= This generated file contains a sample Java project to get you started.
* For more details take a look at the Java Quickstart chapter in the Gradle

* user guide available at http://gradle.org/docs/2.5-rc-2/userguide/tutorial_java_projects.html
*

4 = Project and External Dependencies
G shdj-api-l7A2ar - C
G junit-412jar - CL
(pe hamcrest-core-1.3.jar -
4 [y = gradle

107/ Apply the java plugin to add support for Java
1lapply plugin: "java'

15// In this section you declare where to find the dependencies of your project
14 repositories {

5 // Use "jcenter' for resolving your dependencies.

// You can declare any Maven/Ivy/file repository here.

i3 gradle-wrapperjar 7 Jcenter()

2 gradle-wrapper.properties 18}

4 [Fy > wrapper

s B = sIc
> build.gradle
5 gradlew

20 // In this section you declare the dependencies for your production and test code
21 dependencies {

- 22 // The production cede uses the SLF4] logging API at compile time

% gradlew.bat 25 compile 'org.slf4j:slfaj-apiz1.7.12'

3 settings.gradle >

// Declare the dependency for your favourite test framework you want to use in your tests.
// TestNG is also supported by the Gradle Test task. Just change the

// testCompile dependency to testCompile 'org.testng:testng:6.8.1' and add

/4 'test.useTestNG()' to your build script.

testCompile 'junit:junit:4.12°

Downloading the example code

You can download the example code files from your account at

= http://www.packtpub. com for all the Packt Publishing books you
Q have purchased. If you purchased this book elsewhere, you can visit

http://www.packtpub.com/support and register to have the files

e-mailed directly to you.

[18]

http://www.packtpub.com
http://www.packtpub.com/support

Chapter 2

The Spring Tool Suite

After a quick introduction to the Spring Tool Suite (STS), we will develop a small
application with 3-4 screens for a basic understanding. This sample can be carried
out or reused throughout the book. STS is an Eclipse-based IDE that provides you
with robust project templates for various Spring projects such as batch, integration,
persistence, and so on. Download the STS 3.7 release and open the IDE.

Create a Spring project, choose Templates as the Spring MVC project, specify a top-
level package name such as com.packt.spring.security, and click on finish. The
STS will have the following project structure:

Spring - springmvc/sre/main/java/com/packt/spring/HomeController,java - Spring Tool Suite

File Edit Source Refactor MNavigate Search Project Run Window Help

- Bini@ittr0 " Q~reor - BEGrids V-3 F @: |-l =
{5 Package Explorer 52 [=5, | ¥ = O [J] HomeContrellerjava 53
= Servers » 7 package com.packt.spring;

4 15 springmve
4 (% src/mainfjava ® import java.text.DateFormat;[]
a f com.packt.spring

|ﬁ HomeCaontroller.java

* Handles requests for the application home page.

|J] User.java
» [src/main/resources a
. (% sreftest/java public class HomeController {
» [srcftest/resources private static final Logger Logger = LoggerFactory.getlogger(HomeController.class);
. m IRE System Library [J2v=5E-1 6]

m

. ®) Maven Dependencies

a 25 src * Simply selects the home view to render by returning its name.
5
v msam @RequestMapping(value = "/", method = RequestMethed.GET)
4 (5 webapp public String home(Locale locale, Model model) {
(= resources Logger.info("Welcome home! The client locale is {}.", locale);
a (25 WEB-INF
= classes Date date = new Date();
o5 spring DateFormat dateFormat = DateFormat.getDateTimeInstance(DateFormat.LONG, DateFormat.LONG,
4 L vews String formattedDate = dateFormat.format(date);
|2 home,jsp
[Z] loginjsp model.addAttribute("serverTime”, formattedDate);
[E] testjsp
5 return “home™;
[#] userjsp i)

You can see the springmvc project tree and default HomeController Java class. In
the views folder, you can see some default JSP files, and at the bottom, you can see
the Pivotal tc Server Developer Edition, which comes built-in with STS 3.7.

Let's see the configuration mappings and how to run this application:

* root-context.xml: This file is empty by default. It is the configuration for
root Spring containers, which are shared by all the servlets and filters.

* servlet-context.xml: This file is loaded by the Spring's
DispatcherServlet that receives all the requests coming in the application
and dispatches the processing for controllers, based on the configuration
specified in the servlet-context.xml file.

[19]

Spring Security with SAML

web . xm1: This file contains declarations for Spring's
ContextLoaderListener and DispatcherServlet along with the Spring
configuration files, root -context .xml and servlet-context.xml. It also
has the mapping for DispatcherServlet, which handles all the requests.

You can right-click on the packt root directory and run the application. Set the
server settings accordingly:

[~ Spring - packt/src/main/webapp/WEE-INF/webaxmi - Spring Toel Suite
File Edit

Source Navigate Search Project Run Window Help
e BB -0 BB NG (SO S

@D GO

[# Package Explorer 52
a 15 packt
> (% sre/mainfjava

Eale 7= 0

> (™ src/main/resources
s (% srctest/java
> [sre/test/resources
> @i\ JRE System Library [JavaSE-1.6]
.) Maven Dependencies
PR
4 (8 main
a5 webapp
(= resources
4 (25 WEB-INF

X serviet-contextxml L) root-contextaml

<?xml version="1.8" encoding="UTF-8"23

<web-app versi L5 wmlns="http://java.sun.com/xml/ns/javase”
xmlns:xsi="http://ww.w3. org/28@1/XML Schema-instance”
xsi:schemalocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javace/ web-app

(%] webxml &3

<!-- The definition of the Root Spring Container shared by all Serwvlets and Filters -->
<context-param>
<param-name>contextConfiglocation</param-name>
<param-value>/WEB-INF/spring/root-context.xml</param-value>
</context-param>

- Creates the Spring Container shared by all Servlets and Filters --»
teners

tener-class»org.springframework.web. context.ContextloaderListener</listener-class>

eners
& classes

4 (3 spring
a2 appServlet
b8 serviet-contextaml
1§ root-context.xml

-- Processes application requests -->

t-namerappServlet</servlet-name>

classsorg.springframework.web. servlet.DispatcherServlet</servlet classs
aram>

;o views <param-name>contextConfiglocation</param-name>
X] web.xmi <param-value>/WEB-INF/spring/appServlet/servlet-context.xml</param-value>
> test 4 .
g Etarget | Design | Source
pomxm
- = Servers B Console 52 = | = BA E | = -
Pivotal tc Server Developer Edition v3.1 [Pivotal tc Server] C:\Program Files\Java\jrel 8.0_51'\bin'\javaw.exe (Aug 9, 2015, 10:56:34 AM)
= Aug @9, 2815 18:56:35 AM org.apache.catalina.startup.Catalina load
o Servers 52 B TwFo: Initialization processed in 922 ms
O 3% Q& EL = INFO : org.springframework.web.context.ContextlLoader - Root WebApplicationContext: initialization started
. §} Pivotal tc Server Developer Edition 3.1 [Started ixgg org.springframework.web. context.support. XmliebApplicationContext - Refreshing Root WebApplication

org.springframework.beans.factory.xml.XmlBeanDefinitionReader - Loading XML bean definitiens from

Improving the samples

Let's modify the controller and add some more JSP files. Follow the following steps:

1. Add the following code snippet to the controller class:

@ERequestMapping(value = "/login", method = RequestMethod.GET)
public String test(Model model) {

String message = “Greetings, Spring MVC!®;

model . addAttribute("Welcome”, message);

return “login“;

2. Create one more JSP file called 1ogin. jsp, and add the following content:

[20]

Chapter 2

<%@ page language="java" contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8"%>

<!DOCTYPE html PUBLIC *-//W3C//DTD HTML 4.81 Transitional//EN" “http://www.w3.org/TR/html4/loose.dtd">

<htmlx>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<titlexlogin Page</title>

</head>

<body>

<form action="home" method="post"»

<input type="text" name="userName"><br:

<input type="text" name="passWord">

<input type="submit"” wvalue="Login">

</form>

</body>

</html>

3.

In home . jsp, add the ${userName} code and check for the values that are
passed.

SAML open source implementations

There are several open source implementations available for SAML 2.0. Most of the
implementations need a registered account. Let's see them one by one:

OX: This uses the Shibboleth IDP but adds a GUI to make the configuration
easier. It has been developed using the J2EE stack of software to enable
domain authentication and authorization. It is available as an open source or
managed service and is sponsored by Gluu at http://www.gluu.org.

Enterprise Sign On Engine (ESOE): This is a pure Java implementation of
SAML V2.0. Check the website for more details, http://esoeproject .qut.
edu.au/.

OneLogin SAML Toolkits, SAML 2.0 SP: This is available as Java, C#,
Python, Ruby, and PHP implementations.

OpenSSO: This is a Java implementation from Sun Microsystems and is
currently in use at the SSOCircle. Refer to http://opensso.org/.

OpenSAML: This has C++ and Java toolkits for SAML V1.1 and V2.0.
Implementation of SAML assertions, protocols, and bindings (no profiles) are
available at http://www.opensaml.org/.

Shibboleth: This includes the Identity provider (Java) and service provider
(C++ Apache module), and is a basic implementation built on top of
OpenSAML. Refer to http://shibboleth.internet2.edu/.

[21]

http://www.gluu.org
http://esoeproject.qut.edu.au/
http://esoeproject.qut.edu.au/
http://opensso.org/
http://www.opensaml.org/
http://shibboleth.internet2.edu/

Spring Security with SAML

The SAML 2.0 login flow

SAML 2.0 specifies a web browser SSO profile that involves exchanging information
among an Identity provider (IDP), service provider (SP), and principal (user)

on a web browser. The Identity provider can be any SSO service offering SAML
authentication services (for example, SSOCircle). The service provider is always a
ServiceNow instance. The message flow begins with a request for a secured resource
at the service provider. The principal requests a target resource at the service
prOVider, https://instance.service-now.com/.

The serviceNow instance checks the request to see if the SAMLRequest and
RelayState URL parameters are present. It constructs AuthnRequest to be sent
to the IDP using the saMLRequest value. The instance also constructs and sends a
RelayState URL parameter value.

The relayState token is an opaque reference to the state information maintained
at the service provider. The value of the SAMLRequest parameter is the deflated and
base64 encoded value of the <samlp:AuthnRequest> element:

<samlp:AuthnRequest

xmlns:samlp="urn:oasis:names:tc:SAML:2.8:protocol”

xmlns:saml="urn:casis:names:tc:SAML:2.8:assertion”

ID="identifier_1"

Version="2.8"

Issuelnstant="28@4-12-85T@9:21:59Z"

AssertionConsumerServiceIndex="8">

<saml:Issuer>https://sp.example.com/SAML2</saml: Issuer>

<samlp:NameIDPolicy AllowCreate="true" Format="urn:oasis:names:tc:SAML:2.@:nameid-format:transient”/>
</samlp:AuthnRequest>

The integration then URL-encodes the <samlp:AuthnRequest> element and sends it
as the sAMLRequest URL parameter.

[22]

Chapter 2

The SSO service processes the <samlp:AuthnRequest > element by URL-decoding,
base64-decoding, and inflating the request, in that order. It then performs a security
check. If the user does not have a valid security context, the IDP identifies the user
by prompting for login credentials. If the user is already logged in, the IDP simply
responds with the SAMLResponse<tt> and <tt>RelayState URL parameters.

The login script also extracts the session ID from the //AuthnStatement/e
SessionIndex element and stores it for LogoutRequest:

SAML 2.0 Log In Flow

Web Browser / Client | | Application Server | | Ildentity Provider |
T T T
i Request Login i i
: g :
: Discover IDP i i
[s s s B 1 1
1 1 1
:* Redirect to S50 Service i ;
i i :
: Faquest 350 Sarvice D'E
)

: i Artifact Identification i
| < :
; ! SAML Auth Request i

1
l ; P
: Identified the User i

T oSS 1
i Redirectto Serl.ﬂice Pravider i
i 1
:* 1 1
: Reguest Service | !
: > :
! | Request Artifact Resolution !
| : >
: | :
' i SAML Assertion !
: i« H
1 1 1
. Redirect to target Resource i H
1
: Request Target Resource h: E
I 1 1
| _Respond With Target Resource ! H
< , :
' ! !

[23]

Spring Security with SAML

The SAML 2.0 logout flow

During logout, ServiceNow issues the SAML 2.0 LogoutRequest service call to the
IDP. This service logs the user out and then redirects them to the specified logout
URL. The user clicks on the Logout button and the instance executes the logout
script. The logout script constructs SAML 2.0 LogoutRequest and posts it to the
preconfigured SingleLogoutRequest SAML 2.0 service at the IDP. The IDP deflates
the request and then base64-encodes it. An example LogoutRequest looks as follows:

SAML 2.0 Log Out Flow

Web Browser / Client Application Server Application Server Identity Provider
Request Logout
-
-
Discover IDP
P Redirectto S50 Service
|
Request $50 Logout .
I
> Logs Out the Client
|
I Broadcast Logout Token tojall Sevice Providers
'
Broddcast Logout Token to all Sevice Providers
4l
-
Logs Out Client From Session
4l
|

¢<saml2p:LlogoutRequest xmlns:samlZp="urn:oasis:names:tc:SAML:2.8:protocol”
ID="21B7BE9CACBECF1AFA1E4AABF1SAB2D46" Issuelnstant="2818-84-28T21:36:11.238I" Version="2.8">
<saml2:Issuer xmlns:saml2="urn:casis:names:tc:SAML:2.@:assertion">https://dloomac.service-now.com</saml2:Issuers>
<saml2:NameID xmlns:saml2="urn:casis:names:tc:SAML:2.8:assertion”
Format="urn:oasis:names:tc:5AML:1.1:nameid-format:emailAddress”
MameQualifier="http://idp.ssocircle.com”
SPNameQualifier="https://dloomac.service-now.com/navpage.do™>david.loo@service-now. com</saml2:NameID>
<saml2p:SessionIndex»>s211b2¥811485b2ald2cc4db2b271933¢286771184
</saml2p:SessionIndexs
</samllp:LogoutRequest>

The user logs out of the IDP. The IDP redirects it to ServiceNow, which in turn
redirects to the IDP as the user is not logged in.

[24]

Chapter 2

IDP selection and testing

& https://saml-federation.appspot.com/saml/disc:

—
Spnng Spring SAML Sample application

SAML Login IMeladala Adminisiration
IDP Selection
® nttp:/fidp.ssocircle.com

Unfortunately a vandal hijacked the account below, so you will first need to register at S50 Circle before being
able to authenticate.

For testing with SSO Circle the following used to work:

Username: saml-federation
Password: appspot.com

Start sinale sign-on

yZreturnlDParam=idp&entitylD=saml-federation.a

SSOCircle is a popular web-based SSO Identity provider.

You can go through the sample application, saml-federation.appspot.com,
given by SSOCircle, where you may have to register to check the SSO behavior. The
following screenshot shows you the steps involved:

.
-

@ htty

//idp.ssocircle.com/sso/Ul/Login?module=peopleMembership&goto=htty

New SSOCircle Offering

> SAML Service Provider Test Tool
> SAML Test API

> Monitoring and Certification Seal

Download the free S50Check Tool

% user name / password

User Name: nnanda

Password: [sreeeeeer

Log In

Certificate Log In
OTP Log In
Swekey Log In
Swekey&Pin Log In
Yubikey Log In

Yubikey & Pin Log In

*gegeasg

WSISDN Log In

In order to use Strong Authentication with Certificate Based Log In, you need to enroll a certificate with the
S80Circle CA. Read mare

[25]

Spring Security with SAML

The output of the preceding steps is as follows:

¥ [https://saml-federation.appspot.com
Name:

Principal:

Name ID:

Name ID format:

IDP:

Assertion issue time:

Principal's SAML attributes
EmailAddress
FirstName

LastName

Subject confirmation
Method:

In response to:

Not on or after:

Recipient:

Authentication statement
Authentication instance:
Session validity:

Authentication context class:

nnandakumar@amail.com

nnandakumar@amail.com

nnandakumar@amail.com
urn:oasis:names:tc:SAML:1.1:nameid-formatemailAddress
hitp:/idp.ssocircle.com

2015-08-10T00:40:02.0002

nnandakumar@gmail.com
Nanda

Nachimuthu

urn:oasis:names:tc:SAML:2.0:cmcbearer
a35gel&1j9bg0hatc7bfmage7f153
2015-08-10T00:50:02.0002

hitps:iisaml-federation.appspot.com:443/saml/SS0

2015-08-10T00:40:02.0002

urn:oasis:names:tc.:SAML:2 O:ac:classes:PasswordProtectedTransport

You may have to check out the other IDPs as well, such as Shiboleth and OpenSSO.

The Spring Security SAML dependency

Here is the dependency that Spring Security provides you with in order to

use SAML. The Spring Security SAML extension makes both the existing new
applications behave like service providers, thus making the application achieve
single sign-on and single logout profiles as per the SAML protocol:

<dependencies>
<dependency>

</dependency
</dependencies>»

<groupldrorg.springframework.security.extensions</groupld>
<artifactIdrspring-security-saml2-core</artifactId>
<version>1.0.8.RELEASE</version

[26]

Chapter 2

Spring Security with SAML classes

In this section, we will look at the Spring Security SAML package. The classes in
this package extend the Spring Security core classes that are responsible for SAML
authentication, authorization, and logout:

SAMLAuthenticationProvider: This is capable of verifying the validity
of a saMLAuthenticationToken, and in case the token is valid, creates an
authenticated UsernamePasswordAuthenticationToken.

SAMLAuthenticationToken: This is used to pass the saMLContext object
through to the SAML authentication provider.

SAMLBootstrap: This is the initialization for the SAML library.
SAMLConstants: These are the constant values for the SAML module.

SAMLCredential: An object is a storage for entities parsed from the SAML
2.0 response during its authentication.

SAMLDiscovery: A filter implements the Identity provider Discovery
Service Protocol and Profile, as defined in http://docs.ocasis-open.org/
security/saml/Post2.0/sstc-saml-idp-discovery.pdf.

SAMLEntryPoint: A class initializes the SAML WebSSOProfile, IDP
discovery, or ECP profile from the SP side.

SaMLLogoutFilter: This is the logout filter that leverages the SAML 2.0
single logout profile.

SAMLLogoutProcessingFilter: This filter processes the arriving SAML
single logout messages by delegating to LogoutpProfile.

SaMLProcessingFilter: This filter processes the arriving SAML messages
by delegating to WebSSOProfile.

SaAMLStatusException: This SAML exception contains the status code that
should be returned to the caller as part of the status message.

SAMLUserDetailsService: The SAMLUserDetailsService interface is
similar to UserDetailsService with a difference that SAML data is used in
order to obtain information about the user. Implementers of the interface are
supposed to locate the user in a arbitrary data store based on the information
present in SAMLCredential, and return such a date in the form of an
application-specific UserDetails object:

° Object loadUserBySAML (SAMLCredential credential): This
method is supposed to identify the local account of a user referenced
by the data in the SAML assertion and return the UserDetails object
describing the user.

[27]

http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-idp-discovery.pdf
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-idp-discovery.pdf

Spring Security with SAML

Spring Security SAML internals

Let's look at what specific configuration is done to support SAML.

SAML filters are defined in springContext .xml, which diverts the URLs of the
application through SAML filters and URLs:

¢!-- Secured pages -->
<security:http entry-point-ref="samlEntryPoint”>
<security:intercept-url pattern="/**" access="IS_AUTHENTICATED_FULLY"/>
<security:custom-filter before="FIRST" ref="metadataGeneratorFilter"/>
<security:custom-filter after="BASIC_AUTH_FILTER"™ ref="samlFilter"/>
</security:http>

<bean id="samlFilter" class="org.springframework.security.web.FilterChainProxy">
<security:filter-chain-map request-matcher="ant">
<security:filter-chain pattern="/saml/login/*#*" filters="samlEntryPoint"/>
<security:filter-chain pattern="/saml/logout/**" filters="samlLogoutFilter"/>
<security:filter-chain pattern="/saml/metadata/**" filters="metadataDisplayFilter"/>
¢<security:filter-chain pattern="/saml/S50/**" filters="samlWebS50ProcessingFilter"/>
<security:filter-chain pattern="/saml/SSOHoK/**" filters="samlWebSSO0HoKProcessingFilter"/»
<security:filter-chain pattern="/saml/Singlelogout/**" filters="samllLogoutProcessingFilter"/>»
<security:filter-chain pattern="/saml/discovery/**" filters="samlIDPDiscovery"/>
</security:filter-chain-map>
</beanz>

The context file defines a SAML logger that will log the SAML messages. The most
important thing that we do in the Spring Security configuration is to configure an
authentication manager. The manager is usually configured explicitly as a database
query with the database/data source information, LDAP information, or just a bean
class that extends the UserDetails Service class.

For SAML, the authentication manager is configured as follows:

{1-- Register authentication manager with SAML provider --3
¢security:authentication-manager alias="authenticationManager":
¢security:authentication-provider ref="samlAuthenticationProvider"/>
¢fsecurity:authentication-managers

You can give the saMLAuthenticationProvider reference in your application, as
shown in the following image:

!-- SAML Authentication Provider responsible for validating of received SAML messages --3
<bean id="samliuthenticationProvider" class="org.springframework.security.saml.SAMLAuthenticationProvider”>
<property name="userDetails" ref="samlUserDetailsService" />
</bean>

<!-- Custom user details service to attach app specific roles to federated identities -->
<bean id="samlUserDetailsService" class="org.packt.springmvc.saml.S5impleSAMLUserDetailsService">
<property name="roles">
<list>
<value>ROLE_VIEWER</value>
</lists
</property>
</bean>

[28]

Chapter 2

As discussed, the configuration of SAML in the context must mainly consist of
Identity provider information's circle as an open Identity provider. The IDP provider
information is configured as follows:

1-- IDP Metadata configuration - paths to metadata of IDPs in circle of trust is here --3>
<!-- Do no forget to call iniitalize method on providers -->
<bean id="metadata” class="org.springframework.security.saml.metadata.CachingMetadataManager”>
<constructor-arg>
<list>
<bean class="org.opensaml.saml2.metadata.provider .HTTPMetadataProvider"s
<constructor-arg>
<value type="java.lang.String"»http://idp.ssocircle.com/idp-meta.xml</values
</constructor-arg>
<constructor-args
<value type="int">58@8</value>
<fconstructor-arg>
<property name="parserPool” ref="parserPool"/>
</bean>
</list>
</constructor-arg>
</bean>

Let's now look at the SAML UserDetails Service class. This class also has a
loadUserBySAML () method that needs to be implemented by the class that
implements SAMLUserDetailsService. The implementing class tells the framework
how to perform the authentication:

public class SimpleSAMLUserDetailsService implements SAMLUserDetaillsService {
public static final String DUMMY_PASSWORD = "DUMMY_PASSWORD";
private List<String> roles;

public void setRoles(lList<5tring> roles) {
this.roles = roles;

1
public Object loadUserBySAML({SAMLCredential credential) throws UsernameMotFoundException {
String username = credential.getNameID().getValue();
Collection<GrantedAuthority> gas = new Arraylist<Grantediuthority>();
for (5tring role : roles) {
gas.add(new SimpleGrantedAuthority(role));

}
return new User{username, DUMMY_PASSWORD, gas);

Spring Security with SAML logout

So far, we have seen how we can run the sample SAML application. Now, we will
look at how Spring Security supports SAML logout. First, we will see how SAML
logout works and then we will see the class that is supported by Spring Security for
SAML logout.

SAML supports single sign-on, so we can also say that it supports single logout as
well.

[29]

Spring Security with SAML

LogoutRequest issued by SP to IDP

The IDP determines authenticated SPs for a given user session. If there are no SPs,
other than the SP who sends logout request, the profile proceeds with issuing a
LogoutResponse to SP who sends logout request. Otherwise, LogoutRequest issued
by the IDP to the SP and the SP-issued LogoutResponse to the IDP are repeated for
each SP. The IDP issues LogoutResponse to the SP who sends the logout request.

Let's see what is in these request and response messages:

* LogoutRequest is extended from RequestAbstractType. There are some
attributes that must be in the RequestabstractType element.

* LogoutResponse is extended from StatusResponseType. There are some
attributes that must be in the StatusResponseType element, that is, ID,
version, and IssueInstant, which is the same as in RequestAbstractType.
There is an element called the status element that is required. The status
element contains the status code corresponding to the request. These
attributes are explained as follows:

o

1D: This is an identifier for the request. This must be unique;
basically, a random number.

Version: This indicates the SAML version.

IssuelInstant: This is the time instant of the issue of the request.
The time value is encoded in UTC.

Apart from this, one of the following is a required attribute for a
LogoutRequest request:

e}

BaseID, NameID, or EncryptedID: This indicates the principal
(user identifier). Basically, this is a name that is known to both
the IDP and SP.

NotonOrAfter: This is the time when the request expires in UTC.

Reason: This is the reason for the logout in the form of a URI
reference.

There are two standard reasons:

urn:oasis:names:tc:SAML:2.0:logout :user: The user terminates
the session and initiates the logout

urn:oasis:names:tc:SAML:2.0:logout :admin: The administrator
terminates the session and initiates the logout

[30]

Chapter 2

o

SessionIndex: This is the session identifier that is used to identify
the user session with both the IDP and SP for a given user.

You can see that a simple SAML response consists of a URL that it needs in order to
redirect the applications on logout:

<samlp:LogoutResponse
xmlns:samlp="urn:oasis:names:tc:5AML:2.8:protocol™
xmlns:saml="urn:oasis:names:tc:SAML:2.@:assertion”
ID="_cbb63e374125%3f1c98alae38ac5ac25889728b32" Version="2.8"
Issuelnstant="28@8-86-83T12:59:57L"
Destination="https://myapplication.feide.no/simplesaml/saml2/sp/SinglelogoutService.jsp”
InResponseTo="_72424e337e28763e351189529639b9c2b15@FF37e5">
<saml:Issuer>https://openidp.feide.no¢/saml:Issuers
<samlp:Status>
<samlp:StatusCode Value="urn:oasis:names:tc:SAML:2.8:status:Success"> </samlp:StatusCode>
<samlp:StatusMessage>Successfully logged out from service hitps://openidp.feide.no</samlp:StatusMessage>
</samlp:Status>
</samlp:LogoutResponse>

The org. springframework.security.saml package contains all the classes that
support SAML.

The filters intercept the request, terminate the session with respect to the users, and
send out the logout response, which looks like the preceding response to the IDP
and SP providers, so that they get intimated about the logout request that has been
initiated.

Let's look at the Spring Security SAML filters that are available to process the single
logout feature.

We have two classes that are filters, as follows:

| public class SAMLLogoutFilter extends org.springframework.security.web.authentication.logout.LogoutFilter |

Logout filter leveraging SAML 2.0 Single Logout profile. On the invocation of the
filter's URL, it is determined whether global (termination of all the participating
sessions) or local (termination of only the session running in Spring Security) logout
is requested based on the request attribute.

In case global logout is in question, LogoutRequest is sent to the IDP.

[31]

Spring Security with SAML

The default constructors of the filter show complete information about the class. The
constructor signature implies that the Spring framework's logout handlers are called
to log out and successHandler is also called to build the SAML logout response as
follows:

SAMLLogoutFilter(org.springframework.security.web.authentication.logout.logoutSuccessHandler logoutSuccessHandler,
org.springframework.security.web.authentication.logout.logoutHandler[] localHandler,
org.springframework.security.web.authentication.logout.logoutHandler[] globalHandlers)

SAMLLogoutFilter(String successUrl, org.springframework.security.web.authentication.logout.LlogoutHandler[] localHandler,
org.springframework.security.web.authentication.logout.logoutHandler[] globalHandlers)

The filter processes the arriving SAML single logout messages by delegating to
LogoutProfile:

public class SA&MLLogoutProcessingFilter
extends org.springframework.security.web.authentication.logout.LogoutFilter

This is the class that actually does the logout processing; this also has the logout
handlers. Let's look at the constructor signature of the class:

SAMLLogoutProcessingFilter(org.springframework.security.web.authentication.logout.LogoutSuccessHandler logoutSuccessHandler,
org.springframework.security.web.authentication.logout.LogoutHandler... handlers)

Constructor uses custom implementation for determining URL to redirect after successful logout.

SAMLLogoutProcessingFilter(String logoutSuccessUrl, org.springframework.security.web.authentication.logout.LogoutHandler... handlers)
Constructor defines URL to redirect to after successful logout and handlers

Summary

In this chapter, you have seen the basics of Spring 4.0 Web MVC creation and build
tools such as Maven and Gradle as a recap and practice session. You have seen

the usage of the Spring tool suite where we created a web-based MVC project and
executed and modified the programs to implement the login and logout features.

Then, we explored the open source implementations of SAML 2.0 available as
Identity providers and how to register with the web-based IDP SSOCircle. The other
IDPs such as Shiboleth and OpenSSO were also introduced for further experiments
with SAML 2.0.

Finally, you learned how to use the Spring4.0 SAML extensions to implement single
sign-on and sign off by connecting to the SSOCircle web-based authentication
mechanism. At this point, feel free to explore the other SSO providers by registering
with them, or you can install some of them in your local system as well.

You can refer to my GitHub account for many working SSO programs. The link is
https://github.com/nnanda and you can see a separate directory named Sample
Codes for Spring Security Essentials, which will have all the working projects that
are specified in this book.

[32]

https://github.com/nnanda

Spring Security with LDAP

Spring 4.0 comes with an LDAP Template package that makes the integration
between the Spring applications and LDAP implementations such as OpenLDAP,
ApacheDS, and so on.

In this chapter, we will cover following topics:

Various LDAP implementations available

Apache Directory Server and Studio for Spring Tools Suite (STS): Overview,
installation, and usage

Basic Java Naming and Directory Interface (JNDI) LDAP programs
Spring LDAP Template: spring-ldap-core 2.0.3 overview

Spring LDAP Template: Directory structure operations, LDAP Data
Interchange Format (LDIF) handling, and queries

A quick overview of LDAP

Let's us have a quick overview of what LDAP is all about. Lightweight Directory
Access Protocol (LDAP) came up during the 1980s for easier accessibility and
maintainability of the distributed directory services, which are used over the Internet
Protocol network. The frequent usage of LDAP is to implement single sign-on across
various applications in different networks. LDAP has standard bodies such as
network protocols, directory structure and services provided by the LDAP server.

It originated in the University of Michigan and was endorsed by more than 40
companies.

[33]

[vww allitebooks.cond

http://www.allitebooks.org

Spring Security with LDAP

Some industry standard usage of LDAP is as follows:

* User authentication

* User/system groups

* Address book

* Organization representation

* User resource management

* E-mail address look-ups

* Application configuration store

* Private branch exchange (PBX) configuration store

LDAP is a software network protocol that will provide options for Internet
applications to identify organizations, usernames, passwords, and other resources by
searching based on the key and value pair. X.500 is a standard for directory services
that holds a small amount of data that is to be used in a network and this standard

is the basic for Directory Access Protocol (DAP). LDAP is formed based on various
entries, it is nothing but a collection of attributes that is identified by a globally-
unique Distinguished Name (DN).The LDAP directory structure follows a simple
tree structure that contains information about organizations, usernames, password,
and so on. Directories will contain a descriptive, attribute-based information and
support sophisticated filtering capabilities.

Directories generally do not support complicated transaction or rollback schemes

that are found in the database management systems designed to handle high-volume
complex updates. Directory updates are typically simple all-or-nothing changes, if they
are allowed at all. They are generally tuned to give quick response to the high-volume
look-up or search operations. The directory can be distributed among many servers
and applications. Each server can have their own copy of the directory information,
which can be refreshed periodically. This will be taken care by LDAP Directory
System Agent (DSA), to which all the application servers need to be subscribed.

The LDAP server will be responsible to maintain, manage, and provide the directory
information to the participating applications. The client starts a session with the
server and will call DSA by default on the TCP and UDP 389 port or on the 636 port
for LDAP over SSL (LDAPS). Global catalog is available by default on the 3268

and 3269 ports for LDAPS. Directory Server will facilitate adding, modifying, and
deleting the directory structure information. The LDAP servers are designed to store
general purpose data so that it is not restricting itself to hold only a particular type
of data. We can clearly define the type of data and structure that is to be stored and
maintained for each type of industry usage; therefore, different types of entities can
be stored in the directory structure as the LDAP's general architecture provides the
capabilities that are needed to manage large amounts of diverse directory entries.

[34]

Chapter 3

LDAP implementations

The following software programs communicate with built-in directory services that
are developed on LDAP. The LDAP implementations are designed on the following
framework components:

* Pluggable authentication module (PAM): This allows the integration of
various authentication ways

* Name Service Switch (NSS): This converts the information available in the
text file to a C library

* Name service caching daemon (nscd): This provides a cache for the name
services and makes them available as a lookup

* Lightweight Directory Access Protocol (LDAP): This provides the clients
with information about user accounts and groups

The efficiency of LDAP servers usually depends on their compatibility with clients,
installation overhead, scalability (multi-master replication), and integration with
other framework components such as console, password manager, and so on. We
may have to consider other factors such as ranging attributes, password updates
and object class mapping. Most LDAP directories use the inetOrgPerson and
groupOfUniqueNames object classes for users and groups. Let's see some LDAP
implementations such as ApacheDS, OpenLDAP, and so on.

ApacheDS

Apache Directory Server (ApacheDS) is an open-source implementation of the X.500
directory server. It's an open source project of Apache Software Foundation that
comes with a plug-in for STS, where we can configure various directory structures
and run the ApacheDS in the STS. ApacheDS is written in Java, which is compliant to
the LDAP 3.0 standards and certified by The Open Group. ApacheDS also supports
Kerberos 5 and the Kerberos Change Password Protocol. Using ApacheDS, we can
create triggers, stored procedures, queues, and views for the directory values and the
usage of directory data can be made simpler.

[35]

Spring Security with LDAP

OpenLDAP 2.4.42

OpenLDAP 2.4.42 is another LDAP implementation that is commonly available with
all Linux bundles. This is a command line tool and phpLDAPAdmin will be used as
a frontend for this server. OpenLDAP comes with slapd (the standalone command
line LDAP server). It listens for the directory connections on any number of ports
(default: 389), responding to the directory services operations that it receives over
these connections), libraries that have the LDAP implementation, and other utilities
and sample clients. With OpenLDAP, you can secure the communication and

define privileges for your users. This suite also provides role-based identity access
management Java SDK called Fortress, specific Java libraries for LDAP access called
JLDAP and JDBC-LDAP Bridge Driver.

OpenDJ

Like OpenLDAP, this server also provides good attention and commercial support.
This is developed on top of Sun Microsystems Sun Directory Server. An LDAP
SDK, directory server, and client tools are developed by the OpenDJ community.
This implementation comes with various APIs for synchronous and asynchronous
communications. As it is providing an asynchronous LDAP access, we have

the options of choosing from various access methods such as REST, System for
Cross-domain Identity Management (SCIM), LDAP, and web services. OpenD]

is developed using pure Java architecture so that it supports the most demanding
service-level agreement (SLA) environments with high throughput and low
response times.

When it comes to security, OpenDS secures all data including passwords through
a wide variety of encryption mechanisms. Also, it supports multiple levels of
authentication and authorization policies including SSL, STARTTLS, and certificate.

The 389 Directory Server (previously
Fedora Directory Server)

This is developed by Red Hat, as part of Red Hat's community-supported Fedora
Project. The name 389 is derived from the port number of LDAP. The key features
of this server include multi-master replication, secure authentication and transport,
online, zero downtime, LDAP-based update of schema, configuration, management,
and in-tree Access Control Information (ACI) graphical console for all facets of
user, group, and server management. The 389 Directory Server offers more features
and the Admin console makes it easier to manage the directory server compared

to OpenLDAP. Fedora Directory Server (FDS) provides a flexible mechanism for
grouping and sharing attributes among entries in a dynamic fashion.

[36]

Chapter 3

FDS has secure communications across networks with 168-bit encryption ciphers.
The major components of FDS consist of an LDAP server, Directory Server Console,
Simple Network Management Protocol (SNMP) agent, and online backup and
restore. We will choose ApacheDS as it is very simple to use and comes with a
plug-in support for STS. Apache Directory Studio is a powerful frontend to create
organizational user and password tree structure. Let's understand how to work with
STS and Apache DS.

Apache Directory Server and Studio

installation
Let's see how to install and run STS and update the site with the ApacheDS:

1. Download and install spring-tool-suite-3.7.0.RELEASE-e4.5-
win32-x86_64.zip 411 MB. Open the Install New Software dialog box.

2. Enter http://directory.apache.org/studio/update in the work
field and check the Apache Directory Studio and Apache Directory
Studio Dependencies options and proceed till completion, as shown in the
following screenshot. This operation may take several minutes, depending
on your system and Internet configurations:

ect Run Window
v v g () Dashooard S Quick Access 11| &5 | [
= | (2) Help Contents

5 Search o PN T M

Dynamic Help 1 € Install

= m Bz fusfies &
8 g= Outline 33

Key Assist... | Available Software
Tips and Tricks... Check the items that you wish to install.
& Report Bug or Enhancement...

Cheat Sheets... . - -4
Work with: ADS - http://directory.apache.org/studio/update

Check for Updates o
: Install,New Software...

Find more software b

e filter te
3 Installafion Details type fitter ted
Eclipse Marketplace... Name Version

7| 100 Apache Directory Studio
V| 100 Apache Directory Studio Dependencies

O @S

About Spring Tool Suite

4 Spring Explorer &3

5

[37]

Spring Security with LDAP

3. After some time, you will see the Security Warning dialog. Click on OK
to proceed. Then, you will see a Selection Needed dialog, check the trust
certificate checkbox and proceed. On completion, you will be asked to restart
the STS. Click on Yes as follows:

- BN B%-0-Q i EBH G- ®C A @0 - sy
,_) (7 Selection Needed
 Security Waming =1 P9 ety
Installir s Do you trust these certificates?
_ Waming: You are installing software that contains unsigned content. The authenticity I_II 7| The Legion of the Bouncy Castle; Java Soff
/&% orvalidity of this software cannot be established. Do you want to continue with the e - o
installation?
ok || cance][petaii>
e e LT Gremmmmmmmmmmmescmeeessmeseceeeeeaa
C Software Updates &2
You will need to restart Spring Tool Suite for the changes to take effect. Would you
like to restart now?
]
v
C le 3
394 Servers 3 B = ConseT
e (% A7 5 = = m Mo consolesto display at this time.

4. Now, navigate to Windows | Open Perspective | Other and select LDAP
perspective. In the server panel, right-click and select New | Server.

5. Give a name of your choice and you can see the server is created. Now, right-
click and Run. You can see the server status changed to Run, as follows:

o

*2% LDAP Browser 53 2 =2[E ~= o £ New LDAP Server 5T

= D Create an LDAP Server D

Please choose the type of server and specify a name to create a new server,

Select the server type:
Type filter here...
4 (= Apache Software Foundation
[ApacheD$ 200
1 Connections | {ifi LDAP Servers 57 =0
FlOo=
- Server State £ Modification Logs 52
[Fr i = -
o packt [ia Stopped
New »
St Open Configuration F3
¥ Delete Delete
Rename... F2 Fifi:h Cancel
Q Run Ctrl+R
Stop h Crl+T

[38]

Chapter 3

Right-click on the server and open the configurations window.
Go to Partitions and click on Add to create a new partition.

Provide ID and Suffix as per your preference and use Ctrl + S every time you
want to save the modifications. Restart the server once you have created a

partition:
o D All Partitions Partition General Details
- - Set the properties of the partition.,
0 imr&:le (dc.:;;;:;(-com] [JDBM] putbor -
T packt (o=pac] artition Type:
& system (ou=system) [JDBM] —
- . ID: packt
Suffic o=pack]
¥ Synchronization On Write
it LDAP Servers (1 8 Gl Estly
g 10 Set the attribute/value pairs for th
State partition.
£b Started | Auto-generate contex entry f
- New b |
Open Configpration =] Shibute gk
objectclass domain
H Delete Delete top
Rename... F2 extensibleObject
Run Ctrl+R Partition Specific Settings
B Sop g Cache Size: 100
4w Create a Connection QOverview | LDAP/LDAPS Servers | Kerberos Server Partitions | Password Policies Replication

9. Right-click on the server and select Create a Connection. You will see that
the dialog box with a connection named packt is created.

10. Double-click on the packt connection to view the Root DSE details. You can
see the connection browser with entries for newly created partition called
packt. As we are already given a suffix name, o=packt, you can see the
o=packt entry under Root DSE, as follows:

S[%) ¥ = O @ ousconfigldif 2 5
- - JLy All Partiti il
| — A ey
@ de=examplede=com && example (dc=example,
All Partitions > @ o=packt & packt (o=packt) [JOBM
— & ou=confi A =
£ example (de=example,de=com) [JDEM)] l Adc :Z o::scht:'ia Sosystem (ou=system) [l
& packt (o=packt) [IDBM) > & oussystem
£ system (ou=systern) [IDBM] & Searches
Ul Bookmarks
4 Connections i3 Giji LDAP Servers =0
Bla%| BE
ers 51 =0 b packt
¥l Oom
e
ptar o ~
Open Configuration F3 Overview | LDAP/LDAPS Server
K Delete Delete) Modification Logs 52
Rename... F2 DAPS Servers | Kerberos Server | Partitions | Pas....... oo ciopicannn.

[39]

Spring Security with LDAP

11.
12.
13.
14.

Select the organizationalUnit object class and click on Next.

Right-click on the o=packt node and select the New Entry dialog.

Leave the Create entry from scratch selection as it is and click on Next.

Give values for RDN as ou and value as production and click on Next and

Finish. You can see an organization unit called production created under

organization packt:

DRQ-B-R o F-® i~ T LA Brow
Browser &7 @S| B ¥ =0 B o=
. - « 5 om
- | [- A DN: o=packt 28 X2
1T Attribute Deseription j
Root DSE (6) objectclass &
@ de=example de=com objectclass &
o=packt objectclass -
f P 2 Jec % Saarc
& ou=config dc [Boztm|
& ou=schema 0
£ ou=system
earches C New Entry
fookmarks Entry Creation Method 8 Comnzcsor
Please select the entry creation method.
i Rkt
oK
ections” g Use existing entry as template
o=packt
ackt

{2 N Sty

Object Classes e
Plaase se ect ob,ect < s3ses of the ety Seledt et least oe 52 chursl shject |5
-
Aoailab e cbject esoes Selected ocject clame:
/ | i organiztionslnt
— Grep
G ascesComroSucensy 4 e T
& usoum, = fel Homer Segih 8
@ aze-suthanicat onl-tercep : QM-
L P
Dlssingulehed
= Frarh.
B
b
2| Paw o
= | R o
7 Serch] CNPresiems o
L b
»
2 <k | tem> | Cancel

Now, let's try to add a user and password under the production unit. First, try the
same steps for the sales, publishing, and accounts departments.

Now, right-click on production unit and add new entry. In the Object Classes
dialog, select inetOrgPerson and click on Next. The Parent field must read
ou=production, o=packt and enter cn in the RDN field and enter a first name and
last name in the value field. The next dialog will be the Attributes dialog; enter your

surname in the sn field:

[40]

Chapter 3

= W& EE = NEED gId W ou=p tion,o=pacl - b
L T
R - DM: ou=production,o=packt o — Mame
- - - e Flegse salectthe pasert oF the aew entry and srtes tae LDRL
E 6) c Lo % a Parest aim e wtion, ne packt = || Dreme.
::T;jq}dﬁmm Object Classes [n = - Mende Hschmurd || = |
"]
T TE Please select object classes of the entry. Select at least one structural DN Praviers. | so=blans Mo bimmainasmeprothnilon sk
su=production s
blishi ilable object classes Selected obj . — (]
::“;S;Ies M @ g:siﬂetOI- | : ir'i“:use © € New kntry
. @, accessControlSubentry ~ « G: ’m_m o . ; opackt t;‘)d““'“ Attributes
system @ account EJ C; tp:p 2 cussccounts i Atnbuts an hog on copt
(@t ads-authenticationintercep % °"'_P’°dl"'h“i°“
G} ads-authenticator E ::::::" g DM: en—MNanda Machimuth
Q d t i imy © & ousconhg Albritiil e D vigalin
@} ads-base Add P e sl I i
(G ads-changelog [—] & s;f':“:u.wmm ::,’::EK
@ ads-changeP: i Bemove 10 Bookmarks objectClass
? | B\ LDAF Vel @ ads-delegatingAuthenticats =
il 8| @} ads-dhcpServer =
0 | @ sds-directoryService L% om Attribute Description Value
@ ads-dnsServer | Root DSE (6) jectCl inetOrgP
G ads-dsBasedserver e ’ LL‘ @ de=example,dc=com mﬂx orgamrga:f';
<l L] | b 4 @ o=packt (4+) objectClass person (struc
& ouzaccounts objectClass top (abstraci
4 & ous=production (1+) o Manda Nachi
,} cn=Nanda Nachimuthu n MNanda
& ou=publishing
@ Back [2 ousSales

Now, we need to provide a username to this user. Right-click on the same window
and choose New Attribute. In the Attribute type field, enter uid and click on Next
and Finish and provide a username of your choice:

DN: cn=Nanda Nachimuthu,ou=production,o=packt E
Attribute Description Value
objectClass inetOrgPerson (structural)
objectClass organizationalPerson (structural)
objectClass person (structural)
objectClass top (abstract)
n Nanda Nachimuthu
sn Nanda
. New Attribute
Attribute Type
Please enter or select the attribute type.
Attribute type: uid
[¥] Show subschema attributes only
[] Hide existing attributes

[41]

Spring Security with LDAP

Do this one more time to set the password by entering userpassword in the
Attribute type field. Make sure that the SHA hashed password is selected. You can
add some more usernames and passwords for various departments for practice.

Apache DS Studio features

Let's go through the features of Apache DS Studio quickly in order to understand the
LDAP activities better:
* The LDAP browser:

° This is used to create connections, browse directory, and search
directory

° This has many wizards to edit: New Entry, New Context, and
Attributes

° The LDIF and DSML export facility is available

° Many value editors are available such as password, image, date and
time, Distinguished Name, Object Identifier (OID), certificate, and
so on

° Property viewer and editor are available for connection, entry,
attribute, value, and search and bookmark values are available
* Apache Directory Studio LDIF Editor:
° New and existing files can be created and modified
© The LDIF editor has an option to directly connect with a server and
its schema
* Apache Directory Studio Schema Editor
° Many views, such as Hierarchy, Problems, Projects, and so on, are
available
° This can create a new project, new schema, and export of the same
°© This also helps in creating new attributes and object classes
These features are mentioned here for additional knowledge about LDAP and
future practices. So far, we have seen the basics of LDAP, industry standard LDAP

implementations, how to install a popular Apache DS LDAP server and studio and
how to integrate the same with the well-known STS.

[42]

Chapter 3

We have configured the server, established the connection, browsed the directory,
and added a few department, user, and password details.

Now, let's see how to access the LDAP server and values using the basic Java JNDI
program and advanced Spring LDAP Template package.

Simple Java JNDI program to access LDAP

Like creating the username and password entries, go to the schema browser,
right-click on ou=system, and then choose ou=user. Create one entry under

the inetOrgPerson object class. In the Distinguished Name dialog, choose
employeeNumber in the RDN field and provide the value as 4321. The next dialog
will be Attributes and give your name as cn and sn. Add one more attribute type
(you can add multiple of these) as telephone number and provide a value for the
purpose of testing. Create a basic Java project in STS and run the program. You can
see the result in the console, as follows:

[4] JavaINDIDemo.java 22

package com.packt.ldap;

import java.util.Properties;

import javax.naming.*;

import javax.naming.directory.*;

public class JavalNDIDemo {

public static void main(String[] args) throws Exception {

Properties properties = new Properties();
properties.put(Context. INITTIAL_CONTEXT_FACTORY, “com.sun.jndi.ldap.LdapCtuFactory™);
properties.put(Context.PROVIDER URL, “ldap://localhost:183897);
properties.put(Context.SECURITY PRINCIPAL, “uid=admin,ou=system");
properties.put(Context.SECURITY CREDENTIALS, "secret™);
DirContext context = new InitialDirContext(properties);
Attributes attrs = context.getAttributes("employeeNumber=4321,cu=users,oussystem™);
System.out.println(“Surname: “ + attrs.get("sn").get());

System.out.println{“Common name : " + attrs.get(“cn™).get());
System.out.println("telephone number : ™ + attrs.get("telephoneNumber™).get());
}
N}
B Console 22 B X % | B LB TE‘—" MmME-[H-r=0

<terminated> DirectarySample [Java Application] C\Program Files\Javaijrel B.0_S1\bin\javaw.exe (Aug 16, 2015,
javax.naming.directory.InitialDirContext@4e25154f -
{telephonenumber=telephoneNumber: 9588887969, objectclass=objectClass: top, inetOr
Surname: Nanda

Common name : Nanda

telephone number : 9588887969

[43]

Spring Security with LDAP

In the same set up, create another Java class and run the following code and you can
see the search for the LDAP directory by providing the search criteria:

DirContext context = new InitialDirContext(initilaProperties);
String searchFilter = "(objectClass=inetOrgPerson)”;
String[] requiredAttributes = { “employeeNumber”, “ecn®,"telephoneNumber” };
SearchControls controls = new SearchControls();
controls.setSearchScope(SearchControls.SUBTREE_SCOPE) ;
controls.setReturningAttributes(requiredAttributes);
NamingEnumeration users = context.search(“oususers,oussystem”,searchFilter, controls);
SearchResult searchResult = null; String commonName = null; String empNumber = null;
while (users.hasMore()) {

searchResult = (SearchResult) users.next();

Attributes attr = searchResult.getAttributes();

commonMame = attr.get("cn").get(®).toString();

empNumber = attr.get(“employeeNumber®).get(@).toString();

telephoneNumber = attr.get("telephoneNumber”).get(8).teString();

System.out.println("Name = " + commonName);

System.out.println(“Employee Number = " + empNumber);

System.out.println(“Phone Number = " + telephoneNumber);

These two JNDI programs will give you the idea to create contexts by providing the
LDAP parameters and browsing the LDAP directory. Let's start exploring the Spring
LDAP Template now.

Spring LDAP Template — step by step

To make the LDAP calls easier, Spring has come up with an LDAP Template
package, which is designed in a similar manner to JdbcTemplate. The LDAP
Template eliminates the problem of creating and closing LdapContext and looping
through NamingEnumeration. This also has a comprehensive unchecked exception
hierarchy built on Spring's DataAccessException. The LDAP Template contains
classes to dynamically build LDAP filters and Distinguished Names (DNs). The
client-side LDAP transaction management is taken care by this extension. Let 's see
some of the classes that are involved in this package:

* org.springframework.ldap.core.DistinguishedName: This is useful to
build and modify the LDAP path dynamically

[44]

Chapter 3

* org.springframework.ldap.core.LdapTemplate: This executes the core
LDAP functionality and helps to avoid common errors, relieving the user of
the burden of looking up contexts, looping through NamingEnumerations,
and closing contexts

* org.springframework.ldap.filter.AndFilter: This adds a query to the
AND expression

* org.springframework.ldap.filter.EqualsFilter: This is a filter for the
equals operation

* org.springframework.ldap.1ldif.parser.LdifParser: This is the base
class for the Spring LDAPs LDIF parser implementation

* org.springframework.ldap.ldif.parser.Parser: This represents the
required methods that are to be implemented by the parser utilities

* org.springframework.ldap.support.LdapNameBuilder: This is the helper
class to build the LdapName instances

* org.springframework.ldap.odm.core.OdmManager: This is the interface
for interaction with an LDAP directory

Apart from these classes, we have XML configuration files to mention the server
URL and credentials details, LDAPTemplate bean ID, and LdapContextSource.
The configuration file will also have the entries for the contextSourceTarget,
dirContextValidator, contextSource, and odmManager factory bean. We are
going to use the same setup and values as url=1dap://localhost:10389 and
userDn = uid=admin, ou=system. Let's see how to create the entries, search, and
modify using LDAPTemplate, ApacheDS and STS.

Simple LDAP search

Create a Spring web project and create packages named com.packt.spring.ldap,
com.packt.spring.ldap.1ldif, com.packt.spring.ldap.odm, and com.packt.
spring.ldap.operations.

[45]

Spring Security with LDAP

As shown in the following screenshot, create the classes and the packtldap.xml
file and keep them in the proper folders. The UserAttributesMapper program is
also given for your reference. The SimpleSearch program calls the simpleSearch.
getAllUsers () method to print out all users available in this system. Take a look at
the packtldap.xml file, where we have provided the url, userbn, and password.

You can see the results printed on the right-hand side console:

1] *SimpleSearch.java 1

package com.packt.spring.ldap.operations;
= import java.util.®;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlapplicationContext;
import org.springframework.ldap.core.ldapTemplate;
import com.packt.spring.ldap.*;
public class SimpleSearch |
private LdapTemplate ldapTemplate;
@Suppressiarnings(“unchecked")
public Set<LDAPUser> getAllUsers(){
UserAttributesMapper mapper = new UserAttributesMapper();

public void setLdapTemplate(LdapTemplate ldapTemplate){
this.ldapTemplate = ldapTemplate;

public static void main(String[] args) {
SimpleSearch simpleSearch = new SimpleSearch();

for (LDAPUser user : simpleSearch.getAllUsers()){
System.out.println{user); }}}

& Console 53 -x&lxtﬂ_ #B-f-=8

<terminated> SimpleSearch [Java Application] C:\Program Files\Java)jrel 8.0_51\bin\javaw.exe

Aug 17, 2015 2:51:35 AM org.springframework.beans.factory.support.Det «

INFO: Pre-instantiating singletons in org.springframework.beans.factc

New Useryyy-12345

New Userxxx-12345

New Userqqqq-12345

New User-12345

Nanda-950@887969

L return new HashSet<LDAPUser>(ldapTemplate.search("ou=users,ou=system”, "(objectClass=persol

i ApplicationContext context = new ClassPathXmlApplicationContext("packtldap.xml");

simpleSearch.setldapTemplate(context.getBean("ldapTemplate”, LdapTemplate.class));

You can see the contents of AttributeMapper. This is used to map the LDAP

attributes to the custom LDAPUsers object:

package com.packt.spring.ldap;
import org.springframework.ldap.core.AttributesMapper;
public class UserAttributesMapper implements AttributesMapper {

LDAPUser userObject = new LDAPUser();

String commonName = (String)attributes.get(“cn").get();
userObject.setCommonName (commonName) ;

if (attributes.get("telephoneNumber") == null){

Yelse{
userObject.setTelephone(telephone);
}

return userObject;

public LDAPUser mapFromAttributes(Attributes attributes) throws NamingException {

System.out.println("Telephone is null for " + commonName);

String telephone = attributes.get("telephoneNumber").get().toString();

[46]

Chapter 3

Add, modify, and delete LDAP user

In the same package, add a class to add the LDAP user. The code and the executed
result is as follows. The creation of LDAPTemplate and usage is given in the program.
The added user details are shown in the schema browser, as follows:

AddUserjava &1 EFou) = O B Outline 22
package com.packt.spring.ldap.operations; @ P B laz ‘Q We

@ import javax.naming.directory.Attributes;[] R .
pu:iic 21“5 Addl.lsgr 1 4 - # com.packt.spring.ldap.operations
private LdapTemplate ldapTemplate; 4 £, AddUser
public void add(String commonName, String surName, String telephone){ o |dapTemplate : LdapTemplat
String baseDn = "oususers,ou=system”; @ add(String, String, String) : va

DistinguishedName distinguisedName = new DistinguishedName(baseDn);
distinguisedName.add("cn", commonhame);

Attributes userAttributes = new BasicAttributes();
userAttributes.put("sn”, surbame);
userAttributes.put("telephoneNumber®, telephone);

BasicAttribute classAttribute = new BasicAttribute("objectclass");

© setldapTemplate(LdapTempl
» : main(String(]) : void

classattribute.add("top™); + L]
classAttribute.add("person”);)
userAttributes.put(classAttribute); Frogr & Console &2
ldapTemplate.bind(distinguisedName, null, userAttributes); > R &
o (disting) s X% BEED
public void setlLdapTemplate(LdapTemplate ldapTemplate){ <terminated> AddUser [Java Application] C
this.ldapTemplate = ldapTemplate; Aug 17, 2015 3:88:89 AM org.sprin
INFO: Refreshing org.springframew
public static void main(String[] args) { Aug 17, 2015 3:08:09 AN or‘s.?pt‘in
b ApplicationContext context = new ClassPathXmlApplicationContext("packtldap.xml”); INFO: Loading XML bean dEflnltl?n
LdapTemplate ldapTemplate = context.getBean("ldapTemplate”, LdapTemplate.class); Aug 17, 2015 3:08:89 AM org.sprin
AddUser addPerson = new AddUser(); INFO: Pre-instantiating singleton
addPerson.setLdapTemplate(ldapTemplate); New Userqqqq-12345
addPerson.add("ABCDEF", “abc”, "555%); New Userxxx-12345
SimpleSearch simpleSearch = new SimpleSearch(); Nanda-9500807969
simpleSearch.setLdapTemplate(ldapTemplate); New Useryyy-12345
for (LDAPUser user : simpleSearch.getAllUsers()){ ABCDEF-555
System.out.println(user); New User-12345

New Userqqqqdddddd-12345

The code snippet for dynamic search, modifying user, and deleting user is given in
the following for your reference:

DynamicSearch dynamicSearch = new DymamicSearch();

dynamicSearch.setldapTemplate(context.getBean("ldapTemplate™, LdapTemplate.class));

for (LDAPUser user : dynamicSearch.getAllUsers("username”)){
System.out.println{user);

}

ModifyUser modifyPerson = new ModifylUser();
modifyPerson.setldapTemplate(ldapTemplate);
modifyPerson.modify(“some filter™, "1234%);

Removellser removePerson = mew RemoveUser();
removePerson.setldapTemplate(ldapTemplate);
removePerson.remove(“some user™);

SimpleSearch simpleSearch = new SimpleSearch();

simpleSearch.setldapTemplate(ldapTemplate);

for (LDAPUser user : simpleSearch.getAllUsers()){
System.out.println(user);

}

[47]

Spring Security with LDAP

LDAP 1.3.1 features — Object Directory
Mapping and LDIF parsing

First, let's see a quick example of the LDIF parser. Create sample.1dif, as given in
the following screenshot, and store it in a readable folder:

dn: ou=susers,ou=system
sn: SN-1
telephoneNumber: 12345
objectClass: person
objectClass: top

cn: CN-1

dn: ou=users,ou=system
sn: SN-2
telephoneNumber: 6789@
objectClass: person
objectClass: top

cn: CN-2

You can call the users.1dif from the following program and parse the user details.
In this program, the Attribute and Attributes classes come from the Java naming
directory package. We used the parser and LDIFParser classes from the Spring
LDAP package to read and parse the LDIF file:

public class LDIFParserDemo {
public static void main(String[] args) throws Exception{
Parser parser = new LdifParser();
parser.setResource(new FileSystemResource("users.ldif"));
parser.open();
while (parser.hasMoreRecords()){
Attributes attributes = parser.getRecord();
String personDetails = getPersonDetails(attributes);
System.out.println(personDetails); } }
private static String getPersonDetails(Attributes attributes) throws Exception{
StringBuilder personDetails = new StringBuilder();
personDetails.append("{");
NamingEnumeration<? extends Attribute> attributeNames = attributes.getAll();
while (attributeNames.hasMoreElements()) {
Attribute attribute = attributeNames.next();
personDetails.append("[" + attribute.getID());
@SuppressWarnings("unchecked")
NamingEnumeration<String> attributeValues = (NamingEnumeration<String>) attribute.getAll();
while (attributeValues.hasMoreElements()){

String attributeValue = attributeValues.next();
personDetails.append(“(").append(attributeValue).append(”)");

personDetails.append("]");
}
personDetails.append("}");
return personDetails.toString();:

[48]

Chapter 3

Object Directory Mapping (ODM) is used to persist and retrieve a user domain
object from an LDAP directory. We need to create a user class and annotate using the
Attribute, entry, and Id annotations as shown in this example:

H

H

H

¥

H

@Entry{objectClasses = {"applicationEntity™, "top"})
public class ApplicatiomEntity {

@Id
private Name distinguisedName;

@attribute{name="cn")
private String cnj

@attribute(name="description™)
private String description;

@attribute(name="presentationAddress")
private String presentationAddress;

@attribute{name="cbjectClaszs")
private List<String> objectClassNames;

public ApplicaticnEntityi(){

public Mame getDistinguisedName() {

public void setDistinguisedMame(Name distinguisedMame) {

public String getCn() {

public void setCn{String cn) {

objectClassNames = new Arraylist<String>();

return distinguisedName;

this.distinguisedName = distinguisedMame;

return cnj

this.cn = cn;

Then, you can run the following program to see how to instantiate the ODM and set
the DistinguishedName to get the application entity to read:

import
import
import
import
import
import
public

java.util.List;

package com.packt.spring.ldap.odm;

javax.naming.directory.SearchControls;

org.springframework.
org.springframework.
org.springframework.
org.springframework.

class ODMDemo{
public static void

context.ApplicationContext;
context.support.ClassPathXmlApplicationContext;
ldap.core.DistinguishedName;
ldap.odm.core.OdmManager;

main(String[] args) {

ApplicationContext context = new ClassPathXmlApplicationContext("config.xml");

OdmManager

odmManager = context.getBean("“odmManager"”, OdmManager.class);

String baseDn = "ou=services,ou=configuration,ou=system”;
DistinguishedName distinguisedName = new DistinguishedName(baseDn);
distinguisedName.add("cn", "Book");

ApplicationEntity applicationEntity = odmManager.read(ApplicationEntity.class, distinguisedName);
System.out.

println(applicationEntity);

[49]

Spring Security with LDAP

In config.xml, along with the bean id definitions for fromstringConverter,
toStringConverter, and converterManager, we will have bean ID declarations for
LdapContextSource and OdmManagerImplFactoryBean as follows:

<bean id="contextSourceTarget"” class="org.springframework.ldap.core.support.LdapContextSource">
<property name="url" value="ldap://127.08.08.1:10389" />
<property name="userDn" value="uid=admin,ou=system" />
<property name="password" value="secret" />
<property name="pooled“ value="false" />
</bean>
<bean id="odmManager" class="org.springframework.ldap.odm.core.impl.OdmManagerImplFactoryBean">
<property name="converterManager" ref="converterManager" />
<property name="contextSource" ref="contextSource" />
<property name="managedClasses">
<set>
<value>net.javabeat.artices.spring.odm.ApplicationEntity</value>
</set>
</property>
</bean>

Summary

In this chapter, we have seen the basics of LDAP and different implementations that
are available. We have gone through the features of ApacheDS, which is available as
an open source. The steps involved in installing ApacheDS and Studio with STS have
been discussed in detail. We were able to create the directory and values for different
departments and users.

We tried many programs to call the LDAP server values from the plain Java JNDI
method and we used the same steps for the Spring LDAP template extensions.
The Spring LDAP template's features such as search, create, and modify have
been demonstrated along with the advanced features such as the ODM and LDIF
handling.

I request the readers to go through the other LDAP implementations and get the
source code for this chapter from the Packt website.

[50]

Spring Security with AOP

To address the cross-cutting concerns, such as logging, exceptions, and security,
Aspect-Oriented Programming (AOP) is used as a programming approach. By
introducing AOP as a programming practice, modularization of complex coding
is made possible. Usually, the program code consists of various components that
will deal with many aspects, such as logging and security. With conventional
programming approach, these components are written in a single program that
leads to a complex and non-maintainable bundle of code, which may be a threat
in the future. AOP makes programmers' lives easy as it is possible for us to
compartmentalize the various cross-cutting concerns in multiple aspects. AOP is
considered as a complement of OOPS rather its replacement.

The following topics will be covered in this chapter:

* AOP basics

* AOP terminologies

* Simple AOP examples

* Spring AOP using Aspect] annotations

* Securing Ul invocation using Aspects

[51]

Spring Security with AOP

AOP basics

AOP is designed to handle modularization of concerns at source code level, which

is called concerns. The concerns play a major role in AOP as this is used by multiple
programs to address a specific reusable requirement; therefore, they are called
cross-cutting concerns or horizontal concerns. In larger projects, a single line of code
change may lead to many dependencies and impact the entire software development
life cycle by undergoing processes such as code check-in, build, and testing. To make
it easier, reducing the dependencies of larger code is important. AOP provides a
solution to separate business code and cross-cutting concerns so that simple code
changes do not affect the business functionality or behavior of the software bundle.

AOP creates a big impact on simplifying the system-level coding by implementing
cross-cutting concerns. We can address each aspect separately in a modular fashion
without tightly coupling the business logic and concerns. Avoiding duplication of
code is also possible and we can introduce new aspects to address functionalities,
which are introduced in middle of the systems development life cycle (SDLC).

By implementing AOP, overdesigning and complex coding styles are avoided.
Designers are made to focus only on the business logic and prototypes without
bothering much about the cross-cutting concerns. To put it simply, we can say that
AOP helps the developers to write small code snippets and keep them as an aspect
that facilitates better maintainability and reusability, which can be applied across the
entire project.

AOP terminologies

The AOP terminologies are as follows:

* Aspect: This is a module or package that has a set of APIs that are used to
address the cross-cutting requirements. For example, an exception module
can be treated as an AOP aspect for Exception Handling.

* Join point: The plugging point to introduce the aspect in the application is
called join point. This is where the AOP code will start its activities.

* Adpvice: This is where the actual actions such as Logging or Exception are
handled from the Aspect code, which is not a part of the application code.
The Action can be initiated before or after the application method execution.
Advice is of four types, as follows:

° Around advice: This will have the custom code that is to be executed
before and after the method invocation. We can decide on the
proceedings to the join point, or we can return some values, or we
can decide on throwing some exceptions using Around advice.

[52]

Chapter 4

Before advice: Before executing join points, this advice will be called;
however, this advice will not affect the flow of the join point.

Throws advice: If a method throws an exception, this advice will be
invoked.

After returning advice: If a join point flow ends normally, then this

advice will be called.

* Pointcut: This is the collection of join points, where an advice should be
executed. We can specify the Pointcut using expressions or patterns.

¢ Introduction: An Advice class can be added with new methods and
attributes using the Introduction feature.

* Target object: This is also called advised object. We can advise an object
using one or more Aspects. This object is always instantiated as a proxy
object.

* Weaving: This is the process of linking many aspects with application types
or objects in order to create an advised object. This can be done at compile
time, load time, or run time.

Simple AOP examples

Here are the steps to run basic AOP samples that will explain the AfterAdvice,
BeforeAdvice, AroundAdvice, and ExceptionAdvice concepts.

Create a Spring Maven project in STS and add the BookService class:

package com.packt.spring;

public class BookService {
private String name;
private String url;

public void setName(String name) {
this.name = name;

H

public woid setUrl(String url) {
this.url = url;

¥

public void printMame() {
System.out.println(“Book name : " + this.name);

¥

public void printURL() {
System.out.println("Book website : " + this.url);
H

public void printThrowException() {
throw new IllegaldrgumentException();

H

[53]

Spring Security with AOP

Create AOPBeforeMethod. java and attach BeforeAdvice to BookService.java as
configured in the Spring-Book . xml:

I fpackage com.packt.spring.aop;

5 import java.lang.reflect.Method;
4 dimport org.springframework.aop.MethodBeforeddvice;

5 public class AOPBeforeMethod implements MethodBeforefdvice
7 {1

@verride
public void before(Method method, Object[] args, Object target)
16 throws Throwable {
11 System.out.println("40PEeforeMethod : Before method Captured!™);
i H
15}

From the config file, you can understand that we are creating a bean for the
BeforeMethod class and proxy bean for BookService. The target tag specifies the
bean that needs to be applied with the Aspect. The interceptorNames denotes the
Aspect class that will be attached to the proxy bean:

<beans xmlns="http:
®mlns:xsi="http:,
xsi:schemalocation="http:

rk.org/schema/beans"
KMLSchema-instance”
.springframework.org/schema/beans
http:/ fwww.springframework.org/schema/beans/spring-beans-2.5.xsd">
<bean id="bookService" class="com.packt.spring.BookService">»
<property name="name" value="Packt" />
<property name="url" value="packt.com" />
</bean>
¢hean id="AOPBeforeMethodBean™ class="com.packt.spring.aop.40PBeforeMethod” />
<bean id="bookSerwvi v
class="org.springframework.aop.framevork.ProxyFactoryBean">
<property name="target" ref="bookService" J»
<property name="interceptorNames":
¢list>
<value>AQPBeforeMethodBean</values
</list>
<fproperty>
</bean>
</beans>

Add the ccL1B2 library in the Project Object Model (POM) file:

[54]

Chapter 4

1 <2xml version="1.8" encoding="UTF-8"2>

2 «project xmlns="http://maven.apache.org/POM/4.8.8"
xmlns:xsi="http://www.w3.org/208L/XMLSchema-instance
4 xsi:schemalocation="http://maven.apache.org/POM/4.8.8
http://maven.apache.crg/maven-vd_8_8.xsd">

£ <modelVersion>4.@.8<¢/modelVersion>

7 <groupld>com.packt</groupld>

8 <artifactldrspring</artifactId>

9 <name>*AQP</name>

8 <packagingrwar</packaging>

11 <version»1.8.8-BUILD-SNAPSHOT</version>

12 <properties>

13 <java-version>1.6</java-versions

14 <org.springframework-version»3.1.1.RELEASE¢/org.springframework-versions

15 <org.aspectj-wversion>1.6.18</org.aspecti-versions
16 <org.slf4j-version»l.6.6</0rg.s1F4j-version>

17 <{fproperties>

18 <dependencies>

19 <dependency>

<groupldrcglib</groupld>

21 <artifactId»cglib</artifactId>
22 <version»2.2.2</version>

23 <fdependency>

Create RunAOP. java and run it as a Java application and you can see the
BeforeAdvice code is executed before the actual bean method is invoked:

[Runa0Pjeva 32 L) Spring-Bookam!
package com.packt.spring;

= import org.springframewerk.context.ApplicationContext;
import org.springframewcrk.context.support.ClassPathXmlapplicationContext;

| public class Runaof {
5 public static void main(String[] args) {
ApplicationContext applontext = new ClassPathimlApplicationContext(
new String(] { "Spring-Book.xml™ }};

BookService cust = (BookService) appContext.getBean("bookServiceProxy™);
Systel-oﬂhpl‘intlﬂ('“‘“‘“"“'"“""‘"“""};
cust.printName();
System.out.println(=t essssssssasrusasnsnnnsnnny.
cust.printURL();
Syst:l.wt.println(”““""“"““““““'"];
try {
cust.printThrowException();
} catch (Exception e) {

B Console i3 - &| [RE [E | e
<terminated> RunAOP [Java Application] C:\Program Files\ava\jrel 8.0 S1\bin\javaw.exe (A
INFO : org.springframework.context.support.ClassPathXmlapplicationCont
INFO : org.springframework.beans.factory.)ml.XmlBeanDefinitionReader -
INFO : org.springframework.beans.factory.support.DefaultListableBeanF:
P P e

AoPBeforeMethod : Before method Captured!

Book name : Packt

AoPBeforeMethod : Before method Captured!

Book website : packt.com

AQPBeforeMethod : Before method Captured!

[55]

Spring Security with AOP

Add another AfterAdvice to the project:

1 package com.packt.spring.aop;

import java.lang.reflect.Method;
4 import org.springframework.aop.AfterReturningidvice;

public class AOPAfterMethod implements AfterReturninghdvice

T

8 @0verride

g public woid afterReturning(Object returnValue, Method method,

18 Object[] args, Object target) throws Throwable {

11 System.out.println("A0OPafterMethod : After method Captured!™);
12 ¥

13 %

Modify the configurations as shown in the following;:

<beans xmlns="http://www.springframework.org/schema/beans”
xmlns:xsi="http:/ /www.w3.org/2881/XMLSchema-instance”
xsiischemalocation="http://www.springframework.org/schema/beans

4 http:/fwww.springframework.org/schema/beans/spring-beans-2.5.xsd">

5 <bean id="bookService" class="com.packt.spring.BookService">
<property name="name" wvalue="Packt" />
<property name="url" wvalue="packt.com" />

8 </beanz

g <bean i1d="AQPATterMethodBean" class="com.packt.spring.aop.AQPAFterMethod” />

8 <bean id="bookServiceProxyl"

class="org.springframework.aop.framevwork.ProxyFactoryBean">

<property name="target" ref="bookService" />

<property name="interceptorlames">

14 <listz

15 <value>AOPAFterMethodBean</values

16 </list>

1 <fproperty>

18 </bean>

19 </beans>

Run the Java program to see After Advice in action:

[56]

Chapter 4

) RunAOPjava 12

package com.packt.spring;
= import org.springframework.context.ApplicationContext;
import org.springframework.context, support.ClassPathXmlApplicationContext;
public class RunAOP {
public static void main(String[] args) {
ApplicationContext appContext = new ClassPathXmlApplicationContext(new Str
BookService cust = (BookService) appContext.getBean("bookServiceProxyl");
System.m.printl"("l':tttlt!l'lt!tt:tlilk!tt');
cust.printhame();
Systerl.out.println(""’“""""“""“"‘"');
cust.printURL();
System.m.printl"("!':tx!:ai!':t!!t:t!'lk!!t');
try {
cust.printThrowException();

} catch (Exception e) {

}

&) Console 52

<terminated> RunAQP [Java Application] C:\Program Files\Ja\
INFO : org.springframework.context.support.Clas
INFO : org.springframework.beans.factory.xml.Xa
INFO : org.springframework.beans.factory. suppor
EEXXXEBRXEEXXXXEXRXTXRAES

Book name : Packt

AOPAfterMethod : After method Captured!
EEEXRSSRRERXXXRSRRRTLRAES

Book website : packt.com

AoPAftertethod : After method Captured!

EEEEEERRREERA AR AR RAER

You can see that After Advice is running and printing the statements after executing

the method.

The following screenshot explains the creation of Exception Advice Java program

and its usage:

1 package com.packt.spring.aop;

import org.springframework.aop.ThrowsAdvice;

system.out.println("a0PThrowException

B 1

public class AOPThrowException implements Throwsfdvice {
B public void afterThrowing({IllegalArgumentException e) throws Throwable {
Throw exception captured!™);

[57]

Spring Security with AOP

Make the necessary changes in the config file:

1 <beans xmlns="http:// www.springframework.org/schema/beans™
®kmlns:xsi="http://wewi.w3,0rg/2881/XML5chema-instance”
¥xsli:schemalocation="http://www.springframework.org/schema/beans
http: /s fwww. springframework.org/schema/beans/spring-beans-2.5.xsd">
<hean id="bookService" class="com.packt.spring.BookService">
<property name="name" walue="Packt" />
<property name="url" value="packt.com" />
</bean>
<bean i1d="A0PThrowExceptionBean"
class="com.packt.spring.aop.40PThrowException™ /f»
11 <bean id="bookServiceProxy2™
12 class="org.springframework.aop.framework.ProxyFactoryBean™>
13 <property name="target" ref="hbookService" [»
4 <property name="interceptorNames":
15 ¢list>

oW ka

« @ wDooa

16 <value>A0PThrowExceptionBean</values
17 <flist>

18 <fproperty>

19 </bean>

28 </fbeans>

Modify the previous RunaoP program to call bookserviceProxy2 and you will see
the Exception is captured by using ThrowsAdvice:

J) RunAQRjava 2 &) Console 3
package com.packt.spring; 4 <terminated> RunAQP [Java Application] C:\Program Files\a
#import org.springframework.context.ApplicationCentext;[] INFO @ org.springframework.context.support.Cla
public class RunAQP { INFO ¢ org.springframework.beans. factory.xml.X
= public static void main(String[] args) { INFO : org.springframework.beans. factory. suppo
ApplicationContext appContext = new ClassPathXmlApplicationContext(new Str EEEER R R SRR EAER NS
BookService cust = (BookService) appContext.getBean("bookServiceProxy2"); Book name : Packt
system.uut.println("ll**!!l**ll!!!l!l!!!l!!‘!!")‘. EEEEREERRERAEEEERRRRERTRS
cust.printName(); Book website : packt.com
System.nnt.pr'intln("‘*********““‘"‘“"“’")j ERERREXEFERIIEXEIEREEAES
cust.printURL(); AOPThrowException : Throw exception captured!
System.ont.println("““*“"""""“"““"),'
try {
cust.printThrowException();
} catch (Exception e) {

The Around Advice is important as it is a combination of all three advices that
we have seen before. Please try to add a AroundAdvice as given in the following
screenshot and see the results:

[58]

Chapter 4

package com.packt.spring.aop;
import java.util.Arrays;
import org.aopalliance.intercept.MethodInterceptor;
4 import org.aopalliance.intercept.MethodInvocation;
5 public class AOPAroundMethod implements MethodInterceptor {

@verride
public Object invoke(MethodInvocation methodInvocation) throws Throwable {
System.out.println("Method name : " + methodInvocation.getMethod().getName());

System.out.println("Method arguments : "+ Arrays.toString(methodInvocation.getArguments()));
System.out.println(“AOPAroundMethod : Before method Captured!™);
11 try {
12 Object result = methodInvocation.proceed();
1 System.out.println("AOPAroundMethod : Before after Captured!");
return result;
} catch (IllegalArgumentException e) {
System.out.println(“AOPAroundMethod : Throw exception Captured!");
throw e;

Here is the config file changes:

<beans xmlns="http://www.springframework.org/schema/beans"
wmlns:xsi="http:/ www.w3.org/ 2881/ XML 5chema-instance”
xsi:schemalocation="http:// www.springframework.org/schema/beans
http:/ fwww, springframework. org/schema/beans/spring-beans-2.5.xsd" >
<hean id="bookService" class="com.packt.spring.BookService™>
<property name="name" wvalue="Packt™ />
Lproperty name="url" wvalue="packt.com" />
£Sbeanz
<bean id="A0OPAroundMethodBean™
class="com.packt.spring.aop.40P4roundMethod” />
11 <bean id="bookServiceProxy3"”
class="org.springframework.aop.framework.ProxyFactoryBean”»
{property name="target" ref="bookService" />
{property name="interceptorNamesz">»
{lists
<valuexA0PAroundMethodBean</values
17 <flist:
</property>
</beanz
<fbeans>

[e SR N

[R B e]

i i} =
[e e R B RN I S WA A

[

[59]

Spring Security with AOP

We will notice that in the following image, the After, Before, and Throw advices are
handled using a single Around Advice class:

) Console 3

<terminated> RunAQP [Java Application] C:\Program Files\)
INFO : org.springframework.context.support.(l3
INFO : org.springframework.beans.factory.xml.
INFO : org.springframework.beans.factory. suppd

FEXEREEEEERERXSRSEREERA KR

/) *RunAOPjava &3

package com.packt.spring; .
#import org.springframework.context.ApplicationContext;[]
public class RunAOP {
public static void main(String[] args) {
ApplicationContext appContext = new ClassPathXmlApplicationContext

(new String[] { "Spring-Book.xml" });

BookService cust = (BookService) appContext.getBean("bookServiceProxy3");

System.out-println(“lltxtth:xxtxtlkttxtlhlxtt");
cust.printName();
Systemloutlprintln(1--Y¥¥¥¥K!l*t!tit*!ttlkllﬂt");
cust.printURL();
System.out. println("eeserrmssssesnssararenny

try {
cust.printThrowException();

Method name : printhame

Method arguments : []

AOPAroundMethod : Before method Captured!
Book name : Packt

AOPAroundMethod : Before after Captured!
EEXEXEREXXXERERRRERTRRR R

Method name : printURL

Method arguments : []

AOPAroundMethod : Before method Captured!

} catch (Exception e) { Book website : packt.com

AOPAroundMethod : Before after Captured!

} FEXEREREREREEERRRERXERARR

} Method name : printThrowException
} Method arguments : []
AOPAroundMethod : Before method Captured!
AOPAroundMethod : Throw exception Captured!

AOP Alliance

AOP Alliance is a joint open source venture having the participation of many
active AOP communities, including Spring. The aim of AOP Alliance is to avoid
the duplicate implementations of the same AOP features among AOP engineering
groups. We can avoid rebuilding the existing AOP Alliance components by
reusing them. AOP Alliance also ensures interoperability between other AOP
implementations by providing a root AOP. We should use the reusable features
of AOP Alliance in order to build powerful aspect-oriented environment (AOE)
implementations.

Spring AOP using AspectJ Annotations

As shown in the following, create a simple Spring Maven project and classes as given
in the project explorer and configure the XML file for the Aspect], Bean Creation,

and Aspect Mappings. We have added the aop:aspectj-autoproxy element to the
config XML file in order to enable the Aspect] support:

[60]

Chapter 4

{aop:aspectj-autoproxy />
<bean name="Book" class="com.packt.spring.model.Book">
<property name="name" value="Book Name">¢/property>
</bean>
<bean name="BookService" class="com.packt.spring.service.BookService">
<property name="Book" ref="Book"></property>
</bean>
<bean name="BookAspect" class="com.packt.spring.aspect.BookAspect" />
<bean name="BookAspectPointcut" class="com.packt.spring.aspect.BookAspectPointcut" />
<bean name="BookAspectloinPoint" class="com.packt.spring.aspect.BookAspectloinPoint" />
<bean name="BookAfterAspect" class="com.packt.spring.aspect.BookAfterAspect" />
<bean name="BookAroundAspect" class="com.packt.spring.aspect.BookAroundAspect" />
<bean name="BookAnnotationAspect" class="com.packt.spring.aspect.BookAnnotationAspect" />
<bean name="BookXMLConfigAspect" class="com.packt.spring.aspect.BookXMLConfighspect" />
¢!-- Spring AOP XML Configuration -->
<aop:config>
(aop:aspect ref="BookXMLConfigAspect" id="BookXMLConfigAspectID" order="1">
<aop:pointcut expression="execution(* com.packt.spring.model.Book.getName())" id="getNamePointcut"/>
<aop:around method="BookAroundAdvice" pointcut-ref="getNamePointcut" arg-names="proceedingloinPoint"/
{[aopiaspect>
</aop:configy

Create the BookAspect, BookAnnotationAspect, BookAfterAspect, and
BookAroundAspect classes. Take a look at the Aspect] annotations that are used all
over the programs for various purposes

Create the BookAspect class as shown in the following;:

package com.packt.spring.aspect;
import org.aspectj.lang.annotation.*;
@Aspect
public class BookAspect {
@Before("execution(public String getName())")
public void getNameAdvice(){
System.out.println("<<BookAspect>>Executing Advice on getName()");
}
@Before("execution(* com.packt.spring.aspect.*.get*())")
public void getAllAdvice(){
System.out.println("<<BookAspect>>Service method getter called");

}

[61]

Spring Security with AOP

Also, create the BookAnnotationAspect class as shown in the following image:

package com.packt.spring.aspect;
import org.aspectj.lang.annotation.*;
@Aspect
public class BookAnnotationAspect {
@8efore(“@annotation{com.packt.spring.aspect.Loggable)®™)
public wvoid myAdvice(){
System.out.println{“<<BookAnnotationAspect>>Executing myAdvice!!");

¥

Create the BookAfterAspect class as follows:

package com.packt.spring.aspect;
import org.aspectj.lang.loinPoint;
import org.aspecti.lang.annotation.;
@Aspect
public class BookAfterAspect {
@After(“args(name)”)
public void logStringArguments(5tring name){
System.out.println(”<<BookAfterAspect>>Running After Advice. "+
“String argument passed="+name);
¥
@AfterThrowing("within(com.packt.spring.model.Book)™)
public void logExceptions(JoinPoint joinPoint){
System.out.println(”<<BookAfterAspect>>Exception thrown in Book Method="
+joinPoint.toString());

@AfterReturning(pointcut="execution(* getName())”, returning="returnString”)

public woid getNameReturningAdvice(String returnString){
System.out.println("<<BookAfterAspect>>getNameReturningAdvice executed. "
+ "Returned String="+returnString);

Create the BookAroundaspect class as shown in the following:

[62]

Chapter 4

package com.packt.spring.aspect;
import org.aspectj.lang.ProceedingloinPoint;
import org.aspectj.lang.annotation.*;
Baspect
public class BookAroundAspect {
@Around("execution(* com.packt.spring.model.Book.getMame(})")
public Object BookAroundAdvice(ProceedingloinPoint proceedingloinPoint){
System.out.println("<<BookArcundAspect>>Before invoking getHame() "
+ "method”);
Object value = null;
try {
value = proceedingloinPoint.proceed();
} catch (Throwable e) {
e.printStackTrace();
)
System.out.println{"<<BookArcundAspect>>After invoking getName() method. ™
+ "Return value="+value);
return value;

Then, create the Loggable interface:

package com.packt.spring.aspect;

public @interface Loggable {

}

Create the BookAspectJoinPoint class as shown in the following image:

package com.packt.spring.aspect;
import java.util.Arrays;
import org.aspectj.lang.loinPoint;
import org.aspectj.lang.annotation.™;
@aspect
public class BookAspectloinPoint {
@Before(“execution(public void com.journaldev.spring.model..set*(*))}")
public void loggingAdvice(loinPoint joinPoint){
System.out.println(”<<BookAspectloinPoint>>Before running “
+ "loggingAdvice on method="+joinPeint.toString());
System.out..println("<<{BookAzpectloinPoint > >Agruments Passed=" +
Arrays.toString(joinPoint.getArgs()));
¥
@Before(“args(name)}”)
public void logStringArguments(String name){
System.out.println("<<BookAspectloinPoint>>String argument "
+ “passed="+name);

[63]

Spring Security with AOP

The following image shows how to create the BookXMLConfigAspect class:

package com.packt.spring.aspect;
import org.aspectj.lang.ProceedingloinPoint;
public class BookXMLConfighspect {
public Object BookAroundAdvice(ProceedingloinFoint proceedingloinPoint){
System.out.println("<<BookXMLConfigAspect>>Before "
+ "invoking getMame() method®);
Object value = null;

try {
value = proceedingloinPoint.proceed();
} catch (Throwable e} { e.printStackTrace(); }

System.out.println("<<BookXMLConfigAspect>> After "

+ "invoking getName() method. Return value=“"+value);
return value;

Also, create the BookAspectPointcut class:

package com.packL.Spring.aspect;
import org.aspecti.lang.annotation.™;
@Aspect
public class BookAspectPointcut {
EBefore("getNamePointeut()"™)
public void loggingAdvice(){
System.out.println("<<BookdspectPointcut>>Executing loggingAdvice
on getName()™);

EBefore("getNamePointcut()")

public void secondAdvice(){
System.out.println(“<<BookAspectPointcut»>Executing secondAdvice
on getName()");

h

@Pointcut(“execution{public String getMame())™)

public void getNamePointcut(){}

@Before("allMethodsPointeut()™)

public void allServiceMethodsAdvice(){
System.out.println("<<BookAspectPointcut>>Before executing
service method™);

ePointcut ("within{com.packt.spring.aspect.*)")
public void allMethodsPointcut(){}

[64]

Chapter 4

Create the BookService, Book, and SpringMain classes and run them as a Java
application to see all Aspects in action. Please refer to the console output for Aspects
that are executed in a particular order. You will notice that BookAspectPointcut is
applied twice to the getName () method and executed before invoking the getName ()
method:

package com.packt.spring.model;
public class Book {
private String name;
public String getName() |
return name;
¥
public void setName{S5tring nm) {
this.name=nm;
¥
public void throwException(){
throw new RuntimeException(“Dummy "
+ "Exception");

Finally, create the BookService class:

package com.packt.spring.service;
import com.packt.spring.model.Book;
public class BookService {
private Book Book;
public Book getBook(){
return this.Book;

public void setBook(Book e){
this.Book=e;
}

[65]

Spring Security with AOP

Run the springMain program to see the BookAspect invocation:

4] SpringMainjava i

package com.packt.spring.main; -
import org.springframework.context.support.ClassPath¥mlApplicationContext;[]
public class SpringMain {
= public static void main{String[] args) {
ClassPathxmlApplicationContext ctx = new ClassPathXmlApplicationContext(™spring
BookService BookService = ctx.getBean("BookService”, BookService.class);
System.out.println(BockService.getBook().getName());
BookService.getBook(). setName("Packt™);
BookService. getBook() . throwException();
ctx.close();

B Console 2 I si = B B

<terminated> SpringMain [Java Application] C:\Program Files\Java\jrel 8.0_51'\bin\
Sep @7, 2015 7:55:82 PM org.springframework.context.support.ab:
INFQ: Refreshing org.springframework.context.support.ClassPath)
Sep @87, 2815 7:55:03 PM org.springframework.beans. factery.oml.)
INFO: Loading XML bean definitiens from class path resource [sp
Sep @7, 2015 7:55:87 PM org.springframework.beans.factory.supp
INFO: Pre-instantiating singletens in org.springframewerk.bean:
<<BookXMLConfigAspect>>Before invoking gethame() method
<¢BookAspect>>Executing Advice on getName()
<¢BookAspectPointcut>>Executing loggingAdvice on getName()
<<{BookAspectPointcut»>Executing secondAdvice on getName()
<<BookArcundAspect>>Before invoking getName() method
<<BookArcundAspect>»After invoking getMase() methed. Return val
<¢BookafterAspect>>getNameReturningadvice executed. Returned 51
<<BooldMLConfighspects>s After invoking getMame() method. Returr
Book Name

{<BookAspectloinPoint>:String argument passed=Packt
<<BookAfterAspect>>Running After Advice. String argument passe:
<¢BookAfterAspect»»Exception thrown in Book Method=execution(w
Exception in thread "main" java.lang.RuntimeException: Dummy E)

Securing Ul invocation using Aspects

In this section, we are going to see how to secure method-level and object-level
invocations using annotations, Aspects, and Pointcuts. Create the UserHolder,
UIFactory, UIFactoryImpl, and UIComponent Java classes.

[66]

Chapter 4

The following screenshot explains how to create the UIFactory and UIFactoryImpl
classes:

PacKage Com.packL.5pring.aop.ul;
public interface UIFactory {
UIComponent createComponent(Class<? extends UIComponent>
componentClass) throws Exception;
¥
package com.packt.spring.aop.ui;

import org.apache.commons.lang.MNullArgumentException;
import org.springframework.stereotype.Component;
eCompanent
public class UIFactoryImpl implements UIFactory {
goverride
public UIComponent createComponent(Class<? extends UIComponent:
componentClass) throws Exception {
if (componentClass == null) {
throw new NullArgumentException(“Provide
class for the component™);

return (UIComponent) Class.forName(componentClass.
getName()) .newInstance();

Also, create the UIComponent and UserHolder classes:

package com.packt.spring.aop.ui;
public abstract class UIComponent {
protected String componentName;

protected String getComponentName() {
return componentName;
3

¥
package com.packt.spring.aop.user;
import com.packt.spring.aocp.type.Role;
public class UserHolder {
private Role userRole;
publie¢ UseérHolder(Role useérRole) {
this.userfole = userfole;

}

public Role getUserRole() {
return userRole;

¥

public void setUserRole(Role userRole) {
this.userRole = userRole;

¥

[67]

Spring Security with AOP

Then, create the SecurityAnnotation and UserService interfaces as given in the
following:

package com.packt.spring.acp.annotation;

import java.lang.annotation.®;

import com.packt.spring.aop.type.Role;

BRetention{RetentionPolicy.RUNTIME)

public @interface SecurityAnnotation {
Role[] allowedRole();

}

package com.packt.spring.aop.service;
import com.packt.spring.acp.type.Role;
import com.packt.spring.aocp.user.UserHolder;

public interface UserService {
UserHolder getCurrentUser();

void setCurrentUser(UserHolder userHolder);

Role getUserRole();

Create the UserServiceImpl and Role classes as follows:

PAcKage COm.Packt.Spring.acp.service;
import org.springframework.stereotype.Service;
import com.packt.spring.aop.type.Role;
import com.packt.spring.aop.user.UserHolder;
@Service
public class UserServicelmpl implements UserService {
private UserHolder userHolder;
g0verride
public UserHolder getCurrentUser() {
return userHolder;
}
@override
public void setCurrentUser(UserHolder userHolder) {
this.userHolder = userHolder;
}

@verride
public Role getUserRole() {
if (userHolder == null) {
return null;
}
return userHolder.getUserRole();
¥
¥
package com.packt.spring.acp.type;
public enum Role {
ADMIN("ADM"), WRITER("WRT"), GUEST("GST"),USER("USR"),READER("RDR");
private String name;
private Role(String name) {
this.name = name;

}
public static Role getRoleByName(String name) {
for (Role role : Role.values()) {
if (role.name.equals{name)) {
return role;

}
throw new IllegalArgumentException(“NO ROLES [* + name + “]");

}
public String getName() {
return this.name;

3}

[68]

Chapter 4

You can see the role definitions in the Role class such as admin, writer, reader, and
so on. The next step is to create the component classes that will be invoked, based on
the security privileges.

Create SomeComponentForGuest and SomeComponentForWriter classes as shown in
the following image:

paAckageé com.packt.spring.acp.component ;

import com.packt.spring.aop.annotation.SecurityAnnotation;
import com.packt.spring.aocp.type.Role;
import com.packt.spring.aop.ui.UIComponent;
gSecurityAnnotation(allowedRole = { Role.WRITER,Role.READER })
public class SomeComponentForWriter extends UlComponent {
public SomeComponentForWriter() {
this.componentMame = “SomeComponentFordriter”;
¥
public static UIComponent getComponent() {
return new SomeComponentForlriter();
¥
} =
package com.packt.spring.acp.component;
import com.packt.spring.aop.annotation.SecurityAnnotation;
import com.packt.spring.aop.type.Role;
import com.packt.spring.aop.ui.UIComponent;
gSecurityAnnotation{allowedRole = { Role.GUEST })
public class SomeComponentForGuest extends UIComponent {
public SomeComponentForGuest() {
this.componentMame = “"SomeComponentForGuest™;

¥

public static UlComponent getComponent() {
reéturn new SomeComponentForGuest();

¥

[69]

Spring Security with AOP

Also, create SomeComponent ForAdmin and SomeComponent ForAdminAndGuest
classes as shown in the following image. You can modify the allowed role by adding
new roles in Role class and calling them here:

package com.packt.spring.acp.component;
import com.packt.spring.aop.annotation.SecurityAnnotation;
import com.packt.spring.aop.type.Role;
import com.packt.spring.aop.ui.UIComponent;
gSecurityvAnnotation(allowedRole = { Role.ADMIN })
public class SomeComponentForAdmin extends UIComponent {

public SomeComponentForAdmin)

this.componentName = "SomeComponentForAdmin®;

¥
public static UIComponent getComponent() {
return new SomeComponentForAdsmin();
H
¥
package com.packt.spring.acp.component;
import com.packt.spring.aop.annotation.SecurityAnnotation;
import com.packt.spring.aop.type.Role;
import com.packt.spring.aop.ui.UIComponent;
@SsecurityAnnotation(allowedRole = { Role.ADMIN, Role.GUEST })
public class SomeComponentForAdminAndGuest extends UIComponent {
public SomeComponentForAdminAndGuest() {
this.componentMame = "SomeComponentForAdmin®;

public static UIComponent getComponent() {
return new SomeComponentForAdminAndGuest();

¥

Here is the important class called SecurityInterceptor that has all pointcut and
advice-related codes. These implementations will be invoked before calling the
component creation code and will throw exceptions if the role is does not have the
permission to invoke the component.

The securityInterceptor class will have the implementation to check the security
access privileges. You can see that the pointcut annotation is invoked before the
creation of the components:

[70]

Chapter 4

@hspect

public class SecurityInterceptor {

public SecurityInterceptor() { System.out.println{”Security Interceptor created”); }
@Autowired

private UserService userService;
@Pointcut("executionicom.packt.spring.aop.ui.UIComponent
com.packt.spring.aop.uil.UIFactory.createComponent(..))")

private wvoid getComponent(ProceedingloinPoint thisJoinPoint) {}

@around("getComponent (thisJoinPoint)™)

public UIComponent checkSecurity(ProceedingloinPoint thisJoinPoint) throws Throwable {
System.out.println{"Intercepting creation of a component™);

Object[] arguments = thisJoinPoint.getargs();

if (arguments.length == @) { return null; T
Arnnotation annotation = checkTheAnnotation{arguments);
boolean atrAccessSecurityfnnotationPresent = (annotation != null);

if (atrfccessSecurityAnnotationPresent) {

boolean userHasRole = verifyRole(annotation);

if (l!userHasRole) {

System.out.println{”Current user doesn't have permission to have this component created”);
return null;}l

System.out.println{”Current user has required permissions for creating a component™);
return (UIComponent) thisJoinPoint.proceed();}

private Annotation checkTheAnnotation{Cbject[] arguments) {

Object concreteClass = arguments[87];

AnnotatedElement annotatedElement = (&4nnotatedElement) concreteClass;

Arnotation annotation = annotatedElement.geténnotation(Securityénnotation.class);

return annotation; 7}

private boolean verifyRole(4Annotation annotation) {

System.out.println(”Security annotation iz present so checking if the user can use it");
SecurityAnnotation annctationRule = (SecurityéAnnotation) annotation;

Lizt<Role> requiredRoleslList = Arrays.asList({annotationRule.allowedRole());

Role userRole = userService.getUserRole();

boolean userHasRole = reguiredRoleslist.contains(userRole); return userHasRole; }}

Let's see the configuration file and the testing class of the component creation.
Create an XML configuration, as shown in the following screenshot. Create a testing
class and call the corresponding component creation code by passing some role
definitions. The console will show you the pointcut and advice messages about the
security checking. You can change the role definition and component calling to test
this implementation in different ways:

<?xml wversion="1.8" encoding="UTF-8"2>
<beans xmlns="http.//www.springframework.org/schema/beans™
*mlng :context="http:/ www.spri ameéwork.org/schema/context™
xmlns:xsi="http .3, org/ 2881/ dMLS5chema-instance®
¥mlns:aop="http://www.springframework.org/schema/aop™
xsi:schemalocation= { {wwwi . springframevwork .org/schem
/ Wi Springframen

<con H tat

{context:component-scan base-packages="com.packt.spring.aop™>
<context:exclude-filter type="annotation"
expression="org.aspectj.lang.annotation.Aspect"/>

</context : component-scan:

<aop:aspect]-autoproxy/>

<bean class="com.packt.spring.aop.interceptor.SecurityInterceptor”

actory-methods"aspectOf" />

</beans>

[71]

Spring Security with AOP

Run the JUnit test cases by invoking the createComponent () methods by setting
different usernames using the UserHolder class:

AopSecurityTestjava 7

package com.packt.spring.aop;
% import org.junit.Assert;]]

public class AopSecurityTest {
public static void sain(String[] args) throws Exception {
Applicatiun{cntm context = new ClassPathXaldpplicationContext("A0PSecurity. ml”);
UIfactory uiFactory = context.getBean(UIFactory.class);
UserService userService = context.getBean(UserService.class);
userService, set(u'rentl.lser(neu Usermlder[nole Ram}),

$1ia#h uiFactory A b r oD ...:.—-.--
£ reatel B ne o
WLNU2Ll Y Jry.Lrea 1y

Assert ussertﬁutitd Factory create(ouponent{iome(upunentForfmst (lass}},

S erthy .__ tory.createlomponent (Some

RESErT. 3558 [-18 y LI QLT

EC ol 11 i X 3* ;*
<temminated> AopSecurityTest [Java Application] C:\Program Fil

Sep B7, 2015 B:45:46 PM org.springframework. conte
INFO} Refreshing crg.L:"ir"""a“m""t context. supe
Sep B7, 2015 8:45:46 PM org.spr ng“af'e work. beans
INFO} Loading XML bean definitions from class pat
Sep 7, 2015 B:45:46 PM org.springframework.beans
INFO} Pre-instantiating singletons in org.springt
Security Interceptor created

Intercepting creation of a component

Security annotation is present so checking if the
Current user doesn't have peraission to have this

Summary

In this chapter, we have covered the basic terminologies of AOP. We have gone
through some simple examples of Spring AOP and Aspect]. The uses of annotations
have been explained using samples and we have implemented the AOP security
for method-level and UI component creation. You can extend the features and
implementations that are described in this chapter in your real-time applications

in order to avoid the complexities involved in cross-cutting concerns and the code
simple and maintainable. In our next chapter, we will cover the access control list
implementations in the Spring Framework in detail.

[72]

Spring Security with ACL

Access control list (ACL) is used to map the permissions of the objects against the
users of an application. ACL will have the access grants for users and system process
in order to access and perform operations on particular objects. Typically, ACL stores
the operation against an object by a user. In Java programming, you can assume an
entry in ACL, such as Admin: Create or User: Read, for a given screen or entity
that would give permission to the Admin to create an entity and the User to read

the same. The implementation of ACL using SQL and File System may also vary for
different technologies.

Advanced SQL-based ACL implementations follow role-based access control
(RBAC) models. The RBAC model is widely used in security applications that

have complex security requirements, such as role-based data segregation. In SQL
implementation, ACLs are used to manage groups, subgroups, and hierarchy of
groups. The flexibility, in terms of creating and managing the Access Control Policy,
is quite high in advanced SQL implementations. Different ACL algorithms can be
defined using advanced SQL systems. Many modern systems such as Enterprise
resource planning (ERP), Supply chain management (SCM), and Customer
relationship management (CRM) use ACLs in their access control policies.

The complex applications require authentication and authorization at end user login
level and role access level, where the mapping information will be retrieved from

the database. They also need to be implemented at every domain object level and
method instantiation level in order to ensure that the object instantiation is based on
actual domain objects, which are specific to the user and the method. To achieve this,
we need to combine the role, permissions, and business objects. By doing this, we can
assign the permission to a set of users in order to access the specific domain objects
that are intended only for them. In Spring Security, we have the Spring Security ACL
package that has main classes to perform various ACL activities.

[73]

Spring Security with ACL

In this chapter, we are going to explore the following topics:

* The Spring ACL package and infrastructure classes
* The ACL implementation example and XML configuration for ACL

Spring ACL package and infrastructure
classes

The key interfaces of Spring ACL packages are as follows:

* Acl: Each domain object is associated with only one ACL object. The
AccessControlEntries are held by this ACL and these ACLs do not refer
directly to the domain objects. Instead, they refer the Object Identity.

* AccessControlEntry: The access control entry (ACE) is a combination of
Permission, Sid, and ACL.

* Permission: This is a bit masking information to specify the operation.

* Sid: Security Identifier is a common class that represents the principal in an
authentication object.

* Object Identity: This is used to internally hold the domain object in the ACL
module.

* AclService: This is used to retrieve the ACL of the given Object Identity.
* MutableAclService: Persisting the modified ACL.

ACL implementation example and XML
configuration for ACL

We will implement the ACL functionality in a Spring Service class now. We can
provide the access privileges using ACL classes, as follows:

[74]

Chapter 5

1. Create a Spring Service class, as shown in the following;:

package com.packt.spring.acl;
import java.util.Liszt;
public interface BookService {
public enum Permission {
READ, WRITE
¥
public void createBook(Book book);
public Book findBookById(long id);
public List<Book> findAllBooks();

public void updateBook(Book book);

public void grantPermission(String principal, Book book,
Permission[] permissions);

2. Create the Book. java model class as shown in the following figure:

package com.packt.spring.acl;
public class Book {
private Long id;

private String text;

@0Jverride

public String toString() {
return id + " " + text;

ks

public Book(long id, String text) {
this.id = id;
this.text = text;

ks

public void setId(Long id) {
this.id = id;
b

public voild setText(String text) {
this.text = text;

¥
public Long getId() { return id; ¥
public String getText() { return text; }

[75]

Spring Security with ACL

3. Create the BookServiceImpl.java service implementation class. In this
block, we will create the grantPermission () method that has the ACL
implementation to grant permission to the given principal. We also have to
provide the read and write permission entries, as follows:

@Repository
public class BookServiceImpl implements BookService {

private Logger LOGGER = LoggerFactory.getlogger(BookServiceImpl.class);
private Map<Long, Book> Books = new HashMap<>();

@Resource
private MutableAclService aclService;

@0verride
@Transactional
public veoid grantPermission(String principal, Book Book,
Permizsion[] permissions) {
LOGGER.info("Grant {} permission to principal {} on Book {}",
permissions, principal, Book);
ObjectIdentity oi = new ObjectIdentityImpl{Book.class,
Book.getId());
Sid sid = new PrincipalSid({principal);

Mutablelcl acl;
try {

acl = (MutableAcl) aclService.readAclById(oi);
} catch (NotFoundException nfe) {

acl = aclService.createfAcl{oi);

¥

for (Permission permission : permissions) {
switch (permission) {
case READ:
acl.insertAce(acl.getEntries().size(), BasePermission.READ,
zid, true);
break;
case WRITE:
acl.insertAce(acl.getEntries().size(), BasePermiszsion.WRITE,
sid, true);
break;
T
¥

aclService.updatefcl(acl);

[76]

Chapter 5

4. In the following block, we are adding the implementations to create, find,
and update all books:

@0verride

public void createBook(Book Book) {
LOGGER.info("Create Book: {}", Book};
Books.put (Book.getId(), Book);

¥

@0verride
@Prefuthorize("hasPermissioni{#id, 'com.packt.spring.acl.Book', ‘read')
or hasRole('ADMIN'}™)
public Book findBookById({long id) {
return Books.get(id);
1

@0verride
@PreAuthorize("hasPermission(#Book, 'write') or hasRole('ADMIN')™)
public void updateBook(Book Book) {
Books.put (Book.getId(), Book);
¥

@0verride
@PostFilter("hasPermission(filterObject, 'read') or hasRole('ADMIN')™)
public List<Book> findAllBooks() {

return new Arraylist<:>({Books.values());

}

5. After running the first test, the following result will be printed:

[main] INFO com.packt.spring.acl.Bookservicelmpl - Create Book: 1 test

[main] ERROR com.packt.spring.acl.BookServiceImpl - Grant [READ, WRITE] permission to principal userl on Book 1 test
[main] ERROR com.packt.spring.acl.BookServiceImpl - Grant [READ] permission to principal user2 on Book 1 test

[main] INFO com.packt.spring.acl.BookServiceImpl - (reate Book: 2 test

[main] ERROR com.packt.spring.acl.BookServiceImpl - Grant [READ, WRITE] permission to principal userl on Book 2 test
[main] ERROR com.packt.spring.acl.BookServiceImpl - Gramt [READ, WRITE] permission to principal userl on Book 1 test
Tests run: 1, Failures: @, Errors: @, Skipped: @, Time elapsed: 4.243 sec

Sep 21, 1@15 18:24:87 AM org.springframework. context.support.AbstractApplicationContext doClose

TNFO: Closing org.springframework.context.support . Generichpplicationfontext@5d812c: startup date [Mon Sep 21 18:24:84
Sep 21, 2815 18:24:87 AM org.springframework.beans.factory.support.DefaultSingletonBeanRegistry destroySingletons
INFO: Destroying simgletons in arg.springframework.beans.factory. support.DefaultlistableBeanfactory@l695d53: defining
[BookService org.springframewerk.security. config.method.GlobalMethodSecurityBeanDefinitionParser$lazyInitBeanDefinitic
rk . ProxyFactoryBeand®, org. springframework. security.access. method. Delegat ingMethodSecurityMet adatasource®, org. springfr
ngframework. security.access. intercept.aopalliance . MethodSecurityInterceptor#d, org. springframework. security .methodSecur
internalAutoProxyCreator, expressiontandler,aclPermissionEvaluator,aclCache, lookupStrategy,aclService,org. springframewo
Source#d,org.springframework . transaction. interceptor . TransactionIntarceptorsd, org. springframework. transaction. config.i
org.springframework.context.annotation.internalConfigurationAnnotationProcesser ,org.springframework.context.annotation
k. context.annotation.internalRequirsdannotationProcessor,org. springframework. context, annotation. internalCommonannotati
guration{lassPostProcessor. importAwareProcessor]; root of factory hierarchy

Sep 21, 2015 10:24:87 AM org.springframework.cache.ehcache.EnCacheManagerFactoryBean destroy

TNFO: Shutting down EhCache CacheManager

Results

Tests run: 1, Failures: @, Errors: @, Skipped: @

BUILD SUCCESS

[771]

Spring Security with ACL

6. To test the ACL implementation, we need to create a BookServiceTest.
java JUnit test class, where we can include various test cases to access the
domain object, as follows:

@RunWith(5springlUnit4ClassRunner.class)
@ContextConfiguration{locations = {"/applicationContext.xml"”, "/applicationContext-test.xml"})
public class BookServiceTest {

{@Resource
private BookService bookService)

{@Resource
private MutableAclService aclService;

private JdbcTemplate jdbcTemplate;

@Before
public void init() {
securityContextHolder.getContext().setAuthentication(
new UsernamePasswordAuthenticationToken("adminl”, “passl", Collections.
singletonlist(new SimpleGrantedAuthority("ADMIN"))));

aclservice.deleteAclinew ObjectIdentityImpl(Book.class, 1), true);
aclService.deletehAclinew ObjectIdentityImpl(Book.class, 2}, true);

Book Bookl = new Book(1l, "test");
bookService.createBook (Bookl);

bookService.grantPermizsion("userl”, Bookl, new BookService.Permission[]
{BookService.Permission.READ, BookService.Permission.WRITE});

bookService.grantPermission(“user2”, Bookl, new BookService.Permission[]

{Bookservice.Permizsion.READ});

Book Book? = new Book(2, “"test");

bookService.createBook (Book2);

bookService.grantPermizsion("uzerl”, Book2, new BookService.Permission[]
{BookService.Permission.READ, BookService.Permission.WRITE});

}

@Test({expected = NotFoundException.class)
public void testGrantPermissionAuthenticationRequired() {
securityContextHolder.getContext().setAuthentication(
new UsernamePasswordAuthenticationToken("userl”, “pass
singletonlist(new SimpleGrantedAuthority("USER")]))
bookService.grantPermission(“userl”, new Book(1l, "test"),
new BookService.Permizsion[]{BookService.Permission.READ, BookService.Permission.WRITE});

1", Collections.
1

[78]

Chapter 5

7. We can test and find all the books services by adding the following test cases
to the existing program and execute it:

@Test

public wvoid testFilterAdmin() {
Lizt«Book> Books = bookService.findAllBooks();
assertEquals(2Z, Books.size());

¥

@Test
public void testFilterUserl() {
SecurityContextHolder.getContext().setAuthentication(
new UsernamePasswordAuthenticationToken("userl”, "passl", Collections.
singletonlist(new SimpleGrantediuthority{"USER")1)1);
Lizt«Book> Books = bookService.findAllBooks();
assertEquals(2, Books.size());

H

@Test
public void testFilterUser2() {
SecurityContextHolder.getContext().setAuthentication(
new UsernamePasswordAuthenticationToken("user2”, "pass2", Collections.
singletonlist(new SimpleGrantediuthority{"USER")1)1);
Lizt<Book> Books = bookService.findAllBooks();
assertEquals({l, Books.size());

H

@Test
public void testFilterUser3() {
SecurityContextHolder.getContext().setAuthentication(
new UsernamePasswordAuthenticationToken("user3”, "pass3", Collections.
singletonList(new SimpleGrantedAuthority(“USER")1)1);:
Lizt<Book>» Books = bookService.findAllBooks();
assertEquals(@, Books.size());

H

@Resource

public void setDataSource(Datasource dataSource) {
jdbcTemplate = new JdbcTemplate({dataSource);

b

@Rescurce

public void setDataSource(DataSource dataSource) {
JjdbcTemplate = new JdbcTemplate(dataSource);

].

[79]

Spring Security with ACL

8. Take a look at the results that are generated on running the additional test

cases:

[main] INFO com.packt.spring.acl.BookServiceImpl -

[main] ERROR com.packt.spring.acl.BookServiceImpl
[main] ERROR com.packt.spring.acl.BookServiceImpl

[main] INFO com.packt.spring.acl.BookServiceImpl -
[main] ERROR com.packt.spring.acl.BookServiceImpl -
[main] INFO com.packt.spring.acl.BookServiceImpl -
[main] ERROR com.packt.spring.acl.BookServiceImpl -
[main] ERROR com.packt.spring.acl.BookServiceImpl -
[main] INFO com.packt.spring.acl.BookServiceImpl -
[main] ERROR com.packt.spring.acl.BookServiceImpl -
[main] INFO com.packt.spring.acl.BookServiceImpl -
[main] ERROR com.packt.spring.acl.BookServiceImpl -
[main] ERROR com.packt.spring.acl.BookServiceImpl -
[main] INFO com.packt.spring.acl.BookServiceImpl -
[main] ERROR com.packt.spring.acl.BookServiceImpl -
[main] INFO com.packt.spring.acl.BookServiceImpl -
[main] ERROR com.packt.spring.acl.BookServiceImpl -
[main] ERROR com.packt.spring.acl.BookServiceImpl -
[main] INFO com.packt.spring.acl.BookServiceImpl -
[main] ERROR com.packt.spring.acl.BookServiceImpl -
[main] INFO com.packt.spring.acl.BookServiceImpl -
[main] ERROR com.packt.spring.acl.BookServiceImpl -

[main] ERROR com.packt.spring.acl.BookServiceImpl

[main] INFO com.packt.spring.acl.BookServiceImpl -
[main] ERROR com.packt.spring.acl.BookServiceImpl -
[main] INFO com.packt.spring.acl.BookServiceImpl -
[main] ERROR com.packt.spring.acl.BookServiceImpl -
[main] ERROR com.packt.spring.acl.BookServiceImpl -
[main] INFO com.packt.spring.acl.BookServiceImpl -
[main] ERROR com.packt.spring.acl.BookServiceImpl -
[main] INFO com.packt.spring.acl.BookServiceImpl -
[main] ERROR com.packt.spring.acl.BookServiceImpl -
[main] ERROR com.packt.spring.acl.BookServiceImpl -
[main] INFO com.packt.spring.acl.BookServiceImpl -
[main] ERROR com.packt.spring.acl.BookServiceImpl -
[main] INFO com.packt.spring.acl.BookServiceImpl -

[main] ERROR com.packt.spring.acl.BookServiceImpl
[main] ERROR com.packt.spring.acl.BookServiceImpl
[main] INFO com.packt.spring.acl.BookServiceImpl

[main] ERROR com.packt.spring.acl.BookServiceImpl
Tests run: 8, Failures: @, Errors: @, Skipped: 8,

Results :

Tests run: 8, Failures: @, Errors: @, Skipped: @

Create Book: 1 test

- Grant [READ, WRITE] permission to principal userl on Book 1 test
- Grant [READ] permission to principal user? on Book 1 test

Create Book: 2 test

Grant [READ, WRITE] permission to principal userl on Book 2 test
Create Book: 1 test

Grant [READ, WRITE] permission to principal userl on Book 1 test
Grant [READ] permission to principal user? on Book 1 test

Create Book: 2 test

Grant [READ, WRITE] permission to principal userl on Book 2 test
Create Book: 1 test

Grant [READ, WRITE] permission to principal userl on Book 1 test
Grant [READ] permission to principal user? on Book 1 test

Create Book: 2 test

Grant [READ, WRITE] permission to principal userl on Book 2 test
Create Book: 1 test

Grant [READ, WRITE] permission to principal userl on Book 1 test
Grant [READ] permission to principal user? on Book 1 test

Create Book: 2 test

Grant [READ, WRITE] permission to principal userl on Book 2 test
Create Book: 1 test

Grant [READ, WRITE] permission to principal userl on Book 1 test
- Grant [READ] permission to principsl user? on Book 1 test

Create Book: 2 test

Grant [READ, WRITE] permission to principal userl on Book 2 test
Create Book: 1 test

Grant [READ, WRITE] permission to principal userl on Book 1 test
Grant [READ] permission to principal user on Book 1 test

Create Book: 2 test

Grant [READ, WRITE] permission to principal userl on Book 2 test
Create Book: 1 test

Grant [READ, WRITE] permission to principal userl on Book 1 test
Grant [READ] permission to principal user on Book 1 test

Create Book: 2 test

Grant [READ, WRITE] permission to principal userl on Book 2 test
Create Book: 1 test

- Grant [READ, WRITE] permission to principal userl on Book 1 test
- Grant [READ] permission to principsl user? on Book 1 test

Create Book: 2 test

- Grant [READ, WRITE] permission to principal userl on Book 2 test
Time elapsed: 5.336 sec

[80]

Chapter 5

9. We will explore the config file entries as well:

<?xml version="1.8" encoding="UTF-8"2>

<beans xmlns="http:// www.springframework.org/schema/beans™
xmlns:security="http://www.springframevwork.org/schema/security”
wmlns:xsi="http:/ www.w3.0rg/ 2881/ XM 5chema-instance™”

xsi:schemalocation="http:/ www.springframevork.org/schema/beans

http:/ fwww . springframework . org/schema/beans/spring-beans-3.2.xsd

http:/ Swew . springframework . org/schema/security

http: / fwww, springframework.org/schema/security/spring-security-3.2.xsd">

<bean id="BookService™ class="com.packt.spring.acl.BookServiceImpl™ />

{security:global-method-security pre-post-annotations="enabled">
{security:expression-handler ref="expressionHandler" />
</security:global-method-security>

<bean id="expressionHandler"
class="org.springframework.security.access.expression.method.
DefaultMethodSecurityvExpressionHandler™>
<property name="permissionEvaluator” ref="aclPermissionEvaluator”/>
</bean>

<bean id="aclPermissionEvaluator" class="org.springframework.security.acls.
AclPermiszszionEvaluator”>

<constructor-arg ref="aclservice" />
</beanx

<bean id="aclCache"
class="org.springframework.security.acls.domain.EhCacheBasedaclCache™>
<constructor-arg>
<hean class="org.springframewark.cache.ehcache.EhCacheFactoryBean”>
<property name="cacheManager">
<bean class="org.springframework.cache.ehcache.
EhCacheManagerFactorvBean™ />
Lfproperty>
<property name="cacheName" wvalue="aclCache" />
<fbean>
<fconstructor-arg>
</bean>

In this file, we added the entries for permission evaluator that will be
handled by the DefaultMethodSecurityExpressionHandler Spring
package. The pre and post annotations of Spring global-method-security
are enabled and the bean id expression handler has been configured in the
previous XML file.

[81]

Spring Security with ACL

10. In the following block, we can see the authority settings for ownership,
auditing, and modification. The JdbcMutableACLService Spring
package is configured as the aclservice bean and passed to
aclPermissionEvaluator, as follows:

¢bean id="lookupStrategy"
class="org.springframework.security.acls.jdbc.BasiclookupStrategy">
{constructor-arg ref="dataSocurce" />
<constructor-arg ref="aclCache" />
<constructor-arg>
<bean

class="org.springframework.security.acls.domain.
AcléuthorizationStrategyImpl™s
{constructor-arg>
¢liste
<!l-- authority for taking ownership --»
<bean class="org.springframework.security.core.authority.
SimpleGrantedAuthority™:
Lconstructor-arg value="ROLE_ADMIN" f>
</beank
<!l-- authority to modify auditing --»
<bean class="org.springframework.security.core.authority.
SimpleGrantedauthority™ >
<constructor-arg value="ROLE_ADMIN"™ />
</bean>
<l-- authority to make general changes --»
<bean class="org.springframework.security.core.authority.
SimpleGrantedauthority™:
<constructor-arg value="ROLE_ADMIN"™ />
</bean>
<f1list>
<fconstructor-arg>
</bean>
</constructor-args
{constructor-args
<bean class="org.springframework.security.acls.domain.
Consoleduditlogger™ />
<fconstructor-arg>
</bean>

<bean id="aclService"
class="grg.springframework.security.acls.jdbc.JdbcMutabledclServices
{constructor-arg ref="dataSource" />
<constructor-arg ref="lookupStrategy" />
<constructor-arg ref="aclCache" />
</bean>

Summary

In this chapter, we saw the basics of ACL, available classes, and interfaces in

the Spring ACL package. We have seen a working example of the basic ACL
implementation with various access privileges for a given principal. Please modify
the grants and principals in order to practice the ACL implementation for better
understanding. In our next chapter, we will explore the JavaServer Faces security
integrations with the Spring Framework.

[82]

Spring Security with JSF

JavaServer Faces (JSF) provides Java specification for various components in
order to build web applications. The underlying concept of JSF is Facelets, which
is a templating mechanism. The Facelet Servlet integrates the request, templates,
component tree, events, and responses. The state of each component is also saved
at end of each request. The advanced JSF also includes Java 5 annotations, such as
@ManagedBean, @ManagedProperty, and @FacesComponent, which simplifies the
configurations. Page transitions and rendering can be done by simply passing the
name of views or facelets. The JSF MVC framework has more than 100 ready-to-
use Ul tags using which the reusable UI component can be built easily. JSF comes
with many concepts such as Managed Beans, Navigations, Resource Bundles, Tag
Libraries, Convertors, Validators, Event Handlers, and so on.

The Spring Framework is designed based on dependency injection, where as JSF is
a component-based framework. Therefore, it is easy to integrate both seamlessly in
user interface design and backend server-side logic. We need to configure Spring
applications in order to integrate them with the JSF framework using multiple
XML files.

In this chapter, we are going to explore the following topics:

* Maven dependencies
* Configuration files and entries
* JSF form creation and integration

* Spring Security implementation and execution

[83]

[vww allitebooks.cond

http://www.allitebooks.org

Spring Security with JSF

Maven dependencies

The following screenshot shows the required JSF and Spring dependencies with
their versions:

{dependenciesy
<dependency»<groupld»Jjavax.faces</groupldy<artifactId»jsf-apl</artifactlds
{version»2.8<¢/versiony

{scopercompiled/scoper </dependencys
<dependency»<groupldycom.sun.faces</grouplds<artifactIdsjsf-impld/artifactIds
¢version»2.@.2-bl@¢/versions

<scopercompiled/scopex</dependency
<dependencyx<groupld>javax.servliete/grouplds<artifactIdsjstle/artifactIds
{version»l.1.2¢/versiony

¢/dependency>
<dependency»<groupld»Jjavax.servliet</grouplarx<artifactIdrservlet-apl</artifact Ids
<version»2.5¢/versions</dependency?
<dependency»<groupldrorg.springframework</zrouplds
<artifactldrspring-context</artifactlds
Cversion»&{spring.version}</versionx</dependencys
<dependency»<zroupldrorg. springframework</zrouplds
{artifactIdrspring-webmvce/artifactIds
<version»&{spring.version}</versionx</dependencys
<dependency»<groupldrorg. springframework. security</erouplds
<artifactIdrspring-security-cored/artifactIdy
<version»${spring-security.version}</versionz</dependencys
<dependency»<groupldrorg.springframework. security</grouplds
<artifactldrspring-security-configé/artifactlds
Cversion»&{spring-security.version}</versionx</dependencys
<dependency»<zroupldrorg. springframework.security</grouplds
{artifactIdrspring-security-web</artifactlds
<version»s{spring-security.version}</version»</dependencys
<dependency»<groupldrorg. springframework. security</erouplds
<artifactIdespring-security-taglibs</artifactlds
¢version»${spring-security.version}</version»</dependency></dependenciess
{repositoriess<repozitorys<idrorg. springframework. maven.milestone/ids
<namexSpring Maven Milestone Repository</names
<urlyhttp://maven.springframework.org/milestoned/urls
¢snapshots»{enabled>false{/enabled>{/snapshots>

¢frepositorys

{repositoryr{idsmaven2-repository.dev. java.netd/ids

<namexJava.net Repository for Maven</names
<urlxhttp://download.java.net/maven/2</url»</repositorys</repositoriess

[84]

Chapter 6

Configuration files and entries

The configuration files that are involved in JSF and Spring Security integration are
as follows:

* web.xml: Here, we will specify springSecurityFilterChain as
org.springframework.web.filter.DelegatingFilterProxy and
assign it to the filter mapping. We need to specify the listeners as
ContextLoaderListener and RequestContextListener in the same file

<2xml version="1.8" encoding="UTF-8"2»

ueb-app wmlns:xsi="http://www.w3.org/ 2081/ %ML5chema- instance”
xmlns="http://java.sun.com/xml/ns/javase"
xmlns:web="http://Jjava.sun.com/xml/ns/javaee/web-app_2_5.xsd"
¥sl:schemalocation="http://java.sun.com/xml/ns/Jjavasce
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
version="2.5"%»

{context-paramy <param-name>contextConfiglocation</param-names
<param-values/WEB-INF/spring/root-context.xml/WEB-INF/spring/security.xml
{/param-value>

{/context-param>

Filters
¢filter-namerspringSecurityFilterChaing/filter-names
<filter-class>
org.springframework.web.filter.DelegatingFilterProxy
¢ffilter-class>

¢ffiltery

(filter-mapping»
¢Filter-namerspringSecurityFilterChain</filter-names
Lurl-pattern»f*{/url-pattern>
<dispatcher>FORWARD</dispatchers
<dizpatcher>REQUEST</dispatchers

/filter-mappings

<listeners
¢listener-classy
org.springframework.web, context.ContextloaderListener
¢/listener-classs

¢flisteners

¢listeners
¢listener-class>
org.springframework.web, context.request.RequestContextlistener
<flistener-classs

¢flizteners

[85]

Spring Security with JSF

The following portion will have entries for the appservlet, Faces Servlet,
and * . jsf pattern:

1 {servlet?

2 <servlet-name>appServletd/servliet-name>

{zervlet-class>

org.springframework.web, servlet.DispatcherServlet

<fservlet-class»

<init-params
<param-name>contextConfiglocation</param-name>

8 {param-value>

9 SWEB-INF/spring/servlet-context.xml

8 {/param-valueZ>

11 <finit-param»

12 {load-on-startup>1<{/load-on-startup®

13 {/servliet?

4 <servlet-mapping>

15 {servlet-name>appServlet{/servlet-name>

16 <url-pattern>/spring/</url-pattern:

17 ¢fserviet-mapping»

8 {servliets

19 {zervlet-name>Faces Servlet<{/servliet-name

8 {servlet-class>

21 javax.faces.webapp.Facesservlet

22 {/servlet-class>»

23 <load-on-startup>1l</load-on-startups

4 {/serviet?

25 <zervlet-mapping>

26 {zervlet-name>Faces Servlet</servlet-namex:

27 {url-pattern»*,jsf<furl-patterns

28 <url-pattern»/faces/*¢/url-pattern:

29 ¢/serviet-mapping»

[N -8

* root-context.xml: The context component base package will be specified in
this file:

1 ¢2xml version="1.8" encoding="UTF-8"?»

2 ¢beans xmlps="http://wwi. springframework. org/schema/beans”

E smlns:context="http:/ www. springframework. org/schema/ context”

4 wmlns wsi="http://www. w3, org/ 2081/ ¥ML5chema-instance”

5 xmlns tx="http:/ www.springframework. org/schema/tx"

b xzi:schemalocation="http:/ /www.springframework.org/schema/beans
Rhttp://ww, springframework.org/schema/beans/spring-beans.xsd

g http:/ S, springframework . org/schema/tx
g http://www. springframework.org/schema/tx/ spring-tx. xsd
18 http:/ S, springframework., org/schema/ context

11 http:/ /www. springframework.org/schema/context/spring-context . xsd">
12 {context:component-scan base-package="com.packt.spring.jsfsecurity” /3
13 </beans>

[86]

Chapter 6

* servlet-context.xml: The resources mapping and
InternalResourceViewResolver will be mentioned in this file:

€2xml version="1.8" encoding="UTF-8"2>

¢<beans:beans xmlns="http:/ www.springframework.org/schema/mec”
wmlns:xsi="http://wew.w3.org/ 2881/ XML5chema-instance”
¥mlns:beans="http://www.springframework.org/schema/beans"
¥si:schemalocation="

¢fuser-service>
<fauthentication-provider>
¢fauthentication-managers>
</beans:beans>

http:/fwww. springframework. org/schema/myc
http: /S, springframework ., org/schema/mvc/spring-mvc. xsd

8 http: /v, springframework.org/schema/beans

9 http:/fwe. springframework.org/schema/beans/spring-beans. xsd">
18 <resources mapplng="/resources/**" location="/resources/" f»
11 <beans:bean
12 class="org.springframework.web.servlet.view.InternalResourceViewResolver”»
13 <beans:property name="prefix" value="/WEB-INF/views/" /»
14 ¢heans:property name="suffix" value=".Jjzp" />
15 ¢{/beans:bean>
16 </beans:beans>

* security.xml: This is the main file of JSF and Spring integration. We can see
the authentication manager, authentication provider, and URL interceptors
entries in this file:

1 <2¥xml version="1.8" encoding="UTF-&"2>

2 <beans:beans wxmlns="http:/ wew.springframework.org/schema/security”

3 xmlns:beans="http://www.springframework.org/schema/beans”

4 ¥mlns:xsi="http:/ wew. w3, org/ 2881/ XMLSchema-instance”

5 xsi:schemalocation="http://www.springframework.org/schema/beans

B http: /v, springframework.org/schema/beans/spring-beans.xsd

7 http:/fwwv. springframewark.org/schema/security

8 http:/ fwew. springframevork.org/schema/security/spring-security.xsd">
9 ¢http use-expressions="true">

16 <intercept-url pattern="/landingpage.jsFf" access="isAuthenticated()" />
11 <intercept-url pattern="/%*" access="permitAll{)}" />

12 <form-login login-page="/checkuser.jsf" f»

13 <logout />

14 </http>

15 {authentication-manager:

16 <authentication-providers

17 fuser-service»

18 {user name="admin" password="packt"

19 authorities="ROLE_SUPERVISOR, ROLE_USER, ROLE_TELLER" />

[87]

Spring Security with JSF

JSF form creation and integration

Let's see the files that are required for the JSF Form creation and how the integration
works with the Spring Framework. Create home . xhtml as given in the following.
This file will redirect to the 1andingpage screen:

¢?xml version="1.8" encoding="UTF-8"2>
{ui:composition xmlns="http://f org/ 1999/ xhtml"
imlns:ui="http://Java.sun.« celets”

n

xmlns:f="http java.sun.com/jsf/core"
xmlns:h="http://Java.sun.com/jsF/ html"
template="/WEE-INF/templates/template.xhtml™>

<ui:define name="content™>

<hl¥<h:outputText wvalue="Welcome Page"/»></hl>

<br S

<pr
Enter your credentials here <h:link wvalue="J]5F Login Page"
outcome="landingpage™ />

</Spx

¢fui:define>

¢ful:composition>

The following is the 1andingpage . xhtml page:

<2xml version="1.8" encoding="UTF-8"%>
<ui:composition xmlns="http:// '
xmlns:ui="http://java.sun. J
xmlns:F="http://java.sun.com/Jj
¥mlns:h="http://java.sun.com/jsf/html"
template="/WEB-INF/templates/template. xhtml">
<ui:define name="content">
<hl»<h:outputText wvalue="Secured Login Success™ f><fhl>

<hZ=Landing Page Accessed ! </hi>
£fui:define>
<fui:composition>

g/ 1999/ xhtml”
facelets"

[88]

Chapter 6

In the security.xml file, we had mentioned that while accessing 1andingpage, the
checkuser security login page will be invoked. Take a look at the checkuser . xhtml
file as given in the following:

Laml version="1.87 encoding="UTr-&" 7%
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.8 Transitional//EN"

"http: /Swvw. w3, org/ TR/ xhtmll/DTD/xhtmll-transitional.dtd">
<ui:composition xmlns="http:/ www.w3.org/1999/xhtml"
xmlns:ui="http://Java.sun.c jsf/facelets"
«mlns:f="http://Java.sun.c

xmlns:h="http: awva.sun.com/
template="/WEE-INF/templates/template.xhtml™>
¢ui:define name="content”>

<h:body>

<h2>15F LOGIN PAGE</h2>

¢h:form id="loginForm” prependld="false">

<h:messages globalOnly="true"/>

¢h:panelGrid columns="3">
<h:outputlabel fFor="7j_username” value="User: * " />
<h:inputText id="j_username" required="true" label="username"/>
th:message for="j_username” display="text" style="color:red"/>
<h:outputlabel for="7j_password" value="Password: * " />
¢h:inputSecret id="j_password” label="password" required="trus"/>
<h:message for="j_password"” display="text" style="color:red"/>
<h:outputlabel for="_spring_security_remember_me" walue="Remember me: " />
th:selectBooleanCheckbox id="_spring_security_remember_me" />

</h:panelGrid>

<h:commandButton type="submit" id="login" wvalue="Login"

action="#{loginController.doLogin}™ />

<Shiforme</h:body»<ful:define»</ful:composition>

In this form, we have added the username and password fields that will be checking
the values configured in user service tags of the security.xml file. We have
configured the username as admin and password as packt.

[89]

Spring Security with JSF

Spring Security implementation and execution

The following loginController will take care of dispatcher mapping, passing
inputs to controller, and performing the Spring Security check Let's see the
completed package structure and execution now:

package com.packt.spring.]jsfsecurlty;
import java.io.IOException;
import javax.faces.application.FacesMessage;
import javax.faces.bean.*;
import javax.faces.context.*;
import javax.faces.event.#;
import javax.servlet.#®;
import org.springframevork.security.authentication.BadCredentialsException;
import org.springframevwork.security.web.WebAttributes;
@ManagedBean{name="1loginCantroller™)
@RequestScoped
public class LoginController implements Phaselistener {
public String doLogin() throws ServletException, IOException {
ExternalContext context = FacesContext.getCurrentInstance()
getExternalContext();
RequestDispatcher dispatcher = ((ServletRequest) context.getRequesti))
.getRequestDispatcher("/j_spring_security_check");
dispatcher.forward((ServletRequest) context.getRequest(),
(ServletResponse) context.getResponse());
FacesContext.getCurrentInstance().responseComplete();
return null;
T
public veoid afterPhase(PhaseEvent event) {
b
public void beforePhase(PhaseEvent event) {
Exception e = (Exception) FacesContext.getCurrentInstance()
getExternalContext().getSessionMap().get(
WebAttributes . AUTHENTICATION_EXCEPTION);
if (e instanceof BadCredentialsException) {
FacesContext.getCurrentInstance().getExternalContext().
getsSessionMap() . put(WebAttributes . AUTHENTICATION_EXCEPTION, null);
FacesContext.getCurrentInstance().addMessage(null,
new FacesMessage(FacesMessage.SEVERITY_ERROR,
"Input not wvalid.", "Input not walid"));
]

b

public Phaseld getPhaseld() {
return PhaseId.RENDER_RESPONSE;

¥

[90]

Chapter 6

The completed package structure will look as shown in the following:

Projects Bi|FiIes |5enribes | = pom, xml [J5FSecuritylogin] ﬁ|
B-§) I5Fsearitilogn Source | Graph Effective History ‘ QRS
E'.an Web\:;g?;F 1| [] <project xmlns="htt
i 'J) 2 x3i:schemalocation: T
Spring
b spring 3 <modelVersion»4.0.0</modelVersion>
iz root-context.xml q
i5 security.xml
x@ | ? et 5 <groupIdrcom.packt.spring. jsfsecurity</groupld:
iz serviet-context. xml
emplate [<artifactId>JSFSecuritylogin</artifactId>
mplates
: @ :E - 7 <version»1,0-SNAPSHOT</version:
mplate.
@ | ﬁ: bl 2 <packaging>war</packaging>
lassfish-web. xml
¢ 9 <name>J5FSecuritylogind/name>
[web.xml
10
= resources
é 1 [<propertiesy
-1 css
-LLL 12 <project.build.sourceEncoding>UTF-8</project .build. zourceEncoding>
U soreen,css
E] IE———— 13 <project.build.sourceEncoding>UTF-8</project .build. zourceEncoding>
@ h h 14 <spring.version>4,0.0.RELEASE</spring.version>
ome
@ index.himl 15 <spring-security.version»3.0.5.RELEASE</spring-security.version»
-|@] index.
16 </properties>
@ landingpage xhtml i

-lfa Source Packages 18| B
- g Dependencies
B U 18 E

- |g Java Dependencies

<dependency>

[ty Project Files a _
21 <groupIld>javax.faces</groupld>
22 <artifactId»jsf-api</artifactId>
23 <version»2.0</version>
24 caconeyeammilas facoms

When we run the project, the index.htm1 file will be invoked and home . xhtml will
be executed, as shown in the following screenshot. You will be asked to proceed to
the login page:

T

€ => C [} localhost:8080/B04615_6thChapter_Code/home.jsf

Welcome Page

Enter your credentials here JSE Login Page

[91]

Spring Security with JSF

On clicking the login page link, you will be directed to the login form screen, where
you can provide the username as admin and password as packt and submit it:

&« C' | [1 localhost:8080/B04615_6thChapter_Code/checkuser.jsf

JSF LOGIN PAGE

User: © admin
Password: = |eeess

Remember me:

Login

On successful login, you can reach the landing page, as shown in the following;:

- C' | [} localhost:8080/B04615_6thChapter_Code/landingpage.jsf

Secured Login Success

Landing Page Accessed !

Summary

We have covered the JSF basics and the required Spring Security configurations in
this chapter. We also tried to create a sample project from scratch and explained each
artifact. You can try adding some files to the same project for practice and apply
some features of JSF in order to make the project close to your real-time applications.
In the next chapter, we will cover the Apache Wicket project creation and integration
of the same with the help of Spring Security framework.

[92]

Spring Security with Apache
Wicket

Apache Wicket is a well-designed web framework to create faster websites and

web applications. Wicket's development is based on the component-oriented

Java web framework concept, therefore, the reusability is high when dealing with
Apache Wicket. We can feel the clear separation between markup and logic in

this approach. Here, markup means pure HTML code and logic means pure Java
program. The HTML developer can keep creating markups without messing up the
complex templating language or input parameters. In Wicket, each page component
is a real Java object and the object can persist state information, and any UI or
business function can be attached to the Java object easily. The MVC pattern-based
frameworks will work with whole requests and complete the set of pages, whereas
in Wicket, instead of dealing with the complete set of pages, we can closely deal with
each components of the pages individually as it is designed based on the component
framework. Like in Swing Framework, each GUI component is a stateful component
in Wicket. Each component is associated with a listener that can react to the HTML
requests using events. This feature of Apache Wicket makes the application flow of
control simple, manageable, and reusable.

[93]

Spring Security with Apache Wicket

Wicket uses the plain XHTML approach for the purpose of templating, where
each component is attached to a name element and responsible for rendering of
that element in the final response. The components can be further grouped into
panels and dealing with multiple panels will be possible for future purpose. The
components are automatically serialized and persisted while requested. The
developers need not bother about how the components are interacting with their
models as the objects are not exposed to the developers. By default, the server-side
state is managed by Wicket; therefore, the developers don't need to deal with the
HttpSession object directly or use a wrapper to handle or store the state. Instead,
each component will associated with a Plain Old Java Object (POJO) model, which
is nothing but a nested hierarchy of all the stateful components. Apache Wicket

is simple in such a way that the developers don't need to handle anything in the
configuration files.

In this chapter, we are going to cover the following topics:

* The Apache Wicket project with Spring Integration
* The spring-security.xml setup

* Executing the project

Apache Wicket project with Spring
Integration

The basic structure of Apache Wicket consists of a WebApplication extension
subclass, a webPage component class, and an associated HTML file, which will be
mounted in the WebApplication class. We can start exploring the Project Object
Model (POM) file and other basic Wicket programs now:

[94]

Chapter 7

[Y

[N I]

[

T R]

[

Wk @ W 0O O

[

= WO Ca e O

<?xml wverszion="1.8" encoding="UTF-&"2>

<project xmlns="http://maven.apache.arg/POM/4.8.8"

wmlns:xsi="http:/ www.w3.org/288L1/XMLSchema-instance”

xsi:schemalLocation="http://maven.apache.org/POM/4.8.8

http://maven.apache.crg/maven-vd_a_8.xsd">

<modelVersion>4.8.8</modelVersions

<groupld>com.packt.wicket.spring.security«</groupId>

<artifactIdsSpring-Wicket-Security-packt</artifactIds

<packaging»war</packaging>

<version>1l.8-SNAPSHOT</version>

<name*Spring-Wicket-Security-packt</name>»

<dependencies>

<dependency>
<groupldrorg.apache.wicket</groupld><artifactId>wicket-core</artifactId>
<version>${wicket.version}</version>

</dependency>

<dependency>
<groupIdrorg.springframework.security</groupld>
¢artifactIdsspring-security-web</artifactId»¢<version»3.1.4.RELEASE¢/versions

</dependency>

<dependency>
<groupIdrorg.springframework.security</groupld>
<artifactId»spring-security-config</artifactId»<version>3.1.4.RELEASE« /versian

<fdependency>

<dependency>
<groupldrorg.apache.wicket</groupld><artifactId>wicket-auth-roles</artifactId>
<version»6.7.8</version»

</dependency

<dependency>
<groupldrorg.apache.wicket</groupld><artifactIds>wicket-spring</fartifactId>
<version»6.7.8</version>

</dependency>

<dependency>
<groupId>»commons-logging</groupId>
¢artifactId>commons-logging</fartifactId><version>1.1.2¢/version>

</dependency>

<dependency>

<groupId>javax.servlet</groupld>

<artifactId»javax.servlet-api</fartifactId> <version»>3.l.8<fversion>

<typerjar</type>

</dependency>

[95]

Spring Security with Apache Wicket

The preceding POM file showed you the dependencies that are required for the basic
Wicket and Spring Integration project.

<?xml version="1.8" encoding="I50-8859-1"7>
<web-app xmlns="http://Java.sun.com/xml/ns/Jjavase"”
kxmlns;xsi="http:/ www.w3.org/2081 Lschema-instance”
¥si:schemalocation="http://java.sun.com/xml/ns/javaece
http://java.sun.com/xml/ns/Javaee/web-app_2_5.xsd"
version="2.5">
<display-name>Spring-Wicket-Security-packt</display-name>
Lcontext-param>
<param-name>contextConfiglocation</param-name>
Lparam-value>
classpath:spring-security.xml
<fparam-value>
<fcontext-param?>
<listener>
¢listener-clasz»org.springframework.web.context.ContextloaderLlistener
¢flistener-class>»
<flisteners>
<filters
¢filter-namerspringsSecurityFilterChain</filter-name>
¢filter-classrorg.springframework.web.filter.DelegatingFilterProxy
¢ffilter-class>
¢ffilters
{filter>
<filter-nameswicket.Spring-Wicket-Security-packt
¢ffilter-name>
¢filter-class»org.apache.wicket.protocol.http. WicketFilter
¢ffilter-class>
¢init-param:
<param-namerapplicationClassName</param-name>
¢param-valuescom.packt.wicket.spring.security.Wicketapplication
< fparam-value>
<finit-param>
¢ffilters
<filter-mapping>
<filter-namerspringSecurityFilterChain</filter-name>
Lurl-pattern>/*</url-pattern:
{ffilter-mapping>
<filter-mapping>
¢filter-nameswicket.Spring-Wicket-Security-packt</filter-name>
<url-pattern>/*<{/url-patternz
<ffilter-mapping>
</web-app>

Once you are done with the POM file, we can start modifying the web .xm1 file in
order to have the entries for the default wicketApplication program to be called in
the init-param tags.

[96]

Chapter 7

The spring-security.xml setup

The spring-security.xml file is as follows:

1 <beans:beans xmlns="http://www.springframework.org/schema/security”

2 xmlns:beans="http:/ www.springframevwork.org/schema/beans”
xmlns:xsi="http: /Swww. w3, org/ 2081/ XML5chema-instance™

4 xsi:schemalocation="http://www.springframework.org/schema/beans

http:/ fwwe. springframework., org/schema//beans/spring-beans-3.8.xsd

@ http: /s fwww. springframevwork.org/schema/security

http:/fwww. springframework.org/schema/security/spring-security-3. 1. xsd">
8 <http use-expressicns="true” create-session="never” auto-config="true">
<remember-me [

18 <intercept-url pattern="/" access="permitall™ />

11 <intercept-url pattern="/home” access="permitall™ />

12 <intercept-url pattern="/login" access="permitall™ />

13 <intercept-url pattern="/publish/**" access="hasRole('publisher')™ />
14 <intercept-url pattern="/author/#*¥" access="hasRole('author')™ />

15 <intercept-url pattern="/read/**" access="hasRole('reader')"™ />

16 <intercept-url pattern="/**" access="denyAll™ />

17 <form-login login-page="/login" />

18 «/http>

19 ¢authentication-manager alias="authenticationManager">

28 <authentication-provider>

21 <user-services

22 <user name="packt™ password="test"

23 authorities="publisher,author,reader” />

24 <user name="nanda" password="test" authorities="reader,author" />
25 <user name="developer” password="test" authorities="reader" />
26 {fuser-services

27 <fauthentication-providers>

28 <fauthentication-manager>

29 «beans:bean id="securityContextPersistenceFilter"
class="org.springframework.security.web.context.SecurityContextPersistenceFilter” s>
31 </ /beans:beans>

[97]

Spring Security with Apache Wicket

The next step is to configure the security settings in the spring-security.xml file.
You will notice the three different user types: Publishers, Authors, and Readers. This
file is important file as the main configurations for security settings are available
here. Please take a look at the intercept-url tag, where each age is associated with
different access privileges:

<prlogin

Default Login page </p>

<prpublish Page
Publishers can access</p>

<p>author Page
Authors and Publishers can access</p>
<p>read Page

Readers, Authors and Publishers can access</p>

package com.packt.wicket.spring.security;

import org.apache.wicket.markup.html.WebPage;
import org.apache.wicket.request.mapper.parameter.PageParameters;

public class HomePage extends WebPage {
private static final leong serialVersionUID = 1L;
public HomePage(final PageParameters parameters) {

super(parameters);

}

This is our starting page called HomePage . html, which is associated with the subclass
of WebPage named HomePage . java:

package com.packt.wicket.spring.security;
public enum Role {
PUBLISHER("publish"),AUTHOR("author"),READER("read");
private final String springSecurityRoleName;
private Role(5tring springSecurityRoleName) {
this.springSecurityRoleName = springSecurityRoleName;
T
public String getSpringSecurityRoleName() {
return springSecurityRoleName;

h

We can store the roles in a Role.java enumeration file that will be referred all over
the application.

[98]

Chapter 7

The following image shows LoginPage . html and LoginPage.java. You can see the
login form implementation and form data handling in the onsubmit () method:

<body>
<h2>Login</h2>
<form wicket:id="loginForm">
<p> Username: <input type="text" wicket:id="username"/></p>
<{p>Password: <input type="password"” wicket:id="password"/></p>
<input type="submit"” walue="Login"/ />
</formz>
</body>

public class LoginPage extends WebPage {
public LoginPage(PageParameters parameters) {
add{new LoginForm{"loginForm™));
¥
private class LoginForm extends Form<Void>» {
private transient RequestCache requestCache = new HttpSessionRequestCache();
private String username;private String password;
public LoginForm{5tring id) {
super(id);
setModel (new CompoundPropertyModel(this));
add(new RequiredTextField«<String>({"uszername”));
add(new PasswordTextField("password”));
T
@0verride
protected veid onSubmit() {
HttpServletRequest servletRequest = (HttpServletRequest)
RequestCycle.get().getRequest().getContainerRequest();
String originalUrl = getOriginalUrl(servletRequest.getSession());
AuthenticatedWebSession session = AuthenticatedwWebSession.get();
if (sessicn.signInf{username, password)) {
if (originalUrl != null) {
throw new RedirectToUrlException{originalUrl);
T oelse {

setResponsePage(getApplication().getHomePage());
b
} else {error("Login failed due to invalid credentials");?}
¥
private String getOriginalUrl(HttpSession session) {
SavedRequest savedRequest = (SawvedRequest) session.
getAttribute("SPRING_SECURITY_SAVED_REQUEST");
if (savedRequest != null) {
return savedRequest.getRedirectUrl();
T else {
return null; H

[99]

Spring Security with Apache Wicket

The following image shows WicketApplication.java:

package com.packt.wicket.zpring.security;

import org.apache.wicket.authroles.authentication.AbstractiuthenticatedWebSession;
import org.apache.wicket.authroles.authentication.fAuthenticatedWebApplication;
import org.apache.wicket.markup.html.WebPage;

import org.apache.wicket.spring.injection.annot.SpringComponentInjector;

public class WicketApplication extends AuthenticatedWebApplication {

@verride
public Class<? extends WebPage> getHomePage() {
return HomePage.class;

}

@verride
public veid init{) {
super.init();

getComponentInstantiationLlisteners().add(new SpringComponentInjector(this));

mountPage("login”, LoginPage.class);
mountPage("home", HomePage.class);
mountPage("publizh", PublishPage.class);
mountPage("author”, AuthorPage.class);
mountPage("read”, ReaderPage.class);

H

@override
protected Class<? extends WebPage> getSignInPageClass() {
return LoginPage.class;

H

@override
protected Class<? extends AbstractfuthenticatedWebSession: getWebSessionClass() {
return SecureWebSession.class;

}

[100]

Chapter 7

This is our main Wicket program that will be configured as the starting point of the
project. Here, you can see the init () method that is registering all the pages using
the mountPage () method:

public class SecureWebSession extends AuthenticatedWebSession {
private HttpSession httpSession;
@springBean({name = "authenticaticnManager™)
private AuthenticaticnManager authenticaticnManager;
public SecureWebSession(Request request) {
superirequest);
this.httpSession = ((HttpServletRequest) request.
getContainerRequest()).getSession();
Injector.get().inject(this); ¥
@0verride
public boolean authenticate(String username, String password) {
try {
Authentication auth = authenticationManager.authenticate(
new UsernamePasswordAuthenticationToken(username, password));
if (auth.isAuthenticated()) {
SecurityContextHolder.getContext().setlAuthentication(auth);
httpSession.setattribute(HttpSessionSecurityContextRepository.
SPRING_SECURITY_CONTEXT_KEY,
SecurityContextHolder.getContext());
return true;

} else { return false; H
} catch (AuthenticationException e) {
return false; H
H
@0verride

public Roles getRoles() {
Roles roles = new Roles();
if (isSignedIn()) {
Authentication authentication = SecurityContextHolder.
getContext().getAuthentication();
addRolesFrom&uthentication(roles, authentication);
H
return roles; G}
private void addRolesFromiuthentication(Roles roles,
Authentication authentication) {
for (Grantedfuthority authority : authentication.getfuthorities()) {
roles.add{authority.getduthority());
T ¥
public boolean hasRole(Role role) {
return getRoles().hasRole(role.getSpringSecurityRoleName());
T

[101]

Spring Security with Apache Wicket

The secureWebSession program will authenticate the username and password
combination by creating a new username and password authentication token.

The request object will be passed to this program and the roles will be accessed
through the getRoles () method:

import org.apache.wicket.markup.html.WebPage;
public class PublishPage extends WebPage {}
PublishPage.html : <hZ>Publisher</h2>

import org.apache.wicket.markup.html.WebPage;
public class AuthorPage extends WebPage {}
AuthorPage.html @ <h2>Author</h2>

import org.apache.wicket.markup.html.WebPage;
public class ReaderPage extends WebPage {}
ReaderPage.html : <h2:Reader</h2:

Here is our PublishPage.Html, AuthorPage.Html, and ReaderPage.Html and
the corresponding PublishPage.java, AuthorPage.java, and ReaderPage.java
progranl&

[102]

Chapter 7

The final project will look similar to the following screenshot:

BB spring-Wicket-Security-packt

Ek g WebPages

B[WeE-IE

IE glassfish-web,xml

[web.sml

E-lf Source Packages

é EQ cam,packt. wicket.spring. security

@ AuthorPage.html

@] AutharPage. java

@ HomePage html

@] HomePage java

LoginPage.himl

@] LoginPage java

@ PublishPage.html

@] PublishPage. java

@ ReaderPage. himl

@] ReaderPage.java

@ Rolejava

@] SecureWebSession.java

@] WicketApplication,java

£y Other Sources

B s srcfmainfresources
BEB <default package >

@ spring-security.xml
g Dependendes

g Java Dependendes
| g Project Files

Source] History ‘ @ v o

A

1
2
3
4
5
]
7
]
9

[[<beans:beans xmlns="htop

xmlns:beana="htt]

¥mlng:xsi="http:

xsi:schemalocation:

http:/ springframe

nttp
netp:/

gpringfra
/. springframes

& <http use-expressions="true" create-session="never" auto
<remerber-me />

<intercept-url pattern="/

accezs="permitAll" /»

<intercept-url pattern="/author/**" acces
<intercept-url pattern="/r
<intercept-url pattern="/%**" accezs="d

<form-login login-page=" n" />

F </http>
- <authentication-manager alias="authenticationManager">

<authentication-provider>
- {user-servicer
<user name="packt" password="test"

authorities="publisher, author,readsxr" />

<user name="nanda" password=

<user name=" er" password="test" a
F </user-gervice»

r </authentication-provider>

r </authentication-manager>

<beans:bean id="szzcu

clazs="org.sp

- </beans:beans>

<intercept-url pattern: me" access="perm "y
<intercept-url pattern: gin" access="permitAll" /»
<intercept-url pattern="/publish/#**" access="h e('publisher')" />

est" authorities="reader,anthor" />
uthorities=

[103]

Spring Security with Apache Wicket

Execution of the Project

On execution, you will be directed to the login page and other publisher, author, and
reader pages, where you can apply the security credentials that are set in the Spring
Security config file. You can see that the Publishers can access all pages, while
Authors and Readers cannot access the restricted pages:

ST U W T |

C | [} localhost:8080/Spring-Wicket-Security-packt/home;jsessionid=23deadce0305a054645512197f08

login Default Login page

publish Page Publishers can access
author Page Authors and Publishers can access

read Page Readers. Authors and Publishers can access

[C' | [3 localhost:8080/Spring-Wicket-Security-packt/login?1
Login

Username: |packt

Password: [s===

Login

Summary

In this chapter, we went through the basic Apache Wicket application structure
and sample project. We have seen the configurations that are required from the
Spring perspective and dependencies required in the Maven POM file. We made
the security credentials settings in the Spring Security file and executed the sample
application by entering different security credentials for different types of users. In

our next chapter, we will explore the Spring Security concepts to handle the SOAP
web service security.

[104]

Integrating Spring Security
with SOAP Web Services

Spring Framework comes with a web service package that helps the developers

to build new SOAP web services. Spring-WS project includes a substantial list of
APIs for various web services framework such as JAX-WS, Axis, JBossWS, and so
on. Simple Object Access Protocol (SOAP) is a protocol to exchange structured
information across applications. The application can initiate a SOAP request to a web
service provider with the required parameters and the response will be provided
in the XML format. The SOAP specification consists of SOAP processing model,
extensibility model, protocol binding framework, and message construction. SOAP
can be used with any transport protocols such as SMTP, JMS, and Message Queues.
Compared to the RESTful services, the SOAP web services are more verbose in
nature. To discover the SOAP service, we have to depend only on Web Services
Description Language (WSDL) mechanism.

In this chapter, we will learn the following;:

* Creating SOAP web service with security
* Client creation for consuming the web service

* Executing the project

[105]

Integrating Spring Security with SOAP Web Services

Creating SOAP web service with security

We have two popular ways to create a web service called code first and contract
first. Code first is the popular method and it is a bottom-up approach and is simpler
to implement. We need to create services as classes and interfaces and use tools to
generate corresponding WSDLs. We have three ways of dynamically generating
WSDLs, that is, manually generating WSDL using a tool, automatic generation
using Spring factory, or automatic generation from the Java 5 annotations. In this
approach, developers need not worry about the knowledge of SOAP, WSDL, or
even XML. The deployment is also faster using few annotations. The other method
is contract-first method that is a top-down approach, it means that we need to create
the WSDL first with all types, messages, port, binding, and services and then create
the implementation from the tools such as Ant script and IDE plugin. To make the
development simple, Spring-WS does not support contract-first method. Also, Spring
supports different forms of messages such as standard XML APIs (SAX, dom4j, and
JDom) and Serialized Java object (JAXB, Castor, XMLBeans, and XStream).

Create a Spring-WS project in your favorite IDE and define the contract data to be
transferred in the form of the XML schema. The XML Schema Definition (XSD)
nomenclature is important as the relationship between the request and response
binding is tightly coupled with this. Once the message is constructed, the next step
is to create the endpoint that will interpret the incoming messages and return the
response. Spring provides many base classes to retrieve messages in different forms
such as SAX, JDOM, DOM4]J, Stax, JAXB, Castor, and so on.

The following screenshot shows pom.xml that consists of the dependencies required
to create a Spring-WS project:

[106]

Chapter 8

1 <?xml version="1.8" encoding="UTF-8"2>
2 «project xmlns="http://maven.apache.org/POM/4.8.8"
3 oxmlnsixsi="http:/ /v LOrg/ 2881/ XMLSchema-instance”
4 ¥siischemalocation="http://maven.apache.org/POM/4.8.8
5 http://maven.apache.org/maven-v4_8_8.xsd">
6 <modelVersion»4.@.8</modelVersion>
<groupld>com.packtpub.spring.soap.security</grouplds>
8 <artifactIds>spring_soap_security</artifactId>
9 <packaging»war</packaging®

e <version»1.@-SNAPSHOT<¢ /version>
11 <name>spring_soap_security</name>
12 <repositoriess
13 <repository>
4 ¢id>jboss</id>
15 <name>jboss Repository</name>
16 <urlxhttp://repository.jboss.org/maven2</urls
1 </repository>

8 </repositories>
19 <dependencies>

a <dependency>
21 <groupldrorg.springframework.ws</grouplds
<artifactIdrspring-ws-security</artifactId>
23 <version>2.8.1.RELEASE</version>
4 </dependency
25 <dependency
26 <groupldsorg.springframework</grouplds>
7 <artifactId»spring-expression</artifactld>

28 ¢version>3.@.5.RELEASE< /versions
29 </dependency>
EL:) <dependency>

<groupId>logdj</groupld>
<artifactId»logdj</fartifactId>
<versionx1.2.9</versionr
</dependency>
</dependencies>
36 ¢/project>

The following is the screenshot of the web . xm1 file:

1 <?xml version="1.8" encoding="UTF-8"2>

2 gweb-app xmlns="http://java.sun.com/xml/ns/j2ee"

3 xmlns:xsi="http:/ wew.w3.0rg/2001/XML5chema-1instance™

4 #xsiischemalocation="http://java.sun.com/xml/ns/j2ee

5 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"”

6 version="2.4">

<display-name>spring_soap security</display-name>

<context-param>
<param-name>log4jConfiglLocation</param-name>
<param-valus>/WEB-INF/logdj.properties</param-value>

</context-param>

<context-param>
<param-name>logdjRefreshInterval</param-name>
<param-value>1088</param-value>

</context-param>

<listener>
¢lisztener-class>org.springframework.web.util.logdjConfiglistener
</listener-class>»

</listener>

<servlet>
<zervlet-name>spring-ws</servlet-name>

</servlet-class>
<init-param>
<param-name>transformiWsdlLocations</param-name>
<param-valuertrue</param-value>
<finit-param>
</servlets
<servlet-mapping®
<servlet-name>spring-ws</servlet-name>
1 <url-pattern>/*/url-patterns
<fservlet-mapping>
<fuweb-app>

<zervlet-clas=rorg.springframework.ws.transport.http.MessageDispatcherServliet

[107]

Integrating Spring Security with SOAP Web Services

The web . xm1 file will have the configurations such as MessageDispatcherServlet
and Servlet mappings:

<context:component-scan base-package="com.packtpub.spring_soap_security.service" />
<sws:annotation-driven />
<zwsdynamic-wsdl id="BookService” portTypeName="EBookSe
locationUri="http: calhost:8888/=pring_soap_security/spring-ws/BookService™
targetNamespace="http packtpub /spring_soap_security/BookService/schema">
<suws:xsd location=", -INF/BookService.xsd"™ />
<fsus:dynamic-wsdl>
<sws:interceptors>
<bean
class="org.springframework.ws.soap.server.endpoint.interceptor
PayloadvalidatingInterceptor">
<property name="schema" value="/WEB-INF/BookService.xsd" />
¢property name="validateRequest" value="trus" />
<property name="validateRezponse” wvalue="true" />

ice

</bean>

<bean class="org.springframework.ws.soap.security.xuss.XwsSecurityInterceptor”s
<property name="policyConfiguration” wvalue="/WEE-INF/securityPolicy.xml"/>
Lproperty name="callbackHandlers">

¢list>

<ref bean="springSecurityHandler"/>

<flist>

L<fproperty>
</beanx

<fsus:interceptors:

<bean id="springSecurityHandler"
class="org.springframework.ws.soap.security. xwss. callback.
SpringDigestPasswordValidationCallbackHandler">
<property name="userDetailsService” ref="userDetailsService"/>

</bean>

<bean id="userDetailsService" class="com.packtpub.spring_socap_security.szervice.dao.

MylUserDetailService™ />

</beans>

We need to provide the spring-ws-servlet xml configurations to mention dynamic-
wsdl, PayloadvalidatingInterceptor, and XwsSecurityInterceptor. Here, we
also have to mention SpringDigestPasswordvalidationCallbackHandler thatis
springSecurityHandler. The spring-ws-servlet.xml file contains Spring Web
Services specific beans information and it is used to create a new container for

WS Beans:

{¥wss i Securltylonfiguration dumpMessages="true"
¥mlns:xuwss="http://java.sun.com/xml/ns/xwss/config"»
<wwzsiRequireTimestamp maxClockSkew="68" timestampFreshnessLimit="388"/>
<xmssRequireUsernameToken passwordDigestRequired="true” nonceRequired="true"/:
<fxwss:SecurityConfigurations

This is the securityPolicy.xml file, where we will specify the
SecurityConfiguration details.

[108]

Chapter 8

Here comes the XSD file, which has the elements declaration. Here, we specified the

Book, BookResponse, and BookRequest ObjeCt:

<xml version="1.8" encoding="UTF-8"2>
<zchema xmlns="http LOrgs 2881/ XMLS5chema”
targetNamespace ?
®¥mlns:tns="http:/,
elementFormDefault="quali<isd"
¥mlns:QBook="http: w.packtpub.com/spring_socap_security,
{element name="getBookRequest">
LcomplexType>
{sequence’
<element name="Book" type="QBook:Book"><{/element>
<fsequence
</complexType>
</elements
<glement name="getBockResponse"s
<complexType>
{sequenced
<element name="refNumber” type="string"></element>
<fsequence’
<fcomplexType>
<felement>
{complexType name="Book">
{sequenced
<element name="refNumber” type="string"></element>
<element customer” type="{Book:Customer"></element>
<element name="dateSubmitted” type="dateTime"></elements
<element name="BookDate" type="dateTime"»</element>
<fsequence’
<fcomplexType>
</schema>

.packtpub.com/spring_scap_securit;

ce/schema">

Let's start creating the UserDetailsService as shown in the following. This class
contains the methods to load the user details by name and gets the user data from

DAO class:

package com.packtpub.spring_socap_security.service.dao;
import org.springframework.dac.DatafccessException;
import org.springframework.security.core.authority.GrantediuthorityImpl;

import org.springframework.security.core.userdetails.UserDetails;
import org.springframework.security.core.userdetails.UserDetailsService;

public class MyUserDetailService implements UserDetailsService {
@verride
public UserDetails loadUserByUsername(String username)

throws UsernameMotFoundException, DatafccessException {

return getUserDataFromDaciusername);

¥

private MylUserDetail getUserDataFromDac(String username) {

return mydetail;

MyUserDetail mydetail=new MyUserDetail{username, 'pas=",true,true,true,
mydetail.getAuthorities().add({new GrantedAuthorityImpl({"ROLE_GENERAL_CPERATCR"));

import org.springframework.security.core.userdetails.UsernameNotFoundException;

truel;

[109]

Integrating Spring Security with SOAP Web Services

The next step is to create the UserDetails class that is used to store the user
information:

public class MyUserDetall implements UserDetalls {
private String password;
private String userbame;
private boolean isfAccounthonExpired;
private boolean isfAccountNonLocked;
private boolean isCredentialsNonExpired;
private boolean isEnabled;
public static Collection<@Grantedauthority> authority =
new Arraylist<Grantediuthority>();
public MyUserDetail(String userName, String password,boolean isdAccountMonExpired,
boolean isAccountNonlocked,boolean isCredentialsNonExpired, boolean isEnabled){
this.userName=userName;
this.password=password}
this.isAccountMonExpired=isAccountNonExpired;
this.isAccountionlocked=1isAccountilonlocked;
this.isCredentialsNonExpired=isCredentialsNonExpired;
this.isEnabled=isEnabled;
1
@override
public Collection<GrantedAuthority> getAuthorities() {
return authority;
¥
@0verride
public String getPassword() {
return password;
T
@0verride
public String getUsername() {
return userlame;

H;

Now, we can write the Service Implementation class that will implement the
getBook and cancelBook method, as shown in the following screenshot:

package com.packtpub.spring_soap_security.service;

public interface BookService {
String getBook(String fName,5tring 1lName,String refNumber);
boolean cancelBook{ String refNumber J;

package com.packtpub.spring_soap_security.service;
import org.springframework.stereotype.Service;
@service
public class BookServiceImpl implements BookService {
public String getBook(String fName,String 1Name,String refNumber)q{
return "Book-"+fName+"_"+1Name+"_"+reflumber;

public boolean cancelBook(String reflumber){
return true;

Iy

The next step is to create the Endpoint class in order to implement the
handlegetBookRequest and handleCancelBookRequest methods. We need to use @
ResponsePayload and @RequestPayload to specify the local parts and name spaces:

[110]

Chapter 8

[T ®Endpoint
public class BookServiceEndpoint {

private final String SERVICE_NS =
"http .packtpub.com/spring_scap securit:

private BookService BookSerwicej

@autowired

public BookServiceEndpoint(BookService BookService) {
this.BookService = BookSerwvice;

ookService/schema”;

¥

@PayloadRoot(localPart = "getBookRequest", namespace = SERVICE_NS)

public @ResponsePayload

Source handlegetBookRequest(@RequestPayload Source source) throws Exception {
String fName="Fackt";
String 1Name="Fub"
String refNumber="5&7
return new StrlngSource(
"<tns:getBookResponse wmlns: w.packtpub. com/spring_scap_security
BookService/schemal\"><tns:reflumber>"+BookService. getBook(FName, 1Name, refNumber)+

"¢/tns:reflumber></tns:getBookResponse>");

]
@PayloadRoot(localPart = "cancelBockRequest"”, namespace = SERVICE_NS)
public @ResponsePayload
Source handleCancelBookRequest(@RequestPayload Source source) throws Exception {
//extract data from input parameter
String refNumber="1234";
return new StringSource(
"<tns:cancelBookResponse xmlns:tns=\"htt vi.packtpub.con
spring_scap_security/BookService/schema\"><tns:cancelled>"+
BookSerwvice.cancelBook(refNumber)+"</tns:cancelled></tns:cancelBookResponse>");

Client creation to consume the web
service

The following screenshot shows the POM file for the client project. We need to
specify the Spring Web Services package and repository information in this file:

{modelVersion>4.09.8</modelVersion>
<groupld>com.packtpub.spring.soap.security.test</grouplds
<artifactId»spring_soap_security_Client</artifactIds
<packaging»jar</packaging>»
< on>1.8-SNAPSHOT< /v n>
<name>spring_socap_security_Client</name
<repositories:
<repository

<id>jboss</id»

<name>jboss Repository</name>

<urlxhttp://repository.jboss.org/maven2</urls

<dependenc

<dependency>
<groupldrorg.springframework.ws</groupld>
<artifactId»spring-ws-security</artifactIds
<version>2.8.1.RELEASE</v

</dependency>

<dependency>
<groupldrorg.springframework</grouplds
<artifactIdrspring-expression</artifactIds>
<version>3.8.5.RELEASE</v

</dependency>

<dependency>

<groupIld>logdj</groupld>

<artifactId>logdj</artifactId>
eversion

</dependency>

<dependency
<groupldrorg.springframework</grouplds
<artifactId»spring-test</artifactId>
<version»>3.8.5.RELEASE</ve

</dependency>

</dependencies>

[111]

Integrating Spring Security with SOAP Web Services

Next, we see the following implementation:

<xwss:SecurityConfiguration dumpMessages="true"
wmlns:xwss="http://Java.sun.com/xml/ns/xwss/config"»
<xwss Timestamp />
£xussiUsernameToken name="PacktlUser"
password="password"
digestPassword="trus" useNonce="trus" />
£fuwss SecurityConfigurations

This is the security policy file, where the username and password information are
being stored. Here, you can see digestPassword and useNonce is set to true.

The next step is to create the application the context .xml file, as shown in the
following screenshot. Here, we need to specify the SsecurityInterceptor and
Spring callback handler called SimplePasswordvalidationCallbackHandler:

<hean id="messageFact

class="org.springfram rk.ws.scap.saaj.5aajScapMessageFactory” /3

<bean id="webServiceTemplate"

class="org.springframevork.ws.client.core.WebserviceTemplata">

<constructor-arg ref="messageFactory" />

<property name="defaultUri”
value="http://localhost: 8888/ spring_scap_security/spring-ws/BookService” />

<property name="interceptors":

<listz
<ref local="wxwsSecurityInterceptor” />
<flist>
</property’
</bean>

bean id="wwsSecurityInterceptor”
class="org.springframe k.ws.soap.securit wss. XwsSecurityInterceptor”»
<property name="policvConfiguration” wvalue="/securityPolicy.xml"/>
<property name="callbackHandlers">
¢list>
<ref bean="callbackHandler"/>
<flists
</property>
</bean>
<bean id="callbackHandler" class="org.springframework.ws.soap.security.xuss,
callback.SimplePasswordValidationCallbackHandler" />
<bean id="logdjlnitialization”
class="org.springframework.beans.factory.config.MethodInvokingFactoryBean"s
<property name="targetClass" value="org.springframework.util.Logd4jConfigurer” s>
<property name="targetMethod" value="initLogging" />
<property name="argumentsz">
¢list>
<valuersrc/test/resources/logdj.properties</values
<flist>
</property®

[112]

Chapter 8

The following screenshot shows the response and request xm1 objects that will be
used to transport the data:

[
(X1} [T R s VR I S W

[
(I R

s @00

<?xml version="1.2" encoding="UTF-8"32>

<tns:placeBookRequest xmlns:tns="http://www.packtpub.com/

spring_soap_security/BookService/schema">
<tns:order>
<tns:refNumber>1234</tns: refNumber>
<tns:customer>
<tns:addressPrimary>

<tns:doorNo»22</tns:doorNo
<tns:building»12</tns:building>
<tns:istreet>ABCL{/tns i street>
<tns:city»Mumbai</tns citys

<tns:phonelandline>12345678</tns:phoneLandLine>

<tns:emailrpackt@packt.com</tns:email>
<ftns:addressPrimary>
<tns:name>
<tns:fName>Packt</tns:fName>
<tns:mName>Pub</tns :mName>
<tns:1Name>Pact</tns:1Name>
</tns:name>
<ftns:icustomers

¢tns:dateSubmitted>2008-09-29T85:49:45¢</tns dateSubmitteds
<tns:orderDate>2014-89-19T783:18:33</tns:orderDate>

<tns:items>
<tns:type>Bookl</tns: type>
<tns:iname>Book2</tns:name>
<tns:quantity»B</tns:quantity>
<ftns:items>
</tns:order>
</tns:placeBookRequests>

<tns:placeBookResponse

xmlns: :tns="http://wwu.packtpub.com/spring_soap_security/

BookService/schema" >
{tns:reflumber>Packt_pub_ 1234</tns:refNumber:
</tns:placeBookResponse’

[113]

Integrating Spring Security with SOAP Web Services

Executing the project

To execute the project, we need to create a BookServiceClientTest class as follows.
You can see the InputStream declarations for request and response XMLs:

@Rumtith{SpringlUnitdClassRunner.class)
@ContextConfiguration("/applicationContext.xml")
public class BookServiceClientTest {
@Autowired
private WebServiceTemplate webServiceTemplate;
private static InputStream placeBookRequest;
private static InputStream placeBookResponse;
@autowired
private GenericApplicationContext applicationContext;
@Before
public vold setUpBefore() {
placeBookRequest = new BookServiceClientTest().getClass().
getResourcefAsStream(“placeBookRequest.xml™);
placeBookResponse = new BookServiceClientTest().getClass().
getResourceAsStream("placeBookRespanse.xml™);

¥
@Test
public final wvoid testPlaceBookRequest() throws Exception {
Reszult result = invokeWS({placeBookRequest);
XMLAssert.assertXMLEqual("Invalid content received",
getsStringFromInputStream(placeBookResponse), result.toString());
¥
private Result invokeWS({InputStream is) {
StreamSource source = new StreamSource(is);
StringResult result = new StringResult();
webServiceTemplate. sendSourcedndReceiveToResult(source, result);
return result;

[114]

Chapter 8

LNFQ: ==== »ending Message >Tart ====
<S0AP-ENV:Envelope ...>
<SOAP-ENV:Header>

<wsse:Security ...»

<wsu:Timestamp ...>

<wsu:Created>2015-11-06T10:06:36. </ wsu:Createds>
<WSUIEXpires=>2015-11-06T10:02:36. </wsu:Expires>
</wsu:Timestamp>

<wsse:usernameToken. . .=
<wsse:Username>PacktUser</wsse:Username:
<wsse:Password #PasswordDigest'>*¥%%</wsse:Passwords
<wsse:Nonce #BasebdBinary'=...</wsse:Nonce>
<wsu:Created>2011-11-06T10:04:36. 6B3Z</wsu:Created:>
</ wsse:UsernameToken:>

</wsse:Security=

</S0AP-ENV:Header>

<SOAP-ENV:Body>

<tns:placeorderRequest xmlns:tns="http:/ /www. packtpub. com/
Tiverestaurant,/orderservice/schema">

Securing S0AP wWeb-Services using Xw5SS Library

200

</tns:placeorderrRequest>

</S0AP-ENV:Body>

</S0AP-ENV:Envelopes

==== Sending Message End ====

INFO: ==== Received Message start ====

<7xm] version="1.0" encoding="UTF-8"7><S0AF-ENV:Envelope
xmlns :S0AP-ENV="http://schemas. xmlsoap.org/soap/envelope,/ ">
<SOAP-ENV:Header />

<S0AP-ENV:Body>

<tns:placeorderResponse... ">
<tns:refNumbersorder-Packt-Pub-1234</tns :refNumbers>
</tns:placedrderResponse>

</S0AP-ENV:Body>

</SOAP-ENV:IENVe]lopes

==== Received Message End ====

On execution, you can see the username and password is sent along with the SOAP

request, and the response is printed in the console in a SOAP envelope.

Summary

In this chapter, we covered the basics of Spring Web Services package and the

different types of SOAP web services creation. We have seen the Spring web service
project creation and we also created the client project. We have executed and tested
the authentication of SOAP message as well. In the next chapter, we will see how to

handle the security for RESTful web services.

[115]

Building a Security Layer for
RESTful Web Services

Representational State Transfer (REST) is an architectural style with which other
web services can be designed. It serves the resources based on the request from the
client. Web service is nothing but a unit of managed code that can be invoked using
HTTP requests. We can develop the core functionality of any application and expose
the same by deploying it in a server. The exposed web services can be accessed
using URIs through HTTP requests from a wide range of client applications. With
this method, duplication of business services for different implementations, such as
desktop, mobile, and so on, will be avoided.

RESTful web services are quick in responding as there is no strict specification
such as SOAP web services. REST requires much less bandwidth and resources, as
it is a lightweight design. It is also language- and platform-independent. RESTful
web services are applicable for any programming language and platforms. We can
combine SOAP web services with RESTful as REST is only a concept and allows
building other web services on top of it. Different data formats such as plain text,
HTML, XML, and JSON RESTful are allowed in REST web services. Also, RESTful
web services inherit security measures of the underlying transport protocol.

[117]

Building a Security Layer for RESTful Web Services

The Spring framework supports two ways of creating RESTful services using

MVC with ModelAndView and HTTP message converters. The MVC approach is
better; however, it is older, requires more verbose, and is heavyweight. Due to this
approach, the entire application may become unmanageable. Therefore, from Spring
3.0 onwards, we have a robust annotation-based, less complex implementation

of RESTful web services. In the new approach, the configuration is minimal and
addresses most of the required defaults of the standard RESTful service.

The major difference between a traditional MVC Controller and RESTful web service
controller is the way the HTTP response body is created. In RESTful, instead of
depending on View Technique to perform server-side rendering of the response
data, the controller simply returns a JSON format response object.

In this chapter, we will explore the following:

* Creating a RESTful web service
* Spring Security configurations

* Executing the project

Creating a RESTful web service

The following screenshot will explain the POM file creation. We need to add the
following dependencies in the POM file in order to create a Spring RESTful web
service security project:

® spring-security-web

® spring-security-config

® spring-core

® spring-context

® spring-web

® spring-webmvc

[118]

Chapter 9

<dependencies>
<dependency>
<groupldrorg.springframework.security</groupld>
<artifactId>spring-security-web</artifactId>

<version»${org.springframework.security.version}</version»

</dependency>

<dependency>
<groupld>org.springframework.security</g pId>
<artifactTd»spring-security-confige/artifact Td»
<versionr${org.springframework.security.version}</version>

«/dependency>

<dependency>
<groupldrorg.springframework</groupld> <artifactld»spring-core</artifactId>
<version>${org.springframework.version}</version>

</dependency>

<dependency>
<groupld>org.springframework</groupIld> <artifactId>spring-context</artif
<version>${org.springframework.version}</version»

</dependancy>

{dependency’>
<groupId>org.springframework</groupld> <artifactId»spring-beans</artifactId>
<version»>${org.springframework.version}</version»

</dependency>

<dependency>
<groupld>org.springframework</groupld> <artifactId>spring-tx<¢/artifactId>
<version>${org.springframework.version}</version>

</dependency>

<dependency>
<groupld>org.springframework</groupld> <artifactId»spring-expression</artifactId>
<version>${org.springframework.version}</version>

</dependency>

<dependency>
<groupTdrorg.springframeworks/groupTa> <artifactIdsspring-web</artifactId>
<version>${org.springframework.version}</version>

«/dependency>

<dependency>
<groupldrorg.springframework</groupld> <artifactld»spring-webmvc</artifactId>
<version>${org.springframework.version}</version>

</dependency>

<dependency>
<groupld>javax.servlet</groupld> <artifactId>javax.servlet-api</artifactId>
<version>3.@.1¢/version> <scope>provided</scope>

</dependency>

The next step is to configure the XML files for Spring set up. The following is

the screenshot of web .xm1 where AnnotationConfigWebApplicationContext,
ContextLoaderListener, DispatcherServlet, and DelegatingFilterProxy are
configured. Here, servlet-mapping and URL pattern are also specified:

ttp
xmlns:web="http
xsi:schemalocation
http://J
id="WebApp_ID" version="3.2">
<display-name>Spring MVC Application</display-name>
<session-config>
<session-timeoutr1</session-timeout>
</session nfigy»
<context-param>
<param-name>contextClass</param-nams>
<param-value>
org.springframework.web.context.support.AnnotationConfighlebspplicationContext
</param-value>
<fcontext-param>
context-param>
<param-name>contextConfiglocation</param-name>
<param-value>spring.security.rest.packt</param-value>
<fcontext-param>
<listener>
<listener-class>org.springframework.web.context.ContextloaderLlistener</listener-class>
<flistener>
<servlet>
<servlet-namerpackt</serviet-name>
<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
<load-on-startup»1</load-on-startup®

let-mapping>
<servlet-name>packt</servlet-name><url-pattern>/packt/*</url-pattern>
<fservlet-mapping>
<filter>
<filter-namerspringSecurityFilterChain</Filter-name>
<filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>
</fFilters
<filter-mapping>
<filter-name>springSecurityFilterChain</filter-name>
<url-pattern>/*</url-pattern>
<ffilter-mapping>
<fueb-app>

[119]

Building a Security Layer for RESTful Web Services

We can configure the Security Configurations as shown in the following
webSecurityConfig.xml file:

<?xml version="1.8" encoding="UTF-8"2>
<beans:beans xmlns="http: .zpringframework.org/schema/security”
wmlns:xsi="http 3.0rg/2881,/XM hema-instance"
xmlns:beans="http .springframes
¥mlns:sec="http .springframewo
#siischemalocation
http: .springframework.org/schema/security
http: .springframework. chema/securlit:
http: .springframework. =C a/beans
http: v, springframework.org/schema/keans/spring-beans-4.2, xsd" >

/spring-security-3.2.xsd

¢http use-expressions="trus" entry-point-ref="restauthenticationEntryPoint”>
<intercept-url pattern="/packt S
¢zec:form-login authentication-success-handler-ref="mySuccessHandler”
authentication-failure-handler-ref="myFailureHandler" />
<logout />
</http>

<beans:bean id="mySuccessHandler"
class="spring.security.rest.packt.security.RestiuthenticationSuccessHandler™ />

<beans:bean id="myFailureHandler"
class="org.springframework.security.web.authentication.SimpleUrlauthenticationFailureHandler” />

<authentication-manager alias="authenticationManager">
<authentication-providers
<user-service>
fuszer name="admin" password="admin" authorities="ROLE_ADMIN" />
<user name="user" password="user" authorities=" E_USER" />
¢fuser-services»
</authentication-providers>
<fauthentication-manager:>

<global-method-security secured-annotations="enabled" />

</beans:beans>

Theentry pointreferencesare givenin thissecurity configfile,along with theinterceptor
URL pattern. We can also see the entries for RestAuthenticationSuccessHandler
and SimpleUrlAuthenticationFailureHandler. Here, we have mentioned the
credentials for two different roles: admin and user with different username and
password combinations.

[120]

Chapter 9

Spring Security configurations

We can start building the security implementations in the Spring classes in the
spring.security.rest.packt.security package as follows:

package spring.security.rest.packt.security;
import java.lo.IOException;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import org.springframework.security.core.duthenticationException;
import org.springframework.security.web.futhenticationEntryPoint;
import org.springframework.stereatype.Companent;

@Component("restiuthenticationEntryPoint™)
public class RestAuthenticationEntryPoint implements AuthenticationEntryPoint {

@override
public void commence(HttpServletRequest arg®, HttpServletResponse argl,
AuthenticationException arg?) throws IOException, ServletException {
argl.sendError(HttpServletResponse.SC_UNAUTHORIZED, “"Unautharized");

RestAuthenticationEntryPoint will be invoked once the request is missing the
authentication. The Authentication Failed response will be sent if the request doesn't
have a valid cookie.

[121]

Building a Security Layer for RESTful Web Services

In the following RestAuthenticationSuccessHandler, we have

extended SimpleUrlAuthenticationSuccessHandler and implemented
onAuthenticationSuccess method. This RestAuthenticationSuccessHandler
will be called once the request is authenticated. If not authorized, the authenticate
entry point will be called:

import
import
import
import
import
import
import
import
import
import

public

¥

}

package spring.security.rest.packt.security;

java.io.I0Exception;

Jjavax.servlet.ServletException;

javax.servlet.http.HttpServletRequest;

javax.servlet.http.HttpServletResponse;
org.springframework.security.core.Authentication;
org.springframework.security.web.authentication.SimpleUrlAuthenticationSuccessHandler;
org.springframework.security.web.savedrequest . HttpSessionReguestCache;
org.springframework.security.web.savedrequest.RequestCache;
org.springframework.security.web.savedrequest.SavedRequest;
org.springframework.util.StringUtils;

class RestAuthenticationSuccessHandler extends SimpleUrlAuthenticationSuccessHandler {

private RequestCache requestCache = new HttpSessionRequestCache();

@Jverride
public void onAuthenticationSuccess(final HttpServletRequest request,

final HttpServletResponse response, final Authentication authentication)
throws ServletException, IOException {
final SavedRequest savedRequest = requestCache.getRequest{request, response);

if (savedRequest == null) {
clearAuthenticationAttributes(request);
return;
}
final String targetUrlParameter = getTargetUrlParameter();
if (isfAlwaysUseDefaultTargetlUrl()
|| (targetUrlParameter != null && StringUtils.hasText(request
.getParameter(targetUrlParameter)))) {
requestCache. removeRequest (request, response);
clearfuthenticationdttributes (request);
return;

clearféuthenticationattributes{request);

public void setRequestCache(final RequestCache requestCache) {

this.requestCache = requestCache;

[122]

Chapter 9

Now, we have to create the basic spring.security.rest.api REST package in
order to build two Java config classes to mention the webSecurityConfig.xml
classpath and spring.security.rest.api.security ComponentScan classes.
The springSecurityConfig class will have the security settings, as shown in the
following screenshot:

package spring.security.rest.packt;

import org.springframewaork.context.annotation.ComponentScan;
import org.springframewaork.context.annotation.Configuration;
import org.springframework.context.annotation.ImportResource;

@Configuration

@ImportResource({ "classpath:webSecurityConfig.xml™ })
@ComponentScan("spring.security.rest.packt.security™)
public class SpringSecurityConfig {

public SpringSecurityConfig() {
super();

}

Also, the webConfig.java class will have the spring.security.rest.
api.service components scan declarations, which is an extension of the
WebMvcConfigurerAdapter class:

package spring.security.rest.packt;

import org.springframework.context.annotation.ComponentScan;

import org.springframework.context.annotation.Configuration;

import org.springframework.web.servlet.config.annotation.EnablekebMvc;

import org.springframework.web.servlet.config.annotation.WebMvcConfigureradapter;

@Configuraticn
@ComponentScan("spring.security.rest.packt.service”
@EnableWebMvc

public class WebConfig extends WebMvcConfigurerAdapter {

public WebConfig() {
super();

¥

[123]

Building a Security Layer for RESTful Web Services

The next step is to create the BookService RESTful web service as shown in the
following screenshot. This has two RESTful calls: userAccess and adminAccess.
This class uses Spring annotations to represent the controller and request mapping;:

package spring.securlty.rest.packt.service;

import
import
import
import
import
import
import
import

org

org.
org.

org

org.
org.
org.
org.

.springframework.
springframework.
springframework.
.springframework.
springframework.
springframework.
springframework.
springframework.

beans.factory.annotation. Autowired;
context.ApplicationEventPublisher;
http.MediaType;
security.access.annotation.Secured;
stereotype.Controller;
web.bind.annotation.RequestMapping;
web.bind.annotation.RequestMethod;
web.bind.annotation.ResponseBody;

@Controller
@RequestMapping(value = “/books")

public class BookService {

@Autowired
private ApplicaticonEventPublisher eventPublisher;

public BookService() {
super(};

¥

@RequestMapping(value = “/juser”, method =
{MediaType.APPLICATION_JSON_WALUE})

@ResponseBody

@Secured("ROLE_USER™)

RequestMethod.GET, consumes =

public String userhAccess() {
return "< LCLCUSER> 333333 3333 ™

}

@RequestMapping(value = "/adwin", method =
{MediaType.APPLICATION_JSON_VALUE})

@ResponseBody

@Secured("ROLE_ADMIN™)

public String admindccess() {

return "4 e CCADMINE 2"y

RequestMethod.GET, consumes =

}

[124]

Chapter 9

Executing the project

The final project structure will look as follows:

Projects % | o[ityConfigxml 5|
=9 T s) BE-8- Q2525 Feelauonlvyd
=) weBINF 10| O <nttp use-expressions=r " >
2 packtserviet.xml 11 <intercept-url patt
o[web.xml 12 <sec:form-legin aut

[Source Packages 13 authentication-failure-handl
(=1~ spring security rest.packt 14 <logout />

- [# springsecurityConfig.java 15| </http>

. [# webConfig.java 16 <beans:bean i
=[] spring.security rest.packt.security 17 classs

L[] RestauthenticationEntryPoint.java 18

\[#] RestAuthenticationSuccessHandler java|| 19 <beans:bean id=
&[] spring.security.rest.packt.service 20 class:

L [# Bookservice.java 21| [<authentication-manager &
/5 Other Sources 22 E <authentication-provider>
Bk srefmainfresources 23| [<user-services
=[] <default package> 24 <user name="
“.-[i3 websecurityConfig.xml 25 <user name:
- lg Dependendes 26| </user-service>
@ Runtime Dependendies 27 </authentication-provider>
& JavaDependencies 28 - </authentication-manager>
J& Project Fies 23 <global-method-security secursd-annotations="e
30 - </beansibeans>

The following screenshot has the execution URLs that will be called through a tiny
cURL command line executor. The curl 745 0 ssl 2.47MB can be downloaded
from http://curl.haxx.se/download.html:

curl -i -X POST -d j_username=admin -d j_password=admin -c ./aa.txt
http://localhost:8888/spring rest_security packtpub/j _spring_security check

curl -i -H "Content-Type:application/json™ -X GET -b ./aa.txt
http://localhost:8888/spring rest security packtpub/packt/books/user

curl -i -H "Content-Type:application/Jjson™ -X GET -b ./aa.txt
http://localhost:8888/spring rest security packtpub/packt/books/admin

curl -i -X POST -d j_username=user -d j_password=user -c ./bb.txt
http:/flocalhost:8888/spring_rest_security_packtpub/j_spring_security_check

curl -i -H "Content-Type:application/json™ -X GET -b ./bb.txt
http://localhost: 8888/ spring_rest_security_packtpub/packt/bocks/user

curl -i -H "Content-Type:application/json"™ -X GET -b ./bb.txt
http://localhost: 8888/ spring_rest_security_packtpub/packt/bocks/admin

curl -i -X POST -d j_username=user -d j_password=wrongPass -c ./bb.txt
http://localhost: 8888/ spring rest security packtpub/i spring security check

[125]

http://curl.haxx.se/download.html

Building a Security Layer for RESTful Web Services

On executing the first three commands, you can see the authentication approval for

admin and access granted only for the adminAccess method:

EN CWindows\system32\emd.exe

E:wcurl 745 _B_ssl>curl —i -8 POST —d j_username=admin -d j_password=admin -c .~a
a.txt http:-slocalhost::888B/spring_rest_security_packtpub-/j_spring_security_chec

k

HTITF-1.1 288 0K

Server: GlassFish Server Open Source Edition 4.1

K—Pouwered-By: Servlets3.1 JSP-2.3 (GlassFish Server Open Source Edition 4.1 Jaj#
vasOracle Corporations1.8> 5
Set—Cookie: JSESSIONID=f2aB6882c5d81Af588b4bbhec63B57; Path=rspring_rest_security
packtpub; HttpOnly

Date: Thu, 22 Oct 2015 18:48:27 GMT

Content—-Length: @

E:scurl_745_B_s=s1>curl —i -H "Content-Type:application-json" -8 GET -b .raa.txt
http:--localhost:8888/spring_rest_security_packtpubspackt books user

HITP-1.1 483 Access is denied

Server: GlassFish Server Open Source Edition 4.1

A—FPouwered-By: Servletrs3.1 JS5P-2.3 (GlassFish Server Open Source Edition 4.1 Ja
va-0Oracle Corporation~1.8>

Content-Language =

Content—Type: textshtml

Date: Thu,. 22 Oct 2015 1A:48:32 GMT

Content—-Length: 11688

<*DOCTYPE html PUBLIC "--U3C/-DTD HHTHML 1.8 Strict-EN" "http: s uwm._ w3 _org TR/ x
htnll DID/xhtmll—strict.dtd"”>{html xmlns="http: - uw 3.orgs/1999 /xhtmlY ><Chead ><{t
itle>GlassFish Server Open Source Edition 4.1 - Em report{/title>{style typ
e=""text /css">»{?'—H1 {font—Ffamily:Tahoma.fArial.zsans—serif;:;color:white;hackground-|
color:#525D76;:font—size:22px;> HZ {font—-family:Tahoma.fArial.sans—serif;color:vhi
te;background—color:#525D76:font—=size:16px;? H3 {font—family:Tahoma Arial . sans—s
erif ;color:white ;hackground-—color:#525D76:font—size:14px;> BODY {font—family:Tah
oma.Arial,.sans—serif jcolor:black;background—color:white:;} B {font—family:Tahoma.
Arial.zans—serif;color:vhite;background—color:#525D76;:> P {font—family:Tahoma.Ar|
ial.sans—serif ;background:white;color:hlack;font—size:12px;>*A {color : hlack;>HR
{color = H525D76;>—><{ style? {s head>{hody>{hi1>HTTP Status 483 - Access is deni]
ed</hl>{hrs>p>*type{sb> Status reporti -pXpr<{brmessage{ b>*Access is denied<{ p|
»pr<h>description{/b*Access to the specified resource has been forbidden.<{sp><{h
r/»{h3>GlassFish Server Open Source Edition 4.1 <{/h3>{ body>{/htmnl>
E:wcurl 745 _B_ssl>curl —i -H "Content-Type:applicationsjson” -8 GET -b .raa.txt
http:~/localhost:8@8B-/spring_rest_security_packtpubspackt books admin

HTTF-1.1 288 0K

Server: GlassFish Server Open Source Edition 4.1

A—Powered—By: Servletrs3.1 JSP-2.3 (GlassFish Server Open Bource Edition 4.1 Ja
va-Oracle Corporations1.8>

Content-Type: textsplain;charset=I150-8859-1

Date: Thu, 22 Oct 2015 1@A:48:38 GMT

Content—-Length: 26

(L CCADMING 32303 3533 5>
E:curl_745_@_ssl1>

[126]

Chapter 9

On executing the second set of commands, you can see the authentication approval
for the user and access granted only for the userAccess method:

N CA\Windows\system32\cmd.exe

Ezscurl_?45_@_ssl>curl —-i —¥ POST -d j_username=user —-d j_password=user —c .-bb.
txt http:~-slocalhost:=8880/spring_rest_security_packtpubsj_spring_security_check
HITP-1.1 288 QK

cerver: GlassFiszh Server Open Source Edition 4.1

i—Powered—-By: Serulet/3 1 JSP/2 3 {GlassFish Server Open Source Edition 4.1 Ja
bas0Oracle Corporationsi

set—Cookie: JSESSIOMID= f2h4?h4h7a4a333ffﬁsdhh9989fh. Path=/spring_rest_security
packtpub; HttpOnly

Date: Thu, 22 Oct 2815 18:49:47 GHMT

content-Length: B

Ezscurl 7?45 B _sslicurl —i —H "Content—Type:applicationr/json” —¥ GET -h .-/bbh.txt
wttp://localhost :888B/spring_rest_security packtpubspackt- books/user

HTTP-1.1 288 OK

server: GlassFish Server Open Source Edition 4.1

—Powered-By: Servletr3.1 JSP-2.3 {(GlassFish Server Open Source Edition 4.1 Ja
bas0Oracle Corporations1.8>

content-Type: text/plain;charset=I80-8857-1

Date: Thu, 22 Oct 2815 18:49:49 GHMT

Content-Length: 25

L CUSER> 2223303 333>

Ezscurl 745 _@_sslicurl —i —H “Content-Type:application~json" -8 GET -b .-bh.txt
wttp://localhost 888 /spring_rest_security_packtpubspackt books admin

1TTP-1.1 483 Access is denied

ierver: GlassFizh Server Open Source Edition 4.1

i—Powered-By: Servletrs3.1 JS3P/2.3 (GlassFish Server Open Source Edition 4.1 Ja
yas/Oracle Corporations1.8>

Content-Languadge =

Content-Type: textshtml

Date: Thu, 22 Oct 2815 18:49:47 GMT

Content-Length: 1168

C*DOCTYPE html PUBLIC “'—--W3C, - DTD XHTHL 1.8 Strict s EN" "http: s uwm._ w3 _org TR x
wtmllsDIDsxhtmlli-—strict.dtd"><html xmlns="http: " uue.ul.org- 1929 /xhtnl"><{head>{t
itle>GlassFish Server Open Source Edition 4.1 - E » reportd/title>{style typ
:="texts/css""»{?—H1l {font—family:Tahoma.Arial.sans—serif;color:white;background-
tolopr:#525D76:font—size:22px;> H2 {font-family:Tahoma.Arial.sans—serif;color:ivhi
te s hackground—color:#525D76;font—size16px:> H3 {font—-family:Tahoma,.Arial. sans—=s
aprif scolor:white ;bhackground-color#525D76;font—size:14px;> BODY {font—family:Tah
ima,Arial,.sans—serif jcolor:black;background—color:vhites;? B {font—family:Tahoma.
irial.sans—serif ;color:white;background—color:#525D076;:> P {font—-family:Tahoma.fAr
ial,zans—seprif ;hackground:white;color:bhlack;font—size:12px;>*A {color : hlack;>HR
{color = H525D76;>—><{rsstyle> < head>*<{hody><{hi>HTTP Status 483 - Access is deni
2d{/hl>{hr/><p><h>type{sh> Status report{ /pX{p*<blmessaged{-bXiccess is denied<{ p
P{p><h>description{sb>Access to the specified resource has been forbidden.{sp>{h
pr><h3>GlassFish Server Open Source Edition 4.1 <{/h3>{/body>{/html>

Summary

We have seen the basics of RESTful web services and their advantages. We have
developed a basic Spring implementation to configure the security credentials, entry
points, and success handlers. We also executed the RESTful web services through
the cURL command line utility to check the Spring Security authentication in action.
In the next chapter, we will study about the JAAS security aspects using Spring
Integrations.

[127]

10

Integrating Spring Security
with JAAS

Java Authentication and Authorization Service (JAAS) is the Java implementation
that is based on the standard Pluggable Authentication Module (PAM) information
security framework that is available as an extension library in Java 1.3. The aim of
JAAS is to separate the user authentication layer from core applications so that the
security-related features can be managed independently. JAAS is a combination of
representation of identity called principal and a set of credentials called subject.
The login service invokes the application callbacks to get the user inputs such as
username and password. The login module of JAAS is primarily concerned with
authentication and has methods such as init, 1login, commit, abort, and logout.

Spring Security provides a package that is able to delegate authentication requests
to JAAS. Spring Security's authentication mechanism is responsible for populating
the username and password that is taken from the user in the authentication object.
As JAAS works with principals, the roles are also represented as a principal in JAAS.
Each authentication object contains a single principal. To mediate between these
different objects and value population, Spring has many interfaces.

In this chapter, we are going to cover the following:

* JAAS package basics

* Spring Security JAAS package components
* Spring JAAS configurations

* Spring JAAS implementation

* Executing the project

[129]

Integrating Spring Security with JAAS

JAAS package basics

The basic components of JAAS are as follows:

javax.security.auth.spi.LoginModule: This contains the actual code for
authentication. Developers need to implement their own code in order to
handle various mechanisms to authenticate user credentials.

javax.security.auth.login.LoginContext: This is the core of the JAAS
framework that kicks off the authentication process by creating a subject.

javax.security.auth.Subject: This is the client that is requesting the
authentication.

java.security.Principal: This encapsulates features or properties of a
client information.

Spring Security JAAS package
components

Spring Security core package includes the following components to handle the JAAS
implementation:

Authentication: This is populated with the username and password.

AuthenticationProvider: This creates LoginContext with a constructor
that will have the callback handler information.

LoginContext: This will be created by the provider. When the 1ogin method
is called, this will invoke the initialize method that, in turn, creates

new JaasNameCallbackHandler and JaasPasswordCallbackHandler for
JaasAuthenticationCallbackHandler.

AuthorityGranter: This returns the roles for the logged in username.

JaasAuthenticationToken: This Authentication object will be created
and returned.

[130]

Chapter 10

Spring JAAS configurations

For the Spring configurations for JAAS implementation, we have to start from the
POM file setting. Then, web.xml and Servlet.xml need to be configured. Finally, for
the application context settings, we need to configure the application context XML
file. Let's see these configuration settings one by one, as follows:

<dependency:
<artifactIdespring-asm</artifactlds
<version>3.1.8.RELEASE</version? </dependency>
<dependency>
<artifactIdsspring-aop<fartifactId>
¢version»3.1.8.RELEASE</versions ¢/dependencys
<dependency:
<artifactIdrspring-beans</artifactId»
<version»3.1.8.RELEASE</versiony </dependency>
<{dependency>
<artifactIdsspring-context</artifactIds
<version>3.1.8.RELEASE¢/version> </dependency>
<dependency>
¢artifactId»spring-core</artifactIds
¢version>3.1.8.RELEASE¢/version> «/dependency>
<dependency:
<artifactIdespring-expression</artifactIds
<version»3.1.8.RELEASE</version® </dependency>
<{dependency>
<artifactIdsspring-orm<fartifactId>
<version>3.1.8.RELEASE¢/version» «/dependency>
<dependency:
cartifactIdrspring-security-acle/artifactIds
<version>3.1.8.RELEASE</version> </dependency>
<dependency:
<artifactIdespring-security-config</artifactIds
<version>3.1.8.RELEASE</version? </dependency>
<dependency>
<artifactIdsspring-security-core</artifactIds
¢version»3.1.8.RELEASE¢/version> «/dependency>
<dependency:
<artifactIdrspring-security-crypto</artifactIds
<version»3.1.8.RELEASE</versiony </dependency>
<{dependency>
<artifactIdsspring-security-taglibs</artifactIds
<version>3.1.8.RELEASE¢/version> </dependency>
<dependency>
cartifactIdrspring-security-web¢/artifactIds
¢version>3.1.8.RELEASE¢/version> «/dependency>

[131]

Integrating Spring Security with JAAS

The preceding POM file has the required dependencies to create the basic JAAS-
based Spring Security project. The Spring Security Core JAR file has all the JAAS
components, as shown in the following:

1 <display-name>JAAS Sample Application</display-namel>
2 <Lcontext-param>
E {param-namercontextConfiglocation</param-names
4 ¢param-valuerclasspath:applicationContext.xml</param-value®
<fcontext-param>
(filters
{filter-namez>localizationFilter</filter-names
3 ¢filter-classzorg.springframework.web.filter.RequestContextFilter
: <fFfilter-classs
18 <ffilter:
11 «Filter>
12 ¢filter-namerspringsecurityFilterChain</filter-name>
13 ¢filter-classrorg.springframework.web.filter.DelegatingFilterProxy
14 <fFfilter-class>
15 «jffilter>
16 «filter-mapping>
1 ¢filter-name>localizationFilter</filter-names
18 Lurl-pattern»/*{furl-pattern>
19 «/filter-mapping>
28 <filter-mapping>
21 <Ffilter-namerspringSecurityFilterChain</filter-name>
22 Lurl-pattern»/*{furl-pattern>
23 £ffilter-mapping>
24 <listeners:
25 ¢listener-classrorg. springframework.web. context.ContextLloaderLlistener
26 <flistener-claszss
27 «flistener:
28 <servlet>
28 ¢servlet-namerspringjaaspackt</servlet-names
38 <zervlet-class»org. springframework.web.servlet.DispatcherServlet
31 {fservlet-class>
52 <load-on-startup>1</load-on-startup>
33 £fservlet>
534 <servlet-mapping»
¢zervlet-namerspringjaaspackt</servliet-name>
<url-pattern>/private/*<furl-patterns
<fservlet-mappings
38 <« /web-app>»

[132]

Chapter 10

The preceding web . xml file has configurations for the springSecurityFilterChain,

DispatcherServlet, ContextLoaderListener, and url patterns for servlet
mapping:

1 <sec:http auto-config="true" use-expressions="trus">

¢sec:intercept-url pattern="/privatesadmin/**" access="hasRole('ADMIN'}" />
3 <sec:intercept-url pattern="/private/enduser/**" access="hasRole('ENDUSER')"
¢sec:form-login login-page="/login.jsp"
authentication-failure-url="/login.jsp?error=1" />

¢zec:logout logout-success-url="/home.jsp”
logout-url="/j_spring_security_logout” />

8 < fsec:http>

3 <sec:authentication-managers

@ <zec:authentication-provider ref="jaasAuthProvider™ (>

11 <fsec:authentication-managers

12 <bean id="jaasAuthProvider"

13 class="org.springframework.security.authentication.

4 jaas.DefaultlaashAuthenticationProvider”»

15 ¢property name="authorityGranters":

16 <list>

17 <bean class="com.packt.spring.jaas.security.RoleGranter™ />

18 </1list>

o

19 </property>
a8 {property name="configuration">»
21 <bean

22 class="org.springframework.security.authentication.
23 jaas.memory. InMemoryConfiguration™s>
4 Lconstructor-args>
25 Lmap>
26 <entry key="SPRINGSECURITY">
2 Larray>
<bean class="javax.security.auth.login.&AppConfigurationEntry™>
¢constructor-arg value="com.packt.spring.jaas.security.Login™ />
<constructor-args>
<util:constant
static-field="javax.security.auth.login.
AppConfigurationEntry&loginModuleControlFlag. REQUIRED" />
<fcanstructor-args
Lconstructor-args>
<mapr</map>

G0 O oo

IR,
[T

>

[133]

Integrating Spring Security with JAAS

The preceding applicationContext.xml file has all the entries for the JAAS
security settings. The http security tag specifies the interceptor url patterns
and access roles. The authentication manager is specified as jaasAuthProvider
and you can see the configurations of DefaultJaasAuthenticationProvider
and AppConfigurationEntry. Also, the AuthorityGranter implementation is
configured as authorityGranters. The following screenshot shows the servlet
configurations and basic package settings:

<7uml version="1.8" encoding="UTF-8"7>

<beans xmlns="http: i springframew
xmlns:xsi="http v . W3 . org/ 2081/
¥mlns:p="http:/ H.Jp 1ng—'a1enc'k
wmlns:util="http:/ Ls5pr 1ng—'a1e“u
xwlns:context=“http v
®=i schewa ocation="http:/,
http:/

k.org/schema/beans”
MLSchema-instance”

schema/util™
org/schema/context”

.dp’ing:’aTEn rk.org/schema/beans

.spr 1ng-'a1e”:'k org/schema/beans/spring-beans-3.8.xsd

http: i springframework. o chema/util
http: springframework.o chema/util/spring-util-3.8.x=sd
http: .springframework.or

http: wW.springframework.org/sc @.xsd">

<context:component-scan base-package="com.packt.spring.jaas.security” />

<bean
class="org.springframevork.web.servlet.view.InternalResourceViewResolver"s
<property name="prefix">»
<value>/WEB-INF/</value>
<fproperty>
<property name="suffix">
¢valuer.jsp/valuer
<fproperty>
</bean>
</beans>

[134]

Chapter 10

Spring JAAS implementation

As the first step, we have to implement the AuthorityGranter interface as follows:

package com.packt.spring.jaas.security;

import java.security.Principal;
import java.util.Collections;
import java.util.Set;

import org.springframework.security.authentication.jaas.AuthorityGranter;

public class RoleGranter implements AuthorityGranter {
public Set<String» grant(Principal principal) {
if (principal.getName().equals(“admin”))
return Collections.singleton("aDMIN"};
else
return Collections.singleton("ENDUSER");

[135]

Integrating Spring Security with JAAS

This screenshot shows the main Spring SecureController class that will return
the success pages for two different roles called admin and enduser. You can see the
implementations of JaasGrantedAuthority and UserPrincipal:

package com.packt.spring.jaas.security;

import org.springframework.stereoctype.Controller;

import org.springframework.ui.ModelMap;

import org.springframework.web.bind.annotation.RequestMapping;

import org.springframework.security.authentication.jaas.laasGrantediuthority;
import org.springframework.security.core.Authentication;

import org.springframework.security.core.context.SecurityContextHolder;

@Controller
public claszsz SecureController {

@RequestMapping(value="/admin/index")
public 5tring getAdmin{ModelMap model) {
Authentication auth = SecurityContextHolder.
getContext().getAuthentication();
JaasGrantediuthority jaasGrantedauthority =
{JaasGrantedduthority) (auth.getduthorities().todrray(1[@]);
UserPrincipal userPrincipal = (UserPrincipal)jaasGrantediuthority.
getPrincipal();
userPrincipal.setRole(jaasarantediuthority. getduthority());
model . addAttribute{ "userPrincipal”, userPrincipal);
return "admin/index";

}

@RequestMapping(value="/enduser/index")
public String getEnduser({ModelMap model) {
Authentication auth = SecurityContextHolder.
getContext().getbuthentication();
JaasGrantediuthority jaasGrantedfuthority = (JaasGrantediéuthority)
{auth.getAuthorities().toArray()[8]);
UserPrincipal userPrincipal = {(UserPrincipal)jaasGrantediuthority.
getPrincipal();
userPrincipal.setRole(jaasGrantediuthority. getduthority());
model .addAttributel “uzerPrincipal”, userPrincipal);
return "enduser/index";

[136]

Chapter 10

The following Login class implements the LoginModule interface and you can see

the login () and initialize () methods being implemented:

import javax.security.auth.¥;
import javax.security.auth.login.lLoginExceptian;
import javax.security.auth.spi.lLoginModule;
public class Login implements LoginModule {
private String password;
private String username;
private Subject subject;
public boolean logind) throws LoginException {
if ({username.equals("admin") && password.equals("adminpasz")})

¥

return true;

¥

Map<5tring, ?» state, Map<String, ?» options) {
this.subject = subject;

try {
NameCallback nameCallback = new NameCallback(“prompt");

false);

callbackHandler.handle({new Callback[] { nameCallback,
passwordCallback }3;

password = new String(passwordCallback.getPassword());
username = nameCallback.getName();

} catch (Exception e) {
throw new RuntimeException(e);

¥

|| {username.equals({"enduser")&&password.equals({"enduserpass"))) {
zubject.getPrincipals().add{new UserPrincipal{username));

public void initialize{Subject subject, CallbackHandler callbackHandler,

PaszswordCallback passwordCallback = new PasswordCallback("prompt”,

[137]

Integrating Spring Security with JAAS

Executing the project

Let's create the following JSP pages: home. jsp, login.jsp, admin/index. jsp, and
enduser/index.jsp as given in the following;:

Home JSP Page

<table>
<trx<tdrLogin As Administrator</faz</td></tr>
<tre<tdr<a hre private/enduser/index">»Login As Enduser</td></tr>
<trx<tdr<a href="<c:iurl value="/j_spring_security_logout"™ />" >

Logout</ax»</td></tr>
</table>
Login JSP Page
<form name='+' action="<c:url value='J_spring_security_check' />" method='PO5T'>
<tablex>

<tr> <td>User:</td>

<tdr<input type='text' name='j_username' wvalue=''»></ td>
<t

<trx<td>Password: </td>
<tds><input type='password' name='j_password' >/ /td>

<itrs

<tr><td colspan='2">

<input name="submit" type="submit" wvalue="Send" /x</td></tr>
</table>
</form>
Administrator ISP Page
<%¥@ taglib prefix="c" uri="http://java.sun.com/jsp/istl/core"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.81 Transiticnals/ EN"
"http:/fwww.w3.org/ TR/htmld/loose. dbd" >

<hl=fAdministrator Authenticated</hl:

<a href="<c:url wvalue="/j_spring_security_logout™ s>" > Logout</a:
Enduser J1S5P Page
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core %>
<IDOCTYPE html PUBLIC "-//W3C//DTD HTML 4.81 Transitional//EN"
"http: s/ fwww.w3.org/TR/htmld S loose.dtd™ >

<hl>Enduser Authenticated</hl:

<a href="<c:url wvalue="/j_spring_security_logout"™ />" > Logout

[138]

Chapter 10

The completed project structure is shown in the following screenshot:

=) springlassPackt Source | Hstory |[@ -0 -|Q R E EH| ¢ S e B|v 2|
[lgg Web Pages s <se ttp auto-config=" use-expression: ">

L1 META-INF 10 <3e ntercept-url patterrs /P fad [**=" access £
- @ MANIFEST.MF 11 <sec!intercept-url pattern= 1zer/**" access="h '

-l WEB-INF 12 <sec:form-login login-page authentication-failure-url
& admin 13 <sec:logout logout-success-ur =p" logout-url
ol indexen 14 </sec:nttp>
s enduser 15| [<sec:authenticatlon-managery

] index.jsp 16 <sec:authentication-provider ref="-ja

[dl glassfish-web.xmi 2y </sec:authentication-manager>
[springjsaspacktservletsm| | 1o [N N

<bean id= '
- [web.xml 13 class=
Eﬂ home.jsp 20| & <property name
Eﬂ login.jsp 21| = <bean
-1} Source Packages 22 class="
=[5 com.packt.spring.jazs.security| | 53| [<construactor-arg>
[Login.java 24| O <map>
[RoleGranter.java 25 [<entry key="SER
[SecureController.java 26 [<array>
[&] userrindipal java 27| <bean class="javax.sec
= jy Other Sources 28 <constructor-arg valua
=1y srcfmain/resources 29| [<constructor-arg>
=+ [<default package > 30 <util:constant
“[i& sppiicationContextaami| | 5y static-field="javax.se i
- lp Dependencies 32 </constructor-arg>
- g JavaDependendies 33| <constructor-arg>
- jg ProjectFiles 4 map></map:

[139]

Integrating Spring Security with JAAS

On deployment and execution, you can see that the JAAS authentication is in
action for different username and password combinations as specified in the 1ogin
class: admin/adminpass and enduser/enduserpass, as shown in the following
screenshot:

C | [localhost:8080/Spring) AASPackt/

Login As Administrator
Login As Enduser

Logout
€« C' | [1 localhost:8080/Spring) AASPackt/login.jsp

Please insert vour credentials.

User: |ac|min
Password: | ---------
Send
- C' | [3 localhost:8080/Spring) AASPackt/private/admin/index

Administrator Authenticated

Logout

Summary

This is our last chapter in the Spring Security Essentials series and we covered
the JAAS basic, Spring JAAS Security package components, and developing and
executing a Spring JAAS implementation project.

I request and recommend the readers to try out the various combinations of Spring
Security implementations in different layers of your real-time Spring applications
using the working projects given throughout this book.

[140]

Symbol

389 Directory Server
about 36, 37
Apache Directory Server, installing 37-42
Apache Directory Studio, installing 37-42
Java JNDI program, creating to access
LDAP 43, 44
LDAP Template 44, 45

A

access control entries (ACEs) 4
Access Control Information (ACI) 36
access control list (ACL)
about 1,73
implementation example 74-82
XML configuration 74-82
ACL packages, interfaces
AccessControlEntry 74
Acl 74
AclService 74
MutableAclService 74
Object Identity 74
Permission 74
Sid 74
AOP Alliance
about 60
Spring AOP project, creating with Aspect]
Annotations 60-66
Ul invocation, securing with Aspects 66-71
Apache Directory Server (ApacheDS)
about 35
installing 37-42

Index

Apache Directory Studio
about 37
features 42
installing 37-42
Apache Wicket
about 6,93
project, executing 104
Spring Integration project 94-96
spring-security.xml file, setting up 97-102
aspect-oriented environment (AOE) 60
Aspect-Oriented Programming (AOP)
about 51
basics 52
examples 53-60
terminologies 52, 53
assertions, SAML 2.0
attribute assertion 11
authentication assertion 11
authorization decision assertion 11

B

bindings, SAML 2.0
HTTP artifact binding 14
HTTP POST binding 14
HTTP redirect binding 13
reverse SOAP binding 13
SAML SOAP binding 13
SAML URI binding 14

Cc

client project
creating, for web service 111-113

[141]

components, JAAS
java.security.Principal 130
javax.security.auth.login.LoginContext 130
javax.security.auth.spi.LoginModule 130
javax.security.auth.Subject 130
Cross-Site Request Forgery (CSRF) 2
cURL command line executor
URL 125
using 125
custom authorization constraints 3
Customer relationship management
(CRM) 73
custom user realms 3

D

Data Access Object (DAO) 1
Directory Access Protocol (DAP) 34
Directory Server Console 37
Directory System Agent (DSA) 34
Distinguished Name (DN) 34, 44
Domain Specific Language (DSL) 17

E

Eclipse
Gradle, setting up 18
Enterprise Java Beans (EJB) 1
Enterprise resource planning (ERP) 73
Enterprise Sign On Engine (ESOE)
about 21
URL 21

F

Fedora Directory Server. See 389
Directory Server
Fortress 36

G

Gluu
URL 21
Gradle
about 17
advantages 17
setting up, with Eclipse 18
Spring Tool Suite (STS) 19, 20

Identity provider (IDP) 7, 22
implementations, LDAP
about 35
Apache Directory Server (ApacheDS) 35
OpenD]J 36
OpenLDAP 2.4.42 36
instance-based authorization 4
Internet Engineering Task Force (IETF) 2

J

Java Authentication and Authorization
Service (JAAS)

about 2,129

basic components 130

configurations 131-134

implementation 135, 136

project, executing 138-140

Spring Security core package 130

used, for Spring Security 6
JavaServer Faces (JSF)

about 2, 83

configuration files 85-87

entries 85-87

form, creating 88, 89

integration 88, 89

Maven dependencies 84

Spring Security, execution 90-92

Spring Security, implementation 90-92
JSF2.0

used, for Spring Security 6

L

LDAP 1.3.1
features 48-50
LDAP over SSL (LDAPS) 34
LDAP Template
about 44
classes 44
LDAP search program, creating 45, 46
LDAP user, adding 47
LDAP user, deleting 47
LDAP user, modifying 47
LDIF
parsing 48-50

[142]

Lightweight Directory Access Protocol
(LDAP)
about 33-35
accessing, with Java JNDI program 43, 44
implementations 35
used, for Spring Security 7

Maven

about 14

setting up 14-16
Maven dependencies

about 16

for JavaServer Faces (JSF) 84
Maven profiles 16
message signing 5
method-based authorization 4
Model-View-Controller (MVC) 1

N

Name service caching daemon (nscd) 35
Name Service Switch (NSS) 35

O

Object Directory Mapping (ODM) 49
Object Identifier (OID) 42
Object-relational mapping (ORM) 1
OneLogin SAML Toolkits 21
OpenD]J 36
OpenLDAP 7
OpenLDAP 2.4.42 36
OpenSAML

about 21

URL 21
OpenSSO

about 21

URL 21
oX 21

P

phpLDAPAdmin 36

Plain Old Java Object (POJO) model 94

Pluggable Authentication Module
(PAM) 35,129

principal 129
Private branch exchange (PBX) 34
Project Object Model (POM) 131
protocols, SAML 2.0
artifact resolution protocol 13
assertion query and request protocol 13
authentication request protocol 13
name identifier management protocol 13
name identifier mapping protocol 13
single logout protocol 13

R

Representational State Transfer
(REST) 5,117

RESTful web services

about 117

creating 118-120

project, executing 125-127

used, for Spring Security 5
role-based access control (RBAC) 73

S

SAML 2.0
assertions 11
bindings 13, 14
critical aspects 10, 11
IDP, selecting 25, 26
IDP, testing 25, 26
implementations 21
login flow 22
logout flow 24
protocols 12,13
structure 10, 11
Security Assertion Markup Language
(SAML)
about 9
classes 27
configurations 28, 29
dependency 26
logout flow 29
LogoutRequest, issuing by SP to
IDP 30-32
used, for Spring Security 6
service-level agreement (SLA) 36

[143]

service provider (SP)
about 22
URL 22
Shibboleth
about 21
URL 21

Simple Network Management Protocol

(SNMP) 37

T

terminologies, AOP

Simple Object Access Protocol (SOAP) 105

single logout (SLO) 9
single sign-on (SSO) 7,9
SOAP web service
creating, with security 106-110
used, for Spring Security 5
Spring Security
configurations 121-123
executing, with JavaServer Faces
(JSF) 90-92
implementing, with JavaServer Faces
(JSF) 90-92
with JAAS 6
with JSF2.0 6
with LDAP 7
with RESTful web services 5
with Wicket 6
Spring Tool Suite (STS)
about 19
application, developing 19, 20
application, improving 20, 21
Spring Web Services
project, executing 114, 115
SSOCircle 25
STARTTLS 36
subject 129
Supply chain management (SCM) 73
System for Cross-domain Identity
Management (SCIM) 36

systems development life cycle (SDLC) 52

Advice 52
Aspect 52
Introduction 53
Join point 52
Pointcut 53
Target object 53
Weaving 53

w

web service

consuming, with client project 111-113

Web Services Description Language

(WSDL) 105

Wicket

used, for Spring Security 6

X

X.500 34
XML Schema Definition (XSD) 106

[144]

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with
Spring Security
	Spring custom user realms
	Spring custom authorization constraints
	Spring method-based authorization
	Spring instance-based authorization
	Spring security with SOAP web services
	Spring Security with RESTFul web services
	Spring Security with JSF2.0
	Spring Security with Wicket
	Spring Security with JAAS
	Spring Security with SAML
	Spring Security with LDAP
	Summary

	Chapter 2: Spring Security with SAML
	The basics and structure of SAML 2.0
	SAML 2.0 assertions
	SAML 2.0 protocols
	SAML 2.0 bindings
	Maven Recap
	Gradle Recap
	Setting up Gradle with Eclipse
	The Spring Tool Suite
	Improving the samples

	SAML open source implementations
	The SAML 2.0 login flow
	The SAML 2.0 logout flow
	IDP selection and testing

	The Spring Security SAML dependency
	Spring Security with SAML classes
	Spring Security SAML internals
	Spring Security with SAML logout
	LogoutRequest issued by SP to IDP

	Summary

	Chapter 3: Spring Security with LDAP
	A quick overview of LDAP
	LDAP implementations
	ApacheDS
	OpenLDAP 2.4.42
	OpenDJ

	The 389 Directory Server (previously Fedora Directory Server)
	Apache Directory Server and Studio installation
	Apache DS Studio features
	Simple Java JNDI program to access LDAP
	Spring LDAP Template – step by step
	Simple LDAP search
	Add, modify, and delete LDAP user
	LDAP 1.3.1 features – Object Directory Mapping and LDIF parsing

	Summary

	Chapter 4: Spring Security with AOP
	AOP basics
	AOP terminologies
	Simple AOP examples
	AOP Alliance
	Spring AOP using AspectJ Annotations
	Securing UI invocation using Aspects

	Summary

	Chapter 5: Spring Security with ACL
	Spring ACL package and infrastructure classes
	ACL implementation example and XML configuration for ACL
	Summary

	Chapter 6: Spring Security with JSF
	Maven dependencies
	Configuration files and entries
	JSF form creation and integration
	Spring Security implementation and execution

	Summary

	Chapter 7: Spring Security with Apache Wicket
	Apache Wicket project with Spring Integration
	The spring-security.xml setup
	Execution of the Project

	Summary

	Chapter 8: Integrating Spring Security with SOAP Web Services
	Creating SOAP web service with security
	Client creation to consume the web service
	Executing the project
	Summary

	Chapter 9: Building a Security Layer for RESTful Web Services
	Creating a RESTful web service
	Spring security configurations
	Executing the project
	Summary

	Chapter 10: Integrating Spring Security with JAAS
	JAAS package basics
	Spring Security JAAS package components
	Spring JAAS configurations
	Spring JAAS implementation
	Executing the project
	Summary

	Index

