
Harry J.W. Percival

Test-Driven
Development
with Python
OBEY THE TESTING GOAT:
USING DJANGO, SELENIUM & JAVASCRIPT

Fewer Bugs and Less Stress with Selenium,
Django, and JavaScript

2nd Edition

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Praise for Test-Driven Development with Python

In this book, Harry takes us on an adventure of discovery with Python and testing.
It’s an excellent book, fun to read and full of vital information. It has my highest

recommendations for anyone interested in testing with Python, learning Django, or
wanting to use Selenium. Testing is essential for developer sanity and it’s a notoriously

difficult field, full of trade-offs. Harry does a fantastic job of holding our attention whilst
exploring real-world testing practices.

—Michael Foord, Python Core Developer and Maintainer
of unittest

This book is far more than an introduction to test-driven development—it’s a complete
best-practices crash course, from start to finish, into modern web application

development with Python. Every web developer needs this book.
—Kenneth Reitz, Fellow at Python Software Foundation

Harry’s book is what we wish existed when we were learning Django. At a pace that’s
achievable and yet delightfully challenging, it provides excellent instruction for Django

and various test practices. The material on Selenium alone makes the book worth
purchasing, but there’s so much more!

—Daniel and Audrey Roy Greenfeld, authors of Two Scoops of
Django (Two Scoops Press)

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Harry J.W. Percival

Test-Driven Development
with Python

Obey the Testing Goat: Using Django,
Selenium, and JavaScript

SECOND EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

www.allitebooks.com

http://www.allitebooks.org

978-1-491-95870-4

[LSI]

Test-Driven Development with Python
by Harry J.W. Percival

Copyright © 2017 Harry Percival. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Nan Barber
Production Editor: Kristen Brown
Copyeditor: Kim Cofer
Proofreader: Rachel Monaghan

Indexer: Judith McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

August 2017: Second Edition

Revision History for the Second Edition
2017-08-02: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491958704 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Test-Driven Development with Python,
the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.allitebooks.com

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491958704
http://www.allitebooks.org

Table of Contents

Preface. xv

Prerequisites and Assumptions. xxi

Companion Video. xxxi

Acknowledgments. xxxiii

Part I. The Basics of TDD and Django

1. Getting Django Set Up Using a Functional Test. 3
Obey the Testing Goat! Do Nothing Until You Have a Test 3
Getting Django Up and Running 6
Starting a Git Repository 8

2. Extending Our Functional Test Using the unittest Module. 13
Using a Functional Test to Scope Out a Minimum Viable App 14
The Python Standard Library’s unittest Module 16
Commit 19

3. Testing a Simple Home Page with Unit Tests. 21
Our First Django App, and Our First Unit Test 22
Unit Tests, and How They Differ from Functional Tests 22
Unit Testing in Django 23
Django’s MVC, URLs, and View Functions 24
At Last! We Actually Write Some Application Code! 26
urls.py 28

v

www.allitebooks.com

http://www.allitebooks.org

Unit Testing a View 30
The Unit-Test/Code Cycle 32

4. What Are We Doing with All These Tests? (And, Refactoring). 37
Programming Is Like Pulling a Bucket of Water Up from a Well 38
Using Selenium to Test User Interactions 40
The “Don’t Test Constants” Rule, and Templates to the Rescue 43

Refactoring to Use a Template 43
The Django Test Client 47

On Refactoring 49
A Little More of Our Front Page 50
Recap: The TDD Process 52

5. Saving User Input: Testing the Database. 55
Wiring Up Our Form to Send a POST Request 55
Processing a POST Request on the Server 59
Passing Python Variables to Be Rendered in the Template 60
Three Strikes and Refactor 64
The Django ORM and Our First Model 66

Our First Database Migration 68
The Test Gets Surprisingly Far 68
A New Field Means a New Migration 69

Saving the POST to the Database 70
Redirect After a POST 73

Better Unit Testing Practice: Each Test Should Test One Thing 74
Rendering Items in the Template 75
Creating Our Production Database with migrate 78
Recap 80

6. Improving Functional Tests: Ensuring Isolation and Removing Voodoo Sleeps. 83
Ensuring Test Isolation in Functional Tests 83

Running Just the Unit Tests 87
Aside: Upgrading Selenium and Geckodriver 88
On Implicit and Explicit Waits, and Voodoo time.sleeps 89

7. Working Incrementally. 95
Small Design When Necessary 95

Not Big Design Up Front 95
YAGNI! 96
REST (ish) 96

Implementing the New Design Incrementally Using TDD 97
Ensuring We Have a Regression Test 99

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Iterating Towards the New Design 101
Taking a First, Self-Contained Step: One New URL 103

A New URL 103
A New View Function 104

Green? Refactor 106
Another Small Step: A Separate Template for Viewing Lists 107
A Third Small Step: A URL for Adding List Items 109

A Test Class for New List Creation 109
A URL and View for New List Creation 110
Removing Now-Redundant Code and Tests 111
A Regression! Pointing Our Forms at the New URL 112

Biting the Bullet: Adjusting Our Models 113
A Foreign Key Relationship 115
Adjusting the Rest of the World to Our New Models 117

Each List Should Have Its Own URL 119
Capturing Parameters from URLs 120
Adjusting new_list to the New World 121

The Functional Tests Detect Another Regression 123
One More View to Handle Adding Items to an Existing List 124

Beware of Greedy Regular Expressions! 125
The Last New URL 125
The Last New View 126
Testing the Response Context Objects Directly 127

A Final Refactor Using URL includes 129

Part II. Web Development Sine Qua Nons

8. Prettification: Layout and Styling, and What to Test About It. 135
What to Functionally Test About Layout and Style 135
Prettification: Using a CSS Framework 139
Django Template Inheritance 141
Integrating Bootstrap 142

Rows and Columns 143
Static Files in Django 144

Switching to StaticLiveServerTestCase 145
Using Bootstrap Components to Improve the Look of the Site 146

Jumbotron! 146
Large Inputs 147
Table Styling 147

Using Our Own CSS 147
What We Glossed Over: collectstatic and Other Static Directories 149

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

A Few Things That Didn’t Make It 152

9. Testing Deployment Using a Staging Site. 155
TDD and the Danger Areas of Deployment 156
As Always, Start with a Test 157
Getting a Domain Name 160
Manually Provisioning a Server to Host Our Site 160

Choosing Where to Host Our Site 160
Spinning Up a Server 161
User Accounts, SSH, and Privileges 162
Installing Nginx 162
Installing Python 3.6 163
Configuring Domains for Staging and Live 163
Using the FT to Confirm the Domain Works and Nginx Is Running 164

Deploying Our Code Manually 164
Adjusting the Database Location 165
Creating a Virtualenv Manually, and Using requirements.txt 167
Simple Nginx Configuration 168
Creating the Database with migrate 171

Success! Our Hack Deployment Works 173

10. Getting to a Production-Ready Deployment. 175
Switching to Gunicorn 175
Getting Nginx to Serve Static Files 177
Switching to Using Unix Sockets 177
Switching DEBUG to False and Setting ALLOWED_HOSTS 178
Using Systemd to Make Sure Gunicorn Starts on Boot 179

Saving Our Changes: Adding Gunicorn to Our requirements.txt 180
Thinking About Automating 181

Saving Templates for Our Provisioning Config Files 181
Saving Our Progress 184

11. Automating Deployment with Fabric. 187
Breakdown of a Fabric Script for Our Deployment 188

Creating the Directory Structure 189
Pulling Down Our Source Code with Git 189
Updating settings.py 190
Updating the Virtualenv 192
Migrating the Database If Necessary 192

Trying It Out 193
Deploying to Live 194
Nginx and Gunicorn Config Using sed 196

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Git Tag the Release 199
Further Reading 199

12. Splitting Our Tests into Multiple Files, and a Generic Wait Helper. 201
Start on a Validation FT: Preventing Blank Items 201

Skipping a Test 202
Splitting Functional Tests Out into Many Files 203
Running a Single Test File 206

A New Functional Test Tool: A Generic Explicit Wait Helper 207
Finishing Off the FT 211
Refactoring Unit Tests into Several Files 213

13. Validation at the Database Layer. 217
Model-Layer Validation 218

The self.assertRaises Context Manager 218
A Django Quirk: Model Save Doesn’t Run Validation 219

Surfacing Model Validation Errors in the View 220
Checking That Invalid Input Isn’t Saved to the Database 223

Django Pattern: Processing POST Requests in the Same View as Renders the
Form 225
Refactor: Transferring the new_item Functionality into view_list 226
Enforcing Model Validation in view_list 229

Refactor: Removing Hardcoded URLs 231
The {% url %} Template Tag 231
Using get_absolute_url for Redirects 232

14. A Simple Form. 235
Moving Validation Logic into a Form 235

Exploring the Forms API with a Unit Test 236
Switching to a Django ModelForm 238
Testing and Customising Form Validation 239

Using the Form in Our Views 241
Using the Form in a View with a GET Request 241
A Big Find and Replace 242

Using the Form in a View That Takes POST Requests 245
Adapting the Unit Tests for the new_list View 245
Using the Form in the View 246
Using the Form to Display Errors in the Template 247

Using the Form in the Other View 248
A Helper Method for Several Short Tests 248
An Unexpected Benefit: Free Client-Side Validation from HTML5 251

A Pat on the Back 253

Table of Contents | ix

But Have We Wasted a Lot of Time? 254
Using the Form’s Own Save Method 254

15. More Advanced Forms. 259
Another FT for Duplicate Items 259

Preventing Duplicates at the Model Layer 260
A Little Digression on Queryset Ordering and String Representations 263
Rewriting the Old Model Test 265
Some Integrity Errors Do Show Up on Save 267

Experimenting with Duplicate Item Validation at the Views Layer 268
A More Complex Form to Handle Uniqueness Validation 269
Using the Existing List Item Form in the List View 271
Wrapping Up: What We’ve Learned About Testing Django 273

16. Dipping Our Toes, Very Tentatively, into JavaScript. 277
Starting with an FT 277
Setting Up a Basic JavaScript Test Runner 279
Using jQuery and the Fixtures Div 281
Building a JavaScript Unit Test for Our Desired Functionality 285
Fixtures, Execution Order, and Global State: Key Challenges of JS Testing 287

console.log for Debug Printing 287
Using an Initialize Function for More Control Over Execution Time 289

Columbo Says: Onload Boilerplate and Namespacing 291
JavaScript Testing in the TDD Cycle 292
A Few Things That Didn’t Make It 293

17. Deploying Our New Code. 295
Staging Deploy 295
Live Deploy 296
What to Do If You See a Database Error 296
Wrap-Up: git tag the New Release 296

Part III. More Advanced Topics in Testing

18. User Authentication, Spiking, and De-Spiking. 301
Passwordless Auth 302
Exploratory Coding, aka “Spiking” 302

Starting a Branch for the Spike 303
Frontend Log in UI 303
Sending Emails from Django 304
Using Environment Variables to Avoid Secrets in Source Code 306

x | Table of Contents

Storing Tokens in the Database 307
Custom Authentication Models 307
Finishing the Custom Django Auth 309

De-spiking 313
Reverting Our Spiked Code 315

A Minimal Custom User Model 316
Tests as Documentation 319

A Token Model to Link Emails with a Unique ID 320

19. Using Mocks to Test External Dependencies or Reduce Duplication. 323
Before We Start: Getting the Basic Plumbing In 323
Mocking Manually, aka Monkeypatching 324
The Python Mock Library 328

Using unittest.patch 328
Getting the FT a Little Further Along 331
Testing the Django Messages Framework 331
Adding Messages to Our HTML 333
Starting on the Login URL 334
Checking That We Send the User a Link with a Token 335

De-spiking Our Custom Authentication Backend 337
1 if = 1 More Test 338
The get_user Method 341
Using Our Auth Backend in the Login View 343

An Alternative Reason to Use Mocks: Reducing Duplication 344
Using mock.return_value 347
Patching at the Class Level 349

The Moment of Truth: Will the FT Pass? 351
It Works in Theory! Does It Work in Practice? 353
Finishing Off Our FT, Testing Logout 354

20. Test Fixtures and a Decorator for Explicit Waits. 359
Skipping the Login Process by Pre-creating a Session 360

Checking That It Works 362
Our Final Explicit Wait Helper: A Wait Decorator 364

21. Server-Side Debugging. 369
The Proof Is in the Pudding: Using Staging to Catch Final Bugs 369

Setting Up Logging 370
Setting Secret Environment Variables on the Server 372
Adapting Our FT to Be Able to Test Real Emails via POP3 372
Managing the Test Database on Staging 376

A Django Management Command to Create Sessions 376

Table of Contents | xi

Getting the FT to Run the Management Command on the Server 378
Using Fabric Directly from Python 379
Recap: Creating Sessions Locally Versus Staging 380

Baking In Our Logging Code 382
Wrap-Up 382

22. Finishing “My Lists”: Outside-In TDD. 385
The Alternative: “Inside-Out” 385
Why Prefer “Outside-In”? 386
The FT for “My Lists” 386
The Outside Layer: Presentation and Templates 389
Moving Down One Layer to View Functions (the Controller) 390
Another Pass, Outside-In 391

A Quick Restructure of the Template Inheritance Hierarchy 391
Designing Our API Using the Template 392
Moving Down to the Next Layer: What the View Passes to the Template 393

The Next “Requirement” from the Views Layer: New Lists Should Record
Owner 394
A Decision Point: Whether to Proceed to the Next Layer with a Failing

Test 395
Moving Down to the Model Layer 396

Final Step: Feeding Through the .name API from the Template 398

23. Test Isolation, and “Listening to Your Tests”. 401
Revisiting Our Decision Point: The Views Layer Depends on Unwritten

Models Code 401
A First Attempt at Using Mocks for Isolation 402

Using Mock side_effects to Check the Sequence of Events 404
Listen to Your Tests: Ugly Tests Signal a Need to Refactor 406
Rewriting Our Tests for the View to Be Fully Isolated 406

Keep the Old Integrated Test Suite Around as a Sanity Check 406
A New Test Suite with Full Isolation 407
Thinking in Terms of Collaborators 407

Moving Down to the Forms Layer 412
Keep Listening to Your Tests: Removing ORM Code from Our Application 413

Finally, Moving Down to the Models Layer 416
Back to Views 419

The Moment of Truth (and the Risks of Mocking) 420
Thinking of Interactions Between Layers as “Contracts” 421

Identifying Implicit Contracts 422
Fixing the Oversight 424

One More Test 425

xii | Table of Contents

Tidy Up: What to Keep from Our Integrated Test Suite 426
Removing Redundant Code at the Forms Layer 426
Removing the Old Implementation of the View 427
Removing Redundant Code at the Forms Layer 429

Conclusions: When to Write Isolated Versus Integrated Tests 429
Let Complexity Be Your Guide 430
Should You Do Both? 431
Onwards! 431

24. Continuous Integration (CI). 433
Installing Jenkins 433
Configuring Jenkins 434

Initial Unlock 435
Suggested Plugins for Now 435
Configuring the Admin User 435
Adding Plugins 437
Telling Jenkins Where to Find Python 3 and Xvfb 437
Finishing Off with HTTPS 438

Setting Up Our Project 438
First Build! 439
Setting Up a Virtual Display So the FTs Can Run Headless 441
Taking Screenshots 443
If in Doubt, Try Bumping the Timeout! 447
Running Our QUnit JavaScript Tests in Jenkins with PhantomJS 448

Installing node 448
Adding the Build Steps to Jenkins 449

More Things to Do with a CI Server 451

25. The Token Social Bit, the Page Pattern, and an Exercise for the Reader. 453
An FT with Multiple Users, and addCleanup 453
The Page Pattern 455
Extend the FT to a Second User, and the “My Lists” Page 458
An Exercise for the Reader 459

26. Fast Tests, Slow Tests, and Hot Lava. 463
Thesis: Unit Tests Are Superfast and Good Besides That 464

Faster Tests Mean Faster Development 465
The Holy Flow State 465
Slow Tests Don’t Get Run as Often, Which Causes Bad Code 465
We’re Fine Now, but Integrated Tests Get Slower Over Time 465
Don’t Take It from Me 466
And Unit Tests Drive Good Design 466

Table of Contents | xiii

The Problems with “Pure” Unit Tests 466
Isolated Tests Can Be Harder to Read and Write 466
Isolated Tests Don’t Automatically Test Integration 466
Unit Tests Seldom Catch Unexpected Bugs 466
Mocky Tests Can Become Closely Tied to Implementation 467
But All These Problems Can Be Overcome 467

Synthesis: What Do We Want from Our Tests, Anyway? 467
Correctness 467
Clean, Maintainable Code 467
Productive Workflow 468
Evaluate Your Tests Against the Benefits You Want from Them 468

Architectural Solutions 469
Ports and Adapters/Hexagonal/Clean Architecture 469
Functional Core, Imperative Shell 469

Conclusion 470
Further Reading 470

Obey the Testing Goat!. 473

A. PythonAnywhere. 475

B. Django Class-Based Views. 479

C. Provisioning with Ansible. 491

D. Testing Database Migrations. 497

E. Behaviour-Driven Development (BDD). 503

F. Building a REST API: JSON, Ajax, and Mocking with JavaScript. 519

G. Django-Rest-Framework. 541

H. Cheat Sheet. 553

I. What to Do Next. 557

J. Source Code Examples. 561

Bibliography. 565

Index. 567

xiv | Table of Contents

Preface

This book is my attempt to share with the world the journey I’ve taken from “hack‐
ing” to “software engineering”. It’s mainly about testing, but there’s a lot more to it, as
you’ll soon see.

I want to thank you for reading it.

If you bought a copy, then I’m very grateful. If you’re reading the free online version,
then I’m still grateful that you’ve decided it’s worth spending some of your time on.
Who knows, perhaps once you get to the end, you’ll decide it’s good enough to buy a
real copy for yourself or for a friend.

If you have any comments, questions, or suggestions, I’d love to hear from you. You
can reach me directly via obeythetestinggoat@gmail.com, or on Twitter @hjwp. You
can also check out the website and my blog, and there’s a mailing list.

I hope you’ll enjoy reading this book as much as I enjoyed writing it.

Why I Wrote a Book About Test-Driven Development
“Who are you, why are you writing this book, and why should I read it?” I hear you ask.

I’m still quite early on in my programming career. They say that in any discipline, you
go from apprentice, to journeyman, and eventually, sometimes, on to master. I’d say
that I’m—at best—a journeyman programmer. But I was lucky enough, early on in
my career, to fall in with a bunch of TDD fanatics, and it made such a big impact on
my programming that I’m burning to share it with everyone. You might say I have the
enthusiasm of a recent convert, and the learning experience is still a recent memory
for me, so I hope I can still empathise with beginners.

When I first learned Python (from Mark Pilgrim’s excellent Dive Into Python), I came
across the concept of TDD, and thought “Yes. I can definitely see the sense in that.”
Perhaps you had a similar reaction when you first heard about TDD? It sounds like a

xv

mailto:obeythetestinggoat@gmail.com
https://www.twitter.com/hjwp
http://www.obeythetestinggoat.com
https://groups.google.com/forum/#!forum/obey-the-testing-goat-book

really sensible approach, a really good habit to get into—like regularly flossing your
teeth.

Then came my first big project, and you can guess what happened—there was a cli‐
ent, there were deadlines, there was lots to do, and any good intentions about TDD
went straight out of the window.

And, actually, it was fine. I was fine.

At first.

At first I knew I didn’t really need TDD because it was a small website, and I could
easily test whether things worked by just manually checking it out. Click this link
here, choose that drop-down item there, and this should happen. Easy. This whole
writing tests thing sounded like it would have taken ages, and besides, I fancied
myself, from the full height of my three weeks of adult coding experience, as being a
pretty good programmer. I could handle it. Easy.

Then came the fearful goddess Complexity. She soon showed me the limits of my
experience.

The project grew. Parts of the system started to depend on other parts. I did my best
to follow good principles like DRY (Don’t Repeat Yourself), but that just led to some
pretty dangerous territory. Soon I was playing with multiple inheritance. Class hierar‐
chies eight levels deep. eval statements.

I became scared of making changes to my code. I was no longer sure what depended
on what, and what might happen if I changed this code over here, oh gosh, I think that
bit over there inherits from it—no, it doesn’t, it’s overriden. Oh, but it depends on
that class variable. Right, well, as long as I override the override it should be fine. I’ll
just check—but checking was getting much harder. There were lots of sections to the
site now, and clicking through them all manually was starting to get impractical. Bet‐
ter to leave well enough alone, forget refactoring, just make do.

Soon I had a hideous, ugly mess of code. New development became painful.

Not too long after this, I was lucky enough to get a job with a company called
Resolver Systems (now PythonAnywhere), where Extreme Programming (XP) was
the norm. They introduced me to rigorous TDD.

Although my previous experience had certainly opened my mind to the possible ben‐
efits of automated testing, I still dragged my feet at every stage. “I mean, testing in
general might be a good idea, but really? All these tests? Some of them seem like a
total waste of time… What? Functional tests as well as unit tests? Come on, that’s
overdoing it! And this TDD test/minimal-code-change/test cycle? This is just silly!
We don’t need all these baby steps! Come on, we can see what the right answer is, why
don’t we just skip to the end?”

xvi | Preface

https://www.pythonanywhere.com

Believe me, I second-guessed every rule, I suggested every shortcut, I demanded justi‐
fications for every seemingly pointless aspect of TDD, and I came out seeing the wis‐
dom of it all. I’ve lost count of the number of times I’ve thought “Thanks, tests”, as a
functional test uncovers a regression we would never have predicted, or a unit test
saves me from making a really silly logic error. Psychologically, it’s made development
a much less stressful process. It produces code that’s a pleasure to work with.

So, let me tell you all about it!

Aims of This Book
My main aim is to impart a methodology—a way of doing web development, which I
think makes for better web apps and happier developers. There’s not much point in a
book that just covers material you could find by Googling, so this book isn’t a guide
to Python syntax, or a tutorial on web development per se. Instead, I hope to teach
you how to use TDD to get more reliably to our shared, holy goal: clean code that
works.

With that said: I will constantly refer to a real practical example, by building a web
app from scratch using tools like Django, Selenium, jQuery, and Mock. I’m not
assuming any prior knowledge of any of these, so you should come out of the other
end of this book with a decent introduction to those tools, as well as the discipline of
TDD.

In Extreme Programming we always pair-program, so I’ve imagined writing this book
as if I was pairing with my previous self, having to explain how the tools work and
answer questions about why we code in this particular way. So, if I ever take a bit of a
patronising tone, it’s because I’m not all that smart, and I have to be very patient with
myself. And if I ever sound defensive, it’s because I’m the kind of annoying person
that systematically disagrees with whatever anyone else says, so sometimes it takes a
lot of justifying to convince myself of anything.

Outline
I’ve split this book into three parts.

Part I (Chapters 1–7): The basics
Dives straight into building a simple web app using TDD. We start by writing a
functional test (with Selenium), and then we go through the basics of Django—
models, views, templates—with rigorous unit testing at every stage. I also intro‐
duce the Testing Goat.

Preface | xvii

Part II (Chapters 8–17): Web development essentials
Covers some of the trickier but unavoidable aspects of web development, and
shows how testing can help us with them: static files, deployment to production,
form data validation, database migrations, and the dreaded JavaScript.

Part III (Chapters 18–26): More advanced testing topics
Mocking, integrating a third-party system, test fixtures, Outside-In TDD, and
Continuous Integration (CI).

On to a little housekeeping…

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Occasionally I will use the symbol:

[...]

to signify that some of the content has been skipped, to shorten long bits of output, or
to skip down to a relevant section.

This element signifies a tip or suggestion.

This element signifies a general note or aside.

xviii | Preface

This element indicates a warning or caution.

Submitting Errata
Spotted a mistake or a typo? The sources for this book are available on GitHub, and
I’m always very happy to receive issues and pull requests: https://github.com/hjwp/
Book-TDD-Web-Dev-Python/.

Using Code Examples
Code examples are available at https://github.com/hjwp/book-example/; you’ll find
branches for each chapter there (e.g., https://github.com/hjwp/book-example/tree/chap
ter_unit_test_first_view). You’ll find a full list, and some suggestions on ways of work‐
ing with this repository, in Appendix J.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Test-Driven Development with
Python, 2nd edition, by Harry J.W. Percival (O’Reilly). Copyright 2017 Harry Percival,
978-1-491-95870-4.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Preface | xix

https://github.com/hjwp/Book-TDD-Web-Dev-Python/
https://github.com/hjwp/Book-TDD-Web-Dev-Python/
https://github.com/hjwp/book-example/
https://github.com/hjwp/book-example/tree/chapter_unit_test_first_view
https://github.com/hjwp/book-example/tree/chapter_unit_test_first_view
mailto:permissions@oreilly.com
http://oreilly.com/safari

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

Contacting O’Reilly
If you’d like to get in touch with my beloved publisher with any questions about this
book, contact details follow:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/tdd_py_2e.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about books, courses, conferences, and news, see O’Reilly’s
website at http://www.oreilly.com.

Facebook: http://facebook.com/oreilly

Twitter: http://twitter.com/oreillymedia

YouTube: http://www.youtube.com/oreillymedia

xx | Preface

http://oreilly.com/safari
http://bit.ly/tdd_py_2e
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Prerequisites and Assumptions

Here’s an outline of what I’m assuming about you and what you already know, as well
as what software you’ll need ready and installed on your computer.

Python 3 and Programming
I’ve tried to write this book with beginners in mind, but if you’re new to program‐
ming, I’m assuming that you’ve already learned the basics of Python. So if you haven’t
already, do run through a Python beginner’s tutorial or get an introductory book like
Dive Into Python or Learn Python the Hard Way, or, just for fun, Invent Your Own
Computer Games with Python, all of which are excellent introductions.

If you’re an experienced programmer but new to Python, you should get along just
fine. Python is joyously simple to understand.

I’m using Python 3 for this book. When I wrote the first edition in 2013–14, Python 3
had been around for several years, and the world was just about on the tipping point
at which it was the preferred choice. You should be able to follow this book on Mac,
Windows, or Linux. Detailed installation instructions for each OS follow.

This book was tested against Python 3.6. If you’re on an earlier ver‐
sion, you will find minor differences (the f-string syntax, for exam‐
ple), so you’re best off upgrading if you can.

I wouldn’t recommend trying to use Python 2, as the differences are more substantial.
You’ll still be able to carry across all the lessons you learn in this book if your next
project happens to be in Python 2. But spending time figuring out whether the reason
your program output looks different from mine is because of Python 2, or because
you made an actual mistake, won’t be time spent productively.

xxi

http://www.diveintopython.net/
http://learnpythonthehardway.org/
http://inventwithpython.com/
http://inventwithpython.com/

If you are thinking of using PythonAnywhere (the PaaS startup I work for), rather
than a locally installed Python, you should go and take a quick look at Appendix A
before you get started.

In any case, I expect you to have access to Python, to know how to launch it from a
command line, and to know how to edit a Python file and run it. Again, have a look
at the three books I recommended previously if you’re in any doubt.

If you already have Python 2 installed, and you’re worried that
installing Python 3 will break it in some way, don’t! Python 3 and 2
can coexist peacefully on the same system, particularly if you’re
using a virtualenv, which we will be.

How HTML Works
I’m also assuming you have a basic grasp of how the web works—what HTML is,
what a POST request is, and so on. If you’re not sure about those, you’ll need to find a
basic HTML tutorial; there are a few at http://www.webplatform.org/. If you can figure
out how to create an HTML page on your PC and look at it in your browser, and
understand what a form is and how it might work, then you’re probably OK.

Django
The book uses the Django framework, which is (probably) the most well-established
web framework in the Python world. I’ve written the book assuming that the reader
has no prior knowledge of Django, but if you’re new to Python and new to web devel‐
opment and new to testing, you may occasionally find that there’s just one too many
topics and sets of concepts to try and take on board. If that’s the case, I recommend
taking a break from the book, and taking a look at a Django tutorial. DjangoGirls is
the best, most beginner-friendly tutorial I know of. The official tutorial is also excel‐
lent for more experienced programmers.

Read on for instructions on installing Django.

JavaScript
There’s a little bit of JavaScript in the second half of the book. If you don’t know Java‐
Script, don’t worry about it until then, and if you find yourself a little confused, I’ll
recommend a couple of guides at that point.

xxii | Prerequisites and Assumptions

http://www.pythonanywhere.com
http://www.webplatform.org/
https://tutorial.djangogirls.org/
https://docs.djangoproject.com/en/1.11/intro/tutorial01/

A Note on IDEs
If you’ve come from the world of Java or .NET, you may be keen to use an IDE for
your Python coding. They have all sorts of useful tools, including VCS integration,
and there are some excellent ones out there for Python. I used one myself when I was
starting out, and I found it very useful for my first couple of projects.

Can I suggest (and it’s only a suggestion) that you don’t use an IDE, at least for the
duration of this tutorial? IDEs are much less necessary in the Python world, and I’ve
written this whole book with the assumption that you’re just using a basic text editor
and a command line. Sometimes, that’s all you have—when you’re working on a
server, for example—so it’s always worth learning how to use the basic tools first and
understanding how they work. It’ll be something you always have, even if you decide
to go back to your IDE and all its helpful tools, after you’ve finished this book.

Required Software Installations
Aside from Python, you’ll need:

The Firefox web browser
Selenium can actually drive any of the major browsers, but Firefox is the best to
use as an example because it’s reliably cross-platform and, as a bonus, is less sold
out to corporate interests.

The Git version control system
This is available for any platform, at http://git-scm.com/. On Windows, this comes
with the Bash command line, which is needed for the book.

A virtualenv with Python 3, Django 1.11, and Selenium 3 in it
Python’s virtualenv and pip tools now come bundled with Python 3.4+ (they
didn’t always used to, so this is a big hooray). Detailed instructions for preparing
your virtualenv follow.

Geckodriver
This is the driver that will let us remotely control Firefox via Selenium. I’ll point
to a download link in “Installing Firefox and Geckodriver” on page xxvi.

Prerequisites and Assumptions | xxiii

http://git-scm.com/

Windows Notes
Windows users can sometimes feel a little neglected in the open source world, since
macOS and Linux are so prevalent, making it easy to forget there’s a world outside the
Unix paradigm. Backslashes as directory separators? Drive letters? What? Still, it is
absolutely possible to follow along with this book on Windows. Here are a few tips:

1. When you install Git for Windows, make sure you choose “Run Git and
included Unix tools from the Windows command prompt”. You’ll then get
access to a program called “Git Bash”. Use this as your main command prompt
and you’ll get all the useful GNU command-line tools like ls, touch, and grep,
plus forward-slash directory separators.

2. Also in the Git installer, choose “Use Windows’ default console”; otherwise,
Python won’t work properly in the Git-Bash window.

3. When you install Python 3, unless you already have Python 2 and want to keep it
as your default, tick the option that says “Add Python 3.6 to PATH” as in
Figure P-1, so that you can easily run Python from the command line.

Figure P-1. Add Python to the system path from the installer

xxiv | Prerequisites and Assumptions

1 I wouldn’t recommend installing Firefox via Homebrew though: brew puts the Firefox binary in a strange
location, and it confuses Selenium. You can work around it, but it’s simpler to just install Firefox in the nor‐
mal way.

The test for all this is that you should be able to go to a Git-
Bash command prompt and just run python or pip from any
folder.

MacOS Notes
MacOS is a bit more sane than Windows, although getting pip installed was still fairly
challenging up until recently. Since the arrival of 3.4, things are now quite
straightforward:

• Python 3.6 should install without a fuss from its downloadable installer. It will
automatically install pip, too.

• Git’s installer should also “just work”.

Similarly to Windows, the test for all this is that you should be able to open a terminal
and just run git, python3, or pip from anywhere. If you run into any trouble, the
search terms “system path” and “command not found” should provide good trouble‐
shooting resources.

You might also want to check out Homebrew. It used to be the
only reliable way of installing lots of Unixy tools (including
Python 3) on a Mac.1 Although the normal Python installer is
now fine, you may find Homebrew useful in future. It does
require you to download all 1.1 GB of Xcode, but that also
gives you a C compiler, which is a useful side effect.

Git’s Default Editor, and Other Basic Git Config
I’ll provide step-by-step instructions for Git, but it may be a good idea to get a bit of
configuration done now. For example, when you do your first commit, by default vi
will pop up, at which point you may have no idea what to do with it. Well, much as vi
has two modes, you then have two choices. One is to learn some minimal vi com‐
mands (press the i key to go into insert mode, type your text, press <Esc> to go back to

Prerequisites and Assumptions | xxv

http://www.python.org
http://brew.sh//

2 .bashrc is an initialization file for Bash that lives in your home folder. It gets run every time you start Bash.

normal mode, then write the file and quit with :wq<Enter>). You’ll then have joined
the great fraternity of people who know this ancient, revered text editor.

Or you can point-blank refuse to be involved in such a ridiculous throwback to the
1970s, and configure Git to use an editor of your choice. Quit vi using <Esc> followed
by :q!, then change your Git default editor. See the Git documentation on basic Git
configuration.

Installing Firefox and Geckodriver
Firefox is available as a download for Windows and macOS from https://
www.mozilla.org/firefox/. On Linux, you probably already have it installed, but other‐
wise your package manager will have it.

Geckodriver is available from https://github.com/mozilla/geckodriver/releases. You
need to download and extract it and put it somewhere on your system path.

• For macOS or Linux, one convenient place to put it is ~/.local/bin
• For Windows, put it in your Python Scripts folder

To test that you’ve got this working, open up a Bash console and you should be able
to run:

geckodriver --version
geckodriver 0.17.0

The source code of this program is available at
https://github.com/mozilla/geckodriver.

This program is subject to the terms of the Mozilla Public License 2.0.
You can obtain a copy of the license at https://mozilla.org/MPL/2.0/.

If it doesn’t work, it may be that ~/.local/bin isn’t on your PATH (this would apply to
some Mac and Linux systems). It’s a good idea to have this folder on your path
because it’s where Python will install things when you use pip install --user.
Here’s how to add it in your .bashrc:2

echo 'PATH=~/.local/bin:$PATH' >> ~/.bashrc

Close your terminal and re-open it and see if the geckodriver --version works
now.

xxvi | Prerequisites and Assumptions

http://git-scm.com/book/en/Customizing-Git-Git-Configuration
http://git-scm.com/book/en/Customizing-Git-Git-Configuration
https://www.mozilla.org/firefox/
https://www.mozilla.org/firefox/
https://github.com/mozilla/geckodriver/releases

3 Why superlists, I hear you ask? No spoilers! You’ll find out in the next chapter.

Setting Up Your Virtualenv
A Python virtualenv (short for virtual environment) is how you set up your environ‐
ment for different Python projects. It allows you to use different packages (e.g., differ‐
ent versions of Django, and even different versions of Python) in each project. And
because you’re not installing things system-wide, it means you don’t need root
permissions.

Virtualenv has been included in Python since version 3.4, but I always recommend a
helper tool called “virtualenvwrapper”. Let’s install that first (it doesn’t matter which
version of Python you install it for):

on Windows
pip install virtualenvwrapper
on macOS / Linux
pip install --user virtualenvwrapper
then make Bash load virtualenvwrapper automatically
echo "source virtualenvwrapper.sh" >> ~/.bashrc
source ~/.bashrc

On Windows, virtualenvwrapper will only work inside the “Git-
Bash” shell, not from the normal command line.

virtualenvwrapper keeps all your virtualenvs in one place, and provides convenient
tools for activating and deactivating them.

Let’s create a virtualenv called “superlists”3 that has Python 3 installed:

on macOS/Linux:
mkvirtualenv --python=python3.6 superlists
on Windows
mkvirtualenv --python=`py -3.6 -c"import sys; print(sys.executable)"` superlists
(a little hack to make sure we get a python 3.6 virtualenv)

Activating and Deactivating the Virtualenv
Whenever you work on the book, you’ll want to make sure your virtualenv is “active”.
You can usually tell because you’ll see (superlists) in parentheses, in your prompt.
Something like this:

$

(superlists) $

Prerequisites and Assumptions | xxvii

Straight after you create your virtualenv, it should be active. You can double-check by
running which python:

(superlists) $ which python
/home/harry/.virtualenvs/superlists/bin/python
(on Windows, it will be something like
/C/Users/IEUser/.virtualenvs/superlists/Scripts/python)

(superlists) $ deactivate
$ which python
/usr/bin/python
$ python --version
Python 2.7.12 # for me, outside my virtualenv, "python" defaults to Python 2.

$ workon superlists
(superlists) $ which python
/home/harry/.virtualenvs/superlists/bin/python
(superlists) $ python --version
Python 3.6.0

To activate your virtualenv, it’s workon superlists. To check
whether it’s active, look for the (superlists) $ in your command
prompt, or run which python.

Installing Django and Selenium
We’ll install Django 1.11 and the latest Selenium, Selenium 3:

(superlists) $ pip install "django<1.12" "selenium<4"
Collecting django==1.11.3
 Using cached Django-1.11.3-py2.py3-none-any.whl
Collecting selenium<4
 Using cached selenium-3.4.3-py2.py3-none-any.whl
Installing collected packages: django, selenium
Successfully installed django-1.11.3 selenium-3.4.3

Some Error Messages You’re Likely to See When You Inevitably Fail to
Activate Your Virtualenv
If you’re new to virtualenvs—or even if you’re not, to be honest—at some point you’re
guaranteed to forget to activate it, and then you’ll be staring at an error message. Hap‐
pens to me all the time. Here are some of the things to look out for:

ImportError: No module named selenium

Or:

ImportError: No module named django.core.management

xxviii | Prerequisites and Assumptions

www.allitebooks.com

http://www.allitebooks.org

As always, look out for that (superlists) in your command prompt, and a quick
workon superlists is probably what you need to get it working again.

Here’s a couple more, for good measure:

bash: workon: command not found

This means you skipped a step earlier, and you haven’t added virtualenvwrapper to
your .bashrc. Go find the echo source virtualenvwrapper.sh commands from ear‐
lier and rerun them.

'workon' is not recognized as an internal or external command,
operable program or batch file.

This means you’ve launched the default Windows command prompt, cmd, instead of
Git-Bash. Close it and open the latter.

Happy coding!

Did these instructions not work for you? Or have you got better
ones? Get in touch: obeythetestinggoat@gmail.com!

Prerequisites and Assumptions | xxix

mailto:obeythetestinggoat@gmail.com

1 The video has not been updated for the second edition, but the content is all mostly the same.

Companion Video

I’ve recorded a 10-part video series to accompany this book.1 It covers the content of
Part I. If you find you learn well from video-based material, then I encourage you to
check it out. Over and above what’s in the book, it should give you a feel for what the
“flow” of TDD is like, flicking between tests and code, explaining the thought process
as we go.

Plus I’m wearing a delightful yellow T-shirt.

xxxi

http://oreil.ly/1svTFqB

Acknowledgments

Lots of people to thank, without whom this book would never have happened, and/or
would have been even worse than it is.

Thanks first to “Greg” at $OTHER_PUBLISHER, who was the first person to encour‐
age me to believe it really could be done. Even though your employers turned out to
have overly regressive views on copyright, I’m forever grateful that you believed in
me.

Thanks to Michael Foord, another ex-employee of Resolver Systems, for providing
the original inspiration by writing a book himself, and thanks for his ongoing support
for the project. Thanks also to my boss Giles Thomas, for foolishly allowing another
one of his employees to write a book (although I believe he’s now changed the stan‐
dard employment contract to say “no books”). Thanks also for your ongoing wisdom
and for setting me off on the testing path.

Thanks to my other colleagues, Glenn Jones and Hansel Dunlop, for being invaluable
sounding boards, and for your patience with my one-track record conversation over
the last year.

Thanks to my wife Clementine, and to both my families, without whose support and
patience I would never have made it. I apologise for all the time spent with nose in
computer on what should have been memorable family occasions. I had no idea when
I set out what the book would do to my life (“Write it in my spare time, you say? That
sounds reasonable…”). I couldn’t have done it without you.

Thanks to my tech reviewers, Jonathan Hartley, Nicholas Tollervey, and Emily Bache,
for your encouragements and invaluable feedback. Especially Emily, who actually
conscientiously read every single chapter. Partial credit to Nick and Jon, but that
should still be read as eternal gratitude. Having y’all around made the whole thing less
of a lonely endeavour. Without all of you the book would have been little more than
the nonsensical ramblings of an idiot.

xxxiii

Thanks to everyone else who’s given up some of their time to give some feedback on
the book, out of nothing more than the goodness of their heart: Gary Bernhardt,
Mark Lavin, Matt O’Donnell, Michael Foord, Hynek Schlawack, Russell Keith-Magee,
Andrew Godwin, Kenneth Reitz, and Nathan Stocks. Thanks for being much smarter
than I am, and for preventing me from saying several stupid things. Naturally, there
are still plenty of stupid things left in the book, for which y’all can absolutely not be
held responsible.

Thanks to my editor Meghan Blanchette, for being a very friendly and likeable slave
driver, and for keeping the book on track, both in terms of timescales and by restrain‐
ing my sillier ideas. Thanks to all the others at O’Reilly for your help, including Sarah
Schneider, Kara Ebrahim, and Dan Fauxsmith for letting me keep British English.
Thanks to Charles Roumeliotis for your help with style and grammar. We may never
see eye-to-eye on the merits of Chicago School quotation/punctuation rules, but I
sure am glad you were around. And thanks to the design department for giving us a
goat for the cover!

And thanks most especially to all my Early Release readers, for all your help picking
out typos, for your feedback and suggestions, for all the ways in which you helped to
smooth out the learning curve in the book, and most of all for your kind words of
encouragement and support that kept me going. Thank you Jason Wirth, Dave Paw‐
son, Jeff Orr, Kevin De Baere, crainbf, dsisson, Galeran, Michael Allan, James O’Don‐
nell, Marek Turnovec, SoonerBourne, julz, Cody Farmer, William Vincent, Trey
Hunner, David Souther, Tom Perkin, Sorcha Bowler, Jon Poler, Charles Quast, Sid‐
dhartha Naithani, Steve Young, Roger Camargo, Wesley Hansen, Johansen Christian
Vermeer, Ian Laurain, Sean Robertson, Hari Jayaram, Bayard Randel, Konrad Korżel,
Matthew Waller, Julian Harley, Barry McClendon, Simon Jakobi, Angelo Cordon,
Jyrki Kajala, Manish Jain, Mahadevan Sreenivasan, Konrad Korżel, Deric Crago,
Cosmo Smith, Markus Kemmerling, Andrea Costantini, Daniel Patrick, Ryan Allen,
Jason Selby, Greg Vaughan, Jonathan Sundqvist, Richard Bailey, Diane Soini, Dale
Stewart, Mark Keaton, Johan Wärlander, Simon Scarfe, Eric Grannan, Marc-Anthony
Taylor, Maria McKinley, John McKenna, Rafał Szymański, Roel van der Goot, Ignacio
Reguero, TJ Tolton, Jonathan Means, Theodor Nolte, Jungsoo Moon, Craig Cook,
Gabriel Ewilazarus, Vincenzo Pandolfo, David “farbish2”, Nico Coetzee, Daniel Gon‐
zalez, Jared Contrascere, Zhao 赵亮, and many, many more. If I’ve missed your name,
you have an absolute right to be aggrieved; I am incredibly grateful to you too, so
write to me and I will try and make it up to you in any way I can.

And finally thanks to you, the latest reader, for deciding to check out the book! I hope
you enjoy it.

xxxiv | Acknowledgments

Additional Thanks for the Second Edition
Thanks to my wonderful editor for the second edition, Nan Barber, and to Susan
Conant, Kristen Brown, and the whole team at O’Reilly. Thanks once again to Emily
and Jonathan for tech reviewing, as well as to Edward Wong for his very thorough
notes. Any remaining errors and inadequacies are all my own.

Thanks also to the readers of the free edition who contributed comments, sugges‐
tions, and even some pull requests. I have definitely missed some of you on this list,
so apologies if your name isn’t here, but thanks to Emre Gonulates, Jésus Gómez, Jor‐
don Birk, James Evans, Iain Houston, Jason DeWitt, Ronnie Raney, Spencer Ogden,
Suresh Nimbalkar, Darius, Caco, LeBodro, Jeff, wasabigeek, joegnis, Lars, Mustafa,
Jared, Craig, Sorcha, TJ, Ignacio, Roel, Justyna, Nathan, Andrea, Alexandr, bilyan‐
hadzhi, mosegontar, sfarzy, henziger, hunterji, das-g, juanriaza, GeoWill, Windsooon,
gonulate, and many, many more.

Acknowledgments | xxxv

PART I

The Basics of TDD and Django

In this first part, I’m going to introduce the basics of Test-Driven Development (TDD).
We’ll build a real web application from scratch, writing tests first at every stage.

We’ll cover functional testing with Selenium, as well as unit testing, and see the differ‐
ence between the two. I’ll introduce the TDD workflow, what I call the unit-test/code
cycle. We’ll also do some refactoring, and see how that fits with TDD. Since it’s abso‐
lutely essential to serious software engineering, I’ll also be using a version control sys‐
tem (Git). We’ll discuss how and when to do commits and integrate them with the
TDD and web development workflow.

We’ll be using Django, the Python world’s most popular web framework (probably).
I’ve tried to introduce the Django concepts slowly and one at a time, and provide lots
of links to further reading. If you’re a total beginner to Django, I thoroughly recom‐
mend taking the time to read them. If you find yourself feeling a bit lost, take a cou‐
ple of hours to go through the official Django tutorial, and then come back to the
book.

You’ll also get to meet the Testing Goat…

Be Careful with Copy and Paste

If you’re working from a digital version of the book, it’s natural to
want to copy and paste code listings from the book as you’re work‐
ing through it. It’s much better if you don’t: typing things in by
hand gets them into your muscle memory, and just feels much
more real. You also inevitably make the occasional typo, and
debugging them is an important thing to learn.
Quite apart from that, you’ll find that the quirks of the PDF format
mean that weird stuff often happens when you try to copy/paste
from it…

CHAPTER 1

Getting Django Set Up Using a
Functional Test

TDD isn’t something that comes naturally. It’s a discipline, like a martial art, and just
like in a Kung Fu movie, you need a bad-tempered and unreasonable master to force
you to learn the discipline. Ours is the Testing Goat.

Obey the Testing Goat! Do Nothing Until You Have a Test
The Testing Goat is the unofficial mascot of TDD in the Python testing community. It
probably means different things to different people, but, to me, the Testing Goat is a
voice inside my head that keeps me on the True Path of Testing—like one of those
little angels or demons that pop up above your shoulder in the cartoons, but with a
very niche set of concerns. I hope, with this book, to install the Testing Goat inside
your head too.

We’ve decided to build a website, even if we’re not quite sure what it’s going to do yet.
Normally the first step in web development is getting your web framework installed
and configured. Download this, install that, configure the other, run the script…but
TDD requires a different mindset. When you’re doing TDD, you always have the
Testing Goat inside you—single-minded as goats are—bleating “Test first, test first!”

In TDD the first step is always the same: write a test.

First we write the test; then we run it and check that it fails as expected. Only then do
we go ahead and build some of our app. Repeat that to yourself in a goat-like voice. I
know I do.

Another thing about goats is that they take one step at a time. That’s why they seldom
fall off mountains, see, no matter how steep they are. As you can see in Figure 1-1.

3

Figure 1-1. Goats are more agile than you think (source: Caitlin Stewart, on Flickr)

We’ll proceed with nice small steps; we’re going to use Django, which is a popular
Python web framework, to build our app.

The first thing we want to do is check that we’ve got Django installed, and that it’s
ready for us to work with. The way we’ll check is by confirming that we can spin up
Django’s development server and actually see it serving up a web page, in our web
browser, on our local PC. We’ll use the Selenium browser automation tool for this.

Create a new Python file called functional_tests.py, wherever you want to keep the
code for your project, and enter the following code. If you feel like making a few little
goat noises as you do it, it may help:

4 | Chapter 1: Getting Django Set Up Using a Functional Test

http://www.flickr.com/photos/caitlinstewart/2846642630/

functional_tests.py
from selenium import webdriver

browser = webdriver.Firefox()
browser.get('http://localhost:8000')

assert 'Django' in browser.title

That’s our first functional test (FT); I’ll talk more about what I mean by functional
tests, and how they contrast with unit tests, in a bit. For now, it’s enough to assure
ourselves that we understand what it’s doing:

• Starting a Selenium “webdriver” to pop up a real Firefox browser window
• Using it to open up a web page which we’re expecting to be served from the local

PC
• Checking (making a test assertion) that the page has the word “Django” in its title

Let’s try running it:

$ python functional_tests.py
 File ".../selenium/webdriver/remote/webdriver.py", line 268, in get
 self.execute(Command.GET, {'url': url})
 File ".../selenium/webdriver/remote/webdriver.py", line 256, in execute
 self.error_handler.check_response(response)
 File ".../selenium/webdriver/remote/errorhandler.py", line 194, in
check_response
 raise exception_class(message, screen, stacktrace)
selenium.common.exceptions.WebDriverException: Message: Reached error page: abo
ut:neterror?e=connectionFailure&u=http%3A//localhost%3A8000/[...]

You should see a browser window pop up and try to open localhost:8000, and show
the “Unable to connect” error page. If you switch back to your console, you’ll see the
big ugly error message, telling us that Selenium hit an error page. And then, you will
probably be irritated at the fact that it left the Firefox window lying around your
desktop for you to tidy up. We’ll fix that later!

If, instead, you see an error trying to import Selenium, or an error
trying to find “geckodriver”, you might need to go back and have
another look at the "Prerequisites and Assumptions" section.

For now though, we have a failing test, so that means we’re allowed to start building
our app.

Obey the Testing Goat! Do Nothing Until You Have a Test | 5

Adieu to Roman Numerals!
So many introductions to TDD use Roman numerals as an example that it’s a running
joke—I even started writing one myself. If you’re curious, you can find it on my Git‐
Hub page.

Roman numerals, as an example, are both good and bad. It’s a nice “toy” problem,
reasonably limited in scope, and you can explain TDD quite well with it.

The problem is that it can be hard to relate to the real world. That’s why I’ve decided
to use building a real web app, starting from nothing, as my example. Although it’s a
simple web app, my hope is that it will be easier for you to carry across to your next
real project.

Getting Django Up and Running
Since you’ve definitely read “Prerequisites and Assumptions” by now, you’ve already
got Django installed. The first step in getting Django up and running is to create a
project, which will be the main container for our site. Django provides a little
command-line tool for this:

$ django-admin.py startproject superlists

That will create a folder called superlists, and a set of files and subfolders inside it:

.
├── functional_tests.py
├── geckodriver.log
└── superlists
 ├── manage.py
 └── superlists
 ├── __init__.py
 ├── settings.py
 ├── urls.py
 └── wsgi.py

Yes, there’s a folder called superlists inside a folder called superlists. It’s a bit confusing,
but it’s just one of those things; there are good reasons when you look back at the his‐
tory of Django. For now, the important thing to know is that the superlists/superlists
folder is for stuff that applies to the whole project—like settings.py, for example,
which is used to store global configuration information for the site.

You’ll also have noticed manage.py. That’s Django’s Swiss Army knife, and one of the
things it can do is run a development server. Let’s try that now. Do a cd superlists
to go into the top-level superlists folder (we’ll work from this folder a lot) and then
run:

6 | Chapter 1: Getting Django Set Up Using a Functional Test

https://github.com/hjwp/tdd-roman-numeral-calculator/
https://github.com/hjwp/tdd-roman-numeral-calculator/

$ python manage.py runserver
Performing system checks...

System check identified no issues (0 silenced).

You have 13 unapplied migration(s). Your project may not work properly until
you apply the migrations for app(s): admin, auth, contenttypes, sessions.
Run 'python manage.py migrate' to apply them.

Django version 1.11.3, using settings 'superlists.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

It’s safe to ignore that message about “unapplied migrations” for
now. We’ll look at migrations in Chapter 5.

That’s Django’s development server now up and running on our machine. Leave it
there and open another command shell. In that, we can try running our test again
(from the folder we started in):

$ python functional_tests.py
$

Because you’ve just opened a new terminal window, you’ll need to
activate your virtualenv with workon superlists for this to work.

Not much action on the command line, but you should notice two things: firstly,
there was no ugly AssertionError and secondly, the Firefox window that Selenium
popped up had a different-looking page on it.

Well, it may not look like much, but that was our first ever passing test! Hooray!

If it all feels a bit too much like magic, like it wasn’t quite real, why not go and take a
look at the dev server manually, by opening a web browser yourself and visiting
http://localhost:8000? You should see something like Figure 1-2.

You can quit the development server now if you like, back in the original shell, using
Ctrl-C.

Getting Django Up and Running | 7

http://127.0.0.1:8000/

Figure 1-2. It worked!

Starting a Git Repository
There’s one last thing to do before we finish the chapter: start to commit our work to
a version control system (VCS). If you’re an experienced programmer you don’t need
to hear me preaching about version control, but if you’re new to it please believe me
when I say that VCS is a must-have. As soon as your project gets to be more than a
few weeks old and a few lines of code, having a tool available to look back over old
versions of code, revert changes, explore new ideas safely, even just as a backup…boy.
TDD goes hand in hand with version control, so I want to make sure I impart how it
fits into the workflow.

So, our first commit! If anything it’s a bit late; shame on us. We’re using Git as our
VCS, ’cos it’s the best.

Let’s start by moving functional_tests.py into the superlists folder, and doing the git
init to start the repository:

8 | Chapter 1: Getting Django Set Up Using a Functional Test

$ ls
superlists functional_tests.py geckodriver.log
$ mv functional_tests.py superlists/
$ cd superlists
$ git init .
Initialised empty Git repository in /.../superlists/.git/

Our Working Directory from Now on Is the Top-Level superlists Folder
From this point onwards, the top-level superlists folder will be our working directory.

(For simplicity, in my command listings, I’ll always show it as /…/superlists/, although
it will probably actually be something like /home/kind-reader-username/my-python-
projects/superlists/.)

Whenever I show a command to type in, it will assume we’re in this directory. Simi‐
larly, if I mention a path to a file, it will be relative to this top-level directory. So super‐
lists/settings.py means the settings.py inside the second-level superlists.

Clear as mud? If in doubt, look for manage.py; you want to be in the same directory as
manage.py.

Now let’s take a look and see what files we want to commit:

$ ls
db.sqlite3 manage.py superlists functional_tests.py

db.sqlite3 is a database file. We don’t want that in version control. Earlier we also saw
geckodriver.log, which is a logfile from Selenium, which we don’t want to track
changes to either. We’ll add both of them to a special file called .gitignore which, um,
tells Git what to ignore:

$ echo "db.sqlite3" >> .gitignore
$ echo "geckodriver.log" >> .gitignore

Next we can add the rest of the contents of the current folder, “.”:

Starting a Git Repository | 9

$ git add .
$ git status
On branch master

Initial commit

Changes to be committed:
 (use "git rm --cached <file>..." to unstage)

 new file: .gitignore
 new file: functional_tests.py
 new file: manage.py
 new file: superlists/__init__.py
 new file: superlists/__pycache__/__init__.cpython-36.pyc
 new file: superlists/__pycache__/settings.cpython-36.pyc
 new file: superlists/__pycache__/urls.cpython-36.pyc
 new file: superlists/__pycache__/wsgi.cpython-36.pyc
 new file: superlists/settings.py
 new file: superlists/urls.py
 new file: superlists/wsgi.py

Darn! We’ve got a bunch of .pyc files in there; it’s pointless to commit those. Let’s
remove them from Git and add them to .gitignore too:

$ git rm -r --cached superlists/__pycache__
rm 'superlists/__pycache__/__init__.cpython-36.pyc'
rm 'superlists/__pycache__/settings.cpython-36.pyc'
rm 'superlists/__pycache__/urls.cpython-36.pyc'
rm 'superlists/__pycache__/wsgi.cpython-36.pyc'
$ echo "__pycache__" >> .gitignore
$ echo "*.pyc" >> .gitignore

Now let’s see where we are… (You’ll see I’m using git status a lot—so much so that
I often alias it to git st…I’m not telling you how to do that though; I leave you to
discover the secrets of Git aliases on your own!):

10 | Chapter 1: Getting Django Set Up Using a Functional Test

1 Did vi pop up and you had no idea what to do? Or did you see a message about account identity and git
config --global user.username? Go and take another look at “Prerequisites and Assumptions”; there are
some brief instructions.

$ git status
On branch master

Initial commit

Changes to be committed:
 (use "git rm --cached <file>..." to unstage)

 new file: .gitignore
 new file: functional_tests.py
 new file: manage.py
 new file: superlists/__init__.py
 new file: superlists/settings.py
 new file: superlists/urls.py
 new file: superlists/wsgi.py

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: .gitignore

Looking good—we’re ready to do our first commit!

$ git add .gitignore
$ git commit

When you type git commit, it will pop up an editor window for you to write your
commit message in. Mine looked like Figure 1-3.1

Starting a Git Repository | 11

Figure 1-3. First Git commit

If you want to really go to town on Git, this is the time to also learn
about how to push your work to a cloud-based VCS hosting ser‐
vice, like GitHub or Bitbucket. They’ll be useful if you think you
want to follow along with this book on different PCs. I leave it to
you to find out how they work; they have excellent documentation.
Alternatively, you can wait until Chapter 9 when we’ll be using one
for deployment.

That’s it for the VCS lecture. Congratulations! You’ve written a functional test using
Selenium, and you’ve gotten Django installed and running, in a certifiable, test-first,
goat-approved TDD way. Give yourself a well-deserved pat on the back before mov‐
ing on to Chapter 2.

12 | Chapter 1: Getting Django Set Up Using a Functional Test

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2

Extending Our Functional Test Using
the unittest Module

Let’s adapt our test, which currently checks for the default Django “it worked” page,
and check instead for some of the things we want to see on the real front page of our
site.

Time to reveal what kind of web app we’re building: a to-do lists site! In doing so
we’re very much following fashion: a few years ago all web tutorials were about build‐
ing a blog. Then it was forums and polls; nowadays it’s all to-do lists.

The reason is that a to-do list is a really nice example. At its most basic it is very sim‐
ple indeed—just a list of text strings—so it’s easy to get a “minimum viable” list app
up and running. But it can be extended in all sorts of ways—different persistence
models, adding deadlines, reminders, sharing with other users, and improving the
client-side UI. There’s no reason to be limited to just “to-do” lists either; they could be
any kind of lists. But the point is that it should allow me to demonstrate all of the
main aspects of web programming, and how you apply TDD to them.

13

Using a Functional Test to Scope Out a Minimum
Viable App
Tests that use Selenium let us drive a real web browser, so they really let us see how
the application functions from the user’s point of view. That’s why they’re called func‐
tional tests.

This means that an FT can be a sort of specification for your application. It tends to
track what you might call a User Story, and follows how the user might work with a
particular feature and how the app should respond to them.

Terminology:
Functional Test == Acceptance Test == End-to-End Test

What I call functional tests, some people prefer to call acceptance tests, or end-to-end
tests. The main point is that these kinds of tests look at how the whole application
functions, from the outside. Another term is black box test, because the test doesn’t
know anything about the internals of the system under test.

FTs should have a human-readable story that we can follow. We make it explicit using
comments that accompany the test code. When creating a new FT, we can write the
comments first, to capture the key points of the User Story. Being human-readable,
you could even share them with nonprogrammers, as a way of discussing the require‐
ments and features of your app.

TDD and agile software development methodologies often go together, and one of
the things we often talk about is the minimum viable app; what is the simplest thing
we can build that is still useful? Let’s start by building that, so that we can test the
water as quickly as possible.

A minimum viable to-do list really only needs to let the user enter some to-do items,
and remember them for their next visit.

Open up functional_tests.py and write a story a bit like this one:

14 | Chapter 2: Extending Our Functional Test Using the unittest Module

functional_tests.py
from selenium import webdriver

browser = webdriver.Firefox()

Edith has heard about a cool new online to-do app. She goes
to check out its homepage
browser.get('http://localhost:8000')

She notices the page title and header mention to-do lists
assert 'To-Do' in browser.title

She is invited to enter a to-do item straight away

She types "Buy peacock feathers" into a text box (Edith's hobby
is tying fly-fishing lures)

When she hits enter, the page updates, and now the page lists
"1: Buy peacock feathers" as an item in a to-do list

There is still a text box inviting her to add another item. She
enters "Use peacock feathers to make a fly" (Edith is very methodical)

The page updates again, and now shows both items on her list

Edith wonders whether the site will remember her list. Then she sees
that the site has generated a unique URL for her -- there is some
explanatory text to that effect.

She visits that URL - her to-do list is still there.

Satisfied, she goes back to sleep

browser.quit()

We Have a Word for Comments…
When I first started at Resolver, I used to virtuously pepper my code with nice
descriptive comments. My colleagues said to me: “Harry, we have a word for com‐
ments. We call them lies.” I was shocked! But I learned in school that comments are
good practice?

They were exaggerating for effect. There is definitely a place for comments that add
context and intention. But their point was that it’s pointless to write a comment that
just repeats what you’re doing with the code:

increment wibble by 1
wibble += 1

Not only is it pointless, but there’s a danger that you’ll forget to update the comments
when you update the code, and they end up being misleading. The ideal is to strive to

Using a Functional Test to Scope Out a Minimum Viable App | 15

make your code so readable, to use such good variable names and function names,
and to structure it so well that you no longer need any comments to explain what the
code is doing. Just a few here and there to explain why.

There are other places where comments are very useful. We’ll see that Django uses
them a lot in the files it generates for us to use as a way of suggesting helpful bits of its
API. And, of course, we use comments to explain the User Story in our functional
tests—by forcing us to make a coherent story out of the test, it makes sure we’re
always testing from the point of view of the user.

There is more fun to be had in this area, things like Behaviour-Driven Development
(see Appendix E) and testing DSLs, but they’re topics for other books.

You’ll notice that, apart from writing the test out as comments, I’ve updated the
assert to look for the word “To-Do” instead of “Django”. That means we expect the
test to fail now. Let’s try running it.

First, start up the server:

$ python manage.py runserver

And then, in another shell, run the tests:

$ python functional_tests.py
Traceback (most recent call last):
 File "functional_tests.py", line 10, in <module>
 assert 'To-Do' in browser.title
AssertionError

That’s what we call an expected fail, which is actually good news—not quite as good as
a test that passes, but at least it’s failing for the right reason; we can have some confi‐
dence we’ve written the test correctly.

The Python Standard Library’s unittest Module
There are a couple of little annoyances we should probably deal with. Firstly, the mes‐
sage “AssertionError” isn’t very helpful—it would be nice if the test told us what it
actually found as the browser title. Also, it’s left a Firefox window hanging around the
desktop, so it would be nice if that got cleared up for us automatically.

One option would be to use the second parameter to the assert keyword, something
like:

assert 'To-Do' in browser.title, "Browser title was " + browser.title

And we could also use a try/finally to clean up the old Firefox window. But these
sorts of problems are quite common in testing, and there are some ready-made

16 | Chapter 2: Extending Our Functional Test Using the unittest Module

1 The only exception is if you have an exception inside setUp, then tearDown doesn’t run.

solutions for us in the standard library’s unittest module. Let’s use that! In
functional_tests.py:

functional_tests.py
from selenium import webdriver
import unittest

class NewVisitorTest(unittest.TestCase):

 def setUp(self):
 self.browser = webdriver.Firefox()

 def tearDown(self):
 self.browser.quit()

 def test_can_start_a_list_and_retrieve_it_later(self):
 # Edith has heard about a cool new online to-do app. She goes
 # to check out its homepage
 self.browser.get('http://localhost:8000')

 # She notices the page title and header mention to-do lists
 self.assertIn('To-Do', self.browser.title)
 self.fail('Finish the test!')

 # She is invited to enter a to-do item straight away
 [...rest of comments as before]

if __name__ == '__main__':
 unittest.main(warnings='ignore')

You’ll probably notice a few things here:

Tests are organised into classes, which inherit from unittest.TestCase.

The main body of the test is in a method called test_can_start_

a_list_and_retrieve_it_later. Any method whose name starts with test is a
test method, and will be run by the test runner. You can have more than one
test_ method per class. Nice descriptive names for our test methods are a good
idea too.

setUp and tearDown are special methods which get run before and after each test.
I’m using them to start and stop our browser—note that they’re a bit like a try/
except, in that tearDown will run even if there’s an error during the test itself.1 No
more Firefox windows left lying around!

The Python Standard Library’s unittest Module | 17

We use self.assertIn instead of just assert to make our test assertions. uni
ttest provides lots of helper functions like this to make test assertions, like
assertEqual, assertTrue, assertFalse, and so on. You can find more in the
unittest documentation.

self.fail just fails no matter what, producing the error message given. I’m
using it as a reminder to finish the test.

Finally, we have the if __name__ == '__main__' clause (if you’ve not seen it
before, that’s how a Python script checks if it’s been executed from the command
line, rather than just imported by another script). We call unittest.main(),
which launches the unittest test runner, which will automatically find test
classes and methods in the file and run them.

warnings='ignore' suppresses a superfluous ResourceWarning which was being
emitted at the time of writing. It may have disappeared by the time you read this;
feel free to try removing it!

If you’ve read the Django testing documentation, you might have
seen something called LiveServerTestCase, and are wondering
whether we should use it now. Full points to you for reading the
friendly manual! LiveServerTestCase is a bit too complicated for
now, but I promise I’ll use it in a later chapter…

Let’s try it!

$ python functional_tests.py
F
==
FAIL: test_can_start_a_list_and_retrieve_it_later (__main__.NewVisitorTest)

Traceback (most recent call last):
 File "functional_tests.py", line 18, in
test_can_start_a_list_and_retrieve_it_later
 self.assertIn('To-Do', self.browser.title)
AssertionError: 'To-Do' not found in 'Welcome to Django'

Ran 1 test in 1.747s

FAILED (failures=1)

That’s a bit nicer, isn’t it? It tidied up our Firefox window, it gives us a nicely format‐
ted report of how many tests were run and how many failed, and the assertIn has
given us a helpful error message with useful debugging info. Bonzer!

18 | Chapter 2: Extending Our Functional Test Using the unittest Module

http://docs.python.org/3/library/unittest.html

Commit
This is a good point to do a commit; it’s a nicely self-contained change. We’ve expan‐
ded our functional test to include comments that describe the task we’re setting our‐
selves, our minimum viable to-do list. We’ve also rewritten it to use the Python
unittest module and its various testing helper functions.

Do a git status—that should assure you that the only file that has changed is func‐
tional_tests.py. Then do a git diff, which shows you the difference between the last
commit and what’s currently on disk. That should tell you that functional_tests.py has
changed quite substantially:

$ git diff
diff --git a/functional_tests.py b/functional_tests.py
index d333591..b0f22dc 100644
--- a/functional_tests.py
+++ b/functional_tests.py
@@ -1,6 +1,45 @@
 from selenium import webdriver
+import unittest

-browser = webdriver.Firefox()
-browser.get('http://localhost:8000')
+class NewVisitorTest(unittest.TestCase):

-assert 'Django' in browser.title
+ def setUp(self):
+ self.browser = webdriver.Firefox()
+
+ def tearDown(self):
+ self.browser.quit()
[...]

Now let’s do a:

$ git commit -a

The -a means “automatically add any changes to tracked files” (i.e., any files that
we’ve committed before). It won’t add any brand new files (you have to explicitly git
add them yourself), but often, as in this case, there aren’t any new files, so it’s a useful
shortcut.

When the editor pops up, add a descriptive commit message, like “First FT specced
out in comments, and now uses unittest.”

Now we’re in an excellent position to start writing some real code for our lists app.
Read on!

Commit | 19

Useful TDD Concepts
User Story

A description of how the application will work from the point of view of the user.
Used to structure a functional test.

Expected failure
When a test fails in the way that we expected it to.

20 | Chapter 2: Extending Our Functional Test Using the unittest Module

CHAPTER 3

Testing a Simple Home Page with
Unit Tests

We finished the last chapter with a functional test failing, telling us that it wanted the
home page for our site to have “To-Do” in its title. It’s time to start working on our
application.

Warning: Things Are About to Get Real
The first two chapters were intentionally nice and light. From now on, we get into
some more meaty coding. Here’s a prediction: at some point, things are going to go
wrong. You’re going to see different results from what I say you should see. This is a
Good Thing, because it will be a genuine character-building Learning Experience™.

One possibility is that I’ve given some ambiguous explanations, and you’ve done
something different from what I intended. Step back and have a think about what
we’re trying to achieve at this point in the book. Which file are we editing, what do we
want the user to be able to do, what are we testing and why? It may be that you’ve
edited the wrong file or function, or are running the wrong tests. I reckon you’ll learn
more about TDD from these “stop and think” moments than you do from all the bits
where the following instructions and copy-pasting goes smoothly.

Or it may be a real bug. Be tenacious, read the error message carefully (see “Reading
Tracebacks” on page 27 a little later on in the chapter), and you’ll get to the bottom of
it. It’s probably just a missing comma, or trailing slash, or maybe a missing s in one of
the Selenium find methods. But, as Zed Shaw put it so well, this kind of debugging is
also an absolutely vital part of learning, so do stick it out!

You can always drop me an email (or try the Google Group) if you get really stuck.
Happy debugging!

21

https://groups.google.com/forum/#!forum/obey-the-testing-goat-book

Our First Django App, and Our First Unit Test
Django encourages you to structure your code into apps: the theory is that one
project can have many apps, you can use third-party apps developed by other people,
and you might even reuse one of your own apps in a different project…although I
admit I’ve never actually managed it myself! Still, apps are a good way to keep your
code organised.

Let’s start an app for our to-do lists:

$ python manage.py startapp lists

That will create a folder at superlists/lists, next to superlists/superlists, and within it a
number of placeholder files for things like models, views, and, of immediate interest
to us, tests:

superlists/
├── db.sqlite3
├── functional_tests.py
├── lists
│ ├── admin.py
│ ├── apps.py
│ ├── __init__.py
│ ├── migrations
│ │ └── __init__.py
│ ├── models.py
│ ├── tests.py
│ └── views.py
├── manage.py
└── superlists
 ├── __init__.py
 ├── __pycache__
 ├── settings.py
 ├── urls.py
 └── wsgi.py

Unit Tests, and How They Differ from Functional Tests
As with so many of the labels we put on things, the line between unit tests and func‐
tional tests can become a little blurry at times. The basic distinction, though, is that
functional tests test the application from the outside, from the point of view of the
user. Unit tests test the application from the inside, from the point of view of the
programmer.

The TDD approach I’m following wants our application to be covered by both types
of test. Our workflow will look a bit like this:

1. We start by writing a functional test, describing the new functionality from the
user’s point of view.

22 | Chapter 3: Testing a Simple Home Page with Unit Tests

2. Once we have a functional test that fails, we start to think about how to write
code that can get it to pass (or at least to get past its current failure). We now use
one or more unit tests to define how we want our code to behave—the idea is that
each line of production code we write should be tested by (at least) one of our
unit tests.

3. Once we have a failing unit test, we write the smallest amount of application code
we can, just enough to get the unit test to pass. We may iterate between steps 2
and 3 a few times, until we think the functional test will get a little further.

4. Now we can rerun our functional tests and see if they pass, or get a little further.
That may prompt us to write some new unit tests, and some new code, and so on.

You can see that, all the way through, the functional tests are driving what develop‐
ment we do from a high level, while the unit tests drive what we do at a low level.

Does that seem slightly redundant? Sometimes it can feel that way, but functional
tests and unit tests do really have very different objectives, and they will usually end
up looking quite different.

Functional tests should help you build an application with the right
functionality, and guarantee you never accidentally break it. Unit
tests should help you to write code that’s clean and bug free.

Enough theory for now—let’s see how it looks in practice.

Unit Testing in Django
Let’s see how to write a unit test for our home page view. Open up the new file at lists/
tests.py, and you’ll see something like this:

lists/tests.py
from django.test import TestCase

Create your tests here.

Django has helpfully suggested we use a special version of TestCase, which it pro‐
vides. It’s an augmented version of the standard unittest.TestCase, with some addi‐
tional Django-specific features, which we’ll discover over the next few chapters.

You’ve already seen that the TDD cycle involves starting with a test that fails, then
writing code to get it to pass. Well, before we can even get that far, we want to know
that the unit test we’re writing will definitely be run by our automated test runner,
whatever it is. In the case of functional_tests.py, we’re running it directly, but this file

Unit Testing in Django | 23

made by Django is a bit more like magic. So, just to make sure, let’s make a deliber‐
ately silly failing test:

lists/tests.py
from django.test import TestCase

class SmokeTest(TestCase):

 def test_bad_maths(self):
 self.assertEqual(1 + 1, 3)

Now let’s invoke this mysterious Django test runner. As usual, it’s a manage.py
command:

$ python manage.py test
Creating test database for alias 'default'...
F
==
FAIL: test_bad_maths (lists.tests.SmokeTest)

Traceback (most recent call last):
 File "/.../superlists/lists/tests.py", line 6, in test_bad_maths
 self.assertEqual(1 + 1, 3)
AssertionError: 2 != 3

Ran 1 test in 0.001s

FAILED (failures=1)
System check identified no issues (0 silenced).
Destroying test database for alias 'default'...

Excellent. The machinery seems to be working. This is a good point for a commit:

$ git status # should show you lists/ is untracked
$ git add lists
$ git diff --staged # will show you the diff that you're about to commit
$ git commit -m "Add app for lists, with deliberately failing unit test"

As you’ve no doubt guessed, the -m flag lets you pass in a commit message at the com‐
mand line, so you don’t need to use an editor. It’s up to you to pick the way you like to
use the Git command line; I’ll just show you the main ones I’ve seen used. The key
rule is: make sure you always review what you’re about to commit before you do it.

Django’s MVC, URLs, and View Functions
Django is structured along a classic Model-View-Controller (MVC) pattern. Well,
broadly. It definitely does have models, but its views are more like a controller, and it’s

24 | Chapter 3: Testing a Simple Home Page with Unit Tests

the templates that are actually the view part, but the general idea is there. If you’re
interested, you can look up the finer points of the discussion in the Django FAQs.

Irrespective of any of that, as with any web server, Django’s main job is to decide what
to do when a user asks for a particular URL on our site. Django’s workflow goes
something like this:

1. An HTTP request comes in for a particular URL.
2. Django uses some rules to decide which view function should deal with the

request (this is referred to as resolving the URL).
3. The view function processes the request and returns an HTTP response.

So we want to test two things:

• Can we resolve the URL for the root of the site (“/”) to a particular view function
we’ve made?

• Can we make this view function return some HTML which will get the func‐
tional test to pass?

Let’s start with the first. Open up lists/tests.py, and change our silly test to something
like this:

lists/tests.py
from django.urls import resolve
from django.test import TestCase
from lists.views import home_page

class HomePageTest(TestCase):

 def test_root_url_resolves_to_home_page_view(self):
 found = resolve('/')
 self.assertEqual(found.func, home_page)

What’s going on here?

resolve is the function Django uses internally to resolve URLs and find what
view function they should map to. We’re checking that resolve, when called with
“/”, the root of the site, finds a function called home_page.

What function is that? It’s the view function we’re going to write next, which will
actually return the HTML we want. You can see from the import that we’re plan‐
ning to store it in lists/views.py.

So, what do you think will happen when we run the tests?

Django’s MVC, URLs, and View Functions | 25

https://docs.djangoproject.com/en/1.11/faq/general/

$ python manage.py test
ImportError: cannot import name 'home_page'

It’s a very predictable and uninteresting error: we tried to import something we
haven’t even written yet. But it’s still good news—for the purposes of TDD, an excep‐
tion which was predicted counts as an expected failure. Since we have both a failing
functional test and a failing unit test, we have the Testing Goat’s full blessing to code
away.

At Last! We Actually Write Some Application Code!
It is exciting, isn’t it? Be warned, TDD means that long periods of anticipation are
only defused very gradually, and by tiny increments. Especially since we’re learning
and only just starting out, we only allow ourselves to change (or add) one line of code
at a time—and each time, we make just the minimal change required to address the
current test failure.

I’m being deliberately extreme here, but what’s our current test failure? We can’t
import home_page from lists.views? OK, let’s fix that—and only that. In lists/
views.py:

lists/views.py
from django.shortcuts import render

Create your views here.
home_page = None

“You must be joking!” I can hear you say.

I can hear you because it’s what I used to say (with feeling) when my colleagues first
demonstrated TDD to me. Well, bear with me, and we’ll talk about whether or not
this is all taking it too far in a little while. But for now, let yourself follow along, even
if it’s with some exasperation, and see if our tests can help us write the correct code,
one tiny step at a time.

We run the tests again:

26 | Chapter 3: Testing a Simple Home Page with Unit Tests

$ python manage.py test
Creating test database for alias 'default'...
E
==
ERROR: test_root_url_resolves_to_home_page_view (lists.tests.HomePageTest)

Traceback (most recent call last):
 File "/.../superlists/lists/tests.py", line 8, in
test_root_url_resolves_to_home_page_view
 found = resolve('/')
 File ".../django/urls/base.py", line 27, in resolve
 return get_resolver(urlconf).resolve(path)
 File ".../django/urls/resolvers.py", line 392, in resolve
 raise Resolver404({'tried': tried, 'path': new_path})
django.urls.exceptions.Resolver404: {'tried': [[<RegexURLResolver
<RegexURLPattern list> (admin:admin) ^admin/>]], 'path': ''}

Ran 1 test in 0.002s

FAILED (errors=1)
System check identified no issues (0 silenced).
Destroying test database for alias 'default'...

Reading Tracebacks
Let’s spend a moment talking about how to read tracebacks, since it’s something we
have to do a lot in TDD. You soon learn to scan through them and pick up relevant
clues:

==

ERROR: test_root_url_resolves_to_home_page_view (lists.tests.HomePageTest)

Traceback (most recent call last):
 File "/.../superlists/lists/tests.py", line 8, in
test_root_url_resolves_to_home_page_view

 found = resolve('/')
 File ".../django/urls/base.py", line 27, in resolve
 return get_resolver(urlconf).resolve(path)
 File ".../django/urls/resolvers.py", line 392, in resolve
 raise Resolver404({'tried': tried, 'path': new_path})

django.urls.exceptions.Resolver404: {'tried': [[<RegexURLResolver

<RegexURLPattern list> (admin:admin) ^admin/>]], 'path': ''}

[...]

The first place you look is usually the error itself. Sometimes that’s all you need to
see, and it will let you identify the problem immediately. But sometimes, like in
this case, it’s not quite self-evident.

At Last! We Actually Write Some Application Code! | 27

The next thing to double-check is: which test is failing? Is it definitely the one we
expected—that is, the one we just wrote? In this case, the answer is yes.

Then we look for the place in our test code that kicked off the failure. We work
our way down from the top of the traceback, looking for the filename of the tests
file, to check which test function, and what line of code, the failure is coming
from. In this case it’s the line where we call the resolve function for the “/” URL.

There is ordinarily a fourth step, where we look further down for any of our own
application code which was involved with the problem. In this case it’s all Django
code, but we’ll see plenty of examples of this fourth step later in the book.

Pulling it all together, we interpret the traceback as telling us that, when trying to
resolve “/”, Django raised a 404 error—in other words, Django can’t find a URL map‐
ping for “/”. Let’s help it out.

urls.py
Our tests are telling us that we need a URL mapping. Django uses a file called urls.py
to map URLs to view functions. There’s a main urls.py for the whole site in the super‐
lists/superlists folder. Let’s go take a look:

superlists/urls.py
"""superlists URL Configuration

The `urlpatterns` list routes URLs to views. For more information please see:
 https://docs.djangoproject.com/en/1.11/topics/http/urls/
Examples:
Function views
 1. Add an import: from my_app import views
 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home')
Class-based views
 1. Add an import: from other_app.views import Home
 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home')
Including another URLconf
 1. Import the include() function: from django.conf.urls import url, include
 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls'))
"""
from django.conf.urls import url
from django.contrib import admin

urlpatterns = [
 url(r'^admin/', admin.site.urls),
]

As usual, lots of helpful comments and default suggestions from Django.

28 | Chapter 3: Testing a Simple Home Page with Unit Tests

A url entry starts with a regular expression that defines which URLs it applies to, and
goes on to say where it should send those requests—either to a view function you’ve
imported, or maybe to another urls.py file somewhere else.

The first example entry has the regular expression ^$, which means an empty string
—could this be the same as the root of our site, which we’ve been testing with “/”?
Let’s find out—what happens if we include it?

If you’ve never come across regular expressions, you can get away
with just taking my word for it, for now—but you should make a
mental note to go learn about them.

We’ll also get rid of the admin URL, because we won’t be using the Django admin site
for now:

superlists/urls.py
from django.conf.urls import url
from lists import views

urlpatterns = [
 url(r'^$', views.home_page, name='home'),
]

Run the unit tests again, with python manage.py test:

[...]
TypeError: view must be a callable or a list/tuple in the case of include().

That’s progress! We’re no longer getting a 404.

The traceback is messy, but the message at the end is telling us what’s going on: the
unit tests have actually made the link between the URL “/” and the home_page =
None in lists/views.py, and are now complaining that the home_page view is not calla‐
ble. And that gives us a justification for changing it from being None to being an
actual function. Every single code change is driven by the tests!

Back in lists/views.py:

lists/views.py
from django.shortcuts import render

Create your views here.
def home_page():
 pass

urls.py | 29

And now?

$ python manage.py test
Creating test database for alias 'default'...
.

Ran 1 test in 0.003s

OK
System check identified no issues (0 silenced).
Destroying test database for alias 'default'...

Hooray! Our first ever unit test pass! That’s so momentous that I think it’s worthy of a
commit:

$ git diff # should show changes to urls.py, tests.py, and views.py
$ git commit -am "First unit test and url mapping, dummy view"

That was the last variation on git commit I’ll show, the a and m flags together, which
adds all changes to tracked files and uses the commit message from the command
line.

git commit -am is the quickest formulation, but also gives you the
least feedback about what’s being committed, so make sure you’ve
done a git status and a git diff beforehand, and are clear on
what changes are about to go in.

Unit Testing a View
On to writing a test for our view, so that it can be something more than a do-nothing
function, and instead be a function that returns a real response with HTML to the
browser. Open up lists/tests.py, and add a new test method. I’ll explain each bit:

30 | Chapter 3: Testing a Simple Home Page with Unit Tests

lists/tests.py
from django.urls import resolve
from django.test import TestCase
from django.http import HttpRequest

from lists.views import home_page

class HomePageTest(TestCase):

 def test_root_url_resolves_to_home_page_view(self):
 found = resolve('/')
 self.assertEqual(found.func, home_page)

 def test_home_page_returns_correct_html(self):
 request = HttpRequest()
 response = home_page(request)
 html = response.content.decode('utf8')
 self.assertTrue(html.startswith('<html>'))
 self.assertIn('<title>To-Do lists</title>', html)
 self.assertTrue(html.endswith('</html>'))

What’s going on in this new test?

We create an HttpRequest object, which is what Django will see when a user’s
browser asks for a page.

We pass it to our home_page view, which gives us a response. You won’t be sur‐
prised to hear that this object is an instance of a class called HttpResponse.

Then, we extract the .content of the response. These are the raw bytes, the ones
and zeros that would be sent down the wire to the user’s browser. We
call .decode() to convert them into the string of HTML that’s being sent to the
user.

We want it to start with an <html> tag which gets closed at the end.

And we want a <title> tag somewhere in the middle, with the words “To-Do
lists” in it—because that’s what we specified in our functional test.

Once again, the unit test is driven by the functional test, but it’s also much closer to
the actual code—we’re thinking like programmers now.

Let’s run the unit tests now and see how we get on:

TypeError: home_page() takes 0 positional arguments but 1 was given

Unit Testing a View | 31

The Unit-Test/Code Cycle
We can start to settle into the TDD unit-test/code cycle now:

1. In the terminal, run the unit tests and see how they fail.
2. In the editor, make a minimal code change to address the current test failure.

And repeat!

The more nervous we are about getting our code right, the smaller and more minimal
we make each code change—the idea is to be absolutely sure that each bit of code is
justified by a test.

This may seem laborious, and at first, it will be. But once you get into the swing of
things, you’ll find yourself coding quickly even if you take microscopic steps—this is
how we write all of our production code at work.

Let’s see how fast we can get this cycle going:

• Minimal code change:

lists/views.py
def home_page(request):
 pass

• Tests:
html = response.content.decode('utf8')
AttributeError: 'NoneType' object has no attribute 'content'

• Code—we use django.http.HttpResponse, as predicted:

lists/views.py
from django.http import HttpResponse

Create your views here.
def home_page(request):
 return HttpResponse()

• Tests again:
 self.assertTrue(html.startswith('<html>'))
AssertionError: False is not true

32 | Chapter 3: Testing a Simple Home Page with Unit Tests

• Code again:

lists/views.py
def home_page(request):
 return HttpResponse('<html>')

• Tests:
AssertionError: '<title>To-Do lists</title>' not found in '<html>'

• Code:

lists/views.py
def home_page(request):
 return HttpResponse('<html><title>To-Do lists</title>')

• Tests—almost there?
 self.assertTrue(html.endswith('</html>'))
AssertionError: False is not true

• Come on, one last effort:

lists/views.py
def home_page(request):
 return HttpResponse('<html><title>To-Do lists</title></html>')

• Surely?
$ python manage.py test
Creating test database for alias 'default'...
..

Ran 2 tests in 0.001s

OK
System check identified no issues (0 silenced).
Destroying test database for alias 'default'...

Yes! Now, let’s run our functional tests. Don’t forget to spin up the dev server again, if
it’s not still running. It feels like the final heat of the race here; surely this is it…could
it be?

Unit Testing a View | 33

$ python functional_tests.py
F
==
FAIL: test_can_start_a_list_and_retrieve_it_later (__main__.NewVisitorTest)

Traceback (most recent call last):
 File "functional_tests.py", line 19, in
test_can_start_a_list_and_retrieve_it_later
 self.fail('Finish the test!')
AssertionError: Finish the test!

Ran 1 test in 1.609s

FAILED (failures=1)

Failed? What? Oh, it’s just our little reminder? Yes? Yes! We have a web page!

Ahem. Well, I thought it was a thrilling end to the chapter. You may still be a little
baffled, perhaps keen to hear a justification for all these tests, and don’t worry, all that
will come, but I hope you felt just a tinge of excitement near the end there.

Just a little commit to calm down, and reflect on what we’ve covered:

$ git diff # should show our new test in tests.py, and the view in views.py
$ git commit -am "Basic view now returns minimal HTML"

That was quite a chapter! Why not try typing git log, possibly using the --oneline
flag, for a reminder of what we got up to:

$ git log --oneline
a6e6cc9 Basic view now returns minimal HTML
450c0f3 First unit test and url mapping, dummy view
ea2b037 Add app for lists, with deliberately failing unit test
[...]

Not bad—we covered:

• Starting a Django app
• The Django unit test runner
• The difference between FTs and unit tests
• Django URL resolving and urls.py
• Django view functions, request and response objects
• And returning basic HTML

34 | Chapter 3: Testing a Simple Home Page with Unit Tests

Useful Commands and Concepts
Running the Django dev server

python manage.py runserver

Running the functional tests
python functional_tests.py

Running the unit tests
python manage.py test

The unit-test/code cycle
1. Run the unit tests in the terminal.
2. Make a minimal code change in the editor.
3. Repeat!

Unit Testing a View | 35

CHAPTER 4

What Are We Doing with All These Tests?
(And, Refactoring)

Now that we’ve seen the basics of TDD in action, it’s time to pause and talk about why
we’re doing it.

I’m imagining several of you, dear readers, have been holding back some seething
frustration—perhaps some of you have done a bit of unit testing before, and perhaps
some of you are just in a hurry. You’ve been biting back questions like:

• Aren’t all these tests a bit excessive?
• Surely some of them are redundant? There’s duplication between the functional

tests and the unit tests.
• I mean, what are you doing importing django.core.urlresolvers in your unit

tests? Isn’t that testing Django—that is, testing third-party code? I thought that
was a no-no?

• Those unit tests seemed way too trivial—testing one line of declaration, and a
one-line function that returns a constant! Isn’t that just a waste of time? Shouldn’t
we save our tests for more complex things?

• What about all those tiny changes during the unit-test/code cycle? Surely we
could have just skipped to the end? I mean, home_page = None!? Really?

• You’re not telling me you actually code like this in real life?

Ah, young grasshopper. I too was once full of questions like these. But only because
they’re perfectly good questions. In fact, I still ask myself questions like these, all the
time. Does all this stuff really have value? Is this a bit of a cargo cult?

37

Programming Is Like Pulling a Bucket of Water Up
from a Well
Ultimately, programming is hard. Often, we are smart, so we succeed. TDD is there to
help us out when we’re not so smart. Kent Beck (who basically invented TDD) uses
the metaphor of lifting a bucket of water out of a well with a rope: when the well isn’t
too deep, and the bucket isn’t very full, it’s easy. And even lifting a full bucket is pretty
easy at first. But after a while, you’re going to get tired. TDD is like having a ratchet
that lets you save your progress, take a break, and make sure you never slip back‐
wards. That way you don’t have to be smart all the time.

Figure 4-1. Test ALL the things (original illustration source: Allie Brosh, Hyperbole and
a Half)

OK, perhaps in general, you’re prepared to concede that TDD is a good idea, but
maybe you still think I’m overdoing it? Testing the tiniest thing, and taking ridicu‐
lously many small steps?

TDD is a discipline, and that means it’s not something that comes naturally; because
many of the payoffs aren’t immediate but only come in the longer term, you have to
force yourself to do it in the moment. That’s what the image of the Testing Goat is
supposed to illustrate—you need to be a bit bloody-minded about it.

38 | Chapter 4: What Are We Doing with All These Tests? (And, Refactoring)

http://bit.ly/1iXxdYp
http://bit.ly/1iXxdYp

On the Merits of Trivial Tests for Trivial Functions
In the short term it may feel a bit silly to write tests for simple functions and
constants.

It’s perfectly possible to imagine still doing “mostly” TDD, but following more relaxed
rules where you don’t unit test absolutely everything. But in this book my aim is to
demonstrate full, rigorous TDD. Like a kata in a martial art, the idea is to learn the
motions in a controlled context, when there is no adversity, so that the techiques are
part of your muscle memory. It seems trivial now, because we’ve started with a very
simple example. The problem comes when your application gets complex—that’s
when you really need your tests. And the danger is that complexity tends to sneak up
on you, gradually. You may not notice it happening, but quite soon you’re a boiled
frog.

There are two other things to say in favour of tiny, simple tests for simple functions.

Firstly, if they’re really trivial tests, then they won’t take you that long to write them.
So stop moaning and just write them already.

Secondly, it’s always good to have a placeholder. Having a test there for a simple func‐
tion means it’s that much less of a psychological barrier to overcome when the simple
function gets a tiny bit more complex—perhaps it grows an if. Then a few weeks
later it grows a for loop. Before you know it, it’s a recursive metaclass-based polymor‐
phic tree parser factory. But because it’s had tests from the very beginning, adding a
new test each time has felt quite natural, and it’s well tested. The alternative involves
trying to decide when a function becomes “complicated enough”, which is highly sub‐
jective, but worse, because there’s no placeholder, it seems like that much more effort,
and you’re tempted each time to put it off a little longer, and pretty soon—frog soup!

Instead of trying to figure out some hand-wavy subjective rules for when you should
write tests, and when you can get away with not bothering, I suggest following the
discipline for now—as with any discipline, you have to take the time to learn the rules
before you can break them.

Now, back to our onions.

Programming Is Like Pulling a Bucket of Water Up from a Well | 39

Using Selenium to Test User Interactions
Where were we at the end of the last chapter? Let’s rerun the test and find out:

$ python functional_tests.py
F
==
FAIL: test_can_start_a_list_and_retrieve_it_later (__main__.NewVisitorTest)

Traceback (most recent call last):
 File "functional_tests.py", line 19, in
test_can_start_a_list_and_retrieve_it_later
 self.fail('Finish the test!')
AssertionError: Finish the test!

Ran 1 test in 1.609s

FAILED (failures=1)

Did you try it, and get an error saying Problem loading page or Unable to connect? So
did I. It’s because we forgot to spin up the dev server first using manage.py run
server. Do that, and you’ll get the failure message we’re after.

One of the great things about TDD is that you never have to worry
about forgetting what to do next—just rerun your tests and they
will tell you what you need to work on.

“Finish the test”, it says, so let’s do just that! Open up functional_tests.py and we’ll
extend our FT:

40 | Chapter 4: What Are We Doing with All These Tests? (And, Refactoring)

functional_tests.py
from selenium import webdriver
from selenium.webdriver.common.keys import Keys
import time
import unittest

class NewVisitorTest(unittest.TestCase):

 def setUp(self):
 self.browser = webdriver.Firefox()

 def tearDown(self):
 self.browser.quit()

 def test_can_start_a_list_and_retrieve_it_later(self):
 # Edith has heard about a cool new online to-do app. She goes
 # to check out its homepage
 self.browser.get('http://localhost:8000')

 # She notices the page title and header mention to-do lists
 self.assertIn('To-Do', self.browser.title)
 header_text = self.browser.find_element_by_tag_name('h1').text
 self.assertIn('To-Do', header_text)

 # She is invited to enter a to-do item straight away
 inputbox = self.browser.find_element_by_id('id_new_item')
 self.assertEqual(
 inputbox.get_attribute('placeholder'),
 'Enter a to-do item'
)

 # She types "Buy peacock feathers" into a text box (Edith's hobby
 # is tying fly-fishing lures)
 inputbox.send_keys('Buy peacock feathers')

 # When she hits enter, the page updates, and now the page lists
 # "1: Buy peacock feathers" as an item in a to-do list table
 inputbox.send_keys(Keys.ENTER)
 time.sleep(1)

 table = self.browser.find_element_by_id('id_list_table')
 rows = table.find_elements_by_tag_name('tr')
 self.assertTrue(
 any(row.text == '1: Buy peacock feathers' for row in rows)
)

 # There is still a text box inviting her to add another item. She
 # enters "Use peacock feathers to make a fly" (Edith is very
 # methodical)
 self.fail('Finish the test!')

 # The page updates again, and now shows both items on her list
 [...]

Using Selenium to Test User Interactions | 41

1 You could also just use the string "\n", but Keys also lets you send special keys like Ctrl so I thought I’d show
it.

We’re using several of the methods that Selenium provides to examine web pages:
find_element_by_tag_name, find_element_by_id, and find_elements_by_

tag_name (notice the extra s, which means it will return several elements rather
than just one).

We also use send_keys, which is Selenium’s way of typing into input elements.

The Keys class (don’t forget to import it) lets us send special keys like Enter.1

When we hit Enter, the page will refresh. The time.sleep is there to make sure
the browser has finished loading before we make any assertions about the new
page. This is called an “explicit wait” (a very simple one; we’ll improve it in Chap‐
ter 6).

Watch out for the difference between the Selenium find_ele
ment_... and find_elements_... functions. One returns an ele‐
ment and raises an exception if it can’t find it, whereas the other
returns a list, which may be empty.

Also, just look at that any function. It’s a little-known Python built-in. I don’t even
need to explain it, do I? Python is such a joy.

Although, if you’re one of my readers who doesn’t know Python, what’s happening
inside the any is a generator expression, which is like a list comprehension but awe‐
somer. You need to read up on this. If you Google it, you’ll find Guido himself
explaining it nicely. Come back and tell me that’s not pure joy!

Let’s see how it gets on:

$ python functional_tests.py
[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: h1

Decoding that, the test is saying it can’t find an <h1> element on the page. Let’s see
what we can do to add that to the HTML of our home page.

Big changes to a functional test are usually a good thing to commit on their own. I
failed to do so in my first draft, and I regretted it later when I changed my mind and
had the change mixed up with a bunch of others. The more atomic your commits, the
better:

42 | Chapter 4: What Are We Doing with All These Tests? (And, Refactoring)

http://bit.ly/1iXxD18
http://bit.ly/1iXxD18

$ git diff # should show changes to functional_tests.py
$ git commit -am "Functional test now checks we can input a to-do item"

The “Don’t Test Constants” Rule, and Templates to the
Rescue
Let’s take a look at our unit tests, lists/tests.py. Currently we’re looking for specific
HTML strings, but that’s not a particularly efficient way of testing HTML. In general,
one of the rules of unit testing is Don’t test constants, and testing HTML as text is a lot
like testing a constant.

In other words, if you have some code that says:

wibble = 3

There’s not much point in a test that says:

from myprogram import wibble
assert wibble == 3

Unit tests are really about testing logic, flow control, and configuration. Making
assertions about exactly what sequence of characters we have in our HTML strings
isn’t doing that.

What’s more, mangling raw strings in Python really isn’t a great way of dealing with
HTML. There’s a much better solution, which is to use templates. Quite apart from
anything else, if we can keep HTML to one side in a file whose name ends in .html,
we’ll get better syntax highlighting! There are lots of Python templating frameworks
out there, and Django has its own which works very well. Let’s use that.

Refactoring to Use a Template
What we want to do now is make our view function return exactly the same HTML,
but just using a different process. That’s a refactor—when we try to improve the code
without changing its functionality.

That last bit is really important. If you try to add new functionality at the same time
as refactoring, you’re much more likely to run into trouble. Refactoring is actually a
whole discipline in itself, and it even has a reference book: Martin Fowler’s Refactor‐
ing.

The first rule is that you can’t refactor without tests. Thankfully, we’re doing TDD, so
we’re way ahead of the game. Let’s check that our tests pass; they will be what makes
sure that our refactoring is behaviour preserving:

$ python manage.py test
[...]
OK

The “Don’t Test Constants” Rule, and Templates to the Rescue | 43

http://refactoring.com/
http://refactoring.com/

2 Some people like to use another subfolder named after the app (i.e., lists/templates/lists) and then refer to the
template as lists/home.html. This is called “template namespacing”. I figured it was overcomplicated for this
small project, but it may be worth it on larger projects. There’s more in the Django tutorial.

Great! We’ll start by taking our HTML string and putting it into its own file. Create a
directory called lists/templates to keep templates in, and then open a file at lists/
templates/home.html, to which we’ll transfer our HTML:2

lists/templates/home.html
<html>
 <title>To-Do lists</title>
</html>

Mmmh, syntax-highlighted…much nicer! Now to change our view function:

lists/views.py
from django.shortcuts import render

def home_page(request):
 return render(request, 'home.html')

Instead of building our own HttpResponse, we now use the Django render function.
It takes the request as its first parameter (for reasons we’ll go into later) and the name
of the template to render. Django will automatically search folders called templates
inside any of your apps’ directories. Then it builds an HttpResponse for you, based on
the content of the template.

Templates are a very powerful feature of Django’s, and their main
strength consists of substituting Python variables into HTML text.
We’re not using this feature yet, but we will in future chapters.
That’s why we use render and (later) render_to_ string rather
than, say, manually reading the file from disk with the built-in
open.

Let’s see if it works:

44 | Chapter 4: What Are We Doing with All These Tests? (And, Refactoring)

http://bit.ly/1iXxWZL

$ python manage.py test
[...]
==
ERROR: test_home_page_returns_correct_html (lists.tests.HomePageTest)

Traceback (most recent call last):
 File "/.../superlists/lists/tests.py", line 17, in
test_home_page_returns_correct_html
 response = home_page(request)
 File "/.../superlists/lists/views.py", line 5, in home_page
 return render(request, 'home.html')
 File "/usr/local/lib/python3.6/dist-packages/django/shortcuts.py", line 48,
in render
 return HttpResponse(loader.render_to_string(*args, **kwargs),
 File "/usr/local/lib/python3.6/dist-packages/django/template/loader.py", line
170, in render_to_string
 t = get_template(template_name, dirs)
 File "/usr/local/lib/python3.6/dist-packages/django/template/loader.py", line
144, in get_template
 template, origin = find_template(template_name, dirs)
 File "/usr/local/lib/python3.6/dist-packages/django/template/loader.py", line
136, in find_template
 raise TemplateDoesNotExist(name)
django.template.base.TemplateDoesNotExist: home.html

Ran 2 tests in 0.004s

Another chance to analyse a traceback:

We start with the error: it can’t find the template.

Then we double-check what test is failing: sure enough, it’s our test of the view
HTML.

Then we find the line in our tests that caused the failure: it’s when we call the
home_page function.

Finally, we look for the part of our own application code that caused the failure:
it’s when we try to call render.

So why can’t Django find the template? It’s right where it’s supposed to be, in the lists/
templates folder.

The thing is that we haven’t yet officially registered our lists app with Django.
Unfortunately, just running the startapp command and having what is obviously an
app in your project folder isn’t quite enough. You have to tell Django that you really
mean it, and add it to settings.py as well. Belt and braces. Open it up and look for a
variable called INSTALLED_APPS, to which we’ll add lists:

The “Don’t Test Constants” Rule, and Templates to the Rescue | 45

superlists/settings.py
Application definition

INSTALLED_APPS = [
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 'lists',
]

You can see there’s lots of apps already in there by default. We just need to add ours,
lists, to the bottom of the list. Don’t forget the trailing comma—it may not be
required, but one day you’ll be really annoyed when you forget it and Python concat‐
enates two strings on different lines…

Now we can try running the tests again:

$ python manage.py test
 [...]
 self.assertTrue(html.endswith('</html>'))
AssertionError: False is not true

Darn, not quite.

Depending on whether your text editor insists on adding newlines
to the end of files, you may not even see this error. If so, you can
safely ignore the next bit, and skip straight to where you can see the
listing says OK.

But it did get further! It seems it’s managed to find our template, but the last of the
three assertions is failing. Apparently there’s something wrong at the end of the out‐
put. I had to do a little print(repr(html)) to debug this, but it turns out that the
switch to templates has introduced an additional newline (\n) at the end. We can get
them to pass like this:

lists/tests.py
self.assertTrue(html.strip().endswith('</html>'))

It’s a tiny bit of a cheat, but whitespace at the end of an HTML file really shouldn’t
matter to us. Let’s try running the tests again:

$ python manage.py test
[...]
OK

46 | Chapter 4: What Are We Doing with All These Tests? (And, Refactoring)

Our refactor of the code is now complete, and the tests mean we’re happy that behav‐
iour is preserved. Now we can change the tests so that they’re no longer testing con‐
stants; instead, they should just check that we’re rendering the right template.

The Django Test Client
One way we could test this is to manually render the template ourselves in the test,
and then compare that to what the view returns. Django has a function called
render_to_string which will let us do that:

lists/tests.py
from django.template.loader import render_to_string
[...]

 def test_home_page_returns_correct_html(self):
 request = HttpRequest()
 response = home_page(request)
 html = response.content.decode('utf8')
 expected_html = render_to_string('home.html')
 self.assertEqual(html, expected_html)

But that’s a bit of an unwieldy way of testing that we use the right template. And all
this faffing about with .decode() and .strip() is distracting. Instead, Django gives
us a tool called the Django Test Client, which has built-in ways of checking what tem‐
plates are used. Here’s how it looks:

lists/tests.py
 def test_home_page_returns_correct_html(self):
 response = self.client.get('/')

 html = response.content.decode('utf8')
 self.assertTrue(html.startswith('<html>'))
 self.assertIn('<title>To-Do lists</title>', html)
 self.assertTrue(html.strip().endswith('</html>'))

 self.assertTemplateUsed(response, 'home.html')

Instead of manually creating an HttpRequest object and calling the view function
directly, we call self.client.get, passing it the URL we want to test.

We’ll leave the old tests there for now, just to make sure everything is working the
way we think it is.

The “Don’t Test Constants” Rule, and Templates to the Rescue | 47

https://docs.djangoproject.com/en/1.11/topics/testing/tools/#the-test-client

3 Are you unable to move on because you’re wondering what those ch04l0xx things are, next to some of the
code listings? They refer to specific commits in the book’s example repo. It’s all to do with my book’s own tests.
You know, the tests for the tests in the book about testing. They have tests of their own, naturally.

.assertTemplateUsed is the test method that the Django TestCase class pro‐
vides us. It lets us check what template was used to render a response (NB—it will
only work for responses that were retrieved by the test client).

And that test will still pass:

Ran 2 tests in 0.016s

OK

Just because I’m always suspicious of a test I haven’t seen fail, let’s deliberately break it:

lists/tests.py
 self.assertTemplateUsed(response, 'wrong.html')

That way we’ll also learn what its error messages look like:

AssertionError: False is not true : Template 'wrong.html' was not a template
used to render the response. Actual template(s) used: home.html

That’s very helpful! Let’s change the assert back to the right thing. While we’re at it, we
can delete our old assertions. And we can also delete the old test_root_

url_resolves test, because that’s tested implicitly by the Django Test Client. We’ve
combined two long-winded tests into one!

lists/tests.py (ch04l010)
from django.test import TestCase

class HomePageTest(TestCase):

 def test_uses_home_template(self):
 response = self.client.get('/')
 self.assertTemplateUsed(response, 'home.html')

The main point, though, is that instead of testing constants we’re testing our imple‐
mentation. Great!3

48 | Chapter 4: What Are We Doing with All These Tests? (And, Refactoring)

https://github.com/hjwp/book-example/commits/chapter_philosophy_and_refactoring
https://github.com/hjwp/Book-TDD-Web-Dev-Python/tree/master/tests

Why Didn’t We Just Use the Django Test Client All Along?
You may be asking yourself, “Why didn’t we just use the Django Test Client from the
very beginning?” In real life, that’s what I would do. But I wanted to show you the
“manual” way of doing it first for a couple of reasons. Firstly because it allowed me to
introduce concepts one by one, and keep the learning curve as shallow as possible.
Secondly, because you may not always be using Django to build your apps, and testing
tools may not always be available—but calling functions directly and examining their
responses is always possible!

The Django Test Client does also have disadvantages; later in the book we’ll discuss
the difference between fully isolated unit tests and the “integrated” tests that the test
client pushes us towards. But for now, it’s very much the pragmatic choice.

On Refactoring
That was an absolutely trivial example of refactoring. But, as Kent Beck puts it in Test-
Driven Development: By Example, “Am I recommending that you actually work this
way? No. I’m recommending that you be able to work this way”.

In fact, as I was writing this my first instinct was to dive in and change the test first—
make it use the assertTemplateUsed function straight away; delete the three super‐
fluous assertions, leaving just a check of the contents against the expected render; and
then go ahead and make the code change. But notice how that actually would have
left space for me to break things: I could have defined the template as containing any
arbitrary string, instead of the string with the right <html> and <title> tags.

When refactoring, work on either the code or the tests, but not
both at once.

There’s always a tendency to skip ahead a couple of steps, to make a couple of tweaks
to the behaviour while you’re refactoring, but pretty soon you’ve got changes to half a
dozen different files, you’ve totally lost track of where you are, and nothing works any
more. If you don’t want to end up like Refactoring Cat (Figure 4-2), stick to small
steps; keep refactoring and functionality changes entirely separate.

On Refactoring | 49

http://bit.ly/1iXyRt4

Figure 4-2. Refactoring Cat—be sure to look up the full animated GIF (source:
4GIFs.com)

We’ll come across “Refactoring Cat” again during this book, as an
example of what happens when we get carried away and want to
change too many things at once. Think of it as the little cartoon
demon counterpart to the Testing Goat, popping up over your
other shoulder and giving you bad advice…

It’s a good idea to do a commit after any refactoring:

$ git status # see tests.py, views.py, settings.py, + new templates folder
$ git add . # will also add the untracked templates folder
$ git diff --staged # review the changes we're about to commit
$ git commit -m "Refactor home page view to use a template"

A Little More of Our Front Page
In the meantime, our functional test is still failing. Let’s now make an actual code
change to get it passing. Because our HTML is now in a template, we can feel free to
make changes to it, without needing to write any extra unit tests. We wanted an <h1>:

50 | Chapter 4: What Are We Doing with All These Tests? (And, Refactoring)

lists/templates/home.html
<html>
 <head>
 <title>To-Do lists</title>
 </head>
 <body>
 <h1>Your To-Do list</h1>
 </body>
</html>

Let’s see if our functional test likes it a little better:

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: [id="id_new_item"]

OK…

lists/templates/home.html
 [...]
 <h1>Your To-Do list</h1>
 <input id="id_new_item" />
 </body>
 [...]

And now?

AssertionError: '' != 'Enter a to-do item'

We add our placeholder text…

lists/templates/home.html
 <input id="id_new_item" placeholder="Enter a to-do item" />

Which gives:

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: [id="id_list_table"]

So we can go ahead and put the table onto the page. At this stage it’ll just be empty…

lists/templates/home.html
 <input id="id_new_item" placeholder="Enter a to-do item" />
 <table id="id_list_table">
 </table>
</body>

Now what does the FT say?

A Little More of Our Front Page | 51

 File "functional_tests.py", line 43, in
test_can_start_a_list_and_retrieve_it_later
 any(row.text == '1: Buy peacock feathers' for row in rows)
AssertionError: False is not true

Slightly cryptic. We can use the line number to track it down, and it turns out it’s that
any function I was so smug about earlier—or, more precisely, the assertTrue, which
doesn’t have a very explicit failure message. We can pass a custom error message as an
argument to most assertX methods in unittest:

functional_tests.py
 self.assertTrue(
 any(row.text == '1: Buy peacock feathers' for row in rows),
 "New to-do item did not appear in table"
)

If you run the FT again, you should see our message:

AssertionError: False is not true : New to-do item did not appear in table

But now, to get this to pass, we will need to actually process the user’s form submis‐
sion. And that’s a topic for the next chapter.

For now let’s do a commit:

$ git diff
$ git commit -am "Front page HTML now generated from a template"

Thanks to a bit of refactoring, we’ve got our view set up to render a template, we’ve
stopped testing constants, and we’re now well placed to start processing user input.

Recap: The TDD Process
We’ve now seen all the main aspects of the TDD process, in practice:

• Functional tests
• Unit tests
• The unit-test/code cycle
• Refactoring

It’s time for a little recap, and perhaps even some flowcharts. Forgive me, years mis‐
spent as a management consultant have ruined me. On the plus side, it will feature
recursion.

What is the overall TDD process? See Figure 4-3.

52 | Chapter 4: What Are We Doing with All These Tests? (And, Refactoring)

We write a test. We run the test and see it fail. We write some minimal code to get it a
little further. We rerun the test and repeat until it passes. Then, optionally, we might
refactor our code, using our tests to make sure we don’t break anything.

Figure 4-3. Overall TDD process

But how does this apply when we have functional tests and unit tests? Well, you can
think of the functional test as being a high-level view of the cycle, where “writing the
code” to get the functional tests to pass actually involves using another, smaller TDD
cycle which uses unit tests. See Figure 4-4.

We write a functional test and see it fail. Then, the process of “writing code” to get it
to pass is a mini-TDD cycle of its own: we write one or more unit tests, and go into
the unit-test/code cycle until the unit tests pass. Then, we go back to our FT to check
that it gets a little further, and we can write a bit more of our application—using more
unit tests, and so on.

What about refactoring, in the context of functional tests? Well, that means we use
the functional test to check that we’ve preserved the behaviour of our application, but
we can change or add and remove unit tests, and use a unit test cycle to actually
change the implementation.

The functional tests are the ultimate judge of whether your application works or not.
The unit tests are a tool to help you along the way.

This way of looking at things is sometimes called “Double-Loop TDD”. One of my
eminent tech reviewers, Emily Bache, wrote a blog post on the topic, which I recom‐
mend for a different perspective.

Recap: The TDD Process | 53

http://bit.ly/1iXzoLR

Figure 4-4. The TDD process with functional and unit tests

We’ll explore all of the different parts of this workflow in more detail over the coming
chapters.

How to “Check” Your Code, or Skip Ahead (If You Must)
All of the code examples I’ve used in the book are available in my repo on GitHub. So,
if you ever want to compare your code against mine, you can take a look at it there.

Each chapter has its own branch which is named after its short name. The one for this
chapter is here, for example. It is a snapshot of the code as it should be at the end of
the chapter.

You can find a full list of them in Appendix J, as well as instructions on how to down‐
load them or use Git to compare your code to mine.

54 | Chapter 4: What Are We Doing with All These Tests? (And, Refactoring)

https://github.com/hjwp/book-example/
https://github.com/hjwp/book-example/tree/chapter_philosophy_and_refactoring

CHAPTER 5

Saving User Input: Testing the Database

We want to take the to-do item input from the user and send it to the server, so that
we can save it somehow and display it back to her later.

As I started writing this chapter, I immediately skipped to what I thought was the
right design: multiple models for lists and list items, a bunch of different URLs for
adding new lists and items, three new view functions, and about half a dozen new
unit tests for all of the above. But I stopped myself. Although I was pretty sure I was
smart enough to handle all those problems at once, the point of TDD is to allow you
to do one thing at a time, when you need to. So I decided to be deliberately short-
sighted, and at any given moment only do what was necessary to get the functional
tests a little further.

It’s a demonstration of how TDD can support an iterative style of development—it
may not be the quickest route, but you do get there in the end. There’s a neat side
benefit, which is that it allows me to introduce new concepts like models, dealing
with POST requests, Django template tags, and so on one at a time rather than having
to dump them on you all at once.

None of this says that you shouldn’t try to think ahead, and be clever. In the next
chapter we’ll use a bit more design and up-front thinking, and show how that fits in
with TDD. But for now let’s plough on mindlessly and just do what the tests tell us to.

Wiring Up Our Form to Send a POST Request
At the end of the last chapter, the tests were telling us we weren’t able to save the
user’s input. For now, we’ll use a standard HTML POST request. A little boring, but
also nice and easy to deliver—we can use all sorts of sexy HTML5 and JavaScript later
in the book.

55

To get our browser to send a POST request, we need to do two things:

1. Give the <input> element a name= attribute.
2. Wrap it in a <form> tag with method="POST".

Let’s adjust our template at lists/templates/home.html:

lists/templates/home.html
<h1>Your To-Do list</h1>
<form method="POST">
 <input name="item_text" id="id_new_item" placeholder="Enter a to-do item" />
</form>

<table id="id_list_table">

Now, running our FTs gives us a slightly cryptic, unexpected error:

$ python functional_tests.py
[...]
Traceback (most recent call last):
 File "functional_tests.py", line 40, in
test_can_start_a_list_and_retrieve_it_later
 table = self.browser.find_element_by_id('id_list_table')
[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: [id="id_list_table"]

When a functional test fails with an unexpected failure, there are several things we
can do to debug it:

• Add print statements, to show, for example, what the current page text is.
• Improve the error message to show more info about the current state.
• Manually visit the site yourself.
• Use time.sleep to pause the test during execution.

We’ll look at all of these over the course of this book, but the time.sleep option is
one I find myself using very often. Let’s try it now.

Conveniently, we’ve already got a sleep just before the error occurs; let’s just extend it
a little:

56 | Chapter 5: Saving User Input: Testing the Database

functional_tests.py
 # When she hits enter, the page updates, and now the page lists
 # "1: Buy peacock feathers" as an item in a to-do list table
 inputbox.send_keys(Keys.ENTER)
 time.sleep(10)

 table = self.browser.find_element_by_id('id_list_table')

Depending on how fast Selenium runs on your PC, you may have caught a glimpse of
this already, but when we run the functional tests again, we’ve got time to see what’s
going on: you should see a page that looks like Figure 5-1, with lots of Django debug
information.

Figure 5-1. Django DEBUG page showing CSRF error

Security: Surprisingly Fun!
If you’ve never heard of a Cross-Site Request Forgery exploit, why not look it up now?
Like all security exploits, it’s entertaining to read about, being an ingenious use of a
system in unexpected ways…

When I went back to university to get my Computer Science degree, I signed up for
the Security module out of a sense of duty: Oh well, it’ll probably be very dry and bor‐
ing, but I suppose I’d better take it. It turned out to be one of the most fascinating mod‐

Wiring Up Our Form to Send a POST Request | 57

ules of the whole course—absolutely full of the joy of hacking, of the particular
mindset it takes to think about how systems can be used in unintended ways.

I want to recommend the textbook for my course, Ross Anderson’s Security Engineer‐
ing. It’s quite light on pure crypto, but it’s absolutely full of interesting discussions of
unexpected topics like lock picking, forging bank notes, inkjet printer cartridge
economics, and spoofing South African Air Force jets with replay attacks. It’s a huge
tome, about three inches thick, and I promise you it’s an absolute page-turner.

Django’s CSRF protection involves placing a little auto-generated token into each
generated form, to be able to identify POST requests as having come from the origi‐
nal site. So far our template has been pure HTML, and in this step we make the first
use of Django’s template magic. To add the CSRF token we use a template tag, which
has the curly-bracket/percent syntax, {% ... %}—famous for being the world’s most
annoying two-key touch-typing combination:

lists/templates/home.html
<form method="POST">
 <input name="item_text" id="id_new_item" placeholder="Enter a to-do item" />
 {% csrf_token %}
</form>

Django will substitute that during rendering with an <input type="hidden"> con‐
taining the CSRF token. Rerunning the functional test will now give us an expected
failure:

AssertionError: False is not true : New to-do item did not appear in table

Since our long time.sleep is still there, the test will pause on the final screen, show‐
ing us that the new item text disappears after the form is submitted, and the page
refreshes to show an empty form again. That’s because we haven’t wired up our server
to deal with the POST request yet—it just ignores it and displays the normal home
page.

We can put our normal short time.sleep back now though:

functional_tests.py
 # "1: Buy peacock feathers" as an item in a to-do list table
 inputbox.send_keys(Keys.ENTER)
 time.sleep(1)

 table = self.browser.find_element_by_id('id_list_table')

58 | Chapter 5: Saving User Input: Testing the Database

Processing a POST Request on the Server
Because we haven’t specified an action= attribute in the form, it is submitting back to
the same URL it was rendered from by default (i.e., /), which is dealt with by our
home_page function. Let’s adapt the view to be able to deal with a POST request.

That means a new unit test for the home_page view. Open up lists/tests.py, and add a
new method to HomePageTest:

lists/tests.py (ch05l005)
def test_uses_home_template(self):
 response = self.client.get('/')
 self.assertTemplateUsed(response, 'home.html')

def test_can_save_a_POST_request(self):
 response = self.client.post('/', data={'item_text': 'A new list item'})
 self.assertIn('A new list item', response.content.decode())

To do a POST, we call self.client.post, and as you can see it takes a data argument
which contains the form data we want to send. Then we check that the text from our
POST request ends up in the rendered HTML. That gives us our expected fail:

$ python manage.py test
[...]
AssertionError: 'A new list item' not found in '<html>\n <head>\n
<title>To-Do lists</title>\n </head>\n <body>\n <h1>Your To-Do
list</h1>\n <form method="POST">\n <input name="item_text"
[...]
</body>\n</html>\n'

We can get the test to pass by adding an if and providing a different code path for
POST requests. In typical TDD style, we start with a deliberately silly return value:

lists/views.py
from django.http import HttpResponse
from django.shortcuts import render

def home_page(request):
 if request.method == 'POST':
 return HttpResponse(request.POST['item_text'])
 return render(request, 'home.html')

That gets our unit tests passing, but it’s not really what we want. What we really want
to do is add the POST submission to the table in the home page template.

Processing a POST Request on the Server | 59

Passing Python Variables to Be Rendered in the Template
We’ve already had a hint of it, and now it’s time to start to get to know the real power
of the Django template syntax, which is to pass variables from our Python view code
into HTML templates.

Let’s start by seeing how the template syntax lets us include a Python object in our
template. The notation is {{ ... }}, which displays the object as a string:

lists/templates/home.html
<body>
 <h1>Your To-Do list</h1>
 <form method="POST">
 <input name="item_text" id="id_new_item" placeholder="Enter a to-do item" />
 {% csrf_token %}
 </form>

 <table id="id_list_table">
 <tr><td>{{ new_item_text }}</td></tr>
 </table>
</body>

Let’s adjust our unit test so that it checks whether we are still using the template:

lists/tests.py
 def test_can_save_a_POST_request(self):
 response = self.client.post('/', data={'item_text': 'A new list item'})
 self.assertIn('A new list item', response.content.decode())
 self.assertTemplateUsed(response, 'home.html')

And that will fail as expected:

AssertionError: No templates used to render the response

Good, our deliberately silly return value is now no longer fooling our tests, so we are
allowed to rewrite our view, and tell it to pass the POST parameter to the template.
The render function takes, as its third argument, a dictionary which maps template
variable names to their values:

lists/views.py (ch05l009)
def home_page(request):
 return render(request, 'home.html', {
 'new_item_text': request.POST['item_text'],
 })

60 | Chapter 5: Saving User Input: Testing the Database

Running the unit tests again:

ERROR: test_uses_home_template (lists.tests.HomePageTest)
[...]
 File "/.../superlists/lists/views.py", line 5, in home_page
 'new_item_text': request.POST['item_text'],
[...]
django.utils.datastructures.MultiValueDictKeyError: "'item_text'"

An unexpected failure.

If you remember the rules for reading tracebacks, you’ll spot that it’s actually a failure
in a different test. We got the actual test we were working on to pass, but the unit tests
have picked up an unexpected consequence, a regression: we broke the code path
where there is no POST request.

This is the whole point of having tests. Yes, we could have predicted this would hap‐
pen, but imagine if we’d been having a bad day or weren’t paying attention: our tests
have just saved us from accidentally breaking our application, and, because we’re
using TDD, we found out immediately. We didn’t have to wait for a QA team, or
switch to a web browser and click through our site manually, and we can get on with
fixing it straight away. Here’s how:

lists/views.py
def home_page(request):
 return render(request, 'home.html', {
 'new_item_text': request.POST.get('item_text', ''),
 })

Look up dict.get if you’re not sure what’s going on there.

The unit tests should now pass. Let’s see what the functional tests say:

AssertionError: False is not true : New to-do item did not appear in table

If your functional tests show you a different error at this point, or
at any point in this chapter, complaining about a StaleElementRe
ferenceException, you may need to increase the time.sleep
explicit wait—try 2 or 3 seconds instead of 1; then read on to the
next chapter for a more robust solution.

Hmm, not a wonderfully helpful error. Let’s use another of our FT debugging techni‐
ques: improving the error message. This is probably the most constructive technique,
because those improved error messages stay around to help debug any future errors:

Passing Python Variables to Be Rendered in the Template | 61

http://docs.python.org/3/library/stdtypes.html#dict.get

functional_tests.py (ch05l011)
self.assertTrue(
 any(row.text == '1: Buy peacock feathers' for row in rows),
 f"New to-do item did not appear in table. Contents were:\n{table.text}"
)

If you’ve not seen this syntax before, it’s the new Python “f-string” syntax (proba‐
bly the most exciting new feature from Python 3.6). You just prepend a string
with an f, and then you can use the curly-bracket syntax to insert local variables.
There’s more info in the Python 3.6 release notes.

That gives us a more helpful error message:

AssertionError: False is not true : New to-do item did not appear in table.
Contents were:
Buy peacock feathers

You know what could be even better than that? Making that assertion a bit less clever.
As you may remember, I was very pleased with myself for using the any function, but
one of my Early Release readers (thanks, Jason!) suggested a much simpler imple‐
mentation. We can replace all four lines of the assertTrue with a single assertIn:

functional_tests.py (ch05l012)
 self.assertIn('1: Buy peacock feathers', [row.text for row in rows])

Much better. You should always be very worried whenever you think you’re being
clever, because what you’re probably being is overcomplicated. And we get the error
message for free:

 self.assertIn('1: Buy peacock feathers', [row.text for row in rows])
AssertionError: '1: Buy peacock feathers' not found in ['Buy peacock feathers']

Consider me suitably chastened.

If, instead, your FT seems to be saying the table is empty (“not
found in []”), check your <input> tag—does it have the correct
name="item_text" attribute? Without it, the user’s input won’t be
associated with the right key in request.POST.

The point is that the FT wants us to enumerate list items with a “1:” at the beginning
of the first list item. The fastest way to get that to pass is with a quick “cheating”
change to the template:

lists/templates/home.html
 <tr><td>1: {{ new_item_text }}</td></tr>

62 | Chapter 5: Saving User Input: Testing the Database

www.allitebooks.com

https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
http://www.allitebooks.org

Red/Green/Refactor and Triangulation
The unit-test/code cycle is sometimes taught as Red, Green, Refactor:

• Start by writing a unit test which fails (Red).
• Write the simplest possible code to get it to pass (Green), even if that means

cheating.
• Refactor to get to better code that makes more sense.

So what do we do during the Refactor stage? What justifies moving from an imple‐
mentation where we “cheat” to one we’re happy with?

One methodology is eliminate duplication: if your test uses a magic constant (like the
“1:” in front of our list item), and your application code also uses it, that counts as
duplication, so it justifies refactoring. Removing the magic constant from the applica‐
tion code usually means you have to stop cheating.

I find that leaves things a little too vague, so I usually like to use a second technique,
which is called triangulation: if your tests let you get away with writing “cheating”
code that you’re not happy with, like returning a magic constant, write another test
that forces you to write some better code. That’s what we’re doing when we extend the
FT to check that we get a “2:” when inputting a second list item.

Now we get to the self.fail('Finish the test!'). If we extend our FT to check
for adding a second item to the table (copy and paste is our friend), we begin to see
that our first cut solution really isn’t going to, um, cut it:

Passing Python Variables to Be Rendered in the Template | 63

1 If you’ve not come across the concept, a “code smell” is something about a piece of code that makes you want
to rewrite it. Jeff Atwood has a compilation on his blog Coding Horror. The more experience you gain as a
programmer, the more fine-tuned your nose becomes to code smells…

functional_tests.py
 # There is still a text box inviting her to add another item. She
 # enters "Use peacock feathers to make a fly" (Edith is very
 # methodical)
 inputbox = self.browser.find_element_by_id('id_new_item')
 inputbox.send_keys('Use peacock feathers to make a fly')
 inputbox.send_keys(Keys.ENTER)
 time.sleep(1)

 # The page updates again, and now shows both items on her list
 table = self.browser.find_element_by_id('id_list_table')
 rows = table.find_elements_by_tag_name('tr')
 self.assertIn('1: Buy peacock feathers', [row.text for row in rows])
 self.assertIn(
 '2: Use peacock feathers to make a fly',
 [row.text for row in rows]
)

 # Edith wonders whether the site will remember her list. Then she sees
 # that the site has generated a unique URL for her -- there is some
 # explanatory text to that effect.
 self.fail('Finish the test!')

 # She visits that URL - her to-do list is still there.

Sure enough, the functional tests return an error:

AssertionError: '1: Buy peacock feathers' not found in ['1: Use peacock
feathers to make a fly']

Three Strikes and Refactor
Before we go further—we’ve got a bad code smell1 in this FT. We have three almost
identical code blocks checking for new items in the list table. There’s a principle called
Don’t Repeat Yourself (DRY), which we like to apply by following the mantra three
strikes and refactor. You can copy and paste code once, and it may be premature to try
to remove the duplication it causes, but once you get three occurrences, it’s time to
remove duplication.

We start by committing what we have so far. Even though we know our site has a
major flaw—it can only handle one list item—it’s still further ahead than it was. We
may have to rewrite it all, and we may not, but the rule is that before you do any
refactoring, always do a commit:

64 | Chapter 5: Saving User Input: Testing the Database

http://www.codinghorror.com/blog/2006/05/code-smells.html

$ git diff
should show changes to functional_tests.py, home.html,
tests.py and views.py
$ git commit -a

Back to our functional test refactor: we could use an inline function, but that upsets
the flow of the test slightly. Let’s use a helper method—remember, only methods that
begin with test_ will get run as tests, so you can use other methods for your own
purposes:

functional_tests.py
 def tearDown(self):
 self.browser.quit()

 def check_for_row_in_list_table(self, row_text):
 table = self.browser.find_element_by_id('id_list_table')
 rows = table.find_elements_by_tag_name('tr')
 self.assertIn(row_text, [row.text for row in rows])

 def test_can_start_a_list_and_retrieve_it_later(self):
 [...]

I like to put helper methods near the top of the class, between the tearDown and the
first test. Let’s use it in the FT:

functional_tests.py
 # When she hits enter, the page updates, and now the page lists
 # "1: Buy peacock feathers" as an item in a to-do list table
 inputbox.send_keys(Keys.ENTER)
 time.sleep(1)
 self.check_for_row_in_list_table('1: Buy peacock feathers')

 # There is still a text box inviting her to add another item. She
 # enters "Use peacock feathers to make a fly" (Edith is very
 # methodical)
 inputbox = self.browser.find_element_by_id('id_new_item')
 inputbox.send_keys('Use peacock feathers to make a fly')
 inputbox.send_keys(Keys.ENTER)
 time.sleep(1)

 # The page updates again, and now shows both items on her list
 self.check_for_row_in_list_table('1: Buy peacock feathers')
 self.check_for_row_in_list_table('2: Use peacock feathers to make a fly')

 # Edith wonders whether the site will remember her list. Then she sees
 [...]

Three Strikes and Refactor | 65

We run the FT again to check that it still behaves in the same way…

AssertionError: '1: Buy peacock feathers' not found in ['1: Use peacock
feathers to make a fly']

Good. Now we can commit the FT refactor as its own small, atomic change:

$ git diff # check the changes to functional_tests.py
$ git commit -a

And back to work. If we’re ever going to handle more than one list item, we’re going
to need some kind of persistence, and databases are a stalwart solution in this area.

The Django ORM and Our First Model
An Object-Relational Mapper (ORM) is a layer of abstraction for data stored in a data‐
base with tables, rows, and columns. It lets us work with databases using familiar
object-oriented metaphors which work well with code. Classes map to database
tables, attributes map to columns, and an individual instance of the class represents a
row of data in the database.

Django comes with an excellent ORM, and writing a unit test that uses it is actually
an excellent way of learning it, since it exercises code by specifying how we want it to
work.

Let’s create a new class in lists/tests.py:

lists/tests.py
from lists.models import Item
[...]

class ItemModelTest(TestCase):

 def test_saving_and_retrieving_items(self):
 first_item = Item()
 first_item.text = 'The first (ever) list item'
 first_item.save()

 second_item = Item()
 second_item.text = 'Item the second'
 second_item.save()

 saved_items = Item.objects.all()
 self.assertEqual(saved_items.count(), 2)

 first_saved_item = saved_items[0]
 second_saved_item = saved_items[1]
 self.assertEqual(first_saved_item.text, 'The first (ever) list item')
 self.assertEqual(second_saved_item.text, 'Item the second')

66 | Chapter 5: Saving User Input: Testing the Database

You can see that creating a new record in the database is a relatively simple matter of
creating an object, assigning some attributes, and calling a .save() function. Django
also gives us an API for querying the database via a class attribute, .objects, and we
use the simplest possible query, .all(), which retrieves all the records for that table.
The results are returned as a list-like object called a QuerySet, from which we can
extract individual objects, and also call further functions, like .count(). We then
check the objects as saved to the database, to check whether the right information was
saved.

Django’s ORM has many other helpful and intuitive features; this might be a good
time to skim through the Django tutorial, which has an excellent intro to them.

I’ve written this unit test in a very verbose style, as a way of intro‐
ducing the Django ORM. I wouldn’t recommend writing your
model tests like this “in real life”. We’ll actually rewrite this test to
be much more concise later on, in Chapter 15.

Terminology 2: Unit Tests Versus Integrated Tests, and the Database
Purists will tell you that a “real” unit test should never touch the database, and that
the test I’ve just written should be more properly called an integrated test, because it
doesn’t only test our code, but also relies on an external system—that is, a database.

It’s OK to ignore this distinction for now—we have two types of test, the high-level
functional tests which test the application from the user’s point of view, and these
lower-level tests which test it from the programmer’s point of view.

We’ll come back to this and talk about unit tests and integrated tests in Chapter 23,
towards the end of the book.

Let’s try running the unit test. Here comes another unit-test/code cycle:

ImportError: cannot import name 'Item'

Very well, let’s give it something to import from lists/models.py. We’re feeling confi‐
dent so we’ll skip the Item = None step, and go straight to creating a class:

lists/models.py
from django.db import models

class Item(object):
 pass

That gets our test as far as:

The Django ORM and Our First Model | 67

https://docs.djangoproject.com/en/1.11/intro/tutorial01/

2 Are you wondering about when we’re going to run “migrate” as well as “makemigrations”? Read on; that’s
coming up later in the chapter.

 first_item.save()
AttributeError: 'Item' object has no attribute 'save'

To give our Item class a save method, and to make it into a real Django model, we
make it inherit from the Model class:

lists/models.py
from django.db import models

class Item(models.Model):
 pass

Our First Database Migration
The next thing that happens is a database error:

django.db.utils.OperationalError: no such table: lists_item

In Django, the ORM’s job is to model the database, but there’s a second system that’s
in charge of actually building the database called migrations. Its job is to give you the
ability to add and remove tables and columns, based on changes you make to your
models.py files.

One way to think of it is as a version control system for your database. As we’ll see
later, it comes in particularly useful when we need to upgrade a database that’s
deployed on a live server.

For now all we need to know is how to build our first database migration, which we
do using the makemigrations command:2

$ python manage.py makemigrations
Migrations for 'lists':
 lists/migrations/0001_initial.py
 - Create model Item
$ ls lists/migrations
0001_initial.py __init__.py __pycache__

If you’re curious, you can go and take a look in the migrations file, and you’ll see it’s a
representation of our additions to models.py.

In the meantime, we should find our tests get a little further.

The Test Gets Surprisingly Far
The test actually gets surprisingly far:

68 | Chapter 5: Saving User Input: Testing the Database

$ python manage.py test lists
[...]
 self.assertEqual(first_saved_item.text, 'The first (ever) list item')
AttributeError: 'Item' object has no attribute 'text'

That’s a full eight lines later than the last failure—we’ve been all the way through sav‐
ing the two Items, and we’ve checked that they’re saved in the database, but Django
just doesn’t seem to have remembered the .text attribute.

Incidentally, if you’re new to Python, you might have been surprised we were allowed
to assign the .text attribute at all. In a language like Java, you would probably get a
compilation error. Python is more relaxed.

Classes that inherit from models.Model map to tables in the database. By default they
get an auto-generated id attribute, which will be a primary key column in the data‐
base, but you have to define any other columns you want explicitly; here’s how we set
up a text field:

lists/models.py
class Item(models.Model):
 text = models.TextField()

Django has many other field types, like IntegerField, CharField, DateField, and so
on. I’ve chosen TextField rather than CharField because the latter requires a length
restriction, which seems arbitrary at this point. You can read more on field types in
the Django tutorial and in the documentation.

A New Field Means a New Migration
Running the tests gives us another database error:

django.db.utils.OperationalError: no such column: lists_item.text

It’s because we’ve added another new field to our database, which means we need to
create another migration. Nice of our tests to let us know!

Let’s try it:

$ python manage.py makemigrations
You are trying to add a non-nullable field 'text' to item without a default; we
can't do that (the database needs something to populate existing rows).
Please select a fix:
 1) Provide a one-off default now (will be set on all existing rows with a null
value for this column)
 2) Quit, and let me add a default in models.py
Select an option:2

Ah. It won’t let us add the column without a default value. Let’s pick option 2 and set
a default in models.py. I think you’ll find the syntax reasonably self-explanatory:

The Django ORM and Our First Model | 69

http://bit.ly/1slDAGH
https://docs.djangoproject.com/en/1.11/ref/models/fields/

lists/models.py
class Item(models.Model):
 text = models.TextField(default='')

And now the migration should complete:

$ python manage.py makemigrations
Migrations for 'lists':
 lists/migrations/0002_item_text.py
 - Add field text to item

So, two new lines in models.py, two database migrations, and as a result, the .text
attribute on our model objects is now recognised as a special attribute, so it does get
saved to the database, and the tests pass…

$ python manage.py test lists
[...]

Ran 3 tests in 0.010s
OK

So let’s do a commit for our first ever model!

$ git status # see tests.py, models.py, and 2 untracked migrations
$ git diff # review changes to tests.py and models.py
$ git add lists
$ git commit -m "Model for list Items and associated migration"

Saving the POST to the Database
Let’s adjust the test for our home page POST request, and say we want the view to
save a new item to the database instead of just passing it through to its response. We
can do that by adding three new lines to the existing test called test_can_save_
a_POST_request:

lists/tests.py
def test_can_save_a_POST_request(self):
 response = self.client.post('/', data={'item_text': 'A new list item'})

 self.assertEqual(Item.objects.count(), 1)
 new_item = Item.objects.first()
 self.assertEqual(new_item.text, 'A new list item')

 self.assertIn('A new list item', response.content.decode())
 self.assertTemplateUsed(response, 'home.html')

We check that one new Item has been saved to the database. objects.count() is
a shorthand for objects.all().count().

70 | Chapter 5: Saving User Input: Testing the Database

objects.first() is the same as doing objects.all()[0].

We check that the item’s text is correct.

This test is getting a little long-winded. It seems to be testing lots of different things.
That’s another code smell—a long unit test either needs to be broken into two, or it
may be an indication that the thing you’re testing is too complicated. Let’s add that to
a little to-do list of our own, perhaps on a piece of scrap paper:

• Code smell: POST test is too long?

Writing it down on a scratchpad like this reassures us that we won’t forget, so we are
comfortable getting back to what we were working on. We rerun the tests and see an
expected failure:

 self.assertEqual(Item.objects.count(), 1)
AssertionError: 0 != 1

Let’s adjust our view:

lists/views.py
from django.shortcuts import render
from lists.models import Item

def home_page(request):
 item = Item()
 item.text = request.POST.get('item_text', '')
 item.save()

 return render(request, 'home.html', {
 'new_item_text': request.POST.get('item_text', ''),
 })

I’ve coded a very naive solution and you can probably spot a very obvious problem,
which is that we’re going to be saving empty items with every request to the home
page. Let’s add that to our list of things to fix later. You know, along with the painfully
obvious fact that we currently have no way at all of having different lists for different
people. That we’ll keep ignoring for now.

Saving the POST to the Database | 71

Remember, I’m not saying you should always ignore glaring problems like this in
“real life”. Whenever we spot problems in advance, there’s a judgement call to make
over whether to stop what you’re doing and start again, or leave them until later.
Sometimes finishing off what you’re doing is still worth it, and sometimes the prob‐
lem may be so major as to warrant a stop and rethink.

Let’s see how the unit tests get on…they pass! Good. We can do a bit of refactoring:

lists/views.py
 return render(request, 'home.html', {
 'new_item_text': item.text
 })

Let’s have a little look at our scratchpad. I’ve added a couple of the other things that
are on our mind:

• Don’t save blank items for every request
• Code smell: POST test is too long?
• Display multiple items in the table
• Support more than one list!

Let’s start with the first one. We could tack on an assertion to an existing test, but it’s
best to keep unit tests to testing one thing at a time, so let’s add a new one:

lists/tests.py
class HomePageTest(TestCase):
 [...]

 def test_only_saves_items_when_necessary(self):
 self.client.get('/')
 self.assertEqual(Item.objects.count(), 0)

That gives us a 1 != 0 failure. Let’s fix it. Watch out; although it’s quite a small change
to the logic of the view, there are quite a few little tweaks to the implementation in
code:

72 | Chapter 5: Saving User Input: Testing the Database

lists/views.py
def home_page(request):
 if request.method == 'POST':
 new_item_text = request.POST['item_text']
 Item.objects.create(text=new_item_text)
 else:
 new_item_text = ''

 return render(request, 'home.html', {
 'new_item_text': new_item_text,
 })

We use a variable called new_item_text, which will either hold the POST con‐
tents, or the empty string.

.objects.create is a neat shorthand for creating a new Item, without needing to
call .save().

And that gets the test passing:

Ran 4 tests in 0.010s

OK

Redirect After a POST
But, yuck, that whole new_item_text = '' dance is making me pretty unhappy.
Thankfully we now have an opportunity to fix it. A view function has two jobs: pro‐
cessing user input, and returning an appropriate response. We’ve taken care of the
first part, which is saving the users’ input to the database, so now let’s work on the
second part.

Always redirect after a POST, they say, so let’s do that. Once again we change our unit
test for saving a POST request to say that, instead of rendering a response with the
item in it, it should redirect back to the home page:

lists/tests.py
 def test_can_save_a_POST_request(self):
 response = self.client.post('/', data={'item_text': 'A new list item'})

 self.assertEqual(Item.objects.count(), 1)
 new_item = Item.objects.first()
 self.assertEqual(new_item.text, 'A new list item')

 self.assertEqual(response.status_code, 302)
 self.assertEqual(response['location'], '/')

Redirect After a POST | 73

https://en.wikipedia.org/wiki/Post/Redirect/Get

We no longer expect a response with a .content rendered by a template, so we lose
the assertions that look at that. Instead, the response will represent an HTTP redirect,
which should have status code 302, and points the browser towards a new location.

That gives us the error 200 != 302. We can now tidy up our view substantially:

lists/views.py (ch05l028)
from django.shortcuts import redirect, render
from lists.models import Item

def home_page(request):
 if request.method == 'POST':
 Item.objects.create(text=request.POST['item_text'])
 return redirect('/')

 return render(request, 'home.html')

And the tests should now pass:

Ran 4 tests in 0.010s

OK

Better Unit Testing Practice: Each Test Should Test One Thing
Our view now does a redirect after a POST, which is good practice, and we’ve short‐
ened the unit test somewhat, but we can still do better.

Good unit testing practice says that each test should only test one thing. The reason is
that it makes it easier to track down bugs. Having multiple assertions in a test means
that, if the test fails on an early assertion, you don’t know what the status of the later
assertions is. As we’ll see in the next chapter, if we ever break this view accidentally,
we want to know whether it’s the saving of objects that’s broken, or the type of
response.

You may not always write perfect unit tests with single assertions on your first go, but
now feels like a good time to separate out our concerns:

74 | Chapter 5: Saving User Input: Testing the Database

lists/tests.py
 def test_can_save_a_POST_request(self):
 self.client.post('/', data={'item_text': 'A new list item'})

 self.assertEqual(Item.objects.count(), 1)
 new_item = Item.objects.first()
 self.assertEqual(new_item.text, 'A new list item')

 def test_redirects_after_POST(self):
 response = self.client.post('/', data={'item_text': 'A new list item'})
 self.assertEqual(response.status_code, 302)
 self.assertEqual(response['location'], '/')

And we should now see five tests pass instead of four:

Ran 5 tests in 0.010s

OK

Rendering Items in the Template
Much better! Back to our to-do list:

• Don’t save blank items for every request
• Code smell: POST test is too long?
• Display multiple items in the table
• Support more than one list!

Crossing things off the list is almost as satisfying as seeing tests pass!

The third item is the last of the “easy” ones. Let’s have a new unit test that checks that
the template can also display multiple list items:

Rendering Items in the Template | 75

lists/tests.py
class HomePageTest(TestCase):
 [...]

 def test_displays_all_list_items(self):
 Item.objects.create(text='itemey 1')
 Item.objects.create(text='itemey 2')

 response = self.client.get('/')

 self.assertIn('itemey 1', response.content.decode())
 self.assertIn('itemey 2', response.content.decode())

Are you wondering about the line spacing in the test? I’m grouping
together two lines at the beginning which set up the test, one line in
the middle which actually calls the code under test, and the asser‐
tions at the end. This isn’t obligatory, but it does help see the struc‐
ture of the test. Setup, Exercise, Assert is the typical structure for a
unit test.

That fails as expected:

AssertionError: 'itemey 1' not found in '<html>\n <head>\n [...]

The Django template syntax has a tag for iterating through lists, {% for .. in ..
%}; we can use it like this:

lists/templates/home.html
<table id="id_list_table">
 {% for item in items %}
 <tr><td>1: {{ item.text }}</td></tr>
 {% endfor %}
</table>

This is one of the major strengths of the templating system. Now the template will
render with multiple <tr> rows, one for each item in the variable items. Pretty neat!
I’ll introduce a few more bits of Django template magic as we go, but at some point
you’ll want to go and read up on the rest of them in the Django docs.

Just changing the template doesn’t get our tests to green; we need to actually pass the
items to it from our home page view:

76 | Chapter 5: Saving User Input: Testing the Database

https://docs.djangoproject.com/en/1.11/topics/templates/

lists/views.py
def home_page(request):
 if request.method == 'POST':
 Item.objects.create(text=request.POST['item_text'])
 return redirect('/')

 items = Item.objects.all()
 return render(request, 'home.html', {'items': items})

That does get the unit tests to pass…moment of truth, will the functional test pass?

$ python functional_tests.py
[...]
AssertionError: 'To-Do' not found in 'OperationalError at /'

Oops, apparently not. Let’s use another functional test debugging technique, and it’s
one of the most straightforward: manually visiting the site! Open up http://localhost:
8000 in your web browser, and you’ll see a Django debug page saying “no such table:
lists_item”, as in Figure 5-2.

Figure 5-2. Another helpful debug message

Rendering Items in the Template | 77

Creating Our Production Database with migrate
Another helpful error message from Django, which is basically complaining that we
haven’t set up the database properly. How come everything worked fine in the unit
tests, I hear you ask? Because Django creates a special test database for unit tests; it’s
one of the magical things that Django’s TestCase does.

To set up our “real” database, we need to create it. SQLite databases are just a file on
disk, and you’ll see in settings.py that Django, by default, will just put it in a file called
db.sqlite3 in the base project directory:

superlists/settings.py
[...]
Database
https://docs.djangoproject.com/en/1.11/ref/settings/#databases

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
 }
}

We’ve told Django everything it needs to create the database, first via models.py and
then when we created the migrations file. To actually apply it to creating a real data‐
base, we use another Django Swiss Army knife manage.py command, migrate:

$ python manage.py migrate
Operations to perform:
 Apply all migrations: admin, auth, contenttypes, lists, sessions
Running migrations:
 Applying contenttypes.0001_initial... OK
 Applying auth.0001_initial... OK
 Applying admin.0001_initial... OK
 Applying admin.0002_logentry_remove_auto_add... OK
 Applying contenttypes.0002_remove_content_type_name... OK
 Applying auth.0002_alter_permission_name_max_length... OK
 Applying auth.0003_alter_user_email_max_length... OK
 Applying auth.0004_alter_user_username_opts... OK
 Applying auth.0005_alter_user_last_login_null... OK
 Applying auth.0006_require_contenttypes_0002... OK
 Applying auth.0007_alter_validators_add_error_messages... OK
 Applying auth.0008_alter_user_username_max_length... OK
 Applying lists.0001_initial... OK
 Applying lists.0002_item_text... OK
 Applying sessions.0001_initial... OK

78 | Chapter 5: Saving User Input: Testing the Database

3 If you get a different error at this point, try restarting your dev server—it may have gotten confused by the
changes to the database happening under its feet.

Now we can refresh the page on localhost, see that our error is gone, and try running
the functional tests again:3

AssertionError: '2: Use peacock feathers to make a fly' not found in ['1: Buy
peacock feathers', '1: Use peacock feathers to make a fly']

So close! We just need to get our list numbering right. Another awesome Django tem‐
plate tag, forloop.counter, will help here:

lists/templates/home.html
 {% for item in items %}
 <tr><td>{{ forloop.counter }}: {{ item.text }}</td></tr>
 {% endfor %}

If you try it again, you should now see the FT get to the end:

 self.fail('Finish the test!')
AssertionError: Finish the test!

But, as it’s running, you may notice something is amiss, like in Figure 5-3.

Figure 5-3. There are list items left over from the last run of the test

Creating Our Production Database with migrate | 79

Oh dear. It looks like previous runs of the test are leaving stuff lying around in our
database. In fact, if you run the tests again, you’ll see it gets worse:

1: Buy peacock feathers
2: Use peacock feathers to make a fly
3: Buy peacock feathers
4: Use peacock feathers to make a fly
5: Buy peacock feathers
6: Use peacock feathers to make a fly

Grrr. We’re so close! We’re going to need some kind of automated way of tidying up
after ourselves. For now, if you feel like it, you can do it manually, by deleting the
database and re-creating it fresh with migrate:

$ rm db.sqlite3
$ python manage.py migrate --noinput

And then reassure yourself that the FT still passes.

Apart from that little bug in our functional testing, we’ve got some code that’s more
or less working. Let’s do a commit.

Start by doing a git status and a git diff, and you should see changes to
home.html, tests.py, and views.py. Let’s add them:

$ git add lists
$ git commit -m "Redirect after POST, and show all items in template"

You might find it useful to add markers for the end of each chapter,
like git tag end-of-chapter-05.

Recap
Where are we?

• We’ve got a form set up to add new items to the list using POST.
• We’ve set up a simple model in the database to save list items.
• We’ve learned about creating database migrations, both for the test database

(where they’re applying automatically) and for the real database (where we have
to apply them manually).

• We’ve used our first couple of Django template tags: {% csrf_token %} and the
{% for ... endfor %} loop.

• And we’ve used at least three different FT debugging techniques: in-line print
statements, time.sleeps, and improving the error messages.

80 | Chapter 5: Saving User Input: Testing the Database

But we’ve got a couple of items on our own to-do list, namely getting the FT to clean
up after itself, and perhaps more critically, adding support for more than one list.

• Don’t save blank items for every request
• Code smell: POST test is too long?
• Display multiple items in the table
• Clean up after FT runs
• Support more than one list!

I mean, we could ship the site as it is, but people might find it strange that the entire
human population has to share a single to-do list. I suppose it might get people to
stop and think about how connected we all are to one another, how we all share a
common destiny here on Spaceship Earth, and how we must all work together to
solve the global problems that we face.

But in practical terms, the site wouldn’t be very useful.

Ah well.

Recap | 81

Useful TDD Concepts
Regression

When new code breaks some aspect of the application which used to work.

Unexpected failure
When a test fails in a way we weren’t expecting. This either means that we’ve
made a mistake in our tests, or that the tests have helped us find a regression, and
we need to fix something in our code.

Red/Green/Refactor
Another way of describing the TDD process. Write a test and see it fail (Red),
write some code to get it to pass (Green), then Refactor to improve the
implementation.

Triangulation
Adding a test case with a new specific example for some existing code, to justify
generalising the implementation (which may be a “cheat” until that point).

Three strikes and refactor
A rule of thumb for when to remove duplication from code. When two pieces of
code look very similar, it often pays to wait until you see a third use case, so that
you’re more sure about what part of the code really is the common, re-usable part
to refactor out.

The scratchpad to-do list
A place to write down things that occur to us as we’re coding, so that we can fin‐
ish up what we’re doing and come back to them later.

82 | Chapter 5: Saving User Input: Testing the Database

CHAPTER 6

Improving Functional Tests: Ensuring
Isolation and Removing Voodoo Sleeps

Before we dive in and fix our real problem, let’s take care of a couple of housekeeping
items. At the end of the last chapter, we made a note that different test runs were
interfering with each other, so we’ll fix that. I’m also not happy with all these
time.sleeps peppered through the code; they seem a bit unscientific, so we’ll replace
them with something more reliable.

• Clean up after FT runs
• Remove time.sleeps

Both of these changes will be moving towards testing “best practices”, making our
tests more deterministic and more reliable.

Ensuring Test Isolation in Functional Tests
We ended the last chapter with a classic testing problem: how to ensure isolation
between tests. Each run of our functional tests was leaving list items lying around in
the database, and that would interfere with the test results when you next ran the
tests.

83

When we run unit tests, the Django test runner automatically creates a brand new test
database (separate from the real one), which it can safely reset before each individual
test is run, and then throw away at the end. But our functional tests currently run
against the “real” database, db.sqlite3.

One way to tackle this would be to “roll our own” solution, and add some code to
functional_tests.py which would do the cleaning up. The setUp and tearDown meth‐
ods are perfect for this sort of thing.

Since Django 1.4 though, there’s a new class called LiveServerTestCase which can
do this work for you. It will automatically create a test database (just like in a unit test
run), and start up a development server for the functional tests to run against.
Although as a tool it has some limitations which we’ll need to work around later, it’s
dead useful at this stage, so let’s check it out.

LiveServerTestCase expects to be run by the Django test runner using manage.py.
As of Django 1.6, the test runner will find any files whose name begins with test. To
keep things neat and tidy, let’s make a folder for our functional tests, so that it looks a
bit like an app. All Django needs is for it to be a valid Python package directory (i.e.,
one with a ___init___.py in it):

$ mkdir functional_tests
$ touch functional_tests/__init__.py

Then we move our functional tests, from being a standalone file called func‐
tional_tests.py, to being the tests.py of the functional_tests app. We use git mv so
that Git notices that we’ve moved the file:

$ git mv functional_tests.py functional_tests/tests.py
$ git status # shows the rename to functional_tests/tests.py and __init__.py

At this point your directory tree should look like this:

84 | Chapter 6: Improving Functional Tests: Ensuring Isolation and Removing Voodoo Sleeps

.
├── db.sqlite3
├── functional_tests
│ ├── __init__.py
│ └── tests.py
├── lists
│ ├── admin.py
│ ├── apps.py
│ ├── __init__.py
│ ├── migrations
│ │ ├── 0001_initial.py
│ │ ├── 0002_item_text.py
│ │ ├── __init__.py
│ │ └── __pycache__
│ ├── models.py
│ ├── __pycache__
│ ├── templates
│ │ └── home.html
│ ├── tests.py
│ └── views.py
├── manage.py
└── superlists
 ├── __init__.py
 ├── __pycache__
 ├── settings.py
 ├── urls.py
 └── wsgi.py

functional_tests.py is gone, and has turned into functional_tests/tests.py. Now, when‐
ever we want to run our functional tests, instead of running python func

tional_tests.py, we will use python manage.py test functional_tests.

You could mix your functional tests into the tests for the lists app.
I tend to prefer to keep them separate, because functional tests usu‐
ally have cross-cutting concerns that run across different apps. FTs
are meant to see things from the point of view of your users, and
your users don’t care about how you’ve split work between different
apps!

Now let’s edit functional_tests/tests.py and change our NewVisitorTest class to make
it use LiveServerTestCase:

Ensuring Test Isolation in Functional Tests | 85

functional_tests/tests.py (ch06l001)
from django.test import LiveServerTestCase
from selenium import webdriver
from selenium.webdriver.common.keys import Keys
import time

class NewVisitorTest(LiveServerTestCase):

 def setUp(self):
 [...]

Next, instead of hardcoding the visit to localhost port 8000, LiveServerTestCase
gives us an attribute called live_server_url:

functional_tests/tests.py (ch06l002)
 def test_can_start_a_list_and_retrieve_it_later(self):
 # Edith has heard about a cool new online to-do app. She goes
 # to check out its homepage
 self.browser.get(self.live_server_url)

We can also remove the if __name__ == '__main__' from the end if we want, since
we’ll be using the Django test runner to launch the FT.

Now we are able to run our functional tests using the Django test runner, by telling it
to run just the tests for our new functional_tests app:

$ python manage.py test functional_tests
Creating test database for alias 'default'...
F
==
FAIL: test_can_start_a_list_and_retrieve_it_later
(functional_tests.tests.NewVisitorTest)

Traceback (most recent call last):
 File "/.../superlists/functional_tests/tests.py", line 65, in
test_can_start_a_list_and_retrieve_it_later
 self.fail('Finish the test!')
AssertionError: Finish the test!

Ran 1 test in 6.578s

FAILED (failures=1)
System check identified no issues (0 silenced).
Destroying test database for alias 'default'...

86 | Chapter 6: Improving Functional Tests: Ensuring Isolation and Removing Voodoo Sleeps

The FT gets through to the self.fail, just like it did before the refactor. You’ll also
notice that if you run the tests a second time, there aren’t any old list items lying
around from the previous test—it has cleaned up after itself. Success! We should
commit it as an atomic change:

$ git status # functional_tests.py renamed + modified, new __init__.py
$ git add functional_tests
$ git diff --staged -M
$ git commit # msg eg "make functional_tests an app, use LiveServerTestCase"

The -M flag on the git diff is a useful one. It means “detect moves”, so it will notice
that functional_tests.py and functional_tests/tests.py are the same file, and show you a
more sensible diff (try it without the flag!).

Running Just the Unit Tests
Now if we run manage.py test, Django will run both the functional and the unit
tests:

$ python manage.py test
Creating test database for alias 'default'...
......F
==
FAIL: test_can_start_a_list_and_retrieve_it_later
[...]
AssertionError: Finish the test!

Ran 7 tests in 6.732s

FAILED (failures=1)

In order to run just the unit tests, we can specify that we want to only run the tests for
the lists app:

$ python manage.py test lists
Creating test database for alias 'default'...
......

Ran 6 tests in 0.009s

OK
System check identified no issues (0 silenced).
Destroying test database for alias 'default'...

Ensuring Test Isolation in Functional Tests | 87

Useful Commands Updated
To run the functional tests

python manage.py test functional_tests

To run the unit tests
python manage.py test lists

What to do if I say “run the tests”, and you’re not sure which ones I mean? Have
another look at the flowchart at the end of Chapter 4, and try to figure out where we
are. As a rule of thumb, we usually only run the functional tests once all the unit tests
are passing, so if in doubt, try both!

Aside: Upgrading Selenium and Geckodriver
As I was running through this chapter again today, I found the FTs hung when I tried
to run them.

It turns out that Firefox had auto-updated itself overnight, and my versions of Sele‐
nium and Geckodriver needed upgrading too. A quick visit to the geckodriver relea‐
ses page confirmed there was a new version out. So a few downloads and upgrades
were in order:

• A quick pip install --upgrade selenium first.
• Then a quick download of the new geckodriver.
• I saved a backup copy of the old one somewhere, and put the new one in its place

somewhere on the PATH.
• And a quick check with geckodriver --version confirms the new one was

ready to go.

The FTs were then back to running the way I expected them to.

There was no particular reason that it happened at this point in the book; indeed, it’s
quite unlikely that it’ll happen right now for you, but it may happen at some point,
and this seemed as good a place as any to talk about it, since we’re doing some
housekeeping.

It’s one of the things you have to put up with when using Selenium. Although it is
possible to pin your browser and Selenium versions (on a CI server, for example),
browser versions don’t stand still out in the real world, and you need to keep up with
what your users have.

88 | Chapter 6: Improving Functional Tests: Ensuring Isolation and Removing Voodoo Sleeps

https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases

If something strange is going on with your FTs, it’s always worth
trying to upgrade Selenium.

Back to our regular programming now.

On Implicit and Explicit Waits, and Voodoo time.sleeps
Let’s talk about the time.sleep in our FT:

functional_tests/tests.py
 # When she hits enter, the page updates, and now the page lists
 # "1: Buy peacock feathers" as an item in a to-do list table
 inputbox.send_keys(Keys.ENTER)
 time.sleep(1)

 self.check_for_row_in_list_table('1: Buy peacock feathers')

This is what’s called an “explicit wait”. That’s by contrast with “implicit waits”: in cer‐
tain cases, Selenium tries to wait “automatically” for you when it thinks the page is
loading. It even provides a method called implicitly_wait that lets you control how
long it will wait if you ask it for an element that doesn’t seem to be on the page yet.

In fact, in the first edition, I was able to rely entirely on implicit waits. The problem is
that implicit waits are always a little flakey, and with the release of Selenium 3,
implicit waits became even more unreliable. At the same time, the general opinion
from the Selenium team was that implicit waits were just a bad idea, and to be
avoided.

So this edition has explicit waits from the very beginning. But the problem is that
those time.sleeps have their own issues. Currently we’re waiting for one second, but
who’s to say that’s the right amount of time? For most tests we run against our own
machine, one second is way too long, and it’s going to really slow down our FT runs.
0.1s would be fine. But the problem is that if you set it that low, every so often you’re
going to get a spurious failure because, for whatever reason, the laptop was being a bit
slow just then. And even at 1s you can never be quite sure you’re not going to get
random failures that don’t indicate a real problem, and false positives in tests are a
real annoyance (there’s lots more on this in an article by Martin Fowler).

Unexpected NoSuchElementException and StaleElementExcep
tion errors are the usual symptoms of forgetting an explicit wait.
Try removing the time.sleep and see if you get one.

On Implicit and Explicit Waits, and Voodoo time.sleeps | 89

https://martinfowler.com/articles/nonDeterminism.html

So let’s replace our sleeps with a tool that will wait for just as long as is needed, up to a
nice long timeout to catch any glitches. We’ll rename check_for_row_in_list_table
to wait_for_row_in_list_table, and add some polling/retry logic to it:

functional_tests/tests.py (ch06l004)
from selenium.common.exceptions import WebDriverException

MAX_WAIT = 10
[...]

 def wait_for_row_in_list_table(self, row_text):
 start_time = time.time()
 while True:
 try:
 table = self.browser.find_element_by_id('id_list_table')
 rows = table.find_elements_by_tag_name('tr')
 self.assertIn(row_text, [row.text for row in rows])
 return
 except (AssertionError, WebDriverException) as e:
 if time.time() - start_time > MAX_WAIT:
 raise e
 time.sleep(0.5)

We’ll use a constant called MAX_WAIT to set the maximum amount of time we’re
prepared to wait. 10 seconds should be more than enough to catch any glitches or
random slowness.

Here’s the loop, which will keep going forever, unless we get to one of two possi‐
ble exit routes.

Here are our three lines of assertions from the old version of the method.

If we get through them and our assertion passes, we return from the function and
escape the loop.

But if we catch an exception, we wait a short amount of time and loop around to
retry. There are two types of exceptions we want to catch: WebDriverException
for when the page hasn’t loaded and Selenium can’t find the table element on the
page, and AssertionError for when the table is there, but it’s perhaps a table
from before the page reloads, so it doesn’t have our row in yet.

Here’s our second escape route. If we get to this point, that means our code kept
raising exceptions every time we tried it until we exceeded our timeout. So this
time, we re-raise the exception and let it bubble up to our test, and most likely
end up in our traceback, telling us why the test failed.

90 | Chapter 6: Improving Functional Tests: Ensuring Isolation and Removing Voodoo Sleeps

Are you thinking this code is a little ugly, and makes it a bit harder to see exactly what
we’re doing? I agree. Later on, we’ll refactor out a general wait_for helper, to separate
the timing and re-raising logic from the test assertions. But we’ll wait until we need it
in multiple places.

If you’ve used Selenium before, you may know that it has a few
helper functions to do waits. I’m not a big fan of them. Over the
course of the book we’ll build a couple of wait helper tools which I
think will make for nice, readable code, but of course you should
check out the homegrown Selenium waits in your own time, and
see what you think of them.

Now we can rename our method calls, and remove the voodoo time.sleeps:

functional_tests/tests.py (ch06l005)
 [...]
 # When she hits enter, the page updates, and now the page lists
 # "1: Buy peacock feathers" as an item in a to-do list table
 inputbox.send_keys(Keys.ENTER)
 self.wait_for_row_in_list_table('1: Buy peacock feathers')

 # There is still a text box inviting her to add another item. She
 # enters "Use peacock feathers to make a fly" (Edith is very
 # methodical)
 inputbox = self.browser.find_element_by_id('id_new_item')
 inputbox.send_keys('Use peacock feathers to make a fly')
 inputbox.send_keys(Keys.ENTER)

 # The page updates again, and now shows both items on her list
 self.wait_for_row_in_list_table('2: Use peacock feathers to make a fly')
 self.wait_for_row_in_list_table('1: Buy peacock feathers')
 [...]

And rerun the tests:

On Implicit and Explicit Waits, and Voodoo time.sleeps | 91

http://www.seleniumhq.org/docs/04_webdriver_advanced.jsp

$ python manage.py test
Creating test database for alias 'default'...
......F
==
FAIL: test_can_start_a_list_and_retrieve_it_later
(functional_tests.tests.NewVisitorTest)

Traceback (most recent call last):
 File "/.../superlists/functional_tests/tests.py", line 73, in
test_can_start_a_list_and_retrieve_it_later
 self.fail('Finish the test!')
AssertionError: Finish the test!

Ran 7 tests in 4.552s

FAILED (failures=1)
System check identified no issues (0 silenced).
Destroying test database for alias 'default'...

We get to the same place, and notice we’ve shaved a couple of seconds off the execu‐
tion time too. That might not seem like a lot right now, but it all adds up.

Just to check we’ve done the right thing, let’s deliberately break the test in a couple of
ways and see some errors. First let’s check that if we look for some row text that will
never appear, we get the right error:

functional_tests/tests.py (ch06l006)
 rows = table.find_elements_by_tag_name('tr')
 self.assertIn('foo', [row.text for row in rows])
 return

We see we still get a nice self-explanatory test failure message:

 self.assertIn('foo', [row.text for row in rows])
AssertionError: 'foo' not found in ['1: Buy peacock feathers']

Let’s put that back the way it was and break something else:

functional_tests/tests.py (ch06l007)
 try:
 table = self.browser.find_element_by_id('id_nothing')
 rows = table.find_elements_by_tag_name('tr')
 self.assertIn(row_text, [row.text for row in rows])
 return
 [...]

Sure enough, we get the errors for when the page doesn’t contain the element we’re
looking for too:

92 | Chapter 6: Improving Functional Tests: Ensuring Isolation and Removing Voodoo Sleeps

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: [id="id_nothing"]

Everything seems to be in order. Let’s put our code back to way it should be, and do
one final test run:

$ python manage.py test
[...]
AssertionError: Finish the test!

Great. With that little interlude over, let’s crack on with getting our application
actually working for multiple lists.

Testing “Best Practices” Applied in this Chapter
Ensuring test isolation and managing global state

Different tests shouldn’t affect one another. This means we need to reset any per‐
manent state at the end of each test. Django’s test runner helps us do this by cre‐
ating a test database, which it wipes clean in between each test. (See also
Chapter 23.)

Avoid “voodoo” sleeps
Whenever we need to wait for something to load, it’s always tempting to throw in
a quick-and-dirty time.sleep. But the problem is that the length of time we wait
is always a bit of a shot in the dark, either too short and vulnerable to spurious
failures, or too long and it’ll slow down our test runs. Prefer a retry loop that
polls our app and moves on as soon as possible.

Don’t rely on Selenium’s implicit waits
Selenium does theoretically do some “implicit” waits, but the implementation
varies between browsers, and at the time of writing was highly unreliable in the
Selenium 3 Firefox driver. “Explicit is better than implict”, as the Zen of Python
says, so prefer explicit waits.

On Implicit and Explicit Waits, and Voodoo time.sleeps | 93

CHAPTER 7

Working Incrementally

Now let’s address our real problem, which is that our design only allows for one
global list. In this chapter I’ll demonstrate a critical TDD technique: how to adapt
existing code using an incremental, step-by-step process which takes you from work‐
ing state to working state. Testing Goat, not Refactoring Cat.

Small Design When Necessary
Let’s have a think about how we want support for multiple lists to work. Currently the
FT (which is the closest we have to a design document) says this:

functional_tests/tests.py
 # Edith wonders whether the site will remember her list. Then she sees
 # that the site has generated a unique URL for her -- there is some
 # explanatory text to that effect.
 self.fail('Finish the test!')

 # She visits that URL - her to-do list is still there.

 # Satisfied, she goes back to sleep

But really we want to expand on this, by saying that different users don’t see each oth‐
er’s lists, and each get their own URL as a way of going back to their saved lists. What
might a new design look like?

Not Big Design Up Front
TDD is closely associated with the agile movement in software development, which
includes a reaction against Big Design Up Front, the traditional software engineering
practice whereby, after a lengthy requirements gathering exercise, there is an equally

95

lengthy design stage where the software is planned out on paper. The agile philosophy
is that you learn more from solving problems in practice than in theory, especially
when you confront your application with real users as soon as possible. Instead of a
long up-front design phase, we try to put a minimum viable application out there
early, and let the design evolve gradually based on feedback from real-world usage.

But that doesn’t mean that thinking about design is outright banned! In the last big
chapter we saw how just blundering ahead without thinking can eventually get us to
the right answer, but often a little thinking about design can help us get there faster.
So, let’s think about our minimum viable lists app, and what kind of design we’ll need
to deliver it:

• We want each user to be able to store their own list—at least one, for now.
• A list is made up of several items, whose primary attribute is a bit of descriptive

text.
• We need to save lists from one visit to the next. For now, we can give each user a

unique URL for their list. Later on we may want some way of automatically rec‐
ognising users and showing them their lists.

To deliver the “for now” items, it sounds like we’re going to store lists and their items
in a database. Each list will have a unique URL, and each list item will be a bit of
descriptive text, associated with a particular list.

YAGNI!
Once you start thinking about design, it can be hard to stop. All sorts of other
thoughts are occurring to us—we might want to give each list a name or title, we
might want to recognise users using usernames and passwords, we might want to add
a longer notes field as well as short descriptions to our list, we might want to store
some kind of ordering, and so on. But we obey another tenet of the agile gospel:
“YAGNI” (pronounced yag-knee), which stands for “You ain’t gonna need it!” As
software developers, we have fun creating things, and sometimes it’s hard to resist the
urge to build things just because an idea occurred to us and we might need it. The
trouble is that more often than not, no matter how cool the idea was, you won’t end
up using it. Instead you have a load of unused code, adding to the complexity of your
application. YAGNI is the mantra we use to resist our overenthusiastic creative urges.

REST (ish)
We have an idea of the data structure we want—the Model part of Model-View-
Controller (MVC). What about the View and Controller parts? How should the user
interact with Lists and their Items using a web browser?

96 | Chapter 7: Working Incrementally

Representational State Transfer (REST) is an approach to web design that’s usually
used to guide the design of web-based APIs. When designing a user-facing site, it’s
not possible to stick strictly to the REST rules, but they still provide some useful inspi‐
ration (skip ahead to Appendix F if you want to see a real REST API).

REST suggests that we have a URL structure that matches our data structure, in this
case lists and list items. Each list can have its own URL:

 /lists/<list identifier>/

That will fulfill the requirement we’ve specified in our FT. To view a list, we use a GET
request (a normal browser visit to the page).

To create a brand new list, we’ll have a special URL that accepts POST requests:

 /lists/new

To add a new item to an existing list, we’ll have a separate URL, to which we can send
POST requests:

 /lists/<list identifier>/add_item

(Again, we’re not trying to perfectly follow the rules of REST, which would use a PUT
request here—we’re just using REST for inspiration. Apart from anything else, you
can’t use PUT in a standard HTML form.)

In summary, our scratchpad for this chapter looks something like this:

• Adjust model so that items are associ-
ated with different lists

• Add unique URLs for each list
• Add a URL for creating a new list via

POST
• Add URLs for adding a new item to an

existing list via POST

Implementing the New Design Incrementally Using TDD
How do we use TDD to implement the new design? Let’s take another look at the
flowchart for the TDD process in Figure 7-1.

Implementing the New Design Incrementally Using TDD | 97

At the top level, we’re going to use a combination of adding new functionality (by
adding a new FT and writing new application code), and refactoring our application
—that is, rewriting some of the existing implementation so that it delivers the same
functionality to the user but using aspects of our new design. We’ll be able to use the
existing functional test to verify we don’t break what already works, and the new
functional test to drive the new features.

At the unit test level, we’ll be adding new tests or modifying existing ones to test for
the changes we want, and we’ll be able to similarly use the unit tests we don’t touch to
help make sure we don’t break anything in the process.

Figure 7-1. The TDD process with functional and unit tests

98 | Chapter 7: Working Incrementally

Ensuring We Have a Regression Test
Let’s translate our scratchpad into a new functional test method, which introduces a
second user and checks that their to-do list is separate from Edith’s.

We’ll start out very similarly to the first. Edith adds a first item to create a to-do list,
but we introduce our first new assertion—Edith’s list should live at its own, unique
URL:

functional_tests/tests.py (ch07l005)
def test_can_start_a_list_for_one_user(self):
 # Edith has heard about a cool new online to-do app. She goes
 [...]
 # The page updates again, and now shows both items on her list
 self.wait_for_row_in_list_table('2: Use peacock feathers to make a fly')
 self.wait_for_row_in_list_table('1: Buy peacock feathers')

 # Satisfied, she goes back to sleep

def test_multiple_users_can_start_lists_at_different_urls(self):
 # Edith starts a new to-do list
 self.browser.get(self.live_server_url)
 inputbox = self.browser.find_element_by_id('id_new_item')
 inputbox.send_keys('Buy peacock feathers')
 inputbox.send_keys(Keys.ENTER)
 self.wait_for_row_in_list_table('1: Buy peacock feathers')

 # She notices that her list has a unique URL
 edith_list_url = self.browser.current_url
 self.assertRegex(edith_list_url, '/lists/.+')

assertRegex is a helper function from unittest that checks whether a string
matches a regular expression. We use it to check that our new REST-ish design
has been implemented. Find out more in the unittest documentation.

Next we imagine a new user coming along. We want to check that they don’t see any
of Edith’s items when they visit the home page, and that they get their own unique
URL for their list:

Ensuring We Have a Regression Test | 99

http://docs.python.org/3/library/unittest.html

functional_tests/tests.py (ch07l006)
 [...]
 self.assertRegex(edith_list_url, '/lists/.+')

 # Now a new user, Francis, comes along to the site.

 ## We use a new browser session to make sure that no information
 ## of Edith's is coming through from cookies etc
 self.browser.quit()
 self.browser = webdriver.Firefox()

 # Francis visits the home page. There is no sign of Edith's
 # list
 self.browser.get(self.live_server_url)
 page_text = self.browser.find_element_by_tag_name('body').text
 self.assertNotIn('Buy peacock feathers', page_text)
 self.assertNotIn('make a fly', page_text)

 # Francis starts a new list by entering a new item. He
 # is less interesting than Edith...
 inputbox = self.browser.find_element_by_id('id_new_item')
 inputbox.send_keys('Buy milk')
 inputbox.send_keys(Keys.ENTER)
 self.wait_for_row_in_list_table('1: Buy milk')

 # Francis gets his own unique URL
 francis_list_url = self.browser.current_url
 self.assertRegex(francis_list_url, '/lists/.+')
 self.assertNotEqual(francis_list_url, edith_list_url)

 # Again, there is no trace of Edith's list
 page_text = self.browser.find_element_by_tag_name('body').text
 self.assertNotIn('Buy peacock feathers', page_text)
 self.assertIn('Buy milk', page_text)

 # Satisfied, they both go back to sleep

I’m using the convention of double-hashes (##) to indicate “meta-comments”—
comments about how the test is working and why—so that we can distinguish
them from regular comments in FTs which explain the User Story. They’re a mes‐
sage to our future selves, which might otherwise be wondering why the heck
we’re quitting the browser and starting a new one…

Other than that, the new test is fairly self-explanatory. Let’s see how we do when we
run our FTs:

100 | Chapter 7: Working Incrementally

$ python manage.py test functional_tests
[...]
.F
==
FAIL: test_multiple_users_can_start_lists_at_different_urls
(functional_tests.tests.NewVisitorTest)

Traceback (most recent call last):
 File "/.../superlists/functional_tests/tests.py", line 83, in
test_multiple_users_can_start_lists_at_different_urls
 self.assertRegex(edith_list_url, '/lists/.+')
AssertionError: Regex didn't match: '/lists/.+' not found in
'http://localhost:8081/'

Ran 2 tests in 5.786s

FAILED (failures=1)

Good, our first test still passes, and the second one fails where we might expect. Let’s
do a commit, and then go and build some new models and views:

$ git commit -a

Iterating Towards the New Design
Being all excited about our new design, I had an overwhelming urge to dive in at this
point and start changing models.py, which would have broken half the unit tests, and
then pile in and change almost every single line of code, all in one go. That’s a natural
urge, and TDD, as a discipline, is a constant fight against it. Obey the Testing Goat,
not Refactoring Cat! We don’t need to implement our new, shiny design in a single
big bang. Let’s make small changes that take us from a working state to a working
state, with our design guiding us gently at each stage.

There are four items on our to-do list. The FT, with its Regexp didn't match, is tell‐
ing us that the second item—giving lists their own URL and identifier—is the one we
should work on next. Let’s have a go at fixing that, and only that.

The URL comes from the redirect after POST. In lists/tests.py, find test_redi
rects_after_POST, and change the expected redirect location:

lists/tests.py
self.assertEqual(response.status_code, 302)
self.assertEqual(response['location'], '/lists/the-only-list-in-the-world/')

Does that seem slightly strange? Clearly, /lists/the-only-list-in-the-world isn’t a URL
that’s going to feature in the final design of our application. But we’re committed to
changing one thing at a time. While our application only supports one list, this is the

Iterating Towards the New Design | 101

only URL that makes sense. We’re still moving forwards, in that we’ll have a different
URL for our list and our home page, which is a step along the way to a more REST-ful
design. Later, when we have multiple lists, it will be easy to change.

Another way of thinking about it is as a problem-solving
technique: our new URL design is currently not implemented, so it
works for 0 items. Ultimately, we want to solve for n items, but
solving for 1 item is a good step along the way.

Running the unit tests gives us an expected fail:

$ python manage.py test lists
[...]
AssertionError: '/' != '/lists/the-only-list-in-the-world/'

We can go adjust our home_page view in lists/views.py:

lists/views.py
def home_page(request):
 if request.method == 'POST':
 Item.objects.create(text=request.POST['item_text'])
 return redirect('/lists/the-only-list-in-the-world/')

 items = Item.objects.all()
 return render(request, 'home.html', {'items': items})

Of course, that will now totally break the functional tests, because there is no such
URL on our site yet. Sure enough, if you run them, you’ll find they fail just after try‐
ing to submit the first item, saying that they can’t find the list table; it’s because the
URL /the-only-list-in-the-world/ doesn’t exist yet!

 File "/.../superlists/functional_tests/tests.py", line 57, in
test_can_start_a_list_for_one_user
[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: [id="id_list_table"]

[...]

 File "/.../superlists/functional_tests/tests.py", line 79, in
test_multiple_users_can_start_lists_at_different_urls
 self.wait_for_row_in_list_table('1: Buy peacock feathers')
[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: [id="id_list_table"]

102 | Chapter 7: Working Incrementally

Not only is our new test failing, but the old one is too. That tells us we’ve introduced a
regression. Let’s try to get back to a working state as quickly as possible by building a
URL for our one and only list.

Taking a First, Self-Contained Step: One New URL
Open up lists/tests.py, and add a new test class called ListViewTest. Then copy the
method called test_displays_all_list_items across from HomePageTest into our
new class, rename it, and adapt it slightly:

lists/tests.py (ch07l009)
class ListViewTest(TestCase):

 def test_displays_all_items(self):
 Item.objects.create(text='itemey 1')
 Item.objects.create(text='itemey 2')

 response = self.client.get('/lists/the-only-list-in-the-world/')

 self.assertContains(response, 'itemey 1')
 self.assertContains(response, 'itemey 2')

Here’s a new helper method: instead of using the slightly annoying assertIn/
response.content.decode() dance, Django provides the assertContains

method, which knows how to deal with responses and the bytes of their content.

Let’s try running this test now:

 self.assertContains(response, 'itemey 1')
[...]
AssertionError: 404 != 200 : Couldn't retrieve content: Response code was 404

Here’s a nice side effect of using assertContains: it tells us straight away that the test
is failing because our new URL doesn’t exist yet, and is returning a 404.

A New URL
Our singleton list URL doesn’t exist yet. We fix that in superlists/urls.py.

Watch out for trailing slashes in URLs, both here in the tests and in
urls.py. They’re a common source of bugs.

Taking a First, Self-Contained Step: One New URL | 103

superlists/urls.py
urlpatterns = [
 url(r'^$', views.home_page, name='home'),
 url(r'^lists/the-only-list-in-the-world/$', views.view_list, name='view_list'),
]

Running the tests again, we get:

AttributeError: module 'lists.views' has no attribute 'view_list'

A New View Function
Nicely self-explanatory. Let’s create a dummy view function in lists/views.py:

lists/views.py
def view_list(request):
 pass

Now we get:

ValueError: The view lists.views.view_list didn't return an HttpResponse
object. It returned None instead.

[...]
FAILED (errors=1)

Down to just one failure, and it’s pointing us in the right direction. Let’s copy the two
last lines from the home_page view and see if they’ll do the trick:

lists/views.py
def view_list(request):
 items = Item.objects.all()
 return render(request, 'home.html', {'items': items})

Rerun the unit tests and they should pass:

Ran 7 tests in 0.016s
OK

Now let’s try the FTs again and see what they tell us:

104 | Chapter 7: Working Incrementally

FAIL: test_can_start_a_list_for_one_user
[...]
 File "/.../superlists/functional_tests/tests.py", line 67, in
test_can_start_a_list_for_one_user
[...]
AssertionError: '2: Use peacock feathers to make a fly' not found in ['1: Buy
peacock feathers']

FAIL: test_multiple_users_can_start_lists_at_different_urls
[...]
AssertionError: 'Buy peacock feathers' unexpectedly found in 'Your To-Do
list\n1: Buy peacock feathers'
[...]

Both of them are getting a little further than they were before, but they’re still failing.
It would be nice to get back to a working state and get that first one passing again.
What’s it trying to tell us?

It’s failing when we try to add the second item. We have to put our debugging hats on
here. We know the home page is working, because the test has got all the way down to
line 67 in the FT, so we’ve at least added a first item. And our unit tests are all passing,
so we’re pretty sure the URLs and views are doing what they should—the home page
displays the right template, and can handle POST requests, and the only-list-in-the-
world view knows how to display all items…but it doesn’t know how to handle POST
requests. Ah, that gives us a clue.

A second clue is the rule of thumb that, when all the unit tests are passing but the
functional tests aren’t, it’s often pointing at a problem that’s not covered by the unit
tests, and in our case, that’s often a template problem.

The answer is that our home.html input form currently doesn’t specify an explicit
URL to POST to:

lists/templates/home.html
 <form method="POST">

By default the browser sends the POST data back to the same URL it’s currently on.
When we’re on the home page that works fine, but when we’re on our only-list-in-the-
world page, it doesn’t.

Now we could dive in and add POST request handling to our new view, but that
would involve writing a bunch more tests and code, and at this point we’d like to get
back to a working state as quickly as possible. Actually the quickest thing we can do
to get things fixed is to just use the existing home page view, which already works, for
all POST requests:

lists/templates/home.html
 <form method="POST" action="/">

Taking a First, Self-Contained Step: One New URL | 105

Try that, and we’ll see our FTs get back to a happier place:

FAIL: test_multiple_users_can_start_lists_at_different_urls
[...]
AssertionError: 'Buy peacock feathers' unexpectedly found in 'Your To-Do
list\n1: Buy peacock feathers'

Ran 2 tests in 8.541s
FAILED (failures=1)

Our original test passes once again, so we know we’re back to a working state. The
new functionality may not be working yet, but at least the old stuff works as well as it
used to.

Green? Refactor
Time for a little tidying up.

In the Red/Green/Refactor dance, we’ve arrived at green, so we should see what needs
a refactor. We now have two views, one for the home page, and one for an individual
list. Both are currently using the same template, and passing it all the list items cur‐
rently in the database. If we look through our unit test methods, we can see some
stuff we probably want to change:

$ grep -E "class|def" lists/tests.py
class HomePageTest(TestCase):
 def test_uses_home_template(self):
 def test_displays_all_list_items(self):
 def test_can_save_a_POST_request(self):
 def test_redirects_after_POST(self):
 def test_only_saves_items_when_necessary(self):
class ListViewTest(TestCase):
 def test_displays_all_items(self):
class ItemModelTest(TestCase):
 def test_saving_and_retrieving_items(self):

We can definitely delete the test_displays_all_list_items method from HomePa
geTest; it’s no longer needed. If you run manage.py test lists now, it should say it
ran 6 tests instead of 7:

Ran 6 tests in 0.016s
OK

Next, since we don’t actually need the home page template to display all list items any
more, it should just show a single input box inviting you to start a new list.

106 | Chapter 7: Working Incrementally

Another Small Step: A Separate Template for Viewing
Lists
Since the home page and the list view are now quite distinct pages, they should be
using different HTML templates; home.html can have the single input box, whereas a
new template, list.html, can take care of showing the table of existing items.

Let’s add a new test to check that it’s using a different template:

lists/tests.py
class ListViewTest(TestCase):

 def test_uses_list_template(self):
 response = self.client.get('/lists/the-only-list-in-the-world/')
 self.assertTemplateUsed(response, 'list.html')

 def test_displays_all_items(self):
 [...]

assertTemplateUsed is one of the more useful functions that the Django Test Client
gives us. Let’s see what it says:

AssertionError: False is not true : Template 'list.html' was not a template
used to render the response. Actual template(s) used: home.html

Great! Let’s change the view:

lists/views.py
def view_list(request):
 items = Item.objects.all()
 return render(request, 'list.html', {'items': items})

But, obviously, that template doesn’t exist yet. If we run the unit tests, we get:

django.template.exceptions.TemplateDoesNotExist: list.html

Let’s create a new file at lists/templates/list.html:
$ touch lists/templates/list.html

A blank template, which gives us this error—good to know the tests are there to make
sure we fill it in:

AssertionError: False is not true : Couldn't find 'itemey 1' in response

The template for an individual list will reuse quite a lot of the stuff we currently have
in home.html, so we can start by just copying that:

$ cp lists/templates/home.html lists/templates/list.html

Another Small Step: A Separate Template for Viewing Lists | 107

That gets the tests back to passing (green). Now let’s do a little more tidying up (refac‐
toring). We said the home page doesn’t need to list items, it only needs the new list
input field, so we can remove some lines from lists/templates/home.html, and maybe
slightly tweak the h1 to say “Start a new To-Do list”:

lists/templates/home.html
<body>
 <h1>Start a new To-Do list</h1>
 <form method="POST">
 <input name="item_text" id="id_new_item" placeholder="Enter a to-do item" />
 {% csrf_token %}
 </form>
</body>

We rerun the unit tests to check that hasn’t broken anything—good…

There’s actually no need to pass all the items to the home.html template in our
home_page view, so we can simplify that:

lists/views.py
def home_page(request):
 if request.method == 'POST':
 Item.objects.create(text=request.POST['item_text'])
 return redirect('/lists/the-only-list-in-the-world/')
 return render(request, 'home.html')

Rerun the unit tests once more; they still pass. Time to run the functional tests:

AssertionError: '1: Buy milk' not found in ['1: Buy peacock feathers', '2: Buy
milk']

Not bad! Our regression test (the first FT) is passing, and our new test is now getting
slightly further forwards—it’s telling us that Francis isn’t getting his own list page
(because he still sees some of Edith’s list items).

It may feel like we haven’t made much headway since, functionally, the site still
behaves almost exactly like it did when we started the chapter, but this really is pro‐
gress. We’ve started on the road to our new design, and we’ve implemented a number
of stepping stones without making anything worse than it was before. Let’s commit our
progress so far:

$ git status # should show 4 changed files and 1 new file, list.html
$ git add lists/templates/list.html
$ git diff # should show we've simplified home.html,
 # moved one test to a new class in lists/tests.py added a new view
 # in views.py, and simplified home_page and made one addition to
 # urls.py
$ git commit -a # add a message summarising the above, maybe something like
 # "new URL, view and template to display lists"

108 | Chapter 7: Working Incrementally

A Third Small Step: A URL for Adding List Items
Where are we with our own to-do list?

• Adjust model so that items are associ-
ated with different lists

• Add unique URLs for each list …
• Add a URL for creating a new list via

POST
• Add URLs for adding a new item to an

existing list via POST

We’ve sort of made progress on the second item, even if there’s still only one list in the
world. The first item is a bit scary. Can we do something about items 3 or 4?

Let’s have a new URL for adding new list items. If nothing else, it’ll simplify the home
page view.

A Test Class for New List Creation
Open up lists/tests.py, and move the test_can_save_a_POST_request and test_redi
rects_after_POST methods into a new class, then change the URL they POST to:

lists/tests.py (ch07l021-1)
class NewListTest(TestCase):

 def test_can_save_a_POST_request(self):
 self.client.post('/lists/new', data={'item_text': 'A new list item'})
 self.assertEqual(Item.objects.count(), 1)
 new_item = Item.objects.first()
 self.assertEqual(new_item.text, 'A new list item')

 def test_redirects_after_POST(self):
 response = self.client.post('/lists/new', data={'item_text': 'A new list item'})
 self.assertEqual(response.status_code, 302)
 self.assertEqual(response['location'], '/lists/the-only-list-in-the-world/')

A Third Small Step: A URL for Adding List Items | 109

This is another place to pay attention to trailing slashes, inciden‐
tally. It’s /new, with no trailing slash. The convention I’m using is
that URLs without a trailing slash are “action” URLs which modify
the database.

While we’re at it, let’s learn a new Django Test Client method, assertRedirects:

lists/tests.py (ch07l021-2)
 def test_redirects_after_POST(self):
 response = self.client.post('/lists/new', data={'item_text': 'A new list item'})
 self.assertRedirects(response, '/lists/the-only-list-in-the-world/')

There’s not much to it, but it just nicely replaces two asserts with a single one…

Try running that:

 self.assertEqual(Item.objects.count(), 1)
AssertionError: 0 != 1
[...]
 self.assertRedirects(response, '/lists/the-only-list-in-the-world/')
[...]
AssertionError: 404 != 302 : Response didn't redirect as expected: Response
code was 404 (expected 302)

The first failure tells us we’re not saving a new item to the database, and the second
says that, instead of returning a 302 redirect, our view is returning a 404. That’s
because we haven’t built a URL for /lists/new, so the client.post is just getting a “not
found” response.

Do you remember how we split this out into two tests earlier? If we
only had one test that checked both the saving and the redirect, it
would have failed on the 0 != 1 failure, which would have been
much harder to debug. Ask me how I know this.

A URL and View for New List Creation
Let’s build our new URL now:

superlists/urls.py
urlpatterns = [
 url(r'^$', views.home_page, name='home'),
 url(r'^lists/new$', views.new_list, name='new_list'),
 url(r'^lists/the-only-list-in-the-world/$', views.view_list, name='view_list'),
]

Next we get a no attribute 'new_list', so let’s fix that, in lists/views.py:

110 | Chapter 7: Working Incrementally

lists/views.py (ch07l023-1)
def new_list(request):
 pass

Then we get “The view lists.views.new_list didn’t return an HttpResponse object”.
(This is getting rather familiar!) We could return a raw HttpResponse, but since we
know we’ll need a redirect, let’s borrow a line from home_page:

lists/views.py (ch07l023-2)
def new_list(request):
 return redirect('/lists/the-only-list-in-the-world/')

That gives:

 self.assertEqual(Item.objects.count(), 1)
AssertionError: 0 != 1

Seems reasonably straightforward. We borrow another line from home_page:

lists/views.py (ch07l023-3)
def new_list(request):
 Item.objects.create(text=request.POST['item_text'])
 return redirect('/lists/the-only-list-in-the-world/')

And everything now passes:

Ran 7 tests in 0.030s

OK

And the FTs show me that I’m back to the working state:

[...]
AssertionError: '1: Buy milk' not found in ['1: Buy peacock feathers', '2: Buy
milk']
Ran 2 tests in 8.972s
FAILED (failures=1)

Removing Now-Redundant Code and Tests
We’re looking good. Since our new views are now doing most of the work that
home_page used to do, we should be able to massively simplify it. Can we remove the
whole if request.method == 'POST' section, for example?

lists/views.py
def home_page(request):
 return render(request, 'home.html')

A Third Small Step: A URL for Adding List Items | 111

Yep!

OK

And while we’re at it, we can remove the now-redundant test_only_saves_
items_when_necessary test too!

Doesn’t that feel good? The view functions are looking much simpler. We rerun the
tests to make sure…

Ran 6 tests in 0.016s
OK

and the FTs?

A Regression! Pointing Our Forms at the New URL
Oops:

ERROR: test_can_start_a_list_for_one_user
[...]
 File "/.../superlists/functional_tests/tests.py", line 57, in
test_can_start_a_list_for_one_user
 self.wait_for_row_in_list_table('1: Buy peacock feathers')
 File "/.../superlists/functional_tests/tests.py", line 23, in
wait_for_row_in_list_table
 table = self.browser.find_element_by_id('id_list_table')
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: [id="id_list_table"]

ERROR: test_multiple_users_can_start_lists_at_different_urls
[...]
 File "/.../superlists/functional_tests/tests.py", line 79, in
test_multiple_users_can_start_lists_at_different_urls
 self.wait_for_row_in_list_table('1: Buy peacock feathers')
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: [id="id_list_table"]
[...]

Ran 2 tests in 11.592s
FAILED (errors=2)

It’s because our forms are still pointing to the old URL. In both home.html and
lists.html, let’s change them to:

lists/templates/home.html, lists/templates/list.html
 <form method="POST" action="/lists/new">

112 | Chapter 7: Working Incrementally

And that should get us back to working again:

AssertionError: '1: Buy milk' not found in ['1: Buy peacock feathers', '2: Buy
milk']
[...]
FAILED (failures=1)

That’s another nicely self-contained commit, in that we’ve made a bunch of changes
to our URLs, our views.py is looking much neater and tidier, and we’re sure the appli‐
cation is still working as well as it did before. We’re getting good at this working-state-
to-working-state malarkey!

$ git status # 5 changed files
$ git diff # URLs for forms x2, moved code in views + tests, new URL
$ git commit -a

And we can cross out an item on the to-do list:

• Adjust model so that items are associ-
ated with different lists

• Add unique URLs for each list
• Add a URL for creating a new list via

POST
• Add URLs for adding a new item to an

existing list via POST

Biting the Bullet: Adjusting Our Models
Enough housekeeping with our URLs. It’s time to bite the bullet and change our mod‐
els. Let’s adjust the model unit test. Just for a change, I’ll present the changes in the
form of a diff:

Biting the Bullet: Adjusting Our Models | 113

lists/tests.py
@@ -1,5 +1,5 @@
 from django.test import TestCase
-from lists.models import Item
+from lists.models import Item, List

 class HomePageTest(TestCase):
@@ -44,22 +44,32 @@ class ListViewTest(TestCase):

-class ItemModelTest(TestCase):
+class ListAndItemModelsTest(TestCase):

 def test_saving_and_retrieving_items(self):
+ list_ = List()
+ list_.save()
+
 first_item = Item()
 first_item.text = 'The first (ever) list item'
+ first_item.list = list_
 first_item.save()

 second_item = Item()
 second_item.text = 'Item the second'
+ second_item.list = list_
 second_item.save()

+ saved_list = List.objects.first()
+ self.assertEqual(saved_list, list_)
+
 saved_items = Item.objects.all()
 self.assertEqual(saved_items.count(), 2)

 first_saved_item = saved_items[0]
 second_saved_item = saved_items[1]
 self.assertEqual(first_saved_item.text, 'The first (ever) list item')
+ self.assertEqual(first_saved_item.list, list_)
 self.assertEqual(second_saved_item.text, 'Item the second')
+ self.assertEqual(second_saved_item.list, list_)

We create a new List object, and then we assign each item to it by assigning it as
its .list property. We check that the list is properly saved, and we check that the two
items have also saved their relationship to the list. You’ll also notice that we can com‐
pare list objects with each other directly (saved_list and list_)—behind the scenes,
these will compare themselves by checking that their primary key (the .id attribute)
is the same.

114 | Chapter 7: Working Incrementally

I’m using the variable name list_ to avoid “shadowing” the
Python built-in list function. It’s ugly, but all the other options I
tried were equally ugly or worse (my_list, the_list, list1, lis
tey…).

Time for another unit-test/code cycle.

For the first couple of iterations, rather than explicitly showing you what code to
enter in between every test run, I’m only going to show you the expected error mes‐
sages from running the tests. I’ll let you figure out what each minimal code change
should be on your own.

Need a hint? Go back and take a look at the steps we took to intro‐
duce the Item model in the chapter before last.

Your first error should be:

ImportError: cannot import name 'List'

Fix that, and then you should see:

AttributeError: 'List' object has no attribute 'save'

Next you should see:

django.db.utils.OperationalError: no such table: lists_list

So we run a makemigrations:

$ python manage.py makemigrations
Migrations for 'lists':
 lists/migrations/0003_list.py
 - Create model List

And then you should see:

 self.assertEqual(first_saved_item.list, list_)
AttributeError: 'Item' object has no attribute 'list'

A Foreign Key Relationship
How do we give our Item a list attribute? Let’s just try naively making it like the text
attribute (and here’s your chance to see whether your solution so far looks like mine
by the way):

Biting the Bullet: Adjusting Our Models | 115

lists/models.py
from django.db import models

class List(models.Model):
 pass

class Item(models.Model):
 text = models.TextField(default='')
 list = models.TextField(default='')

As usual, the tests tell us we need a migration:

$ python manage.py test lists
[...]
django.db.utils.OperationalError: no such column: lists_item.list

$ python manage.py makemigrations
Migrations for 'lists':
 lists/migrations/0004_item_list.py
 - Add field list to item

Let’s see what that gives us:

AssertionError: 'List object' != <List: List object>

We’re not quite there. Look closely at each side of the !=. Django has only saved the
string representation of the List object. To save the relationship to the object itself,
we tell Django about the relationship between the two classes using a ForeignKey:

lists/models.py
from django.db import models

class List(models.Model):
 pass

class Item(models.Model):
 text = models.TextField(default='')
 list = models.ForeignKey(List, default=None)

That’ll need a migration too. Since the last one was a red herring, let’s delete it and
replace it with a new one:

$ rm lists/migrations/0004_item_list.py
$ python manage.py makemigrations
Migrations for 'lists':
 lists/migrations/0004_item_list.py
 - Add field list to item

116 | Chapter 7: Working Incrementally

Deleting migrations is dangerous. We do need to do it now and
again, because we don’t always get our models code right on the
first go. But if you delete a migration that’s already been applied to
a database somewhere, Django will be confused about what state
it’s in, and how to apply future migrations. You should only do it
when you’re sure the migration hasn’t been used. A good rule of
thumb is that you should never delete or modify a migration that’s
already been committed to your VCS.

Adjusting the Rest of the World to Our New Models
Back in our tests, now what happens?

$ python manage.py test lists
[...]
ERROR: test_displays_all_items (lists.tests.ListViewTest)
django.db.utils.IntegrityError: NOT NULL constraint failed: lists_item.list_id
[...]
ERROR: test_redirects_after_POST (lists.tests.NewListTest)
django.db.utils.IntegrityError: NOT NULL constraint failed: lists_item.list_id
[...]
ERROR: test_can_save_a_POST_request (lists.tests.NewListTest)
django.db.utils.IntegrityError: NOT NULL constraint failed: lists_item.list_id

Ran 6 tests in 0.021s

FAILED (errors=3)

Oh dear!

There is some good news. Although it’s hard to see, our model tests are passing. But
three of our view tests are failing nastily.

The reason is because of the new relationship we’ve introduced between Items and
Lists, which requires each item to have a parent list, which our old tests and code
aren’t prepared for.

Still, this is exactly why we have tests! Let’s get them working again. The easiest is the
ListViewTest; we just create a parent list for our two test items:

lists/tests.py (ch07l031)
class ListViewTest(TestCase):

 def test_displays_all_items(self):
 list_ = List.objects.create()
 Item.objects.create(text='itemey 1', list=list_)
 Item.objects.create(text='itemey 2', list=list_)

Biting the Bullet: Adjusting Our Models | 117

That gets us down to two failing tests, both on tests that try to POST to our new_list
view. Decoding the tracebacks using our usual technique, working back from error to
line of test code to, buried in there somewhere, the line of our own code that caused
the failure:

File "/.../superlists/lists/views.py", line 9, in new_list
Item.objects.create(text=request.POST['item_text'])

It’s when we try to create an item without a parent list. So we make a similar change
in the view:

lists/views.py
from lists.models import Item, List
[...]
def new_list(request):
 list_ = List.objects.create()
 Item.objects.create(text=request.POST['item_text'], list=list_)
 return redirect('/lists/the-only-list-in-the-world/')

And that gets our tests passing again:

Ran 6 tests in 0.030s

OK

Are you cringing internally at this point? Arg! This feels so wrong; we create a new list
for every single new item submission, and we’re still just displaying all items as if they
belong to the same list! I know, I feel the same. The step-by-step approach, in which
you go from working code to working code, is counterintuitive. I always feel like just
diving in and trying to fix everything all in one go, instead of going from one weird
half-finished state to another. But remember the Testing Goat! When you’re up a
mountain, you want to think very carefully about where you put each foot, and take
one step at a time, checking at each stage that the place you’ve put it hasn’t caused you
to fall off a cliff.

So just to reassure ourselves that things have worked, we rerun the FT:

AssertionError: '1: Buy milk' not found in ['1: Buy peacock feathers', '2: Buy
milk']
[...]

Sure enough, it gets all the way through to where we were before. We haven’t broken
anything, and we’ve made a change to the database. That’s something to be pleased
with! Let’s commit:

$ git status # 3 changed files, plus 2 migrations
$ git add lists
$ git diff --staged
$ git commit

118 | Chapter 7: Working Incrementally

And we can cross out another item on the to-do list:

• Adjust model so that items are associ-
ated with different lists

• Add unique URLs for each list
• Add a URL for creating a new list via

POST
• Add URLs for adding a new item to an

existing list via POST

Each List Should Have Its Own URL
What shall we use as the unique identifier for our lists? Probably the simplest thing,
for now, is just to use the auto-generated id field from the database. Let’s change List
ViewTest so that the two tests point at new URLs.

We’ll also change the old test_displays_all_items test and call it test_dis
plays_only_items_for_that_list instead, and make it check that only the items for
a specific list are displayed:

Each List Should Have Its Own URL | 119

lists/tests.py (ch07l033)
class ListViewTest(TestCase):

 def test_uses_list_template(self):
 list_ = List.objects.create()
 response = self.client.get(f'/lists/{list_.id}/')
 self.assertTemplateUsed(response, 'list.html')

 def test_displays_only_items_for_that_list(self):
 correct_list = List.objects.create()
 Item.objects.create(text='itemey 1', list=correct_list)
 Item.objects.create(text='itemey 2', list=correct_list)
 other_list = List.objects.create()
 Item.objects.create(text='other list item 1', list=other_list)
 Item.objects.create(text='other list item 2', list=other_list)

 response = self.client.get(f'/lists/{correct_list.id}/')

 self.assertContains(response, 'itemey 1')
 self.assertContains(response, 'itemey 2')
 self.assertNotContains(response, 'other list item 1')
 self.assertNotContains(response, 'other list item 2')

A couple more of those lovely f-strings in this listing! If they’re still
a bit of a mystery, take a look at the docs (although if your formal
CS education is as bad as mine, you’ll probably skip the formal
grammar).

Running the unit tests gives an expected 404, and another related error:

FAIL: test_displays_only_items_for_that_list (lists.tests.ListViewTest)
AssertionError: 404 != 200 : Couldn't retrieve content: Response code was 404
(expected 200)
[...]
FAIL: test_uses_list_template (lists.tests.ListViewTest)
AssertionError: No templates used to render the response

Capturing Parameters from URLs
It’s time to learn how we can pass parameters from URLs to views:

superlists/urls.py
urlpatterns = [
 url(r'^$', views.home_page, name='home'),
 url(r'^lists/new$', views.new_list, name='new_list'),
 url(r'^lists/(.+)/$', views.view_list, name='view_list'),
]

120 | Chapter 7: Working Incrementally

https://docs.python.org/3/reference/lexical_analysis.html#f-strings

We adjust the regular expression for our URL to include a capture group, (.+), which
will match any characters, up to the following /. The captured text will get passed to
the view as an argument.

In other words, if we go to the URL /lists/1/, view_list will get a second argument
after the normal request argument, namely the string "1". If we go to /lists/foo/, we
get view_list(request, "foo").

But our view doesn’t expect an argument yet! Sure enough, this causes problems:

ERROR: test_displays_only_items_for_that_list (lists.tests.ListViewTest)
[...]
TypeError: view_list() takes 1 positional argument but 2 were given
[...]
ERROR: test_uses_list_template (lists.tests.ListViewTest)
[...]
TypeError: view_list() takes 1 positional argument but 2 were given
[...]
ERROR: test_redirects_after_POST (lists.tests.NewListTest)
[...]
TypeError: view_list() takes 1 positional argument but 2 were given
FAILED (errors=3)

We can fix that easily with a dummy parameter in views.py:

lists/views.py
def view_list(request, list_id):
 [...]

Now we’re down to our expected failure:

FAIL: test_displays_only_items_for_that_list (lists.tests.ListViewTest)
[...]
AssertionError: 1 != 0 : Response should not contain 'other list item 1'

Let’s make our view discriminate over which items it sends to the template:

lists/views.py
def view_list(request, list_id):
 list_ = List.objects.get(id=list_id)
 items = Item.objects.filter(list=list_)
 return render(request, 'list.html', {'items': items})

Adjusting new_list to the New World
Oops, now we get errors in another test:

ERROR: test_redirects_after_POST (lists.tests.NewListTest)
ValueError: invalid literal for int() with base 10:
'the-only-list-in-the-world'

Each List Should Have Its Own URL | 121

Let’s take a look at this test then, since it’s moaning:

lists/tests.py
class NewListTest(TestCase):
 [...]

 def test_redirects_after_POST(self):
 response = self.client.post('/lists/new', data={'item_text': 'A new list item'})
 self.assertRedirects(response, '/lists/the-only-list-in-the-world/')

It looks like it hasn’t been adjusted to the new world of Lists and Items. The test
should be saying that this view redirects to the URL of the specific new list it just
created:

lists/tests.py (ch07l036-1)
 def test_redirects_after_POST(self):
 response = self.client.post('/lists/new', data={'item_text': 'A new list item'})
 new_list = List.objects.first()
 self.assertRedirects(response, f'/lists/{new_list.id}/')

That still gives us the invalid literal error. We take a look at the view itself, and change
it so it redirects to a valid place:

lists/views.py (ch07l036-2)
def new_list(request):
 list_ = List.objects.create()
 Item.objects.create(text=request.POST['item_text'], list=list_)
 return redirect(f'/lists/{list_.id}/')

That gets us back to passing unit tests:

$ python3 manage.py test lists
[...]
......

Ran 6 tests in 0.033s

OK

What about the functional tests? We must be almost there?

122 | Chapter 7: Working Incrementally

The Functional Tests Detect Another Regression
Well, almost:

F.
==
FAIL: test_can_start_a_list_for_one_user
(functional_tests.tests.NewVisitorTest)

Traceback (most recent call last):
 File "/.../superlists/functional_tests/tests.py", line 67, in
test_can_start_a_list_for_one_user
 self.wait_for_row_in_list_table('2: Use peacock feathers to make a fly')
[...]
AssertionError: '2: Use peacock feathers to make a fly' not found in ['1: Use
peacock feathers to make a fly']

Ran 2 tests in 8.617s

FAILED (failures=1)

Our new test is actually passing, and different users can get different lists, but the old
test is warning us of a regression. It looks like you can’t add a second item to a list any
more. It’s because of our quick-and-dirty hack where we create a new list for every
single POST submission. This is exactly what we have functional tests for!

And it correlates nicely with the last item on our to-do list:

• Adjust model so that items are associ-
ated with different lists

• Add unique URLs for each list
• Add a URL for creating a new list via

POST
• Add URLs for adding a new item to an

existing list via POST

The Functional Tests Detect Another Regression | 123

One More View to Handle Adding Items to an Existing List
We need a URL and view to handle adding a new item to an existing list (/lists/
<list_id>/add_item). We’re getting pretty good at these now, so let’s knock one
together quickly:

lists/tests.py
class NewItemTest(TestCase):

 def test_can_save_a_POST_request_to_an_existing_list(self):
 other_list = List.objects.create()
 correct_list = List.objects.create()

 self.client.post(
 f'/lists/{correct_list.id}/add_item',
 data={'item_text': 'A new item for an existing list'}
)

 self.assertEqual(Item.objects.count(), 1)
 new_item = Item.objects.first()
 self.assertEqual(new_item.text, 'A new item for an existing list')
 self.assertEqual(new_item.list, correct_list)

 def test_redirects_to_list_view(self):
 other_list = List.objects.create()
 correct_list = List.objects.create()

 response = self.client.post(
 f'/lists/{correct_list.id}/add_item',
 data={'item_text': 'A new item for an existing list'}
)

 self.assertRedirects(response, f'/lists/{correct_list.id}/')

Are you wondering about other_list? A bit like in the tests for
viewing a specific list, it’s important that we add items to a specific
list. Adding this second object to the database prevents me from
using a hack like List.objects.first() in the implementation.
That would be a stupid thing to do, and you can go too far down
the road of testing for all the stupid things you must not do (there
are an infinite number of those, after all). It’s a judgement call, but
this one feels worth it. There’s some more discussion of this in “An
Aside on When to Test for Developer Stupidity” on page 262.

We get:

124 | Chapter 7: Working Incrementally

AssertionError: 0 != 1
[...]
AssertionError: 301 != 302 : Response didn't redirect as expected: Response
code was 301 (expected 302)

Beware of Greedy Regular Expressions!
That’s a little strange. We haven’t actually specified a URL for /lists/1/add_item yet, so
our expected failure is 404 != 302. Why are we getting a 301?

This was a bit of a puzzler! It’s because we’ve used a very “greedy” regular expression
in our URL:

superlists/urls.py
 url(r'^lists/(.+)/$', views.view_list, name='view_list'),

Django has some built-in code to issue a permanent redirect (301) whenever some‐
one asks for a URL which is almost right, except for a missing slash. In this
case, /lists/1/add_item/ would be a match for lists/(.+)/, with the (.+) capturing
1/add_item. So Django “helpfully” guesses that we actually wanted the URL with a
trailing slash.

We can fix that by making our URL pattern explicitly capture only numerical digits,
by using the regular expression \d:

superlists/urls.py
 url(r'^lists/(\d+)/$', views.view_list, name='view_list'),

That gives us the failure we expected:

AssertionError: 0 != 1
[...]
AssertionError: 404 != 302 : Response didn't redirect as expected: Response
code was 404 (expected 302)

The Last New URL
Now we’ve got our expected 404, let’s add a new URL for adding new items to existing
lists:

superlists/urls.py
urlpatterns = [
 url(r'^$', views.home_page, name='home'),
 url(r'^lists/new$', views.new_list, name='new_list'),
 url(r'^lists/(\d+)/$', views.view_list, name='view_list'),
 url(r'^lists/(\d+)/add_item$', views.add_item, name='add_item'),
]

One More View to Handle Adding Items to an Existing List | 125

Three very similar-looking URLs there. Let’s make a note on our to-do list; they look
like good candidates for a refactoring:

• Adjust model so that items are associ-
ated with different lists

• Add unique URLs for each list
• Add a URL for creating a new list via

POST
• Add URLs for adding a new item to an

existing list via POST
• Refactor away some duplication in urls.py

Back to the tests, we get the usual missing module view objects:

AttributeError: module 'lists.views' has no attribute 'add_item'

The Last New View
Let’s try:

lists/views.py
def add_item(request):
 pass

Aha:

TypeError: add_item() takes 1 positional argument but 2 were given

lists/views.py
def add_item(request, list_id):
 pass

And then:

ValueError: The view lists.views.add_item didn't return an HttpResponse object.
It returned None instead.

126 | Chapter 7: Working Incrementally

We can copy the redirect from new_list and the List.objects.get from
view_list:

lists/views.py
def add_item(request, list_id):
 list_ = List.objects.get(id=list_id)
 return redirect(f'/lists/{list_.id}/')

That takes us to:

 self.assertEqual(Item.objects.count(), 1)
AssertionError: 0 != 1

Finally we make it save our new list item:

lists/views.py
def add_item(request, list_id):
 list_ = List.objects.get(id=list_id)
 Item.objects.create(text=request.POST['item_text'], list=list_)
 return redirect(f'/lists/{list_.id}/')

And we’re back to passing tests.

Ran 8 tests in 0.050s

OK

Testing the Response Context Objects Directly
We’ve got our new view and URL for adding items to existing lists; now we just need
to actually use it in our list.html template. So we open it up to adjust the form tag…

lists/templates/list.html
 <form method="POST" action="but what should we put here?">

…oh. To get the URL for adding to the current list, the template needs to know what
list it’s rendering, as well as what the items are. We want to be able to do something
like this:

lists/templates/list.html
 <form method="POST" action="/lists/{{ list.id }}/add_item">

For that to work, the view will have to pass the list to the template. Let’s create a new
unit test in ListViewTest:

One More View to Handle Adding Items to an Existing List | 127

lists/tests.py (ch07l041)
 def test_passes_correct_list_to_template(self):
 other_list = List.objects.create()
 correct_list = List.objects.create()
 response = self.client.get(f'/lists/{correct_list.id}/')
 self.assertEqual(response.context['list'], correct_list)

response.context represents the context we’re going to pass into the render
function—the Django Test Client puts it on the response object for us, to help
with testing.

That gives us:

KeyError: 'list'

because we’re not passing list into the template. It actually gives us an opportunity
to simplify a little:

lists/views.py
def view_list(request, list_id):
 list_ = List.objects.get(id=list_id)
 return render(request, 'list.html', {'list': list_})

That, of course, will break one of our old tests, because the template needed items:

FAIL: test_displays_only_items_for_that_list (lists.tests.ListViewTest)
[...]
AssertionError: False is not true : Couldn't find 'itemey 1' in response

But we can fix it in list.html, as well as adjusting the form’s POST action:

lists/templates/list.html (ch07l043)
 <form method="POST" action="/lists/{{ list.id }}/add_item">

 [...]

 {% for item in list.item_set.all %}
 <tr><td>{{ forloop.counter }}: {{ item.text }}</td></tr>
 {% endfor %}

There’s our new form action.

.item_set is called a reverse lookup. It’s one of Django’s incredibly useful bits of
ORM that lets you look up an object’s related items from a different table…

So that gets the unit tests to pass:

128 | Chapter 7: Working Incrementally

https://docs.djangoproject.com/en/1.11/topics/db/queries/#following-relationships-backward

Ran 9 tests in 0.040s

OK

How about the FTs?

$ python manage.py test functional_tests
[...]
..

Ran 2 tests in 9.771s

OK

HOORAY! Oh, and a quick check on our to-do list:

• Adjust model so that items are associ-
ated with different lists

• Add unique URLs for each list
• Add a URL for creating a new list via

POST
• Add URLs for adding a new item to an

existing list via POST
• Refactor away some duplication in urls.py

Irritatingly, the Testing Goat is a stickler for tying up loose ends too, so we’ve got to
do this one final thing.

Before we start, we’ll do a commit—always make sure you’ve got a commit of a work‐
ing state before embarking on a refactor:

$ git diff
$ git commit -am "new URL + view for adding to existing lists. FT passes :-)"

A Final Refactor Using URL includes
superlists/urls.py is really meant for URLs that apply to your entire site. For URLs that
only apply to the lists app, Django encourages us to use a separate lists/urls.py, to
make the app more self-contained. The simplest way to make one is to use a copy of
the existing urls.py:

A Final Refactor Using URL includes | 129

$ cp superlists/urls.py lists/

Then we replace three lines in superlists/urls.py with an include:

superlists/urls.py
from django.conf.urls import include, url
from lists import views as list_views
from lists import urls as list_urls

urlpatterns = [
 url(r'^$', list_views.home_page, name='home'),
 url(r'^lists/', include(list_urls)),
]

While we’re at it, we use the import x as y syntax to alias views and urls. This
is good practice in your top-level urls.py, because it will let us import views and
urls from multiple apps if we want—and indeed we will need to later on in the
book.

Here’s the include. Notice that it can take a part of a URL regex as a prefix,
which will be applied to all the included URLs (this is the bit where we reduce
duplication, as well as giving our code a better structure).

Back in lists/urls.py we can trim down to only include the latter part of our three
URLs, and none of the other stuff from the parent urls.py:

lists/urls.py (ch07l046)
from django.conf.urls import url
from lists import views

urlpatterns = [
 url(r'^new$', views.new_list, name='new_list'),
 url(r'^(\d+)/$', views.view_list, name='view_list'),
 url(r'^(\d+)/add_item$', views.add_item, name='add_item'),
]

Rerun the unit tests to check that everything worked.

When I did it, I couldn’t quite believe I did it correctly on the first go. It always pays
to be skeptical of your own abilities, so I deliberately changed one of the URLs
slightly, just to check if it broke a test. It did. We’re covered.

Feel free to try it yourself! Remember to change it back, check that the tests all pass
again, and then do a final commit:

130 | Chapter 7: Working Incrementally

$ git status
$ git add lists/urls.py
$ git add superlists/urls.py
$ git diff --staged
$ git commit

Phew. A marathon chapter. But we covered a number of important topics, starting
with test isolation, and then some thinking about design. We covered some rules of
thumb like “YAGNI” and “three strikes then refactor”. But, most importantly, we saw
how to adapt an existing site step by step, going from working state to working state,
in order to iterate towards a new design.

I’d say we’re pretty close to being able to ship this site, as the very first beta of the
superlists website that’s going to take over the world. Maybe it needs a little prettifica‐
tion first…let’s look at what we need to do to deploy it in the next couple of chapters.

Some More TDD Philosophy
Working State to Working State (aka The Testing Goat vs. Refactoring Cat)

Our natural urge is often to dive in and fix everything at once…but if we’re not
careful, we’ll end up like Refactoring Cat, in a situation with loads of changes to
our code and nothing working. The Testing Goat encourages us to take one step
at a time, and go from working state to working state.

Split work out into small, achievable tasks
Sometimes this means starting with “boring” work rather than diving straight in
with the fun stuff, but you’ll have to trust that YOLO-you in the parallel universe
is probably having a bad time, having broken everything, and struggling to get
the app working again.

YAGNI
You ain’t gonna need it! Avoid the temptation to write code that you think might
be useful, just because it suggests itself at the time. Chances are, you won’t use it,
or you won’t have anticipated your future requirements correctly. See Chapter 22
for one methodology that helps us avoid this trap.

A Final Refactor Using URL includes | 131

PART II

Web Development Sine Qua Nons

Real developers ship.
—Jeff Atwood

If this were just a guide to TDD in a normal programming field, we might be able to
congratulate ourselves about now. After all, we’ve got some solid basics of TDD and
Django under our belts; we’ve got all we need to start building a website.

But, real developers ship, and in order to ship, we’re going to have to tackle some of
the trickier but unavoidable aspects of web development: static files, form data valida‐
tion, the dreaded JavaScript, but most hairy of all, deployment to a production server.

At every stage, TDD can help us to get these things right too.

In this section, I’m still trying to keep the learning curve relatively soft, but we will
meet several major new concepts and technologies. I’ll only be able to dip lightly into
each one—I hope to demonstrate enough of each to get you started when you get to
your own project, but you will also need to do your own reading around when you
start to apply these topics in “real life”.

For example, if you weren’t familiar with Django before starting on the book, you
may find that taking a little time to run through the official Django tutorial at this
point would complement what you’ve learned so far nicely, and will leave you more
confident with the Django stuff over the next few chapters, so you can focus on the
core concepts.

Oh, but there’s lots of fun stuff coming up! Just you wait!

1 What? Delete the database? Are you crazy? Not completely. The local dev database often gets out of sync with
its migrations as we go back and forth in our development, and it doesn’t have any important data in it, so it’s
OK to blow it away now and again. We’ll be much more careful once we have a “production” database on the
server. More on this in Appendix D.

CHAPTER 8

Prettification: Layout and Styling, and
What to Test About It

We’re starting to think about releasing the first version of our site, but we’re a bit
embarrassed by how ugly it looks at the moment. In this chapter, we’ll cover some of
the basics of styling, including integrating an HTML/CSS framework called Boot‐
strap. We’ll learn how static files work in Django, and what we need to do about test‐
ing them.

What to Functionally Test About Layout and Style
Our site is undeniably a bit unattractive at the moment (Figure 8-1).

If you spin up your dev server with manage.py runserver, you
may run into a database error “table lists_item has no column
named list_id”. You need to update your local database to reflect the
changes we made in models.py. Use manage.py migrate. If it gives
you any grief about IntegrityErrors, just delete1 the database file
and try again.

We can’t be adding to Python’s reputation for being ugly, so let’s do a tiny bit of pol‐
ishing. Here’s a few things we might want:

135

http://grokcode.com/746/dear-python-why-are-you-so-ugly/

• A nice large input field for adding new and existing lists
• A large, attention-grabbing, centered box to put it in

How do we apply TDD to these things? Most people will tell you you shouldn’t test
aesthetics, and they’re right. It’s a bit like testing a constant, in that tests usually
wouldn’t add any value.

Figure 8-1. Our home page, looking a little ugly…

But we can test the implementation of our aesthetics—just enough to reassure our‐
selves that things are working. For example, we’re going to use Cascading Style Sheets
(CSS) for our styling, and they are loaded as static files. Static files can be a bit tricky
to configure (especially, as we’ll see later, when you move off your own PC and onto a
hosting site), so we’ll want some kind of simple “smoke test” that the CSS has loaded.
We don’t have to test fonts and colours and every single pixel, but we can do a quick
check that the main input box is aligned the way we want it on each page, and that
will give us confidence that the rest of the styling for that page is probably loaded too.

We start with a new test method inside our functional test:

136 | Chapter 8: Prettification: Layout and Styling, and What to Test About It

functional_tests/tests.py (ch08l001)
class NewVisitorTest(LiveServerTestCase):
 [...]

 def test_layout_and_styling(self):
 # Edith goes to the home page
 self.browser.get(self.live_server_url)
 self.browser.set_window_size(1024, 768)

 # She notices the input box is nicely centered
 inputbox = self.browser.find_element_by_id('id_new_item')
 self.assertAlmostEqual(
 inputbox.location['x'] + inputbox.size['width'] / 2,
 512,
 delta=10
)

A few new things here. We start by setting the window size to a fixed size. We then
find the input element, look at its size and location, and do a little maths to check
whether it seems to be positioned in the middle of the page. assertAlmostEqual
helps us to deal with rounding errors and the occasional weirdness due to scrollbars
and the like, by letting us specify that we want our arithmetic to work to within plus
or minus 10 pixels.

If we run the functional tests, we get:

$ python manage.py test functional_tests
[...]
.F.
==
FAIL: test_layout_and_styling (functional_tests.tests.NewVisitorTest)

Traceback (most recent call last):
 File "/.../superlists/functional_tests/tests.py", line 129, in
test_layout_and_styling
 delta=10
AssertionError: 107.0 != 512 within 10 delta

Ran 3 tests in 9.188s

FAILED (failures=1)

That’s the expected failure. Still, this kind of FT is easy to get wrong, so let’s use a
quick-and-dirty “cheat” solution, to check that the FT also passes when the input box
is centered. We’ll delete this code again almost as soon as we’ve used it to check the
FT:

What to Functionally Test About Layout and Style | 137

lists/templates/home.html (ch08l002)
<form method="POST" action="/lists/new">
 <p style="text-align: center;">
 <input name="item_text" id="id_new_item" placeholder="Enter a to-do item" />
 </p>
 {% csrf_token %}
</form>

That passes, which means the FT works. Let’s extend it to make sure that the input
box is also center-aligned on the page for a new list:

functional_tests/tests.py (ch08l003)
 # She starts a new list and sees the input is nicely
 # centered there too
 inputbox.send_keys('testing')
 inputbox.send_keys(Keys.ENTER)
 self.wait_for_row_in_list_table('1: testing')
 inputbox = self.browser.find_element_by_id('id_new_item')
 self.assertAlmostEqual(
 inputbox.location['x'] + inputbox.size['width'] / 2,
 512,
 delta=10
)

That gives us another test failure:

 File "/.../superlists/functional_tests/tests.py", line 141, in
test_layout_and_styling
 delta=10
AssertionError: 107.0 != 512 within 10 delta

Let’s commit just the FT:

$ git add functional_tests/tests.py
$ git commit -m "first steps of FT for layout + styling"

Now it feels like we’re justified in finding a “proper” solution to our need for some
better styling for our site. We can back out our hacky <p style="text-align: cen
ter">:

$ git reset --hard

git reset --hard is the “take off and nuke the site from orbit” Git
command, so be careful with it—it blows away all your un-
committed changes. Unlike almost everything else you can do with
Git, there’s no way of going back after this one.

138 | Chapter 8: Prettification: Layout and Styling, and What to Test About It

2 On Windows, you may not have wget and unzip, but I’m sure you can figure out how to download Bootstrap,
unzip it, and put the contents of the dist folder into the lists/static/bootstrap folder.

Prettification: Using a CSS Framework
Design is hard, and doubly so now that we have to deal with mobile, tablets, and so
forth. That’s why many programmers, particularly lazy ones like me, are turning to
CSS frameworks to solve some of those problems for them. There are lots of frame‐
works out there, but one of the earliest and most popular is Twitter’s Bootstrap. Let’s
use that.

You can find bootstrap at http://getbootstrap.com/.

We’ll download it and put it in a new folder called static inside the lists app:2

$ wget -O bootstrap.zip https://github.com/twbs/bootstrap/releases/download/\
v3.3.4/bootstrap-3.3.4-dist.zip
$ unzip bootstrap.zip
$ mkdir lists/static
$ mv bootstrap-3.3.4-dist lists/static/bootstrap
$ rm bootstrap.zip

Bootstrap comes with a plain, uncustomised installation in the dist folder. We’re going
to use that for now, but you should really never do this for a real site—vanilla Boot‐
strap is instantly recognisable, and a big signal to anyone in the know that you
couldn’t be bothered to style your site. Learn how to use LESS and change the font, if
nothing else! There is info in Bootstrap’s docs, or there’s a good guide here.

Our lists folder will end up looking like this:

Prettification: Using a CSS Framework | 139

http://getbootstrap.com/
http://coding.smashingmagazine.com/2013/03/12/customizing-bootstrap/

$ tree lists
lists
├── __init__.py
├── __pycache__
│ └── [...]
├── admin.py
├── models.py
├── static
│ └── bootstrap
│ ├── css
│ │ ├── bootstrap.css
│ │ ├── bootstrap.css.map
│ │ ├── bootstrap.min.css
│ │ ├── bootstrap-theme.css
│ │ ├── bootstrap-theme.css.map
│ │ └── bootstrap-theme.min.css
│ ├── fonts
│ │ ├── glyphicons-halflings-regular.eot
│ │ ├── glyphicons-halflings-regular.svg
│ │ ├── glyphicons-halflings-regular.ttf
│ │ ├── glyphicons-halflings-regular.woff
│ │ └── glyphicons-halflings-regular.woff2
│ └── js
│ ├── bootstrap.js
│ ├── bootstrap.min.js
│ └── npm.js
├── templates
│ ├── home.html
│ └── list.html
├── tests.py
├── urls.py
└── views.py

Look at the “Getting Started” section of the Bootstrap documentation; you’ll see it
wants our HTML template to include something like this:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <title>Bootstrap 101 Template</title>
 <!-- Bootstrap -->
 <link href="css/bootstrap.min.css" rel="stylesheet">
 </head>
 <body>
 <h1>Hello, world!</h1>
 <script src="http://code.jquery.com/jquery.js"></script>
 <script src="js/bootstrap.min.js"></script>
 </body>
</html>

140 | Chapter 8: Prettification: Layout and Styling, and What to Test About It

http://bit.ly/2u1lROA

We already have two HTML templates. We don’t want to be adding a whole load of
boilerplate code to each, so now feels like the right time to apply the “Don’t repeat
yourself ” rule, and bring all the common parts together. Thankfully, the Django tem‐
plate language makes that easy using something called template inheritance.

Django Template Inheritance
Let’s have a little review of what the differences are between home.html and list.html:

$ diff lists/templates/home.html lists/templates/list.html
< <h1>Start a new To-Do list</h1>
< <form method="POST" action="/lists/new">

> <h1>Your To-Do list</h1>
> <form method="POST" action="/lists/{{ list.id }}/add_item">
[...]
> <table id="id_list_table">
> {% for item in list.item_set.all %}
> <tr><td>{{ forloop.counter }}: {{ item.text }}</td></tr>
> {% endfor %}
> </table>

They have different header texts, and their forms use different URLs. On top of that,
list.html has the additional <table> element.

Now that we’re clear on what’s in common and what’s not, we can make the two tem‐
plates inherit from a common “superclass” template. We’ll start by making a copy of
home.html:

$ cp lists/templates/home.html lists/templates/base.html

We make this into a base template which just contains the common boilerplate, and
mark out the “blocks”, places where child templates can customise it:

lists/templates/base.html
<html>
 <head>
 <title>To-Do lists</title>
 </head>

 <body>
 <h1>{% block header_text %}{% endblock %}</h1>
 <form method="POST" action="{% block form_action %}{% endblock %}">
 <input name="item_text" id="id_new_item" placeholder="Enter a to-do item" />
 {% csrf_token %}
 </form>
 {% block table %}
 {% endblock %}
 </body>
</html>

Django Template Inheritance | 141

The base template defines a series of areas called “blocks”, which will be places that
other templates can hook in and add their own content. Let’s see how that works in
practice, by changing home.html so that it “inherits from” base.html:

lists/templates/home.html
{% extends 'base.html' %}

{% block header_text %}Start a new To-Do list{% endblock %}

{% block form_action %}/lists/new{% endblock %}

You can see that lots of the boilerplate HTML disappears, and we just concentrate on
the bits we want to customise. We do the same for list.html:

lists/templates/list.html
{% extends 'base.html' %}

{% block header_text %}Your To-Do list{% endblock %}

{% block form_action %}/lists/{{ list.id }}/add_item{% endblock %}

{% block table %}
 <table id="id_list_table">
 {% for item in list.item_set.all %}
 <tr><td>{{ forloop.counter }}: {{ item.text }}</td></tr>
 {% endfor %}
 </table>
{% endblock %}

That’s a refactor of the way our templates work. We rerun the FTs to make sure we
haven’t broken anything…

AssertionError: 107.0 != 512 within 10 delta

Sure enough, they’re still getting to exactly where they were before. That’s worthy of a
commit:

$ git diff -b
the -b means ignore whitespace, useful since we've changed some html indenting
$ git status
$ git add lists/templates # leave static, for now
$ git commit -m "refactor templates to use a base template"

Integrating Bootstrap
Now it’s much easier to integrate the boilerplate code that Bootstrap wants—we won’t
add the JavaScript yet, just the CSS:

142 | Chapter 8: Prettification: Layout and Styling, and What to Test About It

lists/templates/base.html (ch08l006)
<!DOCTYPE html>
<html lang="en">

 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <title>To-Do lists</title>
 <link href="css/bootstrap.min.css" rel="stylesheet">
 </head>
[...]

Rows and Columns
Finally, let’s actually use some of the Bootstrap magic! You’ll have to read the docu‐
mentation yourself, but we should be able to use a combination of the grid system
and the text-center class to get what we want:

lists/templates/base.html (ch08l007)
 <body>
 <div class="container">

 <div class="row">
 <div class="col-md-6 col-md-offset-3">
 <div class="text-center">
 <h1>{% block header_text %}{% endblock %}</h1>
 <form method="POST" action="{% block form_action %}{% endblock %}">
 <input name="item_text" id="id_new_item"
 placeholder="Enter a to-do item" />
 {% csrf_token %}
 </form>
 </div>
 </div>
 </div>

 <div class="row">
 <div class="col-md-6 col-md-offset-3">
 {% block table %}
 {% endblock %}
 </div>
 </div>

 </div>
 </body>

(If you’ve never seen an HTML tag broken up over several lines, that <input> may be
a little shocking. It is definitely valid, but you don’t have to use it if you find it offen‐
sive. ;)

Integrating Bootstrap | 143

Take the time to browse through the Bootstrap documentation, if
you’ve never seen it before. It’s a shopping trolley brimming full of
useful tools to use in your site.

Does that work?

AssertionError: 107.0 != 512 within 10 delta

Hmm. No. Why isn’t our CSS loading?

Static Files in Django
Django, and indeed any web server, needs to know two things to deal with static files:

1. How to tell when a URL request is for a static file, as opposed to for some HTML
that’s going to be served via a view function

2. Where to find the static file the user wants

In other words, static files are a mapping from URLs to files on disk.

For item 1, Django lets us define a URL “prefix” to say that any URLs which start with
that prefix should be treated as requests for static files. By default, the prefix is /static/.
It’s defined in settings.py:

superlists/settings.py
[...]

Static files (CSS, JavaScript, Images)
https://docs.djangoproject.com/en/1.11/howto/static-files/

STATIC_URL = '/static/'

The rest of the settings we will add to this section are all to do with item 2: finding the
actual static files on disk.

While we’re using the Django development server (manage.py runserver), we can
rely on Django to magically find static files for us—it’ll just look in any subfolder of
one of our apps called static.

You now see why we put all the Bootstrap static files into lists/static. So why are they
not working at the moment? It’s because we’re not using the /static/ URL prefix.
Have another look at the link to the CSS in base.html:

 <link href="css/bootstrap.min.css" rel="stylesheet">

144 | Chapter 8: Prettification: Layout and Styling, and What to Test About It

http://getbootstrap.com/

To get this to work, we need to change it to:

lists/templates/base.html
 <link href="/static/bootstrap/css/bootstrap.min.css" rel="stylesheet">

When runserver sees the request, it knows that it’s for a static file because it begins
with /static/. It then tries to find a file called bootstrap/css/bootstrap.min.css, looking
in each of our app folders for subfolders called static, and it should find it at lists/
static/bootstrap/css/bootstrap.min.css.

So if you take a look manually, you should see it works, as in Figure 8-2.

Figure 8-2. Our site starts to look a little better…

Switching to StaticLiveServerTestCase
If you run the FT though, it won’t pass:

AssertionError: 107.0 != 512 within 10 delta

That’s because, although runserver automagically finds static files, LiveServerTest
Case doesn’t. Never fear, though: the Django developers have made a more magical
test class called StaticLiveServerTestCase (see the docs).

Let’s switch to that:

Static Files in Django | 145

http://bit.ly/Suv4Ip

functional_tests/tests.py
@@ -1,14 +1,14 @@
-from django.test import LiveServerTestCase
+from django.contrib.staticfiles.testing import StaticLiveServerTestCase
 from selenium import webdriver
 from selenium.common.exceptions import WebDriverException
 from selenium.webdriver.common.keys import Keys
 import time

 MAX_WAIT = 10

-class NewVisitorTest(LiveServerTestCase):
+class NewVisitorTest(StaticLiveServerTestCase):

 def setUp(self):

And now it will find the new CSS, which will get our test to pass:

$ python manage.py test functional_tests
Creating test database for alias 'default'...
...

Ran 3 tests in 9.764s

At this point, Windows users may see some (harmless, but distract‐
ing) error messages that say socket.error: [WinError 10054] An
existing connection was forcibly closed by the remote

host. Add a self.browser.refresh() just before the
self.browser.quit() in tearDown to get rid of them. The issue is
being tracked in a bug on the Django tracker.

Hooray!

Using Bootstrap Components to Improve the Look of the
Site
Let’s see if we can do even better, using some of the other tools in Bootstrap’s panoply.

Jumbotron!
Bootstrap has a class called jumbotron for things that are meant to be particularly
prominent on the page. Let’s use that to embiggen the main page header and the
input form:

146 | Chapter 8: Prettification: Layout and Styling, and What to Test About It

https://code.djangoproject.com/ticket/21227

lists/templates/base.html (ch08l009)
 <div class="col-md-6 col-md-offset-3 jumbotron">
 <div class="text-center">
 <h1>{% block header_text %}{% endblock %}</h1>
 <form method="POST" action="{% block form_action %}{% endblock %}">
 [...]

When hacking about with design and layout, it’s best to have a win‐
dow open that we can hit refresh on, frequently. Use python man
age.py runserver to spin up the dev server, and then browse to
http://localhost:8000 to see your work as we go.

Large Inputs
The jumbotron is a good start, but now the input box has tiny text compared to
everything else. Thankfully, Bootstrap’s form control classes offer an option to set an
input to be “large”:

lists/templates/base.html (ch08l010)
 <input name="item_text" id="id_new_item"
 class="form-control input-lg"
 placeholder="Enter a to-do item" />

Table Styling
The table text also looks too small compared to the rest of the page now. Adding the
Bootstrap table class improves things:

lists/templates/list.html (ch08l011)
 <table id="id_list_table" class="table">

Using Our Own CSS
Finally I’d like to just offset the input from the title text slightly. There’s no ready-
made fix for that in Bootstrap, so we’ll make one ourselves. That will require specify‐
ing our own CSS file:

lists/templates/base.html
 [...]
 <title>To-Do lists</title>
 <link href="/static/bootstrap/css/bootstrap.min.css" rel="stylesheet">
 <link href="/static/base.css" rel="stylesheet">
 </head>

Using Our Own CSS | 147

We create a new file at lists/static/base.css, with our new CSS rule. We’ll use the id of
the input element, id_new_item, to find it and give it some styling:

lists/static/base.css
#id_new_item {
 margin-top: 2ex;
}

All that took me a few goes, but I’m reasonably happy with it now (Figure 8-3).

If you want to go further with customising Bootstrap, you need to get into compiling
LESS. I definitely recommend taking the time to do that some day. LESS and other
pseudo-CSS-alikes like Sass are a great improvement on plain old CSS, and a useful
tool even if you don’t use Bootstrap. I won’t cover it in this book, but you can find
resources on the internets. Here’s one, for example.

A last run of the functional tests, to see if everything still works OK:

$ python manage.py test functional_tests
[...]
...

Ran 3 tests in 10.084s

OK

Figure 8-3. The lists page, with all big chunks…

148 | Chapter 8: Prettification: Layout and Styling, and What to Test About It

http://coding.smashingmagazine.com/2013/03/12/customizing-bootstrap/

That’s it! Definitely time for a commit:

$ git status # changes tests.py, base.html, list.html + untracked lists/static
$ git add .
$ git status # will now show all the bootstrap additions
$ git commit -m "Use Bootstrap to improve layout"

What We Glossed Over: collectstatic and Other Static
Directories
We saw earlier that the Django dev server will magically find all your static files inside
app folders, and serve them for you. That’s fine during development, but when you’re
running on a real web server, you don’t want Django serving your static content—
using Python to serve raw files is slow and inefficient, and a web server like Apache
or Nginx can do this all for you. You might even decide to upload all your static files
to a CDN, instead of hosting them yourself.

For these reasons, you want to be able to gather up all your static files from inside
their various app folders, and copy them into a single location, ready for deployment.
This is what the collectstatic command is for.

The destination, the place where the collected static files go, is defined in settings.py as
STATIC_ROOT. In the next chapter we’ll be doing some deployment, so let’s actually
experiment with that now. We’ll change its value to a folder just outside our repo—
I’m going to make it a folder just next to the main source folder:

workspace
│ ├── superlists
│ │ ├── lists
│ │ │ ├── models.py
│ │ │
│ │ ├── manage.py
│ │ ├── superlists
│ │
│ ├── static
│ │ ├── base.css
│ │ ├── etc...

The logic is that the static files folder shouldn’t be a part of your repository—we don’t
want to put it under source control, because it’s a duplicate of all the files that are
inside lists/static.

What We Glossed Over: collectstatic and Other Static Directories | 149

Here’s a neat way of specifying that folder, making it relative to the location of the
project base directory:

superlists/settings.py (ch08l018)
Static files (CSS, JavaScript, Images)
https://docs.djangoproject.com/en/1.11/howto/static-files/

STATIC_URL = '/static/'
STATIC_ROOT = os.path.abspath(os.path.join(BASE_DIR, '../static'))

Take a look at the top of the settings file, and you’ll see how that BASE_DIR variable is
helpfully defined for us, using __file__ (which itself is a really, really useful Python
built-in).

Anyway, let’s try running collectstatic:

$ python manage.py collectstatic
[...]
Copying '/.../superlists/lists/static/bootstrap/css/bootstrap-theme.css'
Copying '/.../superlists/lists/static/bootstrap/css/bootstrap.min.css'

76 static files copied to '/.../static'.

And if we look in ../static, we’ll find all our CSS files:

150 | Chapter 8: Prettification: Layout and Styling, and What to Test About It

$ tree ../static/
../static/
├── admin
│ ├── css
│ │ ├── base.css

[...]

│ └── xregexp.min.js
├── base.css
└── bootstrap
 ├── css
 │ ├── bootstrap.css
 │ ├── bootstrap.css.map
 │ ├── bootstrap.min.css
 │ ├── bootstrap-theme.css
 │ ├── bootstrap-theme.css.map
 │ └── bootstrap-theme.min.css
 ├── fonts
 │ ├── glyphicons-halflings-regular.eot
 │ ├── glyphicons-halflings-regular.svg
 │ ├── glyphicons-halflings-regular.ttf
 │ ├── glyphicons-halflings-regular.woff
 │ └── glyphicons-halflings-regular.woff2
 └── js
 ├── bootstrap.js
 ├── bootstrap.min.js
 └── npm.js

14 directories, 76 files

collectstatic has also picked up all the CSS for the admin site. It’s one of Django’s
powerful features, and we’ll find out all about it one day, but we’re not ready to use
that yet, so let’s disable it for now:

superlists/settings.py
INSTALLED_APPS = [
 #'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 'lists',
]

What We Glossed Over: collectstatic and Other Static Directories | 151

And we try again:

$ rm -rf ../static/
$ python manage.py collectstatic --noinput
Copying '/.../superlists/lists/static/base.css'
[...]
Copying '/.../superlists/lists/static/bootstrap/css/bootstrap-theme.css'
Copying '/.../superlists/lists/static/bootstrap/css/bootstrap.min.css'

15 static files copied to '/.../static'.

Much better.

Anyway, now we know how to collect all the static files into a single folder, where it’s
easy for a web server to find them. We’ll find out all about that, including how to test
it, in the next chapter!

For now let’s save our changes to settings.py:

$ git diff # should show changes in settings.py*
$ git commit -am "set STATIC_ROOT in settings and disable admin"

A Few Things That Didn’t Make It
Inevitably this was only a whirlwind tour of styling and CSS, and there were several
topics that I’d considered covering that didn’t make it. Here are a few candidates for
further study:

• Customising bootstrap with LESS or SASS
• The {% static %} template tag, for more DRY and fewer hardcoded URLs
• Client-side packaging tools, like npm and bower

152 | Chapter 8: Prettification: Layout and Styling, and What to Test About It

Recap: On Testing Design and Layout
The short answer is: you shouldn’t write tests for design and layout per se. It’s too
much like testing a constant, and the tests you write are often brittle.

With that said, the implementation of design and layout involves something quite
tricky: CSS and static files. As a result, it is valuable to have some kind of minimal
“smoke test” which checks that your static files and CSS are working. As we’ll see in
the next chapter, it can help pick up problems when you deploy your code to
production.

Similarly, if a particular piece of styling required a lot of client-side JavaScript code to
get it to work (dynamic resizing is one I’ve spent a bit of time on), you’ll definitely
want some tests for that.

Try to write the minimal tests that will give you confidence that your design and lay‐
out is working, without testing what it actually is. Aim to leave yourself in a position
where you can freely make changes to the design and layout, without having to go
back and adjust tests all the time.

A Few Things That Didn’t Make It | 153

CHAPTER 9

Testing Deployment Using a Staging Site

Is all fun and game until you are need of put it in production.
—Devops Borat

It’s time to deploy the first version of our site and make it public. They say that if you
wait until you feel ready to ship, then you’ve waited too long.

Is our site usable? Is it better than nothing? Can we make lists on it? Yes, yes, yes.

No, you can’t log in yet. No, you can’t mark tasks as completed. But do we really need
any of that stuff? Not really—and you can never be sure what your users are actually
going to do with your site once they get their hands on it. We think our users want to
use the site for to-do lists, but maybe they actually want to use it to make “top 10 best
fly-fishing spots” lists, for which you don’t need any kind of “mark completed” func‐
tion. We won’t know until we put it out there.

In this chapter we’re going to go through and actually deploy our site to a real, live
web server.

You might be tempted to skip this chapter—there’s lots of daunting stuff in it, and
maybe you think this isn’t what you signed up for. But I strongly urge you to give it a
go. This is one of the sections of the book I’m most pleased with, and it’s one that
people often write to me saying they were really glad they stuck through it.

If you’ve never done a server deployment before, it will demystify a whole world for
you, and there’s nothing like the feeling of seeing your site live on the actual internet.
Give it a buzzword name like “DevOps” if that’s what it takes to convince you it’s
worth it.

155

http://bit.ly/2uhCXnH

1 What I’m calling a “staging” server, some people would call a “development” server, and some others would
also like to distinguish “preproduction” servers. Whatever we call it, the point is to have somewhere we can
try our code out in an environment that’s as similar as possible to the real production server.

Why not ping me a note once your site is live on the web, and send
me the URL? It always gives me a warm and fuzzy feeling… obey‐
thetestinggoat@gmail.com.

TDD and the Danger Areas of Deployment
Deploying a site to a live web server can be a tricky topic. Oft-heard is the forlorn cry
“but it works on my machine!”

Some of the danger areas of deployment include:

Static files (CSS, JavaScript, images, etc.)
Web servers usually need special configuration for serving these.

The database
There can be permissions and path issues, and we need to be careful about pre‐
serving data between deploys.

Dependencies
We need to make sure that the packages our software relies on are installed on
the server, and have the correct versions.

But there are solutions to all of these. In order:

• Using a staging site, on the same infrastructure as the production site, can help us
test out our deployments and get things right before we go to the “real” site.

• We can also run our functional tests against the staging site. That will reassure us
that we have the right code and packages on the server, and since we now have a
“smoke test” for our site layout, we’ll know that the CSS is loaded correctly.

• Just like on our own PC, a virtualenv is useful on the server for managing pack‐
ages and dependencies when you might be running more than one Python
application.

• And finally, automation, automation, automation. By using an automated script
to deploy new versions, and by using the same script to deploy to staging
and production, we can reassure ourselves that staging is as much like live as
possible.1

156 | Chapter 9: Testing Deployment Using a Staging Site

mailto:obeythetestinggoat@gmail.com
mailto:obeythetestinggoat@gmail.com

Over the next few pages I’m going to go through a deployment procedure. It isn’t
meant to be the perfect deployment procedure, so please don’t take it as being best
practice, or a recommendation—it’s meant to be an illustration, to show the kinds of
issues involved in deployment and where testing fits in.

Deployment Chapters Overview
There’s lots of stuff in the next three chapters, so here’s an overview to help you keep
your bearings:

This chapter: getting it up and running

• Adapt our FTs so they can run against a staging server.
• Spin up a server, install all the required software on it, and point our staging and

live domains at it.
• Upload our code to the server using Git.
• Try and get a quick-and-dirty version of our site running on the staging domain

using the Django dev server.
• Manually set up a virtualenv on the server (without virtualenvwrapper), and

make sure the database and static files are working.
• As we go, we’ll keep running our FT, to tell us what’s working and what’s not.

Next chapter: moving to a production-ready config

• Move from our quick-and-dirty version to a production-ready configuration;
stop using the Django dev server, set our app to start automatically on boot, set
DEBUG to False, and so on.

Third deployment chapter: automating the deployment

1. Once we have a working config, we’ll write a script to automate the process we’ve
just been through manually, so that we can deploy our site automatically in
future.

2. Finally we’ll use this script to deploy the production version of our site on its real
domain.

As Always, Start with a Test
Let’s adapt our functional tests slightly so that it can be run against a staging site.
We’ll do it by slightly hacking an argument that is normally used to change the
address which the test’s temporary server gets run on:

As Always, Start with a Test | 157

functional_tests/tests.py (ch08l001)
import os
[...]

class NewVisitorTest(StaticLiveServerTestCase):

 def setUp(self):
 self.browser = webdriver.Firefox()
 staging_server = os.environ.get('STAGING_SERVER')
 if staging_server:
 self.live_server_url = 'http://' + staging_server

Do you remember I said that LiveServerTestCase had certain limitations? Well, one
is that it always assumes you want to use its own test server, which it makes available
at self.live_server_url. I still want to be able to do that sometimes, but I also want
to be able to selectively tell it not to bother, and to use a real server instead.

The way I decided to do it is using an environment variable called STAG
ING_SERVER.

Here’s the hack: we replace self.live_server_url with the address of our “real”
server.

We test that said hack hasn’t broken anything by running the functional tests
“normally”:

$ python manage.py test functional_tests
[...]
Ran 3 tests in 8.544s

OK

And now we can try them against our staging server URL. I’m planning to host my
staging server at superlists-staging.ottg.eu:

158 | Chapter 9: Testing Deployment Using a Staging Site

$ STAGING_SERVER=superlists-staging.ottg.eu python manage.py test functional_tests

==
FAIL: test_can_start_a_list_for_one_user
(functional_tests.tests.NewVisitorTest)

Traceback (most recent call last):
 File "/.../superlists/functional_tests/tests.py", line 49, in
test_can_start_a_list_and_retrieve_it_later
 self.assertIn('To-Do', self.browser.title)
AssertionError: 'To-Do' not found in 'Domain name registration | Domain names
| Web Hosting | 123-reg'
[...]

==
FAIL: test_multiple_users_can_start_lists_at_different_urls
(functional_tests.tests.NewVisitorTest)

Traceback (most recent call last):
 File
"/.../superlists/functional_tests/tests.py", line 86, in
test_layout_and_styling
 inputbox = self.browser.find_element_by_id('id_new_item')
[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: [id="id_new_item"]
[...]

==
FAIL: test_layout_and_styling (functional_tests.tests.NewVisitorTest)

Traceback (most recent call last):
 File
[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: [id="id_new_item"]
[...]

Ran 3 tests in 19.480s:

FAILED (failures=3)

If, on Windows, you see an error saying something like “STAG‐
ING_SERVER is not recognized as a command”, it’s probably
because you’re not using Git-Bash. Take another look at the “Pre‐
requisites and Assumptions” section.

You can see that both tests are failing, as expected, since I haven’t actually set up my
domain yet. In fact, you can see from the first traceback that the test is actually end‐
ing up on the home page of my domain registrar.

The FT seems to be testing the right things though, so let’s commit:

As Always, Start with a Test | 159

$ git diff # should show changes to functional_tests.py
$ git commit -am "Hack FT runner to be able to test staging"

Don’t use export to set the STAGING_SERVER environment vari‐
able; otherwise, all your subsequent test runs in that terminal will
be against staging (and that can be very confusing if you’re not
expecting it). Setting it explicitly inline each time you run the FTs is
best.

Getting a Domain Name
We’re going to need a couple of domain names at this point in the book—they can
both be subdomains of a single domain. I’m going to use superlists.ottg.eu and
superlists-staging.ottg.eu. If you don’t already own a domain, this is the time to register
one! Again, this is something I really want you to actually do. If you’ve never regis‐
tered a domain before, just pick any old registrar and buy a cheap one—it should
only cost you $5 or so, and you can even find free ones. I promise seeing your site on
a “real” website will be a thrill.

Manually Provisioning a Server to Host Our Site
We can separate out “deployment” into two tasks:

• Provisioning a new server to be able to host the code
• Deploying a new version of the code to an existing server

Some people like to use a brand new server for every deployment—it’s what we do at
PythonAnywhere. That’s only necessary for larger, more complex sites though, or
major changes to an existing site. For a simple site like ours, it makes sense to sepa‐
rate the two tasks. And, although we eventually want both to be completely automa‐
ted, we can probably live with a manual provisioning system for now.

As you go through this chapter, you should be aware that provisioning is something
that varies a lot, and that as a result there are few universal best practices for deploy‐
ment. So, rather than trying to remember the specifics of what I’m doing here, you
should be trying to understand the rationale, so that you can apply the same kind of
thinking in the specific future circumstances you encounter.

Choosing Where to Host Our Site
There are loads of different solutions out there these days, but they broadly fall into
two camps:

160 | Chapter 9: Testing Deployment Using a Staging Site

• Running your own (possibly virtual) server
• Using a Platform-As-A-Service (PaaS) offering like Heroku, OpenShift, or

PythonAnywhere

Particularly for small sites, a PaaS offers a lot of advantages, and I would definitely
recommend looking into them. We’re not going to use a PaaS in this book however,
for several reasons. Firstly, I have a conflict of interest, in that I think PythonAny‐
where is the best, but then again I would say that because I work there. Secondly, all
the PaaS offerings are quite different, and the procedures to deploy to each vary a lot
—learning about one doesn’t necessarily tell you about the others. Any one of them
might change their process radically, or simply go out of business by the time you get
to read this book.

Instead, we’ll learn just a tiny bit of good old-fashioned server admin, including SSH
and web server config. They’re unlikely to ever go away, and knowing a bit about
them will get you some respect from all the grizzled dinosaurs out there.

What I have done is to try to set up a server in such a way that it’s a lot like the envi‐
ronment you get from a PaaS, so you should be able to apply the lessons we learn in
the deployment section, no matter what provisioning solution you choose.

Spinning Up a Server
I’m not going to dictate how you do this—whether you choose Amazon AWS, Rack‐
space, Digital Ocean, your own server in your own data centre or a Raspberry Pi in a
cupboard under the stairs, any solution should be fine, as long as:

• Your server is running Ubuntu 16.04 (aka “Xenial/LTS”).
• You have root access to it.
• It’s on the public internet.
• You can SSH into it.

I’m recommending Ubuntu as a distro because it’s easy to get Python 3.6 on it and it
has some specific ways of configuring Nginx, which I’m going to make use of next. If
you know what you’re doing, you can probably get away with using something else,
but you’re on your own.

If you’ve never started a Linux server before and you have absolutely no idea where to
start, I wrote a very brief guide on GitHub.

Manually Provisioning a Server to Host Our Site | 161

https://github.com/hjwp/Book-TDD-Web-Dev-Python/blob/master/server-quickstart.md

Some people get to this chapter, and are tempted to skip the
domain bit, and the “getting a real server” bit, and just use a VM on
their own PC. Don’t do this. It’s not the same, and you’ll have more
difficulty following the instructions, which are complicated enough
as it is. If you’re worried about cost, dig around and you’ll find free
options for both. Email me if you need further pointers; I’m always
happy to help.

User Accounts, SSH, and Privileges
In these instructions, I’m assuming that you have a nonroot user account set up that
has “sudo” privileges, so whenever we need to do something that requires root access,
we use sudo, and I’m explicit about that in the various instructions that follow.

My user is called “elspeth”, but you can call yours whatever you like!

Installing Nginx
We’ll need a web server, and all the cool kids are using Nginx these days, so we will
too. Having fought with Apache for many years, I can tell you it’s a blessed relief in
terms of the readability of its config files, if nothing else!

Installing Nginx on my server was a matter of doing an apt-get, and I could then see
the default Nginx “Hello World” screen:

elspeth@server:$ sudo apt-get install nginx
elspeth@server:$ sudo systemctl start nginx

(You may need to do an apt-get update and/or an apt-get upgrade first.)

Look out for that elspeth@server in the command-line listings in
this chapter. It indicates commands that must be run on the server,
as opposed to commands you run on your own PC.

You should be able to go to the IP address of your server, and see the “Welcome to
nginx” page at this point, as in Figure 9-1.

If you don’t see it, it may be because your firewall does not open
port 80 to the world. On AWS, for example, you may need to con‐
figure the “security group” for your server to open port 80.

162 | Chapter 9: Testing Deployment Using a Staging Site

Figure 9-1. Nginx—it works!

Installing Python 3.6
Python 3.6 wasn’t available in the standard repositories on Ubuntu at the time of
writing, but the user-contributed “Deadsnakes PPA” has it. Here’s how we install it:

While we’ve got root access, let’s make sure the server has the key pieces of software
we need at the system level: Python, Git, pip, and virtualenv.

elspeth@server:$ sudo add-apt-repository ppa:fkrull/deadsnakes
elspeth@server:$ sudo apt-get update
elspeth@server:$ sudo apt-get install python3.6 python3.6-venv

And while we’re at it, we’ll just make sure Git is installed too.

elspeth@server:$ sudo apt-get install git

Configuring Domains for Staging and Live
We don’t want to be messing about with IP addresses all the time, so we should point
our staging and live domains to the server. At my registrar, the control screens looked
a bit like Figure 9-2.

Manually Provisioning a Server to Host Our Site | 163

https://launchpad.net/~fkrull/+archive/ubuntu/deadsnakes

Figure 9-2. Domain setup

In the DNS system, pointing a domain at a specific IP address is called an “A-Record”.
All registrars are slightly different, but a bit of clicking around should get you to the
right screen in yours.

Using the FT to Confirm the Domain Works and Nginx Is Running
To confirm this works, we can rerun our functional tests and see that their failure
messages have changed slightly—one of them in particular should now mention
Nginx:

$ STAGING_SERVER=superlists-staging.ottg.eu python manage.py test functional_tests
[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: [id="id_new_item"]
[...]
AssertionError: 'To-Do' not found in 'Welcome to nginx!'

Progress! Give yourself a pat on the back, and maybe a nice cup of tea and a Choco‐
late biscuit.

Deploying Our Code Manually
The next step is to get a copy of the staging site up and running, just to check whether
we can get Nginx and Django to talk to each other. As we do so, we’re starting to
move into doing “deployment” rather than provisioning, so we should be thinking
about how we can automate the process as we go.

164 | Chapter 9: Testing Deployment Using a Staging Site

https://en.wikipedia.org/wiki/Digestive_biscuit
https://en.wikipedia.org/wiki/Digestive_biscuit

One rule of thumb for distinguishing provisioning from deploy‐
ment is that you tend to need root permissions for the former, but
you don’t for the latter.

We need a directory for the source to live in. We’ll put it somewhere in the home
folder of our nonroot user; in my case it would be at /home/elspeth (this is likely to be
the setup on any shared hosting system, but you should always run your web apps as
a nonroot user, in any case). I’m going to set up my sites like this:

/home/elspeth
├── sites
│ ├── www.live.my-website.com
│ │ ├── database
│ │ │ └── db.sqlite3
│ │ ├── source
│ │ │ ├── manage.py
│ │ │ ├── superlists
│ │ │ ├── etc...
│ │ │
│ │ ├── static
│ │ │ ├── base.css
│ │ │ ├── etc...
│ │ │
│ │ └── virtualenv
│ │ ├── lib
│ │ ├── etc...
│ │
│ ├── www.staging.my-website.com
│ │ ├── database
│ │ ├── etc...

Each site (staging, live, or any other website) has its own folder. Within that we have a
separate folder for the source code, the database, and the static files. The logic is that,
while the source code might change from one version of the site to the next, the data‐
base will stay the same. The static folder is in the same relative location, ../static, that
we set up at the end of the last chapter. Finally, the virtualenv gets its own subfolder
too (on the server, there’s no need to use virtualenvwrapper; we’ll create a virtualenv
manually).

Adjusting the Database Location
First let’s change the location of our database in settings.py, and make sure we can get
that working on our local PC:

Deploying Our Code Manually | 165

superlists/settings.py (ch08l003)
Build paths inside the project like this: os.path.join(BASE_DIR, ...)
import os
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
[...]

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': os.path.join(BASE_DIR, '../database/db.sqlite3'),
 }
}

Check out the way BASE_DIR is defined, further up in settings.py.
Notice the abspath gets done first (i.e., innermost). Always follow
this pattern when path wrangling; otherwise, you can see strange
things happening depending on how the file is imported. Thanks to
Green Nathan for that tip!

Now let’s try it locally:

$ mkdir ../database
$ python manage.py migrate --noinput
Operations to perform:
Apply all migrations: auth, contenttypes, lists, sessions
Running migrations:
[...]
$ ls ../database/
db.sqlite3

That seems to work. Let’s commit it:

$ git diff # should show changes in settings.py
$ git commit -am "move sqlite database outside of main source tree"

To get our code onto the server, we’ll use Git and go via one of the code-sharing sites.
If you haven’t already, push your code up to GitHub, BitBucket, or similar. They all
have excellent instructions for beginners on how to do that.

Here are some bash commands that will set this all up. If you’re not familiar with it,
note the export command which lets me set up a “local variable” in bash:

elspeth@server:$ export SITENAME=superlists-staging.ottg.eu
elspeth@server:$ mkdir -p ~/sites/$SITENAME/database
elspeth@server:$ mkdir -p ~/sites/$SITENAME/static
elspeth@server:$ mkdir -p ~/sites/$SITENAME/virtualenv
you should replace the URL in the next line with the URL for your own repo
elspeth@server:$ git clone https://github.com/hjwp/book-example.git \
~/sites/$SITENAME/source
Resolving deltas: 100% [...]

166 | Chapter 9: Testing Deployment Using a Staging Site

https://github.com/CleanCut/green

A bash variable defined using export only lasts as long as that con‐
sole session. If you log out of the server and log back in again,
you’ll need to redefine it. It’s devious because Bash won’t error, it
will just substitute the empty string for the variable, which will lead
to weird results…if in doubt, do a quick echo $SITENAME.

Now we’ve got the site installed, let’s just try running the dev server—this is a smoke
test, to see if all the moving parts are connected:

elspeth@server:$ $ cd ~/sites/$SITENAME/source
$ python manage.py runserver
Traceback (most recent call last):
 File "manage.py", line 8, in <module>
 from django.core.management import execute_from_command_line
ImportError: No module named django.core.management

Ah. Django isn’t installed on the server.

Creating a Virtualenv Manually, and Using requirements.txt
To “save” the list of packages we need in our virtualenv, and be able to re-create it on
the server, we create a requirements.txt file:

$ echo "django==1.11" > requirements.txt
$ git add requirements.txt
$ git commit -m "Add requirements.txt for virtualenv"

You may be wondering why we didn’t add our other dependency,
Selenium, to our requirements. The reason is that Selenium is only
a dependency for the tests, not the application code. Some people
like to also create a file called test-requirements.txt.

Now we do a git push to send our updates up to our code-sharing site:

$ git push

And we can pull those changes down to the server:

elspeth@server:$ git pull # may ask you to do some git config first

Creating a virtualenv “manually” (i.e., without virtualenvwrapper) involves using
the standard library “venv” module, and specifying the path you want the virtualenv
to go in:

elspeth@server:$ pwd
/home/espeth/sites/staging.superlists.com/source
elspeth@server:$ python3.6 -m venv ../virtualenv
elspeth@server:$ ls ../virtualenv/bin
activate activate.fish easy_install-3.6 pip3 python
activate.csh easy_install pip pip3.6 python3

Deploying Our Code Manually | 167

If we wanted to activate the virtualenv, we could do so with source ../

virtualenv/bin/activate, but we don’t need to do that. We can actually do every‐
thing we want to by calling the versions of Python, pip, and the other executables in
the virtualenv’s bin directory, as we’ll see.

To install our requirements into the virtualenv, we use the virtualenv pip:

elspeth@server:$../virtualenv/bin/pip install -r requirements.txt
Downloading/unpacking Django==1.11 (from -r requirements.txt (line 1))
[...]
Successfully installed Django

And to run Python in the virtualenv, we use the virtualenv python binary:

elspeth@server:$../virtualenv/bin/python manage.py runserver
Validating models...
0 errors found
[...]

Depending on your firewall configuration, you may even be able to
manually visit your site at this point. You’ll need to run runserver
0.0.0.0:8000 to listen on the public as well as private IP address,
and then go to http://your.domain.com:8000.

That looks like it’s running happily. We can Ctrl-C it for now.

More progress! We’ve got a system for getting code to and from the server (git push
and git pull), and we’ve got a virtualenv set up to match our local one, and a single
file, requirements.txt, to keep them in sync.

Next we’ll configure the Nginx web server to talk to Django and get our site up on the
standard port 80.

Simple Nginx Configuration
We create an Nginx config file to tell it to send requests for our staging site along to
Django. A minimal config looks like this:

server: /etc/nginx/sites-available/superlists-staging.ottg.eu
server {
 listen 80;
 server_name superlists-staging.ottg.eu;

 location / {
 proxy_pass http://localhost:8000;
 }
}

168 | Chapter 9: Testing Deployment Using a Staging Site

This config says it will only listen for our staging domain, and will “proxy” all
requests to the local port 8000 where it expects to find Django waiting to respond.

I saved this to a file called superlists-staging.ottg.eu inside the /etc/nginx/sites-available
folder.

Not sure how to edit a file on the server? There’s always vi, which
I’ll keep encouraging you to learn a bit of, but perhaps today is
already too full of new things. Try the relatively beginner-friendly
nano instead. Note you’ll also need to use sudo because the file is in
a system folder.

We then add it to the enabled sites for the server by creating a symlink to it:
elspeth@server:$ echo $SITENAME # check this still has our site in
superlists-staging.ottg.eu
elspeth@server:$ sudo ln -s ../sites-available/$SITENAME /etc/nginx/sites-enabled/$SITENAME
elspeth@server:$ ls -l /etc/nginx/sites-enabled # check our symlink is there

That’s the Debian/Ubuntu preferred way of saving Nginx configurations—the real
config file in sites-available, and a symlink in sites-enabled; the idea is that it makes it
easier to switch sites on or off.

We also may as well remove the default “Welcome to nginx” config, to avoid any
confusion:

elspeth@server:$ sudo rm /etc/nginx/sites-enabled/default

And now to test it:

elspeth@server:$ sudo systemctl reload nginx
elspeth@server:$../virtualenv/bin/python manage.py runserver

I also had to edit /etc/nginx/nginx.conf and uncomment a line say‐
ing server_names_hash_bucket_size 64; to get my long domain
name to work. You may not have this problem; Nginx will warn
you when you do a reload if it has any trouble with its config files.

A quick visual inspection confirms—the site is up (Figure 9-3)!

Deploying Our Code Manually | 169

http://www.howtogeek.com/howto/42980/the-beginners-guide-to-nano-the-linux-command-line-text-editor/

Figure 9-3. The staging site is up!

If you ever find Nginx isn’t behaving as expected, try the command
sudo nginx -t, which does a config test, and will warn you of any
problems in your configuration files.

Let’s see what our functional tests say:
$ STAGING_SERVER=superlists-staging.ottg.eu python manage.py test functional_tests
[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
[...]
AssertionError: 0.0 != 512 within 3 delta

The tests are failing as soon as they try to submit a new item, because we haven’t set
up the database. You’ll probably have spotted the yellow Django debug page
(Figure 9-4) telling us as much as the tests went through, or if you tried it manually.

170 | Chapter 9: Testing Deployment Using a Staging Site

Figure 9-4. But the database isn’t

The tests saved us from potential embarrassment there. The site
looked fine when we loaded its front page. If we’d been a little hasty,
we might have thought we were done, and it would have been the
first users that discovered that nasty Django DEBUG page. Okay,
slight exaggeration for effect, maybe we would have checked, but
what happens as the site gets bigger and more complex? You can’t
check everything. The tests can.

Creating the Database with migrate
We run migrate using the --noinput argument to suppress the two little “are you
sure” prompts:

elspeth@server:$../virtualenv/bin/python manage.py migrate --noinput
Creating tables ...
[...]
elspeth@server:$ ls ../database/
db.sqlite3
elspeth@server:$../virtualenv/bin/python manage.py runserver

Let’s try the FTs again:

Deploying Our Code Manually | 171

$ STAGING_SERVER=superlists-staging.ottg.eu python manage.py test functional_tests
[...]

...

Ran 3 tests in 10.718s

OK

It’s great to see the site up and running! We might reward ourselves with a well-
earned tea break at this point, before moving on to the next section…

If you see a “502 - Bad Gateway”, it’s probably because you forgot to
restart the dev server with manage.py runserver after the migrate.

There are a few more debugging tips in the sidebar that follows.

Server Debugging Tips
Deployments are tricky! If ever things don’t go exactly as expected, here are a few tips
and things to look out for:

• I’m sure you already have, but double-check that each file is exactly where it
should be and has the right contents—a single stray character can make all the
difference.

• Nginx error logs go into /var/log/nginx/error.log.
• You can ask Nginx to “check” its config using the -t flag: nginx -t
• Make sure your browser isn’t caching an out-of-date response. Use Ctrl-Refresh,

or start a new private browser window.
• This may be clutching at straws, but I’ve sometimes seen inexplicable behaviour

on the server that’s only been resolved when I fully restarted it with a sudo
reboot.

If you ever get completely stuck, there’s always the option of blowing away your server
and starting again from scratch! It should go faster the second time…

172 | Chapter 9: Testing Deployment Using a Staging Site

Success! Our Hack Deployment Works
Phew. Assuming you managed to get that up and running, we are at least reassured
that the basic piping works, but we really can’t be using the Django dev server in pro‐
duction. We also can’t be relying on manually starting it up with runserver. In the
next chapter, we’ll make our hacky deployment more production-ready.

Test-Driving Server Configuration and Deployment
Tests take some of the uncertainty out of deployment

For developers, server administration is always “fun”, by which I mean, a process
full of uncertainty and surprises. My aim during this chapter was to show that a
functional test suite can take some of the uncertainty out of the process.

Typical pain points—database, static files, dependencies, custom settings
The things that you need to keep an eye out for on any deployment include your
database configuration, static files, software dependencies, and custom settings
that differ between development and production. You’ll need to think through
each of these for your own deployments.

Tests allow us to experiment
Whenever we make a change to our server configuration, we can rerun the test
suite, and be confident that everything works as well as it did before. It allows us
to experiment with our setup with less fear (as we’ll see in the next chapter).

Success! Our Hack Deployment Works | 173

CHAPTER 10

Getting to a Production-Ready Deployment

In this chapter we’ll make some changes to our site to move to a configuration that’s
more production-ready. As we make each change, we’ll use the tests to tell us whether
things are still working.

What’s wrong with our hacky deployment? Well, we can’t use the Django dev server
for production; it’s not designed for “real-life” loads. We’ll use something called Guni‐
corn instead to run our Django code, and we’ll get Nginx to serve our static files.

Our settings.py currently has DEBUG=True, and that’s strongly recommended against
for production (you don’t want users staring at debug tracebacks of your code when
your site errors, for example). We’ll also need to set ALLOWED_HOSTS for security.

We want our site to start up automatically whenever the server reboots. For that we’ll
write a Systemd config file.

Finally, hardcoding port 8000 won’t let us run multiple sites on this server, so we’ll
switch to using “unix sockets” to communicate between nginx and Django.

Switching to Gunicorn
Do you know why the Django mascot is a pony? The story is that Django comes with
so many things you want: an ORM, all sorts of middleware, the admin site… “What
else do you want, a pony?” Well, Gunicorn stands for “Green Unicorn”, which I guess
is what you’d want next if you already had a pony…

elspeth@server:$../virtualenv/bin/pip install gunicorn

Gunicorn will need to know a path to a WSGI server, which is usually a function
called application. Django provides one in superlists/wsgi.py:

175

elspeth@server:$../virtualenv/bin/gunicorn superlists.wsgi:application
2013-05-27 16:22:01 [10592] [INFO] Starting gunicorn 0.19.6
2013-05-27 16:22:01 [10592] [INFO] Listening at: http://127.0.0.1:8000 (10592)
[...]

If you now take a look at the site, you’ll find the CSS is all broken, as in Figure 10-1.

And if we run the functional tests, you’ll see they confirm that something is wrong.
The test for adding list items passes happily, but the test for layout + styling fails.
Good job, tests!

$ STAGING_SERVER=superlists-staging.ottg.eu python manage.py test functional_tests
[...]
AssertionError: 125.0 != 512 within 3 delta
FAILED (failures=1)

The reason that the CSS is broken is that although the Django dev server will serve
static files magically for you, Gunicorn doesn’t. Now is the time to tell Nginx to do it
instead.

Figure 10-1. Broken CSS

One step forward, one step backward, but at least the tests are there to help. Moving
on!

176 | Chapter 10: Getting to a Production-Ready Deployment

Getting Nginx to Serve Static Files
First we run collectstatic to copy all the static files to a folder where Nginx can
find them:

elspeth@server:$../virtualenv/bin/python manage.py collectstatic --noinput
elspeth@server:$ ls ../static/
base.css bootstrap

Now we tell Nginx to start serving those static files for us:

server {
 listen 80;
 server_name superlists-staging.ottg.eu;

 location /static {
 alias /home/elspeth/sites/superlists-staging.ottg.eu/static;
 }

 location / {
 proxy_pass http://localhost:8000;
 }
}

Reload Nginx and restart Gunicorn…

elspeth@server:$ sudo systemctl reload nginx
elspeth@server:$../virtualenv/bin/gunicorn superlists.wsgi:application

And if we take another look at the site, things are looking much healthier. We can
rerun our FTs:

$ STAGING_SERVER=superlists-staging.ottg.eu python manage.py test functional_tests
[...]

...

Ran 3 tests in 10.718s

OK

Phew.

Switching to Using Unix Sockets
When we want to serve both staging and live, we can’t have both servers trying to use
port 8000. We could decide to allocate different ports, but that’s a bit arbitrary, and it
would be dangerously easy to get it wrong and start the staging server on the live
port, or vice versa.

A better solution is to use Unix domain sockets—they’re like files on disk, but can be
used by Nginx and Gunicorn to talk to each other. We’ll put our sockets in /tmp. Let’s
change the proxy settings in Nginx:

Getting Nginx to Serve Static Files | 177

server: /etc/nginx/sites-available/superlists-staging.ottg.eu
[...]
 location / {
 proxy_set_header Host $host;
 proxy_pass http://unix:/tmp/superlists-staging.ottg.eu.socket;
 }
}

proxy_set_header is used to make sure Gunicorn and Django know what domain it’s
running on. We need that for the ALLOWED_HOSTS security feature, which we’re about
to switch on.

Now we restart Gunicorn, but this time telling it to listen on a socket instead of on
the default port:

elspeth@server:$ sudo systemctl reload nginx
elspeth@server:$../virtualenv/bin/gunicorn --bind \
 unix:/tmp/superlists-staging.ottg.eu.socket superlists.wsgi:application

And again, we rerun the functional test again, to make sure things still pass:
$ STAGING_SERVER=superlists-staging.ottg.eu python manage.py test functional_tests
[...]
OK

A couple more steps!

Switching DEBUG to False and Setting ALLOWED_HOSTS
Django’s DEBUG mode is all very well for hacking about on your own server, but leav‐
ing those pages full of tracebacks available isn’t secure.

You’ll find the DEBUG setting at the top of settings.py. When we set this to False, we
also need to set another setting called ALLOWED_HOSTS. This was added as a security
feature in Django 1.5. Unfortunately, it doesn’t have a helpful comment in the default
settings.py, but we can add one ourselves. Do this on the server:

server: superlists/settings.py
SECURITY WARNING: don't run with debug turned on in production!
DEBUG = False

TEMPLATE_DEBUG = DEBUG

Needed when DEBUG=False
ALLOWED_HOSTS = ['superlists-staging.ottg.eu']
[...]

And, once again, we restart Gunicorn and run the FT to check that things still work.

178 | Chapter 10: Getting to a Production-Ready Deployment

http://bit.ly/SuvluV
http://bit.ly/2u0R2d6
http://bit.ly/2u0R2d6

Don’t commit these changes on the server. At the moment this is
just a hack to get things working, not a change we want to keep in
our repo. In general, to keep things simple, I’m only going to do Git
commits from the local PC, using git push and git pull when I
need to sync them up to the server.

One more test run to reassure ourselves that things still work?
$ STAGING_SERVER=superlists-staging.ottg.eu python manage.py test functional_tests
[...]
OK

Good.

Using Systemd to Make Sure Gunicorn Starts on Boot
Our final step is to make sure that the server starts up Gunicorn automatically on
boot, and reloads it automatically if it crashes. On Ubuntu, the way to do this is using
Systemd:

server: /etc/systemd/system/gunicorn-superlists-staging.ottg.eu.service
[Unit]
Description=Gunicorn server for superlists-staging.ottg.eu

[Service]
Restart=on-failure
User=elspeth
WorkingDirectory=/home/elspeth/sites/superlists-staging.ottg.eu/source
ExecStart=/home/elspeth/sites/superlists-staging.ottg.eu/virtualenv/bin/gunicorn \
 --bind unix:/tmp/superlists-staging.ottg.eu.socket \
 superlists.wsgi:application

[Install]
WantedBy=multi-user.target

Systemd is joyously simple to configure (especially if you’ve ever had the dubious
pleasure of writing an init.d script), and is fairly self-explanatory.

Restart=on-failure will restart the process automatically if it crashes.

User=elspeth makes the process run as the “elspeth” user.

WorkingDirectory sets the current working directory.

ExecStart is the actual process to execute. We use the \ line continuation charac‐
ters to split the full command over multiple lines, for readability, but it could all
go on one line.

Using Systemd to Make Sure Gunicorn Starts on Boot | 179

WantedBy in the [Install] section is what tells Systemd we want this service to
start on boot.

Systemd scripts live in /etc/systemd/system, and their names must end in .service.

Now we tell Systemd to start Gunicorn with the systemctl command:

this command is necessary to tell Systemd to load our new config file
elspeth@server:$ sudo systemctl daemon-reload
this command tells Systemd to always load our service on boot
elspeth@server:$ sudo systemctl enable gunicorn-superlists-staging.ottg.eu
this command actually starts our service
elspeth@server:$ sudo systemctl start gunicorn-superlists-staging.ottg.eu

(You should find the systemctl command responds to tab completion, including of
the service name, by the way.)

Now we can rerun the FTs to see that everything still works. You can even test that the
site comes back up if you reboot the server!

More Debugging Tips
• Check the Systemd logs for using sudo journalctl -u gunicorn-superlists-
staging.ottg.eu.

• You can ask Systemd to check the validity of your service configuration:
systemd-analyze verify /path/to/my.service.

• Remember to restart both services whenever you make changes.
• If you make changes to the Systemd config file, you need to run daemon-reload

before systemctl restart to see the effect of your changes.

Saving Our Changes: Adding Gunicorn to Our requirements.txt
Back in the local copy of your repo, we should add Gunicorn to the list of packages
we need in our virtualenvs:

$ pip install gunicorn
$ pip freeze | grep gunicorn >> requirements.txt
$ git commit -am "Add gunicorn to virtualenv requirements"
$ git push

On Windows, at the time of writing, Gunicorn would pip install
quite happily, but it wouldn’t actually work if you tried to use it.
Thankfully we only ever run it on the server, so that’s not a prob‐
lem. And, Windows support is being discussed…

180 | Chapter 10: Getting to a Production-Ready Deployment

http://stackoverflow.com/questions/11087682/does-gunicorn-run-on-windows

Thinking About Automating
Let’s recap our provisioning and deployment procedures:

Provisioning
1. Assume we have a user account and home folder
2. add-apt-repository ppa:fkrull/deadsnakes

3. apt-get install nginx git python3.6 python3.6-venv

4. Add Nginx config for virtual host
5. Add Systemd job for Gunicorn

Deployment
1. Create directory structure in ~/sites
2. Pull down source code into folder named source
3. Start virtualenv in ../virtualenv
4. pip install -r requirements.txt

5. manage.py migrate for database
6. collectstatic for static files
7. Set DEBUG = False and ALLOWED_HOSTS in settings.py
8. Restart Gunicorn job
9. Run FTs to check everything works

Assuming we’re not ready to entirely automate our provisioning process, how should
we save the results of our investigation so far? I would say that the Nginx and Sys‐
temd config files should probably be saved somewhere, in a way that makes it easy to
reuse them later. Let’s save them in a new subfolder in our repo.

Saving Templates for Our Provisioning Config Files
First, we create the subfolder:

$ mkdir deploy_tools

Thinking About Automating | 181

Here’s a generic template for our Nginx config:

deploy_tools/nginx.template.conf
server {
 listen 80;
 server_name SITENAME;

 location /static {
 alias /home/elspeth/sites/SITENAME/static;
 }

 location / {
 proxy_set_header Host $host;
 proxy_pass http://unix:/tmp/SITENAME.socket;
 }
}

And here’s one for the Gunicorn Sytemd service:

deploy_tools/gunicorn-systemd.template.service
[Unit]
Description=Gunicorn server for SITENAME

[Service]
Restart=on-failure
User=elspeth
WorkingDirectory=/home/elspeth/sites/SITENAME/source
ExecStart=/home/elspeth/sites/SITENAME/virtualenv/bin/gunicorn \
 --bind unix:/tmp/SITENAME.socket \
 superlists.wsgi:application

[Install]
WantedBy=multi-user.target

Now it’s easy for us to use those two files to generate a new site, by doing a find and
replace on SITENAME.

For the rest, just keeping a few notes is OK. Why not keep them in a file in the repo
too?

182 | Chapter 10: Getting to a Production-Ready Deployment

deploy_tools/provisioning_notes.md
Provisioning a new site
=======================

Required packages:

* nginx
* Python 3.6
* virtualenv + pip
* Git

eg, on Ubuntu:

 sudo add-apt-repository ppa:fkrull/deadsnakes
 sudo apt-get install nginx git python36 python3.6-venv

Nginx Virtual Host config

* see nginx.template.conf
* replace SITENAME with, e.g., staging.my-domain.com

Systemd service

* see gunicorn-systemd.template.service
* replace SITENAME with, e.g., staging.my-domain.com

Folder structure:
Assume we have a user account at /home/username

/home/username
└── sites
 └── SITENAME
 ├── database
 ├── source
 ├── static
 └── virtualenv

We can do a commit for those:

$ git add deploy_tools
$ git status # see three new files
$ git commit -m "Notes and template config files for provisioning"

Thinking About Automating | 183

Our source tree will now look something like this:

.
├── deploy_tools
│ ├── gunicorn-systemd.template.service
│ ├── nginx.template.conf
│ └── provisioning_notes.md
├── functional_tests
│ ├── [...]
├── lists
│ ├── __init__.py
│ ├── models.py
│ ├── [...]
│ ├── static
│ │ ├── base.css
│ │ └── bootstrap
│ │ ├── [...]
│ ├── templates
│ │ ├── base.html
│ │ ├── [...]
│ ├── tests.py
│ ├── urls.py
│ └── views.py
├── manage.py
├── requirements.txt
└── superlists
 ├── [...]

Saving Our Progress
Being able to run our FTs against a staging server can be very reassuring. But, in most
cases, you don’t want to run your FTs against your “real” server. In order to “save our
work”, and reassure ourselves that the production server will work just as well as the
real server, we need to make our deployment process repeatable.

Automation is the answer, and it’s the topic of the next chapter.

184 | Chapter 10: Getting to a Production-Ready Deployment

Production-Readiness for Server Deployments
A few things to think about when trying to build a production-ready server
environment:

Don’t use the Django dev server in production
Something like Gunicorn or uWSGI is a better tool for running Django; they will
let you run multiple workers, for example.

Don’t use Django to serve your static files
There’s no point in using a Python process to do the simple job of serving static
files. Nginx can do it, but so can other web servers like Apache or uWSGI.

Check your settings.py for dev-only settings
DEBUG=True and ALLOWED_HOSTS are the two we looked at, but you will probably
have others (we’ll see more when we start to send emails from the server).

Security
A serious discussion of server security is beyond the scope of this book, and I’d
warn against running your own servers without learning a good bit more about
it. (One reason people choose to use a PaaS to host their code is that it means a
slightly fewer security issues to worry about.) If you’d like a place to start, here’s
as good a place as any: My first 5 minutes on a server. I can definitely recom‐
mend the eye-opening experience of installing fail2ban and watching its logfiles
to see just how quickly it picks up on random drive-by attempts to brute force
your SSH login. The internet is a dangerous place!

Saving Our Progress | 185

https://plusbryan.com/my-first-5-minutes-on-a-server-or-essential-security-for-linux-servers

CHAPTER 11

Automating Deployment with Fabric

Automate, automate, automate.
—Cay Horstman

Automating deployment is critical for our staging tests to mean anything. By making
sure the deployment procedure is repeatable, we give ourselves assurances that every‐
thing will go well when we deploy to production.

Fabric is a tool which lets you automate commands that you want to run on servers.
“fabric3” is the Python 3 fork:

$ pip install fabric3

It’s safe to ignore any errors that say “failed building wheel” during
the fabric3 installation, as long as it says “Successfully installed…”
at the end.

The usual setup is to have a file called fabfile.py, which will contain one or more func‐
tions that can later be invoked from a command-line tool called fab, like this:

fab function_name:host=SERVER_ADDRESS

That will call function_name, passing in a connection to the server at
SERVER_ADDRESS. There are lots of other options for specifying usernames and pass‐
words, which you can find out about using fab --help.

187

Breakdown of a Fabric Script for Our Deployment
The best way to see how it works is with an example. Here’s one I made earlier, auto‐
mating all the deployment steps we’ve been going through. The main function is
called deploy; that’s the one we’ll invoke from the command line. It then calls out to
several helper functions, which we’ll build together one by one, explaining as we go.

deploy_tools/fabfile.py (ch09l001)
from fabric.contrib.files import append, exists, sed
from fabric.api import env, local, run
import random

REPO_URL = 'https://github.com/hjwp/book-example.git'

def deploy():
 site_folder = f'/home/{env.user}/sites/{env.host}'
 source_folder = site_folder + '/source'
 _create_directory_structure_if_necessary(site_folder)
 _get_latest_source(source_folder)
 _update_settings(source_folder, env.host)
 _update_virtualenv(source_folder)
 _update_static_files(source_folder)
 _update_database(source_folder)

You’ll want to update the REPO_URL variable with the URL of your own Git repo
on its code-sharing site.

env.host will contain the address of the server we’ve specified at the command
line (e.g., superlists.ottg.eu).

env.user will contain the username you’re using to log in to the server.

Hopefully all of those helper functions have fairly self-descriptive names. Because any
function in a fabfile can theoretically be invoked from the command line, I’ve used
the convention of a leading underscore to indicate that they’re not meant to be part of
the “public API” of the fabfile. Let’s take a look at each one, in chronological order.

188 | Chapter 11: Automating Deployment with Fabric

http://www.bbc.co.uk/cult/classic/bluepeter/valpetejohn/trivia.shtml

1 If you’re wondering why we’re building up paths manually with f-strings instead of the os.path.join com‐
mand we saw earlier, it’s because path.join will use backslashes if you run the script from Windows, but we
definitely want forward slashes on the server. That’s a common gotcha!

Creating the Directory Structure
Here’s how we build our directory structure, in a way that doesn’t fall down if it
already exists:

deploy_tools/fabfile.py (ch09l002)
def _create_directory_structure_if_necessary(site_folder):
 for subfolder in ('database', 'static', 'virtualenv', 'source'):
 run(f'mkdir -p {site_folder}/{subfolder}')

run is the most common Fabric command. It says “run this shell command on
the server”. The run commands in this chapter will replicate many of the com‐
mands we did manually in the last two.

mkdir -p is a useful flavour of mkdir, which is better in two ways: it can create
directories several levels deep, and it only creates them if necessary. So, mkdir -
p /tmp/foo/bar will create the directory bar but also its parent directory foo if it
needs to. It also won’t complain if bar already exists.1

Pulling Down Our Source Code with Git
Next we want to download the latest version of our source code to the server, like we
did with git pull in the previous chapters:

deploy_tools/fabfile.py (ch09l003)
def _get_latest_source(source_folder):
 if exists(source_folder + '/.git'):
 run(f'cd {source_folder} && git fetch')
 else:
 run(f'git clone {REPO_URL} {source_folder}')
 current_commit = local("git log -n 1 --format=%H", capture=True)
 run(f'cd {source_folder} && git reset --hard {current_commit}')

exists checks whether a directory or file already exists on the server. We look for
the .git hidden folder to check whether the repo has already been cloned in that
folder.

Breakdown of a Fabric Script for Our Deployment | 189

2 There is a Fabric “cd” command, but I figured it was one thing too many to add in this chapter.

Many commands start with a cd in order to set the current working directory.
Fabric doesn’t have any state, so it doesn’t remember what directory you’re in
from one run to the next.2

git fetch inside an existing repository pulls down all the latest commits from
the web (it’s like git pull, but without immediately updating the live source
tree).

Alternatively we use git clone with the repo URL to bring down a fresh source
tree.

Fabric’s local command runs a command on your local machine—it’s just a
wrapper around subprocess.Popen really, but it’s quite convenient. Here we cap‐
ture the output from that git log invocation to get the ID of the current commit
that’s on your local PC. That means the server will end up with whatever code is
currently checked out on your machine (as long as you’ve pushed it up to the
server).

We reset --hard to that commit, which will blow away any current changes in
the server’s code directory.

The end result of this is that we either do a git clone if it’s a fresh deploy, or we do a
git fetch + git reset --hard if a previous version of the code is already there; the
equivalent of the git pull we used when we did it manually, but with the reset --
hard to force overwriting any local changes.

For this script to work, you need to have done a git push of your
current local commit, so that the server can pull it down and reset
to it. If you see an error saying Could not parse object, try doing
a git push.

Updating settings.py
Next we update our settings file, to set the ALLOWED_HOSTS and DEBUG variables, and to
create a new SECRET_KEY:

190 | Chapter 11: Automating Deployment with Fabric

deploy_tools/fabfile.py (ch09l004)
def _update_settings(source_folder, site_name):
 settings_path = source_folder + '/superlists/settings.py'
 sed(settings_path, "DEBUG = True", "DEBUG = False")
 sed(settings_path,
 'ALLOWED_HOSTS =.+$',
 f'ALLOWED_HOSTS = ["{site_name}"]'
)
 secret_key_file = source_folder + '/superlists/secret_key.py'
 if not exists(secret_key_file):
 chars = 'abcdefghijklmnopqrstuvwxyz0123456789!@#$%^&*(-_=+)'
 key = ''.join(random.SystemRandom().choice(chars) for _ in range(50))
 append(secret_key_file, f'SECRET_KEY = "{key}"')
 append(settings_path, '\nfrom .secret_key import SECRET_KEY')

The Fabric sed command does a string substitution in a file; here it’s changing
DEBUG from True to False.

And here it is adjusting ALLOWED_HOSTS, using a regex to match the right line.

Django uses SECRET_KEY for some of its crypto—things like cookies and CSRF
protection. It’s good practice to make sure the secret key on the server is different
from the one in your source code repo, because that code might be visible to
strangers. This section will generate a new key to import into settings, if there
isn’t one there already (once you have a secret key, it should stay the same
between deploys). Find out more in the Django docs.

append just adds a line to the end of a file. (It’s clever enough not to bother if the
line is already there, but not clever enough to automatically add a newline if the
file doesn’t end in one. Hence the back-n.)

I’m using a relative import (from .secret_key instead of from secret_key) to
be absolutely sure we’re importing the local module, rather than one from some‐
where else on sys.path. I’ll talk a bit more about relative imports in the next
chapter.

Hacking the settings file like this is one way of changing configura‐
tion on the server. Another common pattern is to use environment
variables. We’ll see that in Chapter 21. See which one you like best.

Breakdown of a Fabric Script for Our Deployment | 191

https://docs.djangoproject.com/en/1.11/topics/signing/

Updating the Virtualenv
Next we create or update the virtualenv:

deploy_tools/fabfile.py (ch09l005)
def _update_virtualenv(source_folder):
 virtualenv_folder = source_folder + '/../virtualenv'

 if not exists(virtualenv_folder + '/bin/pip'):
 run(f'python3.6 -m venv {virtualenv_folder}')

 run(f'{virtualenv_folder}/bin/pip install -r {source_folder}/requirements.txt')

We look inside the virtualenv folder for the pip executable as a way of checking
whether it already exists.

Then we use pip install -r like we did earlier.

Updating static files is a single command:

deploy_tools/fabfile.py (ch09l006)
def _update_static_files(source_folder):
 run(

 f'cd {source_folder}'

 ' && ../virtualenv/bin/python manage.py collectstatic --noinput'
)

You can split long strings across multiple lines like this in Python; they concate‐
nate to a single string. It’s a common source of bugs when what you actually
wanted was a list of strings, but you forgot a comma!

We use the virtualenv binaries folder whenever we need to run a Django man‐
age.py command, to make sure we get the virtualenv version of Django, not the
system one.

Migrating the Database If Necessary
Finally, we update the database with manage.py migrate:

deploy_tools/fabfile.py (ch09l007)
def _update_database(source_folder):
 run(
 f'cd {source_folder}'
 ' && ../virtualenv/bin/python manage.py migrate --noinput'
)

192 | Chapter 11: Automating Deployment with Fabric

The --noinput removes any interactive yes/no confirmations that Fabric would find
hard to deal with.

And we’re done! Lots of new things to take in, I imagine, but I hope you can see how
this is all replicating the work we did manually earlier, with a bit of logic to make it
work both for brand new deployments and for existing ones that just need updating.
If you like words with Latin roots, you might describe it as idempotent, which means
it has the same effect whether you run it once or multiple times.

Trying It Out
Let’s try it out on our existing staging site, and see it working to update a deployment
that already exists:

$ cd deploy_tools
$ fab deploy:host=elspeth@superlists-staging.ottg.eu

[superlists-staging.ottg.eu] Executing task 'deploy'
[superlists-staging.ottg.eu] run: mkdir -p /home/elspeth/sites/superlists-stagin
[superlists-staging.ottg.eu] run: mkdir -p /home/elspeth/sites/superlists-stagin
[superlists-staging.ottg.eu] run: mkdir -p /home/elspeth/sites/superlists-stagin
[superlists-staging.ottg.eu] run: mkdir -p /home/elspeth/sites/superlists-stagin
[superlists-staging.ottg.eu] run: mkdir -p /home/elspeth/sites/superlists-stagin
[superlists-staging.ottg.eu] run: cd /home/elspeth/sites/superlists-staging.ottg
[localhost] local: git log -n 1 --format=%H
[superlists-staging.ottg.eu] run: cd /home/elspeth/sites/superlists-staging.ottg
[superlists-staging.ottg.eu] out: HEAD is now at 85a6c87 Add a fabfile for autom
[superlists-staging.ottg.eu] out:

[superlists-staging.ottg.eu] run: sed -i.bak -r -e 's/DEBUG = True/DEBUG = False
[superlists-staging.ottg.eu] run: echo 'ALLOWED_HOSTS = ["superlists-staging.ott
[superlists-staging.ottg.eu] run: echo 'SECRET_KEY = '\\''4p2u8fi6)bltep(6nd_3tt
[superlists-staging.ottg.eu] run: echo 'from .secret_key import SECRET_KEY' >> "

[superlists-staging.ottg.eu] run: /home/elspeth/sites/superlists-staging.ottg.eu
[superlists-staging.ottg.eu] out: Requirement already satisfied (use --upgrade t
[superlists-staging.ottg.eu] out: Requirement already satisfied (use --upgrade t
[superlists-staging.ottg.eu] out: Cleaning up...
[superlists-staging.ottg.eu] out:

[superlists-staging.ottg.eu] run: cd /home/elspeth/sites/superlists-staging.ottg
[superlists-staging.ottg.eu] out:
[superlists-staging.ottg.eu] out: 0 static files copied, 11 unmodified.
[superlists-staging.ottg.eu] out:

Trying It Out | 193

[superlists-staging.ottg.eu] run: cd /home/elspeth/sites/superlists-staging.ottg
[superlists-staging.ottg.eu] out: Creating tables ...
[superlists-staging.ottg.eu] out: Installing custom SQL ...
[superlists-staging.ottg.eu] out: Installing indexes ...
[superlists-staging.ottg.eu] out: Installed 0 object(s) from 0 fixture(s)
[superlists-staging.ottg.eu] out:
Done.
Disconnecting from superlists-staging.ottg.eu... done.

Awesome. I love making computers spew out pages and pages of output like that (in
fact I find it hard to stop myself from making little ’70s computer <brrp, brrrp, brrrp>
noises like Mother in Alien). If we look through it we can see it is doing our bidding:
the mkdir -p commands go through happily, even though the directories already
exist. Next git pull pulls down the couple of commits we just made. The sed and
echo >> modify our ’settings.py’. Then pip install -r requirements.txt com‐
pletes happily, noting that the existing virtualenv already has all the packages we
need. collectstatic also notices that the static files are all already there, and finally
the migrate completes without a hitch.

Fabric Configuration
If you are using an SSH key to log in, are storing it in the default location, and are
using the same username on the server as locally, then Fabric should “just work”. If
you aren’t, there are several tweaks you may need to apply in order to get the fab
command to do your bidding. They revolve around the username, the location of the
SSH key to use, or the password.

You can pass these in to Fabric at the command line. Check out:

$ fab --help

Or see the Fabric documentation for more info.

Deploying to Live
So, let’s try using it for our live site!

194 | Chapter 11: Automating Deployment with Fabric

http://docs.fabfile.org

$ fab deploy:host=elspeth@superlists.ottg.eu

$ fab deploy --host=superlists.ottg.eu
[superlists.ottg.eu] Executing task 'deploy'
[superlists.ottg.eu] run: mkdir -p /home/elspeth/sites/superlists.ottg.eu
[superlists.ottg.eu] run: mkdir -p /home/elspeth/sites/superlists.ottg.eu/databa
[superlists.ottg.eu] run: mkdir -p /home/elspeth/sites/superlists.ottg.eu/static
[superlists.ottg.eu] run: mkdir -p /home/elspeth/sites/superlists.ottg.eu/virtua
[superlists.ottg.eu] run: mkdir -p /home/elspeth/sites/superlists.ottg.eu/source
[superlists.ottg.eu] run: git clone https://github.com/hjwp/book-example.git /ho
[superlists.ottg.eu] out: Cloning into '/home/elspeth/sites/superlists.ottg.eu/s
[superlists.ottg.eu] out: remote: Counting objects: 3128, done.
[superlists.ottg.eu] out: Receiving objects: 0% (1/3128)
[...]
[superlists.ottg.eu] out: Receiving objects: 100% (3128/3128), 2.60 MiB | 829 Ki
[superlists.ottg.eu] out: Resolving deltas: 100% (1545/1545), done.
[superlists.ottg.eu] out:

[localhost] local: git log -n 1 --format=%H
[superlists.ottg.eu] run: cd /home/elspeth/sites/superlists.ottg.eu/source && gi
[superlists.ottg.eu] out: HEAD is now at 6c8615b use a secret key file
[superlists.ottg.eu] out:
[superlists.ottg.eu] run: sed -i.bak -r -e 's/DEBUG = True/DEBUG = False/g' "$(e
[superlists.ottg.eu] run: echo 'ALLOWED_HOSTS = ["superlists.ottg.eu"]' >> "$(ec
[superlists.ottg.eu] run: echo 'SECRET_KEY = '\\''mqu(ffwid5vleol%ke^jil*x1mkj-4
[superlists.ottg.eu] run: echo 'from .secret_key import SECRET_KEY' >> "$(echo /
[superlists.ottg.eu] run: python3.6 -m venv /home/elspeth/sites/superl
[superlists.ottg.eu] out: Using interpreter /usr/bin/python3.6
[superlists.ottg.eu] out: Using base prefix '/usr'
[superlists.ottg.eu] out: New python executable in /home/elspeth/sites/superlist
[superlists.ottg.eu] out: Also creating executable in /home/elspeth/sites/superl
[superlists.ottg.eu] out: Installing Setuptools............................done.

[superlists.ottg.eu] out: Installing Pip...................................done.
[superlists.ottg.eu] out:

[superlists.ottg.eu] run: /home/elspeth/sites/superlists.ottg.eu/source/../virtu
[superlists.ottg.eu] out: Downloading/unpacking Django==1.11 (from -r /home/el
[superlists.ottg.eu] out: Downloading Django-1.11.tar.gz (8.0MB):
[...]
[superlists.ottg.eu] out: Downloading Django-1.11.tar.gz (8.0MB): 100% 8.0M
[superlists.ottg.eu] out: Running setup.py egg_info for package Django
[superlists.ottg.eu] out:
[superlists.ottg.eu] out: warning: no previously-included files matching '__
[superlists.ottg.eu] out: warning: no previously-included files matching '*.
[superlists.ottg.eu] out: Downloading/unpacking gunicorn==17.5 (from -r /home/el
[superlists.ottg.eu] out: Downloading gunicorn-17.5.tar.gz (367kB): 100% 367k
[...]

Trying It Out | 195

[superlists.ottg.eu] out: Downloading gunicorn-17.5.tar.gz (367kB): 367kB down
[superlists.ottg.eu] out: Running setup.py egg_info for package gunicorn
[superlists.ottg.eu] out:
[superlists.ottg.eu] out: Installing collected packages: Django, gunicorn
[superlists.ottg.eu] out: Running setup.py install for Django
[superlists.ottg.eu] out: changing mode of build/scripts-3.3/django-admin.py
[superlists.ottg.eu] out:
[superlists.ottg.eu] out: warning: no previously-included files matching '__
[superlists.ottg.eu] out: warning: no previously-included files matching '*.
[superlists.ottg.eu] out: changing mode of /home/elspeth/sites/superlists.ot
[superlists.ottg.eu] out: Running setup.py install for gunicorn
[superlists.ottg.eu] out:
[superlists.ottg.eu] out: Installing gunicorn_paster script to /home/elspeth
[superlists.ottg.eu] out: Installing gunicorn script to /home/elspeth/sites/
[superlists.ottg.eu] out: Installing gunicorn_django script to /home/elspeth
[superlists.ottg.eu] out: Successfully installed Django gunicorn
[superlists.ottg.eu] out: Cleaning up...
[superlists.ottg.eu] out:

[superlists.ottg.eu] run: cd /home/elspeth/sites/superlists.ottg.eu/source && ..
[superlists.ottg.eu] out: Copying '/home/elspeth/sites/superlists.ottg.eu/source
[superlists.ottg.eu] out: Copying '/home/elspeth/sites/superlists.ottg.eu/source
[...]
[superlists.ottg.eu] out: Copying '/home/elspeth/sites/superlists.ottg.eu/source
[superlists.ottg.eu] out:
[superlists.ottg.eu] out: 11 static files copied.
[superlists.ottg.eu] out:
[superlists.ottg.eu] run: cd /home/elspeth/sites/superlists.ottg.eu/source && ..
[superlists.ottg.eu] out: Creating tables ...
[superlists.ottg.eu] out: Creating table auth_permission
[...]
[superlists.ottg.eu] out: Creating table lists_item
[superlists.ottg.eu] out: Installing custom SQL ...
[superlists.ottg.eu] out: Installing indexes ...
[superlists.ottg.eu] out: Installed 0 object(s) from 0 fixture(s)
[superlists.ottg.eu] out:
Done.
Disconnecting from superlists.ottg.eu... done.

Brrp brrp brpp. You can see the script follows a slightly different path, doing a git
clone to bring down a brand new repo instead of a git pull. It also needs to set up a
new virtualenv from scratch, including a fresh install of pip and Django. The collect
static actually creates new files this time, and the migrate seems to have worked
too.

Nginx and Gunicorn Config Using sed
What else do we need to do to get our live site into production? We refer to our pro‐
visioning notes, which tell us to use the template files to create our Nginx virtual host
and the Systemd service. How about a little Unix command-line magic?

196 | Chapter 11: Automating Deployment with Fabric

3 You might have seen nerdy people using this strange s/change-this/to-this/ notation on the internet. Now you
know why!

elspeth@server:$ sed "s/SITENAME/superlists.ottg.eu/g" \
 source/deploy_tools/nginx.template.conf \
 | sudo tee /etc/nginx/sites-available/superlists.ottg.eu

sed (“stream editor”) takes a stream of text and performs edits on it. It’s no accident
that the Fabric string substitution command has the same name. In this case we ask it
to substitute the string SITENAME for the address of our site, with the s/replaceme/
withthis/g syntax.3 We pipe (|) the output of that to a root-user process (sudo),
which uses tee to write what’s piped to it to a file, in this case the Nginx sites-
available virtualhost config file.

Next we activate that file with a symlink:

elspeth@server:$ sudo ln -s ../sites-available/superlists.ottg.eu \
 /etc/nginx/sites-enabled/superlists.ottg.eu

And we write the Systemd service, with another sed:

elspeth@server: sed "s/SITENAME/superlists.ottg.eu/g" \
 source/deploy_tools/gunicorn-systemd.template.service \
 | sudo tee /etc/systemd/system/gunicorn-superlists.ottg.eu.service

Finally we start both services:

elspeth@server:$ sudo systemctl daemon-reload
elspeth@server:$ sudo systemctl reload nginx
elspeth@server:$ sudo systemctl enable gunicorn-superlists.ottg.eu
elspeth@server:$ sudo systemctl start gunicorn-superlists.ottg.eu

And we take a look at our site: Figure 11-1. It works—hooray!

Trying It Out | 197

Figure 11-1. Brrp, brrp, brrp…it worked!

It’s done a good job. Good fabfile, have a biscuit. You have earned the privilege of
being added to the repo:

$ git add deploy_tools/fabfile.py
$ git commit -m "Add a fabfile for automated deploys"

198 | Chapter 11: Automating Deployment with Fabric

Git Tag the Release
One final bit of admin. In order to preserve a historical marker, we’ll use Git tags to
mark the state of the codebase that reflects what’s currently live on the server:

$ git tag LIVE
$ export TAG=$(date +DEPLOYED-%F/%H%M) # this generates a timestamp
$ echo $TAG # should show "DEPLOYED-" and then the timestamp
$ git tag $TAG
$ git push origin LIVE $TAG # pushes the tags up

Now it’s easy, at any time, to check what the difference is between our current code‐
base and what’s live on the servers. This will come in useful in a few chapters, when
we look at database migrations. Have a look at the tag in the history:

$ git log --graph --oneline --decorate
[...]

Anyway, you now have a live website! Tell all your friends! Tell your mum, if no one
else is interested! And, in the next chapter, it’s back to coding again.

Further Reading
There’s no such thing as the One True Way in deployment, and I’m no grizzled expert
in any case. I’ve tried to set you off on a reasonably sane path, but there’s plenty of
things you could do differently, and lots, lots more to learn besides. Here are some
resources I used for inspiration:

• Solid Python Deployments for Everybody by Hynek Schlawack
• Git-based fabric deployments are awesome by Dan Bravender
• The deployment chapter of Two Scoops of Django by Dan Greenfeld and Audrey

Roy
• The 12-factor App by the Heroku team

For some ideas on how you might go about automating the provisioning step, and an
alternative to Fabric called Ansible, go check out Appendix C.

Git Tag the Release | 199

http://hynek.me/talks/python-deployments
http://bit.ly/U6tUo5
http://12factor.net/

Automated Deployments
Fabric

Fabric lets you run commands on servers from inside Python scripts. This is a
great tool for automating server admin tasks.

Idempotency
If your deployment script is deploying to existing servers, you need to design
them so that they work against a fresh installation and against a server that’s
already configured.

Keep config files under source control
Make sure your only copy of a config file isn’t on the server! They are critical to
your application, and should be under version control like anything else.

Automating provisioning
Ultimately, everything should be automated, and that includes spinning up brand
new servers and ensuring they have all the right software installed. This will
involve interacting with the API of your hosting provider.

Configuration management tools
Fabric is very flexible, but its logic is still based on scripting. More advanced tools
take a more “declarative” approach, and can make your life even easier. Ansible
and Vagrant are two worth checking out (see Appendix C), but there are many
more (Chef, Puppet, Salt, Juju…).

200 | Chapter 11: Automating Deployment with Fabric

CHAPTER 12

Splitting Our Tests into Multiple Files, and a
Generic Wait Helper

The next feature we might like to implement is a little input validation. But as we start
writing new tests, we’ll notice that it’s getting hard to find our way around a single
functional_tests.py, and tests.py, so we’ll reorganise them into multiple files—a little
refactor of our tests, if you will.

We’ll also build a generic explicit wait helper.

Start on a Validation FT: Preventing Blank Items
As our first few users start using the site, we’ve noticed they sometimes make mis‐
takes that mess up their lists, like accidentally submitting blank list items, or acciden‐
tally inputting two identical items to a list. Computers are meant to help stop us from
making silly mistakes, so let’s see if we can get our site to help.

Here’s the outline of an FT:

201

functional_tests/tests.py (ch11l001)
def test_cannot_add_empty_list_items(self):
 # Edith goes to the home page and accidentally tries to submit
 # an empty list item. She hits Enter on the empty input box

 # The home page refreshes, and there is an error message saying
 # that list items cannot be blank

 # She tries again with some text for the item, which now works

 # Perversely, she now decides to submit a second blank list item

 # She receives a similar warning on the list page

 # And she can correct it by filling some text in
 self.fail('write me!')

That’s all very well, but before we go any further—our functional tests file is begin‐
ning to get a little crowded. Let’s split it out into several files, in which each has a sin‐
gle test method.

Remember that functional tests are closely linked to “user stories”. If you were using
some sort of project management tool like an issue tracker, you might make it so that
each file matched one issue or ticket, and its filename contained the ticket ID. Or, if
you prefer to think about things in terms of “features”, where one feature may have
several user stories, then you might have one file and class for the feature, and several
methods for each of its user stories.

We’ll also have one base test class which they can all inherit from. Here’s how to get
there step by step.

Skipping a Test
It’s always nice, when doing refactoring, to have a fully passing test suite. We’ve just
written a test with a deliberate failure. Let’s temporarily switch it off, using a decora‐
tor called “skip” from unittest:

functional_tests/tests.py (ch11l001-1)
from unittest import skip
[...]

 @skip
 def test_cannot_add_empty_list_items(self):

This tells the test runner to ignore this test. You can see it works—if we rerun the
tests, it’ll say it passes:

202 | Chapter 12: Splitting Our Tests into Multiple Files, and a Generic Wait Helper

$ python manage.py test functional_tests
[...]
Ran 4 tests in 11.577s
OK

Skips are dangerous—you need to remember to remove them
before you commit your changes back to the repo. This is why line-
by-line reviews of each of your diffs are a good idea!

Don’t Forget the “Refactor” in “Red, Green, Refactor”
A criticism that’s sometimes levelled at TDD is that it leads to badly architected code,
as the developer just focuses on getting tests to pass rather than stopping to think
about how the whole system should be designed. I think it’s slightly unfair.

TDD is no silver bullet. You still have to spend time thinking about good design. But
what often happens is that people forget the “Refactor” in “Red, Green, Refactor”. The
methodology allows you to throw together any old code to get your tests to pass, but
it also asks you to then spend some time refactoring it to improve its design. Other‐
wise, it’s too easy to allow “technical debt” to build up.

Often, however, the best ideas for how to refactor code don’t occur to you straight
away. They may occur to you days, weeks, even months after you wrote a piece of
code, when you’re working on something totally unrelated and you happen to see
some old code again with fresh eyes. But if you’re halfway through something else,
should you stop to refactor the old code?

The answer is that it depends. In the case at the beginning of the chapter, we haven’t
even started writing our new code. We know we are in a working state, so we can jus‐
tify putting a skip on our new FT (to get back to fully passing tests) and do a bit of
refactoring straight away.

Later in the chapter we’ll spot other bits of code we want to alter. In those cases, rather
than taking the risk of refactoring an application that’s not in a working state, we’ll
make a note of the thing we want to change on our scratchpad and wait until we’re
back to a fully passing test suite before refactoring.

Splitting Functional Tests Out into Many Files
We start putting each test into its own class, still in the same file:

Start on a Validation FT: Preventing Blank Items | 203

https://martinfowler.com/bliki/TechnicalDebtQuadrant.html

functional_tests/tests.py (ch11l002)
class FunctionalTest(StaticLiveServerTestCase):

 def setUp(self):
 [...]
 def tearDown(self):
 [...]
 def wait_for_row_in_list_table(self, row_text):
 [...]

class NewVisitorTest(FunctionalTest):

 def test_can_start_a_list_for_one_user(self):
 [...]
 def test_multiple_users_can_start_lists_at_different_urls(self):
 [...]

class LayoutAndStylingTest(FunctionalTest):

 def test_layout_and_styling(self):
 [...]

class ItemValidationTest(FunctionalTest):

 @skip
 def test_cannot_add_empty_list_items(self):
 [...]

At this point we can rerun the FTs and see they all still work:

Ran 4 tests in 11.577s

OK

That’s labouring it a little bit, and we could probably get away with doing this stuff in
fewer steps, but, as I keep saying, practising the step-by-step method on the easy cases
makes it that much easier when we have a complex case.

Now we switch from a single tests file to using one for each class, and one “base” file
to contain the base class all the tests will inherit from. We’ll make four copies of
tests.py, naming them appropriately, and then delete the parts we don’t need from
each:

$ git mv functional_tests/tests.py functional_tests/base.py
$ cp functional_tests/base.py functional_tests/test_simple_list_creation.py
$ cp functional_tests/base.py functional_tests/test_layout_and_styling.py
$ cp functional_tests/base.py functional_tests/test_list_item_validation.py

204 | Chapter 12: Splitting Our Tests into Multiple Files, and a Generic Wait Helper

base.py can be cut down to just the FunctionalTest class. We leave the helper
method on the base class, because we suspect we’re about to reuse it in our new FT:

functional_tests/base.py (ch11l003)
from django.contrib.staticfiles.testing import StaticLiveServerTestCase
from selenium import webdriver
from selenium.common.exceptions import WebDriverException
import time

MAX_WAIT = 10

class FunctionalTest(StaticLiveServerTestCase):

 def setUp(self):
 [...]
 def tearDown(self):
 [...]
 def wait_for_row_in_list_table(self, row_text):
 [...]

Keeping helper methods in a base FunctionalTest class is one use‐
ful way of preventing duplication in FTs. Later in the book (in
Chapter 25) we’ll use the “Page pattern”, which is related, but pre‐
fers composition over inheritance—always a good thing.

Our first FT is now in its own file, and should be just one class and one test method:

functional_tests/test_simple_list_creation.py (ch11l004)
from .base import FunctionalTest
from selenium import webdriver
from selenium.webdriver.common.keys import Keys

class NewVisitorTest(FunctionalTest):

 def test_can_start_a_list_for_one_user(self):
 [...]
 def test_multiple_users_can_start_lists_at_different_urls(self):
 [...]

I used a relative import (from .base). Some people like to use them a lot in Django
code (e.g., your views might import models using from .models import List,
instead of from list.models). Ultimately this is a matter of personal preference. I
prefer to use relative imports only when I’m super-super sure that the relative posi‐

Start on a Validation FT: Preventing Blank Items | 205

tion of the thing I’m importing won’t change. That applies in this case because I know
for sure all the tests will sit next to base.py, which they inherit from.

The layout and styling FT should now be one file and one class:

functional_tests/test_layout_and_styling.py (ch11l005)
from selenium.webdriver.common.keys import Keys
from .base import FunctionalTest

class LayoutAndStylingTest(FunctionalTest):
 [...]

Lastly our new validation test is in a file of its own too:

functional_tests/test_list_item_validation.py (ch11l006)
from selenium.webdriver.common.keys import Keys
from unittest import skip
from .base import FunctionalTest

class ItemValidationTest(FunctionalTest):

 @skip
 def test_cannot_add_empty_list_items(self):
 [...]

And we can test that everything worked by rerunning manage.py test func

tional_tests, and checking once again that all four tests are run:

Ran 4 tests in 11.577s

OK

Now we can remove our skip:

functional_tests/test_list_item_validation.py (ch11l007)
class ItemValidationTest(FunctionalTest):

 def test_cannot_add_empty_list_items(self):
 [...]

Running a Single Test File
As a side bonus, we’re now able to run an individual test file, like this:

$ python manage.py test functional_tests.test_list_item_validation
[...]
AssertionError: write me!

206 | Chapter 12: Splitting Our Tests into Multiple Files, and a Generic Wait Helper

Brilliant—no need to sit around waiting for all the FTs when we’re only interested in a
single one. Although we need to remember to run all of them now and again, to
check for regressions. Later in the book we’ll see how to give that task over to an auto‐
mated Continuous Integration loop. For now let’s commit!

$ git status
$ git add functional_tests
$ git commit -m "Moved Fts into their own individual files"

Great. We’ve split our functional tests nicely out into different files. Next we’ll start
writing our FT, but before long, as you may be guessing, we’ll do something similar to
our unit test files.

A New Functional Test Tool: A Generic Explicit Wait Helper
First let’s start implementing the test, or at least the beginning of it:

functional_tests/test_list_item_validation.py (ch11l008)
def test_cannot_add_empty_list_items(self):
 # Edith goes to the home page and accidentally tries to submit
 # an empty list item. She hits Enter on the empty input box
 self.browser.get(self.live_server_url)
 self.browser.find_element_by_id('id_new_item').send_keys(Keys.ENTER)

 # The home page refreshes, and there is an error message saying
 # that list items cannot be blank
 self.assertEqual(
 self.browser.find_element_by_css_selector('.has-error').text,
 "You can't have an empty list item"
)

 # She tries again with some text for the item, which now works
 self.fail('finish this test!')
 [...]

This is how we might write the test naively:

We specify we’re going to use a CSS class called .has-error to mark our error
text. We’ll see that Bootstrap has some useful styling for those.

And we can check that our error displays the message we want.

But can you guess what the potential problem is with the test as it’s written now?

OK, I gave it away in the section header, but whenever we do something that causes a
page refresh, we need an explicit wait; otherwise, Selenium might go looking for
the .has-error element before the page has had a chance to load.

A New Functional Test Tool: A Generic Explicit Wait Helper | 207

Whenever you submit a form with Keys.ENTER or click something
that is going to cause a page to load, you probably want an explicit
wait for your next assertion.

Our first explicit wait was built into a helper method. For this one, we might decide
that building a specific helper method is overkill at this stage, but it might be nice to
have some generic way of saying, in our tests, “wait until this assertion passes”. Some‐
thing like this:

functional_tests/test_list_item_validation.py (ch11l009)
[...]
 # The home page refreshes, and there is an error message saying
 # that list items cannot be blank
 self.wait_for(lambda: self.assertEqual(
 self.browser.find_element_by_css_selector('.has-error').text,
 "You can't have an empty list item"
))

Rather than calling the assertion directly, we wrap it in a lambda function, and
we pass it to a new helper method we imagine called wait_for.

If you’ve never seen lambda functions in Python before, see
“Lambda Functions” on page 209.

So how would this magical wait_for method work? Let’s head over to base.py, and
make a copy of our existing wait_for_row_in_list_table method, and we’ll adapt it
slightly:

functional_tests/base.py (ch11l010)
 def wait_for(self, fn):
 start_time = time.time()
 while True:
 try:
 table = self.browser.find_element_by_id('id_list_table')
 rows = table.find_elements_by_tag_name('tr')
 self.assertIn(row_text, [row.text for row in rows])
 return
 except (AssertionError, WebDriverException) as e:
 if time.time() - start_time > MAX_WAIT:
 raise e
 time.sleep(0.5)

208 | Chapter 12: Splitting Our Tests into Multiple Files, and a Generic Wait Helper

We make a copy of the method, but we name it wait_for, and we change its
argument. It is expecting to be passed a function.

For now we’ve still got the old code that’s checking table rows. How to transform
this into something that works for any generic fn that’s been passed in?

Like this:

functional_tests/base.py (ch11l011)
 def wait_for(self, fn):
 start_time = time.time()
 while True:
 try:
 return fn()
 except (AssertionError, WebDriverException) as e:
 if time.time() - start_time > MAX_WAIT:
 raise e
 time.sleep(0.5)

The body of our try/except, instead of being the specific code for examining table
rows, just becomes a call to the function we passed in. We also return its return
value to be able to exit the loop immediately if no exception is raised.

Lambda Functions
lambda in Python is the syntax for making a one-line, throwaway function—it saves
you from having to use def..(): and an indented block:

>>> myfn = lambda x: x+1
>>> myfn(2)
3
>>> myfn(5)
6
>>> adder = lambda x, y: x + y
>>> adder(3, 2)
5

In our case, we’re using it to transform a bit of code that would otherwise be executed
immediately into a function that we can pass as an argument, and that can be exe‐
cuted later, and multiple times:

A New Functional Test Tool: A Generic Explicit Wait Helper | 209

>>> def addthree(x):
... return x + 3
...
>>> addthree(2)
5
>>> myfn = lambda: addthree(2) # note addthree is not called immediately here
>>> myfn
<function <lambda> at 0x7f3b140339d8>
>>> myfn()
5
>>> myfn()
5

Let’s see our funky wait_for helper in action:

$ python manage.py test functional_tests.test_list_item_validation
[...]
==
ERROR: test_cannot_add_empty_list_items
(functional_tests.test_list_item_validation.ItemValidationTest)

Traceback (most recent call last):
 File "/.../superlists/functional_tests/test_list_item_validation.py", line
15, in test_cannot_add_empty_list_items
 self.wait_for(lambda: self.assertEqual(
 File "/.../superlists/functional_tests/base.py", line 37, in wait_for
 raise e
 File "/.../superlists/functional_tests/base.py", line 34, in wait_for
 return fn()
 File "/.../superlists/functional_tests/test_list_item_validation.py", line
16, in <lambda>
 self.browser.find_element_by_css_selector('.has-error').text,
[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: .has-error

Ran 1 test in 10.575s

FAILED (errors=1)

The order of the traceback is a little confusing, but we can more or less follow
through what happened:

At line 15 in our FT, we go into our self.wait_for helper, passing it the lambda-
ified version of the assertEqual.

We go into self.wait_for in base.py, where we can see that we’ve called the
lambda, enough times that we’ve dropped out to the raise e because our timeout
expired.

210 | Chapter 12: Splitting Our Tests into Multiple Files, and a Generic Wait Helper

To explain where the exception has actually come from, the traceback takes us
back into test_list_item_validation.py and inside the body of the lambda function,
and tells us that it was trying to find the .has-error element that failed.

We’re into the realm of functional programming now, passing functions as arguments
to other functions, and it can be a little mind-bending. I know it took me a little while
to get used to! Have a couple of read-throughs of this code, and the code back in the
FT, to let it sink in; and if you’re still confused, don’t worry about it too much, and let
your confidence grow from working with it. We’ll use it a few more times in this book
and make it even more functionally fun, you’ll see.

Finishing Off the FT
We’ll finish off the FT like this:

Finishing Off the FT | 211

functional_tests/test_list_item_validation.py (ch11l012)
 # The home page refreshes, and there is an error message saying
 # that list items cannot be blank
 self.wait_for(lambda: self.assertEqual(
 self.browser.find_element_by_css_selector('.has-error').text,
 "You can't have an empty list item"
))

 # She tries again with some text for the item, which now works
 self.browser.find_element_by_id('id_new_item').send_keys('Buy milk')
 self.browser.find_element_by_id('id_new_item').send_keys(Keys.ENTER)
 self.wait_for_row_in_list_table('1: Buy milk')

 # Perversely, she now decides to submit a second blank list item
 self.browser.find_element_by_id('id_new_item').send_keys(Keys.ENTER)

 # She receives a similar warning on the list page
 self.wait_for(lambda: self.assertEqual(
 self.browser.find_element_by_css_selector('.has-error').text,
 "You can't have an empty list item"
))

 # And she can correct it by filling some text in
 self.browser.find_element_by_id('id_new_item').send_keys('Make tea')
 self.browser.find_element_by_id('id_new_item').send_keys(Keys.ENTER)
 self.wait_for_row_in_list_table('1: Buy milk')
 self.wait_for_row_in_list_table('2: Make tea')

Helper Methods in FTs
We’ve got two helper methods now, our generic self.wait_for helper, and
wait_for_row_in_list_table. The former is a general utility—any of our FTs might
need to do a wait.

The second also helps prevent duplication across your functional test code. The day
we decide to change the implementation of how our list table works, we want to make
sure we only have to change our FT code in one place, not in dozens of places across
loads of FTs…

See also Chapter 25 and Appendix E for more on structuring your FT code.

I’ll let you do your own “first-cut FT” commit.

212 | Chapter 12: Splitting Our Tests into Multiple Files, and a Generic Wait Helper

1 “Dunder” is shorthand for double-underscore, so “dunderinit” means __init__.py.

Refactoring Unit Tests into Several Files
When we (finally!) start coding our solution, we’re going to want to add another test
for our models.py. Before we do so, it’s time to tidy up our unit tests in a similar way
to the functional tests.

A difference will be that, because the lists app contains real application code as well
as tests, we’ll separate out the tests into their own folder:

$ mkdir lists/tests
$ touch lists/tests/__init__.py
$ git mv lists/tests.py lists/tests/test_all.py
$ git status
$ git add lists/tests
$ python manage.py test lists
[...]
Ran 9 tests in 0.034s

OK
$ git commit -m "Move unit tests into a folder with single file"

If you get a message saying “Ran 0 tests”, you probably forgot to add the dunderinit—
it needs to be there or else the tests folder isn’t a valid Python package…1

Now we turn test_all.py into two files, one called test_views.py, which will only con‐
tains view tests, and one called test_models.py. I’ll start by making two copies:

$ git mv lists/tests/test_all.py lists/tests/test_views.py
$ cp lists/tests/test_views.py lists/tests/test_models.py

And strip test_models.py down to being just the one test—it means it needs far fewer
imports:

lists/tests/test_models.py (ch11l016)
from django.test import TestCase
from lists.models import Item, List

class ListAndItemModelsTest(TestCase):
 [...]

Whereas test_views.py just loses one class:

Refactoring Unit Tests into Several Files | 213

lists/tests/test_views.py (ch11l017)
--- a/lists/tests/test_views.py
+++ b/lists/tests/test_views.py
@@ -103,34 +104,3 @@ class ListViewTest(TestCase):
 self.assertNotContains(response, 'other list item 1')
 self.assertNotContains(response, 'other list item 2')

-
-
-class ListAndItemModelsTest(TestCase):
-
- def test_saving_and_retrieving_items(self):
[...]

We rerun the tests to check that everything is still there:

$ python manage.py test lists
[...]
Ran 9 tests in 0.040s

OK

Great! That’s another small, working step:

$ git add lists/tests
$ git commit -m "Split out unit tests into two files"

Some people like to make their unit tests into a tests folder straight
away, as soon as they start a project. That’s a perfectly good idea; I
just thought I’d wait until it became necessary, to avoid doing too
much housekeeping all in the first chapter!

Well, that’s our FTs and unit test nicely reorganised. In the next chapter we’ll get
down to some validation proper.

214 | Chapter 12: Splitting Our Tests into Multiple Files, and a Generic Wait Helper

Tips on Organising Tests and Refactoring
Use a tests folder

Just as you use multiple files to hold your application code, you should split your
tests out into multiple files.

• For functional tests, group them into tests for a particular feature or user
story.

• For unit tests, use a folder called tests, with a __init__.py.
• You probably want a separate test file for each tested source code file. For

Django, that’s typically test_models.py, test_views.py, and test_forms.py.
• Have at least a placeholder test for every function and class.

Don’t forget the “Refactor” in “Red, Green, Refactor”
The whole point of having tests is to allow you to refactor your code! Use them,
and make your code (including your tests) as clean as you can.

Don’t refactor against failing tests
• In general!
• But the FT you’re currently working on doesn’t count.
• You can occasionally put a skip on a test which is testing something you haven’t

written yet.
• More commonly, make a note of the refactor you want to do, finish what you’re

working on, and do the refactor a little later, when you’re back to a working state.
• Don’t forget to remove any skips before you commit your code! You should

always review your diffs line by line to catch things like this.

Try a generic wait_for helper
Having specific helper methods that do explicit waits is great, and it helps to
make your tests readable. But you’ll also often need an ad-hoc one-line assertion
or Selenium interaction that you’ll want to add a wait to. self.wait_for does the
job well for me, but you might find a slightly different pattern works for you.

Refactoring Unit Tests into Several Files | 215

CHAPTER 13

Validation at the Database Layer

Over the next few chapters we’ll talk about testing and implementing validation of
user inputs.

In terms of content, there’s going to be quite a lot of material here that’s more about
the specifics of Django, and less discussion of TDD philosophy. That doesn’t mean
you won’t be learning anything about testing—there are plenty of little testing tidbits
in here, but perhaps it’s more about really getting into the swing of things, the rhythm
of TDD, and how we get work done.

Once we get through these three short chapters, I’ve saved a bit of fun with JavaScript
(!) for the end of Part II. Then it’s on to Part III, where I promise we’ll get right back
into some of the real nitty-gritty discussions in TDD methodology—unit tests versus
integrated tests, mocking, and more. Stay tuned!

But for now, a little validation. Let’s just remind ourselves where our FT is pointing
us:

217

$ python3 manage.py test functional_tests.test_list_item_validation
[...]
==
ERROR: test_cannot_add_empty_list_items
(functional_tests.test_list_item_validation.ItemValidationTest)

Traceback (most recent call last):
 File "/.../superlists/functional_tests/test_list_item_validation.py", line
15, in test_cannot_add_empty_list_items
 self.wait_for(lambda: self.assertEqual(
[...]
 File "/.../superlists/functional_tests/test_list_item_validation.py", line
16, in <lambda>
 self.browser.find_element_by_css_selector('.has-error').text,
[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: .has-error

It’s expecting to see an error message if the user tries to input an empty item.

Model-Layer Validation
In a web app, there are two places you can do validation: on the client side (using
JavaScript or HTML5 properties, as we’ll see later), and on the server side. The server
side is “safer” because someone can always bypass the client side, whether it’s mali‐
ciously or due to some bug.

Similarly on the server side, in Django, there are two levels at which you can do vali‐
dation. One is at the model level, and the other is higher up at the forms level. I like to
use the lower level whenever possible, partially because I’m a bit too fond of databases
and database integrity rules, and partially because, again, it’s safer—you can some‐
times forget which form you use to validate input, but you’re always going to use the
same database.

The self.assertRaises Context Manager
Let’s go down and write a unit test at the models layer. Add a new test method to
ListAndItemModelsTest, which tries to create a blank list item. This test is interest‐
ing because it’s testing that the code under test should raise an exception:

218 | Chapter 13: Validation at the Database Layer

lists/tests/test_models.py (ch11l018)
from django.core.exceptions import ValidationError
[...]

class ListAndItemModelsTest(TestCase):
 [...]

 def test_cannot_save_empty_list_items(self):
 list_ = List.objects.create()
 item = Item(list=list_, text='')
 with self.assertRaises(ValidationError):
 item.save()

If you’re new to Python, you may never have seen the with state‐
ment. It’s used with what are called “context managers”, which wrap
a block of code, usually with some kind of setup, cleanup, or error-
handling code. There’s a good write-up in the Python 2.5 release
notes.

This is a new unit testing technique: when we want to check that doing something
will raise an error, we can use the self.assertRaises context manager. We could
have used something like this instead:

try:
 item.save()
 self.fail('The save should have raised an exception')
except ValidationError:
 pass

But the with formulation is neater. Now, we can try running the test, and see its
expected failure:

 item.save()
AssertionError: ValidationError not raised

A Django Quirk: Model Save Doesn’t Run Validation
And now we discover one of Django’s little quirks. This test should already pass. If you
take a look at the docs for the Django model fields, you’ll see that TextField actually
defaults to blank=False, which means that it should disallow empty values.

So why is the test still failing? Well, for slightly counterintuitive historical reasons,
Django models don’t run full validation on save. As we’ll see later, any constraints that
are actually implemented in the database will raise errors on save, but SQLite doesn’t
support enforcing emptiness constraints on text columns, and so our save method is
letting this invalid value through silently.

There’s a way of checking whether the constraint will happen at the database level or
not: if it was at the database level, we would need a migration to apply the constraint.

Model-Layer Validation | 219

http://docs.python.org/release/2.5/whatsnew/pep-343.html
http://docs.python.org/release/2.5/whatsnew/pep-343.html
http://bit.ly/SuxPJO
http://bit.ly/2v3SfRq

But Django knows that SQLite doesn’t support this type of constraint, so if we try to
run makemigrations, it will report there’s nothing to do:

$ python manage.py makemigrations
No changes detected

Django does have a method to manually run full validation, however, called
full_clean (more info in the docs). Let’s hack it in to see it work:

lists/tests/test_models.py
 with self.assertRaises(ValidationError):
 item.save()
 item.full_clean()

That gets the test to pass:

OK

Good. That taught us a little about Django validation, and the test is there to warn us
if we ever forget our requirement and set blank=True on the text field (try it!).

Surfacing Model Validation Errors in the View
Let’s try to enforce our model validation in the views layer and bring it up through
into our templates, so the user can see them. Here’s how we can optionally display an
error in our HTML—we check whether the template has been passed an error vari‐
able, and if so, we display it next to the form:

lists/templates/base.html (ch11l020)
 <form method="POST" action="{% block form_action %}{% endblock %}">
 <input name="item_text" id="id_new_item"
 class="form-control input-lg"
 placeholder="Enter a to-do item" />
 {% csrf_token %}
 {% if error %}
 <div class="form-group has-error">
 {{ error }}
 </div>
 {% endif %}
 </form>

Take a look at the Bootstrap docs for more info on form controls.

Passing this error to the template is the job of the view function. Let’s take a look at
the unit tests in the NewListTest class. I’m going to use two slightly different error-
handling patterns here.

220 | Chapter 13: Validation at the Database Layer

http://bit.ly/2u5SIxA
http://getbootstrap.com/css/#forms

In the first case, our URL and view for new lists will optionally render the same tem‐
plate as the home page, but with the addition of an error message. Here’s a unit test
for that:

lists/tests/test_views.py (ch11l021)
class NewListTest(TestCase):
 [...]

 def test_validation_errors_are_sent_back_to_home_page_template(self):
 response = self.client.post('/lists/new', data={'item_text': ''})
 self.assertEqual(response.status_code, 200)
 self.assertTemplateUsed(response, 'home.html')
 expected_error = "You can't have an empty list item"
 self.assertContains(response, expected_error)

As we’re writing this test, we might get slightly offended by the /lists/new URL, which
we’re manually entering as a string. We’ve got a lot of URLs hardcoded in our tests, in
our views, and in our templates, which violates the DRY principle. I don’t mind a bit
of duplication in tests, but we should definitely be on the lookout for hardcoded
URLs in our views and templates, and make a note to refactor them out. But we won’t
do them straight away, because right now our application is in a broken state. We
want to get back to a working state first.

Back to our test, which is failing because the view is currently returning a 302 redi‐
rect, rather than a “normal” 200 response:

AssertionError: 302 != 200

Let’s try calling full_clean() in the view:

lists/views.py
def new_list(request):
 list_ = List.objects.create()
 item = Item.objects.create(text=request.POST['item_text'], list=list_)
 item.full_clean()
 return redirect(f'/lists/{list_.id}/')

As we’re looking at the view code, we find a good candidate for a hardcoded URL to
get rid of. Let’s add that to our scratchpad:

Surfacing Model Validation Errors in the View | 221

• Remove hardcoded URLs from views.py

Now the model validation raises an exception, which comes up through our view:

[...]
 File "/.../superlists/lists/views.py", line 11, in new_list
 item.full_clean()
[...]
django.core.exceptions.ValidationError: {'text': ['This field cannot be
blank.']}

So we try our first approach: using a try/except to detect errors. Obeying the Testing
Goat, we start with just the try/except and nothing else. The tests should tell us what
to code next…

lists/views.py (ch11l025)
from django.core.exceptions import ValidationError
[...]

def new_list(request):
 list_ = List.objects.create()
 item = Item.objects.create(text=request.POST['item_text'], list=list_)
 try:
 item.full_clean()
 except ValidationError:
 pass
 return redirect(f'/lists/{list_.id}/')

That gets us back to the 302 != 200:

AssertionError: 302 != 200

Let’s return a rendered template then, which should take care of the template check as
well:

lists/views.py (ch11l026)
 except ValidationError:
 return render(request, 'home.html')

And the tests now tell us to put the error message into the template:

AssertionError: False is not true : Couldn't find 'You can't have an empty list
item' in response

We do that by passing a new template variable in:

222 | Chapter 13: Validation at the Database Layer

lists/views.py (ch11l027)
 except ValidationError:
 error = "You can't have an empty list item"
 return render(request, 'home.html', {"error": error})

Hmm, it looks like that didn’t quite work:

AssertionError: False is not true : Couldn't find 'You can't have an empty list
item' in response

A little print-based debug…

lists/tests/test_views.py
expected_error = "You can't have an empty list item"
print(response.content.decode())
self.assertContains(response, expected_error)

…will show us the cause—Django has HTML-escaped the apostrophe:

[...]
You can't have an empty list
item

We could hack something like this into our test:

 expected_error = "You can't have an empty list item"

But using Django’s helper function is probably a better idea:

lists/tests/test_views.py (ch11l029)
from django.utils.html import escape
[...]

 expected_error = escape("You can't have an empty list item")
 self.assertContains(response, expected_error)

That passes!

Ran 11 tests in 0.047s

OK

Checking That Invalid Input Isn’t Saved to the Database
Before we go further though, did you notice a little logic error we’ve allowed to creep
into our implementation? We’re currently creating an object, even if validation fails:

Surfacing Model Validation Errors in the View | 223

https://docs.djangoproject.com/en/1.11/ref/templates/builtins/#autoescape

lists/views.py
 item = Item.objects.create(text=request.POST['item_text'], list=list_)
 try:
 item.full_clean()
 except ValidationError:
 [...]

Let’s add a new unit test to make sure that empty list items don’t get saved:

lists/tests/test_views.py (ch11l030-1)
class NewListTest(TestCase):
 [...]

 def test_validation_errors_are_sent_back_to_home_page_template(self):
 [...]

 def test_invalid_list_items_arent_saved(self):
 self.client.post('/lists/new', data={'item_text': ''})
 self.assertEqual(List.objects.count(), 0)
 self.assertEqual(Item.objects.count(), 0)

That gives:

[...]
Traceback (most recent call last):
 File "/.../superlists/lists/tests/test_views.py", line 40, in
test_invalid_list_items_arent_saved
 self.assertEqual(List.objects.count(), 0)
AssertionError: 1 != 0

We fix it like this:

lists/views.py (ch11l030-2)
def new_list(request):
 list_ = List.objects.create()
 item = Item(text=request.POST['item_text'], list=list_)
 try:
 item.full_clean()
 item.save()
 except ValidationError:
 list_.delete()
 error = "You can't have an empty list item"
 return render(request, 'home.html', {"error": error})
 return redirect(f'/lists/{list_.id}/')

Do the FTs pass?

224 | Chapter 13: Validation at the Database Layer

$ python manage.py test functional_tests.test_list_item_validation
[...]
File "/.../superlists/functional_tests/test_list_item_validation.py", line
29, in test_cannot_add_empty_list_items
 self.wait_for(lambda: self.assertEqual(
[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: .has-error

Not quite, but they did get a little further. Checking line 29, we can see that we’ve got
past the first part of the test, and are now onto the second check—that submitting a
second empty item also shows an error.

We’ve got some working code though, so let’s have a commit:

$ git commit -am "Adjust new list view to do model validation"

Django Pattern: Processing POST Requests in the Same
View as Renders the Form
This time we’ll use a slightly different approach, one that’s actually a very common
pattern in Django, which is to use the same view to process POST requests as to ren‐
der the form that they come from. Whilst this doesn’t fit the REST-ful URL model
quite as well, it has the important advantage that the same URL can display a form,
and display any errors encountered in processing the user’s input.

The current situation is that we have one view and URL for displaying a list, and one
view and URL for processing additions to that list. We’re going to combine them into
one. So, in list.html, our form will have a different target:

lists/templates/list.html (ch11l030)
{% block form_action %}/lists/{{ list.id }}/{% endblock %}

Incidentally, that’s another hardcoded URL. Let’s add it to our to-do list, and while
we’re thinking about it, there’s one in home.html too:

• Remove hardcoded URLs from views.py
• Remove hardcoded URL from forms in

list.html and home.html

Django Pattern: Processing POST Requests in the Same View as Renders the Form | 225

This will immediately break our original functional test, because the view_list page
doesn’t know how to process POST requests yet:

$ python manage.py test functional_tests
[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: .has-error
[...]
AssertionError: '2: Use peacock feathers to make a fly' not found in ['1: Buy
peacock feathers']

In this section we’re performing a refactor at the application level.
We execute our application-level refactor by changing or adding
unit tests, and then adjusting our code. We use the functional tests
to tell us when our refactor is complete and things are back to
working as before. Have another look at the diagram from the end
of Chapter 4 if you need to get your bearings.

Refactor: Transferring the new_item Functionality into view_list
Let’s take all the old tests from NewItemTest, the ones that are about saving POST
requests to existing lists, and move them into ListViewTest. As we do so, we also
make them point at the base list URL, instead of …/add_item:

226 | Chapter 13: Validation at the Database Layer

lists/tests/test_views.py (ch11l031)
class ListViewTest(TestCase):

 def test_uses_list_template(self):
 [...]

 def test_passes_correct_list_to_template(self):
 [...]

 def test_displays_only_items_for_that_list(self):
 [...]

 def test_can_save_a_POST_request_to_an_existing_list(self):
 other_list = List.objects.create()
 correct_list = List.objects.create()

 self.client.post(
 f'/lists/{correct_list.id}/',
 data={'item_text': 'A new item for an existing list'}
)

 self.assertEqual(Item.objects.count(), 1)
 new_item = Item.objects.first()
 self.assertEqual(new_item.text, 'A new item for an existing list')
 self.assertEqual(new_item.list, correct_list)

 def test_POST_redirects_to_list_view(self):
 other_list = List.objects.create()
 correct_list = List.objects.create()

 response = self.client.post(
 f'/lists/{correct_list.id}/',
 data={'item_text': 'A new item for an existing list'}
)
 self.assertRedirects(response, f'/lists/{correct_list.id}/')

Note that the NewItemTest class disappears completely. I’ve also changed the name of
the redirect test to make it explicit that it only applies to POST requests.

That gives:

FAIL: test_POST_redirects_to_list_view (lists.tests.test_views.ListViewTest)
AssertionError: 200 != 302 : Response didn't redirect as expected: Response
code was 200 (expected 302)
[...]
FAIL: test_can_save_a_POST_request_to_an_existing_list
(lists.tests.test_views.ListViewTest)
AssertionError: 0 != 1

We change the view_list function to handle two types of request:

Django Pattern: Processing POST Requests in the Same View as Renders the Form | 227

lists/views.py (ch11l032-1)
def view_list(request, list_id):
 list_ = List.objects.get(id=list_id)
 if request.method == 'POST':
 Item.objects.create(text=request.POST['item_text'], list=list_)
 return redirect(f'/lists/{list_.id}/')
 return render(request, 'list.html', {'list': list_})

That gets us passing tests:

Ran 12 tests in 0.047s

OK

Now we can delete the add_item view, since it’s no longer needed…oops, an unexpec‐
ted failure:

[...]
AttributeError: module 'lists.views' has no attribute 'add_item'

It’s because we’ve deleted the view, but it’s still being referred to in urls.py. We remove
it from there:

lists/urls.py (ch11l033)
urlpatterns = [
 url(r'^new$', views.new_list, name='new_list'),
 url(r'^(\d+)/$', views.view_list, name='view_list'),
]

And that gets us to the OK. Let’s try a full FT run:

$ python manage.py test
[...]
ERROR: test_cannot_add_empty_list_items
[...]

Ran 16 tests in 15.276s
FAILED (errors=1)

We’re back to the one failure in our new functional test. Our refactor of the add_item
functionality is complete. We should commit there:

$ git commit -am "Refactor list view to handle new item POSTs"

228 | Chapter 13: Validation at the Database Layer

1 If you really want a “clean” test run, you could add a skip or an early return to the current FT, but you’d need
to make sure you didn’t accidentally forget it.

So did I break the rule about never refactoring against failing tests?
In this case, it’s allowed, because the refactor is required to get our
new functionality to work. You should definitely never refactor
against failing unit tests. But in my book it’s OK for the FT for the
current story you’re working on to be failing.1

Enforcing Model Validation in view_list
We still want the addition of items to existing lists to be subject to our model valida‐
tion rules. Let’s write a new unit test for that; it’s very similar to the one for the home
page, with just a couple of tweaks:

lists/tests/test_views.py (ch11l034)
class ListViewTest(TestCase):
 [...]

 def test_validation_errors_end_up_on_lists_page(self):
 list_ = List.objects.create()
 response = self.client.post(
 f'/lists/{list_.id}/',
 data={'item_text': ''}
)
 self.assertEqual(response.status_code, 200)
 self.assertTemplateUsed(response, 'list.html')
 expected_error = escape("You can't have an empty list item")
 self.assertContains(response, expected_error)

That should fail, because our view currently does not do any validation, and just redi‐
rects for all POSTs:

 self.assertEqual(response.status_code, 200)
AssertionError: 302 != 200

Django Pattern: Processing POST Requests in the Same View as Renders the Form | 229

Here’s an implementation:

lists/views.py (ch11l035)
def view_list(request, list_id):
 list_ = List.objects.get(id=list_id)
 error = None

 if request.method == 'POST':
 try:
 item = Item(text=request.POST['item_text'], list=list_)
 item.full_clean()
 item.save()
 return redirect(f'/lists/{list_.id}/')
 except ValidationError:
 error = "You can't have an empty list item"

 return render(request, 'list.html', {'list': list_, 'error': error})

It’s not deeply satisfying, is it? There’s definitely some duplication of code here; that
try/except occurs twice in views.py, and in general things are feeling clunky.

Ran 13 tests in 0.047s

OK

Let’s wait a bit before we do more refactoring though, because we know we’re about to
do some slightly different validation coding for duplicate items. We’ll just add it to
our scratchpad for now:

• Remove hardcoded URLs from views.py
• Remove hardcoded URL from forms in

list.html and home.html
• Remove duplication of validation logic in

views

One of the reasons that the “three strikes and refactor” rule exists is
that, if you wait until you have three use cases, each might be
slightly different, and it gives you a better view for what the com‐
mon functionality is. If you refactor too early, you may find that the
third use case doesn’t quite fit with your refactored code…

230 | Chapter 13: Validation at the Database Layer

At least our functional tests are back to passing:

$ python manage.py test functional_tests
[...]
OK

We’re back to a working state, so we can take a look at some of the items on our
scratchpad. This would be a good time for a commit. And possibly a tea break.

$ git commit -am "enforce model validation in list view"

Refactor: Removing Hardcoded URLs
Do you remember those name= parameters in urls.py? We just copied them across
from the default example Django gave us, and I’ve been giving them some reasonably
descriptive names. Now we find out what they’re for:

lists/urls.py
 url(r'^new$', views.new_list, name='new_list'),
 url(r'^(\d+)/$', views.view_list, name='view_list'),

The {% url %} Template Tag
We can replace the hardcoded URL in home.html with a Django template tag which
refers to the URL’s “name”:

lists/templates/home.html (ch11l036-1)
{% block form_action %}{% url 'new_list' %}{% endblock %}

We check that this doesn’t break the unit tests:

$ python manage.py test lists
OK

Let’s do the other template. This one is more interesting, because we pass it a
parameter:

lists/templates/list.html (ch11l036-2)
{% block form_action %}{% url 'view_list' list.id %}{% endblock %}

See the Django docs on reverse URL resolution for more info. We run the tests again,
and check that they all pass:

$ python manage.py test lists
OK
$ python manage.py test functional_tests
OK

Refactor: Removing Hardcoded URLs | 231

http://bit.ly/2uKaMzA

Excellent:

$ git commit -am "Refactor hard-coded URLs out of templates"

• Remove hardcoded URLs from views.py
• Remove hardcoded URL from forms in

list.html and home.html
• Remove duplication of validation logic in

views

Using get_absolute_url for Redirects
Now let’s tackle views.py. One way of doing it is just like in the template, passing in
the name of the URL and a positional argument:

lists/views.py (ch11l036-3)
def new_list(request):
 [...]
 return redirect('view_list', list_.id)

That would get the unit and functional tests passing, but the redirect function can
do even better magic than that! In Django, because model objects are often associated
with a particular URL, you can define a special function called get_absolute_url
which says what page displays the item. It’s useful in this case, but it’s also useful in
the Django admin (which I don’t cover in the book, but you’ll soon discover for your‐
self): it will let you jump from looking at an object in the admin view to looking at the
object on the live site. I’d always recommend defining a get_absolute_url for a
model whenever there is one that makes sense; it takes no time at all.

All it takes is a super-simple unit test in test_models.py:

lists/tests/test_models.py (ch11l036-4)
 def test_get_absolute_url(self):
 list_ = List.objects.create()
 self.assertEqual(list_.get_absolute_url(), f'/lists/{list_.id}/')

Which gives:

232 | Chapter 13: Validation at the Database Layer

AttributeError: 'List' object has no attribute 'get_absolute_url'

The implementation is to use Django’s reverse function, which essentially does the
reverse of what Django normally does with urls.py (see the docs):

lists/models.py (ch11l036-5)
from django.core.urlresolvers import reverse

class List(models.Model):

 def get_absolute_url(self):
 return reverse('view_list', args=[self.id])

And now we can use it in the view—the redirect function just takes the object we
want to redirect to, and it uses get_absolute_url under the hood automagically!

lists/views.py (ch11l036-6)
def new_list(request):
 [...]
 return redirect(list_)

There’s more info in the Django docs. Quick check that the unit tests still pass:

OK

Then we do the same to view_list:

lists/views.py (ch11l036-7)
def view_list(request, list_id):
 [...]

 item.save()
 return redirect(list_)
 except ValidationError:
 error = "You can't have an empty list item"

And a full unit test and functional test run to assure ourselves that everything still
works:

$ python manage.py test lists
OK
$ python manage.py test functional_tests
OK

Cross off our to-dos…

Refactor: Removing Hardcoded URLs | 233

https://docs.djangoproject.com/en/1.11/topics/http/urls/#reverse-resolution-of-urls
https://docs.djangoproject.com/en/1.11/topics/http/shortcuts/#redirect

• Remove hardcoded URLs from views.py
• Remove hardcoded URL from forms in

list.html and home.html
• Remove duplication of validation logic in

views

And a commit…

$ git commit -am "Use get_absolute_url on List model to DRY urls in views"

And we’re done with that bit! We have working model-layer validation, and we’ve
taken the opportunity to do a few refactors along the way.

That final scratchpad item will be the subject of the next chapter…

On Database-Layer Validation
I always like to push my validation logic down as low as possible.

Validation at the database layer is the ultimate guarantee of data integrity
It can ensure that, no matter how complex your code at the layers above gets, you
have guarantees at the lowest level that your data is valid and consistent.

But it comes at the expense of flexibility
This benefit doesn’t come for free! It’s now impossible, even temporarily, to have
inconsistent data. Sometimes you might have a good reason for temporarily stor‐
ing data that breaks the rules rather than storing nothing at all. Perhaps you’re
importing data from an external source in several stages, for example.

And it’s not designed for user-friendliness
Trying to store invalid data will cause a nasty IntegrityError to come back from
your database, and possibly the user will see a confusing 500 error page. As we’ll
see in later chapters, forms-layer validation is designed with the user in mind,
anticipating the kinds of helpful error messages we want to send them.

234 | Chapter 13: Validation at the Database Layer

CHAPTER 14

A Simple Form

At the end of the last chapter, we were left with the thought that there was too much
duplication of code in the validation handling bits of our views. Django encourages
you to use form classes to do the work of validating user input, and choosing what
error messages to display. Let’s see how that works.

As we go through the chapter, we’ll also spend a bit of time tidying up our unit tests,
and making sure each of them tests only one thing at a time.

Moving Validation Logic into a Form
In Django, a complex view is a code smell. Could some of that logic
be pushed out to a form? Or to some custom methods on the
model class? Or maybe even to a non-Django module that repre‐
sents your business logic?

Forms have several superpowers in Django:

• They can process user input and validate it for errors.
• They can be used in templates to render HTML input elements, and error mes‐

sages too.
• And, as we’ll see later, some of them can even save data to the database for you.

You don’t have to use all three form superpowers in every form. You may prefer to
roll your own HTML, or do your own saving. But they are an excellent place to keep
validation logic.

235

Exploring the Forms API with a Unit Test
Let’s do a little experimenting with forms by using a unit test. My plan is to iterate
towards a complete solution, and hopefully introduce forms gradually enough that
they’ll make sense if you’ve never seen them before.

First we add a new file for our form unit tests, and we start with a test that just looks
at the form HTML:

lists/tests/test_forms.py
from django.test import TestCase

from lists.forms import ItemForm

class ItemFormTest(TestCase):

 def test_form_renders_item_text_input(self):
 form = ItemForm()
 self.fail(form.as_p())

form.as_p() renders the form as HTML. This unit test is using a self.fail for some
exploratory coding. You could just as easily use a manage.py shell session, although
you’d need to keep reloading your code for each change.

Let’s make a minimal form. It inherits from the base Form class, and has a single field
called item_text:

lists/forms.py
from django import forms

class ItemForm(forms.Form):
 item_text = forms.CharField()

We now see a failure message which tells us what the autogenerated form HTML will
look like:

 self.fail(form.as_p())
AssertionError: <p><label for="id_item_text">Item text:</label> <input
type="text" name="item_text" required id="id_item_text" /></p>

It’s already pretty close to what we have in base.html. We’re missing the placeholder
attribute and the Bootstrap CSS classes. Let’s make our unit test into a test for that:

236 | Chapter 14: A Simple Form

lists/tests/test_forms.py
class ItemFormTest(TestCase):

 def test_form_item_input_has_placeholder_and_css_classes(self):
 form = ItemForm()
 self.assertIn('placeholder="Enter a to-do item"', form.as_p())
 self.assertIn('class="form-control input-lg"', form.as_p())

That gives us a fail which justifies some real coding. How can we customise the input
for a form field? Using a “widget”. Here it is with just the placeholder:

lists/forms.py
class ItemForm(forms.Form):
 item_text = forms.CharField(
 widget=forms.fields.TextInput(attrs={
 'placeholder': 'Enter a to-do item',
 }),
)

That gives:

AssertionError: 'class="form-control input-lg"' not found in '<p><label
for="id_item_text">Item text:</label> <input type="text" name="item_text"
placeholder="Enter a to-do item" required id="id_item_text" /></p>'

And then:

lists/forms.py
 widget=forms.fields.TextInput(attrs={
 'placeholder': 'Enter a to-do item',
 'class': 'form-control input-lg',
 }),

Doing this sort of widget customisation would get tedious if we had
a much larger, more complex form. Check out django-crispy-forms
and django-floppyforms for some help.

Moving Validation Logic into a Form | 237

https://django-crispy-forms.readthedocs.org/
http://bit.ly/1rR5eyD

Development-Driven Tests: Using Unit Tests for Exploratory Coding
Does this feel a bit like development-driven tests? That’s OK, now and again.

When you’re exploring a new API, you’re absolutely allowed to mess about with it for
a while before you get back to rigorous TDD. You might use the interactive console,
or write some exploratory code (but you have to promise the Testing Goat that you’ll
throw it away and rewrite it properly later).

Here we’re actually using a unit test as a way of experimenting with the forms API. It’s
actually a pretty good way of learning how it works.

Switching to a Django ModelForm
What’s next? We want our form to reuse the validation code that we’ve already
defined on our model. Django provides a special class which can autogenerate a form
for a model, called ModelForm. As you’ll see, it’s configured using a special attribute
called Meta:

lists/forms.py
from django import forms

from lists.models import Item

class ItemForm(forms.models.ModelForm):

 class Meta:
 model = Item
 fields = ('text',)

In Meta we specify which model the form is for, and which fields we want it to use.

ModelForms do all sorts of smart stuff, like assigning sensible HTML form input types
to different types of field, and applying default validation. Check out the docs for
more info.

We now have some different-looking form HTML:

AssertionError: 'placeholder="Enter a to-do item"' not found in '<p><label
for="id_text">Text:</label> <textarea name="text" cols="40" rows="10" required
id="id_text">\n</textarea></p>'

It’s lost our placeholder and CSS class. But you can also see that it’s using
name="text" instead of name="item_text". We can probably live with that. But it’s
using a textarea instead of a normal input, and that’s not the UI we want for our
app. Thankfully, you can override widgets for ModelForm fields, similarly to the way
we did it with the normal form:

238 | Chapter 14: A Simple Form

https://docs.djangoproject.com/en/1.11/topics/forms/modelforms/

lists/forms.py
class ItemForm(forms.models.ModelForm):

 class Meta:
 model = Item
 fields = ('text',)
 widgets = {
 'text': forms.fields.TextInput(attrs={
 'placeholder': 'Enter a to-do item',
 'class': 'form-control input-lg',
 }),
 }

That gets the test passing.

Testing and Customising Form Validation
Now let’s see if the ModelForm has picked up the same validation rules which we
defined on the model. We’ll also learn how to pass data into the form, as if it came
from the user:

lists/tests/test_forms.py (ch11l008)
 def test_form_validation_for_blank_items(self):
 form = ItemForm(data={'text': ''})
 form.save()

That gives us:

ValueError: The Item could not be created because the data didn't validate.

Good: the form won’t allow you to save if you give it an empty item text.

Now let’s see if we can get it to use the specific error message that we want. The API
for checking form validation before we try to save any data is a function called
is_valid:

lists/tests/test_forms.py (ch11l009)
def test_form_validation_for_blank_items(self):
 form = ItemForm(data={'text': ''})
 self.assertFalse(form.is_valid())
 self.assertEqual(
 form.errors['text'],
 ["You can't have an empty list item"]
)

Calling form.is_valid() returns True or False, but it also has the side effect of vali‐
dating the input data, and populating the errors attribute. It’s a dictionary mapping

Moving Validation Logic into a Form | 239

the names of fields to lists of errors for those fields (it’s possible for a field to have
more than one error).

That gives us:

AssertionError: ['This field is required.'] != ["You can't have an empty list
item"]

Django already has a default error message that we could present to the user—you
might use it if you were in a hurry to build your web app, but we care enough to make
our message special. Customising it means changing error_messages, another Meta
variable:

lists/forms.py (ch11l010)
 class Meta:
 model = Item
 fields = ('text',)
 widgets = {
 'text': forms.fields.TextInput(attrs={
 'placeholder': 'Enter a to-do item',
 'class': 'form-control input-lg',
 }),
 }
 error_messages = {
 'text': {'required': "You can't have an empty list item"}
 }

OK

You know what would be even better than messing about with all these error strings?
Having a constant:

lists/forms.py (ch11l011)
EMPTY_ITEM_ERROR = "You can't have an empty list item"
[...]

 error_messages = {
 'text': {'required': EMPTY_ITEM_ERROR}
 }

Rerun the tests to see that they pass…OK. Now we change the test:

240 | Chapter 14: A Simple Form

lists/tests/test_forms.py (ch11l012)
from lists.forms import EMPTY_ITEM_ERROR, ItemForm
[...]

 def test_form_validation_for_blank_items(self):
 form = ItemForm(data={'text': ''})
 self.assertFalse(form.is_valid())
 self.assertEqual(form.errors['text'], [EMPTY_ITEM_ERROR])

And the tests still pass:

OK

Great. Totes committable:

$ git status # should show lists/forms.py and tests/test_forms.py
$ git add lists
$ git commit -m "new form for list items"

Using the Form in Our Views
I had originally thought to extend this form to capture uniqueness validation as well
as empty-item validation. But there’s a sort of corollary to the “deploy as early as pos‐
sible” lean methodology, which is “merge code as early as possible”. In other words:
while building this bit of forms code, it would be easy to go on for ages, adding more
and more functionality to the form—I should know, because that’s exactly what I did
during the drafting of this chapter, and I ended up doing all sorts of work making an
all-singing, all-dancing form class before I realised it wouldn’t really work for our
most basic use case.

So, instead, try to use your new bit of code as soon as possible. This makes sure you
never have unused bits of code lying around, and that you start checking your code
against “the real world” as soon as possible.

We have a form class which can render some HTML and do validation of at least one
kind of error—let’s start using it! We should be able to use it in our base.html tem‐
plate, and so in all of our views.

Using the Form in a View with a GET Request
Let’s start in our unit tests for the home view. We’ll add a new method that checks
whether we’re using the right kind of form:

Using the Form in Our Views | 241

lists/tests/test_views.py (ch11l013)
from lists.forms import ItemForm

class HomePageTest(TestCase):

 def test_uses_home_template(self):
 [...]

 def test_home_page_uses_item_form(self):
 response = self.client.get('/')
 self.assertIsInstance(response.context['form'], ItemForm)

assertIsInstance checks that our form is of the correct class.

That gives us:

KeyError: 'form'

So we use the form in our home page view:

lists/views.py (ch11l014)
[...]
from lists.forms import ItemForm
from lists.models import Item, List

def home_page(request):
 return render(request, 'home.html', {'form': ItemForm()})

OK, now let’s try using it in the template—we replace the old <input ..> with
{{ form.text }}:

lists/templates/base.html (ch11l015)
 <form method="POST" action="{% block form_action %}{% endblock %}">
 {{ form.text }}
 {% csrf_token %}
 {% if error %}
 <div class="form-group has-error">

{{ form.text }} renders just the HTML input for the text field of the form.

A Big Find and Replace
One thing we have done, though, is changed our form—it no longer uses the same id
and name attributes. You’ll see if we run our functional tests that they fail the first time
they try to find the input box:

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: [id="id_new_item"]

242 | Chapter 14: A Simple Form

We’ll need to fix this, and it’s going to involve a big find and replace. Before we do
that, let’s do a commit, to keep the rename separate from the logic change:

$ git diff # review changes in base.html, views.py and its tests
$ git commit -am "use new form in home_page, simplify tests. NB breaks stuff"

Let’s fix the functional tests. A quick grep shows us there are several places where
we’re using id_new_item:

$ grep id_new_item functional_tests/test*
functional_tests/test_layout_and_styling.py: inputbox =
self.browser.find_element_by_id('id_new_item')
functional_tests/test_layout_and_styling.py: inputbox =
self.browser.find_element_by_id('id_new_item')
functional_tests/test_list_item_validation.py:
self.browser.find_element_by_id('id_new_item').send_keys(Keys.ENTER)
[...]

That’s a good call for a refactor. Let’s make a new helper method in base.py:

functional_tests/base.py (ch11l018)
class FunctionalTest(StaticLiveServerTestCase):
 [...]
 def get_item_input_box(self):
 return self.browser.find_element_by_id('id_text')

And then we use it throughout—I had to make four changes in test_simple_list_cre‐
ation.py, two in test_layout_and_styling.py, and four in test_list_item_validation.py,
for example:

functional_tests/test_simple_list_creation.py
 # She is invited to enter a to-do item straight away
 inputbox = self.get_item_input_box()

Or:

functional_tests/test_list_item_validation.py
 # an empty list item. She hits Enter on the empty input box
 self.browser.get(self.live_server_url)
 self.get_item_input_box().send_keys(Keys.ENTER)

I won’t show you every single one; I’m sure you can manage this for yourself! You can
redo the grep to check that you’ve caught them all.

We’re past the first step, but now we have to bring the rest of the application code in
line with the change. We need to find any occurrences of the old id (id_new_item)
and name (item_text) and replace them too, with id_text and text, respectively:

Using the Form in Our Views | 243

$ grep -r id_new_item lists/
lists/static/base.css:#id_new_item {

That’s one change, and similarly for the name:

$ grep -Ir item_text lists
[...]
lists/views.py: item = Item(text=request.POST['item_text'], list=list_)
lists/views.py: item = Item(text=request.POST['item_text'],
list=list_)
lists/tests/test_views.py: self.client.post('/lists/new',
data={'item_text': 'A new list item'})
lists/tests/test_views.py: response = self.client.post('/lists/new',
data={'item_text': 'A new list item'})
[...]
lists/tests/test_views.py: data={'item_text': ''}
[...]

Once we’re done, we rerun the unit tests to check that everything still works:

$ python manage.py test lists
[...]
.................

Ran 17 tests in 0.126s

OK

And the functional tests too:

$ python manage.py test functional_tests
[...]
 File "/.../superlists/functional_tests/test_simple_list_creation.py", line
37, in test_can_start_a_list_for_one_user
 return self.browser.find_element_by_id('id_text')
 File "/.../superlists/functional_tests/base.py", line 51, in
get_item_input_box
 return self.browser.find_element_by_id('id_text')
[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: [id="id_text"]
[...]
FAILED (errors=3)

Not quite! Let’s look at where this is happening—if you check the line number from
one of the failures, you’ll see that each time after we’ve submitted a first item, the
input box has disappeared from the lists page.

Checking views.py and the new_list view we can see it’s because if we detect a valida‐
tion error, we’re not actually passing the form to the home.html template:

244 | Chapter 14: A Simple Form

lists/views.py
except ValidationError:
 list_.delete()
 error = "You can't have an empty list item"
 return render(request, 'home.html', {"error": error})

We’ll want to use the form in this view too. Before we make any more changes
though, let’s do a commit:

$ git status
$ git commit -am "rename all item input ids and names. still broken"

Using the Form in a View That Takes POST Requests
Now we want to adjust the unit tests for the new_list view, especially the one that
deals with validation. Let’s take a look at it now:

lists/tests/test_views.py
class NewListTest(TestCase):
 [...]

 def test_validation_errors_are_sent_back_to_home_page_template(self):
 response = self.client.post('/lists/new', data={'text': ''})
 self.assertEqual(response.status_code, 200)
 self.assertTemplateUsed(response, 'home.html')
 expected_error = escape("You can't have an empty list item")
 self.assertContains(response, expected_error)

Adapting the Unit Tests for the new_list View
For a start this test is testing too many things at once, so we’ve got an opportunity to
clarify things here. We should split out two different assertions:

• If there’s a validation error, we should render the home template, with a 200.
• If there’s a validation error, the response should contain our error text.

And we can add a new one too:

• If there’s a validation error, we should pass our form object to the template.

And while we’re at it, we’ll use our constant instead of the hardcoded string for that
error message:

Using the Form in a View That Takes POST Requests | 245

lists/tests/test_views.py (ch11l023)
from lists.forms import ItemForm, EMPTY_ITEM_ERROR
[...]

class NewListTest(TestCase):
 [...]

 def test_for_invalid_input_renders_home_template(self):
 response = self.client.post('/lists/new', data={'text': ''})
 self.assertEqual(response.status_code, 200)
 self.assertTemplateUsed(response, 'home.html')

 def test_validation_errors_are_shown_on_home_page(self):
 response = self.client.post('/lists/new', data={'text': ''})
 self.assertContains(response, escape(EMPTY_ITEM_ERROR))

 def test_for_invalid_input_passes_form_to_template(self):
 response = self.client.post('/lists/new', data={'text': ''})
 self.assertIsInstance(response.context['form'], ItemForm)

Much better. Each test is now clearly testing one thing, and, with a bit of luck, just
one will fail and tell us what to do:

$ python manage.py test lists
[...]
==
ERROR: test_for_invalid_input_passes_form_to_template
(lists.tests.test_views.NewListTest)

Traceback (most recent call last):
 File "/.../superlists/lists/tests/test_views.py", line 49, in
test_for_invalid_input_passes_form_to_template
 self.assertIsInstance(response.context['form'], ItemForm)
[...]
KeyError: 'form'

Ran 19 tests in 0.041s

FAILED (errors=1)

Using the Form in the View
And here’s how we use the form in the view:

246 | Chapter 14: A Simple Form

lists/views.py
def new_list(request):
 form = ItemForm(data=request.POST)
 if form.is_valid():
 list_ = List.objects.create()
 Item.objects.create(text=request.POST['text'], list=list_)
 return redirect(list_)
 else:
 return render(request, 'home.html', {"form": form})

We pass the request.POST data into the form’s constructor.

We use form.is_valid() to determine whether this is a good or a bad
submission.

In the invalid case, we pass the form down to the template, instead of our hardco‐
ded error string.

That view is now looking much nicer! And all our tests pass, except one:

 self.assertContains(response, escape(EMPTY_ITEM_ERROR))
[...]
AssertionError: False is not true : Couldn't find 'You can't have an empty
list item' in response

Using the Form to Display Errors in the Template
We’re failing because we’re not yet using the form to display errors in the template:

lists/templates/base.html (ch11l026)
 <form method="POST" action="{% block form_action %}{% endblock %}">
 {{ form.text }}
 {% csrf_token %}
 {% if form.errors %}
 <div class="form-group has-error">
 <div class="help-block">{{ form.text.errors }}</div>
 </div>
 {% endif %}
 </form>

form.errors contains a list of all the errors for the form.

form.text.errors is a list of just the errors for the text field.

What does that do to our tests?

Using the Form in a View That Takes POST Requests | 247

FAIL: test_validation_errors_end_up_on_lists_page
(lists.tests.test_views.ListViewTest)
[...]
AssertionError: False is not true : Couldn't find 'You can't have an empty
list item' in response

An unexpected failure—it’s actually in the tests for our final view, view_list. Because
we’ve changed the way errors are displayed in all templates, we’re no longer showing
the error that we manually pass into the template.

That means we’re going to need to rework view_list as well, before we can get back
to a working state.

Using the Form in the Other View
This view handles both GET and POST requests. Let’s start with checking that the
form is used in GET requests. We can have a new test for that:

lists/tests/test_views.py
class ListViewTest(TestCase):
 [...]

 def test_displays_item_form(self):
 list_ = List.objects.create()
 response = self.client.get(f'/lists/{list_.id}/')
 self.assertIsInstance(response.context['form'], ItemForm)
 self.assertContains(response, 'name="text"')

That gives:

KeyError: 'form'

Here’s a minimal implementation:

lists/views.py (ch11l028)
def view_list(request, list_id):
 [...]
 form = ItemForm()
 return render(request, 'list.html', {
 'list': list_, "form": form, "error": error
 })

A Helper Method for Several Short Tests
Next we want to use the form errors in the second view. We’ll split our current single
test for the invalid case (test_validation_errors_end_up_on_lists_page) into sev‐
eral separate ones:

248 | Chapter 14: A Simple Form

lists/tests/test_views.py (ch11l030)
class ListViewTest(TestCase):
 [...]

 def post_invalid_input(self):
 list_ = List.objects.create()
 return self.client.post(
 f'/lists/{list_.id}/',
 data={'text': ''}
)

 def test_for_invalid_input_nothing_saved_to_db(self):
 self.post_invalid_input()
 self.assertEqual(Item.objects.count(), 0)

 def test_for_invalid_input_renders_list_template(self):
 response = self.post_invalid_input()
 self.assertEqual(response.status_code, 200)
 self.assertTemplateUsed(response, 'list.html')

 def test_for_invalid_input_passes_form_to_template(self):
 response = self.post_invalid_input()
 self.assertIsInstance(response.context['form'], ItemForm)

 def test_for_invalid_input_shows_error_on_page(self):
 response = self.post_invalid_input()
 self.assertContains(response, escape(EMPTY_ITEM_ERROR))

By making a little helper function, post_invalid_input, we can make four separate
tests without duplicating lots of lines of code.

We’ve seen this several times now. It often feels more natural to write view tests as a
single, monolithic block of assertions—the view should do this and this and this, then
return that with this. But breaking things out into multiple tests is definitely worth‐
while; as we saw in previous chapters, it helps you isolate the exact problem you may
have, when you later come and change your code and accidentally introduce a bug.
Helper methods are one of the tools that lower the psychological barrier.

For example, now we can see there’s just one failure, and it’s a clear one:

FAIL: test_for_invalid_input_shows_error_on_page
(lists.tests.test_views.ListViewTest)
AssertionError: False is not true : Couldn't find 'You can't have an empty
list item' in response

Now let’s see if we can properly rewrite the view to use our form. Here’s a first cut:

Using the Form in the Other View | 249

lists/views.py
def view_list(request, list_id):
 list_ = List.objects.get(id=list_id)
 form = ItemForm()
 if request.method == 'POST':
 form = ItemForm(data=request.POST)
 if form.is_valid():
 Item.objects.create(text=request.POST['text'], list=list_)
 return redirect(list_)
 return render(request, 'list.html', {'list': list_, "form": form})

That gets the unit tests passing:

Ran 23 tests in 0.086s

OK

How about the FTs?

ERROR: test_cannot_add_empty_list_items
(functional_tests.test_list_item_validation.ItemValidationTest)

Traceback (most recent call last):
File "/.../superlists/functional_tests/test_list_item_validation.py", line
15, in test_cannot_add_empty_list_items
[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: .has-error

Nope.

250 | Chapter 14: A Simple Form

1 This is a new feature in Django 1.11.

An Unexpected Benefit: Free Client-Side Validation from HTML5
What’s going on here? Let’s add our usual time.sleep before the error, and take a
look at what’s happening (or spin up the site manually with manage.py runserver if
you prefer (see Figure 14-1).

Figure 14-1. HTML5 validation says no

It seems like the browser is preventing the user from even submitting the input when
it’s empty.

It’s because Django has added the required attribute to the HTML input1 (take
another look at our as_p() printouts from earlier if you don’t believe me). This is a
new feature of HTML5, and browsers nowadays will do some validation at the client
side if they see it, preventing users from even submitting invalid input.

Let’s change our FT to reflect that:

Using the Form in the Other View | 251

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/Input#attr-required

functional_tests/test_list_item_validation.py (ch11l032)
 def test_cannot_add_empty_list_items(self):
 # Edith goes to the home page and accidentally tries to submit
 # an empty list item. She hits Enter on the empty input box
 self.browser.get(self.live_server_url)
 self.get_item_input_box().send_keys(Keys.ENTER)

 # The browser intercepts the request, and does not load the
 # list page
 self.wait_for(lambda: self.browser.find_elements_by_css_selector(
 '#id_text:invalid'
))

 # She starts typing some text for the new item and the error disappears
 self.get_item_input_box().send_keys('Buy milk')
 self.wait_for(lambda: self.browser.find_elements_by_css_selector(
 '#id_text:valid'
))

 # And she can submit it successfully
 self.get_item_input_box().send_keys(Keys.ENTER)
 self.wait_for_row_in_list_table('1: Buy milk')

 # Perversely, she now decides to submit a second blank list item
 self.get_item_input_box().send_keys(Keys.ENTER)

 # Again, the browser will not comply
 self.wait_for_row_in_list_table('1: Buy milk')
 self.wait_for(lambda: self.browser.find_elements_by_css_selector(
 '#id_text:invalid'
))

 # And she can correct it by filling some text in
 self.get_item_input_box().send_keys('Make tea')
 self.wait_for(lambda: self.browser.find_elements_by_css_selector(
 '#id_text:valid'
))
 self.get_item_input_box().send_keys(Keys.ENTER)
 self.wait_for_row_in_list_table('1: Buy milk')
 self.wait_for_row_in_list_table('2: Make tea')

Instead of checking for our custom error message, we check using the CSS pseu‐
doselector :invalid, which the browser applies to any HTML5 input that has
invalid input.

And its converse in the case of valid inputs.

See how useful and flexible our self.wait_for function is turning out to be?

252 | Chapter 14: A Simple Form

Our FT does look quite different from how it started though, doesn’t it? I’m sure that’s
raising a lot of questions in your mind right now. Put a pin in them for a moment; I
promise we’ll talk. Let’s first see if we’re back to passing tests:

$ python manage.py test functional_tests
[...]
....

Ran 4 tests in 12.154s

OK

A Pat on the Back
First let’s give ourselves a massive pat on the back: we’ve just made a major change to
our small app—that input field, with its name and ID, is absolutely critical to making
everything work. We’ve touched seven or eight different files, doing a refactor that’s
quite involved…this is the kind of thing that, without tests, would seriously worry
me. In fact, I might well have decided that it wasn’t worth messing with code that
works. But, because we have a full tests suite, we can delve around, tidying things up,
safe in the knowledge that the tests are there to spot any mistakes we make. It just
makes it that much likelier that you’re going to keep refactoring, keep tidying up,
keep gardening, keep tending your code, keep everything neat and tidy and clean and
smooth and precise and concise and functional and good.

• Remove duplication of validation logic in
views

And it’s definitely time for a commit:

$ git diff
$ git commit -am "use form in all views, back to working state"

A Pat on the Back | 253

But Have We Wasted a Lot of Time?
But what about our custom error message? What about all that effort rendering the
form in our HTML template? We’re not even passing those errors from Django to the
user if the browser is intercepting the requests before the user even makes them? And
our FT isn’t even testing that stuff any more!

Well, you’re quite right. But there are two or three reasons all our time hasn’t been
wasted. Firstly, client-side validation isn’t enough to guarantee you’re protected from
bad inputs, so you always need the server side as well if you really care about data
integrity; using a form is a nice way of encapsulating that logic.

Also, not all browsers (cough—Safari—cough) fully implement HTML5, so some
users are still going to see our custom error message. And if or when we come to let‐
ting users access our data via an API (see Appendix F), then our validation messages
will come back into use.

On top of that, we’ll be able to reuse all our validation and forms code and the front-
end .has-error classes in the next chapter, when we do some more advanced valida‐
tion that can’t be done by HTML5 magic.

But you know, even if all that wasn’t true, you still can’t beat yourself up for occasion‐
ally going down a blind alley while you’re coding. None of us can see the future, and
we should concentrate on finding the right solution rather than the time “wasted” on
the wrong solution.

Using the Form’s Own Save Method
There are a couple more things we can do to make our views even simpler. I’ve men‐
tioned that forms are supposed to be able to save data to the database for us. Our case
won’t quite work out of the box, because the item needs to know what list to save to,
but it’s not hard to fix that.

We start, as always, with a test. Just to illustrate what the problem is, let’s see what
happens if we just try to call form.save():

lists/tests/test_forms.py (ch11l033)
 def test_form_save_handles_saving_to_a_list(self):
 form = ItemForm(data={'text': 'do me'})
 new_item = form.save()

Django isn’t happy, because an item needs to belong to a list:

django.db.utils.IntegrityError: NOT NULL constraint failed: lists_item.list_id

254 | Chapter 14: A Simple Form

Our solution is to tell the form’s save method what list it should save to:

lists/tests/test_forms.py
from lists.models import Item, List
[...]

 def test_form_save_handles_saving_to_a_list(self):
 list_ = List.objects.create()
 form = ItemForm(data={'text': 'do me'})
 new_item = form.save(for_list=list_)
 self.assertEqual(new_item, Item.objects.first())
 self.assertEqual(new_item.text, 'do me')
 self.assertEqual(new_item.list, list_)

We then make sure that the item is correctly saved to the database, with the right
attributes:

TypeError: save() got an unexpected keyword argument 'for_list'

And here’s how we can implement our custom save method:

lists/forms.py (ch11l035)
 def save(self, for_list):
 self.instance.list = for_list
 return super().save()

The .instance attribute on a form represents the database object that is being modi‐
fied or created. And I only learned that as I was writing this chapter! There are other
ways of getting this to work, including manually creating the object yourself, or using
the commit=False argument to save, but this is the neatest I think. We’ll explore a dif‐
ferent way of making a form “know” what list it’s for in the next chapter:

Ran 24 tests in 0.086s
OK

Finally we can refactor our views. new_list first:

lists/views.py
def new_list(request):
 form = ItemForm(data=request.POST)
 if form.is_valid():
 list_ = List.objects.create()
 form.save(for_list=list_)
 return redirect(list_)
 else:
 return render(request, 'home.html', {"form": form})

Rerun the test to check that everything still passes:

Using the Form’s Own Save Method | 255

Ran 24 tests in 0.086s
OK

And now view_list:

lists/views.py
def view_list(request, list_id):
 list_ = List.objects.get(id=list_id)
 form = ItemForm()
 if request.method == 'POST':
 form = ItemForm(data=request.POST)
 if form.is_valid():
 form.save(for_list=list_)
 return redirect(list_)
 return render(request, 'list.html', {'list': list_, "form": form})

And we still have full passes:

Ran 24 tests in 0.111s
OK

and:

Ran 4 tests in 14.367s
OK

Great! Our two views are now looking very much like “normal” Django views: they
take information from a user’s request, combine it with some custom logic or infor‐
mation from the URL (list_id), pass it to a form for validation and possible saving,
and then redirect or render a template.

Forms and validation are really important in Django, and in web programming in
general, so let’s try to make a slightly more complicated one in the next chapter.

256 | Chapter 14: A Simple Form

Tips
Thin views

If you find yourself looking at complex views, and having to write a lot of tests
for them, it’s time to start thinking about whether that logic could be moved else‐
where: possibly to a form, like we’ve done here.

Another possible place would be a custom method on the model class. And—
once the complexity of the app demands it—out of Django-specific files and into
your own classes and functions, that capture your core business logic.

Each test should test one thing
The heuristic is to be suspicious if there’s more than one assertion in a test.
Sometimes two assertions are closely related, so they belong together. But often
your first draft of a test ends up testing multiple behaviours, and it’s worth
rewriting it as several tests. Helper functions can keep them from getting too
bloated.

Using the Form’s Own Save Method | 257

CHAPTER 15

More Advanced Forms

Now let’s look at some more advanced forms usage. We’ve helped our users to avoid
blank list items, so now let’s help them avoid duplicate items.

This chapter goes into more intricate details of Django’s form validation, and you
have my official permission to skip it if you already know all about customising
Django forms, or if you’re reading this book for the TDD rather than for the Django.

If you’re still learning Django, there’s good stuff in here. If you want to skip ahead,
that’s OK too. Make sure you take a quick look at the aside on developer stupidity,
and the recap on testing views at the end.

Another FT for Duplicate Items
We add a second test method to ItemValidationTest:

259

functional_tests/test_list_item_validation.py (ch13l001)
def test_cannot_add_duplicate_items(self):
 # Edith goes to the home page and starts a new list
 self.browser.get(self.live_server_url)
 self.get_item_input_box().send_keys('Buy wellies')
 self.get_item_input_box().send_keys(Keys.ENTER)
 self.wait_for_row_in_list_table('1: Buy wellies')

 # She accidentally tries to enter a duplicate item
 self.get_item_input_box().send_keys('Buy wellies')
 self.get_item_input_box().send_keys(Keys.ENTER)

 # She sees a helpful error message
 self.wait_for(lambda: self.assertEqual(
 self.browser.find_element_by_css_selector('.has-error').text,
 "You've already got this in your list"
))

Why have two test methods rather than extending one, or having a new file and class?
It’s a judgement call. These two feel closely related; they’re both about validation on
the same input field, so it feels right to keep them in the same file. On the other hand,
they’re logically separate enough that it’s practical to keep them in different methods:

$ python manage.py test functional_tests.test_list_item_validation
[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: .has-error

Ran 2 tests in 9.613s

OK, so we know the first of the two tests passes now. Is there a way to run just the
failing one, I hear you ask? Why, yes indeed:

$ python manage.py test functional_tests.\
test_list_item_validation.ItemValidationTest.test_cannot_add_duplicate_items
[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: .has-error

Preventing Duplicates at the Model Layer
Here’s what we really wanted to do. It’s a new test that checks that duplicate items in
the same list raise an error:

260 | Chapter 15: More Advanced Forms

lists/tests/test_models.py (ch09l028)
def test_duplicate_items_are_invalid(self):
 list_ = List.objects.create()
 Item.objects.create(list=list_, text='bla')
 with self.assertRaises(ValidationError):
 item = Item(list=list_, text='bla')
 item.full_clean()

And, while it occurs to us, we add another test to make sure we don’t overdo it on our
integrity constraints:

lists/tests/test_models.py (ch09l029)
def test_CAN_save_same_item_to_different_lists(self):
 list1 = List.objects.create()
 list2 = List.objects.create()
 Item.objects.create(list=list1, text='bla')
 item = Item(list=list2, text='bla')
 item.full_clean() # should not raise

I always like to put a little comment for tests which are checking that a particular use
case should not raise an error; otherwise, it can be hard to see what’s being tested:

AssertionError: ValidationError not raised

If we want to get it deliberately wrong, we can do this:

lists/models.py (ch09l030)
class Item(models.Model):
 text = models.TextField(default='', unique=True)
 list = models.ForeignKey(List, default=None)

That lets us check that our second test really does pick up on this problem:

Traceback (most recent call last):
 File "/.../superlists/lists/tests/test_models.py", line 62, in
test_CAN_save_same_item_to_different_lists
 item.full_clean() # should not raise
 [...]
django.core.exceptions.ValidationError: {'text': ['Item with this Text already
exists.']}

Another FT for Duplicate Items | 261

An Aside on When to Test for Developer Stupidity
One of the judgement calls in testing is when you should write tests that sound like
“check that we haven’t done something stupid”. In general, you should be wary of
these.

In this case, we’ve written a test to check that you can’t save duplicate items to the
same list. Now, the simplest way to get that test to pass, the way in which you’d write
the fewest lines of code, would be to make it impossible to save any duplicate items.
That justifies writing another test, despite the fact that it would be a “stupid” or
“wrong” thing for us to code.

But you can’t be writing tests for every possible way we could have coded something
wrong. If you have a function that adds two numbers, you can write a couple of tests:

assert adder(1, 1) == 2
assert adder(2, 1) == 3

But you have the right to assume that the implementation isn’t deliberately screwy or
perverse:

def adder(a, b):
 # unlikely code!
 if a == 3:
 return 666
 else:
 return a + b

One way of putting it is that you should trust yourself not to do something deliber‐
ately stupid, but not something accidentally stupid.

Just like ModelForms, models have a class Meta, and that’s where we can implement a
constraint which says that an item must be unique for a particular list, or in other
words, that text and list must be unique together:

lists/models.py (ch09l031)
class Item(models.Model):
 text = models.TextField(default='')
 list = models.ForeignKey(List, default=None)

 class Meta:
 unique_together = ('list', 'text')

You might want to take a quick peek at the Django docs on model Meta attributes at
this point.

262 | Chapter 15: More Advanced Forms

https://docs.djangoproject.com/en/1.11/ref/models/options/

A Little Digression on Queryset Ordering and String Representations
When we run the tests they reveal an unexpected failure:

==
FAIL: test_saving_and_retrieving_items
(lists.tests.test_models.ListAndItemModelsTest)

Traceback (most recent call last):
 File "/.../superlists/lists/tests/test_models.py", line 31, in
test_saving_and_retrieving_items
 self.assertEqual(first_saved_item.text, 'The first (ever) list item')
AssertionError: 'Item the second' != 'The first (ever) list item'
- Item the second
[...]

Depending on your platform and its SQLite installation, you may
not see this error. You can follow along anyway; the code and tests
are interesting in their own right.

That’s a bit of a puzzler. A bit of print-based debugging:

lists/tests/test_models.py
 first_saved_item = saved_items[0]
 print(first_saved_item.text)
 second_saved_item = saved_items[1]
 print(second_saved_item.text)
 self.assertEqual(first_saved_item.text, 'The first (ever) list item')

will show us…

.....Item the second
The first (ever) list item
F.....

It looks like our uniqueness constraint has messed with the default ordering of quer‐
ies like Item.objects.all(). Although we already have a failing test, it’s best to add a
new test that explicitly tests for ordering:

Another FT for Duplicate Items | 263

lists/tests/test_models.py (ch09l032)
 def test_list_ordering(self):
 list1 = List.objects.create()
 item1 = Item.objects.create(list=list1, text='i1')
 item2 = Item.objects.create(list=list1, text='item 2')
 item3 = Item.objects.create(list=list1, text='3')
 self.assertEqual(
 Item.objects.all(),
 [item1, item2, item3]
)

That gives us a new failure, but it’s not a very readable one:

AssertionError: <QuerySet [<Item: Item object>, <Item: Item object>, <Item:
Item object>]> != [<Item: Item object>, <Item: Item object>, <Item: Item
object>]

We need a better string representation for our objects. Let’s add another unit test:

Ordinarily you would be wary of adding more failing tests when
you already have some—it makes reading test output that much
more complicated, and just generally makes you nervous. Will we
ever get back to a working state? In this case, they’re all quite sim‐
ple tests, so I’m not worried.

lists/tests/test_models.py (ch13l008)
def test_string_representation(self):
 item = Item(text='some text')
 self.assertEqual(str(item), 'some text')

That gives us:

AssertionError: 'Item object' != 'some text'

As well as the other two failures. Let’s start fixing them all now:

lists/models.py (ch09l034)
class Item(models.Model):
 [...]

 def __str__(self):
 return self.text

In Python 2.x versions of Django, the string representation method
used to be __unicode__. Like much string handling, this is simpli‐
fied in Python 3. See the Django docs.

264 | Chapter 15: More Advanced Forms

https://docs.djangoproject.com/en/1.11/topics/python3/#str-and-unicode-methods

1 You could also check out assertSequenceEqual from unittest, and assertQuerysetEqual from Django’s
test tools, although I confess when I last looked at assertQuerysetEqual I was quite baffled…

Now we’re down to two failures, and the ordering test has a more readable failure
message:

AssertionError: <QuerySet [<Item: i1>, <Item: item 2>, <Item: 3>]> != [<Item:
i1>, <Item: item 2>, <Item: 3>]

We can fix that in the class Meta:

lists/models.py (ch09l035)
 class Meta:
 ordering = ('id',)
 unique_together = ('list', 'text')

Does that work?

AssertionError: <QuerySet [<Item: i1>, <Item: item 2>, <Item: 3>]> != [<Item:
i1>, <Item: item 2>, <Item: 3>]

Urp? It has worked; you can see the items are in the same order, but the tests are con‐
fused. I keep running into this problem actually—Django querysets don’t compare
well with lists. We can fix it by converting the queryset to a list1 in our test:

lists/tests/test_models.py (ch09l036)
 self.assertEqual(
 list(Item.objects.all()),
 [item1, item2, item3]
)

That works; we get a fully passing test suite:

OK

Rewriting the Old Model Test
That long-winded model test did serendipitously help us find an unexpected bug, but
now it’s time to rewrite it. I wrote it in a very verbose style to introduce the Django
ORM, but in fact, now that we have the explicit test for ordering, we can get the same
coverage from a couple of much shorter tests. Delete test_saving_and_retriev
ing_items and replace with this:

Another FT for Duplicate Items | 265

lists/tests/test_models.py (ch13l010)
class ListAndItemModelsTest(TestCase):

 def test_default_text(self):
 item = Item()
 self.assertEqual(item.text, '')

 def test_item_is_related_to_list(self):
 list_ = List.objects.create()
 item = Item()
 item.list = list_
 item.save()
 self.assertIn(item, list_.item_set.all())

 [...]

That’s more than enough really—a check of the default values of attributes on a
freshly initialized model object is enough to sanity-check that we’ve probably set
some fields up in models.py. The “item is related to list” test is a real “belt and braces”
test to make sure that our foreign key relationship works.

While we’re at it, we can split this file out into tests for Item and tests for List (there’s
only one of the latter, test_get_absolute_url):

lists/tests/test_models.py (ch13l011)
class ItemModelTest(TestCase):

 def test_default_text(self):
 [...]

class ListModelTest(TestCase):

 def test_get_absolute_url(self):
 [...]

That’s neater and tidier:

$ python manage.py test lists
[...]
Ran 29 tests in 0.092s

OK

266 | Chapter 15: More Advanced Forms

Some Integrity Errors Do Show Up on Save
A final aside before we move on. Do you remember I mentioned in Chapter 13 that
some data integrity errors are picked up on save? It all depends on whether the integ‐
rity constraint is actually being enforced by the database.

Try running makemigrations and you’ll see that Django wants to add the
unique_together constraint to the database itself, rather than just having it as an
application-layer constraint:

$ python manage.py makemigrations
Migrations for 'lists':
 lists/migrations/0005_auto_20140414_2038.py
 - Change Meta options on item
 - Alter unique_together for item (1 constraint(s))

Now if we change our duplicates test to do a .save instead of a .full_clean…

lists/tests/test_models.py
 def test_duplicate_items_are_invalid(self):
 list_ = List.objects.create()
 Item.objects.create(list=list_, text='bla')
 with self.assertRaises(ValidationError):
 item = Item(list=list_, text='bla')
 # item.full_clean()
 item.save()

It gives:

ERROR: test_duplicate_items_are_invalid (lists.tests.test_models.ItemModelTest)
[...]
 return Database.Cursor.execute(self, query, params)
sqlite3.IntegrityError: UNIQUE constraint failed: lists_item.list_id,
lists_item.text
[...]
django.db.utils.IntegrityError: UNIQUE constraint failed: lists_item.list_id,
lists_item.text

You can see that the error bubbles up from SQLite, and it’s a different error from the
one we want, an IntegrityError instead of a ValidationError.

Let’s revert our changes to the test, and see them all passing again:

$ python manage.py test lists
[...]
Ran 29 tests in 0.092s
OK

And now it’s time to commit our model-layer changes:

Another FT for Duplicate Items | 267

2 It’s showing a server error, code 500. Gotta get with the jargon!

$ git status # should show changes to tests + models and new migration
let's give our new migration a better name
$ mv lists/migrations/0005_auto* lists/migrations/0005_list_item_unique_together.py
$ git add lists
$ git diff --staged
$ git commit -am "Implement duplicate item validation at model layer"

Experimenting with Duplicate Item Validation at the
Views Layer
Let’s try running our FT, just to see where we are:

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: .has-error

In case you didn’t see it as it flew past, the site is 500ing.2 A quick unit test at the view
level ought to clear this up:

lists/tests/test_views.py (ch13l014)
class ListViewTest(TestCase):
 [...]

 def test_for_invalid_input_shows_error_on_page(self):
 [...]

 def test_duplicate_item_validation_errors_end_up_on_lists_page(self):
 list1 = List.objects.create()
 item1 = Item.objects.create(list=list1, text='textey')
 response = self.client.post(
 f'/lists/{list1.id}/',
 data={'text': 'textey'}
)

 expected_error = escape("You've already got this in your list")
 self.assertContains(response, expected_error)
 self.assertTemplateUsed(response, 'list.html')
 self.assertEqual(Item.objects.all().count(), 1)

Gives:

django.db.utils.IntegrityError: UNIQUE constraint failed: lists_item.list_id,
lists_item.text

We want to avoid integrity errors! Ideally, we want the call to is_valid to somehow
notice the duplication error before we even try to save, but to do that, our form will
need to know in advance what list it’s being used for.

268 | Chapter 15: More Advanced Forms

Let’s put a skip on that test for now:

lists/tests/test_views.py (ch13l015)
from unittest import skip
[...]

 @skip
 def test_duplicate_item_validation_errors_end_up_on_lists_page(self):

A More Complex Form to Handle Uniqueness Validation
The form to create a new list only needs to know one thing, the new item text. A form
which validates that list items are unique needs to know the list too. Just as we over‐
rode the save method on our ItemForm, this time we’ll override the constructor on
our new form class so that it knows what list it applies to.

We duplicate our tests for the previous form, tweaking them slightly:

lists/tests/test_forms.py (ch13l016)
from lists.forms import (
 DUPLICATE_ITEM_ERROR, EMPTY_ITEM_ERROR,
 ExistingListItemForm, ItemForm
)
[...]

class ExistingListItemFormTest(TestCase):

 def test_form_renders_item_text_input(self):
 list_ = List.objects.create()
 form = ExistingListItemForm(for_list=list_)
 self.assertIn('placeholder="Enter a to-do item"', form.as_p())

 def test_form_validation_for_blank_items(self):
 list_ = List.objects.create()
 form = ExistingListItemForm(for_list=list_, data={'text': ''})
 self.assertFalse(form.is_valid())
 self.assertEqual(form.errors['text'], [EMPTY_ITEM_ERROR])

 def test_form_validation_for_duplicate_items(self):
 list_ = List.objects.create()
 Item.objects.create(list=list_, text='no twins!')
 form = ExistingListItemForm(for_list=list_, data={'text': 'no twins!'})
 self.assertFalse(form.is_valid())
 self.assertEqual(form.errors['text'], [DUPLICATE_ITEM_ERROR])

A More Complex Form to Handle Uniqueness Validation | 269

Next we iterate through a few TDD cycles until we get a form with a custom con‐
structor, which just ignores its for_list argument. (I won’t show them all, but I’m
sure you’ll do them, right? Remember, the Goat sees all.)

lists/forms.py (ch09l071)
DUPLICATE_ITEM_ERROR = "You've already got this in your list"
[...]
class ExistingListItemForm(forms.models.ModelForm):
 def __init__(self, for_list, *args, **kwargs):
 super().__init__(*args, **kwargs)

At this point our error should be:

ValueError: ModelForm has no model class specified.

Then let’s see if making it inherit from our existing form helps:

lists/forms.py (ch09l072)
class ExistingListItemForm(ItemForm):
 def __init__(self, for_list, *args, **kwargs):
 super().__init__(*args, **kwargs)

Yes, that takes us down to just one failure:

FAIL: test_form_validation_for_duplicate_items
(lists.tests.test_forms.ExistingListItemFormTest)
 self.assertFalse(form.is_valid())
AssertionError: True is not false

The next step requires a little knowledge of Django’s internals, but you can read up on
it in the Django docs on model validation and form validation.

Django uses a method called validate_unique, both on forms and models, and we
can use both, in conjunction with the instance attribute:

270 | Chapter 15: More Advanced Forms

https://docs.djangoproject.com/en/1.11/ref/models/instances/#validating-objects
https://docs.djangoproject.com/en/1.11/ref/forms/validation/

lists/forms.py
from django.core.exceptions import ValidationError
[...]

class ExistingListItemForm(ItemForm):

 def __init__(self, for_list, *args, **kwargs):
 super().__init__(*args, **kwargs)
 self.instance.list = for_list

 def validate_unique(self):
 try:
 self.instance.validate_unique()
 except ValidationError as e:
 e.error_dict = {'text': [DUPLICATE_ITEM_ERROR]}
 self._update_errors(e)

That’s a bit of Django voodoo right there, but we basically take the validation error,
adjust its error message, and then pass it back into the form.

And we’re there! A quick commit:

$ git diff
$ git commit -a

Using the Existing List Item Form in the List View
Now let’s see if we can put this form to work in our view.

We remove the skip, and while we’re at it, we can use our new constant. Tidy.

lists/tests/test_views.py (ch13l049)
from lists.forms import (
 DUPLICATE_ITEM_ERROR, EMPTY_ITEM_ERROR,
 ExistingListItemForm, ItemForm,
)
[...]

 def test_duplicate_item_validation_errors_end_up_on_lists_page(self):
 [...]
 expected_error = escape(DUPLICATE_ITEM_ERROR)

That brings back our integrity error:

django.db.utils.IntegrityError: UNIQUE constraint failed: lists_item.list_id,
lists_item.text

Our fix for this is to switch to using the new form class. Before we implement it, let’s
find the tests where we check the form class, and adjust them:

Using the Existing List Item Form in the List View | 271

lists/tests/test_views.py (ch13l050)
class ListViewTest(TestCase):
[...]

 def test_displays_item_form(self):
 list_ = List.objects.create()
 response = self.client.get(f'/lists/{list_.id}/')
 self.assertIsInstance(response.context['form'], ExistingListItemForm)
 self.assertContains(response, 'name="text"')

 [...]

 def test_for_invalid_input_passes_form_to_template(self):
 response = self.post_invalid_input()
 self.assertIsInstance(response.context['form'], ExistingListItemForm)

That gives us:

AssertionError: <ItemForm bound=False, valid=False, fields=(text)> is not an
instance of <class 'lists.forms.ExistingListItemForm'>

So we can adjust the view:

lists/views.py (ch13l051)
from lists.forms import ExistingListItemForm, ItemForm
[...]
def view_list(request, list_id):
 list_ = List.objects.get(id=list_id)
 form = ExistingListItemForm(for_list=list_)
 if request.method == 'POST':
 form = ExistingListItemForm(for_list=list_, data=request.POST)
 if form.is_valid():
 form.save()
 [...]

And that almost fixes everything, except for an unexpected fail:

TypeError: save() missing 1 required positional argument: 'for_list'

Our custom save method from the parent ItemForm is no longer needed. Let’s make a
quick unit test for that:

lists/tests/test_forms.py (ch13l053)
def test_form_save(self):
 list_ = List.objects.create()
 form = ExistingListItemForm(for_list=list_, data={'text': 'hi'})
 new_item = form.save()
 self.assertEqual(new_item, Item.objects.all()[0])

We can make our form call the grandparent save method:

272 | Chapter 15: More Advanced Forms

lists/forms.py (ch13l054)
 def save(self):
 return forms.models.ModelForm.save(self)

Personal opinion here: I could have used super, but I prefer not to
use super when it requires arguments, say, to get a grandparent
method. I find Python 3’s super() with no args awesome to get the
immediate parent. Anything else is too error-prone, and I find it
ugly besides. YMMV.

And we’re there! All the unit tests pass:

$ python manage.py test lists
[...]
Ran 34 tests in 0.082s

OK

And so does our FT for validation:

$ python manage.py test functional_tests.test_list_item_validation
[...]
..

Ran 2 tests in 12.048s

OK

As a final check, we rerun all the FTs:

$ python manage.py test functional_tests
[...]
.....

Ran 5 tests in 19.048s

OK

Hooray! Time for a final commit, and a wrap-up of what we’ve learned about testing
views over the last few chapters.

Wrapping Up: What We’ve Learned About Testing Django
We’re now at a point where our app looks a lot more like a “standard” Django app,
and it implements the three common Django layers: models, forms, and views. We no
longer have any “training wheels”-style tests, and our code looks pretty much like
code we’d be happy to see in a real app.

Wrapping Up: What We’ve Learned About Testing Django | 273

We have one unit test file for each of our key source code files. Here’s a recap of the
biggest (and highest-level) one, test_views (the listing shows just the key tests and
assertions):

What to Test in Views
lists/tests/test_views.py

class ListViewTest(TestCase):
 def test_uses_list_template(self):

 response = self.client.get(f'/lists/{list_.id}/')

 self.assertTemplateUsed(response, 'list.html')

 def test_passes_correct_list_to_template(self):

 self.assertEqual(response.context['list'], correct_list)

 def test_displays_item_form(self):

 self.assertIsInstance(response.context['form'], ExistingListItemForm)

 self.assertContains(response, 'name="text"')
 def test_displays_only_items_for_that_list(self):

 self.assertContains(response, 'itemey 1')

 self.assertContains(response, 'itemey 2')

 self.assertNotContains(response, 'other list item 1')

 def test_can_save_a_POST_request_to_an_existing_list(self):

 self.assertEqual(Item.objects.count(), 1)

 self.assertEqual(new_item.text, 'A new item for an existing list')

 def test_POST_redirects_to_list_view(self):

 self.assertRedirects(response, f'/lists/{correct_list.id}/')

 def test_for_invalid_input_nothing_saved_to_db(self):

 self.assertEqual(Item.objects.count(), 0)

 def test_for_invalid_input_renders_list_template(self):
 self.assertEqual(response.status_code, 200)

 self.assertTemplateUsed(response, 'list.html')

 def test_for_invalid_input_passes_form_to_template(self):

 self.assertIsInstance(response.context['form'], ExistingListItemForm)

 def test_for_invalid_input_shows_error_on_page(self):

 self.assertContains(response, escape(EMPTY_ITEM_ERROR))

 def test_duplicate_item_validation_errors_end_up_on_lists_page(self):
 self.assertContains(response, expected_error)
 self.assertTemplateUsed(response, 'list.html')
 self.assertEqual(Item.objects.all().count(), 1)

Use the Django Test Client.

Check the template used. Then, check each item in the template context.

Check that any objects are the right ones, or querysets have the correct items.

Check that any forms are of the correct class.

Think about testing template logic: any for or if might deserve a minimal test.

274 | Chapter 15: More Advanced Forms

For POST requests, make sure you test both the valid case and the invalid case.

Optionally, sanity-check that your form is rendered, and its errors are displayed.

Why these points? Skip ahead to Appendix B, and I’ll show how they are sufficient to
ensure that our views are still correct if we refactor them to start using class-based
views.

Next we’ll try to make our data validation more friendly by using a bit of client-side
code. Uh-oh, you know what that means…

Wrapping Up: What We’ve Learned About Testing Django | 275

CHAPTER 16

Dipping Our Toes, Very Tentatively,
into JavaScript

If the Good Lord had wanted us to enjoy ourselves, he wouldn’t have granted us his
precious gift of relentless misery.

—John Calvin (as portrayed in Calvin and the Chipmunks)

Our new validation logic is good, but wouldn’t it be nice if the duplicate item error
messages disappeared once the user started fixing the problem? Just like our nice
HTML5 validation errors do? For that we’d need a teeny-tiny bit of JavaScript.

We are utterly spoiled by programming every day in such a joyful language as
Python. JavaScript is our punishment. For a web developer though, there’s no way
around it. So let’s dip our toes in, very gingerly.

I’m going to assume you know the basics of JavaScript syntax. If
you haven’t read JavaScript: The Good Parts, go and get yourself a
copy right away! It’s not a very long book.

Starting with an FT
Let’s add a new functional test to the ItemValidationTest class:

277

http://onemillionpoints.blogspot.co.uk/2008/08/calvin-and-chipmunks.html

functional_tests/test_list_item_validation.py (ch14l001)
def test_error_messages_are_cleared_on_input(self):
 # Edith starts a list and causes a validation error:
 self.browser.get(self.live_server_url)
 self.get_item_input_box().send_keys('Banter too thick')
 self.get_item_input_box().send_keys(Keys.ENTER)
 self.wait_for_row_in_list_table('1: Banter too thick')
 self.get_item_input_box().send_keys('Banter too thick')
 self.get_item_input_box().send_keys(Keys.ENTER)

 self.wait_for(lambda: self.assertTrue(
 self.browser.find_element_by_css_selector('.has-error').is_displayed()
))

 # She starts typing in the input box to clear the error
 self.get_item_input_box().send_keys('a')

 # She is pleased to see that the error message disappears
 self.wait_for(lambda: self.assertFalse(
 self.browser.find_element_by_css_selector('.has-error').is_displayed()
))

We use another of our wait_for invocations, this time with assertTrue.

is_displayed() tells you whether an element is visible or not. We can’t just rely
on checking whether the element is present in the DOM, because now we’re
starting to hide elements.

That fails appropriately, but before we move on: three strikes and refactor! We’ve got
several places where we find the error element using CSS. Let’s move it to a helper
function:

functional_tests/test_list_item_validation.py (ch14l002)
class ItemValidationTest(FunctionalTest):

 def get_error_element(self):
 return self.browser.find_element_by_css_selector('.has-error')

 [...]

I like to keep helper functions in the FT class that’s using them, and
only promote them to the base class when they’re actually needed
elsewhere. It stops the base class from getting too cluttered.
YAGNI.

And we then make three replacements in test_list_item_validation, like this:

278 | Chapter 16: Dipping Our Toes, Very Tentatively, into JavaScript

1 Admittedly once you start looking for Python BDD tools, things are a little more confusing.
2 Purely because it features the NyanCat test runner.

functional_tests/test_list_item_validation.py (ch14l003)
 self.wait_for(lambda: self.assertEqual(
 self.get_error_element().text,
 "You've already got this in your list"
))
[...]
 self.wait_for(lambda: self.assertTrue(
 self.get_error_element().is_displayed()
))
[...]
 self.wait_for(lambda: self.assertFalse(
 self.get_error_element().is_displayed()
))

We have an expected failure:

$ python manage.py test functional_tests.test_list_item_validation
[...]
 self.get_error_element().is_displayed()
AssertionError: True is not false

And we can commit this as the first cut of our FT.

Setting Up a Basic JavaScript Test Runner
Choosing your testing tools in the Python and Django world is fairly straightforward.
The standard library unittest package is perfectly adequate, and the Django test
runner also makes a good default choice. There are some alternatives out there—nose
is popular, Green is the new kid on the block, and I’ve personally found pytest to be
very impressive. But there is a clear default option, and it’s just fine.1

Not so in the JavaScript world! We use YUI and Jest at work, but I thought I’d go out
and see whether there were any new tools out there. I was overwhelmed with options
—jsUnit, Qunit, Mocha, Chutzpah, Karma, Jasmine, and many more. And it doesn’t
end there either: as I had almost settled on one of them, Mocha,2 I find out that I now
need to choose an assertion framework and a reporter, and maybe a mocking library,
and it never ends!

In the end I decided we should use QUnit because it’s simple, has a similar look and
feel to Python unit tests, and it works well with jQuery.

Make a directory called tests inside lists/static, and download the QUnit JavaScript
and CSS files into it. We’ll also put a file called tests.html in there:

Setting Up a Basic JavaScript Test Runner | 279

https://mochajs.org/#nyan
http://nose.readthedocs.org/
https://github.com/CleanCut/green
http://pytest.org/
http://qunitjs.com/

$ tree lists/static/tests/
lists/static/tests/
├── qunit-2.0.1.css
├── qunit-2.0.1.js
└── tests.html

The boilerplate for a QUnit HTML file looks like this, including a smoke test:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width">
 <title>Javascript tests</title>
 <link rel="stylesheet" href="qunit-2.0.1.css">
</head>
<body>
 <div id="qunit"></div>
 <div id="qunit-fixture"></div>
 <script src="qunit-2.0.1.js"></script>

 <script>

QUnit.test("smoke test", function (assert) {
 assert.equal(1, 1, "Maths works!");
});

 </script>
</body>
</html>

Dissecting that, the important things to pick up are the fact that we pull in
qunit-2.0.1.js using the first <script> tag, and then use the second one to write the
main body of tests.

If you open up the file using your web browser (no need to run the dev server, just
find the file on disk), you should see something like Figure 16-1.

280 | Chapter 16: Dipping Our Toes, Very Tentatively, into JavaScript

Figure 16-1. Basic QUnit screen

Looking at the test itself, we’ll find many similarities with the Python tests we’ve been
writing so far:

QUnit.test("smoke test", function (assert) {
 assert.equal(1, 1, "Maths works!");
});

The QUnit.test function defines a test case, a bit like def test_some

thing(self) did in Python. Its first argument is a name for the test, and the sec‐
ond is a function for the body of the test.

The assert.equal function is an assertion; very much like assertEqual, it com‐
pares two arguments. Unlike in Python, though, the message is displayed both
for failures and for passes, so it should be phrased as a positive rather than a
negative.

Why not try changing those arguments to see a deliberate failure?

Using jQuery and the Fixtures Div
Let’s get a bit more comfortable with what our testing framework can do, and start
using a bit of jQuery—an almost indispensable library that gives you a cross-browser-
compatible API for manipulating the DOM.

Using jQuery and the Fixtures Div | 281

If you’ve never seen jQuery before, I’m going to try to explain it as
we go, just enough so that you won’t be totally lost; but this isn’t a
jQuery tutorial. You may find it helpful to spend an hour or two
investigating jQuery at some point during this chapter.

Download the latest jQuery from jquery.com and save it into the lists/static folder.

Then let’s start using it in our tests file, along with adding a couple of HTML ele‐
ments. We’ll start by seeing if we can show and hide an element, and write some
assertions about its visibility:

lists/static/tests/tests.html
 <div id="qunit-fixture"></div>

 <form>
 <input name="text" />
 <div class="has-error">Error text</div>
 </form>

 <script src="../jquery-3.1.1.min.js"></script>
 <script src="qunit-2.0.1.js"></script>

 <script>

QUnit.test("smoke test", function (assert) {
 assert.equal($('.has-error').is(':visible'), true);
 $('.has-error').hide();
 assert.equal($('.has-error').is(':visible'), false);
});

 </script>

The <form> and its contents are there to represent what will be on the real list
page.

Here’s where we load jQuery.

jQuery magic starts here! $ is the jQuery Swiss Army knife. It’s used to find bits
of the DOM. Its first argument is a CSS selector; here, we’re telling it to find all
elements that have the class “has-error”. It returns an object that represents one
or more DOM elements. That, in turn, has various useful methods that allow us
to manipulate or find out about those elements.

One of which is .is, which can tell us whether an element matches a particular
CSS property. Here we use :visible to check whether the element is displayed or
hidden.

282 | Chapter 16: Dipping Our Toes, Very Tentatively, into JavaScript

https://jquery.com/download/

We then use jQuery’s .hide() method to hide the div. Behind the scenes, it
dynamically sets a style="display: none" on the element.

And finally we check that it’s worked, with a second assert.equal.

If you refresh the browser, you should see that all passes:

Expected results from QUnit in the browser

2 assertions of 2 passed, 0 failed.
1. smoke test (2)

Time to see how fixtures work. Let’s just dupe up this test:

lists/static/tests/tests.html
 <script>

QUnit.test("smoke test", function (assert) {
 assert.equal($('.has-error').is(':visible'), true);
 $('.has-error').hide();
 assert.equal($('.has-error').is(':visible'), false);
});
QUnit.test("smoke test 2", function (assert) {
 assert.equal($('.has-error').is(':visible'), true);
 $('.has-error').hide();
 assert.equal($('.has-error').is(':visible'), false);
});

 </script>

Slightly unexpectedly, we find one of them fails—see Figure 16-2.

Using jQuery and the Fixtures Div | 283

Figure 16-2. One of the two tests is failing

What’s happening here is that the first test hides the error div, so when the second test
runs, it starts out invisible.

QUnit tests do not run in a predictable order, so you can’t rely on
the first test running before the second one. Try hitting refresh a
few times, and you’ll find that the test which fails changes…

We need some way of tidying up between tests, a bit like setUp and tearDown, or like
the Django test runner would reset the database between each test. The qunit-
fixture div is what we’re looking for. Move the form in there:

lists/static/tests/tests.html
 <div id="qunit"></div>
 <div id="qunit-fixture">
 <form>
 <input name="text" />
 <div class="has-error">Error text</div>
 </form>
 </div>

 <script src="../jquery-3.1.1.min.js"></script>

284 | Chapter 16: Dipping Our Toes, Very Tentatively, into JavaScript

As you’ve probably guessed, jQuery resets the content of the fixtures div before each
test, so that gets us back to two neatly passing tests:

4 assertions of 4 passed, 0 failed.
1. smoke test (2)
2. smoke test 2 (2)

Building a JavaScript Unit Test for Our Desired
Functionality
Now that we’re acquainted with our JavaScript testing tools, we can switch back to
just one test and start to write the real thing:

lists/static/tests/tests.html
 <script>

QUnit.test("errors should be hidden on keypress", function (assert) {
 $('input[name="text"]').trigger('keypress');
 assert.equal($('.has-error').is(':visible'), false);
});

 </script>

The jQuery .trigger method is mainly used for testing. It says “fire off a Jav‐
Script DOM event on the element(s)”. Here we use the keypress event, which is
fired off by the browser behind the scenes whenever a user types something into
a particular input element.

jQuery is hiding a lot of complexity behind the scenes here. Check
out Quirksmode.org for a view on the hideous nest of differences
between the different browsers’ interpretation of events. The reason
that jQuery is so popular is that it just makes all this stuff go away.

And that gives us:

0 assertions of 1 passed, 1 failed.
1. errors should be hidden on keypress (1, 0, 1)
 1. failed
 Expected: false
 Result: true

Let’s say we want to keep our code in a standalone JavaScript file called list.js.

Building a JavaScript Unit Test for Our Desired Functionality | 285

http://www.quirksmode.org/dom/events/index.html

lists/static/tests/tests.html
 <script src="../jquery-3.1.1.min.js"></script>
 <script src="../list.js"></script>
 <script src="qunit-2.0.1.js"></script>

 <script>
 [...]

Here’s the minimal code to get that test to pass:

lists/static/list.js
$('.has-error').hide();

And it works…

1 assertions of 1 passed, 0 failed.
1. errors should be hidden on keypress (1)

But it has an obvious problem. We’d better add another test:

lists/static/tests/tests.html
QUnit.test("errors should be hidden on keypress", function (assert) {
 $('input[name="text"]').trigger('keypress');
 assert.equal($('.has-error').is(':visible'), false);
});

QUnit.test("errors aren't hidden if there is no keypress", function (assert) {
 assert.equal($('.has-error').is(':visible'), true);
});

Now we get an expected failure:

1 assertions of 2 passed, 1 failed.
1. errors should be hidden on keypress (1)
2. errors aren't hidden if there is no keypress (1, 0, 1)
 1. failed
 Expected: true
 Result: false
[...]

And we can make a more realistic implementation:

lists/static/list.js
$('input[name="text"]').on('keypress', function () {
 $('.has-error').hide();
});

286 | Chapter 16: Dipping Our Toes, Very Tentatively, into JavaScript

This line says: find any input elements whose name attribute is “text”, and add an
event listener which reacts on keypress events. The event listener is the inline
function, which hides all elements that have the class .has-error.

Does it work? No.

1 assertions of 2 passed, 1 failed.
1. errors should be hidden on keypress (1, 0, 1)
 1. failed
 Expected: false
 Result: true
[...]
2. errors aren't hidden if there is no keypress (1)

Curses! Why is that?

Fixtures, Execution Order, and Global State: Key
Challenges of JS Testing
One of the difficulties with JavaScript in general, and testing in particular, is in under‐
standing the order of execution of our code (i.e., what happens when). When does
our code in list.js run, and when does each of our tests run? And how does that inter‐
act with global state, that is, the DOM of our web page, and the fixtures that we’ve
already seen are supposed to be cleaned up after each test?

console.log for Debug Printing
Let’s add a couple of debug prints, or “console.logs”:

lists/static/tests/tests.html
 <script>

console.log('qunit tests start');

QUnit.test("errors should be hidden on keypress", function (assert) {
 console.log('in test 1');
 $('input[name="text"]').trigger('keypress');
 assert.equal($('.has-error').is(':visible'), false);
});

QUnit.test("errors aren't hidden if there is no keypress", function (assert) {
 console.log('in test 2');
 assert.equal($('.has-error').is(':visible'), true);
});
 </script>

And the same in our actual JS code:

Fixtures, Execution Order, and Global State: Key Challenges of JS Testing | 287

lists/static/list.js (ch14l015)
$('input[name="text"]').on('keypress', function () {
 console.log('in keypress handler');
 $('.has-error').hide();
});
console.log('list.js loaded');

Rerun the tests, opening up the browser debug console (Ctrl-Shift-I usually) and you
should see something like Figure 16-3.

Figure 16-3. QUnit tests with console.log debug outputs

What do we see?

• list.js loads first. So our event listener should be attached to the input element.
• Then our QUnit tests file loads.
• Then each test runs.

But, thinking it through, each test is going to “reset” the fixtures div, which means
destroying and re-creating the input element. So the input element that list.js sees and

288 | Chapter 16: Dipping Our Toes, Very Tentatively, into JavaScript

attaches the event listener to will be replaced with a new one by the time each test
runs.

Using an Initialize Function for More Control Over Execution Time
We need more control over the order of execution of our JavaScript. Rather than just
relying on the code in list.js running whenever it is loaded by a <script> tag, we can
use a common pattern, which is to define an “initialize” function, and call that when
we want to in our tests (and later in real life):

lists/static/list.js
var initialize = function () {
 console.log('initialize called');
 $('input[name="text"]').on('keypress', function () {
 console.log('in keypress handler');
 $('.has-error').hide();
 });
};
console.log('list.js loaded');

And in our tests file, we call initialize with each test:

lists/static/tests/tests.html (ch14l017)
QUnit.test("errors should be hidden on keypress", function (assert) {
 console.log('in test 1');
 initialize();
 $('input[name="text"]').trigger('keypress');
 assert.equal($('.has-error').is(':visible'), false);
});

QUnit.test("errors aren't hidden if there is no keypress", function (assert) {
 console.log('in test 2');
 initialize();
 assert.equal($('.has-error').is(':visible'), true);
});

Now we should see our tests pass, and our debug output should make more sense:

2 assertions of 2 passed, 0 failed.
1. errors should be hidden on keypress (1)
2. errors aren't hidden if there is no keypress (1)

list.js loaded
qunit tests start
in test 1
initialize called
in keypress handler
in test 2
initialize called

Fixtures, Execution Order, and Global State: Key Challenges of JS Testing | 289

Hooray! Let’s strip out those console.logs:

lists/static/list.js
var initialize = function () {
 $('input[name="text"]').on('keypress', function () {
 $('.has-error').hide();
 });
};

And from the tests too…

lists/static/tests/tests.html
QUnit.test("errors should be hidden on keypress", function (assert) {
 initialize();
 $('input[name="text"]').trigger('keypress');
 assert.equal($('.has-error').is(':visible'), false);
});

QUnit.test("errors aren't hidden if there is no keypress", function (assert) {
 initialize();
 assert.equal($('.has-error').is(':visible'), true);
});

And for the moment of truth, we’ll pull in jQuery, our script, and invoke our initialize
function on our real pages:

lists/templates/base.html (ch14l020)
 </div>
 <script src="/static/jquery-3.1.1.min.js"></script>
 <script src="/static/list.js"></script>

 <script>
 initialize();
 </script>

 </body>
</html>

It’s good practice to put your script loads at the end of your body
HTML, as it means the user doesn’t have to wait for all your Java‐
Script to load before they can see something on the page. It also
helps to make sure most of the DOM has loaded before any scripts
run.

Aaaand we run our FT:

290 | Chapter 16: Dipping Our Toes, Very Tentatively, into JavaScript

$ python manage.py test functional_tests.test_list_item_validation.\
ItemValidationTest.test_error_messages_are_cleared_on_input
[...]

Ran 1 test in 3.023s

OK

Hooray! That’s a commit!

$ git add lists/static
$ git commit -m"add jquery, qunit tests, list.js with keypress listeners"

Columbo Says: Onload Boilerplate and Namespacing
Oh, and one more thing. Our initialize function name is too generic—what if we
include some third-party JavaScript tool later that also defines a function called initi
alize? Let’s give ourselves a “namespace” that’s unlikely to be used by anyone else:

lists/static/list.js
window.Superlists = {};
window.Superlists.initialize = function () {
 $('input[name="text"]').on('keypress', function () {
 $('.has-error').hide();
 });
};

We explicitly declare an object as a property of the “window” global, giving it a
name that we think no one else is likely to use.

Then we make our initialize function an attribute of that namespace object.

There are lots of other, much cleverer ways of dealing with name‐
spaces in JavaScript, but they are all more complicated, and I’m not
enough of an expert to be able to steer you around them. If you do
want to learn more, search for require.js, which seemed to be the
done thing, or at least it was in the last JavaScript femtosecond.

Columbo Says: Onload Boilerplate and Namespacing | 291

lists/static/tests/tests.html
 <script>
QUnit.test("errors should be hidden on keypress", function (assert) {
 window.Superlists.initialize();
 $('input[name="text"]').trigger('keypress');
 assert.equal($('.has-error').is(':visible'), false);
});

QUnit.test("errors aren't hidden if there is no keypress", function (assert) {
 window.Superlists.initialize();
 assert.equal($('.has-error').is(':visible'), true);
});
 </script>

Finally, whenever you have some JavaScript that interacts with the DOM, it’s always
good to wrap it in some “onload” boilerplate code to make sure that the page has fully
loaded before it tries to do anything. Currently it works anyway, because we’ve placed
the <script> tag right at the bottom of the page, but we shouldn’t rely on that.

The jQuery onload boilerplate is quite minimal:

lists/templates/base.html
 <script>

$(document).ready(function () {
 window.Superlists.initialize();
});

 </script>

Read more in the jQuery .ready() docs.

JavaScript Testing in the TDD Cycle
You may be wondering how these JavaScript tests fit in with our “double loop” TDD
cycle. The answer is that they play exactly the same role as our Python unit tests.

1. Write an FT and see it fail.
2. Figure out what kind of code you need next: Python or JavaScript?
3. Write a unit test in either language, and see it fail.
4. Write some code in either language, and make the test pass.
5. Rinse and repeat.

292 | Chapter 16: Dipping Our Toes, Very Tentatively, into JavaScript

http://api.jquery.com/ready/

Want a little more practice with JavaScript? See if you can get our
error messages to be hidden when the user clicks inside the input
element, as well as just when they type in it. You should be able to
FT it too.

We’re almost ready to move on to Part III. The last step is to deploy our new code to
our servers. Don’t forget to do a final commit including base.html first!

A Few Things That Didn’t Make It
In this chapter I wanted to cover the very basics of JavaScript testing and how it fits
into our TDD workflow in this chapter. Here are a few pointers for further research:

• At the moment, our test only checks that the JavaScript works on one page. It
works because we’re including it in base.html, but if we’d only added it to
home.html the tests would still pass. It’s a judgement call, but you could choose to
write an extra test here.

• When writing JavaScript, get as much help from your editor as you can to avoid
common “gotchas”. Check out syntax/error-checking tools like “jslint” and
“jshint”, also known as “linters”.

• QUnit mainly expects you to “run” your tests using an actual web browser. This
has the advantage that it’s easy to create some HTML fixtures that match the kind
of HTML your site actually contains, for tests to run against. But it’s also possible
to run JS tests from the command line. We’ll see an example in Chapter 24.

• The new shiny thing in the world of frontend development are MVC frameworks
like angular.js and React. Most tutorials for these use an RSpec-like assertion
library called Jasmine. If you’re going to use one of them, you’ll probably find life
easier if you use Jasmine rather than QUnit.

There is more JavaScript fun in this book too! Have a look at the Rest API appendix
when you’re ready for it.

A Few Things That Didn’t Make It | 293

https://jasmine.github.io/

JavaScript Testing Notes
• One of the great advantages of Selenium is that it allows you to test that your

JavaScript really works, just as it tests your Python code.
• There are many JavaScript test running libraries out there. QUnit is closely tied

to jQuery, which is the main reason I chose it.
• No matter which testing library you use, you’ll always need to find solutions to

the main challenge of JavaScript testing, which is about managing global state.
That includes:
— the DOM / HTML fixtures
— namespacing
— understanding and controlling execution order.

• I don’t really mean it when I say that JavaScript is awful. It can actually be quite
fun. But I’ll say it again: make sure you’ve read JavaScript: The Good Parts.

294 | Chapter 16: Dipping Our Toes, Very Tentatively, into JavaScript

CHAPTER 17

Deploying Our New Code

It’s time to deploy our brilliant new validation code to our live servers. This will be a
chance to see our automated deploy scripts in action for the second time.

At this point I want to say a huge thanks to Andrew Godwin and
the whole Django team. Up until Django 1.7, I used to have a whole
long section, entirely devoted to migrations. Migrations now “just
work”, so I was able to drop it altogether. Thanks for all the great
work, gang!

Staging Deploy
We start with the staging server:

$ git push
$ cd deploy_tools
$ fab deploy:host=elspeth@superlists-staging.ottg.eu
Disconnecting from superlists-staging.ottg.eu... done.

Restart Gunicorn:

elspeth@server:$ sudo systemctl restart gunicorn-superlists-staging.ottg.eu

And run the tests against staging:
$ STAGING_SERVER=superlists-staging.ottg.eu python manage.py test functional_tests
OK

295

Live Deploy
Assuming all is well, we then run our deploy against live:

$ fab deploy:host=elspeth@superlists.ottg.eu

elspeth@server:$ sudo service gunicorn-superlists.ottg.eu restart

What to Do If You See a Database Error
Because our migrations introduce a new integrity constraint, you may find that it fails
to apply because some existing data violates that constraint.

At this point you have two choices:

• Delete the database on the server and try again. After all, it’s only a toy project!
• Learn about data migrations. See Appendix D.

Wrap-Up: git tag the New Release
The last thing to do is to tag the release in our VCS—it’s important that we’re always
able to keep track of what’s live:

$ git tag -f LIVE # needs the -f because we are replacing the old tag
$ export TAG=`date +DEPLOYED-%F/%H%M`
$ git tag $TAG
$ git push -f origin LIVE $TAG

Some people don’t like to use push -f and update an existing tag,
and will instead use some kind of version number to tag their relea‐
ses. Use whatever works for you.

And on that note, we can wrap up Part II, and move on to the more exciting topics
that comprise Part III. Can’t wait!

296 | Chapter 17: Deploying Our New Code

Deployment Procedure Review
We’ve done a couple of deploys now, so this is a good time for a little recap:

• git push latest code
• Deploy to staging and run functional tests against staging
• Deploy to live
• Tag the release

Deployment procedures evolve and get more complex as projects grow, and it’s an
area that can grow hard to maintain, full of manual checks and procedures, if you’re
not careful to keep things automated. There’s lots more to say about this, but it’s out
of scope for this book. Do be sure to check out Appendix C, and have a read around
on the topic of “continuous deployment.”

Wrap-Up: git tag the New Release | 297

PART III

More Advanced Topics in Testing

“Oh my gosh, what? Another section? Harry, I’m exhausted, it’s already been three
hundred pages, I don’t think I can handle a whole ’nother section of the book. Partic‐
ularly not if it’s called ‘Advanced’…maybe I can get away with just skipping it?”

Oh no, you can’t! This may be called the advanced section, but it’s full of really impor‐
tant topics for TDD and web development. No way can you skip it. If anything, it’s
even more important than the first two sections.

We’ll be talking about how to integrate third-party systems, and how to test them.
Modern web development is all about reusing existing components. We’ll cover
mocking and test isolation, which is really a core part of TDD, and a technique you’re
going to need for all but the simplest of codebases. We’ll talk about server-side debug‐
ging, and test fixtures, and how to set up a Continuous Integration environment.
None of these things are take-it-or-leave-it optional luxury extras for your project—
they’re all vital!

Inevitably, the learning curve does get a little steeper in this section. You may find
yourself having to read things a couple of times before they sink in, or you may find
that things don’t work on the first go, and that you need to do a bit of debugging on
your own. But persist with it! The harder it is, the more rewarding it is. And I’m
always happy to help if you’re stuck; just drop me an email at obeythetesting‐
goat@gmail.com.

Come on; I promise the best is yet to come!

mailto:obeythetestinggoat@gmail.com
mailto:obeythetestinggoat@gmail.com

CHAPTER 18

User Authentication, Spiking, and
De-Spiking

Our beautiful lists site has been live for a few days, and our users are starting to come
back to us with feedback. “We love the site”, they say, “but we keep losing our lists.
Manually remembering URLs is hard. It’d be great if it could remember what lists we’d
started”.

Remember Henry Ford and faster horses. Whenever you hear a user requirement, it’s
important to dig a little deeper and think—what is the real requirement here? And
how can I make it involve a cool new technology I’ve been wanting to try out?

Clearly the requirement here is that people want to have some kind of user account
on the site. So, without further ado, let’s dive into authentication.

Naturally we’re not going to mess about with remembering passwords ourselves—
besides being so ’90s, secure storage of user passwords is a security nightmare we’d
rather leave to someone else. We’ll use something fun called passwordless auth
instead.

(If you insist on storing your own passwords, Django’s default auth module is ready
and waiting for you. It’s nice and straightforward, and I’ll leave it to you to discover
on your own.)

301

Passwordless Auth
What authentication system could we use to avoid storing passwords ourselves?
Oauth? Openid? “Login with Facebook”? Ugh. For me those all have unacceptable
creepy overtones; why should Google or Facebook know what sites you’re logging
into and when?

In the first edition I used an experimental project called “Persona”, cooked up by a
some of the wonderful techno-hippy-idealists at Mozilla, but sadly that project was
abandoned.

Instead I’ve found a fun approach to authentication that goes by the name of “Pass‐
wordless”, but you might call it “just use email”.

The system was invented by someone annoyed at having to create new passwords for
so many websites, who found himself just using random, throwaway passwords, not
even trying to remember them, and using the “forgot my password” feature whenever
he needed to log in again. You can read all about it on Medium.

The concept is: just use email to verify someone’s identity. If you’re going to have a
“forgot my password” feature, then you’re trusting email anyway, so why not just go
the whole hog? Whenever someone wants to log in, we generate a unique URL for
them to use, email it to them, and they then click through that to get into the site.

It’s by no means a perfect system, and in fact there are lots of subtleties to be thought
through before it would really make a good login solution for a production website,
but this is just a fun toy project so let’s give it a go.

Exploratory Coding, aka “Spiking”
Before I wrote this chapter all I knew about passwordless auth was the outline I’d read
in the article linked above. I’d never seen any code for it, and didn’t really know where
to start in building it.

In Chapters 13 and 14 we saw that you can use a unit test as a way of exploring a new
API or tool, but sometimes you just want to hack something together without any
tests at all, just to see if it works, to learn it or get a feel for it. That’s absolutely fine.
When learning a new tool or exploring a new possible solution, it’s often appropriate
to leave the rigorous TDD process to one side, and build a little prototype without
tests, or perhaps with very few tests. The goat doesn’t mind looking the other way for
a bit.

This kind of prototyping activity is often called a “spike”, for reasons best known.

302 | Chapter 18: User Authentication, Spiking, and De-Spiking

https://medium.com/@ninjudd/passwords-are-obsolete-9ed56d483eb#.cx8iber30
http://stackoverflow.com/questions/249969/why-are-tdd-spikes-called-spikes

The first thing I did was take a look at existing Python and Django authentication
packages, like django-allauth and python-social-auth, but both of them looked over‐
complicated for this stage (and besides, it’ll be more fun to code our own!).

So instead I dived in and hacked about, and after a few dead ends and wrong turns, I
had something which just about works. I’ll take you on a tour, and then we’ll go
through and “de-spike” the implementation—that is, replace the prototype with tes‐
ted, production-ready code.

You should go ahead and add this code to your own site too, and then you can have a
play with it, try logging in with your own email address, and convince yourself that it
really does work.

Starting a Branch for the Spike
Before embarking on a spike, it’s a good idea to start a new branch, so you can still
use your VCS without worrying about your spike commits getting mixed up with
your production code:

$ git checkout -b passwordless-spike

Let’s keep track of some of the things we’re hoping to learn from the spike:

• How to send emails
• Generating and recognising unique tokens
• How to authenticate someone in Django
• What steps will the user have to go

through?

Frontend Log in UI
Let’s start with the frontend, hacking in an actual form to be able to enter your email
address into the navbar, and a logout link for users who are already authenticated:

Exploratory Coding, aka “Spiking” | 303

http://www.intenct.nl/projects/django-allauth/
https://github.com/omab/python-social-auth

lists/templates/base.html (ch16l001)
<body>
 <div class="container">

 <div class="navbar">
 {% if user.is_authenticated %}
 <p>Logged in as {{ user.email}}</p>
 <p>Log out</p>
 {% else %}
 <form method="POST" action ="{% url 'send_login_email' %}">
 Enter email to log in: <input name="email" type="text" />
 {% csrf_token %}
 </form>
 {% endif %}
 </div>

 <div class="row">
 [...]

Sending Emails from Django
The login theory will be something like this:

• When someone wants to log in, we generate a unique secret token for them, store
it in the database linked to their email, and send it to them.

• They then check their email, which will have a link to a URL that includes that
token.

• When they click that link, we check whether the token exists in database, and if
so, they are logged in as the associated user.

First we prep an app for our accounts stuff:

$ python manage.py startapp accounts

And we’ll wire up urls.py with at least one URL. In the top-level superlists/urls.py…

superlists/urls.py (ch16l003)
from django.conf.urls import include, url
from lists import views as list_views
from lists import urls as list_urls
from accounts import urls as accounts_urls

urlpatterns = [
 url(r'^$', list_views.home_page, name='home'),
 url(r'^lists/', include(list_urls)),
 url(r'^accounts/', include(accounts_urls)),
]

304 | Chapter 18: User Authentication, Spiking, and De-Spiking

And in the accounts module’s urls.py:

accounts/urls.py (ch16l004)
from django.conf.urls import url
from accounts import views

urlpatterns = [
 url(r'^send_email$', views.send_login_email, name='send_login_email'),
]

Here’s the view that’s in charge of creating a token associated with the email address
the user puts in our login form:

accounts/views.py (ch16l005)
import uuid
import sys
from django.shortcuts import render
from django.core.mail import send_mail

from accounts.models import Token

def send_login_email(request):
 email = request.POST['email']
 uid = str(uuid.uuid4())
 Token.objects.create(email=email, uid=uid)
 print('saving uid', uid, 'for email', email, file=sys.stderr)
 url = request.build_absolute_uri(f'/accounts/login?uid={uid}')
 send_mail(
 'Your login link for Superlists',
 f'Use this link to log in:\n\n{url}',
 'noreply@superlists',
 [email],
)
 return render(request, 'login_email_sent.html')

For that to work we’ll need a placeholder message confirming the email was sent:

accounts/templates/login_email_sent.html (ch16l006)
<html>
<h1>Email sent</h1>

<p>Check your email, you'll find a message with a link that will log you into
the site.</p>

</html>

Exploratory Coding, aka “Spiking” | 305

1 Didn’t I just spend a whole intro banging on about the privacy implications of using Google for login, only to
go on and use Gmail? Yes, it’s a contradiction (honest, I will move off Gmail one day!). But in this case I’m just
using it for testing, and the important thing is that I’m not forcing Google on my users.

(You can see how hacky this code is—we’d want to integrate this template with our
base.html in the real version.)

More importantly, for the Django send_mail function to work, we need to tell Django
our email server address. I’m just using my Gmail1 account for now. You can use any
email provider you like, as long as they support SMTP:

superlists/settings.py (ch16l007)
EMAIL_HOST = 'smtp.gmail.com'
EMAIL_HOST_USER = 'obeythetestinggoat@gmail.com'
EMAIL_HOST_PASSWORD = os.environ.get('EMAIL_PASSWORD')
EMAIL_PORT = 587
EMAIL_USE_TLS = True

If you want to use Gmail as well, you’ll probably have to visit your
Google account security settings page. If you’re using two-factor
auth, you’ll want to set up an app-specific password. If you’re not,
you will probably still need to allow access for less secure apps. You
might want to consider creating a new Google account for this pur‐
pose, rather than using one containing sensitive data.

Using Environment Variables to Avoid Secrets in Source Code
Sooner or later every project needs to figure out a way to deal with “secrets”, things
like email passwords or API keys that you don’t want to share with the whole wide
world. If your repo is private, it might be fine to just store it in Git, but often that’s not
the case. This also intersects with the need to have different settings in dev and in
production. (Remember how we dealt with the Django SECRET_KEY setting in Chap‐
ter 11?)

A common pattern is to use environment variables for this sort of configuration set‐
ting, which is what I’m doing with the os.environ.get.

To get this to work, I need to set the environment variable in the shell that’s running
my dev server:

$ export EMAIL_PASSWORD="sekrit"

Later we’ll see about adding that to the staging server as well.

306 | Chapter 18: User Authentication, Spiking, and De-Spiking

https://myaccount.google.com/apppasswords
https://www.google.com/settings/security/lesssecureapps
https://12factor.net/config

Storing Tokens in the Database
How are we doing?

• How to send emails
• Generating and recognising unique tokens
• How to authenticate someone in Django
• What steps will the user have to go

through?

We’ll need a model to store our tokens in the database—they link an email address
with a unique ID. Pretty simple:

accounts/models.py (ch16l008)
from django.db import models

class Token(models.Model):
 email = models.EmailField()
 uid = models.CharField(max_length=255)

Custom Authentication Models
While we’re messing about with models, let’s start experimenting with authentication
in Django.

• How to send emails
• Generating and recognising unique tokens
• How to authenticate someone in Django…
• What steps will the user have to go

through?

Exploratory Coding, aka “Spiking” | 307

The first thing we’ll need is a user model. When I first wrote this, custom user models
were a new thing in Django, so I dived into the Django auth documentation and tried
to hack in the simplest possible one:

accounts/models.py (ch16l009)
[...]
from django.contrib.auth.models import (
 AbstractBaseUser, BaseUserManager, PermissionsMixin
)

class ListUser(AbstractBaseUser, PermissionsMixin):
 email = models.EmailField(primary_key=True)
 USERNAME_FIELD = 'email'
 #REQUIRED_FIELDS = ['email', 'height']

 objects = ListUserManager()

 @property
 def is_staff(self):
 return self.email == 'harry.percival@example.com'

 @property
 def is_active(self):
 return True

That’s what I call a minimal user model! One field, none of this firstname/lastname/
username nonsense, and, pointedly, no password! Somebody else’s problem!

But, again, you can see that this code isn’t ready for production, from the
commented-out lines to the hardcoded harry email address. We’ll neaten this up
quite a lot when we de-spike.

To get it to work, you need a model manager for the user:

accounts/models.py (ch16l010)
[...]
class ListUserManager(BaseUserManager):

 def create_user(self, email):
 ListUser.objects.create(email=email)

 def create_superuser(self, email, password):
 self.create_user(email)

No need to worry about what a model manager is at this stage; for now we just need it
because we need it, and it just works. When we de-spike, we’ll examine each bit of
code that actually ends up in production and make sure we understand it fully.

308 | Chapter 18: User Authentication, Spiking, and De-Spiking

https://docs.djangoproject.com/en/1.11/topics/auth/customizing/

Finishing the Custom Django Auth
Almost there—our last step combines recognising the token and then actually log‐
ging the user in. Once we’ve done this, we’ll be able to pretty much strike off all the
items on our scratchpad:

• How to send emails
• Generating and recognising unique tokens
• How to authenticate someone in Django
• What steps will the user have to go

through?

So here’s the view that actually handles the click through from the link in the email:

accounts/views.py (ch16l011)
import uuid
import sys
from django.contrib.auth import authenticate
from django.contrib.auth import login as auth_login
from django.core.mail import send_mail
from django.shortcuts import redirect, render
[...]

def login(request):
 print('login view', file=sys.stderr)
 uid = request.GET.get('uid')
 user = authenticate(uid=uid)
 if user is not None:
 auth_login(request, user)
 return redirect('/')

The “authenticate” function invokes Django’s authentication framework, which we
configure using a “custom authentication backend”, whose job it is to validate the UID
and return a user with the right email.

We could have done this stuff directly in the view, but we may as well structure things
the way Django expects. It makes for a reasonably neat separation of concerns:

Exploratory Coding, aka “Spiking” | 309

accounts/authentication.py (ch16l012)
import sys
from accounts.models import ListUser, Token

class PasswordlessAuthenticationBackend(object):

 def authenticate(self, uid):
 print('uid', uid, file=sys.stderr)
 if not Token.objects.filter(uid=uid).exists():
 print('no token found', file=sys.stderr)
 return None
 token = Token.objects.get(uid=uid)
 print('got token', file=sys.stderr)
 try:
 user = ListUser.objects.get(email=token.email)
 print('got user', file=sys.stderr)
 return user
 except ListUser.DoesNotExist:
 print('new user', file=sys.stderr)
 return ListUser.objects.create(email=token.email)

 def get_user(self, email):
 return ListUser.objects.get(email=email)

Again, lots of debug prints in there, and some duplicated code, not something we’d
want in production, but it works…

Finally, a logout view:

accounts/views.py (ch16l013)
from django.contrib.auth import login as auth_login, logout as auth_logout
[...]

def logout(request):
 auth_logout(request)
 return redirect('/')

Add login and logout to our urls.py…

accounts/urls.py (ch16l014)
from django.conf.urls import url
from accounts import views

urlpatterns = [
 url(r'^send_email$', views.send_login_email, name='send_login_email'),
 url(r'^login$', views.login, name='login'),
 url(r'^logout$', views.logout, name='logout'),
]

310 | Chapter 18: User Authentication, Spiking, and De-Spiking

Almost there! We switch on the auth backend and our new accounts app in set‐
tings.py:

superlists/settings.py (ch16l015)
INSTALLED_APPS = [
 #'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 'lists',
 'accounts',
]

AUTH_USER_MODEL = 'accounts.ListUser'
AUTHENTICATION_BACKENDS = [
 'accounts.authentication.PasswordlessAuthenticationBackend',
]

MIDDLEWARE = [
[...]

A quick makemigrations to make the token and user models real:

$ python manage.py makemigrations
Migrations for 'accounts':
 accounts/migrations/0001_initial.py
 - Create model ListUser
 - Create model Token

And a migrate to build the database:

$ python manage.py migrate
[...]
Running migrations:
 Applying accounts.0001_initial... OK

And we should be all done! Why not spin up a dev server with runserver and see
how it all looks (Figure 18-1)?

Exploratory Coding, aka “Spiking” | 311

Figure 18-1. It works! It works! Mwahahahaha.

If you get an SMTPSenderRefused error message, don’t forget to set
the EMAIL_PASSWORD environment variable in the shell that’s run‐
ning runserver.

That’s pretty much it! Along the way, I had to fight pretty hard, including clicking
around the Gmail account security UI for a while, stumbling over several missing
attributes on my custom user model (because I didn’t read the docs properly), and
even at one point switching to the dev version of Django to overcome a bug, which
thankfully turned out to be irrelevant.

312 | Chapter 18: User Authentication, Spiking, and De-Spiking

Aside: Logging to stderr
While spiking, it’s pretty critical to be able to see exceptions that are being generated
by your code. Annoyingly, Django doesn’t send all exceptions to the terminal by
default, but you can make it do so with a variable called LOGGING in settings.py:

superlists/settings.py (ch16l017)
LOGGING = {
 'version': 1,
 'disable_existing_loggers': False,
 'handlers': {
 'console': {
 'level': 'DEBUG',
 'class': 'logging.StreamHandler',
 },
 },
 'loggers': {
 'django': {
 'handlers': ['console'],
 },
 },
 'root': {'level': 'INFO'},
}

Django uses the rather “enterprisey” logging package from the Python standard
library, which, although very fully featured, does suffer from a fairly steep learning
curve. It’s covered a little more in Chapter 21, and in the Django docs.

But we now have a working solution! Let’s commit it on our spike branch:

$ git status
$ git add accounts
$ git commit -am "spiked in custom passwordless auth backend"

Time to de-spike!

De-spiking
De-spiking means rewriting your prototype code using TDD. We now have enough
information to “do it properly”. So what’s the first step? An FT, of course!

We’ll stay on the spike branch for now, to see our FT pass against our spiked code.
Then we’ll go back to master and commit just the FT.

Here’s a first, simple version of the FT:

De-spiking | 313

https://docs.djangoproject.com/en/1.11/topics/logging/

functional_tests/test_login.py
from django.core import mail
from selenium.webdriver.common.keys import Keys
import re

from .base import FunctionalTest

TEST_EMAIL = 'edith@example.com'
SUBJECT = 'Your login link for Superlists'

class LoginTest(FunctionalTest):

 def test_can_get_email_link_to_log_in(self):
 # Edith goes to the awesome superlists site
 # and notices a "Log in" section in the navbar for the first time
 # It's telling her to enter her email address, so she does
 self.browser.get(self.live_server_url)
 self.browser.find_element_by_name('email').send_keys(TEST_EMAIL)
 self.browser.find_element_by_name('email').send_keys(Keys.ENTER)

 # A message appears telling her an email has been sent
 self.wait_for(lambda: self.assertIn(
 'Check your email',
 self.browser.find_element_by_tag_name('body').text
))

 # She checks her email and finds a message
 email = mail.outbox[0]
 self.assertIn(TEST_EMAIL, email.to)
 self.assertEqual(email.subject, SUBJECT)

 # It has a url link in it
 self.assertIn('Use this link to log in', email.body)
 url_search = re.search(r'http://.+/.+$', email.body)
 if not url_search:
 self.fail(f'Could not find url in email body:\n{email.body}')
 url = url_search.group(0)
 self.assertIn(self.live_server_url, url)

 # she clicks it
 self.browser.get(url)

 # she is logged in!
 self.wait_for(
 lambda: self.browser.find_element_by_link_text('Log out')
)
 navbar = self.browser.find_element_by_css_selector('.navbar')
 self.assertIn(TEST_EMAIL, navbar.text)

314 | Chapter 18: User Authentication, Spiking, and De-Spiking

Were you worried about how we were going to handle retrieving emails in our
tests? Thankfully we can cheat for now! When running tests, Django gives us
access to any emails the server tries to send via the mail.outbox attribute. We’ll
save checking “real” emails for later (but we will do it!).

And if we run the FT, it works!

$ python manage.py test functional_tests.test_login
[...]
Not Found: /favicon.ico
saving uid [...]
login view
uid [...]
got token
new user

.

Ran 1 test in 3.729s

OK

You can even see some of the debug output I left in my spiked view implementations.
Now it’s time to revert all of our temporary changes, and reintroduce them one by
one in a test-driven way.

Reverting Our Spiked Code
$ git checkout master # switch back to master branch
$ rm -rf accounts # remove any trace of spiked code
$ git add functional_tests/test_login.py
$ git commit -m "FT for login via email"

Now we rerun the FT and let it drive our development:

$ python manage.py test functional_tests.test_login
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: [name="email"]
[...]

The first thing it wants us to do is add an email input element. Bootstrap has some
built-in classes for navigation bars, so we’ll use them, and include a form for the login
email:

De-spiking | 315

2 A decision which you’ll find prominent Django maintainers saying they now regret. Not everyone has a first
name and a last name.

lists/templates/base.html (ch16l020)
<div class="container">

 <nav class="navbar navbar-default" role="navigation">
 <div class="container-fluid">
 Superlists
 <form class="navbar-form navbar-right" method="POST" action="#">
 Enter email to log in:
 <input class="form-control" name="email" type="text" />
 {% csrf_token %}
 </form>
 </div>
 </nav>

 <div class="row">
 [...]

Now our FT fails because the login form doesn’t actually do anything:

$ python manage.py test functional_tests.test_login
[...]
AssertionError: 'Check your email' not found in 'Superlists\nEnter email to log
in:\nStart a new To-Do list'

I recommend reintroducing the LOGGING setting from earlier at this
point. There’s no need for an explicit test for it; our current test
suite will let us know in the unlikely event that it breaks anything.
As we’ll find out in Chapter 21, it’ll be useful for debugging later.

Time to start writing some Django code. We begin by creating an app called accounts
to hold all the files related to login:

$ python manage.py startapp accounts

You could even do a commit just for that, to be able to distinguish the placeholder
app files from our modifications.

Next let’s rebuild our minimal user model, with tests this time, and see if it turns out
neater than it did in the spike.

A Minimal Custom User Model
Django’s built-in user model makes all sorts of assumptions about what information
you want to track about users, from explicitly recording first name and last name2 to

316 | Chapter 18: User Authentication, Spiking, and De-Spiking

forcing you to use a username. I’m a great believer in not storing information about
users unless you absolutely must, so a user model that records an email address and
nothing else sounds good to me!

By now I’m sure you can manage to create the tests folder and its __init__.py, remove
tests.py, and then add a test_models.py to say:

accounts/tests/test_models.py (ch16l024)
from django.test import TestCase
from django.contrib.auth import get_user_model

User = get_user_model()

class UserModelTest(TestCase):

 def test_user_is_valid_with_email_only(self):
 user = User(email='a@b.com')
 user.full_clean() # should not raise

That gives us an expected failure:

django.core.exceptions.ValidationError: {'password': ['This field cannot be
blank.'], 'username': ['This field cannot be blank.']}

Password? Username? Bah! How about this?

accounts/models.py
from django.db import models

class User(models.Model):
 email = models.EmailField()

And we wire it up inside settings.py, adding accounts to INSTALLED_APPS and a vari‐
able called AUTH_USER_MODEL:

superlists/settings.py (ch16l026)
INSTALLED_APPS = [
 #'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 'lists',
 'accounts',
]

AUTH_USER_MODEL = 'accounts.User'

A Minimal Custom User Model | 317

3 You might ask, if I think Django is so silly, why don’t I submit a pull request to fix it? Should be quite a simple
fix. Well, I promise I will, as soon as I’ve finished writing the book. For now, snarky comments will have to
suffice.

The next error is a database error:

django.db.utils.OperationalError: no such table: accounts_user

That prompts us, as usual, to do a migration… When we try, Django complains that
our custom user model is missing a couple of bits of metadata:

$ python manage.py makemigrations
Traceback (most recent call last):
[...]
 if not isinstance(cls.REQUIRED_FIELDS, (list, tuple)):
AttributeError: type object 'User' has no attribute 'REQUIRED_FIELDS'

Sigh. Come on, Django, it’s only got one field, so you should be able to figure out the
answers to these questions for yourself. Here you go:

accounts/models.py
class User(models.Model):
 email = models.EmailField()
 REQUIRED_FIELDS = []

Next silly question?3

$ python manage.py makemigrations
[...]
AttributeError: type object 'User' has no attribute 'USERNAME_FIELD'

And we go through a few more of these, until we get to:

accounts/models.py
class User(models.Model):
 email = models.EmailField()

 REQUIRED_FIELDS = []
 USERNAME_FIELD = 'email'
 is_anonymous = False
 is_authenticated = True

And now we get a slightly different error:

$ python manage.py makemigrations
SystemCheckError: System check identified some issues:

ERRORS:
accounts.User: (auth.E003) 'User.email' must be unique because it is named as
the 'USERNAME_FIELD'.

318 | Chapter 18: User Authentication, Spiking, and De-Spiking

4 Emails may not be the perfect primary key IRL. One reader, clearly deeply emotionally scarred, wrote me a
tearful email about how much they’ve suffered for over a decade from trying to deal with the effects of email
primary keys, due to their making multiuser account management impossible. So, as ever, YMMV.

Well, the simple way to fix that would be like this:

accounts/models.py (ch16l028-1)
 email = models.EmailField(unique=True)

Now the migration is successful:

$ python manage.py makemigrations
Migrations for 'accounts':
 accounts/migrations/0001_initial.py
 - Create model User

And the test passes:

$ python manage.py test accounts
[...]
Ran 1 tests in 0.001s
OK

But our model isn’t quite as simple as it could be. It has the email field, and also an
autogenerated “ID” field as its primary key. We could make it even simpler!

Tests as Documentation
Let’s go all the way and make the email field into the primary key,4 and thus implicitly
remove the autogenerated id column.

Although we could just do it and our test would still pass, and conceivably claim it
was “just a refactor”, it would be better to have a specific test:

accounts/tests/test_models.py (ch16l028-3)
 def test_email_is_primary_key(self):
 user = User(email='a@b.com')
 self.assertEqual(user.pk, 'a@b.com')

It’ll help us remember if we ever come back and look at the code again in future:

 self.assertEqual(user.pk, 'a@b.com')
AssertionError: None != 'a@b.com'

A Minimal Custom User Model | 319

Your tests can be a form of documentation for your code—they
express what your requirements are of a particular class or func‐
tion. Sometimes, if you forget why you’ve done something a partic‐
ular way, going back and looking at the tests will give you the
answer. That’s why it’s important to give your tests explicit, verbose
method names.

And here’s the implementation (feel free to check what happens with unique=True
first):

accounts/models.py (ch16l028-4)
 email = models.EmailField(primary_key=True)

And we mustn’t forget to adjust our migrations:

$ rm accounts/migrations/0001_initial.py
$ python manage.py makemigrations
Migrations for 'accounts':
 accounts/migrations/0001_initial.py
 - Create model User

And both our tests pass:

$ python manage.py test accounts
[...]
Ran 2 tests in 0.001s
OK

A Token Model to Link Emails with a Unique ID
Next let’s build a token model. Here’s a short unit test that captures the essence—you
should be able to link an email to a unique ID, and that ID shouldn’t be the same two
times in a row:

accounts/tests/test_models.py (ch16l030)
from accounts.models import Token
[...]

class TokenModelTest(TestCase):

 def test_links_user_with_auto_generated_uid(self):
 token1 = Token.objects.create(email='a@b.com')
 token2 = Token.objects.create(email='a@b.com')
 self.assertNotEqual(token1.uid, token2.uid)

Driving Django models with basic TDD involves jumping through a few hoops
because of the migration, so we’ll see a few iterations like this—minimal code change,

320 | Chapter 18: User Authentication, Spiking, and De-Spiking

make migrations, get new error, delete migrations, re-create new migrations, another
code change, and so on…

$ python manage.py makemigrations
Migrations for 'accounts':
 accounts/migrations/0002_token.py
 - Create model Token
$ python manage.py test accounts
[...]
TypeError: 'email' is an invalid keyword argument for this function

I’ll trust you to go through these conscientiously—remember, I may not be able to see
you, but the Testing Goat can!

$ rm accounts/migrations/0002_token.py
$ python manage.py makemigrations
Migrations for 'accounts':
 accounts/migrations/0002_token.py
 - Create model Token
$ python manage.py test accounts
AttributeError: 'Token' object has no attribute 'uid'

Eventually you should get to this code…

accounts/models.py (ch16l033)
class Token(models.Model):
 email = models.EmailField()
 uid = models.CharField(max_length=40)

And this error:

$ python manage.py test accounts
[...]

 self.assertNotEqual(token1.uid, token2.uid)
AssertionError: '' == ''

And here we have to decide how to generate our random unique ID field. We could
use the random module, but Python actually comes with another module specifically
designed for generating unique IDs called “uuid” (for “universally unique id”).

We can use that like this:

accounts/models.py (ch16l035)
import uuid
[...]

class Token(models.Model):
 email = models.EmailField()
 uid = models.CharField(default=uuid.uuid4, max_length=40)

A Token Model to Link Emails with a Unique ID | 321

And, with a bit more wrangling of migrations, that should get us to passing tests:

$ python manage.py test accounts
[...]
Ran 3 tests in 0.015s

OK

Well, that gets us on our way! The models layer is done, at least. In the next chapter,
we’ll get into mocking, a key technique for testing external dependencies like email.

Exploratory Coding, Spiking, and De-spiking
Spiking

Exploratory coding to find out about a new API, or to explore the feasibility of a
new solution. Spiking can be done without tests. It’s a good idea to do your spike
on a new branch, and go back to master when de-spiking.

De-spiking
Taking the work from a spike and making it part of the production codebase. The
idea is to throw away the old spike code altogether, and start again from scratch,
using TDD once again. De-spiked code can often come out looking quite differ‐
ent from the original spike, and usually much nicer.

Writing your FT against spiked code
Whether or not this is a good idea depends on your circumstances. The reason it
can be useful is because it can help you write the FT correctly—figuring out how
to test your spike can be just as challenging as the spike itself. On the other hand,
it might constrain you towards reimplementing a very similar solution to your
spiked one—something to watch out for.

322 | Chapter 18: User Authentication, Spiking, and De-Spiking

CHAPTER 19

Using Mocks to Test External Dependencies
or Reduce Duplication

In this chapter we’ll start testing the parts of our code that send emails. In the FT, you
saw that Django gives us a way of retrieving any emails it sends by using the mail.out
box attribute. But in this chapter, I want to demonstrate a very important testing tech‐
nique called mocking, so for the purpose of these unit tests, we’ll pretend that this nice
Django shortcut doesn’t exist.

Am I telling you not to use Django’s mail.outbox? No; use it, it’s a
neat shortcut. But I want to teach mocks because they’re a useful
general-purpose tool for unit testing external dependencies. You
may not always be using Django! And even if you are, you may not
be sending email—any interaction with a third-party API is a good
candidate for testing with mocks.

Before We Start: Getting the Basic Plumbing In
Let’s just get a basic view and URL set up first. We can do so with a simple test that
our new URL for sending the login email should eventually redirect back to the home
page:

323

1 I’m using the generic term “mock”, but testing enthusiasts like to distinguish other types of a general class of
test tools called “Test Doubles”, including spies, fakes, and stubs. The differences don’t really matter for this
book, but if you want to get into the nitty-gritty, check out this amazing wiki by Justin Searls. Warning: abso‐
lutely chock full of great testing content.

accounts/tests/test_views.py
from django.test import TestCase

class SendLoginEmailViewTest(TestCase):

 def test_redirects_to_home_page(self):
 response = self.client.post('/accounts/send_login_email', data={
 'email': 'edith@example.com'
 })
 self.assertRedirects(response, '/')

Wire up the include in superlists/urls.py, plus the url in accounts/urls.py, and get the
test passing with something a bit like this:

accounts/views.py
from django.core.mail import send_mail
from django.shortcuts import redirect

def send_login_email(request):
 return redirect('/')

I’ve added the import of the send_mail function as a placeholder for now:

$ python manage.py test accounts
[...]
Ran 4 tests in 0.015s

OK

OK, now we have a starting point, so let’s get mocking!

Mocking Manually, aka Monkeypatching
When we call send_mail in real life we expect Django to be making a connection to
our email provider, and sending an actual email across the public internet. That’s not
something we want to happen in our tests. It’s a similar problem whenever you have
code that has external side effects—calling an API, sending out a tweet or an SMS or
whatever it may be. In our unit tests, we don’t want to be sending out real tweets or
API calls across the internet. But we would still like a way of testing that our code is
correct. Mocks1 are the answer.

324 | Chapter 19: Using Mocks to Test External Dependencies or Reduce Duplication

https://github.com/testdouble/contributing-tests/wiki/Test-Double

Actually, one of the great things about Python is that its dynamic nature makes it very
easy to do things like mocking, or what’s sometimes called monkeypatching. Let’s
suppose that, as a first step, we want to get to some code that invokes send_mail with
the right subject line, from address, and to address. That would look something like
this:

accounts/views.py
def send_login_email(request):
 email = request.POST['email']
 # send_mail(
 # 'Your login link for Superlists',
 # 'body text tbc',
 # 'noreply@superlists',
 # [email],
 #)
 return redirect('/')

How can we test this, without calling the real send_mail function? The answer is that
our test can ask Python to replace the send_mail function with a fake version, at run‐
time, before we invoke the send_login_email view. Check this out:

accounts/tests/test_views.py (ch17l005)
from django.test import TestCase
import accounts.views

class SendLoginEmailViewTest(TestCase):
 [...]

 def test_sends_mail_to_address_from_post(self):
 self.send_mail_called = False

 def fake_send_mail(subject, body, from_email, to_list):
 self.send_mail_called = True
 self.subject = subject
 self.body = body
 self.from_email = from_email
 self.to_list = to_list

 accounts.views.send_mail = fake_send_mail

 self.client.post('/accounts/send_login_email', data={
 'email': 'edith@example.com'
 })

 self.assertTrue(self.send_mail_called)
 self.assertEqual(self.subject, 'Your login link for Superlists')
 self.assertEqual(self.from_email, 'noreply@superlists')
 self.assertEqual(self.to_list, ['edith@example.com'])

Mocking Manually, aka Monkeypatching | 325

https://en.wikipedia.org/wiki/Monkey_patch

We define a fake_send_mail function, which looks like the real send_mail func‐
tion, but all it does is save some information about how it was called, using some
variables on self.

Then, before we execute the code under test by doing the self.client.post, we
swap out the real accounts.views.send_mail with our fake version—it’s as sim‐
ple as just assigning it.

It’s important to realise that there isn’t really anything magical going on here; we’re
just taking advantage of Python’s dynamic nature and scoping rules.

Up until we actually invoke a function, we can modify the variables it has access to, as
long as we get into the right namespace (that’s why we import the top-level accounts
module, to be able to get down to the accounts.views module, which is the scope
that the accounts.views.send_login_email function will run in).

This isn’t even something that only works inside unit tests. You can do this kind of
“monkeypatching” in any kind of Python code!

That may take a little time to sink in. See if you can convince yourself that it’s not all
totally crazy, before reading a couple of bits of further detail.

• Why do we use self as a way of passing information around? It’s just a conve‐
nient variable that’s available both inside the scope of the fake_send_mail func‐
tion and outside of it. We could use any mutable object, like a list or a dictionary,
as long as we are making in-place changes to an existing variable that exists out‐
side our fake function. (Feel free to have a play around with different ways of
doing this, if you’re curious, and see what works and doesn’t work.)

• The “before” is critical! I can’t tell you how many times I’ve sat there, wondering
why a mock isn’t working, only to realise that I didn’t mock before I called the
code under test.

Let’s see if our hand-rolled mock object will let us test-drive some code:

$ python manage.py test accounts
[...]
 self.assertTrue(self.send_mail_called)
AssertionError: False is not true

So let’s call send_mail, naively:

accounts/views.py
def send_login_email(request):
 send_mail()
 return redirect('/')

326 | Chapter 19: Using Mocks to Test External Dependencies or Reduce Duplication

2 Yes, I know Django already mocks out emails using mail.outbox for us, but, again, let’s pretend it doesn’t.
What if you were using Flask? Or what if this was an API call, not an email?

That gives:

TypeError: fake_send_mail() missing 4 required positional arguments: 'subject',
'body', 'from_email', and 'to_list'

Looks like our monkeypatch is working! We’ve called send_mail, and it’s gone into
our fake_send_mail function, which wants more arguments. Let’s try this:

accounts/views.py
def send_login_email(request):
 send_mail('subject', 'body', 'from_email', ['to email'])
 return redirect('/')

That gives:

 self.assertEqual(self.subject, 'Your login link for Superlists')
AssertionError: 'subject' != 'Your login link for Superlists'

That’s working pretty well. And now we can work all the way through to something
like this:

accounts/views.py
def send_login_email(request):
 email = request.POST['email']
 send_mail(
 'Your login link for Superlists',
 'body text tbc',
 'noreply@superlists',
 [email]
)
 return redirect('/')

and passing tests!

$ python manage.py test accounts

Ran 5 tests in 0.016s

OK

Brilliant! We’ve managed to write tests for some code, that ordinarily2 would go out
and try to send real emails across the internet, and by “mocking out” the send_email
function, we’re able to write the tests and code all the same.

Mocking Manually, aka Monkeypatching | 327

3 In Python 2, you can install it with pip install mock.

The Python Mock Library
The popular mock package was added to the standard library as part of Python 3.3.3 It
provides a magical object called a Mock; try this out in a Python shell:

>>> from unittest.mock import Mock
>>> m = Mock()
>>> m.any_attribute
<Mock name='mock.any_attribute' id='140716305179152'>
>>> type(m.any_attribute)
<class 'unittest.mock.Mock'>
>>> m.any_method()
<Mock name='mock.any_method()' id='140716331211856'>
>>> m.foo()
<Mock name='mock.foo()' id='140716331251600'>
>>> m.called
False
>>> m.foo.called
True
>>> m.bar.return_value = 1
>>> m.bar(42, var='thing')
1
>>> m.bar.call_args
call(42, var='thing')

A magical object that responds to any request for an attribute or method call with
other mocks, that you can configure to return specific values for its calls, and that
allows you to inspect what it was called with? Sounds like a useful thing to be able to
use in our unit tests!

Using unittest.patch
And as if that weren’t enough, the mock module also provides a helper function called
patch, which we can use to do the monkeypatching we did by hand earlier.

I’ll explain how it all works shortly, but let’s see it in action first:

328 | Chapter 19: Using Mocks to Test External Dependencies or Reduce Duplication

accounts/tests/test_views.py (ch17l007)
from django.test import TestCase
from unittest.mock import patch
[...]

 @patch('accounts.views.send_mail')
 def test_sends_mail_to_address_from_post(self, mock_send_mail):
 self.client.post('/accounts/send_login_email', data={
 'email': 'edith@example.com'
 })

 self.assertEqual(mock_send_mail.called, True)
 (subject, body, from_email, to_list), kwargs = mock_send_mail.call_args
 self.assertEqual(subject, 'Your login link for Superlists')
 self.assertEqual(from_email, 'noreply@superlists')
 self.assertEqual(to_list, ['edith@example.com'])

If you rerun the tests, you’ll see they still pass. And since we’re always suspicious of
any test that still passes after a big change, let’s deliberately break it just to see:

accounts/tests/test_views.py (ch17l008)
 self.assertEqual(to_list, ['schmedith@example.com'])

And let’s add a little debug print to our view:

accounts/views.py (ch17l009)
def send_login_email(request):
 email = request.POST['email']
 print(type(send_mail))
 send_mail(
 [...]

And run the tests again:

$ python manage.py test accounts
[...]
<class 'function'>
<class 'unittest.mock.MagicMock'>
[...]
AssertionError: Lists differ: ['edith@example.com'] !=
['schmedith@example.com']
[...]

Ran 5 tests in 0.024s

FAILED (failures=1)

The Python Mock Library | 329

Sure enough, the tests fail. And we can see just before the failure message that when
we print the type of the send_mail function, in the first unit test it’s a normal func‐
tion, but in the second unit test we’re seeing a mock object.

Let’s remove the deliberate mistake and dive into exactly what’s going on:

accounts/tests/test_views.py (ch17l011)
@patch('accounts.views.send_mail')
def test_sends_mail_to_address_from_post(self, mock_send_mail):
 self.client.post('/accounts/send_login_email', data={
 'email': 'edith@example.com'
 })

 self.assertEqual(mock_send_mail.called, True)
 (subject, body, from_email, to_list), kwargs = mock_send_mail.call_args
 self.assertEqual(subject, 'Your login link for Superlists')
 self.assertEqual(from_email, 'noreply@superlists')
 self.assertEqual(to_list, ['edith@example.com'])

The patch decorator takes a dot-notation name of an object to monkeypatch.
That’s the equivalent of manually replacing the send_mail in accounts.views.
The advantage of the decorator is that, firstly, it automatically replaces the target
with a mock. And secondly, it automatically puts the original object back at the
end! (Otherwise, the object stays monkeypatched for the rest of the test run,
which might cause problems in other tests.)

patch then injects the mocked object into the test as an argument to the test
method. We can choose whatever name we want for it, but I usually use a con‐
vention of mock_ plus the original name of the object.

We call our function under test as usual, but everything inside this test method
has our mock applied to it, so the view won’t call the real send_mail object; it’ll
be seeing mock_send_mail instead.

And we can now make assertions about what happened to that mock object dur‐
ing the test. We can see it was called…

…and we can also unpack its various positional and keyword call arguments, and
examine what it was called with. (We’ll discuss call_args in a bit more detail
later.)

All crystal-clear? No? Don’t worry, we’ll do a couple more tests with mocks, to see if
they start to make more sense as we use them more.

330 | Chapter 19: Using Mocks to Test External Dependencies or Reduce Duplication

4 I’ve split the form tag across three lines so it fits nicely in the book. If you’ve not seen it before, it may look a
little weird to you, but it is valid HTML. You don’t have to use it if you don’t like it though. :)

Getting the FT a Little Further Along
First let’s get back to our FT and see where it’s failing:

$ python manage.py test functional_tests.test_login
[...]
AssertionError: 'Check your email' not found in 'Superlists\nEnter email to log
in:\nStart a new To-Do list'

Submitting the email address currently has no effect, because the form isn’t sending
the data anywhere. Let’s wire it up in base.html:4

lists/templates/base.html (ch17l012)
<form class="navbar-form navbar-right"
 method="POST"
 action="{% url 'send_login_email' %}">

Does that help? Nope, same error. Why? Because we’re not actually displaying a suc‐
cess message after we send the user an email. Let’s add a test for that.

Testing the Django Messages Framework
We’ll use Django’s “messages framework”, which is often used to display ephemeral
“success” or “warning” messages to show the results of an action. Have a look at the
django messages docs if you haven’t come across it already.

Testing Django messages is a bit contorted—we have to pass follow=True to the test
client to tell it to get the page after the 302-redirect, and examine its context for a list
of messages (which we have to listify before it’ll play nicely). Here’s what it looks like:

accounts/tests/test_views.py (ch17l013)
 def test_adds_success_message(self):
 response = self.client.post('/accounts/send_login_email', data={
 'email': 'edith@example.com'
 }, follow=True)

 message = list(response.context['messages'])[0]
 self.assertEqual(
 message.message,
 "Check your email, we've sent you a link you can use to log in."
)
 self.assertEqual(message.tags, "success")

That gives:

The Python Mock Library | 331

https://docs.djangoproject.com/en/1.11/ref/contrib/messages/

$ python manage.py test accounts
[...]
 message = list(response.context['messages'])[0]
IndexError: list index out of range

And we can get it passing with:

accounts/views.py (ch17l014)
from django.contrib import messages
[...]

def send_login_email(request):
 [...]
 messages.success(
 request,
 "Check your email, we've sent you a link you can use to log in."
)
 return redirect('/')

Mocks Can Leave You Tightly Coupled to the Implementation

This sidebar is an intermediate-level testing tip. If it goes over
your head the first time around, come back and take another
look when you’ve finished this chapter and Chapter 23.

I said testing messages is a bit contorted; it took me several goes to get it right. In fact,
at work, we gave up on testing them like this and decided to just use mocks. Let’s see
what that would look like in this case:

accounts/tests/test_views.py (ch17l014-2)
from unittest.mock import patch, call
[...]

 @patch('accounts.views.messages')
 def test_adds_success_message_with_mocks(self, mock_messages):
 response = self.client.post('/accounts/send_login_email', data={
 'email': 'edith@example.com'
 })

 expected = "Check your email, we've sent you a link you can use to log in."
 self.assertEqual(
 mock_messages.success.call_args,
 call(response.wsgi_request, expected),
)

We mock out the messages module, and check that messages.success was called
with the right args: the original request, and the message we want.

332 | Chapter 19: Using Mocks to Test External Dependencies or Reduce Duplication

And you could get it passing by using the exact same code as earlier. Here’s the prob‐
lem though: the messages framework gives you more than one way to achieve the
same result. I could write the code like this:

accounts/views.py (ch17l014-3)
 messages.add_message(
 request,
 messages.SUCCESS,
 "Check your email, we've sent you a link you can use to log in."
)

And the original, nonmocky test would still pass. But our mocky test will fail, because
we’re no longer calling messages.success, we’re calling messages.add_message. Even
though the end result is the same and our code is “correct,” the test is broken.

This is what people mean when they say that using mocks can leave you “tightly cou‐
pled with the implementation”. We usually say it’s better to test behaviour, not imple‐
mentation details; test what happens, not how you do it. Mocks often end up erring
too much on the side of the “how” rather than the “what”.

There’s more detailed discussion of the pros and cons of mocks in later chapters.

Adding Messages to Our HTML
What happens next in the functional test? Ah. Still nothing. We need to actually add
the messages to the page. Something like this:

lists/templates/base.html (ch17l015)
 [...]
 </nav>

 {% if messages %}
 <div class="row">
 <div class="col-md-8">
 {% for message in messages %}
 {% if message.level_tag == 'success' %}
 <div class="alert alert-success">{{ message }}</div>
 {% else %}
 <div class="alert alert-warning">{{ message }}</div>
 {% endif %}
 {% endfor %}
 </div>
 </div>
 {% endif %}

Now do we get a little further? Yes!

The Python Mock Library | 333

$ python manage.py test accounts
[...]
Ran 6 tests in 0.023s

OK

$ python manage.py test functional_tests.test_login
[...]
AssertionError: 'Use this link to log in' not found in 'body text tbc'

We need to fill out the body text of the email, with a link that the user can use to log
in.

Let’s just cheat for now though, by changing the value in the view:

accounts/views.py
 send_mail(
 'Your login link for Superlists',
 'Use this link to log in',
 'noreply@superlists',
 [email]
)

That gets the FT a little further:

$ python manage.py test functional_tests.test_login
[...]
AssertionError: Could not find url in email body:
Use this link to log in

Starting on the Login URL
We’re going to have to build some kind of URL! Let’s build one that, again, just cheats:

accounts/tests/test_views.py (ch17l017)
class LoginViewTest(TestCase):

 def test_redirects_to_home_page(self):
 response = self.client.get('/accounts/login?token=abcd123')
 self.assertRedirects(response, '/')

We’re imagining we’ll pass the token in as a GET parameter, after the ?. It doesn’t
need to do anything for now.

I’m sure you can find your way through to getting the boilerplate for a basic URL and
view in, via errors like these:

334 | Chapter 19: Using Mocks to Test External Dependencies or Reduce Duplication

• No URL:
AssertionError: 404 != 302 : Response didn't redirect as expected: Response
code was 404 (expected 302)

• No view:
AttributeError: module 'accounts.views' has no attribute 'login'

• Broken view:
ValueError: The view accounts.views.login didn't return an HttpResponse object.
It returned None instead.

• OK!
$ python manage.py test accounts
[...]

Ran 7 tests in 0.029s

OK

And now we can give them a link to use. It still won’t do much though, because we
still don’t have a token to give to the user.

Checking That We Send the User a Link with a Token
Back in our send_login_email view, we’ve tested the email subject, from, and to
fields. The body is the part that will have to include a token or URL they can use to
log in. Let’s spec out two tests for that:

The Python Mock Library | 335

accounts/tests/test_views.py (ch17l021)
from accounts.models import Token
[...]

 def test_creates_token_associated_with_email(self):
 self.client.post('/accounts/send_login_email', data={
 'email': 'edith@example.com'
 })
 token = Token.objects.first()
 self.assertEqual(token.email, 'edith@example.com')

 @patch('accounts.views.send_mail')
 def test_sends_link_to_login_using_token_uid(self, mock_send_mail):
 self.client.post('/accounts/send_login_email', data={
 'email': 'edith@example.com'
 })

 token = Token.objects.first()
 expected_url = f'http://testserver/accounts/login?token={token.uid}'
 (subject, body, from_email, to_list), kwargs = mock_send_mail.call_args
 self.assertIn(expected_url, body)

The first test is fairly straightforward; it checks that the token we create in the data‐
base is associated with the email address from the post request.

The second one is our second test using mocks. We mock out the send_mail function
again using the patch decorator, but this time we’re interested in the body argument
from the call arguments.

Running them now will fail because we’re not creating any kind of token:

$ python manage.py test accounts
[...]
AttributeError: 'NoneType' object has no attribute 'email'
[...]
AttributeError: 'NoneType' object has no attribute 'uid'

We can get the first one to pass by creating a token:

accounts/views.py (ch17l022)
from accounts.models import Token
[...]

def send_login_email(request):
 email = request.POST['email']
 token = Token.objects.create(email=email)
 send_mail(
 [...]

336 | Chapter 19: Using Mocks to Test External Dependencies or Reduce Duplication

And now the second test prompts us to actually use the token in the body of our
email:

[...]
AssertionError:
'http://testserver/accounts/login?token=[...]
not found in 'Use this link to log in'

FAILED (failures=1)

So we can insert the token into our email like this:

accounts/views.py (ch17l023)
from django.core.urlresolvers import reverse
[...]

def send_login_email(request):
 email = request.POST['email']
 token = Token.objects.create(email=email)
 url = request.build_absolute_uri(
 reverse('login') + '?token=' + str(token.uid)
)
 message_body = f'Use this link to log in:\n\n{url}'
 send_mail(
 'Your login link for Superlists',
 message_body,
 'noreply@superlists',
 [email]
)
 [...]

request.build_absolute_uri deserves a mention—it’s one way to build a “full”
URL, including the domain name and the http(s) part, in Django. There are
other ways, but they usually involve getting into the “sites” framework, and that
gets overcomplicated pretty quickly. You can find lots more discussion on this if
you’re curious by doing a bit of googling.

Two more pieces in the puzzle. We need an authentication backend, whose job it will
be to examine tokens for validity and then return the corresponding users; then we
need to get our login view to actually log users in, if they can authenticate.

De-spiking Our Custom Authentication Backend
Our custom authentication backend is next. Here’s how it looked in the spike:

De-spiking Our Custom Authentication Backend | 337

class PasswordlessAuthenticationBackend(object):

 def authenticate(self, uid):
 print('uid', uid, file=sys.stderr)
 if not Token.objects.filter(uid=uid).exists():
 print('no token found', file=sys.stderr)
 return None
 token = Token.objects.get(uid=uid)
 print('got token', file=sys.stderr)
 try:
 user = ListUser.objects.get(email=token.email)
 print('got user', file=sys.stderr)
 return user
 except ListUser.DoesNotExist:
 print('new user', file=sys.stderr)
 return ListUser.objects.create(email=token.email)

 def get_user(self, email):
 return ListUser.objects.get(email=email)

Decoding this:

• We take a UID and check if it exists in the database.
• We return None if it doesn’t.
• If it does exist, we extract an email address, and either find an existing user with

that address, or create a new one.

1 if = 1 More Test
A rule of thumb for these sorts of tests: any if means an extra test, and any try/
except means an extra test, so this should be about three tests. How about something
like this?

338 | Chapter 19: Using Mocks to Test External Dependencies or Reduce Duplication

accounts/tests/test_authentication.py
from django.test import TestCase
from django.contrib.auth import get_user_model
from accounts.authentication import PasswordlessAuthenticationBackend
from accounts.models import Token
User = get_user_model()

class AuthenticateTest(TestCase):

 def test_returns_None_if_no_such_token(self):
 result = PasswordlessAuthenticationBackend().authenticate(
 'no-such-token'
)
 self.assertIsNone(result)

 def test_returns_new_user_with_correct_email_if_token_exists(self):
 email = 'edith@example.com'
 token = Token.objects.create(email=email)
 user = PasswordlessAuthenticationBackend().authenticate(token.uid)
 new_user = User.objects.get(email=email)
 self.assertEqual(user, new_user)

 def test_returns_existing_user_with_correct_email_if_token_exists(self):
 email = 'edith@example.com'
 existing_user = User.objects.create(email=email)
 token = Token.objects.create(email=email)
 user = PasswordlessAuthenticationBackend().authenticate(token.uid)
 self.assertEqual(user, existing_user)

In authenticate.py we’ll just have a little placeholder:

accounts/authentication.py
class PasswordlessAuthenticationBackend(object):

 def authenticate(self, uid):
 pass

How do we get on?

De-spiking Our Custom Authentication Backend | 339

$ python manage.py test accounts

.FE.........
==
ERROR: test_returns_new_user_with_correct_email_if_token_exists
(accounts.tests.test_authentication.AuthenticateTest)

Traceback (most recent call last):
 File "/.../superlists/accounts/tests/test_authentication.py", line 21, in
test_returns_new_user_with_correct_email_if_token_exists
 new_user = User.objects.get(email=email)
[...]
accounts.models.DoesNotExist: User matching query does not exist.

==
FAIL: test_returns_existing_user_with_correct_email_if_token_exists
(accounts.tests.test_authentication.AuthenticateTest)

Traceback (most recent call last):
 File "/.../superlists/accounts/tests/test_authentication.py", line 30, in
test_returns_existing_user_with_correct_email_if_token_exists
 self.assertEqual(user, existing_user)
AssertionError: None != <User: User object>

Ran 12 tests in 0.038s

FAILED (failures=1, errors=1)

Here’s a first cut:

accounts/authentication.py (ch17l026)
from accounts.models import User, Token

class PasswordlessAuthenticationBackend(object):

 def authenticate(self, uid):
 token = Token.objects.get(uid=uid)
 return User.objects.get(email=token.email)

That gets one test passing but breaks another one:

$ python manage.py test accounts
ERROR: test_returns_None_if_no_such_token
(accounts.tests.test_authentication.AuthenticateTest)

accounts.models.DoesNotExist: Token matching query does not exist.

ERROR: test_returns_new_user_with_correct_email_if_token_exists
(accounts.tests.test_authentication.AuthenticateTest)
[...]
accounts.models.DoesNotExist: User matching query does not exist.

340 | Chapter 19: Using Mocks to Test External Dependencies or Reduce Duplication

Let’s fix each of those in turn:

accounts/authentication.py (ch17l027)
 def authenticate(self, uid):
 try:
 token = Token.objects.get(uid=uid)
 return User.objects.get(email=token.email)
 except Token.DoesNotExist:
 return None

That gets us down to one failure:

ERROR: test_returns_new_user_with_correct_email_if_token_exists
(accounts.tests.test_authentication.AuthenticateTest)
[...]
accounts.models.DoesNotExist: User matching query does not exist.

FAILED (errors=1)

And we can handle the final case like this:

accounts/authentication.py (ch17l028)
 def authenticate(self, uid):
 try:
 token = Token.objects.get(uid=uid)
 return User.objects.get(email=token.email)
 except User.DoesNotExist:
 return User.objects.create(email=token.email)
 except Token.DoesNotExist:
 return None

That’s turned out neater than our spike!

The get_user Method
We’ve handled the authenticate function which Django will use to log new users in.
The second part of the protocol we have to implement is the get_user method,
whose job is to retrieve a user based on their unique identifier (the email address), or
to return None if it can’t find one (have another look at the spiked code if you need a
reminder).

Here are a couple of tests for those two requirements:

De-spiking Our Custom Authentication Backend | 341

accounts/tests/test_authentication.py (ch17l030)
class GetUserTest(TestCase):

 def test_gets_user_by_email(self):
 User.objects.create(email='another@example.com')
 desired_user = User.objects.create(email='edith@example.com')
 found_user = PasswordlessAuthenticationBackend().get_user(
 'edith@example.com'
)
 self.assertEqual(found_user, desired_user)

 def test_returns_None_if_no_user_with_that_email(self):
 self.assertIsNone(
 PasswordlessAuthenticationBackend().get_user('edith@example.com')
)

And our first failure:

AttributeError: 'PasswordlessAuthenticationBackend' object has no attribute
'get_user'

Let’s create a placeholder one then:

accounts/authentication.py (ch17l031)
class PasswordlessAuthenticationBackend(object):

 def authenticate(self, uid):
 [...]

 def get_user(self, email):
 pass

Now we get:

 self.assertEqual(found_user, desired_user)
AssertionError: None != <User: User object>

And (step by step, just to see if our test fails the way we think it will):

accounts/authentication.py (ch17l033)
 def get_user(self, email):
 return User.objects.first()

That gets us past the first assertion, and onto:

 self.assertEqual(found_user, desired_user)
AssertionError: <User: User object> != <User: User object>

And so we call get with the email as an argument:

342 | Chapter 19: Using Mocks to Test External Dependencies or Reduce Duplication

accounts/authentication.py (ch17l034)
 def get_user(self, email):
 return User.objects.get(email=email)

Now our test for the None case fails:

ERROR: test_returns_None_if_no_user_with_that_email
[...]
accounts.models.DoesNotExist: User matching query does not exist.

Which prompts us to finish the method like this:

accounts/authentication.py (ch17l035)
 def get_user(self, email):
 try:
 return User.objects.get(email=email)
 except User.DoesNotExist:
 return None

You could just use pass here, and the function would return None by default.
However, because we specifically need the function to return None, the “explicit is
better than implicit” rule applies here.

That gets us to passing tests:

OK

And we have a working authentication backend!

Using Our Auth Backend in the Login View
The final step is to use the backend in our login view. First we add it to settings.py:

superlists/settings.py (ch17l036)
AUTH_USER_MODEL = 'accounts.User'
AUTHENTICATION_BACKENDS = [
 'accounts.authentication.PasswordlessAuthenticationBackend',
]

[...]

Next let’s write some tests for what should happen in our view. Looking back at the
spike again:

De-spiking Our Custom Authentication Backend | 343

accounts/views.py
def login(request):
 print('login view', file=sys.stderr)
 uid = request.GET.get('uid')
 user = auth.authenticate(uid=uid)
 if user is not None:
 auth.login(request, user)
 return redirect('/')

We need the view to call django.contrib.auth.authenticate, and then, if it returns
a user, we call django.contrib.auth.login.

This is a good time to check out the Django docs on authentication
for a little more context.

An Alternative Reason to Use Mocks: Reducing
Duplication
So far we’ve used mocks to test external dependencies, like Django’s mail-sending
function. The main reason to use a mock was to isolate ourselves from external side
effects, in this case, to avoid sending out actual emails during our tests.

In this section we’ll look at a different kind of use of mocks. Here we don’t have any
side effects we’re worried about, but there are still some reasons you might want to
use a mock here.

The nonmocky way of testing this login view would be to see whether it does actually
log the user in, by checking whether the user gets assigned an authenticated session
cookie in the right circumstances.

But our authentication backend does have a few different code paths: it returns None
for invalid tokens, existing users if they already exist, and creates new users for valid
tokens if they don’t exist yet. So, to fully test this view, I’d have to write tests for all
three of those cases.

One good justification for using mocks is when they will reduce
duplication between tests. It’s one way of avoiding combinatorial
explosion.

344 | Chapter 19: Using Mocks to Test External Dependencies or Reduce Duplication

https://docs.djangoproject.com/en/1.11/topics/auth/default/#how-to-log-a-user-in

On top of that, the fact that we’re using the Django auth.authenticate function
rather than calling our own code directly is relevant: it allows us the option to add
further backends in future.

So in this case (in contrast to the example in “Mocks Can Leave You Tightly Coupled
to the Implementation” on page 332) the implementation does matter, and using a
mock will save us from having duplication in our tests. Let’s see how it looks:

accounts/tests/test_views.py (ch17l037)
from unittest.mock import patch, call
[...]

 @patch('accounts.views.auth')

 def test_calls_authenticate_with_uid_from_get_request(self, mock_auth):
 self.client.get('/accounts/login?token=abcd123')
 self.assertEqual(

 mock_auth.authenticate.call_args,

 call(uid='abcd123')
)

We expect to be using the django.contrib.auth module in views.py, and we
mock it out here. Note that this time, we’re not mocking out a function, we’re
mocking out a whole module, and thus implicitly mocking out all the functions
(and any other objects) that module contains.

As usual, the mocked object is injected into our test method.

This time, we’ve mocked out a module rather than a function. So we examine the
call_args not of the mock_auth module, but of the mock_auth.authenticate
function. Because all the attributes of a mock are more mocks, that’s a mock too.
You can start to see why Mock objects are so convenient, compared to trying to
build your own.

Now, instead of “unpacking” the call args, we use the call function for a neater
way of saying what it should have been called with-- that is, the token from the
GET request. (See the following sidebar.)

An Alternative Reason to Use Mocks: Reducing Duplication | 345

On Mock call_args
The call_args property on a mock represents the positional and keyword arguments
that the mock was called with. It’s a special “call” object type, which is essentially a
tuple of (positional_args, keyword_args). positional_args is itself a tuple, con‐
sisting of the set of positional arguments. keyword_args is a dictionary.

>>> from unittest.mock import Mock, call
>>> m = Mock()
>>> m(42, 43, 'positional arg 3', key='val', thing=666)
<Mock name='mock()' id='139909729163528'>

>>> m.call_args
call(42, 43, 'positional arg 3', key='val', thing=666)

>>> m.call_args == ((42, 43, 'positional arg 3'), {'key': 'val', 'thing': 666})
True

>>> m.call_args == call(42, 43, 'positional arg 3', key='val', thing=666)
True

So in our test, we could have done this instead:

accounts/tests/test_views.py
 self.assertEqual(
 mock_auth.authenticate.call_args,
 ((,), {'uid': 'abcd123'})
)
 # or this
 args, kwargs = mock_auth.authenticate.call_args
 self.assertEqual(args, (,))
 self.assertEqual(kwargs, {'uid': 'abcd123')

But you can see how using the call helper is nicer.

What happens when we run the test? The first error is this:

$ python manage.py test accounts
[...]
AttributeError: <module 'accounts.views' from
'/.../superlists/accounts/views.py'> does not have the attribute 'auth'

module foo does not have the attribute bar is a common
first failure in a test that uses mocks. It’s telling you that you’re try‐
ing to mock out something that doesn’t yet exist (or isn’t yet impor‐
ted) in the target module.

Once we import django.contrib.auth, the error changes:

346 | Chapter 19: Using Mocks to Test External Dependencies or Reduce Duplication

accounts/views.py (ch17l038)
from django.contrib import auth, messages
[...]

Now we get:

AssertionError: None != call(uid='abcd123')

Now it’s telling us that the view doesn’t call the auth.authenticate function at all.
Let’s fix that, but get it deliberately wrong, just to see:

accounts/views.py (ch17l039)
def login(request):
 auth.authenticate('bang!')
 return redirect('/')

Bang indeed!

$ python manage.py test accounts
[...]
AssertionError: call('bang!') != call(uid='abcd123')
[...]
FAILED (failures=1)

Let’s give authenticate the arguments it expects then:

accounts/views.py (ch17l040)
def login(request):
 auth.authenticate(uid=request.GET.get('token'))
 return redirect('/')

That gets us to passing tests:

$ python manage.py test accounts
[...]
Ran 15 tests in 0.041s

OK

Using mock.return_value
Next we want to check that if the authenticate function returns a user, we pass that
into auth.login. Let’s see how that test looks:

An Alternative Reason to Use Mocks: Reducing Duplication | 347

accounts/tests/test_views.py (ch17l041)
@patch('accounts.views.auth')
def test_calls_auth_login_with_user_if_there_is_one(self, mock_auth):
 response = self.client.get('/accounts/login?token=abcd123')
 self.assertEqual(
 mock_auth.login.call_args,
 call(response.wsgi_request, mock_auth.authenticate.return_value)
)

We mock the contrib.auth module again.

This time we examine the call args for the auth.login function.

We check that it’s called with the request object that the view sees, and the “user”
object that the authenticate function returns. Because authenticate is also
mocked out, we can use its special “return_value” attribute.

When you call a mock, you get another mock. But you can also get a copy of that
returned mock from the original mock that you called. Boy, it sure is hard to explain
this stuff without saying “mock” a lot! Another little console illustration might help
here:

>>> m = Mock()
>>> thing = m()
>>> thing
<Mock name='mock()' id='140652722034952'>
>>> m.return_value
<Mock name='mock()' id='140652722034952'>
>>> thing == m.return_value
True

In any case, what do we get from running the test?

$ python manage.py test accounts
[...]
 call(response.wsgi_request, mock_auth.authenticate.return_value)
AssertionError: None != call(<WSGIRequest: GET '/accounts/login?t[...]

Sure enough, it’s telling us that we’re not calling auth.login at all yet. Let’s try doing
that. Deliberately wrong as usual first!

accounts/views.py (ch17l042)
def login(request):
 auth.authenticate(uid=request.GET.get('token'))
 auth.login('ack!')
 return redirect('/')

Ack indeed!

348 | Chapter 19: Using Mocks to Test External Dependencies or Reduce Duplication

TypeError: login() missing 1 required positional argument: 'user'
[...]
AssertionError: call('ack!') != call(<WSGIRequest: GET
'/accounts/login?token=[...]

Let’s fix that:

accounts/views.py (ch17l043)
def login(request):
 user = auth.authenticate(uid=request.GET.get('token'))
 auth.login(request, user)
 return redirect('/')

Now we get this unexpected complaint:

ERROR: test_redirects_to_home_page (accounts.tests.test_views.LoginViewTest)
[...]
AttributeError: 'AnonymousUser' object has no attribute '_meta'

It’s because we’re still calling auth.login indiscriminately on any kind of user, and
that’s causing problems back in our original test for the redirect, which isn’t currently
mocking out auth.login. We need to add an if (and therefore another test), and
while we’re at it we’ll learn about patching at the class level.

Patching at the Class Level
We want to add another test, with another @patch('accounts.views.auth'), and
that’s starting to get repetitive. We use the “three strikes” rule, and we can move the
patch decorator to the class level. This will have the effect of mocking out
accounts.views.auth in every single test method in that class. That also means our
original redirect test will now also have the mock_auth variable injected:

An Alternative Reason to Use Mocks: Reducing Duplication | 349

accounts/tests/test_views.py (ch17l044)
@patch('accounts.views.auth')
class LoginViewTest(TestCase):

 def test_redirects_to_home_page(self, mock_auth):
 [...]

 def test_calls_authenticate_with_uid_from_get_request(self, mock_auth):
 [...]

 def test_calls_auth_login_with_user_if_there_is_one(self, mock_auth):
 [...]

 def test_does_not_login_if_user_is_not_authenticated(self, mock_auth):
 mock_auth.authenticate.return_value = None
 self.client.get('/accounts/login?token=abcd123')
 self.assertEqual(mock_auth.login.called, False)

We move the patch to the class level…

which means we get an extra argument injected into our first test method…

And we can remove the decorators from all the other tests.

In our new test, we explicitly set the return_value on the auth.authenticate
mock, before we call the self.client.get.

We assert that, if authenticate returns None, we should not call auth.login at
all.

That cleans up the spurious failure, and gives us a specific, expected failure to work
on:

 self.assertEqual(mock_auth.login.called, False)
AssertionError: True != False

And we get it passing like this:

accounts/views.py (ch17l045)
def login(request):
 user = auth.authenticate(uid=request.GET.get('token'))
 if user:
 auth.login(request, user)
 return redirect('/')

So are we there yet?

350 | Chapter 19: Using Mocks to Test External Dependencies or Reduce Duplication

The Moment of Truth: Will the FT Pass?
I think we’re just about ready to try our functional test!

Let’s just make sure our base template shows a different nav bar for logged-in and
non–logged-in users (which our FT relies on):

lists/templates/base.html (ch17l046)
<nav class="navbar navbar-default" role="navigation">
 <div class="container-fluid">
 Superlists
 {% if user.email %}
 <ul class="nav navbar-nav navbar-right">
 <li class="navbar-text">Logged in as {{ user.email }}
 Log out

 {% else %}
 <form class="navbar-form navbar-right"
 method="POST"
 action="{% url 'send_login_email' %}">
 Enter email to log in:
 <input class="form-control" name="email" type="text" />
 {% csrf_token %}
 </form>
 {% endif %}
 </div>
</nav>

And see if that…

$ python manage.py test functional_tests.test_login
Internal Server Error: /accounts/login
[...]
 File "/.../superlists/accounts/views.py", line 31, in login
 auth.login(request, user)
[...]
ValueError: The following fields do not exist in this model or are m2m fields:
last_login
[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: Log out

Oh no! Something’s not right. But assuming you’ve kept the LOGGING config in set‐
tings.py, you should see the explanatory traceback, as just shown. It’s saying some‐
thing about a last_login field.

In my opinion this is a bug in Django, but essentially the auth framework expects the
user model to have a last_login field. We don’t have one. But never fear! There’s a
way of handling this failure.

Let’s write a unit test that reproduces the bug first. Since it’s to do with our custom
user model, as good a place to have it as any might be test_models.py:

The Moment of Truth: Will the FT Pass? | 351

https://code.djangoproject.com/ticket/26823

accounts/tests/test_models.py (ch17l047)
from django.test import TestCase
from django.contrib import auth
from accounts.models import Token
User = auth.get_user_model()

class UserModelTest(TestCase):

 def test_user_is_valid_with_email_only(self):
 [...]
 def test_email_is_primary_key(self):
 [...]

 def test_no_problem_with_auth_login(self):
 user = User.objects.create(email='edith@example.com')
 user.backend = ''
 request = self.client.request().wsgi_request
 auth.login(request, user) # should not raise

We create a request object and a user, and then we pass them into the auth.login
function.

That will raise our error:

 auth.login(request, user) # should not raise
[...]
ValueError: The following fields do not exist in this model or are m2m fields:
last_login

The specific reason for this bug isn’t really important for the purposes of this book,
but if you’re curious about what exactly is going on here, take a look through the
Django source lines listed in the traceback, and have a read up of Django’s docs on
signals.

The upshot is that we can fix it like this:

accounts/models.py (ch17l048)
import uuid
from django.contrib import auth
from django.db import models

auth.signals.user_logged_in.disconnect(auth.models.update_last_login)

class User(models.Model):
 [...]

How does our FT look now?

352 | Chapter 19: Using Mocks to Test External Dependencies or Reduce Duplication

https://docs.djangoproject.com/en/1.11/topics/signals/
https://docs.djangoproject.com/en/1.11/topics/signals/

$ python manage.py test functional_tests.test_login
[...]
.

Ran 1 test in 3.282s

OK

It Works in Theory! Does It Work in Practice?
Wow! Can you believe it? I scarcely can! Time for a manual look around with run
server:

$ python manage.py runserver
[...]
Internal Server Error: /accounts/send_login_email
Traceback (most recent call last):
 File "/.../superlists/accounts/views.py", line 20, in send_login_email

ConnectionRefusedError: [Errno 111] Connection refused

You’ll probably get an error, like I did, when you try to run things manually. Two pos‐
sible problems:

• Firstly, we need to re-add the email configuration to settings.py.
• Secondly, we probably need to export the email password in our shell.

superlists/settings.py (ch17l049)
EMAIL_HOST = 'smtp.gmail.com'
EMAIL_HOST_USER = 'obeythetestinggoat@gmail.com'
EMAIL_HOST_PASSWORD = os.environ.get('EMAIL_PASSWORD')
EMAIL_PORT = 587
EMAIL_USE_TLS = True

and

$ export EMAIL_PASSWORD="sekrit"
$ python manage.py runserver

Then you should see something like Figure 19-1.

It Works in Theory! Does It Work in Practice? | 353

Figure 19-1. Check your email….

Woohoo!

I’ve been waiting to do a commit up until this moment, just to make sure everything
works. At this point, you could make a series of separate commits—one for the login
view, one for the auth backend, one for the user model, one for wiring up the tem‐
plate. Or you could decide that, since they’re all interrelated, and none will work
without the others, you may as well just have one big commit:

$ git status
$ git add .
$ git diff --staged
$ git commit -m "Custom passwordless auth backend + custom user model"

Finishing Off Our FT, Testing Logout
The last thing we need to do before we call it a day is to test the logout link. We
extend the FT with a couple more steps:

354 | Chapter 19: Using Mocks to Test External Dependencies or Reduce Duplication

functional_tests/test_login.py (ch17l050)
 [...]
 # she is logged in!
 self.wait_for(
 lambda: self.browser.find_element_by_link_text('Log out')
)
 navbar = self.browser.find_element_by_css_selector('.navbar')
 self.assertIn(TEST_EMAIL, navbar.text)

 # Now she logs out
 self.browser.find_element_by_link_text('Log out').click()

 # She is logged out
 self.wait_for(
 lambda: self.browser.find_element_by_name('email')
)
 navbar = self.browser.find_element_by_css_selector('.navbar')
 self.assertNotIn(TEST_EMAIL, navbar.text)

With that, we can see that the test is failing because the logout button doesn’t work:

$ python manage.py test functional_tests.test_login
[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: [name="email"]

Implementing a logout button is actually very simple: we can use Django’s built-in
logout view, which clears down the user’s session and redirects them to a page of our
choice:

accounts/urls.py (ch17l051)
from django.contrib.auth.views import logout
[...]

urlpatterns = [
 url(r'^send_login_email$', views.send_login_email, name='send_login_email'),
 url(r'^login$', views.login, name='login'),
 url(r'^logout$', logout, {'next_page': '/'}, name='logout'),
]

And in base.html, we just make the logout into a real URL link:

lists/templates/base.html (ch17l052)
 Log out

And that gets us a fully passing FT—indeed, a fully passing test suite:

Finishing Off Our FT, Testing Logout | 355

http://bit.ly/SuI0hA
http://bit.ly/SuI0hA

$ python manage.py test functional_tests.test_login
[...]
OK
$ python manage.py test
[...]
Ran 59 tests in 78.124s

OK

We’re nowhere near a truly secure or acceptable login system here.
Since this is just an example app for a book, we’ll leave it at that, but
in “real life” you’d want to explore a lot more security and usability
issues before calling the job done. We’re dangerously close to “roll‐
ing our own crypto” here, and relying on a more established login
system would be much safer.

In the next chapter, we’ll start trying to put our login system to good use. In the
meantime, do a commit and enjoy this recap:

On Mocking in Python
Mocking and external dependencies

We use mocking in unit tests when we have an external dependency that we don’t
want to actually use in our tests. A mock is used to simulate the third-party API.
Whilst it is possible to “roll your own” mocks in Python, a mocking framework
like the mock module provides a lot of helpful shortcuts which will make it easier
to write (and more importantly, read) your tests.

Monkeypatching
Replacing an object in a namespace at runtime. We use it in our unit tests to
replace a real function which has undesirable side effects with a mock object,
using the patch decorator.

The Mock library
Michael Foord (who used to work for the company that spawned PythonAny‐
where, just before I joined) wrote the excellent “Mock” library that’s now been
integrated into the standard library of Python 3. It contains most everything you
might need for mocking in Python.

The patch decorator
unittest.mock provides a function called patch, which can be used to “mock
out” any object from the module you’re testing. It’s commonly used as a decora‐
tor on a test method, or even at the class level, where it’s applied to all the test
methods of that class.

356 | Chapter 19: Using Mocks to Test External Dependencies or Reduce Duplication

Mocks can leave you tightly coupled to the implementation
As we saw in “Mocks Can Leave You Tightly Coupled to the Implementation” on
page 332, mocks can leave you tightly coupled to your implementation. For that
reason, you shouldn’t use them unless you have a good reason.

Mocks can save you from duplication in your tests
On the other hand, there’s no point in duplicating all of your tests for a function
inside a higher-level piece of code that uses that function. Using a mock in this
case reduces duplication.

There’s lots more discussion of the pros and cons of mocks coming up soon. Read on!

Finishing Off Our FT, Testing Logout | 357

CHAPTER 20

Test Fixtures and a Decorator for
Explicit Waits

Now that we have a functional authentication system, we want to use it to identify
users, and be able to show them all the lists they have created.

To do that, we’re going to have to write FTs that have a logged-in user. Rather than
making each test go through the (time-consuming) login email dance, we want to be
able to skip that part.

This is about separation of concerns. Functional tests aren’t like unit tests, in that they
don’t usually have a single assertion. But, conceptually, they should be testing a single
thing. There’s no need for every single FT to test the login/logout mechanisms. If we
can figure out a way to “cheat” and skip that part, we’ll spend less time waiting for
duplicated test paths.

Don’t overdo de-duplication in FTs. One of the benefits of an FT is
that it can catch strange and unpredictable interactions between
different parts of your application.

This chapter has only just been rewritten for the new edition, so let
me know via obeythetestinggoat@gmail.com if you spot any prob‐
lems or have any suggestions for improvement!

359

mailto:obeythetestinggoat@gmail.com

Skipping the Login Process by Pre-creating a Session
It’s quite common for a user to return to a site and still have a cookie, which means
they are “pre-authenticated”, so this isn’t an unrealistic cheat at all. Here’s how you can
set it up:

functional_tests/test_my_lists.py
from django.conf import settings
from django.contrib.auth import BACKEND_SESSION_KEY, SESSION_KEY, get_user_model
from django.contrib.sessions.backends.db import SessionStore
from .base import FunctionalTest
User = get_user_model()

class MyListsTest(FunctionalTest):

 def create_pre_authenticated_session(self, email):
 user = User.objects.create(email=email)
 session = SessionStore()
 session[SESSION_KEY] = user.pk
 session[BACKEND_SESSION_KEY] = settings.AUTHENTICATION_BACKENDS[0]
 session.save()
 ## to set a cookie we need to first visit the domain.
 ## 404 pages load the quickest!
 self.browser.get(self.live_server_url + "/404_no_such_url/")
 self.browser.add_cookie(dict(
 name=settings.SESSION_COOKIE_NAME,
 value=session.session_key,
 path='/',
))

We create a session object in the database. The session key is the primary key of
the user object (which is actually the user’s email address).

We then add a cookie to the browser that matches the session on the server—on
our next visit to the site, the server should recognise us as a logged-in user.

Note that, as it is, this will only work because we’re using LiveServerTestCase, so the
User and Session objects we create will end up in the same database as the test
server. Later we’ll need to modify it so that it works against the database on the stag‐
ing server too.

360 | Chapter 20: Test Fixtures and a Decorator for Explicit Waits

Django Sessions: How a User’s Cookies Tell the Server She Is
Authenticated

Being an attempt to explain sessions, cookies, and authentication in Django.

Because HTTP is stateless, servers need a way of recognising different clients with
every single request. IP addresses can be shared, so the usual solution is to give each
client a unique session ID, which it will store in a cookie, and submit with every
request. The server will store that ID somewhere (by default, in the database), and
then it can recognise each request that comes in as being from a particular client.

If you log in to the site using the dev server, you can actually take a look at your ses‐
sion ID by hand if you like. It’s stored under the key sessionid by default. See
Figure 20-1.

Figure 20-1. Examining the session cookie in the Debug toolbar

These session cookies are set for all visitors to a Django site, whether they’re logged in
or not.

When we want to recognise a client as being a logged-in and authenticated user,
again, rather asking the client to send their username and password with every single
request, the server can actually just mark that client’s session as being an authentica‐
ted session, and associate it with a user ID in its database.

Skipping the Login Process by Pre-creating a Session | 361

A session is a dictionary-like data structure, and the user ID is stored under the key
given by django.contrib.auth.SESSION_KEY. You can check this out in
a ./manage.py shell if you like:

$ python manage.py shell
[...]
In [1]: from django.contrib.sessions.models import Session

substitute your session id from your browser cookie here
In [2]: session = Session.objects.get(
 session_key="8u0pygdy9blo696g3n4o078ygt6l8y0y"
)

In [3]: print(session.get_decoded())

{'_auth_user_id': 'obeythetestinggoat@gmail.com', '_auth_user_backend':
'accounts.authentication.PasswordlessAuthenticationBackend'}

You can also store any other information you like on a user’s session, as a way of tem‐
porarily keeping track of some state. This works for non–logged-in users too. Just use
request.session inside any view, and it works as a dict. There’s more information in
the Django docs on sessions.

Checking That It Works
To check that it works, it would be good to use some of the code from our previous
test. Let’s make a couple of functions called wait_to_be_logged_in and
wait_to_be_logged_out. To access them from a different test, we’ll need to pull them
up into FunctionalTest. We’ll also tweak them slightly so that they can take an arbi‐
trary email address as a parameter:

functional_tests/base.py (ch18l002)
class FunctionalTest(StaticLiveServerTestCase):
 [...]

 def wait_to_be_logged_in(self, email):
 self.wait_for(
 lambda: self.browser.find_element_by_link_text('Log out')
)
 navbar = self.browser.find_element_by_css_selector('.navbar')
 self.assertIn(email, navbar.text)

 def wait_to_be_logged_out(self, email):
 self.wait_for(
 lambda: self.browser.find_element_by_name('email')
)
 navbar = self.browser.find_element_by_css_selector('.navbar')
 self.assertNotIn(email, navbar.text)

362 | Chapter 20: Test Fixtures and a Decorator for Explicit Waits

mailto:obeythetestinggoat@gmail.com
http://bit.ly/2tGVbQE

Hm, that’s not bad, but I’m not quite happy with the amount of duplication of
wait_for stuff in here. Let’s make a note to come back to it, and get these helpers
working.

• Clean up wait_for stuff in base.py

First we use them in test_login.py:

functional_tests/test_login.py (ch18l003)
 def test_can_get_email_link_to_log_in(self):
 [...]
 # she is logged in!
 self.wait_to_be_logged_in(email=TEST_EMAIL)

 # Now she logs out
 self.browser.find_element_by_link_text('Log out').click()

 # She is logged out
 self.wait_to_be_logged_out(email=TEST_EMAIL)

Just to make sure we haven’t broken anything, we rerun the login test:

$ python manage.py test functional_tests.test_login
[...]
OK

And now we can write a placeholder for the “My Lists” test, to see if our pre-
authenticated session creator really does work:

functional_tests/test_my_lists.py (ch18l004)
 def test_logged_in_users_lists_are_saved_as_my_lists(self):
 email = 'edith@example.com'
 self.browser.get(self.live_server_url)
 self.wait_to_be_logged_out(email)

 # Edith is a logged-in user
 self.create_pre_authenticated_session(email)
 self.browser.get(self.live_server_url)
 self.wait_to_be_logged_in(email)

That gets us:

Skipping the Login Process by Pre-creating a Session | 363

$ python manage.py test functional_tests.test_my_lists
[...]
OK

That’s a good place for a commit:

$ git add functional_tests
$ git commit -m "test_my_lists: precreate sessions, move login checks into base"

JSON Test Fixtures Considered Harmful
When we pre-populate the database with test data, as we’ve done here with the User
object and its associated Session object, what we’re doing is setting up a “test fixture”.

Django comes with built-in support for saving database objects as JSON (using the
manage.py dumpdata), and automatically loading them in your test runs using the
fixtures class attribute on TestCase.

More and more people are starting to say: don’t use JSON fixtures. They’re a night‐
mare to maintain when your model changes. Plus it’s difficult for the reader to tell
which of the many attribute values specified in the JSON are critical for the behaviour
under test, and which are just filler. Finally, even if tests start out sharing fixtures,
sooner or later one test will want slightly different versions of the data, and you end
up copying the whole thing around to keep them isolated, and again it’s hard to tell
what’s relevant to the test and what is just happenstance.

It’s usually much more straightforward to just load the data directly using the Django
ORM.

Once you have more than a handful of fields on a model,
and/or several related models, even using the ORM can be
cumbersome. In this case, there’s a tool that lots of people
swear by called factory_boy.

Our Final Explicit Wait Helper: A Wait Decorator
We’ve used decorators a few times in our code so far, but it’s time to learn how they
actually work by making one of our own.

First, let’s imagine how we might want our decorator to work. It would be nice to be
able to replace all the custom wait/retry/timeout logic in wait_for_row_

in_list_table and the inline self.wait_fors in the wait_to_be_logged_in/out.
Something like this would look lovely:

364 | Chapter 20: Test Fixtures and a Decorator for Explicit Waits

http://bit.ly/1kSTyrb
https://factoryboy.readthedocs.org/

functional_tests/base.py (ch18l005)
 @wait
 def wait_for_row_in_list_table(self, row_text):
 table = self.browser.find_element_by_id('id_list_table')
 rows = table.find_elements_by_tag_name('tr')
 self.assertIn(row_text, [row.text for row in rows])

 @wait
 def wait_to_be_logged_in(self, email):
 self.browser.find_element_by_link_text('Log out')
 navbar = self.browser.find_element_by_css_selector('.navbar')
 self.assertIn(email, navbar.text)

 @wait
 def wait_to_be_logged_out(self, email):
 self.browser.find_element_by_name('email')
 navbar = self.browser.find_element_by_css_selector('.navbar')
 self.assertNotIn(email, navbar.text)

Are you ready to dive in? Although decorators are quite difficult to wrap your head
around (I know it took me a long time before I was comfortable with them, and I still
have to think about them quite carefully whenever I make one), the nice thing is that
we’ve already dipped our toes into functional programming in our self.wait_for
helper function. That’s a function that takes another function as an argument, and a
decorator is the same. The difference is that the decorator doesn’t actually execute any
code itself—it returns a modified version of the function that it was given.

Our decorator wants to return a new function which will keep calling the function it
was given, catching our usual exceptions, until a timeout occurs. Here’s a first cut:

functional_tests/base.py (ch18l006)
def wait(fn):
 def modified_fn():
 start_time = time.time()
 while True:
 try:
 return fn()
 except (AssertionError, WebDriverException) as e:
 if time.time() - start_time > MAX_WAIT:
 raise e
 time.sleep(0.5)
 return modified_fn

A decorator is a way of modifying a function; it takes a function as an
argument…

Our Final Explicit Wait Helper: A Wait Decorator | 365

and returns another function as the modified (or “decorated”) version.

Here’s where we create our modified function.

And here’s our familiar loop, which will keep going, catching the usual excep‐
tions, until our timeout expires.

And as always, we call our function and return immediately if there are no
exceptions.

That’s almost right, but not quite; try running it?

$ python manage.py test functional_tests.test_my_lists
[...]
 self.wait_to_be_logged_out(email)
TypeError: modified_fn() takes 0 positional arguments but 2 were given

Unlike in self.wait_for, the decorator is being applied to functions that have
arguments:

functional_tests/base.py
 @wait
 def wait_to_be_logged_in(self, email):
 self.browser.find_element_by_link_text('Log out')

wait_to_be_logged_in takes self and email as positional arguments. But when it’s
decorated, it’s replaced with modified_fn, which takes no arguments. How do we
magically make it so our modified_fn can handle the same arguments as whatever fn
the decorator gets given has?

The answer is a bit of Python magic, *args and **kwargs, more formally known as
“variadic arguments”, apparently (I only just learned that):

functional_tests/base.py (ch18l007)
def wait(fn):
 def modified_fn(*args, **kwargs):
 start_time = time.time()
 while True:
 try:
 return fn(*args, **kwargs)
 except (AssertionError, WebDriverException) as e:
 if time.time() - start_time > MAX_WAIT:
 raise e
 time.sleep(0.5)
 return modified_fn

366 | Chapter 20: Test Fixtures and a Decorator for Explicit Waits

https://docs.python.org/3/tutorial/controlflow.html#keyword-arguments

Using *args and **kwargs, we specify that modified_fn may take any arbitrary
positional and keyword arguments.

As we’ve captured them in the function definition, we make sure to pass those
same arguments to fn when we actually call it.

One of the fun things this can be used for is to make a decorator that changes the
arguments of a function. But we won’t get into that now. The main thing is that our
decorator now works:

$ python manage.py test functional_tests.test_my_lists
[...]
OK

And do you know what’s truly satisfying? We can use our wait decorator for our
self.wait_for helper as well! Like this:

functional_tests/base.py (ch18l008)
 @wait
 def wait_for(self, fn):
 return fn()

Lovely! Now all our wait/retry logic is encapsulated in a single place, and we have a
nice easy way of applying those waits, either inline in our FTs using self.wait_for,
or on any helper function using the @wait decorator.

In the next chapter we’ll try to deploy our code to staging, and use the pre-
authenticated session fixtures on the server. As we’ll see it’ll help us catch a little bug
or two!

Lessons Learned
Decorators are nice

Decorators can be a great way of abstracting out different levels of concerns.
They let us write our test assertions without having to think about waits at the
same time.

De-duplicate your FTs, with caution
Every single FT doesn’t need to test every single part of your application. In our
case, we wanted to avoid going through the full login process for every FT that
needs an authenticated user, so we used a test fixture to “cheat” and skip that part.
You might find other things you want to skip in your FTs. A word of caution,
however: functional tests are there to catch unpredictable interactions between
different parts of your application, so be wary of pushing de-duplication to the
extreme.

Our Final Explicit Wait Helper: A Wait Decorator | 367

Test fixtures
Test fixtures refers to test data that needs to be set up as a precondition before a
test is run—often this means populating the database with some information, but
as we’ve seen (with browser cookies), it can involve other types of preconditions.

Avoid JSON fixtures
Django makes it easy to save and restore data from the database in JSON format
(and others) using the dumpdata and loaddata management commands.
Most people recommend against using these for test fixtures, as they are painful
to manage when your database schema changes. Use the ORM, or a tool like
factory_boy.

368 | Chapter 20: Test Fixtures and a Decorator for Explicit Waits

https://factoryboy.readthedocs.org/

CHAPTER 21

Server-Side Debugging

Popping a few layers off the stack of things we’re working on: we have nice wait-for
helpers; what were we using them for? Oh yes, waiting to be logged in. And why was
that? Ah yes, we had just built a way of pre-authenticating a user.

The Proof Is in the Pudding: Using Staging to Catch Final
Bugs
They’re all very well for running the FTs locally, but how would they work against the
staging server? Let’s try to deploy our site. Along the way we’ll catch an unexpected
bug (that’s what staging is for!), and then we’ll have to figure out a way of managing
the database on the test server:

$ cd deploy_tools
$ fab deploy --host=elspeth@superlists-staging.ottg.eu
[...]

And restart Gunicorn…

elspeth@server:$ sudo systemctl daemon-reload
elspeth@server:$ sudo systemctl restart gunicorn-superlists-staging.ottg.eu

Here’s what happens when we run the functional tests:

369

$ STAGING_SERVER=superlists-staging.ottg.eu python manage.py test functional_tests

==
ERROR: test_can_get_email_link_to_log_in
(functional_tests.test_login.LoginTest)

Traceback (most recent call last):
 File "/.../functional_tests/test_login.py", line 22, in
 test_can_get_email_link_to_log_in
 self.assertIn('Check your email', body.text)
AssertionError: 'Check your email' not found in 'Server Error (500)'

==
ERROR: test_logged_in_users_lists_are_saved_as_my_lists
(functional_tests.test_my_lists.MyListsTest)

Traceback (most recent call last):
 File "/home/harry/.../book-example/functional_tests/test_my_lists.py",
 line 34, in test_logged_in_users_lists_are_saved_as_my_lists
 self.wait_to_be_logged_in(email)
 File "/worskpace/functional_tests/base.py", line 42, in wait_to_be_logged_in
 self.browser.find_element_by_link_text('Log out')
 [...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: {"method":"link text","selector":"Log out"}
Stacktrace:
[...]

Ran 8 tests in 27.933s

FAILED (errors=2)

We can’t log in—either with the real email system or with our pre-authenticated ses‐
sion. Looks like our nice new authentication system is crashing the server.

Let’s practice a bit of server-side debugging!

Setting Up Logging
In order to track this problem down, we have to set up Gunicorn to do some logging.
Adjust the Gunicorn config on the server, using vi or nano:

server: /etc/systemd/system/gunicorn-superlists-staging.ottg.eu.service
ExecStart=/home/elspeth/sites/superlists-staging.ottg.eu/virtualenv/bin/gunicorn \
 --bind unix:/tmp/superlists-staging.ottg.eu.socket \
 --capture-output \
 --access-logfile ../access.log \
 --error-logfile ../error.log \
 superlists.wsgi:application

That will put an access log and error log into the ~/sites/$SITENAME folder.

370 | Chapter 21: Server-Side Debugging

You should also make sure your settings.py still contains the LOGGING settings which
will actually send stuff to the console:

superlists/settings.py
LOGGING = {
 'version': 1,
 'disable_existing_loggers': False,
 'handlers': {
 'console': {
 'level': 'DEBUG',
 'class': 'logging.StreamHandler',
 },
 },
 'loggers': {
 'django': {
 'handlers': ['console'],
 },
 },
 'root': {'level': 'INFO'},
}

We restart Gunicorn again, and then either rerun the FT, or just try to log in man‐
ually. While that happens, we can watch the logs on the server with:

elspeth@server:$ sudo systemctl daemon-reload
elspeth@server:$ sudo systemctl restart gunicorn-superlists-staging.ottg.eu
elspeth@server:$ tail -f error.log # assumes we are in ~/sites/$SITENAME folder

You should see an error like this:
Internal Server Error: /accounts/send_login_email
Traceback (most recent call last):
 File "/home/elspeth/sites/superlists-staging.ottg.eu/virtualenv/lib/python3.6/[...]
 response = wrapped_callback(request, *callback_args, **callback_kwargs)
 File
"/home/elspeth/sites/superlists-staging.ottg.eu/source/accounts/views.py", line
20, in send_login_email
 [email]
[...]
 self.connection.sendmail(from_email, recipients, message.as_bytes(linesep=\r\n))
 File "/usr/lib/python3.6/smtplib.py", line 862, in sendmail
 raise SMTPSenderRefused(code, resp, from_addr)
smtplib.SMTPSenderRefused: (530, b'5.5.1 Authentication Required. Learn more
at\n5.5.1 https://support.google.com/mail/?p=WantAuthError [...]
- gsmtp', noreply@superlists)

Hm, Gmail is refusing to send our emails, is it? Now why might that be? Ah yes, we
haven’t told the server what our password is!

The Proof Is in the Pudding: Using Staging to Catch Final Bugs | 371

Setting Secret Environment Variables on the Server
In Chapter 11, we’ve seen one way of setting secret values on the server, which we use
to populate the Django SECRET_KEY setting—creating one-off Python files on the
server filesystem, and importing them.

In these chapters we’ve been using environment variables in our shells to store our
email password, so let’s replicate that on the server. We can set the environment vari‐
able in the Systemd config file:

server: /etc/systemd/system/gunicorn-superlists-staging.ottg.eu.service
[Service]
User=elspeth
Environment=EMAIL_PASSWORD=yoursekritpasswordhere
WorkingDirectory=/home/elspeth/sites/superlists-staging.ottg.eu/source
[...]

One arguable security advantage to using this config file is we can
restrict its permissions to only be readable by root, something we
can’t do for our app’s Python source files.

Saving that file, and doing the usual daemon-reload and restart gunicorn dance,
we can rerun our FTs, and…

$ STAGING_SERVER=superlists-staging.ottg.eu python manage.py test functional_tests

[...]
Traceback (most recent call last):
 File "/.../superlists/functional_tests/test_login.py", line 25, in
 test_can_get_email_link_to_log_in
 email = mail.outbox[0]
IndexError: list index out of range

[...]

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: {"method":"link text","selector":"Log out"}

The my_lists failure is still the same, but we have more information in our login test:
the FT gets further, and the site now looks like it’s sending emails correctly (and the
server log shows no errors), but we can’t check the email in the mail.outbox…

Adapting Our FT to Be Able to Test Real Emails via POP3
Ah. That explains it. Now that we’re running against a real server rather than the Live
ServerTestCase, we can no longer inspect the local django.mail.outbox to see sent
emails.

372 | Chapter 21: Server-Side Debugging

First, we’ll need to know, in our FTs, whether we’re running against the staging server
or not. Let’s save the staging_server variable on self in base.py:

functional_tests/base.py (ch18l009)
 def setUp(self):
 self.browser = webdriver.Firefox()
 self.staging_server = os.environ.get('STAGING_SERVER')
 if self.staging_server:
 self.live_server_url = 'http://' + self.staging_server

Then we build a helper function that can retrieve a real email from a real POP3 email
server, using the horrifically tortuous Python standard library POP3 client:

functional_tests/test_login.py (ch18l010)
import os
import poplib
import re
import time
[...]

 def wait_for_email(self, test_email, subject):
 if not self.staging_server:
 email = mail.outbox[0]
 self.assertIn(test_email, email.to)
 self.assertEqual(email.subject, subject)
 return email.body

 email_id = None
 start = time.time()
 inbox = poplib.POP3_SSL('pop.mail.yahoo.com')
 try:
 inbox.user(test_email)
 inbox.pass_(os.environ['YAHOO_PASSWORD'])
 while time.time() - start < 60:
 # get 10 newest messages
 count, _ = inbox.stat()
 for i in reversed(range(max(1, count - 10), count + 1)):
 print('getting msg', i)
 _, lines, __ = inbox.retr(i)
 lines = [l.decode('utf8') for l in lines]
 print(lines)
 if f'Subject: {subject}' in lines:
 email_id = i
 body = '\n'.join(lines)
 return body
 time.sleep(5)
 finally:
 if email_id:
 inbox.dele(email_id)
 inbox.quit()

Adapting Our FT to Be Able to Test Real Emails via POP3 | 373

I’m using a Yahoo account for testing, but you can use any email
service you like, as long as it offers POP3 access. You will need to
set the YAHOO_PASSWORD environment variable in the console that’s
running the FT.

And then we feed through the rest of the changes to the FT that are required as a
result. Firstly, populating a test_email variable, differently for local and staging tests:

functional_tests/test_login.py (ch18l011-1)
@@ -7,7 +7,7 @@ from selenium.webdriver.common.keys import Keys

 from .base import FunctionalTest

-TEST_EMAIL = 'edith@example.com'
+
 SUBJECT = 'Your login link for Superlists'

@@ -33,7 +33,6 @@ class LoginTest(FunctionalTest):
 print('getting msg', i)
 _, lines, __ = inbox.retr(i)
 lines = [l.decode('utf8') for l in lines]
- print(lines)
 if f'Subject: {subject}' in lines:
 email_id = i
 body = '\n'.join(lines)
@@ -49,6 +48,11 @@ class LoginTest(FunctionalTest):
 # Edith goes to the awesome superlists site
 # and notices a "Log in" section in the navbar for the first time
 # It's telling her to enter her email address, so she does
+ if self.staging_server:
+ test_email = 'edith.testuser@yahoo.com'
+ else:
+ test_email = 'edith@example.com'
+
 self.browser.get(self.live_server_url)

And then modifications involving using that variable and calling our new helper
function:

374 | Chapter 21: Server-Side Debugging

functional_tests/test_login.py (ch18l011-2)
@@ -54,7 +54,7 @@ class LoginTest(FunctionalTest):
 test_email = 'edith@example.com'

 self.browser.get(self.live_server_url)
- self.browser.find_element_by_name('email').send_keys(TEST_EMAIL)
+ self.browser.find_element_by_name('email').send_keys(test_email)
 self.browser.find_element_by_name('email').send_keys(Keys.ENTER)

 # A message appears telling her an email has been sent
@@ -64,15 +64,13 @@ class LoginTest(FunctionalTest):
))

 # She checks her email and finds a message
- email = mail.outbox[0]
- self.assertIn(TEST_EMAIL, email.to)
- self.assertEqual(email.subject, SUBJECT)
+ body = self.wait_for_email(test_email, SUBJECT)

 # It has a url link in it
- self.assertIn('Use this link to log in', email.body)
- url_search = re.search(r'http://.+/.+$', email.body)
+ self.assertIn('Use this link to log in', body)
+ url_search = re.search(r'http://.+/.+$', body)
 if not url_search:
- self.fail(f'Could not find url in email body:\n{email.body}')
+ self.fail(f'Could not find url in email body:\n{body}')
 url = url_search.group(0)
 self.assertIn(self.live_server_url, url)

@@ -80,11 +78,11 @@ class LoginTest(FunctionalTest):
 self.browser.get(url)

 # she is logged in!
- self.wait_to_be_logged_in(email=TEST_EMAIL)
+ self.wait_to_be_logged_in(email=test_email)

 # Now she logs out
 self.browser.find_element_by_link_text('Log out').click()

 # She is logged out
- self.wait_to_be_logged_out(email=TEST_EMAIL)
+ self.wait_to_be_logged_out(email=test_email)

And, believe it or not, that’ll actually work, and give us an FT that can actually check
for logins that work, involving real emails!

I’ve just hacked this email-checking code together, and it’s currently
pretty ugly and brittle (one common problem is picking up the
wrong email from a previous test run). With some cleanup and a
few more retry loops it could grow into something more reliable.
Alternatively, services like mailinator.com will give you throwaway
email addresses and an API to check them, for a small fee.

Adapting Our FT to Be Able to Test Real Emails via POP3 | 375

Managing the Test Database on Staging
Now we can rerun our FTs and get to the next failure: our attempt to create pre-
authenticated sessions doesn’t work, so the “My Lists” test fails:

$ STAGING_SERVER=superlists-staging.ottg.eu python manage.py test functional_tests

ERROR: test_logged_in_users_lists_are_saved_as_my_lists
(functional_tests.test_my_lists.MyListsTest)
[...]
selenium.common.exceptions.TimeoutException: Message: Could not find element
with id id_logout. Page text was:
Superlists
Sign in
Start a new To-Do list

Ran 8 tests in 72.742s

FAILED (errors=1)

It’s because our test utility function create_pre_authenticated_session only acts
on the local database. Let’s find out how our tests can manage the database on the
server.

A Django Management Command to Create Sessions
To do things on the server, we’ll need to build a self-contained script that can be run
from the command line on the server, most probably via Fabric.

When trying to build a standalone script that works with Django (i.e., can talk to the
database and so on), there are some fiddly issues you need to get right, like setting the
DJANGO_SETTINGS_MODULE environment variable, and getting sys.path correctly.

Instead of messing about with all that, Django lets you create your own “management
commands” (commands you can run with python manage.py), which will do all that
path mangling for you. They live in a folder called management/commands inside
your apps:

$ mkdir -p functional_tests/management/commands
$ touch functional_tests/management/__init__.py
$ touch functional_tests/management/commands/__init__.py

The boilerplate in a management command is a class that inherits from
django.core.management.BaseCommand, and that defines a method called handle:

376 | Chapter 21: Server-Side Debugging

functional_tests/management/commands/create_session.py
from django.conf import settings
from django.contrib.auth import BACKEND_SESSION_KEY, SESSION_KEY, get_user_model
User = get_user_model()
from django.contrib.sessions.backends.db import SessionStore
from django.core.management.base import BaseCommand

class Command(BaseCommand):

 def add_arguments(self, parser):
 parser.add_argument('email')

 def handle(self, *args, **options):
 session_key = create_pre_authenticated_session(options['email'])
 self.stdout.write(session_key)

def create_pre_authenticated_session(email):
 user = User.objects.create(email=email)
 session = SessionStore()
 session[SESSION_KEY] = user.pk
 session[BACKEND_SESSION_KEY] = settings.AUTHENTICATION_BACKENDS[0]
 session.save()
 return session.session_key

We’ve taken the code for create_pre_authenticated_session from test_my_lists.py.
handle will pick up an email address from the parser, and then return the session key
that we’ll want to add to our browser cookies, and the management command prints
it out at the command line. Try it out:

$ python manage.py create_session a@b.com
Unknown command: 'create_session'

One more step: we need to add functional_tests to our settings.py for it to recog‐
nise it as a real app that might have management commands as well as tests:

superlists/settings.py
+++ b/superlists/settings.py
@@ -42,6 +42,7 @@ INSTALLED_APPS = [
 'lists',
 'accounts',
+ 'functional_tests',
]

Now it works:

$ python manage.py create_session a@b.com
qnslckvp2aga7tm6xuivyb0ob1akzzwl

Managing the Test Database on Staging | 377

If you see an error saying the auth_user table is missing, you may
need to run manage.py migrate. In case that doesn’t work, delete
the db.sqlite3 file and run migrate again, to get a clean slate.

Getting the FT to Run the Management Command on the Server
Next we need to adjust test_my_lists so that it runs the local function when we’re
on the local server, and make it run the management command on the staging server
if we’re on that:

functional_tests/test_my_lists.py (ch18l016)
from django.conf import settings
from .base import FunctionalTest
from .server_tools import create_session_on_server
from .management.commands.create_session import create_pre_authenticated_session

class MyListsTest(FunctionalTest):

 def create_pre_authenticated_session(self, email):
 if self.staging_server:
 session_key = create_session_on_server(self.staging_server, email)
 else:
 session_key = create_pre_authenticated_session(email)
 ## to set a cookie we need to first visit the domain.
 ## 404 pages load the quickest!
 self.browser.get(self.live_server_url + "/404_no_such_url/")
 self.browser.add_cookie(dict(
 name=settings.SESSION_COOKIE_NAME,
 value=session_key,
 path='/',
))

 [...]

Let’s also tweak base.py, to gather a bit more information when we populate
self.against_staging:

378 | Chapter 21: Server-Side Debugging

functional_tests/base.py (ch18l017)
from .server_tools import reset_database
[...]

class FunctionalTest(StaticLiveServerTestCase):

 def setUp(self):
 self.browser = webdriver.Firefox()
 self.staging_server = os.environ.get('STAGING_SERVER')
 if self.staging_server:
 self.live_server_url = 'http://' + self.staging_server
 reset_database(self.staging_server)

This will be our function to reset the server database in between each test. I’ll
explain the logic of the session-creation code, which should also explain how this
works.

Using Fabric Directly from Python
Rather than using the fab command, Fabric provides an API that lets you run Fabric
server commands directly inline in your Python code. You just need to let it know the
“host string” you’re connecting to:

functional_tests/server_tools.py
from fabric.api import run
from fabric.context_managers import settings

def _get_manage_dot_py(host):
 return f'~/sites/{host}/virtualenv/bin/python ~/sites/{host}/source/manage.py'

def reset_database(host):
 manage_dot_py = _get_manage_dot_py(host)
 with settings(host_string=f'elspeth@{host}'):
 run(f'{manage_dot_py} flush --noinput')

def create_session_on_server(host, email):
 manage_dot_py = _get_manage_dot_py(host)
 with settings(host_string=f'elspeth@{host}'):
 session_key = run(f'{manage_dot_py} create_session {email}')
 return session_key.strip()

Here’s the context manager that sets the host string, in the form user@server-
address (I’ve hardcoded my server username, elspeth, so adjust as necessary).

Managing the Test Database on Staging | 379

Then, once we’re inside the context manager, we can just call Fabric commands
as if we’re in a fabfile.

Recap: Creating Sessions Locally Versus Staging
Does that all make sense? Perhaps a little ascii-art diagram will help:

Locally:
+-----------------------------------+ +-------------------------------------+
MyListsTest	-->	.management.commands.create_session
.create_pre_authenticated_session		.create_pre_authenticated_session
(locally)		(locally)
+-----------------------------------+ +-------------------------------------+

Against staging:
+-----------------------------------+ +-------------------------------------+
MyListsTest		.management.commands.create_session
.create_pre_authenticated_session		.create_pre_authenticated_session
(locally)		(on server)
+-----------------------------------+ +-------------------------------------+
 | ^
 v |
+----------------------------+ +--------+ +------------------------------+
| server_tools | --> | fabric | --> | ./manage.py create_session |
| .create_session_on_server | | "run" | | (on server) |
| (locally) | +--------+ +------------------------------+
+----------------------------+

In any case, let’s see if it works. First, locally, to check that we didn’t break anything:

$ python manage.py test functional_tests.test_my_lists
[...]
OK

Next, against the server. We push our code up first:

$ git push # you'll need to commit changes first.
$ cd deploy_tools
$ fab deploy --host=superlists-staging.ottg.eu

And now we run the test:

380 | Chapter 21: Server-Side Debugging

$ STAGING_SERVER=superlists-staging.ottg.eu python manage.py test \
 functional_tests.test_my_lists
[...]
[superlists-staging.ottg.eu] Executing task 'reset_database'
~/sites/superlists-staging.ottg.eu/source/manage.py flush --noinput
[superlists-staging.ottg.eu] out: Syncing...
[superlists-staging.ottg.eu] out: Creating tables ...
[...]
.

Ran 1 test in 25.701s

OK

Looking good! We can rerun all the tests to make sure…

$ STAGING_SERVER=superlists-staging.ottg.eu python manage.py test \
 functional_tests
[...]
[superlists-staging.ottg.eu] Executing task 'reset_database'
[...]
Ran 8 tests in 89.494s

OK

Hooray!

I’ve shown one way of managing the test database, but you could
experiment with others—for example, if you were using MySQL or
Postgres, you could open up an SSH tunnel to the server, and use
port forwarding to talk to the database directly. You could then
amend settings.DATABASES during FTs to talk to the tunnelled
port.

Warning: Be Careful Not to Run Test Code Against the Live Server
We’re into dangerous territory, now that we have code that can directly affect a data‐
base on the server. You want to be very, very careful that you don’t accidentally blow
away your production database by running FTs against the wrong host.

You might consider putting some safeguards in place at this point. For example, you
could put staging and production on different servers, and make it so they use differ‐
ent keypairs for authentication, with different passphrases.

This is similarly dangerous territory to running tests against clones of production
data. I have a little story about accidentally sending thousands of duplicate invoices to
clients in Appendix D. LFMF.

Managing the Test Database on Staging | 381

Baking In Our Logging Code
Before we finish, let’s “bake in” our logging setup. It would be useful to keep our new
logging code in there, under source control, so that we can debug any future login
problems. They may indicate someone is up to no good, after all…

Let’s start by saving the Gunicorn config to our template file in deploy_tools:

deploy_tools/gunicorn-systemd.template.service (ch18l020)
[...]
Environment=EMAIL_PASSWORD=SEKRIT
ExecStart=/home/elspeth/sites/SITENAME/virtualenv/bin/gunicorn \
 --bind unix:/tmp/SITENAME.socket \
 --access-logfile ../access.log \
 --error-logfile ../error.log \
 superlists.wsgi:application
[...]

And a little reminder in our provisioning notes about needing to set the email pass‐
word environment variable via that Gunicorn config file:

deploy_tools/provisioning_notes.md (ch18l021)
Systemd service

* see gunicorn-systemd.template.service
* replace SITENAME with, e.g., staging.my-domain.com
* replace SEKRIT with email password
[...]

Wrap-Up
Actually getting your new code up and running on a server always tends to flush out
some last-minute bugs and unexpected issues. We had to do a bit of work to get
through them, but we’ve ended up with several useful things as a result.

We now have a lovely generic wait decorator which will be a nice Pythonic helper for
our FTs from now on. We have test fixtures that work both locally and on the server,
including the ability to test “real” email integration. And we’ve got some more robust
logging configuration.

382 | Chapter 21: Server-Side Debugging

But before we can deploy our actual live site, we’d better actually give the users what
they wanted—the next chapter describes how to give them the ability to save their
lists on a “My Lists” page.

Lessons Learned Catching Bugs in Staging
Fixtures also have to work remotely

LiveServerTestCase makes it easy to interact with the test database using the
Django ORM for tests running locally. Interacting with the database on the stag‐
ing server is not so straightforward. One solution is Fabric and Django manage‐
ment commands, as I’ve shown, but you should explore what works for you—
SSH tunnels, for example.

Be very careful when resetting data on your servers
A command that can remotely wipe the entire database on one of your servers is
a dangerous weapon, and you want to be really, really sure it’s never accidentally
going to hit your production data.

Logging is critical to debugging issues on the server
At the very least, you’ll want to be able to see any error messages that are being
generated by the server. For thornier bugs, you’ll also want to be able to do the
occasional “debug print”, and see it end up in a file somewhere.

Wrap-Up | 383

CHAPTER 22

Finishing “My Lists”: Outside-In TDD

In this chapter I’d like to talk about a technique called Outside-In TDD. It’s pretty
much what we’ve been doing all along. Our “double-loop” TDD process, in which we
write the functional test first and then the unit tests, is already a manifestation of
outside-in—we design the system from the outside, and build up our code in layers.
Now I’ll make it explicit, and talk about some of the common issues involved.

The Alternative: “Inside-Out”
The alternative to “outside-in” is to work “inside-out”, which is the way most people
intuitively work before they encounter TDD. After coming up with a design, the nat‐
ural inclination is sometimes to implement it starting with the innermost, lowest-
level components first.

For example, when faced with our current problem, providing users with a “My Lists”
page of saved lists, the temptation is to start by adding an “owner” attribute to the
List model object, reasoning that an attribute like this is “obviously” going to be
required. Once that’s in place, we would modify the more peripheral layers of code,
such as views and templates, taking advantage of the new attribute, and then finally
add URL routing to point to the new view.

It feels comfortable because it means you’re never working on a bit of code that is
dependent on something that hasn’t yet been implemented. Each bit of work on the
inside is a solid foundation on which to build the next layer out.

But working inside-out like this also has some weaknesses.

385

Why Prefer “Outside-In”?
The most obvious problem with inside-out is that it requires us to stray from a TDD
workflow. Our functional test’s first failure might be due to missing URL routing, but
we decide to ignore that and go off adding attributes to our database model objects
instead.

We might have ideas in our head about the new desired behaviour of our inner layers
like database models, and often these ideas will be pretty good, but they are actually
just speculation about what’s really required, because we haven’t yet built the outer
layers that will use them.

One problem that can result is to build inner components that are more general or
more capable than we actually need, which is a waste of time, and an added source of
complexity for your project. Another common problem is that you create inner com‐
ponents with an API which is convenient for their own internal design, but which
later turns out to be inappropriate for the calls your outer layers would like to make…
worse still, you might end up with inner components which, you later realise, don’t
actually solve the problem that your outer layers need solved.

In contrast, working outside-in allows you to use each layer to imagine the most con‐
venient API you could want from the layer beneath it. Let’s see it in action.

The FT for “My Lists”
As we work through the following functional test, we start with the most outward-
facing (presentation layer), through to the view functions (or “controllers”), and lastly
the innermost layers, which in this case will be model code.

We know our create_pre_authenticated_session code works now, so we can just
write our FT to look for a “My Lists” page:

386 | Chapter 22: Finishing “My Lists”: Outside-In TDD

functional_tests/test_my_lists.py (ch19l001-1)
 def test_logged_in_users_lists_are_saved_as_my_lists(self):
 # Edith is a logged-in user
 self.create_pre_authenticated_session('edith@example.com')

 # She goes to the home page and starts a list
 self.browser.get(self.live_server_url)
 self.add_list_item('Reticulate splines')
 self.add_list_item('Immanentize eschaton')
 first_list_url = self.browser.current_url

 # She notices a "My lists" link, for the first time.
 self.browser.find_element_by_link_text('My lists').click()

 # She sees that her list is in there, named according to its
 # first list item
 self.wait_for(
 lambda: self.browser.find_element_by_link_text('Reticulate splines')
)
 self.browser.find_element_by_link_text('Reticulate splines').click()
 self.wait_for(
 lambda: self.assertEqual(self.browser.current_url, first_list_url)
)

We create a list with a couple of items, and then we check that this list appears on a
new “My Lists” page, and that it’s “named” after the first item in the list.

Let’s validate that it really works by creating a second list, and seeing that appear on
the My Lists page as well. The FT continues, and while we’re at it, we check that only
logged-in users can see the “My Lists” page:

The FT for “My Lists” | 387

functional_tests/test_my_lists.py (ch19l001-2)
 [...]
 self.wait_for(
 lambda: self.assertEqual(self.browser.current_url, first_list_url)
)

 # She decides to start another list, just to see
 self.browser.get(self.live_server_url)
 self.add_list_item('Click cows')
 second_list_url = self.browser.current_url

 # Under "my lists", her new list appears
 self.browser.find_element_by_link_text('My lists').click()
 self.wait_for(
 lambda: self.browser.find_element_by_link_text('Click cows')
)
 self.browser.find_element_by_link_text('Click cows').click()
 self.wait_for(
 lambda: self.assertEqual(self.browser.current_url, second_list_url)
)

 # She logs out. The "My lists" option disappears
 self.browser.find_element_by_link_text('Log out').click()
 self.wait_for(lambda: self.assertEqual(
 self.browser.find_elements_by_link_text('My lists'),
 []
))

Our FT uses a new helper method, add_list_item, which abstracts away entering
text into the right input box. We define it in base.py:

functional_tests/base.py (ch19l001-3)
from selenium.webdriver.common.keys import Keys
[...]

 def add_list_item(self, item_text):
 num_rows = len(self.browser.find_elements_by_css_selector('#id_list_table tr'))
 self.get_item_input_box().send_keys(item_text)
 self.get_item_input_box().send_keys(Keys.ENTER)
 item_number = num_rows + 1
 self.wait_for_row_in_list_table(f'{item_number}: {item_text}')

And while we’re at it we can use it in a few of the other FTs, like this:

functional_tests/test_list_item_validation.py
 self.add_list_item('Buy wellies')

I think it makes the FTs a lot more readable. I made a total of six changes—see if you
agree with me.

388 | Chapter 22: Finishing “My Lists”: Outside-In TDD

A quick run of all FTs, a commit, and then back to the FT we’re working on. The first
error should look like this:

$ python3 manage.py test functional_tests.test_my_lists
[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: My lists

The Outside Layer: Presentation and Templates
The test is currently failing saying that it can’t find a link saying “My Lists”. We can
address that at the presentation layer, in base.html, in our navigation bar. Here’s the
minimal code change:

lists/templates/base.html (ch19l002-1)
 {% if user.email %}
 <ul class="nav navbar-nav navbar-left">
 My lists

 <ul class="nav navbar-nav navbar-right">
 <li class="navbar-text">Logged in as {{ user.email }}
 Log out

Of course, that link doesn’t actually go anywhere, but it does get us along to the next
failure:

$ python3 manage.py test functional_tests.test_my_lists
[...]
 lambda: self.browser.find_element_by_link_text('Reticulate splines')
[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: Reticulate splines

Which is telling us we’re going to have to build a page that lists all of a user’s lists by
title. Let’s start with the basics—a URL and a placeholder template for it.

Again, we can go outside-in, starting at the presentation layer with just the URL and
nothing else:

lists/templates/base.html (ch19l002-2)
 <ul class="nav navbar-nav navbar-left">
 My lists

The Outside Layer: Presentation and Templates | 389

Moving Down One Layer to View Functions (the
Controller)
That will cause a template error, so we’ll start to move down from the presentation
layer and URLs down to the controller layer, Django’s view functions.

As always, we start with a test:

lists/tests/test_views.py (ch19l003)
class MyListsTest(TestCase):

 def test_my_lists_url_renders_my_lists_template(self):
 response = self.client.get('/lists/users/a@b.com/')
 self.assertTemplateUsed(response, 'my_lists.html')

That gives:

AssertionError: No templates used to render the response

And we fix it, still at the presentation level, in urls.py:

lists/urls.py
urlpatterns = [
 url(r'^new$', views.new_list, name='new_list'),
 url(r'^(\d+)/$', views.view_list, name='view_list'),
 url(r'^users/(.+)/$', views.my_lists, name='my_lists'),
]

That gives us a test failure, which informs us of what we should do as we move down
to the next level:

AttributeError: module 'lists.views' has no attribute 'my_lists'

We move in from the presentation layer to the views layer, and create a minimal
placeholder:

lists/views.py (ch19l005)
def my_lists(request, email):
 return render(request, 'my_lists.html')

And a minimal template:

lists/templates/my_lists.html
{% extends 'base.html' %}

{% block header_text %}My Lists{% endblock %}

390 | Chapter 22: Finishing “My Lists”: Outside-In TDD

That gets our unit tests passing, but our FT is still at the same point, saying that the
“My Lists” page doesn’t yet show any lists. It wants them to be clickable links named
after the first item:

$ python3 manage.py test functional_tests.test_my_lists
[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: Reticulate splines

Another Pass, Outside-In
At each stage, we still let the FT drive what development we do.

Starting again at the outside layer, in the template, we begin to write the template
code we’d like to use to get the “My Lists” page to work the way we want it to. As we
do so, we start to specify the API we want from the code at the layers below.

A Quick Restructure of the Template Inheritance Hierarchy
Currently there’s no place in our base template for us to put any new content. Also,
the “My Lists” page doesn’t need the new item form, so we’ll put that into a block too,
making it optional:

lists/templates/base.html (ch19l007-1)
 <div class="row">
 <div class="col-md-6 col-md-offset-3 jumbotron">
 <div class="text-center">
 <h1>{% block header_text %}{% endblock %}</h1>
 {% block list_form %}
 <form method="POST" action="{% block form_action %}{% endblock %}">
 {{ form.text }}
 {% csrf_token %}
 {% if form.errors %}
 <div class="form-group has-error">
 <div class="help-block">{{ form.text.errors }}</div>
 </div>
 {% endif %}
 </form>
 {% endblock %}
 </div>
 </div>
 </div>

Another Pass, Outside-In | 391

lists/templates/base.html (ch19l007-2)
 <div class="row">
 <div class="col-md-6 col-md-offset-3">
 {% block table %}
 {% endblock %}
 </div>
 </div>

 <div class="row">
 <div class="col-md-6 col-md-offset-3">
 {% block extra_content %}
 {% endblock %}
 </div>
 </div>

 </div>
 <script src="/static/jquery-3.1.1.min.js"></script>
 [...]

Designing Our API Using the Template
Meanwhile, in my_lists.html we override the list_form and say it should be empty…

lists/templates/my_lists.html
{% extends 'base.html' %}

{% block header_text %}My Lists{% endblock %}

{% block list_form %}{% endblock %}

And then we can just work inside the extra_content block:

lists/templates/my_lists.html
[...]

{% block list_form %}{% endblock %}

{% block extra_content %}
 <h2>{{ owner.email }}'s lists</h2>

 {% for list in owner.list_set.all %}
 {{ list.name }}
 {% endfor %}

{% endblock %}

We’ve made several design decisions in this template which are going to filter their
way down through the code:

392 | Chapter 22: Finishing “My Lists”: Outside-In TDD

We want a variable called owner to represent the user in our template.

We want to be able to iterate through the lists created by the user using
owner.list_set.all (I happen to know we get this for free from the Django
ORM).

We want to use list.name to print out the “name” of the list, which is currently
specified as the text of its first element.

Outside-In TDD is sometimes called “programming by wishful
thinking”, and you can see why. We start writing code at the higher
levels based on what we wish we had at the lower levels, even
though it doesn’t exist yet!

We can rerun our FTs, to check that we didn’t break anything, and to see whether
we’ve got any further:

$ python manage.py test functional_tests
[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: Reticulate splines

Ran 8 tests in 77.613s

FAILED (errors=1)

Well, no further, but at least we didn’t break anything. Time for a commit:

$ git add lists
$ git diff --staged
$ git commit -m "url, placeholder view, and first-cut templates for my_lists"

Moving Down to the Next Layer: What the View Passes to the
Template
Now our views layer needs to respond to the requirements we’ve laid out in the tem‐
plate layer, by giving it the objects it needs. In this case, the list owner:

Another Pass, Outside-In | 393

lists/tests/test_views.py (ch19l011)
from django.contrib.auth import get_user_model
User = get_user_model()
[...]
class MyListsTest(TestCase):

 def test_my_lists_url_renders_my_lists_template(self):
 [...]

 def test_passes_correct_owner_to_template(self):
 User.objects.create(email='wrong@owner.com')
 correct_user = User.objects.create(email='a@b.com')
 response = self.client.get('/lists/users/a@b.com/')
 self.assertEqual(response.context['owner'], correct_user)

Gives:

KeyError: 'owner'

So:

lists/views.py (ch19l012)
from django.contrib.auth import get_user_model
User = get_user_model()
[...]

def my_lists(request, email):
 owner = User.objects.get(email=email)
 return render(request, 'my_lists.html', {'owner': owner})

That gets our new test passing, but we’ll also see an error from the previous test. We
just need to add a user for it as well:

lists/tests/test_views.py (ch19l013)
 def test_my_lists_url_renders_my_lists_template(self):
 User.objects.create(email='a@b.com')
 [...]

And we get to an OK:

OK

The Next “Requirement” from the Views Layer: New Lists
Should Record Owner
Before we move down to the model layer, there’s another part of the code at the views
layer that will need to use our model: we need some way for newly created lists to be
assigned to an owner, if the current user is logged in to the site.

394 | Chapter 22: Finishing “My Lists”: Outside-In TDD

Here’s a first crack at writing the test:

lists/tests/test_views.py (ch19l014)
class NewListTest(TestCase):
 [...]

 def test_list_owner_is_saved_if_user_is_authenticated(self):
 user = User.objects.create(email='a@b.com')
 self.client.force_login(user)
 self.client.post('/lists/new', data={'text': 'new item'})
 list_ = List.objects.first()
 self.assertEqual(list_.owner, user)

force_login() is the way you get the test client to make requests with a logged-
in user.

The test fails as follows:

AttributeError: 'List' object has no attribute 'owner'

To fix this, we can try writing code like this:

lists/views.py (ch19l015)
def new_list(request):
 form = ItemForm(data=request.POST)
 if form.is_valid():
 list_ = List()
 list_.owner = request.user
 list_.save()
 form.save(for_list=list_)
 return redirect(list_)
 else:
 return render(request, 'home.html', {"form": form})

But it won’t actually work, because we don’t know how to save a list owner yet:

 self.assertEqual(list_.owner, user)
AttributeError: 'List' object has no attribute 'owner'

A Decision Point: Whether to Proceed to the Next Layer with a Failing
Test
In order to get this test passing, as it’s written now, we have to move down to the
model layer. However, it means doing more work with a failing test, which is not
ideal.

The alternative is to rewrite the test to make it more isolated from the level below,
using mocks.

The Next “Requirement” from the Views Layer: New Lists Should Record Owner | 395

On the one hand, it’s a lot more effort to use mocks, and it can lead to tests that are
harder to read. On the other hand, imagine if our app was more complex, and there
were several more layers between the outside and the inside. Imagine leaving three or
four or five layers of tests, all failing while we wait to get to the bottom layer to imple‐
ment our critical feature. While tests are failing, we’re not sure that layer really works,
on its own terms, or not. We have to wait until we get to the bottom layer.

This is a decision point you’re likely to run into in your own projects. Let’s investigate
both approaches. We’ll start by taking the shortcut, and leaving the test failing. In the
next chapter, we’ll come back to this exact point, and investigate how things would
have gone if we’d used more isolation.

Let’s do a commit, and then tag the commit as a way of remembering our position for
the next chapter:

$ git commit -am "new_list view tries to assign owner but cant"
$ git tag revisit_this_point_with_isolated_tests

Moving Down to the Model Layer
Our outside-in design has driven out two requirements for the model layer: we want
to be able to assign an owner to a list using the attribute .owner, and we want to be
able to access the list’s owner with the API owner.list_set.all.

Let’s write a test for that:

lists/tests/test_models.py (ch19l018)
from django.contrib.auth import get_user_model
User = get_user_model()
[...]

class ListModelTest(TestCase):

 def test_get_absolute_url(self):
 [...]

 def test_lists_can_have_owners(self):
 user = User.objects.create(email='a@b.com')
 list_ = List.objects.create(owner=user)
 self.assertIn(list_, user.list_set.all())

And that gives us a new unit test failure:

 list_ = List.objects.create(owner=user)
 [...]
TypeError: 'owner' is an invalid keyword argument for this function

The naive implementation would be this:

396 | Chapter 22: Finishing “My Lists”: Outside-In TDD

from django.conf import settings
[...]

class List(models.Model):
 owner = models.ForeignKey(settings.AUTH_USER_MODEL)

But we want to make sure the list owner is optional. Explicit is better than implicit,
and tests are documentation, so let’s have a test for that too:

lists/tests/test_models.py (ch19l020)
 def test_list_owner_is_optional(self):
 List.objects.create() # should not raise

The correct implementation is this:

lists/models.py
from django.conf import settings
[...]

class List(models.Model):
 owner = models.ForeignKey(settings.AUTH_USER_MODEL, blank=True, null=True)

 def get_absolute_url(self):
 return reverse('view_list', args=[self.id])

Now running the tests gives the usual database error:

 return Database.Cursor.execute(self, query, params)
django.db.utils.OperationalError: no such column: lists_list.owner_id

Because we need to make some migrations:

$ python manage.py makemigrations
Migrations for 'lists':
 lists/migrations/0006_list_owner.py
 - Add field owner to list

We’re almost there; a couple more failures:

ERROR: test_redirects_after_POST (lists.tests.test_views.NewListTest)
[...]
ValueError: Cannot assign "<SimpleLazyObject:
<django.contrib.auth.models.AnonymousUser object at 0x7f364795ef90>>":
"List.owner" must be a "User" instance.
ERROR: test_can_save_a_POST_request (lists.tests.test_views.NewListTest)

[...]
ValueError: Cannot assign "<SimpleLazyObject:
<django.contrib.auth.models.AnonymousUser object at 0x7f364795ef90>>":
"List.owner" must be a "User" instance.

Moving Down to the Model Layer | 397

We’re moving back up to the views layer now, just doing a little tidying up. Notice
that these are in the old test for the new_list view, when we haven’t got a logged-in
user. We should only save the list owner when the user is actually logged in.
The .is_authenticated attribute we defined in Chapter 19 comes in useful now
(when they’re not logged in, Django represents users using a class called Anonymou
sUser, whose .is_authenticated is always False):

lists/views.py (ch19l023)
 if form.is_valid():
 list_ = List()
 if request.user.is_authenticated:
 list_.owner = request.user
 list_.save()
 form.save(for_list=list_)
 [...]

And that gets us passing!

$ python manage.py test lists
[...]
.......................................

Ran 39 tests in 0.237s

OK

This is a good time for a commit:

$ git add lists
$ git commit -m "lists can have owners, which are saved on creation."

Final Step: Feeding Through the .name API from the Template
The last thing our outside-in design wanted came from the templates, which wanted
to be able to access a list “name” based on the text of its first item:

lists/tests/test_models.py (ch19l024)
 def test_list_name_is_first_item_text(self):
 list_ = List.objects.create()
 Item.objects.create(list=list_, text='first item')
 Item.objects.create(list=list_, text='second item')
 self.assertEqual(list_.name, 'first item')

lists/models.py (ch19l025)
 @property
 def name(self):
 return self.item_set.first().text

398 | Chapter 22: Finishing “My Lists”: Outside-In TDD

And that, believe it or not, actually gets us a passing test, and a working “My Lists”
page (Figure 22-1)!

$ python manage.py test functional_tests
[...]
Ran 8 tests in 93.819s

OK

The @property Decorator in Python
If you haven’t seen it before, the @property decorator transforms a method on a class
to make it appear to the outside world like an attribute.

This is a powerful feature of the language, because it makes it easy to implement
“duck typing”, to change the implementation of a property without changing the
interface of the class. In other words, if we decide to change .name into being a “real”
attribute on the model, which is stored as text in the database, then we will be able to
do so entirely transparently—as far as the rest of our code is concerned, they will still
be able to just access .name and get the list name, without needing to know about the
implementation. Raymond Hettinger gave a great, beginner-friendly talk on this topic
at Pycon a few years ago, which I enthusiastically recommend (it covers about a mil‐
lion good practices for Pythonic class design besides).

Of course, in the Django template language, .name would still call the method even if
it didn’t have @property, but that’s a particularity of Django, and doesn’t apply to
Python in general…

But we know we cheated to get there. The Testing Goat is eyeing us suspiciously. We
left a test failing at one layer while we implemented its dependencies at the lower
layer. Let’s see how things would play out if we were to use better test isolation…

Moving Down to the Model Layer | 399

https://www.youtube.com/watch?v=HTLu2DFOdTg
https://www.youtube.com/watch?v=HTLu2DFOdTg

Figure 22-1. The “My Lists” page, in all its glory (and proof I did test on Windows)

Outside-In TDD
Outside-In TDD

A methodology for building code, driven by tests, which proceeds by starting
from the “outside” layers (presentation, GUI), and moving “inwards” step by step,
via view/controller layers, down towards the model layer. The idea is to drive the
design of your code from the use to which it is going to be put, rather than trying
to anticipate requirements from the ground up.

Programming by wishful thinking
The outside-in process is sometimes called “programming by wishful thinking”.
Actually, any kind of TDD involves some wishful thinking. We’re always writing
tests for things that don’t exist yet.

The pitfalls of outside-in
Outside-in isn’t a silver bullet. It encourages us to focus on things that are imme‐
diately visible to the user, but it won’t automatically remind us to write other crit‐
ical tests that are less user-visible—things like security, for example. You’ll need
to remember them yourself.

400 | Chapter 22: Finishing “My Lists”: Outside-In TDD

CHAPTER 23

Test Isolation, and “Listening to Your Tests”

In the preceding chapter, we made the decision to leave a unit test failing in the views
layer while we proceeded to write more tests and more code at the models layer to get
it to pass.

We got away with it because our app was simple, but I should stress that, in a more
complex application, this would be a dangerous decision. Proceeding to work on
lower levels while you’re not sure that the higher levels are really finished or not is a
risky strategy.

I’m grateful to Gary Bernhardt, who took a look at an early draft of
the previous chapter, and encouraged me to get into a longer dis‐
cussion of test isolation.

Ensuring isolation between layers does involve more effort (and more of the dreaded
mocks!), but it can also help to drive out improved design, as we’ll see in this chapter.

Revisiting Our Decision Point: The Views Layer Depends
on Unwritten Models Code
Let’s revisit the point we were at halfway through the last chapter, when we couldn’t
get the new_list view to work because lists didn’t have the .owner attribute yet.

We’ll actually go back in time and check out the old codebase using the tag we saved
earlier, so that we can see how things would have worked if we’d used more isolated
tests:

401

$ git checkout -b more-isolation # a branch for this experiment
$ git reset --hard revisit_this_point_with_isolated_tests

Here’s what our failing test looks like:

lists/tests/test_views.py
class NewListTest(TestCase):
 [...]

 def test_list_owner_is_saved_if_user_is_authenticated(self):
 user = User.objects.create(email='a@b.com')
 self.client.force_login(user)
 self.client.post('/lists/new', data={'text': 'new item'})
 list_ = List.objects.first()
 self.assertEqual(list_.owner, user)

And here’s what our attempted solution looked like:

lists/views.py
def new_list(request):
 form = ItemForm(data=request.POST)
 if form.is_valid():
 list_ = List()
 list_.owner = request.user
 list_.save()
 form.save(for_list=list_)
 return redirect(list_)
 else:
 return render(request, 'home.html', {"form": form})

And at this point, the view test is failing because we don’t have the model layer yet:

 self.assertEqual(list_.owner, user)
AttributeError: 'List' object has no attribute 'owner'

You won’t see this error unless you actually check out the old code
and revert lists/models.py. You should definitely do this; part of the
objective of this chapter is to see whether we really can write tests
for a models layer that doesn’t exist yet.

A First Attempt at Using Mocks for Isolation
Lists don’t have owners yet, but we can let the views layer tests pretend they do by
using a bit of mocking:

402 | Chapter 23: Test Isolation, and “Listening to Your Tests”

lists/tests/test_views.py (ch20l003)
from unittest.mock import patch
[...]

 @patch('lists.views.List')
 @patch('lists.views.ItemForm')
 def test_list_owner_is_saved_if_user_is_authenticated(
 self, mockItemFormClass, mockListClass
):
 user = User.objects.create(email='a@b.com')
 self.client.force_login(user)

 self.client.post('/lists/new', data={'text': 'new item'})

 mock_list = mockListClass.return_value
 self.assertEqual(mock_list.owner, user)

We mock out the List class to be able to get access to any lists that might be cre‐
ated by the view.

We also mock out the ItemForm. Otherwise, our form will raise an error when we
call form.save(), because it can’t use a mock object as the foreign key for the
Item it wants to create. Once you start mocking, it can be hard to stop!

The mock objects are injected into the test’s arguments in the opposite order to
which they’re declared. Tests with lots of mocks often have this strange signature,
with the dangling):. You get used to it!

The list instance that the view will have access to will be the return value of the
mocked List class.

And we can make assertions about whether the .owner attribute is set on it.

If we try to run this test now, it should pass:

$ python manage.py test lists
[...]
Ran 37 tests in 0.145s
OK

If you don’t see a pass, make sure that your views code in views.py is exactly as I’ve
shown it, using List(), not List.objects.create.

Using mocks does tie you to specific ways of using an API. This is
one of the many trade-offs involved in the use of mock objects.

A First Attempt at Using Mocks for Isolation | 403

Using Mock side_effects to Check the Sequence of Events
The trouble with this test is that it can still let us get away with writing the wrong
code by mistake. Imagine if we accidentally call save before we we assign the owner:

lists/views.py
 if form.is_valid():
 list_ = List()
 list_.save()
 list_.owner = request.user
 form.save(for_list=list_)
 return redirect(list_)

The test, as it’s written now, still passes:

OK

So strictly speaking, we need to check not just that the owner is assigned, but that it’s
assigned before we call save on our list object.

Here’s how we could test the sequence of events using mocks—you can mock out a
function, and use it as a spy to check on the state of the world at the moment it’s
called:

lists/tests/test_views.py (ch20l005)
 @patch('lists.views.List')
 @patch('lists.views.ItemForm')
 def test_list_owner_is_saved_if_user_is_authenticated(
 self, mockItemFormClass, mockListClass
):
 user = User.objects.create(email='a@b.com')
 self.client.force_login(user)
 mock_list = mockListClass.return_value

 def check_owner_assigned():
 self.assertEqual(mock_list.owner, user)
 mock_list.save.side_effect = check_owner_assigned

 self.client.post('/lists/new', data={'text': 'new item'})

 mock_list.save.assert_called_once_with()

We define a function that makes the assertion about the thing we want to happen
first: checking that the list’s owner has been set.

We assign that check function as a side_effect to the thing we want to check
happened second. When the view calls our mocked save function, it will go

404 | Chapter 23: Test Isolation, and “Listening to Your Tests”

through this assertion. We make sure to set this up before we actually call the
function we’re testing.

Finally, we make sure that the function with the side_effect was actually trig‐
gered—that is, that we did .save(). Otherwise, our assertion may actually never
have been run.

Two common mistakes when you’re using mock side effects are
assigning the side effect too late (i.e., after you call the function
under test), and forgetting to check that the side-effect function
was actually called. And by common, I mean, “I made both these
mistakes several times while writing this chapter.”

At this point, if you’ve still got the “broken” code from earlier, where we assign the
owner but call save in the wrong order, you should now see a fail:

FAIL: test_list_owner_is_saved_if_user_is_authenticated
(lists.tests.test_views.NewListTest)
[...]
 File "/.../superlists/lists/views.py", line 17, in new_list
 list_.save()
[...]
 File "/.../superlists/lists/tests/test_views.py", line 74, in
check_owner_assigned
 self.assertEqual(mock_list.owner, user)
AssertionError: <MagicMock name='List().owner' id='140691452447208'> != <User:
User object>

Notice how the failure happens when we try to save, and then go inside our
side_effect function.

We can get it passing again like this:

lists/views.py
 if form.is_valid():
 list_ = List()
 list_.owner = request.user
 list_.save()
 form.save(for_list=list_)
 return redirect(list_)

…

OK

But, boy, that’s getting to be an ugly test!

A First Attempt at Using Mocks for Isolation | 405

Listen to Your Tests: Ugly Tests Signal a Need to Refactor
Whenever you find yourself having to write a test like this, and you’re finding it hard
work, it’s likely that your tests are trying to tell you something. Eight lines of setup
(two lines for mocks, three to set up a user, and three more for our side-effect func‐
tion) is way too many.

What this test is trying to tell us is that our view is doing too much work, dealing with
creating a form, creating a new list object, and deciding whether or not to save an
owner for the list.

We’ve already seen that we can make our views simpler and easier to understand by
pushing some of the work down to a form class. Why does the view need to create the
list object? Perhaps our ItemForm.save could do that? And why does the view need to
make decisions about whether or not to save the request.user? Again, the form
could do that.

While we’re giving this form more responsibilities, it feels like it should probably get a
new name too. We could call it NewListForm instead, since that’s a better representa‐
tion of what it does…something like this?

lists/views.py
don't enter this code yet, we're only imagining it.

def new_list(request):
 form = NewListForm(data=request.POST)
 if form.is_valid():
 list_ = form.save(owner=request.user) # creates both List and Item
 return redirect(list_)
 else:
 return render(request, 'home.html', {"form": form})

That would be neater! Let’s see how we’d get to that state by using fully isolated tests.

Rewriting Our Tests for the View to Be Fully Isolated
Our first attempt at a test suite for this view was highly integrated. It needed the data‐
base layer and the forms layer to be fully functional in order for it to pass. We’ve
started trying to make it more isolated, so let’s now go all the way.

Keep the Old Integrated Test Suite Around as a Sanity Check
Let’s rename our old NewListTest class to NewListViewIntegratedTest, and throw
away our attempt at a mocky test for saving the owner, putting back the integrated
version, with a skip on it for now:

406 | Chapter 23: Test Isolation, and “Listening to Your Tests”

lists/tests/test_views.py (ch20l008)
import unittest
[...]

class NewListViewIntegratedTest(TestCase):

 def test_can_save_a_POST_request(self):
 [...]

 @unittest.skip
 def test_list_owner_is_saved_if_user_is_authenticated(self):
 user = User.objects.create(email='a@b.com')
 self.client.force_login(user)
 self.client.post('/lists/new', data={'text': 'new item'})
 list_ = List.objects.first()
 self.assertEqual(list_.owner, user)

Have you heard the term “integration test” and are wondering what
the difference is from an “integrated test”? Go and take a peek at
the definitions box in Chapter 26.

$ python manage.py test lists
[...]
Ran 37 tests in 0.139s
OK

A New Test Suite with Full Isolation
Let’s start with a blank slate, and see if we can use isolated tests to drive a replacement
of our new_list view. We’ll call it new_list2, build it alongside the old view, and
when we’re ready, swap it in and see if the old integrated tests all still pass:

lists/views.py (ch20l009)
def new_list(request):
 [...]

def new_list2(request):
 pass

Thinking in Terms of Collaborators
In order to rewrite our tests to be fully isolated, we need to throw out our old way of
thinking about the tests in terms of the “real” effects of the view on things like the
database, and instead think of it in terms of the objects it collaborates with, and how
it interacts with them.

Rewriting Our Tests for the View to Be Fully Isolated | 407

In the new world, the view’s main collaborator will be a form object, so we mock that
out in order to be able to fully control it, and in order to be able to define, by wishful
thinking, the way we want our form to work:

lists/tests/test_views.py (ch20l010)
from unittest.mock import patch
from django.http import HttpRequest
from lists.views import new_list2
[...]

@patch('lists.views.NewListForm')
class NewListViewUnitTest(unittest.TestCase):

 def setUp(self):
 self.request = HttpRequest()
 self.request.POST['text'] = 'new list item'

 def test_passes_POST_data_to_NewListForm(self, mockNewListForm):
 new_list2(self.request)
 mockNewListForm.assert_called_once_with(data=self.request.POST)

The Django TestCase class makes it too easy to write integrated tests. As a way of
making sure we’re writing “pure”, isolated unit tests, we’ll only use uni
ttest.TestCase.

We mock out the NewListForm class (which doesn’t even exist yet). It’s going to be
used in all the tests, so we mock it out at the class level.

We set up a basic POST request in setUp, building up the request by hand rather
than using the (overly integrated) Django Test Client.

And we check the first thing about our new view: it initialises its collaborator, the
NewListForm, with the correct constructor—the data from the request.

That will start with a failure, saying we don’t have a NewListForm in our view yet:

AttributeError: <module 'lists.views' from '/.../superlists/lists/views.py'>
does not have the attribute 'NewListForm'

Let’s create a placeholder for it:

lists/views.py (ch20l011)
from lists.forms import ExistingListItemForm, ItemForm, NewListForm
[...]

and:

408 | Chapter 23: Test Isolation, and “Listening to Your Tests”

lists/forms.py (ch20l012)
class ItemForm(forms.models.ModelForm):
 [...]

class NewListForm(object):
 pass

class ExistingListItemForm(ItemForm):
 [...]

Next we get a real failure:

AssertionError: Expected 'NewListForm' to be called once. Called 0 times.

And we implement like this:

lists/views.py (ch20l012-2)
def new_list2(request):
 NewListForm(data=request.POST)

$ python manage.py test lists
[...]
Ran 38 tests in 0.143s
OK

Let’s continue. If the form is valid, we want to call save on it:

lists/tests/test_views.py (ch20l013)
from unittest.mock import patch, Mock
[...]

@patch('lists.views.NewListForm')
class NewListViewUnitTest(unittest.TestCase):

 def setUp(self):
 self.request = HttpRequest()
 self.request.POST['text'] = 'new list item'
 self.request.user = Mock()

 def test_passes_POST_data_to_NewListForm(self, mockNewListForm):
 new_list2(self.request)
 mockNewListForm.assert_called_once_with(data=self.request.POST)

 def test_saves_form_with_owner_if_form_valid(self, mockNewListForm):
 mock_form = mockNewListForm.return_value
 mock_form.is_valid.return_value = True
 new_list2(self.request)
 mock_form.save.assert_called_once_with(owner=self.request.user)

Rewriting Our Tests for the View to Be Fully Isolated | 409

That takes us to this:

lists/views.py (ch20l014)
def new_list2(request):
 form = NewListForm(data=request.POST)
 form.save(owner=request.user)

In the case where the form is valid, we want the view to return a redirect, to send us
to see the object that the form has just created. So we mock out another of the view’s
collaborators, the redirect function:

lists/tests/test_views.py (ch20l015)
 @patch('lists.views.redirect')
 def test_redirects_to_form_returned_object_if_form_valid(
 self, mock_redirect, mockNewListForm
):
 mock_form = mockNewListForm.return_value
 mock_form.is_valid.return_value = True

 response = new_list2(self.request)

 self.assertEqual(response, mock_redirect.return_value)
 mock_redirect.assert_called_once_with(mock_form.save.return_value)

We mock out the redirect function, this time at the method level.

patch decorators are applied innermost first, so the new mock is injected to our
method as before the mockNewListForm.

We specify that we’re testing the case where the form is valid.

We check that the response from the view is the result of the redirect function.

And we check that the redirect function was called with the object that the form
returns on save.

That takes us to here:

lists/views.py (ch20l016)
def new_list2(request):
 form = NewListForm(data=request.POST)
 list_ = form.save(owner=request.user)
 return redirect(list_)

410 | Chapter 23: Test Isolation, and “Listening to Your Tests”

$ python manage.py test lists
[...]
Ran 40 tests in 0.163s
OK

And now the failure case—if the form is invalid, we want to render the home page
template:

lists/tests/test_views.py (ch20l017)
 @patch('lists.views.render')
 def test_renders_home_template_with_form_if_form_invalid(
 self, mock_render, mockNewListForm
):
 mock_form = mockNewListForm.return_value
 mock_form.is_valid.return_value = False

 response = new_list2(self.request)

 self.assertEqual(response, mock_render.return_value)
 mock_render.assert_called_once_with(
 self.request, 'home.html', {'form': mock_form}
)

That gives us:

AssertionError: <HttpResponseRedirect status_code=302, "te[114 chars]%3E"> !=
<MagicMock name='render()' id='140244627467408'>

When using assert methods on mocks, like assert_called_

once_with, it’s doubly important to make sure you run the test and
see it fail. It’s all too easy to make a typo in your assert function
name and end up calling a mock method that does nothing (mine
was to write asssert_called_once_with with three essses; try it!).

We make a deliberate mistake, just to make sure our tests are comprehensive:

lists/views.py (ch20l018)
def new_list2(request):
 form = NewListForm(data=request.POST)
 list_ = form.save(owner=request.user)
 if form.is_valid():
 return redirect(list_)
 return render(request, 'home.html', {'form': form})

That passes, but it shouldn’t! One more test then:

Rewriting Our Tests for the View to Be Fully Isolated | 411

lists/tests/test_views.py (ch20l019)
 def test_does_not_save_if_form_invalid(self, mockNewListForm):
 mock_form = mockNewListForm.return_value
 mock_form.is_valid.return_value = False
 new_list2(self.request)
 self.assertFalse(mock_form.save.called)

Which fails:

 self.assertFalse(mock_form.save.called)
AssertionError: True is not false

And we get to to our neat, small finished view:

lists/views.py
def new_list2(request):
 form = NewListForm(data=request.POST)
 if form.is_valid():
 list_ = form.save(owner=request.user)
 return redirect(list_)
 return render(request, 'home.html', {'form': form})

…

$ python manage.py test lists
[...]
Ran 42 tests in 0.163s
OK

Moving Down to the Forms Layer
So we’ve built up our view function based on a “wishful thinking” version of a form
called NewListForm, which doesn’t even exist yet.

We’ll need the form’s save method to create a new list, and a new item based on the
text from the form’s validated POST data. If we were to just dive in and use the ORM,
the code might look something a bit like this:

class NewListForm(models.Form):

 def save(self, owner):
 list_ = List()
 if owner:
 list_.owner = owner
 list_.save()
 item = Item()
 item.list = list_
 item.text = self.cleaned_data['text']
 item.save()

412 | Chapter 23: Test Isolation, and “Listening to Your Tests”

This implementation depends on two classes from the model layer, Item and List.
So, what would a well-isolated test look like?

class NewListFormTest(unittest.TestCase):

 @patch('lists.forms.List')
 @patch('lists.forms.Item')
 def test_save_creates_new_list_and_item_from_post_data(
 self, mockItem, mockList
):
 mock_item = mockItem.return_value
 mock_list = mockList.return_value
 user = Mock()
 form = NewListForm(data={'text': 'new item text'})
 form.is_valid()

 def check_item_text_and_list():
 self.assertEqual(mock_item.text, 'new item text')
 self.assertEqual(mock_item.list, mock_list)
 self.assertTrue(mock_list.save.called)
 mock_item.save.side_effect = check_item_text_and_list

 form.save(owner=user)

 self.assertTrue(mock_item.save.called)

We mock out the two collaborators for our form from the models layer below.

We need to call is_valid() so that the form populates the .cleaned_data dictio‐
nary where it stores validated data.

We use the side_effect method to make sure that, when we save the new item
object, we’re doing so with a saved List and with the correct item text.

As always, we double-check that our side-effect function was actually called.

Yuck! What an ugly test!

Keep Listening to Your Tests: Removing ORM Code from Our
Application
Again, these tests are trying to tell us something: the Django ORM is hard to mock
out, and our form class needs to know too much about how it works. Programming
by wishful thinking again, what would be a simpler API that our form could use?
How about something like this:

 def save(self):
 List.create_new(first_item_text=self.cleaned_data['text'])

Moving Down to the Forms Layer | 413

1 It could easily just be a standalone function, but hanging it on the model class is a nice way to keep track of
where it lives, and gives a bit more of a hint as to what it will do.

Our wishful thinking says: how about a helper method that would live on the List
class1 and encapsulate all the logic of saving a new list object and its associated first
item?

So let’s write a test for that instead:

lists/tests/test_forms.py (ch20l021)
import unittest
from unittest.mock import patch, Mock
from django.test import TestCase

from lists.forms import (
 DUPLICATE_ITEM_ERROR, EMPTY_ITEM_ERROR,
 ExistingListItemForm, ItemForm, NewListForm
)
from lists.models import Item, List
[...]

class NewListFormTest(unittest.TestCase):

 @patch('lists.forms.List.create_new')
 def test_save_creates_new_list_from_post_data_if_user_not_authenticated(
 self, mock_List_create_new
):
 user = Mock(is_authenticated=False)
 form = NewListForm(data={'text': 'new item text'})
 form.is_valid()
 form.save(owner=user)
 mock_List_create_new.assert_called_once_with(
 first_item_text='new item text'
)

414 | Chapter 23: Test Isolation, and “Listening to Your Tests”

And while we’re at it, we can test the case where the user is an authenticated user too:

lists/tests/test_forms.py (ch20l022)
 @patch('lists.forms.List.create_new')
 def test_save_creates_new_list_with_owner_if_user_authenticated(
 self, mock_List_create_new
):
 user = Mock(is_authenticated=True)
 form = NewListForm(data={'text': 'new item text'})
 form.is_valid()
 form.save(owner=user)
 mock_List_create_new.assert_called_once_with(
 first_item_text='new item text', owner=user
)

You can see this is a much more readable test. Let’s start implementing our new form.
We start with the import:

lists/forms.py (ch20l023)
from lists.models import Item, List

Now mock tells us to create a placeholder for our create_new method:

AttributeError: <class 'lists.models.List'> does not have the attribute
'create_new'

lists/models.py
class List(models.Model):

 def get_absolute_url(self):
 return reverse('view_list', args=[self.id])

 def create_new():
 pass

And after a few steps, we should end up with a form save method like this:

lists/forms.py (ch20l025)
class NewListForm(ItemForm):

 def save(self, owner):
 if owner.is_authenticated:
 List.create_new(first_item_text=self.cleaned_data['text'], owner=owner)
 else:
 List.create_new(first_item_text=self.cleaned_data['text'])

And passing tests:

Moving Down to the Forms Layer | 415

$ python manage.py test lists
Ran 44 tests in 0.192s
OK

Hiding ORM Code Behind Helper Methods
One of the techniques that emerged from our use of isolated tests was the “ORM
helper method”.

Django’s ORM lets you get things done quickly with a reasonably readable syntax (it’s
certainly much nicer than raw SQL!). But some people like to try to minimise the
amount of ORM code in the application—particularly removing it from the views and
forms layers.

One reason is that it makes it much easier to test those layers. But another is that it
forces us to build helper functions that express our domain logic more clearly.
Compare:

 list_ = List()
 list_.save()
 item = Item()
 item.list = list_
 item.text = self.cleaned_data['text']
 item.save()

With:

 List.create_new(first_item_text=self.cleaned_data['text'])

This applies to read queries as well as write. Imagine something like this:

 Book.objects.filter(in_print=True, pub_date__lte=datetime.today())

Versus a helper method, like:

 Book.all_available_books()

When we build helper functions, we can give them names that express what we are
doing in terms of the business domain, which can actually make our code more legi‐
ble, as well as giving us the benefit of keeping all ORM calls at the model layer, and
thus making our whole application more loosely coupled.

Finally, Moving Down to the Models Layer
At the models layer, we no longer need to write isolated tests—the whole point of the
models layer is to integrate with the database, so it’s appropriate to write integrated
tests:

416 | Chapter 23: Test Isolation, and “Listening to Your Tests”

lists/tests/test_models.py (ch20l026)
class ListModelTest(TestCase):

 def test_get_absolute_url(self):
 list_ = List.objects.create()
 self.assertEqual(list_.get_absolute_url(), f'/lists/{list_.id}/')

 def test_create_new_creates_list_and_first_item(self):
 List.create_new(first_item_text='new item text')
 new_item = Item.objects.first()
 self.assertEqual(new_item.text, 'new item text')
 new_list = List.objects.first()
 self.assertEqual(new_item.list, new_list)

Which gives:

TypeError: create_new() got an unexpected keyword argument 'first_item_text'

And that will take us to a first cut implementation that looks like this:

lists/models.py (ch20l027)
class List(models.Model):

 def get_absolute_url(self):
 return reverse('view_list', args=[self.id])

 @staticmethod
 def create_new(first_item_text):
 list_ = List.objects.create()
 Item.objects.create(text=first_item_text, list=list_)

Notice we’ve been able to get all the way down to the models layer, driving a nice
design for the views and forms layers, and the List model still doesn’t support having
an owner!

Now let’s test the case where the list should have an owner, and add:

lists/tests/test_models.py (ch20l028)
from django.contrib.auth import get_user_model
User = get_user_model()
[...]

 def test_create_new_optionally_saves_owner(self):
 user = User.objects.create()
 List.create_new(first_item_text='new item text', owner=user)
 new_list = List.objects.first()
 self.assertEqual(new_list.owner, user)

Finally, Moving Down to the Models Layer | 417

And while we’re at it, we can write the tests for the new owner attribute:

lists/tests/test_models.py (ch20l029)
class ListModelTest(TestCase):
 [...]

 def test_lists_can_have_owners(self):
 List(owner=User()) # should not raise

 def test_list_owner_is_optional(self):
 List().full_clean() # should not raise

These two are almost exactly the same tests we used in the last chapter, but I’ve re-
written them slightly so they don’t actually save objects—just having them as in-
memory objects is enough for this test.

Use in-memory (unsaved) model objects in your tests whenever
you can; it makes your tests faster.

That gives:

$ python manage.py test lists
[...]
ERROR: test_create_new_optionally_saves_owner
TypeError: create_new() got an unexpected keyword argument 'owner'
[...]
ERROR: test_lists_can_have_owners (lists.tests.test_models.ListModelTest)
TypeError: 'owner' is an invalid keyword argument for this function
[...]
Ran 48 tests in 0.204s
FAILED (errors=2)

We implement, just like we did in the last chapter:

lists/models.py (ch20l030-1)
from django.conf import settings
[...]

class List(models.Model):
 owner = models.ForeignKey(settings.AUTH_USER_MODEL, blank=True, null=True)
 [...]

That will give us the usual integrity failures, until we do a migration:

418 | Chapter 23: Test Isolation, and “Listening to Your Tests”

django.db.utils.OperationalError: no such column: lists_list.owner_id

Building the migration will get us down to three failures:

ERROR: test_create_new_optionally_saves_owner
TypeError: create_new() got an unexpected keyword argument 'owner'
[...]
ValueError: Cannot assign "<SimpleLazyObject:
<django.contrib.auth.models.AnonymousUser object at 0x7f5b2380b4e0>>":
"List.owner" must be a "User" instance.
ValueError: Cannot assign "<SimpleLazyObject:
<django.contrib.auth.models.AnonymousUser object at 0x7f5b237a12e8>>":
"List.owner" must be a "User" instance.

Let’s deal with the first one, which is for our create_new method:

lists/models.py (ch20l030-3)
 @staticmethod
 def create_new(first_item_text, owner=None):
 list_ = List.objects.create(owner=owner)
 Item.objects.create(text=first_item_text, list=list_)

Back to Views
Two of our old integrated tests for the views layer are failing. What’s happening?

ValueError: Cannot assign "<SimpleLazyObject:
<django.contrib.auth.models.AnonymousUser object at 0x7fbad1cb6c10>>":
"List.owner" must be a "User" instance.

Ah, the old view isn’t discerning enough about what it does with list owners yet:

lists/views.py
 if form.is_valid():
 list_ = List()
 list_.owner = request.user
 list_.save()

This is the point at which we realise that our old code wasn’t fit for purpose. Let’s fix it
to get all our tests passing:

Finally, Moving Down to the Models Layer | 419

lists/views.py (ch20l031)
def new_list(request):
 form = ItemForm(data=request.POST)
 if form.is_valid():
 list_ = List()
 if request.user.is_authenticated:
 list_.owner = request.user
 list_.save()
 form.save(for_list=list_)
 return redirect(list_)
 else:
 return render(request, 'home.html', {"form": form})

def new_list2(request):
 [...]

One of the benefits of integrated tests is that they help you to catch
less predictable interactions like this. We’d forgotten to write a test
for the case where the user is not authenticated, but because the
integrated tests use the stack all the way down, errors from the
model layer came up to let us know we’d forgotten something:

$ python manage.py test lists
[...]
Ran 48 tests in 0.175s
OK

The Moment of Truth (and the Risks of Mocking)
So let’s try switching out our old view, and activating our new view. We can make the
swap in urls.py:

lists/urls.py
[...]
 url(r'^new$', views.new_list2, name='new_list'),

We should also remove the unittest.skip from our integrated test class, to see if our
new code for list owners really works:

420 | Chapter 23: Test Isolation, and “Listening to Your Tests”

lists/tests/test_views.py (ch20l033)
class NewListViewIntegratedTest(TestCase):

 def test_can_save_a_POST_request(self):
 [...]

 def test_list_owner_is_saved_if_user_is_authenticated(self):
 [...]
 self.assertEqual(list_.owner, user)

So what happens when we run our tests? Oh no!

ERROR: test_list_owner_is_saved_if_user_is_authenticated
[...]
ERROR: test_can_save_a_POST_request
[...]
ERROR: test_redirects_after_POST
(lists.tests.test_views.NewListViewIntegratedTest)
 File "/.../superlists/lists/views.py", line 30, in new_list2
 return redirect(list_)
[...]
TypeError: argument of type 'NoneType' is not iterable

FAILED (errors=3)

Here’s an important lesson to learn about test isolation: it might help you to drive out
good design for individual layers, but it won’t automatically verify the integration
between your layers.

What’s happened here is that the view was expecting the form to return a list item:

lists/views.py
 list_ = form.save(owner=request.user)
 return redirect(list_)

But we forgot to make it return anything:

lists/forms.py
 def save(self, owner):
 if owner.is_authenticated:
 List.create_new(first_item_text=self.cleaned_data['text'], owner=owner)
 else:
 List.create_new(first_item_text=self.cleaned_data['text'])

Thinking of Interactions Between Layers as “Contracts”
Ultimately, even if we had been writing nothing but isolated unit tests, our functional
tests would have picked up this particular slip-up. But ideally we’d want our feedback
cycle to be quicker—functional tests may take a couple of minutes to run, or even a

Thinking of Interactions Between Layers as “Contracts” | 421

few hours once your app starts to grow. Is there any way to avoid this sort of problem
before it happens?

Methodologically, the way to do it is to think about the interaction between your lay‐
ers in terms of contracts. Whenever we mock out the behaviour of one layer, we have
to make a mental note that there is now an implicit contract between the layers, and
that a mock on one layer should probably translate into a test at the layer below.

Here’s the part of the contract that we missed:

lists/tests/test_views.py
 @patch('lists.views.redirect')
 def test_redirects_to_form_returned_object_if_form_valid(
 self, mock_redirect, mockNewListForm
):
 mock_form = mockNewListForm.return_value
 mock_form.is_valid.return_value = True

 response = new_list2(self.request)

 self.assertEqual(response, mock_redirect.return_value)
 mock_redirect.assert_called_once_with(mock_form.save.return_value)

The mocked form.save function is returning an object, which we expect our
view to be able to use.

Identifying Implicit Contracts
It’s worth reviewing each of the tests in NewListViewUnitTest and seeing what each
mock is saying about the implicit contract:

422 | Chapter 23: Test Isolation, and “Listening to Your Tests”

lists/tests/test_views.py
 def test_passes_POST_data_to_NewListForm(self, mockNewListForm):
 [...]
 mockNewListForm.assert_called_once_with(data=self.request.POST)

 def test_saves_form_with_owner_if_form_valid(self, mockNewListForm):
 mock_form = mockNewListForm.return_value
 mock_form.is_valid.return_value = True
 new_list2(self.request)
 mock_form.save.assert_called_once_with(owner=self.request.user)

 def test_does_not_save_if_form_invalid(self, mockNewListForm):
 [...]
 mock_form.is_valid.return_value = False
 [...]

 @patch('lists.views.redirect')
 def test_redirects_to_form_returned_object_if_form_valid(
 self, mock_redirect, mockNewListForm
):
 [...]
 mock_redirect.assert_called_once_with(mock_form.save.return_value)

 @patch('lists.views.render')
 def test_renders_home_template_with_form_if_form_invalid(
 [...]

We need to be able to initialise our form by passing it a POST request as data.

It should have an is_valid() function which returns True or False appropri‐
ately, based on the input data.

The form should have a .save method which will accept a request.user, which
may or may not be a logged-in user, and deal with it appropriately.

The form’s .save method should return a new list object, for our view to redirect
the user to.

If we have a look through our form tests, we’ll see that, actually, only item (3) is tested
explicitly. On items (1) and (2) we were lucky—they’re default features of a Django
ModelForm, and they are actually covered by our tests for the parent ItemForm class.

But contract clause number (4) managed to slip through the net.

Thinking of Interactions Between Layers as “Contracts” | 423

When doing Outside-In TDD with isolated tests, you need to keep
track of each test’s implicit assumptions about the contract which
the next layer should implement, and remember to test each of
those in turn later. You could use our scratchpad for this, or create
a placeholder test with a self.fail.

Fixing the Oversight
Let’s add a new test that our form should return the new saved list:

lists/tests/test_forms.py (ch20l038-1)
 @patch('lists.forms.List.create_new')
 def test_save_returns_new_list_object(self, mock_List_create_new):
 user = Mock(is_authenticated=True)
 form = NewListForm(data={'text': 'new item text'})
 form.is_valid()
 response = form.save(owner=user)
 self.assertEqual(response, mock_List_create_new.return_value)

And, actually, this is a good example—we have an implicit contract with the List.cre
ate_new; we want it to return the new list object. Let’s add a placeholder test for that:

lists/tests/test_models.py (ch20l038-2)
class ListModelTest(TestCase):
 [...]

 def test_create_returns_new_list_object(self):
 self.fail()

So, we have one test failure that’s telling us to fix the form save:

AssertionError: None != <MagicMock name='create_new()' id='139802647565536'>
FAILED (failures=2, errors=3)

Like this:

lists/forms.py (ch20l039-1)
class NewListForm(ItemForm):

 def save(self, owner):
 if owner.is_authenticated:
 return List.create_new(first_item_text=self.cleaned_data['text'], owner=owner)
 else:
 return List.create_new(first_item_text=self.cleaned_data['text'])

That’s a start; now we should look at our placeholder test:

424 | Chapter 23: Test Isolation, and “Listening to Your Tests”

[...]
FAIL: test_create_returns_new_list_object
 self.fail()
AssertionError: None

FAILED (failures=1, errors=3)

We flesh it out:

lists/tests/test_models.py (ch20l039-2)
 def test_create_returns_new_list_object(self):
 returned = List.create_new(first_item_text='new item text')
 new_list = List.objects.first()
 self.assertEqual(returned, new_list)

…

AssertionError: None != <List: List object>

And we add our return value:

lists/models.py (ch20l039-3)
 @staticmethod
 def create_new(first_item_text, owner=None):
 list_ = List.objects.create(owner=owner)
 Item.objects.create(text=first_item_text, list=list_)
 return list_

And that gets us to a fully passing test suite:

$ python manage.py test lists
[...]
Ran 50 tests in 0.169s

OK

One More Test
That’s our code for saving list owners, test-driven all the way down and working. But
our functional test isn’t passing quite yet:

$ python manage.py test functional_tests.test_my_lists
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: Reticulate splines

It’s because we have one last feature to implement, the .name attribute on list objects.
Again, we can grab the test and code from the last chapter:

One More Test | 425

lists/tests/test_models.py (ch20l040)
 def test_list_name_is_first_item_text(self):
 list_ = List.objects.create()
 Item.objects.create(list=list_, text='first item')
 Item.objects.create(list=list_, text='second item')
 self.assertEqual(list_.name, 'first item')

(Again, since this is a model-layer test, it’s OK to use the ORM. You could conceiva‐
bly write this test using mocks, but there wouldn’t be much point.)

lists/models.py (ch20l041)
 @property
 def name(self):
 return self.item_set.first().text

And that gets us to a passing FT!

$ python manage.py test functional_tests.test_my_lists

Ran 1 test in 21.428s

OK

Tidy Up: What to Keep from Our Integrated Test Suite
Now everything is working, we can remove some redundant tests, and decide
whether we want to keep any of our old integrated tests.

Removing Redundant Code at the Forms Layer
We can get rid of the test for the old save method on the ItemForm:

lists/tests/test_forms.py
--- a/lists/tests/test_forms.py
+++ b/lists/tests/test_forms.py
@@ -23,14 +23,6 @@ class ItemFormTest(TestCase):

 self.assertEqual(form.errors['text'], [EMPTY_ITEM_ERROR])

- def test_form_save_handles_saving_to_a_list(self):
- list_ = List.objects.create()
- form = ItemForm(data={'text': 'do me'})
- new_item = form.save(for_list=list_)
- self.assertEqual(new_item, Item.objects.first())
- self.assertEqual(new_item.text, 'do me')
- self.assertEqual(new_item.list, list_)
-

426 | Chapter 23: Test Isolation, and “Listening to Your Tests”

And in our actual code, we can get rid of two redundant save methods in forms.py:

lists/forms.py
--- a/lists/forms.py
+++ b/lists/forms.py
@@ -22,11 +22,6 @@ class ItemForm(forms.models.ModelForm):

 self.fields['text'].error_messages['required'] = EMPTY_ITEM_ERROR

- def save(self, for_list):
- self.instance.list = for_list
- return super().save()
-
-

 class NewListForm(ItemForm):

@@ -52,8 +47,3 @@ class ExistingListItemForm(ItemForm):

 e.error_dict = {'text': [DUPLICATE_ITEM_ERROR]}
 self._update_errors(e)
-
-
- def save(self):
- return forms.models.ModelForm.save(self)
-

Removing the Old Implementation of the View
We can now completely remove the old new_list view, and rename new_list2 to
new_list:

Tidy Up: What to Keep from Our Integrated Test Suite | 427

lists/tests/test_views.py
-from lists.views import new_list, new_list2
+from lists.views import new_list

 class HomePageTest(TestCase):
@@ -75,7 +75,7 @@ class NewListViewIntegratedTest(TestCase):
 request = HttpRequest()
 request.user = User.objects.create(email='a@b.com')
 request.POST['text'] = 'new list item'
- new_list2(request)
+ new_list(request)
 list_ = List.objects.first()
 self.assertEqual(list_.owner, request.user)

@@ -91,21 +91,21 @@ class NewListViewUnitTest(unittest.TestCase):

 def test_passes_POST_data_to_NewListForm(self, mockNewListForm):
- new_list2(self.request)
+ new_list(self.request)

[.. several more]

lists/urls.py
--- a/lists/urls.py
+++ b/lists/urls.py
@@ -3,7 +3,7 @@ from django.conf.urls import url
 from lists import views

 urlpatterns = [
- url(r'^new$', views.new_list2, name='new_list'),
+ url(r'^new$', views.new_list, name='new_list'),
 url(r'^(\d+)/$', views.view_list, name='view_list'),
 url(r'^users/(.+)/$', views.my_lists, name='my_lists'),
]

lists/views.py (ch20l047)
def new_list(request):
 form = NewListForm(data=request.POST)
 if form.is_valid():
 list_ = form.save(owner=request.user)
 [...]

And a quick check that all the tests still pass:

OK

428 | Chapter 23: Test Isolation, and “Listening to Your Tests”

Removing Redundant Code at the Forms Layer
Finally, we have to decide what (if anything) to keep from our integrated test suite.

One option is to throw them all away, and decide that the FTs will pick up any inte‐
gration problems. That’s perfectly valid.

On the other hand, we saw how integrated tests can warn you when you’ve made
small mistakes in integrating your layers. We could keep just a couple of tests around
as “sanity checks”, to give us a quicker feedback cycle.

How about these three:

lists/tests/test_views.py (ch20l048)
class NewListViewIntegratedTest(TestCase):

 def test_can_save_a_POST_request(self):
 self.client.post('/lists/new', data={'text': 'A new list item'})
 self.assertEqual(Item.objects.count(), 1)
 new_item = Item.objects.first()
 self.assertEqual(new_item.text, 'A new list item')

 def test_for_invalid_input_doesnt_save_but_shows_errors(self):
 response = self.client.post('/lists/new', data={'text': ''})
 self.assertEqual(List.objects.count(), 0)
 self.assertContains(response, escape(EMPTY_ITEM_ERROR))

 def test_list_owner_is_saved_if_user_is_authenticated(self):
 user = User.objects.create(email='a@b.com')
 self.client.force_login(user)
 self.client.post('/lists/new', data={'text': 'new item'})
 list_ = List.objects.first()
 self.assertEqual(list_.owner, user)

If you’re going to keep any intermediate-level tests at all, I like these three because
they feel like they’re doing the most “integration” jobs: they test the full stack, from
the request down to the actual database, and they cover the three most important use
cases of our view.

Conclusions: When to Write Isolated Versus Integrated
Tests
Django’s testing tools make it very easy to quickly put together integrated tests. The
test runner helpfully creates a fast, in-memory version of your database and resets it
for you in between each test. The TestCase class and the test client make it easy to

Conclusions: When to Write Isolated Versus Integrated Tests | 429

test your views, from checking whether database objects are modified, confirming
that your URL mappings work, and inspecting the rendering of the templates. This
lets you get started with testing very easily and get good coverage across your whole
stack.

On the other hand, these kinds of integrated tests won’t necessarily deliver the full
benefit that rigorous unit testing and Outside-In TDD are meant to confer in terms
of design.

If we look at the example in this chapter, compare the code we had before and after:

def new_list(request):
 form = ItemForm(data=request.POST)
 if form.is_valid():
 list_ = List()
 if not isinstance(request.user, AnonymousUser):
 list_.owner = request.user
 list_.save()
 form.save(for_list=list_)
 return redirect(list_)
 else:
 return render(request, 'home.html', {"form": form})

def new_list(request):
 form = NewListForm(data=request.POST)
 if form.is_valid():
 list_ = form.save(owner=request.user)
 return redirect(list_)
 return render(request, 'home.html', {'form': form})

If we hadn’t bothered to go down the isolation route, would we have bothered to
refactor the view function? I know I didn’t in the first draft of this book. I’d like to
think I would have “in real life”, but it’s hard to be sure. But writing isolated tests does
make you very aware of where the complexities in your code lie.

Let Complexity Be Your Guide
I’d say the point at which isolated tests start to become worth it is to do with complex‐
ity. The example in this book is extremely simple, so it’s not usually been worth it so
far. Even in the example in this chapter, I can convince myself I didn’t really need to
write those isolated tests.

But once an application gains a little more complexity—if it starts growing any more
layers between views and models, if you find yourself writing helper methods, or if
you’re writing your own classes, then you will probably gain from writing more iso‐
lated tests.

430 | Chapter 23: Test Isolation, and “Listening to Your Tests”

Should You Do Both?
We already have our suite of functional tests, which will serve the purpose of telling
us if we ever make any mistakes in integrating the different parts of our code together.
Writing isolated tests can help us to drive out better design for our code, and to verify
correctness in finer detail. Would a middle layer of integration tests serve any addi‐
tional purpose?

I think the answer is potentially yes, if they can provide a faster feedback cycle, and
help you identify more clearly what integration problems you suffer from—their
tracebacks may provide you with better debug information than you would get from
a functional test, for example.

There may even be a case for building them as a separate test suite—you could have
one suite of fast, isolated unit tests that don’t even use manage.py, because they don’t
need any of the database cleanup and teardown that the Django test runner gives you,
and then the intermediate layer that uses Django, and finally the functional tests layer
that, say, talks to a staging server. It may be worth it if each layer delivers incremental
benefits.

It’s a judgement call. I hope that, by going through this chapter, I’ve given you a feel
for what the trade-offs are. There’s more discussion on this in Chapter 26.

Onwards!
We’re happy with our new version, so let’s bring it across to master:

$ git add .
$ git commit -m "add list owners via forms. more isolated tests"
$ git checkout master
$ git checkout -b master-noforms-noisolation-bak # optional backup
$ git checkout master
$ git reset --hard more-isolation # reset master to our branch.

In the meantime—those FTs are taking an annoyingly long time to run. I wonder if
there’s something we can do about that?

Conclusions: When to Write Isolated Versus Integrated Tests | 431

On the Pros and Cons of Different Types of Tests,
and Decoupling ORM Code

Functional tests
• Provide the best guarantee that your application really works correctly, from the

point of view of the user
• But: it’s a slower feedback cycle
• And they don’t necessarily help you write clean code

Integrated tests (reliant on, for example, the ORM or the Django Test Client)
• Are quick to write
• Are easy to understand
• Will warn you of any integration issues
• But: may not always drive good design (that’s up to you!)
• And are usually slower than isolated tests

Isolated (“mocky”) tests
• Involve the most hard work
• Can be harder to read and understand
• But: are the best ones for guiding you towards better design
• And run the fastest

Decoupling our application from ORM code
One of the consequences of striving to write isolated tests is that we find our‐
selves forced to remove ORM code from places like views and forms, by hiding it
behind helper functions or methods. This can be beneficial in terms of decou‐
pling your application from the ORM, but also just because it makes your code
more readable. As with all things, it’s a judgement call as to whether the addi‐
tional effort is worth it in particular circumstances.

432 | Chapter 23: Test Isolation, and “Listening to Your Tests”

CHAPTER 24

Continuous Integration (CI)

As our site grows, it takes longer and longer to run all of our functional tests. If this
continues, the danger is that we’re going to stop bothering.

Rather than let that happen, we can automate the running of functional tests by set‐
ting up a “Continuous Integration” or CI server. That way, in day-to-day develop‐
ment, we can just run the FT that we’re working on at that time, and rely on the CI
server to run all the tests automatically and let us know if we’ve broken anything acci‐
dentally. The unit tests should stay fast enough that we can keep running them every
few seconds.

The CI server of choice these days is called Jenkins. It’s a bit Java, a bit crashy, a bit
ugly, but it’s what everyone uses, and it has a great plugin ecosystem, so let’s get it up
and running.

Installing Jenkins
There are several hosted-CI services out there that essentially provide you with a Jen‐
kins server, ready to go. I’ve come across Sauce Labs, Travis, Circle-CI, ShiningPanda,
and there are probably lots more. But I’m going to assume we’re installing everything
on a server we control.

It’s not a good idea to install Jenkins on the same server as our stag‐
ing or production servers. Apart from anything else, we may want
Jenkins to be able to reboot the staging server!

433

We’ll install the latest version from the official Jenkins apt repo, because the Ubuntu
default still has a few annoying bugs with locale/unicode support, and it also doesn’t
set itself up to listen on the public internet by default:

root@server:$ wget -q -O - https://pkg.jenkins.io/debian/jenkins-ci.org.key |\
 apt-key add -
root@server:$ echo deb http://pkg.jenkins.io/debian-stable binary/ | tee \
 /etc/apt/sources.list.d/jenkins.list
root@server:$ apt-get update
root@server:$ apt-get install jenkins

(Instructions lifted from the Jenkins site.)

While we’re at it, we’ll install a few other dependencies:
root@server:$ apt-get install firefox python3-venv xvfb
and, to build fabric3:
root@server:$ apt-get install build-essential libssl-dev libffi-dev

And we’ll download, unzip, and install geckodriver too (it was v0.17 at the time of
writing, but substitute the latest version as you read this):

root@server:$ wget https://github.com/mozilla/geckodriver/releases\
/download/v0.17.0/geckodriver-v0.17.0-linux64.tar.gz
root@server:$ tar -xvzf geckodriver-v0.17.0-linux64.tar.gz
root@server:$ mv geckodriver /usr/local/bin
root@server:$ geckodriver --version
geckodriver 0.17.0

Adding Some Swap
Jenkins is quite memory-hungry, and if you’re running this on a small VM with less
than a couple of gigs for RAM, you’ll probably find it gets OOM-killed unless you
add some swap:

$ fallocate -l 4G /swapfile
$ mkswap /swapfile
$ chmod 600 /swapfile
$ swapon /swapfile

That should be plenty.

Configuring Jenkins
You should now be able to visit Jenkins at the URL/IP for your server on port 8080,
and see something like Figure 24-1.

434 | Chapter 24: Continuous Integration (CI)

https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins+on+Ubuntu

Figure 24-1. Jenkins unlock screen

Initial Unlock
The unlock screen is telling us to read a file from disk to unlock the server for first-
time use. I jumped over to a terminal and printed it like this:

root@server$ cat /var/lib/jenkins/secrets/initialAdminPassword

Suggested Plugins for Now
Next we’re offered the choice to choose “suggested” plugins. Suggested ones are fine
for now. (As a self-respecting nerd, our instinct is to hit “customize” immediately, and
that’s what I did first time round, but it turns out that screen won’t give us what we
want. Don’t worry, we’ll add some more plugins later.)

Configuring the Admin User
Next we set up a username and password to log in to Jenkins with; see Figure 24-2.

Configuring Jenkins | 435

Figure 24-2. Jenkins admin user config

And once we log in, we should see a welcome screen (Figure 24-3).

Figure 24-3. A butler—how quaint

436 | Chapter 24: Continuous Integration (CI)

Adding Plugins
Follow the links for Manage Jenkins → Manage Plugins → Available.

We’ll want the plugins for:

• ShiningPanda
• Xvfb

And hit install (Figure 24-4).

Figure 24-4. Installing plugins…

Telling Jenkins Where to Find Python 3 and Xvfb
We need to tell the ShiningPanda plugin where Python 3 is installed (usually /usr/bin/
python3, but you can check with a which python3):

• Manage Jenkins → Global Tool Configuration
• Python → Python installations → Add Python (see Figure 24-5; it’s safe to ignore

the warning message)
• Xvfb installation → Add Xvfb installation; enter /usr/bin as the installation

directory

Configuring Jenkins | 437

Figure 24-5. Where did I leave that Python?

Finishing Off with HTTPS
To finish off securing your Jenkins instance, you’ll want to set up HTTPS, by getting
nginx HTTPS to use a self-signed cert, and proxy requests from port 443 to port
8080. Then you can even block port 8080 on the firewall. I won’t go into detail on that
now, but here are a few links to instructions which I found useful:

• Official Jenkins Ubuntu installation guide
• How to create a self-signed SSL certificate
• How to redirect HTTP to HTTPS

Setting Up Our Project
Now we’ve got the basic Jenkins configured, let’s set up our project:

• Hit the New Item button.
• Enter Superlists as the name, and then choose “Freestyle project”, and hit OK.
• Add the Git repo, as in Figure 24-6.

Figure 24-6. Get it from Git

438 | Chapter 24: Continuous Integration (CI)

https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins+on+Ubuntu
https://www.digitalocean.com/community/tutorials/how-to-create-an-ssl-certificate-on-nginx-for-ubuntu-14-04
http://serverfault.com/questions/250476/how-to-force-or-redirect-to-ssl-in-nginx#424016

• Set it to poll every hour (Figure 24-7; check out the help text here—there are
many other options for ways of triggering builds).

Figure 24-7. Poll GitHub for changes

• Run the tests inside a Python 3 virtualenv.
• Run the unit tests and functional tests separately. See Figure 24-8.

Figure 24-8. Virtualenv build steps

First Build!
Hit “Build Now”, then go and take a look at the “Console Output”. You should see
something like this:

First Build! | 439

Started by user harry
Building in workspace /var/lib/jenkins/jobs/Superlists/workspace
Fetching changes from the remote Git repository
Fetching upstream changes from https://github.com/hjwp/book-example.git
Checking out Revision d515acebf7e173f165ce713b30295a4a6ee17c07 (origin/master)
[workspace] $ /bin/sh -xe /tmp/shiningpanda7260707941304155464.sh
+ pip install -r requirements.txt
Requirement already satisfied (use --upgrade to upgrade): Django==1.11 in
/var/lib/jenkins/shiningpanda/jobs/ddc1aed1/virtualenvs/d41d8cd9/lib/python3.3/site-packages
(from -r requirements.txt (line 1))

Requirement already satisfied (use --upgrade to upgrade): gunicorn==17.5 in
/var/lib/jenkins/shiningpanda/jobs/ddc1aed1/virtualenvs/d41d8cd9/lib/python3.3/site-packages
(from -r requirements.txt (line 3))
Downloading/unpacking requests==2.0.0 (from -r requirements.txt (line 4))
 Running setup.py egg_info for package requests

Installing collected packages: requests
 Running setup.py install for requests

Successfully installed requests
Cleaning up...
+ python manage.py test lists accounts
...

Ran 67 tests in 0.429s

OK
Creating test database for alias 'default'...
Destroying test database for alias 'default'...
+ python manage.py test functional_tests
EEEEEE
==
ERROR: functional_tests.test_layout_and_styling (unittest.loader._FailedTest)

ImportError: Failed to import test module: functional_tests.test_layout_and_styling
[...]
ImportError: No module named 'selenium'

Ran 6 tests in 0.001s

FAILED (errors=6)

Build step 'Virtualenv Builder' marked build as failure

Ah. We need Selenium in our virtualenv.

Let’s add a manual installation of Selenium to our build steps:

 pip install -r requirements.txt
 python manage.py test accounts lists
 pip install selenium
 python manage.py test functional_tests

440 | Chapter 24: Continuous Integration (CI)

Some people like to use a file called test-requirements.txt to specify
packages that are needed for the tests, but not the main app.

And hit “Build Now” again.

Next one of two things will happen. Either you’ll see some error messages like this in
your console output:

 self.browser = webdriver.Firefox()
[...]
selenium.common.exceptions.WebDriverException: Message: 'The browser appears to
have exited before we could connect. The output was: b"\\n(process:19757):
GLib-CRITICAL **: g_slice_set_config: assertion \'sys_page_size == 0\'
failed\\nError: no display specified\\n"'
[...]
selenium.common.exceptions.WebDriverException: Message: connection refused

Or possibly your build will just hang altogether (that happened to me at least once).
The reason is that Firefox can’t start, because it doesn’t have a display to run on.

Setting Up a Virtual Display So the FTs Can Run Headless
As you can see from the traceback, Firefox is unable to start because the server
doesn’t have a display.

There are two ways to deal with this problem. The first is to switch to using a headless
browser, like PhantomJS or SlimerJS. Those tools definitely have their place—they’re
faster, for one thing—but they also have disadvantages. The first is that they’re not
“real” web browsers, so you can’t be sure you’re going to catch all the strange quirks
and behaviours of the actual browsers your users use. The second is that they can
behave quite differently inside Selenium, and often require some rewriting of FT
code.

I would look into using headless browsers as a “dev-only” tool, to
speed up the running of FTs on the developer’s machine, while the
tests on the CI server use actual browsers.

Setting Up a Virtual Display So the FTs Can Run Headless | 441

1 Check out pyvirtualdisplay as a way of controlling virtual displays from Python.

The alternative is to set up a virtual display: we get the server to pretend it has a
screen attached to it, so Firefox runs happily. There are a few tools out there to do
this; we’ll use one called “Xvfb” (X Virtual Framebuffer)1 because it’s easy to install
and use, and because it has a convenient Jenkins plugin (now you know why we
installed it earlier).

We go back to our project and hit “Configure” again, then find the section called
“Build Environment”. Using the virtual display is as simple as ticking the box marked
“Start Xvfb before the build, and shut it down after”, as in Figure 24-9.

Figure 24-9. Sometimes config is easy

The build does much better now:
[...]
Xvfb starting$ /usr/bin/Xvfb :2 -screen 0 1024x768x24 -fbdir
/var/lib/jenkins/2013-11-04_03-27-221510012427739470928xvfb
[...]
+ python manage.py test lists accounts
...

Ran 63 tests in 0.410s

OK
Creating test database for alias 'default'...
Destroying test database for alias 'default'...

+ pip install selenium
Requirement already satisfied (use --upgrade to upgrade): selenium in
/var/lib/jenkins/shiningpanda/jobs/ddc1aed1/virtualenvs/d41d8cd9/lib/python3.5/site-packages
Cleaning up...

442 | Chapter 24: Continuous Integration (CI)

https://pypi.python.org/pypi/PyVirtualDisplay

+ python manage.py test functional_tests
......F.
==
FAIL: test_can_start_a_list_for_one_user
(functional_tests.test_simple_list_creation.NewVisitorTest)

Traceback (most recent call last):
 File "/.../superlists/functional_tests/test_simple_list_creation.py", line
43, in test_can_start_a_list_for_one_user
 self.wait_for_row_in_list_table('2: Use peacock feathers to make a fly')
 File "/.../superlists/functional_tests/base.py", line 51, in
wait_for_row_in_list_table
 raise e
 File "/.../superlists/functional_tests/base.py", line 47, in
wait_for_row_in_list_table
 self.assertIn(row_text, [row.text for row in rows])
AssertionError: '2: Use peacock feathers to make a fly' not found in ['1: Buy
peacock feathers']

Ran 8 tests in 89.275s

FAILED (errors=1)
Creating test database for alias 'default'...
[{'secure': False, 'domain': 'localhost', 'name': 'sessionid', 'expiry':
1920011311, 'path': '/', 'value': 'a8d8bbde33nreq6gihw8a7r1cc8bf02k'}]
Destroying test database for alias 'default'...
Build step 'Virtualenv Builder' marked build as failure
Xvfb stopping
Finished: FAILURE

Pretty close! To debug that failure, we’ll need screenshots though.

This error was due to the performance of my Jenkins instance—
you may see a different error, or none at all. In any case, the follow‐
ing tools for taking screenshots and dealing with race conditions
will come in useful. Read on!

Taking Screenshots
To be able to debug unexpected failures that happen on a remote PC, it would be
good to see a picture of the screen at the moment of the failure, and maybe also a
dump of the HTML of the page. We can do that using some custom logic in our FT
class tearDown. We have to do a bit of introspection of unittest internals, a private
attribute called _outcomeForDoCleanups, but this will work:

Taking Screenshots | 443

functional_tests/base.py (ch21l006)
import os
from datetime import datetime
[...]

SCREEN_DUMP_LOCATION = os.path.join(
 os.path.dirname(os.path.abspath(__file__)), 'screendumps'
)
[...]

 def tearDown(self):
 if self._test_has_failed():
 if not os.path.exists(SCREEN_DUMP_LOCATION):
 os.makedirs(SCREEN_DUMP_LOCATION)
 for ix, handle in enumerate(self.browser.window_handles):
 self._windowid = ix
 self.browser.switch_to_window(handle)
 self.take_screenshot()
 self.dump_html()
 self.browser.quit()
 super().tearDown()

 def _test_has_failed(self):
 # slightly obscure but couldn't find a better way!
 return any(error for (method, error) in self._outcome.errors)

We first create a directory for our screenshots if necessary. Then we iterate through
all the open browser tabs and pages, and use some Selenium methods, get_screen
shot_as_file and browser.page_source, for our image and HTML dumps:

functional_tests/base.py (ch21l007)
 def take_screenshot(self):
 filename = self._get_filename() + '.png'
 print('screenshotting to', filename)
 self.browser.get_screenshot_as_file(filename)

 def dump_html(self):
 filename = self._get_filename() + '.html'
 print('dumping page HTML to', filename)
 with open(filename, 'w') as f:
 f.write(self.browser.page_source)

444 | Chapter 24: Continuous Integration (CI)

And finally here’s a way of generating a unique filename identifier, which includes the
name of the test and its class, as well as a timestamp:

functional_tests/base.py (ch21l008)
 def _get_filename(self):
 timestamp = datetime.now().isoformat().replace(':', '.')[:19]
 return '{folder}/{classname}.{method}-window{windowid}-{timestamp}'.format(
 folder=SCREEN_DUMP_LOCATION,
 classname=self.__class__.__name__,
 method=self._testMethodName,
 windowid=self._windowid,
 timestamp=timestamp
)

You can test this first locally by deliberately breaking one of the tests, with a
self.fail() for example, and you’ll see something like this:

[...]
screenshotting to /.../superlists/functional_tests/screendumps/MyListsTest.test
_logged_in_users_lists_are_saved_as_my_lists-window0-2014-03-09T11.19.12.png
dumping page HTML to /.../superlists/functional_tests/screendumps/MyListsTest.t
est_logged_in_users_lists_are_saved_as_my_lists-window0-[...]

Revert the self.fail(), then commit and push:

$ git diff # changes in base.py
$ echo "functional_tests/screendumps" >> .gitignore
$ git commit -am "add screenshot on failure to FT runner"
$ git push

And when we rerun the build on Jenkins, we see something like this:

screenshotting to /var/lib/jenkins/jobs/Superlists/.../functional_tests/
screendumps/LoginTest.test_login_with_persona-window0-2014-01-22T17.45.12.png
dumping page HTML to /var/lib/jenkins/jobs/Superlists/.../functional_tests/
screendumps/LoginTest.test_login_with_persona-window0-2014-01-22T17.45.12.html

We can go and visit these in the “workspace”, which is the folder Jenkins uses to store
our source code and run the tests in, as in Figure 24-10.

Taking Screenshots | 445

Figure 24-10. Visiting the project workspace

And then we look at the screenshot, as shown in Figure 24-11.

Figure 24-11. Screenshot looking normal

446 | Chapter 24: Continuous Integration (CI)

If in Doubt, Try Bumping the Timeout!
Hm. No obvious clues there. Well, when in doubt, bump the timeout, as the old adage
goes:

functional_tests/base.py
MAX_WAIT = 20

Then we can rerun the build on Jenkins using “Build Now”, and confirm it now
works, as in Figure 24-12.

Figure 24-12. The outlook is brighter

Jenkins uses blue to indicate passing builds rather than green, which is a bit disap‐
pointing, but look at the sun peeking through the clouds: that’s cheery! It’s an indica‐
tor of a moving average ratio of passing builds to failing builds. Things are looking
up!

If in Doubt, Try Bumping the Timeout! | 447

2 Make sure you get the latest version. On Ubuntu, use the PPA rather than the default package.

Running Our QUnit JavaScript Tests in Jenkins with
PhantomJS
There’s a set of tests we almost forgot—the JavaScript tests. Currently our “test run‐
ner” is an actual web browser. To get Jenkins to run them, we need a command-line
test runner. Here’s a chance to use PhantomJS.

Installing node
It’s time to stop pretending we’re not in the JavaScript game. We’re doing web devel‐
opment. That means we do JavaScript. That means we’re going to end up with node.js
on our computers. It’s just the way it has to be.

Follow the instructions on the node.js download page. There are installers for Win‐
dows and Mac, and repositories for popular Linux distros.2

Once we have node, we can install phantom:

root@server $ npm install -g phantomjs # the -g means "system-wide".

Next we pull down a QUnit/PhantomJS test runner. There are several out there (I
even wrote a basic one to be able to test the QUnit listings in this book), but the best
one to get is probably the one that’s linked from the QUnit plugins page. At the time
of writing, its repo was at https://github.com/jonkemp/qunit-phantomjs-runner. The
only file you need is runner.js.

You should end up with this:

$ tree lists/static/tests/
lists/static/tests/
├── qunit-2.0.1.css
├── qunit-2.0.1.js
├── runner.js
└── tests.html

0 directories, 4 files

Let’s try it out:

$ phantomjs lists/static/tests/runner.js lists/static/tests/tests.html
Took 24ms to run 2 tests. 2 passed, 0 failed.

Just to be sure, let’s deliberately break something:

448 | Chapter 24: Continuous Integration (CI)

http://nodejs.org/download/
http://qunitjs.com/plugins/
https://github.com/jonkemp/qunit-phantomjs-runner

lists/static/list.js (ch21l019)
 $('input[name="text"]').on('keypress', function () {
 // $('.has-error').hide();
 });

Sure enough:

$ phantomjs lists/static/tests/runner.js lists/static/tests/tests.html

Test failed: errors should be hidden on keypress
 Failed assertion: expected: false, but was: true
file:///.../superlists/lists/static/tests/tests.html:27:15

Took 27ms to run 2 tests. 1 passed, 1 failed.

All right! Let’s unbreak that, commit and push the runner, and then add it to our
Jenkins build:

$ git checkout lists/static/list.js
$ git add lists/static/tests/runner.js
$ git commit -m "Add phantomjs test runner for javascript tests"
$ git push

Adding the Build Steps to Jenkins
Edit the project configuration again, and add a step for each set of JavaScript tests, as
per Figure 24-13.

Figure 24-13. Add a build step for our JavaScript unit tests

You’ll also need to install PhantomJS on the server:

root@server:$ add-apt-repository -y ppa:chris-lea/node.js
root@server:$ apt-get update
root@server:$ apt-get install nodejs
root@server:$ npm install -g phantomjs

And there we are! A complete CI build featuring all of our tests!

Running Our QUnit JavaScript Tests in Jenkins with PhantomJS | 449

Started by user harry
Building in workspace /var/lib/jenkins/jobs/Superlists/workspace
Fetching changes from the remote Git repository
Fetching upstream changes from https://github.com/hjwp/book-example.git
Checking out Revision 936a484038194b289312ff62f10d24e6a054fb29 (origin/chapter_1
Xvfb starting$ /usr/bin/Xvfb :1 -screen 0 1024x768x24 -fbdir /var/lib/jenkins/20
[workspace] $ /bin/sh -xe /tmp/shiningpanda7092102504259037999.sh

+ pip install -r requirements.txt
[...]

+ python manage.py test lists
.................................

Ran 43 tests in 0.229s

OK
Creating test database for alias 'default'...
Destroying test database for alias 'default'...

+ python manage.py test accounts
..................

Ran 18 tests in 0.078s

OK
Creating test database for alias 'default'...
Destroying test database for alias 'default'...

[workspace] $ /bin/sh -xe /tmp/hudson2967478575201471277.sh
+ phantomjs lists/static/tests/runner.js lists/static/tests/tests.html
Took 32ms to run 2 tests. 2 passed, 0 failed.
+ phantomjs lists/static/tests/runner.js accounts/static/tests/tests.html
Took 47ms to run 11 tests. 11 passed, 0 failed.

[workspace] $ /bin/sh -xe /tmp/shiningpanda7526089957247195819.sh
+ pip install selenium
Requirement already satisfied (use --upgrade to upgrade): selenium in /var/lib/

Cleaning up...
[workspace] $ /bin/sh -xe /tmp/shiningpanda2420240268202055029.sh
+ python manage.py test functional_tests
........

Ran 8 tests in 76.804s

OK

Nice to know that, no matter how lazy I get about running the full test suite on my
own machine, the CI server will catch me. Another one of the Testing Goat’s agents in
cyberspace, watching over us…

450 | Chapter 24: Continuous Integration (CI)

More Things to Do with a CI Server
I’ve only scratched the surface of what you can do with Jenkins and CI servers. For
example, you can make it much smarter about how it monitors your repo for new
commits.

Perhaps more interestingly, you can use your CI server to automate your staging tests
as well as your normal functional tests. If all the FTs pass, you can add a build step
that deploys the code to staging, and then reruns the FTs against that—automating
one more step of the process, and ensuring that your staging server is automatically
kept up to date with the latest code.

Some people even use a CI server as the way of deploying their production releases!

Tips on CI and Selenium Best Practices
Set up CI as soon as possible for your project

As soon as your functional tests take more than a few seconds to run, you’ll find
yourself avoiding running them all. Give this job to a CI server, to make sure that
all your tests are getting run somewhere.

Set up screenshots and HTML dumps for failures
Debugging test failures is easier if you can see what the page looked like when the
failure occurred. This is particularly useful for debugging CI failures, but it’s also
very useful for tests that you run locally.

Be prepared to bump your timeouts
A CI server may not be as speedy as your laptop, especially if it’s under load, run‐
ning multiple tests at the same time. Be prepared to be even more generous with
your timeouts, in order to minimise the chance of random failures.

Look into hooking up CI and staging
Tests that use LiveServerTestCase are all very well for dev boxes, but the true
reassurance comes from running your tests against a real server. Look into get‐
ting your CI server to deploy to your staging server, and run the functional tests
against that instead. It has the side benefit of testing your automated deploy
scripts.

More Things to Do with a CI Server | 451

CHAPTER 25

The Token Social Bit, the Page Pattern, and
an Exercise for the Reader

Are jokes about how “everything has to be social now” slightly old hat? Everything
has to be all A/B tested big data get-more-clicks lists of 10 Things This Inspiring
Teacher Said That Will Make You Change Your Mind About Blah Blah now…anyway.
Lists, be they inspirational or otherwise, are often better shared. Let’s allow our users
to collaborate on their lists with other users.

Along the way we’ll improve our FTs by starting to implement something called the
Page object pattern.

Then, rather than showing you explicitly what to do, I’m going to let you write your
unit tests and application code by yourself. Don’t worry, you won’t be totally on your
own! I’ll give an outline of the steps to take, as well as some hints and tips.

An FT with Multiple Users, and addCleanup
Let’s get started—we’ll need two users for this FT:

453

functional_tests/test_sharing.py (ch22l001)
from selenium import webdriver
from .base import FunctionalTest

def quit_if_possible(browser):
 try: browser.quit()
 except: pass

class SharingTest(FunctionalTest):

 def test_can_share_a_list_with_another_user(self):
 # Edith is a logged-in user
 self.create_pre_authenticated_session('edith@example.com')
 edith_browser = self.browser
 self.addCleanup(lambda: quit_if_possible(edith_browser))

 # Her friend Oniciferous is also hanging out on the lists site
 oni_browser = webdriver.Firefox()
 self.addCleanup(lambda: quit_if_possible(oni_browser))
 self.browser = oni_browser
 self.create_pre_authenticated_session('oniciferous@example.com')

 # Edith goes to the home page and starts a list
 self.browser = edith_browser
 self.browser.get(self.live_server_url)
 self.add_list_item('Get help')

 # She notices a "Share this list" option
 share_box = self.browser.find_element_by_css_selector(
 'input[name="sharee"]'
)
 self.assertEqual(
 share_box.get_attribute('placeholder'),
 'your-friend@example.com'
)

The interesting feature to note about this section is the addCleanup function, whose
documentation you can find online. It can be used as an alternative to the tearDown
function as a way of cleaning up resources used during the test. It’s most useful when
the resource is only allocated halfway through a test, so you don’t have to spend time
in tearDown figuring out what does or doesn’t need cleaning up.

addCleanup is run after tearDown, which is why we need that try/except formula‐
tion for quit_if_possible; whichever of edith_browser and oni_browser is also
assigned to self.browser at the point at which the test ends will already have been
quit by the tearDown function.

454 | Chapter 25: The Token Social Bit, the Page Pattern, and an Exercise for the Reader

https://docs.python.org/3/library/unittest.html#unittest.TestCase.addCleanup

We’ll also need to move create_pre_authenticated_session from test_my_lists.py
into base.py.

OK, let’s see if that all works:

$ python manage.py test functional_tests.test_sharing
[...]
Traceback (most recent call last):
 File "/.../superlists/functional_tests/test_sharing.py", line 31, in
test_can_share_a_list_with_another_user
[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: input[name="sharee"]

Great! It seems to have got through creating the two user sessions, and it gets onto an
expected failure—there is no input for an email address of a person to share a list
with on the page.

Let’s do a commit at this point, because we’ve got at least a placeholder for our FT,
we’ve got a useful modification of the create_pre_authenticated_session function,
and we’re about to embark on a bit of an FT refactor:

$ git add functional_tests
$ git commit -m "New FT for sharing, move session creation stuff to base"

The Page Pattern
Before we go any further, I want to show an alternative method for reducing duplica‐
tion in your FTs, called “Page objects”.

We’ve already built several helper methods for our FTs, including add_list_item,
which we’ve used here, but if we just keep adding more and more, it’s going to get
very crowded. I’ve worked on a base FT class that was over 1,500 lines long, and that
got pretty unwieldy.

Page objects are an alternative which encourage us to store all the information and
helper methods about the different types of pages on our site in a single place. Let’s
see how that might look for our site, starting with a class to represent any lists page:

The Page Pattern | 455

http://bit.ly/2uWBvsM

functional_tests/list_page.py
from selenium.webdriver.common.keys import Keys
from .base import wait

class ListPage(object):

 def __init__(self, test):

 self.test = test

 def get_table_rows(self):
 return self.test.browser.find_elements_by_css_selector('#id_list_table tr')

 @wait

 def wait_for_row_in_list_table(self, item_text, item_number):
 expected_row_text = f'{item_number}: {item_text}'
 rows = self.get_table_rows()
 self.test.assertIn(expected_row_text, [row.text for row in rows])

 def get_item_input_box(self):
 return self.test.browser.find_element_by_id('id_text')

 def add_list_item(self, item_text):
 new_item_no = len(self.get_table_rows()) + 1
 self.get_item_input_box().send_keys(item_text)
 self.get_item_input_box().send_keys(Keys.ENTER)
 self.wait_for_row_in_list_table(item_text, new_item_no)

 return self

It’s initialised with an object that represents the current test. That gives us the
ability to make assertions, access the browser instance via self.test.browser,
and use the self.test.wait_for function.

I’ve copied across some of the existing helper methods from base.py, but I’ve
tweaked them slightly…

For example, they make use of this new method.

Returning self is just a convenience. It enables method chaining, which we’ll see
in action immediately.

Let’s see how to use it in our test:

456 | Chapter 25: The Token Social Bit, the Page Pattern, and an Exercise for the Reader

https://en.wikipedia.org/wiki/Method_chaining

functional_tests/test_sharing.py (ch22l004)
from .list_page import ListPage
[...]

 # Edith goes to the home page and starts a list
 self.browser = edith_browser
 list_page = ListPage(self).add_list_item('Get help')

Let’s continue rewriting our test, using the Page object whenever we want to access
elements from the lists page:

functional_tests/test_sharing.py (ch22l008)
 # She notices a "Share this list" option
 share_box = list_page.get_share_box()
 self.assertEqual(
 share_box.get_attribute('placeholder'),
 'your-friend@example.com'
)

 # She shares her list.
 # The page updates to say that it's shared with Oniciferous:
 list_page.share_list_with('oniciferous@example.com')

We add the following three functions to our ListPage:

functional_tests/list_page.py (ch22l009)
 def get_share_box(self):
 return self.test.browser.find_element_by_css_selector(
 'input[name="sharee"]'
)

 def get_shared_with_list(self):
 return self.test.browser.find_elements_by_css_selector(
 '.list-sharee'
)

 def share_list_with(self, email):
 self.get_share_box().send_keys(email)
 self.get_share_box().send_keys(Keys.ENTER)
 self.test.wait_for(lambda: self.test.assertIn(
 email,
 [item.text for item in self.get_shared_with_list()]
))

The idea behind the Page pattern is that it should capture all the information about a
particular page in your site, so that if, later, you want to go and make changes to that

The Page Pattern | 457

page—even just simple tweaks to its HTML layout, for example—you have a single
place to go to adjust your functional tests, rather than having to dig through dozens
of FTs.

The next step would be to pursue the FT refactor through our other tests. I’m not
going to show that here, but it’s something you could do, for practice, to get a feel for
what the trade-offs between DRY and test readability are like…

Extend the FT to a Second User, and the “My Lists” Page
Let’s spec out just a little more detail of what we want our sharing user story to be.
Edith has seen on her list page that the list is now “shared with” Oniciferous, and then
we can have Oni log in and see the list on his “My Lists” page, maybe in a section
called “lists shared with me”:

functional_tests/test_sharing.py (ch22l010)
from .my_lists_page import MyListsPage
[...]

 list_page.share_list_with('oniciferous@example.com')

 # Oniciferous now goes to the lists page with his browser
 self.browser = oni_browser
 MyListsPage(self).go_to_my_lists_page()

 # He sees Edith's list in there!
 self.browser.find_element_by_link_text('Get help').click()

That means another function in our MyListsPage class:

functional_tests/my_lists_page.py (ch22l011)
class MyListsPage(object):

 def __init__(self, test):
 self.test = test

 def go_to_my_lists_page(self):
 self.test.browser.get(self.test.live_server_url)
 self.test.browser.find_element_by_link_text('My lists').click()
 self.test.wait_for(lambda: self.test.assertEqual(
 self.test.browser.find_element_by_tag_name('h1').text,
 'My Lists'
))
 return self

458 | Chapter 25: The Token Social Bit, the Page Pattern, and an Exercise for the Reader

Once again, this is a function that would be good to carry across into test_my_lists.py,
along with maybe a MyListsPage object.

In the meantime, Oniciferous can also add things to the list:

functional_tests/test_sharing.py (ch22l012)
 # On the list page, Oniciferous can see says that it's Edith's list
 self.wait_for(lambda: self.assertEqual(
 list_page.get_list_owner(),
 'edith@example.com'
))

 # He adds an item to the list
 list_page.add_list_item('Hi Edith!')

 # When Edith refreshes the page, she sees Oniciferous's addition
 self.browser = edith_browser
 self.browser.refresh()
 list_page.wait_for_row_in_list_table('Hi Edith!', 2)

That’s another addition to our ListPage object:

functional_tests/list_page.py (ch22l013)
class ListPage(object):
 [...]

 def get_list_owner(self):
 return self.test.browser.find_element_by_id('id_list_owner').text

It’s long past time to run the FT and check if all of this works!

$ python manage.py test functional_tests.test_sharing

 share_box = list_page.get_share_box()
 [...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: input[name="sharee"]

That’s the expected failure; we don’t have an input for email addresses of people to
share with. Let’s do a commit:

$ git add functional_tests
$ git commit -m "Create Page objects for list pages, use in sharing FT"

An Exercise for the Reader
I probably didn’t really understand what I was doing until after having completed the
“Exercise for the reader” in Chapter 25.

—Iain H. (reader)

An Exercise for the Reader | 459

There’s nothing that cements learning like taking the training wheels off, and getting
something working on your own, so I hope you’ll give this a go.

Here’s an outline of the steps you could take:

1. We’ll need a new section in list.html, with, at first, a form with an input box for an
email address. That should get the FT one step further.

2. Next, we’ll need a view for the form to submit to. Start by defining the URL in the
template, maybe something like lists/<list_id>/share.

3. Then, our first unit test. It can be just enough to get a placeholder view in. We
want the view to respond to POST requests, and it should respond with a redirect
back to the list page, so the test could be called something like ShareList
Test.test_post_redirects_to_lists_page.

4. We build out our placeholder view, as just a two-liner that finds a list and redi‐
rects to it.

5. We can then write a new unit test which creates a user and a list, does a POST
with their email address, and checks that the user is added to
list_.shared_with.all() (a similar ORM usage to “My Lists”). That
shared_with attribute won’t exist yet; we’re going outside-in.

6. So before we can get this test to pass, we have to move down to the model layer.
The next test, in test_models.py, can check that a list has a shared_with.add
method, which can be called with a user’s email address and then check the lists’
shared_with.all() queryset, which will subsequently contain that user.

7. You’ll then need a ManyToManyField. You’ll probably see an error message about
a clashing related_name, which you’ll find a solution to if you look around the
Django docs.

8. It will need a database migration.
9. That should get the model tests passing. Pop back up to fix the view test.

10. You may find the redirect view test fails, because it’s not sending a valid POST
request. You can either choose to ignore invalid inputs, or adjust the test to send
a valid POST.

11. Then back up to the template level; on the “My Lists” page we’ll want a with
a for loop of the lists shared with the user. On the lists page, we also want to
show who the list is shared with, as well as mention of who the list owner is. Look
back at the FT for the correct classes and IDs to use. You could have brief unit
tests for each of these if you like, as well.

460 | Chapter 25: The Token Social Bit, the Page Pattern, and an Exercise for the Reader

12. You might find that spinning up the site with runserver will help you iron out
any bugs, as well as fine-tune the layout and aesthetics. If you use a private
browser session, you’ll be able to log multiple users in.

By the end, you might end up with something that looks like Figure 25-1.

Figure 25-1. Sharing lists

The Page Pattern, and the Real Exercise for the Reader
Apply DRY to your functional tests

Once your FT suite starts to grow, you’ll find that different tests will inevitably
find themselves using similar parts of the UI. Try to avoid having constants, like
the HTML IDs or classes of particular UI elements, duplicated between your FTs.

The Page pattern
Moving helper methods into a base FunctionalTest class can become unwieldy.
Consider using individual Page objects to hold all the logic for dealing with par‐
ticular parts of your site.

An exercise for the reader
I hope you’ve actually tried this out! Try to follow the outside-in method, and
occasionally try things out manually if you get stuck. The real exercise for the
reader, of course, is to apply TDD to your next project. I hope you’ll enjoy it!

In the next chapter, we’ll wrap up with a discussion of testing “best practices.”

An Exercise for the Reader | 461

CHAPTER 26

Fast Tests, Slow Tests, and Hot Lava

The database is Hot Lava!
—Casey Kinsey

Right up until Chapter 23, almost all of the “unit” tests in the book should perhaps
have been called integrated tests, because they either rely on the database or use the
Django Test Client, which does too much magic with the middleware layers that sit
between requests, responses, and view functions.

There is an argument that a true unit test should always be isolated, because it’s meant
to test a single unit of software. If it touches the database, it can’t be a unit test. The
database is hot lava!

Some TDD veterans say you should strive to write “pure”, isolated unit tests wherever
possible, instead of writing integrated tests. It’s one of the ongoing (occasionally
heated) debates in the testing community.

Being merely a young whippersnapper myself, I’m only partway towards all the sub‐
tleties of the argument. But in this chapter, I’d like to talk about why people feel
strongly about it, and try to give you some idea of when you can get away with mud‐
dling through with integrated tests (which I confess I do a lot of!), and when it’s
worth striving for more “pure” unit tests.

Terminology: Different Types of Test
Isolated tests (“pure” unit tests) vs. integrated tests

The primary purpose of a unit test should be to verify the correctness of the logic
of your application. An isolated test is one that tests exactly one chunk of code,
and whose success or failure does not depend on any other external code. This is
what I call a “pure” unit test: a test for a single function, for example, written in

463

https://www.youtube.com/watch?v=bsmFVb8guMU

such a way that only that function can make it fail. If the function depends on
another system, and breaking that system breaks our test, we have an integrated
test. That system could be an external system, like a database, but it could also be
another function which we don’t control. In either case, if breaking the system
makes our test fail, our test is not properly isolated; it is not a “pure” unit test.
That’s not necessarily a bad thing, but it may mean the test is doing two jobs at
once.

Integration tests
An integration test checks that the code you control is integrated correctly with
some external system which you don’t control. Integration tests are typically also
integrated tests.

System tests
If an integration test checks the integration with one external system, a system
test checks the integration of multiple systems in your application—for example,
checking that we’ve wired up our database, static files, and server config together
in such a way that they all work.

Functional tests and acceptance tests
An acceptance test is meant to test that our system works from the point of view
of the user (“would the user accept this behaviour?”). It’s hard to write an accept‐
ance test that’s not a full-stack, end-to-end test. We’ve been using our functional
tests to play the role of both acceptance tests and system tests.

If you’ll forgive the pretentious philosophical terminology, I’d like to structure our
discussion of these issues like a Hegelian dialectic:

• The Thesis: the case for “pure”, fast unit tests.
• The Antithesis: some of the risks associated with a (naive) pure unit testing

approach.
• The Synthesis: a discussion of best practices like “Ports and Adapters” or “Func‐

tional Core, Imperative Shell”, and of just what it is that we want from our tests,
anyway.

Thesis: Unit Tests Are Superfast and Good Besides That
One of the things you often hear about unit tests is that they’re much faster. I don’t
think that’s actually the primary benefit of unit tests, but it’s worth exploring the
theme of speed.

464 | Chapter 26: Fast Tests, Slow Tests, and Hot Lava

Faster Tests Mean Faster Development
Other things being equal, the faster your unit tests run, the better. To a lesser extent,
the faster all your tests run, the better.

I’ve outlined the TDD test/code cycle in this book. You’ve started to get a feel for the
TDD workflow, the way you flick between writing tiny amounts of code and running
your tests. You end up running your unit tests several times a minute, and your func‐
tional tests several times a day.

So, on a very basic level, the longer they take, the more time you spend waiting for
your tests, and that will slow down your development. But there’s more to it than that.

The Holy Flow State
Thinking sociology for a moment, we programmers have our own culture, and our
own tribal religion in a way. It has many congregations within it, such as the cult of
TDD to which you are now initiated. There are the followers of vi and the heretics of
emacs. But one thing we all agree on, one particular spiritual practice, our own tran‐
scendental meditation, is the holy flow state. That feeling of pure focus, of concentra‐
tion, where hours pass like no time at all, where code flows naturally from our
fingers, where problems are just tricky enough to be interesting but not so hard that
they defeat us…

There is absolutely no hope of achieving flow if you spend your time waiting for a
slow test suite to run. Anything longer than a few seconds and you’re going to let
your attention wander, you context-switch, and the flow state is gone. And the flow
state is a fragile dream. Once it’s gone, it takes at least 15 minutes to live again.

Slow Tests Don’t Get Run as Often, Which Causes Bad Code
If your test suite is slow and ruins your concentration, the danger is that you’ll start to
avoid running your tests, which may lead to bugs getting through. Or, it may lead to
our being shy of refactoring the code, since we know that any refactor will mean hav‐
ing to wait ages while all the tests run. In either case, bad code can be the result.

We’re Fine Now, but Integrated Tests Get Slower Over Time
You might be thinking, OK, but our test suite has lots of integrated tests in it—over
50 of them, and it only takes 0.2 seconds to run.

But remember, we’ve got a very simple app. Once it starts to get more complex, as
your database grows more and more tables and columns, integrated tests will get
slower and slower. Having Django reset the database between each test will take
longer and longer.

Thesis: Unit Tests Are Superfast and Good Besides That | 465

Don’t Take It from Me
Gary Bernhardt, a man with far more experience of testing than me, put these points
eloquently in a talk called Fast Test, Slow Test. I encourage you to watch it.

And Unit Tests Drive Good Design
But perhaps more importantly than any of this, remember the lesson from Chap‐
ter 23. Going through the process of writing good, isolated unit tests can help us drive
out better designs for our code, by forcing us to identify dependencies, and encourag‐
ing us towards a decoupled architecture in a way that integrated tests don’t.

The Problems with “Pure” Unit Tests
All of this comes with a huge “but”. Writing isolated united tests comes with its own
hazards, particularly if, like you or me, we are not yet advanced TDD’ers.

Isolated Tests Can Be Harder to Read and Write
Cast your mind back to the first isolated unit test we wrote. Wasn’t it ugly? Admit‐
tedly, things improved when we refactored things out into the forms, but imagine if
we hadn’t followed through? We’d have been left with a rather unreadable test in our
codebase. And even the final version of the tests we ended up with contain some
pretty mind-bending bits.

Isolated Tests Don’t Automatically Test Integration
As we saw a little later on, isolated tests by their nature only test the unit under test, in
isolation. They won’t test the integration between your units.

This problem is well known, and there are ways of mitigating it. But, as we saw, those
mitigations involve a fair bit of hard work on the part of the programmer—you need
to remember to keep track of the interfaces between your units, to identify the
implicit contract that each component needs to honour, and to write tests for those
contracts as well as for the internal functionality of your unit.

Unit Tests Seldom Catch Unexpected Bugs
Unit tests will help you catch off-by-one errors and logic snafus, which are the kinds
of bugs we know we introduce all the time, so in a way we are expecting them. But
they don’t warn you about some of the more unexpected bugs. They won’t remind
you when you forgot to create a database migration. They won’t tell you when the
middleware layer is doing some clever HTML-entity escaping that’s interfering with
the way your data is rendered…something like Donald Rumsfeld’s unknown
unknowns?

466 | Chapter 26: Fast Tests, Slow Tests, and Hot Lava

https://www.youtube.com/watch?v=RAxiiRPHS9k

Mocky Tests Can Become Closely Tied to Implementation
And finally, mocky tests can become very tightly coupled with the implementation. If
you choose to use List.objects.create() to build your objects but your mocks are
expecting you to use List() and .save(), you’ll get failing tests even though the
actual effect of the code would be the same. If you’re not careful, this can start to
work against one of the supposed benefits of having tests, which was to encourage
refactoring. You can find yourself having to change dozens of mocky tests and con‐
tract tests when you want to change an internal API.

Notice that this may be more of a problem when you’re dealing with an API you don’t
control. You may remember the contortions we had to go through to test our form,
mocking out two Django model classes and using side_effect to check on the state
of the world. If you’re writing code that’s totally under your own control, you’re likely
to design your internal APIs so that they are cleaner and require fewer contortions to
test.

But All These Problems Can Be Overcome
But, isolation advocates will come back and say, all that stuff can be mitigated; you
just need to get better at writing isolated tests, and, remember the holy flow state?
The holy flow state!

So do we have to choose one side or the other?

Synthesis: What Do We Want from Our Tests, Anyway?
Let’s step back and have a think about what benefits we want our tests to deliver. Why
are we writing them in the first place?

Correctness
We want our application to be free of bugs—both low-level logic errors, like off-by-
one errors, and high-level bugs like the software not ultimately delivering what our
users want. We want to find out if we ever introduce regressions which break some‐
thing that used to work, and we want to find that out before our users see something
broken. We expect our tests to tell us our application is correct.

Clean, Maintainable Code
We want our code to obey rules like YAGNI and DRY. We want code that clearly
expresses its intentions, which is broken up into sensible components that have well-
defined responsibilities and are easily understood. We expect our tests to give us the
confidence to refactor our application constantly, so that we’re never scared to try to

Synthesis: What Do We Want from Our Tests, Anyway? | 467

improve its design, and we would also like it if they would actively help us to find the
right design.

Productive Workflow
Finally, we want our tests to help enable a fast and productive workflow. We want
them to help take some of the stress out of development, and we want them to protect
us from stupid mistakes. We want them to help keep us in the “flow” state not just
because we enjoy it, but because it’s highly productive. We want our tests to give us
feedback about our work as quickly as possible, so that we can try out new ideas and
evolve them quickly. And we don’t want to feel like our tests are more of a hindrance
than a help when it comes to evolving our codebase.

Evaluate Your Tests Against the Benefits You Want from Them
I don’t think there are any universal rules about how many tests you should write and
what the correct balance between functional, integrated, and isolated tests should be.
Circumstances vary between projects. But, by thinking about all of your tests and
asking whether they are delivering the benefits you want, you can make some
decisions.

Table 26-1. How do different types of test help us achieve our objectives?

Objective Some considerations
Correctness • Do I have enough functional tests to reassure myself that my application really works, from the point of

view of the user?

• Am I testing all the edge cases thoroughly? This feels like a job for low-level, isolated tests.

• Do I have tests that check whether all my components fit together properly? Could some integrated tests
do this, or are functional tests enough?

Clean,
maintainable
code

• Are my tests giving me the confidence to refactor my code, fearlessly and frequently?

• Are my tests helping me to drive out a good design? If I have a lot of integrated tests and few isolated
tests, are there any parts of my application where putting in the effort to write more isolated tests would
give me better feedback about my design?

Productive
workflow

• Are my feedback cycles as fast as I would like them? When do I get warned about bugs, and is there any
practical way to make that happen sooner?

• If I have a lot of high-level, functional tests that take a long time to run, and I have to wait overnight to
get feedback about accidental regressions, is there some way I could write some faster tests, integrated
tests perhaps, that would get me feedback quicker?

• Can I run a subset of the full test suite when I need to?

• Am I spending too much time waiting for tests to run, and thus less time in a productive flow state?

468 | Chapter 26: Fast Tests, Slow Tests, and Hot Lava

Architectural Solutions
There are also some architectural solutions that can help to get the most out of your
test suite, and particularly that help avoid some of the disadvantages of isolated tests.

Mainly these involve trying to identify the boundaries of your system—the points at
which your code interacts with external systems, like the database or the filesystem,
or the internet, or the UI—and trying to keep them separate from the core business
logic of your application.

Ports and Adapters/Hexagonal/Clean Architecture
Integrated tests are most useful at the boundaries of a system—at the points where our
code integrates with external systems, like a database, filesystem, or UI components.

Similarly, it’s at the boundaries that the downsides of test isolation and mocks are at
their worst, because it’s at the boundaries that you’re most likely to be annoyed if your
tests are tightly coupled to an implementation, or to need more reassurance that
things are integrated properly.

Conversely, code at the core of our application—code that’s purely concerned with our
business domain and business rules, code that’s entirely under our control—has less
need for integrated tests, since we control and understand all of it.

So one way of getting what we want is to try to minimise the amount of our code that
has to deal with boundaries. Then we test our core business logic with isolated tests
and test our integration points with integrated tests.

Steve Freeman and Nat Pryce, in their book Growing Object-Oriented Software, Gui‐
ded by Tests, call this approach “Ports and Adapters” (see Figure 26-1).

We actually started moving towards a ports and adapters architecture in Chapter 23,
when we found that writing isolated unit tests was encouraging us to push ORM code
out of the main application, and hide it in helper functions from the model layer.

This pattern is also sometimes known as the “clean architecture” or “hexagonal archi‐
tecture”. See “Further Reading” on page 470 for more info.

Functional Core, Imperative Shell
Gary Bernhardt pushes this further, recommending an architecture he calls “Func‐
tional Core, Imperative Shell”, whereby the “shell” of the application, the place where
interaction with boundaries happens, follows the imperative programming paradigm,
and can be tested by integrated tests, acceptance tests, or even (gasp!) not at all, if it’s
kept minimal enough. But the core of the application is actually written following the
functional programming paradigm (complete with the “no side effects” corollary),
which actually allows fully isolated, “pure” unit tests, entirely without mocks.

Architectural Solutions | 469

Check out Gary’s presentation titled “Boundaries” for more on this approach.

Figure 26-1. Ports and Adapters (diagram by Nat Pryce)

Conclusion
I’ve tried to give an overview of some of the more advanced considerations that come
into the TDD process. Mastery of these topics is something that comes from long
years of practice, and I’m not there yet, by any means. So I heartily encourage you to
take everything I’ve said with a pinch of salt, to go out there, try various approaches,
listen to what other people have to say too, and find out what works for you.

Here are some places to go for further reading.

Further Reading
Fast Test, Slow Test and Boundaries

Gary Bernhardt’s talks from Pycon 2012 and 2013. His screencasts are also well
worth a look.

470 | Chapter 26: Fast Tests, Slow Tests, and Hot Lava

https://www.youtube.com/watch?v=eOYal8elnZk
https://www.youtube.com/watch?v=RAxiiRPHS9k
https://www.youtube.com/watch?v=eOYal8elnZk
http://www.destroyallsoftware.com

Ports and Adapters
Steve Freeman and Nat Pryce wrote about this in their book. You can also catch a
good discussion in this talk. See also Uncle Bob’s description of the clean archi‐
tecture, and Alistair Cockburn coining the term “hexagonal architecture”.

Hot Lava
Casey Kinsey’s memorable phrase encouraging you to avoid touching the data‐
base, whenever you can.

Inverting the Pyramid
The idea that projects end up with too great a ratio of slow, high-level tests to
unit tests, and a visual metaphor for the effort to invert that ratio.

Integrated tests are a scam
J.B. Rainsberger has a famous rant about the way integrated tests will ruin your
life. Then check out a couple of follow-up posts, particularly this defence of
acceptance tests (what I call functional tests), and this analysis of how slow tests
kill productivity.

The Test-Double testing wiki
Justin Searls’s online resource is a great source of definitions and discussions of
testing pros and cons, and arrives at its own conclusions of the right way to do
things: testing wiki.

A pragmatic view
Martin Fowler (author of Refactoring) presents a reasonably balanced, pragmatic
approach.

On Getting the Balance Right Between Different Types of Test
Start out by being pragmatic

Spending a long time agonising about what kinds of test to write is a great way to
prevaricate. Better to start by writing whichever type of test occurs to you first,
and change it later if you need to. Learn by doing.

Focus on what you want from your tests
Your objectives are correctness, good design, and fast feedback cycles. Different
types of test will help you achieve each of these in different measures. Table 26-1
has some good questions to ask yourself.

Architecture matters
Your architecture to some extent dictates the types of tests that you need. The
more you can separate your business logic from your external dependencies, and
the more modular your code, the closer you’ll get to a nice balance between unit
tests, integration tests and end-to-end tests.

Conclusion | 471

http://vimeo.com/83960706
http://blog.8thlight.com/uncle-bob/2012/08/13/the-clean-architecture.html
http://blog.8thlight.com/uncle-bob/2012/08/13/the-clean-architecture.html
http://alistair.cockburn.us/Hexagonal+architecture
https://www.youtube.com/watch?v=bsmFVb8guMU
http://watirmelon.com/tag/testing-pyramid/
http://blog.thecodewhisperer.com/2010/10/16/integrated-tests-are-a-scam/
http://www.jbrains.ca/permalink/using-integration-tests-mindfully-a-case-study
http://www.jbrains.ca/permalink/using-integration-tests-mindfully-a-case-study
http://www.jbrains.ca/permalink/part-2-some-hidden-costs-of-integration-tests
http://www.jbrains.ca/permalink/part-2-some-hidden-costs-of-integration-tests
https://github.com/testdouble/contributing-tests/wiki/Test-Driven-Development
http://martinfowler.com/bliki/UnitTest.html
http://martinfowler.com/bliki/UnitTest.html

Obey the Testing Goat!

Back to the Testing Goat.

Groan, I hear you say, Harry, the Testing Goat stopped being funny about 17 chapters
ago. Bear with me, I’m going to use it to make a serious point.

Testing Is Hard
I think the reason the phrase “Obey the Testing Goat” first grabbed me when I saw it
was that it really spoke to the fact that testing is hard—not hard to do in and of itself,
but hard to stick to, and hard to keep doing.

It always feels easier to cut corners and skip a few tests. And it’s doubly hard psycho‐
logically because the payoff is so disconnected from the point at which you put in the
effort. A test you spend time writing now doesn’t reward you immediately, it only
helps much later—perhaps months later when it saves you from introducing a bug
while refactoring, or catches a regression when you upgrade a dependency. Or, per‐
haps it pays you back in a way that’s hard to measure, by encouraging you to write
better designed code, but you convince yourself you could have written it just as ele‐
gantly without tests.

I myself started slipping when I was writing the test framework for this book. Being a
quite complex beast, it has tests of its own, but I cut several corners, coverage isn’t
perfect, and I now regret it because it’s turned out quite unwieldy and ugly (go on,
I’ve open sourced it now, so you can all point and laugh).

Keep Your CI Builds Green
Another area that takes real hard work is continuous integration. You saw in Chap‐
ter 24 that strange and unpredictable bugs sometimes occur on CI. When you’re
looking at these and thinking “it works fine on my machine”, there’s a strong tempta‐
tion to just ignore them…but, if you’re not careful, you start to tolerate a failing test

473

https://github.com/hjwp/Book-TDD-Web-Dev-Python/tree/master/tests

suite in CI, and pretty soon your CI build is actually useless, and it feels like too much
work to get it going again. Don’t fall into that trap. Persist, and you’ll find the reason
that your test is failing, and you’ll find a way to lock it down and make it determinis‐
tic, and green, again.

Take Pride in Your Tests, as You Do in Your Code
One of the things that helps is to stop thinking of your tests as being an incidental
add-on to the “real” code, and to start thinking of them as being a part of the finished
product that you’re building—a part that should be just as finely polished, just as aes‐
thetically pleasing, and a part you can be justly proud of delivering…

So do it because the Testing Goat says so. Do it because you know the payoff will be
worth it, even if it’s not immediate. Do it out of a sense of duty, or professionalism, or
OCD, or sheer bloody-mindedness. Do it because it’s a good thing to practice. And,
eventually, do it because it makes software development more fun.

Remember to Tip the Bar Staff
This book wouldn’t have been possible without the backing of my publisher, the won‐
derful O’Reilly Media. If you’re reading the free edition online, I hope you’ll consider
buying a real copy…if you don’t need one for yourself, then maybe as a gift for a
friend?

Don’t Be a Stranger!
I hope you enjoyed the book. Do get in touch and tell me what you thought!

Harry.

• @hjwp
• obeythetestinggoat@gmail.com

474 | Obey the Testing Goat!

https://shop.oreilly.com/product/0636920051091.do
https://twitter.com/hjwp
mailto:obeythetestinggoat@gmail.com

APPENDIX A

PythonAnywhere

This book is based on the assumption that you’re running Python and coding on your
own computer. Of course, that’s not the only way to code Python these days; you
could use an online platform like PythonAnywhere (which is where I work, inciden‐
tally).

It is possible to follow along with the book on PythonAnywhere, but it does require
several tweaks and changes—you’ll need to set up a web app instead of the test server,
you’ll need to use Xvfb to run the Functional Tests, and, once you get to the deploy‐
ment chapters, you’ll need to upgrade to a paying account. So, it is possible, but it
might be easier to follow along on your own PC.

With that caveat, if you’re still keen to give it a try, here are some details on what you
need to do.

If you haven’t already, you’ll need to sign up for a PythonAnywhere account. A free
one should be fine.

Then, start a Bash Console from the consoles page. That’s where we’ll do most of our
work.

Running Firefox Selenium Sessions with Xvfb
The first thing is that PythonAnywhere is a console-only environment, so it doesn’t
have a display in which to pop up Firefox. But we can use a virtual display.

In Chapter 1, when we write our first ever test, you’ll find things don’t work as
expected. The first test looks like this, and you can type it in using the PythonAny‐
where editor just fine:

475

from selenium import webdriver
browser = webdriver.Firefox()
browser.get('http://localhost:8000')
assert 'Django' in browser.title

But when you try to run it (in a Bash console), you’ll get an error:

(superlists)$ python functional_tests.py
Traceback (most recent call last):
File "tests.py", line 3, in <module>
browser = webdriver.Firefox()
[...]
selenium.common.exceptions.WebDriverException: Message: 'geckodriver' executable
needs to be in PATH.

Because PythonAnywhere is pinned to an older version of Firefox, we don’t actually
need Geckodriver. But we do need to switch back to Selenium 2 instead of Selenium
3:

(superlists) $ pip install "selenium<3"
Collecting selenium<3
Installing collected packages: selenium
 Found existing installation: selenium 3.4.3
 Uninstalling selenium-3.4.3:
 Successfully uninstalled selenium-3.4.3
Successfully installed selenium-2.53.6

Now we run into a second problem:

(superlists)$ python functional_tests.py
Traceback (most recent call last):
File "tests.py", line 3, in <module>
browser = webdriver.Firefox()
[...]
selenium.common.exceptions.WebDriverException: Message: The browser appears to
have exited before we could connect. If you specified a log_file in the
FirefoxBinary constructor, check it for details.

Firefox can’t start because there’s no display for it to run on, because PythonAny‐
where is a server environment. The workaround is to use Xvfb, which stands for X
Virtual Framebuffer. It will start up a “virtual” display, which Firefox can use even
though the server doesn’t have a real one.

The command xvfb-run will run the next command in Xvfb. Using that will give us
our expected failure:

(superlists)$ xvfb-run -a python functional_tests.py
Traceback (most recent call last):
File "tests.py", line 11, in <module>
assert 'Django' in browser.title
AssertionError

So the lesson is to use xvfb-run -a whenever you need to run the functional tests.

476 | Appendix A: PythonAnywhere

1 You could run the Django dev server from a console instead, but the problem is that PythonAnywhere con‐
soles don’t always run on the same server, so there’s no guarantee that the console you’re running your tests in
is the same as the one you’re running the server in. Plus, when it’s running in the console, there’s no easy way
of visually inspecting how the site looks.

Setting Up Django as a PythonAnywhere Web App
Shortly after that, we set up Django, using the django-admin.py startproject com‐
mand. But, instead of using manage.py runserver to run the local development
server, we’ll set up our site as a real PythonAnywhere web app.

Go to the Web tab and hit the button to add a new web app. Choose “Manual config‐
uration” and then “Python 3.4”.

On the next screen, enter your virtualenv name (“superlists”), and when you submit it
should autocomplete to /home/yourusername/.virtualenvs/superlists.

Finally, click through to the link to edit your wsgi file and find and uncomment the
section for Django. Hit Save and then Reload to refresh your web app.

From now on, instead of running the test server from a console on localhost:8000,
you can use the real URL of your PythonAnywhere web app:

 browser.get('http://my-username.pythonanywhere.com')

You’ll need to remember to hit Reload whenever you make changes
to the code, to update the site.

That should work better.1 You’ll need to keep using this pattern of pointing the FTs at
the PythonAnywhere version of the site, and hitting Reload before each FT run, until
Chapter 7, when we switch to using LiveServerTestCase and self.live_

server_url.

Cleaning Up /tmp
Selenium and Xvfb tend to leave a lot of junk lying around in /tmp, especially when
they’re not shut down tidily (that’s why I included a try/finally earlier).

In fact they leave so much stuff lying around that they might max out your storage
quota. So do a tidy-up in /tmp every so often:

$ rm -rf /tmp/*

PythonAnywhere | 477

Screenshots
In Chapter 5, I suggest using a time.sleep to pause the FT as it runs, so that we can
see what the Selenium browser is showing on screen. We can’t do that on PythonAny‐
where, because the browser runs in a virtual display. Instead, you can inspect the live
site, or you could “take my word for it” regarding what you should see.

The best way of doing visual inspections of tests that run in a virtual display is to use
screenshots. Take a look at Chapter 24 if you’re curious—there’s some example code
in there.

The Deployment Chapter
When you hit Chapter 9, you’ll have the choice of continuing to use PythonAny‐
where, or of learning how to build a “real” server. I recommend the latter, because
you’ll get the most out of it.

If you really want to stick with PythonAnywhere, which is cheating really, you could
sign up for a second PythonAnywhere account and use that as your staging site. Or
you could add a second domain to your existing account. But most of the instructions
in the chapter will be irrelevant (there’s no need for Nginx or Gunicorn or domain
sockets on PythonAnywhere).

One way or another, at this point, you’ll probably need a paying account:

• If you want to run your staging site on a non-PythonAnywhere domain
• If you want to be able to run the FTs against a non-PythonAnywhere domain

(because it won’t be on our whitelist)
• Once you get to Chapter 11, if you want to run Fabric against a PythonAnywhere

account (because you need SSH)

If you want to just “cheat”, you could try running the FTs in “staging” mode against
your existing web app, and just skip the Fabric stuff, although that’s a big cop-out if
you ask me. Hey, you can always upgrade your account and then cancel again straight
away, and claim a refund under the 30-day guarantee. ;)

If you are using PythonAnywhere to follow through with the book,
I’d love to hear how you get on! Do send me an email at obeythetes‐
tinggoat@gmail.com.

478 | Appendix A: PythonAnywhere

mailto:obeythetestinggoat@gmail.com
mailto:obeythetestinggoat@gmail.com

APPENDIX B

Django Class-Based Views

This appendix follows on from Chapter 15, in which we implemented Django forms
for validation and refactored our views. By the end of that chapter, our views were
still using functions.

The new shiny in the Django world, however, is class-based views. In this appendix,
we’ll refactor our application to use them instead of view functions. More specifically,
we’ll have a go at using class-based generic views.

Class-Based Generic Views
There’s a difference between class-based views and class-based generic views. Class-
based views (CBVs) are just another way of defining view functions. They make few
assumptions about what your views will do, and they offer one main advantage over
view functions, which is that they can be subclassed. This comes, arguably, at the
expense of being less readable than traditional function-based views. The main use
case for plain class-based views is when you have several views that reuse the same
logic. We want to obey the DRY principle. With function-based views, you would use
helper functions or decorators. The theory is that using a class structure may give you
a more elegant solution.

Class-based generic views (CBGVs) are class-based views that attempt to provide
ready-made solutions to common use cases: fetching an object from the database and
passing it to a template, fetching a list of objects, saving user input from a POST
request using a ModelForm, and so on. These sound very much like our use cases, but
as we’ll soon see, the devil is in the details.

I should say at this point that I’ve not used either kind of class-based views much. I
can definitely see the sense in them, and there are potentially many use cases in
Django apps where CBGVs would fit in perfectly. However, as soon as your use case

479

is slightly outside the basics—as soon as you have more than one model you want to
use, for example—I find that using class-based views can (again, debatably) lead to
code that’s much harder to read than a classic view function.

Still, because we’re forced to use several of the customisation options for class-based
views, implementing them in this case can teach us a lot about how they work, and
how we can unit test them.

My hope is that the same unit tests we use for function-based views should work just
as well for class-based views. Let’s see how we get on.

The Home Page as a FormView
Our home page just displays a form on a template:

lists/views.py
def home_page(request):
 return render(request, 'home.html', {'form': ItemForm()})

Looking through the options, Django has a generic view called FormView—let’s see
how that goes:

lists/views.py (ch31l001)
from django.views.generic import FormView
[...]

class HomePageView(FormView):
 template_name = 'home.html'
 form_class = ItemForm

We tell it what template we want to use, and which form. Then, we just need to
update urls.py, replacing the line that used to say lists.views.home_page:

superlists/urls.py (ch31l002)
[...]
urlpatterns = [
 url(r'^$', list_views.HomePageView.as_view(), name='home'),
 url(r'^lists/', include(list_urls)),
]

And the tests all check out! That was easy…

$ python manage.py test lists
[...]

Ran 34 tests in 0.119s
OK

480 | Appendix B: Django Class-Based Views

https://docs.djangoproject.com/en/1.11/ref/class-based-views/

$ python manage.py test functional_tests
[...]
Ran 5 tests in 15.160s
OK

So far, so good. We’ve replaced a one-line view function with a two-line class, but it’s
still very readable. This would be a good time for a commit…

Using form_valid to Customise a CreateView
Next we have a crack at the view we use to create a brand new list, currently the
new_list function. Here’s what it looks like now:

lists/views.py
def new_list(request):
 form = ItemForm(data=request.POST)
 if form.is_valid():
 list_ = List.objects.create()
 form.save(for_list=list_)
 return redirect(list_)
 else:
 return render(request, 'home.html', {"form": form})

Looking through the possible CBGVs, we probably want a CreateView, and we know
we’re using the ItemForm class, so let’s see how we get on with them, and whether the
tests will help us:

lists/views.py (ch31l003)
from django.views.generic import FormView, CreateView
[...]

class NewListView(CreateView):
 form_class = ItemForm

def new_list(request):
 [...]

I’m going to leave the old view function in views.py, so that we can copy code across
from it. We can delete it once everything is working. It’s harmless as soon as we
switch over the URL mappings, this time in:

lists/urls.py (ch31l004)
[...]
urlpatterns = [
 url(r'^new$', views.NewListView.as_view(), name='new_list'),
 url(r'^(\d+)/$', views.view_list, name='view_list'),
]

Django Class-Based Views | 481

Now running the tests gives six errors:
$ python manage.py test lists
[...]

ERROR: test_can_save_a_POST_request (lists.tests.test_views.NewListTest)
TypeError: save() missing 1 required positional argument: 'for_list'

ERROR: test_for_invalid_input_passes_form_to_template
(lists.tests.test_views.NewListTest)
django.core.exceptions.ImproperlyConfigured: TemplateResponseMixin requires
either a definition of 'template_name' or an implementation of
'get_template_names()'

ERROR: test_for_invalid_input_renders_home_template
(lists.tests.test_views.NewListTest)
django.core.exceptions.ImproperlyConfigured: TemplateResponseMixin requires
either a definition of 'template_name' or an implementation of
'get_template_names()'

ERROR: test_invalid_list_items_arent_saved (lists.tests.test_views.NewListTest)
django.core.exceptions.ImproperlyConfigured: TemplateResponseMixin requires
either a definition of 'template_name' or an implementation of
'get_template_names()'

ERROR: test_redirects_after_POST (lists.tests.test_views.NewListTest)
TypeError: save() missing 1 required positional argument: 'for_list'

ERROR: test_validation_errors_are_shown_on_home_page
(lists.tests.test_views.NewListTest)
django.core.exceptions.ImproperlyConfigured: TemplateResponseMixin requires
either a definition of 'template_name' or an implementation of
'get_template_names()'

FAILED (errors=6)

Let’s start with the third—maybe we can just add the template?

lists/views.py (ch31l005)
class NewListView(CreateView):
 form_class = ItemForm
 template_name = 'home.html'

That gets us down to just two failures: we can see they’re both happening in the
generic view’s form_valid function, and that’s one of the ones that you can override
to provide custom behaviour in a CBGV. As its name implies, it’s run when the view
has detected a valid form. We can just copy some of the code from our old view func‐
tion, that used to live after if form.is_valid()::

482 | Appendix B: Django Class-Based Views

lists/views.py (ch31l006)
class NewListView(CreateView):
 template_name = 'home.html'
 form_class = ItemForm

 def form_valid(self, form):
 list_ = List.objects.create()
 form.save(for_list=list_)
 return redirect(list_)

That gets us a full pass!

$ python manage.py test lists
Ran 34 tests in 0.119s
OK
$ python manage.py test functional_tests
Ran 5 tests in 15.157s
OK

And we could even save two more lines, trying to obey “DRY”, by using one of the
main advantages of CBVs: inheritance!

lists/views.py (ch31l007)
class NewListView(CreateView, HomePageView):

 def form_valid(self, form):
 list_ = List.objects.create()
 form.save(for_list=list_)
 return redirect(list_)

And all the tests would still pass:

OK

This is not really good object-oriented practice. Inheritance implies
an “is-a” relationship, and it’s probably not meaningful to say that
our new list view “is-a” home page view…so, probably best not to
do this.

With or without that last step, how does it compare to the old version? I’d say that’s
not bad. We save some boilerplate code, and the view is still fairly legible. So far, I’d
say we’ve got one point for CBGVs, and one draw.

Django Class-Based Views | 483

A More Complex View to Handle Both Viewing and Adding
to a List
This took me several attempts. And I have to say that, although the tests told me when
I got it right, they didn’t really help me to figure out the steps to get there…mostly it
was just trial and error, hacking about in functions like get_context_data,
get_form_kwargs, and so on.

One thing it did made me realise was the value of having lots of individual tests, each
testing one thing. I went back and rewrote some of Chapters 10–12 as a result.

The Tests Guide Us, for a While
Here’s how things might go. Start by thinking we want a DetailView, something that
shows you the detail of an object:

lists/views.py (ch31l009)
from django.views.generic import FormView, CreateView, DetailView
[...]

class ViewAndAddToList(DetailView):
 model = List

And wiring it up in urls.py:

lists/urls.py (ch31l010)
 url(r'^(\d+)/$', views.ViewAndAddToList.as_view(), name='view_list'),

That gives:

[...]
AttributeError: Generic detail view ViewAndAddToList must be called with either
an object pk or a slug.

FAILED (failures=5, errors=6)

Not totally obvious, but a bit of Googling around led me to understand that I needed
to use a “named” regex capture group:

484 | Appendix B: Django Class-Based Views

lists/urls.py (ch31l011)
@@ -3,6 +3,6 @@ from lists import views

 urlpatterns = [
 url(r'^new$', views.NewListView.as_view(), name='new_list'),
- url(r'^(\d+)/$', views.view_list, name='view_list'),
+ url(r'^(?P<pk>\d+)/$', views.ViewAndAddToList.as_view(), name='view_list')
]

The next set of errors had one that was fairly helpful:

[...]
django.template.exceptions.TemplateDoesNotExist: lists/list_detail.html

FAILED (failures=5, errors=6)

That’s easily solved:

lists/views.py (ch31l012)
class ViewAndAddToList(DetailView):
 model = List
 template_name = 'list.html'

That takes us down five and two:

[...]
ERROR: test_displays_item_form (lists.tests.test_views.ListViewTest)
KeyError: 'form'

FAILED (failures=5, errors=2)

Until We’re Left with Trial and Error
So I figured, our view doesn’t just show us the detail of an object, it also allows us to
create new ones. Let’s make it both a DetailView and a CreateView, and maybe add
the form_class:

lists/views.py (ch31l013)
class ViewAndAddToList(DetailView, CreateView):
 model = List
 template_name = 'list.html'
 form_class = ExistingListItemForm

But that gives us a lot of errors saying:

[...]
TypeError: __init__() missing 1 required positional argument: 'for_list'

And the KeyError: 'form' was still there too!

Django Class-Based Views | 485

At this point the errors stopped being quite as helpful, and it was no longer obvious
what to do next. I had to resort to trial and error. Still, the tests did at least tell me
when I was getting things more right or more wrong.

My first attempts to use get_form_kwargs didn’t really work, but I found that I could
use get_form:

lists/views.py (ch31l014)
 def get_form(self):
 self.object = self.get_object()
 return self.form_class(for_list=self.object, data=self.request.POST)

But it would only work if I also assigned to self.object, as a side effect, along the
way, which was a bit upsetting. Still, that takes us down to just three errors, but we’re
still apparently not quite there!

django.core.exceptions.ImproperlyConfigured: No URL to redirect to. Either
provide a url or define a get_absolute_url method on the Model.

Back on Track
And for this final failure, the tests are being helpful again. It’s quite easy to define a
get_absolute_url on the Item class, such that items point to their parent list’s page:

lists/models.py (ch31l015)
class Item(models.Model):
 [...]

 def get_absolute_url(self):
 return reverse('view_list', args=[self.list.id])

Is That Your Final Answer?
We end up with a view class that looks like this:

lists/views.py
class ViewAndAddToList(DetailView, CreateView):
 model = List
 template_name = 'list.html'
 form_class = ExistingListItemForm

 def get_form(self):
 self.object = self.get_object()
 return self.form_class(for_list=self.object, data=self.request.POST)

486 | Appendix B: Django Class-Based Views

Compare Old and New
Let’s see the old version for comparison?

lists/views.py
def view_list(request, list_id):
 list_ = List.objects.get(id=list_id)
 form = ExistingListItemForm(for_list=list_)
 if request.method == 'POST':
 form = ExistingListItemForm(for_list=list_, data=request.POST)
 if form.is_valid():
 form.save()
 return redirect(list_)
 return render(request, 'list.html', {'list': list_, "form": form})

Well, it has reduced the number of lines of code from nine to seven. Still, I find the
function-based version a little easier to understand, in that it has a little bit less magic
—“explicit is better than implicit”, as the Zen of Python would have it. I mean…
SingleObjectMixin? What? And, more offensively, the whole thing falls apart if we
don’t assign to self.object inside get_form? Yuck.

Still, I guess some of it is in the eye of the beholder.

Best Practices for Unit Testing CBGVs?
As I was working through this, I felt like my “unit” tests were sometimes a little too
high-level. This is no surprise, since tests for views that involve the Django Test Client
are probably more properly called integrated tests.

They told me whether I was getting things right or wrong, but they didn’t always offer
enough clues on exactly how to fix things.

I occasionally wondered whether there might be some mileage in a test that was
closer to the implementation—something like this:

lists/tests/test_views.py
def test_cbv_gets_correct_object(self):
 our_list = List.objects.create()
 view = ViewAndAddToList()
 view.kwargs = dict(pk=our_list.id)
 self.assertEqual(view.get_object(), our_list)

But the problem is that it requires a lot of knowledge of the internals of Django CBVs
to be able to do the right test setup for these kinds of tests. And you still end up get‐
ting very confused by the complex inheritance hierarchy.

Django Class-Based Views | 487

Take-Home: Having Multiple, Isolated View Tests with Single
Assertions Helps
One thing I definitely did conclude from this appendix was that having many short
unit tests for views was much more helpful than having a few tests with a narrative
series of assertions.

Consider this monolithic test:

lists/tests/test_views.py
def test_validation_errors_sent_back_to_home_page_template(self):
 response = self.client.post('/lists/new', data={'text': ''})
 self.assertEqual(List.objects.all().count(), 0)
 self.assertEqual(Item.objects.all().count(), 0)
 self.assertTemplateUsed(response, 'home.html')
 expected_error = escape("You can't have an empty list item")
 self.assertContains(response, expected_error)

That is definitely less useful than having three individual tests, like this:

lists/tests/test_views.py
 def test_invalid_input_means_nothing_saved_to_db(self):
 self.post_invalid_input()
 self.assertEqual(List.objects.all().count(), 0)
 self.assertEqual(Item.objects.all().count(), 0)

 def test_invalid_input_renders_list_template(self):
 response = self.post_invalid_input()
 self.assertTemplateUsed(response, 'list.html')

 def test_invalid_input_renders_form_with_errors(self):
 response = self.post_invalid_input()
 self.assertIsinstance(response.context['form'], ExistingListItemForm)
 self.assertContains(response, escape(empty_list_error))

The reason is that, in the first case, an early failure means not all the assertions are
checked. So, if the view was accidentally saving to the database on invalid POST, you
would get an early fail, and so you wouldn’t find out whether it was using the right
template or rendering the form. The second formulation makes it much easier to pick
out exactly what was or wasn’t working.

488 | Appendix B: Django Class-Based Views

Lessons Learned from CBGVs
Class-based generic views can do anything

It might not always be clear what’s going on, but you can do just about anything
with class-based generic views.

Single-assertion unit tests help refactoring
With each unit test providing individual guidance on what works and what
doesn’t, it’s much easier to change the implementation of our views to using this
fundamentally different paradigm.

Django Class-Based Views | 489

APPENDIX C

Provisioning with Ansible

We used Fabric to automate deploying new versions of the source code to our servers.
But provisioning a fresh server, and updating the Nginx and Gunicorn config files,
was all left as a manual process.

This is the kind of job that’s increasingly given to tools called “Configuration Man‐
agement” or “Continuous Deployment” tools. Chef and Puppet were the first popular
ones, and in the Python world there’s Salt and Ansible.

Of all of these, Ansible is the easiest to get started with. We can get it working with
just two files:

pip2 install --user ansible # Python 2 sadly

An “inventory file” at deploy_tools/inventory.ansible defines what servers we can run
against:

deploy_tools/inventory.ansible
[live]
superlists.ottg.eu ansible_become=yes ansible_ssh_user=elspeth

[staging]
superlists-staging.ottg.eu ansible_become=yes ansible_ssh_user=elspeth

[local]
localhost ansible_ssh_user=root ansible_ssh_port=6666 ansible_host=127.0.0.1

(The local entry is just an example, in my case a Virtualbox VM, with port forward‐
ing for ports 22 and 80 set up.)

491

Installing System Packages and Nginx
Next the Ansible “playbook”, which defines what to do on the server. This uses a syn‐
tax called YAML:

deploy_tools/provision.ansible.yaml

- hosts: all

 vars:
 host: "{{ inventory_hostname }}"

 tasks:

 - name: Deadsnakes PPA to get Python 3.6
 apt_repository:
 repo='ppa:fkrull/deadsnakes'
 - name: make sure required packages are installed
 apt: pkg=nginx,git,python3.6,python3.6-venv state=present

 - name: allow long hostnames in nginx
 lineinfile:
 dest=/etc/nginx/nginx.conf
 regexp='(\s+)#? ?server_names_hash_bucket_size'
 backrefs=yes
 line='\1server_names_hash_bucket_size 64;'

 - name: add nginx config to sites-available
 template: src=./nginx.conf.j2 dest=/etc/nginx/sites-available/{{ host }}
 notify:
 - restart nginx

 - name: add symlink in nginx sites-enabled
 file:
 src=/etc/nginx/sites-available/{{ host }}
 dest=/etc/nginx/sites-enabled/{{ host }}
 state=link
 notify:
 - restart nginx

The inventory_hostname variable is the domain name of the server we’re running
against. I’m using the vars section to rename it to “host”, just for convenience.

In this section, we install our required software using apt, tweak the Nginx config to
allow long hostnames using a regular expression replacer, and then write the Nginx
config file using a template. This is a modified version of the template file we saved
into deploy_tools/nginx.template.conf in Chapter 9, but it now uses a specific templat‐
ing syntax—Jinja2, which is actually a lot like the Django template syntax:

492 | Appendix C: Provisioning with Ansible

deploy_tools/nginx.conf.j2
server {
 listen 80;
 server_name {{ host }};

 location /static {
 alias /home/{{ ansible_ssh_user }}/sites/{{ host }}/static;
 }

 location / {
 proxy_set_header Host {{ host }};
 proxy_pass http://unix:/tmp/{{ host }}.socket;
 }
}

Configuring Gunicorn, and Using Handlers to Restart
Services
Here’s the second half of our playbook:

deploy_tools/provision.ansible.yaml
 - name: write gunicorn service script
 template:
 src=./gunicorn.service.j2
 dest=/etc/systemd/system/gunicorn-{{ host }}.service
 notify:
 - restart gunicorn

 handlers:
 - name: restart nginx
 service: name=nginx state=restarted

 - name: restart gunicorn
 systemd:
 name=gunicorn-{{ host }}
 daemon_reload=yes
 enabled=yes
 state=restarted

Once again we use a template for our Gunicorn config:

Provisioning with Ansible | 493

deploy_tools/gunicorn.service.j2
[Unit]
Description=Gunicorn server for {{ host }}

[Service]
User={{ ansible_ssh_user }}
WorkingDirectory=/home/{{ ansible_ssh_user }}/sites/{{ host }}/source
Restart=on-failure
ExecStart=/home/{{ ansible_ssh_user }}/sites/{{ host }}/virtualenv/bin/gunicorn \
 --bind unix:/tmp/{{ host }}.socket \
 --access-logfile ../access.log \
 --error-logfile ../error.log \
 superlists.wsgi:application

[Install]
WantedBy=multi-user.target

Then we have two “handlers” to restart Nginx and Gunicorn. Ansible is clever, so if it
sees multiple steps all call the same handlers, it waits until the last one before calling
it.

And that’s it! The command to kick all these off is:
ansible-playbook -i inventory.ansible provision.ansible.yaml --limit=staging --ask-become-pass

Lots more info in the Ansible docs.

What to Do Next
I’ve just given a little taster of what’s possible with Ansible. But the more you auto‐
mate about your deployments, the more confidence you will have in them. Here are a
few more things to look into.

Move Deployment out of Fabric and into Ansible
We’ve seen that Ansible can help with some aspects of provisioning, but it can also do
pretty much all of our deployment for us. See if you can extend the playbook to do
everything that we currently do in our Fabric deploy script, including notifying the
restarts as required.

Use Vagrant to Spin Up a Local VM
Running tests against the staging site gives us the ultimate confidence that things are
going to work when we go live, but we can also use a VM on our local machine.

Download Vagrant and Virtualbox, and see if you can get Vagrant to build a dev
server on your own PC, using our Ansible playbook to deploy code to it. Rewire the
FT runner to be able to test against the local VM.

494 | Appendix C: Provisioning with Ansible

https://docs.ansible.com/

Having a Vagrant config file is particularly helpful when working in a team—it helps
new developers to spin up servers that look exactly like yours.

Provisioning with Ansible | 495

APPENDIX D

Testing Database Migrations

Django-migrations and its predecessor South have been around for ages, so it’s not
usually necessary to test database migrations. But it just so happens that we’re intro‐
ducing a dangerous type of migration—that is, one that introduces a new integrity
constraint on our data. When I first ran the migration script against staging, I saw an
error.

On larger projects, where you have sensitive data, you may want the additional confi‐
dence that comes from testing your migrations in a safe environment before applying
them to production data, so this toy example will hopefully be a useful rehearsal.

Another common reason to want to test migrations is for speed—migrations often
involve downtime, and sometimes, when they’re applied to very large datasets, they
can take time. It’s good to know in advance how long that might be.

An Attempted Deploy to Staging
Here’s what happened to me when I first tried to deploy our new validation con‐
straints in Chapter 17:

497

$ cd deploy_tools
$ fab deploy:host=elspeth@superlists-staging.ottg.eu
[...]
Running migrations:
 Applying lists.0005_list_item_unique_together...Traceback (most recent call
last):
 File "/usr/local/lib/python3.6/dist-packages/django/db/backends/utils.py",
line 61, in execute
 return self.cursor.execute(sql, params)
 File
"/usr/local/lib/python3.6/dist-packages/django/db/backends/sqlite3/base.py",
line 475, in execute
 return Database.Cursor.execute(self, query, params)
sqlite3.IntegrityError: columns list_id, text are not unique
[...]

What happened was that some of the existing data in the database violated the integ‐
rity constraint, so the database was complaining when I tried to apply it.

In order to deal with this sort of problem, we’ll need to build a “data migration”. Let’s
first set up a local environment to test against.

Running a Test Migration Locally
We’ll use a copy of the live database to test our migration against.

Be very, very, very careful when using real data for testing. For
example, you may have real customer email addresses in there, and
you don’t want to accidentally send them a bunch of test emails.
Ask me how I know this.

Entering Problematic Data
Start a list with some duplicate items on your live site, as shown in Figure D-1.

498 | Appendix D: Testing Database Migrations

Figure D-1. A list with duplicate items

Copying Test Data from the Live Site
Copy the database down from live:

$ scp elspeth@superlists.ottg.eu:\
/home/elspeth/sites/superlists.ottg.eu/database/db.sqlite3 .
$ mv ../database/db.sqlite3 ../database/db.sqlite3.bak
$ mv db.sqlite3 ../database/db.sqlite3

Confirming the Error
We now have a local database that has not been migrated, and that contains some
problematic data. We should see an error if we try to run migrate:

$ python manage.py migrate --migrate
python manage.py migrate
Operations to perform:
[...]
Running migrations:
[...]
 Applying lists.0005_list_item_unique_together...Traceback (most recent call
last):
[...]
 return Database.Cursor.execute(self, query, params)
sqlite3.IntegrityError: columns list_id, text are not unique

Testing Database Migrations | 499

Inserting a Data Migration
Data migrations are a special type of migration that modifies data in the database
rather than changing the schema. We need to create one that will run before we apply
the integrity constraint, to preventively remove any duplicates. Here’s how we can do
that:

$ git rm lists/migrations/0005_list_item_unique_together.py
$ python manage.py makemigrations lists --empty
Migrations for 'lists':
 0005_auto_20140414_2325.py:
$ mv lists/migrations/0005_*.py lists/migrations/0005_remove_duplicates.py

Check out the Django docs on data migrations for more info, but here’s how we add
some instructions to change existing data:

lists/migrations/0005_remove_duplicates.py
encoding: utf8
from django.db import models, migrations

def find_dupes(apps, schema_editor):
 List = apps.get_model("lists", "List")
 for list_ in List.objects.all():
 items = list_.item_set.all()
 texts = set()
 for ix, item in enumerate(items):
 if item.text in texts:
 item.text = '{} ({})'.format(item.text, ix)
 item.save()
 texts.add(item.text)

class Migration(migrations.Migration):

 dependencies = [
 ('lists', '0004_item_list'),
]

 operations = [
 migrations.RunPython(find_dupes),
]

Re-creating the Old Migration
We re-create the old migration using makemigrations, which will ensure it is now the
sixth migration and has an explicit dependency on 0005, the data migration:

500 | Appendix D: Testing Database Migrations

https://docs.djangoproject.com/en/1.11/topics/migrations/#data-migrations
https://docs.djangoproject.com/en/1.11/topics/migrations/#data-migrations

$ python manage.py makemigrations
Migrations for 'lists':
 0006_auto_20140415_0018.py:
 - Alter unique_together for item (1 constraints)
$ mv lists/migrations/0006_* lists/migrations/0006_unique_together.py

Testing the New Migrations Together
We’re now ready to run our test against the live data:

$ cd deploy_tools
$ fab deploy:host=elspeth@superlists-staging.ottg.eu
[...]

We’ll need to restart the live Gunicorn job too:

elspeth@server:$ sudo systemctl restart gunicorn-superlists.ottg.eu

And we can now run our FTs against staging:
$ STAGING_SERVER=superlists-staging.ottg.eu python manage.py test functional_tests
[...]
....

Ran 4 tests in 17.308s

OK

Everything seems in order! Let’s do it against live:

$ fab deploy --host=superlists.ottg.eu
[superlists.ottg.eu] Executing task 'deploy'
[...]

And that’s a wrap. git add lists/migrations, git commit, and so on.

Conclusions
This exercise was primarily aimed at building a data migration and testing it against
some real data. Inevitably, this is only a drop in the ocean of the possible testing you
could do for a migration. You could imagine building automated tests to check that
all your data was preserved, comparing the database contents before and after. You
could write individual unit tests for the helper functions in a data migration. You
could spend more time measuring the time taken for migrations, and experiment
with ways to speed it up by, for example, breaking up migrations into more or fewer
component steps.

Remember that this should be a relatively rare case. In my experience, I haven’t felt
the need to test 99% of the migrations I’ve worked on. But, should you ever feel the
need on your project, I hope you’ve found a few pointers here to get started with.

Testing Database Migrations | 501

On Testing Database Migrations
Be wary of migrations which introduce constraints

99% of migrations happen without a hitch, but be wary of any situations, like this
one, where you are introducing a new constraint on columns that already exist.

Test migrations for speed
Once you have a larger project, you should think about testing how long your
migrations are going to take. Database migrations typically involve downtime, as,
depending on your database, the schema update operation may lock the table it’s
working on until it completes. It’s a good idea to use your staging site to find out
how long a migration will take.

Be extremely careful if using a dump of production data
In order to do so, you’ll want fill your staging site’s database with an amount of
data that’s commensurate to the size of your production data. Explaining how to
do that is outside of the scope of this book, but I will say this: if you’re tempted to
just take a dump of your production database and load it into staging, be very
careful. Production data contains real customer details, and I’ve personally been
responsible for accidentally sending out a few hundred incorrect invoices after an
automated process on my staging server started processing the copied produc‐
tion data I’d just loaded into it. Not a fun afternoon.

502 | Appendix D: Testing Database Migrations

APPENDIX E

Behaviour-Driven Development (BDD)

Now I haven’t used BDD “in anger,” so I can’t claim any sort of expertise, but I really
like what I have seen of it, and I thought that you deserved at least a whirlwind tour.
In this appendix, we’ll take some of the tests we wrote in a “normal” FT, and convert
them to using BDD tools.

What Is BDD?
BDD, strictly speaking, is a methodology rather than a toolset—it’s the approach of
testing your application by testing the behaviour that we expect it to display to a user
(the Wikipedia entry has quite a good overview). So, in some ways, the Selenium-
based FTs that I’ve shown in the rest of the book could be called BDD.

But the term has become closely associated with a particular set of tools for doing
BDD, most importantly the Gherkin syntax, which is a human-readable DSL for writ‐
ing functional (or acceptance) tests. Gherkin originally came out of the Ruby world,
where it’s associated with a test runner called Cucumber.

In the Python world, we have a couple of equivalent test running tools, Lettuce and
Behave. Of these, only Behave was compatible with Python 3 at the time of writing, so
that’s what we’ll use. We’ll also use a plugin called behave-django.

503

https://en.wikipedia.org/wiki/Behavior-driven_development
https://github.com/cucumber/cucumber/wiki/Gherkin
http://cukes.info/
http://lettuce.it/
http://pythonhosted.org/behave/
https://pythonhosted.org/behave-django/

Getting the Code for These Examples
I’m going to use the example from Chapter 22. We have a basic to-do lists site, and we
want to add a new feature: logged-in users should be able to view the lists they’ve
authored in one place. Up until this point, all lists are effectively anonymous.

If you’ve been following along with the book, I’m going to assume you can skip back
to the code for that point. If you want to pull it from my repo, the place to go is the
chapter_17 branch.

Basic Housekeeping
We make a directory for our BDD “features,” add a steps directory (we’ll find out what
these are shortly!), and placeholder for our first feature:

$ mkdir -p features/steps
$ touch features/my_lists.feature
$ touch features/steps/my_lists.py
$ tree features
features
├── my_lists.feature
└── steps
 └── my_lists.py

We install behave-django, and add it to settings.py:

$ pip install behave-django

superlists/settings.py
--- a/superlists/settings.py
+++ b/superlists/settings.py
@@ -40,6 +40,7 @@ INSTALLED_APPS = [
 'lists',
 'accounts',
 'functional_tests',
+ 'behave_django',
]

And then run python manage.py behave as a sanity check:

$ python manage.py behave
Creating test database for alias 'default'...
0 features passed, 0 failed, 0 skipped
0 scenarios passed, 0 failed, 0 skipped
0 steps passed, 0 failed, 0 skipped, 0 undefined
Took 0m0.000s
Destroying test database for alias 'default'...

504 | Appendix E: Behaviour-Driven Development (BDD)

https://github.com/hjwp/book-example/tree/chapter_17

Writing an FT as a “Feature” Using Gherkin Syntax
Up until now, we’ve been writing our FTs using human-readable comments that
describe the new feature in terms of a user story, interspersed with the Selenium code
required to execute each step in the story.

BDD enforces a distinction between those two—we write our human-readable story
using a human-readable (if occasionally somewhat awkward) syntax called “Gherkin”,
and that is called the “Feature”. Later, we’ll map each line of Gherkin to a function that
contains the Selenium code necessary to implement that “step.”

Here’s what a Feature for our new “My lists” page could look like:

features/my_lists.feature
Feature: My Lists
 As a logged-in user
 I want to be able to see all my lists in one page
 So that I can find them all after I've written them

 Scenario: Create two lists and see them on the My Lists page

 Given I am a logged-in user

 When I create a list with first item "Reticulate Splines"
 And I add an item "Immanentize Eschaton"
 And I create a list with first item "Buy milk"

 Then I will see a link to "My lists"

 When I click the link to "My lists"
 Then I will see a link to "Reticulate Splines"
 And I will see a link to "Buy milk"

 When I click the link to "Reticulate Splines"
 Then I will be on the "Reticulate Splines" list page

Behaviour-Driven Development (BDD) | 505

As-a /I want to/So that
At the top you’ll notice the As-a/I want to/So that clause. This is optional, and it has
no executable counterpart—it’s just a slightly formalised way of capturing the “who
and why?” aspects of a user story, gently encouraging the team to think about the jus‐
tifications for each feature.

Given/When/Then
Given/When/Then is the real core of a BDD test. This trilobite formulation matches
the setup/exercise/assert pattern we’ve seen in our unit tests, and it represents the
setup and assumptions phase, an exercise/action phase, and a subsequent assertion/
observation phase. There’s more info on the Cucumber wiki.

Not Always a Perfect Fit!
As you can see, it’s not always easy to shoe-horn a user story into exactly three steps!
We can use the And clause to expand on a step, and I’ve added multiple When steps and
subsequent Then’s to illustrate further aspects of our “My lists” page.

Coding the Step Functions
We now build the counterpart to our Gherkin-syntax feature, which are the “step”
functions that will actually implement them in code.

506 | Appendix E: Behaviour-Driven Development (BDD)

https://github.com/cucumber/cucumber/wiki/Given-When-Then

Generating Placeholder Steps
When we run behave, it helpfully tells us about all the steps we need to implement:

$ python manage.py behave
Feature: My Lists # features/my_lists.feature:1
 As a logged-in user
 I want to be able to see all my lists in one page
 So that I can find them all after I've written them
 Scenario: Create two lists and see them on the My Lists page #
features/my_lists.feature:6
 Given I am a logged-in user # None
 Given I am a logged-in user # None
 When I create a list with first item "Reticulate Splines" # None
 And I add an item "Immanentize Eschaton" # None
 And I create a list with first item "Buy milk" # None
 Then I will see a link to "My lists" # None
 When I click the link to "My lists" # None
 Then I will see a link to "Reticulate Splines" # None
 And I will see a link to "Buy milk" # None
 When I click the link to "Reticulate Splines" # None
 Then I will be on the "Reticulate Splines" list page # None

Failing scenarios:
 features/my_lists.feature:6 Create two lists and see them on the My Lists
page

0 features passed, 1 failed, 0 skipped
0 scenarios passed, 1 failed, 0 skipped
0 steps passed, 0 failed, 0 skipped, 10 undefined
Took 0m0.000s

You can implement step definitions for undefined steps with these snippets:

@given(u'I am a logged-in user')
def step_impl(context):
 raise NotImplementedError(u'STEP: Given I am a logged-in user')

@when(u'I create a list with first item "Reticulate Splines"')
def step_impl(context):
[...]

And you’ll notice all this output is nicely coloured, as shown in Figure E-1.

Behaviour-Driven Development (BDD) | 507

Figure E-1. Behave with coloured console ouptut

It’s encouraging us to copy and paste these snippets, and use them as starting points
to build our steps.

First Step Definition
Here’s a first stab at making a step for our “Given I am a logged-in user” step. I started
by stealing the code for self.create_pre_authenticated_session from func‐
tional_tests/test_my_lists.py, and adapting it slightly (removing the server-side ver‐
sion, for example, although it would be easy to re-add later).

508 | Appendix E: Behaviour-Driven Development (BDD)

features/steps/my_lists.py
from behave import given, when, then
from functional_tests.management.commands.create_session import \
 create_pre_authenticated_session
from django.conf import settings

@given('I am a logged-in user')
def given_i_am_logged_in(context):
 session_key = create_pre_authenticated_session(email='edith@example.com')
 ## to set a cookie we need to first visit the domain.
 ## 404 pages load the quickest!
 context.browser.get(context.get_url("/404_no_such_url/"))
 context.browser.add_cookie(dict(
 name=settings.SESSION_COOKIE_NAME,
 value=session_key,
 path='/',
))

The context variable needs a little explaining—it’s a sort of global variable, in the
sense that it’s passed to each step that’s executed, and it can be used to store informa‐
tion that we need to share between steps. Here we’ve assumed we’ll be storing a
browser object on it, and the server_url. We end up using it a lot like we used self
when we were writing unittest FTs.

setUp and tearDown Equivalents in environment.py
Steps can make changes to state in the context, but the place to do preliminary set-
up, the equivalent of setUp, is in a file called environment.py:

features/environment.py
from selenium import webdriver

def before_all(context):
 context.browser = webdriver.Firefox()

def after_all(context):
 context.browser.quit()

def before_feature(context, feature):
 pass

Another Run
As a sanity check, we can do another run, to see if the new step works and that we
really can start a browser:

$ python manage.py behave
[...]
1 step passed, 0 failed, 0 skipped, 9 undefined

Behaviour-Driven Development (BDD) | 509

The usual reams of output, but we can see that it seems to have made it through the
first step; let’s define the rest of them.

Capturing Parameters in Steps
We’ll see how Behave allows you to capture parameters from step descriptions. Our
next step says:

features/my_lists.feature
 When I create a list with first item "Reticulate Splines"

And the autogenerated step definition looked like this:

features/steps/my_lists.py
@given('I create a list with first item "Reticulate Splines"')
def step_impl(context):
 raise NotImplementedError(
 u'STEP: When I create a list with first item "Reticulate Splines"'
)

We want to be able to create lists with arbitrary first items, so it would be nice to
somehow capture whatever is between those quotes, and pass them in as an argument
to a more generic function. That’s a common requirement in BDD, and Behave has a
nice syntax for it, reminiscent of the new-style Python string formatting syntax:

features/steps/my_lists.py (ch35l006)
[...]

@when('I create a list with first item "{first_item_text}"')
def create_a_list(context, first_item_text):
 context.browser.get(context.get_url('/'))
 context.browser.find_element_by_id('id_text').send_keys(first_item_text)
 context.browser.find_element_by_id('id_text').send_keys(Keys.ENTER)
 wait_for_list_item(context, first_item_text)

Neat, huh?

Capturing parameters for steps is one of the most powerful features
of the BDD syntax.

As usual with Selenium tests, we will need an explicit wait. Let’s re-use our @wait
decorator from base.py:

510 | Appendix E: Behaviour-Driven Development (BDD)

features/steps/my_lists.py (ch35l007)
from functional_tests.base import wait
[...]

@wait
def wait_for_list_item(context, item_text):
 context.test.assertIn(
 item_text,
 context.browser.find_element_by_css_selector('#id_list_table').text
)

Similarly, we can add to an existing list, and see or click on links:

features/steps/my_lists.py (ch35l008)
from selenium.webdriver.common.keys import Keys
[...]

@when('I add an item "{item_text}"')
def add_an_item(context, item_text):
 context.browser.find_element_by_id('id_text').send_keys(item_text)
 context.browser.find_element_by_id('id_text').send_keys(Keys.ENTER)
 wait_for_list_item(context, item_text)

@then('I will see a link to "{link_text}"')
@wait
def see_a_link(context, link_text):
 context.browser.find_element_by_link_text(link_text)

@when('I click the link to "{link_text}"')
def click_link(context, link_text):
 context.browser.find_element_by_link_text(link_text).click()

Notice we can even use our @wait decorator on steps themselves.

And finally the slightly more complex step that says I am on the page for a particular
list:

features/steps/my_lists.py (ch35l009)
@then('I will be on the "{first_item_text}" list page')
@wait
def on_list_page(context, first_item_text):
 first_row = context.browser.find_element_by_css_selector(
 '#id_list_table tr:first-child'
)
 expected_row_text = '1: ' + first_item_text
 context.test.assertEqual(first_row.text, expected_row_text)

Behaviour-Driven Development (BDD) | 511

Now we can run it and see our first expected failure:
$ python manage.py behave

Feature: My Lists # features/my_lists.feature:1
 As a logged-in user
 I want to be able to see all my lists in one page
 So that I can find them all after I've written them
 Scenario: Create two lists and see them on the My Lists page #
features/my_lists.feature:6
 Given I am a logged-in user #
features/steps/my_lists.py:19
 When I create a list with first item "Reticulate Splines" #
features/steps/my_lists.py:31
 And I add an item "Immanentize Eschaton" #
features/steps/my_lists.py:39
 And I create a list with first item "Buy milk" #
features/steps/my_lists.py:31
 Then I will see a link to "My lists" #
functional_tests/base.py:12
 Traceback (most recent call last):
[...]
 File "features/steps/my_lists.py", line 49, in see_a_link
 context.browser.find_element_by_link_text(link_text)
[...]
 selenium.common.exceptions.NoSuchElementException: Message: Unable to
locate element: My lists

[...]

Failing scenarios:
 features/my_lists.feature:6 Create two lists and see them on the My Lists
page

0 features passed, 1 failed, 0 skipped
0 scenarios passed, 1 failed, 0 skipped
4 steps passed, 1 failed, 5 skipped, 0 undefined

You can see how the output really gives you a sense of how far through the “story” of
the test we got: we manage to create our two lists successfully, but the “My lists” link
does not appear.

Comparing the Inline-Style FT
I’m not going to run through the implementation of the feature, but you can see how
the test will drive development just as well as the inline-style FT would have.

Let’s have a look at it, for comparison:

512 | Appendix E: Behaviour-Driven Development (BDD)

functional_tests/test_my_lists.py
def test_logged_in_users_lists_are_saved_as_my_lists(self):
 # Edith is a logged-in user
 self.create_pre_authenticated_session('edith@example.com')

 # She goes to the home page and starts a list
 self.browser.get(self.live_server_url)
 self.add_list_item('Reticulate splines')
 self.add_list_item('Immanentize eschaton')
 first_list_url = self.browser.current_url

 # She notices a "My lists" link, for the first time.
 self.browser.find_element_by_link_text('My lists').click()

 # She sees that her list is in there, named according to its
 # first list item
 self.wait_for(
 lambda: self.browser.find_element_by_link_text('Reticulate splines')
)
 self.browser.find_element_by_link_text('Reticulate splines').click()
 self.wait_for(
 lambda: self.assertEqual(self.browser.current_url, first_list_url)
)

 # She decides to start another list, just to see
 self.browser.get(self.live_server_url)
 self.add_list_item('Click cows')
 second_list_url = self.browser.current_url

 # Under "my lists", her new list appears
 self.browser.find_element_by_link_text('My lists').click()
 self.wait_for(
 lambda: self.browser.find_element_by_link_text('Click cows')
)
 self.browser.find_element_by_link_text('Click cows').click()
 self.wait_for(
 lambda: self.assertEqual(self.browser.current_url, second_list_url)
)

 # She logs out. The "My lists" option disappears
 self.browser.find_element_by_link_text('Log out').click()
 self.wait_for(lambda: self.assertEqual(
 self.browser.find_elements_by_link_text('My lists'),
 []
))

It’s not entirely an apples-to-apples comparison, but we can look at the number of
lines of code in Table E-1.

Behaviour-Driven Development (BDD) | 513

Table E-1. Lines of code comparison

BDD Standard FT
Feature file: 20 (3 optional) test function body: 45

Steps file: 56 lines helper functions: 23

The comparison isn’t perfect, but you might say that the feature file and the body of a
“standard FT” test function are equivalent in that they present the main “story” of a
test, while the steps and helper functions represent the “hidden” implementation
details. If you add them up, the total numbers are pretty similar, but notice that
they’re spread out differently: the BDD tests have made the story more concise, and
pushed more work out into the hidden implementation details.

BDD Encourages Structured Test Code
This is the real appeal, for me: the BDD tool has forced us to structure our test code.
In the inline-style FT, we’re free to use as many lines as we want to implement a step,
as described by its comment line. It’s very hard to resist the urge to just copy-and-
paste code from elsewhere, or just from earlier on in the test. You can see that, by this
point in the book, I’ve built just a couple of helper functions (like
get_item_input_box).

In contrast, the BDD syntax has immediately forced me to have a separate function
for each step, so I’ve already built some very reusable code to:

• Start a new list
• Add an item to an existing list
• Click on a link with particular text
• Assert that I’m looking at a particular list’s page

BDD really encourages you to write test code that seems to match well with the busi‐
ness domain, and to use a layer of abstraction between the story of your FT and its
implementation in code.

The ultimate expression of this is that, theoretically, if you wanted to change pro‐
gramming languages, you could keep all your features in Gherkin syntax exactly as
they are, and throw away the Python steps and replace them with steps implemented
in another language.

514 | Appendix E: Behaviour-Driven Development (BDD)

The Page Pattern as an Alternative
In Chapter 25 of the book, I present an example of the “Page pattern”, which is an
object-oriented approach to structuring your Selenium tests. Here’s a reminder of
what it looks like:

functional_tests/test_sharing.py
from .my_lists_page import MyListsPage
[...]

class SharingTest(FunctionalTest):

 def test_can_share_a_list_with_another_user(self):
 # [...]
 self.browser.get(self.live_server_url)
 list_page = ListPage(self).add_list_item('Get help')

 # She notices a "Share this list" option
 share_box = list_page.get_share_box()
 self.assertEqual(
 share_box.get_attribute('placeholder'),
 'your-friend@example.com'
)

 # She shares her list.
 # The page updates to say that it's shared with Oniciferous:
 list_page.share_list_with('oniciferous@example.com')

And the Page class looks like this:

functional_tests/lists_pages.py
class ListPage(object):

 def __init__(self, test):
 self.test = test

 def get_table_rows(self):
 return self.test.browser.find_elements_by_css_selector('#id_list_table tr')

 @wait
 def wait_for_row_in_list_table(self, item_text, item_number):
 row_text = '{}: {}'.format(item_number, item_text)
 rows = self.get_table_rows()
 self.test.assertIn(row_text, [row.text for row in rows])

 def get_item_input_box(self):
 return self.test.browser.find_element_by_id('id_text')

Behaviour-Driven Development (BDD) | 515

So it’s definitely possible to implement a similar layer of abstraction, and a sort of
DSL, in inline-style FTs, whether it’s by using the Page pattern or whatever structure
you prefer—but now it’s a matter of self-discipline, rather than having a framework
that pushes you towards it.

In fact, you can actually use the Page pattern with BDD as well, as a
resource for your steps to use when navigating the pages of your
site.

BDD Might Be Less Expressive than Inline Comments
On the other hand, I can also see potential for the Gherkin syntax to feel somewhat
restrictive. Compare how expressive and readable the inline-style comments are, with
the slightly awkward BDD feature:

functional_tests/test_my_lists.py
 # Edith is a logged-in user
 # She goes to the home page and starts a list
 # She notices a "My lists" link, for the first time.
 # She sees that her list is in there, named according to its
 # first list item
 # She decides to start another list, just to see
 # Under "my lists", her new list appears
 # She logs out. The "My lists" option disappears
[...]

That’s much more readable and natural than our slightly forced Given/Then/When
incantations, and, in a way, might encourage more user-centric thinking. (There is a
syntax in Gherkin for including “comments” in a feature file, which would mitigate
this somewhat, but I gather that it’s not widely used.)

Will Nonprogrammers Write Tests?
I haven’t touched on one of the original promises of BDD, which is that nonprogram‐
mers—business or client representatives perhaps—might actually write the Gherkin
syntax. I’m quite skeptical about whether this would actually work in the real world,
but I don’t think that detracts from the other potential benefits of BDD.

Some Tentative Conclusions
I’ve only dipped my toes into the BDD world, so I’m hesitant to draw any firm con‐
clusions. I find the “forced” structuring of FTs into steps very appealing though—in
that it looks like it has the potential to encourage a lot of reuse in your FT code, and

516 | Appendix E: Behaviour-Driven Development (BDD)

that it neatly separates concerns between describing the story and implementing it,
and that it forces us to think about things in terms of the business domain, rather
than in terms of “what we need to do with Selenium.”

But there’s no free lunch. The Gherkin syntax is restrictive, compared to the total
freedom offered by inline FT comments.

I also would like to see how BDD scales once you have not just one or two features,
and four or five steps, but several dozen features and hundreds of lines of steps code.

Overall, I would say it’s definitely worth investigating, and I will probably use BDD
for my next personal project.

My thanks to Daniel Pope, Rachel Willmer, and Jared Contrascere for their feedback
on this chapter.

BDD Conclusions
Encourages structured, reusable test code

By separating concerns, breaking your FTs out into the human-readable, Gherkin
syntax “feature” file and a separate implementation of steps functions, BDD has
the potential to encourage more reusable and manageable test code.

It may come at the expense of readability
The Gherkin syntax, for all its attempt to be human-readable, is ultimately a con‐
straint on human language, and so it may not capture nuance and intention as
well as inline comments do.

Try it! I will
As I keep saying, I haven’t used BDD on a real project, so you should take my
words with a heavy pinch of salt, but I’d like to give it a hearty endorsement. I’m
going to try it out on the next project I can, and I’d encourage you to do so as
well.

Behaviour-Driven Development (BDD) | 517

APPENDIX F

Building a REST API: JSON, Ajax, and
Mocking with JavaScript

Representational State Transfer (REST) is an approach to designing a web service to
allow a user to retrieve and update information about “resources”. It’s become the
dominant approach when designing APIs for use over the web.

We’ve built a working web app without needing an API so far. Why might we want
one? One motivation might be to improve the user experience by making the site
more dynamic. Rather than waiting for the page to refresh after each addition to a
list, we can use JavaScript to fire off those requests asynchronously to our API, and
give the user a more interactive feeling.

Perhaps more interestingly, once we’ve built an API, we can interact with our back-
end application via other mechanisms than the browser. A mobile app might be one
new candidate client application, another might be some sort of command-line appli‐
cation, or other developers might be able to build libraries and tools around your
backend.

In this chapter we’ll see how to build an API “by hand”. In the next, I’ll give an over‐
view of how to use a popular tool from the Django ecosystem called Django-Rest-
Framework.

Our Approach for This Appendix
I won’t convert the entirety of the app for now; we’ll start by assuming we have an
existing list. REST defines a relationship between URLs and the HTTP methods
(GET and POST, but also the more funky ones like PUT and DELETE) which will
guide us in our design.

The Wikipedia entry on REST has a good overview. In brief:

519

http://bit.ly/2u6qeYw

• Our new URL structure will be /api/lists/{id}/
• GET will give you details of a list (including all its items) in JSON format
• POST lets you add an item

We’ll take the code from its state at the end of Chapter 25.

Choosing Our Test Approach
If we were building an API that was entirely agnostic about its clients, we might want
to think about what levels to test it at. The equivalent of functional tests would per‐
haps spin up a real server (maybe using LiveServerTestCase) and interact with it
using the requests library. We’d have to think carefully about how to set up fixtures
(if we use the API itself, that introduces a lot of dependencies between tests) and what
additional layer of lower-level/unit tests might be most useful to us. Or we might
decide that a single layer of tests using the Django Test Client would be enough.

As it is, we’re building an API in the context of a browser-based client side. We want
to start using it on our production site, and have the app continue to provide the
same functionality as it did before. So our functional tests will continue to serve the
role of being the highest-level tests, and of checking the integration between our Java‐
Script and our API.

That leaves the Django Test Client as a natural place to site our lower-level tests. Let’s
start there.

Basic Piping
We start with a unit test that just checks that our new URL structure returns a 200
response to GET requests, and that it uses the JSON format (instead of HTML):

lists/tests/test_api.py
import json
from django.test import TestCase

from lists.models import List, Item

class ListAPITest(TestCase):
 base_url = '/api/lists/{}/'

 def test_get_returns_json_200(self):
 list_ = List.objects.create()
 response = self.client.get(self.base_url.format(list_.id))
 self.assertEqual(response.status_code, 200)
 self.assertEqual(response['content-type'], 'application/json')

520 | Appendix F: Building a REST API: JSON, Ajax, and Mocking with JavaScript

Using a class-level constant for the URL under test is a new pattern we’ll intro‐
duce for this appendix. It’ll help us to remove duplication of hardcoded URLs.
You could even use a call to reverse to reduce duplication even further.

First we wire up a couple of urls files:

superlists/urls.py
from django.conf.urls import include, url
from accounts import urls as accounts_urls
from lists import views as list_views
from lists import api_urls
from lists import urls as list_urls

urlpatterns = [
 url(r'^$', list_views.home_page, name='home'),
 url(r'^lists/', include(list_urls)),
 url(r'^accounts/', include(accounts_urls)),
 url(r'^api/', include(api_urls)),
]

and:

lists/api_urls.py
from django.conf.urls import url
from lists import api

urlpatterns = [
 url(r'^lists/(\d+)/$', api.list, name='api_list'),
]

And the actual core of our API can live in a file called api.py. Just three lines should
be enough:

lists/api.py
from django.http import HttpResponse

def list(request, list_id):
 return HttpResponse(content_type='application/json')

The tests should pass, and we have the basic piping together:

$ python manage.py test lists
[...]
..

Ran 50 tests in 0.177s

OK

Building a REST API: JSON, Ajax, and Mocking with JavaScript | 521

Actually Responding with Something
Our next step is to get our API to actually respond with some content—specifically, a
JSON representation of our list items:

lists/tests/test_api.py (ch36l002)
 def test_get_returns_items_for_correct_list(self):
 other_list = List.objects.create()
 Item.objects.create(list=other_list, text='item 1')
 our_list = List.objects.create()
 item1 = Item.objects.create(list=our_list, text='item 1')
 item2 = Item.objects.create(list=our_list, text='item 2')
 response = self.client.get(self.base_url.format(our_list.id))
 self.assertEqual(
 json.loads(response.content.decode('utf8')),
 [
 {'id': item1.id, 'text': item1.text},
 {'id': item2.id, 'text': item2.text},
]
)

This is the main thing to notice about this test. We expect our response to be in
JSON format; we use json.loads() because testing Python objects is easier than
messing about with raw JSON strings.

And the implementation, conversely, uses json.dumps():

lists/api.py
import json
from django.http import HttpResponse
from lists.models import List, Item

def list(request, list_id):
 list_ = List.objects.get(id=list_id)
 item_dicts = [
 {'id': item.id, 'text': item.text}
 for item in list_.item_set.all()
]
 return HttpResponse(
 json.dumps(item_dicts),
 content_type='application/json'
)

A nice opportunity to use a list comprehension!

522 | Appendix F: Building a REST API: JSON, Ajax, and Mocking with JavaScript

Adding POST
The second thing we need from our API is the ability to add new items to our list by
using a POST request. We’ll start with the “happy path”:

lists/tests/test_api.py (ch36l004)
 def test_POSTing_a_new_item(self):
 list_ = List.objects.create()
 response = self.client.post(
 self.base_url.format(list_.id),
 {'text': 'new item'},
)
 self.assertEqual(response.status_code, 201)
 new_item = list_.item_set.get()
 self.assertEqual(new_item.text, 'new item')

And the implementation is similarly simple—basically the same as what we do in our
normal view, but we return a 201 rather than a redirect:

lists/api.py (ch36l005)
def list(request, list_id):
 list_ = List.objects.get(id=list_id)
 if request.method == 'POST':
 Item.objects.create(list=list_, text=request.POST['text'])
 return HttpResponse(status=201)
 item_dicts = [
 [...]

And that should get us started:

$ python manage.py test lists
[...]

Ran 52 tests in 0.177s

OK

One of the fun things about building a REST API is that you get to
use a few more of the full range of HTTP status codes.

Building a REST API: JSON, Ajax, and Mocking with JavaScript | 523

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Testing the Client-Side Ajax with Sinon.js
Don’t even think of doing Ajax testing without a mocking library. Different test
frameworks and tools have their own; Sinon is generic. It also provides JavaScript
mocks, as we’ll see…

Start by downloading it from its site, http://sinonjs.org/, and putting it into our lists/
static/tests/ folder.

Then we can write our first Ajax test:

524 | Appendix F: Building a REST API: JSON, Ajax, and Mocking with JavaScript

http://sinonjs.org/

lists/static/tests/tests.html (ch36l007)
 <div id="qunit-fixture">
 <form>
 <input name="text" />
 <div class="has-error">Error text</div>
 </form>
 <table id="id_list_table">
 </table>
 </div>

 <script src="../jquery-3.1.1.min.js"></script>
 <script src="../list.js"></script>
 <script src="qunit-2.0.1.js"></script>
 <script src="sinon-1.17.6.js"></script>

 <script>
/* global sinon */

var server;
QUnit.testStart(function () {
 server = sinon.fakeServer.create();
});
QUnit.testDone(function () {
 server.restore();
});

QUnit.test("errors should be hidden on keypress", function (assert) {
[...]

QUnit.test("should get items by ajax on initialize", function (assert) {
 var url = '/getitems/';
 window.Superlists.initialize(url);

 assert.equal(server.requests.length, 1);
 var request = server.requests[0];
 assert.equal(request.url, url);
 assert.equal(request.method, 'GET');
});

 </script>

We add a new item to the fixture div to represent our list table.

We import sinon.js (you’ll need to download it and put it in the right folder).

testStart and testDone are the QUnit equivalents of setUp and tearDown. We
use them to tell Sinon to start up its Ajax testing tool, the fakeServer, and make
it available via a globally scoped variable called server.

Building a REST API: JSON, Ajax, and Mocking with JavaScript | 525

That lets us make assertions about any Ajax requests that were made by our code.
In this case, we test what URL the request went to, and what HTTP method it
used.

To actually make our Ajax request, we’ll use the jQuery Ajax helpers, which are much
easier than trying to use the low-level browser standard XMLHttpRequest objects:

lists/static/list.js
@@ -1,6 +1,10 @@
 window.Superlists = {};
-window.Superlists.initialize = function () {
+window.Superlists.initialize = function (url) {
 $('input[name="text"]').on('keypress', function () {
 $('.has-error').hide();
 });
+
+ $.get(url);
+
 };
+

That should get our test passing:

5 assertions of 5 passed, 0 failed.
1. errors should be hidden on keypress (1)
2. errors aren't hidden if there is no keypress (1)
3. should get items by ajax on initialize (3)

Well, we might be pinging out a GET request to the server, but what about actually
doing something? How do we test the actual “async” part, where we deal with the
(eventual) response?

Sinon and Testing the Asynchronous Part of Ajax
This is a major reason to love Sinon. server.respond() allows us to exactly control
the flow of the asynchronous code.

526 | Appendix F: Building a REST API: JSON, Ajax, and Mocking with JavaScript

https://api.jquery.com/jQuery.get/

lists/static/tests/tests.html (ch36l009)
QUnit.test("should fill in lists table from ajax response", function (assert) {
 var url = '/getitems/';
 var responseData = [
 {'id': 101, 'text': 'item 1 text'},
 {'id': 102, 'text': 'item 2 text'},
];
 server.respondWith('GET', url, [
 200, {"Content-Type": "application/json"}, JSON.stringify(responseData)
]);
 window.Superlists.initialize(url);

 server.respond();

 var rows = $('#id_list_table tr');
 assert.equal(rows.length, 2);
 var row1 = $('#id_list_table tr:first-child td');
 assert.equal(row1.text(), '1: item 1 text');
 var row2 = $('#id_list_table tr:last-child td');
 assert.equal(row2.text(), '2: item 2 text');
});

We set up some response data for Sinon to use, telling it what status code, head‐
ers, and importantly what kind of response JSON we want to simulate coming
from the server.

Then we call the function under test.

Here’s the magic. Then we can call server.respond(), whenever we like, and that
will kick off all the async part of the Ajax loop—that is, any callback we’ve
assigned to deal with the response.

Now we can quietly check whether our Ajax callback has actually populated our
table with the new list rows…

The implementation might look something like this:

lists/static/list.js (ch36l010)
 if (url) {
 $.get(url).done(function (response) {
 var rows = '';
 for (var i=0; i<response.length; i++) {
 var item = response[i];
 rows += '\n<tr><td>' + (i+1) + ': ' + item.text + '</td></tr>';
 }
 $('#id_list_table').html(rows);
 });
 }

Building a REST API: JSON, Ajax, and Mocking with JavaScript | 527

We’re lucky because of the way jQuery registers its callbacks for
Ajax when we use the .done() function. If you want to switch to
the more standard JavaScript Promise .then() callback, we get one
more “level” of async. QUnit does have a way of dealing with that.
Check out the docs for the async function. Other test frameworks
have something similar.

Wiring It All Up in the Template to See If It Really Works
We break it first, by removing the list table {% for %} loop from the lists.html
template:

lists/templates/list.html
@@ -6,9 +6,6 @@

 {% block table %}
 <table id="id_list_table" class="table">
- {% for item in list.item_set.all %}
- <tr><td>{{ forloop.counter }}: {{ item.text }}</td></tr>
- {% endfor %}
 </table>

 {% if list.owner %}

This will cause one of the unit tests to fail. It’s OK to delete that test
at this point.

Graceful Degradation and Progressive Enhancement
By removing the non-Ajax version of the lists page, I’ve removed the option of grace‐
ful degradation—that is, keeping a version of the site that will still work without
JavaScript.

This used to be an accessibility issue: “screen reader” browsers for visually impaired
people used not to have JavaScript, so relying entirely on JS would exclude those
users. That’s not so much of an issue any more, as I understand it. But some users will
block JavaScript for security reasons.

Another common problem is differing levels of JavaScript support in different brows‐
ers. This is a particular issue if you start adventuring off in the direction of “modern”
frontend development and ES2015.

528 | Appendix F: Building a REST API: JSON, Ajax, and Mocking with JavaScript

http://api.qunitjs.com/async/
https://www.w3.org/wiki/Graceful_degradation_versus_progressive_enhancement
https://www.w3.org/wiki/Graceful_degradation_versus_progressive_enhancement

In short, it’s always nice to have a non-JavaScript “backup”. Particularly if you’ve built
a site that works fine without it, don’t throw away your working “plain old” HTML
version too hastily. I’m just doing it because it’s convenient for what I want to
demonstrate.

That causes our basic FT to fail:

$ python manage.py test functional_tests.test_simple_list_creation
[...]
FAIL: test_can_start_a_list_for_one_user
[...]
 File "/.../superlists/functional_tests/test_simple_list_creation.py", line
32, in test_can_start_a_list_for_one_user
 self.wait_for_row_in_list_table('1: Buy peacock feathers')
[...]
AssertionError: '1: Buy peacock feathers' not found in []
[...]
FAIL: test_multiple_users_can_start_lists_at_different_urls

FAILED (failures=2)

Let’s add a block called {% scripts %} to the base template, which we can selectively
override later in our lists page:

lists/templates/base.html
 <script src="/static/list.js"></script>

 {% block scripts %}
 <script>
$(document).ready(function () {
 window.Superlists.initialize();
});
 </script>
 {% endblock scripts %}

 </body>

And now in list.html we add a slightly different call to initialize, with the correct
URL:

lists/templates/list.html (ch36l016)
{% block scripts %}
 <script>
$(document).ready(function () {
 var url = "{% url 'api_list' list.id %}";
 window.Superlists.initialize(url);
});
 </script>
{% endblock scripts %}

Building a REST API: JSON, Ajax, and Mocking with JavaScript | 529

And guess what? The test passes!

$ python manage.py test functional_tests.test_simple_list_creation
[...]
Ran 2 test in 11.730s

OK

That’s a pretty good start!

Now if you run all the FTs you’ll see we’ve got some failures in other FTs, so we’ll have
to deal with them. Also, we’re using an old-fashioned POST from the form, with page
refresh, so we’re not at our trendy hipster single-page app yet. But we’ll get there!

Implementing Ajax POST, Including the CSRF Token
First we give our list form an id so we can pick it up easily in our JS:

lists/templates/base.html
 <h1>{% block header_text %}{% endblock %}</h1>
 {% block list_form %}
 <form id="id_item_form" method="POST" action="{% block form_action %}{% endblock %}">
 {{ form.text }}
 [...]

Next tweak the fixture in our JS test to reflect that ID, as well as the CSRF token that’s
currently on the page:

lists/static/tests/tests.html
@@ -9,9 +9,14 @@
 <body>
 <div id="qunit"></div>
 <div id="qunit-fixture">
- <form>
+ <form id="id_item_form">
 <input name="text" />
- <div class="has-error">Error text</div>
+ <input type="hidden" name="csrfmiddlewaretoken" value="tokey" />
+ <div class="has-error">
+ <div class="help-block">
+ Error text
+ </div>
+ </div>
 </form>

And here’s our test:

530 | Appendix F: Building a REST API: JSON, Ajax, and Mocking with JavaScript

lists/static/tests/tests.html (ch36l019)
QUnit.test("should intercept form submit and do ajax post", function (assert) {
 var url = '/listitemsapi/';
 window.Superlists.initialize(url);

 $('#id_item_form input[name="text"]').val('user input');
 $('#id_item_form input[name="csrfmiddlewaretoken"]').val('tokeney');
 $('#id_item_form').submit();

 assert.equal(server.requests.length, 2);
 var request = server.requests[1];
 assert.equal(request.url, url);
 assert.equal(request.method, "POST");
 assert.equal(
 request.requestBody,
 'text=user+input&csrfmiddlewaretoken=tokeney'
);
});

We simulate the user filling in the form and hitting Submit.

We now expect that there should be a second Ajax request (the first one is the
GET for the list items table).

We check our POST requestBody. As you can see, it’s URL-encoded, which isn’t
the most easy value to test, but it’s still just about readable.

And here’s how we implement it:

lists/static/list.js
[...]
 $('#id_list_table').html(rows);
});

var form = $('#id_item_form');
form.on('submit', function(event) {
 event.preventDefault();
 $.post(url, {
 'text': form.find('input[name="text"]').val(),
 'csrfmiddlewaretoken': form.find('input[name="csrfmiddlewaretoken"]').val(),
 });
});

That gets our JS tests passing but it breaks our FTs, because, although we’re doing our
POST all right, we’re not updating the page after the POST to show the new list item:

Building a REST API: JSON, Ajax, and Mocking with JavaScript | 531

$ python manage.py test functional_tests.test_simple_list_creation
[...]
AssertionError: '2: Use peacock feathers to make a fly' not found in ['1: Buy
peacock feathers']

Mocking in JavaScript
We want our client side to update the table of items after the Ajax POST completes.
Essentially it’ll do the same work as we do as soon as the page loads, retrieving the
current list of items from the server, and filling in the item table.

Sounds like a helper function is in order!

lists/static/list.js
window.Superlists = {};

window.Superlists.updateItems = function (url) {
 $.get(url).done(function (response) {
 var rows = '';
 for (var i=0; i<response.length; i++) {
 var item = response[i];
 rows += '\n<tr><td>' + (i+1) + ': ' + item.text + '</td></tr>';
 }
 $('#id_list_table').html(rows);
 });
};

window.Superlists.initialize = function (url) {
 $('input[name="text"]').on('keypress', function () {
 $('.has-error').hide();
 });

 if (url) {
 window.Superlists.updateItems(url);

 var form = $('#id_item_form');
 [...]

That was just a refactor; now we check that the JS tests all still pass:

12 assertions of 12 passed, 0 failed.
1. errors should be hidden on keypress (1)
2. errors aren't hidden if there is no keypress (1)
3. should get items by ajax on initialize (3)
4. should fill in lists table from ajax response (3)
5. should intercept form submit and do ajax post (4)

Now how to test that our Ajax POST calls updateItems on POST success? We don’t
want to dumbly duplicate the code that simulates a server response and checks the
items table manually…how about a mock?

532 | Appendix F: Building a REST API: JSON, Ajax, and Mocking with JavaScript

First we set up a thing called a “sandbox”. It will keep track of all the mocks we create,
and make sure to un-monkeypatch all the things that have been mocked after each
test:

lists/static/tests/tests.html (ch36l023)
var server, sandbox;
QUnit.testStart(function () {
 server = sinon.fakeServer.create();
 sandbox = sinon.sandbox.create();
});
QUnit.testDone(function () {
 server.restore();
 sandbox.restore();
});

This .restore() is the important part; it undoes all the mocking we’ve done in
each test.

lists/static/tests/tests.html (ch36l024)
QUnit.test("should call updateItems after successful post", function (assert) {
 var url = '/listitemsapi/';
 window.Superlists.initialize(url);
 var response = [
 201,
 {"Content-Type": "application/json"},
 JSON.stringify({}),
];
 server.respondWith('POST', url, response);
 $('#id_item_form input[name="text"]').val('user input');
 $('#id_item_form input[name="csrfmiddlewaretoken"]').val('tokeney');
 $('#id_item_form').submit();

 sandbox.spy(window.Superlists, 'updateItems');
 server.respond();

 assert.equal(
 window.Superlists.updateItems.lastCall.args,
 url
);
});

First important thing to notice: We only set up our server response after we do
the initialize. We want this to be the response to the POST request that happens
on form submit, not the response to the initial GET request. (Remember our les‐
son from Chapter 16? One of the most challenging things about JS testing is con‐
trolling the order of execution.)

Building a REST API: JSON, Ajax, and Mocking with JavaScript | 533

Similarly, we only start mocking our helper function after we know the first call
for the initial GET has already happened. The sandbox.spy call is what does the
job that patch does in Python tests. It replaces the given object with a mock
version.

Our updateItems function has now grown some mocky extra attributes, like
lastCall and lastCall.args, which are like the Python mock’s call_args.

To get it passing, we first make a deliberate mistake, to check that our tests really do
test what we think they do:

lists/static/list.js
$.post(url, {
 'text': form.find('input[name="text"]').val(),
 'csrfmiddlewaretoken': form.find('input[name="csrfmiddlewaretoken"]').val(),
}).done(function () {
 window.Superlists.updateItems();
});

Yep, we’re almost there but not quite:

12 assertions of 13 passed, 1 failed.
[...]
6. should call updateItems after successful post (1, 0, 1)
 1. failed
 Expected: "/listitemsapi/"
 Result: []
 Diff: "/listitemsapi/"[]
 Source: file:///.../superlists/lists/static/tests/tests.html:124:15

And we fix it thusly:

lists/static/list.js
 }).done(function () {
 window.Superlists.updateItems(url);
 });

And our FT passes! Or at least one of them does. The others have problems, and we’ll
come back to them shortly.

Finishing the Refactor: Getting the Tests to Match the Code
First, I’m not happy until we’ve seen through this refactor, and made our unit tests
match the code a little more:

534 | Appendix F: Building a REST API: JSON, Ajax, and Mocking with JavaScript

lists/static/tests/tests.html
@@ -50,9 +50,19 @@ QUnit.testDone(function () {
 });

-QUnit.test("should get items by ajax on initialize", function (assert) {
+QUnit.test("should call updateItems on initialize", function (assert) {
 var url = '/getitems/';
+ sandbox.spy(window.Superlists, 'updateItems');
 window.Superlists.initialize(url);
+ assert.equal(
+ window.Superlists.updateItems.lastCall.args,
+ url
+);
+});
+
+QUnit.test("updateItems should get correct url by ajax", function (assert) {
+ var url = '/getitems/';
+ window.Superlists.updateItems(url);

 assert.equal(server.requests.length, 1);
 var request = server.requests[0];
@@ -60,7 +70,7 @@ QUnit.test("should get items by ajax on initialize", function (assert) {
 assert.equal(request.method, 'GET');
 });

-QUnit.test("should fill in lists table from ajax response", function (assert) {
+QUnit.test("updateItems should fill in lists table from ajax response", function (assert) {
 var url = '/getitems/';
 var responseData = [
 {'id': 101, 'text': 'item 1 text'},
@@ -69,7 +79,7 @@ QUnit.test("should fill in lists table from ajax response", function [...]
 server.respondWith('GET', url, [
 200, {"Content-Type": "application/json"}, JSON.stringify(responseData)
]);
- window.Superlists.initialize(url);
+ window.Superlists.updateItems(url);

 server.respond();

And that should give us a test run that looks like this instead:

14 assertions of 14 passed, 0 failed.
1. errors should be hidden on keypress (1)
2. errors aren't hidden if there is no keypress (1)
3. should call updateItems on initialize (1)
4. updateItems should get correct url by ajax (3)
5. updateItems should fill in lists table from ajax response (3)
6. should intercept form submit and do ajax post (4)
7. should call updateItems after successful post (1)

Building a REST API: JSON, Ajax, and Mocking with JavaScript | 535

Data Validation: An Exercise for the Reader?
If you do a full test run, you should find two of the validation FTs are failing:

$ python manage.py test
[...]
ERROR: test_cannot_add_duplicate_items
(functional_tests.test_list_item_validation.ItemValidationTest)
[...]
ERROR: test_error_messages_are_cleared_on_input
(functional_tests.test_list_item_validation.ItemValidationTest)
[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: .has-error

I won’t spell this all out for you, but here’s at least the unit tests you’ll need:

lists/tests/test_api.py (ch36l027)
from lists.forms import DUPLICATE_ITEM_ERROR, EMPTY_ITEM_ERROR
[...]
 def post_empty_input(self):
 list_ = List.objects.create()
 return self.client.post(
 self.base_url.format(list_.id),
 data={'text': ''}
)

 def test_for_invalid_input_nothing_saved_to_db(self):
 self.post_empty_input()
 self.assertEqual(Item.objects.count(), 0)

 def test_for_invalid_input_returns_error_code(self):
 response = self.post_empty_input()
 self.assertEqual(response.status_code, 400)
 self.assertEqual(
 json.loads(response.content.decode('utf8')),
 {'error': EMPTY_ITEM_ERROR}
)

 def test_duplicate_items_error(self):
 list_ = List.objects.create()
 self.client.post(
 self.base_url.format(list_.id), data={'text': 'thing'}
)
 response = self.client.post(
 self.base_url.format(list_.id), data={'text': 'thing'}
)
 self.assertEqual(response.status_code, 400)
 self.assertEqual(
 json.loads(response.content.decode('utf8')),
 {'error': DUPLICATE_ITEM_ERROR}
)

536 | Appendix F: Building a REST API: JSON, Ajax, and Mocking with JavaScript

And on the JS side:

lists/static/tests/tests.html (ch36l029-2)
QUnit.test("should display errors on post failure", function (assert) {
 var url = '/listitemsapi/';
 window.Superlists.initialize(url);
 server.respondWith('POST', url, [
 400,
 {"Content-Type": "application/json"},
 JSON.stringify({'error': 'something is amiss'})
]);
 $('.has-error').hide();

 $('#id_item_form').submit();
 server.respond(); // post

 assert.equal($('.has-error').is(':visible'), true);
 assert.equal($('.has-error .help-block').text(), 'something is amiss');
});

QUnit.test("should hide errors on post success", function (assert) {
 [...]

You’ll also want some modifications to base.html to make it compatible with both dis‐
playing Django errors (which the home page still uses for now) and errors from
JavaScript:

Building a REST API: JSON, Ajax, and Mocking with JavaScript | 537

lists/templates/base.html (ch36l031)
@@ -51,17 +51,21 @@
 <div class="col-md-6 col-md-offset-3 jumbotron">
 <div class="text-center">
 <h1>{% block header_text %}{% endblock %}</h1>
+
 {% block list_form %}
 <form id="id_item_form" method="POST" action="{% block [...]
 {{ form.text }}
 {% csrf_token %}
- {% if form.errors %}
- <div class="form-group has-error">
- <div class="help-block">{{ form.text.errors }}</div>
+ <div class="form-group has-error">
+ <div class="help-block">
+ {% if form.errors %}
+ {{ form.text.errors }}
+ {% endif %}
 </div>
- {% endif %}
+ </div>
 </form>
 {% endblock %}
+
 </div>
 </div>
 </div>

By the end you should get to a JS test run a bit like this:

20 assertions of 20 passed, 0 failed.
1. errors should be hidden on keypress (1)
2. errors aren't hidden if there is no keypress (1)
3. should call updateItems on initialize (1)
4. updateItems should get correct url by ajax (3)
5. updateItems should fill in lists table from ajax response (3)
6. should intercept form submit and do ajax post (4)
7. should call updateItems after successful post (1)
8. should not intercept form submit if no api url passed in (1)
9. should display errors on post failure (2)
10. should hide errors on post success (1)
11. should display generic error if no error json (2)

And a full test run should pass, including all the FTs:

$ python manage.py test
[...]
Ran 81 tests in 62.029s
OK

538 | Appendix F: Building a REST API: JSON, Ajax, and Mocking with JavaScript

1 Put on your best cockney accent for this one.

Laaaaaahvely.1

And there’s your hand-rolled REST API with Django. If you need a hint finishing it
off yourself, check out the repo.

But I would never suggest building a REST API in Django without at least checking
out Django-Rest-Framework. Which is the topic of the next appendix! Read on,
Macduff.

REST API Tips
Dedupe URLs

URLs are more important, in a way, to an API than they are to a browser-facing
app. Try to reduce the amount of times you hardcode them in your tests.

Don’t work with raw JSON strings
json.loads and json.dumps are your friend.

Always use an Ajax mocking library for your JS tests
Sinon is fine. Jasmine has its own, as does Angular.

Bear graceful degradation and progressive enhancement in mind
Especially if you’re moving from a static site to a more JavaScript-driven one,
consider keeping at least the core of your site’s functionality working without
JavaScript.

Building a REST API: JSON, Ajax, and Mocking with JavaScript | 539

https://github.com/hjwp/book-example/tree/appendix_rest_api

APPENDIX G

Django-Rest-Framework

Having “rolled our own” REST API in the last appendix, it’s time to take a look at
Django-Rest-Framework, which is a go-to choice for many Python/Django develop‐
ers building APIs. Just as Django aims to give you all the basic tools that you’ll need
to build a database-driven website (an ORM, templates, and so on), so DRF aims to
give you all the tools you need to build an API, and thus avoid you having to write
boilerplate code over and over again.

Writing this appendix, one of the main things I struggled with was getting the exact
same API that I’d just implemented manually to be replicated by DRF. Getting the
same URL layout and the same JSON data structures I’d defined proved to be quite a
challenge, and I felt like I was fighting the framework.

That’s always a warning sign. The people who built Django-Rest-Framework are a lot
smarter than I am, and they’ve seen a lot more REST APIs than I have, and if they’re
opinionated about the way that things “should” look, then maybe my time would be
better spent seeing if I can adapt and work with their view of the world, rather than
forcing my own preconceptions onto it.

“Don’t fight the framework” is one of the great pieces of advice I’ve heard. Either go
with the flow, or perhaps reassess whether you want to be using a framework at all.

We’ll work from the API we had at the end of the last appendix, and see if we can
rewrite it to use DRF.

Installation
A quick pip install gets us DRF. I’m just using the latest version, which was 3.5.4 at
the time of writing:

$ pip install djangorestframework

541

http://www.django-rest-framework.org/

And we add rest_framework to INSTALLED_APPS in settings.py:

superlists/settings.py
INSTALLED_APPS = [
 #'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 'lists',
 'accounts',
 'functional_tests',
 'rest_framework',
]

Serializers (Well, ModelSerializers, Really)
The Django-Rest-Framework tutorial is a pretty good resource to learn DRF. The first
thing you’ll come across is serializers, and specifically in our case, “ModelSerializers”.
They are DRF’s way of converting from Django database models to JSON (or possibly
other formats) that you can send over the wire:

lists/api.py (ch37l003)
from lists.models import List, Item
[...]
from rest_framework import routers, serializers, viewsets

class ItemSerializer(serializers.ModelSerializer):

 class Meta:
 model = Item
 fields = ('id', 'text')

class ListSerializer(serializers.ModelSerializer):
 items = ItemSerializer(many=True, source='item_set')

 class Meta:
 model = List
 fields = ('id', 'items',)

542 | Appendix G: Django-Rest-Framework

http://bit.ly/2t6T6eX

Viewsets (Well, ModelViewsets, Really) and Routers
A ModelViewSet is DRF’s way of defining all the different ways you can interact with
the objects for a particular model via your API. Once you tell it which models you’re
interested in (via the queryset attribute) and how to serialize them (serial
izer_class), it will then do the rest—automatically building views for you that will
let you list, retrieve, update, and even delete objects.

Here’s all we need to do for a ViewSet that’ll be able to retrieve items for a particular
list:

lists/api.py (ch37l004)
class ListViewSet(viewsets.ModelViewSet):
 queryset = List.objects.all()
 serializer_class = ListSerializer

router = routers.SimpleRouter()
router.register(r'lists', ListViewSet)

A router is DRF’s way of building URL configuration automatically, and mapping
them to the functionality provided by the ViewSet.

At this point we can start pointing our urls.py at our new router, bypassing the old
API code and seeing how our tests do with the new stuff:

superlists/urls.py (ch37l005)
[...]
from lists.api import urls as api_urls
from lists.api import router

urlpatterns = [
 url(r'^$', list_views.home_page, name='home'),
 url(r'^lists/', include(list_urls)),
 url(r'^accounts/', include(accounts_urls)),
 # url(r'^api/', include(api_urls)),
 url(r'^api/', include(router.urls)),
]

That makes loads of our tests fail:

Django-Rest-Framework | 543

$ python manage.py test lists
[...]
django.urls.exceptions.NoReverseMatch: Reverse for 'api_list' not found.
'api_list' is not a valid view function or pattern name.
[...]
AssertionError: 405 != 400
[...]
AssertionError: {'id': 2, 'items': [{'id': 2, 'text': 'item 1'}, {'id': 3,
'text': 'item 2'}]} != [{'id': 2, 'text': 'item 1'}, {'id': 3, 'text': 'item
2'}]

Ran 54 tests in 0.243s

FAILED (failures=4, errors=10)

Let’s take a look at those 10 errors first, all saying they cannot reverse api_list. It’s
because the DRF router uses a different naming convention for URLs than the one we
used when we coded it manually. You’ll see from the tracebacks that they’re happen‐
ing when we render a template. It’s list.html. We can fix that in just one place;
api_list becomes list-detail:

lists/templates/list.html (ch37l006)
 <script>
$(document).ready(function () {
 var url = "{% url 'list-detail' list.id %}";
});
 </script>

That will get us down to just four failures:

$ python manage.py test lists
[...]
FAIL: test_POSTing_a_new_item (lists.tests.test_api.ListAPITest)
[...]
FAIL: test_duplicate_items_error (lists.tests.test_api.ListAPITest)
[...]
FAIL: test_for_invalid_input_returns_error_code
(lists.tests.test_api.ListAPITest)
[...]
FAIL: test_get_returns_items_for_correct_list
(lists.tests.test_api.ListAPITest)
[...]
FAILED (failures=4)

Let’s DONT-ify all the validation tests for now, and save that complexity for later:

544 | Appendix G: Django-Rest-Framework

lists/tests/test_api.py (ch37l007)
[...]
 def DONTtest_for_invalid_input_nothing_saved_to_db(self):
 [...]
 def DONTtest_for_invalid_input_returns_error_code(self):
 [...]
 def DONTtest_duplicate_items_error(self):
 [...]

And now we have just two failures:

FAIL: test_POSTing_a_new_item (lists.tests.test_api.ListAPITest)
[...]
 self.assertEqual(response.status_code, 201)
AssertionError: 405 != 201
[...]
FAIL: test_get_returns_items_for_correct_list
(lists.tests.test_api.ListAPITest)
[...]
AssertionError: {'id': 2, 'items': [{'id': 2, 'text': 'item 1'}, {'id': 3,
'text': 'item 2'}]} != [{'id': 2, 'text': 'item 1'}, {'id': 3, 'text': 'item
2'}]
[...]
FAILED (failures=2)

Let’s take a look at that last one first.

DRF’s default configuration does provide a slightly different data structure to the one
we built by hand—doing a GET for a list gives you its ID, and then the list items are
inside a key called “items”. That means a slight modification to our unit test, before it
gets back to passing:

lists/tests/test_api.py (ch37l008)
@@ -23,10 +23,10 @@ class ListAPITest(TestCase):
 response = self.client.get(self.base_url.format(our_list.id))
 self.assertEqual(
 json.loads(response.content.decode('utf8')),
- [
+ {'id': our_list.id, 'items': [
 {'id': item1.id, 'text': item1.text},
 {'id': item2.id, 'text': item2.text},
-]
+]}
)

That’s the GET for retrieving list items sorted (and, as we’ll see later, we’ve got a
bunch of other stuff for free too). How about adding new ones, using POST?

Django-Rest-Framework | 545

A Different URL for POST Item
This is the point at which I gave up on fighting the framework and just saw where
DRF wanted to take me. Although it’s possible, it’s quite torturous to do a POST to
the “lists” ViewSet in order to add an item to a list.

Instead, the simplest thing is to post to an item view, not a list view:

lists/api.py (ch37l009)
class ItemViewSet(viewsets.ModelViewSet):
 serializer_class = ItemSerializer
 queryset = Item.objects.all()

[...]
router.register(r'items', ItemViewSet)

So that means we change the test slightly, moving all the POST tests out of the
ListAPITest and into a new test class, ItemsAPITest:

lists/tests/test_api.py (ch37l010)
@@ -1,3 +1,4 @@
 import json
+from django.core.urlresolvers import reverse
 from django.test import TestCase
 from lists.models import List, Item
@@ -31,9 +32,13 @@ class ListAPITest(TestCase):

+
+class ItemsAPITest(TestCase):
+ base_url = reverse('item-list')
+
 def test_POSTing_a_new_item(self):
 list_ = List.objects.create()
 response = self.client.post(
- self.base_url.format(list_.id),
- {'text': 'new item'},
+ self.base_url,
+ {'list': list_.id, 'text': 'new item'},
)
 self.assertEqual(response.status_code, 201)

That will give us:

django.db.utils.IntegrityError: NOT NULL constraint failed: lists_item.list_id

Until we add the list ID to our serialization of items; otherwise, we don’t know what
list it’s for:

546 | Appendix G: Django-Rest-Framework

lists/api.py (ch37l011)
class ItemSerializer(serializers.ModelSerializer):

 class Meta:
 model = Item
 fields = ('id', 'list', 'text')

And that causes another small associated test change:

lists/tests/test_api.py (ch37l012)
@@ -25,8 +25,8 @@ class ListAPITest(TestCase):
 self.assertEqual(
 json.loads(response.content.decode('utf8')),
 {'id': our_list.id, 'items': [
- {'id': item1.id, 'text': item1.text},
- {'id': item2.id, 'text': item2.text},
+ {'id': item1.id, 'list': our_list.id, 'text': item1.text},
+ {'id': item2.id, 'list': our_list.id, 'text': item2.text},
]}
)

Adapting the Client Side
Our API no longer returns a flat array of the items in a list. It returns an object, with
a .items attribute that represents the items. That means a small tweak to our update
Items function:

lists/static/list.js (ch37l013)
@@ -3,8 +3,8 @@ window.Superlists = {};
 window.Superlists.updateItems = function (url) {
 $.get(url).done(function (response) {
 var rows = '';
- for (var i=0; i<response.length; i++) {
- var item = response[i];
+ for (var i=0; i<response.items.length; i++) {
+ var item = response.items[i];
 rows += '\n<tr><td>' + (i+1) + ': ' + item.text + '</td></tr>';
 }
 $('#id_list_table').html(rows);

And because we’re using different URLs for GETing lists and POSTing items, we
tweak the initialize function slightly too. Rather than multiple arguments, we’ll
switch to using a params object containing the required config:

Django-Rest-Framework | 547

lists/static/list.js
@@ -11,23 +11,24 @@ window.Superlists.updateItems = function (url) {
 });
 };

-window.Superlists.initialize = function (url) {
+window.Superlists.initialize = function (params) {
 $('input[name="text"]').on('keypress', function () {
 $('.has-error').hide();
 });

- if (url) {
- window.Superlists.updateItems(url);
+ if (params) {
+ window.Superlists.updateItems(params.listApiUrl);

 var form = $('#id_item_form');
 form.on('submit', function(event) {
 event.preventDefault();
- $.post(url, {
+ $.post(params.itemsApiUrl, {
+ 'list': params.listId,
 'text': form.find('input[name="text"]').val(),
 'csrfmiddlewaretoken': form.find('input[name="csrfmiddlewaretoken"]').val(),
 }).done(function () {
 $('.has-error').hide();
- window.Superlists.updateItems(url);
+ window.Superlists.updateItems(params.listApiUrl);
 }).fail(function (xhr) {
 $('.has-error').show();
 if (xhr.responseJSON && xhr.responseJSON.error) {

We reflect that in list.html:

lists/templates/list.html (ch37l014)
$(document).ready(function () {
 window.Superlists.initialize({
 listApiUrl: "{% url 'list-detail' list.id %}",
 itemsApiUrl: "{% url 'item-list' %}",
 listId: {{ list.id }},
 });
});

And that’s actually enough to get the basic FT working again:

$ python manage.py test functional_tests.test_simple_list_creation
[...]
Ran 2 tests in 15.635s

OK

There’s a few more changes to do with error handling, which you can explore in the
repo for this appendix if you’re curious.

548 | Appendix G: Django-Rest-Framework

https://github.com/hjwp/book-example/blob/appendix_DjangoRestFramework/lists/api.py

What Django-Rest-Framework Gives You
You may be wondering what the point of using this framework was.

Configuration Instead of Code
Well, the first advantage is that I’ve transformed my old procedural view function
into a more declarative syntax:

lists/api.py
def list(request, list_id):
 list_ = List.objects.get(id=list_id)
 if request.method == 'POST':
 form = ExistingListItemForm(for_list=list_, data=request.POST)
 if form.is_valid():
 form.save()
 return HttpResponse(status=201)
 else:
 return HttpResponse(
 json.dumps({'error': form.errors['text'][0]}),
 content_type='application/json',
 status=400
)
 item_dicts = [
 {'id': item.id, 'text': item.text}
 for item in list_.item_set.all()
]
 return HttpResponse(
 json.dumps(item_dicts),
 content_type='application/json'
)

If you compare this to the final DRF version, you’ll notice that we are actually now
entirely configured:

Django-Rest-Framework | 549

lists/api.py
class ItemSerializer(serializers.ModelSerializer):
 text = serializers.CharField(
 allow_blank=False, error_messages={'blank': EMPTY_ITEM_ERROR}
)

 class Meta:
 model = Item
 fields = ('id', 'list', 'text')
 validators = [
 UniqueTogetherValidator(
 queryset=Item.objects.all(),
 fields=('list', 'text'),
 message=DUPLICATE_ITEM_ERROR
)
]

class ListSerializer(serializers.ModelSerializer):
 items = ItemSerializer(many=True, source='item_set')

 class Meta:
 model = List
 fields = ('id', 'items',)

class ListViewSet(viewsets.ModelViewSet):
 queryset = List.objects.all()
 serializer_class = ListSerializer

class ItemViewSet(viewsets.ModelViewSet):
 serializer_class = ItemSerializer
 queryset = Item.objects.all()

router = routers.SimpleRouter()
router.register(r'lists', ListViewSet)
router.register(r'items', ItemViewSet)

Free Functionality
The second advantage is that, by using DRF’s ModelSerializer, ViewSet, and routers,
I’ve actually ended up with a much more extensive API than the one I’d rolled by
hand.

• All the HTTP methods, GET, POST, PUT, PATCH, DELETE, and OPTIONS,
now work, out of the box, for all list and items URLs.

550 | Appendix G: Django-Rest-Framework

• And a browsable/self-documenting version of the API is available at http://local‐
host:8000/api/lists/ and http://localhost:8000/api/items. (Figure G-1; try it!)

Figure G-1. A free browsable API for your users

There’s more information in the DRF docs, but those are both seriously neat features
to be able to offer the end users of your API.

Django-Rest-Framework | 551

http://www.django-rest-framework.org/topics/documenting-your-api/#self-describing-apis

In short, DRF is a great way of generating APIs, almost automatically, based on your
existing models structure. If you’re using Django, definitely check it out before you
start hand-rolling your own API code.

Django-Rest-Framework Tips
Don’t fight the framework

Going with the flow is often the best way to stay productive. That, or maybe don’t
use the framework. Or use it at a lower level.

Routers and ViewSets for the principle of least surprise
One of the advantages of DRF is that its generic tools like routers and ViewSets
will give you a very predictable API, with sensible defaults for its endpoints, URL
structure, and responses for different HTTP methods.

Check out the self-documenting, browsable version
Check out your API endpoints in a browser. DRF responds differently when it
detects your API is being accessed by a “normal” web browser, and displays a
very nice, self-documenting version of itself, which you can share with your
users.

552 | Appendix G: Django-Rest-Framework

APPENDIX H

Cheat Sheet

By popular demand, this “cheat sheet” is loosely based on the little recap/summary
boxes from the end of each chapter. The idea is to provide a few reminders, and links
to the chapters where you can find out more to jog your memory. I hope you find it
useful!

Initial Project Setup
• Start with a User Story and map it to a first functional test.
• Pick a test framework—unittest is fine, and options like py.test, nose, or
Green can also offer some advantages.

• Run the functional test and see your first expected failure.
• Pick a web framework such as Django, and find out how to run unit tests against

it.
• Create your first unit test to address the current FT failure, and see it fail.
• Do your first commit to a VCS like Git.

Relevant chapters: Chapter 1, Chapter 2, Chapter 3

The Basic TDD Workflow
• Double-loop TDD (Figure H-1)
• Red, Green, Refactor
• Triangulation
• The scratchpad

553

• “3 Strikes and Refactor”
• “Working State to Working State”
• “YAGNI”

Figure H-1. The TDD process with functional and unit tests

Relevant chapters: Chapter 4, Chapter 5, Chapter 7

Moving Beyond Dev-Only Testing
• Start system testing early. Ensure your components work together: web server,

static content, database.
• Build a staging environment to match your production environment, and run

your FT suite against it.
• Automate your staging and production environments:

— PaaS vs. VPS

554 | Appendix H: Cheat Sheet

— Fabric
— Configuration management (Chef, Puppet, Salt, Ansible)
— Vagrant

• Think through deployment pain points: the database, static files, dependencies,
how to customise settings, and so on.

• Build a CI server as soon as possible, so that you don’t have to rely on self-
discipline to see the tests run.

Relevant chapters: Chapter 9, Chapter 11, Chapter 24, Appendix C

General Testing Best Practices
• Each test should test one thing.
• One test file per application code source file.
• Consider at least a placeholder test for every function and class, no matter how

simple.
• “Don’t test constants”.
• Try to test behaviour rather than implementation.
• Try to think beyond the charmed path through the code, and think through edge

cases and error cases.

Relevant chapters: Chapter 4, Chapter 13, Chapter 14

Selenium/Functional Testing Best Practices
• Use explicit rather than implicit waits, and the interaction/wait pattern.
• Avoid duplication of test code—helper methods in a base class and the Page pat‐

tern are possible solutions.
• Avoid double-testing functionality. If you have a test that covers a time-

consuming process (e.g., login), consider ways of skipping it in other tests (but be
aware of unexpected interactions between seemingly unrelated bits of functional‐
ity).

• Look into BDD tools as another way of structuring your FTs.

Relevant chapters: Chapter 21, Chapter 24, Chapter 25

Cheat Sheet | 555

Outside-In, Test Isolation Versus Integrated Tests, and
Mocking
Remember the reasons we write tests in the first place:

• To ensure correctness and prevent regressions
• To help us to write clean, maintainable code
• To enable a fast, productive workflow

And with those objectives in mind, think of different types of tests, and the trade-offs
between them:

Functional tests
• Provide the best guarantee that your application really works correctly, from the

point of view of the user
• But: it’s a slower feedback cycle
• And they don’t necessarily help you write clean code

Integrated tests (reliant on, for example, the ORM or the Django Test Client)
• Are quick to write
• Are easy to understand
• Will warn you of any integration issues
• But: may not always drive good design (that’s up to you!)
• And are usually slower than isolated tests

Isolated (“mocky”) tests
• Involve the most hard work
• Can be harder to read and understand
• But: are the best ones for guiding you towards better design
• And run the fastest

If you do find yourself writing tests with lots of mocks, and they feel painful, remem‐
ber “listen to your tests”—ugly, mocky tests may be trying to tell you that your code
could be simplified.

Relevant chapters: Chapter 22, Chapter 23, Chapter 26

556 | Appendix H: Cheat Sheet

APPENDIX I

What to Do Next

Here I offer a few suggestions for things to investigate next, to develop your testing
skills, and to apply them to some of the cool new technologies in web development
(at the time of writing!).

I hope to turn each one of these into at least some sort of blog post, if not a future
appendix to the book. I hope to also produce code examples for all of them, as time
goes by. So do check out http://www.obeythetestinggoat.com, and see if there are any
updates.

Or, why not try to beat me to it, and write your own blog post chronicling your
attempt at any one of these?

I’m very happy to answer questions and provide tips and guidance on all these topics,
so if you find yourself attempting one and getting stuck, please don’t hesitate to get in
touch at obeythetestinggoat@gmail.com!

Notifications—Both on the Site and by Email
It would be nice if users were notified when someone shares a list with them.

You can use django-notifications to show a message to users the next time they
refresh the screen. You’ll need two browsers in your FT for this.

And/or, you could send notifications by email. Investigate Django’s email test capabil‐
ities. Then, decide this is so critical that you need real tests with real emails. Use the
IMAPClient library to fetch actual emails from a test webmail account.

557

http://www.obeythetestinggoat.com
mailto:obeythetestinggoat@gmail.com

Switch to Postgres
SQLite is a wonderful little database, but it won’t deal well once you have more than
one web worker process fielding your site’s requests. Postgres is everyone’s favourite
database these days, so find out how to install and configure it.

You’ll need to figure out a place to store the usernames and passwords for your local,
staging, and production Postgres servers. Since, for security, you probably don’t want
them in your code repository, look into ways of modifying your deploy scripts to pass
them in at the command line. Environment variables are one popular solution for
where to keep them…

Experiment with keeping your unit tests running with SQLite, and compare how
much faster they are than running against Postgres. Set it up so that your local
machine uses SQLite for testing, but your CI server uses Postgres.

Run Your Tests Against Different Browsers
Selenium supports all sorts of different browsers, including Chrome and Internet
Exploder. Try them both out and see if your FT suite behaves any differently.

You should also check out a “headless” browser like PhantomJS.

In my experience, switching browsers tends to expose all sorts of race conditions in
Selenium tests, and you will probably need to use the interaction/wait pattern a lot
more (particularly for PhantomJS).

404 and 500 Tests
A professional site needs good-looking error pages. Testing a 404 page is easy, but
you’ll probably need a custom “raise an exception on purpose” view to test the 500
page.

The Django Admin Site
Imagine a story where a user emails you wanting to “claim” an anonymous list. Let’s
say we implement a manual solution to this, involving the site administrator man‐
ually changing the record using the Django admin site.

Find out how to switch on the admin site, and have a play with it. Write an FT that
shows a normal, non–logged-in user creating a list, then have an admin user log in,
go to the admin site, and assign the list to the user. The user can then see it in their
“My Lists” page.

558 | Appendix I: What to Do Next

Write Some Security Tests
Expand on the login, my lists, and sharing tests—what do you need to write to assure
yourself that users can only do what they’re authorized to?

Test for Graceful Degradation
What would happen if Persona went down? Can we at least show an apologetic error
message to our users?

• Tip: one way of simulating Persona being down is to hack your hosts file (at /etc/
hosts or c:\Windows\System32\drivers\etc). Remember to revert it in the test tear
Down!

• Think about the server side as well as the client side.

Caching and Performance Testing
Find out how to install and configure memcached. Find out how to use Apache’s ab to
run a performance test. How does it perform with and without caching? Can you
write an automated test that will fail if caching is not enabled? What about the drea‐
ded problem of cache invalidation? Can tests help you to make sure your cache inva‐
lidation logic is solid?

JavaScript MVC Frameworks
JavaScript libraries that let you implement a Model-View-Controller pattern on the
client side are all the rage these days. To-do lists are one of the favourite demo appli‐
cations for them, so it should be pretty easy to convert the site to being a single-page
site, where all list additions happen in JavaScript.

Pick a framework—perhaps Backbone.js or Angular.js—and spike in an implementa‐
tion. Each framework has its own preferences for how to write unit tests, so learn the
one that goes along with it, and see how you like it.

Async and Websockets
Supposing two users are working on the same list at the same time. Wouldn’t it be
nice to see real-time updates, so if the other person adds an item to the list, you see it
immediately? A persistent connection between client and server using websockets is
the way to get this to work.

What to Do Next | 559

Check out one of the Python async web servers—Tornado, gevent, Twisted—and see
if you can use it to implement dynamic notifications.

To test it, you’ll need two browser instances (like we used for the list sharing tests),
and check that notifications of the actions from one appear in the other, without
needing to refresh the page…

Switch to Using py.test
py.test lets you write unit tests with less boilerplate. Try converting some of your unit
tests to using py.test. You may need to use a plugin to get it to play nicely with Django.

Check Out coverage.py
Ned Batchelder’s coverage.py will tell you what your test coverage is—what percent‐
age of your code is covered by tests. Now, in theory, because we’ve been using rigor‐
ous TDD, we should always have 100% coverage. But it’s nice to know for sure, and
it’s also a very useful tool for working on projects that didn’t have tests from the
beginning.

Client-Side Encryption
Here’s a fun one: what if our users are paranoid about the NSA, and decide they no
longer want to trust their lists to The Cloud? Can you build a JavaScript encryption
system, where the user can enter a password to encypher their list item text before it
gets sent to the server?

One way of testing it might be to have an “administrator” user that goes to the Django
admin view to inspect users’ lists, and checks that they are stored encrypted in the
database.

Your Suggestion Here
What do you think I should put here? Suggestions, please!

560 | Appendix I: What to Do Next

APPENDIX J

Source Code Examples

All of the code examples I’ve used in the book are available in my repo on GitHub. So,
if you ever want to compare your code against mine, you can take a look at it there.

Each chapter has its own branch named after it, like so:

Chapter 1
https://github.com/hjwp/book-example/tree/chapter_01

Be aware that each branch contains all of the commits for that chapter, so its state
represents the code at the end of the chapter.

Full List of Links for Each Chapter
Chapter 1

https://github.com/hjwp/book-example/tree/chapter_01

Chapter 2
https://github.com/hjwp/book-example/tree/chapter_02_unittest

Chapter 3
https://github.com/hjwp/book-example/tree/chapter_unit_test_first_view

Chapter 4
https://github.com/hjwp/book-example/tree/chapter_philosophy_and_refactoring

Chapter 5
https://github.com/hjwp/book-example/tree/chapter_post_and_database

Chapter 6
https://github.com/hjwp/book-example/tree/chapter_explicit_waits_1

561

https://github.com/hjwp/book-example/
https://github.com/hjwp/book-example/tree/chapter_01
https://github.com/hjwp/book-example/tree/chapter_01
https://github.com/hjwp/book-example/tree/chapter_02_unittest
https://github.com/hjwp/book-example/tree/chapter_unit_test_first_view
https://github.com/hjwp/book-example/tree/chapter_philosophy_and_refactoring
https://github.com/hjwp/book-example/tree/chapter_post_and_database
https://github.com/hjwp/book-example/tree/chapter_explicit_waits_1

Chapter 7
https://github.com/hjwp/book-example/tree/chapter_working_incrementally

Chapter 8
https://github.com/hjwp/book-example/tree/chapter_prettification

Chapter 9
https://github.com/hjwp/book-example/tree/chapter_manual_deployment

Chapter 10
https://github.com/hjwp/book-example/tree/chapter_making_deployment_produc
tion_ready

Chapter 11
https://github.com/hjwp/book-example/tree/chapter_automate_deploy
ment_with_fabric

Chapter 12
https://github.com/hjwp/book-example/tree/chapter_organising_test_files

Chapter 13
https://github.com/hjwp/book-example/tree/chapter_database_layer_validation

Chapter 14
https://github.com/hjwp/book-example/tree/chapter_simple_form

Chapter 15
https://github.com/hjwp/book-example/tree/chapter_advanced_forms

Chapter 16
https://github.com/hjwp/book-example/tree/chapter_javascript

Chapter 17
https://github.com/hjwp/book-example/tree/chapter_deploying_validation

Chapter 18
https://github.com/hjwp/book-example/tree/chapter_spiking_custom_auth

Chapter 19
https://github.com/hjwp/book-example/tree/chapter_mocking

Chapter 20
https://github.com/hjwp/book-example/tree/chapter_fixtures_and_wait_decorator

Chapter 21
https://github.com/hjwp/book-example/tree/chapter_server_side_debugging

Chapter 22
https://github.com/hjwp/book-example/tree/chapter_outside_in

562 | Appendix J: Source Code Examples

https://github.com/hjwp/book-example/tree/chapter_working_incrementally
https://github.com/hjwp/book-example/tree/chapter_prettification
https://github.com/hjwp/book-example/tree/chapter_manual_deployment
https://github.com/hjwp/book-example/tree/chapter_making_deployment_production_ready
https://github.com/hjwp/book-example/tree/chapter_making_deployment_production_ready
https://github.com/hjwp/book-example/tree/chapter_automate_deployment_with_fabric
https://github.com/hjwp/book-example/tree/chapter_automate_deployment_with_fabric
https://github.com/hjwp/book-example/tree/chapter_organising_test_files
https://github.com/hjwp/book-example/tree/chapter_database_layer_validation
https://github.com/hjwp/book-example/tree/chapter_simple_form
https://github.com/hjwp/book-example/tree/chapter_advanced_forms
https://github.com/hjwp/book-example/tree/chapter_javascript
https://github.com/hjwp/book-example/tree/chapter_deploying_validation
https://github.com/hjwp/book-example/tree/chapter_spiking_custom_auth
https://github.com/hjwp/book-example/tree/chapter_mocking
https://github.com/hjwp/book-example/tree/chapter_fixtures_and_wait_decorator
https://github.com/hjwp/book-example/tree/chapter_server_side_debugging
https://github.com/hjwp/book-example/tree/chapter_outside_in

1 I don’t recommend skipping ahead. I haven’t designed the chapters to stand on their own; each relies on the
previous ones, so it may be more confusing than anything else…

Chapter 23
https://github.com/hjwp/book-example/tree/chapter_purist_unit_tests

Chapter 24
https://github.com/hjwp/book-example/tree/chapter_CI

Chapter 25
https://github.com/hjwp/book-example/tree/chapter_page_pattern

Appendix B
https://github.com/hjwp/book-example/tree/appendix_Django_Class-Based_Views

Appendix E
https://github.com/hjwp/book-example/tree/appendix_bdd

Appendix F
https://github.com/hjwp/book-example/tree/appendix_rest_api

Appendix G
https://github.com/hjwp/book-example/tree/appendix_DjangoRestFramework

Using Git to Check Your Progress
If you feel like developing your Git-Fu a little further, you can add my repo as a
remote:

git remote add harry https://github.com/hjwp/book-example.git
git fetch harry

And then, to check your difference from the end of Chapter 4:

git diff harry/chapter_philosophy_and_refactoring

Git can handle multiple remotes, so you can still do this even if you’re already push‐
ing your code up to GitHub or Bitbucket.

Be aware that the precise order of, say, methods in a class may differ between your
version and mine. It may make diffs hard to read.

Downloading a ZIP File for a Chapter
If, for whatever reason, you want to “start from scratch” for a chapter, or skip ahead,1

and/or you’re just not comfortable with Git, you can download a version of my code
as a ZIP file, from URLs following this pattern:

Source Code Examples | 563

https://github.com/hjwp/book-example/tree/chapter_purist_unit_tests
https://github.com/hjwp/book-example/tree/chapter_CI
https://github.com/hjwp/book-example/tree/chapter_page_pattern
https://github.com/hjwp/book-example/tree/appendix_Django_Class-Based_Views
https://github.com/hjwp/book-example/tree/appendix_bdd
https://github.com/hjwp/book-example/tree/appendix_rest_api
https://github.com/hjwp/book-example/tree/appendix_DjangoRestFramework

https://github.com/hjwp/book-example/archive/chapter_01.zip

https://github.com/hjwp/book-example/archive/chapter_philosophy_and_refactoring.zip

Don’t Let it Become a Crutch!
Try not to sneak a peek at the answers unless you’re really, really stuck. Like I said at
the beginning of the last chapter, there’s a lot of value in debugging errors all by your‐
self, and in real life, there’s no “harrys repo” to check against and find all the answers.

564 | Appendix J: Source Code Examples

https://github.com/hjwp/book-example/archive/chapter_01.zip
https://github.com/hjwp/book-example/archive/chapter_philosophy_and_refactoring.zip

Bibliography

[dip] Mark Pilgrim, Dive Into Python: http://www.diveintopython.net/
[lpthw] Zed A. Shaw, Learn Python the Hard Way: http://learnpythonthehardway.org/
[iwp] Al Sweigart, Invent Your Own Computer Games with Python: http://inventwithpy

thon.com
[tddbe] Kent Beck, Test Driven Development: By Example, Addison-Wesley
[refactoring] Martin Fowler, Refactoring, Addison-Wesley
[seceng] Ross Anderson, Security Engineering, Second Edition, Addison-Wesley:

http://www.cl.cam.ac.uk/~rja14/book.html
[jsgoodparts] Douglas Crockford, JavaScript: The Good Parts, O’Reilly
[twoscoops] Daniel Greenfeld and Audrey Roy, Two Scoops of Django, http://

twoscoopspress.com/products/two-scoops-of-django-1-6
[mockfakestub] Emily Bache, Mocks, Fakes and Stubs, https://leanpub.com/mocks-

fakes-stubs
[GOOSGBT] Steve Freeman and Nat Pryce, Growing Object-Oriented Software Gui‐

ded by Tests, Addison-Wesley

565

http://www.diveintopython.net/
http://learnpythonthehardway.org/
http://inventwithpython.com
http://inventwithpython.com
http://www.cl.cam.ac.uk/~rja14/book.html
http://oreil.ly/SuXjXq
http://twoscoopspress.com/products/two-scoops-of-django-1-6
http://twoscoopspress.com/products/two-scoops-of-django-1-6
https://leanpub.com/mocks-fakes-stubs
https://leanpub.com/mocks-fakes-stubs

Index

Symbols
(double-hashes), 100
@patch, 349
@property decorator, 399
{% csrf_token %}, 58
{% for … endfor %}, 76
{% url %}, 231

A
A-Records, 164
acceptance tests, 14

(see also functional tests)
aesthetics, testing, 136

(see also design and layout testing)
agile movement, 95
ALLOWED_HOSTS, 178
angular.js, 293
Ansible, 200, 491-495
architectural solutions, 469
assertContains method, 103
assertRegex, 99
authentication, 301-322

avoiding secrets in source code, 306
cookies and, 361
custom authentication models, 307
custom Django authentication, 309-312
frontend log in UI, 303
minimal custom user model, 316-320
passwordless, 302
sending emails from Django, 304-306
skipping in FTs, 359
storing tokens in databases, 307
token model to link emails, 320-322

automated deployment (see also Fabric)

additional resources, 199
benefits of, 156
best practices for, 200
preparing for, 181

B
Behave, 503
behavior-driven development (BDD), 503-517

benefits and drawbacks of, 516
capturing parameters in steps, 510
comparing inline-style FT, 512
defined, 503
directory creation, 504
functional test using Gherkin syntax, 505
vs. inline comments, 516
page pattern, 515
step functions, 506
structured test code encouraged by, 514
tools for, 503

Big Design Up Front, 95
black box tests (see functional tests)
blank items, preventing, 201-207
Bootstrap

documentation, 140, 220
downloading, 139
integrating, 142
jumbotron class, 146
large inputs, 147
table styling, 147

C
call_args property, 346
cheat sheet

isolated vs. integrated tests, 556

567

moving beyond dev-only testing, 554
project setup, 553
TDD workflow, 553
testing best practices, 555

class-based generic views (CBGVs)
best practices for, 487
vs. class-based views, 479
comparing old and new versions, 487
customizing a CreateView, 481-483
duplicate views, 484-486
home page as a FormView, 480
key tests and assertions, 273

code examples, obtaining and using, xix, 54,
504, 561

code smell, 64
collectstatic command, 149-152
combinatorial explosion, 344
comments and questions, xv
companion video, xxxi
complex views vs. thin views, 257
configuration management tools, 200
console.log, 287
contact information, xv
continuous deployment tools, 491
Continuous Integration (CI), 433-451

additional uses for, 451
benefits of, 433
first build, 439
Jenkins configuration, 434
Jenkins installation, 433
project setup, 438
QUnit JavaScript tests, 448-450
screenshots, 443-447
server of choice, 433
staging and, 451
timeout bumping, 447
tips, 451, 473
virtual display setup, 441-443

cookies, 360
Cross-Site Request Forgery (CSRF), 57
CSS (Cascading Style Sheets)

challenges of static files, 136
creation and application, 147
CSS frameworks, 139-141

Cucumber, 503

D
data integrity errors, 219, 234, 267
database migrations, 68, 78, 171, 497-501

database testing
database-layer validation, 217-234
HTML POST requests

creating, 55-58
processing, 59
redirect following, 73-75
saving, 70-73

invalid input, 223
managing test databases, 376-381
migrations, 497-501
Object-Relational Mapper (ORM), 66-70
production database creation, 78-80
rendering items in the template, 75-77
safeguarding production databases, 381, 383
template syntax, 60-64
three strikes and refactor rule, 64-66, 230

DEBUG settings, 175, 178
debugging

Django DEBUG page, 57
improving error messages, 61
manual visits, 77
of functional tests, 56, 105
screenshots for, 443-447, 451
server provisioning, 172
server-side

baking in logging code, 382, 383
managing test databases, 376-381
setting secret environment variables, 372
using staging sites, 369-371
testing POP3 emails, 372-375

Systemd, 180
decorators

benefits of, 367
patch decorator, 349
property decorator, 399
skip test decorator, 202
wait decorator, 364-367

deployment
automating with Fabric, 187-200
continuous deployment tools, 491
danger areas of, 156
getting to production-ready, 175-184
procedure for, 295-297
testing using staging sites, 155-173

design and layout testing
best practices for, 153
Bootstrap integration, 142
Bootstrap tools, 146

568 | Index

collecting static files for deployment,
149-152

CSS creation and application, 147
CSS frameworks, 139-141
Django template inheritance, 141
selecting test targets, 135-138

Django framework
class-based generic views, 273, 479-489
code structure in, 22
commands and concepts

python functional_tests.py, 35
python manage.py runserver, 35
python manage.py test, 35
python manage.py test functional_tests,

88
python manage.py test lists, 88
unit-test/code cycle, 35

documentation, 344
installation, xxviii
messages framework, 331
Object-Relational Mapper (ORM), 66-70
and PythonAnywhere, 477
running functional and/or unit tests, 87
sending emails, 304-306, 323, 372-375
set up, 4-12

project creation, 6, 553
static files in, 144-146
template inheritance, 141
Test Client, 47-49
tutorials, xxii, 67
unit testing in, 22-34

django-allauth, 303
django-crispy-forms, 237
django-floppyforms, 237
Django-Rest-Framework (DRF), 541-552

benefits of, 549
client-side adaptations, 547
installation, 541
ModelSerializers, 542
ModelViewsets, 543
POST requests, 546
tips for, 552
tutorials, 542

documentation, 319
domain names, 160
Don’t Repeat Yourself (DRY), 64, 461
“Don’t Test Constants” rule, 43
double-hashes (##), 100
duck typing, 399

dumpdata command, 368
duplicate items testing

complex form for, 269
functional test for, 259-267
in the list view, 271-273
at the views layer, 268

duplication, eliminating, 63, 344-350, 357, 367,
455-458

E
emails, sending from Django, 304-306, 323,

372-375
end-to-end tests (see functional tests)
environment variables, 306, 372
errata, xix
error messages, 56

(see also troubleshooting)
expected failures, 16, 20
explicit and implicit waits, 89-93, 207, 364-367
exploratory coding, 238 (see also spiking and

de-spiking)
external dependencies, 323, 356

F
f-string syntax, 62
Fabric

additional resources, 199
automated deployment best practices, 200
configuration, 194
deployment script, 188
documentation, 194
installation and setup, 187
moving deployment to Ansible, 494
running on staging site, 193-199
using directly from Python, 379

factory_boy, 368
feedback, xv
find and replace function, 242
Firefox

benefits of, xxiii
installing, xxvi
and PythonAnywhere, 475
upgrading, 88

fixtures
JSON fixtures, 364, 368
staging and, 383

fixtures div, 281-285, 287
form control classes (Bootstrap), 147, 220
form data validation

Index | 569

benefits of, 235, 254
best practices, 257
for duplicate items, 259-275
moving validation logic to forms, 235-241
preventing blank items, 201-207
processing POST and GET requests,

248-253
processing POST requests, 245-248
using forms in views, 241-245
using form’s own save method, 254-256

Forms API, 236
(see also form data validation)

form_valid, 481
full_clean method, 220
functional programming, 211
functional tests (FTs)

vs. acceptance and system tests, 464
benefits and drawbacks of, 432
creating, 4
debugging techniques, 56, 105
for duplicate items, 259-267
ensuring isolation, 83-87, 401-432
using Gherkin syntax, 505
helper methods in, 212
implicit/explicit waits and time.sleeps,

89-93, 207
JavaScript, 277-293
for mocks, 351
with multiple users, 453-461
outside-in technique, 386
running single test files, 206
spiked code and, 322
splitting into many files, 203-206
structuring test code, 453-461, 514
troubleshooting hung tests, 88
vs. unit tests, 22
using unittest module, 13-19
for validation, 201-207

G
Geckodriver

installing, xxvi
upgrading, 88

generator expressions, 42
generic explicit wait helper, 207-211, 215
GET requests, 241
getting help, 21, 162, 478, 557
get_absolute_url, 232
get_user method, 341

Gherkin, 503-506
Git

commits, 9, 19
configuring, xxv
creating branches, 303
detecting moved files, 87
diff -b, 142
downloading, xxiii
local variables, 166
moving files, 84
reset --hard, 138
starting repositories, 8
tagging releases, 199

global state, 287, 294
Gmail, 306
greedy regular expressions, 125
Green, 279
grep command, 242
Gunicorn

adding to requirements.txt, 180
automatic booting/reloading of, 179
benefits of, 185
configuring using sed, 196
logging setup, 370
switching to, 175
switching to Unix domain sockets, 177

H
helper methods, 212, 248, 364, 416
hosting services, 160
HTML

GET requests, 241
POST requests

creating, 55
debugging, 105
Django pattern for processing, 225-231
processing, 59
redirect following, 73-75, 125
saving, 70-73

screenshot dumps, 443-447, 451
tutorials, xxii

HTML5, 251, 254

I
idempotency, 200
implicit and explicit waits, 89-93, 207, 364-367
inline comments, 516
inside-out TDD, 386

570 | Index

integrated development environments (IDEs),
xxiii

integrated tests
architectural considerations, 469
benefits and drawbacks of, 420, 432, 471
vs. isolated, 429-431
vs. unit tests, 67, 463

invalid input, 223
(see also model-layer validation)

isolation, ensuring
benefits and drawbacks of, 401, 432
failed test example, 401
forms layer, 412-416
in functional tests, 83-87
vs. integrated tests, 429-431
layer interactions as contracts, 421-425
using mocks for, 402-405
models layer, 416-420
refactoring ugly tests, 406
removing redundant code, 426-429
risks of mocking, 420
view layer, 406-412

iterative development style, 55, 101

J
Jasmine, 293
JavaScript testing

additional considerations for, 293
additional resources, 277
boilerplate and namespacing, 291
functional test, 277
in Jenkins with PhantomJS, 448-450
jQuery and fixtures div, 281-285
key challenges of, 287-291
managing global state, 287, 294
syntax errors, 293
in the TDD cycle, 292
test running libraries, 279-281, 294
unit test, 285

Jenkins
configuration, 434
first build, 439
installation, 433
project setup, 438
QUnit JavaScript tests with, 448-450
timeout bumping, 447
virtual display setup, 441-443

jQuery, 281-285
JSON fixtures, 364, 368

jumbotron class (Bootstrap), 146

L
lambda functions, 209
layout (see CSS; design and layout testing)
Lettuce, 503
Linux servers, 161
list comprehensions, 42
list items, 62, 75, 109-113, 201-207
LiveServerTestCase class, 84
loaddata command, 368
logging, 313, 370, 383
login process, skipping, 360

(see also authentication)

M
MacOS, xxv
mail.out box attribute, 323
Meta attributes, 262
meta-comments, 100
minimum viable applications, 96
mocks

benefits and drawbacks of, 323, 420, 432
de-spiking custom authentication, 337-344
functional test for, 351
isolating tests using, 395, 402-405
logout link, 354
manual, 324-327
mock.return_value, 347
mock_auth variable, 349
practical application of, 353
preparing for, 323
Python Mock library, 328-337, 356
reducing duplication with, 344-350, 357

model-layer validation
benefits and drawbacks of, 218, 234
POST requests processing, 225-231
preventing duplicate items, 260
removing hardcoded URLs, 231-234
running full validation, 219
self.assertRaises context manager, 218
surfacing errors in the view, 220-225

Model-View-Controller (MVC) pattern, 24, 96
ModelForm class, 238
monkeypatching, 324-327, 356
multiple lists testing

adding items to existing lists, 119-122
incremental design implementation, 97
iterative development style, 101

Index | 571

list item URLs, 109-113
model adjustments, 113-118
refactoring, 106
refactoring using URL includes, 129-131
regression test, 99-101
separate list viewing templates, 107-108
small vs. big design, 95-97
URL mappings, 103-106

MVC frameworks, 293

N
Nginx

configuring, 168
configuring using sed, 196
confirming operation of, 164
installation, 162
serving static files with, 177
switching to Unix domain sockets, 177
troubleshooting, 170

nose, 279
NoSuchElementException, 89

O
Oauth, 302
Object-Relational Mapper (ORM), 66-70, 413,

432
Openid, 302
Outside-In TDD

controller layer, 390
defined, 400
drawbacks of, 400
FT-driven development, 391-394
vs. inside-out, 386
model layer, 395-399
outside layer, 389
views layer, 394

P
Page pattern

benefits of, 461
extending FTs to second users, 458
FT with multiple user, 453
practical exercise, 460
reducing duplication with, 455-458

page pattern, 515
passwords, 301
patch decorator, 349, 356
permanent redirect (301), 125

PhantomJS, 448-450
Platform-As-A-Service (PaaS), 161, 185
POST requests

creating, 55-58
debugging, 105
Django pattern for processing, 225-231
processing, 59
redirect following, 73-75, 125
saving, 70-73

prerequisite knowledge, xxi-xxix
print statements, 56
production databases, 381, 383
production-ready deployment

best practices for, 185
DEBUG=false and ALLOWED_HOSTS,

178
using Gunicorn, 175
preparing for automation, 181-184
serving static files with Nginx, 177
switching to Unix domain sockets, 177
using Systemd for automatic booting/

reloading, 179
programming by wishful thinking, 400
prototyping (see spiking and de-spiking)
pytest, 279
Python 3

@property decorator, 399
installation and setup

MacOS installation, xxv
on staging sites, 163
virtualenv set up and activation, xxvii-

xxix
Windows installation, xxiv

introductory books on, xxi
lambda functions, 209
Mock library, 328-337, 356
vs. Python 2, xxi
with statements, 219

python-social-auth, 303
PythonAnywhere, xxii, 161, 475-478

Q
queryset ordering, 263-265
questions and comments, xv
QUnit, 279-281, 293, 448-450

R
React, 293
Red/Green/Refactor, 63, 82, 106, 203, 215

572 | Index

refactoring, 43-47, 49, 64-66, 106, 202, 213, 215,
406

regression, 82, 99-101
regular expressions, 125
Representational State Transfer (REST)

additional resources, 519
building a REST API, 520-539
defined, 519
inspiration gained from, 96
tips for REST APIs, 539

requirements.txt, 167, 180
response.context, 127
reverse lookups, 128

S
scratchpad to-do list, 82
screenshots, 443-447, 451
scripts, building standalone, 376
secret values, 190, 372
security issues and settings

ALLOWED_HOSTS, 178
Cross-Site Request Forgery, 57
login systems, 356
server security, 185

sed (stream editor), 196
Selenium

best CI practices, 451
installation, xxviii
and JavaScript, 294
and PythonAnywhere, 475
testing user interactions with, 40-42
upgrading, 88

self.assertRaises context manager, 218
self.browser.refresh(), 146
self.wait_for helper method, 212, 215, 364
send_mail function, 304-306
server provisioning, 160-164, 172
sessions, pre-creating, 360-364, 376
single-assertion unit tests, 489
small vs. big design, 95-97, 131
socket.error: [WinError 10054], 146
software requirements, xxiii-xxvi
spiking and de-spiking

branching your VCS, 303
de-spiking, 313-316, 337-344
defined, 302, 322
logging to stderr, 313

staging sites
adapting functional tests for, 157-159

benefits of, 156, 173
catching final bugs with, 369-371
continuous integrations and, 451
domain names, 160
fixtures and, 383
local vs. staged sessions, 380
managing test databases, 376-381
manual code deployment, 164-172
manual server provisioning, 160-164

StaleElementException, 89
static files

challenges of, 136, 156
collecting for deployment, 149-152
finding, 144
serving with Nginx, 177, 185
URL requests for, 144

StaticLiveServerTestCase, 145
stderr, 313
string representations, 263-265
style (see CSS; design and layout testing)
superlists, 6
system tests, 464
Systemd, 179

T
table styling (Bootstrap), 147
templates

designing APIs using, 392
Django template inheritance, 141
inheritance hierarchy, 391
passing variables to, 60
saving for provisioning config files, 181-184
separate list viewing templates, 107-108
syntax, 60
tags

{% csrf_token %}, 58
{% for … endfor %}, 76
{% url %}, 231

views layer and, 393
Test Client (Django), 47-49
test files

organizing and refactoring, 215
running single, 206
splitting FTs into many, 203
splitting unit tests into several, 213

test fixtures, 364, 368
test running libraries, 279
Test-Driven Development (TDD)

Index | 573

adapting existing code incrementally,
95-131

additional resources, 21, 470
concepts

expected failures, 20
Red/Green/Refactor, 63, 82, 203, 215
regression, 82
scratchpad to-do list, 82
three strikes and refactor, 82, 230
triangulation, 63, 82
unexpected failures, 61, 82
unit-test/code cycle, 32
user stories, 20

future investigations, 557-560
JavaScipt testing in, 292
need for, xv-xvii, 37-39
outside-in technique, 385-400
overall process of, 52-54, 97, 553
philosophy of

bucket of water analogy, 38
split work into smaller tasks, 131
working state to working state, 118, 131
YAGNI, 96, 131

prerequisite knowledge assumed, xxi-xxix
test goals, 467
video-based instruction, xxxi

testing best practices, 74, 93, 257, 467, 489, 555
Testing Goat

defined, 3
philosophy of, 473
working state to working state, 95, 118

tests as documentation, 319
thin views vs. complex views, 257
three strikes and refactor rule, 64-66, 82, 230
time.sleeps, 56, 89-93
tokens, 307
tracebacks, 27, 178
triangulation, 63, 82
troubleshooting

hung functional tests, 88
Nginx operation, 170
URL mappings, 103
virtualenv activation, xxviii

typographical conventions, xviii

U
unexpected failures, 61, 82
uniqueness validation, 269

(see also duplicate items testing)

unit tests
benefits of “pure”, 464-466
in Django

test databases, 84
unit testing a view, 30
unit-test/code cycle, 32
writing basic, 23-34

“Don’t Test Constants” rule, 43
drawbacks of “pure”, 466
Forms API, 236
vs. functional tests, 22
vs. integrated tests, 67, 463
JavaScript, 285
length of, 71
refactoring in, 43-47, 49
refactoring into several files, 213
testing only one thing, 74, 257, 489
using for exploratory coding, 238

unit-test/code cycle, 32, 35, 63
unittest module

basic functional test creation, 13-19
documentation, 99
mock module and, 328
skip test decorator, 202

Unix domain sockets, 177
URL mappings, 28, 103-106, 109-113, 231-234
user interactions

form data validation, 235-257
preventing blank items, 201-207
preventing duplicate items, 259-275
testing database input, 55-81
testing with Selenium, 40-42
validating inputs at database layer, 217-234

user stories, 14, 20

V
Vagrant, 200
validation (see form data validation; model-

level validation)
version control systems (VCSs), 8

(see also Git)
video-based instruction, xxxi
virtual displays, 441-443
virtual environment (virtualenv)

creating manually, 167
installation and setup, xxvii-xxix
server-based, 156

574 | Index

W
wait_for helper method, 215
wait_for_row_in_list_table helper method, 212,

364
wait_to_be_logged_in/out, 364
Windows

Gunicorn support, 180
tips, xxiv

with statements, 219

working state to working state, 118, 131

X
Xvfb, 475

Y
YAGNI (You ain’t gonna need it!), 96, 131

Index | 575

About the Author
After an idyllic childhood spent playing with BASIC on French 8-bit computers like
the Thomson T-07 whose keys go “boop” when you press them, Harry spent a few
years being deeply unhappy with economics and management consultancy. Soon he
rediscovered his true geek nature, and was lucky enough to fall in with a bunch of XP
fanatics, working on the pioneering but sadly defunct Resolver One spreadsheet. He
now works at PythonAnywhere LLP, and spreads the gospel of TDD worldwide at
talks, workshops, and conferences, with all the passion and enthusiasm of a recent
convert.

Colophon
The animal on the cover of Test-Driven Development with Python is a cashmere goat.
Though all goats can produce a cashmere undercoat, only those goats selectively bred
to produce cashmere in commercially viable amounts are typically considered “cash‐
mere goats.” Cashmere goats thus belong to the domestic goat species Capra hircus.

The exceptionally fine, soft hair of the undercoat of a cashmere goat grows alongside
an outer coat of coarser hair as part of the goat’s double fleece. The cashmere under‐
coat appears in winter to supplement the protection offered by the outer coat, called
guard hair. The crimped quality of cashmere hair in the undercoat accounts for its
lightweight yet effective insulation properties.

The name “cashmere” is derived from the Kashmir Valley region on the Indian sub‐
continent where the textile has been manufactured for thousands of years. A dimin‐
ishing population of cashmere goats in modern Kashmir has led to the cessation of
exports of cashmere fiber from the area. Most cashmere wool now originates in
Afghanistan, Iran, Outer Mongolia, India, and—predominantly—China.

Cashmere goats grow hair of varying colors and color combinations. Both males and
females have horns, which serve to keep the animals cool in summer and provide the
goats’ owners with effective handles during farming activities.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Wood’s Animate Creation. The cover fonts are URW Type‐
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Preface
	Why I Wrote a Book About Test-Driven Development
	Aims of This Book
	Outline
	Conventions Used in This Book
	Submitting Errata
	Using Code Examples
	O’Reilly Safari
	Contacting O’Reilly

	Prerequisites and Assumptions
	Python 3 and Programming
	How HTML Works
	Django
	JavaScript
	Required Software Installations
	Git’s Default Editor, and Other Basic Git Config
	Installing Firefox and Geckodriver

	Setting Up Your Virtualenv
	Activating and Deactivating the Virtualenv
	Installing Django and Selenium
	Some Error Messages You’re Likely to See When You Inevitably Fail to Activate Your Virtualenv

	Companion Video
	Acknowledgments
	Additional Thanks for the Second Edition

	Part I. The Basics of TDD and Django
	Chapter 1. Getting Django Set Up Using a
Functional Test
	Obey the Testing Goat! Do Nothing Until You Have a Test
	Getting Django Up and Running
	Starting a Git Repository

	Chapter 2. Extending Our Functional Test Using
the unittest Module
	Using a Functional Test to Scope Out a Minimum
Viable App
	The Python Standard Library’s unittest Module
	Commit

	Chapter 3. Testing a Simple Home Page with
Unit Tests
	Our First Django App, and Our First Unit Test
	Unit Tests, and How They Differ from Functional Tests
	Unit Testing in Django
	Django’s MVC, URLs, and View Functions
	At Last! We Actually Write Some Application Code!
	urls.py
	Unit Testing a View
	The Unit-Test/Code Cycle

	Chapter 4. What Are We Doing with All These Tests? (And, Refactoring)
	Programming Is Like Pulling a Bucket of Water Up
from a Well
	Using Selenium to Test User Interactions
	The “Don’t Test Constants” Rule, and Templates to the Rescue
	Refactoring to Use a Template
	The Django Test Client

	On Refactoring
	A Little More of Our Front Page
	Recap: The TDD Process

	Chapter 5. Saving User Input: Testing the Database
	Wiring Up Our Form to Send a POST Request
	Processing a POST Request on the Server
	Passing Python Variables to Be Rendered in the Template
	Three Strikes and Refactor
	The Django ORM and Our First Model
	Our First Database Migration
	The Test Gets Surprisingly Far
	A New Field Means a New Migration

	Saving the POST to the Database
	Redirect After a POST
	Better Unit Testing Practice: Each Test Should Test One Thing

	Rendering Items in the Template
	Creating Our Production Database with migrate
	Recap

	Chapter 6. Improving Functional Tests: Ensuring Isolation and Removing Voodoo Sleeps
	Ensuring Test Isolation in Functional Tests
	Running Just the Unit Tests

	Aside: Upgrading Selenium and Geckodriver
	On Implicit and Explicit Waits, and Voodoo time.sleeps

	Chapter 7. Working Incrementally
	Small Design When Necessary
	Not Big Design Up Front
	YAGNI!
	REST (ish)

	Implementing the New Design Incrementally Using TDD
	Ensuring We Have a Regression Test
	Iterating Towards the New Design
	Taking a First, Self-Contained Step: One New URL
	A New URL
	A New View Function

	Green? Refactor
	Another Small Step: A Separate Template for Viewing Lists
	A Third Small Step: A URL for Adding List Items
	A Test Class for New List Creation
	A URL and View for New List Creation
	Removing Now-Redundant Code and Tests
	A Regression! Pointing Our Forms at the New URL

	Biting the Bullet: Adjusting Our Models
	A Foreign Key Relationship
	Adjusting the Rest of the World to Our New Models

	Each List Should Have Its Own URL
	Capturing Parameters from URLs
	Adjusting new_list to the New World

	The Functional Tests Detect Another Regression
	One More View to Handle Adding Items to an Existing List
	Beware of Greedy Regular Expressions!
	The Last New URL
	The Last New View
	Testing the Response Context Objects Directly

	A Final Refactor Using URL includes

	Part II. Web Development Sine Qua Nons
	Chapter 8. Prettification: Layout and Styling, and What to Test About It
	What to Functionally Test About Layout and Style
	Prettification: Using a CSS Framework
	Django Template Inheritance
	Integrating Bootstrap
	Rows and Columns

	Static Files in Django
	Switching to StaticLiveServerTestCase

	Using Bootstrap Components to Improve the Look of the Site
	Jumbotron!
	Large Inputs
	Table Styling

	Using Our Own CSS
	What We Glossed Over: collectstatic and Other Static Directories
	A Few Things That Didn’t Make It

	Chapter 9. Testing Deployment Using a Staging Site
	TDD and the Danger Areas of Deployment
	As Always, Start with a Test
	Getting a Domain Name
	Manually Provisioning a Server to Host Our Site
	Choosing Where to Host Our Site
	Spinning Up a Server
	User Accounts, SSH, and Privileges
	Installing Nginx
	Installing Python 3.6
	Configuring Domains for Staging and Live
	Using the FT to Confirm the Domain Works and Nginx Is Running

	Deploying Our Code Manually
	Adjusting the Database Location
	Creating a Virtualenv Manually, and Using requirements.txt
	Simple Nginx Configuration
	Creating the Database with migrate

	Success! Our Hack Deployment Works

	Chapter 10. Getting to a Production-Ready Deployment
	Switching to Gunicorn
	Getting Nginx to Serve Static Files
	Switching to Using Unix Sockets
	Switching DEBUG to False and Setting ALLOWED_HOSTS
	Using Systemd to Make Sure Gunicorn Starts on Boot
	Saving Our Changes: Adding Gunicorn to Our requirements.txt

	Thinking About Automating
	Saving Templates for Our Provisioning Config Files

	Saving Our Progress

	Chapter 11. Automating Deployment with Fabric
	Breakdown of a Fabric Script for Our Deployment
	Creating the Directory Structure
	Pulling Down Our Source Code with Git
	Updating settings.py
	Updating the Virtualenv
	Migrating the Database If Necessary

	Trying It Out
	Deploying to Live
	Nginx and Gunicorn Config Using sed

	Git Tag the Release
	Further Reading

	Chapter 12. Splitting Our Tests into Multiple Files, and a Generic Wait Helper
	Start on a Validation FT: Preventing Blank Items
	Skipping a Test
	Splitting Functional Tests Out into Many Files
	Running a Single Test File

	A New Functional Test Tool: A Generic Explicit Wait Helper
	Finishing Off the FT
	Refactoring Unit Tests into Several Files

	Chapter 13. Validation at the Database Layer
	Model-Layer Validation
	The self.assertRaises Context Manager
	A Django Quirk: Model Save Doesn’t Run Validation

	Surfacing Model Validation Errors in the View
	Checking That Invalid Input Isn’t Saved to the Database

	Django Pattern: Processing POST Requests in the Same View as Renders the Form
	Refactor: Transferring the new_item Functionality into view_list
	Enforcing Model Validation in view_list

	Refactor: Removing Hardcoded URLs
	The {% url %} Template Tag
	Using get_absolute_url for Redirects

	Chapter 14. A Simple Form
	Moving Validation Logic into a Form
	Exploring the Forms API with a Unit Test
	Switching to a Django ModelForm
	Testing and Customising Form Validation

	Using the Form in Our Views
	Using the Form in a View with a GET Request
	A Big Find and Replace

	Using the Form in a View That Takes POST Requests
	Adapting the Unit Tests for the new_list View
	Using the Form in the View
	Using the Form to Display Errors in the Template

	Using the Form in the Other View
	A Helper Method for Several Short Tests
	An Unexpected Benefit: Free Client-Side Validation from HTML5

	A Pat on the Back
	But Have We Wasted a Lot of Time?
	Using the Form’s Own Save Method

	Chapter 15. More Advanced Forms
	Another FT for Duplicate Items
	Preventing Duplicates at the Model Layer
	A Little Digression on Queryset Ordering and String Representations
	Rewriting the Old Model Test
	Some Integrity Errors Do Show Up on Save

	Experimenting with Duplicate Item Validation at the Views Layer
	A More Complex Form to Handle Uniqueness Validation
	Using the Existing List Item Form in the List View
	Wrapping Up: What We’ve Learned About Testing Django

	Chapter 16. Dipping Our Toes, Very Tentatively,
into JavaScript
	Starting with an FT
	Setting Up a Basic JavaScript Test Runner
	Using jQuery and the Fixtures Div
	Building a JavaScript Unit Test for Our Desired Functionality
	Fixtures, Execution Order, and Global State: Key Challenges of JS Testing
	console.log for Debug Printing
	Using an Initialize Function for More Control Over Execution Time

	Columbo Says: Onload Boilerplate and Namespacing
	JavaScript Testing in the TDD Cycle
	A Few Things That Didn’t Make It

	Chapter 17. Deploying Our New Code
	Staging Deploy
	Live Deploy
	What to Do If You See a Database Error
	Wrap-Up: git tag the New Release

	Part III. More Advanced Topics in Testing
	Chapter 18. User Authentication, Spiking, and
De-Spiking
	Passwordless Auth
	Exploratory Coding, aka “Spiking”
	Starting a Branch for the Spike
	Frontend Log in UI
	Sending Emails from Django
	Using Environment Variables to Avoid Secrets in Source Code
	Storing Tokens in the Database
	Custom Authentication Models
	Finishing the Custom Django Auth

	De-spiking
	Reverting Our Spiked Code

	A Minimal Custom User Model
	Tests as Documentation

	A Token Model to Link Emails with a Unique ID

	Chapter 19. Using Mocks to Test External Dependencies or Reduce Duplication
	Before We Start: Getting the Basic Plumbing In
	Mocking Manually, aka Monkeypatching
	The Python Mock Library
	Using unittest.patch
	Getting the FT a Little Further Along
	Testing the Django Messages Framework
	Adding Messages to Our HTML
	Starting on the Login URL
	Checking That We Send the User a Link with a Token

	De-spiking Our Custom Authentication Backend
	1 if = 1 More Test
	The get_user Method
	Using Our Auth Backend in the Login View

	An Alternative Reason to Use Mocks: Reducing Duplication
	Using mock.return_value
	Patching at the Class Level

	The Moment of Truth: Will the FT Pass?
	It Works in Theory! Does It Work in Practice?
	Finishing Off Our FT, Testing Logout

	Chapter 20. Test Fixtures and a Decorator for
Explicit Waits
	Skipping the Login Process by Pre-creating a Session
	Checking That It Works

	Our Final Explicit Wait Helper: A Wait Decorator

	Chapter 21. Server-Side Debugging
	The Proof Is in the Pudding: Using Staging to Catch Final Bugs
	Setting Up Logging

	Setting Secret Environment Variables on the Server
	Adapting Our FT to Be Able to Test Real Emails via POP3
	Managing the Test Database on Staging
	A Django Management Command to Create Sessions
	Getting the FT to Run the Management Command on the Server
	Using Fabric Directly from Python
	Recap: Creating Sessions Locally Versus Staging

	Baking In Our Logging Code
	Wrap-Up

	Chapter 22. Finishing “My Lists”: Outside-In TDD
	The Alternative: “Inside-Out”
	Why Prefer “Outside-In”?
	The FT for “My Lists”
	The Outside Layer: Presentation and Templates
	Moving Down One Layer to View Functions (the Controller)
	Another Pass, Outside-In
	A Quick Restructure of the Template Inheritance Hierarchy
	Designing Our API Using the Template
	Moving Down to the Next Layer: What the View Passes to the Template

	The Next “Requirement” from the Views Layer: New Lists Should Record Owner
	A Decision Point: Whether to Proceed to the Next Layer with a Failing Test

	Moving Down to the Model Layer
	Final Step: Feeding Through the .name API from the Template

	Chapter 23. Test Isolation, and “Listening to Your Tests”
	Revisiting Our Decision Point: The Views Layer Depends on Unwritten Models Code
	A First Attempt at Using Mocks for Isolation
	Using Mock side_effects to Check the Sequence of Events

	Listen to Your Tests: Ugly Tests Signal a Need to Refactor
	Rewriting Our Tests for the View to Be Fully Isolated
	Keep the Old Integrated Test Suite Around as a Sanity Check
	A New Test Suite with Full Isolation
	Thinking in Terms of Collaborators

	Moving Down to the Forms Layer
	Keep Listening to Your Tests: Removing ORM Code from Our Application

	Finally, Moving Down to the Models Layer
	Back to Views

	The Moment of Truth (and the Risks of Mocking)
	Thinking of Interactions Between Layers as “Contracts”
	Identifying Implicit Contracts
	Fixing the Oversight

	One More Test
	Tidy Up: What to Keep from Our Integrated Test Suite
	Removing Redundant Code at the Forms Layer
	Removing the Old Implementation of the View
	Removing Redundant Code at the Forms Layer

	Conclusions: When to Write Isolated Versus Integrated Tests
	Let Complexity Be Your Guide
	Should You Do Both?
	Onwards!

	Chapter 24. Continuous Integration (CI)
	Installing Jenkins
	Configuring Jenkins
	Initial Unlock
	Suggested Plugins for Now
	Configuring the Admin User
	Adding Plugins
	Telling Jenkins Where to Find Python 3 and Xvfb
	Finishing Off with HTTPS

	Setting Up Our Project
	First Build!
	Setting Up a Virtual Display So the FTs Can Run Headless
	Taking Screenshots
	If in Doubt, Try Bumping the Timeout!
	Running Our QUnit JavaScript Tests in Jenkins with PhantomJS
	Installing node
	Adding the Build Steps to Jenkins

	More Things to Do with a CI Server

	Chapter 25. The Token Social Bit, the Page Pattern, and an Exercise for the Reader
	An FT with Multiple Users, and addCleanup
	The Page Pattern
	Extend the FT to a Second User, and the “My Lists” Page
	An Exercise for the Reader

	Chapter 26. Fast Tests, Slow Tests, and Hot Lava
	Thesis: Unit Tests Are Superfast and Good Besides That
	Faster Tests Mean Faster Development
	The Holy Flow State
	Slow Tests Don’t Get Run as Often, Which Causes Bad Code
	We’re Fine Now, but Integrated Tests Get Slower Over Time
	Don’t Take It from Me
	And Unit Tests Drive Good Design

	The Problems with “Pure” Unit Tests
	Isolated Tests Can Be Harder to Read and Write
	Isolated Tests Don’t Automatically Test Integration
	Unit Tests Seldom Catch Unexpected Bugs
	Mocky Tests Can Become Closely Tied to Implementation
	But All These Problems Can Be Overcome

	Synthesis: What Do We Want from Our Tests, Anyway?
	Correctness
	Clean, Maintainable Code
	Productive Workflow
	Evaluate Your Tests Against the Benefits You Want from Them

	Architectural Solutions
	Ports and Adapters/Hexagonal/Clean Architecture
	Functional Core, Imperative Shell

	Conclusion
	Further Reading

	Obey the Testing Goat!
	Testing Is Hard
	Keep Your CI Builds Green
	Take Pride in Your Tests, as You Do in Your Code

	Remember to Tip the Bar Staff
	Don’t Be a Stranger!

	Appendix A. PythonAnywhere
	Running Firefox Selenium Sessions with Xvfb
	Setting Up Django as a PythonAnywhere Web App
	Cleaning Up /tmp
	Screenshots
	The Deployment Chapter

	Appendix B. Django Class-Based Views
	Class-Based Generic Views
	The Home Page as a FormView
	Using form_valid to Customise a CreateView
	A More Complex View to Handle Both Viewing and Adding to a List
	The Tests Guide Us, for a While
	Until We’re Left with Trial and Error
	Back on Track
	Is That Your Final Answer?

	Compare Old and New
	Best Practices for Unit Testing CBGVs?
	Take-Home: Having Multiple, Isolated View Tests with Single Assertions Helps

	Appendix C. Provisioning with Ansible
	Installing System Packages and Nginx
	Configuring Gunicorn, and Using Handlers to Restart Services
	What to Do Next
	Move Deployment out of Fabric and into Ansible
	Use Vagrant to Spin Up a Local VM

	Appendix D. Testing Database Migrations
	An Attempted Deploy to Staging
	Running a Test Migration Locally
	Entering Problematic Data
	Copying Test Data from the Live Site
	Confirming the Error

	Inserting a Data Migration
	Re-creating the Old Migration

	Testing the New Migrations Together
	Conclusions

	Appendix E. Behaviour-Driven Development (BDD)
	What Is BDD?
	Basic Housekeeping
	Writing an FT as a “Feature” Using Gherkin Syntax
	As-a /I want to/So that
	Given/When/Then
	Not Always a Perfect Fit!

	Coding the Step Functions
	Generating Placeholder Steps

	First Step Definition
	setUp and tearDown Equivalents in environment.py
	Another Run
	Capturing Parameters in Steps
	Comparing the Inline-Style FT
	BDD Encourages Structured Test Code
	The Page Pattern as an Alternative
	BDD Might Be Less Expressive than Inline Comments
	Will Nonprogrammers Write Tests?
	Some Tentative Conclusions

	Appendix F. Building a REST API: JSON, Ajax, and Mocking with JavaScript
	Our Approach for This Appendix
	Choosing Our Test Approach
	Basic Piping
	Actually Responding with Something
	Adding POST
	Testing the Client-Side Ajax with Sinon.js
	Sinon and Testing the Asynchronous Part of Ajax

	Wiring It All Up in the Template to See If It Really Works
	Implementing Ajax POST, Including the CSRF Token
	Mocking in JavaScript
	Finishing the Refactor: Getting the Tests to Match the Code

	Data Validation: An Exercise for the Reader?

	Appendix G. Django-Rest-Framework
	Installation
	Serializers (Well, ModelSerializers, Really)
	Viewsets (Well, ModelViewsets, Really) and Routers
	A Different URL for POST Item
	Adapting the Client Side
	What Django-Rest-Framework Gives You
	Configuration Instead of Code
	Free Functionality

	Appendix H. Cheat Sheet
	Initial Project Setup
	The Basic TDD Workflow
	Moving Beyond Dev-Only Testing
	General Testing Best Practices
	Selenium/Functional Testing Best Practices
	Outside-In, Test Isolation Versus Integrated Tests, and Mocking

	Appendix I. What to Do Next
	Notifications—Both on the Site and by Email
	Switch to Postgres
	Run Your Tests Against Different Browsers
	404 and 500 Tests
	The Django Admin Site
	Write Some Security Tests
	Test for Graceful Degradation
	Caching and Performance Testing
	JavaScript MVC Frameworks
	Async and Websockets
	Switch to Using py.test
	Check Out coverage.py
	Client-Side Encryption
	Your Suggestion Here

	Appendix J. Source Code Examples
	Full List of Links for Each Chapter
	Using Git to Check Your Progress
	Downloading a ZIP File for a Chapter
	Don’t Let it Become a Crutch!

	Bibliography
	Index
	About the Author
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

