
The CLI Book
Writing Successful Command Line
Interfaces with Node.js
—
Robert Kowalski

www.allitebooks.com

http://www.allitebooks.org

The CLI Book
Writing Successful Command
Line Interfaces with Node.js

Robert Kowalski

www.allitebooks.com

http://www.allitebooks.org

The CLI Book

ISBN-13 (pbk): 978-1-4842-3176-0		 ISBN-13 (electronic): 978-1-4842-3177-7
https://doi.org/10.1007/978-1-4842-3177-7

Library of Congress Control Number: 2017962012

Copyright © 2017 by Robert Kowalski

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image, we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Technical Reviewer: Massimo Nardone
Coordinating Editor: Nancy Chen
Copy Editor: Sharon Wilkey
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science + Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484231760.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Robert Kowalski
Hamburg, Germany

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3177-7
http://www.allitebooks.org

iii

Table of Contents

Chapter 1: �What Makes a Good CLI?��1

CLI Basics��1

You Never Get Stuck��2

Still Lost? Man Pages Will Help��4

Error Handling��7

It Supports Power Users��8

Shortcuts��8

Scripting���9

Configuration��11

You Can Use It for So Many Things!���12

Summary���13

Chapter 2: �Writing a Database Administration Tool with Node.js��������15

Why Use Node.js?��16

Setting Up the Database Server���16

Setting Up���16

Using the PouchDB Database Server��17

Troubleshooting��18

About the Author���vii

About the Technical Reviewer��ix

Preface���xi

Acknowledgments��xiii

www.allitebooks.com

http://www.allitebooks.org

iv

Performing a Simple Status Check��21

Starting from Scratch���21

A Helping Ecosystem��23

The Internals of the isonline Command��26

The CLI Part��29

Booting the Tool���31

Making Sure Lounger Is Loaded���31

A Nice Way to Interact from the Command Line���36

Summary���38

Chapter 3: �Making Our CLI More Accessible���������������������������������������39

Error Handling��39

Handling Usage Errors��41

Providing Further Guidance��44

JSON Support and Shorthand��47

Documentation���50

Rendering the Documentation��52

Providing HTML Output���58

More Help���66

General Help with a List of Commands��66

Help for Each Command���68

Configuration���71

Creating the Configuration File���71

The Heart of Our Configuration System��72

A Helper to Edit the Configuration��76

Our First Release and Tips���80

Summary���82

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

v

Chapter 4: �Migrating Large Amounts of Data by Using Streams���������83

The cat Command��84

The First Stream��85

The Transform and Writable Stream��87

Creating a Wrapping Transform Stream���88

Piping the Results into a Writable Stream��91

The Streaming Import Command���95

Designing the Command��98

Creating the Target Database���98

Summary���104

�APPENDIX A: Tips and Tricks���105

�Testing���105

�Semantic Versioning with SemVer���105

�Greenkeeper���106

Index��107

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

vii

About the Author

Robert Kowalski started using Node.js when

version 0.4 was still new. He has spent time

working on the npm core team, which is where

he learned a lot about good command-line

interfaces. As a developer, he has also had to

use other command-line tools, and it was this

that made him realize how much a book like

this was needed. In the past, he has worked

for big companies such as IBM and startups

including Jimdo and Bitfinex, all in different

roles, as well as committing to Node.js and

Apache CouchDB. He speaks at conferences and has enjoyed writing since

he was a child. You can find Robert on Twitter: @robinson_k.

www.allitebooks.com

http://www.allitebooks.org

ix

About the Technical Reviewer

Massimo Nardone has more than 22 years

of experience in security, web/mobile

development, the cloud, and IT architecture.

His true IT passions are security and Android.

He has been programming and teaching

how to program with Android, Perl, PHP, Java,

VB, Python, C/C++, and MySQL for more than

20 years.

He holds a master of science degree in

computing science from the University of

Salerno, Italy. He has worked as a project manager, software engineer,

research engineer, chief security architect, information security manager,

PCI/SCADA auditor, and senior lead IT security/cloud/SCADA architect

for many years.

Technical skills include security, Android, cloud, Java, MySQL, Drupal,

Cobol, Perl, web and mobile development, MongoDB, D3, Joomla,

Couchbase, C/C++, WebGL, Python, Pro Rails, Django CMS, Jekyll, and

Scratch.

He currently works as chief information security officer (CISO) for

Cargotec Oyj. He has also worked as a visiting lecturer and supervisor

for exercises at the Networking Laboratory of the Helsinki University of

Technology (Aalto University). He holds four international patents

(PKI, SIP, SAML, and Proxy areas).

Massimo has reviewed more than 40 IT books for various publishing

companies. He is the coauthor of Pro Android Games (Apress, 2015).

www.allitebooks.com

http://www.allitebooks.org

xi

Preface

Command-line clients are everywhere. Almost everyone, at least in tech, is

using them.

Many successful command-line clients are available: the Linux project

has Git, and the Node.js project has npm. We use some of them multiple

times a day. Apache CouchDB recently got nmo (pronounced nemo), a

tool to manage the database cluster. We can learn a lot from successful

command-line interfaces in order to write better command-line clients.

When I started to become interested in command-line clients, I realized

that the Web hosts a lot of discussions and information about writing APIs.

The Web is full of tutorials that can teach you how to build APIs, especially

REST APIs, but almost nothing can be found about writing good command-

line interfaces (CLIs). This book explains what makes a good CLI. In the

second part of the book, you will build a small command-line client to learn

how to use Node.js to create great command-line clients that people love.

The goal of the book is to show the principles for building a successful

command-line client. The provided code should give you a good

understanding of what is important to build successful command-line

clients and how to implement them.

Every section has its own code examples. Before you run the code, you

have to run npm install in the folder provided for that section.

You can download the code samples from https://github.com/

theclibook/theclibook/archive/1.0.zip.

I hope you enjoy the book.

www.allitebooks.com

https://github.com/theclibook/theclibook/archive/1.0.zip
https://github.com/theclibook/theclibook/archive/1.0.zip
http://www.allitebooks.org

xiii

Acknowledgments

I want to thank Michelle Phung and Klaus Trainer for their input on the

very first version of this book.

I’m also deeply indebted to Isaac Schlueter, who merged my first patch

to npm. Without your support, I wouldn’t have dived into the art of great

command-line interfaces. This is also the right place to thank Domenic

Denicola for his impact on my work over the years.

Big thanks to Louise Corrigan, Nancy Chen, Massimo Nardone, and

James Markham from Apress for their kind feedback and support.

I also have to thank my family: my parents, for the invaluable support

they provided since I was born. My sister, for being a wonderful sister. I hope

this book makes you proud!

www.allitebooks.com

http://www.allitebooks.org

1© Robert Kowalski 2017
R. Kowalski, The CLI Book, https://doi.org/10.1007/978-1-4842-3177-7_1

CHAPTER 1

What Makes a
Good CLI?
In this chapter, you’ll take a look at successful command-line clients and

what they do well. This will help you understand the problems users face,

and thus help you build better command-line clients with Node.js later in

the book.

�CLI Basics
Let’s first take a look at how users typically use a command-line interface

(CLI). Most of the time, users sit in front of a keyboard and interact with

a terminal. You should use simple and recognizable commands for the

CLI. But sadly, just using easily recognizable commands won’t get you far

enough.

The problem will be easier to understand if you take a look at a bad CLI:

$ my-example-cli -A -a 16 r foo.html

error: undefined is not a function

In this example, you have to enter cryptic commands that are then

answered by a cryptic error message. You might ask, “What does -A -a 16 r

mean?” and “Why I am getting an error back; am I using it wrong?” and

“What does the error mean, and how can I get my task done?”

2

So what makes a good CLI? In short, a successful CLI is one that makes

users successful and happy.

Let’s try creating a CLI by using the following three principles:

•	 You never get stuck in the CLI.

•	 It is simple and supports power users.

•	 You can use it for so many things.

�You Never Get Stuck
Nobody likes to be in a traffic jam, stuck, just moving a few feet each

minute. You want to reach your target destination in the fastest and most

comfortable way. The same applies to your users: they become extremely

unhappy when tools are standing in their way. They just want to get their

tasks done.

Never getting stuck means that you should always offer your users

a way to solve their tasks. A command should never be a dead end.

Additionally, you should avoid every source of friction in your command-

line tool.

To better illustrate this, let’s take a look at Git and npm—two very

successful command-line tools.

The following example uses Git:

$ git poll

git: 'poll' is not a git command. See 'git --help'.

Did you mean this?

pull

In this example, I entered the wrong command, poll, instead of pull.

Fortunately, Git offers a way to continue my work and finish the task.

Chapter 1 What Makes a Good CLI?

3

Git is basically saying, “Hey, Robert, it looks like you entered the

wrong command, but if you type in git --help, you can see a list of all the

existing commands. And, hey, it looks like you typed git poll; did you

mean git pull?”

npm, another successful CLI client, offers the same concept:

$ npm ragrragr

Usage: npm <command>

where <command> is one of:

 access, add-user, adduser, apihelp, author, bin, bugs, c,

 cache, completion, config, ddp, dedupe, deprecate, dist-tag,

 dist-tags, docs, edit, explore, faq, find, find-dupes, get,

 help, help-search, home, i, info, init, install, issues, la,

 link, list, ll, ln, login, logout, ls, outdated, owner,

 pack, prefix, prune, publish, r, rb, rebuild, remove, repo,

 restart, rm, root, run-script, s, se, search, set, show,

 shrinkwrap, star, stars, start, stop, t, tag, test, tst, un,

 uninstall, unlink, unpublish, unstar, up, update, upgrade,

 v, verison, version, view, whoami

npm <cmd> -h quick help on <cmd>

npm -l display full usage info

npm faq commonly asked questions

npm help <term> search for help on <term>

npm help npm involved overview

Specify configs in the ini-formatted file:

 /Users/robert/.npmrc

or on the command line via: npm <command> —key value

Config info can be viewed via: npm help config

npm@5.5.1 /Users/robert/.nvm/versions/node/v9.1.0/lib/node_

modules/npm

Chapter 1 What Makes a Good CLI?

4

In this example, I tried to put garbage into npm, so npm offers some

friendly help: “Hey, Robert, I don’t know that command, but here are all

the commands that are possible. You can use them like this and get help

about them by typing in npm help <command>.”

Like Git, npm immediately offers help to enable me to finish my task,

even if I have no idea how to use npm at all.

�Still Lost? Man Pages Will Help
What if I still need help? Maybe I want to get help before trying out any

commands. Turns out, there’s a reliable way to find documentation on

Unix or Linux: manual pages, or man pages, shown in Figure 1-1.

Man pages are quite nice, as you don’t need the Internet to open them.

You can also stay in the same terminal window to read them and don’t

have to switch to another window (such as a. a browser).

Figure 1-1.  The man page for git pull

Chapter 1 What Makes a Good CLI?

5

But some users don’t know about man pages or don’t like to use

them. Others will be working on Windows, which can’t handle man pages

natively, so Git and npm offer their documentation as web pages, as shown

in Figure 1-2.

Both Git and npm use a trick: they write their documentation once

(for example, in Markdown or AsciiDoc) and use that initial source as a

base. Later, they convert those base documents to different formats (for

example, to HTML).

If you look at the online man pages of Git and npm, you will notice that

their web sites frame the content with a header and a sidebar. Figure 1-3

and Figure 1-4 illustrate this with the different versions for the command

npm publish.

Figure 1-2.  The documentation web site of the Git project

Chapter 1 What Makes a Good CLI?

6

Figure 1-3.  The man page for npm publish

Figure 1-4.  The documentation web site for npm publish

Chapter 1 What Makes a Good CLI?

7

�Error Handling
Sometimes things go still horribly wrong. Let’s look at my example of a bad

CLI again:

$ my-example-cli -A -a 16 r foo.py

events.js:85

 throw er; // Unhandled 'error' event

 ^

Error: ENOENT, open 'cli.js'

 at Error (native)

In this case, you are getting back a stacktrace without much context.

For most people, these stacktraces look cryptic, especially for people who

don’t write Node.js on a daily basis.

And it is even worse: you really can’t tell whether you just hit a bug in

the CLI or you are using the it in the wrong way. Imagine your users in this

situation. Looking at that small terminal, with no idea what to do, they get

extremely frustrated.

One thing nmo supports is usage errors. Here is what they look like:

$ nmo cluster dsf

ERR! Usage:

nmo cluster get [<clustername>], [<nodename>]

nmo cluster add <nodename>, <url>, <clustername>

nmo cluster join <clustername>

If a user tries to use a command in the wrong way, nmo will indicate

immediately how to use the command to get the job done. No need to

open the documentation.

Chapter 1 What Makes a Good CLI?

8

nmo also shows stacktraces to a user if nmo crashes:

$ nmo cluster join anemone

ERR! df is not defined

ERR! ReferenceError: df is not defined

ERR! at /Users/robert/apache/nmo/lib/cluster.js:84:5

ERR! at cli (/Users/robert/apache/nmo/lib/cluster.js:68:27)

ERR! at /Users/robert/apache/nmo/bin/nmo-cli.js:32:6

ERR!

ERR! nmo: 1.0.1 node: v9.1.0

ERR! please open an issue including this log on https://github.

com/robertkowalski/nmo/issues

nmo adds the current nmo and Node.js version to the stacktrace, as

npm does. We also ask the user to copy the stacktrace and to open an issue

containing the stacktrace.

The reports make it easy for a team to identify the bug, solve it, and

release a new version of nmo by seeing the stacktrace.

And, again, the user is not stuck. The user gets help to solve the task,

and in the worst case, you help the user through your issue tracker.

�It Supports Power Users
Power users are important for your CLI. They are the users who will talk

about your CLI and increase its overall adoption by spreading the word.

The following subsections cover ways to improve interactions with power

users.

�Shortcuts
Most power users use your CLI multiple times every day. An easy way to

support them is to provide shortcuts.

Chapter 1 What Makes a Good CLI?

https://github.com/robertkowalski/nmo/issues/1
https://github.com/robertkowalski/nmo/issues/1
https://github.com/robertkowalski/nmo/issues/1

9

npm has lots of shortcuts. For instance, npm i is the short form for npm

install. Git lets you define your own shortcuts in the .gitconfig file. I use

git co as a shortcut for git checkout, for example.

�Scripting
At some point, your command-line client will become very successful;

people will love it and start using it in creative ways. The CLI will suddenly

run on Jenkins, as part of deployment in a Chef or Puppet run, or your

users will use your CLI in ways you never could have imagined!

Sooner or later, automated processes will also use your CLI. To make

your CLI even more successful, it’s a good idea to support scripting.

�Exit Codes

Operating systems use exit codes to signal whether a command was

successful. You will get back a 0 if your recent command was successful.

Getting back a 1 indicates a general error.

Exit codes are useful for users who want to wrap your command-line

client in a bash script.

Here is an example:

$ git poll

git: 'poll' is not a git command. See 'git --help'.

Did you mean this?

 pull

$ echo $?

1

Git notifies you that something went wrong; you are getting back a 1

as the exit code. With proper exit codes, every writer of a bash script can

handle unsuccessful commands.

Chapter 1 What Makes a Good CLI?

10

�JSON Output

In nmo, every command that gives back information supports JSON-

formatted output:

$ nmo cluster get --json

{ anemone:

 { node1: 'http://node1.local',

 node2: 'http://node2.local',

 node3: 'http://node3.local' } }

JSON support enables users to process data easily in the programming

language of their choice, as most languages support JSON. Users can

spawn a child process in language x and listen to stdout for the output.

They can also directly pipe the output into a consumer on the shell:

$ nmo cluster get --json | consumer.py

JSON output gives users a lot of flexibility.

�The API in the Command-Line Client

Another concept can make scripting easier. I call it the API in the

command-line client:

const nmo = require('nmo');

nmo.load({}).then(() => {

 nmo.commands.cluster

 .get('testcluster', 'node1@127.0.01')

 .then((res) => {

 console.log(res);

 });

});

Chapter 1 What Makes a Good CLI?

11

In nmo, every command is exposed on nmo.commands. If a user wants

to use nmo as part of their node scripts, they are able to require it. The

JavaScript API is documented like the CLI.

The JavaScript API enables users to embed nmo in their Node.js scripts

for complex processes. They could even fork nmo and embed it into their

own command-line client.

�Configuration
Power users love configuration. Because they use command-line clients

a lot, maybe multiple times a day, it is no surprise that they want some

features enabled by default. But in rare cases, they don’t want the default

setting.

npm supports option arguments on the command line:

$ npm i hapi --registry=https://reg.example.org

/Users/robert

└── hapi@9.0.4

This command downloads the package hapi from a private registry at

https://reg.example.org.

But I can also set this private registry as the new default registry:

$ npm config set registry https://reg.example.org

npm writes the new registry into the config:

$ cat ~/.npmrc

loglevel=http

registry=https://reg.example.org

The next time I try to install a package, npm will use my new default

registry, https://reg.example.org:

$ npm i hapi

Chapter 1 What Makes a Good CLI?

http://apache.github.io/couchdb-nmo/api/nmo-cluster.html
https://reg.kowalski.gd/
https://reg.kowalski.gd/
https://reg.kowalski.gd/

12

If I don’t want to use this new default registry, I can pass an argument

to the CLI, and it will use the alternate registry just for this call:

$ npm i hapi --registry=https://registry.npmjs.org

/Users/robert

└── hapi@9.0.4

That means we have choices between default configurations and

command-line arguments in npm, and this combination is extremely

powerful.

�You Can Use It for So Many Things!
Let’s take a look at the last principle: you can use a CLI for so many things.

Whenever I have to do a task multiple times, and it fits into the domain

of my command-line client, I’ll just add it as a new command. This habit

turns into a win-win situation: you have to do fewer boring tasks, and

your users are happy because they get a new feature and also have to do

fewer monkey tasks. This makes your command-line client even more

successful.

Let’s take npm as an example. When npm was in its early days, it

didn’t have a command for listing outdated packages. You had to run a

full update for all packages and then check which packages were updated

and which were not. The addition of the command scratched an itch for

its author, but also for all users of npm. Sadly, it can be quite hard to spot

common pain points, especially if you work with multiple teams or a lot

of people. Additionally, most of us are suffering organizational blindness

after working on the same topic for a long time. But if you identify a task

that you can automate for you and your users, you will be hugely rewarded!

Chapter 1 What Makes a Good CLI?

13

�Summary
Most issues with command-line interfaces are not related to technical

problems. Your users should always have an idea about the next steps,

especially if things go wrong. Observing someone who uses your CLI for

the first time can help you get new ideas for improvements. It's important

to have a solid base to be able to attract first users.

As soon as a solid user experience exists, additions such as shortcuts

make your CLI more interesting. Power users, especially, will love them.

Chapter 1 What Makes a Good CLI?

15© Robert Kowalski 2017
R. Kowalski, The CLI Book, https://doi.org/10.1007/978-1-4842-3177-7_2

CHAPTER 2

Writing a Database
Administration Tool
with Node.js
In this chapter, we will write a database administration tool named lounger

and follow the principles that make a good CLI. The code for every section

is available at https://github.com/theclibook/theclibook/tree/1.0/

sourcecode, which you can access via a link at the end of each section. The

main repository is at https://github.com/theclibook/theclibook. If you

want to play with the code, don’t forget to run npm install in the folder

for the section you want to test. The code also has a test suite that you can

run with npm test.

We’ll start with the setup of the development environment. We’ll install

and start a small PouchDB instance. Then we’ll create our first command.

To make the command-line tool extensible, we’ll also add a bootstrapping

part. With a proper bootstrap, we’ll load every command and configuration

that we add over time. We’ll finish the chapter with a first runnable version

of the tool that we’ll be able to execute on the command line.

https://github.com/theclibook/theclibook/tree/1.0/sourcecode
https://github.com/theclibook/theclibook/tree/1.0/sourcecode
https://github.com/theclibook/theclibook

16

�Why Use Node.js?
I sometimes get asked why I write command-line clients using Node.js. For

me, the main reasons are as follows:

•	 A huge ecosystem with modules in every flavor

•	 Fast development speed

•	 Writing JavaScript is fun!

For me, these reasons make Node.js the perfect platform for writing

command-line clients.

�Setting Up the Database Server
Our first step is to get the database server squared away. This involves a

setup process, PouchDB installation, and a bit of troubleshooting.

�Setting Up
We will write our command-line client in ES6/7, which brings a lot of

improvements to JavaScript. In order to use it, we have to install Node 8.x

from https://nodejs.org. If you want to support older Node.js versions,

I recommend the Babel transpiler to transpile the code to ES5-compatible

code. You can get Babel at https://babeljs.io/.

The tool that we’ll write will be a small database administration tool

for CouchDB/PouchDB. There are multiple ways to get a development

database server up and running.

One way is to install Erlang and CouchDB for your operating system.

You can download official packages from http://couchdb.apache.org, and

many Linux distributions have CouchDB in their package repositories too.

Chapter 2 Writing a Database Administration Tool with Node.js

https://nodejs.org/
https://babeljs.io/
http://couchdb.apache.org/

17

I think the easiest way is to either use the PouchDB server that is

available in the source code for this book or to get a CouchDB instance at

https://cloudant.com, which is free until you hit a limit.

�Using the PouchDB Database Server
The PouchDB database server is located in sourcecode/database. In order

to use it, we have to install the needed dependencies:

$ cd sourcecode/database

$ npm install

To boot the database, we just run the following:

$ npm run start

We can now interact with the database server via HTTP, as CouchDB

and PouchDB are databases with an HTTP API. If you don’t know how to

get curl, take a look at the following “Troubleshooting” section.

$ curl -XGET http://127.0.0.1:5984/

{"express-pouchdb":"Welcome!","version":"1.0.1","vendor":

{"name":"PouchDB authors","version":"1.0.1"},"uuid":"4fad2c01-

ba32-4249-8278-8786e877c397"}

Let’s create a database called people:

$ curl -XPUT http://127.0.0.1:5984/people

{"ok":true}

We can now insert documents into our people database:

$ curl -XPOST http://127.0.0.1:5984/people -d '{"name":

"Rocko Artischocko", \

Chapter 2 Writing a Database Administration Tool with Node.js

https://cloudant.com/

18

 "likes": ["Burritos", "Node.js", "Music"] }' -H 'Content-Type:

application/json'

{"ok":true,"id":"21b5ad83-0ad6-47c7-86f8d9636113160a","rev":

"1-411894affa038a6fd7a164e1bfd84146"}

Using the ID, we can retrieve documents from the database:

$ curl -XGET http://127.0.0.1:5984/people/21b5ad83-0ad6-47c7-

86f8-d9636113160a

{"name":"Rocko Artischocko","likes":["Burritos","Node.

js","Music"],"_id":"21b5ad83-0ad6-47c7-86f8-d9636113160a",

"_rev":"1-411894affa038a6fd7a164e1bfd84146"}

Great! You should have a database up and running! If you have trouble,

the next section will help you.

�Troubleshooting
Sometimes the installation of a database server doesn’t go as we want it to.

For Windows and Mac users, this section covers how to get a missing curl

program. For Linux users, this section solves a typical error related to file

watchers on Linux systems.

�Getting curl

curl is a command-line client for HTTP requests. It is available for all major

operating systems. macOS users can install it by using brew . For Windows,

builds are available at http://curl.haxx.se/download.html.

Chapter 2 Writing a Database Administration Tool with Node.js

http://curl.haxx.se/download.html

19

�Fixing a File-Watcher Error

On Linux, I got an error because my user already watched too much files:

$ npm run start

> theclibook-database@1.0.0 start /home/rocko/clibook/

sourcecode/database

> pouchdb-server --in-memory

fs.js:1236

 throw error;

 ^

Error: watch ./log.txt ENOSPC

 at exports._errnoException (util.js:874:11)

 at FSWatcher.start (fs.js:1234:19)

 at Object.fs.watch (fs.js:1262:11)

 �at Tail.watch (/home/rocko/clibook/sourcecode/database/node_

modules/pouchdb-server/node_modules/tail/tail.js:83:32)

 �at new Tail (/home/rocko/clibook/sourcecode/database/node_

modules/pouchdb-server/node_modules/tail/tail.js:72:10)

 �at /home/rocko/clibook/sourcecode/database/node_modules/

pouchdb-server/lib/logging.js:69:20

 at FSReqWrap.cb [as oncomplete] (fs.js:212:19)

npm ERR! Linux 3.13.0-71-generic

npm ERR! argv "/home/rocko/.nvm/versions/node/v4.2.3/bin/node"

"/home/rocko/.nvm/versions/node/v4.2.3/bin/npm" "run" "start"

npm ERR! node v4.2.3

npm ERR! npm v3.5.1

npm ERR! code ELIFECYCLE

npm ERR! theclibook-database@1.0.0 start: `pouchdb-server --in-

memory`

npm ERR! Exit status 1

Chapter 2 Writing a Database Administration Tool with Node.js

20

npm ERR!

npm ERR! Failed at the theclibook-database@1.0.0 start script

'pouchdb-server --in-memory'.

npm ERR! Make sure you have the latest version of node.js and

npm installed.

npm ERR! If you do, this is most likely a problem with the

theclibook-database package,

npm ERR! not with npm itself.

npm ERR! Tell the author that this fails on your system:

npm ERR! pouchdb-server --in-memory

npm ERR! You can get information on how to open an issue for

this project with:

npm ERR! npm bugs theclibook-database

npm ERR! Or if that isn't available, you can get their info via:

npm ERR! npm owner ls theclibook-database

npm ERR! There is likely additional logging output above.

npm ERR! Please include the following file with any support request:

npm ERR! /home/rocko/clibook/sourcecode/database/npm-debug.log

I fixed the problem by raising the file limit via this command:

$ echo fs.inotify.max_user_watches=524288 | sudo tee -a /etc/

sysctl.conf && sudo sysctl -p

Hopefully, you have a working database server now. The next section

focuses on the development of our command-line tool.

Chapter 2 Writing a Database Administration Tool with Node.js

21

�Performing a Simple Status Check
Our first command will check whether the database is up and running. Our

users can use this command to see whether the database server is running,

and we can use the command internally for the commands which require

a running database.

The command for checking whether a database server is online looks

like this:

$ lounger isonline http://192.168.0.1:5984

http://192.168.0.1:5984 is up and running

The API looks like this:

$ lounger.commands.isonline('http://example.com')

It’s often helpful to write down a planned command, in order to get

a feeling for it. After you have settled on a name and signature for the

command, you can start with its development. In this case, we have to start

creating our tool from scratch.

�Starting from Scratch
To get started, we have to create a package.json file. Luckily, npm provides

a nice assistant for creating these files. You can see the finished process in

Figure 2-1.

$ npm init

Chapter 2 Writing a Database Administration Tool with Node.js

www.allitebooks.com

http://www.allitebooks.org

22

We then just answer the questions npm asks us.

Additionally, we have to create three folders: test, lib, and bin. The

test folder will contain our unit and integration tests, and lib will contain

the core of our command-line client. The bin folder will contain a small

wrapper that will boot up the core of our client.

CouchDB and PouchDB both return a welcome message when we

access the root URL at http://localhost:5984.

$ curl localhost:5984

CouchDB returns the following:

{"couchdb":"Welcome","uuid":"17ed4b2d8923975cf658e20e219faf95",

"version":"1.5.0","vendor":{"version":"14.04","name":"Ubuntu"}}

Figure 2-1.  The assistant from npm init to create a package.json file

Chapter 2 Writing a Database Administration Tool with Node.js

23

PouchDB returns this:

{"express-pouchdb":"Welcome!","version":"1.0.1","vendor":

{"name":"PouchDB authors","version":"1.0.1"},"uuid":

"4fad2c01-ba32-4249-8278-8786e877c397"}

We will use this behavior to check whether the database is online.

�A Helping Ecosystem
As already mentioned, Node.js has a great ecosystem. It has many battle-

proven modules that can help us solve our tasks.

For our status check, we will use the request module to handle our

HTTP requests. mocha will run our test suite, and nock will help us mock

HTTP responses without having to boot a database instance for the test suite.

The arguments --save and --save-dev will add the packages to

the dependencies and devDependencies sections of our package.json

file, respectively. The development dependencies are needed just for

development, not for running the package in production:

$ npm i --save request

$ npm i --save-dev mocha nock

After running the commands, we should have everything we need for

now.

Choose your own flavors T here are many good test runners for
Node.js. Some alternatives to mocha are the npm modules tap,
tape, or lab.

Chapter 2 Writing a Database Administration Tool with Node.js

24

My package.json file looks like this now:

{

 "name": "lounger",

 "version": "1.0.0",

 "description": "a tool for couchdb/pouchdb administration",

 "main": "lib/lounger.js",

 "directories": {

 "test": "test"

 },

 "dependencies": {

 "request": "^2.67.0"

 },

 "devDependencies": {

 "mocha": "^2.3.4",

 "nock": "^5.2.1"

 },

 "scripts": {

 "test": "mocha -R spec"

 },

 "keywords": [

 "couchdb",

 "pouchdb"

],

 "author": "Robert Kowalski <rok@kowalski.gd>"

}

Chapter 2 Writing a Database Administration Tool with Node.js

25

Various development techniques such as test-driven development

(TDD) are beyond the scope of this book. But if you are really into TDD,

you can write failing tests with mocha before we implement the actual code.

A few suggestions:

•	 Detect whether the database is online.

•	 Detect offline databases.

•	 Detect whether something is online, but not a

CouchDB/PouchDB database.

•	 Ensure that only valid URLs are accepted.

Written in mocha and ES6, we get a few failing tests in test/isonline.js:

'use strict';

const assert = require('assert');

const nock = require('nock');

describe('isonline', () => {

 it('detects if the database is online', () => {

 assert.equal('foo', 'to implement');

 });

 it('detects offline databases', () => {

 assert.equal('foo', 'to implement');

 });

 �it('detects if something is online, but not a CouchDB/

PouchDB', () => {

 assert.equal('foo', 'to implement');

 });

Chapter 2 Writing a Database Administration Tool with Node.js

26

 it('just accepts valid urls', () => {

 assert.equal('foo', 'to implement');

 });

});

To run the test suite, we have to type either npm test or npm t on the

terminal.

Note T he code for this section can be found at sourcecode/
client-boilerplate.

�The Internals of the isonline Command
Let’s create and edit the lib/isonline.js file. The file name is important,

as we will use it later during the bootstrap of the client. As a first step, we

have to require our dependency request:

'use strict';

const request = require('request');

To make a request, we create the isOnline function, which will take a

URL and send the request:

function isOnline (url) {

 return new Promise((resolve, reject) => {

 request({

 uri: url,

 json: true

 }, (err, res, body) => {

Chapter 2 Writing a Database Administration Tool with Node.js

27

If there is no HTTP service at all listening on the specified URL, we

resolve the promise with an object that contains the URL as a key, and

false as a value:

�if (err && (err.code === 'ECONNREFUSED' || err.code ===

'ENOTFOUND')) {

 return resolve({[url]: false});

}

For all other errors, we reject the promise:

// any other error

if (err) {

 return reject(err);

}

If we get a Welcome response from CouchDB or PouchDB, we can safely

assume that the database server is online:

// maybe we got a welcome from CouchDB / PouchDB

const isDatabase = (body.couchdb === 'Welcome' ||

 body['express-pouchdb'] === 'Welcome!');

return resolve({[url]: isDatabase});

As a last step, we have to export the function:

exports.api = isOnline;

Here is the whole function:

function isOnline (url) {

 return new Promise((resolve, reject) => {

 request({

 uri: url,

 json: true

 }, (err, res, body) => {

Chapter 2 Writing a Database Administration Tool with Node.js

28

 // db is down

 �if (err && (err.code === 'ECONNREFUSED' || err.code ===

'ENOTFOUND')) {

 return resolve({[url]: false});

 }

 // any other error

 if (err) {

 return reject(err);

 }

 // maybe we got a welcome from CouchDB / PouchDB

 const isDatabase = (body.couchdb === 'Welcome' ||

 body['express-pouchdb'] === 'Welcome!');

 return resolve({[url]: isDatabase});

 });

 });

}

exports.api = isOnline;

We can try our function on the Node.js REPL:

$ node

> const isonline = require('./lib/isonline.js').api;

undefined

> isonline('http://example.com').then(console.log);

Promise { <pending> }

> { 'http://example.com': false }

> isonline('http://doesnotexist.example.com').then(console.log);

Promise { <pending> }

> { 'http://doesnotexist.example.com': false }

> isonline('http://localhost:5984').then(console.log);

Chapter 2 Writing a Database Administration Tool with Node.js

29

Promise { <pending> }

> { 'http://localhost:5984': true }

Congratulations! We just finished the first part, the API for our new

command!

�The CLI Part
It would be frustrating for end users if that was the command-line interface

they had to use. The output is not easily readable, and the functionality

is not easy to understand. The API function doesn’t print to the console,

which is perfect for an API, but not desirable for a CLI. Running the API

function even requires some Node.js knowledge. So let’s add a nice CLI

function to our isonline.js file and export it as cli:

function cli (url) {

 return new Promise((resolve, reject) => {

 });

}

exports.cli = cli;

Like our other functions, this function returns a promise. We then

call isOnline and print the result on stdout for the users who use the

command-line client on the terminal:

 isOnline(url).then((res) => {

 Object.keys(results).forEach((entry) => {

 let msg = 'seems to be offline';

 if (results[entry]) {

 msg = 'seems to be online';

 }

Chapter 2 Writing a Database Administration Tool with Node.js

30

 // print on stdout for terminal users

 console.log(entry, msg);

 resolve(results);

 });

 });

The full code:

 function cli (url) {

 return new Promise((resolve, reject) => {

 isOnline(url).then((res) => {

 Object.keys(results).forEach((entry) => {

 let msg = 'seems to be offline';

 if (results[entry]) {

 msg = 'seems to be online';

 }

 // print on stdout for terminal users

 console.log(entry, msg);

 resolve(results);

 });

 });

 });

}

exports.cli = cli;

It is important to note that we export the command for the API as

exports.api, while we export the CLI command under the cli property.

Note T he code for this section can be found at sourcecode/the-
status-check.

Chapter 2 Writing a Database Administration Tool with Node.js

31

�Booting the Tool
Lounger still needs the code that makes it usable on the command line.

It also lacks a comfortable way to run our API commands. Right now, we

have just one command, but we’ll add more soon. To make all commands

easy to use, we have to load all available commands into a namespace. The

lib/lounger.js file will take care of that.

The lounger.js file is the heart of our command-line client. We

require the fs module, as we have to list the files that could contain

commmands:

'use strict';

const fs = require('fs');

We also require package.json and expose the current version of the

module as a property on the lounger object, which will come in handy later:

const pkg = require('../package.json');

�Making Sure Lounger Is Loaded
It makes sense to ensure that lounger was bootstrapped properly,

especially for programmatic use. To keep track of the async bootstrapping

status, we set lounger.loaded to false:

const lounger = { loaded: false };

We also store the current version of the module:

lounger.version = pkg.version;

Chapter 2 Writing a Database Administration Tool with Node.js

32

We need a place to store the API and the CLI commands. As the

bootstrapping is async, we will throw an error if someone tries to access

the exposed functions before the bootstrap is finished:

const api = {}, cli = {};

Object.defineProperty(lounger, 'commands', {

 get: () => {

 if (lounger.loaded === false) {

 throw new Error('run lounger.load before');

 }

 return api;

 }

});

Object.defineProperty(lounger, 'cli', {

 get: () => {

 if (lounger.loaded === false) {

 throw new Error('run lounger.load before');

 }

 return cli;

 }

});

The custom getter for Object.defineProperty will throw if lounger.

loaded is false and we try to access a property on lounger.cli and

lounger.api.

It also works for the autocomplete in the Node.js REPL when you try to

hit Tab for completion. Just try it!

The last part of the file is the actual bootstrapping, where we get all

files in the folder lib and require them if they are JavaScript files and not

lounger.js, the file we are currently working with.

Chapter 2 Writing a Database Administration Tool with Node.js

33

The function to bootstrap lounger is called lounger.load. In this case,

we are using a named function. A named function can be helpful in a

stacktrace in case the application crashes:

lounger.load = function load () {

 return new Promise((resolve, reject) => {

 });

};

The fs.readdir function will list all files in a directory. We iterate over

the list of files that fs.readdir returns:

lounger.load = function load () {

 return new Promise((resolve, reject) => {

 fs.readdir(__dirname, (err, files) => {

 files.forEach((file) => {

 });

 });

 });

};

If the file is not a JS file or is lounger.js itself, we ignore it by returning

early:

if (!/\.js$/.test(file) || file === 'lounger.js') {

 return;

}

In all other cases, we assume that we found a command for lounger.

We take everything from the file name before the .js and save it as cmd:

const cmd = file.match(/(.*)\.js$/)[1];

Chapter 2 Writing a Database Administration Tool with Node.js

34

We require the file:

const mod = require('./' + file);

If a file exports an API command as the api property, we expose it on

lounger.commands. All CLI commands are available on lounger.cli:

if (mod.cli) {

 cli[cmd] = mod.cli;

}

if (mod.api) {

 api[cmd] = mod.api;

}

After the forEach loop is finished and all commands are loaded, we

can set lounger.loaded to true. This will prevent the checks we added

previously from throwing:

lounger.loaded = true;

As a last step, we resolve the promise:

resolve(lounger);

The whole lounger.load function is shown here:

lounger.load = function load () {

 return new Promise((resolve, reject) => {

 fs.readdir(__dirname, (err, files) => {

 files.forEach((file) => {

 if (!/\.js$/.test(file) || file === 'lounger.js') {

 return;

 }

 const cmd = file.match(/(.*)\.js$/)[1];

 const mod = require('./' + file);

Chapter 2 Writing a Database Administration Tool with Node.js

35

 if (mod.cli) {

 cli[cmd] = mod.cli;

 }

 if (mod.api) {

 api[cmd] = mod.api;

 }

 });

 lounger.loaded = true;

 resolve(lounger);

 });

 });

};

We almost forgot to export lounger, so we add module.exports at the

end of the file:

module.exports = lounger;

We can already use the code:

$ node

> const lounger = require('./lib/lounger.js'); lounger.load().

then(console.log);

Promise { <pending> }

> { loaded: true, version: '1.0.0', load: [Function: load] }

> lounger.commands

{ isonline: [Function: isOnline] }

> lounger.cli

{ isonline: [Function: cli] }

> lounger.commands.isonline('http://localhost:5984').

then(console.log);

Promise { <pending> }

> { 'http://localhost:5984': true }

Chapter 2 Writing a Database Administration Tool with Node.js

36

The last step in this section is to make lounger usable on the terminal

itself. For this task, we’ve already created the bin folder. Now it’s time to

put the file called lounger-cli.js into bin!

�A Nice Way to Interact from the Command Line
npm has a nice feature: if we add a JavaScript file to a property called bin

in the package.json file of a module, npm will add it to our PATH if we are

installing the package globally (with npm install -g lounger).

If we have the bin property defined and lounger is globally installed,

it becomes available as lounger (which is our package name) on the

terminal—quite comfortable! To inform the user that a package is intended

to be installed globally, we can add preferGlobal: true to package.json

(see https://docs.npmjs.com/files/package.json#preferglobal).

To enable the two features, we add these two lines to our package.json:

 "bin": "./bin/lounger-cli",

 "preferGlobal": true,

Additionally, we have to make bin/lounger-cli executable, if we are

on Linux or macOS:

$ chmod +x bin/lounger-cli

The first line of our lounger-cli file will be a shebang line. This tells

Linxux/Unix shell users that it must run our file with Node.js:

#!/usr/bin/env node

Afterward, we load lib/lounger.js, the core of our command-line tool:

const lounger = require('../lib/lounger.js');

Chapter 2 Writing a Database Administration Tool with Node.js

https://docs.npmjs.com/files/package.json#bin
https://docs.npmjs.com/files/package.json#preferglobal

37

The next step is to parse our command-line arguments. In this case, we

use the nopt module for this purpose (install it with npm i --save nopt).

We could parse the arguments on our own, but a battle-proven module

like nopt offers a lot more features and is easier to use. We get the passed

command by accessing parsed.argv.remain:

const nopt = require('nopt');

const parsed = nopt({}, {}, process.argv, 2);

const cmd = parsed.argv.remain.shift();

The next step is to boot the client by calling lounger.load, which will

bootstrap the client and populate lounger.commands and lounger.cli.

After the promise is resolved, we call the command that was passed on the

command line:

lounger.load().then(() => {

 lounger.cli[cmd]

 .apply(null, parsed.argv.remain)

 .catch((err) => {

 console.error(err);

 });

}).catch((err) => {

 console.error(err);

});

As every command returns a promise, we catch errors with catch and

then print them to the console.

Chapter 2 Writing a Database Administration Tool with Node.js

38

We can now test our minimalistic command-line client on the

command line:

$ npm install -g .

$ lounger isonline http://test.example.com

http://test.example.com seems to be offline or no database

And given our PouchDB/CouchDB server is running:

$ lounger isonline http://localhost:5984

http://localhost:5984 seems to be online

Instead of running npm install -g . after each code change, you

can run npm link in your module directory. This will link the global

installation to the current directory, which means that every change is

immediately available, as long as the directory does not change.

Note T he code for this section can be found at sourcecode/client-
bootstrap.

Choose your own flavors T here are countless good argument-
parsing libraries on npm. Some alternatives to nopt are commander,
optimist, and yargs.

�Summary
In this chapter, we created the first basic building block for our command-

line client. We now have a solid foundation for an extensible command-line

client. We also added our first command. Yet we are still far from a product

that our users would love and promote. Our CLI still has rough edges and

is missing a lot of the features that successful CLIs have. We will fix those

issues in the next chapter, where we’ll look at at usability and accessibility.

Chapter 2 Writing a Database Administration Tool with Node.js

39© Robert Kowalski 2017
R. Kowalski, The CLI Book, https://doi.org/10.1007/978-1-4842-3177-7_3

CHAPTER 3

Making Our CLI More
Accessible
In the preceding chapter, we built a solid base for our command-line tool.

We loaded our first command, and the whole program is executable on

the command line. We will now focus on usability and accessibility. We

will look at how to improve error handling and provide our users with

a guiding hand, even if the program crashes. With JSON support and

shorthand, we’ll bring a smile to the faces of our power users. We’ll also

create different formats for our documentation. Before our first production

release, we’ll add a flexible system for managing configuration.

�Error Handling
You already learned that no user enjoys cryptic error messages and

stacktraces. Sadly, that is still the case for our lounger application. Making

the application more accessible should be our first priority.

Right now, lounger doesn’t do anything about wrong input for the

isonline command:

$ lounger isonline ragrragr

$

40

Another caveat to consider is, are we handling errors correctly so

people can use the command-line client in their bash scripts?

$ lounger isonline ragrragr

$ echo $?

0

Wouldn’t it be nicer to give users a hint about the correct usage of the

program right away, without opening any documentation? Nobody enjoys

sitting in front of a black terminal, having no idea what to do. While we

are at it, we can also fix the wrong exit code, which is currently signaling a

successfully executed program.

Why isn’t our console.error call in bin/lounger-cli printing

anything? It turns out that we introduced a subtle bug: we forgot the

.catch for our promise-returning call in lib/isonline.js. Given that the

API function isOnline rejects the promise, we have no handler in the cli

function to take care of it. No problem—we’ll add the .catch right now:

function cli (url) {

 return new Promise((resolve, reject) => {

 isOnline(url).then((results) => {

 // print on stdout for terminal users

 Object.keys(results).forEach((entry) => {

 let msg = 'seems to be offline or no database server';

 if (results[entry]) {

 msg = 'seems to be online';

 }

 console.log(entry, msg);

 resolve(results);

 });

Chapter 3 Making Our CLI More Accessible

41

 }).catch(reject); // add the missing catch

 });

}

exports.cli = cli;

Our next try is a bit more successful:

$ lounger isonline ragrragr

[Error: Invalid URI "ragrragr"]

Not sure if you are happy with it? I’m not! Just imagine someone who

has never used Node.js or the terminal, or maybe even someone who is

completely new to computers. The Invalid URI message won’t help them

much to get their task done. Twenty years ago, they would have had to get

a book from the library in order to find out what a URI is, and today they

would have to search Google for it. Instead, they could have fun with our

CLI and get things done! In the next section, we will take a look at how to

improve error messages that originate from wrong input.

�Handling Usage Errors
Usage errors comprise everything related to wrong usage of the interface.

Usually, it’s wrong input that’s causing trouble. Often the argument order

is switched by accident. Fortunately, we can fix this issue by adding

validations for the arguments in isonline.js.

If the user does not provide a URL to the CLI, we’ll have a new error

with the message Usage: lounger isonline <url>, which describes how

the user should use the command. We set the type of the error to EUSAGE,

which will be important later. In lounger, all errors that are thrown because

the user provided the wrong input get the type EUSAGE. All other cases

related to bugs don’t get the type EUSAGE:

function cli (url) {

 return new Promise((resolve, reject) => {

Chapter 3 Making Our CLI More Accessible

www.allitebooks.com

http://www.allitebooks.org

42

 if (!url) {

 const err = new Error('Usage: lounger isonline <url>');

 err.type = 'EUSAGE';

 return reject(err);

 }

The less-than sign and greater-than sign around url indicate that it

is a required argument and not optional. The last command in the block

rejects the promise with our error and returns, in order to prevent the

execution of the following code.

Tip E arly returns are useful for reducing cyclomatic complexity.
Cyclomatic complexity is a measurement of the complexity of code.
For example, code appears more complex when if and else blocks
are nested, as these nested blocks make it harder for the human
brain to reason about the flow of the program’s execution.

Additionally. we have to check whether the URL is valid:

if (!/^(http:|https:)/.test(url)) {

 const err = new Error([

 'invalid protocol, must be https or http',

 'Usage: lounger isonline <url>'

].join('\n'));

 err.type = 'EUSAGE';

 return reject(err);

}

In this case, we set the error type to EUSAGE again and reject the

promise. Additionally, we tell the user that we expect a valid URL with a

protocol that is usable for us.

Chapter 3 Making Our CLI More Accessible

43

On our next try, we will get a slightly better result:

$./bin/lounger-cli isonline dsf

{ [Error: invalid protocol, must be https or http

Usage: lounger isonline <url>] type: 'EUSAGE' }

As we reject the promise, the console.error that we added in bin/

lounger-cli prints the error object. By adding a few lines of code, we can

format it so humans can read it better. We will install the npmlog logger for

it (hint: npm i is short for npm install):

$ npm i --save npmlog

We require the logger at the top of bin/lounger-cli, the file where we

catch the rejected promise:

const log = require('npmlog');

Next, we add the errorHandler function to bin/lounger-cli. If the

error is a usage error (of type EUSAGE), we log the message and exit with

error code 1. All other errors are logged using log.error(err) for now:

function errorHandler (err) {

 if (!err) {

 process.exit(1);

 }

 if (err.type === 'EUSAGE') {

 err.message && log.error(err.message);

 process.exit(1);

 }

 log.error(err);

 process.exit(1);

}

Chapter 3 Making Our CLI More Accessible

44

Now we have to switch from the old console.error call to our new

error-handling function:

lounger.load().then(() => {

 lounger.cli[cmd]

 .apply(null, parsed.argv.remain)

 .catch(errorHandler);

}).catch(errorHandler);

Cool—let’s see if it works:

$ lounger isonline

ERR! Usage: lounger isonline <url>

$ echo $?

1

Figure 3-1 shows the result. That looks a lot better!

�Providing Further Guidance
We still haven’t dealt with other errors: errors from dependencies we use,

or evil bugs that sneak in, like reference errors. To simulate such an error,

we can add a call to a nonexistent function in the cli function:

function cli (url) {

 return new Promise((resolve, reject) => {

 doesNotExist();

Figure 3-1.  A usage error resulting from providing the wrong input to
the CLI

Chapter 3 Making Our CLI More Accessible

45

If we now run the command-line client, we get this:

$ lounger isonline http://example.com

ERR! ReferenceError: doesNotExist is not defined

If I had just downloaded the command-line client and tried to use it,

I would be quite puzzled. Say I started a new job and tried to use the same

tool that my coworkers were using, but downloaded a newer release with

bugs. I would be stuck, with no further information about how to continue.

To be honest, if I hadn’t programmed in JavaScript for years, this stacktrace

would really puzzle me!

Most people would just stop using our program and switch to an

alternative. Very few would go on a journey of finding out where to submit

an issue or even write a PR. Usually, computers are frustrating, and people

don’t want to spend multiple hours trying to find someone to help them

with a cryptic message. So how about making this process as easy as

possible, reducing the friction where we can?

npm itself supports a bugs property in package.json. If we add the

following to the package.json file of lounger, a call to npm bugs will open

http://example.com/lounger/issues in a browser for us:

"bugs": {

 "url": "http://example.com/lounger/issues"

},

Cool—we have a central place for storing the URL to our issue tracker.

We can also add the URL to our stacktraces, in order to make submitting

bugs for our users easier. We need to require package.json in bin/

lounger-cli, the file where we print our errors anyway:

const pkg = require('./package.json');

Chapter 3 Making Our CLI More Accessible

http://example.com/lounger/issues

46

By altering our errorHandler, we make it print full stacktraces.

Additionally, we ask the user to open an issue, as it is pretty clear right now

that the error was not a usage error that was caught by our validations:

function errorHandler (err) {

 if (!err) {

 process.exit(1);

 }

 if (err.type === 'EUSAGE') {

 err.message && log.error(err.message);

 process.exit(1);

 }

 err.message && log.error(err.message);

 if (err.stack) {

 log.error('', err.stack);

 log.error('', '');

 log.error('', '');

 �log.error('', 'lounger:', pkg.version, 'node:', process.

version);

 �log.error('', 'please open an issue including this log on '

+ pkg.bugs.url);

 }

 process.exit(1);

}

OK, here’s the next try:

$ lounger isonline http://example.com

ERR! doesNotExist is not defined

ERR! ReferenceError: doesNotExist is not defined

ERR! �at /home/rocko/clibook/sourcecode/error-handling/lib/

isonline.js:35:7

Chapter 3 Making Our CLI More Accessible

47

ERR! �at cli (/home/rocko/clibook/sourcecode/error-handling/

lib/isonline.js:34:10)

ERR! �at /home/rocko/clibook/sourcecode/error-handling/bin/

lounger-cli:15:6

ERR!

ERR!

ERR! lounger: 1.0.0 node: v9.1.0

ERR! �please open an issue including this log on http://example.

com/lounger/issues

Awesome! The stacktrace with line numbers is useful for us. The

current version of the program and the Node.js environment help us,

too. In case the command-line client really hits a wall, we receive a lot

of information in order to debug the process. Even more important: the

user gets all the information needed to create an issue. We remove a lot

of friction from the process by directly pointing to the issue tracker and

providing all information that is needed to describe the bug—no long back

and forth about the current Node version or the missing logfile!

Note T he code for this section can be found at sourcecode/
error-handling.

�JSON Support and Shorthand
JSON support is useful for all users who want to take the output from the

CLI and process it programatically with their own tools. By adding a --

json flag to our isonline command, we can add this useful feature with a

few lines of code. We have to tell our argument parser about it; in this case,

we are telling nopt that we want to have --json handled as a Boolean in

bin/lounger-cli:

Chapter 3 Making Our CLI More Accessible

48

const parsed = nopt({

 'json': [Boolean]

}, {'j': '--json'}, process.argv, 2);

Based on the type Boolean, nopt will automatically also add

--no-json for us, which will come in handy when we add additional

configuration by file later. Additionally, we register a shorthand option for

our power users: they can use -j instead of --json.

We then pass the result parsed into lounger.load:

const parsed = nopt({

 'json': [Boolean]

}, {'j': '--json'}, process.argv, 2);

const cmd = parsed.argv.remain.shift();

lounger.load(parsed).then(() => {

 lounger.cli[cmd]

 .apply(null, parsed.argv.remain)

 .catch(errorHandler);

}).catch(errorHandler);

longer.load adds a lounger.config.get command and makes it

available for us as part of the bootstrap:

lounger.load = function load (opts) {

 return new Promise((resolve, reject) => {

 lounger.config = {

 get: (key) => {

 return opts[key];

 }

 };

 fs.readdir(__dirname, (err, files) => {

Chapter 3 Making Our CLI More Accessible

49

We require lounger.js in our isonline.js file:

const lounger = require('./lounger.js');

As a last step, we the check for json-flag in our cli function after we

get the results back:

isOnline(url).then((results) => {

 if (lounger.config.get('json')) {

 console.log(results);

 resolve(results);

 return;

 }

That’s it! We can test the command:

$ lounger isonline http://example.com

http://example.com seems to be offline or no database server

$ lounger isonline http://example.com --json

{ 'http://example.com': false }

$ lounger isonline http://example.com -j

{ 'http://example.com': false }

Our users can now pipe the output on their terminals into other

consumers and process the results. We also added our first command-line

flag to lounger to modify the execution of a command. Great!

Note T he code and tests for this section are in sourcecode/
json-flags.

Chapter 3 Making Our CLI More Accessible

50

�Documentation
The last step to finish our isonline command is to add proper

documentation. We will write this documentation in Markdown. We need

documentation for the API and CLI commands. The API docs will live in

doc/api, and the CLI commands will live in doc/cli. I know that most

programmers hate writing documentation, but it will help us a lot: new

users will be able to get up and running easier, and we won’t lose them

before they had the chance to enjoy our product. Additionally, we make

our lives easier by documenting the functionality once, so people don’t

have to open issues or ask in a chat how they can use a command. It’s a

win-win situation. We start with doc/api/lounger-isonline.md, which

describes the API that is available at lounger.commands:

lounger-isonline(3) -- check if a database is online

==

The heading describes our command as lounger-isonline(3) and

then adds a short explanation of what the command is about. The number

in parentheses describes the type of the section. For a man page, a library

function is noted by a 3, and a user command would be a 1 (spoiler: our

CLI command is a user command).

The next section describes how our users can use the command:

SYNOPSIS

 lounger.commands.isonline(url)

The last part is a detailed description of how the command works:

DESCRIPTION

Check if a CouchDB / PouchDB database is available on the current

network.

Chapter 3 Making Our CLI More Accessible

51

url:

The url must be a `String` and must be a url using the http or https

protocol.

The command returns a promise. The promise returns an Object.

The key of the Object is the provided url and the values are of

type `Boolean`.

`true` indicates an online CouchDB / PouchDB node.

That’s it for the API part. We can now add the text for doc/cli/

lounger-isonline.md:

lounger-isonline(1) -- check if a database is online

==

 lounger isonline <url> [--json]

DESCRIPTION

 <url>:

Check if a database node is currently online or available.

`isonline` prints the result as human readable output. JSON

output is also supported by passing the `--json` flag.

With the small 1 in lounger-isonline(1), we are signaling that this

help section explains a user command. The less-than and greater-than

symbols in <url> show the user that url is a mandatory argument; without

it, the command won’t work. The square brackets of [--json] mean that

the --json flag is an optional command. With our first documentation

pages ready, we can move to the next section and render it into various

output formats.

Chapter 3 Making Our CLI More Accessible

52

�Rendering the Documentation
Now that we have the sources for our documentation, we can start to build

our documentation from our sources with marked and marked-man:

$ npm i --save-dev marked marked-man

A makefile would be a great fit for generating the documentation from

the source. Sadly, it is hard to get makefiles to work on Windows, so we

will write our build steps in JavaScript. In the root directory of lounger,

we create the file build.js. Additionally, we have to install mkdirp and

rimraf; mkdirp provides the functionality we know from the Linux

command mkdir -p in a cross-platform way: it creates directories and

subdirectories recursively. The rimraf module brings us the equivalent of

rm -rf to the Node.js platform: deleting directories recursively. We also will

use the glob module to match all needed files for our documentation build:

$ npm i --save-dev mkdirp rimraf glob

Our first function will be a function to clean a fresh folder structure

where we can save our man pages:

'use strict';

const mkdirp = require('mkdirp');

const rimraf = require('rimraf');

const glob = require('glob');

const path = require('path');

function cleanUpMan () {

 rimraf.sync(__dirname + '/man/');

 // re-create the target directory

 mkdirp.sync(__dirname + '/man/');

}

Chapter 3 Making Our CLI More Accessible

53

We have to find out which Markdown files are available for the

compile. Our sources for documentation are at doc/api or at doc/cli.

Additionally, we will have some content in doc/website that is specific to

the web site (the content for index.html).

The getSources function helps us to get the full path to the Markdown

files for each type of source (api, doc, website). It returns the relative path

of the matching glob and then uses the path.resolve function to get the

full path in a cross-platform way.

function getSources (type) {

 const files = glob.sync('doc/' + type + '/*.md');

 return files.map(file => path.resolve(file));

}

The sources object stores an array of the found files for each type:

const sources = {

 api: getSources('api'),

 cli: getSources('cli'),

 websiteIndex: getSources('website'),

};

We can clean up our target directory now and get a list of file names

that we want to convert. We still need to find out the target path and

file name for the converted files. Man pages have different file endings,

depending on the kind of functionality they describe. Our man pages for

the CLI would get the ending .1 (user commands), and our API function

would get the ending .3 (library functions). We also have to change

/doc/cli/ and /doc/api/ in the path of the file to our target directory,

/man/. We have to take special care of the path separators. On Windows,

the separators are \\ instead of /. That means the path doc/api becomes

doc\\api on Windows. The good news is that we can access the current

path separator by using path.sep in Node.js (the separator is provided by

the core module path):

Chapter 3 Making Our CLI More Accessible

54

function getTargetForManpages (currentFile, type) {

 let target;

 // set the right section for the man page on unix systems

 if (type === 'cli') {

 target = currentFile.replace(/\.md$/, '.1');

 }

 if (type === 'api') {

 target = currentFile.replace(/\.md$/, '.3');

 }

 // replace the source dir with the target dir

 �// do it for the windows path (doc\\api) and the unix path

(doc/api)

 target = target

 .replace(['doc', 'cli'].join(path.sep), 'man')

 .replace(['doc', 'api'].join(path.sep), 'man');

 return target;

}

Right now, we just want to create man pages from our documents in

the api and cli folders.

Based on these building blocks, we can create the final buildMan

function that will finally build our man pages. It will make use of the

functions we just created and spawn a child process that compiles the

Markdown files by using marked-man. We will use the spawnSync function

from the Node core to spawn the processes. As we write the result to the

file system, we have to require the fs module, too:

const fs = require('fs');

const spawnSync = require('child_process').spawnSync;

Chapter 3 Making Our CLI More Accessible

55

The first job is cleaning up to get a new target directory without any

files from previous builds. We then iterate over our sources and get the

target for our new generated file. The file is then written to the hard disk by

using fs.writeFileSync. We stop the execution of the web-site index, as

we don’t want to do use it for a man page right now. In the next iteration,

we could definitely add a main page for the lounger man pages:

function buildMan () {

 cleanUpMan();

 Object.keys(sources).forEach(type => {

 sources[type].forEach(currentFile => {

 if (type === 'websiteIndex') {

 return;

 }

 // convert markdown to man-pages

 const out = spawnSync('node', [

 './node_modules/marked-man/bin/marked-man',

 currentFile

]);

 const target = getTargetForManpages(currentFile, type);

 // write output to target file

 fs.writeFileSync(target, out.stdout, 'utf8');

 })

 });

}

buildMan();

Chapter 3 Making Our CLI More Accessible

56

With buildMan(); in the last line, we kick off the build process

every time we run the script with Node. A few modifications to our

package.json could make it an npm script and run the build before a

publish, so our users don’t have to compile anything on their own as part

of the installation. This ensures that every user really gets the same content

of the package and makes installations faster.

In package.json, we modify the scripts section and add entries

for build and prepublishOnly. The prepublishOnly entry is a special

hook for npm. It will run every time before we publish the package to the

registry:

"scripts": {

 "test": "mocha -R spec",

 "docs": "node ./build",

 "prepublishOnly": "npm run docs"

},

Since npm version 5 prepublish is deprecated. It still works, but for

build steps it is advised to use prepublishOnly or prepare instead.

npm also offers a nice feature for man pages: npm can install them

for the user so they are available on the terminal via man <command> for

Linux/Unix users. In order to do that, we have to add another entry to our

package.json, the man entry in the directories section:

"directories": {

 "man": "./man"

},

The entry points to our local man-pages directory. If you are on Unix/

Linux, you can see if the man pages work now:

$ npm run docs

> lounger@1.0.0 docs /home/rocko/clibook/sourcecode/documentation

> node ./build

Chapter 3 Making Our CLI More Accessible

57

$ npm install -g .

> lounger@1.0.0 prepublish /home/rocko/clibook/sourcecode/

documentation

> npm run docs

> lounger@1.0.0 docs /home/rocko/clibook/sourcecode/

documentation

> node ./build

/home/rocko/.nvm/versions/node/v9.1.0/bin/lounger -> /home/

rocko/.nvm/versions/node/v9.1.0/lib/node_modules/lounger/bin/

lounger-cli

/home/rocko/.nvm/versions/node/v9.1.0/lib

└── lounger@1.0.0

We can now type in the command to show a man page, which will

displayonscreen (Figure 3-2):

$ man lounger-isonline

Figure 3-2.  The man page for lounger, our command-line client

Chapter 3 Making Our CLI More Accessible

58

It is also possible to select a specific section:

$ man 3 lounger-isonline

$ man 1 lounger-isonline

With the man pages ready to ship, we can focus on the HTML output.

�Providing HTML Output
For our HTML-based documentation, we have to add the HTML-specific

part now. We’ll create a folder called website in the doc folder of our

module. It will contain the templates for the web site that are used to

“frame“ the document output.

In the website folder, we put a template.html file with some basic

markup, and most important, placeholders!

<!doctype html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>The lounger manual & documentation</title>

</head>

<body>

 <div class="wrapper">

 lounger

 <div class="content">

 __CONTENT__

 </div>

 </div>

 <nav class="toc-container">

 <div class="toc main-toc">

Chapter 3 Making Our CLI More Accessible

59

 __TOC__

 </div>

 </nav>

</body>

</html>

We need to create some content for the root of our website to welcome

the user. I will provide a very short example. In general, the landing page

should give the user an idea of what the command-line client is about and

maybe also demo it. A screencast is a great way to demonstrate some of

the core features. For some inspiration on what to put on the site, feel free

to visit http://apache.github.io/couchdb-nmo, which is the page for the

command-line client I wrote. Next to our template in doc/website we add

the bespoke index page as index.md:

Welcome to Lounger

Lounger is a friendly administration tool for CouchDB and PouchDB.

```

# you will need Node.js > 8 for lounger

npm install -g lounger

```

Things you can do with lounger:

```

# check if a CouchDB / PouchDB instance is online

lounger isonline http://example.com

```

Chapter 3 Making Our CLI More Accessible

http://apache.github.io/couchdb-nmo

60

The page is minimalistic but gives a brief overview of what lounger is

about. It also shows how our visitors can install it and gives a hint that they

need Node.js—not everyone has Node.js installed, and some people may

have never heard of npm. Remember: our goal is to make everything as

easy as possible for new users, so they never get stuck. In the next section,

we are going to implement the required functionality to render our

Markdown.

�Extending the Build Script

In order to build the web site, we have to add code to build.js. We start by

adding another cleanup function for our web-site files, so we can start with

a blank slate every time:

function cleanUpWebsite () {

 rimraf.sync(__dirname + '/website/');

 mkdirp.sync(__dirname + '/website/');

}

Our web site has different targets than the man pages. We add a

new function, getTargetForWebsite. Currently, our Markdown files are

prefixed with lounger-, which comes in handy for the man pages, but is

not very useful for our web site. Instead, we want to prefix files with their

type; an API document, for example, would have the prefix api-. This way,

we can put pages for the API next to the ones for the CLI, which makes

linking easier. The first lines of the getTargetForWebsite function will

take care of that task and replace the lounger- prefix with a type-specific

prefix. After we replace the prefix, we set the file ending from .md to .html.

The final target folder for our compiled results will be ./website, so we

have to take care that the directories are set up right. The difference with

getTargetForManpages is that we use the website folder instead of man

and that we also take care of the path for the doc/website/index.md file:

Chapter 3 Making Our CLI More Accessible

61

function getTargetForWebsite (currentFile, type) {

 let target = currentFile;

 // modify the filename a bit for our html file:

 // prefix all cli functions with cli- instead of lounger-

 // prefix all api functions with api- instead of lounger-

 if (type === 'cli') {

 target = currentFile.replace(/lounger-/, 'cli-');

 }

 if (type === 'api') {

 target = currentFile.replace(/lounger-/, 'api-');

 }

 // set the file ending to html

 target = target.replace(/\.md$/, '.html');

 // replace the source dir with the target dir

 target = target

 .replace(['doc', 'cli'].join(path.sep), 'website')

 .replace(['doc', 'api'].join(path.sep), 'website')

 .replace(['doc', 'website'].join(path.sep), 'website');

 return target;

}

The last item that is missing for our web site is something like a

table of contents. getTocForWebsite will create a listing of our API and

CLI functions. Later we will insert the table of contents into the TOC

placeholder of the template.

The TOC itself gets a nested list of the files we compile. In the future, it

might make sense to replace the whole system with a template engine such

as Handlebars, Jade, or Nunjucks. I could definitely write a second book

about static web-site generation, plus the numerous possible toolchains,

but I’m trying to keep it simple for now and just use plain ES6 templates.

Chapter 3 Making Our CLI More Accessible

62

After starting an unordered list with , we iterate over the types of

our sources again. The files of our websiteIndex type are unwanted, and

we return early in their case. For all others, we take the type of each section

and use it as the first list element. It shows the type of each section (API or

CLI) and acts as a heading.

After we get a heading, we iterate over each file from the current

section. As the link text differs a bit from the actual hyperlink, we create a

constant called file and an additional linktext constant. For both, we

must get rid of the lounger- prefix. To create the reference that is used as

href, we must change the .md to an .html ending. The link text should not

have a file ending at all, so we remove its .md ending:

function getTocForWebsite () {

 let toc = '';

 Object.keys(sources).forEach(type => {

 // we don't want the index in our toc for now

 if (type === 'websiteIndex') {

 return;

 }

 toc += `${type}`;

 sources[type].forEach(currentFile => {

 const prefix = type === 'cli' ? 'cli-' : 'api-';

 const file = path.basename(currentFile)

 .replace('lounger-', prefix)

 .replace(/\.md/, '.html');

 const linktext = path.basename(currentFile)

 .replace('lounger-', '')

 .replace(/\.md/, '');

Chapter 3 Making Our CLI More Accessible

63

 toc += `${linktext}`;

 });

 toc += '';

 });

 toc += '';

 return toc;

}

We can now take the small functions we created and create the main

build function, buildWebsite, from them. The templateFile constant

describes where we can find our template file, template.html, which we

created at the beginning:

const templateFile = __dirname + '/doc/website/template.html';

The next step is to replace the placeholders in the templates with the

generated table of contents and the different content for each API or CLI

method.

In buildWebsite, we call cleanUpWebsite to remove any outdated

files as a first step. We read the template with fs.readFileSync and get

the table of contents. We then iterate over our sources. This time, we don’t

spawn a child process with marked-man; we just use marked, which outputs

HTML. After we get the target for the current file of the web site, we

replace the CONTENT placeholder with it. TOC gets replaced with the table

of contents, which is saved in toc at the top of the main function. Moving

the read operation of the template and the creation of the TOC out of the

loops improves the performance of our build, as we don’t have to call them

for every new file. The rendered content finally gets written to the disk by

using fs.writeFileSync again. The last line in the code snippet finally

calls buildWebsite in order to build our web site when we run build.js:

Chapter 3 Making Our CLI More Accessible

64

function buildWebsite () {

 cleanUpWebsite();

 const template = fs.readFileSync(templateFile, 'utf8');

 const toc = getTocForWebsite();

 Object.keys(sources).forEach(type => {

 sources[type].forEach(currentFile => {

 // convert markdown to website content

 const out = spawnSync('node', [

 './node_modules/marked/bin/marked',

 currentFile

]);

 const target = getTargetForWebsite(currentFile, type);

 const rendered = template

 .replace('__CONTENT__', out.stdout)

 .replace('__TOC__', toc);

 // write output to target file

 fs.writeFileSync(target, rendered, 'utf8');

 });

 });

}

buildWebsite();

We can now run our build again and take a look at our web site, shown

in Figure 3-3, which appears in the website folder:

$ npm run docs

Chapter 3 Making Our CLI More Accessible

65

The site is still missing some content as well as a nice stylesheet. As I

already mentioned, building web sites is a topic for a whole new book, and

I want to leave it like this for now. Feel free to add more content and styles

to the web site. Nevertheless, we just created something that we can deploy

to GitHub pages or any other hoster. The best thing about it is that we can

ship it with our command-line client as additional documentation for

everyone who can’t use or doesn’t like man pages. We will use both types

of documentation in our next section when we create a help system.

Note T he code for this section can be found at sourcecode/
documentation.

Figure 3-3.  The minimal website for lounger generated from our
Markdown

Chapter 3 Making Our CLI More Accessible

66

�More Help
We have some documentation, but lounger still has some rough edges.

If users try to access a command that does not exist, they won’t get any

advice on how to continue:

$ lounger foobar

A user who calls lounger with no arguments at all also doesn’t get

support:

$ lounger

What’s missing is a help page that explains how our users can get their

tasks done. It would be awesome if they could open our documentation

(web pages or man pages) right from the terminal. Our users shouldn’t

have to care about man pages or have to find out where we host our web

site. The desired behavior of lounger is as follows:

	 1.	 The CLI prints a general help message if it was

called without a command or if a passed command

doesn’t exist. This message gives the user a hint on

how to proceed further to get the task done.

	 2.	 It is easy to get additional help for a command.

This way, we offer help where the user needs it. No need to switch over

to Google and search for help. In next two sections, we add the required

functionality to lounger.

�General Help with a List of Commands
To add the general help screen, we start by creating a new library function,

lib/help.js. The first function will print some friendly help text to

the user. The help text gets constructed in a helper function (no pun

intended).

Chapter 3 Making Our CLI More Accessible

67

We can get all of our available commands by calling Object.

keys(lounger.cli). We chain a .join(', ') call to separate each

command with a comma and a space:

const lounger = require('./lounger.js');

function getGeneralHelpMessage () {

 const commands = Object.keys(lounger.cli).join(', ');

The next part is a template string that explains how to use lounger.

We add all available commands that are exposed on the command-line

interface. We also explain that users without a clue can run lounger help

together with the command they are interested in to get detailed help for a

command. We also provide an example of how to call the help.

The final line indicates which version of lounger the user is running,

which comes in handy in various situations. Usually, people forget which

version of a package they have installed. Imagine a user who just read a

blog article about lounger version 2.3, which has a great new feature to

try. The user installed lounger some time ago, and, sadly, the command is

available only since version 2.3 (which was released three days ago). In this

case, the user can get immediate feedback that an older version is running.

Here is the whole getGeneralHelpMessage function:

function getGeneralHelpMessage () {

 const commands = Object.keys(lounger.cli).join(', ');

 const message = `Usage: lounger <command>

The available commands for lounger are:

${commands}

Chapter 3 Making Our CLI More Accessible

68

You can get more help on each command with: lounger help

<command>

Example:

lounger help isonline

lounger v${lounger.version} on Node.js ${process.version}`;

 return message;

}

That’s already it for the general help message. Next, we are going to

extend the help system further.

�Help for Each Command
A simple system for accessing help for each command in our command-line

client is invaluable. The next function we’ll build will try to open the man

page if possible. It will fall back to the web site version for Windows users.

The opener module does a great job opening files on different

operating systems. This also applies to HTML files, as we want to open

them in the default browser of the current operating system. So we install

opener as our next dependency:

$ npm install --save opener

We then require opener at the top of help.js:

const opener = require('opener');

We also have to spawn the man command later and find out the

absolute path for our web-site files:

const spawnSync = require('child_process').spawnSync;

const path = require('path');

Chapter 3 Making Our CLI More Accessible

69

The core module os can help us find out if we are running on

Windows:

const isWindows = require('os').platform() === 'win32';

We then have to spawn the man command or open the default

browser for the desired functionality. With stdio: inherit for the spawn

command, we can see and interact with the output of the spawned process:

function openDocumentation (command) {

 if (isWindows) {

 �const htmlFile = path.resolve(__dirname + '/../website/cli-

' + command + '.html');

 return opener('file:///' + htmlFile);

 }

 spawnSync('man', ['lounger-' + command], {stdio: 'inherit'});

}

The last task is putting all our helper functions together. If a command

is not available, we print the general help. If the command exists, we open

the man page or the browser, depending on the operating system:

exports.cli = help;

function help (command) {

 return new Promise((resolve, reject) => {

 if (!lounger.cli[command]) {

 console.log(getGeneralHelpMessage());

 } else {

 openDocumentation(command);

 }

 resolve();

 });

}

Chapter 3 Making Our CLI More Accessible

70

If you want, you can also add code to enable the user to configure the

type of documentation that is opened. Maybe Linux users prefer the web-

site version of the docs. We can already try the new help command, as it

gets picked up by our lounger.js file (Figure 3-4).

Our final task in this section is to make sure to print general help

when the user does not enter a command at all. In bin/lounger-cli,

we require the help.js file and modify the lounger.load call. In case we

don’t find the command in lounger.cli, we print the general help:

const help = require('../lib/help.js');

lounger.load(parsed).then(() => {

 if (!lounger.cli[cmd]) {

 return help.cli();

 }

 lounger.cli[cmd]

 .apply(null, parsed.argv.remain)

 .catch(errorHandler);

}).catch(errorHandler);

Figure 3-4.  Our help command in action

Chapter 3 Making Our CLI More Accessible

71

Congrats! We are finished with the help system now and have made

significant progress! Feel free to play around with our new help system by

entering these commands:

$ lounger blerg

$ lounger

$ lounger help

$ lounger help isonline

Note T he code for this section is located at sourcecode/help-
system.

�Configuration
Requiring our users to add their favorite settings as flags by hand every

time they use lounger can be cumbersome. A configuration file enables

our users to save the settings they need every day. It would be nice if we

could support this feature to make our power users happier.

�Creating the Configuration File
It is common practice to put the configuration files for command-line tools

into the home directory of the user. The home directory is different for

every operating system, but the osenv module can help us find the current

home directory:

$ npm install --save osenv

Chapter 3 Making Our CLI More Accessible

72

We have to see whether a loungerrc configuration exists in our

home directory, and if not, we have to create an empty one. We do that in

lounger-cli, in order to keep the API functions free of the side effect. This

is the changed lounger-cli file, where we added a require call for osenv

and created a configuration file right after the argument parsing. We also

add the path to the config file to our parsed arguments:

#!/usr/bin/env node

const lounger = require('../lib/lounger.js');

const pkg = require('../package.json');

const log = require('npmlog');

const nopt = require('nopt');

const help = require('../lib/help.js');

const osenv = require('osenv');

const fs = require('fs');

const parsed = nopt({

 'json': [Boolean]

}, {'j': '--json'}, process.argv, 2);

const home = osenv.home();

parsed.loungerconf = home + '/' + '.loungerrc';

if (!fs.existsSync(parsed.loungerconf)) {

 fs.writeFileSync(parsed.loungerconf, '');

}

�The Heart of Our Configuration System
The config itself will use ini-formatted config files in order to store and

read settings. The config-chain module loads configurations with

different priorities based on the order we load them. It also supports

ini-formatted files.

Chapter 3 Making Our CLI More Accessible

73

Let’s create a lib/config.js file and require config-chain:

$ npm i --save config-chain

'use strict';

const cc = require('config-chain');

config-chain is able to manage multiple configurations. It will

override configuration settings according to the order we load them.

For our use case, we want the options provided as arguments on the

command line to have the highest priority. They should override the options

from the config file. As the loading of the file is done asynchronously, we

have to listen to the load event emitted by config-chain after it is finished.

For programmatic use of lounger with loungr.load and the API functions no

file based configuration is needed. In those cases we don’t try to load the

file. On all errors, we reject our promise and pass the error object:

exports.loadConfig = loadConfig;

function loadConfig (nopts) {

 return new Promise((resolve, reject) => {

 let cfg;

 if (!nopts.loungerconf) {

 cfg = cc(nopts)

 .on('load', () => {

 resolve(cfg);

 }).on('error', reject);

 } else {

 cfg = cc(nopts)

 .addFile(nopts.loungerconf, 'ini', 'config')

 .on('load', () => {

 resolve(cfg);

 }).on('error', reject);

 }

 });

};

Chapter 3 Making Our CLI More Accessible

74

The config object that is returned from config-chain has nice get

and set methods. We can even save the config back to the configuration

file after changing the config by using the save method. For now, we have

to integrate loadConfig into the bootstrap of lounger. Do you remember

the config.get method in lounger.js from the previous chapter? We will

replace it with the config object that is returned by our load function.

First, we have to load our config in lounger.js:

const config = require('./config.js');

In lounger.load, we are going to load the config:

lounger.load = function load (opts) {

 return new Promise((resolve, reject) => {

 config

 .loadConfig(opts)

 .then((cfg) => {

 });

The other content of lounger.load, including the fs.readdir call, is

moved into the callback of the chained then function:

lounger.load = function load (opts) {

 return new Promise((resolve, reject) => {

 config.loadConfig(opts)

 .then((cfg) => {

 lounger.config = cfg;

 fs.readdir(__dirname, (err, files) => {

 files.forEach((file) => {

 if (!/\.js$/.test(file) || file === 'lounger.js') {

 return;

 }

Chapter 3 Making Our CLI More Accessible

75

 const cmd = file.match(/(.*)\.js$/)[1];

 const mod = require('./' + file);

 if (mod.cli) {

 cli[cmd] = mod.cli;

 }

 if (mod.api) {

 api[cmd] = mod.api;

 }

 });

 lounger.loaded = true;

 resolve(lounger);

 });

 }).catch(reject);

 });

};

If we now run lounger, it will create a config file for us in our home

directory. On macOS my config is at ~/.loungerrc.

After the file is created (don’t forget to run lounger at least one time),

we can set JSON output to true in ~/.loungerrc:

json = true

Just try out lounger isonline http://example.com, and lounger will

print JSON now. We can still override the config on the command line:

$ lounger isonline --no-json

Chapter 3 Making Our CLI More Accessible

76

�A Helper to Edit the Configuration
Because manually editing ~/.loungerrc is not very user-friendly, we will

build a lounger config command. This command should be used to

show the config and its values and to set config values.

Here is the proposed CLI:

$ lounger config set json true

$ lounger config get json

The API could look like this:

lounger.commands.set('json', true)

lounger.commands.get('json')

config-chain offers the data provided in the loaded config file as

.sources.config.data. For JSON formatted output, we return the whole

config if no key is provided:

const data = lounger.config.sources.config.data;

if (lounger.config.get('json') && !key) {

 resolve(data);

 return;

}

If a key is provided, we build a JSON object that contains only the value

for our key:

if (lounger.config.get('json') && key) {

 resolve({[key]: data[key]});

 return;

}

Chapter 3 Making Our CLI More Accessible

77

Given that we don’t want JSON formatted output and did provide a

key, we return the value:

if (key) {

 resolve(lounger.config.sources.config.data[key]);

 return;

}

In the last case, where the json setting is set to false, and no key was

provided, we simply read the unparsed ini file:

resolve(fs.readFileSync(lounger.config.sources));

Here is the whole get function:

function get (key) {

 return new Promise((resolve, reject) => {

 const data = lounger.config.sources.config.data;

 if (lounger.config.get('json') && !key) {

 resolve(data);

 return;

 }

 if (lounger.config.get('json') && key) {

 resolve({[key]: data[key]});

 return;

 }

 if (key) {

 resolve(lounger.config.sources.config.data[key]);

 return;

 }

 resolve(fs.readFileSync(lounger.config.sources));

 });

}

Chapter 3 Making Our CLI More Accessible

78

Modifying the config is done by the set function. It takes a key and a

value, calls set on the config-chain object, and resolves the promise after

the values are written to the disk:

function set (key, value) {

 return new Promise((resolve, reject) => {

 if (!key && !value) {

 reject(new Error('key and value required'));

 return;

 }

 lounger.config.set(key, value, 'config');

 lounger.config.on('save', () => {

 resolve();

 });

 lounger.config.save('config');

 });

}

As a last step, we have to expose both commands:

exports.api = {

 get: get,

 set: set

};

We build the CLI functionality on top of our API functions. The main

difference between the API and CLI functions is that the CLI function has

side effects for the get command: it prints the result to the console. We also

add some nice error messages to make it easier for our users to use. They

get instructions on how to run the command if they don’t use it properly:

exports.cli = cli;

function cli (cmd, key, value) {

Chapter 3 Making Our CLI More Accessible

79

 return new Promise((resolve, reject) => {

 function getUsageError () {

 const err = new Error([

 'Usage:',

 '',

 'lounger config get [<key>]',

 'lounger config set <key> <value>',

].join('\n'));

 err.type = 'EUSAGE';

 return err;

 }

 if (!cmd || (cmd !== 'get' && cmd !== 'set')) {

 const err = getUsageError();

 return reject(err);

 }

 if (cmd === 'get') {

 return get(key).then((result) => {

 console.log(result);

 }).catch(reject);

 }

 if (cmd === 'set') {

 if (!key && !value) {

 const err = getUsageError();

 return reject(err);

 }

 return set(key, value).catch(reject);

 }

 });

}

Chapter 3 Making Our CLI More Accessible

80

Great! We have a config command now! Here is our config command

in action:

$ lounger config set json true

$ lounger config set foo bar

$ lounger config get

{ json: true, foo: 'bar' }

$ lounger config get json

{ json: true }

We fulfilled all points and are ready for an initial release!

Note T he code for this section is at sourcecode/config.

�Our First Release and Tips
You can publish open source modules after registering an account at

the npm registry. After registering the account, you just have to type npm

publish to publish your module to the registry. Before we publish lounger,

I want to mention that there are some nice ways to optimize the published

packages. In this section, I will explain how to optimize your package in

terms of size and installation time.

One way to keep the installation size small is to add an .npmignore

file to the root directory. It works like a .gitignore file, and npm won’t

include the listed files and directories in the published package.

Depending on the types of the files that aren’t needed when using the

module, we can save a lot of space on the hard disks of our users. We can

save them a lot of bandwidth too.

Chapter 3 Making Our CLI More Accessible

81

We can save some space by excluding our unit and integration tests as

well as the source for the compiled documentation:

/test/

/docs/

build.js

.DS_Store

npm-debug.log

Another great way to speed up installation time is to include all

production dependencies in the published module. We can tell npm to

bundle them with our module by adding them as bundleDependencies to

our package.json:

"bundleDependencies": [

 "config-chain",

 "nopt",

 "npmlog",

 "opener",

 "osenv",

 "request"

],

Bundling the dependencies reduces the installation time a lot, as

we omit all the small HTTP requests for each dependency and their

dependencies during installation. With the current npm, installation time

is reduced from 20 seconds to 5 seconds for a broadband connection.

Bundling the dependencies also makes sure that our package is still

installable even if a module was unpublished.

When we now run npm publish, we will publish a highly optimized

version of our package.

Chapter 3 Making Our CLI More Accessible

82

Note T he code for this section is at sourcecode/first-
release.

�Summary
In this chapter, we made a lot of progress. We enhanced the usability

of our client. We also created systems for help and configuration. The

command-line client supports JSON output and shortcuts. Oh, and I have

to congratulate you! You made your first release of the tool. Along the way,

you’ve learned a few tricks to enhance the installation experience for the

user. This gives you a solid foundation for the next chapter, where we’ll

cover streams to handle large amounts of data.

Chapter 3 Making Our CLI More Accessible

83© Robert Kowalski 2017
R. Kowalski, The CLI Book, https://doi.org/10.1007/978-1-4842-3177-7_4

CHAPTER 4

Migrating Large
Amounts of Data
by Using Streams
In the preceding chapter, we made sure that our users will enjoy our

CLI. We also published our first release. Now we want to take a look at

a more advanced topic: streams. Streams are a very powerful feature in

Node.js for processing large amounts of data. With traditional buffering,

we quickly run into memory problems, because all the data just doesn’t

fit into the memory of the computer. Streams enable us to process data

in small slices. Node.js streams work like Unix streams on the terminal,

where you pipe data from a producer into a consumer by using the pipe

symbol (|). We will take a look at how piping works by exploring the cat

command. Afterward, we will create our own streams and integrate them

into our command-line client.

84

�The cat Command
The cat program prints the content of files to stdout. In this example, I am

piping the output of the cat program into tr to change all letters from our

package.json to uppercase letters:

$ cat sourcecode/first-release/package.json | tr 'a-z' 'A-Z'

It works with all output on stdout:

$ echo "i shout?" | tr 'a-z' 'A-Z'

Streams in Unix and in Node.js enable us to compose small programs

or modules that do one thing well to get our task done. They handle

backpressure, which means that a fast producer will automatically slow

down if it is piped into a slow consumer.

The most used streams in Node are the Readable, Writable, and

Transform streams. They are base classes that can be used to build your

own custom streams. Other stream types, such as the Duplex stream

and the Passthrough stream, aren’t covered in the book. The Readable

stream is used to read input data, the Transform stream is usually used to

modify chunks of data, and the Writable stream accepts data to write it

somewhere (for example, into a file).

Today we will write a command that will use streams for piping data

from CSV files into CouchDB/PouchDB. We could also write an importer

to migrate data from a database (for example, Postgres or MongoDB), but

with plain CSV files, we don’t have to install a new database. The principle

applies to both source types, files, and databases. At the end of the chapter,

I will provide a link to an example for a Node.js stream pipeline that

migrates data from MongoDB to CouchDB/PouchDB.

Chapter 4 Migrating Large Amounts of Data by Using Streams

85

�The First Stream
Building streams can be a bit tricky sometimes. We start by creating the file

stream-example.js in the root dir of our module.

Our first iteration will output our CSV contents to stdout. We will use

it to learn how streams work and build our importer on top of it later. To

develop, we need a CSV file; we can save it to test/fixtures/test.csv:

time;location

march;austin,us

april;boston,us

october;bristol,uk

february;hermigua,es

march;hermigua,es

april;havana,cu

Luckily, we don’t have to write our own streaming CSV parser:

$ npm install --save csv-parse

We require the fs and util modules. The fs module is needed to read

the CSV file from disk. We also need to require the CSV parser:

const parse = require('csv-parse');

const fs = require('fs');

const Transform = require('stream').Transform;

Our custom stream, called MyTransformStream, inherits from stream.

Transform. We set the stream into objectMode to be able to process the

JSON input from the CSV parser:

class MyTransformStream extends Transform {

 constructor (options = { objectMode: true }) {

Chapter 4 Migrating Large Amounts of Data by Using Streams

86

 options.objectMode = true;

 super(options);

 }

}

A Transform stream has to implement one method: _transform. This

method is part of the class we just created and called for every chunk of

data that we are processing. In the _transform method, we can transform

the chunks to something new. The transformed data is then pushed to the

next consumer by using this.push. Once we are finished, we call the done

callback to signal that we are finished with this chunk. Right now, we just

want to take a look at what a chunk looks like:

_transform (chunk, encoding, done) {

 console.log('chunk: ', chunk);

 this.push(chunk);

 done();

}

As a last step, we have to pipe the CSV file into the CSV parser, and the

parsed output into our custom stream:

const opts = {comment: '#', delimiter: ';', columns: true};

const parser = parse(opts);

const input = fs.createReadStream(__dirname + '/test/fixtures/

test.csv');

input

 .pipe(parser)

 .pipe(new MyTransformStream());

Chapter 4 Migrating Large Amounts of Data by Using Streams

87

When we now run node streams-example.js, we get this output:

$ node streams-example.js

chunk: { time: 'march', location: 'austin,us' }

chunk: { time: 'april', location: 'boston,us' }

chunk: { time: 'october', location: 'bristol,uk' }

chunk: { time: 'february', location: 'hermigua,es' }

chunk: { time: 'march', location: 'hermigua,es' }

chunk: { time: 'april', location: 'havana,cu' }

Every chunk is a JSON object. Every time we call done and there is still

input produced, _transform is called with the next chunk. We could take

every chunk and post it against the CouchDB / HTTP API now. We would

keep our memory footprint super low, but we would also send a lot of

HTTP requests, and the whole migration would take a long time. A healthy

compromise is to buffer a few chunks and post them against the bulk APIs

of CouchDB/PouchDB. This way, we don’t buffer all existing data and

run out of memory. We also will be finished earlier with our import, as we

don’t have to send so many HTTP requests.

Note T he code for this section can be found at sourcecode/
streams/streams-example.js.

�The Transform and Writable Stream
For our next stream, we will create the file streams-bulk-example.js in the

root directory of lounger. It will take the objects from the CSV parsing stream

and buffer them. At a given limit, it will pass the buffered objects to the next

consumer. The result passed to the next consumer is ready to get posted

against the CouchDB/PouchDB bulk docs API endpoint. The CouchDB/

PouchDB bulk API accepts an array of objects wrapped with {"docs": []}.

Chapter 4 Migrating Large Amounts of Data by Using Streams

88

�Creating a Wrapping Transform Stream
We start with the same set of modules to develop the Transform stream:

const parse = require('csv-parse');

const fs = require('fs');

const Transform = require('stream').Transform;

The name of our stream will be TransformToBulkDocs and it will take

options as an object. Using the options, we can specify the number of

documents to buffer:

class TransformToBulkDocs extends Transform {

 �constructor (options = { objectMode: true, bufferedDocCount:

200 }) {

 options.objectMode = true;

 super(options);

The empty array for `this.buffer` will be our buffer:

 this.buffer = [];

 this.bufferedDocCount = options.bufferedDocCount;

Here is the whole class without the _transform method:

class TransformToBulkDocs extends Transform {

 constructor (options = { objectMode: true, bufferedDocCount:

200 }) {

 options.objectMode = true;

 super(options);

 this.buffer = [];

 this.bufferedDocCount = options.bufferedDocCount;

 }

}

Chapter 4 Migrating Large Amounts of Data by Using Streams

89

In the _transform method, we add every chunk to our buffer:

_transform (chunk, encoding, done) {

 this.buffer.push(chunk);

If the buffer has grown big enough, we call the method this.push,

which we inherited from the base Transform stream. this.push(args)

tells Node that we want to pass args to the next consumer in our stream

pipeline. We then empty the buffer for new data that might arrive:

 if (this.buffer.length >= this.bufferedDocCount) {

 this.push({docs: this.buffer});

 this.buffer = [];

 }

 done();

}

Here is the whole _transform method:

_transform (chunk, encoding, done) {

 this.buffer.push(chunk);

 if (this.buffer.length >= this.bufferedDocCount) {

 this.push({docs: this.buffer});

 this.buffer = [];

 }

 done();

}

The last part of our file is almost identical to our first streams example:

const opts = {comment: '#', delimiter: ';', columns: true};

const parser = parse(opts);

const input = fs.createReadStream(__dirname + '/test/fixtures/

test.csv');

Chapter 4 Migrating Large Amounts of Data by Using Streams

90

input

 .pipe(parser)

 .pipe(new TransformToBulkDocs());

We add a temporary console.log to our code to see if it works:

if (this.buffer.length >= this.bufferedDocCount) {

 this.push({docs: this.buffer});

 console.log({docs: this.buffer});

 this.buffer = [];

}

When we run node streams-bulk-example.js, we see that it doesn’t

work! Why?

The problem is that we don’t have enough documents to reach

the default document count of 200. The same applies to the remaining

documents of a set. If we have 250 initial documents as input, the first 200

are pushed to the next consumer, but the remaining 50 are lost. Luckily, the

Node.js developers were aware of the problem and provided the _flush

method. Unlike the _transform method, the _flush method doesn’t have

to be implemented to make a Transform stream work. Instead, we can

choose to implement it if we need it.

The _flush method of a Transform class will get called at the very end,

after all data is consumed by the stream, but before the stream emits the

end event that signals the end of the stream. _flush will get called at the

very end, and if we still have a few buffered documents, we push them to

the next consumer:

_flush (done) {

 this.buffer.length && this.push({docs: this.buffer});

 done();

}

That’s our first custom stream! Don’t forget to remove the console.log

call we added!

Chapter 4 Migrating Large Amounts of Data by Using Streams

91

The next consumer in our pipeline will take the collected documents

and post them against the CouchDB/PouchDB bulk docs endpoint. As the

streams are able to handle backpressure, the other streams will wait until

we’ve successfully added the documents to CouchDB/PouchDB. They will

continue to pass us data down the pipeline after we are able to pull in the

next collection of documents.

The next stream we will build accepts the data from the Transform

stream and writes it into the database. We will add that stream next.

�Piping the Results into a Writable Stream
We will now pipe the data into a Writable stream and add it to our

streams-bulk-example.js file. Writable streams can accept data from

consumers and direct the data to a new location. A Writable file stream

would write in chunks to the hard disk.

const Writable = require('stream').Writable;

Our Writable stream needs to know where to put the data, so we will

need to pass it the database URL. As the methods of the stream are called

for each chunk, we have to store the passed URL as this.url:

class CouchBulkImporter extends Writable {

 constructor (options) {

 if (!options) {

 options = {};

 }

 if (!options.url) {

 const msg = [

 'options.url must be set',

 'example:',

 �"new CouchBulkImporter({url: 'http://localhost:5984/

baseball'})"

Chapter 4 Migrating Large Amounts of Data by Using Streams

www.allitebooks.com

http://www.allitebooks.org

92

].join('\n')

 throw new Error(msg);

 }

 options.objectMode = true;

 super(options);

 // sanitise url, remove trailing slash

 this.url = options.url.replace(/\/$/, '');

 }

}

To implement a child of a Writable stream, we have to implement the

_write method. Like the _transform method of the Transform stream, the

_write method is called for every chunk that is passed to the stream from

the previous producer. In our case, we send the JSON chunks as JSON to

the database by using request. After we send the data successfully to the

/_bulk_docs API endpoint, we call the done callback to signal that we are

ready for a new chunk:

_write (chunk, enc, done) {

 request({

 json: true,

 uri: this.url + '/_bulk_docs',

 method: 'POST',

 body: chunk

 }, function (err, res, body) {

 if (err) {

 return done(err);

 }

 if (!/^2../.test(res.statusCode)) {

 const msg = 'CouchDB server answered: \n Status: ' +

Chapter 4 Migrating Large Amounts of Data by Using Streams

93

 res.statusCode + '\n Body: ' + JSON.stringify(body);

 return done(new Error(msg));

 }

 done();

 });

}

We also have to require request in our file:

const request = require('request');

To use the stream, we have to pipe the data into it. We update the last

section of streams-bulk-example.js:

input

 .pipe(parser)

 .pipe(new TransformToBulkDocs())

 �.pipe(new CouchBulkImporter({url: 'http://127.0.0.1:5984/

travel'}));

After we create the database travel and run our script, we import

the CSV:

$ curl -X PUT http://localhost:5984/travel

{"ok":true}

$ node streams-bulk-example.js

$ curl http://localhost:5984/travel/_all_docs

{"total_rows":6,"offset":0,"rows":[{"id":"3444bf7c-

65c0-438f-f8e8-7f55124f1736","key":"3444bf7c-65c0-438f-

f8e8-7f55124f1736","value":{"rev":"1-37fcd2e5b409398

05b8e043da44f9b1d"}},{"id":"568c3b0f-78fe-43a2-9eac-

06620cfaa595","key":"568c3b0f-78fe-43a2-9eac-06620cfaa595",

"value":{"rev":"1-e047788bac9aada0564fc928642d3960"}},

{"id":"5d170e63-d845-4e45-f760-97e30cbc4b21","key":

Chapter 4 Migrating Large Amounts of Data by Using Streams

94

"5d170e63-d845-4e45-f760-97e30cbc4b21","value":{"rev":

"1-6f1794e4eb24b60665fe02c2624d53eb"}},{"id":"9cd34a61-8a48-

4b88-afbf-7fd6e3c9cf42","key":"9cd34a61-8a48-4b88-afbf-

7fd6e3c9cf42","value":{"rev":"1-747b11a103cc0fe31d1c546ef70d69c

0"}},{"id":"cc7da504-438a-40c1-842b-4722b63c9a37","key":

"cc7da504-438a-40c1-842b-4722b63c9a37","value":{"rev":

"1-0f9e7add8b7fbb773dc7d3081475d855"}},{"id":

"f09811c5-43ec-4a6d-bd3b-b34b3674676d","key":

"f09811c5-43ec-4a6d-bd3b-b34b3674676d","value":

{"rev":"1-d677c5bbbee1bbbe45f6128a9cf1fe8d"}}]}

We can access a single document by using one of the IDs that the

database automatically assigned to each document:

$ curl http://localhost:5984/travel/3444bf7c-65c0-438f-f8e8-

7f55124f1736

{"time":"february","location":"hermigua,es","_id":"3444bf7c-

65c0-438f-f8e8-7f55124f1736","_rev":"1-37fcd2e5b40939805b8e043d

a44f9b1d"}

Looks great! Seems we have everything in place to use our low-level

streaming functions in the command-line client.

Note T he code for this section is located at sourcecode/
streams/streams-bulk-example.js.

Chapter 4 Migrating Large Amounts of Data by Using Streams

95

�The Streaming Import Command
For the remainder of the chapter, we will reuse the custom stream

implementation that we just created. In the real world, I would create

two modules for our two streams to make them reusable across multiple

projects. For now, we can copy the code for the CouchBulkImporter and

the TransformToBulkDocs streams into lib/csv.js, which will be the

home of our import command:

const parse = require('csv-parse');

const fs = require('fs');

const Transform = require('stream').Transform;

const util = require('util');

const Writable = require('stream').Writable;

const request = require('request');

const lounger = require('./lounger.js');

class TransformToBulkDocs extends Transform {

 constructor (options) {

 if (!options) {

 options = {};

 }

 if (!options.bufferedDocCount) {

 options.bufferedDocCount = 200;

 }

 options.objectMode = true;

 super(options);

 this.buffer = [];

 this.bufferedDocCount = options.bufferedDocCount;

 }

Chapter 4 Migrating Large Amounts of Data by Using Streams

96

 _transform (chunk, encoding, done) {

 this.buffer.push(chunk);

 if (this.buffer.length >= this.bufferedDocCount) {

 this.push({docs: this.buffer});

 this.buffer = [];

 }

 done();

 }

 _flush (done) {

 this.buffer.length && this.push({docs: this.buffer});

 done();

 }

}

class CouchBulkImporter extends Writable {

 constructor (options) {

 if (!options) {

 options = {};

 }

 if (!options.url) {

 const msg = [

 'options.url must be set',

 'example:',

 �"new CouchBulkImporter({url: 'http://localhost:5984/

baseball'})"

].join('\n')

 throw new Error(msg);

 }

Chapter 4 Migrating Large Amounts of Data by Using Streams

97

 options.objectMode = true;

 super(options);

 // sanitize url, remove trailing slash

 this.url = options.url.replace(/\/$/, '');

 }

 _write (chunk, enc, done) {

 request({

 json: true,

 uri: this.url + '/_bulk_docs',

 method: 'POST',

 body: chunk

 }, function (err, res, body) {

 if (err) {

 return done(err);

 }

 if (!/^2../.test(res.statusCode)) {

 const msg = 'CouchDB server answered: \n Status: ' +

 res.statusCode + '\n Body: ' + JSON.stringify(body);

 return done(new Error(msg));

 }

 done();

 });

 }

}

Chapter 4 Migrating Large Amounts of Data by Using Streams

98

�Designing the Command
Let’s think a bit about the command we are going to build. A CSV can have

different delimiters; some use semicolons as a delimiter, whereas others

use commas or tabs. The symbols to denote a comment can also change.

In our previous implementations, we used fixed values:

const opts = {comment: '#', delimiter: ';', columns: true};

For a real-world use case, the symbols for the delimiter and comment

must be configurable. The CSV input is usually a file.

Here is a possible CLI:

$ lounger csv transfer <file> <database> [--delimiter=;]

[--comment=#] [--chunksize=200]

The csv command is open to extension and can host all CSV-related

commands in the future. The command reads quite nicely and is easy to

remember: lounger csv transfer <file> <database> reads almost as

lounger [do] csv transfer [from] <file> [to] <database>. Sane

defaults help us avoid passing optional modifiers at all, but in case we

need to modify them, we can change every important aspect of our import.

I’m not sure whether you noticed it, but when we played with our

streams, we would have had to create the target database by using curl in

advance. It would be handy if our CLI users didn’t have to create the target

database on their own. Our goal is to help them solve their tasks as quickly

and easily as possible, so we should automatically create databases as

necessary. As a next step, we will add a helper to create the database.

�Creating the Target Database
To make the life of our users easier, we will add a function that creates

the target database. This way, we can ensure that the command workflow

has no major obstacles. The createTargetDatabase function is a helper

Chapter 4 Migrating Large Amounts of Data by Using Streams

99

function that wraps request into a promise. If the database is created

(HTTP code 201 or 200) or the database exists already (HTTP code 412),

we resolve; all other states lead to rejection of the promise:

function createTargetDatabase (url) {

 return new Promise((resolve, reject) => {

 request({

 json: true,

 uri: url,

 method: 'PUT',

 body: {}

 }, function (er, res, body) {

 �if (er && (er.code === 'ECONNREFUSED' || er.code ===

'ENOTFOUND')) {

 const err = new Error(

 �'Could not connect to ' + url + '. Please check if

the database is offline'

);

 err.type = 'EUSAGE';

 return reject(err);

 }

 if (er) {

 return reject(er);

 }

 const code = res.statusCode;

 if (code !== 200 && code !== 201 && code !== 412) {

 const msg = 'CouchDB server answered: \n Status: ' +

 res.statusCode + '\n Body: ' + JSON.stringify(body);

 return reject(new Error(msg));

 }

Chapter 4 Migrating Large Amounts of Data by Using Streams

100

 resolve();

 });

 });

}

In case of an ECONNREFUSED or ENOTFOUND error, we can safely assume

that the database is currently offline and ask the user to see whether the

database is available. I can’t stress enough how important proper error

handling is. Take this example, where we are getting back ECONNREFUSED:

$./bin/lounger-cli csv transfer test/fixtures/test.csv

http://127.0.0.1:1337/testimport

ERR! connect ECONNREFUSED 127.0.0.1:5984

ERR! Error: connect ECONNREFUSED 127.0.0.1:5984

ERR! at Object.exports._errnoException (util.js:870:11)

ERR! at exports._exceptionWithHostPort (util.js:893:20)

ERR! at TCPConnectWrap.afterConnect [as oncomplete]

(net.js:1063:14)

ERR!

ERR!

ERR! lounger: 1.0.0 node: v9.1.0

ERR! please open an issue including this log on http://example.

com/lounger/issues

Depending on how much our users have used Node.js before, they

might be very puzzled. The only way for them to continue would be to ask

a search engine or to open an issue. After receiving the issue, our boring

job would be to close the issue and tell them that they probably had a typo

in their URL.

After writing the createTargetDatabase function, we should have

all our supporting functions in place. As usual, we start to implement the

main CLI functions by implementing the API command, which we will

then wrap with our CLI function.

Chapter 4 Migrating Large Amounts of Data by Using Streams

101

The delimiter and comment options are defined in the config file or

are passed on the command line. To know what their values are, we have

to interact with lounger.config. To access lounger.config, we have to

require it:

const lounger = require('./lounger.js');

The main API function checks whether all necessary arguments were

provided and applies defaults if no configuration was passed in from the

config file or on the command line. We create the database in case it does

not exist yet and delegate to the importFromCsvFile helper function:

exports.api = {

 transfer: bulkdocsImport

};

function bulkdocsImport (file, targetDb) {

 return new Promise((resolve, reject) => {

 const opts = {};

 if (!file && !targetDb) {

 �return reject(new Error('file and/or targetDb argument

missing'));

 }

 opts.delimiter = lounger.config.get('delimiter') || ';';

 opts.comment = lounger.config.get('comment') || '#';

 opts.chunksize = lounger.config.get('chunksize') || 200;

 createTargetDatabase(targetDb)

 .then(() => {

 return importFromCsvFile(file, targetDb, opts);

 }).catch(reject);

 });

}

Chapter 4 Migrating Large Amounts of Data by Using Streams

102

importFromCsvFile accepts the source CSV file, URL, and options, and

creates the stream pipeline. The main difference from our previous code

in streams-example.js is that we have proper error handling in place to

catch all errors:

function importFromCsvFile (file, url, opts) {

 return new Promise((resolve, reject) => {

 �const options = {comment: opts.comment, delimiter: opts.

delimiter, columns: true};

 const parser = parse(options);

 const input = fs.createReadStream(file);

 input

 .pipe(parser)

 .on('error', reject)

 �.pipe(new TransformToBulkDocs({bufferedDocCount: opts.

chunksize}))

 .on('error', reject)

 .pipe(new CouchBulkImporter({url: url}))

 .on('error', reject);

 });

}

The CLI function finally wraps our API method and adds friendly error

messages:

exports.cli = importCli;

function importCli (cmd, file, target) {

 return new Promise((resolve, reject) => {

 if (!cmd || cmd !== 'transfer' || !file || !target) {

 const err = new Error(

 �'Usage: lounger csv transfer <file> <database>

[--delimiter=;] [--comment=#] [--chunksize=200]'

);

Chapter 4 Migrating Large Amounts of Data by Using Streams

103

 err.type = 'EUSAGE';

 return reject(err);

 }

 return bulkdocsImport(file, target).catch(reject);

 });

}

We introduced three new options: delimiter, comment, and

chunksize. lounger.config enables our users to set default values by

using the config file. In addition, we have to take care that the options are

parsed on the command line. In bin/lounger-cli, we have to register our

optional arguments to nopt:

const parsed = nopt({

 'json': [Boolean],

 'delimiter': [String],

 'comment': [String],

 'chunksize': [Number]

}, {'j': '--json'}, process.argv, 2);

That’s it! We created a command that is able to stream large amounts

of data into our database.

If you are interested in a stream pipeline that would stream data from

MongoDB to CouchDB, you can take a look at https://github.com/

robertkowalski/couchbulkimporter/blob/master/examples/mongo.js.

Note T he code for this section is at sourcecode/streams. Enjoy!

Chapter 4 Migrating Large Amounts of Data by Using Streams

https://github.com/robertkowalski/couchbulkimporter/blob/master/examples/mongo.js
https://github.com/robertkowalski/couchbulkimporter/blob/master/examples/mongo.js

104

�Summary
With streams, we have a way to work with large amounts of data that

don’t fit into memory. Based on streams, we built a data importer that can

handle very large amounts of data. As a last step, we integrated everything

into the command-line client. Hopefully, you enjoyed our adventure into

streams!

Chapter 4 Migrating Large Amounts of Data by Using Streams

105© Robert Kowalski 2017
R. Kowalski, The CLI Book, https://doi.org/10.1007/978-1-4842-3177-7

�APPENDIX A

Tips and Tricks
This short appendix provides some tips and tricks regarding Node.js

development in general.

�Testing
With proper unit and integration tests in place, ensure that new features

or bug fixes don’t introduce regressions. A lot of great services provide a

hosted continuous integration (CI) environment. They can test every pull

request before it is merged, which makes reviewing code a lot easier. A

popular service for hosted CI is Travis CI. Travis CI is free for open source

projects.

�Semantic Versioning with SemVer
I recommend following semantic versioning with SemVer (http://

semver.org/). SemVer divides the version number of a release into three

areas: MAJOR.MINOR.PATCH. The version 3.5.8 would have 3 as the

MAJOR version level, 5 as the MINOR version level, and 8 as the PATCH

level. If a new release includes a breaking change, the MAJOR version

number is bumped. A new feature would need just a minor version bump,

and bug fixes would require a bump of only the PATCH section.

https://doi.org/10.1007/978-1-4842-3177-7
http://semver.org/
http://semver.org/

106

Here’s an example: My package has version 3.5.7. I add a new feature

that does not break backward compatibility. My next release would be

3.6.0.

This way, your users have an idea of whether a release might break

their production code (MAJOR), contains a new feature (MINOR), or

include a bug fix (PATCH). A great tool to help you make the right decision

for the next version bump is semantic-release (www.npmjs.com/package/

semantic-release).

�Greenkeeper
Keeping track of which dependencies of your project have a new version

and need to be updated can be tedious. The update itself (bumping the

version number in the package.json file) is not the most interesting

task on earth, either. A new and exciting service is http://greenkeeper.

io. Once you register it for your project, it will send you pull requests with

updated versions of your dependencies. If you have a test suite in place

and everything is “green,” you just have to merge the pull request from the

Greenkeeper bot.

Testing and a CI service that automatically runs the tests, SemVer, and

Greenkeeper really show their strengths when combined.

APPENDIX A Tips and Tricks

https://www.npmjs.com/package/semantic-release
https://www.npmjs.com/package/semantic-release
http://greenkeeper.io/
http://greenkeeper.io/

107© Robert Kowalski 2017
R. Kowalski, The CLI Book, https://doi.org/10.1007/978-1-4842-3177-7

Index

A, B
API in command-line client, 10, 11

C
Command-line interface (CLI)

CLI client, 3
command-line tool, 2
configuration

config-chain, 73
config object, 74
creation, 71–72
editing, 76–78, 80
ini-formatted files, 72

documentation
(see Documentation, CLI)

error handling, 7–8
bugs property, 45
command-line

client, 40, 45
isonline command, 39
lib/isonline.js., 40
nonexistent function, 44
package.json, 45
stacktraces, 39
usage errors, 41–42, 44
validations, 46

Git project, 5
helper functions, 69–70
JSON support and

shorthand, 47, 49
list of commands, 66–67
$ lounger, 66
man page, 4
npm publish, 6
opener module, 68
principles, 2
spawn command, 69

Continuous integration (CI), 105

D
Database administration tool

booting, 31–37
command-line client, 29–30
command-line tool, 15
CouchDB and PouchDB, 22
database server, 21

curl, 18
file-watcher error, 19–20
PouchDB database

server, 17–18
setting up, 16
troubleshooting, 18

ecosystem, 23, 25–26

108

isonline Command, 26–27, 29
isonline.js file, 29
Node.js, 16
package.json file, 22

Documentation, CLI
buildMan(), 56
build script, 60, 62–63, 65
detailed description, 50
doc/cli/lounger-isonline.md, 51
folder structure, 52
fs module, 54
fs.writeFileSync, 55
getSources function, 53
HTML Output, 58, 60
JavaScript, 52
lounger.commands, 50
man pages, 56
man-pages directory, 56–57
Markdown files, 53
Node.js platform, 52, 53
npm script, 56
optional command, 51
scripts section, 56
sources object, 53

Duplex stream, 84

E, F
Error handling, 7–8

bugs property, 45
command-line client, 40, 45
isonline command, 39
lib/isonline.js., 40

nonexistent function, 44
package.json, 45
stacktraces, 39
usage errors, 41–42, 44
validations, 46

G, H, I, J, K, L
Greenkeeper, 106

M, N, O
MyTransformStream, 85

P, Q, R
Passthrough stream, 84
Power users

command-line client, 10, 12
configuration, 11–12
exit codes, 9
JSON Output, 10
scripting, 9
shortcuts, 9

S
Semantic versioning, 105
Streams

cat command, 84
console.log, 90
CouchDB/PouchDB, 91
custom stream, 86
_flush method, 90

Database administration tool (cont.)

Index

109

fs and util modules, 85
import command

CouchBulkImporter, 95–97
creation, database, 98,

100–103
designing, 98
TransformToBulk

Docs, 95–97
MyTransformStream, 85
node streams-bulk-example.js, 90
node streams-example.js, 87

test/fixtures/test.csv, 85
transform method, 88–89
transform stream, 88
TransformToBulkDocs, 88
Writable stream, 91, 93–94

T, U, V, W, X, Y, Z
Test-driven

development (TDD), 25

Transform stream, 84

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Preface
	Acknowledgments
	Chapter 1: What Makes a Good CLI?
	 CLI Basics
	 You Never Get Stuck
	 Still Lost? Man Pages Will Help
	 Error Handling

	 It Supports Power Users
	 Shortcuts
	 Scripting
	 Exit Codes
	 JSON Output
	 The API in the Command-Line Client

	 Configuration

	 You Can Use It for So Many Things!
	 Summary

	Chapter 2: Writing a Database Administration Tool with Node.js
	 Why Use Node.js?
	 Setting Up the Database Server
	 Setting Up
	 Using the PouchDB Database Server
	 Troubleshooting
	 Getting curl
	 Fixing a File-Watcher Error

	 Performing a Simple Status Check
	 Starting from Scratch
	 A Helping Ecosystem
	 The Internals of the isonline Command
	 The CLI Part

	 Booting the Tool
	 Making Sure Lounger Is Loaded
	 A Nice Way to Interact from the Command Line

	 Summary

	Chapter 3: Making Our CLI More Accessible
	 Error Handling
	 Handling Usage Errors
	 Providing Further Guidance

	 JSON Support and Shorthand
	 Documentation
	 Rendering the Documentation
	 Providing HTML Output
	 Extending the Build Script

	 More Help
	 General Help with a List of Commands
	 Help for Each Command

	 Configuration
	 Creating the Configuration File
	 The Heart of Our Configuration System
	 A Helper to Edit the Configuration

	 Our First Release and Tips
	 Summary

	Chapter 4: Migrating Large Amounts of Data by Using Streams
	 The cat Command
	 The First Stream
	 The Transform and Writable Stream
	 Creating a Wrapping Transform Stream
	 Piping the Results into a Writable Stream

	 The Streaming Import Command
	 Designing the Command
	 Creating the Target Database

	 Summary

	Appendix A:
Tips and Tricks
	 Testing
	 Semantic Versioning with SemVer
	 Greenkeeper

	Index

