
The Definitive
Guide to AdonisJs

Building Node.js Applications with JavaScript
—
Christopher Pitt

www.allitebooks.com

http://www.allitebooks.org

The Definitive Guide to
AdonisJs

Building Node.js Applications
with JavaScript

Christopher Pitt

www.allitebooks.com

http://www.allitebooks.org

Christopher Pitt
Cape Town, Western Cape, South Africa

The Definitive Guide to AdonisJs: Building Node.js Applications with JavaScript

ISBN-13 (pbk): 978-1-4842-3389-4				 ISBN-13 (electronic): 978-1-4842-3390-0
https://doi.org/10.1007/978-1-4842-3390-0

Library of Congress Control Number: 2018937100

Copyright © 2018 by Christopher Pitt

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image, we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484233894. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3390-0
http://www.allitebooks.org

iii

About the Author�� ix

Acknowledgments�� xi

Introduction�� xiii

Chapter 1: �Getting Started��� 1

Installing Node.js�� 1

Installing the AdonisJs Command-Line Tool�� 3

Creating a New Application�� 3

Serving the Application�� 4

Exploring the Code��� 5

Summary��� 10

Chapter 2: �Routing��� 11

What Are Routes?��� 11

Planning Routes��� 12

Defining Routes�� 14

Testing Routes��� 15

Defining Route Parameters�� 20

Summary��� 26

Chapter 3: �Views��� 27

Creating Views��� 27

Registering the View Provider�� 28

Creating Layouts�� 29

Learning Template Syntax�� 34

Interpolation��� 35

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

iv

Conditionals�� 36

Loops�� 37

Partials��� 38

Yield�� 38

Functions�� 39

Summary��� 40

Chapter 4: �Requests�� 41

Updating Tests�� 41

Understanding Requests�� 47

Getting Parameters��� 49

Getting Headers and Cookies��� 50

Getting “accepts” and “language”��� 50

Finding Out More�� 51

Responding to POST, PUT, PATCH, and DELETE��� 51

Summary�� 59

Chapter 5: �Responses�� 61

Sending Simple Responses��� 61

Sending JSON Responses�� 62

Working with Cookies�� 64

Redirecting Users��� 64

Responding with Attachments��� 66

Extending with Macros�� 66

Summary��� 70

Chapter 6: �Generators�� 71

Arrays: Where It All Began�� 71

Then Came Iterators��� 72

Generators��� 75

Cooperative Multitasking��� 76

Summary��� 79

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

v

Chapter 7: �Promises�� 81

Reacting to Events��� 81

Entering Callback Hell�� 82

Understanding Promises�� 83

Using Promises with Coroutines�� 84

Making Promises��� 86

Bringing It Back to AdonisJs�� 88

Summary��� 89

Chapter 8: �Controllers and Middleware��� 91

Making Controllers��� 91

Reusing Code��� 96

Using Middleware�� 97

Summary��� 101

Chapter 9: �Databases�� 103

Installing Lucid��� 103

Making Migrations��� 107

Seeding the Database�� 111

Working with Routes and the Database��� 115

Showing Products�� 116

Making Models��� 118

Registering Customers��� 121

Authenticating Customers�� 125

Summary��� 127

Chapter 10: �Validation and Errors��� 129

Installing Validation�� 129

Reusing Validation�� 133

Displaying Custom Error Pages�� 140

Creating Custom Exceptions�� 144

Summary��� 146

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

vi

Chapter 11: �Sessions��� 147

Making the Dashboard��� 147

Creating the Customer Session�� 154

Logging Customers Out�� 158

Summary��� 161

Chapter 12: �Security�� 163

Recap��� 163

Creating More Middleware��� 164

Securing Forms�� 168

Encrypting Values�� 171

Summary��� 172

Chapter 13: �Front-End Tools�� 173

Installing Mix�� 173

Installing Bootstrap (Sass)��� 177

Installing React�� 179

Summary��� 182

Chapter 14: �WebSockets�� 183

Installing Socket.io��� 183

Building a React Shopping Cart��� 189

Connecting the UI��� 197

Creating Orders�� 201

Summary��� 205

Chapter 15: �Deployment��� 207

Setting Up DigitalOcean��� 208

Setting Up Forge�� 209

Getting a Domain��� 211

Adding the Domain Name in Forge�� 213

Setting Up DNS Servers��� 215

Adding a Server Daemon��� 216

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

vii

Serving on Port 80��� 220

Setting Up an SSL Certificate��� 221

Summary��� 222

Chapter 16: �Finishing Touches�� 223

Sending E-mail��� 223

Connecting to Stripe�� 230

Enabling CORS Requests��� 238

Summary��� 243

�Index�� 245

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

ix

About the Author

Christopher Pitt is a developer and writer working at Over. He usually works on

application architecture, though sometimes you’ll find him building compilers or robots.

He is also the author of several web development books and is a contributor on various

open source projects such as AdonisJs.

www.allitebooks.com

http://www.allitebooks.org

xi

Acknowledgments
Many people helped to make this book a reality. I’d like to thank them, in no

particular order.

Harminder and the rest of the core team have written some beautiful software.

I am continually amazed by how beautiful AdonisJs code can look. I enjoy JavaScript,

and it seems particularly suited to a framework like this. Harminder also gave insightful

technical feedback for this book.

Taylor began a wonder with Laravel. It’s clear that much of AdonisJs is inspired by

Laravel, and with good reason. Laravel kept me engaged in PHP, and AdonisJs will keep

me engaged in server-side JavaScript.

Mark, the coordinating editor, was fantastic to work with. He never got in the way

and was always helpful. That’s uncommon in his line of work. Matt, the development

editor, was similarly helpful and let me set the vision for this project, unencumbered.

These folks are a credit to Apress.

Matt, the writer, is an inspiration to me. He wrote what I consider to be the best

Laravel book on the market. Throughout this book, I sought to emulate his wisdom and

skill.

Bruno, Christian, and Wayne are good friends and supporters of my work. I miss

writing for Bruno. I miss having coffee with Christian. I will miss taking walks with

Wayne.

Liz, my love, has given me space and coffee in abundance. She is the inspiration

for the sample application, and though she finds me altogether strange, she loves me

effortlessly.

www.allitebooks.com

http://www.allitebooks.org

xiii

Introduction
This book is designed to teach you how to use AdonisJs. To get the most out of it, you

should have a firm grasp of modern JavaScript and some knowledge of how to work with

relational databases and the command line.

I explain new and interesting bits of syntax, but this book isn’t primarily about

teaching you how to use JavaScript. It’s about teaching you how to build real applications

by using AdonisJs.

The application we’re going to build is called Threadbear. It’s a play on words,

meant to conjure up thoughts of patchy, knitted teddy bears. We’re going to make an

application through which sellers can register and upload their knitted patterns and

products. Customers will then be able to register and purchase these things.

We’re not going to focus much on design. Instead, we’re going to focus on the

mechanics of commerce applications. Beyond adding a CSS framework, everything is as

the good browser vendors intended. That said, I welcome you to add your own style to

the application

We’ll create a secure registration and login system. We’ll add profile and product

management. We’ll connect the front end to the back end by using WebSockets and

the Fetch API. We’ll design a shopping cart in React and we’ll package static files with a

custom build chain. Finally, we’ll learn how to deploy the application to a virtual server,

and install custom domains and SSL certificates.

It is my hope that by the time you are finished reading this book, you’ll know all you

need to know in order to build your online business.

1
© Christopher Pitt 2018
C. Pitt, The Definitive Guide to AdonisJs, https://doi.org/10.1007/978-1-4842-3390-0_1

CHAPTER 1

Getting Started
Deciding where to start is often the hardest part, don’t you find? In this chapter, we’re

going to get our development tools set up. We’re also going to create a new AdonisJs

application. We’ll finish up by taking a look at the folders of our application and making

a few small customizations.

Note  Complex and exhaustive installation instructions are one of the easiest
ways to age a book. I’m not going to belabor the steps for every operating system
and configuration. I’m guessing you know enough about Google to find the help
you need. If you get stuck, ask me for help on Twitter (https://twitter.com/
assertchris) or e-mail (cgpitt@gmail.com).

�Installing Node.js
As the name implies, AdonisJs is a JavaScript framework. There have been a few

runtimes for JavaScript on the server, but the clear winner is Node.js (https://nodejs.

org/en). You can see what the Node.js web site looks like in Figure 1-1. The latest version

of AdonisJs requires Node 8.0 or newer. That’s because it uses new language features to

make writing code easier and more expressive. We’ll learn about those later.

Node.js is relatively painless to install, despite its size and intricacy. On macOS, you

can run the following:

brew install node

And on Debian or Ubuntu, you can run this:

apt-get install node

https://twitter.com/assertchris
https://twitter.com/assertchris
https://nodejs.org/en
https://nodejs.org/en

2

Note  Alternatively, you can install Node.js from a binary at https://nodejs.
org/en/download. There are installers for Windows, so you don’t have to use
macOS or Debian if you don’t want to.

You can check that Node.js is correctly installed by running the following:

node -v

npm -v

Figure 1-1.  The Node.js web site

Chapter 1 Getting Started

https://nodejs.org/en/download
https://nodejs.org/en/download

3

�Installing the AdonisJs Command-Line Tool
Setting up a new AdonisJs application requires quite a few steps. Fortunately, there’s a

tool to perform all of those steps for us. We need to install that tool, which also will help

us to create all future AdonisJs applications:

npm install --global @adonisjs/cli

This installs the command-line tool globally, which means we’ll be able to use it

from anywhere on our system. Similarly to the way we check Node.js, we can check to

see whether this tool has been successfully installed by running the following:

adonis --help

This also gives as a sneak peek at the kinds of things we can start to do to an

application. Various commands are available, from creating and running applications to

adding new functionality in existing applications.

For now, we’re just going to create a new AdonisJs application.

�Creating a New Application
If you read through the output of that help command, you may have noticed the new

command. It’s what we’re going to use to create a new application:

adonis new threadbear

It’ll take a minute or two to fully install and configure the new application. The

only step I want to talk about for the moment is “generated unique APP_KEY.” AdonisJs

applications have an .env configuration file, which we can use to store sensitive

configuration variables. One of these is called APP_KEY, which is a private key unique to

the application.

Whenever text is encrypted or hashed, this value is used to seed the operation. The

same password, when hashed in two applications (with different APP_KEY values), will

result in different hashes. This is important to know because at times you might need to

compare hashes or decrypt values that have been generated using a different APP_KEY

than the one the command-line tool just made for you.

Chapter 1 Getting Started

4

Note  It’s possible to reuse an APP_KEY in multiple applications, but it’s definitely
not recommended. Sharing an APP_KEY should be done only in exceptional
situations and for a limited amount of time. If you reuse keys, you’re increasing the
likelihood that all the applications reusing the key are compromised at the same time.

�Serving the Application
Now that we’ve created an application, we need a way to view it in the browser. Some

server-side languages use third-party web servers (such as Nginx or Apache) as a kind of

load balancer. PHP and Perl are examples of this.

Things work a bit differently with server-side JavaScript. The foundational example

of how to use Node.js (https://nodejs.org/en/docs/guides/getting-started-guide)

demonstrates how we can make our own HTTP server:

const http = require("http")

const hostname = "127.0.0.1"

const port = 3333

const server = http.createServer((req, res) => {

 res.statusCode = 200

 res.setHeader("Content-Type", "text/plain")

 res.end("hello world")

})

server.listen(port, hostname, () => {

 // server is now running

})

This is quite similar to what AdonisJs does under the hood. This means our server(s)

need to keep the Node.js HTTP script running as what is usually referred to as a daemon.

We’ll unpack that later, but for now we’ll need to make sure adonis serve is running

while we code.

As the message when we run adonis serve --dev says, we can see the new application

by loading 127.0.0.1:3333 in a web browser. We can see what this looks like in Figure 1-2.

Chapter 1 Getting Started

https://nodejs.org/en/docs/guides/getting-started-guide

5

�Exploring the Code
New AdonisJs applications are as slim as the repository’s name on which they are based.1

They look something like this:

threadbear

 ↳ node_modules
 ↳ public
 ↳ start
 ↳ .env
 ↳ .env.example
 ↳ .gitignore

1�https://github.com/adonisjs/adonis-slim-app

Figure 1-2.  A new AdonisJs application

Chapter 1 Getting Started

https://github.com/adonisjs/adonis-slim-app

6

 ↳ ace
 ↳ package.json
 ↳ server.js

As usual, NPM (or Node Package Manager) dependencies are stored in the node_

modules folder. When we run adonis serve --dev, it’s doing little more than running

node server.js.

Static files, such as client-side stylesheets and scripts, are usually placed in the

public folder. More complex applications tend to have build chains, which take source

stylesheets and scripts and combine/compress them into smaller production versions.

AdonisJs favors convention over configuration. This means that it is designed to be

useful out of the box. Sometimes we might need to deviate from the standard configuration.

In new applications, we can do that by customizing the files in the start folder.

Let’s make a few customizations to the application. We’re going to learn about routes

in a while, but we’ll add one in the meantime. The starting routes file resembles Listing 1-1.

Listing 1-1.  This is from threadbear/start/routes.js

"use strict"

const Route = use("Route")

Route.get("/", ({ request }) => {

 return "...some html"

})

See that Route.get? We’re going to add another, as shown in Listing 1-2.

Listing 1-2.  This is from threadbear/start/routes.js

Route.get("/register", () => {

 return "...form for customers to make new profiles"

})

For now, restart the serve command and go to the address you see in the terminal

window. We can see the text we entered: text that we’re returning from the route, matching

the /register path we specified.

Larger applications require more files than just the ones we have currently. You may

remember that the adonis --help command suggested quite a few make commands.

Chapter 1 Getting Started

7

We can use these to create any number of project files. Though we’re also going to learn

about them later, let’s create a controller:

adonis make:controller PageController

This creates a nested folder structure: app ➤ Controllers ➤ Http ➤

PageController.js.

Similarly, the other make commands usually put the files they create in the app folder,

and create more nested folders if they don’t already exist. There’s quite a rich structure

built up as needed. The pattern is always the same, leading back to the convention-over-

configuration paradigm.

Note  The command-line tools create files in a predictable location. That’s not
to say that we couldn’t change the position and name of these files—just that by
default, they will always be in a predictable configuration.

Let’s make a new command so we can explore more of the starter configuration:

adonis make:command SendReminderCommand

This command creates a new command-line command class, located in app ➤

Commands ➤ SendReminder.js. It automatically strips the Command suffix and gives some

help for how to add the command to Ace.

Ace is a local version of the adonis global command-line helper. We can run it with

the following:

node ace

The output is similar to (though much less than) that of adonis --help. These

commands are similarly built, but the global adonis command has more subcommands

registered within it. ace has only the commands registered for your app.

Sometimes it’s easier not to have to specify that you want to run the command by

using node. In that case, we can make the Ace script executable:

chmod +x ace

Chapter 1 Getting Started

8

We also need to add a hash-bang (#!) to the top of the Ace script, as in Listing 1-3.

Listing 1-3.  This is from threadbear/ace

#!/usr/bin/env node

"use strict"

// ...other code

Now we can run Ace by using the following:

./ace

It’s not a huge improvement, but it is an interesting technique to be aware of. Hash-

bang directives (like this one) can be useful for hiding unnecessary details, such as the

binary we need to run a script, so that these kinds of stand-alone scripts are easier for

others to use.

We’re going to use this trick later, when we work out how to restart the server with

a new routing configuration. In the meantime, let’s follow the advice we received when

we created the command. Let’s change start/app.js to include the new command, as

shown in Listing 1-4.

Listing 1-4.  This is from threadbear/start/app.js

// ...other code

const commands = [

 "App/Commands/SendReminder"

]

module.exports = {

 providers, aceProviders, aliases, commands

}

The command code Ace generated resembles Listing 1-5.

Listing 1-5.  This is from threadbear/app/Commands/SendReminder.js

"use strict"

const { Command } = require("@adonisjs/ace")

Chapter 1 Getting Started

9

class SendReminder extends Command {

 static get signature() {

 return "send:reminder"

 }

 static get description() {

 return "..."

 }

 async handle(args, options) {

 this.info("...")

 }

}

module.exports = SendReminder

SendReminder extends the built-in Command class. Command does most of the heavy

lifting, but it does require a few properties/getters to be defined:

signature is the name by which the command will be called, but also the arguments

and extra parameters the command accepts.

description is useful when we run ./ace --help. It shows what the command does

and describes what the arguments and parameters are for.

handle is where we put all the code this command needs to use. We’re going to use it

to send reminder e-mails to our customers, but for now it can log text to the console.

We can see the results of this code in Figure 1-3.

Figure 1-3.  The output of ./ace send:reminder

Chapter 1 Getting Started

www.allitebooks.com

http://www.allitebooks.org

10

�Summary
In this chapter, we installed all the requirements for AdonisJs. We created a new

application, and learned how routes and shared code (such as Ace commands) can be

configured in the files within the start folder.

We’ve touched lightly on a few parts of the AdonisJs application structure. In the next

chapter, we’re going to learn far more about defining application routes.

Chapter 1 Getting Started

11
© Christopher Pitt 2018
C. Pitt, The Definitive Guide to AdonisJs, https://doi.org/10.1007/978-1-4842-3390-0_2

CHAPTER 2

Routing
In the previous chapter, we set up our environment and got our first look at the structure

of an AdonisJs application. Now it’s time to add HTTP endpoints to the application. This

is done by adding routes. We’ll learn about all the ways to customize routes, use the data

they hold, and respond to any request.

�What Are Routes?
Routes are like glue between the HTTP requests your browser makes and the server code

meant for each request. This isn’t the first time we’re seeing them, either. In the previous

chapter, we created a /registration route (though we didn’t do any meaningful work

through it).

Routes are an essential part of every application, because every application has at

least one of them. In fact, applications can have many routes, and you’re not limited in

the length, complexity, or number of them your application can have.

The Web is built on top of a communications protocol called HTTP. It has quite a lengthy

definition, but the important bits describe how browsers (and other clients) can make text-

based requests to servers. Those requests include details such as the type of request being

made (the request method) and the server address to which the requests should be sent.

Let’s take another look at the route we defined in the previous chapter, in Listing 2-1.

Listing 2-1.  This is from threadbear/start/routes.js

Route.get("/register", () => {

 return "...form to make new profiles"

})

12

We can tell a couple of things about this route, even if we remove all the code inside

() => {...}. The first is that this route responds to GET requests. There are other kinds

of requests, such as POST, PUT, DELETE, and HEAD. The second thing we can tell is that the

request should go to /register.

Routes can also have values embedded in the path, as we’ll see in this chapter.

�Planning Routes
We’re going to define a few more customer routes alongside the /registration route we

already defined. Customers will need these to manage their accounts and gain access to

protected profile and product information:

•	 GET /login: GET is the most common request method on the

Internet. It’s the go-to method for fetching information in a read-only

way. Similarly to the way we used GET to show the registration form,

we’re using it here to show the login form.

•	 POST /login: POST is more common than GET when it comes to

creating things. In this case, we’d be creating new customer sessions

(and getting back security tokens). It’s not crucial to understand how

we do that right now. All you need to know is that we want to use

POST because we’re making something.

•	 PUT /logout: PUT is similar to POST in that it’s used for a write

operation. However, whereas POST is often used to indicate that a

whole new thing is being created, PUT is often used to indicate that a

change is being made to something. As you’ll see, we use PUT when

we want to update something that has already been created.

•	 POST /register: We already have a route for showing the

registration, but this one is for creating a new customer profile.

Notice that we use the POST method, as we’re creating a whole new

customer account.

•	 GET /forgot-password: When customers forget or lose their

passwords, we need a way for them to request to set a new one. The

only practical way for us to allow this is to send an e-mail to their

address on record, which contains a link (and security token) they can

click. This endpoint should show users a form with which to do that.

Chapter 2 Routing

13

•	 POST /forgot-password: After the customer has entered their e-mail

address, the form should be posted to this endpoint. The server code

running here will then send them the e-mail. You should start to see

a pattern here: we use GET to show forms, and POST to create new

things from those forms.

•	 GET /reset-password/{token}: Similarly to the way the customer

requests to set a new password, this endpoint shows the form they

can use to enter a new password. It has an added {token} parameter,

which we’ll learn about shortly.

•	 PUT /reset-password/{token}: After the customer has entered a

new password, the form can be posted to this endpoint. Because the

customer’s profile already exists (and we want to make an update to

it), we use the PUT request method.

•	 GET /{user-name}: After the customer has a profile, we want them

to be able to see what information is visible on it. This is where the

customer will see their protected information, and where other

customers will be able to see details marked as open to the public.

•	 PUT /{user-name}: Should the customer wish to change details

about their account, they would be able to do so through forms that

send their data to this endpoint. Because it’s a partial update, we use

the PUT method.

•	 DELETE /{user-name}: Customers should also be able to delete

their profiles, which is a good opportunity for us to use the DELETE

method. It acts a lot like the GET method, except that it is not read-

only. Deletes are serious business, so we should confirm whether the

customer initiated the process by accident or on purpose.

•	 GET /{user-name}/products: In our design, customers are also

sellers. They’ll be able to create new products (which is an entirely

optional part of their experience), and those products will be

accessible through this endpoint.

•	 POST /{user-name}/products: Should the customer want to create

a new product, they’ll be able to do so via this endpoint. Because

they’re creating a whole new product, we use the POST method.

Chapter 2 Routing

14

•	 GET /{user-name}/{product-name}: If a customer wants to find out

more details about a specific product, they will be able to do so by

using this product-specific, customer-specific endpoint.

•	 PUT /{user-name}/{product-name}: Similarly, if a customer wants

to update the details of a product, they should be able to do so via a

PUT request to the same endpoint. It’s a partial update, or else we’d

use the POST method.

•	 DELETE /{user-name}/{product-name}: Finally, if a customer wants

to delete a product, they should use the DELETE request method on

this endpoint.

Note T here’s a fine line between respecting a seller’s desire for privacy and
other customers’ right to access content they’ve purchased. It is right for us to
immediately delete products and customer profiles at the will of the customer. It’s
also important for us to preserve the ability to download purchased content after
a profile has been deleted or a product removed from sale. We’ll cross this bridge
when we get to it, but it’s important to remember these rights and responsibilities
when we design the application.

�Defining Routes
Now that we’ve planned the routes we’ll begin our application with, it’s time to define

them in code. We’ll begin with the profile routes, shown in Listing 2-2.

Listing 2-2.  This is from threadbear/start/routes.js

Route.get("/login", () => {

 // show login form

 return "GET /login"

})

Route.post("/login", () => {

 // create new customer session

Chapter 2 Routing

15

 return "POST /login"

})

Route.put("/logout", () => {

 // expire current customer session

 return "PUT /logout"

})

Route.get("/register", () => {

 // show registration form

 return "GET /register"

})

Route.post("/register", () => {

 // create new customer profile

 return "POST /register"

})

Route.get("/forgot-password", () => {

 // show forgot password form

 return "GET /forgot-password"

})

Route.post("/forgot-password", () => {

 // create new password reset token and send e-mail

 return "POST /forgot-password"

})

Each of these routes follows the pattern I just described. They will grow to contain

the functionality of the application, but in the meantime they just return strings. This is

immediately useful for testing, covered next.

�Testing Routes
We’re going to take a brief detour from our route definitions to testing. This book has no

chapter dedicated to testing, because I believe it’s better to always be asking ourselves

how we plan to test the code we’re writing.

Chapter 2 Routing

16

There are many schools of thought when it comes to testing. I’m not going to dwell

on any of them (because we don’t have the time, and we need to stay focused), but I will

say that no one approach to testing is the best. Having any tests is better than having

none, and thinking about tests early and continuously has caused me to write better

code. I recommend this approach.

The jury is still out on which testing framework is the best. For now, we’re going to

use a framework called Mocha (https://mochajs.org). To install it, we need to run the

following command:

npm install --save-dev mocha

This gives us access to a few tools we can use for testing. Now let’s create a test file to

hold our first test, as shown in Listing 2-3.

Listing 2-3.  This is from threadbear/test/routes.js

const assert = require("assert")

const http = require("http")

require("dotenv").config()

const shouldBeOk = (method, path, done) => {

 http

 .request(

 {

 host: process.env.HOST,

 port: process.env.PORT,

 method,

 path,

 },

 response => {

 assert.equal(200, response.statusCode)

 done()

 },

)

 .end()

}

Chapter 2 Routing

https://mochajs.org/

17

const shouldHaveMessage = (

 method,

 path,

 message,

 done,

) => {

 http

 .request(

 {

 host: process.env.HOST,

 port: process.env.PORT,

 method,

 path,

 },

 response => {

 let data = ""

 response.on("data", chunk => {

 data += chunk

 })

 response.on("end", () => {

 assert.equal(message, data)

 done()

 })

 },

)

 .end()

}

describe("GET /login", () => {

 it("should have the correct status (200)", done => {

 shouldBeOk("GET", "/login", done)

 })

 it("should have the correct message", done => {

 shouldHaveMessage(

 "GET",

Chapter 2 Routing

18

 "/login",

 "GET /login",

 done,

)

 })

})

We begin by importing the assertions and HTTP libraries via require statements. We

also import the dotenv library and immediately call the config method. This loads all

the environment variables in our .env file so we can build a URL from the HOST and PORT

variables.

We follow this up by creating the shouldBeOk and shouldHaveMessage helper

functions. The first checks whether a request to an address returns a response with a 200

status code. This would indicate that the request returned successfully, which tells us

that the route is defined.

The shouldHaveMessage function tells us whether a request to an address returns a

message we expect. We’ve defined our routes to return simple messages that describe

their method and path, so we can use shouldHaveMessage to make sure the requests

match the messages we expect them to.

We’ve also defined our first set of tests using the describe and it functions. Mocha

provides these for us, so we don’t have to import them. We can duplicate these tests for

each route, as demonstrated in Listing 2-4.

Listing 2-4.  This is from threadbear/test/routes.js

describe("POST /login", () => {

 it("should have the correct status (200)", done => {

 shouldBeOk("POST", "/login", done)

 })

 it("should have the correct message", done => {

 shouldHaveMessage(

 "POST",

 "/login",

 "POST /login",

 done,

)

Chapter 2 Routing

19

 })

})

// ...tests omitted for brevity

describe("POST /forgot-password", () => {

 it("should have the correct status (200)", done => {

 shouldBeOk("POST", "/forgot-password", done)

 })

 it("should have the correct message", done => {

 shouldHaveMessage(

 "POST",

 "/forgot-password",

 "POST /forgot-password",

 done,

)

 })

})

We could use a loop to define these tests, but that becomes problematic for several

reasons. First, if we write faulty tests in a loop, all of our tests are faulty. Perhaps we make

a mistake in how we request data from the server, or how we inspect the results. We may

never know about the fault because all the tests are faulty in the same way. They may

appear to execute successfully or make valid assertions, and fool us into thinking our

tests are OK when they are not.

Second, these are simple tests, and they are bound to change. Some of these

endpoints are going to take wildly different input. Some will render forms, whereas

others will return redirection instructions to the browser.

It’s best to write out each test (which isn’t too much of a problem because we have

abstracted the helper methods), and change them as we evolve our application.

To run these tests, we need the following command:

node_modules/mocha/bin/mocha

We can shorten this by defining an NPM test script, shown in Listing 2-5.

Chapter 2 Routing

20

Listing 2-5.  This is from threadbear/package.json

"scripts": {

 "test": "mocha"

},

This allows us to run the test just by typing the following:

npm run test

�Defining Route Parameters
Let’s continue defining routes, this time with parameters. There are a few ways to define

these parameters, but the most common form can be seen in Listing 2-6.

Listing 2-6.  This is from threadbear/start/routes.js

Route.get(

 "/reset-password/:token",

 ({ params }) => {

 // show forgot password form

 return "GET /reset-password " + params.token

 },

)

Route.post(

 "/reset-password/:token",

 ({ params }) => {

 // create new password reset token and send e-mail

 return "POST /reset-password " + params.token

 },

)

Route parameters are defined with a leading colon, as seen in :token. Route closures

are provided with a context object, which contains a params key. Using ES6 object

destructuring, we can shorten the path to these parameters.

Chapter 2 Routing

21

Note I t’s also possible to define optional parameters, as seen in :token?.
However, our tokens aren’t going to be optional, so we don’t need that syntax.

Let’s create the tests for these in Listing 2-7.

Listing 2-7.  This is from threadbear/test/routes.js

describe("GET /reset-password", () => {

 it("should have the correct status (200)", done => {

 shouldBeOk(

 "GET",

 "/reset-password/token123",

 done,

)

 })

 it("should have the correct message", done => {

 shouldHaveMessage(

 "GET",

 "/reset-password/token123",

 "GET /reset-password token123",

 done,

)

 })

})

describe("POST /reset-password", () => {

 it("should have the correct status (200)", done => {

 shouldBeOk(

 "POST",

 "/reset-password/token123",

 done,

)

 })

Chapter 2 Routing

22

 it("should have the correct message", done => {

 shouldHaveMessage(

 "POST",

 "/reset-password/token123",

 "POST /reset-password token123",

 done,

)

 })

})

These tests follow a pattern that’s similar to that of the previous tests. The only

difference is that we provide an example token so that we call the routes that require

it, and check that their response matches it. Let’s finish up this section by defining the

remaining routes in Listing 2-8.

Listing 2-8.  This is from threadbear/start/routes.js

Route.get("/:customer", ({ params }) => {

 // show customer profile

 return "GET /:customer " + params.customer

})

Route.put("/:customer", ({ params }) => {

 // update customer profile

 return "PUT /:customer " + params.customer

})

Route.delete("/:customer", ({ params }) => {

 // delete customer profile

 return "DELETE /:customer " + params.customer

})

Route.get("/:customer/products", ({ params }) => {

 // show customer's products

 return (

 "GET /:customer/products " + params.customer

)

})

Chapter 2 Routing

23

Route.post(

 "/:customer/products",

 ({ params }) => {

 // create a new product

 return (

 "POST /:customer/products " +

 params.customer

)

 },

)

Route.get("/:customer/:product", ({ params }) => {

 // show customer profile

 return (

 "GET /:customer/:product " +

 params.customer +

 " " +

 params.product

)

})

Route.put("/:customer/:product", ({ params }) => {

 // update customer profile

 return (

 "PUT /:customer/:product " +

 params.customer +

 " " +

 params.product

)

})

Route.delete(

 "/:customer/:product",

 ({ params }) => {

 // delete customer profile

 return (

 "DELETE /:customer/:product " +

Chapter 2 Routing

24

 params.customer +

 " " +

 params.product

)

 },

)

These are all much the same as before. The only thing we’re doing differently is

defining multiple parameters for a few of them. Let’s also add tests for these, as shown in

Listing 2-9.

Listing 2-9.  This is from threadbear/test/routes.js

describe("GET /:customer", () => {

 it("should have the correct status (200)", done => {

 shouldBeOk("GET", "/assertchris", done)

 })

 it("should have the correct message", done => {

 shouldHaveMessage(

 "GET",

 "/assertchris",

 "GET /:customer assertchris",

 done,

)

 })

})

// ...tests omitted for brevity

describe("DELETE /:customer/:product", () => {

 it("should have the correct status (200)", done => {

 shouldBeOk(

 "DELETE",

 "/assertchris/teddy",

 done,

)

 })

Chapter 2 Routing

25

 it("should have the correct message", done => {

 shouldHaveMessage(

 "DELETE",

 "/assertchris/teddy",

 "DELETE /:customer/:product assertchris teddy",

 done,

)

 })

})

Now we have 17 routes, leading to various parts of our application, and 34 tests. Not

bad for our first real work inside an AdonisJs application! Figure 2-1 shows what running

these tests looks like.

Figure 2-1.  Running tests with Mocha

Chapter 2 Routing

26

�Summary
In this chapter, we defined many routes. We learned how to combine request methods

and paths to target specific parts of our application code.

We also learned about how to test these routes by using Mocha. Testing is an

important part of any maintainable and scalable application. Testing helps us know

when things are broken and gives us clues about where they are breaking.

Chapter 2 Routing

27
© Christopher Pitt 2018
C. Pitt, The Definitive Guide to AdonisJs, https://doi.org/10.1007/978-1-4842-3390-0_3

CHAPTER 3

Views
In the previous chapter, we created many new routes. These will direct traffic to many

parts of our application. We looked at how to match specific request methods and how to

add parameters to the endpoint URLs.

Let’s take this a step further by rendering HTML for some of those endpoints. We

could take a few approaches, including returning a string of HTML directly from a route

handler or rendering a template. We’re going to focus on the latter, as we learn new Ace

commands and the Edge template syntax.

�Creating Views
Let’s ease into this topic by creating a new template file. You may recall: we’ve already seen

how to render HTML by returning a string from a route, as demonstrated in Listing 3-1.

Listing 3-1.  This is from threadbear/start/routes.js

Route.get("/", ({ request }) => {

 return `

 <html>

 <head>

 <link rel="stylesheet" href="/style.css" />

 </head>

 <body>

 <section>

 <div class="logo"></div>

 <div class="title"></div>

 <div class="subtitle">

 <p>AdonisJs ...</p>

 </div>

28

 </section>

 </body>

 </html>

 `

})

Although this approach works—for simple cases—it doesn’t scale well. We may want

to use some or all of the HTML to respond to other routes. We may want to compose

responses out of many template files or isolate specific presentation behavior.

So, instead, we’re going to create a separate template file and use it to display a new

home page. We can do this with the command in Listing 3-2.

Listing 3-2.

adonis make:view page/home

This creates a new file at threadbear/resources/views/page/home.edge, which we

can fill with the sample content in Listing 3-3.

Listing 3-3.  This is from threadbear/resources/views/page/home.edge

<h1>Welcome to Threadbear</h1>

<p>

 Looking for a cuddly friend or your next hobby

 project? Our extensive range of lovingly crafted

 bears and clearly written patterns will delight

 you.

</p>

�Registering the View Provider
Before we can see this code in the browser, we need to register a new provider. Providers

are like maps to greater functionality, hidden in other parts of the framework or in third-

party libraries. They describe how to register new commands and container resources

(which we’ll learn about later).

The AdonisJs application we created previously is a minimal application. In it, all

nonessential things are disabled by default, including the view renderer. We have to add

the ViewProvider to the application before we can directly access the view renderer in

our routes. This can be seen in Listing 3-4.

Chapter 3 Views

29

Listing 3-4.  This is from threadbear/start/app.js

const providers = [

 "@adonisjs/framework/providers/AppProvider",

 "@adonisjs/framework/providers/ViewProvider",

]

It’s a bit too early to learn about the exact structure of a provider. But we can assume

that ViewProvider adds a new key to the object each route gets. We can use this new

view key to render view files from inside route handlers, as shown in Listing 3-5.

Listing 3-5.  This is from threadbear/start/routes.js

Route.get("/", ({ view }) => {

 return view.render("page/home")

})

We’ve replaced that big multiline string of HTML with a call to view.render. Just as

when we created the view file, we have no need of the .edge extension. AdonisJs adds

that in for us. We just need to reference the view files relative to the resources/views

folder, and AdonisJs will add the rest.

Note T his is one of those times when running adonis serve --dev is really
useful. We can change the start and resources files, and we don’t have to
restart the server after each change to see its effect.

�Creating Layouts
At times, the view code we want to share will be common outer code (structural

markup). Think about larger sites and how they share the same stylesheets and visual

styles across many pages. They often have common stylesheet files that they include in

many rendered pages.

We could achieve this by copying and pasting the stylesheet links in every view file.

Or we could be smart and put them in a layout file. Then, each view file could inherit

those structural elements from the layout without copy-and-paste.

Let’s try this by creating a new layout view file, as in Listing 3-6.

Chapter 3 Views

30

Listing 3-6.  This is from threadbear/resources/views/layout.edge

<!doctype html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 </head>

 <body>

 @!section("content")

 </body>

</html>

This is basic HTML markup that you may expect to see on any page of your

application. It declares a doctype and defines container markup in which page-specific

content will sit. What’s interesting is the @!section("content") tag. If we look at the

documentation at http://edge.adonisjs.com/docs/layouts#_basic_example, we’ll

see that this @!tag syntax is shorthand for the @tag/@endtag syntax that can contain

data. It’s a self-closing shorthand syntax.

It’s important to understand that the section tag is like a named placeholder for

future content. We can place default content inside it, on the layout, but it’s far more

useful for marking where child pages will display their content.

I used the adonis make:view command to create this layout view file, but you could

just as easily have created the file by hand. The make:view command does have another

parameter to it, which is useful for creating new view files that extend a layout view:

adonis make:view user/login --layout layout

The --layout parameter generates the new view file and includes @layout("layout-

name") at the top of it. That @layout tells AdonisJs to render this view file as an extension

of the named layout view file. We can embellish this somewhat, by adding the markup in

Listing 3-7.

Listing 3-7.  This is from threadbear/resources/views/user/login.edge

@layout("layout")

@section("header")

 <h1>Login</h1>

@endsection

@section("content")

Chapter 3 Views

http://edge.adonisjs.com/docs/layouts#_basic_example

31

 <form method="post">

 <div class="form-group">

 <label for="email">Email address</label>

 <input type="email" class="form-control" id="email">

 </div>

 <div class="form-group">

 <label for="password">Password</label>

 <input type="password" class="form-control" id="password">

 </div>

 <button type="submit" class="btn btn-primary">

 Log in

 </button>

 </form>

@endsection

I’ve opted to use Bootstrap markup (https://getbootstrap.com) for this form,

because I like the default styling and accessibility it uses. Classes such as form-group and

form-control tell Bootstrap how to style these elements. In order for that styling to reach

the browser, we need to add more markup to the layout view file, as shown in Listing 3-8.

Listing 3-8.  This is from threadbear/resources/views/layout.edge

<!doctype html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 �<meta name="viewport" content="width=device-width,initial-scale=1,

shrink-to-fit=no">

 �<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/

bootstrap/4.0.0-beta/css/bootstrap.min.css">

 </head>

 <body>

 <div class="container">

 <header class="row">

 <div class="col">

 @!section("header")

 </div>

Chapter 3 Views

https://getbootstrap.com/

32

 </header>

 <main class="row">

 <div class="col">

 @!section("content")

 </div>

 </main>

 </div>

 �<script src="https://code.jquery.com/jquery-3.2.1.slim.min.js">

</script>

 �<script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.11.0/

umd/popper.min.js"></script>

 �<script src="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-beta/js/

bootstrap.min.js"></script>

 </body>

</html>

We’ve added Bootstrap’s CSS and JS files (from a content delivery network, or

CDN) to the layout view file. We’ve also introduced some Bootstrap classes around the

sections, to arrange them into rows and columns. We could reduce this code somewhat

by using the Edge global functions and relative protocols in Listing 3-9.

Listing 3-9.  This is from threadbear/resources/views/layout.edge

<!doctype html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 �<meta name="viewport" content="width=device-width,initial-scale=1,

shrink-to-fit=no">

 �{{ css("//maxcdn.bootstrapcdn.com/bootstrap/4.0.0-beta/css/bootstrap.

min.css") }}

 </head>

 <body>

 <div class="container">

 <header class="row">

 <div class="col">

 @!section("header")

Chapter 3 Views

33

 </div>

 </header>

 <main class="row">

 <div class="col">

 @!section("content")

 </div>

 </main>

 </div>

 {{ script("//code.jquery.com/jquery-3.2.1.slim.min.js") }}

 �{{ script("//cdnjs.cloudflare.com/ajax/libs/popper.js/1.11.0/umd/

popper.min.js") }}

 �{{ script("//maxcdn.bootstrapcdn.com/bootstrap/4.0.0-beta/js/bootstrap.

min.js") }}

 </body>

</html>

If we wanted to reference a local CSS or JS file, we would just need to omit the

protocol (http or https) and give a path relative to the public directory. Figure 3-1 shows

what these styles look like when applied to the markup.

Note  Don’t forget to replace the previous login route’s handler code with a call
to view.render, or you won’t see these changes in your app.

Figure 3-1.  Login view with Bootstrap styles

Chapter 3 Views

34

Similarly, we can create a register view (and form), as shown in Listing 3-10.

Listing 3-10.  This is from threadbear/resources/views/user/register.edge

@layout("layout")

@section("header")

 <h1>Register</h1>

@endsection

@section("content")

 <form method="post">

 <div class="form-group">

 <label for="email">Email address</label>

 <input type="email" class="form-control" id="email">

 </div>

 <div class="form-group">

 <label for="password">Password</label>

 <input type="password" class="form-control" id="password">

 </div>

 <div class="form-group">

 <label for="confirm-password">

 Confirm password

 </label>

 <input type="password" class="form-control" id="confirm-password">

 </div>

 <button type="submit" class="btn btn-primary">Register</button>

 </form>

@endsection

We’ve changed the heading and added a new field to the form. We’re using the same

layout file, so we don’t have to add or change any of the shared code for this new view.

�Learning Template Syntax
Edge provides a ridiculous number of template tags and general bits of syntax, to control

all aspects of the way templates render. We’re going to use most of them throughout this

book, but I want to introduce them in this section so you know what’s there.

Chapter 3 Views

35

Note I ’m following the outline of the official docs, which you can find at
http://edge.adonisjs.com/docs/getting-started. I’ll go through the
important tags, briefly describing them. I’ll follow each description with an example
(code listing). For the sake of brevity, I don’t label the listings or refer to them in the
preceding description—so pay attention to the order and syntax of the examples
as they relate to the descriptions they follow. And remember that this isn’t an
exhaustive description of each. We will see many more examples of these as we
use them in our application.

�Interpolation
Interpolation is a fancy word for replacing variable placeholders (in a string) with the

value of the matching variable. You can think of it as filling in a form, where you put your

name next to the blank space called Name.

This looks like the following:

<h1>Hello, {{ name }}</h1>

The way this works is by treating everything inside {{ and }} as a JavaScript

expression. That means we can also call methods inside these braces:

<h1>Hello, {{ name.toUpperCase() }}</h1>

Or we can even do this:

<h1>Hello, {{ name.replace(/^(.)|\s+(.)/g, match => match.toUpperCase()

}}</h1>

In both cases, we call functions on the name string variable. Even though we can use

standard JavaScript inside these braces, the returned value is always escaped by Edge. To

use unescaped HTML values, we need to use triple-braces:

<h1>Hello, {{{ `${name}` }}}</h1>

Sometimes you might want to use client-side template renderers. Template

languages like those in AngularJS (https://angularjs.org) and Vue.js (https://

vuejs.org) use a similar brace syntax to interpolate their variables. Using these braces in

Edge means that they’ll likely be replaced long before the markup gets to the browser.

Chapter 3 Views

http://edge.adonisjs.com/docs/getting-started
https://angularjs.org/
https://vuejs.org/
https://vuejs.org/

36

There’s a special Edge syntax for this case:

This variable will be sent directly to the @{{ browser }}

This seems like such a simple bit of syntax (interpolation in general), but it’s the kind

of thing we’re going to see all over our apps. To get that data there, we need to pass it in

where we render the template:

Route.get("/:customer", ({ view, params }) => {

 return view.render("user/profile", {

 name: params.customer,

 })

})

In fact, while we’re here, we can reduce this code (which is returning only one thing):

Route.get("/:customer", ({ view, params }) =>

 view.render("user/profile", {

 name: params.customer,

 }),

)

This works because JavaScript fat-arrow functions return the result of their

expression if the expression isn’t inside a set of braces. It’s not a requirement, but it may

lead to cleaner code in your projects.

�Conditionals
Conditionals are things such as if statements. Edge allows a few variations of these,

including these two:

@if(name)

 <h1>Hi, {{ name }}</h1>

@elseif(email)

 <h1>Hi, {{ email }}</h1>

@else

 <h1>Who are you?!</h1>

@endif

… and …

Chapter 3 Views

37

@unless(user.isBanned)

 <p>Your account is in good standing</p>

@else

 <p>Please contact a system administrator</p>

@endif

You’re free to use either of these, as best suits your template. They’re functionally

similar, but sometimes using unless makes your intentions clearer. We are also allowed

to use most JavaScript expressions between the parentheses of these tags.

�Loops
Loops are an integral part of all nontrivial applications. There are many kinds of loops in

JavaScript, but only one kind supported by Edge:

@each(product in user.products)

 {{ product.name }}

@else

 No products found

@endeach

Where this tag shines is that it allows an @else similar to the conditionals. That

means we don’t have to wrap looping code in an if statement, in case there are no items

in the array. We can display empty-state messages alongside non-empty-state data.

This syntax works well for arrays, but we need a slightly different syntax for objects:

@each((value, key) in user.preferences)

 {{ key }}: {{ value }}

@endeach

We express the value and key as (value, key), so that Edge knows how to

destructure the object. We can use most JavaScript expressions after the in keyword—

but before it, we need to be careful of the syntax we use. Either plain value or (value,

key) are recommended.

Chapter 3 Views

38

Note T here are some helpful “magic” constants inside the @each tags, such as
$loop.index and $loop.total, but you’ll have to read up about them in the
docs (http://edge.adonisjs.com/docs/iteration#_loop_variable_
properties).

If you find yourself including a partial for each iteration, there’s a handy shortcut:

@!each(product in user.products, include = "user/profile/product")

This is the same as calling @include between @each tags, but it’s significantly shorter

to write.

�Partials
We’ve already seen @layout, which makes the current view file a child of another view

file. The opposite of this is the @include tag:

@include("user/profile/menu")

@section("header")

 <h1>Hi, {{ name }}</h1>

@endsection

@include("user/profile/timeline")

@include gets the content of a view and inlines it. It’s not specific to named

containers, like @section, but rather you can think of it as an automatic copy-and-paste

feature. Includes are automatically given access to the variables you pass to

view.render, so you don’t need to do anything extra to use them.

�Yield
It’s pretty common to check whether a value is present and then output that value, or to

otherwise output a default value. Think of situations like this:

@if(name)

 <h1>Hi, {{ name }}</h1>

@else

 <h1>Who are you?!</h1>

@endif

Chapter 3 Views

http://edge.adonisjs.com/docs/iteration#_loop_variable_properties
http://edge.adonisjs.com/docs/iteration#_loop_variable_properties

39

It’s so common, in fact, that Edge has a shortcut for it:

<h1>

 @yield(name)

 Who are you?!

 @endyield

</h1>

The content inside the @yield tags is returned if the expression inside the

parentheses is falsy (can be equated to false). There is no point to having a

@!yield(name) form, because this is the same as {{ name }}, where name is falsy.

�Functions
At times we may want to reuse functions in many view files that we don’t want to keep on

passing through view.render. In these times, we can define global view functions in a

provider or one of the starter files. Listing 3-11 demonstrates how.

Listing 3-11.  This is from threadbear/app/Providers/ViewProvider.js

"use strict"

const {

 ServiceProvider,

} = require("@adonisjs/fold")

class ViewProvider extends ServiceProvider {

 boot() {

 const View = this.app.use("Adonis/Src/View")

 View.global("toTitleCase", string =>

 string.replace(/^(.)|\s+(.)/g, match =>

 match.toUpperCase(),

),

)

 }

}

module.exports = ViewProvider

Chapter 3 Views

www.allitebooks.com

http://www.allitebooks.org

40

If we want this provider loaded for every request, we need to include it as shown in

Listing 3-12.

Listing 3-12.  This is from threadbear/start/app.js

const providers = [

 "@adonisjs/framework/providers/AppProvider",

 "@adonisjs/framework/providers/ViewProvider",

 __dirname + "/../App/Providers/ViewProvider",

]

There are a number of predefined global view functions (including capitalize,

which does exactly what this function does). You can learn more about them at

http://edge.adonisjs.com/docs/globals.

�Summary
In this chapter, we learned how to render isolated view markup. We looked at

compositional elements such as layouts and includes. We also learned about many

common behavioral elements including loops, conditionals, and functions.

It’s important to stress that this is only the beginning of our view work. We’re going to

use these things in almost every other chapter. Take some time to become familiar with

this syntax by creating your own view files.

In the next chapter, we’re going to learn how to pull data out of the forms we created

here. We’ll look at how requests are created and how to use the data they contain to

make informed choices about what the server should do and what the user wants to see.

Chapter 3 Views

http://edge.adonisjs.com/docs/globals

41
© Christopher Pitt 2018
C. Pitt, The Definitive Guide to AdonisJs, https://doi.org/10.1007/978-1-4842-3390-0_4

CHAPTER 4

Requests
Now that we’re able to render HTML forms, it’s time to think about what we do with the

data users send to us. In this chapter, we’re going to take a look at what makes a Request

object, and how we extract data from each request.

It’s also a great opportunity for us to extend our tests to be able to make requests to

the application and verify that the responses we get back represent the data we expect.

That way, we’ll know the moment we break something that a browser is using.

�Updating Tests
Since we added the markup in the previous chapter, the tests have been broken. When

we run npm run test, we notice that the profile, register, and login endpoints all return

different content than that which the tests expect.

This is good because it shows us that behavior is changed, and that consuming those

endpoints (in something like a browser) is going to be affected. We need to update these

tests to reflect the new behavior they have: rendering markup for each task.

But there’s a catch! We can’t easily check the markup because Node.js servers don’t

naturally understand it. Sure, they can produce it via string concatenation, and they

can understand posted form data. The most natural way for us to check the response

markup is to walk through the Document Object Model (DOM), and Node.js servers are

ill-equipped for this task.

We’re going to introduce a library that can help with this:

npm install --save-dev cheerio

Our routes test file is a little busy, so let’s move the helper functions to their own file,

as in Listing 4-1.

42

Listing 4-1.  This is from threadbear/test/helpers.js

const assert = require("assert")

const http = require("http")

require("dotenv").config()

const shouldBeOk = (method, path, done) => {

 // ...snip

}

const shouldHaveMessage = (

 method,

 path,

 message,

 done,

) => {

 // ...snip

}

module.exports = {

 shouldBeOk,

 shouldHaveMessage,

}

The methods remain the same, but we need to export them by adding them to

module.exports. This means we can export them in our tests file, as shown in Listing 4-2.

Listing 4-2.  This is from threadbear/test/routes.js

const assert = require("assert")

const http = require("http")

const {

 shouldBeOk,

 shouldHaveMessage,

} = require("./helpers")

require("dotenv").config()

Chapter 4 Requests

43

describe("GET /login", () => {

 it("should have the correct status (200)", done => {

 shouldBeOk("GET", "/login", done)

 })

 // ...snip

})

As we add more helper functions, we can keep them in helpers.js and import them

here. Let’s change the register test to inspect the markup that endpoint returns. We need

to import Cheerio (https://cheerio.js.org) for that and make a custom request, as in

Listing 4-3.

Listing 4-3.  This is from threadbear/test/routes.js

describe("GET /register", () => {

 it("should have the correct status (200)", done => {

 shouldBeOk("GET", "/register", done)

 })

 // it("should have the correct message", done => {

 // shouldHaveMessage(...snip)

 // })

 it("should have the correct markup", done => {

 http

 .request(

 {

 host: process.env.HOST,

 port: process.env.PORT,

 method: "GET",

 path: "/register",

 },

 response => {

 let buffer = ""

 response.on("data", data => {

 buffer += data

 })

Chapter 4 Requests

https://cheerio.js.org/

44

 response.on("end", () => {

 callback(buffer, response)

 })

 },

)

 .end()

 })

})

In Node.js, we typically receive responses as asynchronous streams of data (as

opposed to a single body of data). To get the full response body, we need to add event

listeners to the response. Each time we get data, we add it to the buffer. When the

response ends (and is complete), we can work with the body content.

This seems a bit verbose (especially if we’re going to need to do it often). Let’s make a

helper function out of this, as in Listing 4-4.

Listing 4-4.  This is from threadbear/test/helpers.js

const querystring = require("querystring")

const request = (

 method,

 path,

 callback,

 options = {},

) => {

 let data = ""

 const methods = ["POST", "PUT", "PATCH"]

 if (

 options.data &&

 methods.indexOf(method) > -1

) {

 data = querystring.stringify(options.data)

 }

 const parameters = Object.assign(

 {

Chapter 4 Requests

45

 headers: {

 "Content-Type":

 "application/x-www-form-urlencoded",

 "Content-Length": Buffer.byteLength(data),

 },

 host: process.env.HOST,

 port: process.env.PORT,

 method,

 path,

 },

 options,

)

 const request = http.request(

 parameters,

 response => {

 let buffer = ""

 response.on("data", data => {

 buffer += data

 })

 response.on("end", () => {

 callback(buffer, response)

 })

 },

)

 if (data) {

 request.write(data)

 }

 request.end()

}

module.exports = {

 request,

 // ...snip

}

Chapter 4 Requests

46

In addition to accepting a callback (which is given the buffered markup), this helper

function accepts an optional options object. The other helper functions never need to

change things such as headers, but custom test requests may need to. Using Object.

assign, we can allow the initial options object to be overridden by any required custom

properties in the test. We’ve also added special consideration for requests with bodies, so

that their data will be appropriately serialized and added to the request.

Now we can use Cheerio to inspect the returned markup, as shown in Listing 4-5.

Listing 4-5.  This is from threadbear/test/routes.js

it("should have the correct markup", done => {

 request("GET", "/register", markup => {

 const find = cheerio.load(markup)

 assert.equal(find("h1").text(), "Register")

 // assert.equal(find("input[...]").length, 1)

 // assert.equal(find("input[...]").length, 1)

 // assert.equal(find("input[...]").length, 1)

 done()

 })

})

Cheerio works by creating a context in which to search, using methods quite similar

to those found in jQuery (http://jquery.com). This allows us to target elements by

using CSS selectors and asserting things about them.

We begin by loading the markup into a Cheerio context and then finding an h1

element. We can then assert that the text contained in the h1 element matches our

expectations. When we run this code, the test starts to pass again.

Do you see those commented assertions? They are there to check that the

registration form contains fields appropriately named. If we uncomment them, we’ll

discover a bug in our markup. When we created the registration form, we forgot to give

the fields names. Listing 4-6 shows what the markup should look like.

Listing 4-6.  This is from threadbear/resources/views/user/register.edge

<form method="post">

 <div class="form-group">

 <label for="email">Email address</label>

Chapter 4 Requests

http://jquery.com/

47

 <input type="email" class="form-control" id="email" name="email">

 </div>

 <div class="form-group">

 <label for="password">Password</label>

 �<input type="password" class="form-control" id="password"

name="password">

 </div>

 <div class="form-group">

 <label for="confirm-password">Confirm password</label>

 �<input type="password" class="form-control" id="confirm-password"

name="confirm-password">

 </div>

 <button type="submit" class="btn btn-primary">

 Register

 </button>

</form>

Now we can uncomment those lines, and the test will continue to pass. This shows

one of the best things about writing tests: they’re useful for identifying where our code

breaks, but they’re also extremely useful for validating our expectations about our code.

Tests help us design better systems by stating what we expect the code to do and letting

the tests tell us whether we’ve written code that actually works like that.

Spend a few minutes trying to fix the login and profile tests. You’ll have to do the same

kind of markup inspection. It may reveal similar issues with the markup we created in the

previous chapter. If you get stuck, look at the chapter’s source code to see how I’ve done it.

�Understanding Requests
Let’s take a look at the Request class. More specifically, let’s look at how we get it and

how we use it. AdonisJs has allowed us to create unique URLs in our application. It’s

allowed us to respond to requests by returning string data. But what about when those

requests are form submissions or other kinds of requests?

To parse those, we need to add another dependency. This time, it’s a request body

parser library:

adonis install @adonisjs/bodyparser

Chapter 4 Requests

48

This library introduces middleware and configuration files. Ordinarily, we’d use

npm install, but we want the config files to be copied over to our application. adonis

install uses npm install, but it also arranges config files for us. We haven’t looked at

middleware in detail, but what we need to do is add it to the bootstrapping code. The

first half is shown in Listing 4-7, and the second half is shown in Listing 4-8.

Listing 4-7.  This is from threadbear/start/app.js

const providers = [

 "@adonisjs/bodyparser/providers/BodyParserProvider",

 // ...snip

]

Listing 4-8.  This is from threadbear/start/kernel.js

const globalMiddleware = [

 "Adonis/Middleware/BodyParser",

]

Now that this middleware is configured, we can post data from a browser and inspect

it on the server. Let’s change one of the registration endpoints to show us what is being

sent, as shown in Listing 4-9.

Listing 4-9.  This is from threadbear/start/routes.js

Route.post("/register", ({ request }) => {

 // ...create new customer profile

 return JSON.stringify(request.all())

})

Note  We don’t technically need the JSON.stringify function call, as AdonisJs
does this automatically. I still prefer to add it, to be clear about what my response
is. Feel free to leave it out if you prefer.

One of the properties of the context parameter given to all route handlers is the

Request object. It’s only one step removed from the built-in Node.js request object

(which can be reached through request.request), but AdonisJs adds a lot of utility to it.

Chapter 4 Requests

49

If we take the given request and fetch all the key/value pairs, we can stringify and

pass them straight back. This will show a JSON representation of the posted form data,

no matter what the form’s enctype attribute says. That’s already a step up from working

with requests in built-in Node.js code.

In the next chapter, we’re going to look at how to respond to the values we see. In the

meantime, let’s look at what other information we can get from the request.

Note  I’m going to be showing many examples again. Omitting the listing
numbers is slightly less distracting, so pay particular attention to the order of the
examples. I’ll explain a concept and then show example code.

�Getting Parameters
We may need to get the value of a query string parameter or a posted form field. For this,

we can use the input method:

request.input("page", 1)

The input method allows an optional second parameter, which will be the default

value if no query string parameter or form field matches the name given as the first

parameter. Pagination is a good example of this, because the current page can be

inferred from a query string parameter (or even a named route parameter), but may not

be defined before the user has started using pagination links.

We may also want to include only a subset of all fields, which we can do with the

only method:

request.only(["email", "password"])

This is good when we need lots of information for validation, but want to persist only

some of that information to the database. Alternatively, we can exclude fields and allow

everything else through:

request.except(["confirm-password"])

Chapter 4 Requests

50

�Getting Headers and Cookies
Headers are slightly less complicated than parameters. There’s one method to get a

specific header, and one method to get all headers:

request.header(

 "content-type",

 /* default */ "text/html",

)

request.headers() // {"content-type": ...}

It’s also possible to use these request methods with the underlying Lodash library

(https://lodash.com):

_.get(request.headers(), "content-type")

Note A donisJs requires Lodash to perform certain useful functional programming
tasks. It’s still a good idea to require Lodash as a dependency if your code uses it,
because future versions of AdonisJs may not.

Cookies follow a similar pattern, in that there are two methods we can use to access

them:

request.cookie("language", /* default */ "en-gb")

request.cookies() // {"language": ...}

AdonisJs automatically encrypts and signs cookies, meaning you can’t read cookies

set via the browser. We can use less secure cookies via a couple of corresponding methods:

request.plainCookie("language", /* default */ "en-gb")

request.plainCookies() // {"language": ...}

�Getting “accepts” and “language”
I’ve used content-type and language as examples, but these are ideas strongly

represented in request headers. There are even a few methods that give us quick access

to them:

Chapter 4 Requests

https://lodash.com/

51

const preferred = request.accepts([

 "json",

 "html",

])

if (preferred === "json") {

 // ...return a JSON response

}

// ...return an HTML response

…And:

const preferred = request.language(["en", "fr"])

if (preferred === "en") {

 // ...return an English response

}

// ...return a French response

These make it easier to decide how and with what information to respond to a request.

�Finding Out More
There’s an incredible amount of metadata to discover, which is less about the data

that a user submits and more about how the request was made. I’m not going to list

all of the options, but I recommend you look at the documentation for the Request

class at http://dev.adonisjs.com/docs/4.0/request.

�Responding to POST, PUT, PATCH, and DELETE
Most of the web works through GET and POST requests, but the HTTP 1.1 specification

allows so much more. It’s entirely possible to express different intentions through the use

of different request methods, such as POST, PUT, PATCH, and DELETE. In fact, it’s commonly

understood that each of these refers to a specific kind of action:

•	 GET can be a read-only request to one or many resources, such as

products or people.

Chapter 4 Requests

http://dev.adonisjs.com/docs/4.0/request

52

•	 POST can be an operation that creates a resource.

•	 PUT can be an operation that entirely replaces a resource’s attributes.

•	 PATCH can be an operation that replaces only a few of a resource’s

attributes, leaving all the others intact.

•	 DELETE can be an operation that deletes a resource.

The HTTP 1.1 specification doesn’t enforce these rules, but they’re helpful for

creating understandable web services. If a developer sees that a request needs the

DELETE method, they know to be cautious when using it (because it may be deleting

resources). If they have to choose between a PUT and a PATCH request method, they may

pick the one that best suits the information they already have or want to persist.

We can use this too, for things like password resetting. Let’s make a couple of new

HTML forms, beginning with the Forgot Password form in Listing 4-10.

Listing 4-10.  This is from threadbear/resources/views/user/forgot-

password.edge

@layout("layout")

@section("header")

 <h1>Forgot password</h1>

@endsection

@section("content")

 <form method="post">

 <div class="form-group">

 <label for="email">Email address</label>

 <input type="email" class="form-control" id="email" name="email">

 </div>

 <button type="submit" class="btn btn-primary">Send</button>

 </form>

@endsection

The idea behind this form is that users who forget their passwords can submit their

e-mail address. The application should generate a password-reset token and send it (as

part of a link, in an e-mail) to the user’s e-mail address.

Because we’re creating something, it seems natural to use the POST request method.

In theory, each time the user submits this form (whether or not they successfully reset

their password), a new password-reset token should be created.

Chapter 4 Requests

53

We’re going to learn how to send e-mail later. For now, let’s just ignore the

requirement to create new password-reset tokens (or validate against them). The next

step is to make the password-reset form, as in Listing 4-11.

Listing 4-11.  This is from threadbear/resources/views/user/reset-

password.edge

@layout("layout")

@section("header")

 <h1>Reset password</h1>

@endsection

@section("content")

 <form method="post">

 <div class="form-group">

 <label for="password">Password</label>

 �<input type="password" class="form-control" id="password"

name="password">

 </div>

 <div class="form-group">

 <label for="confirm-password">Confirm password</label>

 �<input type="password" class="form-control" id="confirm-password"

name="confirm-password">

 </div>

 <button type="submit" class="btn btn-primary">Reset</button>

 </form>

@endsection

This is similar to the other forms we’ve made, but there’s a conceptual problem here.

When a user completes this form, that user’s account will be partially updated. The

best HTTP method to describe this is PATCH, but browsers typically don’t support PATCH

request methods on HTML forms.

Fortunately, this isn’t a new problem. Following the lead of many other web

frameworks, AdonisJs provides a way for us to indicate that we want PATCH while still

using POST. We just need to add a query string parameter to indicate the request method

we mean, as in Listing 4-12.

Chapter 4 Requests

54

Listing 4-12.  This is from threadbear/resources/views/user/reset-

password.edge

<form method="post" action="?_method=PATCH">

We still post the form, but AdonisJs picks up that we’ve defined _method=PATCH and

reroutes the request accordingly. We need to adjust the route definition to account for

this, as shown in Listing 4-13.

Listing 4-13.  This is from threadbear/start/routes.js

Route.patch(

 "/reset-password/:token",

 ({ request, params }) => {

 // create new password reset token and send e-mail

 return JSON.stringify(request.all())

 },

)

Even though it depends on the _method query string parameter to know where

to direct the request, AdonisJs is still smart enough to require POST requests for this

behavior to take place. Even if we refresh a page with the _method parameter in the URL,

AdonisJs will direct the request to the GET route handler.

Note R emember to update the routes and tests files as we go. I am doing it (and
the source code will show you what to do if you get stuck), but showing all that
work here would be boring. It’s healthy to keep the tests passing, or you might not
notice when something big breaks.

We need to do one more thing before this will work. In order for method spoofing

(which is what this bit of trickery is called) to work, we need to enable it via some

configuration changes. When we created the project, using the adonis command-

line tool, we were given the “slim” application boilerplate. This means we got only the

essential files to make the application work (and none of the extra stuff). The method-

spoofing configuration may live inside that extra stuff.

Chapter 4 Requests

55

I’ll show you what the config file looks like (in Listing 4-14), and then I’ll tell you

where to find the other config files.

Listing 4-14.  This is from threadbear/config/app.js

"use strict"

const Env = use("Env")

module.exports = {

 /*

 |-------------------------------------

 | App Key

 |-------------------------------------

 |

 | App key is a randomly...snip

 |

 */

 appKey: Env.get("APP_KEY"),

 http: {

 /*

 |-------------------------------------

 | Allow Method Spoofing

 |-------------------------------------

 |

 | Method spoofing allows to...snip

 |

 */

 allowMethodSpoofing: true,

 /*

 |-------------------------------------

 | Trust Proxy

 |-------------------------------------

 |

 | Trust proxy defines whether...snip

 |

Chapter 4 Requests

56

 */

 trustProxy: false,

 /*

 |-------------------------------------

 | Subdomains

 |-------------------------------------

 |

 | Offset to be used for...snip

 |

 */

 subdomainOffset: 2,

 /*

 |-------------------------------------

 | JSONP Callback

 |-------------------------------------

 |

 | Default jsonp callback to be...snip

 |

 */

 jsonpCallback: "callback",

 },

 views: {

 /*

 |-------------------------------------

 | Cache Views

 |-------------------------------------

 |

 | Define whether or not to...snip

 |

 */

 cache: Env.get("CACHE_VIEWS", true),

 },

 static: {

 /*

Chapter 4 Requests

57

 |-------------------------------------

 | Dot Files

 |-------------------------------------

 |

 | Define how to treat dot files...snip

 |

 */

 dotfiles: "ignore",

 /*

 |-------------------------------------

 | ETag

 |-------------------------------------

 |

 | Enable or disable etag generation

 |

 */

 etag: true,

 /*

 |-------------------------------------

 | Extensions

 |-------------------------------------

 |

 | Set file extension fallbacks...snip

 |

 */

 extensions: false,

 },

 locales: {

 /*

 |-------------------------------------

 | Driver

 |-------------------------------------

 |

 | The driver to be used for...snip

Chapter 4 Requests

58

 |

 | file, database

 |

 */

 driver: "file",

 /*

 |-------------------------------------

 | Default Locale

 |-------------------------------------

 |

 | Default locale to be used by...snip

 |

 */

 locale: "en",

 /*

 |-------------------------------------

 | Fallback Locale

 |-------------------------------------

 |

 | Fallback locale to be used...snip

 |

 */

 fallbackLocale: "en",

 },

}

The config property we’re interested in is allowMethodSpoofing. If this is set to

true, AdonisJs will facilitate the method spoofing, which means we can use the correct

(conceptually) request method but still support current browsers.

AdonisJs config files are usually quite well-documented. You can read through the

comments and figure out what each config option does (and what values it accepts).

Installing new libraries via adonis install library-name will also install the config

files it has. For all other config files, we can head over to the GitHub repository for the

fuller application boilerplate (https://github.com/adonisjs/adonis-fullstack-app/

tree/develop/config).

Chapter 4 Requests

https://github.com/adonisjs/adonis-fullstack-app/tree/develop/config
https://github.com/adonisjs/adonis-fullstack-app/tree/develop/config

59

�Summary
In this chapter, we learned about how a request is put together. We looked at the

correlation between HTTP 1.1 request methods and the actions they should perform,

and how this relates to routing and forms in our application.

We also updated our tests, adding the ability to inspect markup and JSON response

data. We’re going to dig deeper into these topics in the next chapter. Specifically, we’re

going to see how to return different kinds of responses, redirections, and formats.

Chapter 4 Requests

61
© Christopher Pitt 2018
C. Pitt, The Definitive Guide to AdonisJs, https://doi.org/10.1007/978-1-4842-3390-0_5

CHAPTER 5

Responses
In the previous chapter, we learned about requests. The flip side of that coin is responses.

For each request that demands something of our application, a well-crafted JSON,

XML, or HTML response is the answer. Perhaps the request is for a list of users or an API

authentication. In this chapter, let’s learn the ins and outs of responses.

�Sending Simple Responses
We’ve already seen several ways to respond to HTTP requests. We started off by returning

strings from our route closures. These strings were then rendered as HTML responses in

the browser.

We reused this idea when we started to return JSON strings of request inputs. We

did the same when we returned rendered Edge views. The process we used to render

templates may have been a bit more complex than returning simple strings, but the

result was the same.

That’s because AdonisJs inspects the result of the closure, and if it sees a string, it

sends this to the Response object behind the scenes. It’s that response object we want to

look at in more detail. We can access it directly by referencing another property of the

router context, as demonstrated in Listing 5-1.

Listing 5-1.  This is from threadbear/start/routes.js

Route.get(

 "/:customer",

 ({ response, view, params }) => {

 // return view.render("user/profile", {

 // name: params.customer,

 // })

62

 return JSON.stringify(Object.keys(response))

 },

)

The exact keys returned aren’t important, but the results show us that the response

object lives in the context. When we return a string—and if the response object hasn’t

been modified in such a way that it would be prevented—then AdonisJs injects the string

into the response object. It’s similar to if we were to inject it manually, as in Listing 5-2.

Listing 5-2.  This is from threadbear/start/routes.js

Route.get(

 "/:customer",

 ({ response, view, params }) => {

 // return view.render("user/profile", {

 // name: params.customer,

 // })

 response.send(

 view.render("user/profile", {

 name: params.customer,

 }),

)

 },

)

�Sending JSON Responses
So, what else can we do with this Response object? For a start, we can set headers. Our

JSON endpoints could define their content-type header so that they are correctly

rendered, as in Listing 5-3.

Listing 5-3.  This is from threadbear/start/routes.js

Route.post(

 "/register",

 ({ request, response }) => {

Chapter 5 Responses

63

 // ...create new customer profile

 response.safeHeader(

 "content-type",

 "application/json",

)

 response.send(JSON.stringify(request.all()))

 },

)

We use safeHeader instead of header because other parts of our application may

already have set the content type. safeHeader sets the header only if it hasn’t already

been set. As you may imagine, returning JSON responses is quite common, and this code

is verbose for something we would commonly do. Instead, we can use a special method,

shown in Listing 5-4.

Listing 5-4.  This is from threadbear/start/routes.js

Route.post(

 "/register",

 ({ request, response }) => {

 // ...create new customer profile

 response.json(request.all())

 },

)

The json method sets the content type and automatically serializes the parameters

so that they are rendered as a well-formed JSON response.

Note  If we want to remove a header for some reason, we can do it by using the
removeHeader function. We can also use the type method as a shortcut to set
the content-type header.

Chapter 5 Responses

64

�Working with Cookies
In the previous chapter, we looked at how to set cookies. Unsurprisingly, the response

object has similarly named methods to be able to set them. We have access to both the

cookie and plainCookie variants, as shown in Listing 5-5.

Listing 5-5.

response.cookie("language", "en-gb") // is encrypted

response.plainCookie("...", "...") // is unencrypted

There’s also a clearCookie method, which will clear a cookie by name. If you plan to

access the cookies (or set the cookies) in the browser, you should use plainCookie. The

added encryption of request.cookie and response.cookie is great, but its use is limited

if the browser isn’t able to decrypt it.

�Redirecting Users
Some operations require redirection. Perhaps we want to redirect after a successful form

submission, or we want to allow users to rename their accounts without breaking their

old account links.

It’s this latter example we’re going to try to implement now. Let’s create a lookup

table of new and old usernames that we’ll update manually (at least for now). This could

look similar to Listing 5-6.

Listing 5-6.  This is from threadbear/start/routes.js

const redirects = {

 assertchris: "christopher",

 thetutlage: "harminder",

}

Route.get(

 "/:customer",

 ({ response, view, params }) => {

 const redirect = redirects[params.customer]

Chapter 5 Responses

65

 if (redirect) {

 return response.redirect("/" + redirect)

 }

 // ...render normal profile view

 },

)

By passing a new URL to response.redirect, we can automatically redirect the

browser to that new URL. In fact, we can even name routes and redirect to them by

name. This is demonstrated in Listing 5-7.

Listing 5-7.  This is from threadbear/start/routes.js

Route.get(

 "/:customer",

 ({ response, view, params }) => {

 const redirect = redirects[params.customer]

 if (redirect) {

 return response.route("profile", {

 customer: redirect,

 })

 }

 // ...render normal profile view

 },

).as("profile")

When we redirect to named routes that expect parameters, we need to provide those

parameters in the form of an object. The benefit of naming routes is that we can change

the format in a single place, and everything that refers to the route (or builds a URL from it)

will automatically use the new format.

We could change Route.get("/:customer", ...) to Route.get("/

profile/:customer", ...), and our application would continue to function.

Obviously, people linking to the old format will encounter 404 errors unless you set up

redirects for the old format.

Chapter 5 Responses

66

By default, the action at the other end of the redirection won’t have access to the

parameters that were present in the action that performed the redirection. Posted form

parameters and query string parameters will be lost unless the second argument is set to

true.

There’s also a third argument, which defines which HTTP status code (301 or 302)

should be used. The signature looks like response.redirect("/url", sendParams =

false, status = 302).

�Responding with Attachments
There’s one other trick specific to the Response object. It can respond with attachments,

allowing users to download files of our choosing without being redirected to them. It’s a

powerful tool, but best left for when we look at how to work with the filesystem. For now,

just know that it’s there and look forward to when we use it in Threadbear!

�Extending with Macros
Remember when we added methods to Edge in order to be able to use inside templates?

Macros are a similar but more universal concept. Often our applications will grow to

contain repeated operations. And as with templates, we’d benefit from having ways of

extending Request and Response with these reusable methods.

Both of these classes extend the Macroable class. This little class allows macro

functions and getters to be defined on other classes without extending them. Imagine we

want to serve XML from some of our routes, something similar to response.json(...).

To begin with, let’s install a helper library, which will convert from JSON objects to XML:

npm install --save js2xmlparser

Next, we need to add a macro function so that we can use response.xml as easily as

we could response.json. Listing 5-8 shows one way we might achieve this.

Listing 5-8.  This is from threadbear/start/routes.js

const parser = use("js2xmlparser")

const Response = use("Adonis/Src/Response")

Response.macro("xml", function(

Chapter 5 Responses

67

 data,

 root = "root",

) {

 this.type("application/xml")

 this.send(parser.parse(root, data))

})

Route.get(

 "/:customer/products",

 ({ params, response }) => {

 const products = [

 { price: 4.99, title: "Teddy Bear" },

]

 if (params.format === ".xml") {

 return response.xml(

 {

 product: products.map(product => ({

 "@": { price: product.price },

 "#": product.title,

 })),

 },

 "products",

)

 }

 if (params.format === ".json") {

 return response.json({

 products,

 })

 }

 // ...render normal view

 },

).formats(["xml", "json"])

Chapter 5 Responses

68

We have yet to learn about the dependency injection container, but for now, you can

think of use("Adonis/Src/Response") as a special kind of require. In this case, we’re

loading the Response object and adding a new macro function on it.

We do so by also loading the js2xmlparser library and converting whatever data we

receive into an XML string. All XML documents must have a root element, and we can

default that to root if no other is defined.

Note  You can define these macros directly in the routes file (though we’ll learn
of better places to do this in the future). I have chosen to place the macros in
threadbear/start/hooks.js instead. I’ve also gone ahead and used the hook
system. We’ll learn about that system later, but what’s important is that the macro
code is the same no matter which file you choose to put it in. The only difference is
how that code is loaded and when.

Then we define a new route, which will show a list of products. We want to allow

users to request XML, JSON, and HTML responses. We can tell these apart by the

extension that is used in the URL. If the extension is .xml, we respond with XML, and so

forth. This comes from the params context key. We could just as easily create a couple of

macros to make this code cleaner, as shown in Listing 5-9.

Listing 5-9.  This is from threadbear/start/routes.js

Response.macro("for", function(params, handlers) {

 if (params.format === ".xml") {

 const handler = handlers.xml

 const data = handler()

 return this.xml(...data)

 }

 if (params.format === ".json") {

 const handler = handlers.json

 const data = handler()

 return this.json(...data)

 }

Chapter 5 Responses

69

 return (handlers.default || function() {})()

})

Route.get(

 "/:customer/products",

 ({ params, response }) => {

 const products = [

 { price: 4.99, title: "Teddy Bear" },

]

 return response.for(params, {

 xml: () => [

 {

 product: products.map(product => ({

 "@": { price: product.price },

 "#": product.title,

 })),

 },

 "products",

],

 json: () => [

 {

 products,

 },

],

 default: () => "...render normal view",

 })

 },

).formats(["xml", "json"])

Now we can short-circuit the params.format logic and respond to different request

types with a switch-like macro. We could probably enhance the macro to be able to

handle any type of extension, but these are the most common ones we’ll see.

Chapter 5 Responses

70

�Summary
In this chapter, we learned all about the response object. We learned how to send simple

responses, manage headers and cookies, and even how to redirect users. We also looked

at how to define reusable functions on commonly used framework objects such as

Request and Response.

In the next chapter, we’re going to take a step back and learn about generators. We

need to understand them and the promises that come after them before we can unlock

the true power of AdonisJs. We’ll tackle these two topics, one after the other, and come

back to writing new code for our application.

Chapter 5 Responses

www.allitebooks.com

http://www.allitebooks.org

71
© Christopher Pitt 2018
C. Pitt, The Definitive Guide to AdonisJs, https://doi.org/10.1007/978-1-4842-3390-0_6

CHAPTER 6

Generators
We’re going to sidetrack for a bit. Recent changes to Node.js have introduced the async

and await keywords. They’re going to be useful for our application, but before we can

use them, we should understand how they work.

In this chapter (and the next), we’re going to learn how these keywords work. We’ll

explore how JavaScript has evolved to deal with asynchronous streams of events and

data, and we’ll see how to take full advantage of this evolution.

�Arrays: Where It All Began
Arrays are the bread and butter of programming. Unlike the other variable types, arrays

are perfect for managing lists of data, as shown in Listing 6-1.

Listing 6-1.

const items = ["foo", "bar", "baz"]

items.forEach((value, key) => {

 console.log(key, value)

})

There are a few kinds of loops, and each interacts with the array in subtly different

ways. Arrays also have methods that can iterate, map, filter, and reduce the values of an

array. Because JavaScript is a dynamic language, it’s sometimes useful to be able to tell

whether the value of a variable is an array. We can do that with the code in Listing 6-2.

Listing 6-2.

Array.isArray(items) // true

72

We could use these methods and language constructs almost exclusively for dealing

with lists and iteration. But what if we want more control over what happens during

iteration? Let me show you what I mean in the next section.

�Then Came Iterators
Imagine we want to create something that works directly in a loop, but for each iteration,

it makes a request to a remote server. Well, iterators are a step between normal arrays

and being able to modify the behavior of loops. Imagine we have something that works

like Listing 6-3.

Listing 6-3.

"use strict"

const fetch = require("node-fetch")

const requests = function(urls) {

 // ...make the requests here

}

const urls = [

 "http://adonisjs.com",

 "http://threadbear.store",

]

const iterator = requests(urls)

iterator.next().value

iterator.next().value

iterator.next().done // true

For this code to work, we need to return an object from requests that has a next

method. This is the heart of what makes an iterator—something that knows how to

access the next item in a list. The requests code may look something like Listing 6-4.

Listing 6-4.

const requests = function(urls) {

 // ...make the requests here

Chapter 6 Generators

73

 let index = 0

 return {

 next: function() {

 if (index < urls.length) {

 return {

 value: fetch(urls[index++]),

 done: false,

 }

 }

 return {

 done: true,

 }

 },

 }

}

Although the index is less than the length of the array, we return the array item at that

index (and remember to increment the index after). We also indicate that our iterator isn’t

done iterating yet. When that time comes, we return an object with done equal to true.

This is OK, but it doesn’t help us to use the iterator in a loop. For that to work, we

need to beef up our implementation, as shown in Listing 6-5.

Listing 6-5.

class Requests {

 constructor(urls) {

 this.urls = urls

 this[Symbol.iterator] = () =>

 new RemotesIterator(this)

 }

}

class RequestsIterator {

 constructor(remotes) {

 this.remotes = remotes

 this.index = 0

 }

Chapter 6 Generators

74

 next() {

 if (this.index < this.remotes.urls.length) {

 return {

 value: fetch(

 this.remotes.urls[this.index++],

),

 done: false,

 }

 }

 return {

 done: true,

 }

 }

}

const iterableRequests = new Requests(urls)

for (let request of iterableRequests) {

 // ...do something with request

}

This code is similar to the requests function, but it places all the iterator code

inside a class. The iterator class walks through the URLs in Requests and continues to

maintain an index position. The reason for this change is that the for...of loop calls

Requests[Symbol.Iterator] on the iterableRequests instance, and expects that

method to return an iterable thing.

Now we’ve created custom classes, which we can use directly in loops. This

example makes requests for every URL in the array, but you can probably think of many

applications for this technique. And when you think about it, we’ve created a subtle shift

from lists of static data to lists of operations to get static data.

When the iterator is created, none of the iterable data exists. We have the URLs but

not the responses (or requests) we care about. The list of responses has become a list of

operations to get each response.

Chapter 6 Generators

75

�Generators
What does this have to do with generators? They’re not entirely dissimilar to iterators,

but their implementation definitely is, as shown in Listing 6-6.

Listing 6-6.

const generateRequests = function*(urls) {

 for (let url of urls) {

 yield fetch(url)

 }

}

const generatedRequests = generateRequests(urls)

for (let request of generatedRequests) {

 // ...do something with request

}

See how much easier that was? Generators are a handy shortcut for the full iterator

implementation we did. We don’t need to make a special iterator handler class or even

worry about Symbol.iterator. All we need to do is add a yield keyword, and Node.js

knows to treat this function differently.

If we wanted, we could use generators in place of that iterator handler class, as

shown in Listing 6-7.

Listing 6-7.

class Remotes {

 constructor(urls) {

 this.urls = urls

 this[Symbol.iterator] = function*() {

 for (let url of this.urls) {

 yield fetch(url)

 }

 }

 }

}

Chapter 6 Generators

76

const remotes = new Remotes(urls)

for (let request of remotes) {

 console.log(request)

}

This is the best of both worlds. We can define well-structured list-like objects, which

are expressive and concise (thanks to generator syntax). But this is only one facet of

generators. I’m excited about an entirely different use of them, described next.

�Cooperative Multitasking
As it happens, we can use generators to model asynchronous architecture. Suspend

your disbelief for a moment and consider what it might look like to write code that looks

synchronous (and simple) but is every bit as asynchronous as the callback-based code

you’re familiar with.

Let’s try to build a task runner that alternates between tasks, giving each a little bit

of time to do their work. In this model, each task does a bit of its work and then gives

control back to the task running so that the task runner can give control over to another

task. In this way, we can simulate parallel execution in the context of a single thread.

First, we need a task class, as in Listing 6-8.

Listing 6-8.

class Task {

 constructor(generator) {

 this.generator = generator()

 this.complete = false

 }

 run() {

 const result = this.generator.next()

 this.complete = result.done

 }

Chapter 6 Generators

77

 incomplete() {

 return !this.complete

 }

}

Let’s assume that the constructor argument will always be a generator function. We

could add checks to make sure that this is the case, but they’re unimportant for what I

want to show you. When the run method is called, the generator is run for a single tick.

We can think of this as one bit of work being done.

And because generators are similar to iterators, we can inspect the done property

(on the result) to see whether more values are left in the generator. We can create a few

tasks, as in Listing 6-9.

Listing 6-9.

const task1 = new Task(function*() {

 for (let i = 0; i < 5; i++) {

 console.log("task 1, iteration " + i)

 yield

 }

})

const task2 = new Task(function*() {

 for (let i = 0; i < 6; i++) {

 console.log("task 2, iteration " + i)

 yield

 }

})

const task3 = new Task(function*() {

 for (let i = 0; i < 7; i++) {

 console.log("task 3, iteration " + i)

 yield

 }

})

We’re not doing any complex processing inside each of these generator functions.

We’re just writing to the console and yielding (so that the function becomes a generator).

Next, let’s create a task manager like the one in Listing 6-10.

Chapter 6 Generators

78

Listing 6-10.

class Manager {

 constructor() {

 this.tasks = []

 }

 add(task) {

 this.tasks.push(task)

 }

 run() {

 while (this.tasks.length) {

 const next = this.tasks.shift()

 next.run()

 if (next.incomplete()) {

 this.add(next)

 }

 }

 }

}

The Manager class has a list of tasks, which we can add new tasks to. It also has a run

method, which will step through each of the remaining tasks (in a first-in-first-out, or

FIFO) order. Each task is then run. If there’s more work for the task to do, we add it back

into the manager’s list. This way, each task will be run, in order, until it is out of work.

Finally, we can run the tasks by using the code in Listing 6-11.

Listing 6-11.

const manager = new Manager()

manager.add(task1)

manager.add(task2)

manager.add(task3)

manager.run()

Chapter 6 Generators

79

That’s it! All that’s left to do is run the code. Figure 6-1 demonstrates what the output

of the task runner looks like.

�Summary
It may be a little tricky to see how this relates to async and await, but trust me, it

does. Generators are a powerful tool for shifting the focus from “list of items” to “list

of operations.” By using iterators and generators, we can break up a list of operations

(which we’d like to execute asynchronously) and allow them to be iterated over.

In the next chapter, we’re going to learn about promises. We’ll look at what they

are and how to use them. We’ll also come to understand how they fit together with

generators, to explain async and await.

Figure 6-1.  Cooperative multitasking with generators

Chapter 6 Generators

81
© Christopher Pitt 2018
C. Pitt, The Definitive Guide to AdonisJs, https://doi.org/10.1007/978-1-4842-3390-0_7

CHAPTER 7

Promises
In the previous chapter, we learned about generators: how they work, and one or

two things they can be useful for. We ended with a demonstration of building a

multitasking system. In particular, we looked at how to use generators as interruptible

functions. Other programming languages call this kind of function a coroutine (short for

cooperative routine), because it cooperates to allow for multitasking.

In the grand scheme of things, promises come before coroutines. They’re slightly

harder to understand, though. They also don’t resolve (if you’ll pardon the pun) into a

nice system until we start to use them in conjunction with coroutines.

In this chapter, we’re going to take a look at callback-based code. We’ll learn what’s

going on underneath and how callbacks fit in. Then we’ll look at how generators allow us to

execute small parts of an asynchronous application. Finally, we’ll learn how to use promises

and coroutines to create our own asynchronous libraries. This chapter is gonna be wild!

�Reacting to Events
Have you ever worked on the front end? If you have, you’ll know that no order of

execution is guaranteed. That may be a bit of an exaggeration, but often you might

expect a linear execution of code, only to be surprised by out-of-order execution.

This leads to strange race conditions, and the need for a complex mental model. Take

the code in Listing 7-1, for example.

Listing 7-1.

const body = document.querySelector("body")

const image = new Image()

image.onload = function() {

 const element = document.createElement("img")

82

 element.setAttribute("src", this.src)

 body.appendChild(element)

}

body.addEventListener("click", function() {

 image.src = "https://placekitten.com/200/300"

})

We create an Image object and assign an onload callback; when the image is loaded,

it will create a new img element and append this to the document body.

However, we initiate the load only when the body is clicked. Nothing happens as a

result of running this script. Yet something can happen when someone clicks the body

element.

This kind of reactivity is possible because browsers (and JavaScript runtimes) have

event loops. These event loops continuously cycle, checking for user input and situations

in which events have happened and should be dispatched to event listeners.

These event loops are the cornerstone enabling browsers to handle mountains of

event listeners and the code they contain. Node.js has been built with an event loop, so it

is capable of asynchronous, reactive architecture.

�Entering Callback Hell
One of the problems with asynchronous code is the mountain of callbacks that tend

to be involved. It’s a situation known commonly as Callback Hell, though it’s often

exaggerated. Callbacks (or closures, as they’re commonly referred to) are at the heart of

how Listing 7-2 works.

Closures are a way of encapsulating the state of code you’d like to run at a future

time. They’re behavior packaged in a neat box. You can reason about them easily: “What

do I want to happen when the domain name is resolved to an IP address? I can provide a

closure, and the resolver can execute it when the results.”

But such code can be heavily nested, as events depend on other events completing,

in a sort of sideways-code-pyramid. Enough people thought this was a problem to think

about a neat abstraction for it: promises.

Chapter 7 Promises

83

�Understanding Promises
Promises are a way of organizing closures so there’s never more than one level of closure

nesting. Listing 7-2 shows what promises look like.

Listing 7-2.

const promise = new Promise((resolve, reject) => {

 // ...perform some async action

 // ...either resolve(data) or reject(reason)

})

promise.then(data => {

 // ...do something with data

})

promise.catch(reason => {

 // ...do something with reason

})

What we learn from this is that promises don’t help us to avoid all closures. They just

provide a framework for organizing them and for deciding when and in which order to

resolve them (in an asynchronous system).

Promises represent eventual values. A function may return a promise, but that

promise doesn’t necessarily have a real value behind it yet. The promise can eventually

resolve to a real value and then trigger the callbacks given to then.

Let’s create a function that returns a promise and resolves after a few seconds. It

might look something like Listing 7-3.

Listing 7-3.

const delay = (

 shouldResolve,

 having,

 after = 1000,

) => {

 return new Promise((resolve, reject) => {

 if (shouldResolve) {

 setTimeout(() => resolve(having), after)

Chapter 7 Promises

84

 } else {

 setTimeout(() => reject(having), after)

 }

 })

}

delay(true, "some data").then(data => {

 console.log("resolved with " + data)

})

delay(false, "a reason").catch(reason => {

 console.log("rejected with " + reason)

})

When we create a new promise, we define when it should be resolved or rejected

by calling the callbacks given to the constructor. Though we attach a then and catch to

the results of delay, those callbacks are executed only after the delay we specify. The

callbacks are attached immediately, but they aren’t executed immediately.

There’s also no limit to the number of then or catch callbacks that can be attached to

a single promise. Given a promise, we can go on attaching as many new callbacks as we

want. One application of this is that functions can return promises from other functions.

�Using Promises with Coroutines
Many of the libraries you’re likely to use these days will be geared to return promises.

You may not have to write a lot of your own promise code as a result. But you will need to

compose many promise-making libraries, and that can get tricky.

We’ve seen how generators can lead to multitasking systems, and how promises can

help us arrange callback-based code. Now let’s combine them!

Let’s change some of Listing 7-3 to use new keywords. Listing 7-4 introduces async

and await.

Listing 7-4

const delay = (

 shouldResolve,

 having,

Chapter 7 Promises

85

 after = 1000,

) => {

 return new Promise((resolve, reject) => {

 if (shouldResolve) {

 setTimeout(() => resolve(having), after)

 } else {

 setTimeout(() => reject(having), after)

 }

 })

}

// delay(true, "some data").then(data => {

// console.log("resolved with " + data)

// })

// delay(false, "a reason").catch(reason => {

// console.log("rejected with " + reason)

// })

const run = async () => {

 const data = await delay(true, "some data")

 console.log("resolved with " + data)

 try {

 await delay(false, "a reason")

 } catch (reason) {

 console.log("rejected with " + reason)

 }

}

run()

I’ve kept the delay function because I think it’s important to see that it’s exactly the

same as it was before. async and await don’t require that we change the libraries or

frameworks we use. So long as they return promises, async and await will work!

Inside a function marked as async, we can start to use the await function as a way

to help resolve promises. We can write code that looks synchronous and has far fewer

callbacks, but still works asynchronously.

Chapter 7 Promises

86

When we want to get to the value that would have been passed to the resolve

callback, we can assign it to a variable/constant—as long as we also use the await

keyword. If we forget that, the promise is assigned to the variable/constant.

If we want to get to the reason for a rejection, we need to wrap the code that will

cause the rejection inside a try-catch block.

Future versions of the JavaScript language will probably support a global, or top-

level, await keyword, but for now, we need to wrap await inside functions marked with

async. I’ve used the fat-arrow function syntax, but we could also use const foo = async

function() {...}.

�Making Promises
We’ve already looked at how to create new functions, but one area we need to study is

how to convert traditional callback-based functions into those that return promises.

Consider the Node.js filesystem code in Listing 7-5.

Listing 7-5.

const fs = require("fs")

fs.readFile(".gitignore", (error, data) => {

 if (error) {

 throw error

 }

 console.log(data.toString())

})

This function, from the Node.js standard library, still uses callbacks to act after a file

has been read. How could we convert this to a function that returns a promise? We could

probably use something similar to Listing 7-6.

Listing 7-6.

const readFile = path => {

 return new Promise((resolve, reject) => {

 fs.readFile(path, (error, data) => {

 if (error) {

 reject(error)

Chapter 7 Promises

87

 } else {

 resolve(data)

 }

 })

 })

}

readFile(".gitignore").then(data =>

 console.log(data.toString()),

)

Now that this is returning a promise, we can use async and await, as in Listing 7-7.

Listing 7-7.

const run = async () => {

 const data = await readFile(".gitignore")

 console.log(data.toString())

}

run()

In fact, this format of Node.js callback functions is so common that a few libraries

can perform this transformation for us. We can use a library such as promisify-node

(www.npmjs.com/package/promisify-node):

npm install promisify-node

This will allow us to import Node.js modules so that they produce promises, as

shown in Listing 7-8.

Listing 7-8

const promisify = require("promisify-node")

const fs = promisify("fs")

const run = async () => {

 const data = await fs.readFile(".gitignore")

 console.log(data.toString())

}

run()

Chapter 7 Promises

http://www.npmjs.com/package/promisify-node

88

�Bringing It Back to AdonisJs
We’ve had to take this detour—into generators and promises—because much of AdonisJs

uses async and await. Look at the database code example in Listing 7-9.

Listing 7-9.

const Database = use("Database")

// ...some time later

const users = await Database.table("users").select("*")

Many of the actions we take as back-end developers are asynchronous actions:

reading and writing from the database, making HTTP requests to remote servers, moving

files around in the filesystem, and more.

If we had to run these synchronously, we’d be wasting resources that could have

been spent responding to more browser requests. If we had to do all of them with

traditional callback functions, we’d have a mountain of hard-to-read code. If we had to

use promises alone, we’d still not get away from all the callbacks.

Using promises together with a coroutine-like execution model (like the one we saw

with generators) gets us much closer to clean code.

And we can use async and await alongside promise functions to have incredible

flow control. Want to run multiple things in parallel and resolve only after all of them

have? Check out Listing 7-10.

Listing 7-10.

const run = async () => {

 // const data = await fs.readFile(".gitignore")

 // console.log(data.toString())

 try {

 const [gitignore, env] = await Promise.all([

 fs.readFile(".gitignore"),

 fs.readFile(".env.example"),

])

Chapter 7 Promises

89

 console.log(

 gitignore.toString(),

 env.toString(),

)

 } catch (e) {

 // ...one of the files couldn't be read

 }

}

run()

We can use promise-making functions with the promise static functions. Take a

look at the docs at https://developer.mozilla.org/en-US/docs/Web/JavaScript/

Reference/Global_Objects/Promise#Methods to discover other variations and

applications of this idea. For now, it’s time for us to wrap up.

�Summary
We’ve just about finished our sidetracking. While we’ve been away from the main

Threadbear application, we’ve learned about generators and how to use them to model

sequences of asynchronous behavior. We’ve also learned about promises, and how they

help us to reduce and repackage callbacks into more readable asynchronous code.

In this chapter, we learned how to connect the two. Wonderful asynchronous code

is possible when you understand how the async and await keywords work and how to

stitch them together with Promise functions.

In the next chapter, we’re going to get back to the Threadbear application. We’ll start

to organize our application better with controllers and learn how to apply global rules to

our application with middleware.

Chapter 7 Promises

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise#Methods
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise#Methods

91
© Christopher Pitt 2018
C. Pitt, The Definitive Guide to AdonisJs, https://doi.org/10.1007/978-1-4842-3390-0_8

CHAPTER 8

Controllers
and Middleware
In the previous chapter, we wrapped up the theory behind async and await. Let’s get

back to the main Threadbear application, beginning with a reorganization of code!

In this chapter, we’re going to learn about controllers and middleware. These are two

powerful concepts for organizing and reusing code. The first will help us to slim down

our routes file, and the second will help us to add reusable things such as authentication

and content-negotiation features.

�Making Controllers
So far, we’ve been putting all of our request and response code into the routes file. That’s

OK for small projects, but it doesn’t scale well. We don’t want all of our application code

sitting in one file, and we certainly don’t want to have to go searching for code in a huge file.

So let’s create a new controller:

adonis make:controller CustomerController

This creates an almost-empty controller file, in threadbear/app/Controllers/Http,

as shown in Listing 8-1.

Listing 8-1.  This is from threadbear/app/Controllers/Http/

CustomerController.js

"use strict"

class UserController {}

module.exports = UserController

92

We can begin to move some of our route handlers to this class so that they’re no

longer cluttering up the routes file. Listing 8-2 demonstrates some of this.

Listing 8-2.  This is from threadbear/app/Controllers/Http/

CustomerController.js

"use strict"

const redirects = {

 assertchris: "christopher",

 thetutlage: "harminder",

}

class CustomerController {

 showLogin({ view }) {

 return view.render("customer/login")

 }

 doLogin() {

 // create new customer session

 return "POST /login"

 }

 logout() {

 // expire current customer session

 return "PUT /logout"

 }

 showRegister({ view }) {

 return view.render("customer/register")

 }

 doRegister({ request, response }) {

 // ...create new customer profile

 response.json(request.all())

 }

 showForgotPassword({ view }) {

 return view.render("customer/forgot-password")

 }

Chapter 8 Controllers and Middleware

93

 doForgotPassword({ request }) {

 // create new password reset token and send e-mail

 return JSON.stringify(request.all())

 }

 showResetPassword({ view, params }) {

 return view.render(

 "customer/reset-password",

 {

 token: params.token,

 },

)

 }

 doResetPassword({ request }) {

 // create new password reset token and send e-mail

 return JSON.stringify(request.all())

 }

 showProfile({ params, response, view }) {

 const redirect = redirects[params.customer]

 if (redirect) {

 return response.route("profile", {

 customer: redirect,

 })

 }

 response.send(

 view.render("customer/profile", {

 name: params.customer,

 }),

)

 }

 updateProfile({ params }) {

 // update customer profile

 return "PUT /:customer " + params.customer

 }

Chapter 8 Controllers and Middleware

94

 deleteProfile({ params }) {

 // delete customer profile

 return "DELETE /:customer " + params.customer

 }

}

module.exports = CustomerController

All we’ve done is move the route handlers from the routes file to CustomerController.

We’re accepting the same handler callback parameters as before, but we’re using class

method syntax. We’ve also had to declare those redirects as a constant before the class.

The real benefit can be seen in Listing 8-3.

Listing 8-3.  This is from threadbear/start/routes.js

Route.get(

 "/login",

 "CustomerController.showLogin",

)

Route.post("/login", "CustomerController.doLogin")

Route.put("/logout", "CustomerController.logout")

Route.get(

 "/register",

 "CustomerController.showRegister",

)

Route.post(

 "/register",

 "CustomerController.doRegister",

)

Route.get(

 "/forgot-password",

 "CustomerController.showForgotPassword",

)

Route.post(

 "/forgot-password",

 "CustomerController.doForgotPassword",

)

Chapter 8 Controllers and Middleware

95

Route.get(

 "/reset-password/:token",

 "CustomerController.showResetPassword",

)

Route.patch(

 "/reset-password/:token",

 "CustomerController.doResetPassword",

)

Route.get(

 "/:customer",

 "CustomerController.showProfile",

).as("profile")

Route.put(

 "/:customer",

 "CustomerController.updateProfile",

)

Route.delete(

 "/:customer",

 "CustomerController.deleteProfile",

)

// Route.get("/login", ({ view }) => {

// return view.render("customer/login")

// })

// ...snip

// Route.delete("/:customer", ({ params }) => {

// return "DELETE /:customer " + params.customer

// })

We’ve replaced about 60 lines of route-handler code with 11 lines of routing code.

All of these routes reference the CustomerController class we’ve created, and AdonisJs

is smart enough to add the directory prefix to the class name so that everything is neatly

resolved.

Chapter 8 Controllers and Middleware

96

Note I ’ve taken the opportunity to rename user to customer in the view paths,
because I think this fits better with the business logic of Threadbear. You can call
your entities whatever you want, but be aware of this change in the example code.

�Reusing Code
Apart from the improvement to our routes file, controllers also present us with a means to

share code. Imagine we want to reuse the response.json(request.all()) code. One way

we could do that is to inherit from a common controller, which we create in Listing 8-4.

Listing 8-4.  This is from threadbear/app/Controllers/Http/Controller.js

"use strict"

class Controller {

 showRequestParameters({ request, response }) {

 response.json(request.all())

 }

}

module.exports = Controller

We can inherit from this by resolving it out of the IoC (or Inversion of Control)

container. Don’t worry about how this works for now. Just think of it as a way for

AdonisJs to find and return this class in another file. Let’s use this as our base controller,

shown in Listing 8-5.

Listing 8-5.  This is from threadbear/app/Controllers/Http/

CustomerController.js

"use strict"

const Controller = use(

 "App/Controllers/Http/Controller",

)

class CustomerController extends Controller {

 doRegister(context) {

Chapter 8 Controllers and Middleware

97

 // ...create new customer profile

 this.showRequestParameters(context)

 }

 doForgotPassword(context) {

 // create new password reset token and send e-mail

 this.showRequestParameters(context)

 }

 doResetPassword(context) {

 // create new password reset token and send e-mail

 this.showRequestParameters(context)

 }

 // ...snip

}

module.exports = CustomerController

It’s not earth-shatteringly important, but this illustrates one of the ways in which we

can reuse code. When we get to validating input, shared controller functions become

quite useful.

AdonisJs gives us all these ways to reuse code. Whether we use macros or common

base controllers or even middleware depends on which fits our use case best and which

we are most comfortable with. No one place is best for keeping shared functionality, so

use what works best for you and your application.

�Using Middleware
I’ve mentioned middleware a few times now, so let’s learn about it. One way to think

about middleware is as a series of functions that happen as a request is made to the

application. If browser requests are at one end of a transaction, and route handlers are at

the other, middleware is in the middle.

Parts of AdonisJs (which we haven’t yet seen) depend heavily on middleware.

When we start to create customer sessions, we’ll use the authentication middleware to

protect against unauthorized access to parts of our application. The very act of logging

in to the application will make use of the session middleware to store the users’ profile

information.

Chapter 8 Controllers and Middleware

98

If we were to create a full JSON API, we’d probably look at ways to secure that. Again,

we’d use some sort of authentication middleware to make sure the endpoints were being

accessed by an authorized client. We’d also look at ways to throttle API traffic (to prevent

scraping and/or denial-of-service attacks). This we could also do with middleware.

Let’s create some simple middleware to explore its structure. We can create this by

running another Ace command:

adonis make:middleware CurrencySelector

This displays a prompt, asking what kind of middleware we’d like to make. We’re

working on the HTTP layer of our application, so we can select that. When we select this,

Ace makes the new middleware file and displays instructions, as we can see in Figure 8-1.

Let’s add CurrencySelector to kernel.js, as in Listing 8-6.

Listing 8-6.  This is from threadbear/start/kernel.js

const globalMiddleware = [

 "Adonis/Middleware/BodyParser",

 "App/Middleware/CurrencySelector",

]

As the name suggests, we’re going to use this middleware to detect the user’s

location and to select the appropriate currency for displaying product pricing. To do this,

we’re also going to need to know a bit about where the customer is from. Let’s install a

library to help with this:

npm install --save geoip-lite

We can use this library to find the location of a user, based on the user’s IP address.

Listing 8-7 demonstrates how this code can look.

Figure 8-1.  Instructions for registering the middleware

Chapter 8 Controllers and Middleware

99

Listing 8-7.  This is from threadbear/app/Middleware/CurrencySelector.js

"use strict"

const geoip = use("geoip-lite")

class CurrencySelector {

 async handle({ request }, next) {

 const ip = request.ip()

 const reference = geoip.lookup(

 "207.97.227.239",

)

 if (!reference) {

 request.country = "Unknown"

 request.currency = "US"

 } else {

 request.country = reference.country

 }

 await next()

 }

}

module.exports = CurrencySelector

We fetch the geoip library (using that function similar to require). In the handle

method, we have access to the same context we’ve been using in our route handlers. So,

we can access the request and response objects.

We get the IP address from the request and use it to guess the location, via the geoip

library. Finally, we await the next middleware in line. After all the middleware has run,

the request is sent for routing.

This code is similar to that of the middleware docs. Let’s take it a step further by

mapping currencies (and their symbols to the discovered country). We’ll need another

library to help us with this:

npm install --save currency-map-country

Chapter 8 Controllers and Middleware

100

This gives us access to a few functions, which we can use to figure out the currency and

even the currency format we should use. Listing 8-8 shows how we might go about this.

Listing 8-8.  This is from threadbear/app/Middleware/CurrencySelector.js

"use strict"

const geoip = use("geoip-lite")

const {

 getCountry,

 getCountryByAbbreviation,

 getCurrency,

} = use("currency-map-country")

class CurrencySelector {

 async handle({ request }, next) {

 const ip = request.ip()

 const reference = geoip.lookup(ip)

 let currency

 if (!reference) {

 request.country = "Unknown"

 request.currency = "USD"

 currency = getCurrency("USD")

 } else {

 request.country = reference.country

 const name = getCountryByAbbreviation(

 request.country,

)

 const country = getCountry(name)

 request.currency = country.cur

 currency = getCurrency(country.cur)

 }

Chapter 8 Controllers and Middleware

101

 request.currencyFormat = currency.symbolFormat

 await next()

 }

}

module.exports = CurrencySelector

With country, currency, and currencyFormat in hand, we can now display accurate

local pricing for customers. We can access these properties as would we would any

others in our route handlers.

We’re also seeing more of async and await, as we use and create asynchronous code

in AdonisJs. In this case, it’s because any middleware can be asynchronous. So, we call

next with that in mind.

We’ll revisit the authentication and session middleware as we start to store and verify

customer credentials from the database. They work similarly, in that they are run before

routing and can alter the context properties. Middleware can even terminate requests

with responses or exceptions. A failed authorization check could display an error before

any routing takes place!

�Summary
In this chapter, we learned about various ways to reuse code and organize our

application. We learned a bit about controllers, which act as the glue between routes and

views. They’re also where we’ll start to initiate our database work and form validation.

We also learned about middleware. We created our own middleware to figure

out and store localization data for the user. From here, we’ll be able to display

accurate currency and country information to them, and we’ll have access to this data

everywhere, because global middleware is run on every request.

Note I n future chapters, we’ll see how to selectively run middleware on a route-
by-route basis.

In the next chapter, we’re going to start to use the database. We’ll store and retrieve

data from it, and we’ll use this data in interesting ways as we continue our journey.

Chapter 8 Controllers and Middleware

103
© Christopher Pitt 2018
C. Pitt, The Definitive Guide to AdonisJs, https://doi.org/10.1007/978-1-4842-3390-0_9

CHAPTER 9

Databases
In the previous chapter, we started to organize our code into controllers and to reuse

code with middleware. I mentioned we’d be seeing authentication and session

middleware just as soon as we started working with the database. That time has come.

In this chapter, we’re going to learn about schema migrations. We’ll use these to

create a code blueprint of the database structures we want our application to use. Then

we’ll start to write and read from these structures by using SQL (or Structured Query

Language) queries.

Finally, we’ll take a look at Lucid, which is an abstraction that takes care of a lot of

manual SQL work. At the end of this chapter, we should have all the bits we need to allow

customers to create new accounts and authenticate with them.

�Installing Lucid
Before we get going, we need to install some dependencies. These give us access to

things like the schema migration creator and the database driver:

adonis install @adonisjs/lucid

Because we want to make migrations and use the database directly, we need to

register two providers, as shown in Listing 9-1.

Listing 9-1.  This is from threadbear/start/app.js

const providers = [

 "@adonisjs/lucid/providers/LucidProvider",

 // ...other global providers

]

104

const aceProviders = [

 "@adonisjs/lucid/providers/MigrationsProvider",

 // ...other ace providers

]

Ace added a new database configuration file as part of the installation process. We

can change it to reflect our database details or to pick the provider we want. It resembles

Listing 9-2.

Listing 9-2.  This is from threadbear/config/database.js

"use strict"

const Env = use("Env")

const Helpers = use("Helpers")

module.exports = {

 /*

 |---

 | Default Connection

 |---

 |

 | ...

 */

 connection: Env.get("DB_CONNECTION", "sqlite"),

 /*

 |---

 | Sqlite

 |---

 |

 | ...

 */

 sqlite: {

 client: "sqlite3",

 connection: {

 filename: Helpers.databasePath(

 "development.sqlite",

),

Chapter 9 Databases

105

 },

 useNullAsDefault: true,

 },

 /*

 |---

 | MySQL

 |---

 |

 | ...

 */

 mysql: {

 client: "mysql",

 connection: {

 host: Env.get("DB_HOST", "localhost"),

 port: Env.get("DB_PORT", ""),

 user: Env.get("DB_USER", "root"),

 password: Env.get("DB_PASSWORD", ""),

 database: Env.get("DB_DATABASE", "adonis"),

 },

 },

 /*

 |---

 | PostgreSQL

 |---

 |

 | ...

 */

 pg: {

 client: "pg",

 connection: {

 host: Env.get("DB_HOST", "localhost"),

 port: Env.get("DB_PORT", ""),

 user: Env.get("DB_USER", "root"),

 password: Env.get("DB_PASSWORD", ""),

 database: Env.get("DB_DATABASE", "adonis"),

Chapter 9 Databases

106

 },

 },

}

By default, Lucid uses a SQLite database. This won’t work out of the box, as we need

to also install a Node.js library to support this database (which it tells us to do in the

comment, in the SQLite portion of the configuration file):

npm i --save sqlite3

You don’t have to stick to using SQLite, but you do need to install the appropriate

alternative on your server. If you like MySQL, install that server and the corresponding

Node.js libraries into your application.

If you stick with SQLite, be sure to also create the empty database file:

mkdir threadbear/database

touch threadbear/database/development.sqlite

Note  Lucid may automatically create this directory and file as soon as we start
interacting with the database.

This creates an empty file, which the database driver will then be able to turn into a

valid SQLite database. It’s probably also a good idea to ignore this .sqlite file, so it isn’t

committed to GitHub. Your .gitignore file may resemble Listing 9-3.

Listing 9-3.  This is from threadbear/database/.gitignore

*.sqlite

We can test the connection to the database with the code in Listing 9-4.

Listing 9-4.  This is from threadbear/start/routes.js

const Route = use("Route")

const Database = use("Database")

Route.get("/", async ({ view }) => {

 const result = await Database.raw(

 "SELECT CURRENT_TIME as time",

)

Chapter 9 Databases

107

 console.log(

 "when you hear the beep, it will be " +

 result[0].time,

)

 return view.render("page/home")

})

// ...other routes

We’ll come back to this Database.raw behavior, but just know that it’s executing a SQL

query against the SQLite database connection. CURRENT_TIME is a kind of magic constant

that returns the current time of the database. Database.raw returns an array of rows. We

pick the first one and get the time property, which is what we aliased CURRENT_TIME to.

Note  I don’t want to make this a chapter about writing SQL queries. I assume
you have some experience with writing SQL queries or that you’re capable of
learning how they work from one of the many great resources on this topic.

If you’d like to learn about MySQL, check out Beginning MySQL Database Design
and Optimization by Jon Stephens and Chad Russell (Apress, 2004).

�Making Migrations
Before we can store any products, we need a database in which to store them. We now

have a database file, but we need to define the tables in which those products (and

customers) will be stored.

Migrations are a good way to define this structure. They give us a blueprint for the

database structures we want to be able to use, and we can commit this blueprint to

GitHub or any other code repository.

Migrations also help our teammates start off on a good footing. Setting up a project

no longer requires that they search (or ask) for a database dump file. Given a working

database connection and the migration files, they can run the migrations. After that,

they’ll have the full database working and ready.

Chapter 9 Databases

108

Remember how we used a JavaScript object to store redirects for the profile page?

Let’s store those redirects in the database, in a table we create from a migration. We can

use Ace to create the empty migration for us:

adonis make:migration redirects_schema

This creates a file similar to Listing 9-5.

Listing 9-5.  This is from threadbear/database/...redirects_schema.js

"use strict"

const Schema = use("Schema")

class RedirectsSchema extends Schema {

 up() {

 this.create("redirects", table => {

 table.increments()

 table.timestamps()

 })

 }

 down() {

 this.drop("redirects")

 }

}

module.exports = RedirectsSchema

There are two parts to a migration file. The first is what must happen when the

table is created or modified. The second is what to do when that modification must be

undone. It’s entirely reasonable to ignore the second part (or to make it remove the table

altogether). It depends on how you want to use the migration system.

Note  If you want to be able to roll back to any valid state of the database, you
want to put more time and energy into the down method. If you only want to set
and/or reset the database to a “good state,” you can be less gentle inside down.

Chapter 9 Databases

109

By default, the created table will have an id column, as well as columns for created_

at and updated_at. If you’d like to view this structure, consider using a SQLite database

browser (http://sqlitebrowser.org). Let’s add a couple of string columns to this,

so we can store the profile name we’re redirecting from and the profile name we’re

redirecting to. We can see how this is done in Listing 9-6.

Listing 9-6.  This is from threadbear/database/..._redirects_schema.js

this.create("redirects", table => {

 table.increments()

 table.string("from")

 table.string("to")

 table.timestamps()

})

To persist these migrations to the database, we need to run the following:

adonis migrate:run

But, if we want to alter a migration and rerun it (or need to roll back all migrations),

we can use this:

adonis migrate:reset

Next, let’s add some rows to this table. We can create a temporary route for this, as

shown in Listing 9-7.

Listing 9-7.  This is from threadbear/start/routes.js

Route.get("/add-redirects", async () => {

 const created_at = Database.raw("CURRENT_TIME")

 await Database.insert({

 from: "assertchris",

 to: "christopher",

 created_at,

 }).into("redirects")

 await Database.insert({

 from: "thetutlage",

 to: "harminder",

Chapter 9 Databases

http://sqlitebrowser.org/

110

 created_at,

 }).into("redirects")

 return "done"

})

Here, again, we see Database.raw. We also see a series of Database.

insert(...).into(...) statements, which add new rows to the table. These are

asynchronous operations, so we have to await each one.

By default, all the values we try to insert will be escaped. That’s why we need to use

Database.raw : so we can insert the magic constant CURRENT_TIME and not a literal string.

In this context, Database.raw isn’t an entire query, as we saw before, but rather a special

query value. If we try to await it, we’ll get an error because it’s not a valid SQL query.

Now let’s replace the lookup table with a database lookup, as in Listing 9-8.

Listing 9-8.  This is from threadbear/app/Controllers/Http/

CustomerController.js

async showProfile({ params, response, view }) {

 const rows = await Database.select(

 "from",

 "to",

).from("redirects")

 const redirects = rows.reduce(

 (accumulator, row) => {

 accumulator[row.from] = row.to

 return accumulator

 },

 {},

)

 const redirect = redirects[params.customer]

 // ...redirect to new location

}

We begin by fetching all the redirects from the database. We need only from and to, so

we limit our query to those columns. Then we reduce the array of rows by adding each from

as a key and each to as a value, to an empty object. The rest of our code stays the same.

Chapter 9 Databases

111

We can start managing these redirects from the database. We could even create a

form through which customers can create their own redirects (in cases where they want

to rename their profiles).

�Seeding the Database
Our temporary route, to insert the redirects we want, works. It’s not optimal, though.

What if it is run more than once? There’s no code to prevent duplicates from being

inserted. And do we really want a public endpoint to perform database work, without

any validation or throttling?

There’s a better solution, called seeding. Persisting a database schema is only half

of the process. Seeding is the other half, which lets us populate the database with initial

data. We can create a new seeder with the following command:

adonis make:seeder

This creates an empty seeder for us, similar to Listing 9-9.

Listing 9-9.  This is from threadbear/database/seeds/DatabaseSeeder.js

"use strict"

/*

|---

| DatabaseSeeder

|---

|

| ...

|

*/

const Factory = use("Factory")

class DatabaseSeeder {

 async run() {}

}

module.exports = DatabaseSeeder

We can move the code that created the redirects to this file, as in Listing 9-10.

Chapter 9 Databases

112

Listing 9-10.  This is from threadbear/database/seeds/DatabaseSeeder.js

async run() {

 const created_at = Database.raw(

 "CURRENT_TIME",

)

 await Database.insert({

 from: "assertchris",

 to: "christopher",

 created_at,

 }).into("redirects")

 await Database.insert({

 from: "thetutlage",

 to: "harminder",

 created_at,

 }).into("redirects")

}

Now this code is no longer exposed to the world, and we can run it every time we

reset the database:

adonis migrate:reset

adonis migrate:run

adonis seed

The DatabaseSeeder also mentions factories, but we’re not going to look at them yet.

Instead, we’re going to create another couple of migrations and seed them with test data.

To start, let’s create migrations for customers and products, as shown in Listings 9-11

and 9-12.

Listing 9-11.  This is from threadbear/database/..._customers_schema.js

"use strict"

const Schema = use("Schema")

class CustomersSchema extends Schema {

 up() {

Chapter 9 Databases

113

 this.create("customers", table => {

 table.increments()

 table.string("first_name")

 table.string("last_name")

 table.string("email").unique()

 table.string("password")

 table.string("nickname").unique()

 table.timestamps()

 })

 }

 down() {

 this.drop("customers")

 }

}

module.exports = CustomersSchema

We want e-mails and nicknames to be unique, because customers will use e-mail to

log in, and nicknames will be used to display profile pages.

Listing 9-12.  This is from threadbear/database/..._products_schema.js

"use strict"

const Schema = use("Schema")

class ProductsSchema extends Schema {

 up() {

 this.create("products", table => {

 table.increments()

 table.string("name")

 table.integer("price")

 table.integer("customer_id")

 table.timestamps()

 })

 }

Chapter 9 Databases

114

 down() {

 this.drop("products")

 }

}

module.exports = ProductsSchema

Each product needs a name and a price. It’s more reliable (thanks to rounding errors

and storage mechanisms) to store price in cents, so we use an integer field type for this.

We also need to link products to customers, so we can display them on the appropriate

profile page.

Next, let’s populate these tables with test data, as shown in Listing 9-13.

Listing 9-13.  This is from threadbear/database/seeds/DatabaseSeeder.js

"use strict"

const Database = use("Database")

const Factory = use("Factory")

const Hash = use("Hash")

class DatabaseSeeder {

 async run() {

 const created_at = Database.raw(

 "CURRENT_TIME",

)

 // ...insert redirects

 await Database.insert({

 first_name: "Harminder",

 last_name: "Virk",

 email: "virk.officials@gmail.com",

 password: await Hash.make("harminder123"),

 nickname: "harminder",

 created_at,

 }).into("customers")

Chapter 9 Databases

115

 const ids = await Database.insert({

 first_name: "Christopher",

 last_name: "Pitt",

 email: "cgpitt@gmail.com",

 password: await Hash.make("christopher123"),

 nickname: "christopher",

 created_at,

 }).into("customers")

 await Database.insert({

 name: "Soft Teddy",

 price: 499,

 customer_id: ids[0],

 created_at,

 }).into("products")

 }

}

module.exports = DatabaseSeeder

When we insert customers into the database, we use the Hash.make method. This

generates a secure password hash. It’s a good idea to hash passwords (never to store

them in plain text) in the database.

After each insert, we get the identifier for the row that was inserted. We can access

this identifier to insert related records, as we do with the seeded product.

�Working with Routes and the Database
Until now, the profile route has displayed a profile page, whether or not the related

profile is stored in the database. Let’s make this dynamic! Listing 9-14 shows how we

might change the route handler, to check the database or display an error page.

Listing 9-14.  This is from threadbear/app/Controllers/Http/

CustomerController.js

async showProfile({ params, response, view }) {

 // ...redirect if needed

Chapter 9 Databases

116

 const customer = await Database.select("*")

 .from("customers")

 .where("nickname", params.customer)

 .first()

 if (!customer) {

 return view.render("oops", {

 type: "PROFILE_MISSING",

 })

 }

 return view.render("customer/profile", {

 name: params.customer,

 })

}

Assuming there’s no redirect for the profile named in the URL, we fetch the

corresponding customer row from the database. The first method reduces the array we

would have gotten to a single object (and it also adds a LIMIT 1 to the underlying query).

If none exists, we display an error template. This error page can say just about anything.

Mine resembles Listing 9-15.

Listing 9-15.  This is from threadbear/resources/views/oops.edge

@layout("layout")

@section("header")

 <h1>Oops</h1>

@endsection

@section("content")

 @if(type === "PROFILE_MISSING")

 <p>Looks like that profile doesn't exist. Try another...</p>

 @endif

@endsection

�Showing Products
Now that the profiles are database driven, we can get a list of each profile’s products.

Let’s fetch them, as shown in Listing 9-16.

Chapter 9 Databases

117

Listing 9-16.  This is from threadbear/app/Controllers/Http/

CustomerController.js

async showProfile({ params, response, view }) {

 // ...redirect or fetch customer

 if (!customer) {

 return view.render("oops", {

 type: "PROFILE_MISSING",

 })

 }

 const products = await Database.select("*")

 .from("products")

 .where("customer_id", customer.id)

 return view.render("customer/profile", {

 customer,

 products,

 })

}

This is the second time we’re seeing the where query method. There are many

variations of this, all of which relate to a specific kind of SQL where clause. You can

use whereNot, whereIn, whereNull, and even whereRaw. Check the documentation

(http://dev.adonisjs.com/docs/4.0/query-builder#_where_clauses) to get more

details on how to use each of these.

Given the array of products, we can render these in the template. Listing 9-17 shows

one way we can do this.

Listing 9-17.  This is from threadbear/resources/views/customer/profile.edge

@layout("layout")

@section("header")

 <h1>

 {{ toTitleCase(customer.first_name) }}'s profile

 </h1>

@endsection

@section("content")

Chapter 9 Databases

http://dev.adonisjs.com/docs/4.0/query-builder#_where_clauses

118

 @each(product in products)

 <p>

 {{ toTitleCase(product.name) }}

 ${{ product.price / 100 }}

 </p>

 @else

 <p>

 {{ toTitleCase(customer.first_name) }} doesn't have any products

 </p>

 @endeach

@endsection

We can use the @each, @else, and @endelse tags to render a loop or provide

information when the loop is empty. For each product, we can render a paragraph

that includes the product name and price. If we visit Harminder’s profile

(http://127.0.0.1:3333/harminder), we’ll see a message telling us that he has no

products. If we visit my profile (http://127.0.0.1:3333/Christopher), we’ll see one

product and its price.

Note H ere’s a good opportunity to use that currency information we discovered
in the previous chapter. Perhaps we could hook into a currency conversion service
to show what each product is probably going to cost the customer, in their own
currency.

�Making Models
We could stop here, but we’d be missing a trick. We can encapsulate a lot of the

raw database queries and relationships inside models. These are JavaScript class

representations of individual database rows, which follow the Active Record pattern.

Let’s make a few of these:

adonis make:model Redirect

adonis make:model Customer

adonis make:model Product

These create empty models, which resemble Listing 9-18.

Chapter 9 Databases

http://127.0.0.1:3333/harminder
http://127.0.0.1:3333/Christopher

119

Listing 9-18.  This is from threadbear/app/Models/Customer.js

"use strict"

const Model = use("Model")

class Customer extends Model {

}

module.exports = Customer

Given these three new models, we can simplify all of our queries. Take a look at how

we do this in Listing 9-19.

Listing 9-19.  This is from threadbear/app/Models/Customer.js

async showProfile({ params, response, view }) {

 // const rows = await Database.select("from", "to")

 // .from("redirects")

 const rows = await Redirect.all()

 const redirects = Array.from(rows).reduce(

 (accumulator, row) => {

 accumulator[row.from] = row.to

 return accumulator

 },

 {},

)

 // ...

 // const customer = await Database.select("*")

 // .from("customers")

 // .where("nickname", params.customer)

 // .first()

 const customer = await Customer.query()

 .where("nickname", params.customer)

 .first()

Chapter 9 Databases

120

 // ...

 // const products = await Database.select("*")

 // .from("products")

 // .where("customer_id", customer.id)

 const products = await Product.query().where(

 "customer_id",

 customer.id,

)

 // ...

}

We can take this a step further, but accessing the productions from the Customer

model. We’d need to define a relation method on Customer, as in Listing 9-20.

Listing 9-20.  This is from threadbear/app/Models/Product.js

const Model = use("Model")

class Customer extends Model {

 products() {

 return this.hasMany("App/Models/Product")

 }

}

This, in turn, would give us the ability to query products directly on a Customer

instance, as in Listing 9-21.

Listing 9-21.  This is from threadbear/app/Controllers/Http/

CustomerController.js

async showProfile({ params, response, view }) {

 // ...

 // const products = await Database.select("*")

 // .from("products")

 // .where("customer_id", customer.id)

 // const products = await Product.query()

Chapter 9 Databases

121

 // .where("customer_id", customer.id)

 const products = await customer.products()

 return view.render("customer/profile", {

 customer,

 products,

 })

}

The hasMany relation method connects the customer primary key with the product

foreign key. It automatically adds the where clause so that customer.products() returns

only products related to the customer.

Note T here are many other kinds of relationships, including belongsTo,
hasOne, and belongsToMany. Take some time to review the documentation
(http://dev.adonisjs.com/docs/4.0/relationships) so you can
become familiar with the differences and usage of these.

�Registering Customers
Now that we can read and write to the database, let’s expand Threadbear to allow

customers to create new profiles. We already set up a registration page—when we were busy

with routing—but we need to add a few fields. Listing 9-22 shows what we need to add.

Listing 9-22.  This is from threadbear/resources/views/customer/register.edge

<form method="post">

 <div class="form-group">

 <label for="email">First name</label>

 <input type="text" class="form-control" id="first_name" name="first_name">

 </div>

 <div class="form-group">

 <label for="email">Last name</label>

 <input type="text" class="form-control" id="last_name" name="last_name">

 </div>

Chapter 9 Databases

http://dev.adonisjs.com/docs/4.0/relationships

122

 <div class="form-group">

 <label for="email">Email address</label>

 <input type="email" class="form-control" id="email" name="email">

 </div>

 <div class="form-group">

 <label for="password">Password</label>

 <input type="password" class="form-control" id="password" name="password">

 </div>

 <div class="form-group">

 <label for="confirm-password">Confirm password</label>

 �<input type="password" class="form-control" id="confirm-password"

name="confirm-password">

 </div>

 <div class="form-group">

 <label for="email">Nickname</label>

 <input type="text" class="form-control" id="nickname" name="nickname">

 </div>

 <button type="submit" class="btn btn-primary">Register</button>

</form>

Specifically, we need to add first_name, last_name, and nickname fields, as we

defined these in the customers_schema database migration. Next, we need to store these

properties in a new instance of the model, as shown in Listing 9-23.

Listing 9-23.  This is from threadbear/app/Controllers/Http/

CustomerController.js

async doRegister({ request, response }) {

 // ...create new customer profile

 // this.showRequestParameters(context)

 const customer = await Customer.create(

 request.only([

 "first_name",

 "last_name",

 "email",

 "password",

 "nickname",

Chapter 9 Databases

123

]),

)

 return "done"

}

AdonisJs models have a neat create static method, into which we can pass an object

of key/value pairs. In addition, the request class has an only method, which generates an

object of key/value pairs, for every key specified.

Together, these reduce the code we need to write in order to insert records into the

database. We could use an alternative syntax, as Listing 9-24 shows.

Listing 9-24.

const customer = new Customer()

customer.first_name = request.input("first_name")

customer.last_name = request.input("last_name")

customer.email = request.input("email")

customer.password = request.input("password")

customer.nickname = request.input("nickname")

await customer.save()

These do the same thing. The first is a lot quicker (and just as clear, in my opinion).

The second form is closer to the code we’ll use to update profiles. That’s a subject

for another time, though. For now, let’s turn our attention to passwords. If you check

the database, you’ll see that the password is saved in plain text. We want to hash our

passwords, but it would be great if we didn’t even have to think about the process.

One way to change data before it is written to the database is to use customer setters.

They allow us to modify values set on a model object so that the internal state is what we

want it to be. Listing 9-25 shows an example of this.

Listing 9-25.  This is from threadbear/app/Models/Customer.js

const Model = use("Model")

class Customer extends Model {

 products() {

 return this.hasMany("App/Models/Product")

 }

Chapter 9 Databases

124

 setNickname(nickname) {

 return nickname.toLowerCase()

 }

}

As customer.nickname = "..." is executed, this setter is called. The nickname

is transformed, and the new value is set on that property. Unfortunately, setters are

synchronous only, which means we can’t do asynchronous things to get the new value.

This includes generating hashes. If we want to automatically hash passwords, as they are

set on the model, we need to use hooks. Listing 9-26 shows what these look like.

Listing 9-26.  This is from threadbear/app/Models/Customer.js

const Model = use("Model")

const Hash = use("Hash")

class Customer extends Model {

 products() {

 return this.hasMany("App/Models/Product")

 }

 setNickname(nickname) {

 return nickname.toLowerCase()

 }

 static boot() {

 super.boot()

 this.addHook(

 "beforeCreate",

 async customer => {

 customer.password = await Hash.make(

 customer.password,

)

 },

)

 }

}

Chapter 9 Databases

125

The boot method is run whenever a new model object is created. We can use it to

hydrate (fill the object with special data) and attach hooks. This hook should run before

the model object is persisted to the database, and it allows us to give an asynchronous

callback. Inside it, we can hash the password.

As the nickname is set, it will be converted to all lowercase, thanks to the customer

setter. Before the model is saved to the database, the password will be hashed, thanks to

the customer hook.

Note  In the next chapter, we’ll look at adding validation to this route handler. We
need to make sure that the e-mail and nickname are unique and that the password
fields match.

�Authenticating Customers
Now that our registration form is working, let’s make the login form work! The existing

markup is good enough, so we just have to check the credentials, as in Listing 9-27.

Listing 9-27.  This is from threadbear/app/Controllers/Http/

CustomerController.js

async doLogin({ request, response }) {

 // create new customer session

 // return "POST /login"

 const email = request.input("email")

 const password = request.input("password")

 const customer = await Customer.findByOrFail(

 "email",

 email,

)

 const matches = await Hash.verify(

 password,

 customer.password,

)

Chapter 9 Databases

126

 if (matches) {

 return "valid"

 } else {

 return "invalid"

 }

}

Here we can see another useful model method: findByOrFail. It takes a key/

value pair and tries to find a matching database row. If it can’t find a matching row, it

displays an error page. A similar method, called findOrFail, matches a value against the

primary-key column.

Given a customer row, we can verify that a plain-text password (such as the one we

get from the login form) matches the hashed version. Later, we’ll learn how to create the

new session and protect certain routes from unauthenticated access.

We could even hide this authentication logic inside the model, as shown in Listing 9-28.

Listing 9-28.  This is from threadbear/app/Models/Customer.js

static async authenticate(email, password) {

 const customer = await Customer.findByOrFail(

 "email",

 email,

)

 const matches = await Hash.verify(

 password,

 customer.password,

)

 if (matches) {

 return customer

 }

 throw new Error("invalid credentials")

}

Chapter 9 Databases

127

This is another example of why async and await are so much nicer than writing

purely promise-based code. We can throw errors and declare async functions. We don’t

have to worry about instantiating promises or using then and catch in our controller.

Listing 9-29 shows how much nicer that code looks.

Listing 9-29.  This is from threadbear/app/Controllers/Http/

CustomerController.js

async doLogin({ request, response }) {

 // create new customer session

 // return "POST /login"

 const email = request.input("email")

 const password = request.input("password")

 try {

 const customer = await Customer.authenticate(

 email,

 password,

)

 } catch (e) {

 return "invalid"

 }

 return "valid"

}

We still need to start a session and add other bits of validation, but this code is

already looking great and working well. What’s more, the controller doesn’t even know

that the passwords get hashed, or how. We could completely change the hashing

algorithm or scheme, and we wouldn’t have to touch this controller code.

�Summary
This was an intense chapter! We learned about migrations, seeders, direct database

queries, and even Lucid models. Database work is essential to any nontrivial application,

and we’re going to see a lot more of it before we’re through.

Chapter 9 Databases

128

Take some time to review the database and Lucid documentation, and to become

more familiar with the Lucid database and model methods. I’ve skipped over many

smaller details, but we’ll definitely revisit these and other database concepts, so you’re

going to become quite the database expert.

In the next chapter, we’re going to round out the registration and login forms with

validation and sessions. We’ll protect parts of our application, and work on the profile

and commerce sections.

Chapter 9 Databases

129
© Christopher Pitt 2018
C. Pitt, The Definitive Guide to AdonisJs, https://doi.org/10.1007/978-1-4842-3390-0_10

CHAPTER 10

Validation and Errors
In the previous chapter, we learned about databases. This got us most of the way to

building our registration and login forms. One topic we didn’t spend enough time on

was how to respond in the absence or poor formatting of data.

In this chapter, we’re going to start validating our forms. We’ll learn how to make

fields required, how to enforce the format of the data we do get, and how to display

validation errors to the user. We’ll also look at how to customize error pages for all the

common types of errors users are bound to see.

�Installing Validation
Validation is common, but not enough to be included in the slim application skeleton.

To use it, we need to install it:

adonis install @adonisjs/validator

Once this is complete, we also need to register a provider (just as we did with views).

This is shown in Listing 10-1.

Listing 10-1.  This is from threadbear/start/app.js

const providers = [

 // ...

 "@adonisjs/validator/providers/ValidatorProvider",

]

Now we can modify our controller to check some of the data being posted from the

form. Let’s first look at this in the context of a single controller, and then move it to the

base controller. Listing 10-2 shows what I mean.

130

Listing 10-2.  This is from threadbear/app/Controllers/Http/

CustomerController.js

const Controller = use(

 "App/Controllers/Http/Controller",

)

const Database = use("Database")

const { validate } = use("Validator")

// ...some time later

async doLogin({ request, response }) {

 const rules = {

 email: "required|email",

 password: "required",

 }

 const validation = await validate(

 request.all(),

 rules,

)

 if (validation.fails()) {

 return response.json(validation.messages())

 }

 // ...normal doLogin code

}

This is the simplest form of validation. We define a list of rules, where the key is the

name of the field that will be posted, and the value is a pipe-delimited list of validation

rules, per field. There’s no limit to the number of rules we can apply to each field.

Chapter 10 Validation and Errors

131

Note  Just as the schema builder is based on another underlying database
library (called Knex, http://knexjs.org), so too validation is based on
another underlying library. This one is called Indicative (http://indicative.
adonisjs.com). If you want to learn more about the rules already provided,
you can check out the documentation at http://indicative.adonisjs.
com/#indicative-basics-rules.

validate is async because it could do any number of asynchronous things. We could

check that the e-mail address exists in the database as part of validation. We could add

an authenticate validation rule so that authentication happened as part of validation.

These would need to be asynchronous, as they’d interact with the database.

We’re going to try to make the first one into a new validation rule. We can call the

rule exists and model it on an existing validation rule. The rule we can model it on

is called the unique rule. We can use the unique rule to check that a value we want to

insert is unique to the table we want to insert it into. We’ll use that when we get to the

registration validation. For now, let’s look at how we could create our new validation

rule, shown in Listing 10-3.

Listing 10-3.  This is from threadbear/start/hooks.js

const Validator = use("Validator")

const Database = use("Database")

const existsFn = async (

 data,

 field,

 message,

 args,

 get,

) => {

 const value = get(data, field)

 if (!value) {

 return

 }

Chapter 10 Validation and Errors

http://knexjs.org/
http://indicative.adonisjs.com/
http://indicative.adonisjs.com/
http://indicative.adonisjs.com/#indicative-basics-rules
http://indicative.adonisjs.com/#indicative-basics-rules

132

 const [table, column] = args

 const row = await Database.table(table)

 .where(column, value)

 .first()

 if (!row) {

 throw message

 }

}

This code is similar to an example in the documentation (see http://adonisjs.

com/docs/4.0/validator#_extending_validator). We created hooks.js in a previous

chapter. We can add this code inside that file, in the providersBooted hook, so that it’s

available throughout our application.

It begins by getting the posted field value. field is the name of the posted field (the

key of the rules list). get is a global function, which pulls the named value out of another

object (in this case, data). If the value doesn’t exist, we exit early from the validator. If the

field is required, we should add a required rule instead of validating that here.

If the value is defined, we inspect the args array. This is made up of the values

following exists: customers and email. We’ll see how those are defined in just a

moment. The first args value is the name of the table we want to check, and the second

is the name of the column in that table. We want to check whether the value exists in the

column of a database table.

So, we perform that query. If no rows are found, we throw the error message. If a row

is found, we do nothing (just as if the value didn’t exist). We can now use exists in our

rules, as shown in Listing 10-4.

Listing 10-4.  This is from threadbear/app/Controllers/Http/

CustomerController.js

const rules = {

 email: "required|email|exists:customers,email",

 password: "required",

}

Chapter 10 Validation and Errors

http://adonisjs.com/docs/4.0/validator#_extending_validator
http://adonisjs.com/docs/4.0/validator#_extending_validator

133

�Reusing Validation
I mentioned we were going to move the validation logic to the base controller. There’s

not much work involved, but I think the result is clearer. Listing 10-5 shows what the

extraction looks like.

Listing 10-5.  This is from threadbear/app/Controllers/Http/Controller.js

const { validateAll } = use("Validator")

// ...some time later

async validate({

 request,

 response,

 session,

 rules,

}) {

 const validation = await validateAll(

 request.all(),

 rules,

)

 if (validation.fails()) {

 session

 .withErrors(validation.messages())

 .flashAll()

 return response.redirect("back")

 }

}

This function uses a lot of parts. We’re using the validateAll method, as the

validate method stops at the first error. validateAll continues so that the list of error

messages includes all errors at once.

We still use the fails method, but if validation fails, we now persist some things to

the session. We’re going to explore these methods in more detail in the next chapter. For

now, you just need to understand that we’re saving the validation errors and the posted

form data to the session.

Chapter 10 Validation and Errors

134

We do this so that we can redirect back to the form, and display the errors and posted

form data there again. How do we do this? Listing 10-6 shows how.

Listing 10-6.  This is from threadbear/resources/views/customer/login.edge

<form method="post">

 <div class="form-group">

 <label for="email">Email address</label>

 �<input type="email" class="form-control" id="email" name="email"

value="{{ old(" email ", " ") }}">

 {{ hasErrorFor("email") ? getErrorFor("email") : "" }}

 </div>

 <div class="form-group">

 <label for="password">Password</label>

 <input type="password" class="form-control" id="password" name="password">

 {{ hasErrorFor("password") ? getErrorFor("password") : "" }}

 </div>

 <button type="submit" class="btn btn-primary">Log in</button>

</form>

The validation library adds a view helper called getErrorFor. This returns the error

message for that field from those stored in the session. We also see an old method,

which is meant to return the old posted form value, for that field. Before old will work,

we need to install the session library:

adonis install @adonisjs/session

And as usual, we also need to register the session provider (as seen in Listing 10-7).

Listing 10-7.  This is from threadbear/start/app.js

const providers = [

 // ...

 "@adonisjs/validator/providers/ValidatorProvider",

 "@adonisjs/session/providers/SessionProvider",

]

The session library also needs middleware, so that it can begin the session for each

request. We can register that, as shown in Listing 10-8.

Chapter 10 Validation and Errors

135

Listing 10-8.  This is from threadbear/start/kernel.js

const globalMiddleware = [

 // ...

 "Adonis/Middleware/Session",

]

The first time we visit the login page in the browser, we should see nothing out of

the ordinary. It should still look like it did before. To see the results of this new validate

method, we need to modify the customer controller, as shown in Listing 10-9.

Listing 10-9.  This is from threadbear/app/Controllers/Http/

CustomerController.js

async doLogin({ request, response, session }) {

 const rules = {

 email:

 "required|email|exists:customers,email",

 password: "required",

 }

 if (

 !await this.validate({

 request,

 response,

 session,

 rules,

 })

) {

 return

 }

 // ...normal doLogin code

}

Our validation logic is significantly cleaner. We don’t have to worry about what to do

if validation fails. We can design our forms around the idea that they will be redirected to

if any validation errors occur.

Chapter 10 Validation and Errors

136

Note  We’ve skipped over quite a few session details. That’s OK; we’ll learn about
sessions in the next chapter. For now, we’re using them only as a temporary store
between doLogin and the login form.

Let’s take a moment to add validation to our registration page. Listing 10-10 shows

what this might look like.

Listing 10-10.  This is from threadbear/app/Controllers/Http/

CustomerController.js

async doRegister({

 request,

 response,

 session,

}) {

 const rules = {

 first_name: "required",

 last_name: "required",

 email:

 "required|email|unique:customers,email",

 password: "required",

 confirm_password: "required|same:password",

 nickname: "required",

 }

 if (

 !await this.validate({

 request,

 response,

 session,

 rules,

 })

) {

 return

 }

Chapter 10 Validation and Errors

137

 // ...normal doRegister code

}

Most of these fields are just required. We’re using the unique rule, I mentioned,

which works similarly to the way exists works—that is, it checks the customers table

and the email field. Whereas exists wants there to be a row, unique wants no rows to

have the same e-mail value.

We’re also checking that the confirm_password matches the password field, using

the same rule. Of course, this means we also have to update our registration form, as

shown in Listing 10-11.

Listing 10-11.  This is from threadbear/resources/views/customer/register.

edge

<form method="post">

 <div class="form-group">

 <label for="email">First name</label>

 �<input type="text" class="form-control" id="first_name" name="first_

name" value="{{ old(" first_name ", " ") }}">

 {{ hasErrorFor("first_name") ? getErrorFor("first_name") : "" }}

 </div>

 <div class="form-group">

 <label for="email">Last name</label>

 �<input type="text" class="form-control" id="last_name" name="last_name"

value="{{ old(" last_name ", " ") }}">

 {{ hasErrorFor("last_name") ? getErrorFor("last_name") : "" }}

 </div>

 <div class="form-group">

 <label for="email">Email address</label>

 �<input type="email" class="form-control" id="email" name="email"

value="{{ old(" email ", " ") }}">

 {{ hasErrorFor("email") ? getErrorFor("email") : "" }}

 </div>

 <div class="form-group">

 <label for="password">Password</label>

 <input type="password" class="form-control" id="password" name="password">

 {{ hasErrorFor("password") ? getErrorFor("password") : "" }}

Chapter 10 Validation and Errors

138

 </div>

 <div class="form-group">

 <label for="confirm_password">Confirm password</label>

 �<input type="password" class="form-control" id="confirm_password"

name="confirm_password">

 �{{ hasErrorFor("confirm_password") ? getErrorFor("confirm_password") :

"" }}

 </div>

 <div class="form-group">

 <label for="email">Nickname</label>

 �<input type="text" class="form-control" id="nickname" name="nickname"

value="{{ old(" nickname ", " ") }}">

 {{ hasErrorFor("nickname") ? getErrorFor("nickname") : "" }}

 </div>

 <button type="submit" class="btn btn-primary">Register</button>

</form>

We’re using the same old and getErrorFor methods as before. There’s nothing

new to learn from this code. However, the error messages include the raw field names.

It would be nice if we could customize the messages that we display to customers.

Listings 10-12 and 10-13 show how we can achieve this.

Listing 10-12.  This is from threadbear/app/Controllers/Http/Controller.js

async validate({

 request,

 response,

 session,

 rules,

 messages,

}) {

 const validation = await validateAll(

 request.all(),

 rules,

 messages,

)

Chapter 10 Validation and Errors

139

 if (validation.fails()) {

 session

 .withErrors(validation.messages())

 .flashAll()

 return response.redirect("back")

 }

}

Listing 10-13.  This is from threadbear/app/Controllers/Http/

CustomerController.js

const rules = {

 first_name: "required",

 last_name: "required",

 email:

 "required|email|unique:customers,email",

 password: "required",

 confirm_password: "required|same:password",

 nickname: "required",

}

const messages = {

 "first_name.required":

 "you must provide a first name",

 "last_name.required":

 "you must provide a last name",

 "email.required":

 "you must provide an email address",

 "email.unique":

 "your email address must be unique",

 "password.required":

 "you must provide a password",

 "confirm_password.required":

 "you must confirm the password",

 "confirm_password.same":

 "passwords must match",

Chapter 10 Validation and Errors

140

 "nickname.required":

 "you must provide a nickname",

}

if (

 !await this.validate({

 request,

 response,

 session,

 rules,

 messages,

 })

) {

 return

}

Indicative lets us provide a messages object, mapping fields (and their rules) to

specific error messages. We can specify messages for each rule, for each field. Later, we’ll

learn how to allow these messages to be translated into other languages.

�Displaying Custom Error Pages
Now that we’re handling validation errors, we should also look at customizing the error

pages customers are likely to see. Validation is easy, because we redirect to an existing

form. What about missing pages or server errors?

Our routes are designed so that if none of the others are matched, we’ll look for a

profile matching the route name. If someone goes to /does-not-exist, we’ll look for a

profile with the nickname does-not-exist. But, imagine we commented those routes

out, so that /does-not-exist leads to a 404 error. We could respond to that error by

adding the hook shown in Listing 10-14.

Listing 10-14.  This is from threadbear/start/hooks.js

const Exception = use("Exception")

Exception.handle(

 "HttpException",

 async (error, { response, session }) => {

Chapter 10 Validation and Errors

141

 // respond to the 404 error

 return

 },

)

If we comment out those profile routes , we can respond with a custom error

message (or view) inside the handler. We don’t have to use a hook for this, either. We

could create a whole new handler class:

adonis make:ehandler

This creates a new exception handler class, which we can move this HttpException

logic into, as demonstrated in Listing 10-15.

Listing 10-15.  This is from threadbear/app/Exceptions/Handler.js

"use strict"

class ExceptionHandler {

 async handle(error, { request, response }) {

 if (error.name === "HttpException") {

 response

 .status(error.status)

 .send("not found")

 return

 }

 // response

 // .status(error.status)

 // .send(error.message)

 }

 async report(error, { request }) {

 // write the error to a log

 }

}

module.exports = ExceptionHandler

Chapter 10 Validation and Errors

142

Let’s refactor our validation logic to be handled via this exception handler.

Unfortunately, we can’t use the ExceptionHandler class for ValidationException

errors because of how the order of precedence works. We have to go back to hooks—

Listings 10-16, 10-17, and 10-18 show how we might achieve this.

Listing 10-16.  This is from threadbear/app/Controllers/Http/Controller.js

const {

 ValidationException,

} = require("@adonisjs/validator/src/Exceptions")

// ...some time later

async validate(request, rules, messages) {

 const validation = await validateAll(

 request.all(),

 rules,

 messages,

)

 if (validation.fails()) {

 // session

 // .withErrors(validation.messages())

 // .flashAll()

 //

 // return response.redirect("back")

 throw ValidationException.validationFailed(

 validation.messages(),

)

 }

}

Listing 10-17.  This is from threadbear/app/Controllers/Http/

CustomerController.js

async doRegister({

 request,

 response,

Chapter 10 Validation and Errors

143

 session,

}) {

 const rules = {

 first_name: "required",

 last_name: "required",

 email:

 "required|email|unique:customers,email",

 password: "required",

 confirm_password: "required|same:password",

 nickname: "required",

 }

 const messages = {

 "first_name.required":

 "you must provide a first name",

 "last_name.required":

 "you must provide a last name",

 "email.required":

 "you must provide an email address",

 "email.unique":

 "your email address must be unique",

 "password.required":

 "you must provide a password",

 "confirm_password.required":

 "you must confirm the password",

 "confirm_password.same":

 "passwords must match",

 "nickname.required":

 "you must provide a nickname",

 }

 await this.validate(request, rules, messages)

 // ...normal doRegister code

}

Chapter 10 Validation and Errors

144

Listing 10-18.  This is from threadbear/start/hooks.js

Exception.handle(

 "ValidationException",

 async (error, { response, session }) => {

 session.withErrors(error.messages).flashAll()

 await session.commit()

 return response.redirect("back")

 },

)

Instead of dealing with the session and response objects inside the Controller class,

we can move that behavior to the ValidationException exception handler hook. This

leads to cleaner this.validate code. We can forget about the if statements and the

early return. We don’t even need to change how our forms work, because they’re getting

exactly the same data.

�Creating Custom Exceptions
We’re reusing the HttpException and ValidationException classes. What if we want to

create our own exceptions but still want AdonisJs to handle them in the same way? We

can use an Ace command to generate a new exception:

adonis make:exception ProfileMissing

This gives us a new, empty exception class (similar to Listing 10-19).

Listing 10-19.  This is from threadbear/app/Exceptions/

ProfileMissingException.js

"use strict"

const {

 LogicalException,

} = require("@adonisjs/generic-exceptions")

class ProfileMissingException extends LogicalException {

 async handle() {

Chapter 10 Validation and Errors

145

 // ...handle this exception

 }

}

module.exports = ProfileMissingException

This is slightly different from what is generated:

•	 We’ve changed the handle method to be async. We might do async

things in it!

•	 We’ve uncommented the handle method. I’ll explain why in a

moment.

We could use hooks or our ExceptionHandler class to work out what to do when

we see these kinds of exceptions. Or we could declare a handle method (like the one we

uncommented) so that AdonisJs uses that instead. It’s an automatic way of keeping the

handle logic together with the custom exception type.

Let’s move the “oops!” error code to this handler, shown in Listing 10-20.

Listing 10-20.  This is from threadbear/app/Exceptions/

ProfileMissingException.js

async handle(error, { response, view }) {

 const content = view.render("oops", {

 type: "PROFILE_MISSING",

 })

 response.status(404).send(content)

 return

}

This means we can make our controller code simpler (shown in Listing 10-21).

Listing 10-21.  This is from threadbear/app/Controllers/Http/

CustomerController.js

const ProfileMissingException = use(

 "App/Exceptions/ProfileMissingException",

)

Chapter 10 Validation and Errors

146

// ...some time later

const customer = await Customer.query()

 .where("nickname", params.customer)

 .first()

if (!customer) {

 // return view.render("oops", {

 // type: "PROFILE_MISSING",

 // })

 throw new ProfileMissingException()

}

This is a powerful concept! We can respond to errors without mixing that error-

handling code into our controllers and routes. We can reuse error-handling code

so we don’t have to keep repeating the same if (!customer) and return view.

render("oops"...) code everywhere.

�Summary
In this chapter, we learned all about how to validate our forms. We added validation

code to the registration and login forms, and rendered those errors (with custom

error messages) to the browser. We also learned how to handle built-in and custom

exceptions. We rendered custom content for 404 errors and refactored our validation

errors to be handled in this way. We also created a custom error type and refactored

the profile handler to be cleaner. We refactored it not to care about how the error is

handled—just to throw the error and let AdonisJs take care of the rest.

Note  We could take this a step further by creating custom error page views.
I didn’t do that for the sake of time, but you’re welcome to try this as an exercise.

In the next chapter, we’re going to learn how to create user sessions tied to our

authentication code. We’ll learn more about the session code we saw in this chapter.

We’ll also learn how to work with cookies to create a “remember me” function for our

login page.

Chapter 10 Validation and Errors

147
© Christopher Pitt 2018
C. Pitt, The Definitive Guide to AdonisJs, https://doi.org/10.1007/978-1-4842-3390-0_11

CHAPTER 11

Sessions
In the previous chapter, we learned how to validate form data and present custom error

pages to customers. We’re well on our way to having a professional, polished commerce

web site. But there’s one area we’re still a bit behind in: we need to make a way for

customers to log in and update their profiles. We created the registration and login

forms in previous chapters. We also saw how to persist those details to the database and

validate login credentials.

In this chapter, we’re going to learn how to create customer sessions. We’ll use these to

ensure that customers see only the pages and products they’re supposed to. We’ll start to

capture orders and display customer details. We’ll also learn more about Edge and Lucid.

�Making the Dashboard
Now that we’re validating login credentials, all we have to do (to enable customer

sessions) is to store the customer details in a session cookie. Let’s make a dashboard

page—one that can be seen by only an authenticated customer. We’ll call it the

dashboard. Listing 11-1 shows what it could look like.

Listing 11-1.  This is from threadbear/resources/views/customer/dashboard.

edge

@layout("layout")

@section("header")

 <h1>

 Hello, {{ customer.displayName }}

 </h1>

@endsection

@section("content")

 <h2>Your products</h2>

148

 @each(product in products)

 <p>

 {{ product.displayName }}

 ${{ product.price / 100 }}

 </p>

 @else

 <p>

 You haven't created any products

 </p>

 @endeach

 <h2>Pending orders</h2>

 @if(pendingOrders.length)

 @!each(order in pendingOrders, include = "customer/partial/order")

 @else

 <p>

 There are no pending orders.

 </p>

 @endif

 <h2>Complete orders</h2>

 @if(completeOrders.length)

 @!each(order in completeOrder, include = "customer/partial/order")

 @else

 <p>

 There are no complete orders.

 </p>

 @endif

@endsection

This looks similar to our profile page, but it uses more advanced Lucid and Edge

functionality. For starters, we’re using the displayName property on the Customer model.

We could add this as a Lucid getter. Before we do that, though, let’s create a base model.

Chapter 11 Sessions

149

That way, we can share common model extensions without repeating a lot of code.

Listing 11-2 shows what I mean.

Listing 11-2.  This is from threadbear/app/Models/BaseModel.js

"use strict"

const Model = use("Model")

const startCase = use("lodash/startCase")

class BaseModel extends Model {

 titleCase(...params) {

 return startCase(...params)

 }

}

module.exports = BaseModel

The first bit of shared functionality is a titleCase method. It does the same thing as

our toTitleCase global view function, but this time we’re using a Lodash function. This

is what Edge uses (in its capitalize function).

Note  We should probably add Lodash (https://lodash.com) as a dependency
if we use it in our codebase. AdonisJs already includes it, and given the structure
of NPM 3, it will be available to us regardless.

Now we can add a getter to the Customer model, as shown in Listing 11-3.

Listing 11-3.  This is from threadbear/app/Models/Customer.js

// ...rest of the imports

const BaseModel = use("App/Models/BaseModel")

class Customer extends BaseModel {

 static get computed() {

 return ["displayName"]

 }

Chapter 11 Sessions

https://lodash.com/

150

 getDisplayName({ first_name, last_name }) {

 return this.titleCase(

 first_name + " " + last_name,

)

 }

 // ...rest of the methods

}

Most of the time, we’re going to be accessing model data after also calling the toJSON

method. In order to add custom (computed) properties to this, we need to export them

with the computed static getter. This is ES6 syntax, used to produce a dynamic static class

property. Lucid uses it in the process of generating the results for toJSON.

We can define getters as getDisplayName, where DisplayName is the title case property

name. The method is called with an object of database keys and values. first_name and

last_name are columns on the customers table, so, we can dereference them to compute a

full name.

Next, we reference a bunch of customer-related data: products, pendingOrders, and

completeOrders. We’ve learned a bit about model relationships. These are defined as

shown in Listing 11-4.

Listing 11-4.  This is from threadbear/app/Models/Customer.js

class Customer extends BaseModel {

 products() {

 return this.hasMany("App/Models/Product")

 }

 pendingOrders() {

 return this.hasMany(

 "App/Models/Order",

 "id",

 "seller_id",

).where("status", "pending")

 }

Chapter 11 Sessions

151

 completeOrders() {

 return this.hasMany(

 "App/Models/Order",

 "id",

 "seller_id",

).where("status", "complete")

 }

 // ...rest of the methods

}

pendingOrders and completeOrders are just slightly more complicated hasMany

relationships. We can add where clauses so that the method names more accurately

reflect the kinds of filtered data we want them to return.

Finally, we have a couple of @!each tags. The @! syntax is a way to tell Edge to ignore

(or rather, not to expect) closing @endeach tags. The second argument is the name of a

partial view file to repeat for each item iteration. This partial resembles Listing 11-5.

Listing 11-5.  This is from threadbear/resources/views/customer/partial/

order.edge

 {{ order.buyer ? order.buyer.displayName : order.id }}

 @if(order.items)

 @each(item in order.items)

 {{ item.quantity }} x {{ item.product.displayName }} at

 ${{ item.price / 100 }}

 @endeach

 @endif

Chapter 11 Sessions

152

This partial is meant to render a single order. If the order has a buyer property, I want

to show the buyer’s name. If that’s missing, the template should just display the order ID.

Then, if there are items, the template should render a list item for each order item. A

few more relationships and computed properties are in use here. Listings 11-6 and 11-7

show how these can be added.

Listing 11-6.  This is from threadbear/app/Models/Order.js

"use strict"

const BaseModel = use("App/Models/BaseModel")

class Order extends BaseModel {

 items() {

 return this.hasMany("App/Models/OrderItem")

 }

 buyer() {

 return this.belongsTo(

 "App/Models/Customer",

 "buyer_id",

)

 }

 seller() {

 return this.belongsTo(

 "App/Models/Customer",

 "seller_id",

)

 }

}

module.exports = Order

Listing 11-7.  This is from threadbear/app/Models/OrderItem.js

"use strict"

const BaseModel = use("App/Models/BaseModel")

Chapter 11 Sessions

153

class OrderItem extends BaseModel {

 product() {

 return this.belongsTo("App/Models/Product")

 }

}

module.exports = OrderItem

I skipped over the creation of these, but let’s look at how these are persisted to the

database. We can create a couple of migrations, resembling Listings 11-8 and 11-9.

Listing 11-8.  This is from threadbear/database/migrations/*_orders_

schema.js

"use strict"

const Schema = use("Schema")

class OrdersSchema extends Schema {

 up() {

 this.create("orders", table => {

 table.increments()

 table.integer("buyer_id")

 table.integer("seller_id")

 table.string("status")

 table.timestamps()

 })

 }

 down() {

 this.drop("orders")

 }

}

module.exports = OrdersSchema

Chapter 11 Sessions

154

Listing 11-9.  This is from threadbear/database/migrations/*_order_items_

schema.js

"use strict"

const Schema = use("Schema")

class OrderItemsSchema extends Schema {

 up() {

 this.create("order_items", table => {

 table.increments()

 table.integer("order_id")

 table.integer("product_id")

 table.integer("quantity")

 table.integer("price")

 table.text("comments")

 table.timestamps()

 })

 }

 down() {

 this.drop("order_items")

 }

}

module.exports = OrderItemsSchema

Each order has a status—for now, these are pending and complete. Orders are linked

to two customers: the buyer and the seller. We saw how those relationships are linked

in the preceding code. We also need to store the current price and the desired quantity.

Finally, we probably want to add a comments field, in case the buyer wants to give special

instructions for the order.

�Creating the Customer Session
When we left the doLogin action, we were validating login credentials. We could tell

whether the customer should be logged in. We also added the session dependency

(so that we could flash validation errors and display them after redirecting).

Chapter 11 Sessions

155

Let’s use these things to create a user session, shown in Listing 11-10.

Listing 11-10.  This is from threadbear/app/Controllers/Http/

CustomerController.js

async doLogin({ request, response, session }) {

 const rules = {

 email:

 "required|email|exists:customers,email",

 password: "required",

 }

 await this.validate(request, rules)

 const email = request.input("email")

 const password = request.input("password")

 const customer = await Customer.authenticate(

 email,

 password,

)

 session.put("customer", customer.id)

 await session.commit()

 return response.route("dashboard")

}

This is much the same as before. The difference is that a successful validation state

means the customer’s ID needs to be saved. We put it in the session, wait for the session

to be saved, and then redirect to the dashboard route.

Behind the scenes, I’ve updated the authenticate method to throw a

ValidationException. Listing 11-11 demonstrates this.

Listing 11-11.  This is from threadbear/app/Models/Customer.js

static async authenticate(email, password) {

 const customer = await Customer.findByOrFail(

 "email",

 email,

)

Chapter 11 Sessions

156

 const matches = await Hash.verify(

 password,

 customer.password,

)

 if (matches) {

 return customer

 }

 throw ValidationException.validationFailed({

 email: "invalid credentials",

 })

}

We could use a different kind of error for this. We were using Error before, but I think

a ValidationException is more useful for us because it allows the failed login to be

handled as if an ordinary validation error happened.

Note  Don’t forget to import the ValidationException class, using const
{ ValidationException } = use("@adonisjs/validator/src/
Exceptions").

Additionally, we’ve referenced a dashboard route. Listing 11-12 shows where to add this.

Listing 11-12.  This is from threadbear/start/routes.js

Route.get(

 "/dashboard",

 "CustomerController.dashboard",

).as("dashboard")

We should now be able to log in. The problem is that there’s no dashboard action yet.

Let’s create it, as shown in Listing 11-13.

Listing 11-13.  This is from threadbear/app/Controllers/Http/

CustomerController.js

async dashboard({

 request,

Chapter 11 Sessions

157

 response,

 session,

 view,

}) {

 const customerId = session.get("customer")

 if (!customerId) {

 return response.route("login")

 }

 const customer = await Customer.find(

 customerId,

)

 const products = await customer

 .products()

 .fetch()

 const pendingOrders = await customer

 .pendingOrders()

 .with("buyer")

 .with("items.product")

 .fetch()

 const completeOrders = await customer

 .completeOrders()

 .with("buyer")

 .with("items.product")

 .fetch()

 return view.render("customer/dashboard", {

 customer: customer.toJSON(),

 products: products.toJSON(),

 pendingOrders: pendingOrders.toJSON(),

 completeOrders: completeOrders.toJSON(),

 })

}

Chapter 11 Sessions

158

We begin by checking whether the customer session property exists. If not, we

redirect back to the login page. We’re going to learn about a more robust way to do this in

the following chapter. This approach works, for now.

If the customer ID is present, we fetch the customer record from the database. Using

relationships, we also fetch the products, pending orders, and complete orders. We’re

lazy-loading multiple related records (including the nested items.product relationship).

It’s easier for us to access the computed properties if we convert each fetched record

to JSON.

�Logging Customers Out
At this point, you should be able to register and log in. If you’re lacking good example

data, you’re welcome to use my improved seeder class (shown in Listing 11-14).

Listing 11-14.  This is from threadbear/database/seeds/DatabaseSeeder.js

"use strict"

const Database = use("Database")

const Factory = use("Factory")

const Hash = use("Hash")

const moment = use("moment")

class DatabaseSeeder {

 async run() {

 const timestamps = {

 created_at: moment().format(

 "YYYY-MM-DD HH:mm:ss",

),

 updated_at: moment().format(

 "YYYY-MM-DD HH:mm:ss",

),

 }

 await Database.insert([

 {

 from: "assertchris",

 to: "christopher",

Chapter 11 Sessions

159

 ...timestamps,

 },

 {

 from: "thetutlage",

 to: "harminder",

 ...timestamps,

 },

]).into("redirects")

 await Database.insert([

 {

 first_name: "Harminder",

 last_name: "Virk",

 email: "virk.officials@gmail.com",

 password: await Hash.make("harminder123"),

 nickname: "harminder",

 ...timestamps,

 },

 {

 first_name: "Christopher",

 last_name: "Pitt",

 email: "cgpitt@gmail.com",

 password: await Hash.make(

 "christopher123",

),

 nickname: "christopher",

 ...timestamps,

 },

]).into("customers")

 const customerIds = await this.ids(

 "customers",

)

 await Database.insert([

 {

 name: "Soft Teddy",

 price: 499,

Chapter 11 Sessions

160

 customer_id: customerIds[1],

 ...timestamps,

 },

]).into("products")

 const productIds = await this.ids("products")

 await Database.insert([

 {

 buyer_id: customerIds[0],

 seller_id: customerIds[1],

 status: "pending",

 ...timestamps,

 },

]).into("orders")

 const orderIds = await this.ids("orders")

 await Database.insert([

 {

 order_id: orderIds[0],

 product_id: productIds[0],

 quantity: 2,

 price: 499,

 ...timestamps,

 },

]).into("order_items")

 }

 async ids(table) {

 return await Database.select("id")

 .from(table)

 .orderBy("id", "asc")

 .map(next => next.id)

 }

}

module.exports = DatabaseSeeder

Chapter 11 Sessions

161

I’ve started combining multiple objects (of the same type) into batch insert

statements. Normally, we’d be able to return only a single inserted ID, so I’ve created an

ids method. This fetches all IDs from the desired table in ascending order.

Of course, it would be good to allow the customer to close their browser session.

Let’s modify the customer controller, as shown in Listing 11-15.

Listing 11-15.  This is from threadbear/app/Controllers/Http/

CustomerController.js

async logout({ session, response }) {

 session.forget("customer")

 await session.commit()

 return response.route("login")

}

All we need to do here is forget the session value. We can redirect back to the login

or even to the home page. I had to change the logout route to Route.get("/logout",

"CustomerController.logout"), since it was previously PUT. It will be again, after we get

to Chapter 12.

Note A s we’ve been using saving sessions, the data has been stored in browser
cookies. We saw many cookie-related methods when we learned about the
Request and Response classes. We could work with them directly, but I think the
session abstraction makes things a lot simpler. We can put, get, and forget session
values without caring how the cookies are stored or associated with the browser.

If you’d like a cookie refresher, refer to Chapter 4 and Chapter 5, where we look at the

cookie methods for requests and responses.

�Summary
In this chapter, we learned much more about Lucid and Edge. We created new

relationships and finished off the login and logout actions. We saw a few concepts

repeated and changed slightly. This wasn’t a particularly complex chapter, but it was

work that needed to be done.

Chapter 11 Sessions

162

In the next chapter, we’re going to learn about encryption, middleware, and

preventing cross-site request forgery. In other words, we’re going to review the built-in

security libraries and mechanisms of AdonisJs.

Chapter 11 Sessions

163
© Christopher Pitt 2018
C. Pitt, The Definitive Guide to AdonisJs, https://doi.org/10.1007/978-1-4842-3390-0_12

CHAPTER 12

Security
In the previous chapter, we completed the login and logout pages of our application. We

learned a lot more about the Lucid and Edge. We also set up orders, order items, and

improved products a bit.

We also protected the dashboard by checking for a customer session ID before

allowing a customer to view the page. It was a subtle, albeit important, step in securing

our application.

That’s what this chapter is all about. We’re going to improve that check by making

the authorization layer robust and ubiquitous. We’ll learn about more of the security

aspects of AdonisJs and how to use them to great effect.

�Recap
Let’s look at how we secured the dashboard and think of ways we could improve it; see

Listing 12-1.

Listing 12-1.  This is from threadbear/app/Controllers/Http/

CustomerController.js

async dashboard({

 request,

 response,

 session,

 view,

}) {

 const customerId = session.get("customer")

 if (!customerId) {

 return response.route("login")

 }

164

 const customer = await Customer.find(

 customerId,

)

 // ...rest of the dashboard code

}

We needed the customerId to be able to display the correct orders on the dashboard.

We doubled up on this dependency by using the absence of the ID to tell us when the

customer wasn’t authenticated.

The thing is, everywhere we’re likely to care about the customer being authenticated,

we’re also likely to need to know something about the customer. In other words, if the

page is protected, it’s probably going to show or use information about the customer to

function correctly.

Therefore, whatever we replace this with should store a reference to the customer. It

should at least store the customer’s ID, although it probably wouldn’t hurt to store the

user model as well.

If we kept up this approach (fetching customerId from the session and redirecting

if it’s falsy), we’d probably repeat this exact code every time. We should try to reduce

the repetition to one or two lines of code. Perhaps we could use the base controller or

middleware to share code.

If we opt for middleware, we can apply the authorization check in the routes files. We

can even try to group multiple routes under the same middleware check.

�Creating More Middleware
Remember when we created the country and currency middleware? We’re going to

follow the same process:

adonis make:middleware Auth

This makes another empty middleware class. Let’s modify it to resemble Listing 12-2.

Listing 12-2.  This is from threadbear/app/Middleware/Auth.js

"use strict"

const Customer = use("App/Models/Customer")

Chapter 12 Security

165

const key = "customer"

const redirectTo = "login"

class Auth {

 async handle(

 { request, session, response },

 next,

) {

 const id = session.get(key)

 if (!id) {

 return response.route(redirectTo)

 }

 const customer = await Customer.find(id)

 if (!customer) {

 return response.route(redirectTo)

 }

 request.customer = customer

 await next()

 }

}

module.exports = Auth

As we learned before, middleware has access to all the context that route callbacks

and controller actions do. We can use the session and response objects to check and

store customer data. Because we’ll often need the customer record (on protected pages),

we’re fetching that too. Actions can access the customer property on the controller, as

shown in Listing 12-3.

Listing 12-3.  This is from threadbear/app/Controllers/Http/

CustomerController.js

async dashboard({

 request,

 response,

Chapter 12 Security

166

 session,

 view,

}) {

 // const customerId = session.get("customer")

 // if (!customerId) {

 // return response.route("login")

 // }

 // const customer = await Customer.find(customerId)

 const customer = request.customer

 const products = await customer

 .products()

 .fetch()

 // ...rest of the dashboard code

}

We need to do a couple of things before this code will work. When we made the

country (and currency) selector middleware, we registered it as global middleware.

This is ideal for middleware we want to run on every request. It won’t work for the auth

middleware, because we want that to run on only certain routes.

We still need to register it, but instead of global, we’ll register it as named

middleware. This means we can apply it by name to a specific set of routes. We can

register it as shown in Listing 12-4.

Listing 12-4.  This is from threadbear/start/kernel.js

const namedMiddleware = {

 auth: "App/Middleware/Auth",

}

Now we can apply the Auth middleware class with the "auth" string. To do this, we

group protected routes, as in Listing 12-5.

Chapter 12 Security

167

Listing 12-5.  This is from threadbear/start/routes.js

Route.group(() => {

 Route.get(

 "/dashboard",

 "CustomerController.dashboard",

).as("dashboard")

 Route.put(

 "/:customer",

 "CustomerController.updateProfile",

).as("updateProfile")

 Route.delete(

 "/:customer",

 "CustomerController.deleteProfile",

).as("deleteProfile")

}).middleware(["auth"])

Route groups work by allowing a number of nested routes to be defined, which then

inherit rules applied to the group. This means we can add prefixes, apply middleware,

and specify formats for multiple routes within the group.

These three routes look like they should be protected. With this code applied, the

dashboard is secure and working again.

Note A n official AdonisJs Auth library can be installed with adonis install @
adonisjs/auth. It does much of what we’ve done here and then some. I wanted
us to go through this process so we could understand what that library (and similar
ones) do in order to protect routes. Extensive documentation (http://adonisjs.
com/docs/4.0/authentication) indicates how to install and use the official
auth library.

The framework author is always looking for ways to help the community learn
more about AdonisJs. To that end, he created adonisjs.com/screencasts.
There you’ll find high-quality screencasts showing how to use AdonisJs
effectively.

Chapter 12 Security

http://adonisjs.com/docs/4.0/authentication
http://adonisjs.com/docs/4.0/authentication

168

�Securing Forms
All our forms, including the login form, allow requests from any kind of browser (or

HTTP client). This can lead to a security vulnerability called cross-site request forgery

(CSRF). We could require that form submissions include some sort of proof that they

come from someone using the site (instead of posting directly to the site, without the

user’s knowledge).

Note A Wikipedia article talks more about this particular vulnerability:
https://en.wikipedia.org/wiki/Cross-site_request_forgery.

AdonisJs has a mechanism for this, so we can protect our forms against this kind of

attack. We need to install the Shield library:

adonis install @adonisjs/shield

This gives us access to a new provider, which we can install by following Listing 12-6.

Listing 12-6.  This is from threadbear/start/app.js

const providers = [

 "@adonisjs/shield/providers/ShieldProvider",

 // ...rest of the providers

]

Shield generates and checks special tokens. For this to work, it needs access to the

session and must be applied as global middleware. Let’s add it to the global middleware

array, as shown in Listing 12-7.

Listing 12-7.  This is from threadbear/start/kernel.js

const globalMiddleware = [

 "Adonis/Middleware/Session",

 "Adonis/Middleware/Shield",

 // ...rest of the middleware

]

Because it uses the session library, it needs to be added after that middleware. The

session needs to be started before it can be used, after all.

Chapter 12 Security

https://en.wikipedia.org/wiki/Cross-site_request_forgery

169

Shield also has a configuration file (which was automatically added to our project). A

lot of things are configured there, but the important bits can be seen in Listing 12-8.

Listing 12-8.  This is from threadbear/config/shield.js

csrf: {

 enable: true,

 methods: ["POST", "PUT", "DELETE"],

 filterUris: [],

 cookieOptions: {

 httpOnly: false,

 sameSite: true,

 path: "/",

 maxAge: 7200,

 },

},

This config specifies that CSRF protection should be applied to POST, PUT, and DELETE

request methods. These are typically used to perform destructive changes (for example,

deleting database records or changing their content), so they’re good candidates for

protection.

When we submit a form, we should start to see a new kind of error. This looks like

the “not found” HttpException error we’re already handling, but we can customize it to

show a specific page or error message. Listing 12-9 shows how.

Listing 12-9.  This is from threadbear/app/Exceptions/Handler.js

async handle(error, { request, response }) {

 if (error.code === "EBADCSRFTOKEN") {

 response.forbidden(

 "Cannot process your request.",

)

 return

 }

 // ...previous HttpException code

}

Chapter 12 Security

170

So, how do we reenable form posting? We have to add a new hidden field to each of

our forms, as shown in Listings 12-10 to 12-13.

Listing 12-10.  This is from threadbear/resources/views/customer/register.

edge

@section("header")

 <h1>Register</h1>

@endsection

@section("content")

 <form method="post">

 {{ csrfField() }}

 // ...rest of the form

 </form>

@endsection

Listing 12-11.  This is from threadbear/resources/views/customer/login.edge

@section("header")

 <h1>Login</h1>

@endsection

@section("content")

 <form method="post">

 {{ csrfField() }}

 // ...rest of the form

 </form>

@endsection

Listing 12-12.  This is from threadbear/resources/views/customer/forgot-

password.edge

@section("header")

 <h1>Forgot password</h1>

@endsection

@section("content")

 <form method="post">

 {{ csrfField() }}

Chapter 12 Security

171

 // ...rest of the form

 </form>

@endsection

Listing 12-13.  This is from threadbear/resources/views/customer/reset-

password.edge

@section("header")

 <h1>Reset password</h1>

@endsection

@section("content")

 <form method="post" action="?_method=PATCH">

 {{ csrfField() }}

 // ...rest of the form

 <button type="submit" class="btn btn-primary">Reset</button>

 </form>

@endsection

Each of these csrfField invocations generates a hidden field, which resembles

<input name="_csrf" value="gmoclIzW-2efhRg6rw-08okQnCO2pItp2Y7s"

type="hidden">. The value is the special token, and it is randomly generated and stored

in the session each time the form is viewed.

This means the browser has to load the form before it can submit to the form’s

action. This makes it much harder for a malicious third-party to impersonate the

customer and piggyback on their session.

Note  We haven’t worked on the password-reset features yet. We still need to
work out how to send e-mail. We’ll get there soon.

�Encrypting Values
We’ve been storing hashed customer passwords in the database. This protects the

plain-text versions the customers use. Should the database be compromised, hackers

won’t gain knowledge of the plain-text passwords. We could improve this by using a per

customer salt, as explained in a great Stack Overflow answer (see https://security.

stackexchange.com/a/36838).

Chapter 12 Security

https://security.stackexchange.com/a/36838
https://security.stackexchange.com/a/36838

172

One-way hashes (like the type we’ve been using) are great for storing verifiable data.

Using the same salts and algorithms, we can check whether a customer-supplied value

hashes to the same value as the stored hash.

Sometimes, for values other than passwords, we might want to make obfuscated

values into plain-text values. This could be for any number of reasons. Perhaps the

customer needs to store sensitive information through our application. We don’t want

unauthorized employees to be able to read the sensitive information, so we can encrypt it.

The code for this is relatively straightforward:

const Encryption = use("Encryption")

const encrypted = Encryption.encrypt("plain-text value")

The encrypt method uses the appKey config variable, so we’d have to make sure

unauthorized employees can’t see that either. Fortunately, that’s defined as follows:

appKey: Env.get("APP_KEY"),

Decrypting the data is done similarly:

const Encryption = use("Encryption")

const decrypted = Encryption.decrypt("encrypted value")

Note  Do not encrypt passwords. You do not need the plain-text values of passwords.
Use a one-way hash, and think about adding a per user salt to the process.

�Summary
In this chapter, we learned about adding authorization as part of the middleware

process. We can now define groups of protected routes, with almost no code repetition.

We also have access to the customer model, so future customer-specific routes should be

much easier to handle.

We also learned about protecting our forms from CSRF attacks, and added a way to

return custom error messages when those checks fail. Finally, we learned about how to

encrypt values.

In the next chapter, we’re going to start building the front end. We’ll set up a build

chain and start using React and Sass to make our app look and work better!

Chapter 12 Security

173
© Christopher Pitt 2018
C. Pitt, The Definitive Guide to AdonisJs, https://doi.org/10.1007/978-1-4842-3390-0_13

CHAPTER 13

Front-End Tools
In the previous chapter, we looked at a few methods to improve the security of our

application. We added anti-CSRF tokens to our forms, created an authentication

middleware layer, and learned how to encrypt and decrypt values when needed.

Now we’re going to change gears and learn about front-end build tools. This topic is

fraught with change and uncertainty. Unless you’re constantly in the front-end space, it’s

difficult to know which tools to use and how to correctly configure them. Don’t worry—

we’ll figure things out together.

We’ll start by setting up an easy-to-use build tool. We’ll follow this by installing Bootstrap

and testing out the Sass-to-CSS transformation process. Finally, we’ll install React and make

sure the modern JavaScript transforms into syntax most browsers can handle.

�Installing Mix
Mix (https://laravel.com/docs/5.5/mix) is a wonderful outworking of the Laravel PHP

framework community (https://laravel.com). PHP developers aren’t usually comfortable

writing front-end code, so Mix has been designed to be easy to use and hard to break.

Mix is the most stable and friendly front-end asset management library I have

ever used, and we’re going to use it to create the build chain for our application. Even

though it was built for a large PHP audience, it’s not dependent on any PHP tools or

technologies to function. It is a JavaScript tool, so it’ll work perfectly for our needs.

Note  You don’t have to use Mix for your applications. You could use Grunt, Gulp,
or even webpack directly. Mix ultimately generates a webpack config, so it’s not a
replacement, but rather an improvement over standard webpack configuration.

https://laravel.com/docs/5.5/mix
https://laravel.com/

174

I personally find webpack hard to use, yet it has become popular. Mix adds a layer of

abstraction on top of webpack, vastly simplifying configuration. We can get started with

the following:

npm install --save-dev webpack laravel-mix

Mix uses webpack, so we need to configure it by using JavaScript. Mix provides a neat

configuration language, shown in Listing 13-1.

Listing 13-1.  This is from threadbear/webpack.mix.js

let mix = require("laravel-mix")

mix.setPublicPath("public")

mix.js("resources/js/app.js", "public/js/app.js")

mix.sass(

 "resources/css/app.scss",

 "public/css/app.css",

)

With a reference to mix, we can do things such as convert modern JavaScript syntax

to older JavaScript syntax, using the js method. Similarly, we can convert Sass files to

CSS files, using the sass method.

We can run Mix with the following command:

webpack --progress --hide-modules--config=node_modules/laravel-mix/setup/

webpack.config.js

Running this command over and over is tiring. Instead, we can use NPM scripts to

shorten what we need to type. Listing 13-2 demonstrates what these scripts look like.

Listing 13-2.  This is from threadbear/package.json

"scripts": {

"build": "$npm_package_config_webpack",

"build:watch":

 "$npm_package_config_webpack -w",

"build:production":

 "$npm_package_config_webpack -p"

},

Chapter 13 Front-End Tools

175

"config": {

"webpack":

 �"webpack --progress --hide-modules --config=node_modules/laravel-mix/

setup/webpack.config.js"

}

Here, we’re using the magic $npm_package_config_webpack variable to remove

repetition from our scripts. NPM scripts are an easy way to store detailed commands so

we don’t have to remember them ourselves. Yarn still uses package.json, which is an

NPM file. So, we can still use these commands.

The first runs Mix to produce a developer-friendly bundle of code. It includes source

maps (so browsers can find the true location of errors) and is not minified in any way.

The second command produces the same files but is a watcher script. That means

we can leave it running, and only the file we change will be re-added to the bundle.

The third command creates a production bundle of code. All the JavaScript and CSS

are minified, and source maps are removed. The files are a lot smaller but also much

harder to debug.

Note  While building the application, I highly recommend the first or second
script. If you run the watcher script, you won’t have to keep on remembering to
rebuild the bundle. It’ll just happen automatically. You’ll even get notifications to
show that it has been updated to reflect your new code.

The commands then become the following:

npm run-script build

npm run-script build:watch

npm run-script build:production

I can’t stress enough that this is only the beginning of what Mix has to offer. We’re still

going to look at one additional feature, but there’s much more it can do. You’ll have to go

to the documentation to learn more, though (https://laravel.com/docs/5.5/mix).

This webpack and Babel build chain will let us combine JavaScript files by using

import and export statements. If we want to support older browsers and newer

Chapter 13 Front-End Tools

https://laravel.com/docs/5.5/mix

176

keywords (for example, async and await in the browser), we also need to add

compatibility layers:

npm install --save-dev babel-preset-env babel-plugin-transform-async-to-

generator babel-plugin-transform-class-properties

babel-preset-env transforms modern JavaScript syntax (commonly known as

ES2015+) down to ES5, which is syntax most browsers can understand. This means we

can use all the new syntax, and customers can use all their old browsers.

babel-plugin-transform-async-to-generator transforms async and await into

syntax that uses generators as coroutines. Chapter 6 explained how generators can

do this. We’re doing exactly the same thing here, with this polyfill, but in a browser

environment.

Note S ome versions of babel-preset-env include babel-plugin-
transform-async-to-generator. I’m including it again for safety.

Finally, babel-plugin-transform-class-properties transforms class properties

into a form of syntax that older browsers understand. We’re going to be using React to

build some front-end components, and React components can use class properties to

great effect. That’s why we need this last plug-in.

In order for Babel to use these presets and plug-ins, we need to create a

configuration file resembling Listing 13-3.

Listing 13-3.  This is from threadbear/.babelrc

{

 "presets": ["env"],

 "plugins": [

 "transform-class-properties",

 "transform-async-to-generator"

],

 "ignore": ["node_modules"]

}

Now our modern JavaScript code will work in the most common browsers. We can

see this transformation in action by modifying our JavaScript file to resemble Listing 13-4.

Chapter 13 Front-End Tools

177

Listing 13-4.  This is from threadbear/resources/js/app.js

import "regenerator-runtime/runtime"

const load = async () => {

 const response = await fetch(

 "https://threadbear.store",

)

 const text = await response.text()

 console.log(text)

}

load()

We need to import the regenerator runtime into our entry JavaScript file. The async-to-

generator plug-in rewrites async and await to use it, but doesn’t import it automatically. The

generated code is quite messy, but you can check it out at threadbear/public/js/app.js.

�Installing Bootstrap (Sass)
Another benefit of Mix is the ability to use Sass for styling our application. Sass is an

enhanced version of CSS, with support for nesting and variables (among many other

features). We’re not going to dwell too much on Sass and CSS, but we can get a lot of

design for free by using Bootstrap. Bootstrap (https://getbootstrap.com) is a front-end

framework with many good defaults and built-in component styles.

We can already compile Sass files, but we still need to install Bootstrap:

npm install --save-dev bootstrap@4.0.0-beta.2

We can import Bootstrap into our application’s stylesheet with the @import

statement. Listing 13-5 demonstrates this.

Listing 13-5.  This is from threadbear/resources/css/app.scss

@import "node_modules/bootstrap/scss/bootstrap";

body {

 margin: 0;

}

Chapter 13 Front-End Tools

https://getbootstrap.com/

178

The generated CSS file includes all of the Bootstrap CSS (converted from the original

Sass). You can check it out at threadbear/public/css/app.css.

Note A t the time of writing, Bootstrap v4 was in beta. Odds are that v4 is now
stable, and newer versions may exist. If these versions still use Sass, this same
approach will work, though you may need to adjust the import path to reflect a new
folder structure inside node_modules.

Mix also supports languages such as Less and tools such as PostCSS. I like using Sass

and Bootstrap, so this is the approach I usually take. Feel free to experiment, and refer to

the Mix documentation when you get stuck.

Let’s add our stylesheet to the layout template, as shown in Listing 13-6.

Listing 13-6.  This is from threadbear/resources/views/layout.edge

<!doctype html>

<html lang="en">

 <head>

 {{ css("/css/app.css") }}

 <!-- rest of the meta tags -->

 </head>

 <body>

 <!-- rest of the body -->

 {{ script("/js/app.js") }}

 </body>

</html>

We should also migrate our home-page template to use this layout, as shown in

Listing 13-7.

Listing 13-7.  This is from threadbear/resources/views/page/home.edge

@layout("layout")

@section("header")

 <h1>Welcome to ThreadBear</h1>

@endsection

@section("content")

 <p>

Chapter 13 Front-End Tools

179

 <!-- intro text -->

 </p>

@endsection

We’re also linking to the built JavaScript file instead of the external scripts. We don’t

really need jQuery or the Bootstrap JavaScript, so, we won’t bother to import them into

our app.js file.

�Installing React
Now that our home page is looking better, and our Sass and JavaScript files are being

transformed into versions most browsers can handle, it’s time to learn a bit about React

(https://reactjs.org). I love it, and given time, I think you will too.

React appeals to people for many reasons. React appeals to me for two reasons.

The first is that React supports a kind of HTML-in-JS syntax and a style of building

large interfaces by thinking of them in their smallest parts. In other words, when I start

to build an interface (and I’m using React), I think about it from bottom to top: “What is

the smallest part of this, and how can I make it well, so that larger components can nest

it easily?” I don’t start building a shopping cart, creating a .cart div to hold everything. I

start with each of the interaction points (usually links, buttons, or input fields) of each of

the products. I think of the Clear and Checkout buttons. I think of everything as a small,

indivisible thing. Then I start to nest these small components inside larger components.

The second thing I like is that React promotes a unidirectional flow of data.

Interfaces are stateful things; they contain state about where you are and what you’ve

already done, what you’re busy doing, and what your available interaction options

are. We can transmit this data from the top down, and let React work out which nested

components should be updated to reflect the new state.

These are difficult concepts to grasp (and master), and they’re not the only reasons

people come to like React. Clearly, we’d be better served by looking at how they apply to

the code we write. Before we can, though, we need to install React:

npm install --save-dev babel-preset-react react react-dom

babel-preset-react imports all the bits that React needs, for JSX (that HTML-in-JS

syntax) to be compiled into regular JavaScript. It does more than that, but we don’t need

to worry about anything else.

Chapter 13 Front-End Tools

https://reactjs.org/

180

We also need to update .babelrc, as shown in Listing 13-8.

Listing 13-8.  This is from threadbear/.babelrc

{

 "presets": ["env", "react"],

 "plugins": [

 "transform-class-properties",

 "transform-async-to-generator"

],

 "ignore": ["node_modules"]

}

react and react-dom take care of the rest. To understand how they work, take a look

at Listing 13-9.

Listing 13-9.  This is from threadbear/resources/js/app.js

import "regenerator-runtime/runtime"

// const load = async () => {

// const response = await fetch(

// https://threadbear.store

//)

//

// const text = await response.text()

//

// console.log(text)

// }

//

// load()

import React from "react"

import { render } from "react-dom"

render(hello world, document.body)

react-dom takes the hello world syntax and renders a span to the

body element. We can build larger components out of regular HTML elements.

Listing 13-10 demonstrates what one of these larger components might look like.

Chapter 13 Front-End Tools

181

Listing 13-10.  This is from threadbear/resources/js/app.js

import React, { Component } from "react"

import { render } from "react-dom"

class Heading extends Component {

 render() {

 const { style, children } = this.props

 return (

 <h1 className={"heading-" + style}>

 {children}

 </h1>

)

 }

}

render(

 <Heading style="bright">

 Welcome to ThreadBear

 </Heading>,

 document.body,

)

When we build these kinds of components, we define a render method. This method

returns what the component should look like with any given state. We can pretend this is

being run only once, but React could be calling it constantly (with updates to properties

or state).

We’ll start to build more and more complex components in future chapters. For now,

I encourage you to experiment with React (and the JSX syntax) until you have the hang of

building and rendering elements. It’s important that your build chain is working, so you

can follow along when we write more browser JavaScript.

Chapter 13 Front-End Tools

182

�Summary
In this chapter, we set up a complete build chain. We installed and configured Laravel

Mix. We saw how it enables us to define input and output files, and how easy it is to work

with Sass and modern JavaScript syntax.

We installed Bootstrap so we can use local builds and customize them with our own

Sass variables and styles. We also installed React and tested to see that it can compile JSX

syntax to regular old JavaScript.

In the next chapter, we’re going to connect WebSockets in the browser to our

application back end. We’ll start to store and retrieve data through these WebSockets

and build a shopping cart in the process.

Chapter 13 Front-End Tools

183
© Christopher Pitt 2018
C. Pitt, The Definitive Guide to AdonisJs, https://doi.org/10.1007/978-1-4842-3390-0_14

CHAPTER 14

WebSockets
In the previous chapter, we started work on the front end. We set up a build chain and

installed a few front-end frameworks. We’re now able to build Sass stylesheets and parse JSX!

In this chapter, we’re going to start to put that to use. We’ll set up WebSockets (from

the server to the browser) and start to store and retrieve data through them. We’ll connect

them to a React shopping cart and learn about how to manage state in a deeply-nested

component hierarchy. Finally, we’ll use the checkout process to create orders.

�Installing Socket.io
AdonisJs 4.0 is full of awesome new features and improvements. But one of the areas that

still needs to be addressed is WebSockets. AdonisJs 3.x had some support for them, but

with 4.0 the core team decided to assess where that support needs to be improved. While

work continues in that area, some excellent alternatives fit right into an AdonisJs app.

My favorite alternative is called Socket.io (https://socket.io). It’s a library we can

install as follows:

npm install --save socket.io

The Getting Started documentation shows how to take an instance of the standard

Node.js HTTP server and extend it with WebSocket functionality, as shown in Listing 14-1.

Listing 14-1

const app = require("express")()

const http = require("http").Server(app)

const io = require("socket.io")(http)

app.get("/", function(req, res) {

 res.sendFile(__dirname + "/index.html")

})

https://socket.io/

184

io.on("connection", function(socket) {

 console.log("a user connected")

})

http.listen(3000, function() {

 console.log("listening on *:3000")

})

Of course, this demonstrates using ExpressJS as well, which we’re not going to do.

Instead, we’re going to tap into the HTTP instance that AdonisJs is using. We’ll do this as

part of the hooks file, shown in Listing 14-2.

Listing 14-2.  This is from threadbear/start/hooks.js

"use strict"

const { hooks } = use("@adonisjs/ignitor")

hooks.after.httpServer(() => {

 const server = use("Server")

 const socket = use("socket.io")(

 server.getInstance(),

)

 socket.on("connection", connection => {

 console.log("browser connected")

 })

 console.log("set up socket.io")

})

// ...rest of the hooks

use("Server") returns the single, shared instance of the AdonisJs HTTP server. It’s

a wrapper for the standard Node.js HTTP server, with a helpful getInstance method. If

we needed to, we could even insert our own HTTP server object into the AdonisJs Server

object, using the setInstance method. We’d have to do that before the application is

launched, though.

Chapter 14 WebSockets

185

We can pass the HTTP server instance to Socket.io, and then we can begin to attach

events to the WebSocket server. Aside from handling all WebSocket traffic for us, Socket.

io extends the HTTP server object with a browser runtime endpoint. We should add the

exposed script to our layout template, shown in Listing 14-3.

Listing 14-3.  This is from threadbear/resources/views/layout.edge

<!doctype html>

<html lang="en">

 <head>

 <!-- rest of the head -->

 </head>

 <body>

 <!-- rest of the body -->

 {{ script("/socket.io/socket.io.js") }}

 {{ script("/js/app.js") }}

 </body>

</html>

Then we can make a new WebSocket connection inside our app.js, resembling

Listing 14-4.

Listing 14-4.  This is from threadbear/resources/js/app.js

const socket = io()

socket.on("server message", message => {

 console.log("server message:", message)

})

/socket.io/socket.io.js introduces a global function called io. This is an easy way

for us to start a WebSocket connection. Many browsers still don’t support the WebSocket

protocol, so Socket.io also ships with workarounds. All of them, and the official WebSocket

protocol, can be started in this same way. Socket.io will pick the one that works.

After a connection is made, we can see the console messages. Figure 14-1 shows

what this looks like in the development server console.

Chapter 14 WebSockets

186

We can begin to attach new events—for example, for times when the browser

disconnects or sends a message to the server. Listing 14-5 shows what this looks like.

Listing 14-5.  This is from threadbear/start/hooks.js

socket.on("connection", connection => {

 console.log("browser connected", connection.id)

 connection.on("disconnect", () => {

 console.log("browser disconnected")

 })

 connection.on("browser message", message => {

 console.log("browser message:", message)

 })

 connection.emit(

 "server message",

 "hello browser",

)

})

When we refresh the browser or send a message (using socket.emit("browser

message", "hello world")), we can see the messages in Figure 14-2.

Figure 14-1.  Browser connecting to server

Chapter 14 WebSockets

187

Each time the browser page is refreshed, a new socket connection will automatically

be made to the server. That’s good, but it could be better. We could try to maintain a

single session each time the server is restarted or the browser page is refreshed.

Unfortunately, this will take us further into the guts of Socket.io than I would like us

to go. For the sake of simplicity, we’re going to assume that the server won’t restart and

that the browser won’t refresh while we’re working with the cart. That’s obviously not

going to be the case in a real application, and I’ll point you in the direction of how to

maintain sessions a little later.

Let’s add a Buy Now button to the Products list. Let’s also add the shopping cart

on the same page so we can see the communication between the Buy Now button,

WebSockets, and React. Listing 14-6 shows the Buy Now button and the container into

which we’ll put the shopping cart.

Listing 14-6.  This is from threadbear/resources/views/customer/profile.edge

@section("header")

<h1>

 {{ customer.displayName }}'s profile

</h1>

@endsection

@section("content")

 @each(product in products)

 <p>

 {{ toTitleCase(product.name) }}

Figure 14-2.  Listening for new socket events

Chapter 14 WebSockets

188

 ${{ product.price / 100 }}

 �<button data-buy-id="{{ product.id }}" data-buy-name="{{ product.name

}}" data-buy-price="{{ product.price }}">buy now</button>

 </p>

 @else

 <p>

 {{ toTitleCase(customer.first_name) }} doesn't have any products

 </p>

 @endeach

 <div class="shopping-cart">

 Shopping cart goes here

 </div>

@endsection

We’ve had to update part of this template to match the changes we made in the

dashboard template. Similarly, we also need to change how we get the dashboard data,

as demonstrated in Listing 14-7.

Listing 14-7.  This is from threadbear/app/Controllers/Http/

CustomerController.js

async showProfile({ params, response, view }) {

 const redirect = await this.redirectForCustomer(

 params.customer,

)

 if (redirect) {

 return response.route("profile", {

 customer: redirect,

 })

 }

 const customer = await Customer.query()

 .where("nickname", params.customer)

 .first()

 if (!customer) {

 throw new ProfileMissingException()

 }

Chapter 14 WebSockets

189

 const products = await customer

 .products()

 .fetch()

 return view.render("customer/profile", {

 customer: customer.toJSON(),

 products: products.toJSON(),

 })

}

async redirectForCustomer(customer) {

 const row = await Redirect.query()

 .where("from", customer)

 .first()

 if (row) {

 return row.to

 }

 return false

}

�Building a React Shopping Cart
Now let’s get the shopping cart started. We need to check whether the page should

display the shopping cart, and then render into it a React component. Listing 14-8 shows

how this is done.

Listing 14-8.  This is from threadbear/resources/js/app.js

class Cart extends Component {

 componentDidMount() {

 this.socket = io()

 this.socket.on(

 "server message",

 this.onServerMessage,

)

 }

Chapter 14 WebSockets

190

 onServerMessage = message => {

 console.log("server message:", message)

 }

 render() {

 return <div>Shopping cart is here</div>

 }

}

const container = document.querySelector(

 ".shopping-cart",

)

if (container) {

 render(<Cart />, container)

}

This component resembles the previous Heading component. After it is mounted,

being rendered into the DOM, it connects to the WebSocket. This will only happen

on pages that include the .shopping-cart container, and the element will only be

unmounted when the customer navigates away from the page. For this reason, we don’t

need to remove the server message event listener or close the socket connection.

Note  We could remove the event listeners by using this.socket.off("event
name", fn). Furthermore, we could close the socket connection by using
this.socket.close(). If there was any chance of the Cart component being
unmounted, removing the event listener would be a very good idea. It would be
best to do this inside the componentWillUnmount method, which is invoked just
before the component is unmounted.

Methods such as componentDidMount are called life-cycle methods. Without going

into too much detail, these methods are called at various stages of the component’s

life. componentDidMount is useful for initiating asynchronous loading operations or

connections to other services.

If everything is working, “Shopping cart goes here” should be replaced by “Shopping

cart is here.” That means the component is being rendered on the correct page. Let’s

exercise that React muscle and start thinking of the cart in terms of its constituent parts.

Chapter 14 WebSockets

191

Note T his is not the book for learning React from scratch. We’ve started in
the deep end, and things will only get deeper from here. If you’d like to learn
React from scratch, read a good book about it: Introduction to React by Cory
Gackenheimer (Apress, 2015).

The cart should show each item’s quantity and price. It should show the total value of

the cart. It should have a way to add (increase the number of) or remove items from the

cart. It should have a button for proceeding to payment.

Let’s create each row (with controls), followed by the Total and Proceed to Payment

components. Listings 14-9 and 14-10 show each of these.

Listing 14-9.  This is from threadbear/resources/js/app.js

const dollars = cents =>

 "$" + (cents / 100).toFixed(2)

const CartItem = ({

 name,

 price,

 quantity,

 onPlus,

 onMinus,

}) => (

 <div className="item">

 {name}: {quantity} x{" "}

 ${(price / 100).toFixed(2)}{" "}

 <button onClick={onPlus}>+</button>

 <button onClick={onMinus}>-</button>

 </div>

)

You’d be forgiven for thinking that this is a function, because it is a function. React

can render using components (with a render method) just as easily as it can render

functions. This function uses some pretty advanced ES2016+ syntax, so let’s look at it

piece by piece.

Chapter 14 WebSockets

192

We define the function as a constant by using const CartItem. This means CartItem

cannot be redefined. An alternative would be to define the function as function

CartItem, but I prefer the constant approach.

To this, we assign a short-arrow function. This takes the form of (...arguments) =>

{...body}. For the list of arguments, we’re destructuring an input object—that is to say,

we’re taking the first function argument (which is the props object) and assigning those

variables the values for matching keys in the object. It’s similar to when we say { name,

price, quantity, onPlus, onMinus } = props.

Finally, we’re omitting the function body, and instead we’re immediately returning

an object.

This results in a function we can call with a props object, which will return some

markup. Those named props keys are required for the function to work. We have to

define a name, price, quantity, onPlus (function), and onMinus (function).

Note  In some cases, React doesn’t render spaces between things, as you might
be used to in HTML. We force it to by adding {" "} in places where we definitely
want a space. This workaround is weird, but worth knowing about.

The first three variables are rendered as text. The two functions are used to do

something when the buttons are clicked.

Listing 14-10.  This is from threadbear/resources/js/app.js

const CartTotal = ({ items, onCheckout }) => (

 <div className="total">

 Total:{" "}

 {dollars(

 items

 .map(item => item.quantity * item.price)

 .reduce(

 (total, item) => total + item,

 0,

),

)}

Chapter 14 WebSockets

193

 <button onClick={onCheckout}>

 Check Out

 </button>

 </div>

)

The CartTotal component is slightly simpler, though the formatting could use work.

This component accepts an array of items and reuses the dollars function to format

their totals. We work out the total for each by first mapping (their quantities and prices)

and then reducing each item into a total value.

Note  map and reduce are powerful tools. There’s no practical way we could
have produced the same output without making it into a normal function body. If
you’re not already familiar with them, I suggest you take some time to learn these
two array functions. Throw in some time with filter and you’ll be halfway to
learning functional programming.

We can put these together by adding them to the Cart render process. Listing 14-11

demonstrates this.

Listing 14-11.  This is from threadbear/resources/js/app.js

class Cart extends Component {

 state = {

 items: {},

 }

 componentDidMount() {

 this.initSocket()

 this.initButtons()

 }

 initSocket = () => {

 this.socket = io()

 this.socket.on(

 "server message",

Chapter 14 WebSockets

194

 this.onServerMessage,

)

 }

 onServerMessage = message => {

 console.log("server message:", message)

 }

 initButtons = () => {

 const buttons = document.querySelectorAll(

 "[data-buy-id]",

)

 for (let button of buttons) {

 button.addEventListener("click", event =>

 this.onBuy(event),

)

 }

 }

 onBuy = event => {

 const {

 buyId,

 buyName,

 buyPrice,

 } = event.target.dataset

 const key = "_" + buyId

 const previous = this.state.items[key]

 const quantity = previous

 ? previous.quantity + 1

 : 1

 this.setState({

 items: {

 ...this.state.items,

 [key]: {

 id: buyId,

 name: buyName,

Chapter 14 WebSockets

195

 price: buyPrice,

 quantity,

 },

 },

 })

 }

 render() {

 const items = Object.values(this.state.items)

 return (

 <div className="items">

 {items.map(this.renderItem)}

 <CartTotal

 items={items}

 onCheckout={() =>

 alert("check out time!")

 }

 />

 </div>

)

 }

 renderItem = item => {

 if (item.quantity < 1) {

 return

 }

 return (

 <CartItem

 {...item}

 key={item.id}

 onPlus={() => this.onPlusItem(item)}

 onMinus={() => this.onMinusItem(item)}

 />

)

 }

Chapter 14 WebSockets

196

 onPlusItem = item => {

 const key = "_" + item.id

 this.setState({

 items: {

 ...this.state.items,

 [key]: {

 ...this.state.items[key],

 quantity: item.quantity + 1,

 },

 },

 })

 }

 onMinusItem = item => {

 const key = "_" + item.id

 this.setState({

 items: {

 ...this.state.items,

 [key]: {

 ...this.state.items[key],

 quantity: item.quantity - 1,

 },

 },

 })

 }

}

Most of the new code is there to add products to the items object, and to increase or

decrease their quantity. Take some time to study this. I want to focus on a couple of other

things, though:

•	 The product buttons aren’t controlled by React or the Cart

component. This means we need to get a reference to them and add

event listeners to them. This isn’t great, but we’ll investigate a better

alternative shortly.

Chapter 14 WebSockets

197

•	 The render method returns the markup for each CartItem (mapped

to the renderItem method, as well as the CartTotal component).

We were able to create CartItem and CartTotal in complete

isolation. We had to decide what variables and functions we

needed beforehand, but we certainly didn’t need to build the Cart

component before the others. That’s the bottom-up thinking I’ve

been describing.

�Connecting the UI
For the sake of better understanding WebSockets, we’re going to do something a little

bit silly. We’re going to give up control of the Buy Now buttons (in the Cart), and instead

we’re going to create React components for each of them.

Then we’ll connect the Buy Now buttons to the Cart through the WebSockets.

Normally, we wouldn’t incur network traffic just to connect multiple things on the same

page. I think it’s an interesting exercise for the moment. Listing 14-12 shows what the

new BuyNow button component could look like.

Listing 14-12.  This is from threadbear/resources/js/app.js

class BuyNow extends Component {

 onBuyNow = () => {

 const { id, name, price, socket } = this.props

 socket.emit(

 "buy",

 JSON.stringify({ id, name, price }),

)

 }

 render() {

 return (

 <button onClick={this.onBuyNow}>

 buy now

 </button>

)

 }

}

Chapter 14 WebSockets

198

This new component accepts id, name, price, and socket as required attributes.

When the button is clicked, it emits a message through the WebSocket. We might seek to

create these new components by adjusting the profile template and adding new render

code to the main JavaScript file. Listings 14-13 and 14-14 show what I’m talking about.

Listing 14-13.  This is from threadbear/resources/views/customer/profile.edge

@section("content")

 @each(product in products)

 <p>

 {{ product.displayName }}

 ${{ product.price / 100 }}

 <!--

 <button ...>buy now</button>

 -->

 �<div class="buy-now" data-id="{{ product.id }}" data-name="{{

product.displayName }}" data-price="{{ product.price }}">

 </div>

 </p>

 @else

 <p>

 {{ customer.displayName }} doesn't have...

 </p>

 @endeach

 <div class="cart">

 Shopping cart goes here

 </div>

@endsection

The new element is similar, but it has a class attribute we can use to identify it. I’ve

also chosen to drop the buy prefix from the data attributes. This makes it easier to handle

the data.

Chapter 14 WebSockets

199

Listing 14-14.  This is from threadbear/resources/js/app.js

const socket = io()

const cartContainer = document.querySelector(

 ".cart",

)

if (cartContainer) {

 render(<Cart socket={socket} />, cartContainer)

}

const buyNowContainers = document.querySelectorAll(

 ".buy-now",

)

for (let buyNowContainer of buyNowContainers) {

 const {

 id,

 name,

 price,

 } = buyNowContainer.dataset

 render(

 <BuyNow

 id={id}

 name={name}

 price={price}

 socket={socket}

 />,

 buyNowContainer,

)

}

Instead of creating the socket inside the Cart component, we can create a single

(shared) WebSocket connection. We can pass this as a parameter to each component

that needs it.

Chapter 14 WebSockets

200

Here, we’re fetching each buy-now div, and rendering a new BuyNow button

component into it. We’re providing the id, name, and price required to send the buy

message to the server. Listing 14-15 shows how we can intercept that buy message and

send it back to the Cart.

Listing 14-15.  This is from threadbear/start/hooks.js

connection.on("buy", message => {

 connection.emit("bought", message)

})

The Cart component becomes a lot simpler now. We can remove the initButton

method we had before and simplify the onBuy method too! Listing 14-16 demonstrates this.

Listing 14-16.  This is from threadbear/resources/js/app.js

class Cart extends Component {

 componentDidMount() {

 this.props.socket.on("bought", this.onBought)

 }

 onBought = data => {

 this.onBuy(JSON.parse(data))

 }

 onBuy = ({ id, name, price }) => {

 const key = "_" + id

 const previous = this.state.items[key]

 const quantity = previous

 ? previous.quantity + 1

 : 1

 this.setState({

 items: {

 ...this.state.items,

 [key]: {

 id,

 name,

 price,

 quantity,

Chapter 14 WebSockets

201

 },

 },

 })

 }

 // ...rest of Cart

}

�Creating Orders
Let’s finish up by creating new orders. We know who is purchasing (because we can force

customers to log in before checking out). We know what items should go in each order.

That’s all we need to know.

Let’s make the customer log in before they can check out. Listings 14-17 and 14-18

show how we can achieve this.

Listing 14-17.  This is from threadbear/app/Controllers/Http/

CustomerController.js

async showProfile({

 params,

 session,

 response,

 view,

}) {

 // ...rest of showProfile

 return view.render("customer/profile", {

 customer: customer.toJSON(),

 products: products.toJSON(),

 session: session.get("customer"),

 })

}

We can check the session to see if there is a stored customer. If you’re wondering why

we don’t just reuse the auth middleware, remember that it will automatically redirect

customers who aren’t logged in. We don’t want people redirected away from here. We

just want them to log in first.

Chapter 14 WebSockets

202

Listing 14-18.  This is from threadbear/resources/views/customer/profile.edge

@section("content")

 @each(product in products)

 <p>

 {{ product.displayName }}

 ${{ product.price / 100 }}

 <!--

 <button ...>buy now</button>

 -->

 @if(session)

 �<div class="buy-now" data-id="{{ product.id }}" data-name=

"{{ product.displayName }}" data-price="{{ product.price }}">

 </div>

 @endif

 </p>

 @else

 <p>

 {{ customer.displayName }} doesn't ...

 </p>

 @endeach

 @if(session)

 <div class="cart">

 Shopping cart goes here

 </div>

 @else

 <div>

 Log in...

 </div>

 @endif

@endsection

When the session exists, we show the normal buttons and cart. When it doesn’t, we

instead show a way for them to log in. What about when they are logged in and have

added items to the shopping cart? How do we let them check out?

We can add another socket event, as shown in Listing 14-19.

Chapter 14 WebSockets

203

Listing 14-19.  This is from threadbear/start/hooks.js

connection.on("check out", async message => {

 const { seller, buyer, items } = JSON.parse(

 message,

)

 const Database = use("Database")

 const moment = use("moment")

 const timestamps = {

 created_at: moment().format(

 "YYYY-MM-DD HH:mm:ss",

),

 updated_at: moment().format(

 "YYYY-MM-DD HH:mm:ss",

),

 }

 const orderId = await Database.table(

 "orders",

).insert({

 buyer_id: seller,

 seller_id: buyer,

 status: "pending",

 ...timestamps,

 })

 await Database.from("order_items").insert(

 items.map(item => ({

 order_id: orderId[0],

 product_id: item.id,

 quantity: item.quantity,

 price: item.price,

 ...timestamps,

 })),

)

})

Chapter 14 WebSockets

204

This is similar to the database seeder work we did in an earlier chapter. We’re also

using a buyer and seller value, which we need to store somewhere in the template, as

shown in Listing 14-20.

Listing 14-20.  This is from threadbear/resources/views/customer/profile.edge

@if(session)

 <div class="cart" data-seller={{ customer.id }} data-buyer={{ session }}>

 Shopping cart goes here

 </div>

@else

 <div>

 Log in...

 </div>

@endif

Finally, we need to stitch these two bits of code together in the onCheckout method,

as shown in Listing 14-21.

Listing 14-21.  This is from threadbear/resources/js/app.js

onCheckout = () => {

 const { buyer, seller, socket } = this.props

 const items = Object.values(this.state.items)

 socket.emit(

 "check out",

 JSON.stringify({ buyer, seller, items }),

)

 this.setState({ items: {} })

}

render() {

 const items = Object.values(this.state.items)

 return (

 <div className="items">

 {items.map(this.renderItem)}

 <CartTotal

Chapter 14 WebSockets

205

 items={items}

 onCheckout={this.onCheckout}

 />

 </div>

)

}

When the Checkout button is clicked, a new socket message is emitted (and the items

object is reset). The message we send includes the buyer’s ID, the seller’s ID, and the array of

order items. Spend some time reviewing this code and becoming familiar with the messages

we’re sending back and forth, and the components that are reacting to changes in state.

Note  I’m avoiding payment gateways for now. We’ll tackle them in chapter 16.

�Summary
In this chapter, we took a whirlwind tour of WebSockets. We built many React

components and threaded them all together by sending messages back and forth

through WebSockets. It can be a tricky subject, and there’s lots of code to read through

and understand.

In the next chapter, we’re going to learn about deploying our application to the

Web. We’ll learn about virtualized servers, provisioning services, SSL certificates, and

domains.

Chapter 14 WebSockets

207
© Christopher Pitt 2018
C. Pitt, The Definitive Guide to AdonisJs, https://doi.org/10.1007/978-1-4842-3390-0_15

CHAPTER 15

Deployment
In the previous chapter, we got knee-deep into WebSockets. We set up the hooks and the

Socket.io code so that our application could accept WebSocket connections. Then we

created React components and the client-side code so that we could send and receive

data from the server. We made a rudimentary shopping cart and checkout process so

that customers could purchase products from other customers.

In this chapter, we’re going to cover topics related to deploying our application to

the Web. This is arguably the least important, and potentially the most complex, step to

creating a commerce application, but there are plenty of tools to make the job easier for us.

Note  This chapter is full of recommendations for third-party services. We can’t
host a commerce application on a laptop in the garage. That’s unreliable and
difficult. Any significant application needs infrastructure, and the companies I
recommend here are ones that have helped me host things in the past.

That doesn’t mean you have to use the same companies. You can buy your domains
anywhere, host your code anywhere, get your SSL certificates from anywhere. I’ve
made my instructions as provider-independent as possible, but you’re probably better
off using the same services as I do while you’re still learning the basics of hosting.

It’s also important to remember that these providers could change their interfaces
(and the services they provide), so the figures might be out-of-date as you read
this book.

208

�Setting Up DigitalOcean
DigitalOcean (www.digitalocean.com) is a virtual private server hosting platform. In the

old days, web sites were hosted on dedicated, physical hardware. If you wanted to set

something up, you rented a server (or shared a server with many other people). Apache or

Nginx was installed on that server and was configured to serve one or more virtual hosts.

These days, it’s far more common to run a web application in a virtual server

environment—one in which we control more than a sandboxed virtual host

environment, and can install any language or binary or service we want to install.

DigitalOcean makes creating and maintaining these kinds of virtual servers easier.

It’s still very bare-bones but provides ways to manage DNS, monitor the server, and

manage installation and configuration of some things.

OK, that’s enough waffling. Let’s set up an account and configure a domain name.

Go to www.digitalocean.com and click Sign Up, as shown in Figure 15-1.

Figure 15-1.  Signing up to DigitalOcean

Chapter 15 Deployment

http://www.digitalocean.com/
http://www.digitalocean.com/

209

Once you’re finished setting up your account, we can start to set up new virtual

servers. We could do that through the DigitalOcean interface (which is quite friendly), or

we could use a provisioning service. Let me tell you about one that I like.

�Setting Up Forge
I’ve mentioned before how similar AdonisJs is to the Laravel PHP framework. I was

building Laravel applications long before I ever heard about AdonisJs. Taylor Otwell,

the creator of Laravel, has also created a provisioning service. It’s called Forge

(https://forge.laravel.com).

Let’s create a Forge account, as shown in Figure 15-2.

Once that’s set up, click your name and go to My Account. Then link your Forge

account to your DigitalOcean account, as shown in Figure 15-3.

Figure 15-2.  Creating a Forge account

Chapter 15 Deployment

https://forge.laravel.com/

210

Once that’s done, you can go back to the Forge dashboard (click the Forge logo) and

create a new DigitalOcean server, as shown in Figure 15-4.

Figure 15-3.  Linking Forge to DigitalOcean

Figure 15-4.  Creating a new DigitalOcean server

Chapter 15 Deployment

211

The defaults should be fine. This process performs the first bit of setup. It’ll install

everything we need to host a PHP application. We’re not making a PHP application,

so some of that software will not be used. It will give us MySQL and network security,

though. That’s a good start!

Note  Keep this browser tab open—we’ll need it soon.

After a few minutes, we’ll see a screen where we can add new applications to the server.

Before we do that, we should try to get a domain name. It’s time to set up another account.

�Getting a Domain

Note  If you’ve bought a domain before, you can skip this section.

There are many places to buy a domain. If you’ve built things for the Web, you probably

have a sense of how to go about getting a domain. If not, head over to a reseller such as

Namecheap, as shown in Figure 15-5. I’ve never found a pleasant or wholesome domain

reseller, but I think Namecheap is the best I’ve tried.

Chapter 15 Deployment

212

Search for a domain name you like. Don’t be surprised if it is already taken—domain

names are like that. Also, don’t be surprised if your preferred domain name is taken and

is not being used. Domain squatting is an insufferable part of the Web. Find a domain

name you don’t hate and snag it.

Part of the process will include creating a new account. You should be getting the

hang of creating these new accounts by now. After the account is created and the domain

is purchased, you’ll be able to log in to a management console.

Go to the Domain List and click Manage next to the domain you’ve just bought.

Scroll down to Nameservers and select Custom DNS from the drop-down. Enter

ns1.digitalocean.com, ns2.digitalocean.com, and ns3.digitalocean.com; as in

Figure 15-6.

Figure 15-5.  Searching for a domain name

Chapter 15 Deployment

213

�Adding the Domain Name in Forge
It’s time to add the domain name in Forge. Hopefully, you kept the Forge tab open on

the server page. If not, navigate back to the virtual server you created. Enter the domain

name you bought, and select Static HTML from the drop-down, as shown in Figure 15-7.

Our AdonisJs application isn’t exactly static HTML, but that’s the best option for now.

Figure 15-6.  Setting custom DNS options

Chapter 15 Deployment

214

That’ll take a few minutes to finish. When it does, click the domain name you added

and you’ll be taken to a page that asks whether you want WordPress or a Git Repository.

Choose Git Repository and enter the details of the GitHub repository containing your

application code, as shown in Figure 15-8.

Figure 15-7.  Adding a domain to Forge

Chapter 15 Deployment

215

Remember the IP address in the top-right corner of the screen. We’re going to use it

to complete the domain name setup, over in DigitalOcean’s control panel.

�Setting Up DNS Servers
The Namecheap DNS server configuration was only half of the equation. We pointed the

domain name to DigitalOcean’s servers, but we still have to set up those servers. Go back

to the DigitalOcean tab, click Networking, and enter your domain name in the Enter

Domain field.

When you click Add Domain, you’ll be taken to the configuration page for that

domain. Add an “A” record with the hostname of “@” and select the server you created in

Forge from the drop-down field next to it. Figure 15-9 demonstrates this.

Figure 15-8.  Linking a GitHub repository

Chapter 15 Deployment

216

DigitalOcean and Namecheap (and most other services you could use instead) will

have a delay between creating these records and you being able to use that domain. This

is what is represented by TTL (short for time to live). You may have to wait up to 48 hours

before you can type your domain name in a browser and see a response from the correct

server—the one you’ve created.

However, all the pieces should be in place now. When that delay is over, your domain

name should match up to the IP address of your DigitalOcean server. All that’s left is to

run your application through Forge.

�Adding a Server Daemon
So far, we’ve been using the AdonisJs command-line utility as a global utility. That’s OK

for local development, but we need something a little more predictable in production.

Let’s install it as a dependency of our application:

npm install --save-dev @adonisjs/cli

This creates a binary in node_modules/.bin, and we can make it easier to run this by

adding new package.json scripts. Listing 15-1 demonstrates this.

Figure 15-9.  Creating an @ record

Chapter 15 Deployment

217

Listing 15-1.  This is from threadbear/package.json

"scripts": {

 "serve": "adonis serve --dev",

 "serve:production": "adonis serve"

 // ...rest of the scripts

}

Now we can serve the application just by typing npm run serve, or npm run

serve:production in the case of our production server. We also need Forge to install our

NPM dependencies and build our static assets. Go to the Forge dashboard, select the

server you created, and then select the application/domain you added to the server.

Note  If you’re planning to need clustering or any other advanced configuration,
consider using PM2 (http://pm2.keymetrics.io) instead. It requires a bit
more configuration than just using adonis serve directly.

On this site dashboard page, you should see a box that has a Deploy Script in it.

These are instructions that will be run every time the application is deployed. Remove

the PHP-FPM line and add a couple of NPM lines, as shown in Figure 15-10.

Figure 15-10.  Deploy Script

Chapter 15 Deployment

http://pm2.keymetrics.io/

218

These lines tell Forge to install the NPM dependencies and build the static assets,

so the front end will look and work as it does on our local system. Now let’s set up the

environment variables, as shown in Figure 15-11. Click Environment and then Edit

Environment to edit the .env file that’s on the server. You can copy and paste your local

settings, but change NODE_ENVIRONMENT to production.

Note Y ou’ll probably want to change the database settings to use something
more robust than SQLite. AdonisJs supports many types (see http://adonisjs.
com/docs/4.0/database#_supported_databases), so check out the
documentation for how to connect to the one you want. Even if your database
engine isn’t connected correctly, you should be able to see parts of your application
on the remote server by the end of this chapter.

We’ve been using the local 3333 port to access the AdonisJs site locally. We need to

allow that through the server’s network security. Go back to the Forge dashboard and

select your server. Click Network and add 3333 with any name (preferably something like

Adonis port, as shown in Figure 15-12.

Figure 15-11.  Adding environment variables

Chapter 15 Deployment

http://adonisjs.com/docs/4.0/database#_supported_databases
http://adonisjs.com/docs/4.0/database#_supported_databases

219

Finally, click Daemons and add a new daemon, as shown in Figure 15-13.

Figure 15-12.  Adding a network rule

Figure 15-13.  Adding a daemon

Chapter 15 Deployment

220

When you click Start Daemon, Forge will create a Supervisor daemon

(http://supervisord.org) to run the server. If you go to your server’s IP address

(and don’t forget to add 3333 to the URL), you should see your AdonisJs application!

�Serving on Port 80
Our site would be even better if you didn’t need to use 3333—and you could go straight

to the domain name and it would serve your AdonisJs application. Let’s add a bit of

Nginx configuration to proxy requests to the correct port.

Go to the Forge dashboard and click the server. Click the site/domain and scroll

to the bottom of the page. Click Edit Files, followed by Edit Nginx Configuration.

Scroll down to where you see location / {, as shown in Figure 15-14. Comment this

block out and add the recommended AdonisJs configuration (http://adonisjs.com/

recipes/4.0/nginx-proxy) below it.

Figure 15-14.  Nginx configuration

Chapter 15 Deployment

http://supervisord.org/
http://adonisjs.com/recipes/4.0/nginx-proxy
http://adonisjs.com/recipes/4.0/nginx-proxy

221

Don’t remove or change any of the other configuration unless you know exactly what

you’re doing. Instead, go back to the dashboard and click the server. Scroll to the bottom

of the page and click Restart, followed by Restart Nginx.

You should be able to go to http://your-ip-address and see the AdonisJs

application. The last thing we are going to try is setting up an SSL certificate for the

application.

�Setting Up an SSL Certificate
Go to the Forge dashboard and click the server. Click the site/domain and then click

SSL. You should see four options, one of which is LetsEncrypt, as shown in Figure 15-15.

Click that. Enter your domain name (without the www option, unless you’ve already set

that up) and click Obtain Certificate.

This will take a minute or two to complete. When it does, you can choose to activate

the certificate.

Figure 15-15.  Getting a certificate

Chapter 15 Deployment

222

This will also update your Nginx configuration, so that requests to

http://your-domain are redirected to https://your-domain. After all the DNS

delays are finished, this will be the moment where you see your application go from

a local hobby project to a secure online store.

�Summary
In this chapter, we learned about a few tools to help us host our application. This is

a good time to share the link with a few trusted friends so they can help you test the

application from their computers and Internet connections.

Find out whether your friends got to the application and whether the SSL certificate

is working for them. Find out how quickly the files loaded for them, and whether they

could see all the stylesheets. Getting customer feedback (and feedback from friends) is

an excellent way to know what to improve in your application.

We’re almost at the end of our journey. In the final chapter, we’re going to add a

couple of features we’re skipped over so far. We’ll learn about things including sending

e-mail and making payment gateway purchases.

Chapter 15 Deployment

223
© Christopher Pitt 2018
C. Pitt, The Definitive Guide to AdonisJs, https://doi.org/10.1007/978-1-4842-3390-0_16

CHAPTER 16

Finishing Touches
In the previous chapter, we looked at the many tools we can use to deploy AdonisJs

applications. We set up a hosting space, purchased a domain, and configured DNS

servers. We provisioned a server (with Forge) and installed an SSL certificate.

As we enter the last chapter, it’s time to add a little polish to our application. We

skipped over some things that we’re going to cover now. We’re going to learn how to send

e-mail so that we can complete the password-reset features. We’re also going to learn

how to connect to a payment gateway so money can change hands during checkout. By

the end of this chapter, we should have a completely functional commerce application.

�Sending E-mail
There are many ways to send e-mail in Node.js. We could even implement a new method

from scratch, but they tend to be needlessly complicated and it’s not an important skill

to have to learn right now. Instead, we’re going to use one that already works well with

AdonisJs applications:

adonis install @adonisjs/mail

As with most AdonisJs packages, the adonis install command will pop up an

instruction page upon completion. The one in Listing 16-1 tells us we need to add

another provider.

Listing 16-1.  This is from threadbear/start/app.js

const providers = [

 // ...rest of the providers

 "@adonisjs/mail/providers/MailProvider",

]

This code also creates a config file, which resembles Listing 16-2.

224

Listing 16-2.  This is from threadbear/config/mail.js

"use strict"

const Env = use("Env")

module.exports = {

 /*

 |--

 | Connection

 |--

 |

 | Connection to be used for sending emails...

 |

 */

 connection: Env.get("MAIL_CONNECTION", "smtp"),

 /*

 |--

 | SMTP

 |--

 |

 | Here we define configuration for sending emails...

 |

 */

 smtp: {

 driver: "smtp",

 pool: true,

 port: 465,

 host: "smtp.gmail.com",

 secure: true,

 auth: {

 user: Env.get("MAIL_USERNAME"),

 pass: Env.get("MAIL_PASSWORD"),

 },

 maxConnections: 5,

 maxMessages: 100,

 rateLimit: 10,

Chapter 16 Finishing Touches

225

 },

 // ...rest of the config

}

Before we can send e-mail, we need to add values for MAIL_USERNAME and MAIL_

PASSWORD to our .env file. We also need to set a value for host in this config file (and any

other settings, depending on our SMTP provider).

Note I usually use Gmail as a provider in these sorts of situations. You can use
any SMTP provider or you can use SparkPost (www.sparkpost.com), which is
also configured in this file.

When customers request to reset their passwords, we should generate a random and

unique token to validate their subsequent password-reset request. We can add a new

field to the customers’ migration file, as demonstrated in Listing 16-3.

Listing 16-3.  This is from threadbear/database/migrations/x_customers_

schema.js

up() {

 this.create("customers", table => {

 table.string("token").unique()

 // ...rest of the fields

 })

}

Let’s also remember to rerun the migrations and seeder:

adonis migration:refresh

adonis seed

Now we need to modify the CustomerController.doForgotPassword method so that

it saves the token and sends an e-mail to the customer. Listing 16-4 shows how.

Listing 16-4.  This is from threadbear/app/Controllers/Http/

CustomerController.js

const Mail = use("Mail")

const Hash = use("Hash")

Chapter 16 Finishing Touches

http://www.sparkpost.com/

226

// ...later

async doForgotPassword({ request, response }) {

 // create new password-reset token and send email

 // this.showRequestParameters(context)

 const email = request.input("email")

 const customer = Customer.findBy(

 "email",

 email,

)

 if (!customer) {

 // displaying an error shows that this

 // email address isn’t registered

 // we should respond as we otherwise would

 const delay = Math.random() * 3000 + 1000

 await new Promise(resolve =>

 setTimeout(resolve, delay),

)

 response.redirect("/")

 }

 const token = await Hash.make(

 customer.email + new Date(),

)

 customer.token = token

 customer.save()

 const data = {

 ...customer.toJSON(),

 token,

 }

 await Mail.send(

 "email.customer.forgot-password",

Chapter 16 Finishing Touches

227

 data,

 message => {

 message

 .to(customer.email)

 .from("your email address")

 .subject("Password Reset")

 },

)

 response.redirect("/")

}

Let’s look at each step:

	 1.	 We get the e-mail address by using the request.input method.

Then we look for a customer with a matching e-mail address.

	 2.	 If we don’t find a customer with a matching email address, we

simulate a 1–4 second delay and redirect to the home page. You’ll

notice that we redirect there anyway, so, this hides the fact that

no customer account with that e-mail address exists. Otherwise,

malicious people could repeatedly post this form looking for valid

e-mail addresses.

	 3.	 If we did find a customer, we create a new reset token. This is a

hash made up of the customer’s e-mail address and a timestamp.

We save this to the customer’s database record. Because we added

a unique index to the token field, there’s an unlikely possibility

that what we generate isn’t unique and that it triggers a warning.

Given the unlikely nature of this, we’re better off displaying an

error message and asking the customer to try again.

	 4.	 We build a data object of information we might use in the e-mail

template, which includes the customer data and the new token.

We provide this to the Mail.send method, along with a closure to

transform the message with. email.customer.forgot-password

is the name of an e-mail template. After this e-mail is sent, we can

redirect back to the home page. This might also be a good time to

display a message to the customer.

Chapter 16 Finishing Touches

228

The e-mail template can be as simple as Listing 16-5.

Listing 16-5.  This is from threadbear/resources/views/email/customer/

forgot-password.edge

Click on this link to

 reset your password

Instead of hard-coding the domain name to 127.0.0.1:3333, we could store this

in the .env file and change it for each environment we are testing in. We use the route

function to build the reset-password route, based on what we’ve defined in the routes

file. Listing 16-6 reminds us to name the reset-password route.

Listing 16-6.  This is from threadbear/start/routes.js

Route.get(

 "/reset-password/:token",

 "CustomerController.showResetPassword",

).as("reset-password")

Now we need to allow the customer to reset their passwords by clicking the e-mail

link. When they do, they’re directed to the reset-password route. We need to make that

PATCH request update the customer’s password. Listing 16-7 shows how to achieve this.

Listing 16-7.  This is from threadbear/app/Controllers/Http/

CustomerController.js

async doResetPassword({

 params,

 request,

 response,

}) {

 // create new password reset token and send email

 // this.showRequestParameters(context)

 const token = decodeURIComponent(params.token)

Chapter 16 Finishing Touches

229

 const customer = await Customer.query()

 .where("token", token)

 .first()

 if (!customer) {

 // display an error

 throw new ProfileMissingException()

 }

 const password = request.input("password")

 customer.token = ""

 customer.password = password

 await customer.save()

 response.redirect("/")

}

The e-mail client is likely to encode the URL (with the hash in it), so we begin by

decoding that. Then we get the customer, as we did before.

If everything’s OK, we save the new password to the customer’s account and redirect

back to home. We previously set up a hook in the Customer model to automatically hash

the password. We need to update it to happen when the customer record is updated, as

well as when it is created. Listing 16-8 demonstrates this.

Listing 16-8.  This is from threadbear/app/Models/Customer.js

static boot() {

 super.boot()

 this.addHook("beforeSave", async customer => {

 customer.password = await Hash.make(

 customer.password,

)

 })

}

We changed beforeCreate to beforeSave, so that it happens with creates and

updates. We could also add validation to the password and password_confirmation

fields, but I’d rather move on. Consider that another exercise for you!

Chapter 16 Finishing Touches

230

�Connecting to Stripe
We previously created the shopping cart without any money changing hands. In a real

application, we need to have some sort of payment gateway integration. The trouble is

that this immediately creates pressure to adhere to security standards.

We’ve already dealt with this, in setting up SSL certificates for our hosting. That’s one

requirement, but there are many more. Luckily, most of them apply only if we store or

transmit credit card data to our servers. Stripe (https://stripe.com) provides a way for

us not to do this. In other words, Stripe takes care of all the security around transmission

and storage of credit card details so we can focus on the business of selling teddy bears.

Let’s go to Stripe’s website, shown in Figure 16-1.

Create a new account with Stripe, and let’s get it integrated. After you’re logged in,

click API and you’ll see a list of credentials. Let’s add these to our .env file. Next, we need

to expose the public key to the cart JavaScript, as shown in Listings 16-9 and 16-10.

Figure 16-1.  Registering a new Stripe account

Chapter 16 Finishing Touches

https://stripe.com/

231

Listing 16-9.  This is from threadbear/app/Controllers/Http/

CustomerController.js

const Env = use("Env")

// ...later

async showProfile({

 params,

 session,

 response,

 view,

}) {

 // ...rest of showProfile

 return view.render("customer/profile", {

 customer: customer.toJSON(),

 products: products.toJSON(),

 session: session.get("customer"),

 key: Env.get("STRIPE_KEY"),

 })

}

Listing 16-10.  This is from threadbear/resources/views/customer/profile.edge

<div class="cart" data-seller={{ customer.id }} data-buyer={{ session }}

data-key={{ key }}>

 Shopping cart goes here

</div>

If we inspect the profile HTML in a browser, we should see whatever we stored in

.env inside that data-key attribute. We can use that key to generate Stripe tokens, as

shown in Listing 16-11.

Listing 16-11.  This is from threadbear/resources/js/app.js

class Cart extends Component {

 onCheckout = async () => {

 const {

 buyer,

Chapter 16 Finishing Touches

232

 seller,

 stripeKey,

 socket,

 } = this.props

 const items = Object.values(this.state.items)

 const result = await this.stripe.createToken(

 this.card,

)

 const token = result.token

 console.log(

 "check out event",

 buyer,

 seller,

 token,

)

 socket.emit(

 "check out",

 JSON.stringify({

 buyer,

 seller,

 token,

 items,

 }),

)

 this.setState({ items: {} })

 }

 render() {

 const items = Object.values(this.state.items)

 return (

 <div className="items">

 {items.map(this.renderItem)}

 <div id="card-element" />

Chapter 16 Finishing Touches

233

 <CartTotal

 items={items}

 onCheckout={this.onCheckout}

 />

 </div>

)

 }

 // ...rest of Cart

}

// ...later

if (cartContainer) {

 const {

 buyer,

 seller,

 key,

 } = cartContainer.dataset

 render(

 <Cart

 buyer={buyer}

 seller={seller}

 stripeKey={key}

 socket={socket}

 />,

 cartContainer,

)

}

We begin by creating a placeholder element, which we call card-element. When

Cart mounts, we create a new Stripe object, and we mount the card object to the

placeholder we created. This isn’t how we would typically manage Stripe elements inside

React (see https://github.com/stripe/react-stripe-elements), but it’s to the point.

Chapter 16 Finishing Touches

https://github.com/stripe/react-stripe-elements

234

Note I was having some issues with the async/await conversion in my code.
To resolve it, I installed babel-polyfill and imported that instead of the
regenerator runtime we initially set up. Check out the example code if you’re
having the same issues. The result is the same, but the polyfill is different.

Instead of immediately sending the check out socket event, we first get a Stripe

token and then send that along to the server. For this to work, we also need to include the

Stripe JS SDK, as in Listing 16-12.

Listing 16-12.  This is from resources/views/layout.edge

<!doctype html>

<html lang="en">

 <head>

 <!-- ...rest of head -->

 </head>

 <body>

 <!-- ...rest of body -->

 {{ script("/socket.io/socket.io.js") }}

 <script src="https://js.stripe.com/v3/"></script>

 {{ script("/js/app.js") }}

 </body>

</html>

We’re not using the usual {{ script(...) }} tag because it messes with the Stripe

SDK URL. Before we get into what needs to happen on the server, let’s look at what this

does in the browser; see Figure 16-2.

Chapter 16 Finishing Touches

235

Now that we have a Stripe token (which is like a placeholder that Stripe can swap

out for credit card details), we can store this alongside the order record. We can execute

payments by providing this token to Stripe on the server. This way, money can change

hands without us ever seeing credit card details on the server.

Let’s modify the check out event handler to store this token, and the order table

migration to add a field for it. Listings 16-13 and 16-14 show what I mean.

Listing 16-3.  This is from threadbear/database/migrations/x_orders_

schema.js

up() {

 this.create("orders", table => {

 table.increments()

 table.integer("buyer_id")

 table.integer("seller_id")

Figure 16-2.  Generating Stripe tokens

Chapter 16 Finishing Touches

236

 table.string("status")

 table.string("token")

 table.timestamps()

 })

}

Listing 16-14.  This is from threadbear/start/hooks.js

connection.on("check out", async message => {

 const {

 seller,

 buyer,

 token,

 items,

 } = JSON.parse(message)

 const Database = use("Database")

 const moment = use("moment")

 const timestamps = {

 created_at: moment().format(

 "YYYY-MM-DD HH:mm:ss",

),

 updated_at: moment().format(

 "YYYY-MM-DD HH:mm:ss",

),

 }

 const orderId = await Database.table(

 "orders",

).insert({

 buyer_id: seller,

 seller_id: buyer,

 status: "pending",

 token,

 ...timestamps,

 })

Chapter 16 Finishing Touches

237

 await Database.from("order_items").insert(

 items.map(item => ({

 order_id: orderId[0],

 product_id: item.id,

 quantity: item.quantity,

 price: item.price,

 ...timestamps,

 })),

)

})

The only difference here is that we’re extracting token from the message and storing

it when we call Database.table("orders").insert. Otherwise, there’s no difference.

We can process the payments at any time, or we could do it in the same place. For the

sake of simplicity, I’ll show you what it looks like in the same place. Listing 16-15 shows a

slightly modified version of this event handler.

Listing 16-15.  This is from threadbear/start/hooks.js

connection.on("check out", async message => {

 const {

 seller,

 buyer,

 token,

 items,

 } = JSON.parse(message)

 // ...rest of the handler

 const Env = use("Env")

 const Stripe = use("stripe")

 const client = Stripe(Env.get("STRIPE_SECRET"))

 const total = items.reduce((acc, item) => {

 return acc + item.price * item.quantity

 }, 0)

 client.charges.create(

 {

Chapter 16 Finishing Touches

238

 amount: total,

 currency: "usd",

 description: "Threadbear purchase",

 source: token,

 },

 (error, charge) => {

 // ...use this to check if

 // the charge was successful

 },

)

})

We can create a new Stripe client object by providing it with the secret key we added

to .env. Then we can reduce each order item to a total value and create a charge with

that total. Keep the Stripe dashboard open and try to check out. You can use the card

number 4242 4242 4242 4242 for testing purposes.

If everything is set up correctly, you should also start to see successful charges!

Note I t’s also possible to set up monthly recurring payments with Stripe. You can
check out the documentation (https://stripe.com/docs/subscriptions/
quickstart) for how to achieve this, but it’s mostly the same as one-off charges.
After you have the card token, you can do pretty much anything with Stripe.

�Enabling CORS Requests
At times we’ll need to make requests to the server from the browser, and we don’t want

to use WebSockets. Perhaps we’d like to make a quick post using the Fetch API (https://

developer.mozilla.org/en-US/docs/Web/API/Fetch_API). By default, such requests

could be blocked.

AdonisJs provides a neat set of tools for managing these permissions:

adonis install @adonisjs/cors

Naturally, we will need to add a new provider and a new middleware to the

application, as demonstrated in Listings 16-16 and 16-17.

Chapter 16 Finishing Touches

https://stripe.com/docs/subscriptions/quickstart
https://stripe.com/docs/subscriptions/quickstart
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

239

Listing 16-16.  This is from threadbear/start/app.js

const providers = [

 // ...rest of the providers

 "@adonisjs/cors/providers/CorsProvider",

]

Listing 16-17.  This is from threadbear/start/kernel.js

const globalMiddleware = [

 // ...rest of the middleware

 "Adonis/Middleware/Cors",

]

The adonis install command also created a new configuration file for us. We need

to modify one of its values, so that CORS (or Cross-Origin Resource Sharing) requests

will still work. Listing 16-18 shows what to do.

Listing 16-18.  This is from threadbear/config/cors.js

/*

|--

| Origin

|--

|

| Set a list of origins to be allowed. The value can be...

|

*/

origin: () => true,

As you can tell by the comment, there are many possible values for this option. We’ve

added a closure that always returns true. That’s like an allow-all for all cross-origin

requests. We probably want to narrow it down to one of the other options or a finite list of

allowed domains. For now, this will suffice.

Let’s add a form to create new products, and endpoints to display and persist the

form. Listings 16-19, 16-20, and 16-21 demonstrate this.

Chapter 16 Finishing Touches

240

Listing 16-19.  This is from threadbear/resources/views/customer/partial/

create-product.edge

<h2>

 Create product

</h2>

<form method="post" class="ajax-form" action={{ route("create-product", {

customer: customer.nickname }) }}>

 {{ csrfField() }}

 <div class="form-group">

 <label for="name">Name</label>

 <input type="text" class="form-control" id="name" name="name">

 </div>

 <div class="form-group">

 <label for="price">Price</label>

 <input type="text" class="form-control" id="price" name="price">

 </div>

 <button type="submit" class="btn btn-primary">

 Create

 </button>

</form>

The only difference here, apart from the fact that this form isn’t surrounded by the

@layout/@section tags, is that we’re specifying the action and a custom CSS class. We

have to specify the action because this partial is being included on the dashboard page,

and the default action would be dashboard instead of /christopher/products.

Listing 16-20.  This is from threadbear/resources/views/customer/

dashboard.edge

@layout("layout")

@section("header")

 <h1>

 Hello, {{ customer.displayName }}

 </h1>

@endsection

@section("content")

Chapter 16 Finishing Touches

241

 <!-- ...rest of dashboard -->

 @include("customer.partial.create-product")

@endsection

Listing 16-21.  This is from threadbear/start/routes.js

Route.group(() => {

 // ...rest of the protected routes

 Route.post(

 "/:customer/products",

 async ({ request, response, params }) => {

 const { name, price } = request.all()

 const Product = use("App/Models/Product")

 await Product.create({

 name,

 price,

 customer_id: request.customer.id,

 })

 response.route("dashboard")

 },

).as("create-product")

}).middleware(["auth"])

For the sake of simplicity, I’ve added the creation code in the routes file. If it’s inside

the auth middleware route group, we will have access to request.customer (thanks to

how our Auth middleware works).

This means we can create a new product, along with the appropriate customer_id

value. We should be able to submit this form, and it will make a POST request and

redirect. Let’s replace this default behavior with some Ajax, as demonstrated in

Listing 16-22.

Listing 16-22.  This is from threadbear/resources/js/app.js

const forms = document.querySelectorAll(

 ".ajax-form",

)

Chapter 16 Finishing Touches

242

for (let form of forms) {

 const method = form

 .getAttribute("method")

 .toUpperCase()

 const action = form.getAttribute("action")

 form.addEventListener("submit", async event => {

 event.preventDefault()

 const data = []

 const inputs = form.querySelectorAll("input")

 for (let input of inputs) {

 data.push(

 input.name +

 "=" +

 encodeURIComponent(input.value),

)

 }

 const response = await fetch(action, {

 mode: "cors",

 credentials: "include",

 redirect: "follow",

 headers: {

 "Content-Type":

 "application/x-www-form-urlencoded; charset=UTF-8",

 },

 method,

 body: data.join("&"),

 })

 alert("saved!")

 // we should do another ajax request

 // to reload the products list. for now,

Chapter 16 Finishing Touches

243

 // we'll just refresh the whole page...

 location.reload()

 })

}

We begin by getting all the forms that have the custom CSS class. For each of them,

we get their action and method so that we can re-create the intended request through

the fetch function. Each input is used to construct the request body, including the

hidden _csrf field.

After the request finishes, we can alert the customer that their new product was

created. We could also do a second Ajax request to refresh the product list, but, a redirect

will suffice.

Note I was having some CSRF failures, even though I was submitting the _csrf
token field to AdonisJs. If you encounter 403 error responses, temporarily disable
CSRF to the route and see if the error goes away. That should at least tell you
whether the error you’re seeing is related to CSRF or something else.

�Summary
In this chapter, we tied up a few loose ends. We learned how to send e-mail and

subsequently completed the password-reset functionality. We learned how to integrate

a payment gateway so that customers could pay for goods and services. Finally, we

configured our application to handle CORS requests, and we set up a product creation page.

We’re at the end of our journey. Thank you for taking the time to read this book. I

hope it has given you the tools you need to make your ideas into real applications. You

might not be selling teddy bears, but I hope that you are able to thrive with AdonisJs.

Please reach out to me on Twitter (https://twitter.com/assertchris) if you have

any questions or you are stuck with something.

Chapter 16 Finishing Touches

https://twitter.com/assertchris

245
© Christopher Pitt 2018
C. Pitt, The Definitive Guide to AdonisJs, https://doi.org/10.1007/978-1-4842-3390-0

Index

A, B
Ace script, 8
AdonisJs

Ace script, 8
APP_KEY, 3
command-line tool, 3
controller, 7
Node.js HTTP script, 4–5
routes, 6
SendReminder, 8–9
start/app.js, 8

Arrays, 71
Auth middleware, 166

C
Callback Hell, 82
Cheerio, 43–44, 46
Conditionals, 36
Controllers

creation, 91
move route handlers, 92, 94–95
reuse code, 96–97

Cooperative routine, see Coroutines
Coroutines, 81, 84–85
CORS requests, 238–239, 241, 243
Cross-site request forgery (CSRF)

add hidden field, 170–171
global middleware array, 168
HttpException error, 169

request methods, 169
Shield library, 168

D
Dashboard

creation, 147–148
Customer model, 148–149
customerId, 164
customer-related data, 150–151
migrations creation, 153–154
order ID, 152
toJSON method, 150

Databases
customers

add fields, 121–122
authenticating, 125–127
boot method, 125
check credentials, 125
display error page, 115–116
models, 118, 120–121
profile’s products, 116–118
setter, 123–124

hashed customer passwords, 171
lucid

configuration file, 104
.gitignore file, 106–107
SQLite, 106

migration
add string columns, 109

https://doi.org/10.1007/978-1-4842-3390-0

246

create empty, 108
database lookup, 110
Database.raw, 110

seeding
create empty, 111
create migrations for customers

and products, 112–113
profile pages, 113
test data, 114–115

DigitalOcean
create @ record, 216
Forge (see Forge)
Namecheap, 211, 213, 215
sign up, 208
virtual servers, 208

E
E-mail, send

adonis install command, 223
config file, 223, 225
password-reset request, 225, 227–228

Error pages, 140, 142, 144
Events, 81–82
Exceptions, 144–145

F
Forge

add domain name, 213–214
add new daemon, 219
add port, 218
create account, 209
Deploy Script, 217
DigitalOcean

create new server, 210
linking, 209

Edit Environment, 218
install NPM dependencies, 218
Nginx configuration, 220–221
SSL certificate, 221–222

Front-end build tools
Mix (see Mix)
React, 179–181
Sass, 177–178

G
Generators, cooperative

multitasking, 75–77, 79

H
HTTP, 11

I
Interpolation, 35–36
Iterators

class, 74
requests code, 72

J, K
JSON responses, 62–63

L
Layouts

add markup, 30–31
Bootstrap markup, 31–32
create new, 29
create register view, 33
Edge global functions and relative

protocols, 32

Databases (cont.)

Index

247

Life-cycle methods, 190
Loops, 37
Lucid

database configuration file, 104
.gitignore file, 106–107
SQLite, 106

M
Macros, 66, 68–69
Middleware

auth, 166
currency format, 100–101
add CurrencySelector to kernel.js, 98
Customer property, 165
find location of user, 98
instructions for registering, 98

Mix
Babel, 176
configuration, 174
JavaScript file, 176
NPM scripts, 174
PHP tools, 173
webpack, 174

Mocha framework
duplicate tests, 18–19
form, 20
install, 16
multiple parameters, 24–25
NPM test script, 19
parameters, 20, 22
run tests with, 25
test file, 16

N, O
Namecheap

DNS
server configuration, 215

Node.js
HTTP server, 4
web site, 1–2

P, Q
Partials, 38
Password-reset request

add customers’ migration
file, 225

e-mail link, 228–229
e-mail template, 228
route function, 228
sending email, 225, 227

Profile routes, 14–15
Promises

coroutines, 84–85
database code, 88
Node.js, 86–87
understanding, 83

R
React

update .babelrc, 180
render method, 181
shopping cart

CartTotal component, 193
life-cycle methods, 190
props object, 192
render process, 193, 197
total and proceed to payment

components, 191
Requests

body parser
library, 47

Cheerio, 43–44, 46
class, 51

Index

248

config files, 55
content-type and language, 50
cookies, 50
DELETE, 52
GET, 51, 54
headers, 50
helper functions, 41–42, 44, 46
input method, 49
markup, 46
module.exports, 42
npm run test, 41
PATCH, 52–53
POST, 52, 54
PUT, 52

Responses
attachments, 66
cookies, 64
JSON, 62–63
macros, 66, 68–69
object, 61–62
redirect users, 64–65

Routes
customer, 12–13
HTTP, 11
Mocha framework (see Mocha)
profile, 14–15

S
Sass, 177–178
Seeding

create empty, 111
create migrations for customers and

products, 112–113
profile pages, 113
test data, 114–115

Sessions
create user session, 155
dashboard

create, 147–148
create action, 156, 158
create migrations, 153–154
Customer model, 148–149
customer-related data, 150–151
order ID, 152
route, 156
toJSON method, 150

modifying customer
controller, 161

seeder class, 158
ValidationException, 155–156

Shopping cart
Buy Now button and

container, 187–188, 197
create new orders, 201–202, 204–205
dashboard data, 188–189
data attributes, 198–199
onBuy method, 200–201
profile template, 198
React

CartTotal component, 193
life-cycle methods, 190
props object, 192
render process, 193, 197
total and proceed to payment

components, 191
SSL certificate, 221–222
Stripe

create new account, 230
.env file, 230–231
event handler, 237
JS SDK, 234
tokens, 231, 233–235, 237

Requests (cont.)

Index

249

T, U
Template file

creation, 27–28
syntax

conditionals, 36
functions, 39
interpolation, 35–36
loops, 37
partials, 38
yield, 38–39

ViewProvider, 28–29
Time to live (TTL), 216

V
Validation

controller, 129–130
create rule, 131–132
display errors, 134
error messages, 138–140
exists rules, 132

fails method, 133
installation, 129
modify customer controller, 135
old method, 134
registration form, 137
registration page, 136
session library, 134
validateAll method, 133

W, X, Y, Z
WebSockets

shopping cart (see Shopping cart)
Socket.io, install

app.js, 185
browser disconnects/sends

message, 186
global function, 185
hooks file, 184
layout template, 185
Node.js HTTP server, 183–184
shopping cart, 187–188

Index

	Table of Contents
	About the Author
	Acknowledgments
	Introduction
	Chapter 1: Getting Started
	Installing Node.js
	Installing the AdonisJs Command-Line Tool
	Creating a New Application
	Serving the Application
	Exploring the Code
	Summary

	Chapter 2: Routing
	What Are Routes?
	Planning Routes
	Defining Routes
	Testing Routes
	Defining Route Parameters
	Summary

	Chapter 3: Views
	Creating Views
	Registering the View Provider

	Creating Layouts
	Learning Template Syntax
	Interpolation
	Conditionals
	Loops
	Partials
	Yield
	Functions

	Summary

	Chapter 4: Requests
	Updating Tests
	Understanding Requests
	Getting Parameters
	Getting Headers and Cookies
	Getting “accepts” and “language”
	Finding Out More
	Responding to POST, PUT, PATCH, and DELETE
	Summary

	Chapter 5: Responses
	Sending Simple Responses
	Sending JSON Responses
	Working with Cookies
	Redirecting Users
	Responding with Attachments
	Extending with Macros
	Summary

	Chapter 6: Generators
	Arrays: Where It All Began
	Then Came Iterators
	Generators
	Cooperative Multitasking
	Summary

	Chapter 7: Promises
	Reacting to Events
	Entering Callback Hell
	Understanding Promises
	Using Promises with Coroutines
	Making Promises
	Bringing It Back to AdonisJs
	Summary

	Chapter 8: Controllers and Middleware
	Making Controllers
	Reusing Code
	Using Middleware
	Summary

	Chapter 9: Databases
	Installing Lucid
	Making Migrations
	Seeding the Database
	Working with Routes and the Database
	Showing Products
	Making Models
	Registering Customers
	Authenticating Customers
	Summary

	Chapter 10: Validation and Errors
	Installing Validation
	Reusing Validation
	Displaying Custom Error Pages
	Creating Custom Exceptions
	Summary

	Chapter 11: Sessions
	Making the Dashboard
	Creating the Customer Session
	Logging Customers Out
	Summary

	Chapter 12: Security
	Recap
	Creating More Middleware
	Securing Forms
	Encrypting Values
	Summary

	Chapter 13: Front-End Tools
	Installing Mix
	Installing Bootstrap (Sass)
	Installing React
	Summary

	Chapter 14: WebSockets
	Installing Socket.io
	Building a React Shopping Cart
	Connecting the UI
	Creating Orders
	Summary

	Chapter 15: Deployment
	Setting Up DigitalOcean
	Setting Up Forge
	Getting a Domain
	Adding the Domain Name in Forge
	Setting Up DNS Servers
	Adding a Server Daemon
	Serving on Port 80
	Setting Up an SSL Certificate
	Summary

	Chapter 16: Finishing Touches
	Sending E-mail
	Connecting to Stripe
	Enabling CORS Requests
	Summary

	Index

