
The Definitive
Guide to Shopify
Themes

Master the Design Skills to Build
World-Class Ecommerce Sites
—
Gavin Ballard

www.allitebooks.com

http://www.allitebooks.org

The Definitive Guide to
Shopify Themes

Master the Design Skills to Build
World-Class Ecommerce Sites

Gavin Ballard

www.allitebooks.com

http://www.allitebooks.org

The Definitive Guide to Shopify Themes

ISBN-13 (pbk): 978-1-4842-2640-7			 ISBN-13 (electronic): 978-1-4842-2641-4

DOI 10.1007/978-1-4842-2641-4

Library of Congress Control Number: 2017952538

Copyright © 2017 by Gavin Ballard

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Technical Reviewer: Keir Whitaker
Coordinating Editor: Nancy Chen
Copy Editor: Kezia Endsley
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

�Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484226407. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Gavin Ballard
Melbourne, Victoria, Australia

www.allitebooks.com

http://www.allitebooks.org

To my family and friends, within and without the world of Shopify.

www.allitebooks.com

http://www.allitebooks.org

v

Table of Contents

Chapter 1: �A Shopify Theme Primer�� 1

Anatomy of a Shopify Theme��� 1

Theme Structure��� 2

Liquid, Shopify’s Templating Language�� 5

Assets��� 6

Working with Shopify Themes��� 7

Setting Up Development Stores�� 8

Summary��� 10

Chapter 2: �Tools and Workflow�� 11

Moving to Local Development�� 12

Synchronizing Changes to Shopify��� 13

Putting Your Theme Under Version Control�� 15

A Git Workflow for Shopify Themes�� 16

Slate and Theme Build Tools�� 20

Grunt and Gulp: Automated Task Runners�� 20

Other Workflow Automation Tools��� 22

Introducing Slate�� 22

Summary��� 24

About the Author�� xi

About the Technical Reviewer�� xiii

Acknowledgments��xv

Introduction��xvii

www.allitebooks.com

http://www.allitebooks.org

vi

Chapter 3: �Principles and Process�� 25

Principles of Design��� 25

Understanding Design Goals�� 26

Design for Humans��� 27

Design for Different Contexts��� 28

Principles of Development��� 28

Keep It Simple�� 29

Utilize Progressive Enhancement��� 31

Document Things�� 31

Use Defensive and Modular Programming��� 35

Principles of Process��� 37

Client and Project Match�� 37

Iterative Development and Client Investment��� 38

Expectation Setting�� 38

User Testing�� 39

Summary��� 40

Chapter 4: �Designing Theme Foundations��� 41

A Starting Point�� 42

Theme Scaffolds��� 42

Sample Product Data�� 44

Your Theme’s Layout�� 45

Designing Layout and Navigation�� 46

The Site Header�� 48

The Navigation Menu�� 51

The Site Footer��� 59

Summary��� 62

Chapter 5: �Designing Product Pages��� 63

The Product Page��� 63

Product Page Information Hierarchy�� 64

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

vii

Adding Product Imagery�� 66

Design Considerations for Product Images�� 69

Shopify’s Image Filters��� 70

Zoomable Product Images and Product Lightboxes��� 70

Product Video��� 71

Adding Product Details and the Add To Cart Form��� 72

Product Details and Description��� 74

Add To Cart Form�� 75

Adding Recommended Products�� 77

Related versus Alternate Products��� 77

Recommended Products on Shopify�� 78

Improving the Product Page��� 82

Adding Product Information�� 83

Improving the Mobile Experience��� 87

Creating Alternate Page Templates�� 90

Summary��� 93

Chapter 6: �Designing Home and Collection Pages��� 95

The Home Page�� 95

Design Goals for Home Pages�� 95

Implementing a Home Page��� 98

Collection Pages�� 106

Design Goals for Collection Pages�� 106

Shopify Collection Page Concepts�� 108

Implementing a Collection Page��� 111

Summary��� 128

Chapter 7: �Carts, Checkouts, and Content��� 129

The Cart Page��� 129

Design Goals for Cart Pages��� 130

Implementing a Cart Page�� 130

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

viii

The Checkout��� 141

Customizing the Checkout with Shopify Plus��� 143

Content Pages�� 145

Summary��� 146

Chapter 8: �Theme Settings and Going Global�� 147

Theme Settings�� 147

What Should Be Made a Setting?��� 148

Theme Setting Guidelines��� 151

Using Settings in Your Themes��� 152

Going Global��� 155

The Difference Between i18n and l16n�� 156

Why Localization Matters��� 156

Go Hard or Go Home��� 158

Limitations of Shopify Themes��� 158

Making Themes Translatable�� 159

Presenting Customers with Multiple Currencies�� 160

Summary��� 161

Chapter 9: �SEO and Social Sharing�� 163

Search Engine Optimization (SEO)��� 163

Off-Page versus On-Page��� 164

Semantic HTML�� 165

Keywords and Content��� 165

Structured Data�� 167

Social Sharing�� 171

Open Graph Markup�� 171

Twitter Card Markup��� 174

Caring about Sharing�� 177

Summary��� 180

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

ix

Chapter 10: �Performance��� 181

Why Performance Matters��� 181

Why Performance Gets Ignored��� 183

Performance Analysis and Metrics�� 184

Performance Measuring Tools�� 184

Theme Performance Metrics�� 188

Performance Optimization Techniques�� 190

Technique 1: Page Simplification��� 190

Technique 2: Image Optimization��� 191

Technique 3: Asset Concatenation�� 194

Technique 4: Asset Minification�� 199

Technique 5: Odds and Ends�� 200

Evaluating Performance Improvements��� 203

Final Thoughts�� 204

Summary��� 204

Chapter 11: �Collaborative Theme Development��� 205

Collaborating on Themes��� 205

Collaborative Workflows with Version Control�� 206

Collaborative Deployment Processes��� 208

The Shopify Theme Store��� 213

Getting In to the Theme Store��� 214

What to Do if Your Theme Doesn’t Make It��� 217

Leveraging the Shopify Ecosystem�� 219

Where to Join��� 220

Official Shopify Channels�� 221

Other Resources��� 222

IRL Events��� 223

Use Open-Source�� 223

Summary��� 223

�Index�� 225

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

xi

About the Author

Gavin Ballard has been tinkering with all things Shopify for

nearly a decade. While working on a couple of small projects

(including his own side business selling posters), he became

fascinated with the platform and the potential it had to

transform online commerce.

He started to share what he was learning through his

blog and forum posts and to build tools to help other theme

developers get the most out of the platform. However, it wasn’t until a client reached

out to him on the strength of his “Bootstrap for Shopify” project that he fell into Shopify

freelancing full-time.

In 2015, Gavin founded Disco, a Shopify Plus Partner studio based in Melbourne,

Australia. Specializing in the development of custom applications, Disco works with

some of the largest Shopify merchants around the world to push the limits of what’s

possible with the platform and to deliver solutions to help merchants take their

businesses to the next level.

Gavin is now recognized as one of the leading Shopify Experts in the world, and he

continues to share his Shopify knowledge through writing, in-person workshops and

meetups, contributions to open source projects, and courses and books such as this one.

As he is always happy to shoot the breeze and chat Shopify, you can follow Gavin on

Twitter (@gavinballard) or reach out directly via e-mail (gavin@gavinballard.com).

www.allitebooks.com

http://www.allitebooks.org

xiii

About the Technical Reviewer

Keir Whitaker has been making a living with web technologies since 2000 and has held

a variety of positions for both agencies and corporate organizations. Additionally, he’s

worked as a freelance web developer, technical consultant, and event curator.

Since 2012, he has been working at Shopify, helping grow the Partner Program and

building a community around designers and frontend developers using the platform.

As well as his work at Shopify, he also occasionally gets behind the microphone

to record an episode of the web industry focused podcast The Back to Front

Show (backtofrontshow.com). You can find out more about Keir on his web site

(keirwhitaker.com) or connect to him on Twitter (@keirwhitaker) and by e-mail

(hello@keirwhitaker.com).

xv

Acknowledgments

As I will rave to any and all who care to listen, Shopify’s “secret sauce” doesn’t lie in its

code but in its ecosystem—the employees, experts, and partners who work together to

“make commerce better for everyone.” It’s a cheesy sentiment but genuine—I would

never have been able to write this book or do the work I enjoy without help from the

people listed here.

To the many Shopifolk and Shopify Partners I’ve crossed paths with over the years,

thank you for your time and generosity—whether answering forum posts, helping with

blog articles, diving in to obscure Liquid problems, or collaborating on new and exciting

projects. There are too many of you to mention, but a special shout-out to Carson Shold,

Jason Bowman, Courtney Symons, and Rhys Furner from Shopify, and Jessica Claesson,

Galen King, Stewart Knapman, Mack Johnson, Chris Pointer, Kurt Elster, Justin Metros,

Rick Davies, Dave Lazar, Cal Wilson, Alex O’Byrne, and Piers Thorogood from the

Partner community for help with an earlier version of the book (and general Shopify

awesomeness).

Special thanks need to go to Scott Hay at One Inch Round for being the best first

client one could ask for; Louise Corrigan and Nancy Chen at Apress for their patience

and persistence in getting the book over the line; and of course the inimitable Keir

Whitaker at Shopify.

Finally, my eternal gratitude to my colleagues at Disco, my family, and my friends for

their support.

xvii

Introduction

Back in 2005, Shopify got off the ground when a couple of folks in Canada wanted to sell

snowboards online but couldn’t find an Ecommerce platform to meet their needs.

Since then, the capabilities of the Shopify, the number of merchants using it, and the

world of Ecommerce in general has come a long way. At the time of writing, the platform

powers the online stores of over 500,000 businesses across 175 countries, with 2,500 of

those being high-volume merchants on the newer “enterprise” offering, Shopify Plus. A

total of $15.4 billion in transactions was processed by Shopify in 2016, a doubling of the

previous year’s total.

Many point to Shopify’s hosted nature, its expanding range of features, or its

partnerships with major companies like Facebook, Twitter, and Amazon as core to its

success. In my opinion, one of the most critical and oft-overlooked factors underlying

Shopify’s growth is its ecosystem of Partners—a broad spectrum of developers,

designers, marketers, and experts who work with Shopify merchants to help them grow

and succeed on the platform. Being one of these Partners myself, I guess this opinion

comes off as quite self-serving, but I feel that anyone who’s worked with Shopify in any

capacity would have to acknowledge that at the very least, the Partner ecosystem is a

major asset.

Partners are the ones helping merchants transition to Shopify, building out

their stores, customizing their themes, and configuring the multitude of available

applications. They’re also the ones developing themes and apps for sale in Shopify’s

official Stores, making a living and building businesses on top of the platform.

I first came to Shopify as a tinkerer quite early in its history, in 2008. The feature set

was limited; APIs were undocumented and the default themes merchants could choose

from when setting up your store weren’t going to win any design awards. Getting things

to work was often a matter of trial, error, and swearing at Liquid code. Still, it was streets

ahead of any other platform at the time in terms of ease-of-use, and there was something

about the way the company seemed dedicated to improve that made it interesting

enough to stick around (Tobi, then and now Shopify’s CEO, would often be in the Partner

forums responding to issues directly with a “just rolling out some code to fix that now!”).

xviii

Sticking around has proven to be a good decision—in 2013 I could make the

transition to full-time Shopify freelance work; in 2015 I founded Disco, a studio that

helps Shopify merchants grow and improve their businesses. Over that time, I’ve

worked on stores large and small, built themes and applications from scratch, written

and released open-sourced libraries, and partnered with Shopify to deliver talks,

workshops, and online courses. Most importantly, I’ve had the chance to meet scores of

amazing Partners and “Shopifolk,” discover the world of Ecommerce through the eyes of

merchants, and make friends with a diverse range of people from across the world.

This book is an attempt to share some of the things this experience has taught me.

�Why This Book?
No one resource can equip a person with every specific thing they need to know about

Shopify themes. There are too many edge cases, too many wonderful quirks in the world

of online commerce, for a one-stop shop to deliver on that promise.

Fortunately, for the Shopify developer faced with learning the ropes or tackling a

new requirement, there’s already quite a wealth of information at hand. Shopify’s official

Theme and Liquid documentation is professional and thorough, and they often publish

detailed “How-to” guides on the official Partner Blog. Shopify Partners themselves often

fill in the gaps with blog posts and code examples, and for those still struggling to find

answers, there are healthy communities of folk willing to help on the official Shopify

forums or in unofficial Slack groups.

So why add one more voice to the mix?

Despite that breadth of information already out there, I’ve long felt there’s something

missing—something that allows a novice Shopify theme developer to tie all these

disparate bits of of knowledge together into a single narrative. In this book, I’m trying

to fill this gap by covering both high-level theme design principles and practical coding

skills, and using case studies and examples wherever possible to tie the two together.

The goal here isn’t to replicate existing documentation or to provide a step-by-step

rote-learning approach for every conceivable scenario you’ll face as a theme developer.

Rather, by reading this book, you should acquire a deeper understanding of how Shopify

themes work, how you can rely upon fundamental principles of theme design when

faced with new situations, and how you can level up the workflow processes you use to

deliver a professional final product.

Introduction

xix

�Who This Book Is For
This book assumes that you have a working knowledge of the fundamentals of web

design and development—HTML, CSS, and JavaScript. It does not assume any prior

knowledge of Shopify development (we’ll kick things off with a Shopify primer in

Chapter 1).

Developers with some Shopify experience may find some of the earlier material

straightforward, but will derive value from the coverage of topics such as workflow

automation, development best practices, and deeper dives into the architecture and

design principles of Shopify themes.

Veteran Shopify developers are likely to get something out of the material as

well—whether it’s an introduction to advanced theme deployment techniques, taking

performance optimization to a new level, or simply getting a different perspective on

theme development.

�Structure of This Book
This book is broken into 11 chapters. Each one tackles a different idea or component of

Shopify theme development, and while their contents are somewhat independent, they

do follow an overall chronological order. This is especially true for Chapters 4 through 7,

which together walk through the process of building an entire Shopify theme from

scratch.

I would therefore recommend working through the book in order the first time

around, and then coming back to specific chapters and sections as needed for reference.

Throughout the book, I use code snippets to demonstrate concepts and specific

techniques. For space reasons, many of these listings are truncated to show only the

more important parts—the full versions of these are available in the resources repository

on GitHub, located at https://github.com/Apress/definitive-guide-to-shopify-

themes. A second GitHub repository, https://github.com/gavinballard/defguide-

theme, tracks the full source code development for the example theme begun in the

exercises in Chapter 4 and built on in the remaining chapter exercises.

Introduction

http://dx.doi.org/10.1007/978-1-4842-2641-4_1
http://dx.doi.org/10.1007/978-1-4842-2641-4_4
http://dx.doi.org/10.1007/978-1-4842-2641-4_7
https://github.com/Apress/definitive-guide-to-shopify-themes
https://github.com/Apress/definitive-guide-to-shopify-themes
https://github.com/gavinballard/defguide-theme
https://github.com/gavinballard/defguide-theme
http://dx.doi.org/10.1007/978-1-4842-2641-4_4

xx

�Beyond the Book
As I mentioned, there are several places to go to find help if you find yourself stuck or

want to learn more about a topic. Outside of the standard Google search, you can search

through the official Shopify forums (https://ecommerce.shopify.com/forums), check

out the official theme documentation (https://help.shopify.com/themes), or browse

through posts on the Partner Blog (https://www.shopify.com/partners/blog).

There’s also a growing number of Shopify-focused communities being built on a

range of social platforms, including Slack, Reddit, and Facebook.

If you have any specific questions about the material in this book, or you would like

to report errata, you can contact me directly at gavin@gavinballard.com.

On with the show!

Introduction

https://ecommerce.shopify.com/forums
https://help.shopify.com/themes
https://www.shopify.com/partners/blog

1
© Gavin Ballard 2017
G. Ballard, The Definitive Guide to Shopify Themes, DOI 10.1007/978-1-4842-2641-4_1

CHAPTER 1

A Shopify Theme Primer
For some content platforms, the word “theme” means a limited degree of control. It

evokes the idea of selecting from a few predefined choices, perhaps picking a color

scheme or replacing some images.

Shopify themes are more than that; they give storeowners complete control over

every aspect of the frontend of their sites, including HTML, stylesheets, and scripts.

This, I believe, is one of Shopify’s greatest strengths. It’s why it can be suitable for solo

entrepreneurs starting their first business while at the same time supporting Fortune 500

companies.

This chapter starts by explaining how Shopify gives us that flexibility. It covers the

directory structure of a theme package, explains Liquid (Shopify’s templating language)

a little better, explains how assets are handled, and gives us a sense of how these parts

work together to deliver a usable shopping experience to our customers.

�Anatomy of a Shopify Theme
One Shopify store can have many themes installed, although only one can be published

and visible to the public at any given time. Themes can come from different sources—

purchased from the official Shopify Theme Store (https://themes.shopify.com),

downloaded from a third-party marketplace, built for a specific customer by a freelancer or

agency, or developed in-house by the merchant.

Each theme installed into a Shopify store is presented in the Online Store - Themes

section of the Shopify Admin, as shown in Figure 1-1.

https://themes.shopify.com/

2

New themes can be added to a Shopify store in two ways: directly from the Theme

Store, or by uploading a .zip file containing files in the standard theme directory

structure. Themes can then be “previewed” prior to publishing, giving the store owner the

chance to see how a new theme will look and feel before pushing it out to real customers.

When a customer visits a page on the storefront, Shopify looks at the files contained

in a theme to find the appropriate template files to render and uses them in combination

with “dynamic” information (such as the store’s current inventory, details of the logged-

in customer, and the contents of the cart) to generate HTML, which is then delivered to

the browser. In this way, Shopify themes operate in a similar fashion to many template-

based platforms or programming languages used to generate dynamic, content-driven

web sites, such as WordPress or Drupal.

�Theme Structure
Regardless of their source, all Shopify themes share a common format under the hood: a

package of files arranged in a specific directory structure, as shown in Figure 1-2.

Figure 1-1.  The Themes List in the Shopify Admin. Note that one theme (the large
one at the top) is “published,” meaning it’s currently active and being displayed to
customers. The other themes are installed but only visible to the storeowner in a
“preview” mode

CHAPTER 1  A SHOPIFY THEME PRIMER

3

As you can see, the structure is quite flat, with seven top-level directories (and

one subdirectory) containing a large number of Liquid template files (.liquid),

configuration files (.json), and assets (.css, .js, .png, etc.).

Assets include all the static assets you’d like to use with your theme, like images,

stylesheets, and scripts. Shopify has built-in support for Sass stylesheets (with some

limitations, discussed shortly), so if you’re a Sass aficionado, you can simply save files

with a .scss extension directly in your theme. Your theme’s assets are automatically

served from Shopify’s CDN.

Config is a directory containing specifications for global theme settings, which allow

theme designers to create themes that give merchants control and flexibility over the

Figure 1-2.  The standard directory structure for a finished Shopify theme

CHAPTER 1  A SHOPIFY THEME PRIMER

4

layout, appearance, and data model of their storefront. Theme settings are presented to

store owners with the markup defined in settings_schema.json and, when saved, are

stored in settings_data.json. These are currently the only two files that reside in the

/config directory.

Layouts serve as the “master template” for all pages in your theme, and as such they

contain all the HTML common to every page (for example, the <head> section). Most

themes only require the single default layout, which is called theme.liquid, but you

can create as many base layouts as you like. If you’re working with a store on Shopify

Plus (Shopify’s enterprise offering), you’ll also have access to checkout.liquid, which

defines the layout of the store’s checkout pages.

Locales are JSON-formatted translation files for all the different locales (locations)

your theme may support—en.default.json, es.json, etc. You’re not required to

provide translations for multiple languages with your theme, but it’s a good idea to make

sure your theme supports future internationalization. All themes being submitted for

sale on the Shopify Theme Store must fully support internationalization.

Sections and snippets are similar, in that they both contain small pieces of HTML

and Liquid code that can be included from other templates. Their goal is to allow you

to break your theme code into smaller, logical components, making maintenance and

re-use much easier. Where they differ is that sections (the newer of the two) allow you to

define component-level theme settings, stylesheets, and JavaScript.

While both sections and snippets can be used “statically” by including them

directly from within a theme’s template files, sections have the additional ability to be

dynamically included and configured on a store’s home page by a merchant. We’ll see

detailed examples of both sections and snippets later as we walk through the details of

building a theme.

Templates contain the HTML structure for the different types of pages in your theme—

for example, product.liquid is used for your product pages, while index.liquid is used

for your home page and article.liquid is used for blog articles. These individual page

templates are rendered within the “content” section of your theme’s layout file (usually

theme.liquid).

You can create variations of each template type—e.g., article.photo.liquid for

photo-based posts and article.video.liquid for video-based posts. Note that this is

the only one of the top-level directories to contain a subdirectory, /customers, which

contains several templates that are required if a store has customer login accounts

enabled.

CHAPTER 1  A SHOPIFY THEME PRIMER

5

�Liquid, Shopify’s Templating Language
Looking at this theme structure, you’ve probably noticed that lots of the files end with a

.liquid extension.

Liquid is an open-source template markup language created by Shopify. Because of

its nature (simple, secure, and stateless), it’s a good fit for supporting dynamic content,

logic, and inclusion within theme templates without sacrificing security or performance.

Like most HTML template languages that you might be familiar with (such as PHP or

Ruby’s ERB), we use Liquid by inserting special tags into regular HTML markup. Whereas

PHP and ERB use tags that look like <?php ... ?> and <%= ... %> respectively, Liquid

uses tags that look like {% ... %} (control tags) and {{ ... }} (output tags).

The Liquid code to render a list of the products inside a product collection might

look like Listing 1-1.

Listing 1-1.  Example of Liquid Code Rendering a List of Products in a Collection

{% if collection.products.size > 0 %}

 {% for product in collection.products %}

 {{ product.title | upcase }}

 {% endfor %}

{% else %}

 <p>No products in collection!</p>

{% endif %}

We can see from this example that Liquid gives us the ability to:

•	 Write conditional statements like {% if ... endif %};

•	 Iterate over lists with {% for ... endfor %};

•	 Output content with {{ ... }};

•	 Apply filters to output like | upcase;

•	 Access variable objects that Shopify provides to templates like

collection

CHAPTER 1  A SHOPIFY THEME PRIMER

6

Shopify’s Liquid reference at https://help.shopify.com/themes/liquid provides a

comprehensive introduction to all the tags, filters, and syntax of Liquid, but if you’re like

me, you’ll probably find that the best way to get comfortable with Liquid is simply to dive

in! Browsing through the Liquid files that come with your default theme should give you

a pretty solid understanding of how things are put together. There’s no need to try to have

all the syntax memorized before you start—you’ll quickly pick it up once you dive in.

Liquid is an open-source templating language, and it’s used in many more places

than just on Shopify. However, it’s important to note that Shopify’s implementation

of Liquid contains a few Shopify-specific filters, tags, and variable objects that aren’t

supported by the “standard” Liquid library, so if you’re wondering why a particular Liquid

example is or isn’t working in your Shopify theme, it’s prudent to check that what you’re

attempting is actually possible on the platform. A handy resource for this is Shopify’s

Liquid Cheat Sheet at https://www.shopify.com/partners/shopify-cheat-sheet. It’s a

handy single-page reference for all the supported logic, objects, tags, and filters in Shopify

themes. You may notice both in this book and in other examples across the web that

Liquid control tags can be written like this: {% ... %} or like this: {%- ... -%} (with a

minus symbol next to the percentage sign). Similarly, output tags can be written like this:

{{ ... }} or like this: {{- ... -}}.

In terms of logic, these forms are the same. The difference between the two is how

they affect any whitespace on either side of the Liquid tags. It used to be quite common

for Shopify themes with lots of control flow logic and iteration to end up with large

amounts of whitespace output to the browser, so the “percent-minus” form of the Liquid

tags was introduced. Using this form will result in the Liquid processor stripping all

whitespace from the left and right side of the Liquid tag in the resulting HTML.

My default position is to now always use the “percent-minus” format by default,

unless that will interfere with how I want the output to appear. You can use whichever

form you want, but just remember that outside of whitespace, the forms are logically

equivalent and interchangeable while reading through example code.

�Assets
Aside from the Liquid files and the JSON configuration files (which are covered in more

detail in Chapter 8), the other type of files we’ll find in our theme are asset files.

Assets consist of images, stylesheets, JavaScript, and other resources that our theme

needs to load in the browser. How we use these assets in our themes will become

CHAPTER 1  A SHOPIFY THEME PRIMER

https://help.shopify.com/themes/liquid
https://www.shopify.ca/partners/shopify-cheat-sheet
http://dx.doi.org/10.1007/978-1-4842-2641-4_8

7

clearer as we walk through some examples, but there are a couple of things to note at

this stage:

•	 All files in the assets directory are automatically made available and

hosted via Shopify’s CDN (cdn.shopify.com). This means they are

heavily cached to improve the speed of delivery to end customers,

but it also means that they won’t be loaded from the same domain

as our storefront (leading to the enforcement of cross-origin browser

restrictions).

•	 To refer to an asset from within your Liquid templates, Shopify makes

two filters available: asset_url and asset_img_url. Both take the

name of an asset and return the URL to that asset on the CDN, with

the latter allowing for some additional parameters to do things like

resize or crop image assets.

•	 Shopify natively supports Sass precompilation for stylesheets, so

you can add a styles.scss file directly to your assets directory and

Shopify will compile it to CSS and make it available to your theme.

(For example, you could include it in the <head> section of your

theme.liquid with the Liquid {{ 'styles.scss.css' | asset_url

| stylesheet_tag }}.)

•	 Shopify also supports text-based assets like JavaScript, stylesheets,

or SVG images having a .liquid extension, which it will compile

before uploading to the CDN. This means you can use Liquid control

flow logic and theme settings to introduce a level of dynamic logic

into your asset files. You’ll see some practical examples of that in the

chapters to come, especially in Chapter 8.

�Working with Shopify Themes
While Shopify themes introduce a few new concepts, they don’t stray too far from the

concepts of “standard” web development. At the end of the day, we’re using marked-up

templates, blended with a little Liquid, to generate HTML that gets pushed to the user’s

browser and loads in assets like images, stylesheets, and scripts. This makes Shopify

theme development quite accessible to newer developers and allows you to get up and

running quickly.

CHAPTER 1  A SHOPIFY THEME PRIMER

http://dx.doi.org/10.1007/978-1-4842-2641-4_8

8

There are a couple of “gotchas” that can arise when coming to Shopify development

for the first time though, so I thought I’d share them here.

•	 Shopify will aggressively cache the HTML output of your Liquid

templates, meaning you can’t rely on time-sensitive logic from within

your Liquid templates (e.g., looking at the current time to determine

whether to show or hide a product). For anything time-sensitive like

this, I recommend using JavaScript.

•	 While Shopify supports the compilation of Sass files into CSS

stylesheets, for security reasons it doesn’t support the @import

syntax, meaning all of your styles need to be written in the one

file. The version of Sass used by Shopify is also a little older, so

some newer Sass features aren’t supported. For these reasons, I

generally avoid using Shopify’s Sass functionality and use a more

advanced development workflow (discussed in the next chapter) to

precompile my assets. For further detail on Shopify, Sass, and theme

development, refer to Tiffany Tse’s excellent three-part series A

Beginner’s Guide to Sass with Shopify.1

•	 As a Shopify theme developer, you need to be aware that it won’t

always be only your code running on a merchant’s store. In additional

to some lightweight scripts added by Shopify for admin and tracking,

any Shopify apps added by a merchant may manipulate your theme’s

template or asset files, load additional scripts and stylesheets, or

dynamically adjust your markup. While this can be frustrating, you

can alleviate many issues by programming your themes defensively,

making them easy to edit and maintain, and following robust

development workflow practices.

�Setting Up Development Stores
To actually get started developing Shopify themes, we’re going to need to create a

“development store” on Shopify. This is because, unlike when we’re developing with

regular web sites, there’s no real way to preview or test our Shopify themes locally.

1https://www.shopify.com/partners/blog/a-beginners-guide-to-building-shopify-
themes-with-sass-part-1-getting-started-with-sass

CHAPTER 1  A SHOPIFY THEME PRIMER

https://www.shopify.com/partners/blog/a-beginners-guide-to-building-shopify-themes-with-sass-part-1-getting-started-with-sass
https://www.shopify.com/partners/blog/a-beginners-guide-to-building-shopify-themes-with-sass-part-1-getting-started-with-sass

9

Development stores function the same way as regular Shopify stores (apart from not

being able to accept real payments), so they’re a good testing ground. You can convert

development stores to fully fledged Shopify stores with the click of a button, so it’s quite

common to build a store for a client as a dev store before handing it off.

Being able to create development stores just requires registering as a Shopify Partner

(which you can do at https://www.shopify.com/partners). Registration is free and only

takes a couple of minutes—once you’re done, you’ll be taken to the Partner Dashboard

(as seen in Figure 1-3), where you can view all your existing development stores or create

new ones.

If you haven’t created a development store before or poked around in the guts of

a Shopify theme, this would be a great time to start! Just click Create Store from the

Development Stores tab, enter some login information, and you’re away.

After the store’s been created, you’ll be taken to the store’s administration

dashboard. You’ll see a tab called Online Store - Themes in the left sidebar. Click it and

you’ll see that your store has been set up with a simple default theme named Debut.

You’ll see how to sync theme files to your computer and edit them locally in Chapter 2,

but for now you can get a look at how your default theme is put together by using the

Figure 1-3.  The Development Stores tab in the Partner Dashboard

CHAPTER 1  A SHOPIFY THEME PRIMER

https://www.shopify.com/partners
http://dx.doi.org/10.1007/978-1-4842-2641-4_2

10

Shopify Admin’s built-in theme editor. You can open the editor by clicking the Actions

button on the default theme, then clicking Edit HTML/CSS (See Figure 1-4).

Spend a couple of minutes now walking through the structure of your default theme

and referring to the “Anatomy of a Shopify Theme” section to make sure you’re familiar with

the role of each part of the theme structure. Once you’ve done that, you can move on to the

next chapter, where you’ll see how to best set yourself up for painless theme development.

�Summary
In this chapter, you’ve been introduced to how a Shopify theme is structured, and

learned about the responsibilities of each part of that structure. You’ve seen that

Shopify theme development shares a lot of similarities with a regular web development

workflow, and this chapter highlighted the key places where they differ, including an

introduction to the templating language Liquid.

Finally, you’ve seen how you can get started on your theme development journey by

setting up a Shopify Partner account and creating a development store.

Figure 1-4.  Opening the theme editor for the default Debut theme

CHAPTER 1  A SHOPIFY THEME PRIMER

11
© Gavin Ballard 2017
G. Ballard, The Definitive Guide to Shopify Themes, DOI 10.1007/978-1-4842-2641-4_2

CHAPTER 2

Tools and Workflow
We’ve had an introduction to how Shopify themes are put together, and ended the last

chapter looking at the contents of the default Debut theme via the Shopify Admin’s

online theme editor. If you were a bit of a masochist, you could do all your theme

development through this editor. If you tried that, though, you’d most likely come across

these difficulties:

•	 The online editor is nice—one of the best of its kind—but it doesn’t

quite compare to desktop IDEs or text editors in terms of useful

development features.

•	 If you’re familiar and productive as a web developer with a certain

development environment, you lose that productivity.

•	 You need be online and in your browser to make any kind of change

to the theme.

•	 Collaborating with others on the development of your theme is

difficult and can easily lead to people overwriting their work.

•	 Your theme is stored in only one place, without any backup.

•	 While there is a limited form of version control (you’re able to revert

individual files to previous versions), there’s nothing that compares

to “serious” version control systems like Git or Mercurial.

•	 You need edit files “as is,” meaning you can’t easily use techniques like

concatenating assets together or minifying them for production use.

This chapter looks at how to address each of these limitations by setting up a local

development environment that synchronizes your code changes to Shopify. It also looks

at how to use a popular revision control system (Git) to properly version and manage

changes to a theme, and finally looks at advanced build tools (Shopify’s Slate and others)

12

that allow us to utilize more advanced web development techniques when dealing

with themes.

You don’t need to implement these practices before starting work on a theme, but it’s

good to get into some of these habits sooner rather than later—I can guarantee it’ll make

your Shopify development experience much smoother. I do recommend that before

moving on to Chapter 4, where you’ll start developing your own example theme, you at

least familiarize yourself with the process of editing theme files locally and having the

changes automatically pushed to a Shopify store.

�Moving to Local Development
The first improvement we’re going to make to our development workflow is to move where

we edit our theme files from the online editor to a local machine. Getting a copy of our

current theme’s files is straightforward. From the Themes section of your store’s admin, use

the Actions dropdown and select Download theme file (see Figure 2-1).

Shopify will e-mail you a download link, which you can fetch, unzip, and move to a

working directory, as in Listing 2-1.

Listing 2-1.  Unzipping a Downloaded Theme File and Viewing Its Contents from

the Command Line

$ unzip ~/Downloads/example-theme.zip -d /projects/example-theme

$ cd /projects/example-theme

$ ls

assets config layout locales

sections snippets templates

Figure 2-1.  Downloading the current theme as a .zip file

CHAPTER 2  TOOLS AND WORKFLOW

http://dx.doi.org/10.1007/978-1-4842-2641-4_4

13

Now that we have a copy of the theme files locally, we’re able to use a text editor or

IDE of choice to develop the theme. There’s no one “best” choice for an editor or toolset;

really, it’s up to you and what you’re familiar or comfortable with. If you’re stuck for

ideas, popular editors include Vim, Sublime Text, and Atom.

Tip  If your editor of choice supports plugins or syntax extensions, make sure you
check to see if one for the Liquid templating language is available, as it will make
working with Shopify theme files a much more pleasant experience. If you can’t
find anything to support Liquid specifically, you can try finding an extension that
supports Twig (an alternate templating language with syntax very similar to Liquid)
and associating .liquid files with it in your editor.

�Synchronizing Changes to Shopify
Being able to make changes in our own editor is nice and solves the first few issues

identified at the start of the chapter. However, now we have another problem: how do we

push any changes we make on our local files back to our Shopify store?

We could copy and paste the contents of your changed files from our local

environment to the online web editor, but that hardly seems like an improvement.

We could also zip up the theme directory and upload the .zip file through the Shopify

admin, but that would be a pain if we needed to do it every time we made a change.

�Introducing Theme Kit

The solution to this problem is Theme Kit (https://github.com/Shopify/themekit),

a small command-line utility built and maintained by Shopify. Because it’s built as a

simple, single cross-platform binary, developers can use it regardless of the platform

they’re working on. (Theme Kit was built as a replacement for the previous solution,

the shopify_theme gem. It performed a similar function but required users to have a

working copy of Ruby operating on their local machines.)

I’ll leave the download and setup instructions for different platforms to Theme

Kit’s thorough documentation (found at https://shopify.github.io/themekit), but

once it’s set up, it will let you download and upload theme files from the command

line, as seen in Listing 2-2. Even better, you can use it to watch a theme directory and

automatically upload changed files as they are saved, as seen in Listing 2-3.

CHAPTER 2  TOOLS AND WORKFLOW

https://github.com/Shopify/themekit
https://shopify.github.io/themekit

14

Listing 2-2.  Command-Line Example Showing Theme Kit Configuration and

Download/Upload Flow

$ cd /projects

$ mkdir /projects/example-theme

$ cd ./example-theme

$ theme configure --store example.myshopify.com --password

905bbb49ee10d0eb9c7b380183b2bc43 --themeid 74729482

$ theme download layout/theme.liquid

[development]: 1 / 1 [================] 100 %

(... edit layout/theme.liquid ...)

$ theme upload layout/theme.liquid

[development]: 1 / 1 [================] 100 %

Listing 2-3.  Command-Line Example Showing Theme Kit Watching a Theme

Directory for Changes and Uploading Them to Shopify Automatically

$ cd /projects/example-theme

$ theme watch

[development] Watching for changes on host example.myshopify.com

[development] Received Update event of layout/theme.liquid

[development] Successfully performed Update operation for file layout/

theme.liquid to example.myshopify.com

�Using Theme Kit

With Theme Kit set up and watching our files for changes, we can use the local text editor

or IDE to manage and edit the theme files, then switch over to the browser and refresh

to see the changes. It’s not the most ideal workflow for web development (and can seem

a bit clunky when compared with some modern web development workflows that allow

automated and instant “hot reloading” of code in the browser), but it has a short enough

feedback cycle to be practical for day-to-day development.

A couple of things to note about Theme Kit:

•	 It stores all configuration details (store URL, API credentials, etc.) in

a file called config.yml. This file allows for the definition of different

“environments” (e.g., development, staging, and production) to aid the

process of updating multiple themes from a single theme directory.

CHAPTER 2  TOOLS AND WORKFLOW

www.allitebooks.com

http://www.allitebooks.org

15

•	 Using Theme Kit, we can skip the .zip file download step to get

started working on an existing theme, just by running the theme

configuration step and running theme download without any

arguments from the command line.

•	 You’re able to work on and preview themes that aren’t currently

published on a Shopify store (a recommended practice for sites

actively being used by customers). You can do this by finding the

ID of the unpublished theme in the Shopify Admin (Theme Kit’s

documentation has instructions on how to do this), setting it in

config.yml, and running theme open to preview the theme in your

default browser.

�Putting Your Theme Under Version Control
If you’re not doing it already, the biggest takeaway from this lesson should be this: use a

version control system (such as Git or Mercurial) when developing your themes. If you’re

not familiar with VCSes, the Git book provides a great overview at https://git-scm.com/

book/en/v2/Getting-Started-About-Version-Control.

In the context of Shopify themes, version control:

•	 Stops you from making mistakes in your theme’s codebase that can’t

be recovered from

•	 Makes it easier for teams to work on a theme together

•	 Keeps track of the work that’s been done on your theme (and who’s

done it)

•	 Lets you experiment with new features on “feature” or “topic”

branches, which can be tested without affecting your production

code

•	 Provides a means to simplify the deployment of your themes in

conjunction with a deployment tool (you’ll see how this works in

Chapter 11)

After you start using revision control for a little while, you’ll also notice that the way

you start thinking about your development process changes. You’ll find yourself thinking

CHAPTER 2  TOOLS AND WORKFLOW

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
http://dx.doi.org/10.1007/978-1-4842-2641-4_11

16

about changes to your theme’s codebase in terms of small, atomic chunks that are easily

comprehensible to yourself, your teammates, and future developers. You can also take

advantage of the wide range of tools and services in the version control ecosystem,

such as GitHub, GitLab, or Bitbucket for code hosting, or tools like GitX for code review

(see Figure 2-2).

�A Git Workflow for Shopify Themes
Git is pretty much the de facto version control system these days (and it’s the only one

I’m familiar with, having managed to force unhappy memories of RCS and Subversion

out of my head). If you’re a Mercurial fan, I apologize but the following examples are

going to be pretty Git-centric.

Assuming we have Git installed, Listing 2-4 shows how we would start putting our

example theme under revision control.

Figure 2-2.  GitX, a visual Git diff tool, gives an overview of the theme’s history and
changes

CHAPTER 2  TOOLS AND WORKFLOW

17

Listing 2-4.  Initializing a Git Repository in a Shopify Theme Directory

$ cd /projects/example-theme

$ git init .

Initialized empty Git repository in /projects/example- theme/.git/

$ echo "config.yml" > .gitignore

$ git add .

$ git commit -m "Initial commit."

Note that before we initialize the repository, we have to add config.yml to Git’s

ignore list. This is because Theme Kit uses this file to store sensitive API credentials,

which we definitely don’t want checked in to revision control. From there, you can edit

the theme files locally while running the theme gem to automatically upload the changes

to the store, and then once we’re done, commit the changes to Git.

If you’re in a situation where you’re not sure if your local working directory matches

what’s on your Shopify store, you can run a theme download to fetch all of the remote

files and use git diff to see the differences.

This actually occurs quite often for me when I’m working with clients that like

to be able to make small changes (often minor copy or style tweaks) to their themes

themselves through the web editor. Doing a theme download and committing any of

their changes can avoid overwriting their work if you end up touching the same file.

(If this is happening often, it’s probably a good sign that the changes the client is making

should be moved into a theme setting or language file, which is covered in Chapter 8.)

Tip  When you run theme download, sometimes you might notice some
“orphan files” being pulled down from your Shopify theme—files that used to be in
your repository and were renamed or deleted, but still got uploaded to the version
of the theme on the Shopify servers. A nice one-line command to clean those files
from the server (after you’ve run theme download) is git clean -n | sed
's/Would remove //' | xargs theme remove. This uses git clean to
get a list of files that aren’t in version control and passes them on to the theme
remove command to clean them up from the server. This command won’t remove
the files locally, so you don’t need to worry about accidentally losing work.

CHAPTER 2  TOOLS AND WORKFLOW

http://dx.doi.org/10.1007/978-1-4842-2641-4_8

18

�Theme Feature Branches with Git

When using Git for development, it’s quite common to want to work on a feature branch

in order to develop a new feature without impacting the master or live codebase. With a

bit of tinkering, we can do this with Shopify themes as well. Assuming that:

	 1.	 You have a main theme currently installed and published on your

Shopify store (the “master” theme).

	 2.	 You have a local copy of that theme that’s been put into version

control (the “master” branch).

	 3.	 You’re synchronizing your changes to the master theme using

Theme Kit and have configured Theme Kit’s config.yml with the

ID of the “master” theme.

You can create a feature branch to work on by first making sure that any theme watch

process in Theme Kit is stopped, and then, in your browser:

	 1.	 Open the Themes section in the store admin.

	 2.	 Open the Actions dropdown on the “master” theme and select

Duplicate

	 3.	 Wait for the theme to duplicate, then get the ID of the newly

created theme by clicking the Customize Theme button and

looking at the URL.

Then, on the command line, switch to a new git branch and swap over the theme ID,

as shown in Listing 2-5.

Listing 2-5.  Swapping to a Git Feature Branch from the Command Line

$ cd /project/example-theme

$ git checkout -b new-feature

Switched to a new branch 'new-feature'

$ sed -i '' 's/[master theme ID]/[new theme ID]/g' config.yml

$ theme watch

[development] Watching for changes on host example.myshopify.com

You’ve now created a completely separate preview theme on your Shopify store that

will be synchronized to and from the local new-feature branch. Make some changes,

CHAPTER 2  TOOLS AND WORKFLOW

19

wait for them to be uploaded automatically, and run theme open. You’ll be taken to a

preview of your “new-feature” theme (you’ll see a notice to this effect at the bottom of

your browser, as in Figure 2-3), but visitors coming to the regular site will still be looking

at the “master” theme.

If you’re wondering what that sed command in the console was all about, it’s simply

updating the config.yml file to point to the new copy of the theme on your store instead

of the master. You could do the same thing by simply opening config.yml in a text editor

and changing the line containing theme_id manually.

As you can see, this process is a little tricky, and it can get even trickier when you’re

trying to switch back and forth between branches, as you’ll often want to do. The process

for switching back to working on the master branch from the feature branch would now

be something like:

	 1.	 Ensure all changes we want to keep on our feature branch are

committed or stashed.

	 2.	 Ensure any theme watch process is stopped.

	 3.	 Run git checkout master.

	 4.	 Edit the theme_id in config.yml file to point to the “master” theme

again.

	 5.	 Run theme watch.

Once you’ve gotten used to this process, you can execute branch switches quite

easily. You can also merge in changes to your master branch while theme watch is

Figure 2-3.  This overlay appears at the bottom of the browser when we’re viewing
a page not visible to public visitors

CHAPTER 2  TOOLS AND WORKFLOW

20

running and have your merged files update directly to the main Shopify store theme

(watch out for merge conflicts, though!).

This workflow suits you for now, and it can handle everything we’ll be throwing at

it as we build the example theme in the following chapters. In Chapter 11, you’ll start

looking at some alternative deployment strategies for themes and learn how you can

automate the rollout of theme changes to themes currently in production.

�Slate and Theme Build Tools
Up to this point, we’ve had a 1:1 correlation between the theme files we’re editing while

building our theme and the final format used by Shopify. This is great while getting

started—it helps us fully understand how Shopify themes are put together and lets us

start working with themes very quickly. But if you’re coming from a web development

background outside of Shopify, you’ll understand that modern web sites rarely have this

1:1 mapping between source files and deliverables in production.

As with any other web site, Shopify themes can benefit greatly from transforming

source files in different ways before delivering them to the end user. Two such

transformations are concatenation and optimization.

Concatenation takes many separate files and bundles them together as a single

asset to be sent to the browser. This allows us to logically separate and maintain files

while writing our theme, but send only a single file to the browser. Optimization takes

a source file (it could be JavaScript, CSS, Liquid, or an image) and performs some

processing on it, usually to reduce the overall number of bytes to be delivered to the

browser.

You’ll be looking at the specifics of these processes and their advantages in a lot

more detail when you get to Chapter 10 (performance), but for current purposes, the

focus is on one thing: given that we want to perform these transformations on our source

files, how can we slot that into our existing development workflow?

�Grunt and Gulp: Automated Task Runners
Until recently, the best choice for anyone wanting to slot preprocessing tasks like

concatenation or optimization into their theme workflow was to use a task runner, the

most common ones being Grunt (http://gruntjs.com) and Gulp (http://gulpjs.com).

CHAPTER 2  TOOLS AND WORKFLOW

http://dx.doi.org/10.1007/978-1-4842-2641-4_11
http://dx.doi.org/10.1007/978-1-4842-2641-4_10
http://gruntjs.com
http://gulpjs.com

21

These tools may be familiar to web developers working on other platforms, but if you

haven’t seen or used them before, the goal of both is to provide a way to define a list of

automated tasks to perform in certain situations. In the context of Shopify themes, some

examples of these tasks could be:

•	 Optimizing image assets

•	 Preprocessing and compiling SASS or LESS source files into a final

CSS stylesheet

•	 Concatenating and minifying JavaScript

•	 Packaging up the theme as a .zip file for distribution

Both Grunt and Gulp allow you to define the events that trigger these automated

tasks, so you can configure them to watch your theme’s sources files and automatically

perform processing steps when changes are saved. In the standard setup I’ve used for

my themes in the past, the local directory where I’m working on a Shopify theme looks

something like Listing 2-6.

Listing 2-6.  The Top-Level Directory Structure of a Theme Using Grunt for a

Preprocessing Workflow

/.build

/theme

/Gruntfile.coffee

In this configuration, the top-level /theme directory contains the source files for my

theme, arranged in a structure that makes it easy to maintain. For example, instead of

being constrained to a flat directory structure with all script and stylesheet assets in the

one /assets directory, I’ll separate things out into /assets/js/vendor, /assets/js/

product, /assets/js/common, etc. Gruntfile.coffee defines all the tasks to be run and

rules on when to trigger them, and /.build contains the final “built” theme, organized

in the standard directory structure expected by Shopify.

When actively developing a theme, I will run Theme Kit’s theme configure and

theme watch commands from within the /.build directory, and then the grunt watch

command from the top-level directory. As I make changes to the template and assets

contained in /theme, Grunt’s watching task detects the changes, triggers the appropriate

processing tasks, and compiles the updates to /.build, from where Theme Kit

automatically uploads the changed files to Shopify.

CHAPTER 2  TOOLS AND WORKFLOW

22

The directory layout for this workflow—including setup instructions and a standard

Gruntfile.coffee that handles a multitude of common Shopify build tasks, such as

Sass compilation, JavaScript minification, image optimization, and the production of

a .zip file suitable for upload to Shopify—is freely available at https://github.com/

discolabs/shopify-theme-scaffold.

�Other Workflow Automation Tools
Gulp and Grunt are reasonably “low level” tools, and they require you to spend a bit of

time writing configuration files and setting them up to work with Shopify. There are a

couple of additional workflow automation tools that I thought I should mention here

that are either are a little more “user-friendly” or are built with Shopify specifically in

mind:

•	 Prepos (https://prepros.io/) is a cross-platform GUI tool for

configuring and performing common preprocessing tasks with

support for live browser reloading.

•	 CodeKit (https://codekitapp.com/) is similar to Prepos but

Mac-only (although the developer seems to have a better sense of

humor).

•	 Quickshot (https://quickshot.readme.io) is a command-line tool

but one that is specifically targeted toward Shopify development. It

supports precompilation, parallel uploads and downloads, and some

nice additional features like being able to download/upload Shopify

blog, page, and product content.

�Introducing Slate
In the previous section, I mentioned that tools like Grunt and Gulp were “until recently”

the best option for adding automated tasks into your theme workflow. In 2017, Shopify

release Slate, a new command-line tool specifically focused on aiding the development

of Shopify themes (see Figure 2-4).

CHAPTER 2  TOOLS AND WORKFLOW

https://github.com/discolabs/shopify-theme-scaffold
https://github.com/discolabs/shopify-theme-scaffold
https://prepros.io/
https://codekitapp.com/
https://quickshot.readme.io

23

Slate offers similar functionality to a Grunt or Gulp powered workflow: it allows you

to develop Shopify themes using a flexible directory structure and slot preprocessing

tasks into your development flow. It also offers some additional functionality, such as:

•	 Theme scaffold generation, allowing the creation of source and build

directories for a new Shopify theme with a simple slate theme

new-theme command.

•	 Built-in support for watching, recompiling, and uploading changes

to multiple Shopify environments, meaning you only need to run

a single watch process instead of two, as in the Grunt/Gulp and

Theme Kit examples (Slate uses Theme Kit under the hood for this

functionality).

•	 Support for live reloading of your theme in the browser, to shorten

the cycle between making changes to code and seeing the results.

•	 Adding automated testing and style checks to your workflow.

•	 Providing reusable frontend components that are common to most

Shopify themes.

Figure 2-4.  The Slate documentation page at https://shopify.github.io/slate

CHAPTER 2  TOOLS AND WORKFLOW

https://shopify.github.io/slate

24

Because Slate is designed specifically for Shopify theme development, it offers a

smoother experience than Grunt, Gulp, or other tools. While it’s still a very new addition

to the Shopify ecosystem and there are some rough edges to iron out, I expect Shopify

theme developers to standardize around Slate in a way we haven’t seen with less

standard Grunt and Gulp workflows, making it easier to share reusable theme snippets

and design patterns between projects and each other.

For most of the example development in this book, we won’t be using Slate or any

other build tool. The reason for this is that it adds an extra layer of indirection between

the code we’re writing and the code running on Shopify. However, in the final chapter

of the book, you will see how to move your example theme into a Slate-driven workflow,

and how that plugs into a more advanced deployment process. Through the example

GitHub repository, you’ll see the exact code changes you make and the commands

needed to use Slate with your own themes.

�Summary
This chapter covered some of the key tools you can use to develop Shopify themes

and explained how they can help you build stores more efficiently. It covered local

development, revision control, and workflow automation, and introduced Slate, a

Shopify-developed tool that provides lots of functionality out of the box.

CHAPTER 2  TOOLS AND WORKFLOW

25
© Gavin Ballard 2017
G. Ballard, The Definitive Guide to Shopify Themes, DOI 10.1007/978-1-4842-2641-4_3

CHAPTER 3

Principles and Process
Now that we have a solid understanding of the building blocks of a Shopify theme

(Chapter 1) and an understanding of how to put one together (Chapter 2), it’s time to

dive in and start coding, right? Almost!

The final step before we get into some practical exercises is to take a step back and

think about the theme development process from a high level. What are your goals,

and how can you maximize the chances of delivering a theme that successfully reaches

them? What can you do to ensure your deliverables are easy to maintain, now and in six

months’ time?

In this chapter, I’ll be discussing a few principles I like to keep in mind while working

on Shopify themes, as well as looking at the sorts of processes that theme developers use

to help deliver successful projects. To avoid too much fortune-cookie wisdom, I’ll ground

my advice in some real-world examples.

Along the way, you may feel that this chapter speaks only to freelancers and agencies

building bespoke themes for clients. Don’t be put off if you feel that doesn’t apply to

you—I believe the advice provided is equally applicable if you’re building a store on your

own behalf, as part of an in-house team, or with plans to make a theme available for sale

in the Shopify Theme Store. In these situations, just consider yourself, your company, or

Shopify merchants at large to be “the client.”

�Principles of Design
The hallmark of good design is that it solves problems.

Because Shopify is an online Ecommerce platform, the problems we’re tackling

as theme designers most often revolve around the customer. How do we convey the

“feel” of a brand in the first second of a visit? How can we make certain products more

discoverable? What can we do to smooth a customer’s journey through the checkout?

What can we do to upsell customers and increase the average value of their cart?

http://dx.doi.org/10.1007/978-1-4842-2641-4_1
http://dx.doi.org/10.1007/978-1-4842-2641-4_2

26

�Understanding Design Goals
In a sense, the overarching design goal is to help maximize the revenue a store

generates. (If you feel this is a little too bluntly capitalist, consider that this overall goal

does encompass things like brand design, creating unique and lovable web sites, and

delivering fantastic customer experiences.)

Keeping this in mind can be useful when engaging in discussions with a client

(or yourself) about the goal of a feature or change. If the brief is “add a carousel to the

home page” or “what if we change the color of this button,” bringing the conversation

back to the potential impact on the bottom line can help prioritize meaningful work and

discover simpler solutions to underlying problems.

Designers in the audience will recognize the “five whys” technique in action here:

given any proposed feature or change, asking “why?” five times helps uncover the root

problem and relate it back to the primary goal.

Asking “why” in this manner can also uncover broader underlying goals that even

clients themselves aren’t consciously aware of, or at least haven’t explicitly stated.

This happened recently during the discovery phase for a recent client of ours. A skin

care company, they were planning on launching several new brands in the Australian

and New Zealand markets, with a bespoke Shopify theme being designed for each

brand.

During our initial conversations and while reading through the background

material, we noticed that much more emphasis was being placed on “product showcase”

functionality (carousels, hero images, and long-form product detail pages) than what

we would consider “traditional” Ecommerce features like product forms and checkout

flows. Digging in to this, we discovered the client’s expectation that a large portion of

their sales would be driven by offline arrangements with retailers.

This helped us understand that one of the most important goals of the Shopify site

wasn’t traditional Ecommerce at all, but for it to be able to function as a marketing

vehicle for sales representatives pitching potential retail partners in the field. Knowing

this, we could adjust our proposal to place more emphasis on this use case and align our

solution to meet the client’s actual goals.

CHAPTER 3  PRINCIPLES AND PROCESS

27

�Design for Humans
Once we’ve established what the design goals of a Shopify site should be, our efforts

turn to building a theme to reach them. Usually, this means that your theme should be

designed to help human beings (customers) achieve their goal (find something they

want on the site and buy it).

Style and ornamentation should take a back seat to usability and accessibility.

Adding a full-page parallax sliding carousel might look great in mockups, but its value

should be balanced against increases in page load time, added navigation complexity for

users, and a potential decrease in accessibility.

User interfaces and messaging should strive for clarity and helpfulness, rather than

being thrown in as an afterthought. If a product can’t be added to the cart because

it’s out of stock, return a detailed message to that effect instead of a bland alert saying

“error” or “no stock”. Think about ways to give users an actionable next step (“We have

the blue variant in stock, would you like to purchase that instead?”) instead of leaving

them frustrated in a dead end.

The needs of the user (clear navigation and page structure and fast page loads

and response times) should be prioritized over the wants of the merchant (on-page

advertising, reams of third-party tracking codes, and intrusive upsells).

Try to avoid excluding users - make your themes accessible and in compliance

with standards like WAI-ARIA (https://www.w3.org/TR/wai-aria). Not only is this

considerate and maximizes the number of people able to buy things from your store, but

a failure to do so can in some cases have legal ramifications.1

There are a couple of nice things about championing the experience of the user

like this when putting together a theme. First, it can help you focus your use cases and

discussions around real people instead of platonic ideals. Second, caring deeply about

your customers’ experiences pays dividends in other areas: fast, painless purchases

encourage repeat business, motivate word-of-mouth referrals, and (as you’ll see in

Chapter 9) have a positive impact on search engine rankings.

1The leading cited example of this is that of Target, who settled a USD $6 million lawsuit
brought against them to failing to make their online store accessible to blind customers. See
https://www.w3.org/WAI/bcase/target-case-study.

CHAPTER 3  PRINCIPLES AND PROCESS

https://www.w3.org/TR/wai-aria
http://dx.doi.org/10.1007/978-1-4842-2641-4_9
https://www.w3.org/WAI/bcase/target-case-study

28

�Design for Different Contexts
While we haven’t all been uploaded to the cloud just yet, the level of Internet

connectivity for the average Western consumer has certainly increased in the last few

years; so too the myriad of means to connect, whether at home on a traditional desktop/

laptop, on the move from one of a bewildering array of mobile devices, or via emerging

platforms like integrated messaging apps or Internet-enabled fridges.

Any of these could be relevant to an Ecommerce store, depending on the merchant

and its typical customers. As a Shopify theme designer, you need to start considering the

wide variety of use cases customers might have when accessing a store and the situations

in which they are doing so.

Note that I’m stressing design for different contexts, not just different devices. This is

because it’s important to not only think about which devices your customers might be

using, but when they’re doing it and what they want to achieve.

Take a visitor landing on an apparel boutique’s home page as an example.

•	 Are they on their desktop at work during their lunch break, browsing

collections for fashion inspiration?

•	 Are they sitting on the couch with a glass of wine and their mobile that

evening, making an impulse buy of the shirt they saw earlier that day?

•	 Are they using the same mobile, but in the middle of rush hour trying

to find the store’s nearest physical location before closing time?

It’s usually impossible to spend the time and effort required to build a site that

optimizes for all scenarios simultaneously, but a good designer will take the time to

identify these different potential use cases and work with the client to prioritize them.

�Principles of Development
Once you move out of the design phase and start the development of your theme, there

are a couple of things you can bear in mind to make the deliverables you produce robust

and maintainable.

It’s not always easy to prioritize these things, especially when we’re up against a

deadline or trying to justify some extra hours to a client. They do tend to take a little extra

time upfront, but in my experience, they more than pay for themselves in the long run.

CHAPTER 3  PRINCIPLES AND PROCESS

29

�Keep It Simple
The simpler the concepts and code in your theme are, the easier it is to write and

maintain them. For your code, this can mean:

•	 Keeping the number of included Liquid snippets to a minimum to

simplify your code’s mental model

•	 Breaking clever Liquid one-liners down into smaller, easier-to-

understand steps

•	 Preferring HTML and Liquid over JavaScript to drive dynamic logic

•	 Identifying pages or components that are defined in different places

but serve the same purpose and considering combining them into

one

Note  Development practices that allow breaking your source code down into
small, logical components can be a huge help here. You saw some examples of
this in Chapter 2 (“Tools and Workflow”) and will encounter more in Chapter 11
(“Collaborative Theme Development”).

It can also help to focus on leveraging Shopify’s built-in features and concepts

like collections, products, linked lists, and tags, rather than trying to develop your

own. Understanding the limitations of Liquid and Shopify and working within those

boundaries reduces headaches versus clever hacks to work around them.

On a related note, I try to avoid relying on Shopify apps for common Ecommerce

functionality whenever I can. Not only is there an ongoing financial cost for the use of

apps, many of them demand complex Liquid code changes and extra JavaScript, adding

mental and performance overhead as well. Many Shopify apps are well-written, robust

pieces of software that won’t interfere with a store’s theme or other apps—but many

aren’t, and that can lead to all sorts of issues down the track.

To give an example, I’ll commonly see merchants and developers relying on an app

for simple Upsell functionality, such as “if a customer has product A in their cart, suggest

they add product B”. While several apps can handle this and more complex scenarios,

most rely on JavaScript to examine and adjust the cart (meaning an extra script file to

CHAPTER 3  PRINCIPLES AND PROCESS

http://dx.doi.org/10.1007/978-1-4842-2641-4_2
http://dx.doi.org/10.1007/978-1-4842-2641-4_11

30

load and a delay for the user) and in some situations, force a full-page refresh on the

user. Compare that to the simplicity of the Liquid snippet in Listing 3-1, which displays a

configurable upsell message based on the current contents of a customer’s cart.

Listing 3-1.  A Simple Liquid Implementation of a Configurable Upsell Message

on the Cart Page

<!-- templates/cart.liquid -->

{%- unless settings.upsell_trigger_product == blank or settings.upsell_

target_product == blank -%}

{%- assign has_trigger_product = false -%}

 {%- assign has_target_product = false -%}

 {%- comment -%}

 Iterate over items currently in the cart to see if we have our trigger

 product but not the target product.

 {%- endcomment -%}

 {%- for item in cart.items -%}

 {%- if item.product == settings.upsell_trigger_product -%}

 {%- assign has_trigger_product = true -%}

 {%- endif -%}

 {%- if item.product == settings.upsell_target_product -%}

 {%- assign has_target_product = true -%}

 {%- endif -%}

 {%- endfor -%}

 {%- if has_trigger_product and !has_target_product -%}

 <p>

 Why not

 add a {{ settings.upsell_target_product.title }}?

 </p>

 {%- endif -%}

{%- endunless -%}

CHAPTER 3  PRINCIPLES AND PROCESS

31

�Utilize Progressive Enhancement
As web designers, we often want to make use of the latest and greatest features browsers

have to offer. However, it’s important to make sure that we don’t leave segments of

visitors behind—especially in the context of Shopify themes, where that exclusion

translates directly to lost dollars.

Progressive enhancement is the practice of designing web sites with a “bottom-up”

approach—starting with something that works for devices with the most basic

capabilities (say, a monochrome Kindle browser with no JavaScript and limited graphics

support), then “progressively” leveraging more advanced features (JavaScript! CSS3!

Push notifications! Color!) when available.

Using this approach doesn’t necessarily take more effort during the development

phase, and it can help us avoid situations where entire groups of potential customers are

denied the opportunity to buy something. (The list of high-profile failures in this regard

is sobering—examples include visitors to Nike.com being presented with a black screen

unless their browser supported a specific CSS feature; and perhaps more egregiously,

for a long time, Walmart’s Add to Cart button didn’t even display for users without

JavaScript!).2

Note  We’ll be using a progressive enhancement approach to all the code we
develop as part of the practical part of this book, with a focus on accessibility
support and ensuring your themes provide a solid fallback experience for users
without JavaScript—two of the most important concerns for Ecommerce stores.

�Document Things
A big mistake beginning Shopify theme developers make (that I was guilty of myself, in

spades) is focusing too much on the initial delivery of a Shopify site and not enough on

everything that comes after a successful launch.

If everything goes to plan and the site using your theme sticks around, then new

seasons, product lines, competitors, and industry trends will demand iteration and

wholesale changes. Whether it’s yourself or another developer tasked with making those

2 These examples are taken from the Filament Group’s book Designing with Progressive
Enhancement by Todd Parker, Patty Toland, Scott Jehl, and Maggie Costello Wachs.

CHAPTER 3  PRINCIPLES AND PROCESS

32

changes, properly documenting code, processes and architecture can make everyone’s

life that much easier.

For code, this means taking the time to cleanly structure your Liquid, JavaScript, and

stylesheets and add thorough, meaningful comments to them.

Compare the Liquid snippet in Listing 3-2 with the snippet in Listing 3-3, both of

which do the same thing. How much extra time and energy would you need to spend

mentally untangling what the first example is doing compared with the second? How

confident would you be making changes to each of them?

Listing 3-2.  A Difficult-to-Parse Liquid Snippet for Calculating Related Products

{%- assign p1s = -1 -%}{%- assign p2s = -1 -%}{%- assign p3s = -1 -%}

{%- assign p4s = -1 -%}

{%- for cp in collections.all.products -%}

{%- unless cp.id == product.id -%}

{%- assign cp_score = 0 -%}

{%- for tag in product.tags -%}{%- for rt in cp.tags -%}

{%- if tag == rt -%}

{%- assign cp_score = cp_score | plus: 1 -%}

{%- endif -%}

{%- endfor -%}{%- endfor -%}

{%- if cp_score > p1s -%}{%- assign p1s = cp_score -%}

{%- assign p1h = cp.handle -%}

{%- elsif cp_score > p2s -%}{%- assign p2s = cp_score -%}

{%- assign p2h = cp.handle -%}

{%- elsif cp_score > p3s -%}{%- assign p3s = cp_score -%}

{%- assign p3h = cp.handle -%}

{%- elsif cp_score > p4s -%}{%- assign p4s = cp_score -%}

{%- assign p4h = cp.handle -%}

{%- endif -%}

{%- endunless -%}

{%- endfor -%}

<div class="row">

{%- for rp in collections.all.products -%}{%- if rp.handle == p1h or

rp.handle == p2h or rp.handle == p3h or rp.handle == p4h -%}

CHAPTER 3  PRINCIPLES AND PROCESS

33

<div class="col-md-4">{%- include 'product' with rp -%}</div>

{%- endif -%}{%- endfor -%}

</div>

Listing 3-3.  A Liquid Snippet Doing the Same Job as Listing 3-2, but in a Much

More Maintainable Fashion

{%- comment -%}

 �Calculated related products using similar tags as a simple scoring system.

{%- endcomment -%}

{%- assign product_1_score = -1 -%}

{%- assign product_2_score = -1 -%}

{%- assign product_3_score = -1 -%}

{%- assign product_4_score = -1 -%}

{%- for current_product in collections.all.products -%}

 {%- unless current_product.id == product.id -%}

 {%- assign current_product_score = 0 -%}

 {%- for tag in product.tags -%}

 {%- for related-tag in current_product.tags -%}

 {%- if tag == related-tag -%}

 {%- assign current_product_score = current_product_score | plus: 1 -%}

 {%- endif -%}

 {%- endfor -%}

 {%- endfor -%}

 {%- if current_product_score > product_1_score -%}

 {%- assign product_1_score = current_product_score -%}

 {%- assign product_1_handle = current_product.handle -%}

 {%- elsif current_product_score > product_2_score -%}

 {%- assign product_2_score = current_product_score -%}

 {%- assign product_2_handle = current_product.handle -%}

 {%- elsif current_product_score > product_3_score -%}

 {%- assign product_3_score = current_product_score -%}

 {%- assign product_3_handle = current_product.handle -%}

CHAPTER 3  PRINCIPLES AND PROCESS

34

 {%- elsif current_product_score > product_4_score -%}

 {%- assign product_4_score = current_product_score -%}

 {%- assign product_4_handle = current_product.handle -%}

 {%- endif -%}

 {%- endunless -%}

{%- endfor -%}

<div class="row">

{%- for related-product in collections.all.products -%}

 �{%- if related-product.handle == product_1_handle or related-product.

handle == product_2_handle or related-product.handle == product_3_handle

or related-product.handle == product_4_handle -%}

 <div class="col-md-4">

 {%- include 'product' with related-product -%}

 </div>

 {%- endif -%}

{%- endfor -%}

</div>

Good documentation doesn’t only have to be in code, either. Some other things that

can help are:

•	 Documenting the concepts and architecture of your theme in a

README file in your source code.

•	 Writing a "getting started" guide for others with step-by-step

instructions on setting up a development environment, walking

through any non-standard aspects of your theme and highlighting

any “gotchas.”

•	 Providing clients and store owners with a “content management

guide,” with instructions on how they can manage various aspects

of their Shopify theme without relying on a developer. Following the

principle of “show, don’t tell,” I often like to record short screencasts

for this purpose.

CHAPTER 3  PRINCIPLES AND PROCESS

www.allitebooks.com

http://www.allitebooks.org

35

�Use Defensive and Modular Programming
Programming defensively means that we try to make as few assumptions as possible in

our code and handle failure gracefully. In the context of Shopify themes:

•	 Avoid writing code that fails if a DOM element is not present on the

page or if a specific Liquid template isn’t being used. Other third-

party code, apps, or developers may have adjusted the theme.

•	 When assigning variables in your Liquid code, try to use unique

variable names to avoid overriding common names that other code

may rely on (e.g., use {% assign first_related_product ... %}

instead of {% assign product ... %}).

•	 For JavaScript, don’t assume the presence of jQuery or other libraries

if they aren’t directly under your control. Fall back to loading them

yourself from within your script if you must, but avoid writing code

that loads eight different versions of jQuery (yes, I’ve seen it happen).

•	 Also for JavaScript, avoid writing code that requires a specific order of

execution or that needs to be executed at the top of the page. Doing

this not only avoids a lot of common functional problems with your

code, but will also make it much easier to build performant themes

(see Chapter 10).

With modular programming, we try to break our theme down into small,

independent components with a single logical function. This reduces the amount of

knowledge we need to keep in our head at one time to a minimum, and makes changing

the code easier. It also lets us re-use those components elsewhere in the theme with a

minimum of fuss.

As a practical example of this, consider Figure 3-1, a product page in a Shopify theme

that handles dynamic shipping destinations, currencies, and variant options.

CHAPTER 3  PRINCIPLES AND PROCESS

http://dx.doi.org/10.1007/978-1-4842-2641-4_10

36

When the destination country, customer currency, or a product option is changed

by the customer, various page updates might need to be made (the feature image, the

customer support number in the header, the displayed price, etc.). We could handle this

with one large callback function in JavaScript that managed updating everything on the

page, but a neater solution is to break down each of the boxes on the page into their own

independent component that listens for relevant events and focuses only on updating itself.

This approach allows us to write small bits of code like Listing 3-4, which handles

updating the displayed price element whenever the selected variant or currency

changes.

Listing 3-4.  A Modularized JavaScript Function for the Product Page in

Figure 3-1

$(document).on('variant.changed currency.changed', function(e, variant,

currency) {

 var formattedPrice = Currency.format(variant.price, currency);

 $('[data-variant-price]').text(formattedPrice);

});

Figure 3-1.  A Shopify product page with several dynamic page elements outlined

CHAPTER 3  PRINCIPLES AND PROCESS

37

If you ever want to change the way that the displayed price is rendered, you can do

that in this snippet of code without worrying about affecting anything else. Likewise,

if you want to change the way the variant changed or currency changed events are

triggered, you can do that without having to know anything about the implementation of

this price component.

�Principles of Process
No two theme building processes are going to be the same—every designer, developer,

and agency is going to approach things their own way, and even within that you’ll see

variation depending on the client or project.

Without the possibility of a single prescriptive guideline for a winning Shopify theme

development process, what I’ve tried to do in this section is identify four important

things that I’ve seen successful developers commonly focus on.

�Client and Project Match
Projects where you and the client are comfortable with each other and feel like you’re

collaborating rather than undertaking a transaction generally see much better results.

Make sure you spend some time upfront getting to know the client and what they’re after

before committing to a project.

Ask yourself questions like these:

•	 Do I feel comfortable talking to the client? Do I get on well with

them?

•	 Am I motivated by what the client does?

•	 Is the project interesting on a technical level?

•	 Will my opinion and expertise be valued, or am I seen as “just a pair

of hands”?

•	 Most importantly—do I feel like delivering this project will result in

success for the client?

Depending on the situation, you may be in a position where you feel you should say yes

despite a sense that the project isn’t right for you or the client. While you need to make your

own judgment calls, my experience (and the experience of many others in the industry) is

that your gut instinct is often accurate and such relationships and projects falter.

CHAPTER 3  PRINCIPLES AND PROCESS

38

�Iterative Development and Client Investment
For the clients you do end up working with, it’s important to make sure that they are

closely involved with the design and development of the theme along the way. Kicking

off a project, disappearing for three months, and coming back with a “finished” product

is a sure-fire way to deliver something the client doesn’t want, need, or feel invested in.

You do need to drive and manage your development process to avoid being

micromanaged by the client, but ensure that the process includes plenty of structured

ways for your client to give feedback, discuss use cases, and test possible design

options. A common technique is to plan design and development in short (one to two

week) “sprints” or “cycles,” with each sprint or cycle having its own specific goals and

opportunities for you to present progress and receive feedback.

Planning for an iterative approach upfront also makes it easier to factor inevitable

changes into your timelines and budget, and ultimately makes it more likely that you can

deliver something that meets the client’s needs. Having the clients regularly involved in

the feedback and iteration process also gives them a greater sense of ownership in the

final product.

�Expectation Setting
The culprit for many projects and client relationships gone bad is poor expectation

setting. This is sometimes due to poor communication from the client, but most of the

time it’s freelancers or agencies that haven’t been clear about the nature of deliverables,

what the timeline for them is, where the scope and boundaries of a project are, and what

the breakdown of responsibilities are.

A good development process should present the client with such a breakdown,

clearly delineating things that are in-scope (e.g., a code for a polished theme that

matches the developed mockups and wireframes) and things that aren’t (e.g., the data

entry of 5,000 SKUs into the Shopify backend). Timelines should be set in a way that’s

realistic and that account for the time needed for parties to provide feedback, conduct

research, and handle revisions to the original scope.

Finally, it must be noted that expectations aren’t a one-way street. It’s important that

you make it clear to clients what your expectations are of them, whether it’s providing

timely feedback on your latest iteration, sending over copy and images, or payment of

invoices. For each of these expectations, be clear about the consequences on timelines

and deliverables of failing to meet them.

CHAPTER 3  PRINCIPLES AND PROCESS

39

�User Testing
Regardless of store or project size, one of the most useful yet most often overlooked

things to do is user testing—getting actual people to sit down and use your theme.

Without any hard data to back this up, my suspicion for the reason behind this neglect is

that the expected (indeed, the desired) outcome of user testing is more work—fixing user

experience issues you weren’t previously aware of.

The solution is simple—plan and budget for it as part of your process, making room

in your timeline (and in your ego) for addressing issues brought about by your theme’s

assumptions around usability.

The simplest form of user testing (and really, there’s no excuse for not doing this

even on a shoestring budget) is the “coffee shop or office coworker” test. Find someone

who’s never seen your site before, sit them in front of a desktop or mobile device, and

give them a task to complete like “find a sweater you like and buy it” or “find all shoes

from a particular designer.” Watch over their shoulder, take copious notes (record the

sessions if possible) and, above all, bite your tongue and do not help them. No design

survives first contact with actual users, and I can guarantee you’ll be exposed to a

number of usability issues you weren’t previously aware of.

For larger projects, you may want to invest the time and money in professional

user testing, either by engaging a company specializing in it or by using an online user

testing service. Using such services can be advantageous over the less formal “over the

shoulder” approach, as they help you conduct the testing at scale while also selecting a

demographic that more accurately reflects your store’s visitor makeup.

Finally, once you deploy your theme, you can keep an eye on the actual visitors

coming to your site to identify potential usability problems. In a recent project, we

made some customizations to the Shopify checkout flow, collecting some additional

information from customers on the way. The changes were quite significant, both on

the frontend and also in terms of the resulting data flowing through to a third-party

logistics system, so we took a pretty cautious approach to deployment. The first step was

to conduct thorough testing of the frontend using the “over the shoulder” approach and

with a range of different browsers and devices.

We then conducted a live test of the changes for an hour and recorded the actions of

every single user session going through the checkout flow with user analytics tool Hotjar

(https://www.hotjar.com). Reverting, we could then go through every recording to see

exactly how users were interacting with the new interface and where they were getting

stuck or delayed.

CHAPTER 3  PRINCIPLES AND PROCESS

https://www.hotjar.com

40

This method picked up a couple of usability issues that were obvious once we saw

them but just hadn’t cropped up until contact with real customers. One of the most

obvious is shown in Figure 3-2. The clickable area of a new button design was smaller

than the visual area of the button, meaning a lot of users were failing to activate it

properly and consequently move to the next checkout step.

Figure 3-2.  The clickable area (green/darker) of one of our custom checkout
buttons before user testing (left) and after correction (right)

�Summary
In this chapter, we took a step back to think holistically about Shopify design and

the goals we’re trying to achieve when building a theme. The chapter discussed the

importance of empathizing with the user and the importance of designing for visitors in

a range of contexts.

It also discussed a number of best practices to keep in mind during the development

of your themes and studied some techniques to help you uncover usability issues during

the testing phase.

CHAPTER 3  PRINCIPLES AND PROCESS

41
© Gavin Ballard 2017
G. Ballard, The Definitive Guide to Shopify Themes, DOI 10.1007/978-1-4842-2641-4_4

CHAPTER 4

Designing Theme
Foundations
Over the next four chapters, we’ll be walking through the process of designing and

building an example Shopify theme—page by page, feature by feature. In this chapter,

we’ll be looking at the options for getting started with a new theme, then design and

implement the key elements common to your store’s entire site—the layout and

navigation.

The focus will be on the fundamentals of building a Shopify theme more than the

fundamentals of web or visual design. This means you won’t see too much attention paid

to styling, visual tweaks, or frontend framework choices, except for when those things

directly overlap with some Shopify-specific concerns.

When building an Ecommerce site, there are a wide range of design choices that can

and should be made in different scenarios—what style of navigation to use, what the best

layout for a product page is, etc. The “right” choice (if there is such a thing) will of course

be different depending on the store and audience in question.

We can’t explore every possible choice in detail within the scope of a single book,

so instead when faced with these choices, I’ll discuss the different possible approaches

before settling on a common one for demonstration purposes.

Also, rather than try to dump all the code used to build the example theme directly

in this book, I’ve made it available in a GitHub repository (https://github.com/

gavinballard/defguide-theme). The commit history of this repository tracks the

progress of the example theme from this chapter onward, so it’s easy for you to follow

along with the exact changes made at each section.

I will use code in the text when it’s helpful to illustrate a point or demonstrate a

technique. To keep these examples as clear and as useful as possible, I’ll strip them of

extraneous information (like HTML class names or accessibility attributes). You can

https://github.com/gavinballard/defguide-theme
https://github.com/gavinballard/defguide-theme

42

always refer to the corresponding snippets of code in the example theme repository,

which contain things in full.

Ready? Let’s get started!

�A Starting Point
Before we start designing and building our theme, let’s establish the workflow and get

into a position to begin work. I discussed a variety of tools and workflow techniques in

Chapter 2, including Shopify’s Slate and other build tools that assemble your themes into

Shopify’s expected directory structure from a different starting point.

Learning about and using these tools is important, but to begin with you’re going to

strike a balance between simplicity and ease-of-use. This assumes that we’re working

directly with the Shopify theme directory structure (so no build and compilation tools

like Grunt or Slate), but are working on files locally with a text editor and using Theme

Kit or the Theme gem to keep changes synced with a development store (refer back to

Chapter 2 if you need a refresher on either of these tools).

�Theme Scaffolds
In your day-to-day life dealing with Shopify themes, much of your work will be done

on existing Shopify source files—perhaps you’ll be brought in to customize a theme

purchased from the theme store or developed by someone else. For situations where

you’re starting on a “greenfield” project, it’s helpful to have a starting point—a blank

canvas to work from. There are several freely available theme scaffolds:

•	 Slate: Shopify’s official theme development tool includes its own

default theme setup, which will be generated when you run slate

theme new-theme-name. It’s a reasonably bare-bones setup, giving

you template files and several initial styles and JavaScript helpers.

Slate uses a series of build tools to “compile” your theme from a

source directory.

CHAPTER 4  DESIGNING THEME FOUNDATIONS

http://dx.doi.org/10.1007/978-1-4842-2641-4_2
http://dx.doi.org/10.1007/978-1-4842-2641-4_2

43

•	 Timber: Before Slate came on the scene, this was Shopify’s official

theme framework, offering many styling helpers and JavaScript

functionality like Ajax carts. With the introduction of Slate, Timber

is no longer being maintained so it may be best to look at Timber as

inspiration for how to implement particular Shopify features rather

than as a starting point.

•	 Shopify Theme Scaffold: This is an unofficial project, based on

the theme work we do at Disco. It includes a simple Grunt-based

workflow for theme compilation. Unlike the tools, it’s truly a

blank canvas, as it includes empty template files and no styling or

JavaScript.

Over time, you’ll probably start to develop your own preferences for working with

Shopify themes and start to build your own starting scaffold.

For the purposes of this book, however, we’re going right back to basics. We’re going

to start by uploading blank.zip (available from the GitHub resources for this book)

into the Theme Editor on our development store. As its name suggests, blank.zip is a

completely empty theme that contains only the bare minimum required for Shopify to

consider it a valid upload. You can see in Figure 4-1 that, once it’s uploaded, it lives up to

that name.

Figure 4-1.  You can upload the blank.zip file directly into the Themes page in the
Shopify admin (left). Once you’ve done that, previewing the theme provides an
exciting view (right)

CHAPTER 4  DESIGNING THEME FOUNDATIONS

44

�Sample Product Data
A common design mistake is to build around unrealistic “dummy” data (lorem ipsum,

anyone?), rather than the actual content that will be used on your site in production.

One habit I encourage all theme developers to foster is ensuring that clients provide

them with actual product data and copy before starting out on a theme build.

This isn’t always possible, but fortunately Shopify provides a series of dummy store

inventories that you can import to a development store to help you work with realistic

data. The dummy products contain a variety of images with different dimensions,

number of variants, and descriptions of various lengths so that your theme can be

properly tested across a range of content.

You can download one of the four sets of sample product data from

https://github.com/shopifypartners/shopify-product-csvs-and-images.1

EXERCISE: A STARTING POINT

	1.	 Set up a Shopify Development store to start following along with the practical

exercises. Refer to Chapter 1 for the steps involved.

	2.	 Download blank.zip from the book’s resources page and upload it to your

store from the Themes page in the Shopify Admin.

	3.	 Download one of the sets of sample product data from Shopify and import it

into your store.

	4.	 Following the steps outlined in Chapter 2 under “Moving to Local Development,”

download a copy of the blank theme to your local machine and use Theme Kit

to ensure that any changes you make locally are synchronized to your Shopify

store.

	5.	 An optional (but highly recommended) step is to place your theme under

revision control, so that you can save your progress along the way and compare

it to the commit history of the example theme on GitHub. Follow the steps in

Chapter 2 under “Putting Your Theme Under Revision Control” for the steps

involved here.

1 Instructions on importing the product data can be found at https://www.shopify.com/
partners/blog/93467590-design-your-store-faster-with-product-csvs-and-images.

CHAPTER 4  DESIGNING THEME FOUNDATIONS

https://github.com/shopifypartners/shopify-product-csvs-and-images#_blank
http://dx.doi.org/10.1007/978-1-4842-2641-4_1
http://dx.doi.org/10.1007/978-1-4842-2641-4_2
http://dx.doi.org/10.1007/978-1-4842-2641-4_2
https://www.shopify.com/partners/blog/93467590-design-your-store-faster-with-product-csvs-and-images
https://www.shopify.com/partners/blog/93467590-design-your-store-faster-with-product-csvs-and-images

45

�Your Theme’s Layout
Unless they specify otherwise, all of the page templates in your theme will be rendered

inside the default layout, theme.liquid. The layout file that comes with the blank

starting theme looks like Listing 4-1.

Listing 4-1.  The Contents of a default theme.liquid

<!DOCTYPE html>

<html>

 <head>

 {{ content_for_header }}

 {{ 'styles.css' | asset_url | stylesheet_tag }}

 </head>

 <body>

 {{ content_for_layout }}

 {{ 'theme.js' | asset_url | script_tag }}

 </body>

</html>

The overall structure should look familiar to anyone who’s worked with HTML

before. The Shopify-specific elements are:

•	 {{ content_for_header }}: Shopify requires placing this output

tag inside your layout’s <head> section. It’ll use this location to add

Shopify-side JavaScript, styles, and tracking code on every page

rendered on your storefront.

•	 {{ content_for_layout }}: Shopify requires placing this output tag

inside your layout’s <body> section. This will be where the content

for each of your individual page templates (page.liquid, article.

liquid, etc.) will be rendered.

CHAPTER 4  DESIGNING THEME FOUNDATIONS

46

•	 {{ 'styles.css' | asset_url | stylesheet_tag }} and

{{ 'theme.js' | asset_url | script_tag }}: These tags aren’t

strictly required, but I’ve included them in the default layout as you’ll

always want your site-wide stylesheet and scripts added on every

page. asset_url and stylesheet_tag / script_tag are Liquid filters

that convert the name of a particular asset ('theme.js') first into

a reference to that asset on Shopify’s CDN, and then to a HTML tag

that will load that asset, e.g., <script src="//cdn.shopify.com/s/

files/1/1744/7651/t/2/assets/theme.js?2331723957652526606"

type="text/javascript"></script>.

As time goes on, we’ll be adding more and more content to theme.liquid. Much of

this will be content or elements we want to appear on every page, while some will be

loaded conditionally dependent on the current page template. To start with, we’re going

to look at the design considerations and implementation of the overall site layout and

navigation elements—things that generally affect all pages of a site.

�Designing Layout and Navigation
Designing the layout and navigation of a Shopify site is about a lot more than just setting

up a nice-looking navigation bar at the top of your site and making sure the dropdowns

work. It’s a matter of thinking about the users of your site, and how you can best help

them find what they’re looking for in the minimum number of steps.

When it comes to site layout, one of the tensions theme designers face is “convention

versus creativity.” Customers’ expectations on how particular Ecommerce sites should

look and operate have been shaped over time, meaning we tend to see a convergence in

the appearance of Ecommerce sites. A look at the layout of the “prototypical Ecommerce

site” in Figure 4-2 and you’d probably agree that 90% of Ecommerce sites fall into this

basic structure.

CHAPTER 4  DESIGNING THEME FOUNDATIONS

47

I don’t think this convergence is necessarily a bad thing. If our site follows a

customer’s expectations, they’ll be able to find what they’re looking for more efficiently,

which is one of your jobs as a designer. We still have plenty of scope for finding a brand’s

“voice” within these conventions.

For this example theme, we’re going to implement something very like the

“prototypical” layout from Figure 4-2: a layout with a header section consisting of a logo

and text links on the left, with a search bar, account information, and cart link on the

right. Underneath that, we’ll leave space for the individual page content before adding a

footer at the bottom with links to the various parts of the site.

Because we anticipate lots of mobile visitors (more than half of all visits to Shopify

sites are on mobile), we’ll need to make sure that the layout works responsively and is

easily usable on mobile by collapsing navigation items, creating large touch areas, and

adjusting font sizes.

Figure 4-2.  The prototypical Ecommerce site layout

CHAPTER 4  DESIGNING THEME FOUNDATIONS

48

�The Site Header
For the example theme, we’re going to add a new header.liquid section (see Listing 4-2)

that renders the store name and iterates over the links defined in the main navigation menu

(configurable from the Shopify Admin) as well as the Search, Log In/My Account, and Cart

links. We’ll then include it in the theme.liquid (see Listing 4-3) so that it appears on every

page of the site.

Listing 4-2.  A Simple sections/header.liquid Section

<nav>

 {{ shop.name | escape }}

 {%- for link in linklists.main-menu.links -%}

 {{ link.title | escape }}

 {%- endfor -%}

 <li class="nav-item">

 Search

 {%- if shop.customer_accounts_enabled -%}

 {%- if customer -%}

 {{ customer.first_name | escape }}

 {%- else -%}

 Log in

 {%- endif -%}

 {%- endif -%}

CHAPTER 4  DESIGNING THEME FOUNDATIONS

49

 Cart ({{ cart.item_count }})

</nav>

Listing 4-3.  Include the Header Section at the Top of theme.liquid So That It

Appears on Every Page

...

<body>

 {%- section 'header' -%}

 {{ content_for_layout }}

 ...

When rendered on the Shopify site, it looks something like Figure 4-3 (note that

I’ve skipped the addition of all the styling code in this book; refer to the example theme

repository for details). Note that the items in the menu bar (Shop, Best Sellers, etc.) are

defined in the Online Store ➤ Navigation section of the Shopify Admin, not directly in

the theme.

Figure 4-3.  The example theme’s header

Simple, but effective! Some things to note:

•	 The implementation is consistent. We’re not changing the menu

items available or the layout of menu items depending on the

current page. It’s important to keep the navigation structure of the

site consistent from one page to the next, as it reduces the amount of

information a user must process when moving from one page to the

other. Making large “contextual” changes to site layout or structure

can be confusing for users and should be avoided.

CHAPTER 4  DESIGNING THEME FOUNDATIONS

50

•	 A cart link is included in its conventional spot (the top right of the

page). Keeping this element means that no matter where they are, the

customers know how to take the most important step on any Ecommerce

site—move to the checkout. Note also that the number of items currently

bagged is displayed to help the customers keep track of their cart state.

•	 The design allows for only a single level of navigation in the header.

There are no dropdown menus or category filters at this stage. You’ll

be learning about navigation patterns in more detail shortly.

�Making the Header Configurable

One of the advantages of using a section for the header rather than a snippet is that

we can define configuration settings directly in the section and have them appear in a

simple interface in the Shopify Admin’s theme customizer. To demonstrate, let’s make a

change to allow the storeowners to select which navigation menu they would like to use

to render the list of links at the top of the site (it’s currently fixed to main-menu, which is a

default Shopify navigation menu).

We can start this by adding a {% schema %} definition at the top of sections/

header.liquid, then updating the way we fetch the navigation menu to use (see

Listing 4-4). When this is done, users opening the theme customizer from the Shopify

backend will be able to pick which menu to use (see Figure 4-4). Note that the link_list

type refers to Navigation Menus, as titled in the Shopify Admin.

Listing 4-4.  Addition of {% schema %} Markup

{% schema %}

{

 "name": "Header",

 "settings": [

 {

 "id": "primary_link_list",

 "type": "link_list",

 "label": "Primary navigation menu",

 "default": "main-menu"

 }

]

}

CHAPTER 4  DESIGNING THEME FOUNDATIONS

51

{% endschema %}

<nav>

 ...

 �{%- assign primary_link_list = linklists[section.settings.primary_link_

list] -%}

 {%- unless primary_link_list == blank -%}

 {%- for link in primary_link_list.links -%}

 ...

Figure 4-4.  Adding the {% schema %} markup gives users a nice UI to make
configuration changes inside the Shopify Admin’s theme customizer

�The Navigation Menu
The initial approach to a navigation header offers only a single level of options. For stores

with a very limited number of pages or products, this simple approach may suffice.

However, there are many stores where it’s useful to give users more choice and a quicker

way of narrowing down the product range. This is usually achieved by adding contextual

menu options (e.g., dropdown menus).

CHAPTER 4  DESIGNING THEME FOUNDATIONS

52

�Navigation Menu Design

Picking the right menu design option for your site requires a deep understanding of the

information hierarchy of the site, especially the product hierarchy. You need to consider

things like the following:

•	 How the client/storeowner categorizes their products

•	 How competitors categorize the same or similar products

•	 How customers categorize products

•	 Whether the categories are “deep” (fewer top-level categories,

with lots of subcategories and sub-subcategories) or “broad”

(more top-level categories with fewer or no subcategories)

•	 The level to which categories overlap

•	 The facets of the products that need to be filtered or searched on

•	 Whether the site is “content-heavy” (e.g., contains a large number of

blog posts and articles)

This list can be a bit daunting, but it’s an important thing to consider when working

out what sort of scale your navigation menus need. If the store only sells 2-3 products,

you can skip categorization altogether; if it sells 50, you’ll probably be fine with just

categories; and if it sells 500+, you’re going to need at least two levels of categorization.

It’s important here to be aware of the (oft-lamented) limitations of the Shopify

backend when it comes to categorization. Strictly speaking, we’re only allowed one

“real” level of categorization (“Collections” in Shopify parlance). There’s no inherent

notion of a subcategory. What we do get instead are a couple of different fields on

products that allow us to group them: Tags, Product Types, and Product Vendors. Tags

are most often used to approximate subcategory functionality.

My general advice in almost every area of Shopify development is to avoid being too

clever and that pushing the boundaries too far leads to trouble. As a corollary to that, I

don’t recommend trying to implement sub-subcategories with Shopify unless you have a

very clear need and a maintainable approach (perhaps with application support).

For the example store, I’m using the “Apparel” sample product data provided by

Shopify. This gives us an inventory of 25 products, covering some clothing (men’s and

women’s), bags, and some accessories. Given the spread of products and how the

customers are likely to think about them, I’m going to work with four primary product

CHAPTER 4  DESIGNING THEME FOUNDATIONS

53

categories for this store: Mens, Womens, Bags, and Accessories. As each of these categories

will only have 4-5 products in them, I’m not going to subcategorize them just yet.

In addition to this product hierarchy, I’m going to work on the assumption that there

are several content pages considered important by the storeowner—About, Reviews, and

Press. I’d also like to provide customers a shortcut to get to the most popular products,

which we could do through a link to a Best Sellers collection. Based on this information,

the final example information hierarchy for the main navigation menu looks like this:

•	 Shop

•	 Womens

•	 Mens

•	 Bags

•	 Accessories

•	 Best Sellers

•	 About

•	 Reviews

•	 Press

Once we have a hierarchy together, we need to decide how to best implement that on

the storefront. Given that Shopify doesn’t natively support hierarchical navigation menus

(yet—at the time of writing, this feature is in beta), the standard way to implement these

is to:

	 1.	 Create a new Navigation menu in the Shopify Admin for each

submenu, with a name matching its top-level name (in this

example, this would mean creating a new navigation menu

called Shop that contained links to the Womens, Mens, Bags, and

Accessories collections).

	 2.	 While iterating through the top-level menu items, update the

Liquid code to check to see if a submenu exists for the current

item. If so, render that submenu by iterating over its items in turn.

You can see how I’ve implemented this for the example store in the Shopify Admin

(see Figure 4-5) and in the header.liquid section (see Listing 4-5), with the result on the

frontend (see Figure 4-6).

CHAPTER 4  DESIGNING THEME FOUNDATIONS

54

Listing 4-5.  The Navigation Menu Link Loop Updated to Handle Submenu

Navigation Items

{%- for link in primary_link_list.links -%}

 {%- assign child_link_list_handle = link.title | handle -%}

 {%- assign child_link_list = linklists[child_link_list_handle] -%}

 {%- if child_link_list and child_link_list.links.size > 0 -%}

 {%- assign has_child_link_list = true %}

 {%- else- %}

 {%- assign has_child_link_list = false %}

 {%- endif -%}

 {{ link.title | escape }}

 {%- if has_child_link_list -%}

 <div class="dropdown-menu">

 {%- for child_link in child_link_list.links -%}

 {{ child_link.title | escape }}

 {%- endfor -%}

 </div>

Figure 4-5.  Configuration of a sub-navigation menu in the Shopify Admin

CHAPTER 4  DESIGNING THEME FOUNDATIONS

55

 {%- endif -%}

{%- endfor -%}

Figure 4-6.  The resulting simple dropdown menu on the Example Theme
storefront

Some design guidelines when implementing dropdown menus:

•	 Try to avoid any menus with more than seven options, as this begins

to create too much mental overhead for users. If you feel you need

more than this, consider adding another level of hierarchy or just

relying on a smooth filtering experience on collection pages to let

users narrow down their results. Remember that this is a limit, not

a goal—ASOS has only three top-level menu items on their store

(Home, Men, and Women).

•	 Keep dropdowns to a single level. Although it’s tempting to add

submenus on the side of a dropdown, research shows they’re fiddly

and tricky for users. This is especially true when dropdowns are

hover-activated—users “lose” the menu unless they are very careful

with the mouse. If you need to be able to display a larger category

range, consider a mega-menu, discussed in the next section.

CHAPTER 4  DESIGNING THEME FOUNDATIONS

56

•	 Activate dropdowns via a click, not a hover. This means you don’t have

to worry about a difference experience for touch devices like mobile

and tablet (where you don’t get a hover event). It also allows you to keep

an opened menu in place even if the cursor leaves the menu, avoiding a

major source of frustration for users and potential accessibility issues.

The dropdown menu in Figure 4-7 is an example of a menu with a number of

problems. First, it’s far too long, meaning customers have to scroll just to see all the

options. Second, it’s hover-activated and closes instantly when the mouse leaves it (very

common when scrolling to see the bottom). Finally, it has submenus that suffer from

the same hover problems and that aren’t hinted at by the main menu (by a right-angled

chevron, for example).

Figure 4-7.  A dropdown menu with a number of usability problems

�Mega-Menus

If you have a lot of categories, you might find you have too much information to fit into a

single level of dropdowns. That’s where the common mega-menu design pattern comes

in to play. Mega-menus let you offer many deep navigation choices to users, presented in

a structure you can control and illustrate if needed (see Figure 4-8).

CHAPTER 4  DESIGNING THEME FOUNDATIONS

57

Because mega-menus offer a high degree of space and flexibility, they should be

treated as a design canvas unto themselves rather than just a way to list a bunch of items.

Doing this, in combination with the following recommendations, will help you make the

most of your menus and provide a better shopping experience to customers.

•	 Use headings and columns to clearly break down and identify the

chosen sections of your menu. The choice of columns should reflect

the common ways customers may want to browse the product

range—e.g., Shop by Size, Shop by Brand, and Shop by Price.

•	 You don’t need to simply order products or categories alphabetically.

Use the flexibility of the mega-menu to promote your best selling or

featured items on the top left of the menu.

Figure 4-8.  While quite cluttered, this example shows how mega-menus can be
used to categorize a large number of deep links on the ASOS site

CHAPTER 4  DESIGNING THEME FOUNDATIONS

58

•	 Keep mega-menus short. Making menus too tall presents problems

for users with small screens. You can compensate by using the full

width of the screen.

•	 Don’t be afraid to use images or graphics to enhance products or

categories (without going overboard and turning your mega-menu

into a visual mess).

•	 Ensure your menus are mobile friendly by using responsive design

techniques.

The Sunglass Hut has an excellent example of an effective mega-menu, shown in

Figure 4-9. A considered selection of top-level items (Hers, His…) opens (with a click!)

a mega-menu that offers further deep navigation. The menu effectively makes use of

graphics to offer a Featured Brands functionality as well as a featured collection at the

bottom.

Figure 4-9.  The Sunglass Hut’s interesting horizontal twist on the mega-menu is a
great example of menu design

CHAPTER 4  DESIGNING THEME FOUNDATIONS

59

The implementation logic behind a mega-menu is similar to the existing dropdown

menu we’ve implemented on the example theme; the key difference is in the styling and

sizing of the elements displayed. For this reason, and because we’re not yet dealing with

that many products, let’s leave the implementation of a mega-menu on the store for now

and move on to another important navigation element—the footer.

�The Site Footer
More than just a spot to dump an e-mail signup form, designers often overlook the

incredibly useful role footers play in navigation. They can serve as a get out of jail tool for

users who have made it to the bottom of the page without finding what they’re looking

for, reducing the chance of someone bouncing off your site. Thanks to convention, they

are also often the first place customers will look when in search of your shipping, refund,

and return policies.

Additionally, footers are a great place to place trust signals like “secure” or “trusted”

site badges and logos, logos of well-known customers, or logos of media companies that

have covered your brand. Studies show that reinforcing the trustworthiness of your site

with these types of signals on every page can have a positive impact on conversion rates.

Note  All this useful information in the footer can be lost if your store implements
“infinite scroll” techniques on collection pages. This is one of a couple of reasons I
don’t recommend using infinite scroll on Ecommerce sites. You’ll dig into this more
in Chapter 6 when diving into collection page design.

To implement a footer in the example theme, we’re going to take a similar

approach to the header and create a new section called footer.liquid (see Listing 4-6)

then include it from theme.liquid (see Listing 4-7), this time underneath the

{{ content_for_layout }} tag. Like with sections/header.liquid, we need to include

a {% schema %} section at the top to allow users to customize the footer.

CHAPTER 4  DESIGNING THEME FOUNDATIONS

http://dx.doi.org/10.1007/978-1-4842-2641-4_6

60

Listing 4-6.  The Contents of the New sections/footer.liquid File

{% schema %}

{

 "name": "Footer",

 "blocks": [

 {

 "type": "link_list",

 "name": "Navigation menu",

 "settings": [

 {

 "id": "link_list",

 "type": "link_list",

 "label": "Navigation menu"

 }

]

 },

 {

 "type": "payment_icons",

 "name": "Payment icons"

 }

]

}

{% endschema %}

<footer>

 {%- for block in section.blocks -%}

 {%- case block.type -%}

 {%- when 'link_list' -%}

 {%- include 'footer-block-link-list' -%}

 {%- when 'payment_icons' -%}

 {%- include 'footer-block-payment-icons' -%}

 {%- endcase -%}

 {%- endfor -%}

</footer>

CHAPTER 4  DESIGNING THEME FOUNDATIONS

61

Listing 4-7.  The Inclusion of the New Footer Section in theme.liquid

...

{{ content_for_layout }}

{%- section 'footer' -%}

{{- 'jquery-3.1.1.min.js' | asset_url | script_tag -}}

...

The footer.liquid code introduces a new Liquid concept: blocks. Blocks are

wrappers around content and settings, which can be added, removed, and reordered

within a particular section. It makes sense to use blocks when you’d like to allow the theme

owner to define repeated sections of content, or control the order content appears in.

In this footer, we defined two type of blocks within the footer section—a link_list

type and a payment_icons type. The first allows the rendering of a vertical navigation

menu within a footer column, the second displays a list of supported payment icons on

the storefront. From the theme customizer, storeowners will be able to add and remove

these blocks to configure the footer at will.

In footer.liquid, the code loops over each block configured in the section, checks

its type, and includes either footer-block-link-list.liquid or footer-block-

payment-icons.liquid. These are Liquid snippet files, stored in the theme’s snippets

directory in order to logically partition and simplify the code in the footer.liquid

section. The filenames used here are just a convention to identify that they are included

as blocks from within the footer section). Check out the example theme repository for

the full implementation of these snippets.

Figure 4-10 shows the result of adding the footer in the theme customizer and in the

theme preview.

Figure 4-10.  Adding the footer snippet gives a customizable multi-column footer
layout

CHAPTER 4  DESIGNING THEME FOUNDATIONS

62

EXERCISE: LAYOUT AND NAVIGATION

	1.	 Following the steps from this chapter, add header and footer sections to your

theme, including the configurable {% schema %} sections to allow users to

configure the navigation menus to be used in each section.

	2.	 Design an information hierarchy for the most important pages for your own

hypothetical store, including a product hierarchy and sensible categorization

system.

	3.	 If your information hierarchy calls for multiple levels of information, add a

dropdown menu to your main navigation to make it easier for customers to

find what they’re looking for. If you’re feeling plucky, implement the dropdown

menu as a mega-menu with some additional graphical information inside the

expanded area.

�Summary
In this chapter, we’ve set ourselves up nicely for building a new Shopify theme. The

chapter covered the options and frameworks that developers have access to when

starting a new theme, and explained how we can use preexisting sample product CSVs to

start building around realistic data.

You learned about some key Shopify concepts like layouts, sections, and blocks, and

read about the design principles to apply when laying out the navigation for a store’s

theme.

CHAPTER 4  DESIGNING THEME FOUNDATIONS

63
© Gavin Ballard 2017
G. Ballard, The Definitive Guide to Shopify Themes, DOI 10.1007/978-1-4842-2641-4_5

CHAPTER 5

Designing Product Pages
Once we have a basic theme structure to work with, we can start to build out the

individual pages on the store. This chapter starts with the most important one—the

product page.

�The Product Page
The product page is usually the most important page for an Ecommerce store. It’s where

a customer evaluates an offering and makes the crucial decision to purchase. It needs

to convey a lot of information to visitors—core information like what your product is,

does, and looks like; how much it costs; what configuration options are available; and

supplementary information like size guides, shipping details, product guides, and

customer reviews.

In addition to presenting all this information clearly, it needs to provide interactive

elements to help customers configure the product to their liking (e.g., selecting the

appropriate size and color), add it to the cart, and progress to the checkout.

In my experience, both designers and storeowners spend too much time thinking

about and refining the home page of a site, at the expense of the product page. It’s totally

understandable—the home page is what the storeowner types in when they want to

look at their site, after all—but it’s easy to overlook the fact that many visitors to a store

don’t land on the home page and progress linearly from there to the collection page and

product page. Figure 5-1 shows how designers and storeowners often conceptualize the

customer journeys through their site (left) versus the reality (right). If you’re designing a

theme for an existing store, you can ask for access to any existing analytics data in order

to understand the most common paths for the merchant’s actual customers.

64

Customers arriving on a site from a Google search, paid advertisement, or social

network are more likely to be landing directly on a specific product page that matches

their interest instead of the home page, so it’s crucial to make sure that the experience on

that page is as smooth as possible.

For this reason, I encourage you to start design and development work on the

product page first, which is what we’re going to do with the example theme in this

chapter.

�Product Page Information Hierarchy
To design an effective product page, we first need to establish the information

hierarchy—which bits of product information are most important to our visitors? What

should we prioritize, and what can be considered as “supplemental” information that

doesn’t need to be as prominent?

The answers will differ from store to store, although there tends to be some

information that’s usually more important than others. A “standard” information

hierarchy, placing product information into prioritized buckets, might look like Figure 5-2.

Figure 5-1.  How designers and storeowners visualize the customer journey
through their sites (left) versus the reality (right)

CHAPTER 5  DESIGNING PRODUCT PAGES

65

Deviations from this standard hierarchy might occur because of the types of

products we’re selling, what we know about the customers visiting the stores, or even

what devices we anticipate visitors using. As an example, compare the product page for

Colonna Coffee’s roasted coffee beans with the product page for Bespoke Verse’s gift

mug in Figure 5-3. Colonna’s coffee bean packaging looks similar regardless of the roast

or flavor profile, so the product image is relatively small, with emphasis placed on the

textual description of the coffee’s taste and its available options (espresso versus filter,

long versus short). Conversely, Bespoke Verse’s gift mug doesn’t need any description at

all, as the product image does all the talking and is placed very prominently.

Figure 5-2.  A “standard” product information hierarchy

Figure 5-3.  The product pages for whole coffee beans on Colonna Coffee
(colonnacoffee.com, left) and a gift mug on Bespoke Verse (www.bespokeverse.
co.uk, right)

CHAPTER 5  DESIGNING PRODUCT PAGES

http://colonnacoffee.com
www.bespokeverse.co.uk
www.bespokeverse.co.uk

66

For this example theme, we’ll be working with the “standard” information hierarchy

from Figure 5-2. The first pass will use a layout based on the rough mockups in Figure 5-4

to achieve this. As you can see, I’ve applied the hierarchy independently for both mobile

and desktop contexts, to make sure that I am prioritizing information consistently but

also considering how users will experience the page on different devices.

Figure 5-4.  Rough mockups for the example theme’s product page, based on
the standard product information hierarchy and inserted into the layout format
developed in Chapter 4

�Adding Product Imagery
Let’s get started with the code implementation of the product page in the example

theme.

By default, all products on the store are displayed using templates/product.liquid.

As with other page template files, the contents of product.liquid are processed by

Shopify and rendered inside the {{ content_for_layout }} tag of theme.liquid.

We’re going to start adding content to product.liquid with the code for a simple

product image carousel. A simplified version of the HTML code for this is found in

Listing 5-1, with the result displayed in Figure 5-5. If the product has more than one

CHAPTER 5  DESIGNING PRODUCT PAGES

http://dx.doi.org/10.1007/978-1-4842-2641-4_4

67

image, a list of product image thumbnails is shown. The more detailed product.liquid

used to generate the product template shown in Figure 5-5 is available in the example

theme GitHub repository.

Listing 5-1.  A Simplified Version of a product.liquid Displaying a Main Product

<main>

 <div id="column-left">

 {%- if product.images.size > 0 -%}

 �<img src="{{ image | product_img_url: '480x480', scale: 2, crop:

'center' }}" alt="{{ product.title | escape }}" />

 {%- if product.images.size > 0 -%}

 <ul id="thumbnails">

 {%- for image in product.images -%}

 �<a href="{{ image | product_img_url: 'master' }}" target="_

blank">

 �<img src="{{ image | product_img_url: '240x240', scale: 2,

crop: 'center' }}" alt="{{ product.title | escape }}" />

 {%- endfor -%}

 {%- endif -%}

 {%- else -%}

 {{ 'image' | placeholder_svg_tag }}

 {%- endif -%}

 </div>

</main>

CHAPTER 5  DESIGNING PRODUCT PAGES

68

Here, I’ve added some HTML markup for a left column to insert the product images

into. Using Liquid, we query the product variable (made available automatically by

Shopify on all product pages) to see if any images have been added to the product by the

storeowner ({%- if product.images.size > 0 -%}). If so, we display the “primary”

image in a large tag, and, if the product has more than one image, we iterate over

all product images to generate a list of product thumbnails.

For now, the implementation opens images in a new browser window when the

thumbnail images are clicked, rather than swapping out the large product image for the

thumbnail version. If you check the more extensive example in the GitHub repository,

you’ll see that I’ve leveraged a carousel control that allows the users to slide through

product images with left/right controls, as well as skip to a specific product image using

the thumbnails.

Figure 5-5.  The result of Listing 5-1 on an example product page

CHAPTER 5  DESIGNING PRODUCT PAGES

69

�Design Considerations for Product Images
While we’re in the process of adding product images to your example theme, it’s worth

considering some high-level design guidelines. Product imagery should generally:

•	 Be large (easy to discern details, even on smaller screens and for

visitors with poor eyesight)

•	 Be of high quality (both in terms of production technique and the file

quality)

•	 For physical products, give a sense of the scale of the product

•	 Display the product both by itself and in use

•	 Not use any overt filters or digital alteration

•	 Be as consistent as possible in terms of look, feel, and aspect ratio

You won’t always have control over the product imagery used in your themes, but

when you do, try to advocate for these principles. Encourage clients to invest time and

budget on professionally-shot imagery (ideally, by a studio with specific experience

in Ecommerce product photography). Customers are very sensitive to the quality of

product photography on an Ecommerce site and will be much less likely to convert if

your product images look unprofessional.

One of the best things you can do at the start of a theme design project is set firm

guidelines on product image resolution and aspect ratio. Request that merchants upload

images in the highest resolution possible (2048 x 2048 pixels is a good goal and the

largest Shopify will render). To avoid bloating your page load times, you can make use

of Shopify’s image filters (discussed in the next section) to render a lower-resolution

version of images where appropriate.

Sticking to one consistent aspect ratio for product images across the entire site

reduces the likelihood of irregular or jarring differences in the appearance of products

when they are rendered next to each other. I like to encourage square (1:1) images where

possible, although 4:3 or 3:4 can work well depending on the types of products being

sold. While you can use stylesheets and Shopify’s image filters to crop, stretch, and trim

images, it’s always easier to do that with a common starting point.

CHAPTER 5  DESIGNING PRODUCT PAGES

70

�Shopify’s Image Filters
One of Shopify’s handy features is the ability to use Liquid filters to perform on-the-fly

image resizing and manipulation. This means that storeowners can upload the highest-

resolution version of a product image to the backend, and a theme developer can use these

filters to generate a version that’s the appropriate size and aspect ratio for a given location.

The key filter in question is called product_img_url, and you can see it being used

in Listing 5-1. You can check the Shopify documentation for the details,1 but key uses for

the filter include:

•	 Using smaller versions of an image to decrease file size and page load

times (you’ll be learning about this in Chapter 10 on performance)

•	 Cropping or padding images to ensure they have a consistent aspect

ratio

•	 Converting images to Progressive JPEGs for faster load times

�Zoomable Product Images and Product Lightboxes
Implementing zooming product images (where mousing over a product image provides

a “zoomed” version of it), or product lightboxes (where clicking a product image pops

open a “modal” full-screen product image) can be a great way of letting customers get up

close with your productions, but it’s critical that these design elements don’t break the

users’ flow by making them feel like they’ve left the original product page. Other things to

be wary of when implementing these features are:

•	 They should be progressively enhanced, maintaining usability if

JavaScript isn’t available.

•	 Consider disabling them on mobile devices, where product images

will often be full width already, or where users are used to pinching a

touch device to zoom in on images.

•	 Ensure that they are keyboard accessible in that users should be able

to move through successive images using their arrow keys and close

the lightbox with the Escape key.

1https://help.shopify.com/themes/liquid/filters/url-filters#product_img_url.

CHAPTER 5  DESIGNING PRODUCT PAGES

http://dx.doi.org/10.1007/978-1-4842-2641-4_10
https://help.shopify.com/themes/liquid/filters/url-filters#product_img_url

71

�Product Video
Adding relevant video to a product page can result in some dramatic conversion

improvements2 and it’s likely that more and more online retailers will make use of video

to better demonstrate their products and unique selling proposition.

How you incorporate video into your theme will depend on whether high-quality

video will be available for all products, or just a limited subset. If a large, high-quality

video is available for every product on the store, then setting aside a prominent amount

of space for those videos on every product page makes sense, as demonstrated on the

Sonos site in Figure 5-6.

Themes for stores that either don’t have videos for all products or have multiple

videos for each product can display these through a second Thumbnails section.

Avoid using embedded video tools that automatically load and present controls

or branding (such as YouTube), as they can be distracting for the user. In fact, for

performance reasons, it’s best to avoid loading a JavaScript-heavy player at all on page

2See, for example, https://blog.kissmetrics.com/product-videos-conversion/.

Figure 5-6.  Sonos makes product video very prominent on its product pages

CHAPTER 5  DESIGNING PRODUCT PAGES

https://blog.kissmetrics.com/product-videos-conversion/

72

load, and instead provide an image that triggers a video player popup or embed when

the user clicks on it. See Figure 5-7.

Figure 5-7.  Boosted Boards does a good job of showing off their products, but
some of their product thumbnails are videos. They could improve discoverability of
this by adding a "Play Video" overlay to these thumbnails

�Adding Product Details and the Add To Cart Form
Jumping back to the example theme, we’re now going to flesh out the content on the

right side of the desktop mockups from Figure 5-4: the product’s details, description, and

a basic Add To Cart form. Listing 5-2 shows a simplified version of the Liquid code we

need to achieve this, with Figure 5-8 displaying the result in the browser.

Listing 5-2.  Additions to templates/product.liquid to Add Product Information

and Add To Cart Form

<main>

 ... (product image code omitted) ...

 <div id="column-right">

 <h1>{{ product.title | escape }}</h1>

 <h5>{{ product.vendor | escape }}</h5>

CHAPTER 5  DESIGNING PRODUCT PAGES

73

 �<h3>{% if product.price_varies %}{{ product.price_min | money }}

- {{ product.price_max | money }}{% else %}{{ product.price | money }}

{% endif %}

h3>

 {{ product.description }}

 <form action="/cart/add" method="post" role="form">

 {%- if product.variants.size > 1 -%}

 �<label for="product-select">Select your {{ product.title |

downcase }}</label>

 <select id="product-select" name="id">

 {%- for variant in product.variants -%}

 �<option {% if variant == product.selected_or_first_available_

variant %} selected="selected" {% endif %} value=

"{{ variant.id }}">{{ variant.title | escape }} -

{{ variant.price | money }}</option>

 {%- endfor -%}

 </select>

 {%- else -%}

 �<input type="hidden" name="id" value="{{ product.variants.

first.id }}" />

 {%- endif -%}

 �<button type="submit" {% unless product.available %}

disabled="disabled"{% endunless %}>Add to cart</button>

 </form>

 </div>

</main>

CHAPTER 5  DESIGNING PRODUCT PAGES

74

Let’s break down these changes.

�Product Details and Description
There’s nothing too involved with the code in Listing 5-2 used to render the product

details and description. It’s really just a matter of outputting the appropriate Liquid

variable (product.title, product.min_price) in a HTML element like an <h1> that

gives the appropriate information hierarchy.

I’ve used a couple of Liquid filters to output this information. I use the | escape filter

when outputting the title and vendor. This is a good practice to follow when outputting

any user-generated text content, to avoid any potential formatting or output issues (for

example, if your product title contains a HTML character like <, the escape filter will

ensure it’s rendered as text and not as HTML). I’m also using the | money filter to display

the price of the product (stored by Shopify as cents, e.g. 18800) in a format determined

by the store’s currency and preferences.

The product.description is output directly. It can contain HTML (to allow for

things like anchor links inside the description content), so we don’t use the | escape

filter on it. If you want to guarantee that the description doesn’t render anything

Figure 5-8.  The example product page, with product information and the Add To
Cart form added

CHAPTER 5  DESIGNING PRODUCT PAGES

75

funky that could break your page layout, you can force it to text only using the

| strip_html filter.

You may have noticed the example uses some Liquid logic when displaying the

price of the product. This is done because it’s possible for different product variants

(combinations of colors and sizes, for example) to have different prices. We should check

if that’s the case for this product ({% if product.price_varies %}) to decide whether

to display a single price (product.price) or the price range (product.price_min to

product.price_max). Later in this chapter, you’ll see how you can tweak this approach to

dynamically update the price element to display only the price of the currently selected

variant.

Tip  Use real product descriptions rather than dummy or placeholder (lorem
ipsum) text when designing your product pages. You’ll get a much better sense of
how the product will look and flow and avoid surprises down the road.

Another thing to avoid is copying and pasting product descriptions from
manufacturer or competitor sites. Not only are there potentially negative SEO
consequences for duplicating content in this way, you miss the opportunity to
insert your brand’s unique voice into the description and persuade customers.

�Add To Cart Form
In its most simple form, a Shopify Add To Cart form is a <form> element that uses the

POST method to submit to the /cart/add URL on the storefront. The only piece of

information that’s required to be submitted in the form’s data is the ID of one or more

variants to add to the cart (these parameters should be named id if adding a single

variant or id[] if adding multiple variants at once).

In this example, we allow the customer to select which variant to add to the cart

using a <select> dropdown element, which contains a list of all the product’s variants

and displays a description of them alongside their price. Before rendering the dropdown,

we check that it’s actually needed ({% if product.variants.size > 1 %}). If there’s

only one variant, we just provide its ID as a parameter to the form using a hidden input.

When rendering the available options in the select dropdown, we use a Liquid

variable called product.selected_or_first_available_variant to see whether we

should make a particular option selected by default when loading the page. product.

selected_or_first_available_variant is a verbose but accurately named variable

CHAPTER 5  DESIGNING PRODUCT PAGES

76

used with either the “selected” variant (determined by a ?variant = parameter in the

request URL) or the first “available” product variant, where availability is determined by

a variant being in stock based on the merchant’s inventory policies. See Figure 5-9.

Figure 5-9.  Specifying a variant ID in the ?variant= parameter in the URL
preselects that variant in the Add To Cart form’s dropdown

The final element of the Add To Cart form is the all-important Submit button. In this

example, this is implemented as a standard HTML button. I’ve added a bit of Liquid logic

to disable the Add button if the product isn’t available (meaning all variants are sold out).

This initial Add To Cart form is simple, but it’s an important foundation that we can

build on to add support for more dynamic variant selectors, custom inputs, and Ajax

functionality. As we add these extras, it’s important to keep fundamental usability and

accessibility guidelines in mind, by:

•	 Ensuring all inputs have associated labels

•	 Trying to avoid inline form elements and inputs

•	 Using appropriate HTML5 input types (e.g., type="number")

•	 Making sensible choices for input type (e.g., using radio inputs rather

than select dropdowns for options with few choices)

•	 Keeping all inputs keyboard-accessible

•	 Ensuring action inputs like Submit buttons are clearly indicated and

give the appearance of being interactive

CHAPTER 5  DESIGNING PRODUCT PAGES

77

�Adding Recommended Products
We’re nearly done implementing our planned layout from Figure 5-4, with only the

addition of the “You may also like…” recommended products section at the bottom of

the page.

�Related versus Alternate Products
Many themes get confused or don’t draw a distinction between two different types of

recommended products: related products and alternate products.

•	 Related products are accessories or complements to the currently

visible product. Think compatible batteries for a camera, or a

matching scarf for a cardigan. Displaying a list of related products

on a product page both provides an “upsell” path to encourage

additional customer purchases. It also increases a customer’s

awareness of the store’s overall product range.

•	 Alternate products, as the name suggests, are a possible substitute or

alternative for the currently visible product. Think an Xbox instead

of a PlayStation, or an overcoat in an alternative style. Unlike related

products, the purpose of a list of alternate products isn’t to increase

the size of a customer’s cart, but rather to make sure that they can

find what they’re looking for in the first place.

Figure 5-10.  This Add To Cart button’s size and flat appearance makes it look like
a label, rather than an interactive button that encourages clicking

CHAPTER 5  DESIGNING PRODUCT PAGES

78

Because related and alternate products serve two very different purposes, they

shouldn’t be displayed together. They should be clearly labeled, so that customers can

understand the source of their recommendation—using language like “Users Who

Bought This Also Bought…” instead of “Related Products” and “We Think You May Also

Like…” instead of “Alternate Products”.

Adding a small Ajax-powered Add To Cart link next to related products is a good way

to make these upsells painless for the customer without taking them away from the main

product page.

�Recommended Products on Shopify
Shopify doesn’t provide any explicit built-in support for managing lists of recommended

products, although there are many Shopify Apps that offer this functionality (search for

“product recommendations” in the Shopify App Store).

While these apps can do some pretty nifty things, like using sales data to

algorithmically generate recommendations, or tailoring recommendations to individual

visitors, I prefer to try tackling problems with Shopify’s “native” concepts and some

custom Liquid code before resorting to an app. Not only does this lower the ongoing

costs involved in running a store, it reduces the risk of apps interfering with each other

and breaking store functionality or negatively impacting on performance. While apps

might offer slightly more functionality, in many cases a theme-based solution will be

more than good enough for a merchant’s needs.

Figure 5-11.  The Recommended Accessories section on the Canon site is a good
example of upselling through related products (left). Zen Pencil’s “You May Also
Like…” section suggests alternative posters as a substitute to the current selection
(right)

CHAPTER 5  DESIGNING PRODUCT PAGES

79

There are a couple of ways we can use built-in Shopify features to elegantly

implement related and alternate product functionality. First, we can allow a storeowner

to manually specify a list of recommended products for each product on their stores,

then display that list in the product template. This specification can be achieved by the

storeowner using one of two methods:

•	 By setting a metafield on the product containing a list of related

product handles. You’ll learn more about metafields later in this

chapter; for now, all you need to know is that they allow storeowners

to store custom information on products and other Shopify objects.

This information can be retrieved in Liquid and used to render a list

of related products.

•	 By using a naming convention where a collection is created with a

URL (handle) that matches the product, and then populating that

collection with the desired related products. For example, if the

product’s handle is foraker-canvas-coat, the storeowner can create

a collection with the handle foraker-canvas-coat-related. The

Liquid code can calculate the expected name of the relevant related

products collection for the current product, check if it exists, and

display the products if so.

Specifying recommended products manually has the advantage of giving

storeowners fine-grained control over the products that appear in a products list, but it

has the disadvantage of being time consuming to create and maintain. As an alternative,

we can use some Liquid logic to automatically calculate a list of related products. Again,

we have two possible strategies:

•	 Find a non-generic collection the current product is a member of and

consider the other products in that collection to be “related.” This

can be a naïve approach, but often produces results good enough for

many use cases.

•	 Compare the current product to all other products on the store and

“score” them based on the number of tags and collections they share

with the current product. Products with a higher score are considered

closely related to the current product. The implementation of this

approach is a little more involved but it can yield better results than

the first method.

CHAPTER 5  DESIGNING PRODUCT PAGES

80

For the example theme, we’re going to implement a Liquid snippet (snippets/

related-products.liquid in the theme’s directory) that supports three of these

approaches to display a list of up to four related products on the page. When included on

the product page, it will:

	 1.	 Check if the product has a “related products” metafield defined.

If so, it will use that to render the first four products listed in that

metafield.

	 2.	 If no “related products” metafield is defined, then it will check

to see if a collection with the same handle as the product (but

with –related on the end) exists. If so, it will render the first four

products in that collection.

	 3.	 If neither a metafield or a collection exists, then it will fall back to

finding a collection the current product is member of and render

the first four products in that collection.

This approach gives us a basic way of automatically finding related products on

every product page, while giving the storeowner the option of creating a collection or

metafield to override the default behavior if they need more control. An outline of the the

snippet’s logic is given in Listing 5-3 (it’s truncated for brevity; the full version is available

in the example theme repository). Listing 5-4 shows how to include the snippet inside

product.liquid. Finally, Figure 5-11 shows the result of implementation in the browser.

Listing 5-3.  The Logic Outline for a related-products.liquid Liquid Snippet

{%- assign RELATED_PRODUCTS_LIMIT = 4 -%}

{%- if product.metafields.theme.related_products != blank -%}

 �{%- assign related_product_handles = product.metafields.theme.related_

products | split: ',' -%}

 {%- for related_product_handle in related_product_handles -%}

 ... render products from metafield...

 �{%- endfor -%}

{%- else -%}

 �{%- assign related_collection_handle = product.handle | append:

'-related' -%}

 {%- assign related_collection = collections[related_collection_handle] -%}

CHAPTER 5  DESIGNING PRODUCT PAGES

81

 {%- if related_collection and related_collection.products.size > 0 %}

 �{%- for related_product in related_collection.products limit:

RELATED_PRODUCTS_LIMIT -%}

 ... render products from collection...

 {%- endfor -%}

 {%- else -%}

 {%- assign related_collection = nil -%}

 {%- for collection in product.collections -%}

 {%- unless collection.handle == 'all' -%}

 �{%- if related_collection == blank or collection.products.size >

related_collection.products.size -%}

 {%- assign related_collection = collection -%}

 {%- if related_collection.products.size > 5 -%}

 {%- break -%}

 {%- endif -%}

 {%- endif -%}

 {%- endunless -%}

 {%- endfor -%}

 �{%- for related_product in related_collection.products limit:

RELATED_PRODUCTS_LIMIT -%}

 ... render products from collection...

 {%- endfor -%}

 {%- endif -%}

{%- endif -%}

Listing 5-4.  Inclusion of Related Products Liquid Snippet at the Bottom of

templates/product.liquid

<main>

 <div id="column-left">

 ...

 </div>

CHAPTER 5  DESIGNING PRODUCT PAGES

82

 <div id="column-right">

 ...

 </div>

 <h3>You may also like</h3>

 {%- include 'related-products' -%}

</main>

Figure 5-12.  The result of adding the related product snippet at the bottom of the
example theme’s product page

�Improving the Product Page
Congratulations! The desktop version of your product page has now fully implemented

your planned layout design from Figure 5-4. You have a simple, but fully-functional,

product page that customers can use to view your products, select a desired product

variant, and add that selection to their carts. Because this page is so simple, it’s very

quick to load and doesn’t require any JavaScript to function.

For the rest of this chapter, we’ll be walking through the implementation of common

features that theme designers might add to this starting point.

CHAPTER 5  DESIGNING PRODUCT PAGES

83

�Adding Product Information
In the original product information hierarchy (see Figure 5-2), we identified a

“supporting” class of information—product details not as crucial as title or price but

which are still likely be used by customers to help them make a purchasing decision.

Common examples of this would be a product’s technical specifications, shipping and

returns information, size guides, or garment care information. When adding this sort of

information to a product page, we need to consider:

•	 How best to display the information (as a table, graphic, chart, text, etc.)

•	 How prominent to make the information on the page, and where to

place it (inline further down the page, inside a tab component, in a

popup dialog, etc.)

•	 Whether the information is relevant to every product on the store, or

only a subset

•	 Whether the information varies from product to product, or if it’s

consistent across the store

•	 Where to store the additional product information, and how to give

storeowners the ability to manage and update that information

For the purposes of the example theme, we’re going to implement a common

pattern for additional production information—turning the production description

section into a tabbed panel that allows customers to view shipping information in a

separate tab. We’ll also allow the storeowner to use Shopify metafields to specify garment

care information on a per-product basis and display that information in a separate tab

where present.

Listing 5-5 shows a simple implementation of the tabs in question, extracted out into

a product-details.liquid snippet and displaying the dynamic product description in

one tab and some static shipping information in the other. Figure 5-13 shows the result.

Listing 5-5.  Simple Implementation of Some Product Information Tabs

<ul role="tablist">

 Description

CHAPTER 5  DESIGNING PRODUCT PAGES

84

 Shipping

<div class="tab-content">

 <div id="description" role="tabpanel" class="active">

 {{ product.description }}

 </div>

 <div role="tabpanel" class="tab-pane" id="shipping">

 <p>

 Orders placed before 4pm are shipped the same day.

 �The table below shows approximate shipping times using our standard

shipping service.

 </p>

 <table>

 ...

 </table>

 </div>

</div>

Figure 5-13.  The addition of the product description tabs from Listing 5-5 to the
product details screen

CHAPTER 5  DESIGNING PRODUCT PAGES

www.allitebooks.com

http://www.allitebooks.org

85

�Managing Additional Information with Metafields

The next step is to add a Garment Care tab to the product page. We can’t just statically

code this tab in as we did with the Shipping Information tab, as the content of the tab—

and whether the tab is displayed at all—will differ from product to product.

One potential solution is to code the care information directly into the Liquid

templates—something like Listing 5-6.

Listing 5-6.  A Possible (But Not Recommended) Approach to Conditionally

Displaying Garment Care Information

<ul role="tablist">

 ...

 {%- if product.handle == 'foraker-canvas-coat' -%}

 Garment Care

 {%- endif -%}

 ...

<div class="tab-content">

 ...

 {%- if product.handle == 'foraker-canvas-coat' -%}

 <div role="tabpanel" class="tab-pane" id="garment-care">

 <p>

 Always store in a dry, well-ventilated area.

 </p>

 </div>

 {%- endif -%}

 ...

</div>

The limitation of this approach is that it requires us to open the Liquid template

and make changes any time we want to make alterations to the garment care information

itself or add care information to a new product. In general, managing content inside

Liquid templates is a recipe for disaster. It’s unwieldy for storeowners to manage and is

prone to being overwritten by other users or automated theme deployment scripts.

CHAPTER 5  DESIGNING PRODUCT PAGES

86

It also means that an inexperienced storeowner can forget to close a HTML tag and

wreak havoc with all the site’s product pages.

We’re going to get around this issue by using metafields, a feature of Shopify that

allows the storage of arbitrary custom data against objects like products, customer,

collections, and the like. Metafields are accessed in Liquid code like this: {{ product.

metafields.extra.garment_care }}, where extra is a “namespace” or “group” for the

metafields (designed to avoid metafield conflicts) and garment_care is the “key” for a

specific metafield value.

Historically, Shopify made accessing and managing metafield data quite obtuse and

didn’t expose metafield controls on the product pages in the Shopify Admin, which is

why there are dozens of Shopify apps that offer metafield functionality. However, you

don’t really need them—you’re able to edit product metafields within the Shopify Admin

by constructing a bulk edit URL, which looks like https://defguide.myshopify.com/

admin/bulk?resource_name=Product&edit=metafields.extra.garment_care:string.3

If you open that URL in your browser (changing defguide.myshopify.com to match

your own store domain), you’ll be presented with a list of products and the ability to set

a value for the extra_garment metafield key for each. Storeowners can bookmark this

URL and return to it any time to update or add garment care information for one or more

products.

With a strategy for managing care information in place, we can now update our

product details snippet to conditionally display a Garment Care tab when the metafield

is present and contains information, as in Listing 5-7. When implemented and the

customer browses to a product that has garment care information set, we get the

result in Figure 5-14. As mentioned, this improved version uses metafields, rather than

hardcoded data, to display garment care information in a separate tab.

Listing 5-7.  Improved Version of Listing 5-6 that Uses Metafields

<ul role="tablist">

 ...

 {%- unless product.metafields.extra.garment_care == blank -%}

3 If you’re a Google Chrome user, I highly recommend checking out ShopifyFD (http://
shopifyfd.com), a Chrome extension that hooks into the Shopify Admin and allows the editing of
metafields directly on product admin pages.

CHAPTER 5  DESIGNING PRODUCT PAGES

https://defguide.myshopify.com/admin/bulk?resource_name=Product&edit=metafields.extra.garment_care:string
https://defguide.myshopify.com/admin/bulk?resource_name=Product&edit=metafields.extra.garment_care:string
http://shopifyfd.com
http://shopifyfd.com

87

 Garment Care

 {%- endunless -%}

 ...

<div class="tab-content">

 ...

 {%- unless product.metafields.extra.garment_care == blank -%}

 <div role="tabpanel" class="tab-pane" id="garment-care">

 {{ product.metafields.extra.garment_care }}

 </div>

 {%- endunless -%}

 ...

</div>

Figure 5-14.  The display of garment care information when the relevant metafield
is present

�Improving the Mobile Experience
Until now, the example has been focused on how the theme looks and works on

the desktop. Doing this and ignoring the mobile experience—even if you’re using a

“responsive” framework—is dangerous in commerce. Over half of all traffic to Shopify

stores is on mobile devices, and for some stores the numbers are as high as 75%.

CHAPTER 5  DESIGNING PRODUCT PAGES

88

As you’re working on a Shopify theme, make sure you consider how customers

browsing on a mobile device are going to view the information hierarchy or take key

actions like adding products to the cart. This doesn’t just mean resizing your browser on

the desktop, either—you need to physically take out one or two devices and walk through

the site to fully appreciate the different experience. Considerations like the size of touch

areas, how hard the buttons are to reach with your thumb, and visible content areas all

come in to play.

Take a look at Figure 5-15, which shows the state of the current example product

page on a mobile. A couple of issues jump out:

•	 The initial view on the product page doesn’t display the product title,

vendor, or price—all information that we identified as important in

our product hierarchy.

•	 The product image carousel displays the product image okay, but all

the thumbnails are displayed beneath it as full width images, so we

need to scroll a long way to get to the product information.

•	 The text on the Garment Care tab breaks to a new line and messes up

the layout.

•	 Having the Add To Cart button less than half the width of the screen

and over on the left makes it harder to reach with the thumb for a

right-handed user holding a phone in one hand.

•	 Having only one product per row in the “You May Also Like…” section

means it takes a long time to scroll through.

CHAPTER 5  DESIGNING PRODUCT PAGES

89

Addressing these sorts of issues isn’t usually hard, especially if you’re using a CSS

framework or library that provides responsive helper utilities. To resolve these issues in

the example theme, I decided to:

•	 Add a version of the product title, vendor, and price to the top of the

page that’s only visible on mobile, and hide the same information

lower down the page.

•	 Leave the product carousel with the expectation that mobile users

can swipe left and right to browse the available product images, but

hide the product thumbnails altogether.

•	 Hide the word Garment on the Garment Care tab on smaller screens,

as Care conveys enough information. Another popular approach if

you have more tabs is to swap to icons when you have less space to

work with.

•	 Make the Add To Cart button full-width on mobile devices so that it’s

easier to reach.

•	 Display the related products in a 2x2 grid, rather than one per row.

Figure 5-15.  Scrolling through the current product page on a mobile device, there
are some display and usability issues that jump out

CHAPTER 5  DESIGNING PRODUCT PAGES

90

The code implementing these changes is available in the example theme’s

repository. As you can see from Figure 5-16, they result in a much more usable mobile

experience.

Figure 5-16.  Just a few simple changes have addressed some of the major usability
issues with the mobile version of the site

�Creating Alternate Page Templates
The product page is looking pretty solid for now, so we’re going to move on to some

other areas of the site, starting with the home page in Chapter 6. Before we do that, I’m

going to quickly cover one final Shopify theme feature—alternate page templates.

For each type of Liquid template present in a Shopify theme (product.liquid,

collection.liquid, article.liquid, etc.), you’re able to create “alternate” versions of

those templates, which you can use to selectively render different products (or different

collections, or different articles) in a completely different way. This can be useful if, for

example, some of your products have a demonstration video that completely changes

the desired layout of the page, or if you want to create alternate layouts for text-based

blog articles versus photo-heavy blog articles.

CHAPTER 5  DESIGNING PRODUCT PAGES

http://dx.doi.org/10.1007/978-1-4842-2641-4_6

91

To create and use alternate page templates, simply create a new template file

with the same name as the base template but with an additional suffix—for example,

product.video.liquid. Once uploaded to your store, Shopify will display a template

selection UI on the relevant page, from where you or the storeowner can select the

desired template. See Figure 5-17.

Figure 5-17.  The Theme Templates section appears in the Shopify Admin when
multiple template options are available for the displayed object type

To demonstrate this in the example theme, I’ve created a product.image-right.

liquid template (code visible in the example theme repository), which simply reverses

the order of the columns on the product page to display the product information on the

left and the imagery on the right. You can see how this displays on the store in Figure 5-18.

CHAPTER 5  DESIGNING PRODUCT PAGES

92

Tip  While the Theme Templates section only appears in the Shopify Admin for
a select number of object types (products, collections, and blogs), all Shopify
pages support alternate templates, and you can have as many alternate templates
for a page as you like. To render these alternate templates at will, just include
a ?view= parameter in the URL—for example, you could force any product
page on your example store to render with the image on the right side by linking
to https://defguide.myshopify.com/products/foraker-canvas-
coat?view=image-right.

One nifty use of alternate page templates is to render a custom representation of
an object in JSON format (e.g., product.json.liquid), which you can fetch
using Ajax from other pages where you might need to dynamically fetch product
information.

Figure 5-18.  A product page displayed with the alternate product.image-right.
liquid template

CHAPTER 5  DESIGNING PRODUCT PAGES

https://defguide.myshopify.com/products/foraker-canvas-coat?view=image-right
https://defguide.myshopify.com/products/foraker-canvas-coat?view=image-right

93

�Summary
This chapter has been a deep dive into the design and implementation of product pages

on Shopify stores. It started by discussing the importance of a product’s information

hierarchy and how the importance of different bits of product information changes

depending on the store and the user’s context.

With an example product hierarchy in hand, we stepped through the code required

to put together a fully functional Shopify product page.

CHAPTER 5  DESIGNING PRODUCT PAGES

95
© Gavin Ballard 2017
G. Ballard, The Definitive Guide to Shopify Themes, DOI 10.1007/978-1-4842-2641-4_6

CHAPTER 6

Designing Home
and Collection Pages
With the all-important product page out of the way, we can now turn to some of the

other important components of a Shopify theme. In this chapter, we’ll be looking at the

design and implementation of a store’s home and collection pages.

�The Home Page
As I suggested in the previous chapter, I feel that clients often focus too much on getting

every little detail right on the home page at the expense of other steps in the customer

journey. However, the importance of a carefully designed home page shouldn’t be

understated—it’s just that an obsession with pixel perfection shouldn’t lead you to

ignore the primary goals of the page itself.

�Design Goals for Home Pages
When designing your home pages, you should try to achieve three primary goals:

•	 Convey to customers what the brand is

•	 Convey to customers what the store offers

•	 Convey to customers what to do next

�Conveying the Brand

“Brand personality,” “corporate identity,” “lifestyle brand.” Whatever market-y term you’d

like to use, it is important that a home page instantly conveys to visitors the nature of the

store.

96

Users have strong expectations about how online stores in different verticals

should look. While this doesn’t mean that you should out-and-out copy the design of

competitors and never innovate, it is worth paying attention to the conventions of the

market—like common terminology, categorizations, and stylistic elements—to avoid

innovating yourself out of conversions. Simply put, skateboard brands shouldn’t look

like Walmart.

The best way to get across your message is to combine a simple description of what

the store does with some suitable imagery. (Yes, it sounds stupidly simple. Yet, you’d be

surprised at how difficult many stores find this.) You can see the extremes of home pages

that do and don’t achieve this in Figure 6-1.

Figure 6-1.  Brooklinen’s home page (left) makes it clear what their product range
is all about, while the Clove Club wins the enigmatic category at the expense of
conversion

�Conveying Your Product Range

Christian Holst of the Baymard Institute describes the litmus test for Ecommerce home

pages as:

Does a quick glance over your home page adequately convey your store’s
product diversity? If not, first-time visitors may be drawing false conclusions
about the scope of your site’s product catalog.

In short, if your store sells a wide range of products, but only a small fraction of them

or a single product range is highlighted on your home page, customers may assume you

don’t sell what they’re after and leave the site. The best way to convey your products

will depend on the range on offer. If the store is more of a “product” company, selling a

single line of products (e.g., Apple), then it may be sufficient to simply highlight a few of

the store’s most popular or new items. Conversely, if the store has more of a “retailer”

CHAPTER 6  DESIGNING HOME AND COLLECTION PAGES

97

approach and sells many different lines of products (e.g., Walmart), then it will be more

likely to highlight and promote entire categories or product lines on the home page (see

Figure 6-2).

Figure 6-2.  The home pages of Apple (a “product” company) and Walmart (a
“retail” company)

Note the difference in focus between the two stores—Apple focuses on highlighting

a key product and links directly to it, while Walmart displays links to entire categories

directly from the home page.

�Clear Next Actions

One of the biggest sins an Ecommerce store designer can commit is leaving a visitor to a

site uncertain about what action to take to get them closer to a purchase.

Having conveyed a sense of who the brand is and what products are on offer, the next

task is to make sure that potential customers have a clear path to being able to browse

through the store’s categories and/or drill down on specific products. As with the way

you choose to display the product range, how your design achieves this will likely be

dependent on the number of categories and products on offer.

“Product” companies can potentially feature their entire range at different points on

the home page and link directly to the individual product pages in each case. Calls to

action can be more specific (“Read more about the new MacBook Air”).

“Retail” companies should instead feature key categories on the home page,

encouraging users to click through and browse their entire range to increase the chances

of finding what they’re after. Stores with large ranges should design their home pages

to place more emphasis on navigation elements and search functionality—recall the

discussion of these elements in Chapter 4.

CHAPTER 6  DESIGNING HOME AND COLLECTION PAGES

http://dx.doi.org/10.1007/978-1-4842-2641-4_4

98

�Implementing a Home Page
As the design goals suggest, your home page often needs a high degree of flexibility to

account for the different types of merchants using your themes, and to allow for the

display of different types of content not directly linked to products or collections (for

example, blog articles). Even when you’re designing a theme for one specific merchant,

their needs and campaigns will change over time, demanding a way to customize home

page content.

Thankfully, Shopify provides a feature called dynamic sections for the home page

of its sites, which allows you to design a variety of key components that merchants can

then select from and configure to match their own use case. The following section walks

through how we can create three different types of dynamic sections in our example

theme—a “hero image,” a “featured products” block, and a “featured collections” block

(see Figure 6-3). A storeowner using this theme would then be able to add, configure,

and rearrange these sections on their home page as desired to meet the design goals

listed at the top of this chapter.

Figure 6-3.  A mockup showing the three key home page sections we’ll be
implementing—a “hero image,” a featured products block, and a featured
collections block

CHAPTER 6  DESIGNING HOME AND COLLECTION PAGES

99

�Getting Started with Home Page Sections

Shopify uses the file template/index.liquid to render a store’s home page. As with

other templates, the HTML generated from index.liquid will be rendered inside

layout/theme.liquid. Traditionally, the index template would be implemented the

same as any other page template, with the HTML and Liquid desired for the home page

added directly in index.liquid.

However, the introduction of dynamic sections on the home page of a theme

means that most of the code used to render home page content will appear in

independently-defined sections. Much like the {{ content_for_layout }} tag in

layout/theme.liquid will be replaced with page content for the current theme, so too

will a {{ content_for_index }} tag in templates/index.liquid be replaced with the

dynamically-generated section content configured by the storeowner.

Because for now it’s good enough having all the home page content managed in

sections, we can update the contents of templates/index.liquid to simply contain

Listing 6-1.

Listing 6-1.  Simple Contents of templates/index.liquid to Enable Dynamic

Section Rendering on the Home Page

<main>

 {{ content_for_index }}

</main>

�Adding a Hero Image Section

If you recall, you first encountered sections back in Chapter 4 when designing and

implementing the header and footer elements of your page layout. The dynamic sections

we’re going to be building for the home page are implemented in exactly the same

way—the only difference being these new sections will be selected and inserted by a

storeowner in the Shopify admin, rather than included explicitly through the use of a

{% section %} Liquid tag elsewhere in the theme.

You can start by adding a section that allows the display of a “hero image,” which

is a common design element used to grab the attention of someone landing on your

home page and convey some information about your brand. We’ll also include a tagline

CHAPTER 6  DESIGNING HOME AND COLLECTION PAGES

http://dx.doi.org/10.1007/978-1-4842-2641-4_4

100

at the top of the element and a button containing a call to action for the visitor. All of

these elements (the image in use, the text content, and the destination URL) will be

configurable by the storeowner.

We’ll make a first pass at this by creating a new Liquid file in the theme, sections/

hero.liquid, and inserting the contents of Listing 6-2.

Listing 6-2.  The Contents of sections/hero.liquid

{% schema %}

{

 "name": "Hero image",

 "settings": [

 {

 "id": "image",

 "type": "image_picker",

 "label": "Hero image"

 },

 {

 "id": "title",

 "type": "text",

 "label": "Title"

 },

 {

 "id": "label",

 "type": "text",

 "label": "Button text"

 },

 {

 "id": "href",

 "type": "url",

 "label": "Button link"

 }

],

CHAPTER 6  DESIGNING HOME AND COLLECTION PAGES

101

 "presets": [

 {

 "name": "Hero image",

 "category": "Images"

 }

]

}

{% endschema %}

<div style="background-image: url({{ section.settings.image | img_url:

'master', format: 'pjpg' }});">

 <h1>{{ section.settings.title | escape }}</h1>

 �{{ section.settings.label |

escape }}

</div>

Hopefully, there’s nothing too unfamiliar here. As with the header and footer

sections, we have a {% schema %} tag containing JSON, which is used to define the

configurable properties of the hero section. Those configurable settings are then used

at the bottom of the file to output the HTML elements used to render a <div> element

containing the image and text elements.

If we were to upload this section to the development store and refresh the home

page, nothing would change. This is because for the hero image to be displayed, it needs

to be added to the home page in the Customize Theme page of the Shopify admin. If you

navigate to the theme customizer in the admin (refer to Chapter 4 if you’ve forgotten

where that is), you’ll see that you’ll now have an Add Section option in the Page Content

part of the left sidebar. Clicking that, you’ll get the option to add a Hero Image section

and can configure it with an image, text, and links (see Figure 6-4).

CHAPTER 6  DESIGNING HOME AND COLLECTION PAGES

http://dx.doi.org/10.1007/978-1-4842-2641-4_4

102

Unlike the “static” header and footer sections implemented in Chapter 4, these dynamic

home page sections can be used multiple times and can be configured independently or

rearranged as needed. Like static sections, they also support the use of blocks, meaning we

can give storeowners lots of control over the content displayed in each section.

We’ll now add a couple more dynamic sections so that we can implement the home

page layout sketched out in Figure 6-3. First off, we’ll add a Featured Products section

(see Listing 6-3), as sections/featured-products.liquid. When added to the home

page, this section will ask storeowners to select a collection from their store, from which

the first four products in the collection will be displayed. We’ll also add a Featured

Collections section (see Listing 6-4) as sections/featured-collections.liquid. This

will display a list of collections in a similar fashion to the featured products section,

but instead of displaying a predefined number of collections, we’ll use blocks to allow

storeowners to select exactly how many collections they want to display.

Listing 6-3.  Dynamic “Featured Products” Section on the Home Page

{% schema %}

{

 "name": "Featured products",

 "settings": [

 {

 "id": "title",

 "type": "text",

 "label": "Section title",

 "info": "Defaults to collection title."

 },

Figure 6-4.  The theme customizer in the Shopify admin before configuring and
adding a hero image section (left) and afterwards (right)

CHAPTER 6  DESIGNING HOME AND COLLECTION PAGES

http://dx.doi.org/10.1007/978-1-4842-2641-4_4

103

 {

 "id": "collection",

 "type": "collection",

 "label": "Collection"

 }

],

 "presets": [

 {

 "name": "Featured products",

 "category": "Features"

 }

]

}

{% endschema %}

{%- assign collection = collections[section.settings.collection] -%}

<div>

 �<h2>{{ section.settings.title | default: collection.title |

escape }}</h2>

 {%- for product in collection.products limit: 4 -%}

 {%- include 'product' with product -%}

 {%- endfor -%}

</div>

Listing 6-4.  Dynamic “Featured Collections” Section on the Home Page

{% schema %}

{

 "name": "Featured collections",

 "max_blocks": 4,

 "settings": [

 {

 "id": "title",

 "type": "text",

 "label": "Section title"

 }

],

CHAPTER 6  DESIGNING HOME AND COLLECTION PAGES

104

 "blocks": [

 {

 "type": "collection",

 "name": "Collection",

 "settings": [

 {

 "id": "collection",

 "type": "collection",

 "label": "Collection"

 }

]

 }

],

 "presets": [

 {

 "name": "Featured collections",

 "category": "Features"

 }

]

}

{% endschema %}

<div>

 <h2>{{ section.settings.title | escape }}</h2>

 {%- for block in section.blocks -%}

 {%- if block.type == 'collection' -%}

 {%- include 'collection' with collections[block.settings.collection]

-%}

 {%- endif -%}

 {%- endfor -%}

</div>

With these new sections in place, we get some additional options under Add Section

in the theme customizer and can configure two additional sections to implement the

desired layout from Figure 6-3, as seen in Figure 6-5.

CHAPTER 6  DESIGNING HOME AND COLLECTION PAGES

105

With just these few simple sections, we’ve given storeowners a lot of control over the

layout and content shown on their home pages, while ensuring each of these individual

sections is consistent with the overall theme design. As you can see in Figure 6-6,

storeowners can use multiple instances of the one section type to build up a home page

that suits their brand and product range.

Figure 6-5.  Configuration of the featured products section (left) and the featured
collections section (right) in the Shopify theme customizer

Figure 6-6.  A couple of different possible home page layouts built with the sections
we’ve just implemented

CHAPTER 6  DESIGNING HOME AND COLLECTION PAGES

106

�Collection Pages
With the product page and home page put together, we can now move to the design and

implementation of your theme’s collection pages. These pages (also called “category

pages”) present a list of all products contained with a particular collection, so that a

customer can view a large range of products at once before drilling down into what

they’re interested in.

All Shopify stores come with a default “All” collection (accessed at /collections/

all), which contains all products listed on the Shopify store’s Online Channel. In

addition, Shopify provides a Collection Listing page at /collections that presents a

list of all available collections. The collection listing page is rendered using templates/

list-collections.liquid.

Tip  In some cases, you may not want the “All” collection to actually list all
products available for purchase. For example, you may have a range of products
with a “hidden” product type that should only be accessible to users with access
to the product’s URL. In these cases, you can override the default “All” collection
by creating a new collection in the Shopify admin and ensuring it has its collection
handle set to “all”. You can then configure whatever rules you’d like to apply to the
default collection, e.g., “Product Type is not Hidden”.

�Design Goals for Collection Pages
Good collection pages should achieve three key design goals:

•	 Present users with a clear overview of the products contained in the

current collection, or matched by any current filter.

•	 Provide users with sufficient product information to let them decide

whether they’re interested in a particular product.

•	 Provide users with accessible navigation and filtering tools so that

they can refine the list of products to more closely match what they’re

interested in.

CHAPTER 6  DESIGNING HOME AND COLLECTION PAGES

107

Collection pages are often treated as “stepping stones” between a customer’s initial

arrival on a site and their visit to the product page, where they add a product to the cart

and continue through to purchase. However, their role in helping customers choose the

products they’re interested in through visual and information comparison shouldn’t be

understated.

As collections in Shopify can be associated with their own images and text content,

collection pages can also perform an important role in a store’s SEO by providing

content targeting the types of keywords customers may be searching for (see Figure 6-7).

For certain types of stores, collection pages can be even more important, as it’s expected

that customers get enough information to add items to their cart directly without visiting

the product page itself (see Figure 6-8).

Figure 6-7.  The New York Times “Best Sellers” collection includes some collection-
specific text content to provide customers with contextual information about the
collection they are viewing and to help search engines direct searches like “New
York Times Best Sellers” straight to this page

CHAPTER 6  DESIGNING HOME AND COLLECTION PAGES

108

I’ll spend a bit more time discussing these design goals later in this chapter as we

walk through the implementation of each feature on the collection page.

�Shopify Collection Page Concepts
Before we can jump in and start implementing a collection page to achieve these design

goals, it’s important to get an overview of some key theme collection concepts and

understand how Shopify expects products to be categorized and navigated.

�Categorization in Shopify

It’s common for Ecommerce systems outside of Shopify to have a “nested category”

structure, with products being assigned to one or more categories that could exist at

multiple levels of hierarchy. Shopify’s hierarchy is much flatter—products can have

membership in zero or more collections, with no inherent notion of sub-categorization.

There are two types of collections—Manual collections (also known as Custom

Figure 6-8.  Youfoodz expects customers to add individual products (meals) to
their cart directly from the Lunch & Dinner collection page. Note that they’ve
provided an affordance for that in the shape of a “plus” button under each
meal and that customers can still drill down into individual meals for further
information if required to make a purchase decision

CHAPTER 6  DESIGNING HOME AND COLLECTION PAGES

109

collections), where storeowners manually assign product membership, and Smart

collections, where membership is determined by a set of rules (e.g., “Products with the

type ‘Shirts’”).

Further product categorization can be achieved through product tags (discussed

shortly under “Filtering”). I’ve seen plenty of attempts at squeezing a more complex

categorization structure into Shopify themes using nested Navigation lists or collections

linked through handle and tag names, but in general I think it’s best to stick with the

fundamental Shopify concepts. If a merchant has a product range that requires a more

complex categorization approach, it’s probably worthwhile investigating a purpose-built

search and filtering application, plenty of which exist on the Shopify app store.

�Filtering

As hinted at, Shopify allows us to further refine products displayed in a collection via

the use of product tags. A merchant can apply any number of tags to a product from the

Shopify admin, and appending the tag name to the URL of a collections page will limit

the displayed products to those that have the appropriate tag.

For example, navigating to /collections/shirts/blue on a Shopify store would

display all products in the “Shirts” collection that are tagged with “Blue”. Common uses

for tags include colors, sizes, gender, product types, “on sale” or “limited stock” flags, and

many more.

While you can filter on multiple tags (e.g., /collections/shirts/blue+large), it’s

important to note that filtering is applied in a conjunctive fashion (in the example, that

means only products that are tagged with “Blue” and “Large” will be displayed). There’s

no way to apply a range filter (e.g., “Price between $100 and $200”) or disjunctive logic

(e.g., “Blue” or “Red”) using tags.

�Sorting

Shopify provides several common attributes you can sort a displayed collection by

(“A-Z”, “Z-A”, “Price: Low to High”, “Price: High to Low”, “Best selling”, etc.). The desired

sort order can be passed in the URL via a sort_by query parameter—e.g., /collections/

shirts?sort_by=price-ascending.

Merchants can set the default sort order of products in a collection from the Shopify

Admin, but there’s currently no way to define a custom sort attribute without the use of a

third-party application.

CHAPTER 6  DESIGNING HOME AND COLLECTION PAGES

110

�Pagination

Shopify also supports a page query parameter in the collection URL (/collections/

shirts?page=3). To make use of pagination, you’ll need to wrap the Liquid code looping

over products in your collection with the {% paginate %} tag, as you’ll see shortly.

Shopify currently has an upper limit of 50 products per page when paginating

collections.

�Views

As with product templates, we can also create alternate product templates for our

collection pages and swap between them with the use of a view query parameter (refer

to “Creating Alternate Page Templates” in Chapter 5 for a refresher on how this works).

In the context of collection pages, alternate templates can be useful in allowing

customers to swap between different views of a collection (e.g., a list versus a grid view).

I’ll cover when and why you may want to do this during the implementation phase,

coming up shortly.

�Putting It All Together

Figure 6-9 combines all of these collection URL parameters into one and shows the role

of each.

Figure 6-9.  A breakdown of the options available when generating collection
URLs

CHAPTER 6  DESIGNING HOME AND COLLECTION PAGES

http://dx.doi.org/10.1007/978-1-4842-2641-4_5

111

The implementation of a collection page therefore becomes an exercise in (a)

displaying a list of products in the most useful way possible to the user, and (b) providing

a simple user interface for users to navigate through the product range via the generation

and manipulation of the collection URL.

�Implementing a Collection Page
Just as the product template lives at templates/product.liquid, the template Shopify

uses to render collection pages sits at templates/collection.liquid, which is the focus

of the rest of the chapter. As with the product and home pages, the starting point will be a

“prototypical” collection page layout, as shown in Figure 6-10.

Figure 6-10.  A mockup showing the collection page layout we’ll aim for in this
example theme

As you can see, we’ll be aiming to implement all of the key pieces of collection page

functionality discussed earlier—sorting, support for alternate view styles, category-level

filtering, tag-level filtering, and pagination. Let’s get started!

CHAPTER 6  DESIGNING HOME AND COLLECTION PAGES

112

�Adding a Product Loop with Pagination

To start off with, we’ll add some initial code (see Listing 6-5) to templates/collection.

liquid to perform the most crucial of functions—listing products.

Listing 6-5.  Basic Collection Page that Lists and Paginates Products

<main>

 <h1>{{ collection.title | escape }}</h1>

 <!-- @TODO: Add controls for sorting, filtering et cetera here. -->

 <aside></aside>

 {%- paginate collection.products by 12 -%}

 <section>

 {%- for product in collection.products -%}

 {%- include 'product' -%}

 {%- endfor -%}

 {%- if paginate.pages > 1 -%}

 {{ paginate | default_pagination }}

 {%- endif -%}

 </section>

 {%- endpaginate -%}

</main>

The key points to note in Listing 6-5 is the product loop ({%- for product in

collection.products -%}), which iterates over the products in the collection and uses the

product snippet created earlier to render the product itself ({% include 'product' %}).

The products available in this iteration loop are controlled by the {% paginate %} Liquid

tag that wraps the loop. As you can see, I’ve chosen initially to paginate the collection in

groups of 12. Twelve, eighteen, or twenty-four products per page is a common choice for

listing pages, as they have a number of divisors that make it easier to create responsive

layouts. In this example, with 12 products per page, we can display four across on larger

desktop screens, three across on tablets and other smaller devices, and perhaps two across

on mobile devices.

CHAPTER 6  DESIGNING HOME AND COLLECTION PAGES

113

The other “new” thing we’ve introduced is the {{ paginate | default_pagination }}

tag at the bottom of the page. As its name suggest, this handy Liquid helper takes the

information present in the paginate variable (current page, total number of products,

etc.) and renders it as a simple set of links that allows users to move through each page

of the collection. You can see how these links look, along with the rest of the initial

implementation, in Figure 6-11.

Figure 6-11.  The initial implementation of the collection page (left), with a
detail view of the pagination links rendered at the bottom of the initial page of 12
products (right)

�Adding Sort Functionality

Next, we’ll add support for sorting the collection using any of the predefined methods

supported by Shopify. To do this, we’re going to add a dropdown control in the left

column of the collection template and populate it with a list of possible sorting

mechanisms. In order to start with a JavaScript-free solution to begin with, we wrap all of

our collection controls inside a <form> element and require the user to submit that form

in order to apply their selected sort option.

Let’s see what that looks like for the collection template in Listing 6-6.

Listing 6-6.  The Collection Template Once We’ve Added Sorting Controls

<main>

 <form id="collection-form" method="get" action="{{ collection.url }}">

 <h1>{{ collection.title | escape }}</h1>

CHAPTER 6  DESIGNING HOME AND COLLECTION PAGES

114

 <aside>

 �{%- assign current_sort_by = collection.sort_by | default:

collection.default_sort_by -%}

 <label for="sort_by">Sort by...</label>

 <select id="sort_by" name="sort_by">

 �<option value="manual" {% if current_sort_by == 'manual' %}

selected="selected"{% endif %}>Featured</option>

 �<option value="price-ascending" {% if current_sort_by ==

'price-ascending' %}selected="selected"{% endif %}>Price: Low to

High</option>

 �<option value="price-descending" {% if current_sort_by ==

'price-descending' %}selected="selected"{% endif %}>Price: High to

Low</option>

 �<option value="title-ascending" {% if current_sort_by ==

'title-ascending' %}selected="selected"{% endif %}>A-Z</option>

 �<option value="title-descending" {% if current_sort_by ==

'title-descending' %}selected="selected"{% endif %}>Z-A</option>

 �<option value="created-ascending" {% if current_sort_by ==

'created-ascending' %}selected="selected"{% endif %}>Oldest to

Newest</option>

 �<option value="created-descending" {% if current_sort_by ==

'created-descending' %}selected="selected"{% endif %}>Newest to

Oldest</option>

 �<option value="best-selling" {% if current_sort_by == 'best-

selling' %}selected="selected"{% endif %}>Best Selling</option>

 </select>

 <button type="submit">Update</button>

 </aside>

 {%- paginate collection.products by 12 -%}

 <section>

 {%- for product in collection.products -%}

 {%- include 'product' -%}

 {%- endfor -%}

CHAPTER 6  DESIGNING HOME AND COLLECTION PAGES

115

 {%- if paginate.pages > 1 -%}

 �{{ paginate | default_pagination | replace: '« Previous',

'←' | replace: 'Next »', '→' }}

 {%- endif -%}

 </section>

 {%- endpaginate -%}

 </form>

</main>

The addition of this code results in a dropdown select being rendered on the

collection page. Users are able to select a sort method and submit the form by clicking

Update. They are then redirected to the same collection URL but with the appropriate

sort_by query parameter set (thanks to the method="get" attribute on the form wrapping

the new controls, which sends the user to a new URL based on the form input on

submission, rather than “posting” it to the server). You can view the result in Figure 6-12.

Figure 6-12.  The addition of a sorting control in the left column of the collection
page

You may wonder why I’ve implemented this wrapping <form> pattern, rather than,

say, adding a JavaScript event handler to the change event on the <select> element and

updating the collection URL directly, which would arguably be less work for the user

than having to make a sort selection and submit the form.

CHAPTER 6  DESIGNING HOME AND COLLECTION PAGES

116

I am taking this approach for a couple of reasons. As discussed back in Chapter 3,

building functionality that doesn’t rely on JavaScript helps page load times, as well as

keeping the site usable in situations where JavaScript breaks or hasn’t yet had the chance

to load. Furthermore, keeping a focus on the fundamental components tends to result in

simpler, easier-to-manage design patterns. You’ll see this toward the end of this chapter,

when we use progressive enhancement to add a JavaScript layer over the top of the

existing, simple, form-based controls. I think you’ll be surprised at how little additional

code we need to implement “dynamic” user interface patterns when we’re starting from

solid foundations.

�Alternative Views of Product Listings

As discussed, one of the primary goals of collection page design is to allow customers to

effectively get a sense of the range of products in the current collection, as well as being

able to compare specific products without having to drill down to the product page level.

The best way to allow customers to do this often depends on the type of product

being sold and the context of the customer. A classic illustration of this is the decision

on whether to display your products in a “grid” (how the example theme currently lists

products) or as a “list” (with one item per row).

Conventional wisdom suggests that a grid view is most appropriate when:

•	 The appearance of the products is more important than information

about the products.

•	 The products being presented are visually distinct from one another.

•	 Customers are less likely to be making direct comparisons between

the products on display.

•	 Customers are more likely to be browsing than searching for a

specific product.

The corollary to that is that list views are therefore more appropriate when:

•	 Information about the products is more important than the

appearance of the products.

•	 The products being presented are visually similar or identical.

•	 Customers are likely to want to compare the products on display.

•	 Customers are likely to be searching for a specific product.

CHAPTER 6  DESIGNING HOME AND COLLECTION PAGES

http://dx.doi.org/10.1007/978-1-4842-2641-4_3

117

A good example of the first scenario would be a “What’s New” collection for a

clothing store. It’s likely to contain completely different types of clothing (scarves, hats,

and jackets) and customers will probably be browsing through without a specific goal in

mind. In general, stores selling inventory where the visual appearance of the product is

crucial are more likely to use a grid view (see Figure 6-13).

Figure 6-13.  Fashion stores and others with a strong visual element to their
products often use grid views

Figure 6-14.  Stores with lots of technical information or where comparison is
important often use a list view

The converse example would be the “LCD Television” listing in an electronics

store. Televisions all look quite similar—the important things are the specifications

(size, contrast, and features), and customers are likely to want to compare two or more

options. Where the product details are more important, a list view is more likely to be

used (see Figure 6-14).

CHAPTER 6  DESIGNING HOME AND COLLECTION PAGES

118

It’s reasonably common for Ecommerce sites to offer the ability to switch between

the two types of views. Adding this sort of functionality is extra work, but can be useful if:

•	 You’re uncertain about the types of product the theme you’re

designing will offer (common if you’re building a theme for sale to

multiple merchants).

•	 You have some product collections that are more suited to a grid

view, and some that are more suited to a list view.

•	 You have large collections where a customer may want to narrow

down their choices visually with a grid view before comparing a

selection of products in a list view.

I’m always an advocate for keeping things simple and reducing the cognitive

overhead of user interfaces, so if you think your collection page can do its job with only

a grid view or only a list view, I’d stick with that. If you do feel the need to offer a choice

between the views, make sure to add theme options (see Chapter 8) to allow storeowners

to turn each view on or off, as well as set the default view type.

You should also take some time to consider how the information you’re displaying

to customers may change depending on the view type. If we consider the classic case

where a grid view is used primarily for browsing, then “top-level” information like the

product’s appearance, title, and price is probably sufficient for a user to know if they’d

like to investigate further. List views are often more information-dense so that customers

can conduct more thorough comparisons from the collection page (see Figure 6-15).

Figure 6-15.  The Kershaw knives site displays only the product image, title, and
price in the grid view

CHAPTER 6  DESIGNING HOME AND COLLECTION PAGES

http://dx.doi.org/10.1007/978-1-4842-2641-4_8

119

Changing to the list view exposes more detailed information like component

materials and blade specifications. This makes comparison easier, although the size of

the product images in the list view makes comparison of more than two products at a

time difficult.

�Adding Alternative Views to the Example Theme

Working on the basis that we’d like to give the users of the example theme a choice of

view, let’s see how we’d go about adding a list view to our collection page to complement

the existing grid view. To do this, we’re going to use Shopify’s alternate templates

functionality, discussed in the previous chapter.

We start by moving all the existing code inside templates/collection.liquid

to a snippet (snippets/collection-view.liquid). We need to do this because we

want to share much of this code between the grid and list views—the sorting, filtering,

pagination, and general layout of the page will be the same for both views and we’ll

want to avoid duplicating code whenever possible. Once that’s done, we can include

the snippet from a new version of templates/collection.liquid (see Listing 6-7). This

template will be used whenever the collection URL includes a ?view=grid parameter,

or when no view parameter is specified. The default collection template (templates/

collection.liquid) includes the collection snippet and specifies that we should use the

grid view.

Listing 6-7.  The Grid View

{%- include 'collection-view' with 'grid' -%}

The alternate collection template below (templates/collections.list.liquid)

will be rendered whenever the collection URL includes a ?view=list parameter (see

Listing 6-8).

Listing 6-8.  The ?view=list Parameter

{%- include 'collection-view' with 'list' -%}

If you haven’t seen it before, the with keyword in the {% include %} Liquid tag

allows us to pass an argument to the included snippet. Inside that snippet, a Liquid

variable named collection-view will be available, containing the type of view we want

to render.

CHAPTER 6  DESIGNING HOME AND COLLECTION PAGES

120

Inside the collection-view.liquid snippet, the code remains the same as

the original collection template, with two key changes. Underneath the collection

sorting <select> element, we add a second <select> to handle the changing views

(see Listing 6-9). This is inserted in snippets/collection-view.liquid between the

existing sorting select dropdown and the “Update” form submit button. Then, the

code around the output of the product loop (see Listing 6-10) checks the value of

collection-view to render the appropriate product snippet—either the product.liquid

snippet used previously for the grid view, or a new product-list.liquid snippet that

renders a product in a single horizontal row (see Listing 6-11).

Listing 6-9.  Code for the New View Select Dropdown

<label for="view">View as...</label>

<select id="view" name="view">

 <option value="grid" {% if collection-view == 'grid' %}

selected="selected"{% endif %}>Grid</option>

 <option value="list" {% if collection-view == 'list' %}

selected="selected"{% endif %}>List</option>

</select>

Listing 6-10.  Updated Code for the Product Loop

...

{%- paginate collection.products by 12 -%}

<section>

 {%- if collection-view == 'grid' -%}

 {%- for product in collection.products -%}

 {%- include 'product' -%}

 {%- endfor -%}

 {%- else -%}

 {%- for product in collection.products -%}

 {%- include 'product-list' -%}

 {%- endfor -%}

 {%- endif -%}

 ...

CHAPTER 6  DESIGNING HOME AND COLLECTION PAGES

121

Listing 6-11.  The New snippets/product-list.liquid Snippet

<div>

 �<img src="{{ product.featured_image | product_img_url: '200x200',

scale: 2, crop: 'center' }}" alt="{{ product.title | escape }}" />

 <div>

 <h6>{{ product.title | escape }}</h6>

 <p>{{ product.vendor | escape }}</p>

 </div>

 <h6>{{ product.price | money }}</h6>

</div>

Figure 6-16 shows the result, with a new view selection dropdown in the left column

and products rendered in the new list style on the right.

Figure 6-16.  The collection page can now be displayed in a simple list view

CHAPTER 6  DESIGNING HOME AND COLLECTION PAGES

122

�Adding Category-Level Filtering

We’ve now implemented pagination, sorting, and view management on our collection

pages. The last bit of functionality to add is filtering—a way for customers to be able to

narrow down a range of products to just those they’re interested in.

More than any of the other work we’ve done so far on the collection page, product

filters are the most use-case specific. Depending on the product range in question,

different filtering strategies and methods for grouping different filters together are called

for. A store selling wine may have thousands of products and need to let customers filter

on various combinations of vintage, country of origin, or grape type. A site selling a

limited range of prepackaged meals, on the other hand, may only need to offer filtering

on a single dimension (breakfast, lunch, or dinner) at any one time.

Most stores will need to have some notion of “category-level” filtering, a high-level

way of starting to narrow down the product range to something a customer is interested

in. As discussed earlier, this level of filtering is achieved in Shopify through collections.

Adding category-level filtering on a collections page can be as simple as adding a list of

links to each collection on your store, which is what I’ve implemented for the example

theme in Listing 6-12. This code has been added to snippets/collection-view.liquid,

underneath the sorting and view controls.

Listing 6-12.  Addition of a Straightforward Category (Collection)-Level Filter

...

<button type="submit">Update</button>

<hr />

<label>Category</label>

 {%- for collection_option in collections -%}

 {%- if collection.handle == collection_option.handle -%}

 {{ collection_option.title | escape }}

 {%- else -%}

 �<a href="{{ collection_option.url }}?view={{ collection-view }}

&sort_by={{ collection.sort_by }}">

CHAPTER 6  DESIGNING HOME AND COLLECTION PAGES

123

 {{ collection_option.title | escape }}

 {%- endif -%}

 {%- endfor -%}

...

Figure 6-17.  Category filters appear as a simple list of links in the left column.
Only one category can be selected at any one time

This simple approach lets customers easily navigate through each of the collections

on the store by iterating through all collections and rendering a link to the collection

page for each one. Note that when generating the URL to each collection, we include the

current view and sort parameters to maintain a consistent experience when moving from

collection to collection. Conversely, we don’t include current pagination information, as

CHAPTER 6  DESIGNING HOME AND COLLECTION PAGES

124

it seems optimal from a user experience experience to move back to the first page as we

completely change the visible category.

One potential issue with this straightforward approach is that storeowners don’t

have any control over the list of collections displayed, or the order in which they appear.

We will remedy this at the end of the chapter, but for now let’s move on to the next level

of filtering functionality.

�Adding Tag-Based Filtering

For some stores with a limited number of products, category-level filtering will be

sufficient. However, in many cases an additional level of refinement is required. This is

where tag-based filtering comes in.

As you saw earlier when examining the URL structure of collection pages, adding

a tag name to the end of a collection URL will filter visible products to just those in

the collection with that tag. Shopify provides several Liquid helpers to make it easy to

generate collection URLs for the addition and removal of those tags from the current

collection view. You can see the use of these Liquid helpers (current_tags, link_to_

remove_tag, and link_to_add_tag) in Listing 6-13, where I’ve added a list of tags to filter

by underneath the category-level filter. Note also that I’ve updated the action attribute

of the form to ensure tag filtering information is retained when changing the sort order

or view. The use of the ☑ and ☐ HTML entities display a checked or un-

checked checkbox, depending on whether the tag is currently active or not.

Listing 6-13.  Addition of Tag-Based Filters Underneath Category-Level Filters

<form id="collection-form" method="get" action="{{ collection.url }}{% if

current_tags %}/{{ current_tags | join: '+' }}{% endif %}">

...

<label>Filter by...</label>

 {% for tag in collection.tags %}

 {% if current_tags contains tag %}

 {{ '☑' | append: tag | link_to_remove_tag: tag }}

 {% else %}

CHAPTER 6  DESIGNING HOME AND COLLECTION PAGES

125

 {{ '☐' | append: tag | link_to_add_tag: tag }}

 {% endif %}

 {% endfor %}

As you can see in Figure 6-18, this code snippet renders a list of tags directly

underneath the category-level filters.

Figure 6-18.  How the collection page looks with the addition of a tag filter and
zero (left), one (center), and two (right) tags selected for filtering

Two important things to note with this approach:

•	 The tag filters here are being used in an additive manner. That is, as

shown by Figure 6-18, we’re able to filter down to just Mens products

first, before adding a second Shirts filter. This is one option; it would

also be possible to only allow a single level of tag filtering in a similar

way to how we only permit a single level of category filtering.

•	 As you may have noticed from the screenshots, as we add filters, the

list of available tag filters under the “Filter by…” heading reduces

in size. This is because the tag loop {% for tag in collection.

tags %} will only return a list of tags that are present on any of the

currently visible products. This is usually the desired behavior as it

avoids presenting tag filtering options that will have no effect on the

resulting list of products, but if you want to maintain a consistent list

of tag filters, you can use {% for tag in collection.all_tags %}

instead.

CHAPTER 6  DESIGNING HOME AND COLLECTION PAGES

126

�Progressively Enhancing the Collection Page

The collection page is now quite functional, and it allows customers to perform all the

key tasks outlined at the start of the section. To wrap this section up, we’re going to walk

through a couple of things you could do to improve the user experience of the page.

The first of these is to add some functionality when JavaScript is available to users

(progressive enhancement). When we added the sort and view selection dropdown

boxes, I noted that requiring users to click Update after changing one of the dropdowns

was an unnecessary extra step. Thanks to the robust way we’ve built our collection

page to date, with the addition of a few bits of JavaScript and CSS, we can add some

logic that auto-submits the collection form when a select dropdown changes. You’ll

also see how to hide the Update button when JavaScript is available, as it’ll no longer

be needed.

Because the code required for these changes touches quite a few different files, I

won’t replicate it in full here in the book (as always, these code changes are available in

the example theme repository online). Instead, here’s the outline of the approach:

	 1.	 Add some no-js and js-hide CSS classes, applied to the <body>

and Update button respectively, to hide the Update button when

JavaScript is available.

	 2.	 Add a line of JavaScript to remove the no-js CSS class from the

<body> on initialization.

	 3.	 Use JavaScript to capture the change event for the sorting and view

selection dropdown elements.

	 4.	 In the handler for that event, auto-submit the collection form to

apply the changes.

After implementing these changes, you should be able to load the collection page

with and without JavaScript and see the same result as in Figure 6-19. Any changes to the

sort order or view selection should be applied instantly.

CHAPTER 6  DESIGNING HOME AND COLLECTION PAGES

127

When JavaScript is available, parsed, and initialized, the Update button is hidden

and changing a select instantly updates the view. Otherwise, the button remains visible

and provides an accessible fallback.

A further enhancement we can apply is to avoid a full page refresh every time we

make a change to our sorting, view, or filtering using an Ajax call instead. While I think

the speed benefits of Ajax-driven dynamic interfaces are often overstated (especially

if you’ve gone to the effort to properly optimize your theme), if added progressively

on a solid foundation, you can avoid some overhead (the re-parsing of stylesheets and

JavaScript involved with a page load) with relatively little work.

Again, I’ll skip the full code for the sake of brevity and provide only an outline of this

approach:

	 1.	 Use JavaScript to intercept the submit event on the collection

form, which will trigger when the sort or view dropdowns change.

	 2.	 Prevent the default form submission, but make an Ajax request to

what would have been the target URL to get the page content, then

replace the current page content with the new.

Figure 6-19.  Progressive enhancement in action!

CHAPTER 6  DESIGNING HOME AND COLLECTION PAGES

128

	 3.	 Use JavaScript to intercept the click event on the category and tag

filter links.

	 4.	 Using a similar approach as form submission, make an Ajax

request to fetch the link’s target URL and replace the current page

with the new.

�Summary
In this chapter, you saw how to implement two of the key pages on any Shopify store—

the home and collection pages. For the home page, you identified the key goals of the

page (conveying brand identity and the product range) and saw how to build a highly

configurable layout using dynamic sections.

You also learned about the design goals and implementation techniques for

collection pages and the four key customer actions on those pages—view selection,

sorting, filtering, and pagination.

CHAPTER 6  DESIGNING HOME AND COLLECTION PAGES

129
© Gavin Ballard 2017
G. Ballard, The Definitive Guide to Shopify Themes, DOI 10.1007/978-1-4842-2641-4_7

CHAPTER 7

Carts, Checkouts,
and Content
The previous three chapters covered the design and implementation of the components

needed for a visitor to a Shopify store to discover a product (or products) they want to

buy and add them to their cart. In this chapter, we’ll be looking at how we can encourage

customers to complete their journey from that point and make it through the checkout

so that your merchant gets paid. As part of this, we’ll be looking at how to minimize cart

abandonment and strategies for maximizing average order value.

The final section of this chapter also discusses the “other” pages involved in a

Shopify store theme—the content, blog, and article pages, which play a supporting role

in driving product sales.

�The Cart Page
After a customer adds a product to their cart, Shopify’s default behavior is to redirect

them to /cart as a final step before moving into the checkout. Exceptions to this default

behavior may occur if the theme you’re working on uses Ajax-powered add to cart

functionality from the product or collection pages, which typically keeps the customer

on the current page.

In either case, the cart page gives a customer the chance to review their order and

ensure they’re happy with it before providing shipping and payment details. To ensure

that as many customers as possible do in fact move on to the checkout process, there are

a few design considerations we should bear in mind as we look at the cart page.

130

�Design Goals for Cart Pages
Studies show that on average, 69% of all online shopping carts are abandoned at some

point during the checkout flow.1 While no amount of design can rescue all lost sales,

there are some key things we can do to encourage users to complete their orders. The

breakdown of reasons for cart abandonment in the report cited previously indicate that

the two biggest conversion killers for online stores are:

•	 The addition of unreasonable or unexpected extra costs (such as

shipping, taxes, or fees)

•	 Checkout processes that are too complex or demand too much time

and effort to complete

While the actual shipping costs and taxes charged by a merchant are out of the

hands of the theme designer, we can certainly take steps on the cart page to ensure

that customers aren’t hit with unexpected or “surprise” fees during checkout. We can

also make a concerted effort to simplify the cart page and ensure it’s displaying only

information that’s useful to our customers and encourages them to take the next logical

step (checking out).

The next section walks through the addition of a cart page that aims to meet these

design goals in the example theme. At each step, we’ll consider the specific design

decisions in a little more detail.

�Implementing a Cart Page
Continuing the tradition of working to a “standard” design for the example theme, the

cart page we’ll be putting together will follow the layout pictured in Figure 7-1.

1 https://baymard.com/lists/cart-abandonment-rate

CHAPTER 7  CARTS, CHECKOUTS, AND CONTENT

https://baymard.com/lists/cart-abandonment-rate

131

You’ll notice a few key design features of this cart layout:

•	 It allows customers to edit their cart, both by adjusting the quantity

of line items or removing them entirely. This is important for

both increasing average order value (if a customer would like

or is incentivized to order larger quantities) and for reducing

abandonment (if a customer perceives that adjusting quantities or

removing an item from the cart is too difficult, they may leave the site

altogether).

•	 It includes a note about shipping rates, designed to reduce the risk of

hitting customers with surprise costs during checkout.

•	 It includes an in-cart upsell offer, which is designed to increase

average order value through a spur-of-the-moment purchase

decision. Care always needs to be taken with such offers to ensure

that they don’t detract from the primary goal of having the customer

proceed to checkout, so the overall effect on conversions and revenue

should be considered when implementing them.

Figure 7-1.  A mockup showing the layout of the cart page we’ll be implementing
in this chapter

CHAPTER 7  CARTS, CHECKOUTS, AND CONTENT

132

�Adding an Editable List of Cart Contents

We’ll start work on the cart page by adding a simple table displaying the current contents

of the cart, as per Listing 7-1.

Listing 7-1.  An Initial Liquid Template for templates/cart.liquid

<main>

 <h1>Your cart</h1>

 {%- if cart.items.size > 0 -%}

 <form action="/cart" method="post">

 <table>

 <thead>

 <tr>

 <th colspan="2">Item</th>

 <th>Quantity</th>

 <th>Price</th>

 </tr>

 </thead>

 <tbody>

 {%- for item in cart.items -%}

 <tr>

 <td>

 �<img src="{{ item | img_url: '120x120', scale: 2, crop:

'center' }}" width="120" alt="{{ item.title | escape }}" />

 </td>

 <td>

 <h6>{{ item.title | escape }}</h6>

 <p>{{ item.sku | escape }}</p>

 �<a href="/cart/change?line={{ forloop.index }}

&quantity=0">Remove

 </td>

CHAPTER 7  CARTS, CHECKOUTS, AND CONTENT

133

 <td>

 �<input type="number" name="updates[]" value=

"{{ item.quantity }}" />

 </td>

 <td>

 {{ item.line_price | money }}

 </td>

 </tr>

 {%- endfor -%}

 </tbody>

 <tfoot>

 <tr>

 <td colspan="3"></td>

 <td>{{ cart.total_price | money }}</td>

 </tr>

 <tr>

 <td colspan="4">

 <input type="submit" name="update" value="Update" />

 �<input type="submit" name="checkout" value="Proceed to

checkout" />

 </td>

 </tr>

 </tfoot>

 </table>

 </form>

 {%- else -%}

 <p>

 Your cart is empty.

 </p>

 {%- endif -%}

</main>

The contents of the table are wrapped in a <form>, and at the bottom of the page, we

include an Update button. This allows customers to update the quantity of products in

their cart by changing the quantity inputs and submitting the form. We’ll also include

CHAPTER 7  CARTS, CHECKOUTS, AND CONTENT

134

a Remove link for each line item and a Proceed to Checkout button that serves as the

primary call to action on the page.

Once it’s implemented, a cart with a couple of line items in it should look like

Figure 7-2.

As we did with the view controls on your collection pages in Chapter 6, we can use

progressive enhancement to drive the update of line item quantities when JavaScript is

available and avoid the clunkiness of having to click Update on the cart page. The full

code required to implement this is available in the example theme GitHub repository,

but the general approach is:

•	 Intercept the change event on the quantity inputs in the cart table.

•	 When a change occurs, use Shopify’s Ajax API2 to make an Ajax

request to update the quantity of the given line item.

•	 Use the CSS classes we implemented for the collection page to hide

the Update button when JavaScript is available.

2 https://help.shopify.com/themes/development/getting-started/using-ajax-api.

Figure 7-2.  The initial implementation of the cart page as it appears in the
browser

CHAPTER 7  CARTS, CHECKOUTS, AND CONTENT

http://dx.doi.org/10.1007/978-1-4842-2641-4_6
https://help.shopify.com/themes/development/getting-started/using-ajax-api

135

�Adding a Shipping Cost Calculator

With the basic functionality of the cart page together, we can move to adding a note

above the Proceed to Checkout button that aims to reduce the risk of surprises for the

customers when they move through to the checkout. Because loading shipping costs

requires some dynamic JavaScript, we can start by implementing a default, plan-HTML

fallback option—displaying a static note as in Listing 7-2 and Figure 7-3. In Listing 7-2,

the table footer from Listing 7-1 has been updated with a static shipping costs message.

The element containing the message is given an id attribute so we can refer to it and

dynamically update it later.

Listing 7-2.  Table Footer from Listing 7-1 Updated with a Static Shipping Costs

Message

...

<tfoot>

 <tr>

 <td colspan="3"></td>

 <td>{{ cart.total_price | money }}</td>

 </tr>

 <tr>

 <td id="cart-shipping" colspan="4">

 Shipping and taxes calculated during checkout

 </td>

 </tr>

 <tr>

 <td colspan="4">

 <input type="submit" name="update" value="Update" />

 <input type="submit" name="checkout" value="Proceed to checkout" />

 </td>

 </tr>

</tfoot>

...

CHAPTER 7  CARTS, CHECKOUTS, AND CONTENT

136

With this fallback in place, we’ll now implement some JavaScript that uses Shopify’s

Ajax API to fetch an estimate of shipping rates and display that to the customer. To

properly estimate shipping rates, we need to have some idea of where you’re shipping to

(a country, state, and postcode)—information that we don’t usually have at the cart step.

For the purposes of the example theme, we’re going to keep things simple and only

fetch and display a more accurate shipping estimate for logged-in customers with a

known delivery address. In other situations, we won’t perform any dynamic updates

and the fallback message will be displayed. In a real-world situation, you could look to

extend the code you’re about to implement to fetch an unfamiliar customer’s location

via the JavaScript Geolocation API, an approximation based on their IP address,

or simply a form requesting their address details.

The implementation of this functionality requires changes to three theme files:

	 1.	 First, we need to add a new fetchShippingRateEstimate

JavaScript method in assets/theme.js.liquid. It expects to

be passed the logged-in customer’s address and the selector of

a target element where the shipping estimate message will be

rendered. It then does the work of making an Ajax call to Shopify’s

shipping rate’s API and renders the result. This method is shown

in Listing 7-3.

	 2.	 Because the details of any logged-in customer are only

available to the core Liquid templates, and not the asset files,

we need to pass the customer details to the newly-written

fetchShippingRateEstimate method from templates/cart.

liquid. This is shown in Listing 7-4, using a technique I call the

“Captured JS” pattern, explained in the Tip that follows.

	 3.	 Finally, for the “Captured JS” pattern to work, we need to add

a single line of code to the bottom of layout/theme.liquid,

underneath all the other JavaScript. This is shown in Listing 7-5.

Figure 7-3.  The fallback shipping message as it appears in the cart table

CHAPTER 7  CARTS, CHECKOUTS, AND CONTENT

137

Tip  Good practice dictates that JavaScript is loaded and initialized at the bottom
of all pages in theme.liquid, as top-loading JavaScript is one of the biggest
sources of page slowdown and poor load times. However, there’s often JavaScript
that you may wish to load or execute only on specific pages—the initialization call
to fetchShippingRateEstimates here being a good example.

In these cases, I use the Captured JS technique—using a Liquid {% capture %}
tag within my Liquid template to store any page-specific JavaScript to a variable
called captured_js. This can be used multiple times on a page as long as you’re
sure to output the previous contents of captured_js along with the newly-
captured contents (see Listing 7-4). Your theme.liquid template can then output
the captured contents at the very bottom of the page, ensuring any JavaScript
libraries have been loaded before execution.

Note that Listing 7-3 exposes the method globally on the window object—in a

production theme you might want to namespace this (e.g., window.ExampleTheme.

fetchShippingRateEstimate).

Listing 7-3.  The fetchShippingRateEstimate Added to theme.js.liquid.

...

window.fetchShippingRateEstimate = function(target, shipping_address) {

 if(!shipping_address) return;

 $.ajax({

 url: '/cart/shipping_rates.json',

 data: $.serialize({ shipping_address: shipping_address }),

 success: function(shipping_rates) {

 if(shipping_rates.length === 0) return;

 var shipping_rate = shipping_rates[0];

 $(target).html(

 '' +

 shipping_rate.name + ' ($' + shipping_rate.price + ') to ' +

 shipping_address.city + ', ' + shipping_address.province +

 ''

);

CHAPTER 7  CARTS, CHECKOUTS, AND CONTENT

138

 }

 });

};

...

Note that Listing 7-4 uses the handy Liquid | json filter, which will take a Liquid

variable such as a customer’s default address and convert it into a JSON object for use in

the JavaScript.

Listing 7-4.  The “Captured JS” Pattern in Operation at the Bottom of cart.liquid

...

</main>

{%- capture captured_js -%}

 {{- captured_js -}}

 <script type="text/javascript">

 �fetchShippingRateEstimate('#cart-shipping', {{ customer.default_address

| json }});

 </script>

{%- endcapture -%}

Listing 7-5.  The Bottom of the theme.liquid Has a New Addition—the Output of

the captured_js Liquid Variable

 ...

 {{- 'theme.js' | asset_url | script_tag -}}

 {{- captured_js -}}

 </body>

</html>

Figure 7-4 shows the result on the cart page once shipping rates have been fetched.

CHAPTER 7  CARTS, CHECKOUTS, AND CONTENT

139

�Adding an Upsell Offer

The final addition to the cart page will be a simple upsell offer, based on the current

contents of the cart. To drive this functionality, we’ll use the following approach:

	 1.	 We will introduce a new “upsell” metafield that can be applied

to our products (refer to the section “Managing Additional

Information with Metafields” in Chapter 5 for a refresher on how

this works).

	 2.	 On the cart page, we will iterate through each item in the cart to

see if it has an upsell metafield set, and if it points to a product

that’s not already in the cart. If so, we’ll display an image of the

upsell product along with a button to allow customers to add it to

the cart.

For this approach to work, we need to add a cart-upsell.liquid snippet (see

Listing 7-6) and include it at the bottom of the existing cart.liquid template. It contains

Liquid logic to iterate through the current cart and look for a product that’s designated as

an upsell but isn’t already in the cart. As soon as a valid upsell is found, we break out of

the loop, so a maximum of one offer will be displayed at a time.

Listing 7-6.  The cart-upsell.liquid File

{%- assign upsell_product = nil -%}

{%- for item in cart.items -%}

 �{%- assign upsell_product_handle = item.product.metafields.theme.upsell_

product_handle -%}

Figure 7-4.  If a customer with a known address is logged in, the cart page now
fetches a shipping estimate for their location and provides a more specific shipping
costs message

CHAPTER 7  CARTS, CHECKOUTS, AND CONTENT

http://dx.doi.org/10.1007/978-1-4842-2641-4_5

140

 {%- if upsell_product_handle == blank -%}

 {%- next -%}

 {%- endif -%}

 {%- assign already_in_cart = false -%}

 {%- for upsell_item in cart.items -%}

 {%- if upsell_product_handle == upsell_item.handle -%}

 {%- assign already_in_cart = true -%}

 {%- endif -%}

 {%- endfor -%}

 {%- unless already_in_cart -%}

 {%- assign upsell_product = all_products[upsell_product_handle] -%}

 {%- break -%}

 {%- endunless -%}

{%- endfor -%}

{%- if upsell_product -%}

<aside>

 �<img src="{{ upsell_product.featured_image | product_img_url: '50x50',

scale: 2, crop: 'center' }}" width="50" alt="{{ product.title |

escape }}" />

 �Special offer: <a href="/cart/add?id={{ upsell_product.variants.first.id

}}">add a {{ upsell_product.title }} to your cart for only

{{ upsell_product.variants.first.price | money }}

</aside>

{%- endif -%}

With this final addition, the cart page is complete and should look like Figure 7-5.

CHAPTER 7  CARTS, CHECKOUTS, AND CONTENT

141

�The Checkout
Once a customer clicks the Proceed to Checkout button, they are taken away from the

theme’s cart page and to the Shopify checkout, where they’ll be asked to enter shipping

and payment information to complete their order. For security reasons, the layout and

Liquid templates used in the checkout aren’t exposed to theme developers in the same

way as other page templates. Instead, merchants have access to several predefined

settings in the Themes section of the Shopify Admin, allowing them to customize header

images and colors to match the rest of their store (see Figure 7-6).

Figure 7-5.  The cart page, complete with cart table, shipping estimates, and an
upsell offer

CHAPTER 7  CARTS, CHECKOUTS, AND CONTENT

142

The lack of customizability of Shopify’s checkout is often cited as a major drawback

of the platform. It certainly can be limiting—for example, it’s not possible to change

the ordering of form elements during checkout, capture additional information from

customers, or use a custom font. The trade-off for this is having a secure, robust checkout

experience that’s being tweaked and optimized on an ongoing basis by Shopify—in my

opinion, a net win for stores despite the limitations.

Within the scope of what’s possible when it comes to the Shopify checkout, I think

the most important thing to bear in mind is to reinforce trust in the store’s brand and in

the checkout process itself. The fonts, colors, and header images in the checkout should

be selected to closely match the main store theme, so that customers don’t feel they’re

“jumping” to another site.

Figure 7-6.  Merchants can select from a limited range of options in the Shopify
Admin to customize their checkout to match their theme

CHAPTER 7  CARTS, CHECKOUTS, AND CONTENT

143

Sidenote  Historically, customers would be taken from a Shopify store to a
different domain name (checkout.shopify.com) during the checkout process,
leading to a concern from merchants that this could affect conversions. Today,
Shopify checkouts are hosted on the same domain as the rest of the store—but
interestingly, during the testing for this change the Checkout team found no
difference in conversion rates with or without the changed domain name.

�Customizing the Checkout with Shopify Plus
Stores using the Shopify Plus enterprise platform (as opposed to the “regular” Shopify

product) have a much higher degree of flexibility when it comes to the checkout

templates. Plus stores are able to add custom Liquid, CSS, and JavaScript to the

checkout, although control of the layout and checkout steps remains with Shopify. These

customizations need to be implemented on a store-by-store basis, as you’re unable

to ship a custom checkout.liquid in a theme for general use (in any case, checkout

customizations tend to be quite store-specific).

While it’s unlikely much of your early theme work will deal with Shopify Plus stores,

at least in the first instance, it’s good to have some checkout customization knowledge

in your toolbelt. To help with this, we’ll look at a simple but common checkout

customization in our example theme by adding a store pickup selector.

�Adding a Store Pickup Selector in the Checkout

It’s quite common to offer a “local pickup” shipping option to customers who live in

the same country or state as a merchant’s physical retail outlets. This is usually done

by adding a Store Pickup option in Shopify’s shipping settings, restricted to a specific

geographical location (see Figure 7-7).

CHAPTER 7  CARTS, CHECKOUTS, AND CONTENT

144

While this approach works for simple use cases, a merchant with multiple pickup

locations can run into complications. Let’s assume that your example store has multiple

physical locations in several major Australian cities—Melbourne, Sydney, and Brisbane.

While we could create a separate shipping option for each pickup location and restrict

them by state, we would start to overwhelm the customer with options during the

checkout process (see Figure 7-8).

Figure 7-8.  With multiple physical locations available for pickup, the
configuration gets harder to manage and the checkout process gets more complex
for customers

Figure 7-7.  A store pickup shipping option as configured in the Shopify Admin
(left); and the resulting shipping options presented to a customer during checkout
(right)

With access to the checkout.liquid template on a Shopify Plus store, we can tackle

this problem with some custom JavaScript. The approach will be to:

CHAPTER 7  CARTS, CHECKOUTS, AND CONTENT

145

	 1.	 Set up a single shipping zone, called Store Pickup, in the Shopify

Admin.

	 2.	 Add some custom JavaScript to detect when a customer selects

the Store Pickup shipping option, and when that occurs, render a

custom dropdown element allowing the customer to select which

specific store they’d like to pick up their order from.

	 3.	 Pass the selected option as a cart attribute when the customer

proceeds to the next step, which will store their selection against

their final order.

You can view the code changes needed to implement this functionality in the

example theme repository (while the code isn’t that complex, it would take up a bit too

much space to list it here). You can see the result in the checkout in Figure 7-9.

Figure 7-9.  The checkout customization is now in place

With the checkout customization in place, a customer now sees a single Store

Pickup option during checkout (left). Selecting that option displays a second form input

allowing a customer to select a specific pickup location (right), which then appears in

the Additional Details section of the Order Detail page inside the Shopify Admin.

�Content Pages
You’ve now learned about the most crucial components of a customer’s journey on a

Shopify site—the home, collection, product, cart and checkout pages. There aren’t the

only pages present on a Shopify store—most stores will also contain “content” pages

CHAPTER 7  CARTS, CHECKOUTS, AND CONTENT

146

for things like the FAQs, about pages, contact forms, return policies, and the like. Many

stores will also have blog content, whether for content marketing and SEO purposes or to

document the release of new products.

While these pages are important for all stores, I’m not going to cover them in too

much detail here. The principles and techniques we’ve applied to build the home,

product, and collection pages can be used for page, blog, and article templates alike.

Usually, most of the work with these pages involves assembling the content itself

and building a design around it. Things like Liquid variables and filters, alternate

page templates, and theme sections and settings are all accessible from within these

templates, giving you a high degree of flexibility in the functionality and layouts you can

implement.

You can check out the example theme repository for how I’ve implemented simple

examples for page, blog, and article templates.

�Summary
This chapter covered the design and implementation of the final steps of a customer’s

journey to purchase something from the store. You’ve learned how to put together an

editable cart page that includes some additional functionality like shipping estimates

and upsells.

The chapter also covered the Shopify checkout and some of its limitations when

it comes to customization. It touched briefly on how some of those limitations can be

overcome for Shopify Plus merchants before wrapping up with a discussion of “other”

content pages on your Shopify store.

CHAPTER 7  CARTS, CHECKOUTS, AND CONTENT

147
© Gavin Ballard 2017
G. Ballard, The Definitive Guide to Shopify Themes, DOI 10.1007/978-1-4842-2641-4_8

CHAPTER 8

Theme Settings
and Going Global
Whatever the situation, end users of your Shopify theme are almost always going to

require some level of theme customization. To avoid forcing merchants to run to a

developer every time something needs to change on their stores, Shopify themes provide

for per-store configuration via a couple of different features—theme settings and locales.

For themes developed on behalf of clients, using these features to add a certain level

of DIY customizability will save you plenty of valuable time in “five-minute fix” customer

support. For themes you’re selling to multiple clients, it’s absolutely essential that end

users be able to modify a wide range of theme aspects so that they can “own” their theme

and customize it in a way that matches their brand.

�Theme Settings
As you saw back in the Chapter 1 in the section “Anatomy of a Shopify Theme,” the

configurable aspects of your themes are specified via a special JSON format, either in the

config/settings_schema.json file (for global settings applied across the entire theme)

or inside a {% schema %} Liquid tag inside a section file (for section-specific settings).

A simple example of a global settings file is shown in Listing 8-1, with the corresponding

UI displayed to the Shopify admin end user in Figure 8-1. Note that you can add

Markdown-style reference markup to provide links to further information and avoid

information overload inside the theme editor.

http://dx.doi.org/10.1007/978-1-4842-2641-4_1

148

Listing 8-1.  Settings in JSON Format for a Simple Checkbox Setting

{

 "type": "checkbox",

 "id": "favicon_enable",

 "label": "Use [custom icon](https://en.wikipedia.org/wiki/Favicon)"

}

The settings JSON format and all the possible setting input types are well-covered by

Shopify’s online documentation,1 so I won’t recap them in full here. (Shopify also adds

new input types on a semi-regular basis, so it’s worth checking in with the most up-to-

date source regularly.) This chapter focuses on a discussion of when it makes sense to

use theme settings, an exploration of use cases, and some practical tips on how to use

those settings in your themes.

Caution  Also residing in the /config directory of your theme alongside
settings_schema.json is a file called settings_data.json. This file
contains the currently chosen settings for a theme on a specific store instance.
Try to avoid editing this file directly as part of your development process and make
sure it’s ignored in any revision control or automated upload processes you may
be using. Failure to do so can often lead to developers accidentally overriding a
storeowner’s carefully configured settings.

�What Should Be Made a Setting?
Choosing whether to make something configurable by a storeowner via a theme setting

will often be dependent on who the theme is being built for.

1 https://help.shopify.com/themes/development/theme-editor/settings-schema.

Figure 8-1.  The result of the simple checkbox setting from Listing 8-1 in the
Shopify Admin interface

CHAPTER 8  THEME SETTINGS AND GOING GLOBAL

https://help.shopify.com/themes/development/theme-editor/settings-schema

149

�Settings for “One-Off” Themes

Themes being built for a specific client on a specific store (“one-off” themes) tend to

have a pretty narrow focus when it comes to theme settings.

Given that you’ve presumably designed and built the site in close collaboration with

the client, it’s unlikely that key design elements like fonts, brand colors, and graphical

elements will be changing frequently. The list of third-party services that the theme may

need to integrate with (a mailing list provider, for example) is likely predefined, or at

least under your control.

I therefore find that the sorts of settings added for one-off themes are time-sensitive

feature flags or values—for example, a setting to toggle a site-wide banner with a custom

message about an ongoing sale or holiday shipping delays, or which products should be

featured on a key content page.

As part of the theme design process, I’ll talk to the client to try to understand what

parts of the site are likely to be time-sensitive in this manner and plan my setting

accordingly. As a general principle, if you’re unsure about whether something needs

to be turned into a theme setting, avoid doing so until the client has asked for it to be

changed a couple of times. (I find that given free reign, clients will want the ability to

customize everything, even if there’s no realistic prospect of it changing.)

�Settings for “Multi-Use” Themes

A variation of the “one-off” theme is a “multi-use” theme, where you’re designing and

building a theme for a specific client, but where that theme will be used on multiple

Shopify stores. The common use cases for this type of theme are clients running multiple

Shopify stores to service different regions (e.g., US versus Australia) or different customer

segments (e.g., retail versus wholesale).

Unless the differences between regions or customer segments are so vast that

a completely different design is required, it’s very useful to have a single codebase

driving all variations of a particular theme, with the settings on each individual store

determining the final look and functionality for that region or target customer.

As an example of this approach in the wild, you can compare the retail and

wholesale versions of the Colonna Coffee Shopify stores in Figure 8-2.

CHAPTER 8  THEME SETTINGS AND GOING GLOBAL

150

Both stores use the same theme, and the settings_schema.json file contains

an option for store_type (set to either retail or wholesale) that the template files

themselves can read and use to display different content depending on the result.

Other examples of theme settings commonly used for “multi-use” themes include:

•	 Whether to activate theme features based on the legal requirements

of the region serviced (e.g., age verification or cookie warnings)

•	 Order minimums for wholesale sites

•	 Primary brand colors to distinguish retail from wholesale

Again, the best way to work out what needs to go into the theme settings is by having

a discussion with the client and understanding their needs.

�Settings for “Distributed” Themes

At the other end of the spectrum to the narrow focus of a “one-off” theme for a specific

client is a “distributed” theme—one that could be used by a multitude of businesses you

have no direct connection to. This comes with the most number of headaches when it

comes to theme settings.

Users are going to want much more flexibility and control, including being able to

configure colors, fonts, and layout settings. There also needs to be more flexibility in

Figure 8-2.  The home page of the Colonna Coffee retail page (left) and the
Colonna Coffee wholesale page (right). Both sites are driven by the exact same
theme code

CHAPTER 8  THEME SETTINGS AND GOING GLOBAL

151

the integrations your settings support—for example, your newsletter widget may now

require settings that support the use of MailChimp, Campaign Monitor, and InfusionSoft

instead of just a single provider.

The best advice I can offer is to start with some opinionated choices (this limited

range of fonts, these mailing list providers, these layout options) and expand them only

in case of repeated customer feedback, as each addition to your list of theme options

results in a factorial increase in the number of things for you to test.

�Theme Setting Guidelines
The key to writing good settings for your themes is to think hard about the needs of your

end users. Naturally, you’re going to have to exercise your own judgment, but some

general guidelines I suggest are:

•	 If your theme incorporates them, always make the following available

as theme settings:

•	 Any API keys used by JavaScript libraries (e.g., Instagram

client keys)

•	 All key images, including background images, site logos, and the

favicon

•	 On/off toggle switches for “additional” theme features like

newsletter popups or countdown timers

•	 Avoid “god settings”—theme settings that affect a wide range of

aspects of your site (the retail/wholesale theme setting used for

the Colonna Coffee stores probably falls under this category—mea

culpa!). Having a single setting that drives major changes across the

site makes it harder to reason about the state of your theme or isolate

feature change. If possible, break these down into more focused

settings that control individual behaviors.

•	 Avoid specifying lists directly in theme settings, and instead leverage

Shopify’s built-in concepts like navigation menus, collections, and

blogs. Having a single setting that points to a flexibly-sized collection

(e.g., “Featured products”) is much simpler than having many

settings, each pointing to a specific product.

CHAPTER 8  THEME SETTINGS AND GOING GLOBAL

152

•	 Almost without exception, any configurable text content displayed

to customers should be configurable via a store’s language files (we’ll

discuss these in a little bit) rather than via a theme setting. This gives

storeowners a single point of control for all theme text content and

avoids missed translations or text changes.

�Using Settings in Your Themes
Within your theme’s Liquid code, settings can be used just like any other variable, as per

Listing 8-2.

Listing 8-2.  A Simple Settings Usage Example in Liquid Code

<header>

 {% if settings.display_site_banner %}

 {% include 'site-banner' %}

 {% endif %}

</header>

�The Iteration Pattern

It’s common to have a group of settings you’d like repeated a few times. For example, if

your theme has an image carousel on the home page, you might want users to be able

to configure the image, caption, and link for each slide. The naïve approach (shown

in Listing 8-3) is to repeat your HTML logic once for each repeated element. A better

approach (shown in Listing 8-4) is to dynamically iterate over setting values.

Listing 8-3.  The Naïve Approach to Repeated Theme Settings

<ul class="slides">

 {% if settings.show_slide_1 %}

 {{ settings.caption_slide_1 | escape }}

 {% endif %}

 {% if settings.show_slide_2 %}

CHAPTER 8  THEME SETTINGS AND GOING GLOBAL

153

 {{ settings.caption_slide_2 | escape }}

 {% endif %}

 {% if settings.show_slide_3 %}

 {{ settings.caption_slide_3 | escape }}

 {% endif %}

Listing 8-4.  The Iteration Approach to Repeated Theme Settings

<ul class="slides">

 {% for i in (1..3) %}

 {% capture setting_slide_show %}show_slide_{{i}}{% endcapture %}

 {% capture setting_slide_image %}image_slide_{{i}}.png{% endcapture %}

 {% capture setting_slide_title %}caption_slide_{{i}}{% endcapture %}

 {% if settings[setting_slide_show] %}

 {{ settings[setting_slide_title] | escape }}

 {% endif %}

 {% endfor %}

Not only is this code shorter to write, it’s easy to scale when you want to add more

than three slides. It also means that you need to update the HTML rendered for each

slide in only one place.

CHAPTER 8  THEME SETTINGS AND GOING GLOBAL

154

�Using Settings with Preprocessed Files

If you have JavaScript or stylesheet files in your assets directory, Shopify will run them

through the Liquid parser before serving them if they have a .liquid extension at the

end of their filename, as shown in Listing 8-5.

Listing 8-5.  Theme Settings Inside an asset Field

/* assets/styles.css.liquid */

body {

 background-color: {{ settings.body_background_color }};

}

This is fine when you’re working with simple resources directly in the assets

directory, but often you’ll want to do some preprocessing (such as LESS/SCSS

compilation, or JavaScript concatenation and minification) before the final file is added

to assets. In those situations, you need to worry about how your preprocessor will

interact with the Liquid syntax you have in your asset files.

To work around these limitations, you’ll need to either extract your settings-

controllable style or JavaScript settings into your main Liquid templates, or write your

SCSS and JavaScript in a way that passes the muster of any preprocessing tools and

Liquid. Stewart Knapman of Lucid Design breaks down the problem for SCSS files in

his post “Escaping Liquid in SCSS”2 and provides some example workarounds such as

Listing 8-6.

Listing 8-6.  Adding Settings-Driven Conditional Liquid Logic to a Stylesheet Asset

/* assets/styles.scss.liquid */

body {

 /* {% if settings.background-image %} */

 �background: url(#{'{{ settings.background-image | asset_url }}'})

center no-repeat;

 /* {% else %} */

 background: whitesmoke;

 /* {% endif %} */

}

2 https://github.com/luciddesign/bootstrapify/wiki/Escaping-liquid-in-SASS.

CHAPTER 8  THEME SETTINGS AND GOING GLOBAL

https://github.com/luciddesign/bootstrapify/wiki/Escaping-liquid-in-SASS

155

The approach Stewart outlines here—wrapping Liquid in comments—is generally

applicable to other forms of preprocessing such as Less and JavaScript.

Note  SVG files in the assets directory with a .liquid extension will also be
processed by Liquid and can therefore use theme settings.

�The Default Filter

When your theme is installed for the first time, it’s possible that several of your settings

won’t have initial values. To handle those cases, it’s a good idea to use a default value in

your Liquid templates to prevent generating invalid HTML or CSS. For example, if you

make your body background color a theme setting, you might do something like Listing 8-7.

Note that you can also specify default values for settings inside your settings_

schema.json—e.g., with default: 'white'. In general, I recommend setting a default in

both places to avoid edge cases where no value is set.

Listing 8-7.  Example Usage of the Default Filter

/* assets/styles.css.liquid */

body {

 background-color: {{ settings.body_background_color | default: 'white' }};

}

�Going Global
To say that Ecommerce is a global affair is stating the obvious, but I have a word count

to reach so I’ll state it anyway. For theme developers, this means that our work needs to

have out-of-the-box support for a variety of different regions, languages, and currencies.

CHAPTER 8  THEME SETTINGS AND GOING GLOBAL

156

�The Difference Between i18n and l16n
Do you know how long it took me to realize that “i18n” was an abbreviation (technically,

a numeronym) for internationalization? Well, I won’t tell you exactly, because

it’s embarrassing. Suffice to say it was a little while in to my professional software

development career before I started digging in to how to make the software and web sites

I was building accessible to folks without English as a first language.

So, as a quick refresher:

•	 i18n is shorthand for internationalization (there are 18 abbreviated

letters, hence the 18) and refers to the process of making software

(including web sites) capable of supporting multiple locales.

•	 l16n is shorthand for localization and refers to the actual

implementation of a locale in to a software product that supports i18n.

For clarity, in the context of Shopify themes:

•	 i18n is the process of making your theme support multiple locales

using the | t translation filter.

•	 l16n is the process of creating a specific language translation

(e.g., Swedish) for your theme.

�Locales, Not Languages

You might have noticed that I’ve used the term “locale” instead of “language” in

this section. This is because while language is probably the most important part of

localization, it’s not the whole story. While two locales may share a language, they may

use different date/time formats, currencies, number formats, systems of measurement

and temperature, and phone/address formats.

Most of the focus in this lesson is on language and currencies, but it’s good to be

aware of these other potential differences between the locales you’re dealing with.

�Why Localization Matters
At the end of the day, there’s no point talking about i18n if it doesn’t deliver any real value

to clients or customers. This section contains a list of some reasons storeowners may be

looking to expand into new regions, demanding a new localized version of their theme.

CHAPTER 8  THEME SETTINGS AND GOING GLOBAL

157

�Acquisition

Have a localized site can open a store up to traffic from new places. Not only will

Google find and add a site’s content and product pages to a localized search index, but

customers are much more likely to share content from a site if it’s in a language their

network understands and uses.

�Conversion

Making customers have to think when completing tasks is a sure-fire way to kill

conversions—and figuring out how to get to the checkout in your second or third

language counts as thinking. This is true even when there’s a high degree of second-

language fluency (for example, Scandinavians navigating English-language stores).

�Required by Higher Authority

In some situations, clients may just need to offer their store in multiple languages.

This could be a legal obligation (e.g., government bodies needing to offer services and

products in both English and French), or simply be a hard requirement from another

branch of their organization.

�Empirical Demand

If you’re still not convinced on this, I refer you to an eight-year-old thread on the Shopify

forums, in which storeowners and theme designers have been arguing the case for i18n

support in Shopify since time immemorial.3

People are keen for i18n support!

If you’re looking to sell your theme, rather than develop one on behalf of a client,

having a solid i18n approach can also be a great selling point. (If you’re planning on

selling your theme in Shopify’s official theme store, it’s mandatory.)

Showing that your theme can be adapted to multiple languages will give potential

purchasers a lot of confidence that you’ve thought these things through, even if you don’t

have a translation for the specific language(s) they’re planning on working in. Going the

extra mile and getting the base of your theme translated into some common languages

3 https://ecommerce.shopify.com/c/shopify-discussion/t/definitively-time-for-multi-
language-support-19980.

CHAPTER 8  THEME SETTINGS AND GOING GLOBAL

https://ecommerce.shopify.com/c/shopify-discussion/t/definitively-time-for-multi-language-support-19980
https://ecommerce.shopify.com/c/shopify-discussion/t/definitively-time-for-multi-language-support-19980

158

in your target market (Spanish in the United States or French in Canada, for example)

can also make your theme stand out from the rest.

�Go Hard or Go Home
When it comes to i18n, a half-assed attempt is much worse than no attempt. Plugging

your theme content into Google Translate and copying and pasting the output is not

going to lead to good results.

Think about any sites you’ve seen around the web with poor translations in to your

native language—how much did you trust them? Would you buy something from them?

It’s much better to have a theme with a single language done well than three

languages that obviously had Google Translate as the author. Get a native speaker

to provide your translations, whether it’s someone you know and trust or by using

a trustworthy translation service, or leave i18n until you have the resources to do it

properly.

This is good advice to give to clients you’re working with that are thinking about

multi-lingual support as well.

�Limitations of Shopify Themes
Now that you’re on board with this whole i18n thing and raring to get started building it

in to your theme, let me deflate you a little.

There are, unfortunately, some significant limitations when dealing with

internationalization on Shopify. In more recent times, Shopify has started to address

these issues (the newer i18n theme features we’ll be using shortly being a great

example), but it’s important to know there are still some hard restrictions.

These are:

•	 Storeowners can only set one locale at a time for any one store.

•	 Storeowners can only set one checkout currency at a time for any one

Shopify store.

What this means is that even if you put in the work to support multiple locales

in your theme, storeowners can only choose one locale to present to customers at

any one time. There’s no built-in way to give your customers a choice of language, or

automatically present a translation based on a visitor’s browser locale.

CHAPTER 8  THEME SETTINGS AND GOING GLOBAL

159

There is also no way to allow customers to pay in any currency other than the one

selected by the storeowner in the store admin.

While these limitations can be irritating, in the remainder of this lesson, we’re going

to see what we can do within these constraints. I’ve consciously left any discussion of

Shopify applications that provide translation features out of this discussion. It’s good to

be aware of them, but ultimately installed custom applications go beyond the remit of a

theme designer in most cases.

�Making Themes Translatable
The process of ensuring your themes are translatable is very straightforward—it’s just

a matter of ensuring that all user-facing text content in your Liquid files is mapped to a

“translation key” and then passed through the translation filter | t.

As a practical example, we can see how a link to the checkout would look in Liquid

before internationalization (see Listing 8-8) and afterwards (see Listing 8-9).

Listing 8-8.  A Checkout Link Pre-Internationalization

...

 Checkout Now

...

Listing 8-9.  The Checkout Link from Listing 8-8, Internationalized

...

 {{ 'cart.links.checkout_now_text' | t }}

...

The cart.links.checkout_now_text string is a translation key that identifies a

particular section of the current locale file. Locale files are stored as JSON-formatted

files in the locales directory in your theme, with one file present for each language your

theme supports.

CHAPTER 8  THEME SETTINGS AND GOING GLOBAL

160

For a full account of the structure of translation keys, naming conventions for

locale files, and some of the more advanced translation features like interpolation and

pluralization, refer to the detailed Shopify translation docs at https://help.shopify.

com/themes/development/internationalizing.

�Don’t Forget JavaScript!

If your JavaScript files generate user-facing text like error or flash messages, you’ll need

to make sure they’re translatable as well.

Translation keys inside your JavaScript files should end with _html (this tells

Shopify not to escape their contents) and be passed through the json filter, as shown in

Listing 8-10.

Listing 8-10.  Translation Filters in JavaScript

// assets/alerts.js.liquid

function outOfStockError() {

 alert({{ 'cart.messages.out_of_stock_message_html' | t | json }});

}

�Presenting Customers with Multiple Currencies
As mentioned in the beginning of this section, storeowners can only select a single

currency for use at checkout. This can obviously be an issue for stores selling to an

international audience, but theme developers can mitigate the problem somewhat by

building multiple currency display support into their themes.

This solution won’t affect the currency that’s used at checkout, but it does allow

customers to get their heads around exactly how much the products cost in their own

currency. The gist of the most commonly used approach to this is:

	 1.	 Ensure the HTML for any elements displaying price information

in your Liquid files are marked up with a special data- attribute.

	 2.	 Use a file named currencies.js (provided by Shopify) to obtain a

list of current foreign exchange rates.

	 3.	 Add a dropdown input with a list of supported currencies to allow

the users to select their preferred currency.

CHAPTER 8  THEME SETTINGS AND GOING GLOBAL

https://help.shopify.com/themes/development/internationalizing
https://help.shopify.com/themes/development/internationalizing

161

	 4.	 When the dropdown is changed, find all specially-marked-up

elements and use the exchange rate information to convert to the

given currency.

	 5.	 Use a cookie to store the user’s preferred currency for the future.

The specific code used to implement this pattern on your exercise store is shown in

the code resources for this book. If you’re using this technique, you should make sure

that you explain to customers that they’ll be charged in the store’s currency at checkout

even if they’ve selected a different currency.

�Summary
This chapter discussed the different use cases for Shopify themes (one-off, multi-use,

and distributed) and the types of theme settings you might want to use for each. We

covered the practical implementation of theme settings and discussed some best

practices to make sure your settings are easy to use for merchants.

Finally, the chapter covered Shopify’s built-in support for internationalization and

translation. You learned how to implement translation in Liquid templates and learned

about some of Shopify’s limitations in this area.

CHAPTER 8  THEME SETTINGS AND GOING GLOBAL

163
© Gavin Ballard 2017
G. Ballard, The Definitive Guide to Shopify Themes, DOI 10.1007/978-1-4842-2641-4_9

CHAPTER 9

SEO and Social Sharing
Ever known a client that wanted less traffic to their web site?

Me neither.

Traffic is the lifeblood of any online store, and while it can vary greatly in quality,

when it comes to quantity, bigger is usually better. The difficult part, of course, is getting

that traffic in the first place.

Every day, Shopify storeowners experiment with hundreds of different marketing

channels and tactics, trying to bring more paying customers to their sites. Covering even

a fraction of these strategies is well beyond the scope of this book.

Instead, this chapter focuses on the specific things you can do as a Shopify theme

developer to make sure that your themes offer the best possible starting point for

merchants looking to market and grow their brands. This chapter covers a checklist

of “on-page” best practices, discusses ways to provide search engines with structured

information about a Shopify store, and finally looks at what we can do to promote the

sharing of store content via social channels.

�Search Engine Optimization (SEO)
Driving quality traffic to a web site is a tricky, confusing, and time-consuming

business—a fact that the huge, complex, and often slimy Search Engine Optimization

(SEO) and online marketing industry depends on. The amount of misinformation and

scammy business practices prevalent in the industry has often trained clients to treat

“SEO” as a magical black box they pour money into on one end and get traffic out of from

the other.

The good news is that as search engines have gotten smarter and less susceptible

to sketchy practices and “gaming”, sites are being better rewarded for the “right things,”

like providing better experiences for their visitors. In my opinion, this makes the job of

164

a theme developer straightforward when it comes to SEO—follow best practices when

structuring your site, make sure search engines can read and understand your pages, and

above all, make sure the site is accessible and usable for the human beings interacting

with it.

�Off-Page versus On-Page
Broadly speaking, the myriad of SEO strategies, tricks, and techniques can be categorized

into two main groups:

•	 On-page methods are implemented directly in a web site’s code to

aid in increasing traffic and click-through rates. Examples of on-page

methods include ensuring pages have a sensible HTML structure,

adding appropriate metadata, and making sure the site is fast.

•	 Off-Page methods cover everything else you might use to get someone

looking at your site: e-mail marketing, pay-per-click ads, social

sharing, or advertising on the side of the Goodyear blimp.

When we’re wearing our Shopify theme developer hats, we are focused on the

on-page category, as it’s the only one we have direct control over. Off-page methods

are just as important to merchant success, but could (and do) take an entire book to

describe. If you’re interested in learning more, I can highly recommend Moz.com, which

provides a wealth of free and paid SEO resources. Their material is not only well written,

detailed, and up to date, but honest and absent that slimy feeling you can get elsewhere

in the SEO world.

The primary on-page methods covered in this chapter and elsewhere in this book are:

•	 Semantic HTML

•	 Keywords and content

•	 Structured data

•	 Performance (see Chapter 10)

•	 Layout and navigation design (see Chapter 4)

CHAPTER 9  SEO AND SOCIAL SHARING

http://dx.doi.org/10.1007/978-1-4842-2641-4_10
http://dx.doi.org/10.1007/978-1-4842-2641-4_4

165

�Semantic HTML
The word “semantic” here just means, “use the various types of HTML tags for the

purpose they were intended.” This helps search engines (as well as accessibility tools

like screen readers) make sense of the information on your pages and display the right

information to users.

•	 Title tags (<h1>, <h2>, <h3>, etc.) should be used in order of

importance, with the text content most relevant to the page

appearing inside a <h1>, with subheadings appearing inside a <h2>,

and so on. Titles should be under 70 characters long and unique to

each page.

•	 Use HTML5 elements like <nav>, <main>, and <article> to help

indicate the role of the elements on your page.

•	 Ensure each page renders a unique meta description (the content

inside a <meta name="description"> tag in your site’s <head>).

•	 Make sure all images have defined an alt="Image description"

attribute so that image-based search engines can index and display

them for relevant search terms.

Shopify won’t automatically validate your theme’s HTML for you, so make sure

you run the key pages in your theme through a HTML validation tool (like https://

validator.w3.org) as part of your quality assurance process.

�Keywords and Content
In the early days of the web, search engines could be “gamed” quite easily. Relevance for

certain phrases was determine by how often particular words appeared, meaning you’d

end up with pages practicing “keyword stuffing,” as shown in Figure 9-1.

CHAPTER 9  SEO AND SOCIAL SHARING

https://validator.w3.org
https://validator.w3.org

166

�Keyword Analysis

Fortunately, keyword stuffing tactics no longer work as search engines have gotten wise

to them, but that doesn’t mean that keyword analysis and research isn’t important.

Search engines aren’t mind readers, so they do require indications on which words

and phrases are most relevant to each page. Understanding the words and phrases

customers are using when looking for a merchant’s products is important in determining

the priority your theme should give to different elements on a page. Ask questions like:

•	 Are customers likely to use brand or vendor names in their searches

(“nike air pressure” versus “pumps”)?

•	 Do customers search for products using a standardized part or model

number (such as “MS2846728”)?

•	 Are product variations like size or color incidental to the product, or a

defining feature (“apple watch” versus “gold apple watch”)?

�Duplicate Content

One thing that often trips up Ecommerce stores are “duplicate content” issues. Because

many stores resell the products of others, merchants can be tempted to copy and paste

the description of their products from the site of a supplier or competitor. This should be

strongly discouraged, as search engines will pick up on this and treat your product pages

as having much lower relevance in product searches.

Another issue unique to Shopify sites is that a single product can appear at multiple

URLs (it appears at its “root URL” of https://example.myshopify.com/products/

product-name but also https://example.myshopify.com/collections/widgets/

product-name, https://example.myhopify.com/collections/under-50-dollars/

product-name, once for each collection it appears in).

Figure 9-1.  Where are these guys located again?

CHAPTER 9  SEO AND SOCIAL SHARING

https://example.myshopify.com/
https://www.store.com/products/product-name
https://www.store.com/products/product-name
https://example.myshopify.com/collections/widgets/product-name
https://example.myshopify.com/collections/widgets/product-name
https://example.myhopify.com/collections/under-50-dollars/product-name
https://example.myhopify.com/collections/under-50-dollars/product-name

167

Fortunately, all that’s required to alleviate this is to make sure that your theme layout

includes a canonical URL reference at the top of the page, like this:

<link rel="canonical" href="{{ canonical_url }}" />

�Structured Data
If you spend the time to make your site easy for humans to use and follow the standard

conventions laid down in the HTML5 specification, automated systems like search

engines and social networks will be able to do a pretty good job of understanding your

pages as well.

However, there are things you can do to make it even easier for machines to

understand the information on your site and provide hints on how that information

could be presented to users most effectively.

One of the ways to do this is using one of many different types of structured data,

which provide information in a standard, machine-readable format. This chapter

focuses on the two types of structured data most relevant to Ecommerce stores:

•	 Schema.org markup, which allows Google and other search engines

to read and present price, availability, review, and condition product

information. It’s also used for a few inventory feed applications such

as Google Shopping.

•	 Social Media markup, which is used by social networks such as

Facebook, Twitter, and Pinterest when determining how to present

pages on your site that have been shared.

�The Schema.org Vocabulary

The Schema.org vocabulary is an open effort to provide a standardized way of describing

“things” on the web. It includes a hierarchical definition of a wide range of objects and

their attributes, from TVSeasons to RentalCarReservations. Most relevant to Shopify

stores, it allows the specification of information about each Product available for sale on

a site (along with information about the Organization that sells them and any Articles

that may appear on a site blog).

Readable by all major search engines and many other automated systems,

Schema.org markup is what drives the “rich” information that I’m sure you’ve seen in

various search results, such as in Figure 9-2.

CHAPTER 9  SEO AND SOCIAL SHARING

168

�Microdata

Historically, Schema.org markup was provided through a system called Microdata. This

involved the addition of special attributes and properties within a site’s HTML elements

that corresponded with the relevant data. To see how this process works, compare

Listing 9-1 (without Microdata markup) to Listing 9-2 (with Microdata markup).

Listing 9-1.  Example Product Liquid Template Without Microdata Markup

<section id="product">

 <h1>{{ product.title | escape }}</h1>

 <div id="price">{{ product.price | money }}</div>

 <div id="description">{{ product.description }}</div>

 <ul id="images">

 {% for image in product.images %}

 {% endfor %}

</section>

Figure 9-2.  Product “rich snippets” in Google search results. Amazon’s result not
only includes price and stock information but aggregate review information as well

CHAPTER 9  SEO AND SOCIAL SHARING

169

Listing 9-2.  Same Example Product Liquid Template with Microdata Markup

<section id="product" itemscope itemtype="http://schema.org/Product">

 <h1 itemprop="name">{{ product.title | escape }}</h1>

 �<div id="price" itemprop="offers" itemscope itemtype="http://schema.

org/Offer">

 {{ product.price | money }}

 <meta itemprop="priceCurrency" content="{{ shop.currency }}" />

 �<meta itemprop="availability" content="http://schema.org/{% if

product.available %}InStock{% else %}OutOfStock{% endif %}" />

 </div>

 �<div id="description" itemprop="description">{{ product.description }}

</div>

 <ul id="images">

 {% for image in product.images %}

 �<img src="{{ image | img_url: '100x100' }}"

itemprop="image" />

 {% endfor %}

</section>

While widely supported, Microdata posed a few problems for web developers.

Having to add these additional attributes throughout existing HTML markup added

visual complexity to source code. Shopify developers could have the Microdata markup

for a single product entity spread over several templates and Liquid snippets, making it

hard to keep track of and maintain.

On top of that, the addition of Microdata imposed a tight coupling between the

structure of a page’s HTML and the relevant Schema.org data model, reducing flexibility

and often forcing developers to add meaningless HTML elements to their page just to

please the Schema.org nesting structure.

CHAPTER 9  SEO AND SOCIAL SHARING

170

�Enter JSON-LD

The limitations of Microdata have now been addressed thanks to JSON-LD (JSON for

Linking Data—http://json-ld.org).

JSON-LD decouples information about an entity from its HTML representation

and allows it to be specified in a single location on a HTML page, making it the

recommended way for Shopify themes to provide Schema.org structured data. It’s added

to a page as a simple JSON object inside a <script> tag, as shown in Listing 9-3.

Listing 9-3.  Simple JSON-LD Example

{

 "@context": "http://json-ld.org/contexts/person.jsonld",

 "@id": "http://dbpedia.org/resource/John_Lennon",

 "name": "John Lennon",

 "born": "1940-9-09",

 "spouse": "http://dbpedia.org/resource/Cynthia_Lennon"

}

For Shopify themes, my usual approach is to create a single json-ld.liquid snippet

that contains conditional logic to display the appropriate structured data for the current

page and include that inside the <head> of my theme’s layout file.

For space reasons, I’ve skipped providing a Liquid JSON-LD example here, but the

full snippet I use in most of my themes is available in this book’s downloadable resources.

Look for it at code/snippets/json-ld.liquid. It not only includes a good starting point

for JSON-LD product markup, but also for the store entity itself and any blog articles.

Tip  While Shopify makes a lot of the product information you’d want to mark up
with JSON-LD available in Liquid templates (such as title, price, and availability
information), some attributes such as item condition or manufacturer URL don’t
have corresponding fields in the Shopify admin and, as such, aren’t available in a
standardized manner.

CHAPTER 9  SEO AND SOCIAL SHARING

http://json-ld.org

171

If you’d like to include this information on your Shopify store, a good approach is to
use product and variant metafields to store that information and make it available
to your JSON-LD Liquid snippet (see Chapter 5 for details on metafield use). The
example JSON-LD snippet provided in the resources includes a demonstration of this.

One final thing to note about JSON-LD is that there are some types of Schema.org

information that aren’t yet supported. One example of this is the Breadcrumb entity,

commonly present in the HTML of a site’s navbar. If you want structured data bots to

understand these navigational hints, you have to use the Microdata approach and add

those attributes directly to the relevant HTML elements. This can be done in conjunction

with JSON-LD on the page, so you only need to mark up the unsupported elements.

�Social Sharing
In addition to Microdata, there are a couple of other markup schemas that can be used

to provide further information to particular sites, specifically social media platforms.

The two main ones covered here are the Open Graph Protocol (developed and used

by Facebook and now used by Pinterest for their Rich Pins feature) and Twitter Card

Markup.

The benefits of adding support for these markup schemas is that these and other

social networks can understand more about a store’s products and pages, leading to a

“richer” sharing experience.

�Open Graph Markup
Open Graph markup is simply a series of <meta> tags added inside the <head> section of

your theme. The information you add through these tags is used by Facebook to generate

the image and description of pages when they’re getting shared.

These tags are also used by Pinterest’s Rich Pins feature, which provides price and

availability information so that users can purchase products from a Shopify store directly

from Pinterest.

CHAPTER 9  SEO AND SOCIAL SHARING

http://dx.doi.org/10.1007/978-1-4842-2641-4_5

172

�Adding Open Graph Markup

For Shopify themes, we’re primarily concerned with adding Open Graph information to

our product pages and (if we have a blog) our article pages. These are the pages that we

want to make sure Facebook and Pinterest can extract plenty of information from.

As with JSON-LD markup, I typically use a Liquid snippet to handle Open Graph

markup, then include that snippet in the <head> portion of my layout file, something

like Listings 9-4 and 9-5. In Listing 9-4, note the prefix attribute on the <html> element,

which is required to indicate we’re using the Open Graph schema. For the sake of

brevity, I’ve cut out the Open Graph markup for the article templates in the logic block in

Listing 9-5. The file in the resources section bundled with the course has the full code for

that section.

Listing 9-4.  Example layout/theme.liquid

<html lang="en" prefix="og: http://ogp.me/ns#">

 <head>

 <!-- ... standard <meta> tags, stylesheet includes ... -->

 <!-- Include Open Graph Snippet -->

 {% include 'head-open-graph' %}

 </head>

Listing 9-5.  Example snippets/open-graph.liquid Code

<!-- This first tag first tag should be present on all pages. -->

<meta property="og:site_name" content="{{ shop.name | escape }}" />

<!-- Now we check to see if we're on a product page, and add product-

specific open graph tags if so. -->

{% if template contains 'product' %}

 �<!-- Describe the basic properties of the product in the Open Graph

schema. -->

 <meta property="og:type" content="product" />

 <meta property="og:title" content="{{ product.title | escape }}" />

 �<meta property="og:description" content="{{ product.description |

strip_html | truncatewords: 100, '' | escape }}" />

 <meta property="og:url" content="{{ canonical_url }}" />

CHAPTER 9  SEO AND SOCIAL SHARING

173

 �<!-- Describe the product images. Use to avoid Facebook just using the

first image it finds on the page when sharing. -->

 {% for image in product.images limit:6 %}

 �<meta property="og:image" content="http:{{ image | product_img_url:

'grande' }}" />

 {% endfor %}

 �<!-- Provide price & availability information, which at the moment is

just used by Pinterest rich pins. -->

 �<meta property="og:price:amount" content="{{ product.price | money_

without_currency }}" />

 <meta property="og:price:currency" content="{{ shop.currency }}" />

 �{% if product.compare_at_price_max %}

 �<meta property="og:price:standard_amount" content="{{ product.compare_at_

price_max | money_without_currency }}" />

 {% endif %}

 �<meta property="og:availability" content="{% if product.available %}

instock{% else %}{% endif %}" />

{% elsif template contains 'article' %}

 <!-- Open graph markup for articles would go here. -->

{% endif %}

�Testing Open Graph Markup

Checking that your Open Graph markup is working properly is easy with Facebook’s

Open Graph debugging tool (https://developers.facebook.com/tools/debug). You

just need to enter the URL of the page you’d like to test and click Debug to get a report on

the information Facebook could extract.

Note  The Open Graph debugging tool won’t work if the store you’re developing
on is password protected! This is because Facebook needs to be able to request
the page in order to read your Open Graph markup.

It’s also worth checking how things look when you start the sharing process on

Facebook or Pinterest, as shown in Figure 9-3.

CHAPTER 9  SEO AND SOCIAL SHARING

https://developers.facebook.com/tools/debug

174

Doing this final test will let you see exactly what others will see when your products

or articles are shared, including how images are retrieved and cropped, and any text

information that’s being truncated.

It’s important to note that Facebook often caches Open Graph information, so if

you’re seeing incorrect or stale data, use the debugging tool to fetch the URL in question

and then click the Fetch New Scrape Information button to force a refresh.

�Twitter Card Markup
Twitter Card markup provides a similar function to Open Graph markup, in that it allows

Twitter to display “richer” information when pages from a store are being shared. The

process to add the markup itself is pretty much identical to that used for Open Graph

data, with just a couple of additional steps to test and validate the result.

Note  A Twitter account is required to add Twitter Card support to your Shopify
themes.

Figure 9-3.  The correct image and description has been extracted from Open
Graph tags

CHAPTER 9  SEO AND SOCIAL SHARING

175

�Adding Twitter Card Markup

First, we need to add the required markup, which like Open Graph markup, takes the

form of a series of <meta> tags inside the <head>. Again, I tend to use a Liquid snippet to

keep my Twitter card markup separate, as per Listings 9-6 and 9-7. Again, for the sake of

brevity, the code-handling article templates in Listing 9-7 are omitted and viewable in

full in the book’s resources section.

Listing 9-6.  Example layout/theme.liquid, with the Twitter Card Markup Snippet

Being Included

<html lang="en" prefix="og: http://ogp.me/ns#">

 <head>

 <!-- ... standard <meta> tags, stylesheet includes ... -->

 <!-- Include Open Graph Snippet -->

 {% include 'head-open-graph' %}

 <!-- Include Twitter Cards Snippet -->

 {% include 'head-twitter-cards' %}

 </head>

Listing 9-7.  Example snippets/twitter-card.liquid

{% if template contains 'product' %}

 <meta name="twitter:card" content="product" />

 <meta name="twitter:title" content="{{ product.title | escape }}" />

 �<meta name="twitter:description" content="{{ product.description | strip_

html | strip_newlines | truncatewords: 60, '' | escape }}" />

 �<meta name="twitter:image" content="http:{{ product.featured_image.src |

product_img_url: 'grande' }}" />

 <meta name="twitter:label1" content="Price" />

 �<meta name="twitter:data1" content="{% if product.price_varies %}From {%

endif %}{{ product.price | money_with_currency | strip_html }}" />

 {% if product.vendor == blank %}

 <meta name="twitter:label2" content="Availability" />

 <meta name="twitter:data2" content="In stock" />

 {% else %}

CHAPTER 9  SEO AND SOCIAL SHARING

176

 <meta name="twitter:label2" content="Brand" />

 <meta name="twitter:data2" content="{{ product.vendor | escape }}" />

 {% endif %}

{% elsif template contains 'article' %}

 <!-- Twitter card markup for articles would go here. -->

{% endif %}

�Validating Twitter Card Markup

Unlike Open Graph markup, you need to "validate" your new markup before Twitter will

use it.

To do that, simply head to Twitter’s Card Validator at https://cards-dev.twitter.

com/validator (you’ll need to be logged in to Twitter). Select Product from the Card

Catalog, then select the Validate & Apply tab and enter the URL of any of the product

pages on your site.

Click Go and you should see confirmation that your card markup has been validated,

along with a preview of what it will look like when someone shares a product from your

theme, as shown in Figure 9-4.

Figure 9-4.  The Twitter Card validator will show you a preview based on
extracted data

CHAPTER 9  SEO AND SOCIAL SHARING

https://cards-dev.twitter.com/validator
https://cards-dev.twitter.com/validator

177

�Caring about Sharing
Once you’ve gone to the effort of setting up this markup, you’re going to want to take

advantage of it by encouraging visitors to your site to share your products and content

pages.

�Deciding Which Share Options to Support

First, you should recognize that “the more the merrier” isn’t a great catchphrase when

it comes to sharing widgets. Instead, sites tend to do better with social traffic when they

focus on a few key social networks, rather than slapping a barrage of icons on their

product pages (see Figure 9-5).

Figure 9-5.  Scattergun approaches to sharing like this are rarely effective or
engaged with by users

Users are easily overwhelmed by choice, so making that choice simpler (“Do I share

to Facebook or Twitter?”) makes it more likely they’ll take one of these actions instead

of giving up entirely. Putting the focus on two or three networks also makes it easier for

the storeowner to manage and engage people on those networks while running the store

without being spread too thin.

CHAPTER 9  SEO AND SOCIAL SHARING

178

If you’re working with a specific client, a conversation with them should help you

both work out which networks are going to be the most beneficial for them.1 More

niche or geographically-specific platforms might be important too, depending on the

context.

If you’re building a theme to be used by many different stores, then you should add

support for all the major social networks and allow storeowners to toggle them on and

off in the theme’s settings page (refer to Chapter 8 on theme setting customization).

Regardless of which networks you choose to focus on, I strongly recommend giving

users an easy way to share your pages via email. While not everyone may be accustomed

to the social networks you’re using, email is ubiquitous, and is the most common way of

sharing a product with a specific person. Adding email sharing support can be as simple

as adding a mailto: link with a blank recipient and a short pre-populated subject and

body, letting the users send a message through their own mail clients.

�Integrating Sharing

All major social networks allow you to integrate sharing buttons very easily, often

through a small JavaScript snippet. However, there are two major issues with using these

default buttons:

•	 They’re unlikely to match the design aesthetic of your theme

•	 They often come with a performance overhead and can slow down

your site

The first can be an issue if the mismatch between the buttons and the rest of your

page ends up drawing focus away from the primary piece of content on the page. The

second is a usability issue, especially on mobile devices, where adding four or five scripts

(which in turn often load additional scripts) kills performance.

Fortunately, the solution to both problems is quite simple! All social networks allow

users to trigger a share action through a simple link, which you can of

course style however you like (see Figure 9-6 for example of how this has been done in

Shopify’s Pop theme).

1Kevan Lee’s epic blog post called “How to Choose the Right Social Network for Your
Business” provides some excellent guidance on this: https://blog.bufferapp.com/
how-to-choose-a-social-network.

CHAPTER 9  SEO AND SOCIAL SHARING

http://dx.doi.org/10.1007/978-1-4842-2641-4_8
https://blog.bufferapp.com/how-to-choose-a-social-network
https://blog.bufferapp.com/how-to-choose-a-social-network

179

Building up the URL for the href attribute for use on the different social networks

can be a little tricky. Here’s an example of how I’d do it in Liquid for a Twitter share link:

<a href="http://twitter.com/share?text={{ page.title | url_param_escape

}}&url={{ canonical_url | url_param_escape }}" target="_blank">

 Tweet this!

Twitter’s a pretty simple use case, as it only requires us to pass the text and URL

parameters. Some networks, like LinkedIn, expect more parameters.

The code/snippets/social-share.liquid example in the resources bundled with

the book includes a pattern for share links that handles multiple social networks, as well

as adapting to the type of page (product, article, or content page) it’s being used on,

which you’re welcome to repurpose for your own themes.

Figure 9-6.  Sharing triggers in the Pop theme have been restyled as simple links
that match the aesthetic

CHAPTER 9  SEO AND SOCIAL SHARING

180

EXERCISE: SEO AND SOCIAL SHARING

Following each section in this chapter, walk through your exercise theme and ensure that it

conforms to SEO best practices and that it’s configured for social sharing.

Some of the things you should check are:

•	 Every page has an <h1> header and a meta description.

•	 Your theme.liquid defines a canonical URL for every page, using the Liquid

{{ canonical_url }} tag.

•	 All images define appropriate alt attributes.

•	 Schema.org markup is provided on index, product, and articles pages, either

through Microdata or JSON-LD.

•	 Product and article pages define Open Graph and Twitter Card markup.

•	 Products are easily shareable via on-page links.

Feel free to use the JSON-LD, Open Graph, Twitter Card, and Social Sharing snippets provided

in the downloadable resources to achieve this. Just make sure you take a couple of minutes to

walk through the code so that you’re clear about what each snippet is doing.

�Summary
This chapter discussed the difference between on-page and off-page SEO. It then

focused on techniques for improving on-page SEO in your themes, as they are the

elements most commonly under our control as designers and developers.

The chapter also looked at ways to help customers share content from themes and

looked at which sharing mechanisms it makes sense for your theme to support.

CHAPTER 9  SEO AND SOCIAL SHARING

181
© Gavin Ballard 2017
G. Ballard, The Definitive Guide to Shopify Themes, DOI 10.1007/978-1-4842-2641-4_10

CHAPTER 10

Performance
This chapter explains theme performance—why it’s important, how to measure it, and

how to improve it. It discussed techniques that we can use to both reduce initial load

times and improve the perceived responsiveness of a Shopify storefront.

While it pays dividends to be thinking about these ideas from day one of your theme

design, the techniques discussed here are equally useful for existing themes that need

some fat trimmed.

�Why Performance Matters
Way, way back in the olden days of the web (2009), Eric Schurman at Bing and Jake

Brutlag at Google ran a series of experiments to see how their users responded to

controlled increases in server response time.1

The results were compelling: in Google’s case, an added delay of less than half a

second led to a 0.6% drop in user engagement. Bing went even further and subjected

their test users to a full two-second delay and saw engagement (and revenue per user)

drop by over 4%. Their conclusion was that the phrase “speed matters” is not just lip

service, and that “delays of under half a second impact business metrics.”

This performance impact isn’t something that’s just confined to lab experiments,

either:

•	 Mozilla shaved 2.2 seconds from their page load time and downloads

increased by 15.4%.

•	 Barack Obama’s campaign sped up their site by 60% and donations

increased by 14%.

1 Their report, delivered at the 2009 Velocity conference, can be found at http://velocityconf.
com/velocity2009/public/schedule/detail/8523.

http://velocityconf.com/velocity2009/public/schedule/detail/8523
http://velocityconf.com/velocity2009/public/schedule/detail/8523

182

In the context of Ecommerce today, I feel that site performance is more important

than ever. As more and more businesses move to the web, consumers have more

choices on where to spend their money online, and their patience for less-than-optimal

purchasing experiences decreases.

Consumers are expecting a faster web. Businesses succeed with a faster web.

—Steve Souders, “How Fast Are We Going Now?”2

It can be tempting to dismiss this type of performance concern by pointing to

devices that are becoming more and more powerful and Internet connections that are

offering more and more bandwidth. I think this is dangerous thinking, for a couple of

reasons:

•	 Since 2014, the majority of traffic to Shopify stores has been on

mobile devices, where processing power isn’t as prevalent and 3G

(or slower) connections are spotty.

•	 There’s a great deal of growth in Ecommerce in developing markets

where the demand for online sales is high but Internet connections

are often lagging.

•	 Even in developed countries, it’s common to be shopping online with

a poor network connection (I’m writing this sentence right now in a

Swedish café with pretty lackluster WiFi).

•	 With the rise of the Internet of things, the number of Internet-capable

but low-power devices (think TVs or fridges) that customers could be

loading your sites on is increasing.

Moreover, ourselves yourself of responsibility for the performance of our

Shopify themes in the first place makes it easy for our work to snowball into bloated

monstrosities of sites.

2 http://www.stevesouders.com/blog/2013/05/09/how-fast-are-we-going-now/.

CHAPTER 10  PERFORMANCE

http://www.stevesouders.com/blog/2013/05/09/how-fast-are-we-going-now/

183

�Why Performance Gets Ignored
If you’re doing conversion rate optimization for a client and get a lift of 1%, that’s a huge

win. You’ll be popping champagne and discussing what the business is going to be doing

with the tens of thousands of dollars you just made them (hopefully cutting you a bonus

check, but that’s wishful thinking).

So, considering that a poorly performing web site can have a negative impact on

conversion well in excess of that 1%, you’d image that performance optimization is high

on the list of priorities for theme developers, right?

Nope.

While some sites running on Shopify do take performance seriously, the vast

majority of them are grossly unoptimized—they have huge images, lots of HTTP

requests, and poorly structured pages.

When I started work on my own theme framework for Shopify, I conducted a

“performance roundup” of existing themes in the Shopify Theme store. The results were

pretty damning—the average theme in the store loaded 2MB of assets with 58 HTTP

requests on page load.

I’ve got a theory as to why this was so: clients can’t see it so they won’t pay for it as a

priority.

Unlike all of those pretty images or snazzy JavaScript features, a client can’t “see”

the speed of their sites. They might feel something’s slightly amiss when a page takes

ten seconds to load, but even then they’re looking at their site with the mindset of a

storeowner, not a potential customer. It rarely occurs to them that, had the site they were

loading not been their own, they would have closed the tab five seconds ago and moved

on to the next result in Google.

Designers and developers aren’t immune to this problem, either. When we’re sitting

on a high-speed desktop connection, developing locally and with a populated browser

cache, a lot of performance issues are going to go unnoticed. And just like the client, our

minds aren’t in the same place when the page does load—we’re looking for alignment

issues, checking that colors match up, and that the new lightbox works as expected.

When these factors combine, it makes it easy as a theme creator to let performance

become a low priority.

This is especially true when building a theme for widespread sale (for example, in

the Shopify Theme Store). There’s no “sort by performance” option in the Theme Store

listing—what’s going to sell your theme are big glossy images and slick CSS animations.

CHAPTER 10  PERFORMANCE

184

�Performance Analysis and Metrics
So, proceeding on the assumption that you want to be one of the enlightened theme

creators who takes performance seriously, what’s your first move?

Well, like so many things, the first step in being able to improve performance is to

know where you stand currently (“you can’t manage what you can’t measure” and all

that). The next sections therefore look at a couple of different tools useful for doing just

that.

�Performance Measuring Tools
I’ll cover three tools here, but you don’t need to spend too much time worrying about

which one is “best”. Most performance tools will cover a similar set of metrics—the key

thing is to be using something before and after your optimization work, so that you can

evaluate whether your changes had any effect.

�PageSpeed Insights

Google’s PageSpeed utility is probably the most commonly-used performance analysis

tool. Running the PageSpeed test from the online tool will give you a breakdown of the

performance issues with your theme, as well as a prioritized list of what to tackle first

(see Figure 10-1).

CHAPTER 10  PERFORMANCE

185

�Yahoo YSlow

If you have a philosophical objection to Google or just want to try something different,

YSlow is a browser plugin available for both Safari and Firefox that offers much the same

sort of analysis as PageSpeed (see Figure 10-2).

Figure 10-1.  The online PageSpeed Insights tool. Looks like this theme’s got some
work to do!

CHAPTER 10  PERFORMANCE

186

�WebPageTest.org

This is my favorite of the various performance testing tools. Unlike the previous solution,

it’s not available as a browser plugin—you simply access it at http://www.webpagetest.

org and plug in the page’s URL to test.

As you can see from Figure 10-3, it’s a much more advanced tool than PageSpeed or

YSlow, letting you specify a huge number of variables when running the test (browser,

geographic location, connection type and speed, user agent strings… the list goes on). It

also lets you record the test as a video, simulate the failure of particular domains during

the page load, and gives you a detailed “waterfall” timeline of your page load.

Figure 10-2.  A YSlow report in Safari

CHAPTER 10  PERFORMANCE

http://www.webpagetest.org
http://www.webpagetest.org

187

A nice additional feature is the “cost analysis” of your site, indicating how much a

mobile visitor may have to pay to load your site based on average mobile data rates in

their country of origin. This is a nice reminder for those of us in countries where data

and WiFi are plentiful.

WebPageTest.org is the only tool mentioned here that analyzes a site’s SpeedIndex,3

which is a way of measuring how quickly the visible parts of a page are presented to a

user (often a much more important metric than the overall page load time).

�Which Tool to Use?

Unless you’re itching to get into the nitty gritty of performance optimization, I

recommend sticking to the simpler reports and analysis of PageSpeed Insights and

YSlow for the moment. They’ll identify 90% of the performance issues in your theme and

indicate where you’re going to see the biggest wins.

3 https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/
speed-index.

Figure 10-3.  WebPageTest.org may not be the prettiest thing going around, but it
provides a lot of useful detail

CHAPTER 10  PERFORMANCE

https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index

188

Once you’ve gotten the low hanging fruit out of the way, turning to WebPageTest’s

detailed reports can help you identify those “one-percenters,” which can often be worth

spending the time on for sites with large sales volumes.

If you’re looking for a way to integrate performance testing into your development

workflow, check out the grunt-perfbudget Grunt plugin.4 It’s written by Tim Kadlec,

who has a wealth of material on setting a “performance budget” for your site on his blog

(https://timkadlec.com).

�Theme Performance Metrics
Being able to get all this performance information is great, but now the question is: how

do we use it? First, it’s good to have an idea of which things we should be worried about

and which can be safely ignored.

In the case of Shopify themes, any performance optimizations that require server or

CDN configuration are out of your hands. Fortunately, Shopify does a pretty good job of

optimizing these things on their end, so we generally don’t have to worry about them

and can instead focus on the things that are under our control.

In the following sections, I’ve provided a list of the key metrics I look at when trying

to improve my Shopify themes, along with a list of the techniques I use to try to improve

those metrics. Many of these will be familiar to experienced web developers (Shopify

themes are just HTML, CSS, and JavaScript at the end of the day after all), but some are

Shopify-specific either in concept or execution.

The final part of this chapter focuses on each of these listed techniques in detail and

walks through how to implement them.

�Key Metric 1: Page Weight

Page weight indicates how many bytes need to be transferred to the browser to display

your site. You should be looking at two numbers here: the number of bytes transferred

when the page first loads (before the browser has cached anything) and the number of

bytes after caching.

Even if your site is pretty image-heavy, you should be able to deliver a usable page to

a customer with a few hundred kilobytes or less. Using some of the techniques described

4 https://github.com/tkadlec/grunt-perfbudget.

CHAPTER 10  PERFORMANCE

https://timkadlec.com
https://github.com/tkadlec/grunt-perfbudget

189

in this lesson, you can do this and then pull in larger assets (like high-resolution images)

later as needed.

Optimization techniques that focus on reducing page weight include:

•	 Image optimization

•	 Asset minification

•	 Lazy loading

•	 Page simplification

�Key Metric 2: Number of HTTP Requests

Every HTTP request your browser makes for an asset requires a round trip from the

browser to the server and back again, along with all of the overhead that implies.

Methods focused on improving the efficiency of the requests your page makes are:

•	 Asset concatenation

•	 Cookieless CDN domains (handled by Shopify)

•	 CDN hostname distribution (not handled by Shopify, but there’s

not too much we can do about it if we still want to leverage Shopify’s

comprehensive CDN)

•	 Intelligent asset loading

•	 Page simplification

�Key Metric 3: Time to Load

The term “time to load” is a bit imprecise, as “load” in the context of web performance

can mean a few different things. It could mean:

•	 The time taken for the browser to load your initial HTML and start

rendering the page (“time to render”)

•	 The time taken for the browser to visually display the page to the user

(“time to visual completion”)

•	 The time taken for the entire page, including assets, to load, render,

and execute (“time to load”)

CHAPTER 10  PERFORMANCE

190

From the perspective of user experience, the “time to visual completion” is the

most important interpretation, as it’s what makes a site “feel” fast. Unfortunately, it’s

also the most difficult to measure with automated tools (although SpeedIndex, a metric

developed by Google and thoroughly analyzed in WebPageTest.org’s report, does a

pretty good job).

The good news is that the optimization techniques for all types of page load have

some overlap, so efforts towards optimizing your initial time to render will help improve

your other metrics as well. In some cases, you may wish to prioritize one type of load

time over another—this is most commonly seen in techniques that attempt to get the

page to an initial “visually complete” stage as fast as possible, then complete the load of

additional assets.

An example of this would be the use of progressive JPEGs, which render a low-quality

“first pass” image that is subsequently replaced with one of a higher quality as the page

continues to load. The effect is that the user feels like the page loads much quicker, even

if the overall number of bytes transferred to the user is increased, as we need to send the

data for multiple versions of the image at different quality levels.

�Performance Optimization Techniques
Having identified the metrics we consider most important, we’ll now get to the meat and

potatoes of the chapter: identifying what you can actually do as a theme developer to

improve those numbers.

�Technique 1: Page Simplification
You know the old saying, “less is more”? Well, in the case of web performance, it rings

true. The “less” of your theme there is—the fewer the images, requests, and page

elements—the faster your page will load and display.

Sounds sensible and straightforward, right? I agree, but it never seems to quite make

it into those “Five ways to speed up your site and improve your sex life” lists on the

Internet.

Perhaps the reason for its absence is that it’s not always an easy, “quick win”. Unlike

some of the techniques we’ll be looking at in a bit, taking the time to look through your

hard work for things to rip out is difficult, both time-wise and emotionally. But, just like

authoring good writing, authoring performant Shopify themes require ruthless editing.

CHAPTER 10  PERFORMANCE

191

The great thing about this technique is that you get some side benefits beyond the

performance implications. Just like editing your writing makes things much easier

for readers, editing your Shopify themes also makes things clearer and easier for your

customers, as well as improving your life as a developer by reducing your maintenance

burden. It’s a real win-win-win!

If you’re looking for ideas on the sort of things you can do to “edit down” your

Shopify theme, here are some:

•	 Refactor CSS: It’s easy to build up technical debt in your CSS files over

the course of a site’s development. Refactoring and simplifying your

CSS will not only save on stylesheet size, but also make the site more

maintainable and consistent for visitors.

•	 Kill carousels: Carousels are not only horrid for usability, they

often load lots of high-resolution images. Do your users and your

site’s performance a favor by replacing the carousel with a single

(optimized) image.

•	 Replace background images with CSS: CSS can do some pretty

awesome stuff these days. If you’re currently using tiled images for

background images, consider replacing them with a CSS background.

You’d be surprised at what you can do.

�Technique 2: Image Optimization
This is the first thing almost every page load optimization article will suggest. That’s not

a coincidence—images make up the largest percentage of the weight of most sites, and

you can get some big wins with very little effort.

�Image Optimization Basics

Here’s the crazy simple way to trim down your theme in less than 50 seconds:

	 1.	 Download ImageOptim from https://imageoptim.com and open it.

	 2.	 Drag your theme’s assets folder into the application.

	 3.	 Wait to see how much space you just saved (see Figure 10-4).

It really is that simple!

CHAPTER 10  PERFORMANCE

https://imageoptim.com

192

As I was writing this, I ran the assets folder of a theme I’ve been working on through

ImageOptim just to get some screenshots. I’ve run this theme through ImageOptim

before, but I still saved 200KB of page weight from five seconds of work. Not bad!

Another tool worth checking out is JPEGMini (http://www.jpegmini.com). Unlike

ImageOptim, it only handles JPEGs (who would have guessed), but it does apply

some more advanced algorithms and can cut down those files even more. For those

of you who aren’t Mac users (sorry, I don’t get out of my bubble all that often), Kraken

(https://kraken.io) is a great alternative.

�Automating Image Optimization

Once you’ve seen the benefits of image optimization in action, you’re likely going to

want to use it all the time. That’s when having a Grunt-based workflow like the ones

described in Chapter 2 come in handy.

Using a Grunt plugin like grunt-contrib-imagemin (which is built with the same

libraries used by the ImageOptim program), we can ask Grunt to automatically optimize

all of our images whenever we deploy a theme. You can look back to the examples in

Chapter 2 to see how this is implemented.

�Pushing Boundaries with Lossy Image Optimization

These optimization methods are “lossless”—that is, they reduce file size without any

degradation in image quality. That sounds reasonable, but often we can achieve pretty

spectacular reductions in file size with minor reductions in quality—some of which are

going to be invisible to the end users.

Let’s take JPEG images first.

If you’re familiar with Photoshop’s Save for Web functionality, you’ll be aware that

you have the option of selecting the quality of the final image. By default, this sits at

Figure 10-4.  ImageOptim doing its thing

CHAPTER 10  PERFORMANCE

http://www.jpegmini.com
https://kraken.io
http://dx.doi.org/10.1007/978-1-4842-2641-4_2
http://dx.doi.org/10.1007/978-1-4842-2641-4_2

193

60—but the reality is that you can often drop that quality setting down to as low as 25

without ending up with a dog’s breakfast. This is especially true if you’re dealing with @2x

or @3x images for high-resolution displays.

If you don’t believe me, check out the scaling examples at https://retinafy.me/

examples/jpeg-scaling.html from Thomas Fuchs’s excellent book Retinafy Me, which

covers the process of creating high-resolution images in lots of helpful detail.

We can also perform lossy optimization on PNGs, thanks to a tool called ImageAlpha

(developed by the same wonderful team behind ImageOptim and available at https://

pngmini.com).

Similar to ImageOptim, ImageAlpha enables you to drop a particular PNG file into

this application, select a quality level (for PNGs, determined by the number of colors

available), preview the results, and save an optimized version, as seen in Figure 10-5.

Figure 10-5.  Using ImageAlpha is a hoot

The results can be impressive, as you can see in the before/after shot in Figure 10-6.

CHAPTER 10  PERFORMANCE

https://retinafy.me/examples/jpeg-scaling.html
https://retinafy.me/examples/jpeg-scaling.html
https://pngmini.com
https://pngmini.com

194

Unlike lossless optimization, lossy optimization is not something I recommend

automating, as you often need to run your eye over the results to make sure the

optimization hasn’t gone too far and verify that everything “looks right.”

�Technique 3: Asset Concatenation
For every JavaScript, stylesheet, or image your page references, a client’s browser

needs to make an HTTP request to fetch and parse that asset. Asset concatenation is

the process of combining multiple asset files into a single file to reduce the number of

requests the browser must make, cutting down on this overhead and making for faster

load times.

As an example, if the top of your theme.liquid contains something like Listing 10-1,

your browser is going to be making lots of requests that it needs to wait on before it

continues to render the page. A better strategy is to selectively combine these files to

reduce their number, so that you end up with something more like Listing 10-2.

Figure 10-6.  Before (above line, 224KB) and after (below, 34KB) ImageAlpha
(Image courtesy of http://pngmini.com)

CHAPTER 10  PERFORMANCE

http://pngmini.com

195

Listing 10-1.  Example theme.liquid layout File with Assets from a Variety of

Sources

<!DOCTYPE html>

 <html>

 <head>

 <!-- Include CSS -->

 {{ 'bootstrap.css' | asset_url | stylesheet_tag }}

 {{ 'index.css' | asset_url | stylesheet_tag }}

 {{ 'products.css' | asset_url | stylesheet_tag }}

 {{ 'articles.css' | asset_url | stylesheet_tag }}

 <!-- Include Javascripts -->

 {{ 'jquery.js' | shopify_asset_url | script_tag }}

 {{ 'bootstrap-core.js' | shopify_asset_url | script_tag }}

 {{ 'bootstrap-tooltips.js' | shopify_asset_url | script_tag }}

 {{ 'bootstrap-modals.js' | shopify_asset_url | script_tag }}

 {{ 'products.js' | shopify_asset_url | script_tag }}

 {{ 'cart.js' | shopify_asset_url | script_tag }}

 ...

Listing 10-2.  Optimized Version of Listing 10-1 Utilizing Concatenated Assets

<!DOCTYPE html>

 <html>

 <head>

 <!-- Include CSS -->

 {{ 'main.css' | asset_url | stylesheet_tag }}

 <!-- Include Javascripts -->

 {{ 'jquery.js' | shopify_asset_url | script_tag }}

 {{ 'bootstrap.js' | shopify_asset_url | script_tag }}

 {{ 'main.js' | shopify_asset_url | script_tag }}

 ...

For stylesheets and JavaScript files, the concatenation is very simple—it’s just a

matter of copying and pasting the text contents of each file, one after another. As long as

you concatenate the files in the same order that they originally appeared in your HTML,

CHAPTER 10  PERFORMANCE

196

you won’t notice any functional difference, but the number of requests the browser has

to make is dramatically reduced.

Note  You should never include your JavaScript <script> tags in the <head>
element, like in this example. Browsers will block page rendering when reading
them. Put all of your tags at the bottom of your page, just before the closing
</body> tag.

As with any technique, you can take this technique too far, and concatenating

everything into one file can be counter-productive. In the next few sections, I’ve listed

some things you may reasonably choose to keep separated in your themes.

�Large JavaScript Libraries

Bundling large libraries like jQuery together with your site-specific JavaScript is

considered bad practice, as any changes to your site’s scripts will force browsers to

download everything again.

In fact, a much better strategy for large and common JavaScript libraries like jQuery

is to use a common external CDN (Google’s Hosted Libraries is a good start). Not only

does this mean that you don’t have to worry about managing the asset within your

theme, there’s a decent chance that site visitors will already have the library in their

browser cache.

�Assets Using Theme Settings

As you saw in Chapter 8, appending a suffix to asset files (for example,

main.js.liquid) will cause Shopify to preprocess those assets using Liquid, allowing us

to use theme settings and asset filters within those files.

If your theme takes advantage of this, I recommend separating the parts of code

that use the theme settings out into their own asset file as much as possible. Otherwise,

you’ll run in to a similar problem as that with large JavaScript libraries, forcing a large

download on your users every time a theme setting changes.

If you’re only using theme settings for a few minor tweaks, you could even just keep a

single static asset file and add the dynamic stuff to your theme’s <head>, as in Listing 10-3.

CHAPTER 10  PERFORMANCE

http://dx.doi.org/10.1007/978-1-4842-2641-4_8

197

Listing 10-3.  Simple Example of Using Theme Settings Inside a <style> Block

<!DOCTYPE html>

<html>

<head>

 <!-- Include Static CSS -->

 {{ 'main.css' | asset_url | stylesheet_tag }}

 <!-- Dynamic CSS -->

 <style>

 body {

 bgcolor: {{ settings.bgcolor | default: '#ffffff' }};

 }

 </style>

 <!-- Include Javascripts -->

 {{ 'https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min. |

script_tag }}

�Assets Used Only on a Specific Page

When you’re bundling your assets with concatenation, the stylesheets and scripts within

those files will be available across all pages on your site. This is usually a reasonable

assumption to make, and even if a script isn’t used on a single page, the benefits of

having a single asset file usually exceed the downside of having a slightly larger file

to download on some pages. However, if you have large assets that are used only on

specific, rarely-used pages, it might be more efficient to keep those assets separate and

load them only when needed.

A good example of this is a Shopify store that offers logged-in customers a page to

view their order history and manage their account. As most visits to your site won’t be

from logged-in users and won’t be used for account management, it makes sense to

avoid bundling the scripts and styles for the account management feature together with

everything else.

CHAPTER 10  PERFORMANCE

198

�Automatic Concatenation

An obvious downside to concatenation is that it makes management and development

of your assets more difficult, by virtue of the fact that all of your scripts and stylesheets

are now lumped together in one giant file.

Setting up a way to automatically concatenate your files means you can get the benefits

of concatenation without sacrificing developer convenience. As you might have guessed,

I recommend using a workflow tool to automate this process—see Chapter 2 for more.

�Image Concatenation

This section has been focused on the concatenation of scripts and stylesheets, but

concatenation can be used for images as well! In fact, you’ve probably seen this before

with CSS sprites, where sites use a single PNG image to hold all their icons, as shown in

Figure 10-7.

Figure 10-7.  Google’s CSS sprite

The rationale behind this is the same as with stylesheets and scripts: reducing the

number of requests that need to be made improves the performance of your site.

The easiest way to do your own image concatenation is through the very excellent

Grumpicon web app (http://www.grumpicon.com). It’s a drag-and-drop solution that

comes with the added benefit of having a unicorn involved (see Figure 10-8).

CHAPTER 10  PERFORMANCE

http://dx.doi.org/10.1007/978-1-4842-2641-4_2
http://www.grumpicon.com

199

Like all good asset-management tasks, the magic behind Grumpicon is available as a

Grunt plugin (grunticon) for adding to your automated development workflow.

�Future Developments

If you’ve been following recent developments in web technology, you may have heard of

the SPDY or HTTP2 protocols. Without getting too technical (not the least because I’m

not clear on all the details myself), these are next generation technologies that aim to

drastically improve the speed of the web.

One of the features of these protocols is “request multiplexing,” which aims to pretty

much do the equivalent of asset concatenation at a much lower level. This would mean

that developers like us can just use individual assets (easier) without forcing the browser

to make more requests than Madonna’s rider.

However, widespread deployment and support for these protocols on servers and

clients is still some time away, so for the moment you’ll have to stick to the techniques as

described. Sorry!

�Technique 4: Asset Minification
While stylesheets and scripts aren’t usually as bulky as images, they can still have a

noticeable impact on the overall weight of your pages.

Figure 10-8.  Any tool with an ASCII unicorn must be good

CHAPTER 10  PERFORMANCE

200

Once you’ve followed Technique #1 and simplified and removed as much

unnecessary styling and content as possible, you can use asset minification to further

reduce the file size of your stylesheets and scripts.

Minification strips out the extraneous information in assets that make it easy for

humans to read and write but that aren’t needed by your browser (things like newlines

and whitespace). In the case of JavaScript, minification can also aggressively optimize

your code size by doing things like rewriting var aLongVariableNameUsefulForHumans

to var a.

�How to Minify Your Assets

If you want to experiment with minification or just want to perform a one-off

minification, there are plenty of online tools that will take a CSS or JavaScript file and spit

out the minified version (just Google “CSS/JavaScript minifier”). However, minification

is at its most useful when we can slot it into the workflow once and not have to think

about it again. Once again, the Grunt plugins grunt-contrib-cssmin and grunt-

contrib-uglify come to your rescue with CSS and JavaScript minification, respectively.

If you have a different workflow process or would like to perform minification

from the command line, you can check out the comprehensive YUICompressor, which

handles both CSS and JavaScript. The uglify tool is also available as a standalone

JavaScript minifier that can be run from the command line.

�Technique 5: Odds and Ends
Properly implementing all these techniques will, in most cases, get you a long way

toward improving your theme’s performance. If, like me, you’re a little bit obsessive

about performance or are in a situation where extracting every last ounce/gram of speed

is going to materially affect a store’s bottom line, there are still a couple more things you

can do.

�Implement Device-Responsive Design

Before “responsive design” came to mean that thing we do by dragging the width of our

browser back and forth, it had a broader meaning—that web sites could respond to a

whole range of contexts to deliver the best experience.

CHAPTER 10  PERFORMANCE

201

A good example of where this idea comes in handy in the performance arena is with

“retina” or “high-resolution” images. A common technique for high-resolution images

over the last few years has been to simply serve all clients a high-res image resized to be

half the size. Browsers then do the work of resizing and displaying appropriately.

The problem with this approach is that it’s very wasteful when serving to screens

that aren’t high-resolution—they’re downloading an image that is four times the size for

no advantage. “Device-responsive design” takes this sort of thing into account by only

loading high-resolution images on high-resolution devices, either using media queries

or a JavaScript library.

�Use Lazy Loading

This technique can be really powerful for Shopify stores, as they are often very image-

heavy. Lazy loading images involves using a JavaScript library to only load images when

they should be visible in the user’s viewport, improving initial page load times.

It’s especially handy when your theme involves very tall pages where lots of

visitors won’t actually need to load the majority of your content. Matt Mlinac’s lazy

load jQuery plugin (http://www.appelsiini.net/projects/lazyload) is a very solid

implementation.

�Use Conditional Loading for Shims/Fallbacks

If you’re using “shims” or fallbacks for older browsers (for example, the RespondJS

fallback that allows older browsers like Internet Explorer 8 to use media queries), make

sure you’re not wastefully downloading them on newer browsers.

You can implement this by using conditional comments when loading the script, as

in Listing 10-4, or by using JavaScript-based conditional loading based on the results of

testing with a library like Modernizr.

Listing 10-4.  Using Conditional Comments to Load a Respond.js Fallback on

Internet Explorer 8 and Lower

<!DOCTYPE html>

<html lang="en" prefix="og: http://ogp.me/ns#">

<head>

 �<!-- HTML5 shim and Respond.js support for HTML5 elements and media

queries -->

CHAPTER 10  PERFORMANCE

http://www.appelsiini.net/projects/lazyload

202

 <!--[if lt IE 9]>

 <script src="{{ 'js-html5shiv-min.js' | asset_url }}"></script>

 <script src="{{ 'js-respond-min.js' | asset_url }}"></script>

 <![endif]-->

 ...

�Master the “async” Attribute

As mentioned, putting <script> tags in the <head> section of your HTML is a sure-fire

way to kill your page loading times, as browsers will block page rendering while they

wait for your JavaScript to load. Common wisdom says that the best place for including

script tags on your page is at the very bottom of the page, just before the </body> tag.

This is a great default approach, but with the advent of HTML5, we now have access

to the async attribute for script elements, which tells browsers to continue parsing and

rendering the page while loading the script in the background.

However, there are some major caveats to the use of async—namely, that there are

no guarantees on execution time or order. If you’re interested in diving into the nuts

and bolts of async, Jake Archibald’s walkthrough at http://www.html5rocks.com/en/

tutorials/speed/script-loading/ is the best I’ve read.

�Check for Asset 404s and 301s

Look through the Network panel or similar in your browser’s developer tools and check

that no assets are 404-ing or 301-ing.

Missing assets (404s) are a waste of a request and you should just remove

the reference to the asset or replace it with one that works—this problem can be

compounded if the site itself has a large or complex custom 404 page that needs to be

downloaded any time an asset is missing.

An asset request being redirected with a 301 response code is actually quite common

(for example, a request to an http:// version of an asset may be automatically redirected

to the https:// version). If you see that happening, just link directly to the final URL to

avoid the wasted initial request.

CHAPTER 10  PERFORMANCE

http://www.html5rocks.com/en/tutorials/speed/script-loading/
http://www.html5rocks.com/en/tutorials/speed/script-loading/

203

�Evaluating Performance Improvements
Once you’ve made each performance optimization, it’s always a good idea to measure

your performance metrics again to see what’s changed. Not only will this give you a

sense of achievement and motivate you, you’ll start to get a good idea of where the

easy optimizations are and start to incorporate them into your normal development

workflow.

Now, while all this measuring is handy, there’s nothing quite like actually using your

site to check whether your customers are getting a good experience! Next time you’re

on a train, or out with your phone in an area with patchy reception, try clearing your

browser cache and loading your site. Bonus points for asking random strangers in coffee

shops to do the same and try to buy something from your store.

If you can’t wait to get out of the home or office to test your performance

improvements and you have a Mac, you can use OS X’s Network Link Conditioner, seen

in Figure 10-9. Turn your connection settings down to spotty 2G and see if your site

holds up.

Figure 10-9.  Condition that link!

Get instructions on how to set up the network link conditioner at

http://nshipster.com/network-link-conditioner/.

Chrome users (both on Mac and Windows) have access to a similar feature (called

Throttling) in the Network tab of Developer Tools.

CHAPTER 10  PERFORMANCE

http://nshipster.com/network-link-conditioner/

204

�Final Thoughts
Performance optimization is one of those tasks that pays significant dividends for

storeowners, but still gets overlooked during development and testing, as it’s very easy to

subconsciously paper over a site’s issues.

Remember: as a theme developer, you have to wait for a Shopify store to load

(it’s your job). Customers don’t have that obligation, and they will leave in favor of a

competitor at the drop of a hat.

�Summary
This chapter explored why performance is simultaneously one of the most important

yet most often overlooked aspects of theme development. The chapter dug in to the

motivation for improving theme performance and discussed the key metrics to track

along with the tools to track them.

With an understanding of what you were trying to improve under your belt, you

learned about a number of specific strategies and techniques you can use to ensure your

themes load quickly and provide a responsive customer experience.

CHAPTER 10  PERFORMANCE

205
© Gavin Ballard 2017
G. Ballard, The Definitive Guide to Shopify Themes, DOI 10.1007/978-1-4842-2641-4_11

CHAPTER 11

Collaborative Theme
Development
This final chapter looks at some strategies and tools you can use to make it easier to build

Shopify themes in collaboration with others. It will also discuss how you can deploy your

themes in a professional manner to reduce the risk of downtime, conflicts, or errors on

the theme being used by your customers.

Finally, I’ll wrap up the substantive part of this book by discussing how you can make

the most of Shopify’s ecosystem to boost your understanding of the platform and forge

deeper connections within the partner community.

�Collaborating on Themes
The previous chapters covered the core components of Shopify themes, discussed

different approaches to building them, and walked through the development of an

example theme. These discussions have been working on two assumptions—that we’re

working in a team size of one, and that our code is being uploaded directly to the Shopify

site it’s being used on.

In the real world, this often isn’t the case—themes can be built by teams of many

developers, designers, and content editors. Furthermore, when your themes are being

used “in production” by merchants, having a professional deployment process becomes

important to reduce the risk of errors being introduced to a store and potentially causing

revenue loss.

Even if you’re a solo developer and don’t anticipate that changing, following the

practices we’re about to outline will not only make your single-person workflow smoother,

it’ll also mean that developers taking over a project (or yourself coming back to a theme

after a couple of months’ break) get the benefit of a smooth, clearly defined workflow.

206

�Collaborative Workflows with Version Control
Recall Chapter 2, which discussed how to place your theme files under version control

with Git—a vital first step if you plan on working on themes with other people. To recap:

•	 Version control provides a way to track changes to your theme files,

and provides an easy way to recover from accidentally overwritten or

deleted files.

•	 It provides a way to record who was responsible for specific changes

to a theme and allows multiple developers to work on a project at the

same time before “merging” changes.

•	 You can use feature branches and multiple preview themes to

develop new code and theme features independently of the live

theme.

To turn this into a modern collaborative development workflow, we only need to add

a couple of things to the mix:

•	 A centralized server (or a decentralized process) allowing multiple

developers to push their own changes and fetch the changes of

others.

•	 A system for organizing what needs to be done and who needs to be

doing it.

•	 A process for reviewing changes before they are merged into the

main codebase.

There are about as many different workflows for this sort of thing as there are developers,

so I won’t attempt a comprehensive list. Instead, here’s a description of the typical workflow

we use at my company for managing this process (we use GitHub as a central code

repository, for listing and tracking issues, and for reviewing and merging changes):

•	 A new code repository is created on GitHub, and the relevant team

members are given access to the code. If we’re building a theme

from scratch, someone will create the initial set of files locally using

Slate or our own theme framework. If we’re working with an existing

theme, we’ll use Slate, Theme Kit, or Shopify’s .zip export feature to

fetch the current set of files and commit them to the repository as a

starting point.

CHAPTER 11  COLLABORATIVE THEME DEVELOPMENT

http://dx.doi.org/10.1007/978-1-4842-2641-4_2

207

•	 Each team member creates their own unpublished “preview theme”

on the store we’re working on, to ensure that any changes they make

don’t affect the live site or other developers, but can still make use of

“real” store data.

•	 We identify the work to be done and break it into small, discrete

features that are added as “Issues” in GitHub. Work is divvied up by

assigning those issues to individual team members.

•	 When tackling a new issue, a developer will create a new “feature

branch” specific to that issue and work on it with their code changes

automatically updating the personal preview theme.

•	 Once happy with the changes, the developer will create a GitHub pull

request asking to merge the changes into the “master” branch of the

repository. Another team member (usually the project’s technical

lead) is assigned to review the changes (see Figure 11-1). Once

feedback is given and any required changes are made, the changes

are merged into the “master” branch of the repository and the

process repeats with the next issue.

Figure 11-1.  A theme code review in progress on GitHub

CHAPTER 11  COLLABORATIVE THEME DEVELOPMENT

208

Using a process like this and only deploying the “master” branch to the published

theme on a Shopify store ensures that developers aren’t accidentally overwriting or

duplicating each other’s work. When using code review before merging changes into the

“master” branch, it also ensures all changes get a second pair of eyes on them.

�Collaborative Deployment Processes
Once we have a system in place for assigning tasks, working on them independently,

and then reviewing and merging changes, the next question is how can we roll out that

consolidated version of the theme. Before discussing that, let’s review the processes

you’ve learned about so far.

Early in Chapter 2, when you saw how to move theme development to a local

machine, the deployment workflow looked like something in Figure 11-2. Changes made

locally were being uploaded directly to the Shopify store’s published theme via Theme

Kit or Slate.

Figure 11-2.  The early deployment workflow, with changes being uploaded
directly to the published theme

As also discussed in Chapter 2, this sort of workflow has some issues:

•	 Having changes made locally uploaded instantly into production

makes it easy to introduce errors that affect real customers. There’s

no quality control mechanism like testing or code review between the

developer and the production code.

CHAPTER 11  COLLABORATIVE THEME DEVELOPMENT

http://dx.doi.org/10.1007/978-1-4842-2641-4_2
http://dx.doi.org/10.1007/978-1-4842-2641-4_2

209

•	 If multiple developers are working on a theme, it’s easy to

accidentally overwrite each other’s changes but difficult to roll back

to a known point in time.

•	 It becomes difficult or impossible to know what state the live theme is in.

Figure 11-3 describes an improvement over this. Here, the Shopify store has multiple

themes in play—a “development” theme (if you have multiple people working on the

theme, then you’ll likely have at least one theme per developer) and a “live” theme. It

still uses Theme Kit or Slate to automatically upload changes to the development theme

as we make them locally, but because this theme isn’t published, the real-time changes

won’t affect real customers.

Figure 11-3.  A slightly improved deployment workflow, with separate
development and live themes

Using this workflow, once a developer is happy with the state of the development

theme (and they have pulled in any changes from other developers), the developer can

“deploy” the final theme state by pointing Theme Kit or Slate at the live version of the

theme and running a full upload from the command line with theme replace.

This improvement avoids the biggest problem—accidentally making a change that

ends up affecting customers—but we still run the risk of overwriting other’s code, have

no proper QA process, and can’t tell what state a theme is in.

We can improve this further by adding an intermediate step between the code on

our local development machine and the production version of our theme—a central

repository—as shown in Figure 11-4.

CHAPTER 11  COLLABORATIVE THEME DEVELOPMENT

210

By adding this step, we enforce a rule that only code from the central repository and

on a specific version control branch (“master” or perhaps “production”) can be deployed

to the live theme. This ensures that all changes go through a quality assurance process,

such as code review and perhaps some automated testing, before being merged to the

main branch and rolled out into production.

To facilitate the deployment of your theme code out to the live theme, it’s necessary

to use some form of deployment service. Your options here will vary, depending on

the service you’re using to host your repository and what integrations are available.

A common choice in the Shopify world (and the choice I’m most familiar with) is

DeployBot (see https://deploybot.com). DeployBot, shown in Figure 11-5, has native

support for connecting to a specific Shopify theme and deploying code to it from a

variety of version control sources (such as GitHub).

Figure 11-4.  Adding a code repository between the local development machine
and the production version of the code

CHAPTER 11  COLLABORATIVE THEME DEVELOPMENT

https://deploybot.com

211

Deployment services like DeployBot can be configured to deploy your theme code

to a Shopify store either manually (triggered by logging in and clicking a button), or

automatically (triggered by simply pushing or merging code to a specific branch of your

theme repository).

The process you choose may vary from project to project, but I commonly set up two

deployment triggers—one to automatically deploy all changes to the “master” branch

of a repository to a “staging” version of the theme, and then one that must be triggered

manually to roll out the final changes to the production store (see Figure 11-6).

Figure 11-5.  A DeployBot configuration screen linking a single GitHub repository
to two production versions of a Shopify theme (one for retail and one for
wholesale)

CHAPTER 11  COLLABORATIVE THEME DEVELOPMENT

212

As you’ll see, Figure 11-6 also shows the separation of the live theme from the staging

and development themes by placing them on separate Shopify stores. This is often a

good practice to further reduce the risks of your development workflow accidentally

affecting real customers, as well as allowing you to separate test data (such as orders,

products, and customers) from “production” data.

In some real-world scenarios, your workflow may be even more complex, with many

more Shopify stores, each containing live or staging themes. This may occur when you’re

using a single codebase to drive many different “variants” of a Shopify store (for example,

retail/wholesale variants for a single brand, or variants targeted at different locales).

In situations like this, having an automated deploy service becomes essential to avoid

inconsistent theme states and to properly manage your development processes.

�Cloning Shopify Stores

Some of the more “advanced” deployment scenarios I mentioned involve creating one

or more “development” Shopify stores to allow for experimentation without affecting live

store data. Generally, it’s a good idea to keep the product, collection, page, and theme

data on your production stores as up to date with the real store as possible, so that you’re

developing in a more “realistic” environment.

Figure 11-6.  A production-ready deployment workflow, including automated and
manual deployment triggers and multiple Shopify stores

CHAPTER 11  COLLABORATIVE THEME DEVELOPMENT

213

Shopify does enable you to export and import product and theme data (although

keeping your theme up to date should be the responsibility of developers and your

deployment service), but unfortunately there’s no built-in way to automate this or to

import/export other data like page, collection, and blog content.

Aside from a periodic manual synchronization process, there are a couple of options.

The first is to install one of the many “store sync” applications available in the Shopify

App store. Depending on the type and quantity of data you need to synchronize, using

one or more of these apps can be an easy way to keep your development stores up to date.

The second option (and my own preferred method) is to use the freely available

Quickshot tool (see https://quickshot.readme.io). While this tool was originally

built to synchronize theme data from a local machine to a Shopify store (similar to the

functionality now provided by Slate, discussed in Chapter 2), it also contains tools to

synchronize product, collection, blog, and page data.

�The Shopify Theme Store
I’d imagine that many readers have picked up this book with one eye toward the Shopify

theme store (see https://themes.shopify.com). From the store, shown in Figure 11-7,

merchants can purchase new themes to use on their stores. The rewards of getting your

theme listed on the theme store can be significant; while Shopify doesn’t publish the

official numbers, it’s estimated that a top ten theme on the store earns between $15,000

and $25,000 per month in sales, with the top ten theme authors (many of whom have

multiple themes listed) earn between $25,000 to $50,000 per month.

CHAPTER 11  COLLABORATIVE THEME DEVELOPMENT

https://quickshot.readme.io
http://dx.doi.org/10.1007/978-1-4842-2641-4_2
https://themes.shopify.com

214

These numbers are supported by Shopify maintaining “premium” pricing for themes

(between $140 and $180 per install) and having a very, very strict submissions process

that keeps the number of themes limited (only 55 themes are available at the time of

writing, with each theme containing 2-4 preset styles). While this process means that

only a small percentage of submissions make it to be published, the rest of this section

looks at what you can do to maximize your chances, as well as covers some fallback

options to consider in the event that your submission is rejected.

�Getting In to the Theme Store
Obviously, there’s no magical trick to getting in to the theme store. You need to have

experience with theme design and development, a solid concept, and the willingness to

put in a lot of hard work—in the design, revision, and submission phases, and also once

you launch your theme. It’s unlikely that the first theme you develop or submit will make

it through the review process.

That said, there are always some things you can do to maximize your chances of

success.

Figure 11-7.  The Shopify theme store

CHAPTER 11  COLLABORATIVE THEME DEVELOPMENT

215

�Familiarize Yourself with the Process

According to the Shopify Themes Team, the number one mistake they see theme

developers make is rushing head-first into development and spending a lot of time and

effort on a theme build, only to have it rejected at step one because it doesn’t address a

need on the store or is too similar to an existing theme.

Shopify has a detailed explanation of their process available at https://themes.

shopify.com/services/themes/guidelines, which outlines three key steps. These are:

•	 The submission of a theme brief, covering the vision of the theme, a

description of the unmet merchant needs addressed by your theme,

and details about how your theme will be implemented and the team

behind it.

•	 The submission of interactive mobile design prototypes using

Invision or a similar tool.

•	 The submission of interactive desktop design prototypes using

Invision or a similar tool.

You should get detailed feedback from the Shopify Themes Team at each step before

spending your time moving to the next stage. The first hurdle is probably the hardest to get

past—your theme brief needs to make a convincing case for why your theme will address

a real-world problem merchants have, without becoming too niche or vertical-specific.

Approval of your theme brief by Shopify doesn’t automatically guarantee final

entry to the theme store, but if your brief is sufficiently detailed and your final product

addresses the brief completely, you’ll have the best possible chance.

�Have a Novel or Unique Angle

The Shopify Themes Team states:

What we need to see is a project brief that consists of both

subjective opinions and objective research, that outlines the

necessity and validity of a perceived problem, opportunity, and

solution.

When evaluating that perceived problem and solution, you’ll need to keep clear of

broad and subjective statements (“there aren’t enough themes that make good use of flat

design”) or just providing a list of features your theme will offer (“multi-level navigation

CHAPTER 11  COLLABORATIVE THEME DEVELOPMENT

https://themes.shopify.com/services/themes/guidelines
https://themes.shopify.com/services/themes/guidelines

216

menus, image carousels, and slick quick shop functionality”). Instead, start thinking

at a higher level about the types of merchants you think might be your customers, and

why your theme will help them where existing themes don’t. (“Merchants who focus

on selling a select range of digital products are underserved as most themes focus on

merchants selling physical goods. My theme will address this by offering merchants

useful functionality that only makes sense in a digital context and can help increase

conversions for those types of products.”)

�Work Closely with the Themes Team

While the Themes Team will always be willing to provide feedback and advice on your

theme’s brief and prototypes as you move through the submission process, it’s important

to pay close attention to the feedback you are getting from them and revise your

submission to address any of their concerns.

You don’t have an unlimited number of revisions to play with before your

submission will be permanently rejected, so try to gather as much detail as possible

about any concerns held by the Themes Team. If something in their feedback isn’t clear,

ask for clarification—even better, provide your reviewer a few alternatives to an original

suggestion to reduce their workload and come up with something they can get behind.

�Follow the Theme Liquid and Content Guidelines

To ensure you know what you’re getting yourself into, make sure you read the Themes

Team’s Liquid requirements (https://help.shopify.com/themes/development/

theme-store-requirements/theme-file-requirements) and content checklist

(https://help.shopify.com/themes/development/theme-store-requirements/

content-style-guide) before starting the submission process.

The number of things checked by the Themes Team with respect to functionality,

accessibility, and content often catches developers off guard when it comes to planning

their development timelines.

�Be Ready for Support

Shopify offers two revenue split models for theme developers: 70/30 and 50/50. The

70/30 split is offered where the developer agrees to handle support for the theme, while

under the 50/50 model, Shopify fields inbound support.

CHAPTER 11  COLLABORATIVE THEME DEVELOPMENT

https://help.shopify.com/themes/development/theme-store-requirements/theme-file-requirements
https://help.shopify.com/themes/development/theme-store-requirements/theme-file-requirements
https://help.shopify.com/themes/development/theme-store-requirements/content-style-guide
https://help.shopify.com/themes/development/theme-store-requirements/content-style-guide

217

It’s important to note, however, that the 50/50 split is only offered on a case-by-

case basis, so even if you’re thinking of forgoing the extra 20% revenue, you should

be prepared to handle a significant number of support requests. Anecdotally, I think

Shopify will rarely be offering the 50/50 model to theme developers moving forward, due

to the resource demands and difficulties of supporting a third-party product.

Providing a clear plan for how you and your team (if you have one) will provide

quality, dedicated customer support is an essential component of your theme

briefing document, as it assures Shopify they won’t end up fielding complaints about

unresponsive theme developers.

�What to Do if Your Theme Doesn’t Make It
No matter how much time and effort you spend on submitting a theme to the theme

store, the numbers say there’s a high likelihood of rejection. While that can be

disheartening (I should know, the first few designs I helped submit to the Themes Team

were rejected), all isn’t lost. There are still ways that you can extract value from your hard

work.

�Go It Alone

The first approach I recommend is to simply set up your own landing page offering the

theme for sale (you can and should do this even if you’re accepted into the theme store,

by the way). Write your landing page content to target storeowners that have a specific

use case that your theme can show off, but isn’t found in the regular theme store.

The advantage of this approach is that your cut of the proceeds is 100% minus

processing costs, rather than 70%. The downside, obviously, is that it’s going to be much

more difficult to drive sales outside of the official channel, and the price point for such

themes tends to be lower (in the $50 to $100 range).

In recent times, established Shopify theme developers have experimented with

selling themes at a higher price point outside the Shopify theme store. One perfect

example of this is the “Turbo” theme in Figure 11-8 from long-term developers Out of

the Sandbox, which currently retails at $350. While this has been a successful strategy

for them, and has more fairly compensated them for the time required to support their

themes, I imagine it would be difficult for a non-established developer with no existing

customer base to follow this approach.

CHAPTER 11  COLLABORATIVE THEME DEVELOPMENT

218

�Use Alternative Theme Marketplaces

Sites like ThemeForest (https://themeforest.net) and Creative Market (https://

creativemarket.com) offer alternative theme marketplaces for you to list your theme.

These sites tend to be a race to the bottom with price, so expect to be selling your themes

for $30-$50 here. The quality of themes on offer is often (but not always) quite low.

�Framework-ize

Most Shopify theme developers building bespoke themes for clients eventually start

to develop their own “framework” for themes—a set of starting templates and styles to

avoid going through the same steps again and again. Consider extracting parts of what

you’ve built into your own framework or pattern library to get a head start the next time

you work on a project for a client.

Figure 11-8.  This “Turbo” theme is sold outside the theme store by Out of the
Sandbox

CHAPTER 11  COLLABORATIVE THEME DEVELOPMENT

https://themeforest.net
https://creativemarket.com
https://creativemarket.com

219

�Use Open-Source

You won’t make any money directly from this strategy, but open-sourcing your theme

can be a great way to get yourself in front of more savvy clients and other theme

developers. This in turn can generate inbound leads for custom development work.

The next section discusses some of the benefits of open-sourcing your Shopify work.

�Leveraging the Shopify Ecosystem
When I started working as a Shopify Expert, I didn’t have that much interaction with

other developers. I was comfortable just doing my own thing, and I managed to get by

with the clients I had coming in through the experts listing or word of mouth referrals.

After a couple of years tinkering around with the platform, I built up the confidence

to start publishing the occasional article on my personal blog. It wasn’t anything

game-changing—mostly just describing how I was working around some of Shopify’s

limitations at the time, like getting the Respond.js library to work on Shopify’s CDN.1

I got some positive feedback from other developers (both in and outside Shopify), so I

continued putting out the occasional Shopify-related post.

Over time, knowing that my blog content was being read and found useful gave me

the courage to start putting other things I was working on out into the wild. Since then,

I’ve released a paid framework to help people build themes using the Bootstrap frontend

framework, developed a bunch of open-source projects to aid with Shopify development

(visible at https://github.com/discolabs), recorded several screencasts on theme

and app development, delivered talks and workshops about Shopify at meetups and

conferences around the world, and now have written this book.

None of these projects led the way to untold riches, or spun up into a hugely popular

and closely followed project (although one, Cart.js, was used by Kanye West’s Yeezy

store, which was pretty cool). Despite not reaping huge financial reward directly, in every

case I feel like I’ve gotten something back:

•	 I’ve gotten lots of warm and fuzzies when complete strangers said

nice things about my articles or projects.

•	 I’ve gotten even more warm and fuzzies when complete strangers

paid for my articles or projects.

1http://gavinballard.com/using-respond.js-with-shopify/

CHAPTER 11  COLLABORATIVE THEME DEVELOPMENT

https://github.com/discolabs
http://gavinballard.com/using-respond.js-with-shopify/

220

•	 The number of inquiries from higher-quality clients has increased,

and selling clients becomes easier when one can say they’ve literally

written the book on Shopify.

•	 My relationship with one of my very best clients, which started

years ago with them asking me to make a single tweak to my paid

framework, is still ongoing and profitable (for both of us!)

•	 I’ve been able to connect with and meet some really great folks in the

Shopify ecosystem.

The point of going through all this isn’t meant to be the world’s longest humble brag,

but more to highlight that sharing your work with the community, however small the

contribution, can lead to lots of interesting opportunities and pay real dividends.

Now that you’re reaching the end of this book, you’re hopefully in a position where

you feel more confident about tackling your next Shopify theme development project.

(Well, I certainly hope you are—if not, you’d better get in touch with me to let me know

what needs to improve for the next edition.)

As you work on that project, I encourage you to think about how the things you’re

learning and developing could be turned into something valuable for the wider

community. When I say “community,” I’m not referring to anything official. There’s no

admission process or secret handshake. I also don’t believe that you need to have years

and years of experience with Shopify to teach others something valuable.

It might be a blog post describing how you overcame a difficulty when building your

theme, or replying to someone who’s asked a question on the Shopify forums. Even just

raising an issue on GitHub for an open-source library you’ve been using is super useful

and will be very much appreciated by the maintainers!

A rising tide lifts all boats, and having a Shopify developer community that’s vibrant

and full of active and supportive members is only going to encourage the ecosystem’s

growth.

�Where to Join
This section contains a list of resources that I think are useful for participating in the

Shopify community.

CHAPTER 11  COLLABORATIVE THEME DEVELOPMENT

221

�Official Shopify Channels
Shopify has a number of “official” channels for communicating with developers and

partners and facilitating community discussion. The key ones are:

•	 The Shopify Forums (https://ecommerce.shopify.com/forums) are

great place to start searching when looking for answers to questions

you might have about Shopify concepts or development. One of the

best ways to build up a reputation in the community is by helping

other people out here, or posting about your own experiences.

•	 Make sure you’re subscribed to Shopify’s various blogs via RSS or

e-mail. There are three official blogs—one targeted at merchants

(https://www.shopify.com/blog), one at partners and developers

(https://www.shopify.com/partners/blog), and one focused on

the enterprise offering Shopify Plus (https://www.shopify.com/

enterprise). Figure 11-9 shows the partner blog.

•	 Two “official” Shopify podcasts currently exist—the infrequently-

updated but in-depth Shopify Partners Podcast, hosted by Keir

Whitaker (https://soundcloud.com/shopify-partners) and the

merchant-focused Shopify Masters Podcast (https://www.shopify.

com/blog/topics/podcasts), hosted by Felix Thea.

•	 There’s an official Shopify Partners Slack community, which is open

to all registered Shopify partners. Once you’re registered, introduce

yourself to your Partner Manager and ask for an invite.

CHAPTER 11  COLLABORATIVE THEME DEVELOPMENT

https://ecommerce.shopify.com/forums
https://www.shopify.com/blog
https://www.shopify.com/partners/blog
https://www.shopify.com/enterprise
https://www.shopify.com/enterprise
https://soundcloud.com/shopify-partners
https://www.shopify.com/blog/topics/podcasts
https://www.shopify.com/blog/topics/podcasts

222

�Other Resources
Of course, one of the things that makes Shopify great is the multitude of community-

driven groups and initiatives. Some of the stand-outs to take note of are:

•	 The Unofficial Shopify Podcast, hosted by Kurt Elster (http://www.

unofficialshopifypodcast.com). It’s merchant-focused but often

contains plenty of useful, actionable advice for developers and other

partners who’d like to learn skills that can benefit storeowners.

•	 The eCommTalk Slack channel, run by TJ Mapes (http://

ecommtalk.com). A great mix of partners, marketers and merchants,

this community contains plenty of experienced people willing to help

out fellow Shopify developers.

•	 The Shopify Entrepreneurs Facebook group, run by Jonathan Kennedy

(https://www.facebook.com/groups/shopifyentrepreneurs/). Not

that technically-minded, but it’s a great way to connect with and help

out aspiring Shopify merchants, so for a developer it’s fertile ground

for honing theme development skills.

Figure 11-9.  The Shopify Partner blog contains a constant stream of information
for developers and partners interested in Shopify

CHAPTER 11  COLLABORATIVE THEME DEVELOPMENT

http://www.unofficialshopifypodcast.com
http://www.unofficialshopifypodcast.com
http://ecommtalk.com
http://ecommtalk.com
https://www.facebook.com/groups/shopifyentrepreneurs/

223

�IRL Events
If you’re itching to meet up with others in the Shopify community offline, there are

plenty of opportunities to do that as well. In 2016, Shopify starting supporting a network

of “official” Shopify Meetups around the globe, a network that’s been expanding at an

increasing pace. You can find a list of upcoming meetups on the Partner Events page on

the Shopify site (https://www.shopify.com/partners/blog/partner-events).

There’s also Unite, Shopify’s annual partner conference and where the company

makes major feature announcements. In addition, Shopify often supports or runs local

workshops and satellite one-day conferences around the globe. Contact your Partner

Manager at Shopify to find out what’s coming up in your corner of the world.

�Use Open-Source
Finally, one of the best resources to leverage when working on Shopify projects is GitHub

(yes, other open-source platforms are available). Not only does Shopify tend to release a lot

of their code as “official” open-source repositories, but third-party developers and experts

from around the world have shared their own projects, tools, and code snippets as well.

Apart from releasing several of our own open-source projects, my company has also

used (and later contributed to) existing libraries like the Ruby and Python Shopify API

clients or the Shopify App gem. Fixing problems you run into and contributing your

patches back into a project helps everyone and can often lead to opportunities to work

with interesting clients.

Being familiar with the open-source process can also be an advantage when

trying to resolve issues on behalf of clients. In some cases, you’re able to have a direct

conversation with the developers trying to resolve a bug in the Shopify codebase.2

�Summary
To wrap up this chapter (and the substantive portion of this book), I want to emphasize

how much I see the collaborative nature of Shopify’s partner ecosystem as key to the

platform’s success. In my years working on the platform, I have almost without exception

2 As an example, check out https://github.com/Shopify/active_shipping/pull/170#issuecom
ment-50399499, where I was able to work directly with the Shopify developers responsible for the
shipping logic to resolve a problem for a client of ours.

CHAPTER 11  COLLABORATIVE THEME DEVELOPMENT

https://www.shopify.com/partners/blog/partner-events
https://github.com/Shopify/active_shipping/pull/170#issuecomment-50399499
https://github.com/Shopify/active_shipping/pull/170#issuecomment-50399499

224

been greeted with warmth, patience, and helpfulness from others in the Shopify

community as I’ve reached out with questions or requests.

Simply pinging a fellow expert on Twitter or dropping someone a line via e-mail has

led to fruitful discussions, interesting client work, and the occasional friendship, as it

turns out that most people are happy to discuss their work and share what they know.

Take @gavinballard on Twitter as an example—he’s always keen to chat Shopify and

greet new followers!

CHAPTER 11  COLLABORATIVE THEME DEVELOPMENT

225
© Gavin Ballard 2017
G. Ballard, The Definitive Guide to Shopify Themes, DOI 10.1007/978-1-4842-2641-4

A, B, C, D, E, F, G
Cart pages

design, 130
editable list, 132–134
implementation, 130
shipping cost calculator, 135–137, 139
upsell offer, 139–140

Category pages, 106
Checkout

merchants, 141
Shopify Plus, 143
store pickup selector, 143, 145

Collaborative deployment processes
DeployBot, 210
development and

live themes, 209
Theme Kit/Slate, 208–209
version control, 206–207

Collection pages
alternative views, 119, 121
category-level filtering, 122, 124
design, 106–107
filtering, 109
functionality, 113, 115–116
nested category, 108
pagination, 110, 112
product categorization, 109
product listings, 116, 118–119
progressive enhancement, 126
sorting, 109
tag-based filtering, 124–125

types, 108
views, 110

Content pages, 145
Custom collections, 108

H
Home page

brand personality, 95–96
collection page (see Collection pages)
design, 95
dynamic sections, 98–99
hero image, 99, 101–102, 104–105
implementation, 98
product range, 96–97

I, J, K
Information hierarchy, 64–66

L
Layout and navigation

Ecommerce sites, 46
elements, 45
headers, 48–49, 51
implementation, 53, 55–56
mega-menus, 56–58
product data, 44
products, 52
site footers, 59, 61
theme scaffolds, 42

Index

226

M, N, O
Manual collections, 108
Microdata, 168–169

P, Q, R
Performance optimization techniques

asset concatenation, 194, 196,
198–199

asset minification, 199–200
HTTP requests, 189
image optimization, 191–192, 194
measuring tools, 184
odds and ends, 200–201
page simplification, 190
PageSpeed Insights, 184–185
page weight, 188
speed matters, 181–182
theme performance metrics, 188
time to load, 189
WebPageTest.org, 186–187
Yahoo YSlow, 185

Product pages
alternate page templates, 90–92
cart form, 72–73, 75–76
Ecommerce store, 63
garment care information, 85–87
images

code implementation, 66, 68
design, 69
filters, 70
lightboxes, 70
zooming product, 70

information hierarchy, 64–66
mobile experience, 87–88, 90
product information, 83–84

recommended products, 78, 80, 82
related vs. alternate products, 77

Progressive enhancement, 31

S
Search engine optimization (SEO)

duplicate content, 166–167
HTML, 165
JSON-LD, 170–171
keywords and content, 165
microdata, 168–169
off-page vs. on-page, 164
Schema.org vocabulary, 167–168
structured data, 167

Shopify theme
asset files, 6–7
design, 25, 27–28
development

defensive and modular
programming, 35

document things, 31, 33–34
Liquid snippet, 30
progressive enhancement, 31

development stores, 9–10
Grunt and Gulp, 20, 22
installation, 1–2
Liquid, 5–6
local development environment, 11–13
process

client and project match, 37
client investment, 38
expectation setting, 38
iterative development, 38
user testing, 39–40

Slate, 22, 24

Index

227

structure, 2–4
Theme Kit, 13, 15
version control system, 15–16, 18–19

Smart collections, 109
Social sharing

integrating sharing, 178
Open Graph markup

adding, 172
testing, 173

scattergun approaches, 177
Twitter Card markup

adding, 175
validation, 176

Store, Shopify theme
community discussion, 221–222
ecosystem, 219–220
framework-ize, 218
GitHub, 223
IRL events, 223
Liquid and content guidelines, 216
marketplaces, 218
open-source, 219
process, 215
revenue split models, 216
review process, 214
Themes Team, 216
turbo theme, 217–218

T, U
Theme settings

acquisition, 157
checkbox setting, 148
conversion, 157
default filter, 155
distributed themes, 150
empirical demand, 157
go hard/go home, 158
guidelines, 151
higher authority, 157
i18n and l16n, 156
iteration pattern, 152–153
JavaScript, 160
limitations, Shopify themes, 158
localization matters, 156
multiple currency, 160
multi-use themes, 149
one-off themes, 149
preprocessed files, 154–155
themes translatable, 159–160

V, W, X, Y, Z
Version control system, Git

feature branch, 18–19
Shopify themes, 16, 18

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: A Shopify Theme Primer
	 Anatomy of a Shopify Theme
	 Theme Structure
	 Liquid, Shopify’s Templating Language
	 Assets

	 Working with Shopify Themes
	 Setting Up Development Stores

	 Summary

	Chapter 2: Tools and Workflow
	 Moving to Local Development
	 Synchronizing Changes to Shopify
	 Introducing Theme Kit
	 Using Theme Kit

	 Putting Your Theme Under Version Control
	 A Git Workflow for Shopify Themes
	 Theme Feature Branches with Git

	 Slate and Theme Build Tools
	 Grunt and Gulp: Automated Task Runners
	 Other Workflow Automation Tools
	 Introducing Slate

	 Summary

	Chapter 3: Principles and Process
	 Principles of Design
	 Understanding Design Goals
	 Design for Humans
	 Design for Different Contexts

	 Principles of Development
	 Keep It Simple
	 Utilize Progressive Enhancement
	 Document Things
	 Use Defensive and Modular Programming

	 Principles of Process
	 Client and Project Match
	 Iterative Development and Client Investment
	 Expectation Setting
	 User Testing

	 Summary

	Chapter 4: Designing Theme Foundations
	 A Starting Point
	 Theme Scaffolds
	 Sample Product Data
	 Your Theme’s Layout

	 Designing Layout and Navigation
	 The Site Header
	 Making the Header Configurable

	 The Navigation Menu
	 Navigation Menu Design
	 Mega-Menus

	 The Site Footer

	 Summary

	Chapter 5: Designing Product Pages
	 The Product Page
	 Product Page Information Hierarchy
	 Adding Product Imagery
	 Design Considerations for Product Images
	 Shopify’s Image Filters
	 Zoomable Product Images and Product Lightboxes
	 Product Video

	 Adding Product Details and the Add To Cart Form
	 Product Details and Description
	 Add To Cart Form

	 Adding Recommended Products
	 Related versus Alternate Products
	 Recommended Products on Shopify

	 Improving the Product Page
	 Adding Product Information
	 Managing Additional Information with Metafields

	 Improving the Mobile Experience
	 Creating Alternate Page Templates

	 Summary

	Chapter 6: Designing Home and Collection Pages
	 The Home Page
	 Design Goals for Home Pages
	 Conveying the Brand
	 Conveying Your Product Range
	 Clear Next Actions

	 Implementing a Home Page
	 Getting Started with Home Page Sections
	 Adding a Hero Image Section

	 Collection Pages
	 Design Goals for Collection Pages
	 Shopify Collection Page Concepts
	 Categorization in Shopify
	 Filtering
	 Sorting
	 Pagination
	 Views
	 Putting It All Together

	 Implementing a Collection Page
	 Adding a Product Loop with Pagination
	 Adding Sort Functionality
	 Alternative Views of Product Listings
	 Adding Alternative Views to the Example Theme
	 Adding Category-Level Filtering
	 Adding Tag-Based Filtering
	 Progressively Enhancing the Collection Page

	 Summary

	Chapter 7: Carts, Checkouts, and Content
	 The Cart Page
	 Design Goals for Cart Pages
	 Implementing a Cart Page
	 Adding an Editable List of Cart Contents
	 Adding a Shipping Cost Calculator
	 Adding an Upsell Offer

	 The Checkout
	 Customizing the Checkout with Shopify Plus
	 Adding a Store Pickup Selector in the Checkout

	 Content Pages
	 Summary

	Chapter 8: Theme Settings and Going Global
	 Theme Settings
	 What Should Be Made a Setting?
	 Settings for “One-Off” Themes
	 Settings for “Multi-Use” Themes
	 Settings for “Distributed” Themes

	 Theme Setting Guidelines
	 Using Settings in Your Themes
	 The Iteration Pattern
	 Using Settings with Preprocessed Files
	 The Default Filter

	 Going Global
	 The Difference Between i18n and l16n
	 Locales, Not Languages

	 Why Localization Matters
	 Acquisition
	 Conversion
	 Required by Higher Authority
	 Empirical Demand

	 Go Hard or Go Home
	 Limitations of Shopify Themes
	 Making Themes Translatable
	 Don’t Forget JavaScript!

	 Presenting Customers with Multiple Currencies

	 Summary

	Chapter 9: SEO and Social Sharing
	 Search Engine Optimization (SEO)
	 Off-Page versus On-Page
	 Semantic HTML
	 Keywords and Content
	 Keyword Analysis
	 Duplicate Content

	 Structured Data
	 The Schema.org Vocabulary
	 Microdata
	 Enter JSON-LD

	 Social Sharing
	 Open Graph Markup
	 Adding Open Graph Markup
	 Testing Open Graph Markup

	 Twitter Card Markup
	 Adding Twitter Card Markup
	 Validating Twitter Card Markup

	 Caring about Sharing
	 Deciding Which Share Options to Support
	 Integrating Sharing

	 Summary

	Chapter 10: Performance
	 Why Performance Matters
	 Why Performance Gets Ignored
	 Performance Analysis and Metrics
	 Performance Measuring Tools
	 PageSpeed Insights
	 Yahoo YSlow
	 WebPageTest.org
	 Which Tool to Use?

	 Theme Performance Metrics
	 Key Metric 1: Page Weight
	 Key Metric 2: Number of HTTP Requests
	 Key Metric 3: Time to Load

	 Performance Optimization Techniques
	 Technique 1: Page Simplification
	 Technique 2: Image Optimization
	 Image Optimization Basics
	 Automating Image Optimization
	 Pushing Boundaries with Lossy Image Optimization

	 Technique 3: Asset Concatenation
	 Large JavaScript Libraries
	 Assets Using Theme Settings
	 Assets Used Only on a Specific Page
	 Automatic Concatenation
	 Image Concatenation
	 Future Developments

	 Technique 4: Asset Minification
	 How to Minify Your Assets

	 Technique 5: Odds and Ends
	 Implement Device-Responsive Design
	 Use Lazy Loading
	 Use Conditional Loading for Shims/Fallbacks
	 Master the “async” Attribute
	 Check for Asset 404s and 301s

	 Evaluating Performance Improvements
	 Final Thoughts
	 Summary

	Chapter 11: Collaborative Theme Development
	 Collaborating on Themes
	 Collaborative Workflows with Version Control
	 Collaborative Deployment Processes
	 Cloning Shopify Stores

	 The Shopify Theme Store
	 Getting In to the Theme Store
	 Familiarize Yourself with the Process
	 Have a Novel or Unique Angle
	 Work Closely with the Themes Team
	 Follow the Theme Liquid and Content Guidelines
	 Be Ready for Support

	 What to Do if Your Theme Doesn’t Make It
	 Go It Alone
	 Use Alternative Theme Marketplaces
	 Framework-ize
	 Use Open-Source

	 Leveraging the Shopify Ecosystem
	 Where to Join
	 Official Shopify Channels
	 Other Resources
	 IRL Events
	 Use Open-Source

	 Summary

	Index

