
www.allitebooks.com

http://www.allitebooks.org

 The Gourmet
iOS Developer’s

Cookbook

www.allitebooks.com

http://www.allitebooks.org

This page intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

 New York • Boston • Indianapolis • San Francisco
Toronto • Montreal • London • Munich • Paris • Madrid
Cape Town • Sydney • Tokyo • Singapore • Mexico City

 The Gourmet
iOS Developer’s

Cookbook
Even More Recipes for Better

iOS App Development

 Erica Sadun

www.allitebooks.com

http://www.allitebooks.org

 Editor-in-Chief

Mark Taub

 Senior Acquisitions
Editor

Trina MacDonald

 Senior Development
Editor

Chris Zahn

 Managing Editor

Kristy Hart

 Senior Project Editor

Betsy Gratner

 Copy Editor

Kitty Wilson

 Indexer

Tim Wright

 Proofreader

Sarah Kearns

 Technical Reviewers

Mark Granoff
 Mike Greiner
 Rich Wardwell

 Editorial Assistant

Olivia Basegio

 Cover Designer

Chuti Prasertsith

 Compositor

Nonie Ratcliff

 Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

 The Gourmet iOS Developer’s Cookbook: Even More Recipes for Better iOS App
Development is an independent publication and has not been authorized, sponsored,
or otherwise approved by Apple Inc.

 Apple, the Apple logo, Apple TV, Apple Watch, Cocoa, Cocoa Touch, eMac, FaceTime,
Finder, iBook, iBooks, iCal, Instruments, iPad, iPad Air, iPad mini, iPhone, iPhoto,
iTunes, the iTunes logo, iWork, Keychain, Launchpad, Lightning, LocalTalk, Mac, the
Mac logo, MacApp, MacBook, MacBook Air, MacBook Pro, MacDNS, Macintosh, Mac
OS, Mac Pro, MacTCP, the Made for iPad logo, the Made for iPhone logo, the Made for
iPod logo, Metal, the Metal logo, the Monaco computer font, Multi-Touch, the New York
computer font, Objective-C, OpenCL, OS X, Passbook, Pixlet, PowerBook, Power Mac,
Quartz, QuickDraw, QuickTime, the QuickTime logo, Retina, Safari, the Sand computer
font, Shake, Siri, the Skia computer font, Swift, the Swift Logo, the Textile computer
font, Touch ID, TrueType, WebObjects, WebScript, and Xcode are trademarks of Apple,
Inc., registered in the United States and other countries. OpenGL and the logo are
registered trademarks of Silicon Graphics, Inc. The YouTube logo is a trademark of
Google, Inc. Intel, Intel Core, and Xeon are trademarks of Intel Corp. in the United
States and other countries.

 The author and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors
or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained
herein.

 For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs; and
content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.
com or (800) 382-3419.

 For government sales inquiries, please contact governmentsales@pearsoned.com .

 For questions about sales outside the U.S., please contact international@pearsoned.
com .

 Visit us on the Web: informit.com/aw

 Library of Congress Control Number: 2015935369

 Copyright © 2015 Pearson Education, Inc.

 All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior to
any prohibited reproduction, storage in a retrieval system, or transmission in any form
or by any means, electronic, mechanical, photocopying, recording, or likewise. To
obtain permission to use material from this work, please submit a written request to
Pearson Education, Inc., Permissions Department, 200 Old Tappan Road, Old Tappan,
New Jersey 07675, or you may fax your request to (201) 236-3290.

 ISBN-13: 978-0-13-408622-4
 ISBN-10: 0-13-408622-8

 Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,
Indiana.

 First printing: May 2015

www.allitebooks.com

http://www.allitebooks.org

❖

 Dedicated with great affection to Chris Zahn:
editor, enabler, and wonderful person.

❖

www.allitebooks.com

http://www.allitebooks.org

vi Contentsvi Contents

 Contents

 Preface xiii

 1 Media 1

Speech 1

Other Options 3

Delegate Callbacks 3

Dictation 5

Creating Barcodes 5

Filter Parameters 5

Building Codes 6

Reading Barcodes 8

Listening for Metadata Objects 10

Responding to Metadata 11

Extracting Bounds 13

Enhancing Recognition 14

Detecting Faces 14

Building AVFoundation Movies 14

Creating a Pixel Buffer 16

Drawing into the Pixel Buffer 17

Expressive Drawing 18

Building Movies from Frames 19

Adding Images to Movies 23

Wrap-up 24

 2 Dynamic Typography 25

Type Size and User Needs 25

How Dynamic Type Works 25

Listening for Type Updates 28

Handling Dynamic Type with Attributes 31

Scanning for Text Style Ranges 32

Applying Text Style Ranges 34

Attribute-Ready Dynamic Elements 35

Custom Fonts Faces 36

Dynamic Text Views 37

Custom Sizing 38

www.allitebooks.com

http://www.allitebooks.org

viiContents viiContents

Font Descriptors 39

Descriptor Challenges 40

Fonts with Multiple Variations 41

Using String Attributes to Modify Fonts 42

Dynamic Type Gotchas 43

Wrap-up 43

 3 Text Kit 45

Creating Complex Text Layouts 45

Glyphs 46

Text Storage 55

Layout Managers 56

Text Containers 56

Adaptive Flow 58

Insets 60

Exclusion Paths 60

Bounding Rectangles 62

Using Text Kit to Add Touch to Labels 63

Establishing Text Kit 63

Synchronizing 64

Translating Coordinates 65

Glyphs and Characters 66

Checking for Links 67

Adding Visual Feedback 67

Draggable Exclusion Zones 69

Building PDFs with Text Kit 71

Printing Text View Data 73

Printing PDF Data 74

Wrap-up 74

 4 Attributed Strings and Document Containers 75

Class Enhancements 75

String Attachments 77

Building Attributed Strings from HTML 78

Document Type Dictionaries 79

Converting HTML Source to Attributed Strings 80

www.allitebooks.com

http://www.allitebooks.org

viii Contentsviii Contents

Converting Attributed Strings to Document
Representations 81

Generating HTML from Attributed Strings 82

Markup Initialization 83

RTF and RTFD 83

The RTFD Container 84

Initializing Attributed Strings from a File 84

Converting RTFD Text to Data 85

Writing RTFD Containers from Data 86

Inspecting Attributes 87

Establishing Document Attributes 89

Enhancing Attributed Strings 91

Returning Copies with New Attributes 92

Adjusting Attributes 93

Extending Mutable Attributed Strings 94

Text Ranges 95

Calculating Positions 95

Position Geometry 95

Updating Selection Points 97

Hardware Key Support 97

Wrap-up 99

 5 Animation 101

Keyframe Animation 101

Building Physics with Keyframes 103

Blocking Animators 105

UIKit Spring-Based Animations 106

Practical Uses for Spring Animations 108

System Animations 109

Motion Effects 109

Building Planes 110

Shadow Effects 111

Custom Transition Animations 113

Delegation 114

Building Transitioning Objects 114

www.allitebooks.com

http://www.allitebooks.org

ixContents ixContents

Implicit Animations 116

Building an Animation-Ready Layer 116

Building a View Around a Layer 118

Timing 118

Coordinating Animations 119

Building Implicit Completion Blocks 120

Animating Custom Properties 121

Intercepting Updates 122

Drawing Properties 123

Wrap-up 124

 6 Dynamic Animators 125

Physics-Based Behaviors 125

Building Dynamics 126

Detecting Pauses 127

Creating a Frame-Watching Dynamic Behavior 131

Implementing Snap Zones 133

Leveraging Real-World Physics 135

Connecting a Gravity Behavior to Device
Acceleration 137

Creating Boundaries 138

Enhancing View Dynamics 138

Custom Behaviors 139

Creating Custom Dynamic Items 139

Subverting Dynamic Behaviors 141

Better Custom Dynamic Behaviors 142

Custom Secondary Behaviors 144

Collection Views and Dynamic Animators 147

Custom Flow Layouts 147

Returning Layout Attributes 148

Updating Behaviors 149

Building a Dynamic Alert View 150

Connecting Up the Jelly 150

Drawing the View 152

Deploying Jelly 154

Wrap-up 154

www.allitebooks.com

http://www.allitebooks.org

x Contentsx Contents

 7 Presentations 155

Alerts 155

Class Deprecations 155

Building Alerts 156

Enabling and Disabling Alert Buttons 161

Adding Text Fields 162

Mask Views 164

Shape Layer Masking 164

Building Mask Views 166

Building Effect Views 169

Building a Blur Effect 170

Adding Vibrancy Effects 171

Animating Effect Views 172

Building Popovers 175

Supporting Bubbles 176

Presenting Popovers 177

Wrap-up 177

 8 Shape Magic 179

How to Shape a View 179

Expanding Beyond Circles 180

Resizing Bezier Paths 180

Building a Bezier-Based Shape Image View 184

Working with Unclosed Shapes 185

Adding Borders to Shaped Views 187

Building Shaped Buttons 190

Adding Attention-Grabbing Animations to Shaped
Views 193

Wrap-up 199

 9 Adaptive Deployment 201

Traits 201

Trait Properties 202

Defining Traits 202

Combining Trait Collections 203

Designing for Traits 204

xiContents xiContents

UIScreen Properties 205

Coordinate Spaces 205

Application Frame 206

Screen Bounds 206

Scale 207

Rotation 207

Size Classes and Assets 208

Basic Deployment 208

UIKit and Image Views 210

The UIImageAsset Class 210

Building Images from PDFs 211

Overriding Trait Collections 214

Building Side-by-Side iPhone Split Views 215

A Bit More About iOS 8 Split View Controllers 218

Wrap-up 219

 10 Development Helpers 221

All the Lorems 221

Placeholder Text 221

Image Ipsums 223

Generating Random User Data 225

Bulk Names 225

Generating Random Feeds 227

Random Everything 228

Directives 229

Converting Comments to Warnings 229

Warnings 231

Testing for the Simulator 232

Errors 232

Testing for Inclusion 233

Messages 234

Wrapping Pragmas 234

Overriding Diagnostics 235

Unused Variable Warnings 235

Marking Non-null and Nullable Items 236

xii Contentsxii Contents

Developer Tweaks 236

Saving Files from the Simulator 237

Tighter Logging 238

Wrap-up 238

 11 A Taste of Swift 239

Swift Versus Objective-C 239

Building iOS Apps in Swift 240

Optionals 243

Inferred Types 244

The Optional Enumeration 245

Unwrapping Optionals 246

Assigning Values to Non-optionals 248

Cocoa Touch Patterns 248

Hybrid Language Development 251

Calling Objective-C from Swift 252

Accessing Classes 252

Calling Swift from Objective-C 253

Preparing Swift for Objective-C 254

Class Descent 255

Building the Basics 256

Watching Progress 257

Learning Swift 259

Wrap-up 260

 Index 261

 Preface

 Developers can never have too many useful ideas to draw from, and this latest entry in the
bestselling Cookbook series is filled with delicious possibilities. The Gourmet iOS Developer’s
Cookbook offers a curated selection of programming recipes to inspire your everyday iOS
programming efforts. This volume serves up a new banquet of turnkey solutions for projects big
and small. It offers a fresh collection of versatile solutions that promise to add spice to
your code.

 The goal here is simple. Each chapter should enable you to walk away with fresh ideas and
master techniques off the beaten track. Whether you’re reading about new takes on old tech-
nologies or completely fresh APIs, here’s hoping you’ll say, “Hey, I didn’t know you could do
that!” or “That’s really cool.”

 The Gourmet iOS Developer’s Cookbook offers a deep dive into the nonobvious. Its chapters cover
techniques and technologies that skew away from the common and enable you to explore new
development cuisines. It’s not a book for those just learning how to cook apps. It offers tasty
recipes for the iOS enthusiast who wants to builds fragrant, delicious, and exotic routines.

 How This Book Is Organized

 This book offers practical iOS development recipes. Here’s a rundown of what you’ll find in this
book’s chapters:

 ■ Chapter 1 , “Media” —This chapter explores advances that have made their way into
AVFoundation over the past few years and shows how you can integrate these features
into your own applications. In this chapter, you’ll read about speech generation, barcode
recognition (which enables you to leverage the device camera to recognize a wide range
of barcode styles), and application of modern language features to AVFoundation movie
creation.

 ■ Chapter 2 , “Dynamic Typography” —iOS’s overhauled interface has shifted emphasis
away from buttons and bars to a sparser and more text-centered experience, where text
components have become even more critical parts of UI design. This chapter introduces
ways your text can update itself automatically to match user preferences and expectations
and discusses some critical lessons to be learned along the way.

 ■ Chapter 3 , “Text Kit” —Flexible text presentation is one of the most exciting and
developing areas of iOS. With every new iOS release, these APIs have grown, matured,
and expanded. Most UIKit interface classes now support rich text features. In the most
modern iOS releases, that support has expanded to a suite of layout classes that continue
to add mature type and frame settings to create flexible presentations.

 ■ Chapter 4 , “Attributed Strings and Document Containers” —Over the past few years,
attributed strings have grown enormously in power and potential, and they now provide
support for HTML and RTF rich text documents. Attributed strings provide seamless
polymorphism between text presentation and representation. Text design now better
migrates to the iOS screen and from iOS to other destinations. This chapter explores
those expanded possibilities.

xiv Preface

 ■ Chapter 5 , “Animation” —Of the technologies updated in the past couple years, iOS
animation is one of the ones that has been most enhanced by new APIs. New dynamic
styles enable your interfaces to integrate real-world physics for better and more exciting
presentations and interactions. This chapter begins the discussion of animation features,
introducing some of the profound updates that you’ll use in your apps.

 ■ Chapter 6 , “Dynamic Animators” —Dynamic animators are some of the most exciting
elements of iOS. Their physics-based view behaviors create lively and curious interfaces.
At the same time, they can be difficult to work with. In this chapter, you’ll learn how to
incorporate these classes into your iOS apps for the best possible results and the fewest
headaches.

 ■ Chapter 7 , “Presentations” —In the latest versions of iOS, user alerts are fully
re-imagined and popovers are now universally available. Special effects highlight
presentations to provide the greatest visual impact when you overlay content for modal
interaction. This chapter gets you up to speed on these modern techniques.

 ■ Chapter 8 , “Shape Magic” —Non-rectangular views enable your apps to expand
possibilities with fun and clever effects. For example, you might draw attention to a view
by animating a halo behind it. Or you might use shapes to better stack buttons together
for visual seamlessness. This chapter covers many advanced shape techniques you can
use to add pizzazz to your user interfaces.

 ■ Chapter 9 , “Adaptive Deployment” —As the iOS family continues to grow, apps
should automatically support all new displays, orientations, and screens. Although iOS
targets are not nearly as splintered as Android’s multitude, interfaces face numerous
configurations for universal deployment. A truly adaptive app gracefully responds with a
well-designed and engaging interface, ready for the user at any size. This chapter explores
the basics of these new technologies and the APIs you need to learn for moving your
apps forward.

 ■ Chapter 10 , “Development Helpers” —At times, it helps to have methods, functions,
and techniques to help you through the development process. Together, the solutions
in this chapter support you when building apps. They enable you to speed through your
development day to better arrive at the app you’re working on.

 ■ Chapter 11 , “A Taste of Swift” —Apple introduced the Swift programming language
at the June 2014 WWDC Keynote. Swift offers a performance-tuned type-safe modern
programming language. Today, many development fundamentals have coalesced,
although the language and toolset have continued to evolve. This chapter surveys the
base essentials of Swift development, providing a taste of this new technology. You won’t
learn the language in this chapter. Instead, you’ll explore concepts and development
issues that affect you as an iOS developer to get a sense of where this important
technology is going.

 About the Sample Code

 This book follows the trend I started in my iOS Developer’s Cookbook series. This book’s sample
code always starts off from a single main.m file, where you’ll find the heart of the application

xvPreface

powering the example. This is not how people normally develop iOS or Cocoa applications—
nor how they should be developing them. It’s hard to tell a story when readers must search
through many files and try to find out what is relevant and what is not. Offering a single
launching point concentrates the story, allowing access to an idea from a coherent starting
point.

 Getting the Sample Code

 You’ll find the source code for this book at https://github.com/erica/iOS-Gourmet-Cookbook
on the open-source GitHub hosting site. There, you’ll find a chapter-by-chapter collection of
source code that provides examples of the material covered in this book.

 Retrieve sample code either by using git tools to clone the repository or by clicking GitHub’s
Download button, which was at the right center of the page when I wrote this book. It enables
you to retrieve the entire repository as a ZIP archive or tarball.

 Contribute!

 Sample code is never a fixed target. It continues to evolve as Apple updates its SDK and the
Cocoa Touch libraries. Get involved. Pitch in by suggesting bug fixes and corrections and by
expanding the code that’s on offer. GitHub allows you to fork repositories and grow them with
your own tweaks and features and then share them back to the main repository. If you come
up with a new idea or approach, let me know.

 Getting GitHub

 GitHub (http://github.com) is the largest git-hosting site, with more than 150,000 public repos-
itories. It provides both free hosting for public projects and paid options for private projects.
With a custom web interface that includes wiki hosting, issue tracking, and an emphasis on
social networking among project developers, it’s a great place to find new code or collaborate
on existing libraries. Sign up for a free account at the GitHub website, where you can then copy
and modify this repository or create your own open-source iOS projects to share with others.

 Contacting the Author

 If you have any comments or questions about this book, please drop me an e-mail message at
 erica@ericasadun.com or stop by the GitHub repository and contact me there.

https://github.com/erica/iOS-Gourmet-Cookbook
http://github.com

 Acknowledgments

 My sincere thanks go out to Trina MacDonald, Chris Zahn, and Olivia Basegio, along with the
entire Addison-Wesley/Pearson production team—specifically Kristy Hart, Betsy Gratner, Kitty
Wilson, Nonie Ratcliff, and Chuti Prasertsith—and my technical editors Rich Wardwell, Mark
Granoff, and Mike Greiner.

 My gratitude extends to everyone who helped read through early drafts and provide feedback.
Specific thanks go out to Oliver Drobnik, Hamish Allan, Sebastian Celis, Maurice Sharp, Wess
Cope, Jeremy Tregunna, Ken Lindsay, Cameron Banga, John Grosvenor, Matthias Neeracher,
Chris Woodard, David Green, Alexander Kempgen, Chris Flesner, Remy “psy” Demarest, Ken
Ferry, Mike Ash, Kevin Ballard, Phil Holland, August Joki, and everyone else who contributed to
this effort. If I have omitted your name here, please accept my apologies.

 Special thanks also go to my husband and kids. You are wonderful.

 About the Author

 Erica Sadun is the bestselling author, coauthor, and contributor to several dozen books on
programming, digital video and photography, and web design, including the widely popular
 The Core iOS 6 Developer’s Cookbook , fourth edition. She has blogged at TUAW.com, O’Reilly’s
Mac Devcenter, Lifehacker, and Ars Technica. In addition to being the author of dozens of
iOS-native applications, Erica holds a Ph.D. in computer science from Georgia Tech’s Graphics,
Visualization and Usability Center. A geek, a programmer, and an author, she’s never met a
gadget she didn’t love. When not writing, she and her geek husband parent three geeks-in-
training, who regard their parents with restrained bemusement when they’re not busy rewiring
the house or plotting global domination.

 Editor’s Note: We Want to Hear from You!

 As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we’re doing right, what we could do better, what areas you’d
like to see us publish in, and any other words of wisdom you’re willing to pass our way.

 You can e-mail or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

 Please note that I cannot help you with technical problems related to the topic of this book,
and that due to the high volume of mail I receive, I might not be able to reply to every
message.

 When you write, please be sure to include this book’s title and author as well as your name and
phone or e-mail address. I will carefully review your comments and share them with the author
and editors who worked on the book.

 E-mail: trina.macdonald@pearson.com

 Mail: Trina MacDonald
Senior Acquisitions Editor
Addison-Wesley/Pearson Education, Inc.
75 Arlington St., Ste. 300
Boston, MA 02116

 1
 Media

 Each recent iOS iteration has delivered intriguing updates to the media capabilities of
AVFoundation. This chapter explores some of the advances that have made their way into this
framework over the past few years and shows you how you can integrate these features into
your own applications. You will read about speech generation, the feature that exposes a text-
to-speech API for developers; barcode recognition, which enables you to leverage the device
camera to recognize a wide range of barcode styles; and block-based movie creation, which
applies modern language features to a traditional AVFoundation task.

 Speech

 In iOS 7, Apple finally exposed a text-to-speech API for developers. Until that time, develop-
ers could either leverage license-heavy third-party libraries or develop in-house workarounds,
often using App Store–unsafe routines that could not be sold as part of apps. With just a few
AVFoundation APIs, synthesized speech became a reliable component, ready for general use
and distribution.

 Text-to-speech (TTS) transforms string snippets into localized audio, tuned to the accents of
your users. TTS is highly useful for apps where the device screen may not be consulted or the
user might not own an Apple watch. For example, when using exercise and navigation apps,
an iOS device may be placed out of a user’s line of sight. The unit might be set down next to a
driver or stored in a pocket or backpack while the application is active and running. For these
kinds of uses, audio cues act as a critical interface for communicating with users.

 Listing 1-1 implements a barebones text-to-speech method. You pass a string to it, and it
invokes TTS playback. This creates a single reference point for speech, enabling you to focus on
application semantics instead of speech production. During execution, this function performs
the following tasks:

2 Chapter 1 Media

 ■ Creating an utterance — Utterances are the basic unit of iOS speech. Although you
can pass quite a lot of text at once, each utterance should be short and contained—
a simple word or phrase, as the class name suggests. For greatest fluency, don’t try to
split sentences down into word-by-word playback—it. will. sound. pretty. bad. Instead,
let the synthesizer pick up on sentence structure and punctuation cues to create the most
natural-sounding output.

 ■ Adjusting the playback rate — At its default rate, speech is quite rapid. Consider lowering
this to about 20%. The way the request is structured in Listing 1-1 enables you to choose
a multiplier from 0.0 to 1.0. This ensures that the rate always falls between minimum
and maximum levels.

 ■ (Optional) Selecting a voice — Listing 1-1 retrieves the current language code and uses
it to establish the spoken voice. If you do not supply a voice, the system default voice
is used. You can query all available voices with the AVSpeechSynthesisVoice class
 speechVoices method. At this time, you cannot differentiate programmatically between
male and female voices.

 ■ Speaking — Listing 1-1 concludes by creating a speech synthesizer and requests that it
speak the utterance.

 Listing 1-1 Speaking Text

 - (void) performSpeech: (NSString *) string
 {
 // Establish a new utterance
 AVSpeechUtterance *utterance = [AVSpeechUtterance
 speechUtteranceWithString:string];

 // Slow down the rate.
 CGFloat rateRange = AVSpeechUtteranceMaximumSpeechRate –
 AVSpeechUtteranceMinimumSpeechRate;
 utterance.rate = AVSpeechUtteranceMinimumSpeechRate + rateRange * _rate;

 // Set the language
 NSString *languageCode = [[NSLocale currentLocale]
 objectForKey:NSLocaleLanguageCode] ? : @"en-us";
 utterance.voice = [AVSpeechSynthesisVoice voiceWithLanguage:languageCode];

 // Speak
 AVSpeechSynthesizer *synthesizer = [[AVSpeechSynthesizer alloc] init];
 synthesizer.delegate = self;
 [synthesizer speakUtterance:utterance];
 }

3Speech

 Other Options

 You optionally set an utterance’s pitchMultiplier , which adjusts the playback voice’s
pitch without affecting its playback rate. Multipliers range from 0.5 (quite a low voice) to 2.0
(squeaky). This value cannot be adjusted after you submit the utterance to the synthesizer for
playback. Whatever level you initially establish persists.

 Although the class offers a volume property as well, the value you assign acts independently of
the system volume. Tweak the volume to create sotto voce or emphasis. Users are still welcome
to use the hardware toggle to fine-tune overall audio levels.

 Delegate Callbacks

 The AVSpeechSynthesizer class offers several delegate callbacks for catching when speech
starts and ends. One method passes the range of characters currently being spoken, enabling
you to follow along on a word-by-word basis during speech:

 - (void) speechSynthesizer: (AVSpeechSynthesizer *)synthesizer
 willSpeakRangeOfSpeechString:(NSRange)characterRange
 utterance:(AVSpeechUtterance *)utterance
 {
 NSString *substring = [utterance.speechString
 substringWithRange:characterRange];
 NSLog(@"Speaking: %@", substring);
 }

 At times, you want to delay performing actions until an entire utterance has finished. For
example, you might start by disabling certain UI elements before speech and then re-enable
them after. The following snippet offers an example of what this process might look like in
your code:

 self.navigationItem.rightBarButtonItem.enabled = NO;
 [SpeechHelper speakString:warningString withCompletion:^{
 self.navigationItem.rightBarButtonItem.enabled = YES;
 }];

 You can easily create a custom class that waits for speech to end and then executes an optional
completion block. The built-in speechSynthesizer:didFinishSpeechUtterance: delegate
method enables you to catch the end of each speech sequence so you can perform post-speech
sequences. Listing 1-2 shows the details of how you might approach this.

 Listing 1-2 Implementing Speech Completion Blocks

 typedef void (^SpeechCompletionBlock)();

 @interface SpeechHelper () <AVSpeechSynthesizerDelegate>
 @property (nonatomic, strong) SpeechCompletionBlock completion;
 @end

4 Chapter 1 Media

 @implementation SpeechHelper
 - (void) speechSynthesizer:(AVSpeechSynthesizer *)synthesizer
 didFinishSpeechUtterance:(AVSpeechUtterance *)utterance
 {
 if (_completion)
 _completion();
 }

 - (void) performSpeech: (NSString *) string
 {
 // Establish a new utterance
 AVSpeechUtterance *utterance = [AVSpeechUtterance
 speechUtteranceWithString:string];

 // Slow down the rate
 CGFloat rateRange = AVSpeechUtteranceMaximumSpeechRate –
 AVSpeechUtteranceMinimumSpeechRate;
 utterance.rate = AVSpeechUtteranceMinimumSpeechRate +
 rateRange * _rate;

 // Set the language
 NSString *languageCode = [[NSLocale currentLocale]
 objectForKey:NSLocaleLanguageCode] ? : @"en-us";
 utterance.voice =
 [AVSpeechSynthesisVoice voiceWithLanguage:languageCode];

 // Speak
 AVSpeechSynthesizer *synthesizer = [[AVSpeechSynthesizer alloc] init];
 synthesizer.delegate = self;
 [synthesizer speakUtterance:utterance];
 }

 - (void) speakString: (NSString *) string
 withCompletion: (SpeechCompletionBlock) completion
 {
 _completion = completion;
 [self performSpeech:string];
 }

 + (void) speakString: (NSString *) string
 withCompletion: (SpeechCompletionBlock) completion
 {
 [[self new] speakString:string withCompletion:completion];
 }
 @end

5Creating Barcodes

 Dictation

 iOS dictation APIs are the natural counterparts to text-to-speech elements. At the time of this
writing, they remain fixed behind private API walls, which means they are off-limits to App
Store merchandise. In an ideal future world, the private UIDictationController class would
become a public part of UIKit.

 Creating Barcodes

 The Quick Response code standard, better known as QR codes, produces a two-dimensional
barcode that visually represents text strings. A QR code uses a variety of square dots (aka
“modules”) to encode its information, conforming to the ISO/IEC 18004:2006 standard.

 In iOS 7, Apple introduced the Core Image filter to generate QR code. With it, you build QR
code images with almost no programming overhead. Before this filter, most developers relied
on third-party libraries, which could be cumbersome both for development as well as licensing.
 Figure 1-1 shows a simple QR code, generated and presented in an iOS application using the
Core Image filter.

 Figure 1-1 Core Image’s CIQRCodeGenerator filter enables you to roll your own QR codes with
just a few lines of code.

 Filter Parameters

 The Core Image CIQRCodeGenerator filter uses two parameters. inputMessage consists of
a data representation of a text string. inputCorrectionLevel controls the error correction
format used in the encoding. Select from low (“L”, 7%), medium, (“M”, 15%), quartile

6 Chapter 1 Media

(“Q”, 25%), and high (“H”, 30%) correction. Each percentage indicates a resilience level, which
determines how well a barcode responds to localized damage.

 For example, you might imagine someone accidentally ripping off the corner of a QR code or
obscuring parts of it (as in Figure 1-2). Built-in Reed-Solomon error correction ensures that the
high error-resistance representation used in this figure remains recognizable despite the damage
applied to it.

 Figure 1-2 This QR code remains readable even though the bottom-right corner is obscured.

 Building Codes

 Building a code takes just a few steps. You create a filter, set its correction level and input
message, and retrieve the resulting image:

 CIFilter *qrFilter = [CIFilter filterWithName:@"CIQRCodeGenerator"];
 [qrFilter setValue:@"H" forKey:@"inputCorrectionLevel"];
 NSData *stringData = [string dataUsingEncoding:NSUTF8StringEncoding];
 [qrFilter setValue:stringData forKey:@"inputMessage"];
 CIImage *result = [qrFilter valueForKey:@"outputImage"];

 There’s only one problem. The output image will be extremely small. The QR code generation
filter creates an image that uses one point for each square module. For the image in Figure 1-1 ,
that results in an image sized at 27 by 27 points:

 <CIImage: 0x8f0b0a0 extent [0 0 27 27]>

 You work around this by drawing the QR code into a larger context, and then you save the
results to a new UIImage . However, there’s one gotcha detail to be aware of, which you see in

7Creating Barcodes

 Figure 1-3 . Unless you disable interpolation, you’ll run into blurry results instead of the clear
ones you want to produce.

 Figure 1-3 Blurry QR codes result from drawing small images into large canvases without
disabling interpolation.

 Listing 1-3 implements a custom QRCodeGenerator class that generates QR code images from
a string and a size you supply. The implementation includes a line in its resizing method that
disables interpolation by setting the interpolation quality to none, avoiding the issues you see
in Figure 1-3 and instead returning the clear results shown in Figure 1-1 .

 Listing 1-3 Creating QR Code Images

 + (UIImage *) resizeImageWithoutInterpolation:(UIImage *)sourceImage
 size:(CGSize)size
 {
 UIGraphicsBeginImageContextWithOptions(size, NO, 0);
 CGContextSetInterpolationQuality(UIGraphicsGetCurrentContext(),
 kCGInterpolationNone);
 [sourceImage drawInRect:(CGRect){.size = size}];
 UIImage *result = UIGraphicsGetImageFromCurrentImageContext();
 UIGraphicsEndImageContext();
 return result;
 }

 + (UIImage *) imageWithCIImage: (CIImage *) aCIImage
 orientation: (UIImageOrientation) anOrientation
 {

8 Chapter 1 Media

 if (!aCIImage) return nil;

 CGImageRef imageRef = [[CIContext contextWithOptions:nil]
 createCGImage:aCIImage fromRect:aCIImage.extent];
 UIImage *image = [UIImage imageWithCGImage:imageRef
 scale:1.0 orientation:anOrientation];
 CFRelease(imageRef);

 return image;
 }

 + (UIImage *) qrImageWithString: (NSString *) string size: (CGSize) destSize
 {
 // Create filter
 CIFilter *qrFilter = [CIFilter filterWithName:@"CIQRCodeGenerator"];
 if (!qrFilter)
 {
 NSLog(@"Error: Could not load filter");
 return nil;
 }

 // Set correction level
 [qrFilter setValue:@"H" forKey:@"inputCorrectionLevel"];

 // Set input text
 NSData *stringData = [string dataUsingEncoding:NSUTF8StringEncoding];
 [qrFilter setValue:stringData forKey:@"inputMessage"];

 // Retrieve output image
 CIImage *outputImage = [qrFilter valueForKey:@"outputImage"];
 UIImage *smallImage = [self imageWithCIImage:outputImage
 orientation: UIImageOrientationUp];

 // Resize and return
 return [self resizeImageWithoutInterpolation:smallImage size:destSize];
 }
 @end

 Reading Barcodes

 The AVFoundation framework enables you to scan barcodes using a device’s built-in camera.
iOS doesn’t just support the QR codes discussed in the preceding section. It recognizes nearly
every major barcode standard, providing a rich and powerful suite of recognizers. Supported
formats include the following:

9Reading Barcodes

 ■ UPC-A and UPC-E — The Universal Product Code (UPC) standard is widely used on trade
products in the English-speaking world, particularly in the US, Canada, the UK, Australia,
and New Zealand. The most common version, UPC-A, includes 12-digit identifiers. The
UPC-E variation enables the use of UPC coding on smaller packages, where a full (12-
digit) barcode might not quite fit. It omits leading and trailing digits. If you live in the
US, you’ll probably find this kind of code on the soda cans scattered around a typical
developer’s desk.

 ■ EAN-13 and EAN-8 — The International (formerly “European,” hence the E) Article
Number barcode is a proper superset of the UPC system. It consists of a 13-digit barcode
that includes a 12-digit UPC-A identifier plus a 1-digit check number. The less common
EAN-8 standard applies to smaller goods, such as candy. Although 2- and 5-digit versions
of EAN exist, they are not supported on iOS at this time.

 ■ Code 39 and Code 39 mod 43 — Code 39 is a variable-length barcode system, with
machine-readable sequences of arbitrary extent. The mod 43 version uses 43 characters
including A–Z (uppercase), digits, and a few special characters (-, ., $, /, +, %, and a space
character). Unlike EAN-13, Code 39 does not use check digits but is considered “self-
checking” because a single error in printing or recognition can’t generate a different valid
character. Because it doesn’t use check digits, you can basically print it out sequentially
as a series of individual bar characters.

 ■ Code 93 and Code 128 — Code 93 enhances Code 39, adding greater data density,
check characters, and custom start and stop characters. Code 128 can encode all 128
ASCII characters as well as Latin-1 characters (courtesy of a special extension character).
Apparently, Code 128 is used mostly in shipping.

 ■ PDF417 code — Used by the US Postal Service, the public domain (license-free) PDF417
standard produces stacked two-dimensional data, with user-specified dimensions. It has
tons of nifty features, including symbol-to-symbol links.

 ■ QR code — QR codes produce a two-dimensional error-resistant matrix barcode. Originally
adopted by the auto industry, these popular barcodes are now widely used in many retail
scenarios.

 ■ Aztec code — This is another two-dimensional barcode encoding that appears superficially
similar to QR code. It is especially space efficient. Although it is patented, Aztec has been
released to the public domain.

 In addition to recognition tasks, the latest releases of iOS Core Image include filters to support
barcode generation for QR (CIQRCodeGenerator), Code 128 (CICode128BarcodeGenerator),
Aztec (CIAztecCodeGenerator), and PDF417 (CIPDF417BarcodeGenerator) styles. Follow
 Listing 1-3 to build these styles but omit the input correction level parameter, which is a QR
code–only key.

10 Chapter 1 Media

 Listening for Metadata Objects

 Metadata objects represent information about items embedded into an image. At this time,
metadata is limited to information about faces and machine-readable barcodes. You enable
iOS to automatically detect these items on your behalf by adding custom outputs to your
 AVCaptureSession instances.

 Each capture session enables you to add inputs (typically onboard cameras) and outputs
(whether a sampling buffer or a metadata detector) to process the data retrieved from onboard
cameras. To get started, you query to find a particular device, such as the front-facing camera,
like this:

 + (AVCaptureDevice *)frontCamera
 {
 NSArray *videoDevices =
 [AVCaptureDevice devicesWithMediaType:AVMediaTypeVideo];
 for (AVCaptureDevice *device in videoDevices)
 if (device.position == AVCaptureDevicePositionFront)
 return device;

 return [AVCaptureDevice defaultDeviceWithMediaType:AVMediaTypeVideo];
 }

 You add that device to the current session. The following method uses a single input at any
time, ensuring that all data being fed in is from a specific camera device:

 - (void) useDevice: (AVCaptureDevice *) newDevice
 {
 [_session beginConfiguration];

 // Remove existing inputs
 NSArray *inputs = _session.inputs;
 for (AVCaptureInput *input in inputs)
 [_session removeInput:input];

 AVCaptureDeviceInput *captureInput = [AVCaptureDeviceInput
 deviceInputWithDevice:newDevice error:nil];
 [_session addInput:captureInput];

 [_session commitConfiguration];
 }

11Reading Barcodes

 To work with barcode recognition, you must enable metadata output. This involves creating a
new output, setting its processing delegate, and adding it to the session. The delegate declares
the AVCaptureMetadataOutputObjectsDelegate protocol and implements a single callback
to handle metadata output:

 - (void) addMetaDataOutput
 {
 [_session beginConfiguration];

 // Remove existing outputs
 NSArray *outputs = _session.outputs;
 for (AVCaptureOutput *output in outputs)
 [_session removeOutput:output];

 // Create capture output
 AVCaptureMetadataOutput *output = [[AVCaptureMetadataOutput alloc] init];
 [output setMetadataObjectsDelegate:self queue:dispatch_get_main_queue()];

 [_session addOutput:output];
 output.metadataObjectTypes = output.availableMetadataObjectTypes;
 [_session commitConfiguration];
 }

 Responding to Metadata

 The AVCaptureMetadataOutputObjectsDelegate protocol consists of a single optional
method, which you see in Listing 1-4 . (It’s pointless to declare the protocol and not actu-
ally listen for results, but you can do so if you really want to.) The output passes each pattern
match to the delegate as an AVMetadataObject instance.

 AVMetadataObject is an abstract class. It is so abstract, in fact, that the type of metadata it
represents in its type property must be created in its concrete subclasses. At this time, there are
two subclasses: one that recognizes barcodes and another that recognizes faces. As a rule, once
you know the type you’re working with, you need to cast the object to a specific subclass, such
as AVMetadataMachineReadableCodeObject or AVMetadataFaceObject .

 The barcode-specific subclass offers two properties: the string value of the barcode that’s been
read and the geometric corners (an array of CGPoint values) that define the geometric edges
of the recognized item. In the sample project for this listing, these corners produce the visual
overlay shown in Figure 1-4 .

www.allitebooks.com

http://www.allitebooks.org

12 Chapter 1 Media

 Figure 1-4 The line light overlaying the barcode is set using the detected metadata corners.

 Listing 1-4 Handling Metadata Recognition

 - (void)captureOutput:(AVCaptureOutput *)captureOutput
 didOutputMetadataObjects:(NSArray *)metadataObjects
 fromConnection:(AVCaptureConnection *)connection
 {
 NSArray *barCodeTypes = @[AVMetadataObjectTypeUPCECode,
 AVMetadataObjectTypeCode39Code,
 AVMetadataObjectTypeCode39Mod43Code,
 AVMetadataObjectTypeEAN13Code,
 AVMetadataObjectTypeEAN8Code,
 AVMetadataObjectTypeCode93Code,
 AVMetadataObjectTypeCode128Code,
 AVMetadataObjectTypePDF417Code,
 AVMetadataObjectTypeQRCode,
 AVMetadataObjectTypeAztecCode];

 for (AVMetadataObject *metadata in metadataObjects)
 {
 if ([barCodeTypes containsObject:metadata.type])
 {
 // Process Barcodes
 AVMetadataMachineReadableCodeObject *object =

13Reading Barcodes

 (AVMetadataMachineReadableCodeObject *) metadata;
 NSString *stringValue = object.stringValue;

 if (_metadataDelegate && [_metadataDelegate respondsToSelector:
 @selector(processBarcode:withType:withMetadata:)])
 [_metadataDelegate processBarcode:stringValue
 withType:metadata.type withMetadata:object];
 }
 else if ([metadata.type isEqualToString:AVMetadataObjectTypeFace])
 {
 // Process face detection
 AVMetadataFaceObject *object = (AVMetadataFaceObject *)metadata;
 if (_metadataDelegate && [_metadataDelegate
 respondsToSelector:@selector(processFace:)])
 [_metadataDelegate processFace:object];
 }
 else
 NSLog(@"Captured unknown metadata object: %@", metadata.type);
 }
 }

 Extracting Bounds

 In many situations, you want to coordinate recognition with some kind of visual display, as
shown in Figure 1-4 . The bounds reported by extracted features are expressed as a rectangle
that ranges between (0, 0) and (1,1). To convert that rectangle into the visual coordinate space
of your preview layer, you need to call transformedMetadataObjectForMetadataObject , an
 AVCaptureVideoPreviewLayer method, as is done in the following method:

 - (void) processBarcode: (NSString *) barcode
 withType: (NSString *) codeType
 withMetadata: (AVMetadataMachineReadableCodeObject *) metadata
 {
 AVCaptureVideoPreviewLayer *layer =
 [CameraHelper previewInView:previewView];
 AVMetadataMachineReadableCodeObject *codeObject =
 (AVMetadataMachineReadableCodeObject *)[layer
 transformedMetadataObjectForMetadataObject:metadata];
 overlay.frame = [self.view convertRect:codeObject.bounds
 fromView:previewView];
 }

 The transformedMetadataObjectForMetadataObject method returns an
 AVMetadataObject with updated visual properties that match the receiver’s
coordinate space. If you’ve rotated, mirrored, or applied a video gravity to your
preview layer, the method automatically takes these elements into account for you.

14 Chapter 1 Media

 Enhancing Recognition

 Although the iOS barcode recognition system is quite robust, you can greatly improve perfor-
mance with a simple trick introduced to me by developer Aaron Alexander. He pointed out that
zooming the video feed reduces the overall complexity of the scene and enhances detection
speed.

 You accomplish this by tweaking the session’s connections, the virtual bridge between a
session’s inputs and outputs. The videoScaleAndCropFactor property enables you to apply a
digital zoom factor:

 - (void) setVideoOutputScale: (CGFloat) scaleFactor
 {
 [_session beginConfiguration];

 NSArray *outputs = _session.outputs;
 for (AVCaptureOutput *output in outputs)
 for (AVCaptureConnection *connection in output.connections)
 connection.videoScaleAndCropFactor = scaleFactor;

 [_session commitConfiguration];
 }

 The sample project for this section uses a zoom factor of 1.5, although you may want to experi-
ment with even higher levels.

 Detecting Faces

 Listing 1-4 doesn’t just handle barcode recognition. It implements face recognition as well.
When it encounters AVMetadataFaceObject instances, it passes them along to a custom,
optional delegate for handling. Just as a barcode object represents a single detected barcode,
each face object represents a single detected face.

 Each item offers a unique faceID property, which is tracked as long as the same face remains
in-scene. Face identifiers are not reused. If a face leaves the preview and then re-enters, it is
assigned a new ID. This is analogous to touch handling, where a touch is tracked until it’s
removed from the screen.

 In addition to identifiers that track individual faces, each face object offers yaw and roll proper-
ties, enabling you to detect front-to-back face movement (yaw) and side-to-side head tilt (roll).

 Building AVFoundation Movies

 AVFoundation simplifies the process of making movies. When you have a series of images,
AVFoundation helps you stitch them together to create a QuickTime result to share with your
users. You use AVAssetWriter , a class that writes media to an audiovisual container. It enables

15Building AVFoundation Movies

you to build H.264 movies with a minimum of code. You’ll read about the code-level details a
bit later in this section.

 Although it’s simple to create movies using AVFoundation, many developers seem to use
this feature solely to combine screen shots or scrape camera feeds. As you’re just feeding a
pixel buffer into an asset writer, why not have a bit more fun than that? Enable your users
to create and share videos that push boundaries further. For example, you might build
movies that showcase the creation process of a drawing or enable users to build stick anima-
tions. Here’s an example of a movie built using iOS Bezier paths: https://www.youtube.com/
watch?v=zLMzlCDtfo0 . As long as you can express individual frames, AVFoundation can help
you stitch them together into a movie.

 For the past few years, I’ve used a fairly basic moviemaker class. My class was based on old
Apple sample code, and although I tweaked it a bit for efficiency, it was pretty barebones. This
class enabled me to set up a movie file and feed it an image at a time. When I finalized the file,
I had a brand-new movie ready to share with my users.

 Two things inspired me to push the class a bit further. First was my work on my iOS Drawing
book. In writing the book, I played a lot with UIKit drawing on top of older APIs—like the ones
that power the pixel buffers used in movie creation. Pixel buffers store image data that the
asset writer sends out to the movie file. Drawing into pixel buffers enables you to create custom
drawings for movies instead of using photos or other presourced images that you didn’t create.

 The second thing was my experience with blocks, which have grown in importance over time
both in Apple’s APIs and in my personal expressiveness. They provide a way to encapsulate
behavior into tangible objects, which can be passed as parameters to routines. Blocks play a
huge role in day-to-day Swift development, where they are called closures .

 I decided to combine these two elements to simplify the way I build movie frames. Instead
of building an image and tossing it to the helper class, I now use UIKit drawing commands
directly with the pixel buffer.

 Before this modification, I’d perform image creation sequences over and over. In this approach,
the image was never anything more than an intermediary for transferring data over to the
pixel buffer. For example, the following code creates an iOS drawing destination, performs the
drawing, retrieves an image, and passes it to the movie:

 // Start drawing
 UIGraphicsBeginImageContext(rect.size);
 CGContextRef context = UIGraphicsGetCurrentContext();

 // Fill the background with black
 [[UIColor blackColor] set];
 CGContextFillRect(context, rect);

 // Draw a path in white
 [[UIColor whiteColor] set];
 [path fill];

https://www.youtube.com/watch?v=zLMzlCDtfo0
https://www.youtube.com/watch?v=zLMzlCDtfo0

16 Chapter 1 Media

 // Fetch an image
 UIImage *anImage = UIGraphicsGetImageFromCurrentImageContext();
 UIGraphicsEndImageContext();

 // Hand the image to a moviemaker helper
 [myHelper addImageToMovie:anImage];

 With blocks, I could draw directly to the pixel buffer. The following block contains drawing
commands without using an intermediate image. This is a more appealing and parsimonious
approach:

 ContextDrawingBlock block = ^(CGContextRef context){
 // Fill the background with black
 [[UIColor blackColor] set];
 CGContextFillRect(context, rect);
 // Draw a path in white
 [[UIColor whiteColor] set];
 [path fill];
 };
 [myHelper addDrawingToMovie:block];

 As this snippet demonstrates, passing a block enables you to skip intermediate storage and
focus your creation task on the individual drawing steps needed for each frame.

 Note

 As a rule, you want to build videos on a device and not in the simulator. There are some simu-
lator bugs that can cause artifacts in the rendered output.

 Creating a Pixel Buffer

 The key to a blocks-based approach for drawing movie frames lies in merging UIKit drawing
with a Core Video pixel buffer. A pixel buffer is, as the name suggests, a wrapper for image
data. You create a pixel buffer by calling CVPixelBufferCreate() . Pass it the width and
height of the buffer and any options needed for compatibility. Once it is built, you draw into it
and then append its contents to your movie:

 - (BOOL) createPixelBuffer
 {
 // Create Pixel Buffer
 NSDictionary *pixelBufferOptions =
 @{
 (id) kCVPixelBufferCGImageCompatibilityKey : @YES,
 (id) kCVPixelBufferCGBitmapContextCompatibilityKey : @YES,
 };

17Building AVFoundation Movies

 CVReturn status = CVPixelBufferCreate(
 kCFAllocatorDefault,
 width,
 height,
 kCVPixelFormatType_32ARGB,
 (__bridge CFDictionaryRef) pixelBufferOptions,
 &bufferRef);
 if (status != kCVReturnSuccess)
 {
 NSLog(@"Error creating pixel buffer");
 return NO;
 }

 return YES;
 }

 Drawing into the Pixel Buffer

 The block example described in this section uses a custom type called ContextDrawingBlock .
As a rule, it’s easier to create block types than to add their raw declarations over and over. The
following ContextDrawingBlock typedef declares one argument: the current drawing context:

 typedef void (^ContextDrawingBlock)(CGContextRef context);

 Although you can always grab the current context via UIGraphicsGetCurrentContext() ,
I have found that it’s more convenient to provide that context for ready use.

 The secret to direct block-based drawing lies in a pair of UIKit functions not many developers
are familiar with. UIGraphicsPushContext() and UIGraphicsPopContext() enable you to
add Quartz 2D contexts to the UIKit context stack and then remove them after drawing. These
two functions add and remove drawing destinations in UIKit.

 This approach creates a bridge between the Quartz and UIKit worlds, permitting you to use
Objective-C UIKit-style calls (such as [myColor set]) in place of C-language Quartz calls (such
as CGContextSetFillColorWithColor(context, myColor.CGColor)). In UIKit calls, the
active context is inferred from the current stack, so you don’t need to pass the context every
time you update a setting or perform a drawing operation.

 Listing 1-5 builds a Quartz context using the memory stored in the Core Video (CV) pixel
buffer. It pushes this context onto the UIKit stack and executes its drawing block. It finishes by
popping the stack, releasing the context, and unlocking the pixel buffer. By encapsulating all
the pixel-level work in this method, the ContextDrawingBlock that’s passed as an argument
concerns itself only with actual drawing commands.

 The lines that force a coordinate transform enable you to send all your block-based drawing
commands using UIKit’s coordinate system, which starts at the top-left corner and grows to the
right and down. Native Quartz drawing uses a bottom-left origin, and the y axis grows upward.
The transform applied by CGContextConcatCTM() in Listing 1-5 flips that Quartz system to the
UIKit standard.

18 Chapter 1 Media

 Listing 1-5 Drawing to Pixel Buffers Using Blocks

 - (BOOL) drawToPixelBufferWithBlock:
 (ContextDrawingBlock) block __attribute__ ((nonnull))
 {
 // Lock the buffer and fetch the base address
 CVPixelBufferLockBaseAddress(bufferRef, 0);
 void *pixelData = CVPixelBufferGetBaseAddress(bufferRef);

 // Establish color space
 CGColorSpaceRef RGBColorSpace = CGColorSpaceCreateDeviceRGB();
 if (RGBColorSpace == NULL) return NO;

 // Build a Quartz context using the pixel data from the pixel buffer
 CGContextRef context = CGBitmapContextCreate(pixelData, width, height,
 8, 4 * width, RGBColorSpace, (CGBitmapInfo) kCGImageAlphaNoneSkipFirst);
 if (!context)
 {
 CGColorSpaceRelease(RGBColorSpace);
 CVPixelBufferUnlockBaseAddress(bufferRef, 0);
 NSLog(@"Error creating bitmap context");
 return NO;
 }

 // Handle Quartz Coordinate System
 // This assumes all block calls will use the UIKit coordinate space
 CGAffineTransform transform = CGAffineTransformIdentity;
 transform = CGAffineTransformScale(transform, 1.0, -1.0);
 transform = CGAffineTransformTranslate(transform, 0.0, -height);
 CGContextConcatCTM(context, transform);

 // Perform drawing
 UIGraphicsPushContext(context);
 if (block) block(context);
 UIGraphicsPopContext();

 // Clean up
 CGColorSpaceRelease(RGBColorSpace);
 CGContextRelease(context);
 CVPixelBufferUnlockBaseAddress(bufferRef, 0);
 return YES;
 }

 Expressive Drawing

 Any UIKit- or Quartz-compatible drawing API works with the moviemaker approach described
in the previous section. You are not limited to Bezier paths and fill and stroke operations. If

19Building AVFoundation Movies

you can draw content to a standard UIKit view, those same operations will draw properly to
the pixel buffer context. For example, you might want to combine image drawing with string
rendering, as in the following snippet. Notice the simplicity of the implementation, even when
creating and drawing attributed strings:

 ContextDrawingBlock block = ^(CGContextRef context){
 // Fill background
 [[UIColor blackColor] set];
 CGContextFillRect(context, rect);

 // Draw image
 [frame drawInRect:insetRect];

 // Draw string
 NSAttributedString *s = [[NSAttributedString alloc]
 initWithString:title attributes:@{
 NSFontAttributeName:[UIFont fontWithName:@"Georgia" size:24],
 NSForegroundColorAttributeName:[UIColor whiteColor]}];
 [s drawAtPoint:CGPointMake(80, 80)];
 };

 Combining blocks with AVFoundation produces recognizable enhancements in clarity and
simplicity with a minimum of code. In this implementation, blocks enable you to focus more
on the content you’re drawing than on the production of individual movie frames.

 Building Movies from Frames

 Listing 1-6 finishes the movie-building story by showing how each frame can be added to
establish a standard movie file. You start by establishing AVAssetWriter , the class that’s
responsible for writing out media data. Listing 1-6 builds H.264 MPEG-4 QuickTime, which
is specified in AVAssetWriterInput settings. The writer input, despite its name, is respon-
sible for appending media samples to the asset writer. A pixel buffer adapter connects the
 CVPixelBuffer you draw into using Listing 1-5 to the writer input. This enables you to draw
and then append each new frame to the asset writer’s output file.

 To add new frames, wait until the writer input is no longer busy, as shown in appendPixel-
Buffer method. The class works asynchronously. You want to ensure that you don’t trip over
yourself by interrupting an ongoing writing operation. Then, append the current contents of
the pixel buffer. You specify how long the frame should be displayed by establishing a presen-
tation time. Listing 1-6 uses the CMTimeMake method to calculate that extent. Repeat until
you’ve finished adding each frame.

 You finalize the movie by setting an end time for the final frame and then cleaning up the
helper classes you used to build the movie output.

20 Chapter 1 Media

 Listing 1-6 Movie Making

 // Build a new movie file
 - (BOOL) createMovieAtPath: (NSString *) path
 {
 NSError *error;

 // Create Movie URL
 NSURL *movieURL = [NSURL fileURLWithPath:path];
 if (!movieURL)
 {
 NSLog(@"Error creating URL from path (%@)", path);
 return NO;
 }

 // Create Asset Writer
 writer = [[AVAssetWriter alloc] initWithURL:movieURL
 fileType:AVFileTypeQuickTimeMovie error:&error];
 if (!writer)
 {
 NSLog(@"Error creating asset writer: %@",
 error.localizedDescription);
 return NO;
 }

 // Create H.264 Video output
 NSDictionary *videoSettings =
 @{
 AVVideoCodecKey : AVVideoCodecH264,
 AVVideoWidthKey : @(width),
 AVVideoHeightKey : @(height),
 };

 input = [AVAssetWriterInput
 assetWriterInputWithMediaType:AVMediaTypeVideo
 outputSettings:videoSettings];
 if (!input)
 {
 writer = nil;
 NSLog(@"Error creating asset writer input");
 return NO;
 }

 [writer addInput:input];

 // Build adapter
 adaptor = [[AVAssetWriterInputPixelBufferAdaptor alloc]

21Building AVFoundation Movies

 initWithAssetWriterInput:input sourcePixelBufferAttributes:nil];
 if (!adaptor)
 {
 writer = nil;
 input = nil;
 NSLog(@"Error creating pixel adaptor");
 return NO;
 }

 [writer startWriting];
 [writer startSessionAtSourceTime:kCMTimeZero];

 return YES;
 }

 // Establish a new movie with a specified frame size and frame rate
 // (fps is frames per second)
 - (instancetype) initWithPath: (NSString *) path frameSize: (CGSize) size
 fps: (NSUInteger) fps
 {
 if (!(self = [super init])) return self;

 // Path must be nil
 if ([[NSFileManager defaultManager] fileExistsAtPath:path])
 {
 NSLog(@"Error: Attempting to overwrite existing file.");
 return nil;
 }

 if (!path)
 {
 NSLog(@"Error: Path must be non-nil");
 return nil;
 }

 // Sizes must be divisible by 16
 height = lrint(size.height);
 width = lrint(size.width);
 if (((height % 16) != 0) || ((width % 16) != 0))
 {
 NSLog(@"Error: Height and Width must be divisible by 16");
 return nil;
 }

 // Store fps
 framesPerSecond = fps;
 if (fps == 0)

22 Chapter 1 Media

 {
 NSLog(@"Error: Frames per second must be positive integer");
 }

 frameCount = 0;

 BOOL success = [self createMovieAtPath:path];
 if (!success) return nil;

 return self;
 }

 + (instancetype) createMovieAtPath: (NSString *) moviePath
 frameSize: (CGSize) size
 fps: (NSUInteger) framesPerSecond __attribute__ ((nonnull (1)))
 {
 return [[self alloc] initWithPath:moviePath
 frameSize:size fps:framesPerSecond];
 }

 - (BOOL) appendPixelBuffer
 {
 // Append pixel buffer
 while (!input.isReadyForMoreMediaData);
 frameCount++; // this is a class instance variable that keeps track
 BOOL success = [adaptor appendPixelBuffer:bufferRef
 withPresentationTime:CMTimeMake(frameCount, (int32_t) framesPerSecond)];
 if (!success)
 {
 NSLog(@"Error writing frame %zd", frameCount);
 return NO;
 }
 return YES;

 }

 // Draw the next frame using the provided drawing block
 - (BOOL) addDrawingToMovie: (ContextDrawingBlock) drawingBlock
 {
 if (!drawingBlock) return NO;
 BOOL success = [self drawToPixelBufferWithBlock:drawingBlock];
 if (!success) return NO;
 return [self appendPixelBuffer];
 }

23Building AVFoundation Movies

 - (void) finalizeMovie
 {
 frameCount++;
 [input markAsFinished];
 [writer endSessionAtSourceTime:
 CMTimeMake(frameCount, (int32_t) framesPerSecond)];
 [writer finishWritingWithCompletionHandler:^{
 NSLog(@"Finished writing movie: %@", writer.outputURL.path);
 writer = nil;
 input = nil;
 adaptor = nil;
 CVPixelBufferRelease(bufferRef);
 }];
 }

 Adding Images to Movies

 Listing 1-6 establishes a moviemaker class that supports block-based frame drawing. But what if
all you really want to do is build a movie from screen shots or still frames? It’s easy enough—
expand the class to create image-based frames using the following method:

 - (BOOL) addImageToMovie: (UIImage *) image __attribute__ ((nonnull))
 {
 if (!image) return NO;

 // Draw image to pixel buffer
 ContextDrawingBlock imageBlock = ^(CGContextRef context)
 {
 CGRect rect = CGRectMake(0, 0, width, height);
 [[UIColor blackColor] set];
 UIRectFill(rect);
 [image drawInRect:rect];
 };

 BOOL success = [self drawToPixelBufferWithBlock:imageBlock];
 if (!success) return NO;

 return [self appendPixelBuffer];
 }

 This method uses the drawing-block approach to add a convenient still-image entry point. Call
it with each image you wish to add, and you can essentially ignore the block-based approach
that powers the class.

24 Chapter 1 Media

 Wrap-up

 Here are final points to wrap up what you’ve read in this chapter:

 ■ iOS continues to grow in ways that enable users to interact with the world around them.
Barcodes provide a flexible, easy-to-use way to connect with customers and patrons who
may be frequenting physical sites. Incorporating recognition into your software provides
access to real-world resources with a minimum of effort, which is why you see so many
barcodes springing up at places ranging from retail spaces to public libraries and from
parks to town centers.

 ■ It’s time to re-imagine interfaces. With built-in text-to-speech, your interactions can
assume completely new screen-free models that rely on device sensors instead of user
taps.

 ■ The advances in AVFoundation enable you to expand application functionality without
tying yourself to third-party libraries and licenses. Their built-in simplicity reduces your
coding overhead and provides reliable and flexible tools that are ready for use.

 ■ There’s often a tendency to look at AVFoundation’s C-like interface and forget to apply
more modern language features like blocks and closures to leverage these APIs. If you
ignore these features, you’re missing out on powerful solutions that will simplify and
enhance your code base.

 2
 Dynamic Typography

 The major iOS 7 redesign in 2013 introduced an overhauled interface, shifting emphasis away
from buttons and bars to a sparser and more text-centered experience. Text components
became even more critical parts of UI design in this clean, white world. System additions such
as Dynamic Type created a holistic text development system, one that deferred to user prefer-
ences and sensory limitations. In this chapter, you see how text display adjusts to user prefer-
ences and sensory limitations, letting content flow to match dynamically changing typography.
Each app accommodates its user by adjusting text to match global system type preferences.

 Type Size and User Needs

 iOS serves the user. It creates a system of graceful deference to a user’s preferences and needs.
Dynamic Type (see Figure 2-1) exemplifies this philosophy. It enables users to globally adjust
reading size across all applications. Younger users with strong eyes can dial back on font sizes,
displaying more text on each screen. Older folk or those with visual impairments can push out
bigger font requests with a simple drag. Apps that support this feature provide the kind of user-
centered design that Apple promotes.

 How Dynamic Type Works

 Dynamic Type pushes notifications when text size preferences change. Conforming apps listen
and adapt as users request bigger or smaller font sizes from the Settings app. By supporting
Dynamic Type, apps can immediately update their layout to accommodate the new type levels,
redrawing their screens to match the user-driven requests.

26 Chapter 2 Dynamic Typography

 The way Dynamic Type works is indirect and clever. It requires you as a developer to take a
step away from exact font sizes. Instead of implementing a fixed design with carefully selected
typography, you transition your development to styles . A style describes the way text is used,
such as in a headline or as body text. You base your layout around the following semantic
descriptions:

 ■ Headlines (UIFontTextStyleHeadline , bold, 14–20 points) provide the titles for your
content. They are the largest and the most prominent style.

 ■ Subheadlines (UIFontTextStyleSubheadline , 12–18 points) offer a second-order heading
for document organization.

 ■ Body (UIFontTextStyleBody , 14–20 points) fonts are used to present the primary text
content on the screen.

 ■ Footnotes (UIFontTextStyleFootnote , 12–16 points), large captions
(UIFontTextStyleCaption1 , 11–15 points), and small captions
(UIFontTextStyleCaption2 , 11–14 points) provide text for references,
explanations, and comments.

 Figure 2-1 Text size settings (Settings > General > Accessibility > Larger Text) enable users to
adjust their preferred reading fonts. For even larger sizes, enable the Larger Accessibility Sizes
toggle. The default user setting for iOS corresponds to a “large” text category.

27Type Size and User Needs

 The UIFont class translates text styles to fonts on your behalf. In the most basic use case, you
place a request, such as “Please give me a body font.” The class checks the current Dynamic
Type settings, selects an appropriately sized font, and returns it to you. The user-specified sizes
range from small to large and are enumerated into the following standard size categories:

 ■ UIContentSizeCategoryExtraSmall

 ■ UIContentSizeCategorySmall

 ■ UIContentSizeCategoryMedium

 ■ UIContentSizeCategoryLarge

 ■ UIContentSizeCategoryExtraLarge

 ■ UIContentSizeCategoryExtraExtraLarge

 ■ UIContentSizeCategoryExtraExtraExtraLarge

 The scaling from category to category isn’t linear. For example, the Caption 2 font is 11 points
for all four smaller size categories (extra small to large). Starting with the extra large size cate-
gory, it grows to 12 points, then 13 and 14 points for the remaining categories. For this reason,
you don’t want to approximate the fonts on your own. Instead, allow the UIFont class to
produce a curated font for the current Dynamic Type settings, as shown in Listing 2-1 .

 In addition to these seven categories, you may encounter five more accessibility-controlled
extra large font size categories that users set in General > Accessibility > Larger Type. These
items enable you to push fonts further for better visibility for users with limited vision:

 ■ UIContentSizeCategoryAccessibilityMedium

 ■ UIContentSizeCategoryAccessibilityLarge

 ■ UIContentSizeCategoryAccessibilityExtraLarge

 ■ UIContentSizeCategoryAccessibilityExtraExtraLarge

 ■ UIContentSizeCategoryAccessibilityExtraExtraExtraLarge

 The accessibility version of the medium font is slightly larger than the extra extra extra large
version of the normal font.

 Note

 Each Apple-supplied item is built around a standard system font at a variety of sizes. However,
Apple-supplied styles don’t necessarily differ only by font size. For example, the headline font is
boldface, unlike the other five styles.

28 Chapter 2 Dynamic Typography

 Listing 2-1 Building Fonts from Text Styles

 @implementation UIFont (BuiltInStyles)
 + (UIFont *) headlineFont
 {
 return [UIFont preferredFontForTextStyle:
 UIFontTextStyleHeadline];
 }

 + (UIFont *) subheadlineFont
 {
 return [UIFont preferredFontForTextStyle:
 UIFontTextStyleSubheadline];
 }

 + (UIFont *) bodyFont
 {
 return [UIFont preferredFontForTextStyle:
 UIFontTextStyleBody];
 }

 + (UIFont *) footnoteFont
 {
 return [UIFont preferredFontForTextStyle:
 UIFontTextStyleFootnote];
 }

 + (UIFont *) caption1Font
 {
 return [UIFont preferredFontForTextStyle:
 UIFontTextStyleCaption1];
 }

 + (UIFont *) caption2Font
 {
 return [UIFont preferredFontForTextStyle:
 UIFontTextStyleCaption2];
 }
 @end

 Listening for Type Updates

 Font size categories don’t change on their own. If a user hops out and adjusts settings, your
application updates its views when the user returns. Enable your app to respond to updates
by subscribing to content size change notifications. Upon detecting a notification, adjust any
views that use text to reflect new user sizes. Add a notification block like this one to respond
to changes:

29Type Size and User Needs

 theObserver = [[NSNotificationCenter defaultCenter]
 addObserverForName:
 UIContentSizeCategoryDidChangeNotification
 object:nil
 queue:[NSOperationQueue mainQueue]
 usingBlock:^(NSNotification *note) {
 ...perform updates here...
 // ...re-display view (setNeedsDisplay) if needed here...
 }];

 Size updates may influence custom-drawn elements built around drawRect: or image contexts.
More commonly, they impact system-supplied items such as labels, buttons, text fields, and
text views. You can create responsive versions of these items via subclassing. Listing 2-2 estab-
lishes a minimal, size category–aware text label class to demonstrate a barebones approach.
Instances use a single text style and store it to a private textStyle string property.

 This single-style approach avoids mix-and-match issues with attributes, lending itself to a clean
and sparse implementation. When an instance detects a content size change, it requests a
new version of the styled font and applies it to the label. Figure 2-2 shows an instance of the
 DynamicLabel class as a user selects extra small (top), large (middle), and extra extra extra large
(bottom) fonts.

 Figure 2-2 The Dynamic Type-aware DynamicLabel class responds to size category notifications
by requesting a new copy of a stylized font.

30 Chapter 2 Dynamic Typography

 Listing 2-2 A Content Size Category–Powered Label

 #define DEFAULT_TEXT_STYLE UIFontTextStyleHeadline

 // This class supports only one style at a time
 @interface DynamicLabel : UILabel
 @property (nonatomic, strong) NSString *textStyle;
 @property (nonatomic, strong) NSMutableArray *observers;
 @end

 @implementation DynamicLabel

 // Disable attributed text to ensure the single style
 - (void) setAttributedText:(NSAttributedString *)attributedText
 {
 // no op here but this is addressed later in this chapter
 }

 - (instancetype) initWithTextStyle: (NSString *) textStyle
 {
 if (!(self = [super initWithFrame:CGRectZero]))
 return self;

 // Establish the current style
 _textStyle = textStyle;

 // Initialize the font based on the style
 self.font = [UIFont preferredFontForTextStyle:_textStyle];
 if (!self.font)
 {
 self.font = [UIFont preferredFontForTextStyle:DEFAULT_TEXT_STYLE];
 _textStyle = DEFAULT_TEXT_STYLE;
 }

 // Listen for the category size notification
 _observers = [NSMutableArray array];
 __weak typeof(self) weakSelf = self;
 id observer = [[NSNotificationCenter defaultCenter]
 addObserverForName:UIContentSizeCategoryDidChangeNotification
 object:nil
 queue:[NSOperationQueue mainQueue]
 usingBlock:^(NSNotification *note) {
 __strong typeof(self) strongSelf = weakSelf;
 strongSelf.font =
 [UIFont preferredFontForTextStyle:strongSelf.textStyle];
 }];
 [_observers addObject:observer];

31Handling Dynamic Type with Attributes

 return self;
 }

 // Any initWithFrame: calls use the default text style
 - (id)initWithFrame:(CGRect)frame
 {
 return [self initWithTextStyle:nil];
 }

 // Preferred entry point for creating dynamic labels
 + (instancetype) labelWithTextStyle: (NSString *) textStyle
 {
 DynamicLabel *instance =
 [[self alloc] initWithTextStyle:textStyle];
 return instance;
 }

 - (void) dealloc
 {
 for (id observer in _observers)
 [[NSNotificationCenter defaultCenter]
 removeObserver:observer];
 }
 @end

 Handling Dynamic Type with Attributes

 Dynamic Type grows complicated when you integrate its features with NSAttributedString ,
a common building block for modern iOS views. As you mix Dynamic Type with attributes,
consider how each type element works within that string. In the most basic case, when your
text is relatively static, as in Figure 2-3 , you can simply rebuild it whenever you receive a
content size notification. The following method establishes a string with static, predefined
content:

 - (void) loadAttributedString
 {
 NSMutableAttributedString *attributedString =
 [NSMutableAttributedString string];

 NSAttributedString *baseString;

 // Build the headline
 baseString = [[NSAttributedString alloc]
 initWithString:@"Headline\n"
 attributes:@{NSFontAttributeName : [UIFont headlineFont]}];
 [attributedString appendAttributedString:baseString];

www.allitebooks.com

http://www.allitebooks.org

32 Chapter 2 Dynamic Typography

 // Build the content
 baseString = [[NSAttributedString alloc]
 initWithString:@"This is the body text"
 attributes:@{NSFontAttributeName : [UIFont bodyFont],
 NSForegroundColorAttributeName : [UIColor darkGrayColor]}];
 [attributedString appendAttributedString:baseString];

 textView.attributedText = attributedString;
 }

 Figure 2-3 Each element in an attributed text string may need to be updated when a content
size change is detected.

 This approach isn’t a very good one. It is unusable for large, complex content and user-created
content that blends custom text and attributes—the most common use case. Fortunately, you
can easily automate Dynamic Type updates for complex attributed strings.

 Scanning for Text Style Ranges

 There’s a much simpler solution for integrating complex attributed strings with Dynamic Type.
Instead of rebuilding strings from first principles at each update, you scan attributed strings to
find where each style applies and store that information in a dictionary of ranges.

 The scan is inexpensive to run. Enumerate the string’s attributes and find the places where
system fonts are used. Then store a style name. Don’t store the actual font, as it will be invalid
when the Dynamic Type system updates. Using the text style name ensures that when you
revisit font attributes, you create updated elements that match current Dynamic Types. Listing
 2-3 shows how you might create a range dictionary for an attributed string.

 Listing 2-3 goes beyond system-supplied elements. For each attribute run that mentions a font,
the TextStyleRangeDictionary() function tests whether the font uses a system-supplied text
style. If so, it stores the name of that style. If not, it stores the style that most closely matches
the font in point size. You use this style as a baseline for re-creating a dynamic version of a
given font. A multiplier reflects the ratio between the custom font’s current point size, and the
system version ensures that custom fonts are not just rounded up or down to static levels.

33Handling Dynamic Type with Attributes

 Listing 2-3 Scanning Attributed Strings for System-Supplied Fonts

 // Built in fonts and styles
 #define BUILTIN_FONTS @[[UIFont headlineFont], \
 [UIFont subheadlineFont], [UIFont bodyFont], \
 [UIFont footnoteFont], [UIFont caption1Font], \
 [UIFont caption2Font]]
 #define BUILTIN_TEXT_STYLES @[UIFontTextStyleHeadline,\
 UIFontTextStyleSubheadline, UIFontTextStyleBody, \
 UIFontTextStyleFootnote, UIFontTextStyleCaption1, \
 UIFontTextStyleCaption2]

 // Return the closest system style to a given font
 NSString *ClosestSystemStyle(UIFont *font)
 {
 CGFloat minimumDistance = MAXFLOAT;
 NSInteger selectedIndex = -1;
 NSInteger index = 0;

 for (UIFont *candidate in BUILTIN_FONTS)
 {
 CGFloat distance = fabsf(font.pointSize - candidate.pointSize);
 if (distance < minimumDistance)
 {
 selectedIndex = index;
 minimumDistance = distance;
 }
 index++;
 }

 return BUILTIN_TEXT_STYLES[selectedIndex];
 }

 // Build the style range dictionary
 NSDictionary *TextStyleRangeDictionary(
 NSAttributedString *attributedString)
 {
 NSMutableDictionary *dict = [NSMutableDictionary dictionary];

 [attributedString
 enumerateAttributesInRange:
 NSMakeRange(0, attributedString.length) options:0
 usingBlock:^(NSDictionary *attrs, NSRange range, BOOL *stop) {

 // Test if font attribute is mentioned
 UIFont *font = attrs[NSFontAttributeName];
 if (font)

34 Chapter 2 Dynamic Typography

 {
 // Is it a system font?
 NSInteger index = [BUILTIN_FONTS indexOfObject:font];
 if (index != NSNotFound)
 {
 // If so, store the style for the range
 NSString *textStyle = BUILTIN_TEXT_STYLES[index];
 dict[[NSValue valueWithRange:range]] = @[textStyle];
 }
 else
 {
 // Otherwise store:
 // closest style, face, multiplier
 NSString *closestMatch = ClosestSystemStyle(font);
 UIFont *closestSystemFont =
 [UIFont preferredFontForTextStyle:closestMatch];
 if (closestSystemFont)
 {
 CGFloat multiplier = font.pointSize /
 closestSystemFont.pointSize;
 dict[[NSValue valueWithRange:range]] =
 @[closestMatch, font.fontName, @(multiplier)];
 }
 }
 }
 }];

 return dict;
 }

 Applying Text Style Ranges

 Once you’ve stored text style ranges using Listing 2-3 , it’s a simple matter to update an
attributed string. On receiving a content size notification, iterate through the range diction-
ary and create new font attributes based on the stored styles. Listing 2-4 presents the
 ApplyTextStylesToAttributedString function, which applies the information stored in the
range dictionary to create a new attributed string that reflects current Dynamic Type settings.

 Listing 2-4 Updating System-Supplied Fonts via a Range Dictionary

 // Return an updated attributed string
 NSAttributedString *ApplyTextStylesToAttributedString(
 NSAttributedString *sourceString,
 NSDictionary *styleDictionary)
 {
 NSMutableAttributedString *attributedString =

35Attribute-Ready Dynamic Elements

 [[NSMutableAttributedString alloc]
 initWithAttributedString:sourceString];

 for (NSValue *value in styleDictionary.allKeys)
 {
 NSRange range = value.rangeValue;
 NSArray *array = styleDictionary[value];
 if (array.count == 0) continue;
 UIFont *font;

 NSString *textStyle = array[0];
 if (array.count == 1) // system-supplied
 {
 font = [UIFont preferredFontForTextStyle:textStyle];
 }
 else if (array.count == 3) // custom font
 {
 NSString *face = array[1];
 UIFont *sysFont =
 [UIFont preferredFontForTextStyle:textStyle];
 NSNumber *multiplier = array[2];
 font = [UIFont fontWithName:face
 size:sysFont.pointSize * multiplier.floatValue];
 }
 [attributedString addAttributes:@{NSFontAttributeName:font}
 range:range];
 }

 return attributedString;
 }

 Attribute-Ready Dynamic Elements

 The six system-supplied text categories (headlines, body, captions, etc.) suit many layout needs.
They are inspired by the kinds of styles used in web design. They focus on long-form reading
and Twitter-style timelines where text is a primary actor in the interface.

 For some developers, default fonts or font sizes may not match interface nuances created by
a design team. In such cases, you can use the approaches in Listings 2-3 and 2-4 to store and
update font style offsets rather than directly using system-supplied styles.

 Earlier, Listing 2-2 introduced the UILabel subclass, which updates its font whenever a content
size update is detected. It takes just a few steps to update that listing to incorporate the kinds
of dynamic attributes used in Listings 2-3 and 2-4 . First, the class needs to persistently store a
dictionary that maps text attribute ranges to system-supplied styles:

 @property (nonatomic, strong) NSDictionary *rangeDictionary;

36 Chapter 2 Dynamic Typography

 You re-create this dictionary whenever you update the label’s attributed text. Contrast the
following method implementation to Listing 2-2 , whose method was more or less stubbed out
to enforce a “don’t do this” approach. Here you scan as the attributed text is assigned:

 - (void) setAttributedText:(NSAttributedString *)attributedText
 {
 [super setAttributedText:attributedText];
 _rangeDictionary = TextStyleRangeDictionary(attributedText);
 }

 Redirect any updates that use setText: to the attributed handler. Take care when using a
label’s text attribute with attributed content as the two systems are no longer tightly coupled.
Whereas iOS 7 automatically redirected any updates to the attributed handler, iOS 8 and later
do not. Without the following method, iOS 8 text updates won’t respond to type updates. You
can see this behavior in the chapter’s sample code by commenting out this method:

 - (void) setText:(NSString *)text
 {
 NSMutableAttributedString *attributedString =
 [[NSMutableAttributedString alloc] initWithString:text
 attributes:@{NSFontAttributeName:self.font}];
 [self setAttributedText:attributedString];
 }

 Another change that took place from iOS 7 to iOS 8 limited attributed text updates to the view.
This change required a call to setNeedsDisplay . The DynamicLabel class sample code for
this chapter includes this iOS 8-and-later adjustment. It also works with iOS 7 even though the
extra call isn’t needed.

 In the notification block, respond to content size changes by applying the range dictionary to
the label’s attributed text:

 NSAttributedString *updatedText = ApplyTextStylesToAttributedString(
 strongSelf.attributedText, strongSelf.rangeDictionary);
 strongSelf.attributedText = updatedText;

 Custom Fonts Faces

 Figure 2-4 shows an updated label class that handles fully attributed text. These screen shots
show the smallest and largest Dynamic Type settings. This label uses the Cochin font, and its
middle word is colored using the application’s default tint (which you can’t actually see in this
black-and-white book, but it’s a medium blue). As the label’s size updates, all font attributes
scale smoothly, despite this text not using a system-supplied font.

 You can base custom fonts on system styles. When you do, your custom font can grow and
shrink in synchrony with Dynamic Text callbacks. A simple function like the following adapts
a font face to a system style and returns an instance with matching size. In Figure 2-4 , the

37Attribute-Ready Dynamic Elements

smaller letters are based on the caption 1 style. The large initial capitals were designed to mimic
the headline style:

 UIFont *SystemSizeBasedFont(NSString *fontName, NSString *textStyle)
 {
 if (!fontName || !textStyle) return nil;

 UIFont *font = [UIFont preferredFontForTextStyle:textStyle];
 return [UIFont fontWithName:fontName size:font.pointSize];
 }

 Figure 2-4 All the attributes of the string, including mixed fonts and colors, update at Dynamic
Type notifications.

 Dynamic Text Views

 The same approach used to create dynamic labels can be used to update text view content
whenever a content size category notification is encountered. The challenge for text views is
keeping the content in sync with the range dictionary, especially when the text view is user
editable.

 Since you don’t want to take away the delegation from any potential client, a dynamic text–
aware text view should listen instead for notifications and respond to edits by updating the
range dictionary:

 // Listen for text edits
 id observer = [[NSNotificationCenter defaultCenter]
 addObserverForName:UITextViewTextDidChangeNotification
 object:self
 queue:[NSOperationQueue mainQueue]
 usingBlock:^(NSNotification *note) {
 __strong typeof(self) strongSelf = weakSelf;
 strongSelf.rangeDictionary = TextStyleRangeDictionary(
 strongSelf.attributedText);
 }];

38 Chapter 2 Dynamic Typography

 This frees the delegate property for use by text view clients while allowing you to build a
Dynamic Type–ready text view.

 Custom Sizing

 Apple’s text style point sizes are non-linear. They do not grow in lock step from a minimum
font to a maximum font, with stops along the way for each size category. When you imple-
ment your own sizing, follow Apple’s example in this. You can do so in either of two ways. You
can establish a fixed scaling ratio for multiplication between the default sizing and your fonts,
as in Listings 2-3 and 2-4 . Or you can use a curve-based algorithm, as in Listing 2-5 . This listing
leverages a cubic ease-in curve to move between minimum and maximum font sizes supplied to
the function.

 As Figure 2-5 shows, this curve produces results nearly indistinguishable from system-supplied
items, freeing you from tying your sizing to existing font styles. With Listing 2-5 , you choose
the minimum and maximum font sizes, and the built-in curve ensures that your font grows or
shrinks naturally in tandem with Apple’s own sizing.

 Note

 Font sizes are not all the same. Two different font faces in size 12 can express very different
heights, widths, and weights. Listing 2-5 focuses on relative size changes for a single font
within the minimum and maximum extremes you set.

 Listing 2-5 Calculating Fonts from User-Preferred Size Categories

 #define TEXT_SIZE_CATEGORIES \
 @{UIContentSizeCategoryExtraSmall:@0, \
 UIContentSizeCategorySmall: @1, \
 UIContentSizeCategoryMedium: @2, \
 UIContentSizeCategoryLarge: @3, \
 UIContentSizeCategoryExtraLarge: @4, \
 UIContentSizeCategoryExtraExtraLarge: @5, \
 UIContentSizeCategoryExtraExtraExtraLarge: @6, \
 UIContentSizeCategoryAccessibilityMedium: @7, \
 UIContentSizeCategoryAccessibilityLarge: @8, \
 UIContentSizeCategoryAccessibilityExtraLarge: @9, \
 UIContentSizeCategoryAccessibilityExtraExtraLarge: @10, \
 UIContentSizeCategoryAccessibilityExtraExtraExtraLarge: @11}

 UIFont *StylizedFont(NSString *fontName,
 CGFloat minimumFontSize, CGFloat maximumFontSize)
 {
 // Retrieve user-selected size category
 NSString *preferredSize = [[UIApplication sharedApplication]

39Font Descriptors

 preferredContentSizeCategory];
 NSInteger categoryCount = TEXT_SIZE_CATEGORIES.allKeys.count;
 NSInteger sizeIndex =
 [TEXT_SIZE_CATEGORIES[preferredSize] integerValue];
 CGFloat percent =
 (CGFloat) sizeIndex / (CGFloat) (categoryCount - 1);
 CGFloat targetFontSize = round(minimumFontSize +
 (maximumFontSize - minimumFontSize) * powf(percent, 3));

 return [UIFont fontWithName:fontName size:targetFontSize];
 }

 Figure 2-5 Size interpolation with an ease-in cubic function produces results close to Apple’s
own system-supplied items, even as users adjust Dynamic Type preferences.

 Font Descriptors

 Font variants present a challenge for anyone writing text-editing applications. UIKit’s new font
descriptor class helps automate the search for related items within a font family. For example,
say that you create an AvenirNext font, as follows:

 UIFont *font = [UIFont fontWithName:@"AvenirNext-Regular" size:12.0];

 You request a bold variant of this font with a few simple steps. First, retrieve the font’s descrip-
tor. Next, add requests for a related font with a bold trait. Finish by creating a new version of
the font sourced from the descriptor:

 UIFontDescriptor *descriptor = font.fontDescriptor;
 descriptor = [descriptor fontDescriptorWithFamily:font.familyName];
 descriptor = [descriptor
 fontDescriptorWithSymbolicTraits: UIFontDescriptorTraitBold];
 UIFont *boldFont = [UIFont fontWithDescriptor:descriptor size:12];

 Running this code returns a new version of the font that expresses the bold attribute. Here is
the original version, with the bold version produced via the font descriptor:

40 Chapter 2 Dynamic Typography

 2014-11-28 09:50:14.619 Hello World[52353:70b] Font: <UICTFont: 0x8ea6fc0>
font-family: " AvenirNext-Regular "; font-weight: normal; font-style: normal;
font-size: 12.00pt
 2014-11-28 09:50:14.626 Hello World[52353:70b] <UICTFont: 0x8c85340> font-family:
" AvenirNext-DemiBold "; font-weight: bold; font-style: normal; font-size: 12.00pt

 Descriptor Challenges

 UIFontDescriptor is a tricky class to use and a trickier one to use well. Consider Figure 2-6 .
The left screenshot shows a complex typographic result based on the ChalkboardSE family.
The text presents a regular font along with bold, italicized, and bold-italic variations. There’s
one major challenge with this design goal. The right screen shot shows all three of the
ChalkboardSE type variations available on iOS, and the font offers neither italic nor bold-italic
variations.

 Figure 2-6 The ChalkboardSE font does not offer italic variants.

 When you run the following code:

 UIFont *font = [UIFont instanceOfFontName:@"ChalkboardSE-Regular"];
 UIFontDescriptor *descriptor = font.fontDescriptor;
 descriptor = [descriptor fontDescriptorWithFamily:font.familyName];
 descriptor = [descriptor fontDescriptorWithSymbolicTraits:
 UIFontDescriptorTraitBold | UIFontDescriptorTraitItalic];
 UIFont *adjustedFont = [UIFont fontWithDescriptor:descriptor size:12];

 and then look at the original and output fonts, you get this:

 2014-11-28 10:07:56.530 Hello World[52595:70b] Font: <UICTFont: 0x8d33990>
font-family: " ChalkboardSE-Regular "; font-weight: normal; font-style: normal;
font-size: 12.00pt
 2014-11-28 10:07:56.531 Hello World[52595:70b] <UICTFont: 0x8a28d80> font-family:
" Helvetica "; font-weight: normal; font-style: normal; font-size: 12.00pt

 That is, you end up with Helvetica. To add insult to injury, the Helvetica font uses a normal
weight, without applying the symbolic traits you requested. That’s because the ChalkboardSE
family provides only one custom trait, which is bold. The UIFont class cannot create an
instance matching the requests in your descriptor, so it returns the default font instead:

41Font Descriptors

 ChalkboardSE-Light (San Serif) : <No Traits>
 ChalkboardSE-Regular (San Serif) : <No Traits>
 ChalkboardSE-Bold (San Serif) : Bold

 Fonts with Multiple Variations

 The problematic situation with descriptors remains even when you use a more expressive font
family like AvenirNext. As you see in Figure 2-7 , the family isn’t hurting for variation. Here are
the font members and the traits they express:

 AvenirNext-MediumItalic: Italic
 AvenirNext-Bold: Bold
 AvenirNext-UltraLight: <No Traits>
 AvenirNext-DemiBold: Bold
 AvenirNext-HeavyItalic: Bold, Italic
 AvenirNext-Heavy: Bold
 AvenirNext-Medium: <No Traits>
 AvenirNext-Italic: Italic
 AvenirNext-UltraLightItalic: Italic
 AvenirNext-BoldItalic: Bold, Italic
 AvenirNext-Regular: <No Traits>
 AvenirNext-DemiBoldItalic: Bold, Italic

 Figure 2-7 AvenirNext offers many more font family faces than ChalkboardSE.

 When you request a bold variant of AvenirNext-Regular, which variant should it offer:
DemiBold, Bold, or Heavy? My tests returned instances of DemiBold. That’s not because
DemiBold is a more worthy bold variation than Bold or Heavy; it just happens to be the one
randomly selected through the automated system.

42 Chapter 2 Dynamic Typography

 Using String Attributes to Modify Fonts

 The left screenshot in Figure 2-6 , with its numerous font variations, doesn’t use font descrip-
tors. Instead, it leverages built-in string attributes for the NSMutableAttributedString class
to tweak a font’s presentation. iOS offers many attributes that enable you to modify how type
is drawn. Commonly used attributes include color, underlining, strikethrough, shadows,
and more.

 Listing 2-6 details a category whose bold and italic toggles helped build the left Figure 2-6
screenshot. You apply these toggles by calling category methods, indicating whether you wish
to apply or remove traits from the attributed string.

 To bold items, the code adds a wider stroke attribute and offsets the font’s baseline to accom-
modate the extra height produced. A negative stroking value ensures that the font is both filled
and stroked. If you omit this, the font displays as an outline instead of being bolded.

 The italic effect is created by adding an obliqueness attribute to the string, providing a custom
slant. The default value of 0.0 produces output without skew. As you adjust the floating-point
value, the text slants to the right for positive values and to the left for negative ones. This
method uses a positive slant of 0.2 for a gentle italicized effect.

 The three constants used in Listing 2-6 are arbitrary—specifically 2.5 and 12.0 for bolding and
0.2 for italics. I crowdsourced opinions in the #iphonedev chatroom on Freenode IRC, trying to
find values that worked for a wide range of font faces and sizes. You may want to experiment
further.

 Listing 2-6 Adding Bold and Italic Attributes

 @implementation NSMutableAttributedString (AttributedStringUtility)

 // Toggle bolding on or off for the requested range
 - (void) setBold:(BOOL) bold range:(NSRange) requestedRange
 {
 CGFloat degree = bold ? 2.5 : 0.0;
 [self addAttribute:NSStrokeWidthAttributeName
 value:@(-degree) range:requestedRange];
 [self addAttribute:NSBaselineOffsetAttributeName
 value:@(-degree / 12.0) range:requestedRange];
 }

 // Toggle italics on or off for the requested range
 - (void) setItalic:(BOOL) italic range:(NSRange) requestedRange
 {
 [self addAttribute:NSObliquenessAttributeName
 value:@(italic ? 0.2 : 0.0) range:requestedRange];
 }
 @end

43Wrap-up

 Dynamic Type Gotchas

 Apple first introduced Dynamic Type APIs to the developer community back in iOS 7. Despite
this relative longevity, adaptive types are not as widely used or recognized as one might hope.
Many end users still do not mentally connect their settings for Apple-supplied engagement
with third-party apps. As Figure 2-8 demonstrates, unless you provide in-app hints, users might
entirely miss the point of user-controlled sizing.

 Figure 2-8 iOS users are not generally trained to understand Dynamic Type.

 Wrap-up

 Here are a few final points to wrap up what you’ve read in this chapter:

 ■ As an adaptive iOS citizen, text elements in your application should respond dynamically
to user type settings, both for regular type and accessibility variations. A small
investment in development time produces results that widen your pool of potential
customers. Larger fonts are an essential feature for an older demographic, a customer base
that averages more spending money per capita for app purchases. Money aside, creating
more accessible applications is generally a karma-building effort, rewarding your spirit as
well as your pocketbook.

 ■ Integrating Dynamic Type into more complex elements such as text view content takes
a bit of extra bookkeeping but is worth the overhead. Allowing complex elements to
participate in Dynamic Type as fully as simple labels and buttons provides more holistic
engagement with user preferences.

 ■ Users may enable UI bolding through Settings > General > Accessibility >
Bold Text. This toggle affects system-supplied fonts created through calls to
 preferredFontForTextStyle: , systemFontOfSize: , boldSystemFontOfSize: , and
 italicSystemFontOfSize . Other fonts you create remain unchanged, as they would
have been with the toggle switched off. You cannot listen directly for this change as the
phone reboots between toggles, but you can test for its effect by examining the base font
reported by your systemFontOfSize: request.

44 Chapter 2 Dynamic Typography

 ■ Downloadable fonts reduce system overhead, enabling your app to install fonts on an
as-needed basis. While you’ll never want to have your primary interface depend on a font
that’s not installed and that you don’t ship with your app, these extra fonts play a role in
user-driven content expansion.

 ■ Although using UIFontDescriptor may sound like a terrific approach for finding related
members within a font family, in practice you’ll probably do better working around it
than with it.

 3
 Text Kit

 Flexible text presentation is one of the most exciting and developing areas of iOS. From as early
as iOS 4, the move was on to migrate the Core Text C-based library into UIKit’s Objective-C
classes. With every new iOS release, these APIs have grown, matured, and expanded. By iOS 6,
most UIKit interface classes supported rich text features. In the most modern iOS releases, that
support has expanded to a suite of layout classes that continue to add mature type and frame
settings to create flexible presentations onscreen, into images, and for PDF output.

 Creating Complex Text Layouts

 Text Kit offers a suite of classes that enable you to create rich, complex, and adaptable page
design. Layout managers, text storage, and containers work together to create UIKit-based
access to Apple’s sophisticated Core Text technologies. Text Kit is, in Apple’s words, a “fast,
modern text layout and rendering engine,” and it’s built directly on top of the Core Text frame-
work. While there are still a few bugs in the system, iterative updates continue to bring Text Kit
closer and closer to Core Text’s power.

 Unlike Core Text, with its C-style design, Text Kit uses object-based APIs. Wrappers simplify
memory management and provide better integration with UIKit classes. Figure 3-1 offers a
quick rundown of some of the key terms you need to know when working with Text Kit:

 ■ The heart of every Text Kit layout lies in its text storage that, as the name suggests,
stores text. Text storage provides the content that Text Kit layout managers present.
This material is an attributed string that stores the text and styles that should be shown
onscreen. Changes to the text storage, which act as the model for Text Kit, automatically
propagate to client layout managers, which draw the text into onscreen views.

 ■ A Text Kit layout manager converts strings and their attributes into material that is ready
for display. Managers convert stored characters to glyphs , the individual text drawings
that represent those characters. Every layout manager draws the same content, each to
its own set of containers. Adding more than one layout manager will clone content to
different destinations. Unless you need to repeat text at more than one destination, use a
single layout manager for your text storage.

46 Chapter 3 Text Kit

 ■ You assign one or more containers to each layout manager. A container sets the geometric
size of the drawing destination. That content is broken into pieces, based on the available
drawing space in each container.

Layout Manager

Layout Manager

Layout Manager

Text Storage

Text Container

Text Container

Text Container

 Figure 3-1 Text Kit overview.

 The following sections discuss these concepts in greater detail, exploring how Text Kit is built
from glyphs, containers, layout managers, and text storage.

 Glyphs

 Glyphs are individual character drawings. Each glyph represents one or more characters drawn
to the screen or printed to the page. For example, the letter a is normally a single glyph. When
using ligatures , a typesetting solution for reducing spaces between adjacent letters, two or more
letters may combine to form a single glyph. You enable ligatures in attributed strings by adding
the NSLigatureAttributeName attribute, as in this snippet:

 [string addAttribute:NSLigatureAttributeName
 value:@(YES) range:string.fullRange];

 Once NSLigatureAttributeName is added, iOS is smart enough to provide rendering support
for ligature-enabled fonts like Hoefler Text and Zapfino.

47Glyphs

 The letters fi form the most commonly used English ligature. Normally, these characters
produce two glyphs when rendered from an attributed string. Enabling ligatures returns the
glyph sequence shown in Figure 3-2 . In the third glyph of the word refine , the top of the f
extends over and joins with the dot on the i . The two characters merge together into a single
typographic item.

 Figure 3-2 Top: The f and i letters are combined into a single glyph in this expanded view of the
word refine . Bottom: Ligatures built into the Hoefler Text font.

 Because of ligatures, you do not always experience a direct correspondence between an attrib-
uted string’s characters and the underlying Core Text glyph-by-glyph layout. Each CGGlyph
instance is an index, a reference to the internal glyph table for a given font. Figure 3-2 draws
five glyphs, even though the word refine uses six characters. As you will discover, some APIs
refer to glyphs and their ranges, while others work with characters. Be prepared to use both
and prepare for some cross-framework discontinuities. Although Text Kit is built on top of Core
Text, the two do not always match up exactly in their developer-facing terminology.

 Listing 3-1 shows the code used to create Figure 3-2 . This listing uses Core Text to pull out each
glyph and draw it to the current context. This section of this chapter is the only one to use
Core Text rather than Text Kit. It gives you a starting point to compare the complexities and
approach of Core Text with other code throughout this chapter. Here you see plenty of old-
style Core Text calls, with their C-style interfaces and manual memory management. As you see
in Listing 3-1 , these C-based implementation details aren’t a very big deal in Objective-C, but
be warned. They can become unwieldy when moved to Swift.

 Listing 3-1 Drawing Glyphs

 // Test with refine, whiffle, flout, inflate, offal, hoofbeat,
 // calfhood, fjarding, wolfkin, offbeat, offhand, tscheffkinite

 - (UIImage *) drawGlyphs: (NSString *) initialString
 {

48 Chapter 3 Text Kit

 // Establish a font
 UIFont *theFont = [UIFont fontWithName:@"HoeflerText-Regular" size:60];

 // Create the attributed string with ligatures enabled
 NSMutableAttributedString *string =
 [[NSMutableAttributedString alloc] initWithString:initialString
 attributes:@{NSFontAttributeName:theFont,
 NSLigatureAttributeName:@(YES)}];

 // Establish a drawing space
 CGRect bounds = [string boundingRectWithSize:CGSizeMake(
 CGFLOAT_MAX, CGFLOAT_MAX)
 options:NSStringDrawingUsesLineFragmentOrigin context:nil];

 // Inflate to allow spacing out
 bounds.size.width *= 3;
 bounds.size.height *= 3;

 UIGraphicsBeginImageContextWithOptions(bounds.size, NO, 0);
 CGContextRef context = UIGraphicsGetCurrentContext();

 // White background
 [[UIColor whiteColor] set];
 CGContextFillRect(context, bounds);

 // Flip for Quartz drawing coordinate system
 [self prepareContextForCoreText:bounds.size];

 // Point to start drawing
 CGPoint point = CGPointMake(20, CGRectGetMidY(bounds));

 // Draw each Core Text run
 CTLineRef line = CTLineCreateWithAttributedString(
 (__bridge CFAttributedStringRef)string);
 NSArray *runArray = (__bridge_transfer NSArray *) CTLineGetGlyphRuns(line);
 for (id eachRun in runArray)
 {
 CTRunRef run = (__bridge CTRunRef)eachRun;

 // Set the drawing font
 CFDictionaryRef attributes = CTRunGetAttributes(run);
 CTFontRef runFont = CFDictionaryGetValue(
 attributes, kCTFontAttributeName);
 CGFontRef cgFont = CTFontCopyGraphicsFont(runFont, NULL);
 CGContextSetFont(context, cgFont);
 CGContextSetFontSize(context, CTFontGetSize(runFont));
 CGFontRelease(cgFont);

49Glyphs

 // Iterate through each glyph in the run
 for (CFIndex runGlyphIndex = 0;
 runGlyphIndex < CTRunGetGlyphCount(run); runGlyphIndex++)
 {
 // Fetch the glyph based on its index in the run
 CGGlyph glyph;
 CFRange glyphRange = CFRangeMake(runGlyphIndex, 1);
 CTRunGetGlyphs(run, glyphRange, &glyph);

 // Calculate a surrounding rectangle
 CGFloat ascent, descent, leading;
 double glyphWidth = CTRunGetTypographicBounds(run,
 CFRangeMake(runGlyphIndex, 1), &ascent, &descent, &leading);
 CGRect destRect = CGRectMake(
 point.x, point.y - (ascent + descent) / 2.0,
 glyphWidth, ascent + descent);

 // Enable emoji support via font attributes
 NSDictionary *attributes =
 (__bridge NSDictionary *)CTRunGetAttributes(run);
 if (attributes[NSFontAttributeName] == theFont)
 {
 // Normal drawing
 [[UIColor blackColor] set];
 CGContextShowGlyphsAtPositions(context, &glyph,
 &destRect.origin, 1);
 }
 else
 {
 // Emoji
 UIFont *glyphFont = attributes[NSFontAttributeName];
 CTFontRef fontRef =
 CTFontCreateWithName((CFStringRef)glyphFont.fontName,
 glyphFont.pointSize, NULL);
 CTFontDrawGlyphs(fontRef, &glyph, &destRect.origin, 1, context);
 CFRelease(fontRef);
 }

 // Draw a rectangle in gray
 destRect = CGRectInset(destRect, -8, -8);
 destRect.origin.y -= descent;
 UIBezierPath *path = [UIBezierPath bezierPathWithRect:destRect];
 [[UIColor lightGrayColor] set];
 [path stroke];

 // Move to the right
 point.x += glyphWidth + 40;

50 Chapter 3 Text Kit

 }
 }

 // Retrieve the image
 UIImage *image = UIGraphicsGetImageFromCurrentImageContext();
 UIGraphicsEndImageContext();

 return image;
 }

 Figure 3-3 shows the same refine text, using the Hoefler Text font from Figure 3-2 and displayed
in a user-editable UITextView . A cursor appears centered over the fi ligature, midway between
the f and the i . From a user’s point of view, this word has six characters, not five glyphs. The
UIKit representation mirrors the user experience, enabling the user to add and edit text without
regard to rendering details. According to UIKit’s TextKit queries, this string contains six glyphs.

 Figure 3-3 UIKit’s emphasis on user interaction can cause mismatches between underlying
Core Text layout technology and UIKit APIs. Despite using ligatures, the cursor moves character-by-
character to match a user’s text entry.

 UIKit APIs don’t always match the values you expect from underlying rendering. The following
calls return the number of glyphs stored in a text view and convert between glyph indices and
character indices:

 // Set the attributed string
 [textView.textStorage setAttributedString:attributedString];

 // Report the number of glyphs
 NSLog(@"Number of glyphs in %@: %zd", attributedString.string,
 textView.layoutManager.numberOfGlyphs);

 // If there is not a mismatch, return
 if (textView.layoutManager.numberOfGlyphs != textView.textStorage.string.length)
 return;
 // If there is, iterate through each item in the attributed string
 // and report the indices and bounds
 for (int index = 0; index < attributedString.string.length; index++)
 {
 NSLog(@"Index: %zd glyph index for character: %zd", index,
 [textView.layoutManager glyphIndexForCharacterAtIndex:index]);

51Glyphs

 NSLog(@"Index: %zd character index for glyph: %zd", index,
 [textView.layoutManager characterIndexForGlyphAtIndex:index]);
 NSLog(@"Index: %zd bounds: %@", index,
 NSStringFromCGRect([textView.layoutManager
 boundingRectForGlyphRange:NSMakeRange(index, 1)
 inTextContainer:textView.layoutManager.textContainers.firstObject]));
 }

 This sample uses Text Kit technologies such as text storage and a layout manager, which are
explored in greater detail later in this chapter. But before diving into those topics, you first
need this bit of base knowledge about glyphs.

 A standard UIKit text view stores six glyphs for the attributed ligature-enabled Hoefler Text
 refine text from Figure 3-3 . It reports a 1:1 correspondence for each of these characters and
glyphs. In the following results output, notice that the bounds for characters 2 and 3 are identi-
cal, as they use a single ligature glyph:

 Number of glyphs in refine: 6
 Index: 0 glyph index for character: 0 // r
 Index: 0 character index for glyph: 0
 Index: 0 bounds: {{5, 0}, {22.32, 60}}
 Index: 1 glyph index for character: 1 // e
 Index: 1 character index for glyph: 1
 Index: 1 bounds: {{27.32, 0}, {28.079999999999998, 60}}
 Index: 2 glyph index for character: 2 // fi
 Index: 2 character index for glyph: 2
 Index: 2 bounds: {{55.399999999999999, 0}, {35.039999999999999, 60}}
 Index: 3 glyph index for character: 3 // fi
 Index: 3 character index for glyph: 3
 Index: 3 bounds: {{55.399999999999999, 0}, {35.039999999999999, 60}}
 Index: 4 glyph index for character: 4 // n
 Index: 4 character index for glyph: 4
 Index: 4 bounds: {{90.439999999999998, 0}, {32.879999999999995, 60}}
 Index: 5 glyph index for character: 5 // e
 Index: 5 character index for glyph: 5
 Index: 5 bounds: {{123.31999999999999, 0}, {28.079999999999984, 60}}

 The matter grows more complicated with complex characters like the emoji shown in Figure
 3-4 . In this example, the text view incorrectly reports 11 glyphs and characters due to the larger
Unicode storage for the emoji items. There should be only 9 glyphs.

 Listing 3-2 extends the NSLayoutManager class to retrieve a true glyph count. It iteratively
compares adjacent bounding rects and merges identical items represented by a single glyph.

52 Chapter 3 Text Kit

 Listing 3-2 Counting Glyphs by Checking Drawing Bounds

 @interface NSLayoutManager (GeneralUtility)
 @property (nonatomic, readonly) NSUInteger trueGlyphCount;
 @end

 @implementation NSLayoutManager (GeneralUtility)
 - (NSUInteger) trueGlyphCount
 {
 if (self.numberOfGlyphs < 2) return self.numberOfGlyphs;

 NSUInteger count = 0;
 for (NSTextContainer *container in self.textContainers)
 {
 NSRange glyphRange = [self glyphRangeForTextContainer:container];
 if (glyphRange.length < 2)
 {
 count += glyphRange.length;
 continue;
 }

 // First item
 CGRect bounds = [self boundingRectForGlyphRange:
 NSMakeRange(glyphRange.location, 1) inTextContainer:container];
 count += 1;

 // Remaining items
 for (NSUInteger index = 1; index < glyphRange.length; index++)
 {
 CGRect testBounds = [self boundingRectForGlyphRange:
 NSMakeRange(glyphRange.location + index, 1)
 inTextContainer:container];

 Figure 3-4 Emoji characters currently report incorrectly as 2 glyphs and 2 characters each.

53Glyphs

 if (CGRectEqualToRect(bounds, testBounds)) continue;
 bounds = testBounds;
 count += 1;
 }
 }

 return count;
 }
 @end

 If you are curious about what glyphs and ligatures any iOS font provides, Listing 3-3 may help.
It creates an exhaustive presentation, returned in the form of an attributed string, which you
can either throw into a UITextView as in Figure 3-5 or export to a document, as discussed in
 Chapter 4 , “Attributed Strings and Document Containers.” This method works by querying the
font for the number of glyphs it supports. It then iterates through those items, drawing each
glyph and showing its associated glyph name.

 Figure 3-5 Glyph list for the Hoefler Text font. This font contains nearly 1,200 individual glyphs.

 Listing 3-3 Reviewing Font Glyphs

 - (NSAttributedString *) generateFontInformation
 {
 NSMutableAttributedString *string = [NSMutableAttributedString new];

 NSString *fontName = @"HoeflerText-Regular";
 CGFontRef fontRef = CGFontCreateWithFontName(

54 Chapter 3 Text Kit

 (__bridge CFStringRef) fontName);
 size_t count = CGFontGetNumberOfGlyphs(fontRef);

 NSString *title = [NSString stringWithFormat:@"%@\n", fontName];
 NSAttributedString *attributedTitle = [[NSAttributedString alloc]
 initWithString:title attributes:@{NSFontAttributeName:
 [UIFont fontWithName:@"Courier" size:32]}];
 [string appendAttributedString:attributedTitle];

 CGFloat side = 30;
 CGRect rect = CGRectMake(0, 0, side, side);
 CGPoint drawingPoint = CGPointMake(12, 12);
 CGFloat fontSize = 12;

 for (CGGlyph i = 0; i < count; i++)
 {
 // Fetch glyph name
 NSString *name = (__bridge_transfer NSString *)
 CGFontCopyGlyphNameForGlyph(fontRef, i);
 NSString *identity =
 [NSString stringWithFormat:@" %3d: %@\n", i, name];

 // Draw a sample of the glyph
 UIGraphicsBeginImageContextWithOptions(rect.size, YES, 0);
 CGContextRef context = UIGraphicsGetCurrentContext();
 CGContextSetFont(context, fontRef);
 CGContextSetFontSize(context, fontSize);
 CGContextSetTextMatrix(context, CGAffineTransformIdentity);
 CGContextTranslateCTM(context, 0, side);
 CGContextScaleCTM(context, 1.0, -1.0); // flip the context

 // Fill and frame the sample
 [[UIColor whiteColor] set];
 UIRectFill(rect);
 [[UIColor blackColor] set];
 UIRectFrame(rect);

 // Draw glyph
 CGGlyph glyph = CGFontGetGlyphWithGlyphName(fontRef,
 (__bridge CFStringRef) name);
 CGContextShowGlyphsAtPositions(context, &glyph, &drawingPoint, 1);
 UIImage *image = UIGraphicsGetImageFromCurrentImageContext();
 UIGraphicsEndImageContext();

 // Attachments are discussed in Chapter 7
 NSTextAttachment *attachment = [[NSTextAttachment alloc] init];
 attachment.image = image;

55Text Storage

 attachment.bounds = (CGRect){.size = image.size};
 NSAttributedString *s1 = [NSAttributedString
 attributedStringWithAttachment:attachment];

 NSAttributedString *s2 = [[NSAttributedString alloc]
 initWithString:identity
 attributes:@{
 NSFontAttributeName:[UIFont fontWithName:@"Courier" size:12],
 NSLigatureAttributeName:@(YES)}];
 [string appendAttributedString:s1];
 [string appendAttributedString:s2];
 }
 CFRelease(fontRef);

 return string;
 }

 Text Storage

 Apple defines text storage as “the fundamental storage mechanism of the Text Kit’s extended
text-handling system.” Text storage manages characters and their attributes, such as fonts,
weights, and colors. If this sounds eerily reminiscent of attributed strings, it’s not by accident.
The NSTextStorage class is simply a subclass of NSMutableAttributedString .

 Text storage moves beyond attributed strings by coordinating with layout manager objects, the
classes that manage the way text elements are placed onscreen. It synchronizes its client layout
managers whenever content updates. Text storage objects are active participants in the string-
to-presentation pathway.

 For example, say you have a text storage object whose contents are spread out between several
text views:

 // Replace the text shown in the client text views
 [storage beginEditing];
 [storage replaceCharactersInRange:
 NSMakeRange(0, storage.length)
 withAttributedString:newAttributedString];
 [storage fixAttributesInRange:NSMakeRange(0, storage.length)];
 [storage endEditing];
 // All clients are now automatically updated

 To update view contents, you simply modify the text storage. This change at the level of the
attributed string automatically propagates out to the storage’s view clients without further work
on your part.

56 Chapter 3 Text Kit

 The beginEditing and endEditing methods consolidate changes you make to the text
storage. Using them delays client notifications until you’ve finished your updates, lowering any
redrawing overhead.

 Note

 When working with text storage, as with any mutable attributed strings, edits may introduce
internal inconsistencies. The NSMutableAttributedString class offers several methods to
fix attributes. As a rule, use fixAttributesInRange: . This is the most general of the repair
methods. It ensures that all attributes are repaired—including errors with attachments, fonts,
and paragraph styles—with a single API call.

 Layout Managers

 A Text Kit layout manager takes responsibility for converting strings and their attributes into
material that is ready for display. Managers convert stored characters to the glyphs that repre-
sent them. They also apply attribute styles such as underline and strikethrough, which are not a
native part of fonts. Layout managers implement paragraph styles, such as line-to-line spacing,
indentation, alignment, tabbing, and so forth. They draw these items into their set of attached
text containers , which in turn define geometric destinations for drawing that text.

 In normal use, you create a single layout manager instance and add it to a text storage instance,
as is done in the following code snippet:

 storage = [[NSTextStorage alloc]
 initWithString:initialString attributes:attributeDictionary];
 NSLayoutManager *layoutManager = [[NSLayoutManager alloc] init];
 [storage addLayoutManager:layoutManager];

 Text views ship with a built-in layout manager and do not need you to create one unless you
need to build more complex layouts with text flowing from one text view to another. Retrieve
the built-in instance from a UITextView by accessing its layoutManager property.

 When you need the same text to be echoed in several places in a layout, you may connect
additional layout managers. All layout managers attached to a single text storage object present
the same text material. The left image in Figure 3-6 shows a single layout manager, which
draws to several destinations. The right image in Figure 3-6 uses multiple layout managers.
Each manager draws its content in parallel, producing mirrored results.

 Text Containers

 Each text container defines a geometric extent for Text Kit drawing. A container constrains text
layout to a specific region. You may add a single container destination to a layout manager or,
as in the case in Figure 3-6 (left), use multiple containers and enable the text to flow from one
destination to the next.

57Text Containers

 The order in which you add containers to your layout defines which area gets filled with text
first. The top screen shot in Figure 3-7 was built by adding the left container and then the right
one. The bottom screen shot in Figure 3-7 reverses that order. Text fills the right container
before the left one because it was added to the layout manager first.

 Here is the code that created the top screen shot. In it, the left container is added first, and
then the right container:

 NSTextContainer *textContainerLeft =
 [[NSTextContainer alloc] initWithSize:size];
 NSTextContainer *textContainerRight =
 [[NSTextContainer alloc] initWithSize:size];
 [layoutManager addTextContainer:textContainerLeft];
 [layoutManager addTextContainer:textContainerRight];

 The left and right qualities you see in Figure 3-7 arise from the layout of the two text views.
There is nothing intrinsically “left” or “first” about the textContainerLeft instance other
than the view it is attached to and the order in which it is added to the layout manager.

 Figure 3-6 In the left image, a single layout manager flows its text from one text view container
to the next. In the right image, two layout managers present identical text in parallel.

58 Chapter 3 Text Kit

 Figure 3-7 When you add these text containers in reverse order, the text fills the right
container first.

 Adaptive Flow

 Containers define text extent, but they do not define specific geometric positions. That’s
because they establish sizes—not rectangles that mark out frames. A container is always subor-
dinate to a layout manager. You leverage containers to create layouts that flow from one part
of the screen to another, such as when working with columns. As a rule, it’s easier to work with
existing UIKit classes to create these layouts than to depend on custom views that must render
their content. Text views make it easy to build adaptive material that adjusts itself to prevailing
container geometries. Figure 3-8 shows an adaptive layout presenting two columns of text.

59Text Containers

 Figure 3-8 This layout reflows its text when bounds change due to device rotation.

 To create this effect, use the built-in UITextView class with custom containers. The following
code builds the text views shown in Figure 3-8 :

 // Build the text views
 textViewLeft = [[UITextView alloc] initWithFrame:CGRectZero
 textContainer:[NSTextContainer new]];
 textViewRight = [[UITextView alloc] initWithFrame:CGRectZero
 textContainer:[NSTextContainer new]];

 // Disable scrolling and edits
 textViewLeft.scrollEnabled = NO;
 textViewRight.scrollEnabled = NO;
 textViewLeft.editable = NO;
 textViewRight.editable = NO;

 // Create a new custom layout manager
 layoutManager = [NSLayoutManager new];
 layoutManager.allowsNonContiguousLayout = YES;

 // Add the text containers from the text views
 [layoutManager addTextContainer:textViewLeft.textContainer];
 [layoutManager addTextContainer:textViewRight.textContainer];

 // Connect the layout manager to the custom text storage
 [textStorage addLayoutManager:layoutManager];

60 Chapter 3 Text Kit

 Consider a few key points about this approach:

 ■ Create custom containers for each text view in the interface. Do not use the ones
established by the standard initializers (new , initWithFrame: , initWithCoder:)
as you cannot redirect those containers to a custom layout manager. The
 initWithFrame:textContainer: initializer pattern you see here avoids nasty crashes.

 ■ Disable scrolling. Disabling scrolling enables the layout manager to flow the material
properly from container to container.

 ■ Disable edits. When using a custom layout manager, you bypass the text edit handlers
built into UITextView .

 ■ Use Auto Layout to place your views. Auto Layout ensures that the text views will
automatically resize on bounds changes to the controller, updating their containers and
causing the layout manager to reflow source text to accommodate the new geometries.

 Note

 If you want to track changes to a container’s text view, make sure to enable its
heightTracksTextView and widthTracksTextView properties.

 Insets

 Text containers enable you to adjust layout by adding insets or exclusion paths. As you see
in Figure 3-9 (left), a container’s textContainerInset property moves layout away from the
edges. You add inset hints to a container by passing a UIEdgeInsets struct. This struct defines
offsets from the top, left, bottom, and right of the container:

 // Inset left text view
 textViewLeft = [[UITextView alloc] initWithFrame:self.view.bounds
 textContainer:textContainerLeft];
 [self.view addSubview:textViewLeft];

 textViewLeft. textContainerInset = UIEdgeInsetsMake(50, 20, 50, 20);

 Exclusion Paths

 Exclusion zones prevent text from being drawn to parts of a container, typically where you
want to insert an illustration embedded within the text. Created with Bezier paths, exclusion
zones offer more flexibility than insets because you can theoretically use any shape, not just
rectangles. Figure 3-9 (right) uses an exclusion path extending from the edges of a rectangle
into an embedded oval. This zone consists an inverted oval Bezier path:

 // Wrap text within oval exclusion zone
 CGRect destination = CGRectInset(textViewRight.bounds, 20, 20);
 UIBezierPath *exclusion = InversePathInRect(

61Text Containers

 [UIBezierPath bezierPathWithOvalInRect:destination],
 textViewRight.bounds);
 textViewRight.textContainer. exclusionPaths = @[exclusion];

 Figure 3-9 Insets (left) and exclusion zones (right) adjust output targets within a text container.

 Notably, this zone inverts its path. It places the exclusion to the outside rather than the inside
of the text. This shapes the text drawing, limiting it to the inner oval. Most commonly, you use
exclusion zones to add embedded figures. The following inversion function use the odd/even
fill rule for Bezier paths to create an inside-out effect for shaping text:

 UIBezierPath *InversePathInRect(
 UIBezierPath *sourcePath, CGRect rect)
 {
 UIBezierPath *path = [UIBezierPath bezierPath];
 [path appendPath:sourcePath];
 [path appendPath:[UIBezierPath bezierPathWithRect:rect]];
 path.usesEvenOddFillRule = YES;
 return path;
 }

 Be very careful in limiting an exclusion zone to the container bounds. In the current versions
of iOS, zones extending outside the container can cause your apps to spiral into an infinite
loop, never returning control to the user. Even zones carefully matched to container edges
may produce unexpected artifacts. Text Kit is very good at simple rectangles, but it sometimes
struggles with other geometries.

62 Chapter 3 Text Kit

 Bounding Rectangles

 The text oval produced by the code you just saw should lie directly in the vertical center of
the output container. As you can see in Figure 3-9 , it does not. It is offset from the top of the
container by a noticeable amount. Text Kit often displays layout quirks like this, especially
when working with text views—a class that displays any number of odd behaviors related to
whether the parent view controller enables extended edge layout, whether the view itself has
content insets, and so forth.

 To adjust the gray area, which is drawn into an image view placed over the text view, query
the layout manager for the true bounds of the presented glyphs. The following code returns an
accurate bounding rectangle with respect to the parent text view:

 NSRange fullRange = NSMakeRange(0, layoutManager.numberOfGlyphs);
 CGRect trueRect = [layoutManager boundingRectForGlyphRange:fullRange
 inTextContainer:textContainerRight];

 You often need to take note of the difference in size between the view’s bounds and the text
container’s size:

 NSLayoutManager *layoutManager = textView.layoutManager;
 CGFloat dY = textView.bounds.size.height
 - textContainer.size.height;

 For example, when retrieving glyph outlines, you offset them by half the difference between
the two extents, as shown here:

 for (int i = 0; i < layoutManager.numberOfGlyphs; i++)
 {
 // Fetch glyph rect in container coordinates
 CGRect glyphRect = [layoutManager
 boundingRectForGlyphRange:NSMakeRange(i, 1)
 inTextContainer:textContainerRight];
 // Offset those to parent view coordinates
 UIView *v = [[UIView alloc] initWithFrame:
 CGRectOffset(glyphRect, 0, dY / 2)];
 [textViewRight addSubview:v];
 v.layer.borderColor = [[UIColor blackColor]
 colorWithAlphaComponent:0.5].CGColor;
 v.layer.borderWidth = 0.5;
 }

 Figure 3-10 shows the correctly outlined results.

63Using Text Kit to Add Touch to Labels

 Figure 3-10 To properly outline these glyphs, you must take into account any difference between
a text view’s bounds and its container’s size.

 Using Text Kit to Add Touch to Labels

 Although modern UIKit labels are fully Text Kit powered and attribute ready, they lack many
conveniences included with the UITextView class. For example, you cannot initialize a label
instance with a custom text container. UIKit has no APIs to directly integrate the two. It’s rela-
tively easy, however, to subclass UILabel to add more explicit Text Kit support.

 So why would you subclass UILabel ? URL handling offers one very good reason. Although
a label instance will properly draw a URL, complete with underline and text hints, that link
won’t react to any touches. By integrating Text Kit into the label, you can create touch-to-glyph
matching that allows you to find when a user has activated a hyperlink.

 Establishing Text Kit

 To get started with touch-enabled elements, establish Text Kit instances that act in synchrony
with the label. This solution renders Text Kit text on top of views known to use Text Kit for
layout so the two line up exactly. The following method builds new storage, a layout manager,
and a container and stores these to local instance variables. These items are custom, mirroring
the implementation already baked into the UILabel :

64 Chapter 3 Text Kit

 - (void) establishTextKitElements
 {
 // Text storage
 textStorage = [[NSTextStorage alloc]
 initWithAttributedString:self.attributedText];

 // Layout manager
 layoutManager = [[NSLayoutManager alloc] init];
 [textStorage addLayoutManager:layoutManager];

 // Container
 container = [[NSTextContainer alloc] initWithSize:self.bounds.size];
 [layoutManager addTextContainer:container];
 container.maximumNumberOfLines = self.numberOfLines;
 container.lineBreakMode = self.lineBreakMode;
 }

 Each text container offers line break and line number properties. These mirror properties used
for text labels. Setting them when creating a container enables you to align the new Text Kit
elements to the label.

 Synchronizing

 Synchronizing Text Kit items with labels is critical in producing consistent lookups and accu-
rate feedback. You must catch any updates that affect the string value, number of lines, or line
break mode. The label’s attributed text must always be matched to the custom text storage,
and the lines and line break mode must be matched to the container. The following methods
ensure that any label-level changes propagate to custom Text Kit elements:

 - (void) setText:(NSString *)text
 {
 if (!textStorage) [self establishTextKitElements];
 [super setText:text];
 [textStorage setAttributedString:self.attributedText];
 }

 - (void) setAttributedText:(NSAttributedString *)attributedText
 {
 if (!textStorage) [self establishTextKitElements];
 [super setAttributedText:attributedText];
 [textStorage setAttributedString:self.attributedText];
 }

 - (void) setNumberOfLines:(NSInteger)numberOfLines
 {
 if (!textStorage) [self establishTextKitElements];
 [super setNumberOfLines:numberOfLines];

65Using Text Kit to Add Touch to Labels

 container.maximumNumberOfLines = numberOfLines;
 }

 - (void) setLineBreakMode:(NSLineBreakMode)lineBreakMode
 {
 if (!textStorage) [self establishTextKitElements];
 [super setLineBreakMode:lineBreakMode];
 container.lineBreakMode = lineBreakMode;
 }

 Translating Coordinates

 In addition to keeping the content synchronized, you must be able to translate points from
the view’s coordinate system into the container’s layout. The following methods retrieve the
bounding box for output glyphs and calculate vertical and horizontal offsets. By applying these
offsets, you can translate view touch points into glyph coordinates that enable you to match
characters to touches:

 // Return unified bounds of all glyphs
 - (CGRect) glyphBounds
 {
 container.size = self.bounds.size;
 return [layoutManager boundingRectForGlyphRange:
 NSMakeRange(0, layoutManager.numberOfGlyphs)
 inTextContainer:container];
 }

 // Find half difference between view bounds and glyph bounds
 // This assumes label vertical centering
 - (CGFloat) verticalLayoutOffset
 {
 CGRect glyphBounds = [self glyphBounds];
 return (self.bounds.size.height - glyphBounds.size.height) / 2;
 }

 - (CGFloat) horizontalLayoutOffset
 {
 CGRect glyphBounds = [self glyphBounds];
 return -glyphBounds.origin.x;
 }

 // Adjust touch points to container
 - (CGPoint) viewPointInLayoutCoordinates: (CGPoint) point
 {
 CGRect glyphBounds = [self glyphBounds];
 CGFloat layoutOffset = [self verticalLayoutOffset];

66 Chapter 3 Text Kit

 CGPoint adjustedPoint = CGPointMake(
 point.x + glyphBounds.origin.x, point.y - layoutOffset);
 return adjustedPoint;
 }

 Glyphs and Characters

 As you read earlier in this chapter, glyphs and characters do not always match up. The next
method leverages the touch point-to-glyph coordinate solution you just saw so you can find a
glyph that corresponds to a user’s touch:

 // Search glyph-by-glyph for a match
 - (NSUInteger) glyphIndexAtPoint: (CGPoint) point
 {
 CGPoint adjustedPoint =
 [self viewPointInLayoutCoordinates:point];
 NSUInteger match = NSNotFound;
 for (int i = 0; i < layoutManager.numberOfGlyphs; i++)
 {
 // Test each glyph to see if it contains the point
 CGRect glyphRect = [layoutManager
 boundingRectForGlyphRange:NSMakeRange(i, 1)
 inTextContainer:container];
 if (CGRectContainsPoint(glyphRect, adjustedPoint))
 {
 match = i;
 break;
 }
 }
 return match;
 }

 Once you’ve found the glyph match, convert that glyph index into a character index. This
enables you to look up that glyph in the label’s attributed string and provides access to any
attributes at that point:

 // Find glyph and convert to character
 - (NSUInteger) characterIndexAtPoint: (CGPoint) point
 {
 NSUInteger glyphIndex = [self glyphIndexAtPoint:point];
 if (glyphIndex == NSNotFound)
 return NSNotFound;
 return [layoutManager characterIndexForGlyphAtIndex:glyphIndex];
 }

67Using Text Kit to Add Touch to Labels

 Checking for Links

 Use the character index to query the label’s attributed string. The following method checks
whether a link attribute is established at the given point. If so, it retrieves the attribute range
(which corresponds to the Core Text “run” you read about earlier in the chapter) and returns
the associated URL:

 - (NSURL *) urlForPoint: (CGPoint) testPoint
 index: (NSUInteger *) index range: (NSRange *) range
 {
 if (!textStorage) [self establishTextKitElements];

 // Find the character index at the touch point
 NSUInteger characterIndex = [self characterIndexAtPoint:testPoint];
 if (index) *index = characterIndex;
 if (characterIndex == NSNotFound) return nil;

 // Is there a URL?
 NSRange r;
 NSDictionary *attributeDictionary = [self.attributedText
 attributesAtIndex:characterIndex effectiveRange:&r];
 if (range) *range = r;
 return attributeDictionary[NSLinkAttributeName];
 }

 Adding Visual Feedback

 A label implementation can present “active” URLs with a gray background highlight, as shown
in Figure 3-11 . A highlight appears as a touch enters a URL area and is dismissed when the
touch strays from it. This feedback and its delayed action enable users to change their minds
before lifting their finger from the screen, providing a better user experience.

 The following method creates visual highlights. This code checks attributes at the string index
passed to it. When there’s a URL (and if it matches the reference URL established where the
user first touched the screen), the code applies a background color attribute. The background
color attribute is otherwise cleared from all other points in the string:

 - (void) highlight: (BOOL) shouldHighlight forURL: (NSURL *) comparisonURL
 atIndex: (NSUInteger) index
 {
 // Clear any existing highlights
 NSMutableAttributedString *string =
 self.attributedText.mutableCopy;
 [string addAttribute:NSBackgroundColorAttributeName
 value:[UIColor clearColor]
 range:NSMakeRange(0, string.length)];

68 Chapter 3 Text Kit

 // When the caller wants a highlight added, ensure
 // the URL at the touched index matches the original
 if (shouldHighlight)
 {
 NSRange range;
 NSURL *url = [self.attributedText
 attribute:NSLinkAttributeName
 atIndex:index effectiveRange:&range];
 if ([url isEqual:comparisonURL])
 [string addAttribute:NSBackgroundColorAttributeName
 value:[[UIColor grayColor] colorWithAlphaComponent:0.3]
 range:range];
 }

 // Update the label's attributed string
 self.attributedText = string;
 }

 Figure 3-11 Attributed text backgrounds enable users to know when their touch will activate
a URL.

69Draggable Exclusion Zones

 This is where the Text Kit story ends. The remaining class implementation involves tracking
touches and coordinating with a delegate, whose job it is to determine whether to give permis-
sion to highlight and open URLs. You can review them in the sample code for this chapter.

 Draggable Exclusion Zones

 Draggable exclusion zones are gimmicky. In text layout terms, they are unreliable except when
using simple rectangles. Despite this, they are unaccountably popular as they update presenta-
tions in response to user interactions. Figure 3-12 shows a bunny shape, which can be moved
around its parent text view. As it moves, the container’s custom exclusion zone updates, allow-
ing text to wrap around the shape.

 Figure 3-12 Exclusion zones enable text to wrap around shapes and images.

 To create a text exclusion zone, build a draggable view using your favorite recipe. A
 UIPanGestureRecognizer offers a simple solution, but there are many other approaches avail-
able. The key to success lies in producing an exclusion path whose bounds match the floating
view.

 Listing 3-4 applies path translation through transforms. It creates a new safe copy of the origi-
nal path and then translates it into position at each pan callback.

 Large exclusion paths whose height or width exceeds that of the original text view may cause
computation errors—specifically missing text under or to the right of the shape or drawing
routines that never return. You may also find rendered glyphs overlapping each other in the
final layout. I recommend filing bug reports with Apple when you encounter these.

70 Chapter 3 Text Kit

 Listing 3-4 Updating Exclusion Paths with Drags

 @implementation DragView
 {
 CGPoint previousLocation;
 }

 - (void) touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
 {
 [self.superview bringSubviewToFront:self];
 previousLocation = self.center;
 }

 - (void) handlePan: (UIPanGestureRecognizer *) recognizer
 {
 // Translate view
 CGPoint translation =
 [recognizer translationInView:self.superview];
 CGPoint destination = CGPointMake(
 previousLocation.x + translation.x,
 previousLocation.y + translation.y);
 if (CGRectContainsPoint(self.superview.bounds, destination))
 self.center = destination;

 // Update the exclusion to the new point
 if (_container && _shapePath)
 {
 // Update the path without altering original
 UIBezierPath *p = [UIBezierPath bezierPath];
 [p appendPath:_shapePath];
 [p applyTransform:CGAffineTransformMakeTranslation(
 destination.x - self.bounds.size.width / 2,
 destination.y - self.bounds.size.height / 2)];
 _container.exclusionPaths = @[p];
 }
 }

 - (void) setContainer:(NSTextContainer *)container
 {
 _container = container;

 // Add in the exclusion zone if possible
 if (_container && _shapePath)
 {
 // Update path without altering original
 UIBezierPath *p = [UIBezierPath bezierPath];
 [p appendPath:_shapePath];

71Building PDFs with Text Kit

 _container.exclusionPaths = @[p];
 }
 }

 - (instancetype) initWithFrame:(CGRect)frame
 {
 if (!(self = [super initWithFrame:frame])) return self;

 // Enable dragging through a gesture recognizer
 UIPanGestureRecognizer *recognizer =
 [[UIPanGestureRecognizer alloc] initWithTarget:self
 action:@selector(handlePan:)];
 [self addGestureRecognizer:recognizer];

 return self;
 }

 // Build instance with exclusion path
 + (instancetype) instanceWithFrame: (CGRect) frame
 path: (UIBezierPath *) path
 {
 DragView *view = [[self alloc] initWithFrame:frame];
 view.shapePath = path;
 CAShapeLayer *maskLayer = [CAShapeLayer layer];
 maskLayer.path = path.CGPath;
 view.layer.mask = maskLayer;
 return view;
 }
 @end

 Building PDFs with Text Kit

 Text Kit simplifies PDF tasks enormously. Prior to Text Kit, I prepared PDF data using frame
setters, the Core Text type that generates text layout frames. I was constantly converting coor-
dinate systems between Quartz layout, where the origin is in the bottom-left corner, and UIKit,
with its top-left origin. Keeping track of remaining fragments outside each container (that is,
where the text material that was not consumed by each frame) was a nontrivial bookkeeping
task. With Text Kit, the work shrinks to just a few easy-to-use lines. Elements like text attach-
ments (images), borders, and other advanced Text Kit layouts are automatically handled for
you. On the whole, things just work. That’s a fabulous change from where things were before
Text Kit debuted.

 Nearly all the work involved in container-based layout can be expressed in the three boldfaced
lines in Listing 3-5 . The first of these lines calculates how many glyphs can fit into a container.
This establishes an effective range for the items you want to draw. The second highlighted line

72 Chapter 3 Text Kit

performs the drawing, painting glyphs into the current context. The third highlighted line
removes already-drawn glyphs from text storage, creating page after page until you’ve run out
of material to add.

 The rest of Listing 3-5 is bookkeeping. The remaining calls keep track of the consumed glyphs,
excluding the material from each subsequent page. This method draws to a standard letter-sized
PDF context, using a drawing rectangle inset an inch (72 points) on each side.

 Listing 3-5 Creating PDF Data from a UITextView

 + (NSData *) PDFDataFromTextView: (UITextView *) textView
 {
 // Define a standard US letter, one-inch margins
 CGSize pageSize = CGSizeMake(612, 792);
 CGRect drawingRect =
 CGRectInset((CGRect){.size = pageSize}, 72, 72);

 // Establish Text Kit representation
 NSTextStorage *storage = [[NSTextStorage alloc]
 initWithAttributedString:textView.textStorage];
 NSLayoutManager *manager = [[NSLayoutManager alloc] init];
 [storage addLayoutManager:manager];
 NSTextContainer *container = [[NSTextContainer alloc]
 initWithSize:drawingRect.size];
 [manager addTextContainer:container];

 // Build PDF data and start drawing
 NSMutableData *outputData = [NSMutableData data];
 UIGraphicsBeginPDFContextToData(outputData,
 (CGRect){.size = pageSize}, nil);

 // Keep drawing until the glyphs are entirely consumed
 while (storage.length > 0)
 {
 NSRange range;
 UIGraphicsBeginPDFPage();

 // Count the glyphs that fit into the container
 [manager textContainerForGlyphAtIndex:0
 effectiveRange:&range];

 // Draw those glyphs
 [manager drawGlyphsForGlyphRange:range
 atPoint:drawingRect.origin];

 // Remove already-drawn glyphs
 NSInteger endIndex =

73Printing Text View Data

 [manager characterIndexForGlyphAtIndex:range.length];
 NSRange clearRange = NSMakeRange(0, endIndex);
 [storage deleteCharactersInRange:clearRange];
 }

 // Finish the PDF drawing and return the results
 UIGraphicsEndPDFContext();
 return outputData;
 }

 Printing Text View Data

 Some views offer a special formatter that enables you to transform view contents into print-
able representations. A viewPrintFormatter property is built into the UIView class, and
some classes—including text views, map views, and web views—implement this property to
create appropriate output for their content. In an adaptive world, the specifics of presentation
geometry are disconnected from print or document preparation. They do not pay attention
to whether a device is currently landscape or portrait or whether a view is experiencing other
geometric limitations.

 With text views, the focus remains on the stored attributed string. The output from the print
method in Listing 3-6 ignores any current onscreen presentation details and queries the text
view’s view print formatter for the information it needs to build its print job.

 Listing 3-6 Printing Text Views

 - (void) print
 {
 UIPrintInfo *printInfo = [UIPrintInfo printInfo];
 printInfo.outputType = UIPrintInfoOutputGeneral;
 printInfo.jobName = @"My Print Job";

 UIPrintInteractionController *printController =
 [UIPrintInteractionController sharedPrintController];
 printController.printInfo = printInfo;
 printController.showsPageRange = YES;
 printController.printFormatter = textView.viewPrintFormatter ;

 [printController presentAnimated:YES completionHandler:
 ^(UIPrintInteractionController *controller,
 BOOL completed, NSError *error)
 {
 if (!completed)
 {

74 Chapter 3 Text Kit

 NSLog(@"Printing error: %@", error.localizedDescription);
 return;
 }
 }];
 }

 Printing PDF Data

 To adapt Listing 3-6 to print PDF data that’s not associated with a particular view, you need
only replace the print formatter assignment line with one that sets the printing item, as shown
here:

 printController.printingItem = data;

 Here, you can pass a PDF NSData instance, such as the one produced by Listing 3-5 , and it will
print out that material without it having to be tied to a view. This is especially convenient
for printing application-generated reports, annotated images, and other material that is not
normally displayed to the user using the same layout applied to printed versions.

 Wrap-up

 Here are final points to wrap up what you’ve read in this chapter:

 ■ There are many things Text Kit is excellent at. For example, it is perfect for simple text
layout and column support. When Text Kit performs a job well, it’s an absolutely
invaluable tool. Its strengths lie in glyph/character/geometry coordination.

 ■ There are many things that Text Kit is not very good at yet. Drawing to nonrectangular
contexts with complex exclusion zones is not among its strengths. Despite its
deployment time in the field, Text Kit still has rough edges. Where necessary, turn to
Core Text. Core Text can be reliable for complex text layout tasks.

 ■ Text Kit makes it insanely easy to produce PDF renderings of text view content. Its
container-by-container layout features adapt perfectly to PDF page output.

 ■ Don’t forget that when working with columns and adaptive layouts, it’s vital to limit text
view scrolling. If you do not, your text will simply flow down the first of your text views
and never continue to the next.

 4
 Attributed Strings and
Document Containers

 Attributed strings form the basis of some of the most portable and adaptive iOS elements.
Over the past few years, this class has grown enormously in power and potential. New docu-
ment support includes ways to encapsulate and transfer data. Attributed strings have grown
to provide support for HTML and RTF rich text documents, providing seamless polymorphism
between text presentation and representation. Text design now better migrates to the iOS
screen and from iOS to other destinations. Image integration has become simple and effective.
With Text Kit, attributed strings can now do a lot more than you might expect. This chapter
explores some of those expanded possibilities.

 Class Enhancements

 Starting in iOS 6, Apple began introducing major revisions to its suite of UIKit text classes.
Updates have enabled developers to use attributed strings in text views, in text fields, and in
a variety of controls. These enhancements have extended control over fonts, coloring, and
layouts to produce sophisticated and nuanced text output in common system-supplied classes,
as shown in the text view in Figure 4-1 .

 NSParagraphStyle also debuted. It introduced ways to align and indent text in specific text
regions, as well as control for paragraph-to-paragraph spacing, leading, and more. Later iOS
updates added more features, like the tab stops that launched in iOS 7. These enabled develop-
ers to create tabular text, like that shown in Figure 4-2 .

76 Chapter 4 Attributed Strings and Document Containers

 Figure 4-2 The attributed string in this text view uses tab stops to produce column-based
output.

 By iOS 7, Apple had also bumped up attributed strings to support document containers, offer-
ing HTML, RTF, and RTFD integration. The text view in Figure 4-3 shows content read in from
an RTFD file container, complete with attached images. With these newer document types, it
became ever simpler to build complex content with fine color, sizing, and alignment control.

 Figure 4-1 Attributed strings offer fine control over text formatting. This standard UITextView
displays multiple fonts in a presentation of a single attributed string.

77Class Enhancements

 Figure 4-3 RTFD documents support embedded image attachments.

 Instead of sourcing content from within an app, iOS has now opened itself up to importing
material created using desktop editing suites. The text you present can now be as sophisticated
and complex as you need it to be, without relying on web views.

 String Attachments

 Attachment attributes enable you to integrate images into your text storage. Attachments are
markers that indicate which parts of a string are associated with an NSTextAttachment object.
In the most manual approach, you create an attachment instance and apply it to the attributed
string by using an NSAttachmentAttributeName attribute. It takes work to ensure that you’ve
added a special attachment character and associated it with the proper attachment object.
Fortunately, there’s a much easier approach that leverages a built-in class method.

 You build an attachment object by allocating a new NSTextAttachment instance. Many text
attachments are images. For these, you build a new instance and assign a value to the built-in
 image property, as in the following snippet:

 NSTextAttachment *attachment = [[NSTextAttachment alloc] init];
 attachment.image = image;
 attachment.bounds = (CGRect){.size = image.size};

78 Chapter 4 Attributed Strings and Document Containers

 The bounds property specifies the size associated with the attachment. Offset the origin of
 bounds to create an attachment that moves above or below the text baseline.

 A special attachment character (NSAttachmentCharacter) denotes an attachment point.
Although you can build your own string from this character and apply the attachment
programmatically, you’re better off using the built-in attributedStringWithAttachment:
class method. This method returns a simple attachment string to insert into your text storage:

 NSAttributedString *replacement = [NSAttributedString
 attributedStringWithAttachment:attachment];
 // The range used here is a zero-length range where you want the
 // attachment to be inserted
 [textView.textStorage replaceCharactersInRange:range
 withAttributedString:replacement];

 Without this convenience method, you populate a string with the special character, insert it
into the attributed storage, and then apply the attachment attribute:

 unichar c = NSAttachmentCharacter;
 NSString *replacement = [NSString stringWithCharacters: &c length: 1];
 [textView.textStorage replaceCharactersInRange:range withString:replacement];
 [textView.textStorage addAttribute:NSAttachmentAttributeName
 value:attachment range:range];

 Building Attributed Strings from HTML

 With HTML import, attributed string creation is easier than ever. iOS can now automatically
transform basic markup into view-ready attributes. Consider the following HTML string:

 NSString *sourceString = @"<H1>\
 This is a <i>Heading</i></H1>\
 <p>This is body text</p>";

 This simple example consists of a header and body text, with a few integrated style tags. It takes
very little work to convert HTML content into an NSAttributedString instance that is ready
for display in a UITextView . This source produces the display shown in Figure 4-4 , complete
with the requested styles and colors.

 The NSAttributedString class offers this easy transformation. With just a few simple calls,
you can convert HTML and RTF text sources to their attributed string equivalents. To make this
happen, call built-in initializing methods for the NSAttributedString class. These methods
require a document type to enable the class to properly interpret whatever string or data has
been passed to the initializer.

79Building Attributed Strings from HTML

 Document Type Dictionaries

 Listing 4-1 begins the process of transforming rich sources to attributed strings by establishing a
document type dictionary. You need this dictionary to pass to NSAttributedString ’s various
 documentAttributes: parameters when converting data to and from these formats. The
dictionary associates the NSDocumentTypeDocumentAttribute with a specific type, selected by
looking up common file extensions. For HTML, pass either htm or html as a parameter. With
just one key and one value, the dictionary built by Listing 4-1 is barebones. As you’ll discover
later in this chapter, you can add a lot more customization to a document dictionary. For now,
however, this single key/value pair is enough to get you started with markup conversion.

 Listing 4-1 Creating a Document Type Dictionary

 NSDictionary *DocumentTypeDictionary(NSString *ext)
 {
 NSDictionary *documentTypeDictionary =
 @{@"rtfd":NSRTFDTextDocumentType,
 @"rtf" :NSRTFTextDocumentType,
 @"html":NSHTMLTextDocumentType,
 @"htm" :NSHTMLTextDocumentType,
 @"txt" :NSPlainTextDocumentType};

 NSString *docType =
 documentTypeDictionary[ext.lowercaseString];
 return @{NSDocumentTypeDocumentAttribute :
 docType ? : NSPlainTextDocumentType};
 }

 Figure 4-4 Simple markup produces text view–ready attributed strings.

80 Chapter 4 Attributed Strings and Document Containers

 Converting HTML Source to Attributed Strings

 Listing 4-2 uses the dictionary returned by Listing 4-1 ’s document type function to convert a
source string to an attributed string, based on the file extension you pass in. This feature is part
of the UIKit additions to NSAttributedString , so its header declaration appears in the UIKit
framework and not in Foundation. Here’s how you convert the HTML source string you just
saw into an attributed version:

 NSAttributedString *attributedVersion = AttributedStringWithString(
 sourceString, @"html");

 Listing 4-2 Using Attributed Strings with HTML

 // Create Attributed String from Data
 NSAttributedString *AttributedStringWithData(
 NSData *data, NSString *ext)
 {
 if (!data) return nil;
 if (!ext) return nil;

 NSDictionary *returnDict;
 NSError *error;
 NSDictionary *typeDictionary = DocumentTypeDictionary(ext);
 NSAttributedString *result = [[NSAttributedString alloc]
 initWithData: data
 options:typeDictionary
 documentAttributes:&returnDict
 error:&error];
 if (!result)
 {
 NSLog(@"Error initializing string with data (%@): %@",
 ext, error.localizedDescription);
 }

 return result;
 }

 // Create Attributed String from Stylized Source String
 NSAttributedString *AttributedStringWithString(
 NSString *sourceString, NSString *ext)
 {
 if (!sourceString) return nil;
 if (!ext) return nil;

 NSData *data = [sourceString
 dataUsingEncoding:NSUTF8StringEncoding];

81Building Attributed Strings from HTML

 if (!data) return nil;
 return AttributedStringWithData(
 data, ext, nil);
 }

 Converting Attributed Strings to Document Representations

 Listing 4-3 shows a parallel AttributedStringStringRepresentation() function that
performs a reverse operation compared to the one in Listing 4-2 . Starting with an existing
attributed string, it produces string data. If you pass either html or htm , the string output is
returned in HTML format. If you pass rtf , you create RTF results.

 Listing 4-3 Converting an Attributed String to a Document Representation

 NSData *AttributedStringDataRepresentation(
 NSAttributedString *string, NSString *ext)
 {
 if (!string) return nil;
 if (!ext) return nil;

 NSError *error;
 NSDictionary *typeDictionary = DocumentTypeDictionary(ext);
 NSData *data =
 [string dataFromRange:NSMakeRange(0, string.length)
 documentAttributes:typeDictionary error:&error];
 if (!data)
 {
 NSLog(@"Error reading data from string (%@): %@",
 ext, error.localizedDescription);
 return nil;
 }
 return data;
 }

 // Passing nil to ext returns plain text
 NSString *AttributedStringStringRepresentation(
 NSAttributedString *string, NSString *ext)
 {
 if (!string) return nil;

 NSData *data =
 AttributedStringDataRepresentation(string, ext);
 NSString *result = [[NSString alloc]
 initWithData:data encoding:NSUTF8StringEncoding];

www.allitebooks.com

http://www.allitebooks.org

82 Chapter 4 Attributed Strings and Document Containers

 if (result) return result;
 return string.string;
 }

 Generating HTML from Attributed Strings

 As you’ve read, you can create attributed strings programmatically or import them from a docu-
ment format like HTML or RTF. Once built, attributed strings are agnostic. They neither care
what format they were initially created from nor force you to represent them using a particu-
lar standard. I’ve had quite a lot of fun exploring how far flat HTML data can represent more
advanced elements such as those loaded from RTFD containers. (The answer is some, but it
loses embedded images, although links still work.)

 For example, here are the results produced when the attributed string displayed in Figure 4-4
is converted back to HTML. As you see in this dump, the output includes CSS styling and
produces a more standards-compliant document than the minimal markup initially passed in:

 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/
strict.dtd">
 <html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <meta http-equiv="Content-Style-Type" content="text/css">
 <title></title>
 <meta name="Generator" content="Cocoa HTML Writer">
 <style type="text/css">
 p.p2 {margin: 0.0px 12.0px 0.0px; font: 12.0px 'Times New Roman';
 color: #000000; -webkit-text-stroke: #000000}
 span.s1 {font-family: 'TimesNewRomanPS-BoldMT'; font-weight: bold;
 font-style: normal; font-size: 24.00pt; font-kerning: none}
 span.s2 {font-family: 'TimesNewRomanPS-BoldItalicMT';
 font-weight: bold; font-style: italic; font-size: 24.00pt; font-kerning: none}
 span.s3 {font-family: 'Times New Roman'; font-weight: normal;
 font-style: normal; font-size: 12.00pt; font-kerning: none}
 span.s4 {font-family: 'TimesNewRomanPS-BoldMT'; font-weight: bold;
 font-style: normal; font-size: 12.00pt; font-kerning: none}
 </style>
 </head>
 <body>
 <h1 style="margin: 0.0px 16.1px 0.0px; font: 24.0px 'Times New Roman';
 color: #777777; -webkit-text-stroke: #777777">
 This is a Heading</h1>
 <p class="p2">This is body
 text</p>
 </body>
 </html>

83RTF and RTFD

 Markup Initialization

 Apple documentation emphasizes that HTML initialization is meant only for lightweight use.
When you need full HTML expression, you are better served by using web views instead of text
views. What HTML offers in this case is a convenient way to build and store attributed text
elements using a familiar markup system.

 This approach is particularly suitable for anyone performing markup conversion. For
example, say you have Markdown sources you wish to use in your application. Markdown
(http://en.wikipedia.org/wiki/Markdown) is a simple formatting syntax for plain text that
converts to HTML. The advantage of starting from a popular system like Markdown is its easy
specification and inspection.

 You might read in your .md sources and convert them to standard markup by using one of the
many open source third-party libraries currently available. Once converted, iOS provides the
final step from HTML to attributed strings, producing the content you need to populate
your views.

 RTF and RTFD

 The attributed string conversion utilities you use with HTML also work for RTF and RTFD docu-
ments. RTF, aka Rich Text Format, is a proprietary format created by Microsoft in the 1980s.
RTFD is a near cousin, and it offers in-text attachments to support images. Both RTF and RTFD
are used extensively on OS X. In fact, their usage dates back to NeXTSTEP, the OS that preceded
OS X.

 You work with RTF as you work with HTML. The functions in Listings 4-2 and 4-3 support RTF
as well as HTML. You pass rtf instead of html , but otherwise the calls are identical. Unlike
HTML, however, RTF isn’t exactly markup friendly. Here’s the “This is a Heading” content from
the previous example. As you can see, it offers neither readability nor easy tweaking in the
fashion of HTML source:

 \f0\b\fs48 \cf2 \expnd0\expndtw0\kerning0
 \outl0\strokewidth0 \strokec2 This is a
 \f1\i \cf2 \expnd0\expndtw0\kerning0
 \outl0\strokewidth0 \strokec2 Heading
 \f0\i0 \cf3 \expnd0\expndtw0\kerning0
 \outl0\strokewidth0 \strokec3 \
 \pard\pardeftab720\sa240\partightenfactor0

 More typically, you work with files. You read in these files as strings or data and convert that
material to the attributed string format. Alternatively, you allow users to create and edit mate-
rial in a text view and then store the results out as RTF documents. In both cases, you omit
details of the underlying RTF format—from both user and developer.

http://en.wikipedia.org/wiki/Markdown

84 Chapter 4 Attributed Strings and Document Containers

 The RTFD Container

 RTFD is the exception among iOS-supported text document types. The directory variant RTFD
is not a flat file format. It uses a folder to store document attachments, typically images, as well
as its text. For RTFD, you need a slightly different loading and extraction strategy than is used
in Listings 4-2 and 4-3 .

 RTFD documents are containers. You examine them in OS X by selecting an RTFD item in the
Finder. Control-click (or right-click) and choose Show Package Contents. Figure 4-5 shows the
items stored in the RTFD file I used to create Figure 4-3 . Here you find the source text (an RTF
file) along with any files attached to the document. This example uses a number of images.

 Figure 4-5 An RTFD bundle’s package contents contains text and attachment files.

 Initializing Attributed Strings from a File

 Fortunately, there’s a single unified approach for initializing any attributed string from a file.
This approach works for every format that NSAttributedString natively supports, including
RTFD containers, not just HTML and RTF. Listing 4-4 establishes an attributed string from any
conforming file. The path’s file extension sets the document type used to load the data.

 The optional documentDictionary parameter returns information about the document you
created. If you want to retrieve that information, establish a local variable and pass it by refer-
ence, as you would with NSError instances. Here are the dictionary results for the help.rtfd
document shown in Figures 4-3 and 4-5 :

 2014-12-15 20:28:14.614 Hello World[29989:60b] {
 BottomMargin = 72;
 CocoaRTFVersion = "1265.18994140625";
 DefaultTabInterval = 0;
 DocumentType = NSRTFD;
 HyphenationFactor = 0;
 LeftMargin = 72;
 PaperMargin = "UIEdgeInsets: {72, 72, 72, 72}";
 PaperSize = "NSSize: {612, 792}";

85RTF and RTFD

 RightMargin = 72;
 TopMargin = 72;
 UTI = "com.apple.rtfd";
 ViewSize = "NSSize: {861, 635}";
 }

 Listing 4-4 Reading Attributed Strings from Files and File Containers

 NSAttributedString *AttributedStringWithPath(
 NSString *path, NSDictionary **documentDictionary)
 {
 if (!path) return nil;

 // Establish type dictionary
 NSDictionary *typeDictionary =
 DocumentTypeDictionary(path.pathExtension);

 // Initialize from file
 NSError *error;
 NSDictionary *returnDict;
 NSAttributedString *result =
 [[NSAttributedString alloc]
 initWithFileURL:[NSURL fileURLWithPath:path]
 options:typeDictionary
 documentAttributes:&returnDict error:&error];

 if (result && documentDictionary)
 *documentDictionary = returnDict;

 if (!result)
 {
 NSLog(@"Error reading from %@ into string: %@",
 path.lastPathComponent, error.localizedDescription);
 return nil;
 }

 return result;
 }

 Converting RTFD Text to Data

 You cannot convert an RTFD-attributed string to a text-based representation without losing a
great deal of formatting and attachment information. These elements don’t come along for the
ride as they are normally stored in separate files in a folder bundle. Instead, you convert them
to data, a format that enables you to include both text and images. This is a form suitable for

86 Chapter 4 Attributed Strings and Document Containers

storing exact representations to the system pasteboard or writing to a flat file for future refer-
ence. Working with a data representation ensures that your material can be re-created in its
entirety.

 Listing 4-5 converts attributed strings to data representations. As with previous listings, this
one creates data using the format you specify. Although you can use this listing’s function to
produce data for non-RTFD formats, its practical utility is almost exclusively limited to RTFD
documents. Since the RTFD format interleaves text and resources from multiple files, the data
representation provides a single element for saving and reading this material.

 Keep size in mind. Data representations for plain text are quite small. RTFD output with
embedded images can grow large. One further note: Creating HTML data from an RTFD source
does not preserve images. If you want to use well-structured image and text material together in
an attributed string, RTFD remains the go-to technology to use for the time being.

 Here’s an example of how you might start with an attributed string and then create an RTFD
data representation of that instance. Any image attachments in that string will pass to the RTFD
data representation:

 NSData *data = AttributedStringDataRepresentation(string, @"rtfd");

 Listing 4-5 Converting Attributed Strings to Data Representations

 NSData *AttributedStringDataRepresentation(
 NSAttributedString *string, NSString *ext)
 {
 if (!string) return nil;
 if (!ext) return nil;

 NSError *error;
 NSDictionary *typeDictionary = DocumentTypeDictionary(ext);
 NSData *data = [string
 dataFromRange:NSMakeRange(0, string.length)
 documentAttributes:typeDictionary error:&error];
 if (!data)
 {
 NSLog(@"Error reading data from string (%@): %@",
 ext, error.localizedDescription);
 return nil;
 }
 return data;
 }

 Writing RTFD Containers from Data

 To move in the other direction—that is, to produce a folder of component RTFD files—build
a file wrapper and initialize it with the serialized data representation. Point a file URL to the

87RTF and RTFD

position where you want to create the folder and allow the wrapper to build the component
files:

 // Convert attributed string to RTFD data
 NSData *data = AttributedStringDataRepresentation(string, @"rtfd");

 // Create wrapper and initialize with serialized data
 NSFileWrapper *wrapper = [[NSFileWrapper alloc]
 initWithSerializedRepresentation:data];

 // Establish destination URL
 NSString *path = [destinationPath stringByAppendingPathComponent:@"doc.rtfd"];
 NSURL *fileURL = [NSURL fileURLWithPath:path];

 // Write to wrapper
 NSError *error;
 if (![wrapper writeToURL:fileURL options:NSFileWrapperWritingWithNameUpdating
 originalContentsURL:nil error:&error])
 NSLog(@"Error writing to file wrapper: %@", error.localizedDescription);

 Inspecting Attributes

 At times, you might want to examine stored attributes, whether when working with strings
you’ve created or when working with strings built by the attributed string import system.
 Listing 4-6 offers a simple reporting utility that iterates through a string’s attributes, listing
types and values range-by-range.

 This is a handy utility to have on hand during debugging. However, its utility for deployed
applications is limited.

 Listing 4-6 Enumerating Attributes

 void DumpStringAttributes(NSAttributedString *input)
 {
 NSMutableString *string = [NSMutableString string];
 [string appendString:@"\n Loc Len Text/Attributes\n"];
 [string appendString: @" --- --- ---------------\n"];

 [input enumerateAttributesInRange:
 NSMakeRange(0, input.length)
 options:0 usingBlock:^(NSDictionary *attrs,
 NSRange range, BOOL *stop) {
 NSString *substring =
 [input.string substringWithRange:range];
 [string appendFormat:@"%4ld%4ld \"%@\"\n",
 (long) range.location, (long) range.length, substring];

88 Chapter 4 Attributed Strings and Document Containers

 int i = 1;
 for (NSString *key in attrs.allKeys)
 [string appendFormat:@" %2d. %@: %@\n",
 i++, key, [(NSObject *)attrs[key] description]];
 }];

 printf("%s\n", string.UTF8String);
 }

 This function uses the enumerateAttributesInRange:options:usingBlock: method to
examine each typesetting run. The first line in Figure 4-4 was built around the words “This is a
Heading.” The HTML used to specify that output adds headline, color, and italic styling to it.
What follows are the resulting attributes:

 Loc Len Text/Attributes
 --- --- ---------------
 0 10 "This is a "
 1. NSParagraphStyle: Alignment 4, LineSpacing 0, ParagraphSpacing
 16.08, ParagraphSpacingBefore 0, HeadIndent 0, TailIndent 0, FirstLineHeadIndent
 0, LineHeight 0/0, LineHeightMultiple 0, LineBreakMode 0, Tabs (
), DefaultTabInterval 36, Blocks (null), Lists (null), BaseWritingDirection 0,
 HyphenationFactor 0, TighteningFactor 0, HeaderLevel 1
 2. NSStrokeWidth: 0
 3. NSFont: <UICTFont: 0x8f73470> font-family: "TimesNewRomanPS-BoldMT";
 font-weight: bold; font-style: normal; font-size: 24.00pt
 4. NSColor: UIDeviceRGBColorSpace 0.466667 0.466667 0.466667 1
 5. NSStrokeColor: UIDeviceRGBColorSpace 0.466667 0.466667 0.466667 1
 6. NSKern: 0
 10 7 "Heading"
 1. NSParagraphStyle: Alignment 4, LineSpacing 0, ParagraphSpacing
 16.08, ParagraphSpacingBefore 0, HeadIndent 0, TailIndent 0, FirstLineHeadIndent
 0, LineHeight 0/0, LineHeightMultiple 0, LineBreakMode 0, Tabs (
), DefaultTabInterval 36, Blocks (null), Lists (null), BaseWritingDirection 0,
 HyphenationFactor 0, TighteningFactor 0, HeaderLevel 1
 2. NSStrokeWidth: 0
 3. NSFont: <UICTFont: 0x8f67d90> font-family: "TimesNewRomanPS-
 BoldItalicMT"; font-weight: bold; font-style: italic; font-size: 24.00pt
 4. NSColor: UIDeviceRGBColorSpace 0.466667 0.466667 0.466667 1
 5. NSStrokeColor: UIDeviceRGBColorSpace 0.466667 0.466667 0.466667 1
 6. NSKern: 0

 In addition to styles added explicitly, implicit items such as paragraph spacing, stroke width,
and kerning appear in this output. They showcase some of the extent of the automated conver-
sion process, which goes well beyond simple style-to-attribute mapping.

89Establishing Document Attributes

 Establishing Document Attributes

 To this point, this chapter has mostly focused on importing attributes into a form where they
can be presented in UIKit views. The reverse process is also important. Your application may
have users creating and editing text in views, which you then want to build into a standard
document container suitable for saving and sharing, whether on iOS or to other computers.

 Document attribute dictionaries express features that go beyond the simple types shown in
 Listing 4-1 . The following code defines a more complex document attribute dictionary. Its
entries discuss margins, background color, page size, display size, and more. These attributes are
defined as part of the NSStringDrawing extensions for attributed strings and can be found in
the NSAttributedString.h header file.

 NSDictionary *attributes =
 @{
 // Store as RTF
 NSDocumentTypeDocumentAttribute : NSRTFTextDocumentType,

 // Page background color is light gray
 NSBackgroundColorDocumentAttribute :
 [UIColor lightGrayColor],

 // Add 1.5-inch margin to top, 0.75-inch to sides
 // and 1-inch margin on the bottom
 NSPaperMarginDocumentAttribute :
 [NSValue valueWithUIEdgeInsets:
 UIEdgeInsetsMake(1.5 * 72, 0.75 * 72,
 1.0 * 72, 0.75 * 72)],

 // Pages use a US legal size
 NSPaperSizeDocumentAttribute :
 [NSValue valueWithCGSize:CGSizeMake(612, 1008)],

 // Use a page display sized to a US "half-letter"
 NSViewSizeDocumentAttribute :
 [NSValue valueWithCGSize:CGSizeMake(612, 396)],

 // View the document with page-by-page layout mode
 NSViewModeDocumentAttribute : @(YES),

 // Set the document as read-only
 NSReadOnlyDocumentAttribute : @(YES),
 };

90 Chapter 4 Attributed Strings and Document Containers

 You apply document dictionaries when converting an attributed string to document data, as
you see in the following snippet:

 NSData *data = [attributedString
 dataFromRange:NSMakeRange(0, attributedString.length)
 documentAttributes:attributes error:&error];

 When saved to a file, the data you create in this fashion produces a fully attributed RTF
document.

 The RTF file shown in Figure 4-6 was created in iOS using this document attribute dictionary.
It’s been copied to OS X and opened in TextEdit. TextEdit supports the full range of document
attributes defined here, so you see the page-by-page layout, the gray background, and the long
top margin.

 Figure 4-6 Document attributes define how a file will appear when opened using a standards-
compliant reader such as TextEdit in OS X.

 At this time, iOS does not provide the same standards-compliant support as OS X. So what
you see in Figure 4-7 when presenting the RTF data lacks some of the features specified by
that document dictionary, such as the gray background and the indentations. The settings are
preserved in the attributed string that underlies the text view.

91Enhancing Attributed Strings

 Figure 4-7 iOS’s text view does not respect RTF document attributes during presentation the
way that OS X does. However, these attributes are maintained internally and will persist in any
document files you create.

 Enhancing Attributed Strings

 With the latest iOS releases focusing ever more on attributed strings, I’ve found it helpful to
create categories to fill gaps that Apple has left open. For example, consider the following two
lines of code:

 NSString *s = [NSString string]; // this works
 NSAttributedString *as =
 [NSAttributedString string]; // this won't

 Although Apple has long since provided a class convenience method for NSString , it fails to
provide a parallel version for NSAttributedString .

 Listing 4-7 establishes a class category to covers these basics. It enables you to build new
attributed string instances with class convenience methods. Each method mirrors the instance
method initializer.

 Listing 4-7 Extending NSAttributedString Instance Creation

 @implementation NSAttributedString(AttributedStringUtility)
 + (instancetype) stringWithString: (NSString *) string
 {
 return [[self alloc] initWithString:string];
 }

92 Chapter 4 Attributed Strings and Document Containers

 + (instancetype) string
 {
 return [self stringWithString:@""];
 }

 + (instancetype) stringWithAttributedString:
 (NSAttributedString *) string
 {
 return [[self alloc] initWithAttributedString:string];
 }
 + (instancetype) stringWithString:(NSString *)string
 attributes: (NSDictionary *) attributes
 {
 return [[self alloc] initWithString:string
 attributes:attributes];
 }
 @end

 Returning Copies with New Attributes

 I can’t tell you the number of times I’ve just wanted to tweak attributed strings without having
to create mutable versions from my calling method. The method in Listing 4-8 returns a new
copy of the caller by applying an attribute to the entire string. This approach is especially
handy, and I use it far more often than I ever anticipated I would.

 Listing 4-8 Adding Attributes

 - (NSAttributedString *) stringByAddingAttribute:
 (NSString *) attributeName
 value: (id) value
 {
 NSMutableAttributedString *mutable = self.mutableCopy;
 [mutable addAttribute:attributeName value:value
 range:NSMakeRange(0, self.length)];
 return mutable.copy;
 }

 From this starting point, you can easily add any number of attribute customization routines
based on Listing 4-8 . For example, you might want to return copies of a string by applying a
specific font or color, as in the following methods:

 - (NSAttributedString *) stringWithFont:(UIFont *)font
 {
 return [self stringByAddingAttribute:
 NSFontAttributeName value:font];
 }

93Enhancing Attributed Strings

 - (NSAttributedString *) stringWithColor:(UIColor *) color
 {
 return [self stringByAddingAttribute:
 NSForegroundColorAttributeName value:color];
 }

 Adjusting Attributes

 While Listing 4-8 applies a single attribute across an entire string, some common adjustments
require more precise work. The method in Listing 4-9 adjusts font sizes across a string, presum-
ably in response to a user’s request to shrink or grow the presentation. This requires an
attribute-by-attribute walk across the string, enabling each embedded font to grow or shrink
by the requested offset. Figure 4-8 demonstrates the results of growing the fonts in a document-
based attributed string.

 Figure 4-8 After applying Listing 4-9 , each font in the text view’s attributed string has grown by
25% in point size.

 Listing 4-9 Tweaking Font Sizes

 - (NSAttributedString *) stringByAdjustingFontSizesByPercent:
 (CGFloat) percent
 {
 NSMutableAttributedString *mutable = self.mutableCopy;
 UIFont *defaultFont = [UIFont systemFontOfSize:12];
 [self enumerateAttributesInRange:NSMakeRange(0, self.length)
 options:0
 usingBlock:^(NSDictionary *attrs, NSRange range, BOOL *stop)
 {
 // Calculate the adjusted font
 UIFont *oldFont = attrs[NSFontAttributeName] ? : defaultFont;

94 Chapter 4 Attributed Strings and Document Containers

 UIFont *newFont = [UIFont fontWithName:oldFont.fontName
 size:fabs(oldFont.pointSize * (1.0 + percent))];

 // Apply the update
 [mutable addAttribute:NSFontAttributeName
 value:newFont range:range];
 }];
 return mutable.copy;
 }

 Extending Mutable Attributed Strings

 The previous examples focus on creating new versions of existing attributed strings. As Listing
 4-10 demonstrates, this approach takes a slightly different form when used with mutable
versions. Instead of building new instances, you focus on changing attributes in place.

 Listing 4-10 defines a method for updating text alignment within a range. This attribute takes
place within paragraph styles, so you must not only walk attribute-by-attribute but also create
or modify paragraph styles to establish the alignment you desire.

 This kind of method plays a role for user-directed text editing, where the end user can choose
how to align all or a portion of text. iOS-supported alignments include, left, center, right, and
justified options.

 Listing 4-10 Updating Alignment

 - (void) setAlignment: (NSTextAlignment) alignment
 range: (NSRange) requestedRange
 {
 [self enumerateAttributesInRange:requestedRange options:0
 usingBlock:^(NSDictionary *attrs, NSRange range, BOOL *stop)
 {
 NSMutableParagraphStyle *style;
 if (attrs[NSParagraphStyleAttributeName])
 style = [attrs[NSParagraphStyleAttributeName] mutableCopy];
 else
 style = [[NSMutableParagraphStyle alloc] init];
 style.alignment = alignment;
 [self addAttribute:NSParagraphStyleAttributeName
 value:style range:range];
 }];
 }

95Text Ranges

 Text Ranges

 When using attributed strings in text views, you encounter two similarly named elements that
represent two quite different things. Don’t confuse a UITextView ’s selectedRange property,
which returns an NSRange struct, with selectedTextRange , which does not.

 These latter user selections are reported as UITextRange items. These objects represent a range
of characters in a text container. They are distinct from NSRange , which is a simple data type.

 Text ranges, and their near cousins text positions, are objects not structures, and they are built
on the WebKit framework. The UITextInput protocol standardizes text input interaction by
using text ranges. It uses text position and text range classes to discuss selections and insertion
points for material that can be laid out using multiple directions. These semantic elements are
designed to represent text layout at a more abstract level than the simple location-length tuples
used for low-level string manipulation.

 Calculating Positions

 Every text input–supporting class that includes text views offers access to beginningOf-
Document and endOfDocument properties, in addition to selectedTextRange . These docu-
ment properties each return text position instances. They enable you to calculate the number
of positions between the two or between each of them and another text position. This count
may or may not correspond to the number of characters of your attributed string’s length, as
there is not always an exact correspondence between the two, just as there aren’t always corre-
spondences between typesetting glyphs and the characters they represent. Attachments and
other underlying semantic features may throw off your count. Here’s how you calculate all the
logical positions in text storage:

 [self offsetFromPosition:self.beginningOfDocument
 toPosition:self.endOfDocument];

 When you want to find a character offset rather than a position one, there’s a separate
 characterOffsetOfPosition:withinRange: method. Be careful. This method may or may
not be implemented by the text input–supporting class. When available, this method accounts
for any discrepancies between characters and text positions and offers an index that enables
you to look up attributes and content within your associated text storage. Always check to see
whether a class has implemented this before calling. If it is not, assume a one-to-one correla-
tion between positions and characters.

 Position Geometry

 Often you want to recover geometric information about a text position in your view to better
interact with touches or hardware key input. Listing 4-11 returns a CGRect representing the
bounding rectangle at a text position.

96 Chapter 4 Attributed Strings and Document Containers

 Listing 4-11 Position Bounds

 - (NSUInteger) indexAtPosition: (UITextPosition *) position
 {
 return [self offsetFromPosition:self.beginningOfDocument
 toPosition:position];
 }

 - (CGRect) rectAtPosition: (UITextPosition *) position
 {
 NSTextContainer *container =
 self.layoutManager.textContainers.firstObject;
 NSInteger index = [self indexAtPosition:position];
 NSInteger glyphIndex = [self.layoutManager
 glyphIndexForCharacterAtIndex:index];
 CGRect rect = [self.layoutManager
 boundingRectForGlyphRange:NSMakeRange(glyphIndex, 1)
 inTextContainer:container];
 return rect;
 }

 To find a position from a point, use the corresponding closestPositionToPoint: method.
The following snippet tries to find a character that as closely as possible lies directly above the
current selection point. It then moves the selection to that point:

 // Fetch the rect at the current selection point
 CGRect glyphRect =
 [self rectAtPosition:self.selectedTextRange.start];

 // Move upwards
 CGFloat targetY = MAX(CGRectGetMidY(glyphRect) –
 glyphRect.size.height, 0);
 CGPoint targetPoint = CGPointMake(mostRecentXPosition, targetY);

 // Find the closest text position to the geometric target
 UITextPosition *position = [self closestPositionToPoint:targetPoint];

 // Convert the position to a range and select it
 UITextRange *range = [self textRangeFromPosition:position
 toPosition:position];
 self.selectedTextRange = range;

 This system uses one more trick, which you indirectly see here. It tracks the most recent delib-
erate X position (mostRecentXPosition). This enables the cursor to return to an approximate
horizontal location even when some lines are blank. Unless you track this value, cursors forced
to the left by blank lines (in left-to-right systems like English) may get stuck there.

97Hardware Key Support

 Updating Selection Points

 Using text positions and ranges can be a little frustrating due to the inherent indirection of the
underlying classes and the lack of native API expression. Listing 4-12 defines a method to set a
selection (a caret in this case, as the start and end of the selection are the same point) at a posi-
tion offset that you supply.

 The helper methods in Listings 4-11 and 4-12 mirror each other. They convert a position to an
index and an index to a position, enabling you to enter and withdraw from the text position
world on demand.

 Listing 4-12 Setting a Selection Point

 - (UITextPosition *) positionAtIndex: (NSUInteger) index
 {
 return [self positionFromPosition:self.beginningOfDocument
 offset:index];
 }

 - (void) setSelectionAtPositionIndex: (NSUInteger) index
 {
 UITextPosition *position = [self positionAtIndex:index];
 UITextRange *range =
 [self textRangeFromPosition:position toPosition:position];
 self.selectedTextRange = range;
 }

 Hardware Key Support

 Enabling your apps to adapt to hardware key commands provides your users with more
consistent experiences across device platforms. First introduced in iOS 7, the UIKeyCommand
class enables hardware key combinations and their recognition. With it, your apps recognize
keyboard chords that include Control, Option, and Command modifier support.

 UIResponder instances can now declare which key combinations they support. When a user
enters a chord, iOS walks through the responder chain to find an object that responds to it.
Combinations corresponding to system events automatically pass to the appropriate system
handler, such as Command-C for copy and Command-X for cut.

 You declare key support by implementing a keyCommands method on the view. This
method returns an array of commands that a view responds to. Listing 4-13 builds
 KeySupportTextField , a text field subclass that enables you to iteratively add key
commands. When a supported key command is detected, it posts a notification.

98 Chapter 4 Attributed Strings and Document Containers

 This approach creates a reusable system that isn’t tied to any specific set of key semantics.
With it, you simply instantiate a new text field and then listen for specific key combinations,
which are stored to a mutable set. Using a set rather than an array ensures that duplicate key
command requests are ignored.

 Each time you call listenForKey:modifiers: , the custom text field adds a new key
command to listen to. You specify an input key and a mask of modifiers, which may include
the Shift key, Control key, Alt key, and Command key. Two additional modifiers specify
whether the Caps Lock key is engaged (UIKeyModifierAlphaShift) and whether the key is
located on a numeric keypad (UIKeyModifierNumericPad). Here are a few examples of what
this might look like:

 // Listen for Command-Shift-N
 [textField listenForKey:@"n"
 modifiers:UIKeyModifierCommand|UIKeyModifierShift];
 // Listen for the t key
 [textField listenForKey:@"t" modifiers:0];
 // Listen for Shift-T
 [textField listenForKey:@"t" modifiers:UIKeyModifierShift];
 // Listen for Alt-H
 [textField listenForKey:@"h" modifiers:UIKeyModifierAlternate];

 When you listen specifically for the t key, as in the preceding example, any occurrence of the
letter will be passed to your handler. It will not be entered as a normal keystroke. If you type
 Henrietta , the letters that appear in your text field will be Hennriea . This is a problem if your
goal is to solicit text entry. If you’re writing a game and your first responder wants to listen to
vi-like commands such as h , j , k , and l , you don’t have to force your users to use modifiers.
 UIResponder supports unmodified keys, as in this example.

 Listing 4-13 uses the notification center to broadcast commands. You can easily update it to use
any mechanism you like to connect this class with a command consumer. For example, you
might implement a delegate (keySupportTextField:recognizedKeyCommand: , for example),
a target-action, blocks (keyCommandHandlerBlock , for example), and so forth.

 Listing 4-13 Text Field with Key Support

 NSString *const KeySupportFieldEvent = @"KeySupportFieldEvent";

 @interface KeySupportTextField : UITextField
 - (void) resetKeyCommands;
 - (void) listenForKey: (NSString *) key modifiers: (UIKeyModifierFlags) flags;
 @end

 @implementation KeySupportTextField
 {
 NSMutableSet *keyCommands;
 }

99Wrap-up

 - (instancetype) initWithFrame:(CGRect)frame
 {
 if (!(self = [super initWithFrame:frame])) return self;
 keyCommands = [NSMutableSet set];
 self.borderStyle = UITextBorderStyleRoundedRect;
 return self;
 }

 // Report current set of supported commands
 - (NSArray *)keyCommands
 {
 return keyCommands.allObjects;
 }

 - (void) resetKeyCommands
 {
 keyCommands = [NSMutableSet set];
 }

 // Post event
 - (void) handleKeyCommand: (UIKeyCommand *) command
 {
 [[NSNotificationCenter defaultCenter]
 postNotificationName:KeySupportFieldEvent object:command];
 }

 // Create a new key command and add it to the supported set
 - (void) listenForKey: (NSString *) key modifiers: (UIKeyModifierFlags) flags
 {
 UIKeyCommand *command = [UIKeyCommand keyCommandWithInput:key
 modifierFlags:flags action:@selector(handleKeyCommand:)];
 [keyCommands addObject:command];
 }
 @end

 Wrap-up

 Here are final points to wrap up what you’ve read in this chapter:

 ■ There’s no need to limit yourself to plain-text thinking in your applications. iOS is rich-
text ready. Its attributed string classes are profoundly powerful.

 ■ In iOS, text attachments act like any other kind of string attribute. If you’re not working
with an already-styled RTFD source, add NSAttachmentAttributeName attributes and
assign NSTextAttachment values to them. For in-line images, you typically initialize

100 Chapter 4 Attributed Strings and Document Containers

an attachment with image data and a UTI type. If you’d rather lay out your text
independently of inline images, use the exclusion zone approach discussed in Chapter 2 ,
“Dynamic Typography.”

 ■ When working with documents, keep portability in mind. Although your user may be
creating a document in iOS, the resulting RTF or HTML container may end up being used
on a Windows or Mac desktop system.

 ■ As a rule, it is far, far easier to use a desktop editor to build documents and import them
into your iOS documents than to create complex attributed strings from scratch.

 ■ You can be very, very relaxed when using HTML import. Instead of focusing on
standards-based markup, feel free to add just the elements you need to get the job done.

 5
 Animation

 Of the technologies updated in the last couple years, iOS animation is one of the ones that
has been most enhanced by recent APIs. Flexible animation styles enable your interfaces to
integrate real-world physics for better and more exciting presentations and interactions. If you
use animations to add liveliness and interest to your interfaces and want to push them to the
next level, this chapter is for you. This chapter offers some fresh approaches to this classic
technology.

 Keyframe Animation

 Although UIView animation has long provided ways to smoothly transition from one set of
view characteristics to another, until iOS 7, the implementation of UIView was always “flat.”
Beyond tweaking the underlying curve, you couldn’t do much to chain sequences without a lot
of custom overhead. Your view could go from transparent to opaque, from red to green, from
small to large, but view changes were limited to a single bounded sequence.

 View animations normally use a known start state and end state. The animation interpolates
between these states and produces a smooth transition between the starting and ending visuals.
Keyframes add fixed intermediate points to animations. This means you can create animations
that not only go from A to B but also to C, then D, then E.

 Until iOS 7, I relied on custom classes of my own design to create UIKit-specific keyframe
animation sequences. (Keyframes have long been a part of Core Animation.) My older classes
are available on GitHub: Search for AnimationQueue and Sadun. When iOS 7 debuted, UIKit
finally added its own keyframe solution. Although its design was a little counterintuitive, these
APIs enabled you to build timed keyframe updates with minimal fuss and overhead.

 Keyframe animations tell better stories than do simple flips or fades. They create more realis-
tic interactions than basic interpolation with fixed start and end points. With them, you can
repeatedly shake, wiggle, and bounce views. Don’t settle for a view that just slides or fades.
Realize core animation principles like stretching and squashing, anticipation and exaggeration,

102 Chapter 5 Animation

follow-through, overlapping action, and so forth. Keyframe animation makes these sequences
of change possible using simple progressions.

 In the simplest form, UIKit keyframes consist of a custom block that establishes view conditions
at specific times. Listing 5-1 builds a shake animation to demonstrate a base implementation.
It moves a view repeatedly first up and right, then down and left. It’s a perfect way to indicate
a negative to the user, such as “operation failed” or “this view is off limits for interaction.” The
method generates its animation block and passes it to the keyframe animation request.

 Here’s the tricky bit: Instead of supplying a list of times and updates, the block consists of code
that builds keyframes during its execution. This was probably the biggest mental hurdle for me
when transitioning from my old way of doing things to the newer approach. The animation
block you create to build the keyframe sequence isn’t executed until after you pass it to the
 UIView class. You create a block that establishes the keyframes on demand, producing a full
and scalable sequence.

 Listing 5-1 offers a simple keyframe animation. It creates a shaking effect by toggling repeatedly
between two view transformations before ending with a reset to the identity transform. Each
change is established in the method’s animationBlock , which is passed to the UIView anima-
tion request.

 The method finishes by calling animateKeyframesWithDuration:delay:options:
animations:completion: . Its request parameters consist of a duration in seconds, an optional
delay that enables you to start the animation after a fixed time, an options parameter, which
describes the way the animation is laid out and paced, and two blocks. The options parameter
in the final line is set to 0 in this example. This produces a default linear interpolation between
keyframes. The first block establishes keyframes; the second block executes after the animation
completes. Once called, this method executes immediately, pausing only for any delay you
specify as the second parameter.

 Note

 The relative start time and relative duration parameters both take floating-point values between
0.0 and 1.0. The animation call multiplies these against the total duration you pass to the view
animation request.

 Listing 5-1 Shake Keyframe Animation

 - (void) shake: (UIView *) view
 {
 // Animation parameters
 NSInteger numberOfShakes = 8; // Repeat 4 times up and down

 // Define the animation block
 void (^animationBlock)() = ^{
 // Create the two transforms: up-right, down-left

103Building Physics with Keyframes

 CGAffineTransform t1 = CGAffineTransformMakeTranslation(2, -2);
 CGAffineTransform t2 = CGAffineTransformMakeTranslation(-2, 2);

 // Iteratively add each keyframe
 for (int i = 0; i < numberOfShakes; i++)
 {
 CGFloat progress = (CGFloat) i / (CGFloat) numberOfShakes;
 [UIView addKeyframeWithRelativeStartTime: progress
 relativeDuration: 1.0 / numberOfShakes
 animations:^{
 view.transform = (i % 2) ? t1 : t2;}];}

 // End by returning to the start position
 [UIView addKeyframeWithRelativeStartTime:
 (numberOfShakes – 1.0) / numberOfShakes
 relativeDuration: 1.0 / numberOfShakes animations:^{
 view.transform = CGAffineTransformIdentity;}];
 };

 // Call the animation
 [UIView animateKeyframesWithDuration:1.0 delay:0.0
 options: 0 animations:animationBlock completion:nil];
 }

 Building Physics with Keyframes

 UIKit offers complex physical animations through its dynamic animator class, which you
will read about in Chapter 6 , “Dynamic Animators.” This section isn’t about those built-in
elements. The keyframe mechanism offers a perfect match for custom animation effects as
well, and that’s where Listing 5-2 delivers. It uses a damped oscillator to “pop” a view’s size.
The built-in UIKit effects manipulate a view’s position and how it (rigidly) interacts with the
views and containers that surround it. Listing 5-2 emulates a stretchable/squashable view that
changes in size, not just position.

 The DampedSinusoid() function (see Figure 5-1) creates a wave whose amplitude approaches
zero over time. Each successive cycle decreases, allowing an effect to grow less and less promi-
nent. For Listing 5-2 , the damping function controls the size of the view. It allows it to itera-
tively approach its final size, popping the view out slightly less at each iteration.

 Using keyframes powered by a mathematical model enables you to build multistep animations
that explore view transformations and properties beyond those offered directly by UIKit. Listing
 5-2 explores a scale transformation. By adjusting the two lines in the keyframe block to the
following, you could easily adapt this method to rotate instead:

 CGFloat degree = dampValue * 0.3;
 view.transform = CGAffineTransformMakeRotation(M_PI_4 * degree);

104 Chapter 5 Animation

 Figure 5-1 A damped sinusoid function decays over time.

So long as there’s some kind of underlying function driving an animation, keyframes provide a
perfect match between time-based progress and view property updates.

 Listing 5-2 Damped Oscillating Pop Effect

 CGFloat DampedSinusoid(CGFloat time,
 CGFloat distance, CGFloat decayAccelerator)
 {
 return 1 - cos(distance) * exp(-1.0 * time * decayAccelerator);
 }

 - (void) pop: (UIView *) view
 {
 void (^animationBlock)() = ^{
 // Animation steps in total
 NSInteger numberOfSteps = 30;

 // Amount to oscillate
 CGFloat numberOfOscillations = 2;
 CGFloat oscillationDistance =
 numberOfOscillations * 2 * M_PI;

 // Perform oscillation over n-1 steps
 for (NSInteger step = 1; step < numberOfSteps; step++)
 {
 CGFloat progress = (CGFloat) step / (CGFloat) numberOfSteps;
 CGFloat distance = progress * oscillationDistance;
 CGFloat dampValue = 1 - DampedSinusoid(progress, distance, 2);

 [UIView addKeyframeWithRelativeStartTime: progress
 relativeDuration: 1.0 / numberOfSteps animations:^{
 CGFloat degree = 1.0 + dampValue * 0.3;
 view.transform =
 CGAffineTransformMakeScale(degree, degree);
 }];
 }

105Blocking Animators

 // Return to normal
 [UIView addKeyframeWithRelativeStartTime:
 (numberOfSteps - 1.0) / numberOfSteps
 relativeDuration: 1.0 / numberOfSteps animations:^{
 view.transform = CGAffineTransformIdentity;
 }];
 };

 [UIView animateKeyframesWithDuration:1.5
 delay:0 options:0 animations:animationBlock completion:nil];
 }

 Blocking Animators

 Keyframe animations, for all their utility, can require significant overhead for simple do-this-
then-that animation sequences. Blocking animators use a run loop to prevent the next call
from executing until they have finished their animation. These provide a convenient way
to stack calls without building a full keyframe animation or using endless completion-block
nesting. Importantly, they don’t require relative start times, so you can tweak the durations of
your calls without affecting other steps in the process.

 Run loops carry risks. The class shown in Listing 5-3 uses old-style UIKit animation, which has
been soft deprecated since iOS 4. Apple writes in the class documentation, “[This approach] is
discouraged....You should use the block-based animation methods to specify your animations
instead.” That said, I find the approach used in Listing 5-3 to be highly useful for prototyping
keyframe sequences, for creating quick demo apps, and for other primarily in-house uses.
I’ve included the class here because of that level of utility. Being able to sequentially call
 animateBlockingWithDuration:animations:completion: can be a tremendously effective
design first step before formalizing your animations into more modern calls.

 Listing 5-3 Blocking Animations

 void (^completion)(BOOL);

 // The delegate catches the end of the animation sequence and
 // restores the previous run loop
 @interface BlockingAnimationDelegate : NSObject
 @end

 @implementation BlockingAnimationDelegate
 - (void) animationDidStop:(CAAnimation *)anim finished:(BOOL)flag
 {
 // Execute the completion block at this time
 if (completion) completion(flag);
 CFRunLoopStop(CFRunLoopGetCurrent());

106 Chapter 5 Animation

 }
 @end

 static BlockingAnimationDelegate *delegate;

 @implementation UIView (BlockingAnimation)
 + (void) animateBlockingWithDuration:(NSTimeInterval)duration
 animations:(void (^)(void))animations
 completion:(void (^)(BOOL))theCompletion
 {
 // Establish the completion delegate
 delegate = [[BlockingAnimationDelegate alloc] init];
 completion = theCompletion;

 // Welcome back to the days of iOS 3
 [UIView beginAnimations:@"BlockingAnimations" context:nil];
 [UIView setAnimationCurve:UIViewAnimationCurveEaseInOut];
 [UIView setAnimationDuration:duration];
 [UIView setAnimationDidStopSelector:@selector(animationDidStop:finished:)];
 [UIView setAnimationDelegate:delegate];
 if (animations) animations();
 [UIView commitAnimations];

 // Block with a new run loop
 CFRunLoopRun();
 }
 @end

 UIKit Spring-Based Animations

 Although you can always roll your own physics-based animations, UIKit now offers one exceed-
ingly handy built-in solution based on damped harmonics. The following example uses this
approach to handle a tap gesture by “closing” a slide-in window:

 - (void) handleCloseTapGesture: (UITapGestureRecognizer *) tapGestureRecognizer
 {
 [handleView removeGestureRecognizer:tapGestureRecognizer];
 [UIView animateWithDuration:0.5
 delay:0
 usingSpringWithDamping:0.6
 initialSpringVelocity:0
 options:0
 animations:^{
 _constraint.constant = kClosedDrawExtent;
 [self.superview layoutIfNeeded];
 }

107UIKit Spring-Based Animations

 completion:^(BOOL finished) {
 [handleView addGestureRecognizer:
 panGestureRecognizer];}];
 }

 Instead of just animating the view back to its initial position, it uses UIKit’s new spring-based
animation to enliven the transition, letting the view bounce a little as it reaches its final posi-
tion. Based on a damped harmonic oscillator (essentially the same approach used in Listing
 5-2), the built-in method enables you to specify the animation’s duration, a damping constant,
and an initial velocity.

 Beyond those extra tweaks, the method works exactly like a standard animateWithDuration:
completion: call. The animation block updates a constraint and performs a layout. On
completion, the method installs a new gesture recognizer to handle the next user drag.

 Damping, which ranges from 0 to 1, defaults to 0.5. Lowering this value makes the animation
very “springy.” Raising it reduces a view’s apparent bounciness. The initial velocity parameter
enables you to match the view’s prior speed before starting the animation. If the view was
previously moving at 50 points per second and your animation will traverse 200 points, set an
initial velocity of 0.25.

 The options parameter uses a mask of standard UIView animation options, which are enumer-
ated in the class documentation. This is where you update the animation curve, which
normally defaults to the perfectly pleasant ease in-out setting.

 I’ve set up a test bed in the sample code for this chapter (see Figure 5-2) that lets you interac-
tively explore some of these settings and how they affect the view animation. Use this test bed
to interactively tweak the view’s damping, initial velocity, and overall animation duration.

 Figure 5-2 This test bed offers sliders to tweak an animation’s duration, damping, and initial
velocity. This sample is best explored in person as a screenshot cannot do it justice.

108 Chapter 5 Animation

 Practical Uses for Spring Animations

 The spring animation works best when a view is falling back to its natural place or when that
natural place updates due to user interaction. The following code represents the opposite
approach to the one you saw earlier in this section in the handleCloseTapGesture: method.
There, a user tapped a view-based drawer to shut it. Here, the user interaction has extended far
enough that it passes a trigger point, allowing the drawer to snap into the open position shown
in Figure 5-3 :

 if ((amount + kClosedDrawExtent + kHandleInset +
 kHandleExtent / 2) > kTriggerPoint) // moved past the trigger point
 {
 [UIView animateWithDuration:0.5
 delay:0
 usingSpringWithDamping: 0.4
 initialSpringVelocity:0
 options:0
 animations:^{
 _constraint.constant = kOpenDrawExtent;
 [self.superview layoutIfNeeded];
 }
 completion:^(BOOL finished) {
 [handleView addGestureRecognizer:
 tapGestureRecognizer];
 }];
 return;
 }

 Figure 5-3 This button appears in a virtual drawer that slides in from the top of this interface.
Populate your slide-in views with whatever UI content your application demands. You will best
experience this UI by running the sample code that accompanies this chapter.

109Motion Effects

 This code is nearly identical to the previous version. The main difference is the damping
constant, which provides more bounce at 0.4 than the 0.6 used for normal closing. This
extra energy indicates that the user has achieved a new state. If you look at the sample code
for the chapter, you’ll discover that this class also uses a third animation sequence when
the user fails to reach the trigger point. This final sequence uses an even more extreme 0.25
constant, mimicking the physics of an old-fashioned window blind flapping back to its rolled-
up position. The degree of energy you use offers hints regarding the success or failure of each
action as well as their natural state. These small tweaks to parameters encourage distinct user
experiences.

 System Animations

 iOS now offers a canonical way for you to remove deleted views from your screen. At this time,
the UISystemAnimationDelete animation is the only system-supplied animation, although
it’s likely that Apple will introduce others over time. When you call the following method on
an array of views, iOS shrinks and fades those views off the screen on your behalf:

 [UIView performSystemAnimation:UISystemAnimationDelete
 onViews:@[testView] options:0 animations:nil
 completion:^(BOOL finished)
 {
 // do completion work here
 }];

 By the end of the animation, the view becomes fully transparent and scales to 25% of its origi-
nal size:

 2014-12-08 11:06:08.198 Hello World[75470:60b] <UIView: 0x10976b300; frame =
 (147.5 271.5; 25 25); transform = [0.25 , 0, 0, 0.25 , 0, 0]; alpha = 0 ; layer =
 <CALayer: 0x109761f70>>

 You can add a parallel animation block by using the animations: parameter. Use this option
to update interface positions, taking advantage of the space now vacated by the deleted view or
views. Avoid tweaking view properties on the to-be-deleted view, especially those that overlap
with the system animation (namely background color and transform). These won’t animate
smoothly.

 Motion Effects

 Motion effects lend applications a three-dimensional feel. They enable you to build visual
effects tied to device motion. The most common use of motion effects is as virtual planes,
shown in Figure 5-4 . This affect appears in the iOS home screen, where icons appear to float
over the background wallpaper.

 With motion effects, views adjust to match the user’s angle of perception, creating a sense of
depth. Each view’s magnitude of change establishes how perceptually far or near that view

110 Chapter 5 Animation

is with respect to the user. This mimics the natural human stereo-optic effect established by
having two eyes. Views with the same magnitude move together. This enables viewers to
mentally connect them as being on the same “plane.”

 Figure 5-4 Motion effects create visual transformations keyed to the device angle and the user’s
point of view. Virtual planes enable you to add views to depth-cued “layers.”

 Users may disable motion effects in Settings > General > Accessibility > Reduce Motion.
Unfortunately, you cannot guarantee that this feature is enabled nor officially query this setting
from your application. With a quick web search, you’ll find a variety of fragile workarounds for
this issue, but I cannot recommend the ones I found in production code. As a rule, write your
app as if the feature is there, but be aware that users may switch it off on demand.

 Building Planes

 Listing 5-4 demonstrates how to create a plane effect. This class builds a motion effect group
from two UIInterpolatingMotionEffect instances. Each effect is interpolated along one
axis, either horizontal or vertical, and updates a specific key path—in this case, for the view’s
 center property. You can supply any key path you like, although there are relatively few
choices that make sense and produce a pleasing interface effect.

 The UIInterpolatingMotionEffect class used in Listing 5-4 is the most common entry point
into motion effects. Although you can work directly with its parent class UIMotionEffect ,
nearly everything you’ll ever want to do is better done with the subclass. As the name suggests,
the UIInterpolatingMotionEffect class provides an interpolated effect ranging from –1 to
1. This value is based on the axis you monitor: the left–right horizontal axis or the up–down

111Motion Effects

vertical axis. You set multipliers by adjusting the minimum and maximum relative values.
Typically you set these to either [–x through x] or [0 through x].

 You can add either single effects or groups to views by using the same addMotionEffect:
method. Listing 5-4 returns a group instead of individual effects because it’s easier to work
in both dimensions that way. The following line of code builds a new CenterMotionEffect
group and adds it to a view:

 [testView addMotionEffect:[CenterMotionEffect effectWithMagnitude:30]];

 Increase the magnitude as needed for more pronounced effects. Once added, the motion effects
engine takes charge of implementing adjustments. You do no further work. The effect persists
until you remove the effect by calling removeMotionEffect: .

 Listing 5-4 Adding Motion Effects for View Plane Offsets

 @interface CenterMotionEffect : UIMotionEffectGroup
 + (instancetype) effectWithMagnitude: (CGFloat) magnitude;
 @end

 @implementation CenterMotionEffect
 + (instancetype) effectWithMagnitude: (CGFloat) magnitude
 {
 UIInterpolatingMotionEffect *hEffect =
 [[UIInterpolatingMotionEffect alloc] initWithKeyPath:@"center.x"
 type:UIInterpolatingMotionEffectTypeTiltAlongHorizontalAxis];
 hEffect.minimumRelativeValue = @(-1 * fabs(magnitude));
 hEffect.maximumRelativeValue = @(fabs(magnitude));

 UIInterpolatingMotionEffect *vEffect =
 [[UIInterpolatingMotionEffect alloc] initWithKeyPath:@"center.y"
 type:UIInterpolatingMotionEffectTypeTiltAlongVerticalAxis];
 vEffect.minimumRelativeValue = @(-1 * fabs(magnitude));
 vEffect.maximumRelativeValue = @(fabs(magnitude));

 CenterMotionEffect *group = [[self alloc] init];
 group.motionEffects = @[hEffect, vEffect];
 return group;
 }
 @end

 Shadow Effects

 Device-controlled view shadows offer another powerful—and easy—way to use motion effects.
It takes few changes to Listing 5-4 to create the shadow effects shown in Figure 5-5 . Just
update the key paths from center.x and center.y to layer.shadowOffset.width and
 layer.shadowOffset.height , and you’re good to go.

112 Chapter 5 Animation

 Figure 5-5 These device-driven shadows were implemented via a simple motion effect.

 A few final points about motion effects:

 ■ You can easily update Listing 5-4 to apply a motion effect to just one dimension. You are
not required to create effects that work across two axes. You can also update the listing to
create multiple effects, such as adding the shadows and the view offsets together. As long
as the transformations are conceptually tied together, there’s no reason to separate them
into different effects.

 ■ Motion effects work with any animatable property, not just shadows. This offers you the
opportunity to create unique (but probably less generally useful) effects.

 ■ Motion effects are fully compatible with Auto Layout. Unlike with view dynamics, which
are discussed in Chapter 6 , with motion effects the perceived frame changes do not affect
layout rules. You can set up and adjust your interfaces in tandem with running effects.
Motion effects do not change actual view placement. Unless you take action to update
your views, nothing in the interface actually adjusts as the motion-enabled views appear
to move.

 ■ iOS automatically disables motion effects whenever you enable AirPlay mirroring. This
makes application demonstrations steadier but less interesting. If you need to re-enable
that functionality, workarounds exist, but keep in mind that they are not suitable for
App Store.

113Custom Transition Animations

 Custom Transition Animations

 The UIViewControllerAnimatedTransitioning protocol enables you to add custom anima-
tions between view controllers. In the form discussed in this section, these animations have
a fixed timeline and are not interactive. You build custom classes that animate the transition
with whatever animation tools you have on hand. This means you can use UIView animation,
Core Animation, Core Image filters...whatever. The way you move from one controller to the
next is basically unbounded.

 The example in Figure 5-6 is built around a navigation controller. The normal sliding transi-
tions are replaced with page curls, which animate either up or down, depending on whether a
new controller is being pushed onto the stack or an older controller is being popped off from it.

 Figure 5-6 Custom transitions enable you to use standard interaction elements such as
navigation controllers, tab controllers, and modal view controllers with animations you specify.

 This technology depends on two key elements: a custom transition class that conforms to the
animated transitioning protocol and delegation, which allows you to tell controllers which
transition class to use.

114 Chapter 5 Animation

 Delegation

 The controller delegates you work with are as follows:

 ■ UITabBarControllerDelegate —Supply a transition for moving from one tab to
another.

 ■ UINavigationControllerDelegate —Create custom transitions for pop and push
actions.

 For each of these protocols, you create a controller and set its delegate. Here’s an example:

 UINavigationController *nav =
 [[UINavigationController alloc] initWithRootViewController:vc];
 nav.delegate = self;

 The nuances of delegate methods depend on the class you’re supporting. Tab bar control-
ler transitions don’t have a direction. In contrast, the UINavigationControllerOperation
parameter sent to a navigation controller’s delegate uses enumeration to differentiate between
push operations and pop operations.

 The callback signatures are long, as you see in the following example, but the actual implemen-
tation is simple. You create a transitioning object instance, set up its parameters, and return it:

 - (id<UIViewControllerAnimatedTransitioning>)navigationController:
 (UINavigationController *)navigationController
 animationControllerForOperation:
 (UINavigationControllerOperation)operation
 fromViewController:(UIViewController *)fromVC
 toViewController:(UIViewController *)toVC
 {
 FlipTransition *transition =
 [[FlipTransition alloc] init];
 BOOL forward = (operation == UINavigationControllerOperationPush);
 transition.forward = forward;
 transition.duration = 0.6;
 return transition;
 }

 Building Transitioning Objects

 With custom animations, there is no transitioning class that you subclass. Instead, you build a
new class, typically descended from NSObject , and declare the UIViewControllerAnimated-
Transitioning protocol. This protocol is uncomplicated. It consists of two required methods,
shown in Listing 5-5 . The one optional animationEnded: method enables you to perform any
post-transition work.

 All the elements you need to perform your animation are passed through the
 UIViewControllerContextTransitioning context. Here you find access to the two

115Custom Transition Animations

controllers you’re transitioning between and the container view that parents them. Use object
properties to pass any additional state information that goes beyond the information passed by
the transitioning context. This example stores the direction of animation and the total anima-
tion duration as custom properties. Set these in the delegate method so they’re ready to be used
when the transition object is called on to execute.

 Listing 5-5 uses built-in view-to-view page curls for its animation, but you can replace this
animation as you desire. Other built-in view-to-view animations include page flips and cross
dissolves. I have also created custom Core Animation transitions, leveraged Core Image filters
(avoid them; they’re slow, and caching can cause interface delays), and built transitions
around the new UIKit keyframing and damped harmonic animations. Whatever approach
you end up using, make sure you tie your animation to the duration returned by the
transitionDuration: method and call completeTransition: as the final step.

 Listing 5-5 Building an Animated Controller Transition

 @interface FlipTransition : NSObject <UIViewControllerAnimatedTransitioning>
 @property (nonatomic) BOOL forward;
 @property (nonatomic) CGFloat duration;
 @end

 @implementation FlipTransition
 - (instancetype) init
 {
 if (!(self = [super init])) return self;
 _duration = 1.0; // default
 _forward = YES;
 return self;
 }

 - (void)animateTransition:
 (id<UIViewControllerContextTransitioning>)transitionContext
 {
 // Retrieve context players
 UIViewController *fromController = [transitionContext
 viewControllerForKey:UITransitionContextFromViewControllerKey];
 UIViewController *toController = [transitionContext
 viewControllerForKey:UITransitionContextToViewControllerKey];
 UIView *containerView = [transitionContext containerView];

 // Set up container
 [containerView addSubview:fromController.view];

 // Animate
 CGFloat duration = [self transitionDuration:transitionContext];
 NSUInteger options = _forward ?
 UIViewAnimationOptionTransitionCurlUp :

116 Chapter 5 Animation

 UIViewAnimationOptionTransitionCurlDown;
 [UIView transitionFromView:fromController.view
 toView:toController.view duration:duration
 options:options completion:^(BOOL finished) {
 [transitionContext completeTransition:YES];
 }];
 }

 - (NSTimeInterval)transitionDuration:
 (id<UIViewControllerContextTransitioning>)transitionContext
 {
 return _duration;
 }
 @end

 Implicit Animations

 As you’ve already read in this chapter, iOS offers a wealth of animation routines with both
UIKit and Core Animation. iOS 7, in particular, introduced new routines to provide keyframe
animations and spring-like physics to extend the way you create fluid interfaces. In addition
to these explicit routines, iOS offers several ways, relatively little known, to automatically
animate view changes as you update view properties. You add this implicit animation support
with simple classes and just a few lines of code. Once this is added, your views automatically
animate between their before and after values without any further work on your part.

 Imagine updating a UIView layer instance’s corner radius property, as in Figure 5-7 . As the
property changes between 32 and 0 and back again, the view corners jump between sharply
angled and smoothly rounded. Now imagine that somehow iOS could respond to these prop-
erty assignments by animating the change between the two values. Instead of jumping, the
edges would smoothly interpolate between the two:

 - (void) go
 {
 CGFloat newValue = (customView.layer.cornerRadius < 32) ? 32 : 0;
 customView.layer.cornerRadius = newValue;

 }

 Implicit animations respond to standard property assignments, involving no animation
timing, curves, and so forth. The implicit response lies in how the view’s layer implementation
responds to property changes.

 Building an Animation-Ready Layer

 You create implicit animations by establishing custom CALayer subclasses. In Listing 5-6 ,
updates to the cornerRadius property invoke a basic animation. You override the
 actionForKey: method to add dynamic responses to property changes.

117Implicit Animations

 Listing 5-6 Adding Custom Animations to Property Actions

 @interface CustomLayer : CALayer
 @property (nonatomic, assign) CGFloat animationDuration;
 @end

 @implementation CustomLayer
 // Return a basic animation
 - (CABasicAnimation *) customAnimationForKey: (NSString *) key
 {
 CABasicAnimation *animation =
 [CABasicAnimation animationWithKeyPath:key];
 animation.fromValue = [self.presentationLayer valueForKey:key];
 // Default to 0.3 second duration
 animation.duration =
 (_animationDuration == 0.0) ? 0.3 : _animationDuration;
 return animation;
 }

 Figure 5-7 iOS can smoothly interpolate between built-in layer properties such as the
 cornerRadius that changes from 0 in the left screen shot to 32 in the right.

118 Chapter 5 Animation

 // Add a dynamic response for corner radius updates
 -(id<CAAction>)actionForKey:(NSString *)key
 {
 if ([key isEqualToString:@" cornerRadius "])
 return [self customAnimationForKey:key];
 return [super actionForKey:key];
 }
 @end

 The actionForKey method used in the preceding listing is specific to the cornerRadius
property. It doesn’t animate changes to the layer’s shadow, to its border width, or to any other
elements. You update the method to animate all layer properties by removing that qualifica-
tion, as in the following method:

 // Add a dynamic response for all properties
 -(id<CAAction>)actionForKey:(NSString *)key
 {
 return [self customAnimationForKey:key];
 }
 @end

 Building a View Around a Layer

 After creating a self-animating layer, you can incorporate it into a view. Create a UIView
subclass and implement the layerClass class method, as in the following example:

 @interface CustomView : UIView
 @end

 @implementation CustomView
 + (Class) layerClass
 {
 return [CustomLayer class];
 }
 @end

 Instances of this subclass automatically use the CustomLayer layer class and animate its prop-
erty changes.

 Timing

 Animations defined in the CustomLayer class do not respond to UIView animation calls, as
you see in the following example:

 - (void) go
 {
 CGFloat newValue = (customView.layer.cornerRadius < 32) ? 32 : 0;

119Implicit Animations

 NSDate *date = [NSDate date];
 [UIView animateWithDuration:2.0 animations:^{
 customView.layer.cornerRadius = newValue;
 } completion:^(BOOL finished) {
 NSLog(@"Elapsed time: %f",
 [[NSDate date] timeIntervalSinceDate:date]);
 }];
 }

 Consider the updated go method in this example. It embeds its cornerRadius update into a
view animation block.

 Two things happen—or, more accurately, do not happen—here:

 ■ First, the requested duration (2.0 seconds) is ignored. The animation lasts for the default
time defined by the layer (0.3 seconds), not the 2 seconds set by the animation block.

 ■ Second, the completion block runs almost immediately, not after a 2-second delay. As
far as the UIView class is concerned, there are no animatable items to update, so the
completion block executes at the end of the call.

 Here are timing results from testing this a couple times. The elapsed time is close to zero:

 2014-12-19 09:44:58.968 Hello World[60556:60b] Elapsed time: 0.007392
 2014-12-19 09:44:59.529 Hello World[60556:60b] Elapsed time: 0.008787

 Although there are ways to work around this by catching animation notifications and deriving
the implicit animation duration and applying that to the layer, such approaches are brittle and
not App Store safe. Instead, consider coordinating your animations.

 Coordinating Animations

 You coordinate implicit animations by adding them to a standard animation block along with
explicit animations, as in the following example:

 - (void) go
 {
 // Retrieve the layer
 CustomLayer *customLayer = (CustomLayer *) customView.layer;

 // Match the animation duration
 customLayer.animationDuration = 2.0;

 CGFloat newValue = (customView.layer.cornerRadius < 32) ? 32 : 0;
 NSDate *date = [NSDate date];
 [UIView animateWithDuration:2.0 animations:^{
 // Coordinate animations
 customLayer.cornerRadius = newValue;
 self.view.backgroundColor = _nextColor;

120 Chapter 5 Animation

 } completion:^(BOOL finished) {
 NSLog(@"Elapsed time: %f", [[NSDate date] timeIntervalSinceDate:date]);
 }];
 }

 Here, the layer’s animation duration is manually set to match that of the animation block. By
placing both updates in the same block, you cause them to occur simultaneously. The comple-
tion block executes after the explicit animation concludes.

 The completion block fires properly this time as there is a recognized UIView property to
animate. The elapsed time moves to the expected 2 seconds:

 2014-12-19 09:55:10.208 Hello World[60661:60b] Elapsed time: 2.000776
 2014-12-19 09:55:13.562 Hello World[60661:60b] Elapsed time: 2.001607

 Building Implicit Completion Blocks

 You needn’t rely on UIView calls to add completion blocks. You can build a custom comple-
tion block for your implicit animations with just a few tweaks. The following interface extends
the CustomLayer class to add a completionBlock property:

 typedef void (^ImplicitCompletionBlock)(NSString *key, BOOL finished);

 @interface CustomLayer : CALayer
 @property (nonatomic, assign) CGFloat animationDuration;
 @property (nonatomic, strong) ImplicitCompletionBlock completionBlock;
 @end

 The custom ImplicitCompletionBlock type takes two arguments: a string corresponding
to the animated property key path (for example, "cornerRadius") and a flag that speci-
fies whether the animation completed. The key enables you to distinguish between property
updates in your block to better control any wrap-up.

 The following methods implement the completion block details:

 - (void) animationDidStop:(CAAnimation *)anim finished:(BOOL)flag
 {
 if (_completionBlock)
 {
 NSString *key = [anim valueForKey:@"Animation Type"];
 _completionBlock(key, flag);
 }
 }

 - (CABasicAnimation *) customAnimationForKey: (NSString *) key
 {
 CABasicAnimation *animation = [CABasicAnimation animationWithKeyPath:key];
 animation.fromValue = [self.presentationLayer valueForKey:key];
 animation.duration = (_animationDuration == 0.0) ? 0.3 : _animationDuration;

121Implicit Animations

 animation.delegate = self;
 [animation setValue:key forKey:@"Animation Type"];
 return animation;
 }

 The customAnimationForKey: method adds an animation delegate and stores the key with
the animation. This enables the CustomLayer instance to catch the end of the animation and
execute the optional block.

 Animating Custom Properties

 You just read about animating built-in properties. Now it’s time to move on to custom ones. If
you can connect a visual representation to an inherent instance value and draw that value in
some way, you can build an animatable property. This section discusses how. A custom prop-
erty is as wild or as limited as your imagination. For example, you could fade an associated logo
into and out of sight as a view layer’s property changes (see Figure 5-8).

 Figure 5-8 In this example, a translucent logo property is implicitly animated as its custom
 logoLevel property updates.

122 Chapter 5 Animation

 In the example that follows, an NSNumber property called logoLevel triggers the animation.
The property ranges from 0.0 (fully transparent) to 1.0 (fully opaque). The layer smoothly
adjusts its presentation, no matter what value you set. The following method enables the
user to trigger the animations. Every time the user taps the Go button, each layer property is
assigned a new value:

 - (void) go
 {
 BOOL direction = customView.layer.cornerRadius < 32;
 CustomLayer *layer = (CustomLayer *) customView.layer;
 layer.cornerRadius = direction ? 32 : 0;
 layer.logoLevel = direction ? @(1.0) : @(0.0);
 }

 To build the fading logo, start by creating a custom property. In this example, the logo level
property stores an NSNumber instance:

 @interface CustomLayer : CALayer
 @property (nonatomic, assign) CGFloat animationDuration;
 @property (nonatomic, strong) NSNumber *logoLevel;
 @end

 Declare this property as @dynamic in the implementation. This enables the layer class to
dynamically implement the accessor methods for this custom property at runtime. When the
property value updates, the layer will be ready to handle those changes:

 @implementation CustomLayer
 @dynamic logoLevel;
 ...class implementation...
 @end

 Intercepting Updates

 To catch properties whose updates require animated changes, implement the needsDisplay-
ForKey: method, as in the following code snippet. The key value coding used here means you
compare the supplied key to the name of the custom property:

 + (BOOL) needsDisplayForKey:(NSString *) key
 {
 if ([key isEqualToString:@"logoLevel"]) return YES;
 return [super needsDisplayForKey:key];
 }

 You implement this method in CALayer subclasses. Returning YES enables you to mark prop-
erties whose contents need to be redrawn when their value changes. Defer to the superclass’s
implementation for any property you don’t handle.

123Implicit Animations

 Drawing Properties

 The magic behind custom property animation lies in implementing drawInContext: . This
method is superficially similar to the drawRect: method used in UIView subclasses. As with
 drawRect: , you implement a custom presentation by drawing your changes into a context.
Here’s an example that shows the relationship between the custom logoLevel property and
the drawing it produces. Dividing the logoLevel value by 2.0 ensures the logo is drawn at a
maximum alpha level of 0.5:

 - (void) drawInContext:(CGContextRef) context
 {
 UIGraphicsPushContext(context);

 UIBezierPath *path = [self path]; // any path will do
 CGFloat alpha = self.logoLevel.floatValue / 2.0;
 [[[UIColor whiteColor] colorWithAlphaComponent:alpha] set];
 [path fill];

 UIGraphicsPopContext();
 }

 This method is called repeatedly as the layer interpolates between its old and new values. Each
time it’s called, the new alpha level creates a different fill result.

 You aren’t, of course, limited to a single animatable property. In the following method, both
the logoLevel and imageLevel properties control the drawing produced by the layer subclass.
The imageLevel property allows the image to fade in and out, just as the logo drawing does,
but without having to do so in tandem:

 - (void) drawInContext:(CGContextRef) context
 {
 UIGraphicsPushContext(context);

 // Draw the path
 UIBezierPath *path = [self path]; // supply a path
 CGFloat alpha = self.logoLevel.floatValue / 2.0;
 [[[UIColor whiteColor] colorWithAlphaComponent:alpha] set];
 [path fill];

 // Draw an image
 static UIImage *image = nil;
 if (!image) image = [UIImage imageNamed:IMAGE_NAME];
 [image drawInRect:CGRectMake(20, 20, 64, 64) blendMode:kCGBlendModeCopy
 alpha:self.imageLevel.floatValue];

 UIGraphicsPopContext();
 }

124 Chapter 5 Animation

 As a rule of thumb, keep your drawing simple and local, using resources set as instance vari-
ables within the layer rather than adjusted by outside properties. When in doubt, slow down
your animation. Properly behaving items update gradually. A good candidate for custom intrin-
sic animation is any view that updates to reflect state. For example, you might indicate items
selected by the user by applying check marks, thickening frames, or changing the opacity of
an overlay. The best applications, though, are ones with nuance. Instead of switching a display
feature on or off, adjust it continuously within a range of values. The implicit animations
ensure that your visual properties update and display smoothly.

 Wrap-up

 Here are final points to wrap up what you’ve read in this chapter:

 ■ UIKit animations have really stepped up over the past few years. There’s little you can
imagine that cannot be implemented using today’s toolset. Standout additions include
keyframe animation and motion effects.

 ■ Although blocking animations may not be suitable for production work, they are darn
handy to have around for prototyping.

 ■ Custom transitions enable your applications to change state in new ways, using familiar
controllers. Make sure you budget your time to allow extra room for tuning these classes.
Getting them just right can be maddening.

 ■ Implicit animations provide an exciting way to create smooth transitions between view
properties, enabling you to grab a viewer’s eye with a minimum of programming. Use
these features to draw and resign user focus in your interfaces.

 6
 Dynamic Animators

 Dynamic animators are some of the most exciting elements of iOS, even if they are among
the least practical. Their physics-based view behaviors create lively and curious interfaces. At
the same time, they can be fussy to work with. They don’t happily coexist with Auto Layout
because they directly update frame values and can rotate views. That said, dynamic animators
are tremendously fun. They help make your UIs pop and are well worth exploring to discover
what features they can provide your users.

 Physics-Based Behaviors

 The UIDynamicAnimator class emulates interface “physics.” It coalesces this functionality into
distinct behaviors like snapping, pushing, attachment, and collision. Here’s a quick overview of
the primitive UIKit dynamic behaviors:

 ■ Attachments — UIAttachmentBehavior instances tie a view either to a position or to
another view. It’s basically a virtual string with a set length, although you can make it
act more like a spring by updating damping and frequency properties.

 ■ Collisions — UICollisionBehavior instances allow views to collide with each other
or with path-based boundaries. In a collision, energy can be passed from one item to
another, and a view’s trajectory can be changed.

 ■ Gravity — UIGravityBehavior instances apply acceleration to views. You set where
“down” is and allow the gravity vector to act on velocities over time.

 ■ Pushes — UIPushBehavior instances add an impulse force to views, adding new energy to
the system.

 ■ Snaps — UISnapBehavior instances act as magnets, drawing views to attachment points.

 ■ Dynamic items — UIDynamicItemBehavior is the odd man out in this list. Instead of
acting as a force, dynamic items are objects affected by forces. These behaviors enable
your views to participate in the other behaviors listed here. You can attach, collide, push,

126 Chapter 6 Dynamic Animators

snap, and weigh down views by treating them as having physical properties.
The dynamic item behavior defines density, elasticity, friction, and resistance and
manages linear and angular item velocities.

 You can best explore how these items work by running Apple’s UIKit Dynamic Catalog sample
code (https://developer.apple.com/library/ios/samplecode/DynamicsCatalog). This sample code
illustrates available dynamic behaviors, presenting a wide range of effects you can create in
your own apps. Most importantly, it lets you see, interact with, and explore each behavior on
its own.

 Building Dynamics

 Once you’ve finished exploring Apple’s dynamics catalog, start building your own examples. To
begin, you need to create a dynamic animator, like this:

 self.animator = [[UIDynamicAnimator alloc]
 initWithReferenceView:self.view];

 This top-level class acts as an intermediary between your views and any dynamic behaviors
you add to the system. The animator provides context for the animations, establishing either a
reference view to create a coordinate system or a reference layout when working with collection
views.

 Typically, you use a view controller’s primary view as a reference, although you are not limited
to this. Use any view backdrop that’s large enough to contain the actors in your drama. And, as
you’ll see, you can extend animated views beyond the parent view, if needed.

 Dynamics Delegation

 Delegation enables you to know when an animator pauses, an important tool for
tracking the end of an animation sequence. An animator delegate declares the
 UIDynamicAnimatorDelegate protocol and conforms to that protocol by implementing the
optional dynamicAnimatorDidPause: and dynamicAnimatorWillResume: methods. Assign
a delegate like this:

 self.animator.delegate = self;

 When you implement a delegate, you know when animation sequences coalesce, which enables
you to clean up your simulation after the physics have come to a static resting point. Be aware
that some animations may never “stop,” especially those that do not employ energy-lowering
strategies like friction and resistance.

 Creating and Adding Behaviors

 Each dynamic animator can coordinate many behaviors at once. For example, you might want
to create a dynamic system where views “fall” in the direction of gravity but bounce off each

https://developer.apple.com/library/ios/samplecode/DynamicsCatalog

127Detecting Pauses

other and remain within the boundaries of the view controller’s view. Or you might create a
snapping behavior that involves collision detection, bumping some views out of the way.

 Add each behavior to the animator with the addBehavior: method. This method applies the
behavior to the current state. If the animator is active, the behavior will immediately start. The
following snippet creates a new snapping behavior and adds it to an animator:

 UISnapBehavior *snapBehavior = [[UISnapBehavior alloc]
 initWithItem:testView snapToPoint:point];
 [self.animator addBehavior:snapBehavior];

 The standard behavior-creation pattern is to allocate an instance and initialize it with one or
more items. This example uses a single item (testView) and sets a single parameter, a snap-to
point. When this is added to the animator, the view moves until its center co-aligns with the
snap point.

 Each dynamic behavior is distinct in terms of the details associated with the class’s API. Gravity
behavior initializers accept an array of child items, although you can add and remove items
at later times. Attachment behaviors include a suite of initializers that supply anchor points,
dynamic items, and offsets away from the anchors. Each behavior class is a new adventure,
and it’s well worth your time to read through their APIs as they are all quite different from
each other.

 Detecting Pauses

 Behavior lifetimes vary. After adding a behavior to an animator, you leave it in place for
varying degrees of time: until some application state has changed, until the animation has
come to a stopping point (or has reasonably coalesced to the point where the user perceives it
as having stopped), or until the application ends. The lifetime you select depends on the kind
of behavior you define. For example, a collision behavior that keeps views inside a parent view
controller may persist indefinitely. You might remove a snap behavior as soon as the view has
moved to the newly requested position or a push behavior as soon as the impulse has finished.

 The problem is, however, that the built-in dynamic animator can take a long time to detect
that the views it manages have stopped moving. Consider the following list of times and
frames for a snapped view:

 [0.03] NSRect: {{121.55639, 217.55638}, {66.88723, 66.88723}}
 [0.07] NSRect: {{91.418655, 206.41866}, {81.162689, 81.162689}}
 [0.10] NSRect: {{60.333874, 201.33388}, {83.332253, 83.332253}}
 [0.13] NSRect: {{44.293236, 204.29323}, {79.413528, 79.413528}}
 [0.17] NSRect: {{42.394054, 213.39406}, {68.211891, 68.211891}}
 [0.20] NSRect: {{44.46402, 221.46402}, {60.071957, 60.071957}}
 [0.23] NSRect: {{44.94722, 222.94722}, {61.105556, 61.105556}}
 [0.27] NSRect: {{47.207447, 223.70744}, {60.58511, 60.58511}}
 [0.30] NSRect: {{49.458027, 223.45802}, {60.083942, 60.083942}}
 [0.33] NSRect: {{50.481998, 222.48199}, {60.035999, 60.035999}}

128 Chapter 6 Dynamic Animators

 [0.37] NSRect: {{50.987999, 221.98801}, {60.023998, 60.023998}}
 [0.40] NSRect: {{51, 221.5}, {60, 60}}
 [0.43] NSRect: {{50.5, 221.5}, {60, 60}}
 [0.47] NSRect: {{50, 221.5}, {60, 60}}
 [0.50] NSRect: {{50, 222}, {60, 60}}
 [0.53] NSRect: {{50, 222}, {60, 60}}
 [0.57] NSRect: {{50, 222}, {60, 60}}
 ...[snipped 0.60 to 1.10]...
 [1.13] NSRect: {{50, 222}, {60, 60}}
 [1.17] NSRect: {{50, 222}, {60, 60}}
 Elapsed time: 1.167326

 This view reaches its final position after half a second has passed. The dynamic animator does
not pause until 1.17 seconds—more than double the required time. In user experience terms,
those extra 0.67 seconds can feel like forever.

 The reason for the delay becomes clear when you sneak down into the animator and look up
the view’s linear and angular velocity:

 [0.60] NSRect: {{50, 222}, {60, 60}}
 Linear Velocity: NSPoint: {1.8314272, 1.0867469}
 Angular Velocity: 0.000001

 Those values do not drop to 0 until that extra time has passed:

 [1.17] NSRect: {{50, 222}, {60, 60}}
 Linear Velocity: NSPoint: {0, 0}
 Angular Velocity: 0.000000

 In a practical sense, the velocities are meaningless once the view frame stops changing. When
you know in advance that no outside forces will impel a view to start moving again after it’s
reached a resting point, leverage this information. Trim down your waiting time by tracking a
view’s frame.

 Listing 6-1 defines a watcher class that monitors views until they stop changing. After a view
has remained fixed for a certain period of time (here for at least 0.1 seconds), this class contacts
a delegate and lets it know that the view has stopped moving. That callback enables you to
update your dynamic animator and remove the behavior so the animator can more quickly
come to a pause.

 When run with the same snap animation as the previous example, the new watcher detects the
final frame at 0.50. By 0.60, the delegate knows to stop the animation, and the entire sequence
stops nearly 0.55 seconds earlier:

 [0.47] NSRect: {{50, 221.5}, {60, 60}}
 [0.50] NSRect: {{50, 222}, {60, 60}}
 [0.53] NSRect: {{50, 222}, {60, 60}}
 [0.57] NSRect: {{50, 222}, {60, 60}}
 [0.60] NSRect: {{50, 222}, {60, 60}}
 Elapsed time: 0.617352

129Detecting Pauses

 Use this kind of short-cutting approach to re-enable GUI items that might otherwise be inac-
cessible to users once you know that the animation has come to a usable end point. While
this example implements a pixel-level test, you might vary this approach to detect low angular
velocities and other “close enough” tests to help end the animation effects within a reasonable
amount of time.

 Listing 6-1 Watching Views

 // Info stores the most recent frame, count, delegate
 @interface WatchedViewInfo : NSObject
 @property (nonatomic) CGRect frame;
 @property (nonatomic) NSUInteger count;
 @property (nonatomic) CGFloat pointLaxity;
 @property (nonatomic) id <ViewWatcherDelegate> delegate;
 @end

 @implementation WatchedViewInfo
 @end

 // Watcher class
 @implementation ViewWatcher
 {
 NSMutableDictionary *dict;
 }

 - (instancetype) init
 {
 if (!(self = [super init])) return self;
 dict = [NSMutableDictionary dictionary];
 _pointLaxity = 10;
 return self;
 }

 // Determine whether two frames are "close enough"
 BOOL CompareFrames(CGRect frame1, CGRect frame2, CGFloat laxity)
 {
 if (CGRectEqualToRect(frame1, frame2)) return YES;
 CGRect intersection = CGRectIntersection(frame1, frame2);
 CGFloat testArea =
 intersection.size.width * intersection.size.height;
 CGFloat area1 = frame1.size.width * frame1.size.height;
 CGFloat area2 = frame2.size.width * frame2.size.height;
 return ((fabs(testArea - area1) < laxity) &&
 (fabs(testArea - area2) < laxity));
 }

130 Chapter 6 Dynamic Animators

 // See whether the view has stopped moving
 - (void) checkInOnView: (NSTimer *) timer
 {
 int kThreshold = 3; // must remain for 0.3 secs

 // Fetch the view and the info
 UIView *view = (UIView *) timer.userInfo;
 NSNumber *key = @((int)view);
 WatchedViewInfo *watchedViewInfo = dict[key];

 // Matching frame? If so update count
 BOOL steadyFrame = CompareFrames(watchedViewInfo.frame,
 view.frame, _pointLaxity);
 if (steadyFrame) watchedViewInfo.count++;

 // Threshold met
 if (steadyFrame && (watchedViewInfo.count > kThreshold))
 {
 [timer invalidate];
 [dict removeObjectForKey:key];
 [watchedViewInfo.delegate viewDidPause:view];
 return;
 }

 if (steadyFrame) return;

 // Replace frame with new frame
 watchedViewInfo.frame = view.frame;
 watchedViewInfo.count = 0;
 }

 - (void) startWatchingView: (UIView *) view
 withDelegate: (id <ViewWatcherDelegate>) delegate
 {
 NSNumber *key = @((int)view);
 WatchedViewInfo *watchedViewInfo = [[WatchedViewInfo alloc] init];
 watchedViewInfo.frame = view.frame;
 watchedViewInfo.count = 1;
 watchedViewInfo.delegate = delegate;
 dict[key] = watchedViewInfo;

 [NSTimer scheduledTimerWithTimeInterval:0.03 target:self
 selector:@selector(checkInOnView:) userInfo:view repeats:YES];
 }
 @end

131Detecting Pauses

 Creating a Frame-Watching Dynamic Behavior

 While the solution in Listing 6-1 provides general view oversight, you can implement the frame
checker in a much more intriguing form: as the custom dynamic behavior you see in Listing
 6-2 . This approach that adapts Listing 6-1 to a new form requires just a couple adjustments to
work as a behavior:

 ■ The behavior from the checkInOnView: method is now implemented in the behavior’s
 action property. This block is called directly by the animator, using its own timing
system, so the threshold is slightly higher in this implementation than in Listing 6-1 .

 ■ Instead of calling back to a delegate, this approach unloads both the watcher and the
client behavior directly in the action block. This may be problematic if the behavior
controls additional items, but for snap behaviors and their single items, it is a pretty safe
approach.

 To enable the watcher, you must add it to the animator as a separate behavior. Here’s how you
allocate it and initialize it with a client view and an affected behavior:

 UISnapBehavior *snapBehavior = [[UISnapBehavior alloc]
 initWithItem:testView snapToPoint:p];
 [self.animator addBehavior:snapBehavior];
 WatcherBehavior *watcher = [[WatcherBehavior alloc]
 initWithView:testView behavior:snapBehavior];
 [self.animator addBehavior:watcher];

 Once it is added, it works just like Listing 6-1 , iteratively checking the view’s frame to wait for a
steady state.

 Listing 6-2 Watching Views with a Dynamic Behavior

 // Create custom frame watcher
 @interface WatcherBehavior : UIDynamicBehavior
 - (instancetype) initWithView: (UIView *) view
 behavior: (UIDynamicBehavior *) behavior;
 @property (nonatomic) CGFloat pointLaxity; // defaults to 10
 @end

 // Store the view, its most recent frame, and a count
 @interface WatcherBehavior ()
 @property (nonatomic) UIView *view;
 @property (nonatomic) CGRect mostRecentFrame;
 @property (nonatomic) NSInteger count;
 @property (nonatomic) UIDynamicBehavior *customBehavior;
 @end

132 Chapter 6 Dynamic Animators

 @implementation WatcherBehavior
 - (instancetype) initWithView: (UIView *) view
 behavior: (UIDynamicBehavior *) behavior
 {
 if (!(self = [super init])) return self;

 // Initialize instance
 _view = view;
 _mostRecentFrame = _view.frame;
 _count = 0;
 _pointLaxity = 10;
 _customBehavior = behavior;

 // Create custom action for the behavior
 __weak typeof(self) weakSelf = self;
 self.action = ^{
 __strong typeof(self) strongSelf = weakSelf;
 UIView *view = strongSelf.view;

 CGRect currentFrame = view.frame;
 CGRect recentFrame = strongSelf.mostRecentFrame;
 BOOL steadyFrame = CompareFrames(currentFrame,
 recentFrame, strongSelf.pointLaxity);
 if (steadyFrame) strongSelf.count++;

 NSInteger kThreshold = 5;
 if (steadyFrame && (strongSelf.count > kThreshold))
 {
 [strongSelf.dynamicAnimator
 removeBehavior:strongSelf.customBehavior];
 [strongSelf.dynamicAnimator removeBehavior:strongSelf];
 return;
 }

 if (!steadyFrame)
 {
 strongSelf.mostRecentFrame = currentFrame;
 strongSelf.count = 0;
 }
 };

 return self;
 }
 @end

133Implementing Snap Zones

 Implementing Snap Zones

 One of my favorite dynamic animator tricks involves creating snap zones—areas of your inter-
face that pull in dragged items once they overlap a particular region. This approach allows you
to collect items into well-managed zones and offer a pleasing “snap-into-place” animation. In
the general form shown in Listing 6-3 , there’s no further test beyond whether a dragged view
has strayed into a zone. However, you might want to expand the approach to limit blue items
to blue zones or red items to red zones, and so forth.

 Listing 6-3 assumes that users will have access to multiple zones and even that a view might
move from one zone directly to another. It uses a tagging scheme to keep track of this potential
reparenting. A free view has no current parent and can move freely about. When a free view
overlaps a snap zone, however, it suspends dragging by disabling the view’s gesture recognizer
and adds a snap-to-parent behavior. The view slides into place into its new parent. Once it
arrives, as the dynamic animator pauses, the recognizer is re-enabled.

 Allowing a view to escape from its new parent’s bounds is the tricky bit—and the motivating
reason for the view tagging. You do not want a view to recapture its child unless the drag-
ging gesture has ended, which is why this method keeps track of the gesture state. With new
parents, however, the snap behavior is added (and the gesture is suspended) as soon as a view
strays over the line. Balancing the escapes and the captures ensures that the user experience is
snappy and responsive and does not thwart the user’s desires to remove a view from a parent.

 Listing 6-3 Handling Multiple Snap Zones

 - (void) draggableViewDidMove: (NSNotification *) note
 {
 // Check for view participation
 UIView *draggedView = note.object;
 UIView *nca = [draggedView nearestCommonAncestorWithView:
 _animator.referenceView];
 if (!nca) return;

 // Retrieve state
 UIGestureRecognizer *recognizer = (UIGestureRecognizer *)
 draggedView.gestureRecognizers.lastObject;
 UIGestureRecognizerState state = [recognizer state];

 // View frame and current attachment
 CGRect draggedFrame = draggedView.frame;
 BOOL free = draggedView.tag == 0;

 for (UIView *dropZone in _dropZones)
 {
 // Make sure all drop zones are views

134 Chapter 6 Dynamic Animators

 if (![dropZone isKindOfClass:[UIView class]])
 continue;

 // Overlap?
 CGRect dropFrame = dropZone.frame;
 BOOL overlap = CGRectIntersectsRect(draggedFrame, dropFrame);

 // Free moving
 if (!overlap && free)
 {
 continue;
 }

 // Newly captured
 if (overlap && free)
 {
 if (suspendedRecognizer)
 {
 NSLog(@"Error: attempting to suspend second recognizer");
 break;
 }

 // New parent.
 // CAPTURED is an integer offset for tagging
 suspendedRecognizer = recognizer;
 suspendedRecognizer.enabled = NO; // stop!
 draggedView.tag = CAPTURED + dropZone.tag; // mark as captured
 UISnapBehavior *behavior = [[UISnapBehavior alloc]
 initWithItem:draggedView
 snapToPoint:RectGetCenter(dropFrame)];
 [_animator addBehavior:behavior];
 break;
 }

 // Is this the current parent drop zone?
 BOOL isParent = (dropZone.tag + CAPTURED == draggedView.tag);

 // Current parent
 if (overlap && isParent)
 {
 switch (state)
 {
 case UIGestureRecognizerStateEnded:
 {
 // Recapture
 UISnapBehavior *behavior = [[UISnapBehavior alloc]
 initWithItem:draggedView

135Leveraging Real-World Physics

 snapToPoint:RectGetCenter(dropFrame)];
 [_animator addBehavior:behavior];
 break;
 }
 default:
 {
 // Still captured but no op
 break;
 }
 }
 break;
 }

 // New parent
 if (overlap)
 {
 suspendedRecognizer = recognizer;
 suspendedRecognizer.enabled = NO; // stop!
 draggedView.tag = CAPTURED + dropZone.tag;
 UISnapBehavior *behavior = [[UISnapBehavior alloc]
 initWithItem:draggedView
 snapToPoint:RectGetCenter(dropFrame)];
 [_animator addBehavior:behavior];
 break;
 }
 }
 }

 Leveraging Real-World Physics

 The built-in gravity dynamic animator consists of a downward force. You can adjust the force’s
vector to point gravity in other directions, but it’s a static system. You can, however, integrate
the gravity behavior with Core Motion to produce a much more satisfying effect. Apple’s Core
Motion framework enables your apps to receive motion-based data from device hardware,
including the onboard accelerometer and gyroscope. The framework converts motion data into
a form of input that your device can use to coordinate application changes with the way your
user’s device is held and moved over time.

 Listing 6-4 builds a motion manager singleton. It uses Core Motion to listen for accelerom-
eter updates, and when it receives them, it calculates a working vector and posts notifications
with that information. You may be curious about that extra 0.5 added to the y component; it
produces a more natural vector for holding a device in your hand.

136 Chapter 6 Dynamic Animators

 Listing 6-4 Broadcasting Motion Updates

 #define VALUE(struct) ({ __typeof__(struct) __struct = struct; \
 [NSValue valueWithBytes:&__struct \
 objCType:@encode(__typeof__(__struct))]; })

 NSString *const MotionManagerUpdate = @"MotionManagerUpdate";
 NSString *const MotionVectorKey = @"MotionVectorKey";

 static MotionManager *sharedInstance = nil;

 @interface MotionManager ()
 @property (nonatomic, strong) CMMotionManager *motionManager;
 @end

 @implementation MotionManager
 + (instancetype) sharedInstance
 {
 if (!sharedInstance)
 sharedInstance = [[self alloc] init];

 return sharedInstance;
 }

 - (void) shutDownMotionManager
 {
 NSLog(@"Shutting down motion manager");
 [_motionManager stopAccelerometerUpdates];
 _motionManager = nil;
 }

 - (void) establishMotionManager
 {
 if (_motionManager)
 [self shutDownMotionManager];

 // Establish the motion manager
 NSLog(@"Establishing motion manager");
 _motionManager = [[CMMotionManager alloc] init];
 }

 - (void) startMotionUpdates
 {
 if (!_motionManager)
 [self establishMotionManager];

137Leveraging Real-World Physics

 if (_motionManager.accelerometerAvailable)
 [_motionManager
 startAccelerometerUpdatesToQueue:[[NSOperationQueue alloc] init]
 withHandler:^(CMAccelerometerData *data, NSError *error)
 {
 CGVector vector = CGVectorMake(data.acceleration.x, -
 (data.acceleration.y + 0.5));
 NSDictionary *dict = @{MotionVectorKey:VALUE(vector)};
 [[NSNotificationCenter defaultCenter]
 postNotificationName:MotionManagerUpdate
 object:self userInfo:dict];
 }];

 }
 @end

 Connecting a Gravity Behavior to Device Acceleration

 On the other end of things, create an observer for motion updates. The following snippet
builds a gravity behavior and updates its gravityDirection property whenever the physical
device moves:

 // Build device gravity behavior
 _deviceGravityBehavior = [[UIGravityBehavior alloc] initWithItems:@[]];

 // Add observer
 __weak typeof(self) weakSelf = self;
 id observer = [[NSNotificationCenter defaultCenter]
 addObserverForName:MotionManagerUpdate object:nil
 queue:[NSOperationQueue mainQueue]
 usingBlock:^(NSNotification *note) {
 __strong typeof(self) strongSelf = weakSelf;

 // Retrieve vector
 NSDictionary *dict = note.userInfo;
 NSValue *value = dict[MotionVectorKey];
 CGVector vector;
 [value getValue:&vector];

 // Set gravity direction to that vector
 strongSelf.deviceGravityBehavior.gravityDirection = vector;
 }];
 [_observers addObject:observer];

 As the gravityDirection property updates, any child items (none are yet added in this code)
respond to the new force, moving in the appropriate direction.

138 Chapter 6 Dynamic Animators

 Creating Boundaries

 One of the biggest annoyances about gravity is that it never stops. When you apply a gravity
behavior to a view, it will accelerate off the screen and keep going on essentially forever.
Bye-bye, view. To avoid this, add a boundary. The UICollisionBehavior has a built-in solu-
tion for enclosures. Enable its translatesReferenceBoundsIntoBoundary property, and it
sets the animator’s reference view as a default boundary for its items:

 _boundaryBehavior = [[UICollisionBehavior alloc] initWithItems:@[]];
 _boundaryBehavior.translatesReferenceBoundsIntoBoundary = YES;

 When building behaviors like this, it’s important to spot-check your key steps. Remember that
animators own behaviors, and behaviors own items, which are typically views. Don’t forget
to add items to each behavior that affects them. For this example of device-based gravity, add
views to both the gravity behavior and the boundary behavior. Also, make sure to add the
behaviors to the animator. Always make sure your views fall fully within the collision boundar-
ies before adding a behavior to the animator. Views that cross the boundary or lie outside the
boundary will not respond properly to the “keep items within the reference bounds” rule.

 Collision behaviors also enable views to bounce off each other. By default, any view added to a
collision behavior will participate not only in view-to-boundary collisions but also in view-to-
view collisions. If for any reason you don’t want this to happen, you can update the behavior’s
 collisionMode property to exclude item-to-item collisions:

 _boundaryBehavior = [[UICollisionBehavior alloc] initWithItems:@[]];
 _boundaryBehavior.translatesReferenceBoundsIntoBoundary = YES;
 _boundaryBehavior.collisionMode = UICollisionBehaviorModeBoundaries;

 Enhancing View Dynamics

 Dynamic item behaviors customize view traits—making them springier or duller, heavier or
lighter, smoother or stickier, and so forth. Unlike the other built-in behaviors, dynamic item
behaviors focus less on external forces and more on individual view properties. For example,
say you have views that you want to add bounce to. Create a dynamic item behavior and adjust
its elasticity property:

 _elasticityBehavior = [[UIDynamicItemBehavior alloc] initWithItems:items];
 _elasticityBehavior.elasticity = 0.8; // Higher values are more elastic
 [_animator addBehavior:_elasticityBehavior];

 Dynamic item properties include the following:

 ■ Rotation (allowsRotation) —This property allows or disallows view rotation as the view
participates in the dynamic system. When it is enabled (the default), views may rotate as
they collide with other items.

 ■ Angular resistance (angularResistance) —Angular resistance creates a damping effect
on rotation. As the value of this property rises from 0 to 1, views stop tumbling more
quickly.

139Custom Behaviors

 ■ Resistance (resistance) —Also ranging from 0 to 1, the linear resistance property is
analogous to angular resistance. Instead of damping rotation, it limits linear velocity. You
can think of this as a natural viscosity in the view’s “atmosphere,” where 0 is close to
operating in a vacuum, and 1 is like moving through thick syrup.

 ■ Density (density) —An item’s density property controls its virtual mass. Any dynamic
behavior that uses mass as a factor (such as collisions and friction) responds to the
current value of this property, which defaults to 1. Because items have density, a view
that’s twice the size of another along each dimension will contribute four times the
effective mass when set to the same density or equal mass when set to a quarter of the
density.

 ■ Elasticity (elasticity) —Ranging from 0 to 1, this property establishes how elastic a
view’s collisions will be. At 0, collisions are lifeless, with no bounce at all. A setting of 1
creates completely elastic collisions with wildly bouncy items.

 ■ Friction (friction) —The friction property creates linear resistance, producing a kind
of “stickiness” for when items slide across each other. As the friction setting rises from
0 (friction-free) to 1 (the strongest possible friction), views tend to disperse energy on
contact and connect more strongly to each other and to boundaries.

 Custom Behaviors

 Apple provides a library of default behaviors that includes forces (attachments, collisions,
gravity, pushes, and snaps) and “dynamic items” that describe how a physics body reacts to
forces. You can also create your own behaviors that operate with dynamic animators. This
section discusses how you might do this in your own projects.

 You choose from two approaches when creating custom dynamic behaviors. First, you can
hook your changes onto an existing behavior and transform its updates to some new style.
That’s the approach Apple uses in the Dynamic Catalog example that converts an attachment
point animator to a boundary animation. It transforms an elastic attachment to view morph-
ing. Second, you can create a new behavior and establish your own rules for coalescing its
results over time. This approach enables you create any kind of behavior you can imagine,
as long as you express it with regard to the animator’s timeline. Both have advantages and
drawbacks.

 Creating Custom Dynamic Items

 Before jumping into custom behaviors, you need to understand dynamic items more fully.
Dynamic items are the focal point of the dynamic animation process. Until this point, I have
used views as dynamic items—after all, they provide the bounds , center , and transform prop-
erties required to act in this role—but dynamic items are not necessarily views. They are merely
objects that conform to the UIDynamicItem protocol. This protocol ensures that these proper-
ties are available from conforming objects. Because of this abstraction, you can dynamically
animate custom objects as easily as you animate views.

140 Chapter 6 Dynamic Animators

 Consider the following class. It consists of nothing more than three properties, ensuring that it
conforms to the UIDynamicItem protocol:

 @interface CustomDynamicItem : NSObject <UIDynamicItem>
 @property (nonatomic) CGRect bounds;
 @property (nonatomic) CGPoint center;
 @property (nonatomic) CGAffineTransform transform;
 @end
 @implementation CustomDynamicItem
 @end

 After adding this class to your project, you can instantiate and set properties however you like.
For example, you might use the following lines of code to create a new custom item:

 item = [[CustomDynamicItem alloc] init];
 item.bounds = CGRectMake(0, 0, 100, 100);
 item.center = CGPointMake(50, 50);
 item.transform = CGAffineTransformIdentity;

 Once you have established a dynamic item, you may pass it to a behavior and add that behav-
ior to an animator, just as you would with a view:

 animator = [[UIDynamicAnimator alloc] init];
 UIPushBehavior *push = [[UIPushBehavior alloc]
 initWithItems:@[item] mode:UIPushBehaviorModeContinuous];
 push.angle = M_PI_4;
 push.magnitude = 1.0;
 [animator addBehavior:push];
 push.active = YES;

 What happens next, however, may surprise you. If you monitor the item, you’ll find that its
center property updates, but its bounds and transform remain untouched:

 2014-12-01 13:33:08.177 Hello World[55151:60b] Bounds: [0, 0, 100, 100], Center:
 (86 86), Transform: Theta: {0.000000 radians, 0.000000°} Scale: {1.000000,
 1.000000} Translation: {0.000000, 0.000000}
 2014-12-01 13:33:09.176 Hello World[55151:60b] Bounds: [0, 0, 100, 100], Center:
 (188 188) , Transform: Theta: {0.000000 radians, 0.000000°} Scale: {1.000000,
 1.000000} Translation: {0.000000, 0.000000}
 2014-12-01 13:33:10.175 Hello World[55151:60b] Bounds: [0, 0, 100, 100], Center:
 (351 351) , Transform: Theta: {0.000000 radians, 0.000000°} Scale: {1.000000,
 1.000000} Translation: {0.000000, 0.000000}
 2014-12-01 13:33:11.176 Hello World[55151:60b] Bounds: [0, 0, 100, 100], Center:
 (568 568) , Transform: Theta: {0.000000 radians, 0.000000°} Scale: {1.000000,
 1.000000} Translation: {0.000000, 0.000000}

 This curious state of affair happens because the dynamic animator remains completely agnostic
as to the kind of underlying object it serves. This abstract CustomDynamicItem class provides
no links between its center property and its bounds property the way a view would. If you

141Custom Behaviors

want these items to update synchronously, you must add corresponding methods. For example,
you might implement a solution like this:

 - (void) setCenter:(CGPoint)center
 {
 _center = center;
 _bounds = RectAroundCenter(_center, _bounds.size);
 }

 - (void) setBounds:(CGRect)bounds
 {
 _bounds = bounds;
 _center = RectGetCenter(bounds);
 }

 I’m not going to present a full implementation that allows the item to respond to transform
changes—for two reasons. First, in real life, you almost never want to create custom items in
this fashion. Second, when you actually do need this, you’ll be far better off using an actual
view as an underlying model. Allowing a UIView instance to do the math for you will save you
a lot of grief, especially since you’re trying to emulate a view in the first place.

 Note

 I am unaware of any workaround that will allow you to create non-rectangular dynamic items at
this time.

 Subverting Dynamic Behaviors

 As mentioned earlier, Apple created a Dynamic Catalog example that redirects the results of an
attachment behavior to create a bounds animation. It accomplishes this by building an abstract
dynamic item class. This class redirects all changes applied to the item’s center to a client view’s
width and height. This means that while the physics engine thinks it’s bouncing around a view
in space, the actual expressions of those dynamics are producing bounds shifts. The following
code performs this mapping:

 // Map bounds to center
 - (CGPoint)center
 {
 return CGPointMake(_item.bounds.size.width, _item.bounds.size.height);
 }

 // Map center to bounds
 - (void)setCenter:(CGPoint)center
 {
 _item.bounds = CGRectMake(0, 0, center.x, center.y);
 }

142 Chapter 6 Dynamic Animators

 I dislike this approach for the following reasons:

 ■ The animator isn’t animating the view’s center at the point you think it is. You must
establish an anchor point within the view’s own coordinate system so the center values
make any sense to use.

 ■ All you’re getting back from this exercise is a damped sinusoid, as in Listing 5-2 . Just use
a damped sinusoid to begin with, and you’ll avoid any unintentional side effects.

 ■ How often are you just sitting around in your development job, thinking, “Hey, I’ll
just take the output of a physics emulation system and map its results into another
dimension so I can create an overly complex sample application that has no general
reuse value?” Right, me either.

 Better Custom Dynamic Behaviors

 As you read this section, remember that better is a relative term. The biggest problem when it
comes to custom dynamic behaviors is that Apple has not released a public API that keeps a
completely custom item animating until it reaches a coalesced state. This means that while
 Listing 6-5 offers a more satisfying solution than Apple’s solution, it’s still a hack.

 The main reason for this is that while built-in dynamic behaviors can tell the animator “Hey,
I’m done now” by using private APIs that allow the animator to stop, you and I cannot tickle
the animator to make sure it keeps on ticking. Enter this class’s “clock mandate.” It’s a gravity
behavior added to the ResizableDynamicBehavior as a child.

 The gravity behavior works on an invisible view, which is itself added to the animated view so
that it belongs to the right hierarchy. (This is an important step so you don’t generate excep-
tions.) Once it is added, the gravity behavior works forever. When you’re ready for the dynamic
behavior to end, simply remove it from its parent. Without this extra trick, the animation ends
on its own about a half second after you start it.

 I developed the damped equation used in the action block after playing with graphing. As
 Figure 6-1 shows, I was looking for a curve that ended after about one and a half cycles. You
cannot depend on the animator’s elapsed time, which doesn’t reset between behaviors. To
power my curve, I made sure to create a clock for each behavior and use that in the action
block.

 Figure 6-1 A fast-decaying sin curve provides a nice match to the view animation.

143Custom Behaviors

 A few final notes on this one:

 ■ You need to attach some sort of built-in animator like gravity, or your action property
will not be called. Gravity offers the simple advantage of never ending.

 ■ You must establish the bounds as is done here, or your view immediately collapses to a
0 size.

 ■ The identity transform in the last step isn’t strictly necessary, but I wanted to ensure
that I cleaned up after myself as carefully as possible.

 ■ To slow down the effect, reduce the number of degrees traveled per second. In this case,
it goes 2 * pi every second.

 ■ To increase or decrease the animation magnitude, adjust the multiplier. Here it is 1 + 0.5
* the scale. The 1 is the identity scale, and you should keep it as is. Tweak the 0.5 value
up to expand the scaling or down to diminish it.

 ■ You can bring the animation to coalescence faster or slower by adjusting the final
multiplier in the exponentiation. Here it is set to 2.0, which produces fairly rapid
damping. Higher values produce stronger damping; lower values allow the animation to
continue longer.

 Listing 6-5 Extending a Custom Behavior’s Lifetime

 @interface ResizableDynamicBehavior ()
 @property (nonatomic, strong) UIView *view;
 @property (nonatomic) NSDate *startingTime;
 @property (nonatomic) CGRect frame;
 @property (nonatomic) UIGravityBehavior *clockMandate;
 @property (nonatomic) UIView *fakeView;
 @end

 @implementation ResizableDynamicBehavior
 - (instancetype) initWithView: (UIView *) view
 {
 if (!view) return nil;
 if (!(self = [super init])) return self;
 _view = view;
 _frame = view.frame;

 // Establish a falling view to keep the timer going
 _fakeView = [[UIView alloc] initWithFrame:CGRectMake(0, 0, 10, 10)];
 [view addSubview:_fakeView];
 _clockMandate = [[UIGravityBehavior alloc] initWithItems:@[_fakeView]];
 [self addChildBehavior:_clockMandate];

 // The action block is called at every animation cycle
 __weak typeof(self) weakSelf = self;

144 Chapter 6 Dynamic Animators

 self.action = ^{
 __strong typeof(self) strongSelf = weakSelf;

 // Start or update the clock
 if (!strongSelf.startingTime)
 strongSelf.startingTime = [NSDate date];
 CGFloat time = [[NSDate date]
 timeIntervalSinceDate:strongSelf.startingTime];

 // Calculate the current change
 CGFloat scale = 1 + 0.5 * sin(time * M_PI * 2) *
 exp(-1.0 * time * 2.0);

 // Apply the bounds and transform
 CGAffineTransform transform =
 CGAffineTransformMakeScale(scale, scale);
 strongSelf.view.bounds = (CGRect){.size = strongSelf.frame.size};
 strongSelf.view.transform = transform;
 [strongSelf.dynamicAnimator
 updateItemUsingCurrentState:strongSelf.view];

 // Stop after 3 * Pi
 if (time > 1.5)
 {
 [strongSelf removeChildBehavior:strongSelf.clockMandate];
 [strongSelf.fakeView removeFromSuperview];
 strongSelf.view.transform = CGAffineTransformIdentity;
 }
 };

 return self;
 }
 @end

 Custom Secondary Behaviors

 You do far less work when your custom behavior acts side-by-side with a known system-
supplied one. You don’t have to establish an overall animation end point, the way Listing 6-5
does. Consider Listing 6-6 , which creates a behavior that modifies a view transformation over
time. This class is duration agnostic. Its only customizable feature is an acceleration property,
which establishes how fast the changes accelerate to an end point.

 With custom behaviors, it’s really important that you not tie yourself to a set timeline. While
a system-supplied snap behavior might end after 80 updates or so, you should never rely on
knowing that information in advance. In contrast, with keyframes, you are free to interpolate
a function over time. With dynamics, you establish a system that coalesces , reaching a natural
stopping point on its own.

145Custom Behaviors

 For example, Listing 6-6 uses velocity and acceleration to drive its changes from 0% to 100%,
applying an easing function to that transit to produce a smooth animated result. At no point
does the behavior reference elapsed time. Instead, all updates are driven by the dynamic anima-
tion’s heartbeat and applied whenever the action method is called.

 Figure 6-2 shows the animation in action, with the two behaviors acting in parallel. As the
views draw near to their snap points, they apply the requested transforms to finish with a coor-
dinated pile of views.

 Figure 6-2 In this animation, a snap behavior draws the views together, and a transformation
behavior angles each item to form a tight nest.

 Listing 6-6 Building a Transform-Updating Behavior

 - (instancetype) initWithItem: (id <UIDynamicItem>) item
 transform: (CGAffineTransform) transform;
 {
 if (!(self = [super init])) return self;

 // Store the passed information
 _item = item;
 _originalTransform = item.transform;
 _targetTransform = transform;

 // Initialize velocity and acceleration
 _velocity = 0;
 _acceleration = 0.0025;

 // The weak and strong workarounds used here avoid retain cycles
 // when using blocks.
 ESTABLISH_WEAK_SELF;
 self.action = ^(){
 ESTABLISH_STRONG_SELF;

146 Chapter 6 Dynamic Animators

 // Pull out the original and destination transforms
 CGAffineTransform t1 = strongSelf.originalTransform;
 CGAffineTransform t2 = strongSelf.targetTransform;

 // Original
 CGFloat xScale1 = sqrt(t1.a * t1.a + t1.c * t1.c);
 CGFloat yScale1 = sqrt(t1.b * t1.b + t1.d * t1.d);
 CGFloat rotation1 = atan2f(t1.b, t1.a);

 // Target
 CGFloat xScale2 = sqrt(t2.a * t2.a + t2.c * t2.c);
 CGFloat yScale2 = sqrt(t2.b * t2.b + t2.d * t2.d);
 CGFloat rotation2 = atan2f(t2.b, t2.a);

 // Calculate the animation acceleration progress
 strongSelf.velocity = velocity + strongSelf.acceleration;
 strongSelf.percent = strongSelf.percent + strongSelf.velocity;
 CGFloat percent = MIN(1.0, MAX(strongSelf.percent, 0.0));
 percent = EaseOut(percent, 3);

 // Calculated items
 CGFloat targetTx = Tween(t1.tx, t2.tx, percent);
 CGFloat targetTy = Tween(t1.ty, t2.ty, percent);
 CGFloat targetXScale = Tween(xScale1, xScale2, percent);
 CGFloat targetYScale = Tween(yScale1, yScale2, percent);
 CGFloat targetRotation = Tween(rotation1, rotation2, percent);

 // Create transforms
 CGAffineTransform scaleTransform =
 CGAffineTransformMakeScale(targetXScale, targetYScale);
 CGAffineTransform rotateTransform =
 CGAffineTransformMakeRotation(targetRotation);
 CGAffineTransform translateTransform =
 CGAffineTransformMakeTranslation(targetTx, targetTy);

 // Combine and apply transforms
 CGAffineTransform t = CGAffineTransformIdentity;
 t = CGAffineTransformConcat(t, rotateTransform);
 t = CGAffineTransformConcat(t, scaleTransform);
 t = CGAffineTransformConcat(t, translateTransform);
 strongSelf.item.transform = t;
 };

 return self;
 }

147Collection Views and Dynamic Animators

 Collection Views and Dynamic Animators

 Leveraging the power of dynamic animators in collection views is possible courtesy of a few
UIKit extensions. Dynamic animators add liveliness to your presentations during scrolling and
when views enter and leave the system. The dynamic behavior set is identical to that used for
normal view animation, but the collection view approach requires a bit more overhead and
bookkeeping as views may keep appearing and disappearing during scrolls.

 The core of the dynamic animator system is the UIDynamicItem protocol. The
 UICollectionViewLayoutAttributes class, which represents items in the collection
view, conforms to this protocol. Each instance provides the required bounds , center , and
 transform properties you need to work with dynamic animators. So although you don’t
work directly with views, you’re still well set to introduce dynamics.

 Custom Flow Layouts

 The key to using dynamic animation classes with collection views is to build your own custom
 UICollectionViewFlowLayout subclass. Flow layouts create organized presentations in your
application. Their properties and instance methods specify how the flow sets itself up to place
items onscreen. In the most basic form, the layout properties provide you with a geometric
vocabulary, where you talk about row spacing, indentation, and item-to-item margins. With
custom subclasses, you can extend the class to produce eye-catching and nuanced results.

 To support dynamic animation, your custom class must coordinate with an animator instance.
You typically set it up in your flow layout initializer by using the UIDynamicAnimator collec-
tion view-specific initializer. This prepares the animator for use with your collection view and
enables it to take control of reporting item attributes on your behalf. As you’ll see, the dynamic
animator takes charge of many methods you normally would have to implement by hand.

 The following init method allocates an animator and adds a custom “spinner” behavior. The
 UIDynamicItemBehavior class enables you to add angular velocity to views, creating a spin-
ning effect, which you see in action in Figure 6-3 :

 - (instancetype) initWithItemSize: (CGSize) size
 {
 if (!(self = [super init])) return self;
 _animator = [[UIDynamicAnimator alloc]
 initWithCollectionViewLayout:self];
 _spinner = [[UIDynamicItemBehavior alloc] init];
 _spinner.allowsRotation = YES;
 [_animator addBehavior:_spinner];
 self.scrollDirection = UICollectionViewScrollDirectionHorizontal;
 self.itemSize = size;
 return self;
 }

148 Chapter 6 Dynamic Animators

 Figure 6-3 Allowing dynamic items to rotate enables you to add angular velocities, causing views
to tilt and spin.

 Returning Layout Attributes

 As mentioned earlier, a dynamic animator can take charge of reporting layout attributes. The
following methods do all the work, redirecting the normal geometry through the animator:

 - (NSArray *)layoutAttributesForElementsInRect:(CGRect)rect
 {
 return [_animator itemsInRect:rect];
 }

 - (UICollectionViewLayoutAttributes *)layoutAttributesForItemAtIndexPath:
 (NSIndexPath *)indexPath
 {
 UICollectionViewLayoutAttributes *dynamicLayoutAttributes =
 [_animator layoutAttributesForCellAtIndexPath:indexPath];

 // Check whether the attributes were properly generated
 return dynamicLayoutAttributes ?
 [_animator layoutAttributesForCellAtIndexPath:indexPath] :
 [super layoutAttributesForItemAtIndexPath:indexPath];
 }

 - (BOOL)shouldInvalidateLayoutForBoundsChange:(CGRect)newBounds
 {
 return YES;
 }

149Collection Views and Dynamic Animators

 For safety, the second method checks that the animator properly reports attributes. If it fails,
the method falls back to the default implementation.

 Updating Behaviors

 With collection views, the hardest work involves coordinating items with behaviors. Although
you can allow behaviors to control items that are no longer onscreen, as a general rule, you
probably want to weed out any items that have left the display and add any items that have
moved into place. Listing 6-7 demonstrates this approach.

 You start by calculating the onscreen rectangle and request the array of items that appear in
that space. Use each item’s index path to compare it to items owned by a behavior. If a behav-
ior item does not appear in the onscreen list, remove it. If an onscreen item isn’t yet owned by
the behavior, add it.

 Although you mostly just add physics behaviors and let them run, I decided to tie Listing 6-7
to user interaction. The speed and direction of the backing scroll view add “impulses” to each
view, nudging their angular velocity in one direction or the other.

 Listing 6-7 Adding Physics-Based Animation to Collection Views

 // Scroll view delegate method establishes the current speed
 - (void)scrollViewDidScroll:(UIScrollView *)scrollView
 {
 scrollSpeed = scrollView.contentOffset.x - previousScrollViewXOffset;
 previousScrollViewXOffset = scrollView.contentOffset.x;
 }

 // Prepare the flow layout
 - (void) prepareLayout
 {
 [super prepareLayout];

 // The collection view isn't established in init, catch it here.
 if (!setupDelegate)
 {
 setupDelegate = YES;
 self.collectionView.delegate = self;
 }

 // Retrieve onscreen items
 CGRect currentRect = self.collectionView.bounds;
 currentRect.size = self.collectionView.frame.size;
 NSArray *items = [super layoutAttributesForElementsInRect:currentRect];

 // Clean up any item that's now offscreen
 NSArray *itemPaths = [items valueForKey:@"indexPath"];

150 Chapter 6 Dynamic Animators

 for (UICollectionViewLayoutAttributes *item in _spinner.items)
 {
 if (![itemPaths containsObject:item.indexPath])
 [_spinner removeItem:item];
 }

 // Add all onscreen items
 NSArray *spinnerPaths = [_spinner.items valueForKey:@"indexPath"];
 for (UICollectionViewLayoutAttributes *item in items)
 {
 if (![spinnerPaths containsObject:item.indexPath])
 [_spinner addItem:item];
 }

 // Add impulses
 CGFloat impulse = (scrollSpeed /
 self.collectionView.frame.size.width) * M_PI_4 / 4;
 for (UICollectionViewLayoutAttributes *item in _spinner.items)
 {
 CGAffineTransform t = item.transform;
 CGFloat rotation = atan2f(t.b, t.a);
 if (fabs(rotation) > M_PI / 32) impulse = - rotation * 0.01;
 [_spinner addAngularVelocity:impulse forItem:item];
 }
 }

 Building a Dynamic Alert View

 I stumbled across developer Victor Baro’s dynamic iOS “jelly view” (http://victorbaro.com/
2014/07/vbfjellyview-tutorial/), which instantly caught my eye. This clever hack uses dynamic
attachment behaviors that wiggle in harmony, enabling you to create views that emulate Jell-O.
Although its utility is limited in practical deployment, it provides a superb example of how
traditional iOS elements like alerts can be re-imagined using modern APIs. Figure 6-4 shows a
jelly view alert in motion, squashing and stretching as it bounces off an invisible center ledge
within the main UI.

 Connecting Up the Jelly

 The secret to the jelly effect lies in an underlying 3×3 grid of tiny views, all attached to each
other and to the main view’s center using UIAttachmentBehavior instances (see Figure 6-5).
These views and their attachments create a semi-rigid backbone that provides the view physics.
 Listing 6-8 details how these views and attachments are made and installed. The elasticity
of the connections allows the views to move toward and away from each other, creating a
deformed skeleton for the view presentation.

http://victorbaro.com/2014/07/vbfjellyview-tutorial/
http://victorbaro.com/2014/07/vbfjellyview-tutorial/

151Building a Dynamic Alert View

 Figure 6-5 The nine connected points form a spring-based skeleton for the Jell-O animation.

 Listing 6-8 Establishing Jelly Dynamics

 - (void) establishDynamics : (UIDynamicAnimator *) animator
 {
 if (animator) _animator = animator;

 // Create baseline dynamics for primary view
 UIDynamicItemBehavior *dynamic =
 [[UIDynamicItemBehavior alloc] initWithItems:@[self]];
 dynamic.allowsRotation = NO;
 dynamic.elasticity = _elasticity / 2;

 Figure 6-4 This “jelly view” distorts its shape as it uses UIKit dynamics to emulate a view built
onto a blob of Jell-O.

152 Chapter 6 Dynamic Animators

 dynamic.density = _density;
 dynamic.resistance = 0.9;
 [_animator addBehavior:dynamic];

 // Establish jelly grid
 for (int i = 0; i < 9; i++)
 {
 // Add dynamics
 UIView *view = [self viewWithTag:(i + 1)];
 UIDynamicItemBehavior *behavior =
 [[UIDynamicItemBehavior alloc] initWithItems:@[view]];
 behavior.elasticity = _elasticity * 2;
 behavior.density = _density;
 behavior.resistance = 0.2;
 [_animator addBehavior:behavior];

 // Attach each grid view to main jelly view center
 UIAttachmentBehavior *attachment =
 [[UIAttachmentBehavior alloc] initWithItem:view attachedToItem:self];
 attachment.damping = _damping;
 attachment.frequency = _frequency;
 [_animator addBehavior:attachment];

 // Attach views to each other
 if ((i + 1) != 5) // skip center
 {
 NSInteger xTag = [@[@(1), @(2), @(5), @(0), @(4), @(8),
 @(3), @(6), @(7)][i] integerValue] + 1;
 UIView *nextView = [self viewWithTag:xTag];
 attachment = [[UIAttachmentBehavior alloc]
 initWithItem:view attachedToItem:nextView];
 attachment.damping = _damping;
 attachment.frequency = _frequency;
 [_animator addBehavior:attachment];
 }
 }
 }

 Drawing the View

 UIView instances are rectangular, not gelatinous. To create a view that looks as if it deforms,
even if the underlying view remains rectangular, you must hide each of the underlying views
from Figure 6-5 and draw a unified shape that represents the adjusted skeleton. You do this by
observing changes on each of the component views. When they move, which you detect by
observing the center property, the jelly view needs a redraw. Listing 6-9 shows the redrawing
code.

153Building a Dynamic Alert View

 This code works by building a Bezier path from corner point to corner point to corner point.
It uses the center views along each edge as control points to produce its inflected curves.
Once the curved path is calculated, a standard drawRect: method fills in the curve to present
the view.

 Listing 6-9 Drawing the Jelly View

 - (void) observeValueForKeyPath:(NSString *)keyPath
 ofObject:(id)object
 change:(NSDictionary *)change
 context:(void *)context
 {
 // Update whenever a child view center changes
 [self setNeedsDisplay];
 }

 - (UIBezierPath *) cornerCurve
 {
 // Build a series of quad curve elements from point to point to point
 UIBezierPath *path = [UIBezierPath bezierPath];
 UIView *v0 = [self viewWithTag:1];
 [path moveToPoint:v0.center];

 // The corner points are view destinations.
 // The centers act as control points.
 NSArray *destinations = @[@(2), @(8), @(6), @(0)];
 NSArray *controlPoints = @[@(1), @(5), @(7), @(3)];

 for (int i = 0; i < 4; i++)
 {
 NSInteger dTag = [destinations[i] integerValue] + 1;
 NSInteger cTag = [controlPoints[i] integerValue] + 1;
 UIView *vd = [self viewWithTag:dTag];
 UIView *vc = [self viewWithTag:cTag];
 [path addQuadCurveToPoint:vd.center controlPoint:vc.center];
 }
 return path;
 }

 - (void) drawRect:(CGRect)rect
 {
 // Build the curves and draw the shape
 [_color set];
 [[self cornerCurve] fill];
 }

154 Chapter 6 Dynamic Animators

 Deploying Jelly

 While the jelly view is fun to create, deploy with care. Most users have a fixed limit of patience.
Any dynamic elements will tend to run longer in presentation and dismissal than standard
system-supplied UI elements. They have more complicated visual stories to tell. Because of this,
you might need to trade off the cool visual flourishes that excite a developer if you want to put
the user experience first. A jelly-based alert may be exciting to develop, but an overly long alert
that takes precious seconds to settle may add one-star reviews to your product.

 A user will not be able to tell if your app was developed using UIKit, OpenGL, Cocos2D, or
SpriteKit. Just because you can now do exciting dynamics in UIKit is not sufficient reason to
include those solutions. Your apps must defer to and serve the needs of your users rather than
pad your resume and augment your portfolio. Keep this in mind and use dynamic animators
sparingly.

 Wrap-up

 Here are final points to wrap up what you’ve read in this chapter:

 ■ Dynamic animators and behaviors are like a UI building toy set. They are enormously fun
to work with and produce a really great range of results. I best like interactions that direct
the user to natural results like the snap zones shown in Listing 6-3 and ones that provide
a user-based experience like the device gravity that coordinates with a motion manager
in Listing 6-4 .

 ■ Although it’s easy to get super-flashy with all the built-in physics, some of the best effects
are the subtlest. It’s the little flourishes—such as bounces when views enter and leave a
screen, or collisions when collection items interact with each other—that produce the
best results.

 ■ Layering and coordinating behaviors can stylize and customize the otherwise default
animations. The scaling, stacking, and rotation I added for Figure 6-2 help send the
message that these items have been “put away.”

 ■ Some things you might not initially think of as behaviors can turn out to be super-
handy. You saw this with the “watcher” behavior in Listing 6-2 . Although this custom
behavior doesn’t introduce any view changes, it helps tune the dynamic system to
produce greater responsiveness.

 ■ Always consider behavior lifetimes. You should clean up after your behaviors if they’re
short lived and retain them if they persist.

 ■ Sometimes it’s simpler to create basic and keyframe animations like the ones you saw
in Chapter 5, “Animation,” than to implement dynamic behaviors with the associated
overhead.

 7
 Presentations

 iOS’s adaptive redesign brings presentation elements into a new generation. User alerts are
re-imagined, and popovers are now universally available, not just on tablets. Special effects
highlight presentations to provide the greatest visual impact when you overlay content for
modal interaction. This chapter introduces several of the presentation changes you’ll work
with. You’ll read about the new alert controller class and about the mask and view effects that
support presentation styling. You’ll also learn how to create phone-style popovers.

 Alerts

 Alerts benefited from a full redesign in iOS 8. The UIAlertController class provides one-stop
shopping for your user messaging needs, deprecating older UIAlertView and UIActionSheet
calls. This redesign moves toward Apple’s class origins—the alert view and action sheet were
once a single class—and picks up the essential modern extras of completion blocks.

 In addition, the new API provides simpler implementation details. In keeping with adaptive
themes, it is suitable for use on both tablets and phones. You no longer need to worry about
how and where items are presented. Instead, you focus on alert contents and responses to
user interactions. Yes, there are still a few platform-specific implementation details to take
into account, as discussed in this chapter, but you’ll discover that the move toward universal
deployment continues forward for presentation items.

 Class Deprecations

 Both UIAlertView and UIActionSheet class header files urge you to update your implementa-
tion, as you see in the following excerpts pulled from UIKit framework headers:

 // UIAlertView is deprecated. Use UIAlertController with a preferredStyle of
 UIAlertControllerStyleAlert instead
 // UIActionSheet is deprecated. Use UIAlertController with a preferredStyle
 of UIAlertControllerStyleActionSheet instead

156 Chapter 7 Presentations

 Note

 While discussing deprecations, it’s worth noting that Swift prevents you from using APIs depre-
cated as of iOS 7 and earlier in your apps.

 Building Alerts

 The UIAlertController class builds universal user cross-platform alerts for iOS 8-and-later
targets. Using this new class involves the following steps:

 1. Use class constructors to create a new controller instance. Supply a primary title and
message and indicate the kind of alert to build. Choose from UIAlertControllerStyle-
Alert for pop-up alerts or UIAlertControllerStyleActionSheet to prompt users to
select from a set of choices:

 UIAlertController *controller = [UIAlertController
 alertControllerWithTitle:@" Title " message:@" Message "
 preferredStyle:UIAlertControllerStyleAlert];
 if (!controller) {
 NSLog(@"Unable to create controller");
 return;
 }

 Once they are instantiated, both styles use identical customization steps.

 2. Establish a weak reference to the controller. This reference enables you to dismiss the
controller in completion blocks and refer to its properties for text field access:

 __weak typeof(controller) weakController = controller;

 Each handler block accepts one parameter, the UIAlertAction object itself. The strong/
weak approach used in this example eliminates reference cycles. You do not want to use
 self within blocks because the instance may be holding onto the block at the same time
that the block is holding on to self . This creates a memory release nightmare. Instead,
use a weak reference workaround. This enables you to access self ’s properties while
avoiding reference cycles.

 Assigning a weak reference to a strong one, as you see here, holds on to that reference.
If that self view controller reference still exists and is still valid when the handler block
begins execution, assigning it immediately to a strong variable reference, as you see in
the next step, retains it throughout the block’s lifetime.

 3. Build actions . Each action describes a button and its handler block. The action
controller uses these actions to construct its presentation and respond to touches.
As all actions belong to a single UIAlertAction class, their associated style tells
the action controller how to present and handle each item. Actions use default
(UIAlertActionStyleDefault), cancel (UIAlertActionStyleCancel), and
destructive (UIAlertActionStyleDestructive) styles:

157Alerts

 UIAlertAction *defaultAction = [UIAlertAction
 actionWithTitle:@"Default"
 style:UIAlertActionStyleDefault
 handler:^(UIAlertAction *action) {
 __strong typeof(controller) strongController = weakController;
 // Perform action here
 [strongController dismissViewControllerAnimated:YES completion:nil];
 }];

 A cancel item should dismiss the controller without taking further action. Destructive
items may change or delete data. Default items present plain actions without additional
meaning. Make sure each handler dismisses the controller as its final step.

 4. Add the actions to the controller. For the most part, the order in which you add the
actions specifies the order used to present items. If you add a cancel action and then a
default action to an action style controller (see Figure 7-1), the cancel appears to the left:

 [controller addAction:cancelAction];
 [controller addAction:defaultAction];

 Reverse this order, and the cancel appears to the right. This changes when you add a
third action. Alerts with three actions display vertically with stacked buttons. In that
case, the cancel button follows its siblings and automatically appears at the bottom.

 Figure 7-1 Alert button order depends on the addAction: sequence used to populate an action
controller. These alerts present identically on tablets and phones.

 With action sheets in their default phone presentation, the cancel button always appears
at the bottom and is physically spaced away from other items (see Figure 7-2 , left). In
popover presentations, the cancel button is omitted. Users tap on the background to
dismiss the sheet without selecting an item (see Figure 7-2 , right).

 You can now add destructive items to pop-up alerts as well as action sheets. They appear
in red, as they did traditionally in action sheets; in the screen shown in Figure 7-3 , the
Destructive Action button text displays in red on a real device.

158 Chapter 7 Presentations

 Figure 7-3 Red button text indicates a destructive action. The red text helps users identify which
actions might change or delete data. The “Destructive Action” choice in this screenshot normally
appears in red, which you won’t see in the printed book.

 Figure 7-2 When using action sheets on phone destinations, the cancel button is always set
apart from actions. Cancel buttons do not appear on tablets. You can use at most one cancel
action per sheet or alert.

159Alerts

 You may add any number of default or destructive items to your action controllers, but
you add no more than one cancel item at a time. Multiple cancel buttons raise a runtime
exception ('UIAlertController can only have one action with a style of
UIAlertActionStyleCancel').

 5. When working with action sheets on the iPad, set a view or bar button item and an
arrow direction. Without arrow direction, the popover presents randomly on the screen.
You can set these properties on phone targets without cost, so it’s always a good choice
to add these directives to your code:

 controller.popoverPresentationController.barButtonItem =
 self.navigationItem.rightBarButtonItem;
 controller.popoverPresentationController.permittedArrowDirections =
 UIPopoverArrowDirectionAny;

 Popover presentation controllers and their features are explored in more depth later in
this chapter.

 6. Present the controller. When the user taps a button, the action item’s associated
completion block fires, taking responsibility for handling that tap and dismissing the
controller:

 [self presentViewController:controller animated:YES completion:nil];

 Listing 7-1 builds and presents a trivial action sheet that showcases all the steps used to build
these elements in a single method.

 Listing 7-1 Building and Presenting Action Controllers

 - (void) presentActionSheet
 {
 // Build the controller
 UIAlertController *controller =
 [UIAlertController alertControllerWithTitle:@"Title"
 message:@"Message"
 preferredStyle:UIAlertControllerStyleActionSheet];
 if (!controller) {
 NSLog(@"Unable to create controller");
 return;
 }

 // Establish weak reference
 __weak typeof(controller) weakController = controller;

 // Build actions
 UIAlertAction *action1 = [UIAlertAction actionWithTitle:@"Action 1"

160 Chapter 7 Presentations

 style:UIAlertActionStyleDefault handler:^(UIAlertAction *action) {
 __strong typeof(controller) strongController = weakController;
 NSLog(@"Action1: %@", action);
 [strongController dismissViewControllerAnimated:YES completion:nil];
 }];

 UIAlertAction *action2 = [UIAlertAction actionWithTitle:@"Action 2"
 style:UIAlertActionStyleDefault handler:^(UIAlertAction *action) {
 __strong typeof(controller) strongController = weakController;
 NSLog(@"Action2: %@", action);
 [strongController dismissViewControllerAnimated:YES completion:nil];
 }];

 UIAlertAction *destructive1 = [UIAlertAction
 actionWithTitle:@"Destructive Action"
 style:UIAlertActionStyleDestructive handler:^(UIAlertAction *action) {
 __strong typeof(controller) strongController = weakController;
 NSLog(@"Destruct1: %@", action);
 [strongController dismissViewControllerAnimated:YES completion:nil];
 }];

 UIAlertAction *destructive2 = [UIAlertAction
 actionWithTitle:@"Destructive Action2"
 style:UIAlertActionStyleDestructive handler:^(UIAlertAction *action) {
 __strong typeof(controller) strongController = weakController;
 NSLog(@"Destruct2: %@", action);
 [strongController dismissViewControllerAnimated:YES completion:nil];
 }];

 UIAlertAction *cancelAction = [UIAlertAction
 actionWithTitle:@"Cancel" style:UIAlertActionStyleCancel
 handler:^(UIAlertAction *action) {
 __strong typeof(controller) strongController = weakController;
 NSLog(@"Cancel Action: %@", action);
 [strongController dismissViewControllerAnimated:YES completion:nil];
 }];

 // Add actions in order (Cancel will pop to end)
 [controller addAction:action1];
 [controller addAction:action2];
 [controller addAction:destructive1];
 [controller addAction:destructive2];
 [controller addAction:cancelAction];

 // Customize popover presentations
 controller.popoverPresentationController.barButtonItem =
 self.navigationItem.rightBarButtonItem;

161Alerts

 controller.popoverPresentationController.permittedArrowDirections =
 UIPopoverArrowDirectionAny;

 // Present controller
 [self presentViewController:controller animated:YES completion:nil];
 }

 Enabling and Disabling Alert Buttons

 The new generation of alerts introduces an enabled property for actions. Figure 7-4 demon-
strates the strength and weakness of this new feature. When used with default action items,
it provides a consistent button context. You present an alert whose grayed-out items indicate
choices that might otherwise be available. This creates a predictable interface with buttons
always appearing in the same positions, regardless of whether they’re enabled.

 Figure 7-4 In the right-hand version, both Action 1 and the first Destructive Action have been
disabled. Disabled destructive items are visually indistinguishable from their enabled counterparts,
which may baffle users.

 The action item marked Destructive Action in Figure 7-4 showcases this property’s weakness.
Although this action is disabled in the right screen shot, the destructive item presents no visual
indication that user touches will be ignored. Users may confuse this deliberately disabled item
with a broken application, which is never a good thing for overall app ratings.

 Because of this, limit your disabled buttons to UIAlertActionStyleDefault items only. If
you must disable a destructive action, consider modifying its text to indicate that the option is
not available or simply leave it out. This breaks the “same everywhere, all the time” pattern but
may diminish end-user confusion.

162 Chapter 7 Presentations

 Adding Text Fields

 Text fields extend alerts to enable users to enter prompted information such as user credentials
or other application-specific text. Figure 7-5 shows an example of alert controller text entry. As
with iOS 7 and earlier, you’re limited to the alert style presentation for this feature. However,
as Listing 7-2 demonstrates, the process of creating and accessing text fields is far cleaner and
more intuitive than in earlier systems.

 Figure 7-5 Text fields are stacked in alert controllers.

 You build text fields by adding them to an action controller using addTextFieldWith-
ConfigurationHandler: , as demonstrated in Listing 7-2 . A configuration handler enables you
to initialize and set up each field. Here is where you establish secure text entry, add placeholder
text, adjust fonts and correction styles, and so forth. If you’re pre-populating a field, the config-
uration handler creates the context where you set those values.

 You access and process fields from your action handler, the block that responds to user actions
with meaningful responses. It’s a mystery why the handler passes the (useless) action parameter
instead of a (very useful) controller. You need that controller to access the textFields array
property to retrieve each text field. The fields appear in the array in the order in which you
added them. In this example, the name field is item 0, and the password field is item 1.

 Listing 7-2 Building Alert Text Fields

 - (void) go
 {
 // Text fields work only with alerts, not action sheets
 // "You can add a text field only if the preferredStyle
 // property is set to UIAlertControllerStyleAlert."
 UIAlertController *controller = [UIAlertController
 alertControllerWithTitle:@"Title" message:@"Message"
 preferredStyle:UIAlertControllerStyleAlert];

163Alerts

 if (!controller) {
 NSLog(@"Unable to create controller");
 return;
 }

 __weak typeof(controller) weakController = controller;

 // Handle successful entry
 UIAlertAction *okAction = [UIAlertAction actionWithTitle:@"Okay"
 style:UIAlertActionStyleDefault handler:^(UIAlertAction *action) {
 __strong typeof(controller) strongController = weakController;
 UITextField *nameField = strongController.textFields[0];
 UITextField *passField = strongController.textFields[1];
 NSLog(@"Name %@", nameField.text);
 NSLog(@"Pass %@", passField.text);
 [strongController dismissViewControllerAnimated:YES completion:nil];
 }];

 // Handle cancel
 UIAlertAction *cancelAction = [UIAlertAction actionWithTitle:@"Cancel"
 style:UIAlertActionStyleCancel handler:^(UIAlertAction *action) {
 __strong typeof(controller) strongController = weakController;
 [strongController dismissViewControllerAnimated:YES completion:nil];
 }];

 // Add user name field
 [controller addTextFieldWithConfigurationHandler:^(UITextField *textField) {
 textField.placeholder = @"User Name";
 textField.autocapitalizationType = UITextAutocapitalizationTypeNone;
 textField.autocorrectionType = UITextAutocorrectionTypeNo;
 }];

 // Add password field
 [controller addTextFieldWithConfigurationHandler:^(UITextField *textField) {
 textField.placeholder = @"Password";
 textField.autocapitalizationType = UITextAutocapitalizationTypeNone;
 textField.autocorrectionType = UITextAutocorrectionTypeNo;
 textField.secureTextEntry = YES;
 }];

 // Install both actions
 [controller addAction:okAction];
 [controller addAction:cancelAction];

 // Present
 [self presentViewController:controller animated:YES completion:nil];
 }

164 Chapter 7 Presentations

 Mask Views

 You’ve now read about creating and presenting alerts, which overlay content with modal, inter-
active dialogs. Presentations that integrate with the material behind them aren’t limited to
OK/Cancel interactions. Mask views are an important part of the presentation story, creating
ways to display content while retaining a fundamental tie to the most recently shown views
that lie beneath them.

 iOS 8 introduced UIView maskView properties. These properties enable you to create shaped
views, commonly used in presentations to adapt overlays with visual material that lies beneath.
Both edge adjustments and integrated holes provide views that better merge with material that
lies below the view itself, allowing another feature of adaptive display.

 Mask functionality is not new. If you’ve used shape layers, you’ve already encountered more
or less the same feature under new APIs. The updated calls are, however, fragile enough that
the maskView property probably shouldn’t have made the cut for iOS 8. Because of this, this
section reviews both the time-tested and new methods for masking.

 Shape Layer Masking

 Listing 7-3 shows a shape layer approach to creating round image views. This class masks a
view by using an oval CAShapeLayer . Despite some fiddly bits—namely the key-value observ-
ing used to detect bounds changes—this implementation is robust and time tested.

 This approach works by assigning a shape layer mask to a view’s primary layer. An underlying
Bezier path establishes the mask boundaries. When used with well-chosen paths (built around
curves rather than pixels), this approach produces smooth masking, regardless of the size of the
parent or the shape of the mask; you could easily extend the class in Listing 7-3 to mask with
any Bezier path, not just round ones.

 Masks do not naturally scale with the parent. Key-Value Observing catches bounds changes.
This lets you respond with a dynamically sized mask that consistently matches the view frame.

 Listing 7-3 Shape Layer Masking

 @implementation RoundedImageView
 // Fit the shape to the new bounds
 - (void) updateLayer
 {
 if (CGSizeEqualToSize(self.bounds.size, CGSizeZero))
 return;
 CGFloat minimum = fminf(self.bounds.size.width, self.bounds.size.height);
 UIBezierPath *path = [UIBezierPath
 bezierPathWithOvalInRect:CGRectMake(
 CGRectGetMidX(self.bounds) - minimum / 2.0,
 CGRectGetMidY(self.bounds) - minimum / 2.0, minimum, minimum)];

165Mask Views

 CAShapeLayer *maskLayer = [CAShapeLayer layer];
 maskLayer.path = path.CGPath;
 self.layer.mask = maskLayer;
 }

 // Update on bounds changes
 - (void) observeValueForKeyPath:(NSString *)keyPath
 ofObject:(id)object
 change:(NSDictionary *)change
 context:(void *)context
 {
 if ([keyPath isEqualToString:@"bounds"])
 [self updateLayer];
 }

 - (void) setup
 {
 // Listen for bounds changes
 [self addObserver:self forKeyPath:@"bounds"
 options:NSKeyValueObservingOptionNew context:NULL];
 }

 // Handle all likely inits

 - (instancetype) initWithImage:(UIImage *)image
 highlightedImage:(UIImage *)highlightedImage
 {
 if (!(self = [super initWithImage:image
 highlightedImage:highlightedImage])) return self;
 [self setup];
 return self;
 }

 - (instancetype) initWithImage:(UIImage *)image
 {
 if (!(self = [super initWithImage:image])) return self;
 [self setup];
 return self;
 }

 - (instancetype) initWithFrame:(CGRect)frame
 {
 return [self initWithImage:nil];
 }

166 Chapter 7 Presentations

 // Clean up on dealloc
 - (void) dealloc
 {
 [self removeObserver:self forKeyPath:@"bounds"];
 }
 @end

 Building Mask Views

 UIView introduced the maskView property in iOS 8. This is essentially a subview whose alpha
levels established which pixels to show on the parent. View pixels corresponding to transparent
mask pixels get clipped, while nontransparent ones show through. This creates a masked result
equivalent to Listing 7-3 , using UIView assignment. Masks enable you to create clipping that
goes beyond simple shapes and can include embedded holes.

 As you can tell from Listing 7-4 , view masking relies just as heavily on key-value bounds
observing as the shape layer. Without this step, masking uses the default size of the mask
view—however big or small—often with unexpected, unpleasant, and incorrect results. You
cannot use Auto Layout to tie the two together or just connect the mask view property to a
child view.

 What you’re left with is Listing 7-4 , which bears a strong resemblance to Listing 7-3 , with its
KVO approach. As the parent view updates its size, its mask view dynamically adjusts to match.
Because of this mask management, the MaskedImageView class proactively hides its maskView
property. It offers a custom maskImage property instead. Assignments to this property create
and update the internal mask view, enabling it to grow and shrink with the parent’s display.

 What you’re left with is a solution that’s neither as robust nor as simple as the shape layer
approach. That’s because:

 ■ Mask views are more vulnerable to content mode changes both for the view that masks
and the view being masked. As content size scales, coordinating those changes with a
second view is far more difficult than adjusting a Bezier path. Use particular care here.

 ■ Even when working with a one-to-one correlation between mask pixels and parent pixels,
this may not persist during device orientation changes.

 ■ Any content that does not stretch edge-to-edge in the mask may cause extra, unintended
clipping on the parent.

 ■ Mask images at low resolution may produce pixilated clipping effects in the parent,
unlike resolution-independent vector clipping used by shape layers.

 The bottom line: I prefer vectors for clipping. Using bitmap clipping isn’t as clean, isn’t as reli-
able, and isn’t as predictable as the vector solution.

167Mask Views

 Listing 7-4 Masking with Views

 @interface MaskedImageView ()
 @property (nonatomic, readonly) UIImageView *internalMaskView;
 @end

 @implementation MaskedImageView

 #pragma mark - Bounds observing
 - (void) updateMask
 {
 self.internalMaskView.frame = self.bounds;
 }

 - (void) observeValueForKeyPath:(NSString *)keyPath
 ofObject:(id)object
 change:(NSDictionary *)change
 context:(void *)context
 {
 if ([keyPath isEqualToString:@"bounds"])
 [self updateMask];
 }

 - (void) dealloc
 {
 [self removeObserver:self forKeyPath:@"bounds"];
 }

 #pragma mark - Hide mask view from external consumption

 - (void) setMaskView:(UIView *)maskView
 {
 // no op.
 NSLog(@"Mask view is not externally settable");
 }

 - (UIView *) maskView
 {
 // no op.
 NSLog(@"Mask view is not externally settable");
 return nil;
 }

 // Provide internal access only
 - (UIImageView *) internalMaskView
 {

168 Chapter 7 Presentations

 return (UIImageView *) super.maskView;
 }

 - (void) setMaskImage:(UIImage *)maskImage
 {
 if (!maskImage)
 {
 super.maskView = nil;
 return;
 }

 if (!self.internalMaskView)
 {
 UIImageView *imageView = [UIImageView new];
 imageView.contentMode = UIViewContentModeScaleAspectFit;
 super.maskView = imageView;
 }
 self.internalMaskView.image = maskImage;
 [self updateMask];
 }

 - (UIImage *) maskImage
 {
 return self.internalMaskView.image;
 }

 #pragma mark - Initializers

 - (void) setup
 {
 // Default content mode is aspect fit
 self.contentMode = UIViewContentModeScaleAspectFit;

 // Listen for bounds changes
 [self addObserver:self forKeyPath:@"bounds"
 options:NSKeyValueObservingOptionNew context:NULL];
 }

 - (instancetype) initWithImage:(UIImage *)image
 highlightedImage:(UIImage *)highlightedImage
 {
 if (!(self = [super initWithImage:image
 highlightedImage:highlightedImage])) return self;
 [self setup];
 return self;
 }

169Building Effect Views

 - (instancetype) initWithImage:(UIImage *)image
 {
 if (!(self = [super initWithImage:image])) return self;
 [self setup];
 return self;
 }

 - (instancetype) initWithFrame:(CGRect)frame
 {
 return [self initWithImage:nil];
 }
 @end

 Building Effect Views

 The UIVisualEffectView class introduced in iOS 8 provides a simple view abstraction for
visual effects. These effects pick up hints from the views they overlay. As with masks, this tech-
nology brings presented material more closely into the world of its parent screens, the back-
grounds they’re shown over. Figure 7-6 showcases two distinct visual effects combined into an
effect view overlay.

 Figure 7-6 Blurring (left) and vibrancy (right) are now built into the iOS API. A blur softens
background pixels. Vibrancy picks up and enhances the colors behind a blur.

 Background image courtesy of the National Park Service.

170 Chapter 7 Presentations

 The primary effect is a blur. A blur obscures details behind a view to offer barely distinct
color traces that bleed through to provide visual context. In these examples, the blur picks up
elements of the pixels from the picture of the Agate Fossil Beds used as a backdrop. Although it
is hard to see this in a black-and-white book, the prevailing color of the background image and
the strongest visual elements are preserved and can be perceived by the user.

 A vibrancy effect amplifies and adjusts the presentation color. In Figure 7-6 , it applies that color
to a set of sample controls, including a label, a switch, and a slider. If you’re reading this book
on paper rather than in an e-book, you can best see that effect by testing the sample code that
accompanies this chapter. That hue derives from the vibrancy effect’s parent blur effect. You
always configure your vibrancy effect with respect to a blur effect.

 Building a Blur Effect

 You create a blur by instantiating an effect, installing it to a custom view, and adding the view
to your presentation. The steps go like this:

 1. Create a blur instance. Blurs belong to the UIBlurEffect class. This is a concrete
subclass of the abstract UIVisualEffect class. An effect transforms content placed
behind a view. You build a new effect like this:

 blur = [UIBlurEffect effectWithStyle:UIBlurEffectStyleDark];

 Blurs support three styles: dark (UIBlurEffectStyleDark), light (UIBlurEffectStyle-
Light), and extra light (UIBlurEffectStyleExtraLight) , as shown in Figure 7-7 .
Supply the style you wish to use when initializing the blur effect.

 Figure 7-7 These screen shots show dark, light, and extra light blur effects.

 Background image courtesy of Glitch the Game (http://glitchthegame.com) public domain assets.

http://glitchthegame.com

171Building Effect Views

 2. Install the blur effect to an effect view. Build a new effect view instance and initialize
it with the blur you just created:

 blurView = [[UIVisualEffectView alloc] initWithEffect:blur];

 3. Add the blur view to your interface .

 Use blur views sparingly and meaningfully. If using mask views, as in this example, follow the
KVO practices from the preceding section to ensure that the mask properly adjusts during resize
and layout.

 Adding Vibrancy Effects

 The vibrancy effect you’ve seen enables you to embed controls into a blurred overlay to create
a seamless blend of functionality with background color cues. Although Apple doesn’t provide
specific guidance about integrating controls with vibrancy, limit this use to monochrome
controls. Figure 7-8 demonstrates why. When enabled (set to ON), a switch oval can no longer
be casually distinguished. Compare Figure 7-8 with Figure 7-7 . The switch loses its visual role
and usage hints.

 Figure 7-8 Non-monochrome controls lose distinguishing information when used with vibrancy
effects.

 Build vibrancy effects with respect to blurs. In the following example, the vibrancy effect picks
up and adjusts its hues based on the parent blur:

 UIVibrancyEffect *vibrancy = [UIVibrancyEffect effectForBlurEffect:blur];
 vibrancyView = [[UIVisualEffectView alloc] initWithEffect:vibrancy];
 [blurView.contentView addSubview:vibrancyView];

172 Chapter 7 Presentations

 After creating the vibrancy view, you add it to the blur view’s contentView . Make sure you lay
out the blur view, whether with Auto Layout (recommended) or by manually setting its frame.

 To participate in the vibrancy effect, add subviews to the vibrancy view’s contentView , as in
the following example:

 for (UIView *view in @[testLabel, theSwitch, slider, stepper, segment])
 {
 [vibrancyView.contentView addSubview:view];
 }

 When a view is owned this way, the vibrancy view controls its presentation. You can opt out
of the vibrancy effect on a view-by-view basis. Add your views to the parent blur view’s content
view instead of the vibrancy view’s content view.

 Using Auto Layout remains the best way to lay out subviews within either effect’s content view.

 Animating Effect Views

 Effect views are somewhat brittle. You may encounter animation errors when attempting to
animate these views directly. For example, effect views cannot animate their opacity. A quick
search on the web may turn up other limitations current to whatever release you’re working
with.

 Normally you work around such issues by taking a screen shot of a view and then animating
the screen shot. With effect views, workarounds like screen shots may also present problems, as
in Figure 7-9 . The right-hand screen shot was created using the following standard API:

 UIView *newView = [blurView snapshotViewAfterScreenUpdates:YES];

 It’s not practical to avoid animations with effect views. Animation creates fluid transitions for
users, helping them mentally move from one state to another. Listing 7-5 showcases both the
broken effect (case 3) and a workaround (case 0). This workaround screen shows the main inter-
face and uses it to hide the new effect view. Fading the screen shot away reveals the effect view
as if it had been animated into view. The other two examples in Listing 7-5 provide examples
that translate and scale an effect view into place.

173Building Effect Views

 Figure 7-9 Effect views can be difficult to animate in some cases. Screen shot workarounds may
return artifacts when captured, such as the label edges shown in the right screen shot or other
improperly blended elements.

 Background image courtesy of Glitch the Game (http://glitchthegame.com) public domain assets.

Listing 7-5 Animating Effect Views

 - (void) go: (UIBarButtonItem *) bbi
 {
 [self buildBlurView];
 NSInteger choice = [self.navigationItem.rightBarButtonItems
 indexOfObject:bbi];
 switch (choice) {
 case 0:
 {
 // Screen shot main view with the blur view hidden
 blurView.hidden = YES;
 UIView *newView = [self.view snapshotViewAfterScreenUpdates:YES];
 blurView.hidden = NO;
 [self.view addSubview:newView];

http://glitchthegame.com

174 Chapter 7 Presentations

 [UIView animateWithDuration:1 animations:^{
 newView.alpha = 0.0;
 } completion:^(BOOL finished) {
 [newView removeFromSuperview];
 }];
 break;
 }
 case 1:
 {
 // Scale
 blurView.transform = CGAffineTransformMakeScale(0.001, 0.001);
 [UIView animateWithDuration:1 animations:^{
 blurView.transform = CGAffineTransformIdentity;
 }];
 break;
 }
 case 2:
 {
 // Translate
 [NSLayoutConstraint deactivateConstraints:
 blurView.externalConstraintReferences];
 PlaceViewInSuperview(blurView, @"tc", 0, -500, 1000);
 [self.view layoutIfNeeded];
 [NSLayoutConstraint deactivateConstraints:
 blurView.externalConstraintReferences];

 [UIView animateWithDuration:1 animations:^{
 PlaceViewInSuperview(blurView, @"cc", 0, 0, 1000);
 [self.view layoutIfNeeded];
 }];
 break;
 }
 case 3:
 {
 // broken
 blurView.alpha = 0.0;
 [UIView animateWithDuration:1.0 animations:^{
 blurView.alpha = 1.0;
 }];
 }
 default:
 break;
 }
 }

175Building Popovers

 Building Popovers

 iOS 8 soft-deprecated the standard popover classes, replacing them with its new presenta-
tion controller system. Popovers are now universal and can be used on both phone and tablet
targets, as shown in Figure 7-10 . While this approach provides a lot more power, it also changes
the process of building and presenting simple popovers.

 Figure 7-10 Popovers now work on both phone (left) and tablet (right) targets.

 A view controller’s popover identity is now set as a modal presentation style, as you see in
 Listing 7-6 . When you set the style to popover, the view controller knows to create an inter-
nal popover presentation controller. You customize this the same way you used to customize
single-purpose popover controllers: Set the source view or bar button item, arrow directions,
layout margins, background color, and so forth.

 Listing 7-6 Building an iPhone-Ready Popover

 - (UIViewController *) buildPopoverController
 {
 // Build a view controller
 UIViewController *vc = [UIViewController new];

176 Chapter 7 Presentations

 // ... set up the contents here ...

 // Set its presentation style to popover
 vc.modalPresentationStyle = UIModalPresentationPopover;

 // Establish presentation details
 vc.preferredContentSize = CGSizeMake(200, 200);
 vc.popoverPresentationController.barButtonItem =
 self.navigationItem.rightBarButtonItem;
 vc.popoverPresentationController.permittedArrowDirections =
 UIPopoverArrowDirectionAny;
 vc.presentationController.delegate = self; // 1

 return vc;
 }

 - (UIModalPresentationStyle)adaptivePresentationStyleForPresentationController:
 (UIPresentationController *)controller // 2
 {
 return UIModalPresentationNone;
 }

 At this writing, the popover content size is still a little wonky, which is why Listing 7-6 sets the
old-style preferredContentSize property as well.

 Supporting Bubbles

 The default phone popover implementation does not look like Figure 7-10 . It is a standard
slide-up modal presentation that covers the parent. While a well-written adaptive app should
involve code that you write once and that behaves properly on whatever device it’s deployed
to, I’m not entirely convinced that the default phone “popover” presentation is either aestheti-
cally pleasing or expected. If you want to get the content-in-a-bubble you see in Figure 7-10 ,
you must take care to follow these steps.

 1. Set the popover view controller’s delegate, as shown in Listing 7-6 on
the line marked with the number 1. The delegate must conform to the
 UIAdaptivePresentationControllerDelegate protocol.

 2. Implement the adaptive style callback (numbered 2) in the delegate. By returning
 UIModalPresentationNone , you override the normal presentation style that covers the
parent controller.

 Every view controller contains two presentation controllers: a vanilla presentation-
Controller and a specialized popoverPresentationController . The popover version is
created once you set a view controller’s presentation style to UIModalPresentationPopover .
You then access and customize its features.

177Wrap-up

 The default controller lingers until you tell it to step back via the delegation. You cannot set
the presentationController ’s presentation style directly. It’s a read-only property, so you
must use the delegation implementation instead.

 Although the unified presentation system represents a big step forward on the overall iOS
design front, using separate internal controllers for normal and popover presentations fails to
impress. This feature may have been a rush job that lacked time for refinement and refactoring
before iOS 8 shipped to developers.

 Presenting Popovers

 Starting in iOS 8, popover creation details moved to the child view controller. This means
presentation code is simplified to the bare minimum, as you see in the following snippet. You
simply create your popover-ready view controller, as in Listing 7-6 , and then present as shown
here:

 UIViewController *presentationVC = [self buildPopoverController];
 [self presentViewController:presentationVC animated:YES completion:nil];

 Wrap-up

 Here are a few final points to wrap up what you’ve read in this chapter:

 ■ Despite some wobbly implementation details, the presentations first introduced in
iOS 8 are incredibly promising. They represent a long-overdue rethinking of how to
present critical elements to users. Providing blocks-based action buttons is one of my
favorite presentation features.

 ■ While you can customize a popover action sheet by setting its arrow direction and
anchor view or bar button, you cannot at this time present popover action sheets on
phone targets. Attempting to do so by overriding the delegate raises exceptions.

 ■ Use effect views and mask views with care. Although they are visually luscious, I’m
told by reliable sources that the internal implementation is held together by spit and
bandages.

This page intentionally left blank

 8
 Shape Magic

 Shaping views goes beyond the simple cropping and mask layers you’ve read about so far.
Nonrectangular views enable your apps to expand possibilities with fun and clever effects. For
example, you might draw attention to a view by animating a halo behind it. Or you might
use shapes to better stack buttons together for visual seamlessness. This chapter covers many
advanced shape techniques you can use to add this pizzazz to your user interfaces.

 How to Shape a View

 A round view clips its presentation into a circular shape. Contrast the two screen shots in
 Figure 8-1 . View clipping differentiates these otherwise identical layouts. Removing corners
changes the way the onscreen elements pack together, enhancing whitespace while retaining
the key visual story of the material they present.

 You can create round views using one of the following approaches:

 ■ A CAShapeLayer masks a view’s underlying layer. You assign it to view.layer.mask .
This is a time-tested robust solution.

 ■ A view’s maskView property stores an image view. The alpha levels in the associated
image establish the view’s mask. This solution is quite new and still slightly less robust
than you might like.

 ■ You can round the corners of a view’s layer (view.layer.cornerRadius) to half the
view’s extent, producing a nicely circled output. While this solution has been around
forever, it’s really only useful for circles and rounded rectangles. It cannot be generalized
to most other shapes.

 All three approaches are vulnerable to frame changes. Regardless of your choice, adding a key-
value observer to monitor a view’s bounds enables you to update a view as needed when it
resizes.

180 Chapter 8 Shape Magic

 Expanding Beyond Circles

 Chapter 7, “Presentations,” introduced RoundImageView . This class, which was used to create the
items in Figure 8-1 , rounds its content into a circular presentation. As Figure 8-2 suggests, there
are many more shapes under the sun than just circles. By preserving the class’s bounds observa-
tions but expanding the utility to work with any shape, not just circles, you create a far more
flexible tool.

 Resizing Bezier Paths

 One of the big advantages to working with circles is simplicity. The UIBezierPath class includes
a built-in constructor called bezierPathWithOvalInRect: . You pass a view’s bounds to it, and
it returns an oval that fits exactly within that rectangle. Limit your frames to squares, and you
produce circles that fit your views as they resize. As you’re about to see, arbitrary Bezier paths are
not nearly as easy to work with. This is because the coordinate system for the path almost never
matches up with the view. To scale a path, you translate its center to the origin of an absolute

 Figure 8-1 Two identical layouts using round (left) and square (right) presentation elements.
Round image views help visually de-clutter your interface.

 Sample pictures courtesy of Lorem Pixel (http://lorempixel.com) under Creative Commons attribution share
alike license (http://creativecommons.org/licenses/by-sa/3.0/). Images by Neils Photography (http://www.
flickr.com/photos/neilspicys/), Rolands Lakis (http://www.flickr.com/photos/rolandslakis/), Rodrigo Basure
(http://www.flickr.com/photos/rodrigobasaure/), LuzA (http://www.flickr.com/photos/luchilu/), Pink Sherbet
(http://www.flickr.com/photos/pinksherbet/), Visual Panic (http://www.flickr.com/photos/visualpanic/).

http://lorempixel.com
http://creativecommons.org/licenses/by-sa/3.0/
http://www.flickr.com/photos/neilspicys/
http://www.flickr.com/photos/neilspicys/
http://www.flickr.com/photos/rolandslakis/
http://www.flickr.com/photos/rodrigobasaure/
http://www.flickr.com/photos/luchilu/
http://www.flickr.com/photos/pinksherbet/
http://www.flickr.com/photos/visualpanic/

181How to Shape a View

coordinate system, apply a scale transform, and then translate it into the view’s coordinate
system. What’s more, you often want to scale the path so it does not squash or stretch in either
axis. This means calculating a fitting rectangle centered within the view.

 Figure 8-2 A more general view shaping class can mask views to an arbitrary Bezier path.

 Background image courtesy of the National Park Service.

 Listing 8-1 demonstrates the math involved in all this. I’m not going to pretend this material is
exciting to look at or immediately obvious to follow. This Bezier mini pack offers just enough
math to get you through the task of mapping a path to a view, enabling you to expand the
 RoundImageView example to a more general solution.

 Listing 8-1 Bezier Mini Pack

 // Return a rectangle's center point
 CGPoint RectGetCenter(CGRect rect)
 {
 return CGPointMake(CGRectGetMidX(rect), CGRectGetMidY(rect));
 }

 // Construct a rectangle around a center point to a given size
 CGRect RectAroundCenter(CGPoint center, CGSize size)
 {

182 Chapter 8 Shape Magic

 CGFloat halfWidth = size.width / 2.0;
 CGFloat halfHeight = size.height / 2.0;

 return CGRectMake(center.x - halfWidth, center.y - halfHeight,
 size.width, size.height);
 }

 // Center one rectangle within another
 CGRect RectCenteredInRect(CGRect rect, CGRect mainRect)
 {
 CGFloat dx = CGRectGetMidX(mainRect)-CGRectGetMidX(rect);
 CGFloat dy = CGRectGetMidY(mainRect)-CGRectGetMidY(rect);
 return CGRectOffset(rect, dx, dy);
 }

 // Determine the scale factor to fit a size within a rectangle
 CGFloat AspectScaleFit(CGSize sourceSize, CGRect destRect)
 {
 CGSize destSize = destRect.size;
 CGFloat scaleW = destSize.width / sourceSize.width;
 CGFloat scaleH = destSize.height / sourceSize.height;
 return fmin(scaleW, scaleH);
 }

 // Fit a rect into another rect, centering it in the second rect
 // and using the first rectangle's aspect
 CGRect RectByFittingRect(CGRect sourceRect, CGRect destinationRect)
 {
 CGFloat aspect = AspectScaleFit(sourceRect.size, destinationRect);
 CGSize targetSize = CGSizeMake(sourceRect.size.width * aspect,
 sourceRect.size.height * aspect);
 return RectAroundCenter(RectGetCenter(destinationRect), targetSize);
 }

 // Apply a transform with respect to a path's center point
 void ApplyCenteredPathTransform(UIBezierPath *path,
 CGAffineTransform transform)
 {
 CGPoint center = RectGetCenter(path.bounds);
 CGAffineTransform t = CGAffineTransformIdentity;

 // Establish center as origin
 t = CGAffineTransformTranslate(t, center.x, center.y);

 // Apply transform
 t = CGAffineTransformConcat(transform, t);

183How to Shape a View

 // Restore original origin
 t = CGAffineTransformTranslate(t, -center.x, -center.y);

 [path applyTransform:t];
 }

 // Offset a path
 void OffsetPath(UIBezierPath *path, CGSize offset)
 {
 CGAffineTransform t = CGAffineTransformMakeTranslation(
 offset.width, offset.height);
 ApplyCenteredPathTransform(path, t);
 }

 // Scale a path
 void ScalePath(UIBezierPath *path, CGFloat sx, CGFloat sy)
 {
 CGAffineTransform t = CGAffineTransformMakeScale(sx, sy);
 ApplyCenteredPathTransform(path, t);
 }

 // Move a path's center to a given point
 void MovePathCenterToPoint(UIBezierPath *path, CGPoint destPoint)
 {
 CGRect bounds = path.bounds;
 CGPoint p1 = bounds.origin;
 CGPoint p2 = destPoint;
 CGSize vector = CGSizeMake(p2.x - p1.x, p2.y - p1.y);
 vector.width -= bounds.size.width / 2.0;
 vector.height -= bounds.size.height / 2.0;
 OffsetPath(path, vector);
 }

 // Fit and center a path within a rectangle
 void FitPathToRect(UIBezierPath *path, CGRect destRect)
 {
 CGRect bounds = path.bounds;
 CGRect fitRect = RectByFittingRect(bounds, destRect);
 CGFloat scale = AspectScaleFit(bounds.size, destRect);

 CGPoint newCenter = RectGetCenter(fitRect);
 MovePathCenterToPoint(path, newCenter);
 ScalePath(path, scale, scale);
 }

184 Chapter 8 Shape Magic

 Building a Bezier-Based Shape Image View

 Listing 8-2 leverages the path resizing from Listing 8-1 to re-imagine Chapter 7 ’s
 RoundImageView class. It introduces a UIBezierPath property called shape . Whenever this
property updates or the view bounds change, the instance recalculates its mask so it always
presents a perfect match between the latest shape and the view’s size.

 Beyond that change, there’s not much difference between this implementation and the one
originally created for Chapter 7 . These small changes enable the flexible presentations shown
in Figure 8-2 .

 Listing 8-2 Shape Image View

 @implementation ShapeImageView

 // Respond to bounds changes by updating the view mask
 - (void) updateLayer
 {
 if ((CGSizeEqualToSize(self.bounds.size, CGSizeZero)) || !self.shape)
 {
 self.layer.mask = nil;
 return;
 }

 // Always use a copy to minimize math errors to the original shape
 UIBezierPath *path = [_shape copy];
 FitPathToRect(path, self.bounds);

 // Create a mask
 CAShapeLayer *maskLayer = [CAShapeLayer layer];
 maskLayer.path = path.CGPath;
 self.layer.mask = maskLayer;
 }

 - (void) setShape:(UIBezierPath *)shape
 {
 if (_shape != shape)
 {
 _shape = shape;
 [self updateLayer];
 }
 }

 // Use KVO to watch for bounds changes
 - (void) observeValueForKeyPath:(NSString *)keyPath
 ofObject:(id)object
 change:(NSDictionary *)change
 context:(void *)context

185How to Shape a View

 {
 if ([keyPath isEqualToString:@"bounds"])
 [self updateLayer];
 }

 - (void) setup
 {
 // Listen for bounds changes
 [self addObserver:self forKeyPath:@"bounds"
 options:NSKeyValueObservingOptionNew context:NULL];
 }

 // All the init functions (initWithFrame:, initWithCoder:,
 // initWithImage:, initWithImage:highlightedImage:) redirect
 // to the common setup method
 - (instancetype) initWithFrame:(CGRect)frame
 {
 if (!(self = [super initWithFrame:frame])) return self;
 [self setup];
 return self;
 }

 // ... other inits ...

 - (void) cleanup
 {
 [self removeObserver:self forKeyPath:@"bounds"];
 }

 - (void) removeFromSuperview
 {
 // dealloc isn't always called in time
 [self cleanup];
 [super removeFromSuperview];
 }

 - (void) dealloc
 {
 [self cleanup];
 }
 @end

 Working with Unclosed Shapes

 As Figure 8-2 shows, shape layers support holes by employing what’s called the “even/odd” fill
rule. This algorithm tests containment by projecting a ray (a line with one fixed end that points
in a given direction) from points within the path to a distant point outside it. The algorithm

186 Chapter 8 Shape Magic

counts the number of times that ray crosses any line. If the ray passes through an even number
of intersections, the point is outside the shape; if odd, inside. Rays starting within the duck’s
eye cross two borders, which means the eye is considered a hole. Other points within the duck
pass through one border (if pointed away from the eye) or three (if passing through the eye), so
they are filled in when applying the view mask.

 With shape layers, unclosed paths are a little dangerous, as you see in the following example:

 UIBezierPath *path = [UIBezierPath bezierPath];
 [path moveToPoint:CGPointZero];
 [path addLineToPoint:CGPointMake(0, 1)];
 [path addLineToPoint:CGPointMake(1, 1)];
 shapedImageView.shape = path;

 What is the mask supposed to do? In theory, this shape consists of two infinitely thin lines
going down from the origin and then to the right. If you run this example, you get the results
shown in Figure 8-3 . iOS closes the shape on your behalf and applies a triangle mask.

 Figure 8-3 iOS generally closes paths on your behalf if it can do so.

 Background image courtesy of the National Park Service.

 But what if you remove the path segment that goes to the right, leaving only a single vertical
line? You end up with an invisible view. Even closed, there’s no two-dimensional content avail-
able to view.

 On a similar note, imagine moving to point (1, 1) after adding the first line segment and then
adding a new segment back from (1, 1) to (0, 1):

 UIBezierPath *path = [UIBezierPath bezierPath];
 [path moveToPoint:CGPointZero];
 [path addLineToPoint:CGPointMake(0, 1)];

187Adding Borders to Shaped Views

 [path moveToPoint:CGPointMake(1, 1)];
 [path addLineToPoint:CGPointMake(0, 1)];

 Once again, you end up with an invisible view. Although this shape is “equivalent” from a
human perspective, to iOS it represents two distinct subpaths, and neither subpath creates a fill
region.

 Adding Borders to Shaped Views

 The built-in layer border style is fixed to rectangular views, as you see in Figure 8-4 . You cannot
update a shaped view’s borderWidth and borderColor properties and expect them to work
with custom presentations like this. Fortunately, it’s fairly easy to build a solution that adapts
to the shapes and sizes of a parent view.

 Figure 8-4 Standard layer borders (left) support only rectangular views and path-based sublayers
to create custom borders that fit shaped views (right).

 Background image courtesy of the National Park Service.

 The solution starts by adding two new properties to the view that mimic the look and feel of
the layer properties. I took the liberty of using a UIColor property instead of a CGColor one to
better match the UIKit view class:

188 Chapter 8 Shape Magic

 @interface ShapeImageView : UIImageView
 @property (nonatomic) UIBezierPath *shape;
 @property (nonatomic) UIColor *borderColor;
 @property (nonatomic) CGFloat borderWidth;
 @end

 These properties force the view’s layer to update when their values change. This ensures that
the view always reflects the current border color and width settings:

 - (void) setBorderColor: (UIColor *)borderColor
 {
 if (![borderColor isEqual:_borderColor])
 {
 _borderColor = borderColor;
 [self updateLayer];
 }
 }

 - (void) setBorderWidth:(CGFloat)borderWidth
 {
 if (borderWidth != _borderWidth)
 {
 _borderWidth = borderWidth;
 [self updateLayer];
 }
 }

 Listing 8-3 tells the rest of the story. Its updateLayer method now creates borders based on the
view’s shape layer. Setting the border layer’s stroke color and line width enables the border to
be drawn on top of the view. Since the drawing is centered on the shape mask path, and the
mask clips half the border (any material from the center of the path and outward), a doubled
line width ensures that the border is drawn exactly to the requested extent. For this reason, the
border always extends from the clipped edge of the view inward, overlaying any material in the
view that falls under its width. If needed, use a partially transparent alpha value to enable that
material to bleed through the border. Borders can become a significant issue when they grow
large enough to obscure view details.

 A reference to the border is stored using key/value pairs in the primary view layer. Make sure
you remove this reference before attempting to release the view. If this approach, with its
mandatory clean-up step, bothers you, consider naming the layer instead. Use the layer name
property to store a key and then search the views to find a sublayer with a matching name.

 Listing 8-3 Generating Border Layers

 // Return the view's shape layer
 - (CAShapeLayer *) shapeLayer
 {
 CAShapeLayer *shapeLayer = (CAShapeLayer *) self.layer.mask;

189Adding Borders to Shaped Views

 return shapeLayer;
 }

 // Remove any border layer
 - (void) removeBorderLayer
 {
 CAShapeLayer *borderLayer = [self.layer valueForKey:BorderLayerKey];
 if (borderLayer)
 {
 [borderLayer removeFromSuperlayer];
 [self.layer setValue:nil forKey:BorderLayerKey];
 }
 }

 // Update the view layer and border
 - (void) updateLayer
 {
 // No masks or borders for zero-sized views
 if (CGSizeEqualToSize(self.bounds.size, CGSizeZero))
 {
 self.layer.mask = nil;
 return;
 }

 // Generate a shape if none has been assigned
 if (!_shape)
 {
 _shape = [UIBezierPath bezierPathWithRect:self.bounds];
 }

 // Always use a copy to minimize math errors to the original shape
 UIBezierPath *path = [_shape copy];
 FitPathToRect(path, self.bounds);

 // Create a mask
 CAShapeLayer *maskLayer = [CAShapeLayer layer];
 maskLayer.path = path.CGPath;
 self.layer.mask = maskLayer;

 // Create / Update border layer
 [self removeBorderLayer];
 CAShapeLayer *borderLayer = [CAShapeLayer new];
 borderLayer.frame = self.bounds;
 borderLayer.path = [self shapeLayer].path;
 borderLayer.anchorPoint = CGPointMake(0.5, 0.5);
 borderLayer.lineWidth = _borderWidth * 2.0;
 borderLayer.strokeColor = _borderColor.CGColor;

190 Chapter 8 Shape Magic

 borderLayer.fillColor = [UIColor clearColor].CGColor;
 [self.layer addSublayer:borderLayer];
 [self.layer setValue:borderLayer forKey:BorderLayerKey];
 }

 Building Shaped Buttons

 Shaped elements aren’t limited to image views. Layer masking works with any view class.
Buttons provide an excellent match, especially in the iOS 7-and-later days of sparse minimal-
ism. While standard system buttons are now primarily borderless, shaped buttons can still work
with iOS aesthetics, enabling you to create visual groups that unify multiple views into a single
cohesive presentation.

 Figure 8-5 shows a stacked set of buttons. The top and bottom buttons curve their corners to
emphasize the grouping. Although there are three separate button instances, their presentation
shows how these views primarily relate to each other.

 Figure 8-5 Grouped buttons work best when their borders complement each other. The top and
center buttons in the left screen shot have their bottom edges removed. This avoids the visual
excess shown in the right screen shot between each button pair.

191Building Shaped Buttons

 The left and right screen shots illustrate a common problem encountered when building
grouped views. In the right screen shot, the bottom border of the first button and top border
of the second have doubled. This creates a too-thick section line between each pair as the abut-
ting borders reinforce each other and draw too much attention to the separators. The more
streamlined look in the left screen shot omits the bottom edge from each button except the
lowest one.

 To create this effect, Listing 8-4 modifies the approach from Listing 8-3 to differentiate the
mask path used to clip the view from the border layer path that outlines the view. It builds an
open path (except for the case of bottom buttons, which provide their own bottom edge) and
creates a closed copy for layer masking. Each path created by pathInRect:role: is applied to
the border layer, enabling the buttons to stack without doubling.

 Listing 8-4 Stackable Paths

 - (UIBezierPath *) pathInRect: (CGRect) rect role: (NSInteger) role
 {
 // Establish a new path
 UIBezierPath *path = [UIBezierPath bezierPath];

 // Reference Points
 CGPoint topLeft = CGPointZero;
 CGPoint topRight = CGPointMake(rect.size.width, 0);
 CGPoint bottomLeft = CGPointMake(0, rect.size.height);
 CGPoint bottomRight = CGPointMake(rect.size.width, rect.size.height);

 switch (role)
 {
 case 0: // top
 {
 path = [UIBezierPath bezierPath];
 [path moveToPoint:bottomLeft];
 [path addLineToPoint:
 CGPointMake(topLeft.x, topLeft.y + _cornerRadius)];
 [path addQuadCurveToPoint:
 CGPointMake(topLeft.x + _cornerRadius, topLeft.y)
 controlPoint:topLeft];
 [path addLineToPoint:
 CGPointMake(topRight.x - _cornerRadius, topRight.y)];
 [path addQuadCurveToPoint:
 CGPointMake(topRight.x, topRight.y + _cornerRadius)
 controlPoint:topRight];
 [path addLineToPoint:bottomRight];
 break;
 }

192 Chapter 8 Shape Magic

 case 1: // center
 {
 path = [UIBezierPath bezierPath];
 [path moveToPoint:bottomLeft];
 [path addLineToPoint:topLeft];
 [path addLineToPoint:topRight];
 [path addLineToPoint:bottomRight];
 break;
 }
 case 2: // bottom
 {
 path = [UIBezierPath bezierPath];
 [path moveToPoint:topLeft];
 [path addLineToPoint:
 CGPointMake(bottomLeft.x, bottomLeft.y - _cornerRadius)];
 [path addQuadCurveToPoint:
 CGPointMake(bottomLeft.x + _cornerRadius, bottomLeft.y)
 controlPoint:bottomLeft];
 [path addLineToPoint:
 CGPointMake(bottomRight.x - _cornerRadius, bottomRight.y)];
 [path addQuadCurveToPoint:
 CGPointMake(bottomRight.x, bottomRight.y - _cornerRadius)
 controlPoint:bottomRight];
 [path addLineToPoint:topRight];
 [path closePath]; // bottom paths are closed
 break;
 }
 default: break;
 }
 return path;
 }

 - (void) updateLayer
 {
 if (CGSizeEqualToSize(self.bounds.size, CGSizeZero)) return;

 // Create a role-specific path
 UIBezierPath *path = [self pathInRect:self.frame role:_role.integerValue];

 // Close the path for masking
 UIBezierPath *closedPath = [path copy];
 [closedPath closePath];

 // Mask the layer
 CAShapeLayer *maskLayer = [CAShapeLayer layer];

193Adding Attention-Grabbing Animations to Shaped Views

 maskLayer.path = closedPath.CGPath;
 self.layer.mask = maskLayer;

 // Establish a border layer if needed
 if (!borderLayer)
 {
 borderLayer = [[CAShapeLayer alloc] init];
 [self.layer addSublayer:borderLayer];
 borderLayer.fillColor = [UIColor clearColor].CGColor;
 }

 // Set the path for the border
 borderLayer.strokeColor =
 _borderColor ? _borderColor.CGColor : APP_TINT_COLOR.CGColor;
 borderLayer.lineWidth = _borderWidth * 2;
 borderLayer.path = path.CGPath;
 }

 Adding Attention-Grabbing Animations to Shaped Views

 Shaped views and their layers naturally lend themselves to any number of animation effects.
 Figure 8-6 shows two effects in action. On the left, a view’s outline repeatedly expands and
fades over time. This effect lends itself well to a state of “requires attention” or, if you combine
the view with your user’s contacts, perhaps “is requesting access to you.” On the right are
marching dots, showing a selected or highlighted view. (It’s far easier to see in action than in a
simple screen shot.) A series of dashed lines moves around the view’s shape outline.

 Listing 8-5 subclasses the ShapedImageView developed in Listing 8-2 to add support for these
effects. It offers the setAnimation: method as a primary entry point. Pass it a key to start
either effect or pass it nil to stop any ongoing animation.

 Because the animations extend beyond the scope of the masked shaped view, animation layers
are installed to the view’s superview. This enables users to view the effects unclipped by the
view. It’s important then to associate the animations with a particular view, to prevent one
view from overriding another’s presentation. The animationKey method associates a class-
based key with a view’s hexadecimal address to provide a unique correspondence between the
animations and the view in question.

 The two effects used here are very simple. The first builds an animation group that fades a
layer’s alpha level to 0.0 and scales it to 1.5x its original size. It does this twice, offsetting each
part of the two-second effect by second second. This creates the ring-in-ring look you see in
 Figure 8-6 , to add visual interest. The second builds a border shape, establishes a line dash
pattern, and then animates the offset of that pattern (its phase) so the dashes appear to move
around the view.

194 Chapter 8 Shape Magic

 As with the parent class, the AnimatingShapeImageView must respond to shape changes. It
does this by watching the shape property established in its superclass. When updated, the class
must reestablish both its mask, as provided by the superclass implementation, and any anima-
tion, as these are tied to the view’s shape.

 You can easily expand Listing 8-5 for additional animations. Just add a new constant key, build
a method to implement the new animation, and update setAnimation: to redirect by associat-
ing the key with the instance method.

 Listing 8-5 Animated Shapes

 // All animations are marked with this key and the view's address, enabling
 // you to remove animations currently associated with a particular view
 NSString *const AnimatingShapeKey = @"AnimatingShapeKey";

 // The two animations defined for this class
 NSString *const ScaleAndFadeKey = @"ScaleAndFadeKey";
 NSString *const MarchingAntsKey = @"MarchingAntsKey";

 Figure 8-6 Shaped views naturally lend themselves to animation effects. In the left images, the
view’s shape repeatedly expands and fades. In the right images, a line of “marching ants” travels
the shape’s border.

195Adding Attention-Grabbing Animations to Shaped Views

 // Return all animation layers associated with a key
 NSArray *FetchAnimationLayersWithKey(UIView *view, NSString *key)
 {
 NSMutableArray *layers = [NSMutableArray array];
 for (CALayer *layer in view.superview.layer.sublayers)
 {
 if ([layer.name isEqualToString:key])
 [layers addObject:layer];
 }
 return layers.copy;
 }

 @implementation AnimatingShapeImageView
 - (NSString *) animationKey
 {
 // Append the animation key with the view's address
 return [NSString stringWithFormat:@"%@%X",
 AnimatingShapeKey, (unsigned int) self];
 }

 - (void) removeAnimations
 {
 // Remove all shape animations associated with this view
 NSArray *layers = FetchAnimationLayersWithKey(self, self.animationKey);
 if (layers.count > 0)
 {
 for (CALayer *layer in layers)
 [layer removeFromSuperlayer];

 // Alternatively:
 // [layers makeObjectsPerformSelector:@selector(removeFromSuperlayer)]

 return;
 }
 }

 // Animation where the shape expands and fades
 - (void) establishScaleAndFadeAnimation
 {
 // Clean up existing animations
 [self removeAnimations];

 CAShapeLayer *shapeLayer = self.shapeLayer;
 UIColor *color = _primaryColor ? :
 [[UIColor grayColor] colorWithAlphaComponent:0.5];

196 Chapter 8 Shape Magic

 // Build two visible rings
 for (NSInteger ring = 0; ring < 2; ring++)
 {
 CAShapeLayer *borderShapeLayer = [CAShapeLayer layer];
 borderShapeLayer.frame = self.frame;
 borderShapeLayer.opacity = 0.5;
 borderShapeLayer.lineWidth = 2.0;
 borderShapeLayer.strokeColor = color.CGColor;
 borderShapeLayer.fillColor = color.CGColor;
 borderShapeLayer.path = shapeLayer.path;
 borderShapeLayer.name = self.animationKey;

 // Mask the animating layer
 CAShapeLayer *maskLayer = [CAShapeLayer layer];
 maskLayer.path = shapeLayer.path;
 borderShapeLayer.mask = maskLayer;

 // Gently fade to 0
 CABasicAnimation *opacityAnimation =
 [CABasicAnimation animationWithKeyPath:@"opacity"];
 opacityAnimation.toValue = @0;

 // Scale to 1.5x the original view size
 CABasicAnimation *scaleAnimation =
 [CABasicAnimation animationWithKeyPath:@"transform"];
 scaleAnimation.toValue = [NSValue valueWithCATransform3D:
 CATransform3DMakeScale(1.5, 1.5, 1.5)];

 // Create a group from the animations, and offset the
 // start time for each ring
 CAAnimationGroup *animationGroup = [CAAnimationGroup new];
 animationGroup.repeatCount = HUGE_VALF;
 animationGroup.duration = 2.0;
 animationGroup.beginTime = [borderShapeLayer
 convertTime:CACurrentMediaTime() fromLayer:nil] + ring;
 animationGroup.timingFunction = [CAMediaTimingFunction
 functionWithControlPoints:0.3:0:1:1];
 animationGroup.animations = @[scaleAnimation, opacityAnimation];

 // Add the animation as a layer in the view's superview, so it can expand
 // beyond the view's intrinsic limits
 [borderShapeLayer addAnimation:animationGroup forKey:ScaleAndFadeKey];
 [self.superview.layer sendSublayerToBack:borderShapeLayer];
 }
 }

197Adding Attention-Grabbing Animations to Shaped Views

 - (void) establishMarchingAntsAnimation: (CGFloat) width
 {
 // Clean up existing animations
 [self removeAnimations];

 CAShapeLayer *shapeLayer = self.shapeLayer
 UIColor *color = _primaryColor ? : [[UIColor grayColor]
 colorWithAlphaComponent:0.5];

 // Create a base border layer
 CAShapeLayer *borderShapeLayer = [CAShapeLayer layer];
 borderShapeLayer.frame = self.frame;
 borderShapeLayer.opacity = 0.5;
 borderShapeLayer.lineWidth = width;
 borderShapeLayer.strokeColor = color.CGColor;
 borderShapeLayer.fillColor = [UIColor clearColor].CGColor;
 borderShapeLayer.lineDashPattern = @[@8, @8];
 borderShapeLayer.path = shapeLayer.path;
 borderShapeLayer.name = self.animationKey;

 // Mask the border layer
 CAShapeLayer *maskLayer = [CAShapeLayer layer];
 UIBezierPath *path = [UIBezierPath bezierPathWithCGPath:shapeLayer.path];
 ScalePath(path, 1.1, 1.1); // Expand slightly - YMMV
 maskLayer.path = path.CGPath;
 borderShapeLayer.mask = maskLayer;

 // Build an animation around the line dash phase, that is the
 // offset at which the dashes are drawn
 CABasicAnimation *animation = [CABasicAnimation
 animationWithKeyPath:@"lineDashPhase"];
 animation.fromValue = @(0.0);
 animation.toValue = @(-32.0);
 animation.repeatCount = HUGE_VALF;
 animation.duration = 1.0;

 // Install the animation to the view's superview.
 [borderShapeLayer addAnimation:animation forKey:MarchingAntsKey];
 [self.superview.layer sendSublayerToBack:borderShapeLayer];
 }

 // Start an animation. Pass nil to end a current animation
 - (void) setAnimation: (NSString *) animationNameKey
 {
 _currentAnimation = animationNameKey;

198 Chapter 8 Shape Magic

 if (!animationNameKey)
 {
 _animating = NO;
 [self removeAnimations];
 return;
 }

 if ([animationNameKey isEqualToString:ScaleAndFadeKey])
 {
 [self establishScaleAndFadeAnimation];
 _animating = YES;
 }
 else if ([animationNameKey isEqualToString:MarchingAntsKey])
 {
 [self establishMarchingAntsAnimation:8.0];
 _animating = YES;
 }
 else
 {
 NSLog(@"This is a no-op");
 }
 }

 - (void) observeValueForKeyPath:(NSString *)keyPath
 ofObject:(id)object
 change:(NSDictionary *)change
 context:(void *)context
 {
 [super observeValueForKeyPath:keyPath ofObject:object
 change:change context:context];

 // In addition to the superclass's bounds observer,
 // observe a view's shape to detect border changes.
 if ([keyPath isEqualToString:@"shape"])
 {
 [self setAnimation:_currentAnimation];
 }
 }

 - (void) setup
 {
 [super setup];

 // Observe Shape Changes
 [self addObserver:self forKeyPath:@"shape"
 options:NSKeyValueObservingOptionNew context:NULL];
 }

199Wrap-up

 - (instancetype) initWithFrame:(CGRect)frame
 {
 if (!(self = [super initWithFrame:frame])) return self;
 [self setup];
 return self;
 }

 // ... other init methods ...

 - (void) cleanup
 {
 [self removeAnimations];

 [[NSNotificationCenter defaultCenter] removeObserver:self];
 [self removeObserver:self forKeyPath:@"shape"];
 }

 - (void) removeFromSuperview
 {
 [self cleanup];
 [super removeFromSuperview];
 }

 - (void) dealloc
 {
 [self cleanup];
 }
 @end

 Wrap-up

 Here are a few final points to wrap up what you’ve read in this chapter:

 ■ Shaped views are easy to implement and flexible to use. With restraint and good style
choices, you can use them to build creative and intriguing interfaces that set your apps
apart.

 ■ Indulge yourself with borders. While the major UI redesign that started in iOS 7
emphasizes simplicity and sparseness, borders can work well with shaped views. They
reinforce the distinction between unusual visual shapes and the UI that lies behind them.

 ■ Use animations judiciously. The ones discussed in this chapter are meant to grab a user’s
attention and show interface state. A little, however, goes a very long way. Just because
you can make your shaped views pop doesn’t mean your users will appreciate having
every part of your screen demand attention at once. With these kinds of effects, less is
usually more.

This page intentionally left blank

 9
 Adaptive Deployment

 As the iOS family continues to grow, apps should automatically support all new displays, orien-
tations, and screens. Although iOS targets are not nearly as splintered as Android’s multitude,
interfaces face numerous configurations for universal deployment. Until recently, routines
specific to iPads or iPhones, to landscape or portrait orientation, and to Retina or non-Retina
screens have transformed many iOS apps into a tangle of special-purpose code.

 Auto Layout, a descriptive system for interface design, enabled developers to use rule-based
view placement that automatically adjusts to screen dimensions and orientation. It was a first
step on the road to true universal apps. Now new classes and protocols enable apps to retrieve
specifics of the current runtime environment. Apps adjust not only to hardware limitations but
also to whatever screen space has been allocated to their presentations.

 A truly adaptive app gracefully responds with a well-designed and engaging interface, ready for
the user at any size. This chapter explores the basics of these new technologies and the APIs
you need to learn for moving your apps forward.

 Traits

 A trait collection describes a single point in deployment space, a vector of user interface attri-
butes. This space represents the range of possible conditions an interface might encounter in
the real world, including height allowances, width allowances, screen resolution, and platform.
By making these traits concrete via the UITraitCollection class, Apple enters into a some-
what implicit (but limited) contract with you, the developer, specifying the types and ranges of
flexibility you must design for.

 Under the current system, your apps handle “compact” and “regular” interface sizes, corre-
sponding to the overall available space on the device screen. In theory, you shouldn’t have to
worry that Apple will suddenly add some “ultra compact” or “large” game-changer where you
have to worry about designing forms for 100-pixel or 10,000-pixel destinations. I’m not saying

202 Chapter 9 Adaptive Deployment

this won’t ever happen in the long term, but iOS’s current limited deployment design space
gives a sense of where iOS devices will be in the near term.

 No matter what kind of apps you design, a tension always exists between pixel-perfect control
and adaptability. An interface that looks stunning on a 4-inch iPhone may look cramped on a
3.5-inch screen and sparse on a tablet or 6 Plus. This has led some developers to build what is
essentially multiple code bases under a single app umbrella.

 With trait collections and standardized callbacks, iOS 8 and later attempt to bring sanity back
to those apps. As long as the presentation specifics don’t get too ridiculous, Auto Layout and
trait-driven assets should be able to handle adaptive presentation at runtime. Whether Apple
introduces a new display resolution or a new geometry or adds side-by-side multi-application
display, iOS is ready to offer developers the support they need to create adaptive interfaces that
work even as the range of target types grows.

 Trait Properties

 Each trait collection consists of four axes, each set by a distinct property:

 ■ userInterfaceIdiom — User interface idioms describe the target platform
family, specifically tablet (UIUserInterfaceIdiomPad) or phone
(UIUserInterfaceIdiomPhone).

 ■ horizontalSizeClass and verticalSizeClass — A size class
specifies the amount of space available to the interface. Values
include regular (UIUserInterfaceSizeClassRegular) and compact
(UIUserInterfaceSizeClassCompact) classes.

 ■ displayScale — The iOS family currently includes regular (1.0), Retina (2.0), and Retina
HD (3.0) display scales. These scales are represented as floating-point values rather than
specific enumerations.

 A single trait collection instance may define values for each of these axes or may leave some
elements undefined. An unspecified idiom is UIUserInterfaceIdiomUnspecified , an unspec-
ified size class is UIUserInterfaceSizeClassUnspecified , and a 0.0 value indicates a display
scale that is yet unset.

 Defining Traits

 The UITraitCollection constructor methods build a single axis at a time. Here are examples
across each axis:

 // Scale
 UITraitCollection *scale1Collection =
 [UITraitCollection traitCollectionWithDisplayScale:1.0];
 UITraitCollection *scale2Collection =
 [UITraitCollection traitCollectionWithDisplayScale:2.0];

203Traits

 UITraitCollection *scale3Collection =
 [UITraitCollection traitCollectionWithDisplayScale:3.0];

 // Idiom
 UITraitCollection *padCollection = [UITraitCollection
 traitCollectionWithUserInterfaceIdiom:UIUserInterfaceIdiomPad];
 UITraitCollection *phoneCollection = [UITraitCollection
 traitCollectionWithUserInterfaceIdiom:UIUserInterfaceIdiomPhone];

 // Horizontal size class
 UITraitCollection *hRegSizeCollection = [UITraitCollection
 traitCollectionWithHorizontalSizeClass:UIUserInterfaceSizeClassRegular];
 UITraitCollection *hCompactSizeCollection = [UITraitCollection
 traitCollectionWithHorizontalSizeClass:UIUserInterfaceSizeClassCompact];

 // Vertical size class
 UITraitCollection *vRegSizeCollection = [UITraitCollection
 traitCollectionWithVerticalSizeClass:UIUserInterfaceSizeClassRegular];
 UITraitCollection *vCompactSizeCollection = [UITraitCollection
 traitCollectionWithVerticalSizeClass:UIUserInterfaceSizeClassCompact];

 Combining Trait Collections

 Traits easily combine to create more complicated collections. You merge single-axis collections
using the traitCollectionWithTraitsFromCollections: method. The following example
passes an array containing the individual collections to build from:

 UITraitCollection *coll1 = [UITraitCollection
 traitCollectionWithTraitsFromCollections: @[padCollection,
 hCompactSizeCollection, vRegSizeCollection, scale1Collection]];

 This call returns a unified collection whose traits match the array’s components. Here are the
traits built from this particular collection:

 User Interface Idiom: Tablet
 Display Scale: 1x
 Size class: [H:Compact, V:Regular]

 Later items in the passed array always override earlier ones. They are added in the sequence you
supply them. Say, for example, that you add contradictory items, as in the following example:

 UITraitCollection *coll2 = [UITraitCollection
 traitCollectionWithTraitsFromCollections:@[padCollection,
 hCompactSizeCollection, vRegSizeCollection, scale1Collection,
 scale2Collection, phoneCollection]];

204 Chapter 9 Adaptive Deployment

 You still end up with a consistent collection that represents the most recently added elements.
Here are the resulting traits:

 User Interface Idiom: Phone
 Display Scale: 2x
 Size class: [H:Compact, V:Regular]

 This consistency is important. It provides predictable results when you add new traits to an
existing collection, such as when you inherit a trait collection environment from a parent view
controller but wish to adapt those traits for a child.

 Designing for Traits

 With traits, your goal isn’t to create a magical adaptive declarative system like Auto Layout. Size
classes enable you to architect your app at the most fundamental level. Apple recognized that
the process of designing for a compact layout is similar for both full-screen phone targets and
tablet child controllers that take up a fraction of the available screen space.

 Size classes guide structural layout decisions. They offer a base categorization on which you
hang your code for universal deployment. Instead of asking “Does this interface run on the
iPhone or the iPad?” size classes enable you to ask “Does this interface run in compact or
regular space?” This one change re-imagines universal design.

 Is this system perfect or even fully baked at this time? No, it is not. As Table 9-1 shows, the
regular/compact language is limited. Trait space definitions break down interfaces into the
crudest of categories.

 It’s notable that the current paradigm cannot distinguish between portrait and landscape iPad
orientations. This creates an architectural mismatch as a preponderance of iPad apps adapt
their UIs in some way to adjust between orientations. As things stand, iPad view layout code
cannot use trait environments to distinguish between these orientations.

 Other trait design choices may also seem baffling. For example, how is it that a 480-point
height is “regular” and a 586-point width is “compact”? A WWDC 2014 presentation stated the
cutoffs were set at 480 points for regular height and 768 points for regular width. These evolved
with the introduction of the iPhone 6 and 6 Plus, where both the 667-point and 736-point
heights are reported as “regular” in newer iOS releases. Table 9-1 shows the default size classes
for each device family.

 In summary, Apple gets an A for effort on the trait space front. It’s a great idea and an excellent
direction for this technology, but there’s still a lot of room to grow. Apple wants developers to
move away from designing customized UIs based on orientation, has deprecated rotation call-
backs, and encourages developers to drive their layouts based on traits but ignores how many
real-world tablet apps critically rely on orientation-specific layout.

205UIScreen Properties

 Table 9-1 Default Device Traits

 Size Classes Regular Width Compact Width

 Regular Height Portrait Tablet,

 Landscape Tablet

 Portrait Phone

 Compact Height Landscape 6 Plus Landscape Phone

 UIScreen Properties

 Size classes provide high-level design traits for architecting your layout. Despite this, you want
to customize presentations based on details like available screen points. The most obvious
application for this is the portrait and landscape tablet scenario, where your application might
use distinct interface layouts for each orientation.

 To support finer-grained queries, iOS offers a number of screen properties consisting of both
old and new elements. The following section reviews these properties and discusses the values
they return.

 Coordinate Spaces

 Coordinate space properties report the primary interface bounds and hardware bounds. Use
these to distinguish device characteristics at the highest level. Spaces tell you how big the target
screen is, enabling you to deduce both device type and primary orientation. (These derived
values can also be queried through the UIDevice class.)

 To access bounds, retrieve either space property and then query the returned space for its
 bounds , as shown here:

 [UIScreen mainScreen].coordinateSpace.bounds
 [UIScreen mainScreen].fixedCoordinateSpace.bounds

 The coordinateSpace property is tied to an application’s primary interface orientation. For
example, the first-generation iPad Air reports (0, 0, 768, 1024) when being held in portrait
orientation and (0, 0, 1024, 768) in landscape. As the orientation changes, the coordinate space
updates synchronously. The values for the bounds are in points.

 The fixedCoordinateSpace property, also reported in points, is tied to device hardware.
Specifically, it’s linked to the top-left corner of the hardware in portrait mode. For a first-
generation iPad Air, this property reports (0, 0, 768, 1024), regardless of orientation. Again,
these values are in points.

 Although the 6 Plus screen offers 1920×1080 pixels, its coordinate space is rendered to
414×736 addressable points, which use scaling and down-sampling to render to physical
pixels. A rasterization process converts from point-based app-based drawing to pixel rendering

206 Chapter 9 Adaptive Deployment

on the device screen. Find an excellent description of the current state of the art from the
PaintCode team in the Ultimate Guide to iPhone Resolutions (www.paintcodeapp.com/news/
ultimate-guide-to-iphone-resolutions).

 Several key features define themselves in terms of this orientation-specific coordinate space.
Starting in iOS 8, the screen bounds, app frame, status bar frame, and key bounds are tied to
the new coordinate space. In iOS 7 and earlier, those items were fixed to the top left of the
device hardware in portrait position—to what is now called the fixed coordinate space.

 For times when you may need to move between hardware space values and orientation space
values, UIView offers the following conversion methods for transforming points and rectangles
between coordinate spaces:

 - (CGPoint)convertPoint:(CGPoint)point toCoordinateSpace:
 (id <UICoordinateSpace>)coordinateSpace
 - (CGPoint)convertPoint:(CGPoint)point fromCoordinateSpace:
 (id <UICoordinateSpace>)coordinateSpace
 - (CGRect)convertRect:(CGRect)rect toCoordinateSpace:
 (id <UICoordinateSpace>)coordinateSpace
 - (CGRect)convertRect:(CGRect)rect fromCoordinateSpace:
 (id <UICoordinateSpace>)coordinateSpace

 Application Frame

 A screen’s application frame returns a rectangle that represents the frame of the application
screen area minus the status bar (if visible). On a first-generation iPad Air, the default appli-
cation frame with a visible status bar is (0, 0, 768, 1004) in portrait and (0, 0, 1024, 748) in
landscape. Each size is “missing” 20 points in the vertical dimension due to the status bar. All
values refer to points:

 [UIScreen mainScreen].applicationFrame

 Screen Bounds

 The two bounds properties report the screen’s bounds in points (bounds) and pixels
(nativeBounds):

 [UIScreen mainScreen].bounds
 [UIScreen mainScreen].nativeBounds

 The bounds property is orientation aware; it corresponds to the coordinateSpace.
bounds . The native bounds property is not; it represents a pixel-specific version of the
 fixedCoordinateSpace.bounds . So if the fixed space bounds are (0, 0, 768, 1024) for a first-
generation iPad Air, the native bounds are (0, 0, 1536, 2048). The fixed and native bounds do
not change as the device is handled.

http://www.paintcodeapp.com/news/ultimate-guide-to-iphone-resolutions
http://www.paintcodeapp.com/news/ultimate-guide-to-iphone-resolutions

207Rotation

 Scale

 The scale property reports the device screen scale. This corresponds to 1.0 for non-Retina
devices like the first-generation iPad mini, 2.0 for Retina screens, and 3.0 for Retina HD screens.
The nativeScale property reports the “native scale factor of the physical screen,” which is
exactly the same value as the scale property for devices that do not use down-sampling. On
the Retina HD iPhone 6 Plus, which does, it is 2.9. The difference between the 6 Plus display’s
logical pixel count (1242×2208) and its hardware pixel count (1080×1920) creates a mismatch
between the two scale properties:

 [UIScreen mainScreen].scale
 [UIScreen mainScreen].nativeScale

 Note

 At this writing, non-universal phone-specific apps run on tablets using a 3.5-inch form factor.
While the 3.5-inch iPhone 4s appears to be on its last legs, the 3.5-inch form may continue to
live on through tablet deployment.

 Rotation

 iOS 8 does away with rotation. It deprecates nearly all the previous rotation callbacks, such as
 willRotateToInterfaceOrientation:duration: and didRotateFromInterface-
Orientation . You no longer consider a view controller’s interface orientation. You don’t
forward rotation methods to child view controllers. As part of its move to adaptive interfaces,
iOS 8 takes the position that all device rotation should be treated as animated bounds changes.

 In this one step forward, iOS views and windows become far more like those found on desktop
systems. While the likely geometries are better defined than the full window-sizing on the
desktop, iOS now treats views and their controllers as flexible presentation units whose sizes
can vary programmatically outside device orientation. This is a huge philosophical change.

 Use viewWillTransitionToSize:withTransitionCoordinator: to apply interface adjust-
ments. Fortunately, using this new approach is easy. Your implementation will look something
like the following. Add any changes that need to occur to the first of the two blocks. The
second block handles any updates that take place once the transition finishes:

 - (void) viewWillTransitionToSize:(CGSize)size
 withTransitionCoordinator:
 (id<UIViewControllerTransitionCoordinator>)coordinator
 {
 [coordinator animateAlongsideTransition:
 ^(id<UIViewControllerTransitionCoordinatorContext> context) {
 // add coordinated changes here

208 Chapter 9 Adaptive Deployment

 } completion:^(id<UIViewControllerTransitionCoordinatorContext> context) {
 // add completion tasks here
 }];
 }

 Don’t limit yourself to orientation-only thoughts when implementing this method. It’s fair to
assume that you may need to apply these changes in the near future not only to device orienta-
tion but also to side-by-side presentation on tablets or user-adjustable split view controllers. A
well-designed app and good iOS citizen should be ready for all orientations and trait environ-
ments in its layout.

 Size Classes and Assets

 Prior to iOS 8, you could specialize an image for Retina and non-Retina display and supply
device-specific art using image-naming schemes and asset catalogs. For example, the @2x infix
distinguishes art meant for standard (non-HD) Retina deployment. The ~ipad and ~iphone keys
specify art specific to the tablet and phone. With asset catalogs, you slide art into slots (see
 Figure 9-1), and Xcode names and stores those items on your behalf.

 Figure 9-1 Asset catalogs enable you to install deployment-specific art .

 With size categories, iOS 8 expands the way you define deployment-sensitive assets. Figure 9-2
shows a simple asset with slots available for wildcard (*) and compact (-) sizes. These variations
on a theme do not include regular sizes, which would be shown with a + indicator. As a rule,
you either select Any & Compact or Any & Regular assets. As you can see in this figure, a single
asset can be expressed in a multitude of ways.

 While iOS would be better served with full vector art support, UIImage does not offer this
option yet. iOS 8 introduced limited PDF asset support where UIImage rasterizes the vector art.
This limitation derives from UIImage ’s internal representation, which is backed by the bitmap-
based CGImage . Despite what you see in Figure 9-2 , iOS 8 offers a much better way for handling
adaptive images than adding 32 variations at a time.

 Basic Deployment

 In reality, most applications do not need dozens of images for each possible deployment and
size category variation. Most can get by with either two images (a simple Retina pair) or four
(two Retina pairs—one for normal presentations and one for compact presentations).

209Size Classes and Assets

 Figure 9-3 shows a simpler and more typical deployment set. It contains Retina pairs for regular
(top row) and compact-height (bottom row) presentations. With this configuration, the smaller
assets will be used only when the height size class is compact, such as with a landscape iPhone.
Labels on each dog indicate the use pattern for the art: + means regular, - means compact, and
@2x means Retina. Labels like these enable you to visually inspect assets and ensure that the
size class scenarios are being properly deployed as you explore the new trait-driven system.
They are not meant for actual production work.

 Figure 9-3 Two Retina pairs are generally sufficient to handle compact scenarios. The sizes
for these images are 128×128 (@1x regular), 256×256 (@2x regular), 64×64 (@1x, vertically
compact), and 128×128 (@2x, vertically compact). I added the * and + and @2x overlay marks to
visually distinguish the assets that otherwise all appeared with exactly the same height and width
in the Xcode asset editor.

 Figure 9-2 Size categories establish new ways to create deployment-specific art. Assets added
apart from the wildcard Any indicator (*) are substituted when the presentation environment
switches to regular (+) or compact (-) traits. The art used depends on the target geometry (such as
R4) and screen density. Retina screens use 2x assets, Retina HD use 3x, and non-Retina screens
use 1x assets.

210 Chapter 9 Adaptive Deployment

 UIKit and Image Views

 When you request an image via UIImage ’s imageNamed: method, iOS chooses a bundle asset
whose properties best match the current traits. The UIImageView class automatically updates
contents as its surrounding trait environment changes. There’s no additional programming
required.

 Figure 9-4 demonstrates this behavior. In landscape, the iPhone vertical height class is compact.
The image view loads the smaller 128×128 pixel asset. In portrait, the regular height class
allows the larger 256×256 version to load. Each time you re-orient the device, the image view’s
embedded trait-aware implementation checks and updates its image to best represent the
current situation, thanks to the magic of iOS 8 and later.

 Figure 9-4 In iOS 8, UIImageView automatically updates assets in response to changes in the
surrounding trait environment.

 The UIImageAsset Class

 For finer control, the UIImageAsset class enables you to override relationships between assets
and trait collections. When you register an asset for a trait collection, you create a relationship
between a specific asset and the traits that determine when to load it.

 Listing 9-1 demonstrates an admittedly prosaic implementation that mirrors the default
behavior. As you query the asset at runtime, the image asset instance uses its internal rules to
produce a matching image.

211Size Classes and Assets

 Normally, you do not approach image loading in this manner. In typical deployment, image
views own UIImageAsset instances—not the other way around. The direct access shown in
 Listing 9-1 offers a way of bypassing the default behavior to install your own rules, whatever
they might be.

 Use this approach to select items for classes not based on UIImageView . For example, you
might use Quartz drawing to composite your images, selecting image sources via the current
trait environment. Or you could create custom UIControl elements that adjust their drawn
contents on trait collection updates to provide miniaturized versions in compact presentations
and standard versions in regular ones. There are a lot of great real-world reasons you might
want to build your own image asset instances that smartly adapt to trait environments.

 Listing 9-1 Traits-Based Art

 - (void) traitCollectionDidChange:
 (UITraitCollection *)previousTraitCollection
 {
 NSLog(@"Trait collection did change");
 imageView.image =
 [imageAsset imageWithTraitCollection:self.traitCollection];
 }

 - (void) viewDidLoad
 {
 [super viewDidLoad];

 UITraitCollection *compactHeight = [UITraitCollection
 traitCollectionWithVerticalSizeClass:UIUserInterfaceSizeClassCompact];
 UITraitCollection *regularHeight = [UITraitCollection
 traitCollectionWithVerticalSizeClass:UIUserInterfaceSizeClassRegular];

 imageAsset = [UIImageAsset new];
 [imageAsset registerImage:[UIImage imageNamed:@"SmallDog"]
 withTraitCollection:compactHeight];
 [imageAsset registerImage:[UIImage imageNamed:@"LargeDog"]
 withTraitCollection:regularHeight];

 imageView.image =
 [imageAsset imageWithTraitCollection:self.traitCollection];
 }

 Building Images from PDFs

 As this chapter has discussed, new PDF support in asset catalogs doesn’t really do what you
might expect—namely, offer resizable vector assets. To make up for that, Listing 9-2 provides
a class that loads images from PDF files directly, building them to whatever UIImage size you

212 Chapter 9 Adaptive Deployment

need. Supply a path to the image and a target size, height, or width. If using a size, the func-
tions scale-aspect-fit to that target. With width or height, they use the built-in aspect and build
an appropriately sized partner dimension.

 Listing 9-2 PDF Rendering

 // First, a few utility functions

 // Scale a size to a destination rectangle
 static CGFloat AspectScaleFit(CGSize sourceSize, CGRect destRect)
 {
 CGSize destSize = destRect.size;
 CGFloat scaleW = destSize.width / sourceSize.width;
 CGFloat scaleH = destSize.height / sourceSize.height;
 return fmin(scaleW, scaleH);
 }

 // Center a rectangle around a point
 static CGRect RectAroundCenter(CGPoint center, CGSize size)
 {
 CGFloat halfWidth = size.width / 2.0;
 CGFloat halfHeight = size.height / 2.0;

 return CGRectMake(center.x - halfWidth, center.y - halfHeight,
 size.width, size.height);
 }

 // Fit rectangle into destination rectangle
 static CGRect RectByFittingRect(CGRect sourceRect, CGRect destinationRect)
 {
 CGFloat aspect = AspectScaleFit(sourceRect.size, destinationRect);
 CGSize targetSize = CGSizeMake(sourceRect.size.width * aspect,
 sourceRect.size.height * aspect);
 CGPoint center = CGPointMake(CGRectGetMidX(destinationRect),
 CGRectGetMidY(destinationRect));
 return RectAroundCenter(center, targetSize);
 }

 // PDF drawing

 // Draw a single PDF page into Quartz destination rectangle
 // For more information about this, see my iOS Drawing book
 // iOS Drawing: Practical UIKit Solutions
 void DrawPDFPageInRect(CGPDFPageRef pageRef, CGRect destinationRect)
 {
 CGContextRef context = UIGraphicsGetCurrentContext();
 if (context == NULL)

213Size Classes and Assets

 {
 NSLog(@"Error: No context to draw to");
 return;
 }

 CGContextSaveGState(context);
 UIImage *image = UIGraphicsGetImageFromCurrentImageContext();

 // Flip the context to Quartz space
 CGAffineTransform transform = CGAffineTransformIdentity;
 transform = CGAffineTransformScale(transform, 1.0, -1.0);
 transform = CGAffineTransformTranslate(transform, 0.0, -image.size.height);
 CGContextConcatCTM(context, transform);

 // Flip the rect, which remains in UIKit space
 CGRect d = CGRectApplyAffineTransform(destinationRect, transform);

 // Calculate a rectangle to draw to
 CGRect pageRect = CGPDFPageGetBoxRect(pageRef, kCGPDFCropBox);
 CGFloat drawingAspect = AspectScaleFit(pageRect.size, d);
 CGRect drawingRect = RectByFittingRect(pageRect, d);

 // Adjust the context
 CGContextTranslateCTM(context, drawingRect.origin.x, drawingRect.origin.y);
 CGContextScaleCTM(context, drawingAspect, drawingAspect);

 // Draw the page
 CGContextDrawPDFPage(context, pageRef);
 CGContextRestoreGState(context);
 }

 // Create a UIImage instance from a PDF file
 UIImage *ImageFromPDFFile(NSString *pdfPath, CGSize targetSize)
 {
 CGPDFDocumentRef pdfRef = CGPDFDocumentCreateWithURL(
 (__bridge CFURLRef)[NSURL fileURLWithPath:pdfPath]);
 if (pdfRef == NULL)
 {
 NSLog(@"Error loading PDF");
 return nil;
 }

 UIGraphicsBeginImageContextWithOptions(targetSize, NO, 0);
 CGPDFPageRef pageRef = CGPDFDocumentGetPage(pdfRef, 1);
 DrawPDFPageInRect(pageRef, (CGRect){.size = targetSize});
 UIImage *image = UIGraphicsGetImageFromCurrentImageContext();
 UIGraphicsEndImageContext();

214 Chapter 9 Adaptive Deployment

 CGPDFDocumentRelease(pdfRef);
 return image;
 }

 // Determine the native PDF aspect
 CGFloat GetPDFFileAspect(NSString *pdfPath)
 {
 CGPDFDocumentRef pdfRef = CGPDFDocumentCreateWithURL(
 (__bridge CFURLRef)[NSURL fileURLWithPath:pdfPath]);
 if (pdfRef == NULL)
 {
 NSLog(@"Error loading PDF");
 return 0.0;
 }

 CGPDFPageRef pageRef = CGPDFDocumentGetPage(pdfRef, 1);
 CGRect pageRect = CGPDFPageGetBoxRect(pageRef, kCGPDFCropBox);
 CGPDFDocumentRelease(pdfRef);
 return pageRect.size.width / pageRect.size.height;
 }

 // Create the image using a target width in points
 UIImage *ImageFromPDFFileWithWidth(NSString *pdfPath, CGFloat targetWidth)
 {
 CGFloat aspect = GetPDFFileAspect(pdfPath);
 if (aspect == 0.0) return nil;
 return ImageFromPDFFile(pdfPath,
 CGSizeMake(targetWidth, targetWidth / aspect));
 }

 // Create the image using a target height in points
 UIImage *ImageFromPDFFileWithHeight(NSString *pdfPath, CGFloat targetHeight)
 {
 CGFloat aspect = GetPDFFileAspect(pdfPath);
 if (aspect == 0.0) return nil;
 return ImageFromPDFFile(pdfPath,
 CGSizeMake(targetHeight * aspect, targetHeight));
 }

 Overriding Trait Collections

 In iOS 8, split view controllers have become universal. Instances now run on both tablet and
phone targets. How they’re expressed depends on the trait environment they’re presented in. In
horizontally compact environments, the split view controller looks like a navigation controller.

215Overriding Trait Collections

 Figure 9-5 shows a split view controller in its default compact presentation. Items tapped in the
master table present as pushed detail controllers.

 Figure 9-5 These screen shots were created from a simple split view controller, presented
in a horizontally compact environment. Although the results superficially look like a navigation
controller, the actual container is a UISplitViewController .

 Here is the code that creates this example. It consists of a simple split view controller with two
children—a table-based master and a detail controller that shows a label:

 split = [UISplitViewController new];
 split.viewControllers = @[masterNav, detailNav];
 split.preferredDisplayMode = UISplitViewControllerDisplayModeAllVisible;
 split.delegate = self;

 When executed on an iPad, this application produces the results shown in Figure 9-6 . The code
base uses the same split view controller, with identical master and detail components. What
changes here is the trait environment. In this case, that environment defaults from the running
hardware. On the iPad, the horizontal and vertical size classes are regular and not compact.

 Building Side-by-Side iPhone Split Views

 As Apple’s UISplitViewController documents state, “In a horizontally regular environment,
the split view controller presents its view controllers side-by-side whenever possible.” The

216 Chapter 9 Adaptive Deployment

default horizontal trait environment for iPad targets is always regular. For iPhone targets, it is
always compact, except for the iPhone 6 Plus. To achieve side-by-side presentation on phones,
establish a prevailing regular horizontal trait to override that normally compact behavior.

 Figure 9-6 When run on an iPad, the application from Figure 9-5 appears in a more traditional
split view controller configuration.

 You establish a child split view controller as you would any other child controller. To parent
the controller, as in the following example, you add it to a container as a new child view
controller. You then place its view into the parent’s hierarchy and call the did-move update:

 [self addChildViewController:split];
 // ... layout the view here ...
 [split didMoveToParentViewController:self];

 Once you’ve done this, you’re ready to leverage a new iOS 8 view controller feature that
enables containers to override the trait environment of their child controller.

 A trait environment is automatically inherited from device characteristics. A parent view
controller can also set it for its children. To automatically create a side-by-side split view
controller layout on compact phone targets, you must override the child’s default trait environ-
ment. The following call universally overrides the split view controller’s traits so they always
feature a horizontally regular size trait. This results in the presentation in Figure 9-7 .

217Overriding Trait Collections

 [self setOverrideTraitCollection:[UITraitCollection
 traitCollectionWithHorizontalSizeClass:UIUserInterfaceSizeClassRegular]
 forChildViewController:split];

 Figure 9-7 This split view controller’s display mode is set to UISplitViewController-
DisplayModeAllVisible . By overriding the presentation environment to a regular horizontal size,
you produce the side-by-side layout you see here. Both screen shots are taken from an iPhone 5s
destination.

 For finer control, implement the overrideTraitCollectionForChildViewController:
method in the parent view controller. Return any override traits you want the child to operate
with. This method is called each time the parent controller’s trait environment updates. It
enables you to catch those changes and return override specific to the current device configu-
ration. The following method implementation trivially mimics the assignment used to create
 Figure 9-7 . In it, a phone’s horizontal trait is overridden to always return a regular size class:

 - (UITraitCollection *)overrideTraitCollectionForChildViewController:
 (UIViewController *)childViewController
 {
 // No changes on iPad
 if (self.traitCollection.userInterfaceIdiom == UIUserInterfaceIdiomPad)
 return nil;

218 Chapter 9 Adaptive Deployment

 // Use split for both orientations.
 return [UITraitCollection traitCollectionWithHorizontalSizeClass:
 UIUserInterfaceSizeClassRegular];
 }

 A Bit More About iOS 8 Split View Controllers

 Split view controllers underwent a massive redesign in iOS 8. In addition to their cross-platform
deployment, here are a few more useful things to keep in mind when using this class.

 iOS 8 introduced a collapsed property. This property returns a Boolean value that indicates
whether a single detail view controller is displayed in what is otherwise a split view presenta-
tion. By default, split view controllers are collapsed in horizontally compact environments.
When collapsed, a split view controller reports a single controller in its viewControllers
array:

 NSLog(@"Split is %@", split.collapsed ? @"Collapsed" : @"Not Collapsed");

 Just because a single view controller is visible does not mean the split view is collapsed.
Gestures and orientation enable you to hide the primary controller and focus your attention on
the detail controller. Do not confuse this functionality with the structural collapse that changes
the underlying view controller array.

 You see the split view’s displayModeButtonItem in Figure 9-8 . This button item enables you
to toggle the master controller into and out of the view with a simple, discoverable tap. This is
one of my favorite iOS 8 features.

 Assign this button item property to the navigation item in your detail controller:

 detail.navigationItem.rightBarButtonItem = split.displayModeButtonItem;

 The split view controller takes over and manages it on your behalf.

 The display mode button item appears as a double-arrowed expand button when the master
view controller is visible. It presents the name of the master controller when not. Make sure to
name your master controller so the button has text to present when the detail view controller
is full screen.

 To use this new feature most effectively, embed your detail controller into a navigation control-
ler container. Make sure you pass the navigation controller to any calls of showDetailView-
Controller:sender: . If you “lose” your navigation bar with its display mode button, most
likely you’re passing the detail controller directly.

219Wrap-up

 Wrap-up

 Here are a few final points to wrap up what you’ve read in this chapter:

 ■ While the trait system still has room to grow, it provides a profound philosophical
change for immediate use. Traits enable you to stop thinking of your apps as “iPhone
apps” and “iPad apps” and to start treating them solely as “iOS apps.” Allow your code
base to transition to traits and prepare your apps to run on all future iOS platforms.

 ■ Adaptation isn’t just about hardware or apps running on phone or tablet destinations.
Adaptation enables views and view controllers to adjust their presentation with respect
to the space they have been allotted. For example, a split view controller creates new
trait environments for its child view controllers, each living in a subdivided space on the
screen. When you work with containers, it’s trait collections all the way down.

 ■ Before the iPhone 6 Plus debuted, apps could generally target either tablet or phone
deployment. The iPhone 6 Plus, with its Retina HD display and large size, is a new
hybrid target. Unlike tablets, which always default to regular trait environments, and
phones, which always default to horizontally compact, the landscape 6 Plus presents a
horizontally regular default target. The 6 Plus presents an excellent case for considering
traits instead of idioms for adjusting interfaces.

 Figure 9-8 The split view displayModeButtonItem property enables you to interactively toggle
the master controller’s display.

220 Chapter 9 Adaptive Deployment

 ■ Xcode’s welcome new launch image storyboard feature (UILaunchStoryboardName
in Info.plist) enables you to discard expansive launch images and replace them with a
simple, adaptive universal design. While some complain that they’ve lost their splash
screens, I welcome the quieter and less intrusive beginning of the application lifetime.

 ■ Reachability, the feature that enables users to move parts of the iOS screen into reach,
doesn’t affect the way you construct your apps. The screen moves, but your frames don’t
change. Don’t confuse this new user-facing feature with the Reachability samples Apple
provides for network access checks. Users enable this option in Settings > General >
Accessibility > Reachability.

 ■ Be practical when it comes to images. Although Xcode enables you to add dozens of
images to connect traits to art, add only those variations that best serve your application.
Just because Xcode offers you an asset catalog slot doesn’t mean you have to fill it.

 10
 Development Helpers

 At times, it helps to have methods, functions, and techniques to help you through the develop-
ment process and support you when building apps. For example, you may lay views onscreen
and need placeholder content. You may want to randomize view locations to simulate user
interaction. You may need some fake user data. Or you may want to add to-do list types of
warnings to your build. The solutions in this chapter enable you to speed through your devel-
opment day to better arrive at the app you’re working on.

 All the Lorems

 As you assemble applications, placeholder resources enable you to test layouts and functional-
ity with better content. I rely on a number of APIs that produce text, image, and user place-
holders and content feeds. This section reviews some of those services and how you access their
content from your apps.

 Placeholder Text

 Text filler services are often named with some variant of “Lorem Ipsum.” Interestingly, this
 lorem ipsum phrase derives from graphic design history. Wikipedia (http://en.wikipedia.org/
wiki/Lorem_ipsum) writes,

 The lorem ipsum text is typically a scrambled section of De finibus bonorum et
malorum , a 1st-century BC Latin text by Cicero, with words altered, added, and
removed to make it nonsensical, improper Latin....A variation of the ordinary lorem
ipsum text has been used in typesetting since the 1960s or earlier, when it was
popularized by advertisements for Letraset transfer sheets. It was introduced to the
Information Age in the mid-1980s by Aldus Corporation, which employed it in graph-
ics and word processing templates for its desktop publishing program, PageMaker, for
the Apple Macintosh.

 Searching the web for either lorem or ipsum returns any number of generator sites. Add the
phrase api to uncover services that offer developer-specific calls for returning placeholder text.

http://en.wikipedia.org/wiki/Lorem_ipsum
http://en.wikipedia.org/wiki/Lorem_ipsum

222 Chapter 10 Development Helpers

These APIs enable you to retrieve paragraphs of Lorem Ipsum–style text at a time, using REST
requests. RESTful APIs provide simple and scalable web service access (see http://en.wikipedia.
org/wiki/Representational_state_transfer).

 I particularly like the loripsum site (http://loripsum.net) as it provides a flexible set of param-
eters like prude (family-friendly content only) and paragraph-length hints like short , medium ,
and verylong . The API also supports requests to incorporate HTML elements (such as ordered
and unordered lists, as well as block quotes) and code samples.

 Listing 10-1 uses loripsum to request shorts paragraphs, which it then trims to 20 words max,
using prudish plain text content. I find that limited paragraph snippets work well with many
iOS apps, although you can tweak this limit as desired or eliminate it entirely.

 This implementation is blocking. Control doesn’t return to the app until the request completes
or fails, and requests can take a noticeable amount of time to complete. This shouldn’t be
a problem when building basic tests and samples, but it is something you want to be aware
of for Listing 10-1 and the other service examples that follow. You can choose to wait (slow
startup), to convert these examples to dispatched items (results appear after delays), or preload
and cache your data (you lose their random nature). Always avoid blocking the main thread in
production code.

 Note

 GitHub hosts a number of lorem ipsum projects, some specific to Cocoa and Objective-C, which
can offload your random text requests to built-in libraries or local servers.

 Listing 10-1 Requesting Lorem Ipsum Text

 // Trim each paragraph to a maximum word count
 NSString *TrimParas(NSString *string, NSUInteger numberOfWords)
 {
 NSMutableArray *trimmed = [NSMutableArray array];
 NSArray *paras = [string componentsSeparatedByString:@"\n\n"];
 for (NSString *p in paras)
 [trimmed addObject:TrimWords(p, numberOfWords)];
 return [trimmed componentsJoinedByString:@"\n\n"];
 }

 // Return a string of Lorem Ipsum text with the specified number
 // of paragraphs of content
 NSString *Lorem(NSUInteger numberOfParagraphs)
 {
 NSString *urlString = [NSString stringWithFormat:
 @"http://loripsum.net/api/%0ld/short/prude/plaintext",
 (long) numberOfParagraphs];

http://en.wikipedia.org/wiki/Representational_state_transfer
http://loripsum.net
http://en.wikipedia.org/wiki/Representational_state_transfer

223All the Lorems

 NSError *error;
 NSString *string = [NSString stringWithContentsOfURL:
 [NSURL URLWithString:urlString] encoding:NSUTF8StringEncoding
 error:&error];
 if (!string)
 {
 NSLog(@"Error: %@", error.localizedDescription);
 return nil;
 }
 return TrimParas(string, 20);
 }

 In addition to sites providing standard lorem ipsum text, a number of specialty sites provide
amusing placeholder material. Bacon Ipsum (http://baconipsum.com) creates text that’s “a little
meatier,” and Cupcake Ipsum (http://www.cupcakeipsum.com) is “sugar-coated.” Swearem
Ipsum (http://www.swearemipsum.com) produces family-unfriendly material, and Beer Ipsum
(http://beeripsum.com) adds liquid refreshment to your placeholders. Search the web for alter-
native ipsum to uncover text source APIs from pasta to cats to pirate themed.

 Image Ipsums

 When it comes to pictures, you can’t get any simpler than PlaceHold.it, whose images are
shown in Figure 10-1 . This site returns results based on a super-basic API: http://placehold.
it/ Width x Height (for example, http://placehold.it/350x150). All items are gray and have the
requested dimensions superimposed on them.

 Figure 10-1 The PlaceHold.it API creates placeholder images based on the size you pass in
the URL.

http://baconipsum.com
http://www.cupcakeipsum.com
http://www.swearemipsum.com
http://beeripsum.com
http://placehold.it/
http://placehold.it/350x150
http://placehold.it/

224 Chapter 10 Development Helpers

 You might prefer the more traditional creative-commons licensed content offered by Lorem
Pixel (http://lorempixel.com). This site enables you to choose a topic (such as sports, fashion,
food, or business) and returns a full-color or grayscale image, using the size and theme you
request. Figure 10-2 offers some examples of the site’s content. Working with topics leads
to more meaningful content placeholders, which is valuable when creating demos and
presentations.

 Figure 10-2 Lorem Pixel (http://lorempixel.com) offers a topic-driven image API. This screen
shot shows four random color images from the service.

 Sample layout images courtesy of Lorem Pixel and Frawemedia (http://www.flickr.com/photos/frawemedia/),
Joiseyshowaa (http://www.flickr.com/photos/joiseyshowaa/), Pedro Simoes (http://www.flickr.com/photos/
pedrosimoes7/), Ed Yourdon (http://www.flickr.com/photos/yourdon/) used under a Creative Commons
Attribution ShareAlike license (http://creativecommons.org/licenses/by-sa/3.0/).

 Listing 10-2 shows how you can use the Lorem Pixel API to retrieve UIImage instances.
Add each parameter after the sizes with a forward slash. All the Lorem Pixel catego-
ries are plain text words that do not require URL encoding. This enables Listing 10-2
to skip any further processing. When working with more complex APIs, encode your
request parameters before using the URL—for example, by using the NSString method
 stringByAddingPercentEscapesUsingEncoding: .

 Listing 10-2 Requesting Images from Lorem Pixel

 UIImage *LoremPixel(CGSize size, NSString *category, BOOL gray)
 {
 /*
 e.g. http://lorempixel.com/400/200/sports/1/Dummy-Text
 abstract animals business cats city food nightlife fashion
 people nature sports technics transport

http://lorempixel.com
http://lorempixel.com
http://www.flickr.com/photos/frawemedia/
http://www.flickr.com/photos/joiseyshowaa/
http://www.flickr.com/photos/pedrosimoes7/
http://www.flickr.com/photos/pedrosimoes7/
http://www.flickr.com/photos/yourdon/
http://creativecommons.org/licenses/by-sa/3.0/

225All the Lorems

 */
 NSMutableString *string = [NSMutableString stringWithFormat:
 @"http://lorempixel.com%@/%0.0f/%0.0f", gray ? @"/g/" : @"",
 floorf(size.width), floorf(size.height)];
 if (category)
 [string appendFormat:@"/%@", category];
 NSData *data = [NSData dataWithContentsOfURL:[NSURL URLWithString:string]];
 return [UIImage imageWithData:data];
 }

 Note

 For those who are into “the cute,” services like Place Kitten (http://placekitten.com) offer a
creative take on layout items.

 Generating Random User Data

 Whether you’re working with contacts or just want to simulate user registration, it helps to
have access to a service that establishes user data on your behalf. In the past, I’ve primarily
used the Fake Name Generator (http://fakenamegenerator.com) but I’ve recently started using
the Random User Generator (http://randomuser.me) site as well. This section and the one that
follows discuss these services.

 The Random User Generator site describes itself as being “Like Lorem Ipsum, but for people.”
The results include gender, name, address, e-mail address, user name, password, and other
details. The site also provides a link to portraits of your fake user at large, medium, and
thumbnail scales, as shown in the example in Figure 10-3 . Full API details can be found at
 https://randomuser.me/documentation . The fields chosen for user records are simple but well
chosen. For basic content, Random User Generator is an excellent choice.

 Random User Generator offers JSON results, which makes it friendly for modern implementa-
tions. You request a user by calling http://api.randomuser.me . Unregistered users can generate
up to 100 identities at a time. Those registered at RandomAPI (http://randomapi.com), includ-
ing free tier users) can access up to 500 identities per request, according to the documentation
at https://randomuser.me/documentation . Here’s how you request 100 fake user identities:

 http://api.randomuser.me/?results=100

 Bulk Names

 The Fake Name Generator site enables you to download bulk identity files without individual
API calls. You can place an order for up to 50,000 identities at once at www.fakenamegenerator.
com/order.php . These items are free, and you can customize which fields to include and not
include in your order (see Figure 10-4). Download formats include comma-separated values
(CSV) and SQLite, among others.

http://placekitten.com
http://fakenamegenerator.com
http://randomuser.me
https://randomuser.me/documentation
http://api.randomuser.me
http://randomapi.com
https://randomuser.me/documentation
http://api.randomuser.me/?results=100
http://www.fakenamegenerator.com/order.php
http://www.fakenamegenerator.com/order.php

226 Chapter 10 Development Helpers

 Figure 10-3 The Random User Generator (http://api.randomuser.me) generates placeholder
users on demand.

 The randomuser.me photo assets are released under a non-commercial license and cannot be used directly in
this book. The actual photographs returned by the API are normal in appearance.

 Figure 10-4 The Fake Name Generator site enables you to custom order bulk identities for
development and testing.

http://api.randomuser.me

227All the Lorems

 The Fake Name Generator site is international aware, so you can pick culture-specific names
and country-specific contact details, as shown in Figure 10-4 . You can choose many personal
data fields for your fake users. Standouts include commerce, shipping, and health information,
which may be suitable for specialized apps. This set expands well beyond the Random User
Generator API and provides a valuable resource for developing specialty apps.

 Generating Random Feeds

 Fake feed data APIs are pretty scarce on the ground. One live resource, the JSON placeholder
website (http://jsonplaceholder.typicode.com), enables you to access minimal fake feeds for
posts, comments, albums, photos, to-do items, and users, all in a handy JSON format. For
example, the following request:

 http://jsonplaceholder.typicode.com/todos/1

 returns a simple JSON-encoded to-do item:

 {
 "userId": 1,
 "id": 1,
 "title": "delectus aut autem",
 "completed": false
 }

 The number passed at the end refers to a source index. Calls to the same number always return
the same value. You can randomize by checking the latest source release and choosing a value
between 1 and the highest number.

 Because this is an open source project (https://github.com/typicode/jsonplaceholder), if the site
eventually goes down, you can still run the service from your own computer. The site and feeds
are pretty basic but handy for testing. A related project, JSON Server (https://github.com/
typicode/json-server), promises to provide simple back-end prototyping.

 Other JSON

 Other mildly interesting prototyping JSON feed resources include:

 ■ The Metallizer site (metallizer.dk) provides a JSON-encoded random heavy metal album
at every request of http://metallizer.dk/api/json/0 .

 ■ Grab a random JSON-formatted Chuck Norris joke from http://api.icndb.com/jokes/
random .

 ■ Look up an acronym from the UK’s National Centre for Text Mining’s JSON-powered
API: www.nactem.ac.uk/software/acromine/dictionary.py?sf=SMH .

http://jsonplaceholder.typicode.com
http://jsonplaceholder.typicode.com/todos/1
https://github.com/typicode/jsonplaceholder
https://github.com/typicode/json-server
https://github.com/typicode/json-server
http://metallizer.dk/api/json/0
http://api.icndb.com/jokes/random
http://www.nactem.ac.uk/software/acromine/dictionary.py?sf=SMH
http://api.icndb.com/jokes/random

228 Chapter 10 Development Helpers

 XML

 When you want to grab a live sample XML feed to parse and work with, check out the BBC.
For example, you can fetch science headlines from http://feeds.bbci.co.uk/news/science_and_
environment/rss.xml . The feeds offer plenty of XML material to work with, including summa-
ries, links to stories, images, and publication dates.

 Random Everything

 Whether placing a view randomly onto a superview or coloring it with a random hue to differ-
entiate it from other test views, a basic random generation suite helps a lot, especially for early
development. The random value functions in Listing 10-3 help you avoid implementing the
same number-juggling over and over again by providing a basic suite of common utilities.
These elements—for example, a random value between 0 and 1 or a random item in an array—
pop up on such a regular basis that it helps to know you’ve already gotten these covered and
they’re ready to use.

 The random color generator in particular makes it easy to add placeholder views before apps
evolve to more content-specific refinement. It’s probably my most-used item in Listing 10-3 ,
with the floating-point Random01() following as a close second.

 Listing 10-3 Random Utilities

 // Return a positive random integer between 0 and (max - 1)
 NSUInteger RandomInteger(NSUInteger max)
 {
 return arc4random_uniform((unsigned int) max);
 }

 // Return a floating point number between 0 and 1
 CGFloat Random01()
 {
 return ((CGFloat) arc4random() / (CGFloat) UINT_MAX);
 }

 // Return a random truth value by flipping a virtual coin
 BOOL RandomBool()
 {
 return (BOOL)arc4random_uniform(2);
 }

 // Return a random point located within a rectangle
 CGPoint RandomPointInRect(CGRect rect)
 {
 CGFloat x = rect.origin.x + Random01() * rect.size.width;
 CGFloat y = rect.origin.y + Random01() * rect.size.height;
 return CGPointMake(x, y);
 }

http://feeds.bbci.co.uk/news/science_and_environment/rss.xml
http://feeds.bbci.co.uk/news/science_and_environment/rss.xml

229Directives

 // Return a random item within the supplied array
 id RandomItemInArray(NSArray *array)
 {
 NSUInteger index = RandomInteger(array.count);
 return array[index];
 }

 // Underscore prevents issues when combined with color pack
 Color *Random_Color()
 {
 return [UIColor colorWithRed:Random01()
 green:Random01()
 blue:Random01()
 alpha:1.0];
 }

 Directives

 The first half of this chapter explores resources that enable you to better prototype, grow, and
demonstrate your app. Beginning with this section, the chapter switches gears and explores
directives. Directives provide ways to communicate with the compiler and its preproces-
sor. They are language add-ons that specify how the compiler processes its input. The Clang
compiler offers a rich suite of possibilities.

 Although many Objective-C compiler directives exist in the Xcode wild, many developers rarely
move past #define (to create macros) or #pragma mark (to add bookmarks). There’s so much
more you can do. This quick section introduces a few of these directives and describes how
they enable you to harness warnings and errors for the greatest information impact.

 Converting Comments to Warnings

 Perhaps you’ve been envious of Swift’s new TODO: , MARK: , and FIXME: comments. Build phases
enable you to convert similar comment prefixes to automatically built compiler warnings. They
accomplish this feat via regular expression matching, which means the solution you’re about to
read through is simple and expandable.

 Build phases describe tasks that Xcode executes during a build. In Figure 10-5 , a custom build
phase enables Xcode to automatically insert a #warning directive whenever it finds to-do and
fix-me comment patterns. These items transform into compile-time issues.

 Figure 10-5 A build phase script converts comments to warnings.

230 Chapter 10 Development Helpers

 The great advantage of this tweak is that it automatically centralizes project status items to your
Xcode issue navigator, where you can inspect an overview throughout your project. Warnings
and errors are listed on a file-by-file basis, so you can keep track of open issues you still need to
address, as shown in Figure 10-6 .

 Figure 10-6 The issue navigator collects the converted warnings.

 Implementing this effect takes just a few steps:

 1. Customize your project by adding a build phase. Select Editor > Add Build Phase > Add
Run Script Build Phase.

 2. Open Run Script and locate the section that says “Type a script or drag a script file from
your workspace to insert its path,” as shown in Figure 10-7 .

 Figure 10-7 A run script build phase enables you to script changes to your build.

 3. Paste in the following script:

 KEYWORDS="TODO:|FIXME:|\?\?\?:|\!\!\!:"
find "${SRCROOT}" \(-name "*.h" -or -name "*.m" \) -print0 | xargs -0 egrep
--with-filename --line-number --only-matching "($KEYWORDS).*\$" | perl -p -e
"s/($KEYWORDS)/ warning: \$1/"

 If you want, edit the keywords list delimited with | to customize it to your particular
documentation needs. This example supports TODO: , FIXME: , ???: , and !!!: styles.

231Directives

 4. Compile. Your annotated comments automatically upgrade to warnings, enabling you
to track to-do items throughout your project from a single navigator. Third-party code
using these keywords in your project will also be flagged, so be prepared for potentially
interesting insights into the status of those libraries.

 Warnings

 If you’d rather not tie yourself to specific comment patterns like the ones you just read about,
consider using the Clang #warning directive directly. The following sequence tests for an iOS
compilation target and generates a warning accordingly, as shown in Figure 10-8 :

 #if TARGET_OS_IPHONE
 #warning This class is not meant for iOS deployment
 #endif

 Figure 10-8 The #warning directive produces a compiler warning. When working with
deployment mismatches, you may want to escalate this to an error.

 This next example uses a target test, only showing the warning for iOS builds. I’ve been writing
a lot of cross-platform code recently for constraint utilities. Because TARGET_OS_MAC returns
 true for both iOS and OS X targets, you’ll always want to test for TARGET_OS_IPHONE instead:

 #ifndef COMPATIBILITY_ALIASES_DEFINED
 #if TARGET_OS_IPHONE
 @compatibility_alias View UIView;
 @compatibility_alias Color UIColor;
 #else
 @compatibility_alias View NSView;
 @compatibility_alias Color NSColor;
 #endif
 #endif
 #define COMPATIBILITY_ALIASES_DEFINED

 You can use the same approach in Swift, although the implementation details differ slightly:

 #if os(iOS)
 typealias View = UIView
 typealias Color = UIColor
 #else
 typealias View = NSView
 typealias Color = NSColor
 #endif

232 Chapter 10 Development Helpers

 The @compatibility_alias keyword used in the Objective-C example enables you to map
an alias (like View or Color) to platform-specific classes (like UIView or NSView , or UIColor
or NSColor). Guarding this code with the definition declaration ensures that these aliases are
defined just once in the project, avoiding compilation errors.

 Testing for the Simulator

 Some classes don’t work properly on the iOS simulator. Use tests for TARGET_IPHONE_
SIMULATOR when developing simulator-sensitive Objective-C code. Swift checks require a
slightly different approach, as shown in the following function:

 func RunTargetTests() {
 // x86_64, arm, arm64, i386
 #if os(iOS)
 println("iOS")
 #if arch(i386) || arch(x86_64)
 println("Simulator")
 #else
 #if arch(arm)
 println("Device (arm)")
 #else
 println("Device (arm64)")
 #endif
 #endif
 #else
 println("OS X")
 #endif
 }

 Errors

 The #error directive works in a similar fashion to the #warning one. The following example
checks that a required include file was added in the project and produces a compiler error if it’s
missing:

 #if !__has_include("Utility-Compatibility.h")
 #error! Required Cross Compatibility include file not found!
 #endif

 On compile, the error produces red-circled exclamation point error feedback (as shown in
 Figure 10-9) instead of the yellow triangle. Use this directive when you detect inconsistent
compilation conditions (for example, missing include files) or unsupported compiler targets
(for example, when you know a class will not compile properly for iOS or OS X).

 Figure 10-9 Error directives produce a red-highlighted fatal error.

233Directives

 Note

 When you enable Treat Errors as Warnings in your project’s Warning Policies build settings, any
items you add using a #warning directive produce red-colored errors. Many developers enable
this option to ensure that their code passes the most exhaustive scrutiny.

 Errors also prevent compilation and deployment to unsupported platforms. In the following
example, error directives ensure that the app builds for iOS 8 and later or OS X 10.10 and later:

 #if TARGET_OS_IPHONE
 // iOS 8 or later only
 #if __IPHONE_OS_VERSION_MIN_REQUIRED < 80000
 #error "For iOS 8 or later deployment"
 #endif
 #else
 // OS X 10.10 or later only
 #import <Availability.h>
 #ifdef __MAC_OS_X_VERSION_MIN_REQUIRED
 #if __MAC_OS_X_VERSION_MIN_REQUIRED < 101000
 #error "For OSX 10.10 or later deployment"
 #endif
 #else
 #warning "Unable to test against OS X Minimum Version"
 #endif
 #endif

 Testing for Inclusion

 A simple tweak enables you to include library packs—but only when they’re currently added to
the project. The Essentials.h file used throughout this book’s sample code contains the follow-
ing tests. They include the same __has_include test used to create Figure 10-9 . In this case,
instead of triggering a warning when the file is not found, they act by including a header file if
the file is found:

 #if __has_include("ConstraintPack.h")
 #import "ConstraintPack.h"
 #endif

 #if __has_include("HandyPack.h")
 #import "HandyPack.h"
 #endif

 #if __has_include("Utility.h")
 #import "Utility.h"
 #endif

234 Chapter 10 Development Helpers

 This approach enables you to lazily add library material to projects, ensuring that they’re
automatically available for use. This solution is Swift inspired. Swift does not require explicit
include statements for files you add to your projects.

 Note

 Read more about feature-checking macros at the Clang Language Extensions website: http://
clang.llvm.org/docs/LanguageExtensions.html .

 Messages

 Message pragmas are directives that, as their name suggests, produce messages. The messages
don’t convert to an error, regardless of compiler settings. Here’s an example of a message that
reminds you about some to-do item:

 #pragma message ("To Do: Extend this to include Feature A")

 Like #warning and #error directives, messages show up in your issues navigator and with
inline highlighting, as shown in Figure 10-10 . They are informational only. The Clang compiler
basically ignores them, even when you’ve switched on Treat Errors as Warnings.

 Figure 10-10 The issue navigator aggregates compilation warnings and errors in Objective-C
code.

 Wrapping Pragmas

 Diagnostic messages can be wrapped into macros to produce standardized output. This is a
handy trick, one that enables you to wrap message requests into reusable components. Here are
a couple macros that combine to create to-do items:

 #define DO_PRAGMA(_ARG_) _Pragma (#_ARG_)
 #define TODO(_ITEM_) DO_PRAGMA(message ("To Do: " #_ITEM_))

 When you invoke the TODO macro, it builds the same results as the message directive you just
saw. It supplies a message argument to the _Pragma operator and adds the "To Do: " prefix to
the message it builds:

 TODO(Extend this to include Feature A)

http://clang.llvm.org/docs/LanguageExtensions.html
http://clang.llvm.org/docs/LanguageExtensions.html

235Directives

 If you want, you can incorporate standard compiler-supplied macros like __FILE__ , __LINE__ ,
 __DATE__ , and __TIME__ with message directives. For example, you might add the following
message (see Figure 10-11), which uses the __FILE__ macro, to an implementation file:

 #pragma message "Compiling " __FILE__.

 Figure 10-11 Compiler-supplied macros provide information about the items being processed.

 Overriding Diagnostics

 You override diagnostics with the diagnostic ignored pragma. The following example
temporarily disables warnings about undeclared selectors and their leaks:

 #pragma clang diagnostic push
 #pragma clang diagnostic ignored "-Wundeclared-selector"
 #pragma clang diagnostic ignored "-Warc-performSelector-leaks"
 void SafePerform(id target, SEL selector, NSObject *object)
 {
 if ([target respondsToSelector:selector])
 [target performSelector:selector withObject:object];
 }
 #pragma clang diagnostic pop

 By surrounding these items with push and pop directives, you localize those overrides to just
this section. The compiler continues to tag undeclared selector usage in the rest of your project.

 Unused Variable Warnings

 Unused variable warnings often crop up in development, especially as you’re framing new
classes and methods before filling in details and expanding functionality. They provide a good
example of how you can solve a problem using any number of directives (see Figure 10-12).

 Figure 10-12 Clang warns when it encounters unused variables.

 As with selector issues, you can use a diagnostic ignored pragma like the following to
suppress the compiler warning:

 #pragma clang diagnostic ignored "-Wunused-variable"

 Or you can mark the variable with an attribute:

 NSString *description __attribute__ ((unused));

236 Chapter 10 Development Helpers

 Or use the __unused keyword:

 NSInteger __unused index;

 There’s also a specific unused pragma available:

 #pragma unused (description)

 You can also wrap this pragma into its own macro if you’re so inclined:

 // Create "unused" macro
 #define UNUSED(_ITEM_) DO_PRAGMA(unused(_ITEM_))

 // Use the macro in-line with the declaration
 NSString *description; UNUSED(description);

 Marking Non-null and Nullable Items

 You can require a non-null (that is, not nil) parameter in Objective-C by referencing a
 nonnull attribute. When this is used, the method or function expects that its parameter is not
a null pointer. The following example specifies that the first parameter (the count starting with
1 and not 0) should never be nil :

 - (BOOL) createAtPath: (NSString *) path __attribute__ ((nonnull (1)))

 This example corresponds directly to a non-optional Swift item. Its opposite, a nullable
attribute, which was just recently added to Objective-C, refers to any item that can be set
to nil , and it works the same as a Swift optional, such as NSString? . Apple also added the
 null_unspecified keyword to support Objective-C versions of Swift’s implicitly unwrapped
optionals.

 For most iOS development in Objective-C, the nonnull attribute suffices to indicate “this
parameter must not be nil .” The other two attributes were added to provide support for Swift
idioms and warnings. A final keyword, null_resettable , is available for properties and also
helps support Swift interchange:

 @property (nonatomic, null_resettable) NSString *string;

 When used in a property definition, null_resettable specifies that the item’s getter will
never return a non- nil value (and will provide a default value if needed) but that the property
itself can be set to nil by the developer to reset it to that default.

 Developer Tweaks

 This chapter has covered two major topics: placeholders and directives. Before wrapping up,
this section offers a couple of final developer tweaks. These items may seem obvious to some
readers, but you’d be surprised at how often I get responses like “oh, I didn’t think of doing
that” when I bring these up.

237Developer Tweaks

 Saving Files from the Simulator

 It’s not always clear, but your iOS simulator operates in your Mac’s file system. For example, try
logging the value of NSHomeDirectory() to your console. You’ll see that the results are with
respect to your home computer and not with respect to any application’s iOS sandbox:

 2015-02-09 11:48:21.094 Hello World[19977:1725860] /Users/ericasadun/Library/
 Developer/CoreSimulator/Devices/D25F6113-075D-4169-9EB6-49890A835584/data/
 Containers/Data/Application/A567D62B-4869-40E9-9F37-CA81EDF3C870

 This is a very useful quirk. It enables you to save files from simulator apps to your desktop—a
feature many developers do not consider when developing for iOS. Writing to the desktop is
particularly useful. When you work with items that cannot be displayed onscreen or at the
console, you can simply write them to desktop files. Don’t underestimate the utility of saving
test material to an easy location for inspection and review.

 Listing 10-4 defines a pair of utilities that accomplishes this. The first of the two simply writes
the contents of any NSData you pass as a parameter. You supply a name for the file (be sure to
use a reasonable extension), and it writes it to your desktop. Make sure you edit this material so
you use your own user name and not mine. The second example first extracts an image’s PNG
representation and then redirects to the more general implementation.

 Although Listing 10-4 focuses on data and images, you can use this same idea to write to a text
file. That’s handy when normal logging and debugging is disabled due to early beta deploy-
ment, such as with extensions. It’s a reliable way to get information out of your app.

 Listing 10-4 Saving to Your Mac’s Desktop

 // Save data file to the desktop. The name should include
 // the file extension to save to
 void SaveDebugData(NSData *data, NSString *name)
 {
 // This is my desktop. Change this to point to your desktop.
 NSString *desktopPath = @"/Users/ericasadun/Desktop";
 NSString *targetPath =
 [desktopPath stringByAppendingPathComponent:name];
 [data writeToFile:targetPath atomically:YES];
 }

 // This function automatically performs the conversion from
 // a UIImage instance to its PNG representation before saving
 void SaveDebugImage(UIImage *image, NSString *name)
 {
 SaveDebugData(UIImagePNGRepresentation(image),
 [[name lastPathComponent] stringByAppendingPathExtension:@"png"]);
 }

238 Chapter 10 Development Helpers

 Tighter Logging

 When you need to copy and share the output of your logged material, you may not want
all the prefix information (things that look like 2015-02-09 11:48:21.094 Hello
World[19977:1725860]) to appear with your output. In these circumstances, I use a logging
function that I shamelessly adapted from master developer Landon Fuller:

 void Log(NSString *formatString,...)
 {
 va_list arglist;
 if (formatString)
 {
 va_start(arglist, formatString);
 NSString *outstring = [[NSString alloc]
 initWithFormat:formatString arguments:arglist];
 fprintf(stderr, "%s\n", [outstring UTF8String]);
 va_end(arglist);
 }
 }

 This function works just like NSLog but uses the C-language fprintf function to skip introduc-
tory material before the output. You can easily copy it, paste it, and share it with less visual
clutter.

 As an alternative, when you have just a few lines of debugger console output to share, hold
down the Option key before selecting. This enables you to select a rectangle of text instead of
lines of text. You can effectively select what you want from each line, leaving the debugger
prefix behind.

 Wrap-up

 Here are a few final points to wrap up what you’ve read in this chapter:

 ■ Whether you’re working with words, pictures, contacts, or views, a solid source of
dummy content can help during the early development process.

 ■ Avoid being a bad API citizen. Don’t abuse free APIs. These resources aren’t meant for
constant calls in production code. If you need source content for apps, grab a copy of
Cicero’s De finibus bonorum et malorum (or similar public domain incomprehensible
Latinate text). Pre-fetching and caching content helps reduce the load on placeholder
servers.

 ■ Even as Apple continues to grow Swift, it hasn’t neglected Objective-C. There are still
great things to learn and experience in Objective-C. Apple only recently added the new
 nullable and null_unspecified attributes to Objective-C to enable better Swift/
Objective-C co-existence.

 11
 A Taste of Swift

 Apple introduced the Swift programming language at the June 2014 WWDC Keynote. Swift
offers a performance-tuned type-safe modern programming language. The initial release was a
beta, but by that autumn, Swift 1.0 was officially adopted for app development and submission.
Even at 1.0, the language remained in flux. When Swift 1.2 arrived in 2015, many development
fundamentals had coalesced, although the language and toolset were continuing to evolve.

 If this sounds like a nearly impossible target to write about, well it is—at least to a point.
Today, you can pick up Swift basics and be more or less assured that the floor isn’t going to
shift under you—or your code—for many essential tasks. The code you write today will prob-
ably look fundamentally similar to the code you write a year from now, even if the nitty-gritty
specifics have shifted a little. The Xcode tools you use to construct your apps, too, will be
similar, although it’s a fair bet that details will evolve between the time this chapter is being
prepared and the moment you read it.

 Given all this, this chapter surveys the bare essentials of Swift development, providing a taste
of this new technology. You won’t learn the language in this chapter; that’s better done by
downloading a copy of Apple’s Swift Programming Language from iBooks. What you see in your
IDE may not exactly match these figures and code samples as Apple updates its tools and the
language. Instead, you’ll explore concepts and development issues that affect you as an iOS
developer to get a sense of where this important technology is going.

 Swift Versus Objective-C

 Swift is an exciting language that shows great promise for the future. Its release has not caused
iOS developers to abandon Objective-C. While some developers, especially larger development
houses, are testing out the waters with pure Swift projects, many independent developers have
invested too much in Objective-C libraries and toolsets to walk away for a completely fresh
start. These developers will continue with either pure Objective-C projects or hybrid solutions
that balance their current libraries with new Swift code.

240 Chapter 11 A Taste of Swift

 While you can build an entire app today in Swift, many developers will choose not to,
especially for any app more complicated than a basic to-do list or Flappy Bird clone (see
 http://en.wikipedia.org/wiki/Flappy_Bird). Groups with greater personnel resources that can
dedicate people to building libraries and frameworks can more easily invest in large Swift proj-
ects. Smaller outfits may find themselves building Swift code bases that parallel their apps,
planning for a more gradual transition.

 Apple guarantees only binary compatibility for release versions of its language. Apps compiled
for a specific firmware target continue to work in binary form going forward, even as the
language evolves. On the developer forums site, Apple’s Chris Lattner wrote,

 Our goal for Swift 1.0 is for apps to be binary compatible with the OS, not for Swift
1.0 frameworks to be compatible with Swift 2.0 frameworks. The formal goal (what
we’re shooting for) is relatively straight-forward, because apps are hemispherically
sealed, and there is almost no dependence of Swift 1.0 apps on the OS.

 This policy makes Objective-C an attractive target for immediate development. The Objective-C
code you write today will continue to work without updates and refactoring for the immediate
future.

 Swift components and Objective-C can coexist in a single project. You’re much more likely
to see marriages of the two over the next few years than an abrupt transition from one to the
other. Developers don’t forsake time-tested routines they’ve invested time and energy in, to
plunge fully into a new language when there’s no compelling reason to do so. Tight deadlines
and strict work schedules dictate the realities of Swift migration.

 Swift programming remains an important skill to pick up over the near term. Expect to see
more emphasis on Swift in sample code, in technical talks, and so forth. Developers are still
good with Objective-C and will continue to be for some time to come, but they should
strategize about transition plans for their applications now. Some products will live out their
lives in Objective-C. Others will require modernization and refactoring to fit into the develop-
ment environment of the next few years.

 Time scales are going to be an intensely individual decision. When starting a new project today
with a short-term delivery, you might stick with Objective-C. The tools are solid, tested, reli-
able, and unlikely to shift too much. At the same time, invest time in building Swift libraries
and pushing boundaries. I’m not sure when I’ll be ready to make a permanent jump to a stable
Swift-primary development commitment, but as the language and my skills grow, I can see that
transition coming closer and closer.

 Building iOS Apps in Swift

 To Objective-C eyes, the Swift language may look a bit foreign, but there’s actually much that is
familiar to grab onto. Listing 11-1 presents a compact Swift 1.2 source for a basic “Hello World”
app. This standard iOS app is trimmed down to its essentials. The application delegate creates a
window. It then builds a custom view controller, installs it to a navigation controller, and sets
it as the window’s root view controller before making the window key and visible.

http://en.wikipedia.org/wiki/Flappy_Bird

241Building iOS Apps in Swift

 Note

 Normally this material would appear in separate view controller and application delegate source
files: ViewController.swift and AppDelegate.swift. They’ve been merged here to create a single
file app to showcase how a complete app works.

 Listing 11-1 Hello Swift

 import UIKit

 class ViewController: UIViewController {
 override func viewDidLoad() {
 super.viewDidLoad()
 view.backgroundColor = UIColor.whiteColor()
 title = "Hello Swift"
 }
 }

 @UIApplicationMain class AppDelegate: UIResponder, UIApplicationDelegate {
 var window: UIWindow?

 func application (application: UIApplication,
 didFinishLaunchingWithOptions launchOptions:
 [NSObject: AnyObject]?) -> Bool {
 window = UIWindow(frame: UIScreen.mainScreen().bounds)
 if let window = self.window {
 let vc = ViewController(nibName: nil, bundle: nil)
 let nav = UINavigationController(rootViewController: vc);
 window.rootViewController = nav
 window.makeKeyAndVisible()
 }
 return true
 }
 }

 Figure 11-1 shows the application created by Listing 11-1 compiled and run. It consists of a
simple navigation controller that presents an empty view controller. The view controller’s title
is assigned a “Hello Swift” text string and displays in the top navigation bar.

 As you look at the code in Listing 11-1 and compare it to Objective-C, you discover numerous
changes. Swift does away with square brackets. Parameters appear within parentheses, and the
method signature that used to be interspersed with parameters now starts after a period. Instead
of method calls that look like this in Objective-C:

 [instance method :parameter1 signature :parameter2];

242 Chapter 11 A Taste of Swift

 In Swift, you work with calls that look like this:

 instance. method (parameter1, signature :parameter2)

 Here’s what the delegate class created in Listing 11-1 would look like in Objective-C:

 @interface AppDelegate : UIResponder <UIApplicationDelegate>
 @property (nonatomic, strong) UIWindow *window;
 @end

 @implementation AppDelegate
 // . . .
 @end

 Swift drops these separate interface headers and implementation declarations, combining them
into a single class definition.

 In Listing 11-1 , the delegate class establishes a window property as a variable. In Objective-C,
this would use @property notation. In Swift, the UIApplicationDelegate protocol confor-
mance declaration is separated by a comma and does not appear between angle brackets, as it
does in Objective-C. In an Objective-C application, an app delegate is instantiated in main() by
calling UIApplicationMain() . In Listing 11-1 , the UIApplicationMain attribute establishes
the application delegate class. If you skip this attribute, you must create a main.swift file and
call UIApplicationMain() , as you would from Objective-C.

 In Listing 11-1 , you see two question marks within the Swift code. One appears in the window
property declaration, and the other is part of the launch options parameter. In Swift, a question
mark indicates a nullable, or “optional,” parameter. These elements can be set to a value or to
 nil . In Swift, nil means “a missing value” or “no value has been assigned.” The concept of

 Figure 11-1 When run, Listing 11-1 essentially displays a blank view controller.

243Optionals

optional and non-optional types plays a big role in Swift, and you read about them in the next
section.

 A few more points about this code before moving on:

 ■ Swift is full of specialty keywords that indicate roles and usage. In Listing 11-1 , the
 override keyword used with the viewDidLoad() method is required because the
subclass overrides a parent method. If it is omitted, the compiler flags an error. Other
common keywords include access modifiers (like public and private), reference
strengths (like weak), and mutability indicators (like mutating and nonmutating).

 ■ Swift variables are declared using var for an item whose value may change over time or
 let for an item that will not ever change once it is set. Always prefer let over var . This
enables the compiler to optimize your code. Of course, if the value will be changing, you
must use var .

 ■ In Swift, class-based functions are still called methods.

 ■ Swift native types like integers (Int) and strings (String) can be bridged to Cocoa types
like NSNumber and NSString .

 ■ Statement-ending semicolons can be omitted entirely except when two statements
appear on the same line of code. A semicolon makes clear to the compiler that the two
statements should not be combined into a single one.

 ■ String literals in Swift do not use the @ sign. Use double quotes to delimit your strings, as
in the line that sets the Hello Swift title (title = "Hello Swift") for this app.

 ■ The if let construct you see in the delegate is a common Swift pattern. It says “assign a
value to a local variable, and if the value is non- nil , execute the command that follows
within the braces.”

 Optionals

 Optional values are a foundational Swift concept, and one that’s central to Cocoa Touch devel-
opment. Therefore, this section dives into this one language feature in a little depth. Optionals
are a part of Swift that enables you to respond to the success/fail situations you encounter
when calling established framework APIs.

 Any variable marked with ? may—or may not—contain a valid value. To get a sense of this
feature, look at the following code, which establishes a Swift dictionary and then looks up two
items. As you see, square brackets haven’t entirely disappeared from the language but are used
for dictionaries and arrays:

 let soundDictionary = ["cow":"moo", "dog":"bark", "pig":"squeal"]
 println(soundDictionary["cow"]) // prints moo
 println(soundDictionary["fox"]) // what does the fox say?

244 Chapter 11 A Taste of Swift

 What sound does the fox say? In Swift (not to be confused with Ylvis’s implementation), the
answer is nil . In Swift, nil indicates “no value.” Unlike in Objective-C, in Swift nil is not
a pointer. Swift nil indicates a semantic missing non-existence: a Count of Monte Cristo, a
cup of “not tea,” or an honest politician. A nil item means “nothing to see here, move along,
move along, move along.” In Swift, even variables of primitive types like integers are nil before
assignment.

 Inferred Types

 This soundDictionary example is a string dictionary. Swift infers this from assignment in the
first line. Swift uses the most restrictive interpretation of the data it assigns. Keys are strings,
and values are strings, so the dictionary is a string dictionary. You check this declaration by
Option-clicking soundDictionary , as in Figure 11-2 . If you want Swift to use a particular type
instead of inferring it from assigned data, specify the type (for example, [String : String]
for this dictionary) after a colon and before the = assignment operator:

 let soundDictionary : [String : String] =
 ["cow":"moo", "dog":"bark", "pig":"squeal"]

 Figure 11-2 Swift infers the [String:String] type from the data assigned to the
 soundDictionary variable. Alt-click (or Option-click) any item in your source code to examine its
inferred or declared type.

 The example in Figure 11-2 is run in a Swift playground. A playground is an interactive, inter-
preted environment you use for prototyping Swift routines and for learning Swift. It enables
you to type in code and instantly see whether it executes as expected.

 When you look up any item in soundDictionary , as in Figure 11-3 , the value returned is not a
 String . Instead of returning "moo" for "cow" and nil for "fox" , this example actually returns
a special optional form of "moo" and the nil value. In this example, these optionals are typed
 String? . This question mark is important and always indicates an optional type. How these
results appear (whether as Optional("moo") , {Some "moo"} , etc.) will vary as Apple figures
out how it wants to convey this important syntax. In Figure 11-3 , Apple shows "moo" as the
return value in line 14, but when you print it (see line 15 in the figure), you expose the under-
lying optional wrapping.

245Optionals

 Figure 11-3 An optional value wraps the result of a successful dictionary lookup.

 The Optional Enumeration

 Optional types return either a wrapped value (the bit with the word Optional or braces or
whatever the wrapping flavor of the week is) or nil . Wrapping means the actual value is stored
in a logical outer structure. You cannot get to that value (in this case, "moo") without unwrap-
ping it. In Swift World, it is always Christmas, and there are always presents—or at least vari-
ables—to unwrap.

 In technical terms, an optional is an enumeration. A Swift enumeration is a very different beast
from the Objective-C one. While Objective-C enumerations are basically limited to declaring
word-based integer sequences or flags values, Swift enumerations declare both member names
and optionally associated values. In this example, the Optional enumeration stores either
nothing (nil) or something (any data type you pass). Here’s what that enumeration declaration
looks like in Swift:

 enum Optional<T> {
 case None
 case Some(T)
 }

 This ability to store any type is part of Swift’s generics support. A generic item enables you to
work with any data type you encounter rather than a specific class. As the name suggests, you
implement generic functionality that works across specific types. In this Optional case, the
generic support lets you store any kind of data inside the optional wrapper. The angle brackets
with the T inside indicate a generic type for this enumeration. (There is nothing magical about
the letter T . It’s just a convenient convention for an arbitrary type.)

 Some generics specify commonalities, called requirements . For example, a generic can be a
countable item, a sequence, an item that can be compared, or, in the most general case, any
kind of class at all. With generics, you can write code that appends new elements to any kind
of list or counts items in any kind of collection.

 Dictionary lookups always return optional types. So a [String : String] dictionary returns
a String? result, as you see in Figure 11-4 . Dictionaries may or may not contain a specific
keyword or key object, so returning an optional enables them to fail at lookup or to succeed.
The success case is encapsulated in a wrapper, which involves an extra handling step you don’t
encounter in Objective-C.

246 Chapter 11 A Taste of Swift

 Figure 11-4 Using Option-click reveals that the dictionary lookup return type is String? . The
question mark is part of the type.

 The String? type in the following snippet means that animalSound stores either nil or a
wrapped string value—for example, {Some "Narf!"} or Optional("Narf!") —assuming that
your test sounds come from a Steven Spielberg cartoon:

 let animalSound : String? = soundDictionary[searchString]

 Unwrapping Optionals

 You unwrap values either by adding exclamation points or by using the if - let construction
you saw in Listing 11-1 . If the value is wrapped (the "Some" or "Optional()" result you just
saw), you extract the value stored within the wrapped element. If the value is nil and you
unwrap your optional with ! , you encounter a fatal runtime error—which is not nearly as fun
or gratifying. The nil value is the Swift equivalent of your aunt’s home-crocheted vest. It’s
critically important to always check whether an item is nil before unwrapping it. Figure 11-5
shows the safer if - let approach.

 Figure 11-5 Use if - let to safely unwrap optionals.

 The if - let syntax performs a conditional assignment to an unwrapped variable. It executes the
functionality that follows based on whether it could or could not complete that assignment.
In this example, if the result is non- nil , the example uses the (unwrapped) sound variable to
print out the animal-sound fact. If nil , it branches to the second half, where there’s no valid
value for a sound.

 Swift also provides a feature called implicitly unwrapped optionals . You declare these optionals
with an exclamation point at the end of the type. Figure 11-6 offers examples of first a wrapped
assignment and then an implicitly unwrapped one. Both are assigned to the same value
(soundDictionary["cow"]), but one automatically extracts the internal value, and the other
retains the optional enumeration.

 With unwrapped optional variables, the result is not {Some "moo"} or Optional("moo") . It
is "moo", a simple string. Implicit unwrapping extracts the value inside an optional item and
uses the data type you’d expect from the dictionary lookup. Once it is unwrapped, use the vari-
able directly. You don’t have to add that “unwrap this variable” exclamation point.

247Optionals

 Use implicit unwrapping when you know in advance that a variable will always have a value
after some logical point. For example, if you’re responding to button taps or menu clicks,
you probably don’t have to wonder whether a particular button or menu item exists. It does.
Because if it didn’t, you would never have reached your callback.

 Unwrapped optionals enable you to access values directly, without having to test and annotate
them at each use. With great unwrapping, however, comes great responsibility. You must take
care that you properly guard these items to ensure that you don’t attempt to unwrap nil :

 // This generates a nasty error
 let unwrappedSound2 : String! = soundDictionary["error"]

 When using implicit unwrapping with possible failure points, check for nil before your first
variable access or you may crash your application. Here’s what this approach looks like in
pseudocode:

 var variable : Type! = APIThatMightFail(arguments)
 if variable == nil {...handle failure case..., return}
 ...now safely use implicitly unwrapped variable...

 This approach is dangerous because the compiler won’t warn you about missing nil checks. A
wordier solution may better help catch errors:

 var variable_ : Type = APIThatMightFail(arguments)
 if variable_ == nil {...handle failure case..., return}
 let variable = variable_!
 ...now safely use manually unwrapped variable...

 The recommended solution, however, is to use an if-let construct wherever possible to
ensure variable safety:

 if let variable = APIThatMightFail(arguments) {
 ... safely use unwrapped variable...
 }

 While this approach is always safety-optimal, it can introduce the dreaded Swift “pyramid of
doom,” where multiple levels of nested if checks cause unsightly code structuring.

 Figure 11-6 Implicitly unwrapped variables extract values on assignment. Only use these when
it’s clear that an optional variable will always have a value after a certain point in the program
execution.

248 Chapter 11 A Taste of Swift

 Assigning Values to Non-optionals

 Swift lets you annotate variable declarations with ! and ? in addition to the mutable (var) and
immutable (let) keywords. If you declare a variable without ! or ? , Swift expects you to assign
a non-optional value, like this:

 var nonOptional : String = "Hello" // This works

 When you assign an optional result (String?) to a non-optional, use ! to unwrap it:

 nonOptional = soundDictionary["cow"]! // moo

 Better yet, test before you unwrap:

 if let sound = soundDictionary["cow"] {
 nonOptional = sound
 }

 There are things you cannot do. You cannot assign nil to a non-optional:

 nonOptional = nil // error

 You cannot assign an optional enumeration to a non-optional:

 nonOptional = soundDictionary["cow"] // error
 // "value of optional type 'String?' not unwrapped;
 // did you mean to use '!' or '?'?"

 You cannot unwrap a nil optional, let alone assign it to a non-optional variable:

 // nonOptional = soundDictionary["fox"]! // error
 // fatal error: unexpectedly found nil while unwrapping an Optional value

 Working with optionals is one of the biggest transitions from the Objective-C world and one
that’s most important for working with traditional Cocoa Touch APIs.

 Cocoa Touch Patterns

 Most Cocoa Touch APIs follow a common pattern that looks something like this in
Objective-C:

 result = [object call: with: parameters: error:&error];
 if (!result)
 {
 // handle error here
 }

 An API returns an object created using the parameters passed to the call. When the return value
is nil , an error object passed by reference is populated with details about why the call failed.
This enables you to handle the error and shortcut your execution.

249Cocoa Touch Patterns

 Listing 11-2 shows an example of Objective-C code that follows this pattern. At each step, an
operation is attempted and the results are tested, with an error generated for failed steps. A
result returns only after passing each stage of calls and tests.

 Listing 11-2 Fetching a URL-Sourced String with Objective-C

 // Return an NSError instance
 NSError *BuildError(NSInteger code, NSString *reason)
 {
 NSString *errorDomain = @"com.sadun.examples";
 NSError *error = [NSError errorWithDomain:errorDomain code:code
 userInfo:@{NSLocalizedDescriptionKey:reason,
 NSLocalizedFailureReasonErrorKey:reason}];
 return error;
 }

 // Fetch a string from the specified URL
 NSString *StringFromURL(NSURL *url, NSError **error)
 {
 // Request data
 NSData *data = [NSData dataWithContentsOfURL:url options:0 error:error];
 if (!data) return nil;

 // Convert the data to a UTF-8 string
 NSString *string = [[NSString alloc] initWithData:data
 encoding:NSUTF8StringEncoding];
 if (!string) {
 if (error)
 *error = BuildError(1, @"Unable to build string from data");
 return nil;
 }

 // Return the string
 return string;
 }

 // And here are usage examples
 NSError *error;
 NSURL *url = [NSURL URLWithString:@"duck://ericasadun.com"]; // bad url
 // NSURL *url = [NSURL URLWithString:@"http://ericasadun.com"]; // good url
 NSString *string = StringFromURL(url, &error);
 if (string)
 NSLog(@"string: %@", string);
 else
 NSLog(@"error: %@", error.localizedDescription);

250 Chapter 11 A Taste of Swift

 Listing 11-3 offers a Swift 1.2 equivalent to the Objective-C code in Listing 11-2 . It follows
the same steps and uses Swift’s if - let syntax to test each success. At each step, the function
attempts a standard API call. If the result succeeds, the value is passed to the next step. On
failure, the error is assigned and nil returned. Other than a slight change in flow due to the
 if - let tests, the code is substantially similar to the Objective-C version.

 Listing 11-3 Fetching a URL-Sourced String with Swift 1.2

 // Return NSError from code and reason
 func BuildError(code : Int, reason : String) -> NSError {
 let errorDomain = "com.sadun.examples"
 let error = NSError(domain: errorDomain, code: code,
 userInfo: [
 NSLocalizedDescriptionKey:reason,
 NSLocalizedFailureReasonErrorKey:reason])
 return error
 }

 // Fetch string using standard Swift if-let
 func StringFromURL(url : NSURL, inout error : NSError?) -> (NSString?) {
 if let data = NSData(contentsOfURL:url,
 options: NSDataReadingOptions(rawValue:0), error: &error) {
 if let string =
 NSString(data: data, encoding: NSUTF8StringEncoding) {
 return string
 }
 error = BuildError(1, "Unable to build string from data")
 return nil
 }
 return nil
 }

 // Examples to test the implementation
 var error : NSError?
 let url = NSURL(string: "duck://ericasadun.com")! // bad url
 //let url = NSURL(string: "http://ericasadun.com")! // good url

 if let string = StringFromURL(url, error:&error) {
 println(string)
 } else {
 // This unwraps the error into a new non-optional error instance.
 // This error/error looks confusing but same-named-unwrapping is
 // fast becoming the normal practice for unwrapping
 if let error = error {
 println(error.localizedDescription)
 }
 }

251Hybrid Language Development

 Although they are built in two languages, Listings 11-2 and 11-3 are functionally identical.
They use the same APIs, perform the same checks for nil , and handle errors in the same way.
The one noticeable difference is how the checks flow. The if - let flow in Swift pushes the
success case forward. The string is returned in the middle of the StringFromURL function in
Swift versus at the end in Objective-C. The nested structure is called the Swift “pyramid of
doom.” This is not to say you cannot produce the same flow in Swift. By handling the nil
case first and force-unwrapping optional results, you build Listing 11-4 , which mirrors the
Objective-C code even more closely.

 Listing 11-4 Handling Error Conditions First in Swift

 // Fetch string using a linear flow
 func StringFromURL(url : NSURL, inout error : NSError?) -> (NSString?) {
 // Fetch data
 let data_ = NSData(contentsOfURL:url,
 options: NSDataReadingOptions(rawValue:0), error: &error)
 if (data_ == nil) {
 return nil
 }
 let data = data_!

 // Convert data to string
 let string_ = NSString(data: data, encoding: NSUTF8StringEncoding)
 if (string_ == nil) {
 error = BuildError(1, "Unable to build string from data")
 return nil
 }
 let string = string_!

 // Return string
 return string
 }

 Although Listing 11-4 is not nearly as “Swift-y” as Listing 11-3 , I like its linear flow. This
early-exit approach enhances readability and offers easier modification should additional steps
become necessary. Your code should always serve your long-term needs for maintenance and
self-documentation. Listing 11-4 is wordy and expansive but prosaic, practical, and safe.

 Hybrid Language Development

 Mixed-languages projects are an important step as companies and individuals transition from
Objective-C to Swift. They will continue to be a reality for some time. When you’re writing
mixed-language projects, you need to know how to call Objective-C implementations from
Swift and how to call Swift ones from Objective-C. This section introduces development in
both directions, showing you how to accomplish this in your apps.

252 Chapter 11 A Taste of Swift

 Calling Objective-C from Swift

 On adding Objective-C class files to an otherwise-Swift project, Xcode invites you to create
a bridging header file (see Figure 11-7). This file enables your Swift code to access your
Objective-C code. With it, you can instantiate classes, call methods, and so forth. By default,
this header is called Project-Module-Name- Bridging-Header.h. It uses the name of your project in
the prefix.

 Figure 11-7 A bridging header file exposes Objective-C interfaces to Swift code. This screen shot
uses the Xcode 6.3 toolset.

 Edit the bridging header to include any public header you want Swift to automatically access.
Make sure you add references for every Objective-C-based file you want to include:

 // Use this file to import your target's public headers that
 // you would like to expose to Swift.

 #import "TestClass.h"

 At this writing, Xcode only offers to create the bridging header when you first add Objective-C
class files to your project. You can build one yourself by choosing File > New > File > iOS >
Source > Header File. You can then append -Bridging-Header.h to the name of your project, but
it’s easier to let Xcode ensure that the file is named properly by allowing it to create the bridg-
ing header for you.

 Accessing Classes

 Classes included through the bridging header are accessible from Swift. Say, for example, that
you have declared the following NSObject subclass:

253Hybrid Language Development

 @interface TestClass : NSObject
 - (void) test;
 @end

 In Swift, you treat the class as if it had always been written in Swift. You construct a new
instance, using a standard Swift initializer (that is, the parentheses following the class name
in the following snippet). Once this is built, you can then call the test method on the new
instance:

 let myTest = TestClass()
 myTest.test()

 Calling Swift from Objective-C

 It’s nearly as easy to call Swift code from Objective-C as the reverse, but a few gotchas along
the way may spoil your day. The first challenge is to discover an appropriate header to import.
Apple’s docs specify that the name of this file is your product name followed by -Swift.h.

 For a project named Hello World, the Objective-C-to-swift-bridging header that is automatically
created is named Hello World-Bridging-Header.h, with a space between the first two words. You
might assume that the Swift import header will be named Hello World-Swift.h, but you’d be
wrong. The actual name is Hello_World-Swift.h, with an underscore, not a space. Obviously,
these details may change over time as Xcode is updated, so let the Xcode do as much work for
you as possible.

 The best way to locate the actual bridging header for your project is to perform a little file
exploration. Open the Xcode Organizer (Windows > Organizer) and select your project. Click
on the little arrow next to the path of your derived data. This opens a new Finder window at
that path.

 Next, navigate to the Build folder. Xcode 6.3 builds the Swift import header on your behalf,
but it hides it. Assuming that Xcode doesn’t change significantly, you need to find the
DerivedSources folder for your build (somewhere deep in your Build folder, typically several
levels down). At this writing, you uncover this file by descending through the following path:

 ■ Derived Data — The project’s derived data, for example, DerivedData/Hello_World-
dfqjqgdsqctvssbpcgguyybnyhgi

 ■ Build — The folder named Build

 ■ Intermediates — The folder named Intermediates

 ■ Build — The Project Name build folder, for example, Hello World.build

 ■ Platform — The platform folder, for example, Debug-iphonesimulator

 ■ Build — Another build folder, for example, Hello World.build

 ■ Derived Sources — The folder named DerivedSources

254 Chapter 11 A Taste of Swift

 Once you confirm the name of the header file, simply import it into whatever Objective-C file
needs access to the Swift-sourced code:

 #import "Hello_World-Swift.h"

 If you think you know the correct name, you can more or less skip this entire process. Simply
add the import statement and confirm that it goes to the right place by Command-clicking the
header name in any source file. If it opens up the right file in the Xcode browser, you’ve set up
the header correctly. (See Figure 11-8 .)

 Figure 11-8 The -Swift.h header file includes material that enables Objective-C code to access
Swift-sourced classes, methods, and protocols. This example is from Xcode 6.3 and Swift 1.2.

 Preparing Swift for Objective-C

 You must mark any Swift class or protocol with the @objc attribute before using it in
Objective-C. For example, you might declare the following class skeletons in your Swift code:

 @objc class VisibleToObjectiveC {
 }

 class NotVisibleToObjectiveC {
 }

 In this case, the first declaration uses the @objc keyword. The second does not.

 In any Objective-C source file, you can reference the visible class, but if you try to use the not-
visible class, you get an error (see Figure 11-9).

 Figure 11-9 Use the @objc attribute to expose classes and protocols to Objective-C.

255Hybrid Language Development

 While you can port over classes and protocols, as long as you use the @objc attribute, many
Swift elements—including generics, tuples, structures, stand-alone functions, global variables,
and so forth—cannot be ported at this time. The Apple docs (see “Using Swift with Cocoa and
Objective-C”) detail the exact restrictions involved.

 Class Descent

 The following Swift snippet declares two classes. Both are marked with @objc , and both can be
referenced from Objective-C. The only substantial difference between the two is that the first
class, MyCocoaClass , descends from NSObject and the second, MySwiftClass , does not:

 @objc class MyCocoaClass : NSObject {
 func test() {
 println("I can call Swift from Objective-C")
 }
 }

 @objc class MySwiftClass {
 func test() {
 println("I can call Swift from Objective-C")
 }
 }

 You create instances of MyCocoaClass by calling new or alloc-init , as you would with any
item that descends from NSObject . As Figure 11-10 shows, you cannot use standard construc-
tors to create new MySwiftClass instances.

 Figure 11-10 Classes that do not descend from NSObject cannot use NSObject constructors.

 In Swift, you don’t need Objective-C-style constructors. To build a new MySwiftClass
instance, you call MySwiftClass() , with parentheses. To support Objective-C construction of
your Swift class, you’ll want to add a class method that instantiates and returns a new object.
The following snippet adds a new method to create instances. Once added to the Swift source,
as in the following example, the code in Figure 11-10 compiles without further error:

 @objc class MySwiftClass {
 class func `new` () -> MySwiftClass {
 return MySwiftClass()
 }

256 Chapter 11 A Taste of Swift

 func test() {
 println("I can call Swift from Objective-C")
 }
 }

 Notice the backticks (̀) in this code snippet. The word new is normally reserved in Swift. The
backticks tell the compiler to treat this item as a normal identifier instead of as a reserved word.

 Building the Basics

 Playgrounds are fantastic for learning Swift development. With them, you simply type a line or
two of code and see immediate results. When you’re ready to dive into Swift, open your Xcode
editor into the two-pane “show the assistant editor” mode. This enables you to see three critical
elements at once (see Figure 11-11). On the left in the central editor pane is your code editor.
Just to its right is a gray-tinted sidebar that displays code results. Further to the right, in the
assistant pane, is the console output, where you can monitor print output and any compiler
errors that arise.

 Figure 11-11 When working with playgrounds, stay in assistant mode so you can see your code
and any compiler issues at the same time.

 To get started, try entering a standard println("Hello World") line. The words Hello World
appear just to the right of the print statement in the results pane and also in the console
output.

 Next, create a new image view:

 let view1 = UIImageView(frame: CGRectMake(0, 0, 100, 100))

257Building the Basics

 When you hover your mouse over the result gutter sidebar for this line, you see two items pop
into view. The first is an eye-shaped Quick Look icon. If you click this, a gray pop-up appears.
This is your view. It is 100×100 in size and essentially transparent. You have not associated any
real properties with your image view.

 The second is a value results circle. When you click it, the view presentation is integrated into
the playground. Add the following lines to give the view a blue background and build an image
of a circle. Then click all three value results circles. Figure 11-12 shows the results. You now
monitor the view as it changes from clear to blue to containing a picture of a circle:

 // Add a background color
 view1.backgroundColor = UIColor.blueColor()

 // Build an image and add it
 let rect = CGRectMake(0, 0, 100, 100)
 UIGraphicsBeginImageContext(rect.size)
 var path = UIBezierPath(ovalInRect:rect)
 UIColor.redColor().set()
 path.fill()
 view1.image = UIGraphicsGetImageFromCurrentImageContext();
 UIGraphicsEndImageContext()

 Watching Progress

 One of the great things a playground does is let you inspect items over time. Enter the follow-
ing loop and inspect the i instance in the middle of the loop:

 let count = 400
 for i in 0...count
 {
 i
 }

 You can track the value as it changes over time with the handy graph shown in Figure 11-13 .

 Next, change that value to i*i or i*i*i . The graph becomes quadratic or cubic. Play with
some other equations, as in Figure 11-14 , to produce even more complex output. You can also
change the number of samples to see how the results update to match the execution conditions
you set:

 for i in 0...count {
 let percent = Double(i) / Double(count)

 // Ease in-out
 let j = (percent < 0.5) ? 0.5 * pow(percent * 2, 3) :
 0.5 * (2.0 - pow((1.0 - percent) * 2, 4))

 // Damped sinusoid

258 Chapter 11 A Taste of Swift

 let time = percent * 3.0
 let k = 1.0 - cos(Double(M_PI) * 8.0 * percent) * exp(-1.0 * time)
 }

 Figure 11-12 Swift playgrounds enable you to monitor the values assigned to items in the
assistant editor.

 Figure 11-13 Monitor the changes to a value over time.

259Learning Swift

 Figure 11-14 Add a little math to your playground for more exciting graphed results.

 In addition to views and scalars, you can inspect sounds, colors, paths, attributed strings,
common structures (rects, points, sizes, ranges), sprites (from SpriteKit), and URLs. These items
are supported by the playground’s Quick Look system, which continues to expand over time.

 Learning Swift

 While this chapter has surveyed some important Swift development topics and introduced the
interactive playground, it cannot teach the language itself within the constraints of this book.
To learn more about this exciting new technology, start with The Swift Programming Language .
This is a free e-book offered by Apple on the iBooks store. Best of all, it’s regularly updated as
the language evolves. An extensive Revision History section lets you explore documentation
and language changes by date.

 A second Apple e-book, Using Swift with Cocoa and Objective-C , is just as essential. It provides an
overview of the topics related to interoperability between languages and the details of API calls.
It’s a much shorter volume due to its tight focus.

260 Chapter 11 A Taste of Swift

 The Apple Swift Blog (https://developer.apple.com/swift/blog/) is updated about once a month.
Its coverage includes can’t-miss topics related to language features and case studies. Its mission
statement speaks about behind-the-scenes peeks into language design, but its focus over time
has been more practical how-to articles.

 The Apple Developer Forums (https://devforums.apple.com/index.jspa) provide the best access
to Swift engineers. Navigate to Developer Tools > Language > Swift for a lively and up-to-date
Swift language forum.

 You’re into IRC peer support? The Freenode (irc.freenode.net) #swift-lang room offers access
to pro-level coding advice. It’s a language-specific room, so if you need help with iOS-specific
APIs, visit #iphonedev instead. A final room, #cocoa-init , is set up specifically to help
mentor developers new to iOS and OS X.

 Wrap-up

 Here are a few final points to wrap up what you’ve read in this chapter:

 ■ Swift is an important technology. Although you can continue to develop for iOS using
Objective-C for the foreseeable future, you should really start exploring this arena even if
you’re not ready to commit to production code.

 ■ Swift is a changing technology. The language continues to evolve, and the toolset
is maddeningly primitive in some places. Moving to a type-safe language where the
compiler doesn’t fully explain what type issues it’s encountering is exasperating.

 ■ Swift is exciting. Features like generics, tuples (which enable you to return multiple
values from a function), smart structs that provide class-like extensibility, and functional
programming elements make this language gratifying to work with. At times, it’s hard to
return to Objective-C and realize how many language elements simply aren’t available.

 ■ Swift is limiting. Part of the reality of a type-safe language is that you have to play by the
rules. Objective-C is relaxed and flexible in terms of meta-programming. You can build
objects that build classes, you can explore the deep underbelly of your implementations
from the runtime, and so forth. Swift barely and grudgingly lets you access any of these
freewheeling details, so you lose out on many of the power-user development tools you
may have grown used to.

 ■ Swift is safe and powerful. When you play by the rules, you win in terms of reliable code.
Swift is written to be a fast, high-performance, and trustworthy language.

https://developer.apple.com/swift/blog/
https://devforums.apple.com/index.jspa

Index

 Symbols
 #error directive, 232 - 233

 #warning directive, 231 - 232

 A
 accessibility versions of font sizes, 27

 accessing classes, 252 - 253

 action controllers, building, 156 - 161

 actionForKey method, 118

 adaptive deployment

 rotation, 207 - 208

 trait collections, 201 - 204

 combining, 203 - 204

 defining, 202 - 203

 designing for, 204

 properties, 202

 UIScreen properties, 205 - 207

 application frame, 206

 coordinate spaces, 205 - 206

 scale, 207

 screen bounds, 206

 adaptive flow, 58 - 60

 adding

 animations to shaped views, 193 - 199

 behaviors to dynamic animators,
 126 - 127

 borders to shaped views, 187 - 190

262 adding

 physics-based behaviors to collection
views, 149 - 150

 Quartz 2D contexts to UIKit context
stack, 17 - 18

 text fields to alerts, 162 - 163

 touch to labels, 63 - 69

 checking for links, 67

 glyphs, 66

 implementing visual feedback,
 67 - 69

 synchronizing Text Kit items with
labels, 64 - 65

 translating coordinates, 65 - 66

 adjusting

 attributes, 93 - 94

 pitch of voice playback, 3

 alerts, 155 - 163

 building, 156 - 161

 buttons, enabling, 161

 class deprecations, 155 - 156

 jelly view alert, building, 150 - 154

 deploying jelly, 154

 drawing the view, 152 - 153

 text fields, adding, 162 - 163

 angular velocity, creating the “spinner”

effect, 147

 angularResistance property, 138

 animation, 101

 adding to shaped views, 193 - 199

 blocking animators, 105 - 106

 custom dynamic behaviors

 improving, 142 - 144

 secondary behaviors, 144 - 146

 custom dynamic items, 139 - 141

 custom transition animations, 113 - 116

 building transitioning objects,
 114 - 116

 delegation, 114

 UIViewControllerAnimated-
Transitioning protocol, 113

 dynamic animators, 125

 collection views, 147 - 150

 creating, 126 - 127

 detecting pauses, 127 - 132

 snap zones, 133 - 135

 effect views, animating, 172 - 174

 implicit animations, 116 - 124

 animating custom properties,
 121 - 122

 animation-ready layers, building,
 117 - 118

 completion blocks, 120 - 121

 coordinating, 119 - 120

 drawing properties, 123 - 124

 intercepting updates, 122

 timing, 118 - 119

 views, 118

 keyframe animation, 101 - 103

 DampedSinusoid() function, 103

 scale transformation, 103 - 105

 shaking effect, 102 - 103

 motion effects, 109 - 112

 disabling, 110

 shadow effects, 111 - 112

 virtual planes, 109 - 111

 physics-based behaviors, subverting,
 141 - 142

263barcode recognition

 spring-based animation, 106 - 109

 damping constant, 109

 practical uses for, 108 - 109

 system animations, 109

 view animation, 101

 animationKey method, 194

 APIs

 Cocoa Touch, 248

 iOS dictation APIs, 5

 Swift, 249 - 251

 UIKit, 50 - 51

 Apple Swift Blog, 260

 application frame property, 206

 applying text style ranges, 34 - 35

 apps (iOS), building in Swift, 240 - 243

 assets, 208 - 214

 overriding relationships with trait
collections, 210 - 211

 assigning values to non-optionals, 248

 attachments, 77 - 78 , 125

 attributed strings

 adjusting attributes, 93 - 94

 attachments, 77 - 78

 building from HTML, 78 - 83

 document type dictionaries, 79 - 81

 converting to document data, 89 - 90

 converting to document
representations, 81 - 82

 enhancing, 91 - 94

 fonts, updating, 35 - 38

 custom font faces, 36

 dynamic text views, 37 - 38

 initializing from a file, 84 - 85

 inspecting attributes, 87 - 88

 integrating with Dynamic Type, 31 - 35

 applying text style ranges, 34 - 35

 scanning for text style ranges,
 32 - 34

 modifying fonts, 42

 mutable attributed strings,
extending, 94

 returning copies of strings with new
attributes, 92 - 93

 RTFD integration, 76 - 77

 tabular text, 76

 attributedStringWithAttachment

method, 78

 Auto Layout, 201

 AVAssetWriter class, 19

 AVCaptureMetadataOutputObjectsDelegate

protocol, 11

 AVFoundation, movies

 building, 14 - 23

 pixel buffer, creating, 16 - 17

 AVMetadataObject class, 11

 AVSpeechSynthesizer class, delegate

callbacks, 3 - 4

 Aztec code, 9

 B
 Bacon Ipsum website, 223

 barcode recognition, 1 , 5 - 8

 CIQRCodeGenerator filter,
parameters, 5 - 6

 enhancing recognition, 14

 extracting bounds, 13

 IOS-supported barcode formats, 8 - 9

 metadata, responding to, 11 - 13

 metadata objects, listening for, 10 - 11

264 barcode recognition

 QR codes

 building, 6 - 8

 disabling interpolation, 7 - 8

 Baro, Victor, 150

 beginEditing method, 56

 Bezier paths

 exclusion zones, 61

 resizing, 181 - 183

 Bezier-based shape image views,

creating, 184 - 185

 blocking animators, 105 - 106

 blocks

 ContextDrawingBlock, drawing into
the pixel buffer, 17 - 18

 movies, building, 15 - 16

 blogs, Apple Swift Blog, 260

 blur effect, building, 170 - 171

 body style, 26

 borders, adding to shaped views, 187 - 190

 boundaries

 creating for gravity behavior, 138

 screen bounds, 206

 bounding rectangles, 62

 bounds, extracting, 13

 bubbles, 176 - 177

 building

 action controllers, 156 - 161

 alerts, 156 - 161

 animation-ready layers, 117 - 118

 attributed strings from HTML, 78 - 83

 document type dictionaries, 79 - 81

 AVFoundation movies, 14 - 23

 blur effect, 170 - 171

 fonts from text styles, 28

 HTML from attributed strings, 82

 images from PDFs, 211 - 214

 iOS apps in Swift, 240 - 243

 jelly view alert, 150 - 154

 deploying jelly, 154

 drawing the view, 152 - 153

 mask views, 166 - 169

 movies

 expressive drawing, 18 - 19

 from frames, 19 - 23

 images, adding, 23

 pixel buffer, creating, 16 - 17

 QR codes, 6 - 8

 shaped buttons, 190 - 193

 side-by-side iPhone split views, 215 - 218

 transitioning objects, 114 - 116

 views around layers, 118

 virtual planes, 110 - 111

 buttons

 alert buttons, enabling/disabling, 161

 shaped buttons, building, 190 - 193

 C
 calculating text positions, 95

 characterOffsetOfPosition:withinRange:

method, 95

 CIQRCodeGenerator filter, 5

 circular views, creating, 180 - 183

 Clang compiler, 229

 class descent, 255 - 256

 classes

 accessing, 252 - 253

 AVAssetWriter class, 19

 AVMetadataObject class, 11

 NSMutableAttributedString class, 56

 size classes, 204 - 205

 UIAlertController class, 155

265creating

 insets, 60 - 61

 RTFD containers, 84

 ContextDrawingBlock, 17 - 18

 converting

 attributed strings to document
data, 89 - 90

 attributed strings to document
representations, 81 - 82

 comments to warnings, 229 - 231

 HTML to attributed strings, 78 - 83

 document type dictionaries, 79 - 81

 RTFD text to data, 85 - 86

 coordinate spaces, 205 - 206

 coordinating implicit animations, 119 - 120

 Core Image filter, 5

 CIQRCodeGenerator filter,
parameters, 5 - 6

 Core Motion, integrating with gravity

behavior, 135 - 137

 Core Text

 glyphs, 47 - 50

 Text Kit, ligatures, 46 - 47

 creating

 attributed strings from HTML,
document type dictionaries, 79 - 81

 boundaries for gravity behavior, 138

 custom behaviors, 139 - 146

 dynamic animators, 126 - 127

 adding behaviors, 126 - 127

 delegation, 126

 frame-watching dynamic behaviors,
 131 - 132

 HTML from attributed strings, 82

 mask views, 166 - 169

 movies, 14 - 23

 expressive drawing, 18 - 19

 from frames, 19 - 23

 images, adding, 23

 UIBlurEffect class, 170

 UIDictationController class, 5

 UIDynamicAnimator class, 125 - 126

 UIFont class, 27

 UIFontDescriptor class, 40 - 41

 UIImageAsset class, 210 - 211

 UIImageView class, 210

 UIInterpolatingMotionEffect class, 111

 UIKit, enhancements to, 75 - 78

 UITextView class, 59

 UITraitCollection class, 201

 UIVisualEffectView class, 169

 closestPositionToPoint: method, 96

 Cocoa Touch, APIs, 248

 Code 39 barcode system, 9

 Code 93 barcode system, 9

 Code 128 barcode system, 9

 collapsed property, 218

 collection views

 dynamic animators, 147 - 150

 custom flow layouts, 147

 returning layout attributes,
 148 - 149

 physics-based behaviors,
adding, 149 - 150

 collisions, 125

 combining trait collections, 203 - 204

 comments, converting to warnings,

 229 - 231

 comparing Objective-C and Swift, 239 - 240

 completion blocks, 3 - 4

 implicit completion blocks, building,
 120 - 121

 containers, 46 , 57 - 62

 adaptive flow, 58 - 60

 bounding rectangles, 62

 exclusion zones, 61

266 creating

 designing for traits, 204

 detecting

 faces, 14

 pauses, 127 - 132

 diagnostics, overriding, 235

 dictation, 5

 directives

 converting comments to warnings,
 229 - 231

 errors, 232 - 233

 messages, 234

 overriding diagnostics, 235

 testing for the simulator, 232

 unused variable warnings, 235 - 236

 warnings, 231 - 232

 wrapping pragmas, 234 - 235

 disabling

 alert buttons, 161

 interpolation for QR codes, 7 - 8

 motion effects, 110

 displaying supported glyphs for

fonts, 53 - 55

 displayModeButtonItem property, 218 - 219

 displayScale property, 202

 document attribute dictionaries,

establishing, 89 - 90

 documents, creating representations from

attributed strings, 81 - 82

 draggable exclusion zones, 69 - 71

 drawInContext:method, 123

 drawing

 into pixel buffer, 17 - 18

 properties, 123 - 124

 duration of implicit animations, 118 - 119

 PDFs, 71 - 73

 QR codes, 6 - 8

 views

 Bezier-based shape image views,
 184 - 185

 round views, 180 - 183

 virtual planes, 110 - 111

 Cupcake Ipsum website, 223

 custom behaviors, creating, 139 - 146

 custom dynamic behaviors

 improving, 142 - 144

 secondary behaviors, 144 - 146

 custom flow layouts, 147

 custom properties, animating, 121 - 122

 custom transition animations, 113 - 116

 building transitioning objects, 114 - 116

 delegation, 114

 UIViewControllerAnimated-
Transitioning protocol, 113

 customAnimationForKey: method, 121

 customizing font sizes, 38

 D
 damped harmonics, spring-based

animation, 106 - 109

 damping constant, 109

 practical uses for, 108 - 109

 DampedSinusoid() function, 103

 declaring key support, 97 - 98

 defining trait collections, 202 - 203

 delegate callbacks for

AVSpeechSynthesizer class, 3 - 4

 delegation, 114

 dynamics delegation, 126

 density property, 139

267exclusion zones

 integrating with attributed
strings, 31 - 35

 applying text style ranges, 34 - 35

 scanning for text style ranges,
 32 - 34

 string attributes, modifying fonts
with, 42

 styles, 26

 building fonts from, 28

 type updates, listening for, 28 - 31

 E
 EAN (European Article Number) barcode, 9

 effect views, 169 - 174

 animating, 172 - 174

 blur effect, building, 170 - 171

 vibrancy effects, 171 - 172

 elasticity property, 139

 enabling

 alert buttons, 161

 metadata output, 11

 endEditing method, 56

 enhancing

 attributed strings, 91 - 94

 barcode recognition, 14

 view dynamics, 138 - 139

 enumerateAttributesInRange:options:

usingBlock: method, 88

 enumerating

 attributes, 87 - 88

 optionals, 245 - 246

 error handling in Swift, 251

 “even/odd” fill rule, 186

 exclusion zones, 61

 draggable exclusion zones, 69 - 71

 dynamic animators, 125

 collection views, 147 - 150

 custom flow layouts, 147

 returning layout attributes,
 148 - 149

 creating, 126 - 127

 adding behaviors, 126 - 127

 delegation, 126

 detecting pauses, 127 - 132

 frame-watching dynamic
behaviors, creating, 131 - 132

 monitoring views, 128 - 130

 gravity behavior

 connecting to device
acceleration, 137

 creating boundaries, 138

 integrating with Core Motion,
 135 - 137

 jelly view alert, building, 150 - 154

 deploying jelly, 154

 drawing the view, 152 - 153

 physics-based behaviors, 125 - 126

 snap zones, 133 - 135

 dynamic behaviors, subverting, 141 - 142

 Dynamic Type, 25 - 31

 attribute-ready dynamic elements,
 35 - 38

 custom font faces, 36

 dynamic text views, 37 - 38

 font descriptors

 caveats, 40 - 41

 multiple font variations, 41

 font sizes, 27

 accessibility versions, 27

 customizing, 38

 user-controlled sizes, 43

268 expressive drawing

 G
 generating

 random feeds, 227

 random user data, 225 - 226

 gestures

 draggable exclusion zones, 69 - 71

 taps, spring-based animation, 106 - 109

 GitHub , xv

 lorem ipsum projects, 222

 glyphs, 46 - 55 , 66

 bounding rectangles, 62

 layout managers, 56 - 57

 ligatures, 46 - 47

 supported glyphs for fonts, displaying,
 53 - 55

 UIKit, 51 - 53

 gravity behavior, 125

 connecting to device acceleration, 137

 creating boundaries, 138

 integrating with Core Motion, 135 - 137

 H
 hardware key support, 97 - 99

 declaring, 97 - 98

 headlines, 26

 horizontalSizeClass property, 202

 HTML

 converting to attributed strings, 78 - 83

 document type dictionaries, 79 - 81

 creating from attributed strings, 82

 markup initialization, 83

 writing RTFD containers from
data, 86 - 87

 expressive drawing, 18 - 19

 extending mutable attributed strings, 94

 extracting bounds, 13

 F
 faces, detecting, 14

 fading logos, building, 122

 Fake Name Generator, 225 - 226

 files, saving from the simulator, 237

 filters, Core Image filter, 5

 flow layouts, 147

 font descriptors, 39 - 42

 caveats, 40 - 41

 multiple font variations, 41

 font sizes (Dynamic Type), 27

 accessibility versions, 27

 custom sizing, 38

 user-controlled font sizes, 43

 fonts

 modifying with string attributes, 42

 with multiple variations, 41

 supported glyphs, displaying, 53 - 55

 updating with dynamic attributes,
 35 - 38

 custom font faces, 36

 dynamic text views, 37 - 38

 footnotes (Dynamic Type), 26

 frames, building movies from, 19 - 23

 frame-watching dynamic behaviors,

creating, 131 - 132

 friction property, 139

 Fuller, Landon, 238

 functions

 DampedSinusoid() function, 103

 UIGraphicsPopContext() function, 17

 UIGraphicsPushContext() function, 17

269labels, enabling touch

 integrating

 Dynamic Type with attributed
strings, 31 - 35

 applying text style ranges, 34 - 35

 scanning for text style
ranges, 32 - 34

 gravity behavior with Core Motion,
 135 - 137

 intercepting updates, 122

 International Article Number barcode, 9

 interpolation, disabling for QR codes, 7 - 8

 iOS 8

 attributed text updates, 36

 split view controllers, 214 - 219

 supported barcode formats, 8 - 9

 J-K
 jelly view alert, building, 150 - 154

 deploying jelly, 154

 drawing the view, 152 - 153

 JSON feed resources, 227

key support, 97 - 99

 declaring, 97 - 98

 keyframe animation, 101 - 103

 blocking animators, 105 - 106

 DampedSinusoid() function, 103

 scale transformation, 103 - 105

 shaking effect, 102 - 103

 L
 labels, enabling touch, 63 - 69

 adding visual feedback, 67 - 69

 checking for links, 67

 glyphs, 66

 hybrid language development, 252 - 256

 accessing classes, 252 - 253

 class descent, 255 - 256

 Objective-C, calling from Swift, 252

 I
 images

 adding to movies, 23

 building from PDFs, 211 - 214

 placeholders, 223 - 225

 implementing snap zones, 133 - 135

 implicit animations, 116 - 124

 animating custom properties, 121 - 122

 completion blocks, 120 - 121

 coordinating, 119 - 120

 drawing properties, 123 - 124

 intercepting updates, 122

 layers

 building, 117 - 118

 views, building, 118

 timing, 118 - 119

 improving custom dynamic

behaviors, 142 - 144

 inferred types, 244

 initializing attributed strings from a file,

 84 - 85

 inputCorrectionLevel parameter

(CIQRCodeGenerator filter), 5 - 6

 inputMessage parameter

(CIQRCodeGenerator filter), 5 - 6

 insets, 60 - 61

 inspecting

 attributes, 87 - 88

 items with playgrounds, 258 - 259

270 labels, enabling touch

 media

 barcodes, 5 - 8

 enhancing recognition, 14

 extracting bounds, 13

 iOS-supported barcode formats, 8 - 9

 listening for metadata objects,
 10 - 11

 QR codes, building, 6 - 8

 responding to metadata, 11 - 13

 dictation, 5

 movies

 adding images, 23

 building, 16 - 17

 creating from frames, 19 - 23

 expressive drawing, 18 - 19

 TTS, 1 - 4

 completion blocks, 3 - 4

 utterances, 2

 messages, 234

 metadata

 enabling output, 11

 objects, listening for, 10 - 11

 responding to, 11 - 13

 methods

 actionForKey method, 118

 animationKey method, 194

 attributedStringWithAttachment
method, 78

 characterOffsetOfPosition:withinRange:
method, 95

 closestPositionToPoint: method, 96

 customAnimationForKey: method, 121

 drawInContext: method, 123

 enumerateAttributesInRange:options:
usingBlock: method, 88

 needsDisplayForKey: method, 122

 setAnimation: method, 194

 synchronizing Text Kit items with
labels, 64 - 65

 translating coordinates, 65 - 66

 layers

 animation-ready layers, building,
 117 - 118

 border layers, generating, 188 - 190

 views, building, 118

 layout managers (Text Kit), 46 , 56 - 57

 layouts

 attributes, returning, 148 - 149

 Auto Layout, 201

 containers, 57 - 62

 adaptive flow, 58 - 60

 exclusion zones, 61

 insets, 60 - 61

 custom flow layouts, 147

 document attribute dictionaries, 89 - 90

 draggable exclusion zones, 69 - 71

 side-by-side iPhone split views,
building, 215 - 218

 learning Swift, 259

 ligatures, 46 - 47

 listening

 for metadata objects, 10 - 11

 for type updates, 28 - 31

 logging, 238

 lorem ipsum text, 221 - 223

 requesting, 222 - 223

 Lorem Pixel website, 224

 M
 Markdown, 83

 marking non-null and nullable items, 236

 mask views, 164 - 169

 building, 166 - 169

 shape layer masking, 164 - 166

271physics-based behaviors

 NSMutableAttributedString class, 56

 nullable items, marking, 236

 O
 Objective-C

 calling from Swift, 252

 comparing to Swift, 239 - 240

 preparing Swift for, 254 - 255

 objects

 text ranges, 95 - 97

 transitioning objects, building, 114 - 116

 optionals, 243 - 248

 enumeration, 245 - 246

 inferred types, 244

 unwrapping, 246 - 247

 overriding

 relationships between trait collections
and assets, 210 - 211

 trait collections, 214 - 219

 P
 parameters for CIQRCodeGenerator

filter, 5 - 6

 pauses, detecting, 127 - 132

 PDF417 standard, 9

 PDFs

 building, 71 - 73

 creating images from, 211 - 214

 printing, 74

 physics-based behaviors, 125 - 126

 adding to collection views, 149 - 150

 custom behaviors, creating, 139 - 146

 frame-watching dynamic behaviors,
creating, 131 - 132

 transformedMetadataObjectFor-
MetadataObject method, 13

 viewWillTransitionToSize:with-
TransitionCoordinator: method, 207

 modifying

 attributed strings, 93 - 94

 fonts with string attributes, 42

 monitoring

 items with playgrounds, 258 - 259

 views, 128 - 130

 motion effects, 109 - 112

 disabling, 110

 shadow effects, 111 - 112

 virtual planes, 109 - 110

 building, 110 - 111

 movies

 building, 14 - 23

 expressive drawing, 18 - 19

 pixel buffer, creating, 16 - 17

 images, adding, 23

 pixel buffer

 creating, 16 - 17

 drawing into, 17 - 18

 multiple snap zones, handling, 133 - 135

 mutable attributed strings, extending, 94

 N
 needsDisplayForKey: method, 122

 NeXTSTEP, 83

 non-null items, marking, 236

 NSAttributedString

 class convenience methods, 91 - 92

 integrating with Dynamic Type, 31 - 35

 applying text style ranges, 34 - 35

 scanning for text style ranges,
 32 - 34

272 physics-based behaviors

 mask views, 164 - 169

 building, 166 - 169

 shape layer masking, 164 - 166

 popovers, 175 - 177

 supporting bubbles, 176 - 177

 printing text views, 73 - 74

 properties

 of dynamic behaviors, 138 - 139

 of trait collections, 202

 UIScreen properties, 205 - 207

 application frame, 206

 coordinate spaces, 205 - 206

 scale, 207

 screen bounds, 206

 pushes, 125

 Q-R
 QR (Quick Response) codes, 5

 building, 6 - 8

 Quartz 2D contexts, adding to UIKit context

stack, 17 - 18

random feeds, generating, 227

 random generation suite, 228 - 229

 Random User Generator, 225

 range dictionaries

 applying text style ranges, 34 - 35

 scanning for text style ranges, 32 - 34

 reading barcodes

 enhancing recognition, 14

 extracting bounds, 13

 iOS-supported barcode formats, 8 - 9

 listening for metadata objects, 10 - 11

 responding to metadata, 11 - 13

 repairing attributes for text storage, 56

 requesting lorem ipsum text, 222 - 223

 gravity

 connecting to device
acceleration, 137

 creating boundaries, 138

 integrating with Core Motion,
 135 - 137

 improving, 142 - 144

 pauses, detecting, 127 - 132

 properties, 138 - 139

 secondary behaviors, 144 - 146

 subverting, 141 - 142

 pitch of voice playback, adjusting, 3

 pixel buffer

 creating, 16 - 17

 drawing into, 17 - 18

 placeholders

 for images, 223 - 225

 lorem ipsum text, 221 - 223

 playgrounds, 256 - 258

 popovers, 175 - 177

 supporting bubbles, 176 - 177

 positions, text positions

 calculating, 95

 geometry, 95 - 96

 updating selection points, 97

 pragmas, wrapping, 234 - 235

 presentations, 155

 alerts, 155 - 163

 building, 156 - 161

 buttons, enabling, 161

 class deprecations, 155 - 156

 text fields, adding, 162 - 163

 effect views, 169 - 174

 animating, 172 - 174

 blur effect, 170 - 171

 vibrancy effects, 171 - 172

273Swift

 side-by-side iPhone split views, building,

 215 - 218

 simulator, saving files from, 237

 size classes, 204 - 205

 snap zones, 133 - 135

 multiple snap zones, handling, 133 - 135

 snaps, 125

 speech generation, 1

 completion blocks, 3 - 4

 TTS, utterances, 2

 “spinner” effect, creating, 147

 split view controllers, 214 - 219

 side-by-side iPhone split views,
building, 215 - 218

 spring-based animation, 106 - 109

 damping constant, 109

 practical uses for, 108 - 109

 string attributes, modifying fonts with, 42

 structs, UIEdgeInsets struct, 60

 styles

 building fonts from, 28

 Dynamic Type, 26

 layout managers, 56 - 57

 subheadlines, 26

 subverting dynamic behaviors, 141 - 142

 supported barcode formats, 8 - 9

 Swift, 239

 APIs, 249 - 251

 calling from Objective-C, 253 - 254

 error handling, 251

 iOS apps, building, 240 - 243

 learning, 259 - 260

 non-optionals, assigning values to, 248

 versus Objective-C, 239 - 240

 resistance property, 139

 resizing Bezier paths, 181 - 183

 responding to metadata, 11 - 13

 Retina display scales, 202

 retrieving sample code , xv

 returning copies of strings with new

attributes, 92 - 93

 rotation property, 138

 “spinner” effect, creating, 147

 round views, creating, 180 - 183

 RTF, 83

 RTFD containers

 converting text to data, 85 - 86

 writing from data, 86 - 87

 S
 sample code, retrieving , xv

 saving files from the simulator, 237

 scale property, 207

 scanning for text style ranges, 32 - 34

 screen bounds, 206

 setAnimation: method, 194

 shadow effects, 111 - 112

 shake keyframe animation, 102 - 103

 shape layer masking, 164 - 166

 shaped buttons, building, 190 - 193

 shaped views

 animations, adding, 193 - 199

 borders, adding, 187 - 190

 creating, 179 - 187

 Bezier-based shape image views,
 184 - 185

 round views, 180 - 183

 shapes, unclosed shapes, 185 - 187

274 Swift

 touch-enabled labels, 63 - 69

 adding visual feedback, 67 - 69

 checking for links, 67

 glyphs, 66

 synchronizing Text Kit items with
labels, 64 - 65

 translating coordinates, 65 - 66

 text ranges, 95 - 97

 text positions

 calculating, 95

 geometry, 95 - 96

 updating selection points, 97

 text storage (Text Kit), 46 , 55 - 56

 objects, 55

 repairing attributes, 56

 text style ranges

 applying, 34 - 35

 scanning for, 32 - 34

 text views

 dynamic text views, 37 - 38

 printing, 73 - 74

 touch-enabled labels, 63 - 69

 adding visual feedback, 67 - 69

 checking for links, 67

 glyphs, 66

 synchronizing Text Kit items with
labels, 64 - 65

 translating coordinates, 65 - 66

 trait collections, 201 - 204

 combining, 203 - 204

 defining, 202 - 203

 designing for, 204

 overriding relationships with assets,
 210 - 211

 properties, 202

 split view controllers, 214 - 219

 optionals, 243 - 248

 enumeration, 245 - 246

 inferred types, 244

 unwrapping, 246 - 247

 playgrounds, 256 - 258

 preparing for Objective-C, 254 - 255

 The Swift Programming Language , 259

 system animations, 109

 T
 tabular text, 76

 tap gestures, spring-based animation,

 106 - 109

 damping constant, 109

 practical uses for, 108 - 109

 text . See also Dynamic Type

 RTFD text, converting to data, 85 - 86

 text fields, adding to alerts, 162 - 163

 Text Kit, 43

 containers, 46 , 57 - 62

 adaptive flow, 58 - 60

 bounding rectangles, 62

 exclusion zones, 61

 insets, 60 - 61

 exclusion zones, draggable exclusion
zones, 69 - 71

 glyphs, 46 - 55

 ligatures, 46 - 47

 layout managers, 46 , 56 - 57

 PDFs

 building, 71 - 73

 printing, 74

 text storage, 46 , 55 - 56

 objects, 55

 repairing attributes, 56

 text views, printing, 73 - 74

275user interface idioms

 UIKit

 adding Quartz 2D contexts, 17 - 18

 APIs, 50 - 51

 classes, enhancements to, 75 - 78

 dynamic behaviors, 125 - 126

 font descriptors, 39 - 42

 glyphs, 51 - 53

 spring-based animation, 106 - 109

 UINavigationControllerDelegate

protocol, 114

 UIScreen properties, 205 - 207

 application frame, 206

 coordinate spaces, 205 - 206

 scale, 207

 screen bounds, 206

 UISystemAnimationDelete animation, 109

 UITabBarControllerDelegate protocol, 114

 UITextInput protocol, text ranges

 geometry, 95 - 96

 positions, calculating, 95

 updating selection points, 97

 UITextView class, 59

 UITraitCollection class, 201

 UIViewControllerAnimatedTransitioning

protocol, 113 - 114

 UIVisualEffectView class, 169

 unclosed shapes, 185 - 187

 unused variable warnings, 235 - 236

 unwrapping optionals, 246 - 247

 UPC (Universal Product Code) standard, 9

 updating fonts, 35 - 38

 custom font faces, 36

 dynamic text views, 37 - 38

 user interface idioms, 202

 transformedMetadataObjectForMetadata-

Object method, 13

 TTS (text-to-speech), 1 - 4 . See also dictation

 utterances, 2

 completion blocks, 3 - 4

 pitchMultiplier, 3

 type updates, listening for, 28 - 31

 typography

 Dynamic Type, 25 - 31

 font sizes, 27

 integrating with attributed strings,
 31 - 35

 styles, 26

 type updates, listening for, 28 - 31

 glyphs

 ligatures, 46 - 47

 supported glyphs for fonts,
displaying, 53 - 55

 U
 UIAlertController class, 155

 UIBlurEffect class, 170

 UIDictationController class, 5

 UIDynamicAnimator class, 125 - 126

 UIDynamicItem protocol, 139

 UIEdgeInsets struct, 60

 UIFont class, 27

 UIFontDescriptor class, 40 - 41

 UIGraphicsPopContext() function, 17

 UIGraphicsPushContext() function, 17

 UIImageAsset class, 210 - 211

 UIImageView class, 210

 UIInterpolatingMotionEffect class, 111

276 user-controlled font sizes

 monitoring, 128 - 130

 round views, creating, 180 - 183

 shaped views

 animations, adding, 193 - 199

 borders, adding, 187 - 190

 text views, printing, 73 - 74

 viewWillTransitionToSize:

withTransitionCoordinator: method, 207

 virtual planes, 109 - 110

 building, 110 - 111

 visual feedback, adding to touch-enabled

labels, 67 - 69

 voice playback, adjusting pitch, 3

 W
 warnings, 231 - 232

 unused variable warnings, 235 - 236

 websites

 Bacon Ipsum, 223

 Clang Language Extensions, 234

 Cupcake Ipsum, 223

 Lorem Pixel, 224

 wrapping pragmas, 234 - 235

 writing RTFD containers from data, 86 - 87

 X-Y-Z
 XML feed resources, 228

 yaw, 14

 user-controlled font sizes, 43

 Using Swift with Cocoa and
Objective-C , 259

 utterances, 2

 completion blocks, 3 - 4

 V
 verticalSizeClass property, 202

 vibrancy effects, 171 - 172

 view animation, 101

 view controllers,

UIViewControllerAnimatedTransitioning

protocol, 113

 views

 Bezier-based shape image views,
creating, 184 - 185

 building around layers, 118

 collection views

 dynamic animators, 147 - 150

 physics-based behaviors, adding,
 149 - 150

 dynamics, enhancing, 138 - 139

 effect views, 169 - 174

 animating, 172 - 174

 vibrancy effects, 171 - 172

 jelly view alert, building, 150 - 154

 deploying jelly, 154

 drawing the view, 152 - 153

 mask views, 164 - 169

 building, 166 - 169

 shape layer masking, 164 - 166

Register the Addison-Wesley, Exam
Cram, Prentice Hall, Que, and
Sams products you own to unlock
great benefi ts.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.
You will then be prompted to enter
the 10- or 13-digit ISBN that appears
on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall

Professional, Que, and Sams. Here you will gain access to quality and trusted content and

resources from the authors, creators, innovators, and leaders of technology. Whether you’re

looking for a book on a new technology, a helpful article, timely newsletters, or access to

the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock
the following benefi ts:

• Access to supplemental content,
including bonus chapters,
source code, or project fi les.

• A coupon to be used on your
next purchase.

Registration benefi ts vary by product.
Benefi ts will be listed on your Account
page under Registered Products.

informit.com/register

THIS PRODUCT

aw_regthisprod_7x9.indd 1 12/5/08 3:37:06 PM

 InformIT is a brand of Pearson and the online presence
for the world’s leading technology publishers. It’s your source
for reliable and qualified content and knowledge, providing
access to the top brands, authors, and contributors from
the tech community.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

LearnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seek-
ing timely and relevant information and tutorials? Looking for expert opin-
ions, advice, and tips? InformIT has the solution.

• Learn about new releases and special promotions by
subscribing to a wide variety of newsletters.
Visit informit.com/newsletters.

• Access FREE podcasts from experts at informit.com/podcasts.

• Read the latest author articles and sample chapters at
informit.com/articles.

• Access thousands of books and videos in the Safari Books
Online digital library at safari.informit.com.

• Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the
hottest technology content.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

Are You Part of the IT Crowd?
Connect with Pearson authors and editors via RSS feeds, Facebook,

Twitter, YouTube, and more! Visit informit.com/socialconnect.

	Contents
	Preface
	1 Media
	Speech
	Other Options
	Delegate Callbacks
	Dictation

	Creating Barcodes
	Filter Parameters
	Building Codes

	Reading Barcodes
	Listening for Metadata Objects
	Responding to Metadata
	Extracting Bounds
	Enhancing Recognition
	Detecting Faces

	Building AVFoundation Movies
	Creating a Pixel Buffer
	Drawing into the Pixel Buffer
	Expressive Drawing
	Building Movies from Frames
	Adding Images to Movies

	Wrap-up

	2 Dynamic Typography
	Type Size and User Needs
	How Dynamic Type Works
	Listening for Type Updates

	Handling Dynamic Type with Attributes
	Scanning for Text Style Ranges
	Applying Text Style Ranges

	Attribute-Ready Dynamic Elements
	Custom Fonts Faces
	Dynamic Text Views

	Custom Sizing
	Font Descriptors
	Descriptor Challenges
	Fonts with Multiple Variations
	Using String Attributes to Modify Fonts

	Dynamic Type Gotchas
	Wrap-up

	3 Text Kit
	Creating Complex Text Layouts
	Glyphs
	Text Storage
	Layout Managers
	Text Containers
	Adaptive Flow
	Insets
	Exclusion Paths
	Bounding Rectangles

	Using Text Kit to Add Touch to Labels
	Establishing Text Kit
	Synchronizing
	Translating Coordinates
	Glyphs and Characters
	Checking for Links
	Adding Visual Feedback

	Draggable Exclusion Zones
	Building PDFs with Text Kit
	Printing Text View Data
	Printing PDF Data

	Wrap-up

	4 Attributed Strings and Document Containers
	Class Enhancements
	String Attachments

	Building Attributed Strings from HTML
	Document Type Dictionaries
	Converting HTML Source to Attributed Strings
	Converting Attributed Strings to Document Representations
	Generating HTML from Attributed Strings
	Markup Initialization

	RTF and RTFD
	The RTFD Container
	Initializing Attributed Strings from a File
	Converting RTFD Text to Data
	Writing RTFD Containers from Data
	Inspecting Attributes

	Establishing Document Attributes
	Enhancing Attributed Strings
	Returning Copies with New Attributes
	Adjusting Attributes
	Extending Mutable Attributed Strings

	Text Ranges
	Calculating Positions
	Position Geometry
	Updating Selection Points

	Hardware Key Support
	Wrap-up

	5 Animation
	Keyframe Animation
	Building Physics with Keyframes
	Blocking Animators
	UIKit Spring-Based Animations
	Practical Uses for Spring Animations

	System Animations
	Motion Effects
	Building Planes
	Shadow Effects

	Custom Transition Animations
	Delegation
	Building Transitioning Objects

	Implicit Animations
	Building an Animation-Ready Layer
	Building a View Around a Layer
	Timing
	Coordinating Animations
	Building Implicit Completion Blocks
	Animating Custom Properties
	Intercepting Updates
	Drawing Properties

	Wrap-up

	6 Dynamic Animators
	Physics-Based Behaviors
	Building Dynamics

	Detecting Pauses
	Creating a Frame-Watching Dynamic Behavior

	Implementing Snap Zones
	Leveraging Real-World Physics
	Connecting a Gravity Behavior to Device Acceleration
	Creating Boundaries
	Enhancing View Dynamics

	Custom Behaviors
	Creating Custom Dynamic Items
	Subverting Dynamic Behaviors
	Better Custom Dynamic Behaviors
	Custom Secondary Behaviors

	Collection Views and Dynamic Animators
	Custom Flow Layouts
	Returning Layout Attributes
	Updating Behaviors

	Building a Dynamic Alert View
	Connecting Up the Jelly
	Drawing the View
	Deploying Jelly

	Wrap-up

	7 Presentations
	Alerts
	Class Deprecations
	Building Alerts
	Enabling and Disabling Alert Buttons
	Adding Text Fields

	Mask Views
	Shape Layer Masking
	Building Mask Views

	Building Effect Views
	Building a Blur Effect
	Adding Vibrancy Effects
	Animating Effect Views

	Building Popovers
	Supporting Bubbles
	Presenting Popovers

	Wrap-up

	8 Shape Magic
	How to Shape a View
	Expanding Beyond Circles
	Resizing Bezier Paths
	Building a Bezier-Based Shape Image View
	Working with Unclosed Shapes

	Adding Borders to Shaped Views
	Building Shaped Buttons
	Adding Attention-Grabbing Animations to Shaped Views
	Wrap-up

	9 Adaptive Deployment
	Traits
	Trait Properties
	Defining Traits
	Combining Trait Collections
	Designing for Traits

	UIScreen Properties
	Coordinate Spaces
	Application Frame
	Screen Bounds
	Scale

	Rotation
	Size Classes and Assets
	Basic Deployment
	UIKit and Image Views
	The UIImageAsset Class
	Building Images from PDFs

	Overriding Trait Collections
	Building Side-by-Side iPhone Split Views
	A Bit More About iOS 8 Split View Controllers

	Wrap-up

	10 Development Helpers
	All the Lorems
	Placeholder Text
	Image Ipsums
	Generating Random User Data
	Bulk Names
	Generating Random Feeds

	Random Everything
	Directives
	Converting Comments to Warnings
	Warnings
	Testing for the Simulator
	Errors
	Testing for Inclusion
	Messages
	Wrapping Pragmas
	Overriding Diagnostics
	Unused Variable Warnings
	Marking Non-null and Nullable Items

	Developer Tweaks
	Saving Files from the Simulator
	Tighter Logging

	Wrap-up

	11 A Taste of Swift
	Swift Versus Objective-C
	Building iOS Apps in Swift
	Optionals
	Inferred Types
	The Optional Enumeration
	Unwrapping Optionals
	Assigning Values to Non-optionals

	Cocoa Touch Patterns
	Hybrid Language Development
	Calling Objective-C from Swift
	Accessing Classes
	Calling Swift from Objective-C
	Preparing Swift for Objective-C
	Class Descent

	Building the Basics
	Watching Progress

	Learning Swift
	Wrap-up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W
	X-Y-Z

