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Preface

I wrote the first edition of Thoughtful Machine Learning out of frustration over my
coworkers’ lack of discipline. Back in 2009 I was working on lots of machine learning
projects and found that as soon as we introduced support vector machines, neural
nets, or anything else, all of a sudden common coding practice just went out the
window.

Thoughtful Machine Learning was my response. At the time I was writing 100% of my
code in Ruby and wrote this book for that language. Well, as you can imagine, that
was a tough challenge, and I’m excited to present a new edition of this book rewritten
for Python. I have gone through most of the chapters, changed the examples, and
made it much more up to date and useful for people who will write machine learning
code. I hope you enjoy it.

As I stated in the first edition, my door is always open. If you want to talk to me for
any reason, feel free to drop me a line at matt@matthewkirk.com. And if you ever
make it to Seattle, I would love to meet you over coffee.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

ix



Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a general note.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
http://github.com/thoughtfulml/examples-in-python.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Thoughtful Machine Learning
with Python by Matthew Kirk (O’Reilly). Copyright 2017 Matthew Kirk,
978-1-491-92413-6.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
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Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/thoughtful-machine-learning-
with-python.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
I’ve waited over a year to finish this book. My diagnosis of testicular cancer and the
sudden death of my dad forced me take a step back and reflect before I could come to
grips with writing again. Even though it took longer than I estimated, I’m quite
pleased with the result.

I am grateful for the support I received in writing this book: everybody who helped
me at O’Reilly and with writing the book. Shannon Cutt, my editor, who was a rock
and consistently uplifting. Liz Rush, the sole technical reviewer who was able to make
it through the process with me. Stephen Elston, who gave helpful feedback. Mike
Loukides, for humoring my idea and letting it grow into two published books.
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CHAPTER 1

Probably Approximately Correct Software

If you’ve ever flown on an airplane, you have participated in one of the safest forms of
travel in the world. The odds of being killed in an airplane are 1 in 29.4 million,
meaning that you could decide to become an airline pilot, and throughout a 40-year
career, never once be in a crash. Those odds are staggering considering just how com‐
plex airplanes really are. But it wasn’t always that way.

The year 2014 was bad for aviation; there were 824 aviation-related deaths, including
the Malaysia Air plane that went missing. In 1929 there were 257 casualties. This
makes it seem like we’ve become worse at aviation until you realize that in the US
alone there are over 10 million flights per year, whereas in 1929 there were substan‐
tially fewer—about 50,000 to 100,000. This means that the overall probability of being
killed in a plane wreck from 1929 to 2014 has plummeted from 0.25% to 0.00824%.

Plane travel changed over the years and so has software development. While in 1929
software development as we know it didn’t exist, over the course of 85 years we have
built and failed many software projects.

Recent examples include software projects like the launch of healthcare.gov, which
was a fiscal disaster, costing around $634 million dollars. Even worse are software
projects that have other disastrous bugs. In 2013 NASDAQ shut down due to a soft‐
ware glitch and was fined $10 million USD. The year 2014 saw the Heartbleed bug
infection, which made many sites using SSL vulnerable. As a result, CloudFlare
revoked more than 100,000 SSL certificates, which they have said will cost them mil‐
lions.

Software and airplanes share one common thread: they’re both complex and when
they fail, they fail catastrophically and publically. Airlines have been able to ensure
safe travel and decrease the probability of airline disasters by over 96%. Unfortunately
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we cannot say the same about software, which grows ever more complex. Cata‐
strophic bugs strike with regularity, wasting billions of dollars.

Why is it that airlines have become so safe and software so buggy?

Writing Software Right
Between 1929 and 2014 airplanes have become more complex, bigger, and faster. But
with that growth also came more regulation from the FAA and international bodies as
well as a culture of checklists among pilots.

While computer technology and hardware have rapidly changed, the software that
runs it hasn’t. We still use mostly procedural and object-oriented code that doesn’t
take full advantage of parallel computation. But programmers have made good strides
toward coming up with guidelines for writing software and creating a culture of test‐
ing. These have led to the adoption of SOLID and TDD. SOLID is a set of principles
that guide us to write better code, and TDD is either test-driven design or test-driven
development. We will talk about these two mental models as they relate to writing the
right software and talk about software-centric refactoring.

SOLID
SOLID is a framework that helps design better object-oriented code. In the same ways
that the FAA defines what an airline or airplane should do, SOLID tells us how soft‐
ware should be created. Violations of FAA regulations occasionally happen and can
range from disastrous to minute. The same is true with SOLID. These principles
sometimes make a huge difference but most of the time are just guidelines. SOLID
was introduced by Robert Martin as the Five Principles. The impetus was to write
better code that is maintainable, understandable, and stable. Michael Feathers came
up with the mnemonic device SOLID to remember them.

SOLID stands for:

• Single Responsibility Principle (SRP)
• Open/Closed Principle (OCP)
• Liskov Substitution Principle (LSP)
• Interface Segregation Principle (ISP)
• Dependency Inversion Principle (DIP)

Single Responsibility Principle
The SRP has become one of the most prevalent parts of writing good object-oriented
code. The reason is that single responsibility defines simple classes or objects. The

2 | Chapter 1: Probably Approximately Correct Software



same mentality can be applied to functional programming with pure functions. But
the idea is all about simplicity. Have a piece of software do one thing and only one
thing. A good example of an SRP violation is a multi-tool (Figure 1-1). They do just
about everything but unfortunately are only useful in a pinch.

Figure 1-1. A multi-tool like this has too many responsibilities

Open/Closed Principle
The OCP, sometimes also called encapsulation, is the principle that objects should be
open for extending but not for modification. This can be shown in the case of a
counter object that has an internal count associated with it. The object has the meth‐
ods increment and decrement. This object should not allow anybody to change the
internal count unless it follows the defined API, but it can be extended (e.g., to notify
someone of a count change by an object like Notifier).

Liskov Substitution Principle
The LSP states that any subtype should be easily substituted out from underneath a
object tree without side effect. For instance, a model car could be substituted for a
real car.

Interface Segregation Principle
The ISP is the principle that having many client-specific interfaces is better than a
general interface for all clients. This principle is about simplifying the interchange of
data between entities. A good example would be separating garbage, compost, and
recycling. Instead of having one big garbage can it has three, specific to the garbage
type.

Writing Software Right | 3



1 Robert Martin, “The Dependency Inversion Principle,” http://bit.ly/the-DIP.
2 Atul Gawande, The Checklist Manifesto (New York: Metropolitan Books), p. 161.

Dependency Inversion Principle
The DIP is a principle that guides us to depend on abstractions, not concretions.
What this is saying is that we should build a layer or inheritance tree of objects. The
example Robert Martin explains in his original paper1 is that we should have a Key
boardReader inherit from a general Reader object instead of being everything in one
class. This also aligns well with what Arthur Riel said in Object Oriented Design Heu‐
ristics about avoiding god classes. While you could solder a wire directly from a guitar
to an amplifier, it most likely would be inefficient and not sound very good.

The SOLID framework has stood the test of time and has shown up
in many books by Martin and Feathers, as well as appearing in
Sandi Metz’s book Practical Object-Oriented Design in Ruby. This
framework is meant to be a guideline but also to remind us of the
simple things so that when we’re writing code we write the best we
can. These guidelines help write architectually correct software.

Testing or TDD
In the early days of aviation, pilots didn’t use checklists to test whether their airplane
was ready for takeoff. In the book The Right Stuff by Tom Wolfe, most of the original
test pilots like Chuck Yeager would go by feel and their own ability to manage the
complexities of the craft. This also led to a quarter of test pilots being killed in action.2

Today, things are different. Before taking off, pilots go through a set of checks. Some
of these checks can seem arduous, like introducing yourself by name to the other
crewmembers. But imagine if you find yourself in a tailspin and need to notify some‐
one of a problem immediately. If you didn’t know their name it’d be hard to commu‐
nicate.

The same is true for good software. Having a set of systematic checks, running regu‐
larly, to test whether our software is working properly or not is what makes software
operate consistently.

In the early days of software, most tests were done after writing the original software
(see also the waterfall model, used by NASA and other organizations to design soft‐
ware and test it for production). This worked well with the style of project manage‐
ment common then. Similar to how airplanes are still built, software used to be
designed first, written according to specs, and then tested before delivery to the cus‐
tomer. But because technology has a short shelf life, this method of testing could take
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3 Nachiappan Nagappan et al., “Realizing Quality Improvement through Test Driven Development: Results and
Experience of Four Industrial Teams,” Empirical Software Engineering 13, no. 3 (2008): 289–302, http://bit.ly/
Nagappanetal.

months or even years. This led to the Agile Manifesto as well as the culture of testing
and TDD, spearheaded by Kent Beck, Ward Cunningham, and many others.

The idea of test-driven development is simple: write a test to record what you want to
achieve, test to make sure the test fails first, write the code to fix the test, and then,
after it passes, fix your code to fit in with the SOLID guidelines. While many people
argue that this adds time to the development cycle, it drastically reduces bug deficien‐
cies in code and improves its stability as it operates in production.3

Airplanes, with their low tolerance for failure, mostly operate the same way. Before a
pilot flies the Boeing 787 they have spent X amount of hours in a flight simulator
understanding and testing their knowledge of the plane. Before planes take off they
are tested, and during the flight they are tested again. Modern software development
is very much the same way. We test our knowledge by writing tests before deploying
it, as well as when something is deployed (by monitoring).

But this still leaves one problem: the reality that since not everything stays the same,
writing a test doesn’t make good code. David Heinemer Hanson, in his viral presenta‐
tion about test-driven damage, has made some very good points about how following
TDD and SOLID blindly will yield complicated code. Most of his points have to do
with needless complication due to extracting out every piece of code into different
classes, or writing code to be testable and not readable. But I would argue that this is
where the last factor in writing software right comes in: refactoring.

Refactoring
Refactoring is one of the hardest programming practices to explain to nonprogram‐
mers, who don’t get to see what is underneath the surface. When you fly on a plane
you are seeing only 20% of what makes the plane fly. Underneath all of the pieces of
aluminum and titanium are intricate electrical systems that power emergency lighting
in case anything fails during flight, plumbing, trusses engineered to be light and also
sturdy—too much to list here. In many ways explaining what goes into an airplane is
like explaining to someone that there’s pipes under the sink below that beautiful
faucet.

Refactoring takes the existing structure and makes it better. It’s taking a messy circuit
breaker and cleaning it up so that when you look at it, you know exactly what is going
on. While airplanes are rigidly designed, software is not. Things change rapidly in
software. Many companies are continuously deploying software to a production envi‐
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ronment. All of that feature development can sometimes cause a certain amount of
technical debt.

Technical debt, also known as design debt or code debt, is a metaphor for poor system
design that happens over time with software projects. The debilitating problem of
technical debt is that it accrues interest and eventually blocks future feature develop‐
ment.

If you’ve been on a project long enough, you will know the feeling of having fast
releases in the beginning only to come to a standstill toward the end. Technical debt
in many cases arises through not writing tests or not following the SOLID principles.

Having technical debt isn’t a bad thing—sometimes projects need to be pushed out
earlier so business can expand—but not paying down debt will eventually accrue
enough interest to destroy a project. The way we get over this is by refactoring our
code.

By refactoring, we move our code closer to the SOLID guidelines and a TDD code‐
base. It’s cleaning up the existing code and making it easy for new developers to come
in and work on the code that exists like so:

1. Follow the SOLID guidelines
a. Single Responsibility Principle
b. Open/Closed Principle
c. Liskov Substitution Principle
d. Interface Segregation Principle
e. Dependency Inversion Principle

2. Implement TDD (test-driven development/design)
3. Refactor your code to avoid a buildup of technical debt

The real question now is what makes the software right?

Writing the Right Software
Writing the right software is much trickier than writing software right. In his book
Specification by Example, Gojko Adzic determines the best approach to writing soft‐
ware is to craft specifications first, then to work with consumers directly. Only after
the specification is complete does one write the code to fit that spec. But this suffers
from the problem of practice—sometimes the world isn’t what we think it is. Our ini‐
tial model of what we think is true many times isn’t.

Webvan, for instance, failed miserably at building an online grocery business. They
had almost $400 million in investment capital and rapidly built infrastructure to sup‐
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port what they thought would be a booming business. Unfortunately they were a flop
because of the cost of shipping food and the overestimated market for online grocery
buying. By many measures they were a success at writing software and building a
business, but the market just wasn’t ready for them and they quickly went bankrupt.
Today a lot of the infrastructure they built is used by Amazon.com for AmazonFresh.

In theory, theory and practice are the same. In practice they are not.
—Albert Einstein

We are now at the point where theoretically we can write software correctly and it’ll
work, but writing the right software is a much fuzzier problem. This is where
machine learning really comes in.

Writing the Right Software with Machine Learning
In The Knowledge-Creating Company, Nonaka and Takeuchi outlined what made Jap‐
anese companies so successful in the 1980s. Instead of a top-down approach of solv‐
ing the problem, they would learn over time. Their example of kneading bread and
turning that into a breadmaker is a perfect example of iteration and is easily applied
to software development.

But we can go further with machine learning.

What Exactly Is Machine Learning?
According to most definitions, machine learning is a collection of algorithms, techni‐
ques, and tricks of the trade that allow machines to learn from data—that is, some‐
thing represented in numerical format (matrices, vectors, etc.).

To understand machine learning better, though, let’s look at how it came into exis‐
tence. In the 1950s extensive research was done on playing checkers. A lot of these
models focused on playing the game better and coming up with optimal strategies.
You could probably come up with a simple enough program to play checkers today
just by working backward from a win, mapping out a decision tree, and optimizing
that way.

Yet this was a very narrow and deductive way of reasoning. Effectively the agent had
to be programmed. In most of these early programs there was no context or irrational
behavior programmed in.

About 30 years later, machine learning started to take off. Many of the same minds
started working on problems involving spam filtering, classification, and general data
analysis.

The important shift here is a move away from computerized deduction to computer‐
ized induction. Much as Sherlock Holmes did, deduction involves using complex
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logic models to come to a conclusion. By contrast, induction involves taking data as
being true and trying to fit a model to that data. This shift has created many great
advances in finding good-enough solutions to common problems.

The issue with inductive reasoning, though, is that you can only feed the algorithm
data that you know about. Quantifying some things is exceptionally difficult. For
instance, how could you quantify how cuddly a kitten looks in an image?

In the last 10 years we have been witnessing a renaissance around deep learning,
which alleviates that problem. Instead of relying on data coded by humans, algo‐
rithms like autoencoders have been able to find data points we couldn’t quantify
before.

This all sounds amazing, but with all this power comes an exceptionally high cost and
responsibility.

The High Interest Credit Card Debt of Machine Learning
Recently, in a paper published by Google titled “Machine Learning: The High Interest
Credit Card of Technical Debt”, Sculley et al. explained that machine learning
projects suffer from the same technical debt issues outlined plus more (Table 1-1).

They noted that machine learning projects are inherently complex, have vague
boundaries, rely heavily on data dependencies, suffer from system-level spaghetti
code, and can radically change due to changes in the outside world. Their argument
is that these are specifically related to machine learning projects and for the most part
they are.

Instead of going through these issues one by one, I thought it would be more interest‐
ing to tie back to our original discussion of SOLID and TDD as well as refactoring
and see how it relates to machine learning code.

Table 1-1. The high interest credit card debt of machine learning

Machine learning problem Manifests as SOLID violation
Entanglement Changing one factor changes everything SRP

Hidden feedback loops Having built-in hidden features in model OCP

Undeclared consumers/visibility debt ISP

Unstable data dependencies Volatile data ISP

Underutilized data dependencies Unused dimensions LSP

Correction cascade *

Glue code Writing code that does everything SRP

Pipeline jungles Sending data through complex workflow DIP

Experimental paths Dead paths that go nowhere DIP

Configuration debt Using old configurations for new data *
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Machine learning problem Manifests as SOLID violation
Fixed thresholds in a dynamic world Not being flexible to changes in correlations *

Correlations change Modeling correlation over causation ML Specific

SOLID Applied to Machine Learning
SOLID, as you remember, is just a guideline reminding us to follow certain goals
when writing object-oriented code. Many machine learning algorithms are inherently
not object oriented. They are functional, mathematical, and use lots of statistics, but
that doesn’t have to be the case. Instead of thinking of things in purely functional
terms, we can strive to use objects around each row vector and matrix of data.

SRP
In machine learning code, one of the biggest challenges for people to realize is that
the code and the data are dependent on each other. Without the data the machine
learning algorithm is worthless, and without the machine learning algorithm we
wouldn’t know what to do with the data. So by definition they are tightly intertwined
and coupled. This tightly coupled dependency is probably one of the biggest reasons
that machine learning projects fail.

This dependency manifests as two problems in machine learning code: entanglement 
and glue code. Entanglement is sometimes called the principle of Changing Anything
Changes Everything or CACE. The simplest example is probabilities. If you remove
one probability from a distribution, then all the rest have to adjust. This is a violation
of SRP.

Possible mitigation strategies include isolating models, analyzing dimensional depen‐
dencies,4 and regularization techniques.5 We will return to this problem when we
review Bayesian models and probability models.

Glue code is the code that accumulates over time in a coding project. Its purpose is
usually to glue two separate pieces together inelegantly. It also tends to be the type of
code that tries to solve all problems instead of just one.

Whether machine learning researchers want to admit it or not, many times the actual
machine learning algorithms themselves are quite simple. The surrounding code is
what makes up the bulk of the project. Depending on what library you use, whether it
be GraphLab, MATLAB, scikit-learn, or R, they all have their own implementation of
vectors and matrices, which is what machine learning mostly comes down to.
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OCP
Recall that the OCP is about opening classes for extension but not modification. One
way this manifests in machine learning code is the problem of CACE. This can mani‐
fest in any software project but in machine learning projects it is often seen as hidden
feedback loops.

A good example of a hidden feedback loop is predictive policing. Over the last few
years, many researchers have shown that machine learning algorithms can be applied
to determine where crimes will occur. Preliminary results have shown that these algo‐
rithms work exceptionally well. But unfortunately there is a dark side to them as well.

While these algorithms can show where crimes will happen, what will naturally occur
is the police will start patrolling those areas more and finding more crimes there, and
as a result will self-reinforce the algorithm. This could also be called confirmation
bias, or the bias of confirming our preconceived notion, and also has the downside of
enforcing systematic discrimination against certain demographics or neighborhoods.

While hidden feedback loops are hard to detect, they should be watched for with a
keen eye and taken out.

LSP
Not a lot of people talk about the LSP anymore because many programmers are advo‐
cating for composition over inheritance these days. But in the machine learning
world, the LSP is violated a lot. Many times we are given data sets that we don’t have
all the answers for yet. Sometimes these data sets are thousands of dimensions wide.

Running algorithms against those data sets can actually violate the LSP. One common
manifestation in machine learning code is underutilized data dependencies. Many
times we are given data sets that include thousands of dimensions, which can some‐
times yield pertinent information and sometimes not. Our models might take all
dimensions yet use one infrequently. So for instance, in classifying mushrooms as
either poisonous or edible, information like odor can be a big indicator while ring
number isn’t. The ring number has low granularity and can only be zero, one, or two;
thus it really doesn’t add much to our model of classifying mushrooms. So that infor‐
mation could be trimmed out of our model and wouldn’t greatly degrade perfor‐
mance.

You might be thinking why this is related to the LSP, and the reason is if we can use
only the smallest set of datapoints (or features), we have built the best model possible.
This also aligns well with Ockham’s Razor, which states that the simplest solution is
the best one.
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ISP
The ISP is the notion that a client-specific interface is better than a general purpose
one. In machine learning projects this can often be hard to enforce because of the
tight coupling of data to the code. In machine learning code, the ISP is usually viola‐
ted by two types of problems: visibility debt and unstable data.

Take for instance the case where a company has a reporting database that is used to
collect information about sales, shipping data, and other pieces of crucial informa‐
tion. This is all managed through some sort of project that gets the data into this
database. The customer that this database defines is a machine learning project that
takes previous sales data to predict the sales for the future. Then one day during
cleanup, someone renames a table that used to be called something very confusing to
something much more useful. All hell breaks loose and people are wondering what
happened.

What ended up happening is that the machine learning project wasn’t the only con‐
sumer of the data; six Access databases were attached to it, too. The fact that there
were that many undeclared consumers is in itself a piece of debt for a machine learn‐
ing project.

This type of debt is called visibility debt and while it mostly doesn’t affect a project’s
stability, sometimes, as features are built, at some point it will hold everything back.

Data is dependent on the code used to make inductions from it, so building a stable
project requires having stable data. Many times this just isn’t the case. Take for
instance the price of a stock; in the morning it might be valuable but hours later
become worthless.

This ends up violating the ISP because we are looking at the general data stream
instead of one specific to the client, which can make portfolio trading algorithms very
difficult to build. One common trick is to build some sort of exponential weighting
scheme around data; another more important one is to version data streams. This
versioned scheme serves as a viable way to limit the volatility of a model’s predictions.

DIP
The Dependency Inversion Principle is about limiting our buildups of data and mak‐
ing code more flexible for future changes. In a machine learning project we see con‐
cretions happen in two specific ways: pipeline jungles and experimental paths.

Pipeline jungles are common in data-driven projects and are almost a form of glue
code. This is the amalgamation of data being prepared and moved around. In some
cases this code is tying everything together so the model can work with the prepared
data. Unfortunately, though, over time these jungles start to grow complicated and
unusable.
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Machine learning code requires both software and data. They are intertwined and
inseparable. Sometimes, then, we have to test things during production. Sometimes
tests on our machines give us false hope and we need to experiment with a line of
code. Those experimental paths add up over time and end up polluting our work‐
space. The best way of reducing the associated debt is to introduce tombstoning,
which is an old technique from C.

Tombstones are a method of marking something as ready to be deleted. If the method
is called in production it will log an event to a logfile that can be used to sweep the
codebase later.

For those of you who have studied garbage collection you most likely have heard of
this method as mark and sweep. Basically you mark an object as ready to be deleted
and later sweep marked objects out.

Machine Learning Code Is Complex but Not Impossible
At times, machine learning code can be difficult to write and understand, but it is far
from impossible. Remember the flight analogy we began with, and use the SOLID
guidelines as your “preflight” checklist for writing successful machine learning code
—while complex, it doesn’t have to be complicated.

In the same vein, you can compare machine learning code to flying a spaceship—it’s
certainly been done before, but it’s still bleeding edge. With the SOLID checklist
model, we can launch our code effectively using TDD and refactoring. In essence,
writing successful machine learning code comes down to being disciplined enough to
follow the principles of design we’ve laid out in this chapter, and writing tests to sup‐
port your code-based hypotheses. Another critical element in writing effective code is
being flexible and adapting to the changes it will encounter in the real world.

TDD: Scientific Method 2.0
Every true scientist is a dreamer and a skeptic. Daring to put a person on the moon
was audacious, but through systematic research and development we have accom‐
plished that and much more. The same is true with machine learning code. Some of
the applications are fascinating but also hard to pull off.

The secret to doing so is to use the checklist of SOLID for machine learning and the
tools of TDD and refactoring to get us there.

TDD is more of a style of problem solving, not a mandate from above. What testing
gives us is a feedback loop that we can use to work through tough problems. As scien‐
tists would assert that they need to first hypothesize, test, and theorize, we can assert
that as a TDD practitioner, the process of red (the tests fail), green (the tests pass),
refactor is just as viable.
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This book will delve heavily into applying not only TDD but also SOLID principles to
machine learning, with the goal being to refactor our way to building a stable, scala‐
ble, and easy-to-use model.

Refactoring Our Way to Knowledge
As mentioned, refactoring is the ability to edit one’s work and to rethink what was
once stated. Throughout the book we will talk about refactoring common machine
learning pitfalls as it applies to algorithms.

The Plan for the Book
This book will cover a lot of ground with machine learning, but by the end you
should have a better grasp of how to write machine learning code as well as how to
deploy to a production environment and operate at scale. Machine learning is a fasci‐
nating field that can achieve much, but without discipline, checklists, and guidelines,
many machine learning projects are doomed to fail.

Throughout the book we will tie back to the original principles in this chapter by
talking about SOLID principles, testing our code (using various means), and refactor‐
ing as a way to continually learn from and improve the performance of our code.

Every chapter will explain the Python packages we will use and describe a general
testing plan. While machine learning code isn’t testable in a one-to-one case, it ends
up being something for which we can write tests to help our knowledge of the
problem.
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CHAPTER 2

A Quick Introduction to Machine Learning

You’ve picked up this book because you’re interested in machine learning. While you
probably have an idea of what machine learning is, the subject is often defined some‐
what vaguely. In this quick introduction, I’ll go over what exactly machine learning is,
and provide a general framework for thinking about machine learning algorithms.

What Is Machine Learning?
Machine learning is the intersection between theoretically sound computer science
and practically noisy data. Essentially, it’s about machines making sense out of data in
much the same way that humans do.

Machine learning is a type of artificial intelligence whereby an algorithm or method
extracts patterns from data. Machine learning solves a few general problems; these
are listed in Table 2-1 and described in the subsections that follow.

Table 2-1. The problems that machine learning can solve

Problem Machine learning category
Fitting some data to a function or function approximation Supervised learning

Figuring out what the data is without any feedback Unsupervised learning

Maximizing rewards over time Reinforcement learning

Supervised Learning
Supervised learning, or function approximation, is simply fitting data to a function of
any variety. For instance, given the noisy data shown in Figure 2-1, you can fit a line
that generally approximates it.
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Figure 2-1. This data fits quite well to a straight line

Unsupervised Learning
Unsupervised learning involves figuring out what makes the data special. For
instance, if we were given many data points, we could group them by similarity
(Figure 2-2), or perhaps determine which variables are better than others.
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Figure 2-2. Two clusters grouped by similarity

Reinforcement Learning
Reinforcement learning involves figuring out how to play a multistage game with
rewards and payoffs. Think of it as the algorithms that optimize the life of something.
A common example of a reinforcement learning algorithm is a mouse trying to find
cheese in a maze. For the most part, the mouse gets zero reward until it finally finds
the cheese.

We will discuss supervised and unsupervised learning in this book but skip reinforce‐
ment learning. In the final chapter, I include some resources that you can check out if
you’d like to learn more about reinforcement learning.

What Can Machine Learning Accomplish?
What makes machine learning unique is its ability to optimally figure things out. But
each machine learning algorithm has quirks and trade-offs. Some do better than oth‐
ers. This book covers quite a few algorithms, so Table 2-2 provides a matrix to help
you navigate them and determine how useful each will be to you.

Table 2-2. Machine learning algorithm matrix

Algorithm Learning type Class Restriction bias Preference bias
K-Nearest
Neighbors

Supervised Instance based Generally speaking, KNN is good
for measuring distance-based
approximations; it suffers from
the curse of dimensionality

Prefers problems that are
distance based

Naive Bayes Supervised Probabilistic Works on problems where the
inputs are independent from
each other

Prefers problems where the
probability will always be
greater than zero for each
class
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Algorithm Learning type Class Restriction bias Preference bias
Decision Trees/
Random Forests

Supervised Tree Becomes less useful on problems
with low covariance

Prefers problems with
categorical data

Support Vector
Machines

Supervised Decision
boundary

Works where there is a definite
distinction between two
classifications

Prefers binary classification
problems

Neural Networks Supervised Nonlinear
functional
approximation

Little restriction bias Prefers binary inputs

Hidden Markov
Models

Supervised/
Unsupervised

Markovian Generally works well for system
information where the Markov
assumption holds

Prefers time-series data and
memoryless information

Clustering Unsupervised Clustering No restriction Prefers data that is in
groupings given some form of
distance (Euclidean,
Manhattan, or others)

Feature Selection Unsupervised Matrix
factorization

No restrictions Depending on algorithm can
prefer data with high mutual
information

Feature
Transformation

Unsupervised Matrix
factorization

Must be a nondegenerate matrix Will work much better on
matricies that don’t have
inversion issues

Bagging Meta-heuristic Meta-heuristic Will work on just about anything Prefers data that isn’t highly
variable

Refer to this matrix throughout the book to understand how these algorithms relate
to one another.

Machine learning is only as good as what it applies to, so let’s get to implementing
some of these algorithms! Before we get started, you will need to install Python,
which you can do at https://www.python.org/downloads/. This book was tested using
Python 2.7.12, but most likely it will work with Python 3.x as well. All of those
changes will be annotated in the book’s coding resources, which are available on Git‐
Hub.

Mathematical Notation Used Throughout the Book
This book uses mathematics to solve problems, but all of the examples are
programmer-centric. Throughout the book, I’ll use the mathematical notations
shown in Table 2-3.
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Table 2-3. Mathematical notations used in this book’s examples

Symbol How do you say it? What does it do?

∑i = 0
n xi

The sum of all xs from x0 to xn This is the same thing as x0 + x1 + ⋯ + xn.

ǀxǀ The absolute value of x This takes any value of x and makes it positive. So |–x| = |x|.

4 The square root of 4 This is the opposite of 22.

zk = < 0.5, 0.5 > Vector zk equals 0.5 and 0.5 This is a point on the xy plane and is denoted as a vector, which is a
group of numerical points.

log2(2) Log 2 This solves for i in 2i = 2.

P(A) Probability of A In many cases, this is the count of A divided by the total
occurrences.

P(AǀB) Probability of A given B This is the probability of A and B divided by the probability of B.

{1,2,3} ∩ {1} The intersection of set one and two This turns into a set {1}.

{1,2,3} ∪ {4,1} The union of set one and two This equates to {1,2,3,4}.

det(C) The determinant of the matrix C This will help determine whether a matrix is invertible or not.

a ∝ b a is proportional to b This means that m · a = b.

min f(x) Minimize f(x) This is an objective function to minimize the function f(x).

XT Transpose of the matrix X Take all elements of the matrix and switch the row with the
column.

Conclusion
This isn’t an exhaustive introduction to machine learning, but that’s okay. There’s
always going to be a lot for us all to learn when it comes to this complex subject, but
for the remainder of this book, this should serve us well in approaching these 
problems.
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CHAPTER 3

K-Nearest Neighbors

Have you ever bought a house before? If you’re like a lot of people around the world,
the joy of owning your own home is exciting, but the process of finding and buying a
house can be stressful. Whether we’re in a economic boom or recession, everybody
wants to get the best house for the most reasonable price.

But how would you go about buying a house? How do you appraise a house? How
does a company like Zillow come up with their Zestimates? We’ll spend most of this
chapter answering questions related to this fundamental concept: distance-based
approximations.

First we’ll talk about how we can estimate a house’s value. Then we’ll discuss how to
classify houses into categories such as “Buy,” “Hold,” and “Sell.” At that point we’ll talk
about a general algorithm, K-Nearest Neighbors, and how it can be used to solve
problems such as this. We’ll break it down into a few sections of what makes some‐
thing near, as well as what a neighborhood really is (i.e., what is the optimal K for
something?).

How Do You Determine Whether You Want to Buy a
House?
This question has plagued many of us for a long time. If you are going out to buy a
house, or calculating whether it’s better to rent, you are most likely trying to answer
this question implicitly. Home appraisals are a tricky subject, and are notorious for
drift with calculations. For instance on Zillow’s website they explain that their famous
Zestimate is flawed. They state that based on where you are looking, the value might
drift by a localized amount.
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Location is really key with houses. Seattle might have a different demand curve than
San Francisco, which makes complete sense if you know housing! The question of
whether to buy or not comes down to value amortized over the course of how long
you’re living there. But how do you come up with a value?

How Valuable Is That House?
Things are worth as much as someone is willing to pay.

—Old Saying

Valuing a house is tough business. Even if we were able to come up
with a model with many endogenous variables that make a huge
difference, it doesn’t cover up the fact that buying a house is subjec‐
tive and sometimes includes a bidding war. These are almost
impossible to predict. You’re more than welcome to use this to
value houses, but there will be errors that take years of experience
to overcome.

A house is worth as much as it’ll sell for. The answer to how valuable a house is, at its
core, is simple but difficult to estimate. Due to inelastic supply, or because houses are
all fairly unique, home sale prices have a tendency to be erratic. Sometimes you just
love a house and will pay a premium for it.

But let’s just say that the house is worth what someone will pay for it. This is a func‐
tion based on a bag of attributes associated with houses. We might determine that a
good approach to estimating house values would be:

Equation 3-1. House value

HouseValue = f Space, LandSize, Rooms, Bathrooms,⋯

This model could be found through regression (which we’ll cover in Chapter 5) or
other approximation algorithms, but this is missing a major component of real estate:
“Location, Location, Location!” To overcome this, we can come up with something
called a hedonic regression.

Hedonic Regression
You probably already know of a frequently used real-life hedonic
regression: the CPI index. This is used as a way of decomposing
baskets of items that people commonly buy to come up with an
index for inflation.
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Economics is a dismal science because we’re trying to approximate rational behaviors.
Unfortunately we are predictably irrational (shout-out to Dan Ariely). But a good
algorithm for valuing houses that is similar to what home appraisers use is called
hedonic regression.

The general idea with hard-to-value items like houses that don’t have a highly liquid
market and suffer from subjectivity is that there are externalities that we can’t directly
estimate. For instance, how would you estimate pollution, noise, or neighbors who
are jerks?

To overcome this, hedonic regression takes a different approach than general regres‐
sion. Instead of focusing on fitting a curve to a bag of attributes, it focuses on the
components of a house. For instance, the hedonic method allows you to find out how
much a bedroom costs (on average).

Take a look at the Table 3-1, which compares housing prices with number of bed‐
rooms. From here we can fit a naive approximation of value to bedroom number, to
come up with an estimate of cost per bedroom.

Table 3-1. House price by number of bedrooms

Price (in $1,000) Bedrooms
$899 4

$399 3

$749 3

$649 3

This is extremely useful for valuing houses because as consumers, we can use this to
focus on what matters to us and decompose houses into whether they’re overpriced
because of bedroom numbers or the fact that they’re right next to a park.

This gets us to the next improvement, which is location. Even with hedonic regres‐
sion, we suffer from the problem of location. A bedroom in SoHo in London, Eng‐
land is probably more expensive than a bedroom in Mumbai, India. So for that we
need to focus on the neighborhood.

What Is a Neighborhood?
The value of a house is often determined by its neighborhood. For instance, in Seattle,
an apartment in Capitol Hill is more expensive than one in Lake City. Generally
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speaking, the cost of commuting is worth half of your hourly wage plus maintenance
and gas,1 so a neighborhood closer to the economic center is more valuable.

But how would we focus only on the neighborhood?

Theoretically we could come up with an elegant solution using something like an
exponential decay function that weights houses closer to downtown higher and far‐
ther houses lower. Or we could come up with something static that works exception‐
ally well: K-Nearest Neighbors.

K-Nearest Neighbors
What if we were to come up with a solution that is inelegant but works just as well?
Say we were to assert that we will only look at an arbitrary amount of houses near to a
similar house we’re looking at. Would that also work?

Surprisingly, yes. This is the K-Nearest Neighbor (KNN) solution, which performs
exceptionally well. It takes two forms: a regression, where we want a value, or a classi‐
fication. To apply KNN to our problem of house values, we would just have to find
the nearest K neighbors.

The KNN algorithm was originally introduced by Drs. Evelyn Fix and J. L. Hodges Jr,
in an unpublished technical report written for the U.S. Air Force School of Aviation
Medicine. Fix and Hodges’ original research focused on splitting up classification
problems into a few subproblems:

• Distributions F and G are completely known.
• Distributions F and G are completely known except for a few parameters.
• F and G are unknown, except possibly for the existence of densities.

Fix and Hodges pointed out that if you know the distributions of two classifications
or you know the distribution minus some parameters, you can easily back out useful
solutions. Therefore, they focused their work on the more difficult case of finding
classifications among distributions that are unknown. What they came up with laid
the groundwork for the KNN algorithm.

This opens a few more questions:

• What are neighbors, and what makes them near?
• How do we pick the arbitrary number of neighbors, K?
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• What do we do with the neighbors afterward?

Mr. K’s Nearest Neighborhood
We all implicitly know what a neighborhood is. Whether you live in the woods or a
row of brownstones, we all live in a neighborhood of sorts. A neighborhood for lack
of a better definition could just be called a cluster of houses (we’ll get to clustering
later).

A cluster at this point could be just thought of as a tight grouping of houses or items
in n dimensions. But what denotes a “tight grouping”? Since you’ve most likely taken
a geometry class at some time in your life, you’re probably thinking of the Pythagor‐
ean theorem or something similar, but things aren’t quite that simple. Distances are a
class of functions that can be much more complex.

Distances
As the crow flies.

—Old Saying

Geometry class taught us that if you sum the square of two sides of a triangle and take
its square root, you’ll have the side of the hypotenuse or the third side (Figure 3-1).
This as we all know is the Pythagorean theorem, but distances can be much more
complicated. Distances can take many different forms but generally there are geomet‐
rical, computational, and statistical distances which we’ll discuss in this section.

Figure 3-1. Pythagorean theorem

Triangle Inequality
One interesting aspect about the triangle in Figure 3-1 is that the length of the hypo‐
tenuse is always less than the length of each side added up individually (Figure 3-2).

Figure 3-2. Triangle broken into three line segments
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Stated mathematically: ∥x∥ + ∥y∥ ≤ ∥x∥ + ∥y∥. This inequality is important for find‐
ing a distance function; if the triangle inequality didn’t hold, what would happen is
distances would become slightly distorted as you measure distance between points in
a Euclidean space.

Geometrical Distance
The most intuitive distance functions are geometrical. Intuitively we can measure
how far something is from one point to another. We already know about the Pytha‐
gorean theorem, but there are an infinite amount of possibilities that satisfy the trian‐
gle inequality.

Stated mathematically we can take the Pythagorean theorem and build what is called
the Euclidean distance, which is denoted as:

d x, y = ∑i = 0
n xi − yi

2

As you can see, this is similar to the Pythagorean theorem, except it includes a sum.
Mathematics gives us even greater ability to build distances by using something called
a Minkowski distance (see Figure 3-3):

dp x, y = ∑i = 0
n xi − yi

p
1
p

This p can be any integer and still satisfy the triangle inequality.

Figure 3-3. Minkowski distances as n increases (Source: Wikimedia)
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Cosine similarity
One last geometrical distance is called cosine similarity or cosine distance. The
beauty of this distance is its sheer speed at calculating distances between sparse vec‐
tors. For instance if we had 1,000 attributes collected about houses and 300 of these
were mutually exclusive (meaning that one house had them but the others don’t),
then we would only need to include 700 dimensions in the calculation.

Visually this measures the inner product space between two vectors and presents us
with cosine as a measure. Its function is:

d x, y = x · y
∥ x ∥ ∥ y ∥

where ∥x∥ denotes the Euclidean distance discussed earlier.

Geometrical distances are generally what we want. When we talk about houses we
want a geometrical distance. But there are other spaces that are just as valuable: com‐
putational, or discrete, as well as statistical distances.

Computational Distances
Imagine you want to measure how far it is from one part of the city to another. One
way of doing this would be to utilize coordinates (longitude, latitude) and calculate a
Euclidean distance. Let’s say you’re at Saint Edward State Park in Kenmore, WA
(47.7329290, -122.2571466) and you want to meet someone at Vivace Espresso on
Capitol Hill, Seattle, WA (47.6216650, -122.3213002).

Using the Euclidean distance we would calculate:

47 . 73 − 47 . 62 2 + − 122 . 26 + 122 . 32 2 ≈ 0 . 13

This is obviously a small result as it’s in degrees of latitude and longitude. To convert
this into miles we would multiply it by 69.055, which yields approximately 8.9 miles
(14.32 kilometers). Unfortunately this is way off! The actual distance is 14.2 miles
(22.9 kilometers). Why are things so far off?

Note that 69.055 is actually an approximation of latitude degrees to
miles. Earth is an ellipsoid and therefore calculating distances
actually depends on where you are in the world. But for such a
short distance it’s good enough.
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If I had the ability to lift off from Saint Edward State Park and fly to Vivace then, yes,
it’d be shorter, but if I were to walk or drive I’d have to drive around Lake Washington
(see Figure 3-4).

This gets us to the motivation behind computational distances. If you were to drive
from Saint Edward State Park to Vivace then you’d have to follow the constraints of a
road.

Figure 3-4. Driving to Vivace from Saint Edward State Park
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Manhattan distance
This gets us into what is called the Taxicab distance or Manhattan distance.

Equation 3-2. Manhattan distance

∑i = 0
n xi − yi

Note that there is no ability to travel out of bounds. So imagine that your metric space
is a grid of graphing paper and you are only allowed to draw along the boxes.

The Manhattan distance can be used for problems such as traversal of a graph and
discrete optimization problems where you are constrained by edges. With our hous‐
ing example, most likely you would want to measure the value of houses that are close
by driving, not by flying. Otherwise you might include houses in your search that are
across a barrier like a lake, or a mountain!

Levenshtein distance
Another distance that is commonly used in natural language processing is the Lev‐
enshtein distance. An analogy of how Levenshtein distance works is by changing one
neighborhood to make an exact copy of another. The number of steps to make that
happen is the distance. Usually this is applied with strings of characters to determine
how many deletions, additions, or substitutions the strings require to be equal.

This can be quite useful for determining how similar neighborhoods are as well as
strings. The formula for this is a bit more complicated as it is a recursive function, so
instead of looking at the math we’ll just write Python for this:

def lev(a, b):
  if not a: return len(b)
  if not b: return len(a)
  return min(lev(a[1:], b[1:])+(a[0] != b[0]), lev(a[1:], b)+1, lev(a, b[1:])+1)

This is an extremely slow algorithm and I’m only putting it here for
understanding, not to actually implement. If you’d like to imple‐
ment Levenshtein, you will need to use dynamic programming to 
have good performance.

Statistical Distances
Last, there’s a third class of distances that I call statistical distances. In statistics we’re
taught that to measure volatility or variance, we take pairs of datapoints and measure
the squared difference. This gives us an idea of how dispersed the population is. This
can actually be used when calculating distance as well, using what is called the Maha‐
lanobis distance.
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Imagine for a minute that you want to measure distance in an affluent neighborhood
that is right on the water. People love living on the water and the closer you are to it,
the higher the home value. But with our distances discussed earlier, whether compu‐
tational or geometrical, we would have a bad approximation of this particular neigh‐
borhood because those distance calculations are primarily spherical in nature
(Figures 3-5 and 3-6).

Figure 3-5. Driving from point A to point B on a city block

Figure 3-6. Straight line between A and B

This seems like a bad approach for this neighborhood because it is not spherical in
nature. If we were to use Euclidean distances we’d be measuring values of houses not
on the beach. If we were to use Manhattan distances we’d only look at houses close by
the road.

Mahalanobis distance
Another approach is using the Mahalanobis distance. This takes into consideration
some other statistical factors:
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d x, y = ∑i = 1
n xi − yi

2

si
2

What this effectively does is give more stretch to the grouping of items (Figure 3-7):

Figure 3-7. Mahalanobis distance

Jaccard distance
Yet another distance metric is called the Jaccard distance. This takes into considera‐
tion the population of overlap. For instance, if the number of attributes for one house
match another, then they would be overlapping and therefore close in distance,
whereas if the houses had diverging attributes they wouldn’t match. This is primarily
used to quickly determine how similar text is by counting up the frequencies of letters
in a string and then counting the characters that are not the same across both. Its for‐
mula is:

J X, Y = X ∩ Y
X ∪ Y

This finishes up a primer on distances. Now that we know how to measure what is
close and what is far, how do we go about building a grouping or neighborhood?
How many houses should be in the neighborhood?

Curse of Dimensionality
Before we continue, there’s a serious concern with using distances for anything and
that is called the curse of dimensionality. When we model high-dimension spaces, our
approximations of distance become less reliable. In practice it is important to realize
that finding features of data sets is essential to making a resilient model. We will talk
about feature engineering in Chapter 10 but for now be cognizant of the problem.
Figure 3-8 shows a visual way of thinking about this.
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Figure 3-8. Curse of dimensionality

As Figure 3-8 shows, when we put random dots on a unit sphere and measure the
distance from the origin (0,0,0), we find that the distance is always 1. But if we were
to project that onto a 2D space, the distance would be less than or equal to 1. This
same truth holds when we expand the dimensions. For instance, if we expanded our
set from 3 dimensions to 4, it would be greater than or equal to 1. This inability to
center in on a consistent distance is what breaks distance-based models, because all of
the data points become chaotic and move away from one another.

How Do We Pick K?
Picking the number of houses to put into this model is a difficult problem—easy to
verify but hard to calculate beforehand. At this point we know how we want to group
things, but just don’t know how many items to put into our neighborhood. There are
a few approaches to determining an optimal K, each with their own set of downsides:

• Guessing
• Using a heuristic
• Optimizing using an algorithm

Guessing K
Guessing is always a good solution. Many times when we are approaching a problem,
we have domain knowledge of it. Whether we are an expert or not, we know about
the problem enough to know what a neighborhood is. My neighborhood where I live,
for instance, is roughly 12 houses. If I wanted to expand I could set my K to 30 for a
more flattened-out approximation.
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Heuristics for Picking K
There are three heuristics that can help you determine an optimal K for a KNN
algorithm:

1. Use coprime class and K combinations
2. Choose a K that is greater or equal to the number of classes plus one
3. Choose a K that is low enough to avoid noise

Use coprime class and K combinations
Picking coprime numbers of classes and K will ensure fewer ties. Coprime numbers
are two numbers that don’t share any common divisors except for 1. So, for instance,
4 and 9 are coprime while 3 and 9 are not. Imagine you have two classes, good and
bad. If we were to pick a K of 6, which is even, then we might end up having ties.
Graphically it looks like Figure 3-9.

Figure 3-9. Tie with K=6 and two classes

If you picked a K of 5 instead (Figure 3-10), there wouldn’t be a tie.

Figure 3-10. K=5 with two classes and no tie
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Choose a K that is greater or equal to the number of classes plus one
Imagine there are three classes: lawful, chaotic, and neutral. A good heuristic is to
pick a K of at least 3 because anything less will mean that there is no chance that each
class will be represented. To illustrate, Figure 3-11 shows the case of K=2.

Figure 3-11. With K=2 there is no possibility that all three classes will be represented

Note how there are only two classes that get the chance to be used. Again, this is why
we need to use at least K=3. But based on what we found in the first heuristic, ties are
not a good thing. So, really, instead of K=3, we should use K=4 (as shown in
Figure 3-12).

Figure 3-12. With K set greater than the number of classes, there is a chance for all
classes to be represented

Choose a K that is low enough to avoid noise
As K increases, you eventually approach the size of the entire data set. If you were to
pick the entire data set, you would select the most common class. A simple example is
mapping a customer’s affinity to a brand. Say you have 100 orders as shown in
Table 3-2.
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Table 3-2. Brand to count

Brand Count
Widget Inc. 30

Bozo Group 23

Robots and Rockets 12

Ion 5 35

Total 100

If we were to set K=100, our answer will always be Ion 5 because Ion 5 is the distribu‐
tion (the most common class) of the order history. That is not really what we want;
instead, we want to determine the most recent order affinity. More specifically, we
want to minimize the amount of noise that comes into our classification. Without
coming up with a specific algorithm for this, we can justify K being set to a much
lower rate, like K=3 or K=11.

Algorithms for picking K
Picking K can be somewhat qualitative and nonscientific, and that’s why there are
many algorithms showing how to optimize K over a given training set. There are
many approaches to choosing K, ranging from genetic algorithms to brute force to
grid searches. Many people assert that you should determine K based on domain
knowledge that you have as the implementor. For instance, if you know that 5 is good
enough, you can pick that. This problem where you are trying to minimize error
based on an arbitrary K is known as a hill climbing problem. The idea is to iterate
through a couple of possible Ks until you find a suitable error. The difficult part about
finding a K using an approach like genetic algorithms or brute force is that as K
increases, the complexity of the classification also increases and slows down perfor‐
mance. In other words, as you increase K, the program actually gets slower. If you
want to learn more about genetic algorithms applied to finding an optimal K, you can
read more about it in Nigsch et al.’s Journal of Chemical Information and Modeling
article, “Melting Point Prediction Employing k-Nearest Neighbor Algorithms and
Genetic Parameter Optimization.” Personally, I think iterating twice through 1% of
the population size is good enough. You should have a decent idea of what works and
what doesn’t just by experimenting with different Ks.

Valuing Houses in Seattle
Valuing houses in Seattle is a tough gamble. According to Zillow, their Zestimate is
consistently off in Seattle. Regardless, how would we go about building something
that tells us how valuable the houses are in Seattle? This section will walk through a
simple example so that you can figure out with reasonable accuracy what a house is
worth based on freely available data from the King County Assessor.
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If you’d like to follow along in the code examples, check out the GitHub repo.

About the Data
While the data is freely available, it wasn’t easy to put together. I did a bit of cajoling
to get the data well formed. There’s a lot of features, ranging from inadequate parking
to whether the house has a view of Mount Rainier or not. I felt that while that was an
interesting exercise, it’s not really important to discuss here. In addition to the data
they gave us, geolocation has been added to all of the datapoints so we can come up
with a location distance much easier.

General Strategy
Our general strategy for finding the values of houses in Seattle is to come up with
something we’re trying to minimize/maximize so we know how good the model is.
Since we will be looking at house values explicitly, we can’t calculate an “Accuracy”
rate because every value will be different. So instead we will utilize a different metric 
called mean absolute error.

With all models, our goal is to minimize or maximize something, and in this case
we’re going to minimize the mean absolute error. This is defined as the average of the
absolute errors. The reason we’ll use absolute error over any other common metrics
(like mean squared error) is that it’s useful. When it comes to house values it’s hard to
get intuition around the average squared error, but by using absolute error we can
instead say that our model is off by $70,000 or similar on average.

As for unit testing and functional testing, we will approach this in a random fashion
by stratifying the data into multiple chunks so that we can sample the mean absolute
errors. This is mainly so that we don’t find just one weird case where the mean abso‐
lute error was exceptionally low. We will not be talking extensively here about unit
testing because this is an early chapter and I feel that it’s more important to focus on
the overall testing of the model through mean absolute error.

Coding and Testing Design
The basic design of the code for this chapter is going to center around a Regressor
class. This class will take in King County housing data that comes in via a flat, calcu‐
late an error rate, and do the regression (Figure 3-13). We will not be doing any unit
testing in this chapter but instead will visually test the code using the plot_error
function we will build inside of the Regressor class.
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Figure 3-13. Overall coding design

For this chapter we will determine success by looking at the nuances of how our
regressor works as we increase folds.

KNN Regressor Construction
To construct our KNN regression we will utilize something called a KDTree. It’s not
essential that you know how these work but the idea is the KDTree will store data in a
easily queriable fashion based on distance. The distance metric we will use is the
Euclidean distance since it’s easy to compute and will suit us just fine. You could try
many other metrics to see whether the error rate was better or worse.

A Note on Packages
You’ll note that we’re using quite a few packages. Python has excellent tools available
to do anything data science related such as NumPy, Pandas, scikit-learn, SciPy, and
others.

Pandas and NumPy work together to build what is at its core a multidimensional
array but operates similar to an SQL database in that you can query it. Pandas is the
query interface and NumPy is the numerical processing underneath. You will also
find other useful tools inside of the NumPy library.

scikit-learn is a collection of machine learning tools available for common algorithms
(that we will be talking about in this book).

SciPy is a scientific computing library that allows us to do things like use a KDTree.

As we progress in the book we will rely heavily on these libraries.

from pandas import Series, DataFrame
import pandas as pd
import numpy as np
import numpy.random as npr
import random
from scipy.spatial import KDTree
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from sklearn.metrics import mean_absolute_error
import sys

sys.setrecursionlimit(10000)

class Regression:
  def __init__(self, csv_file = None, data = None, values = None):
    if (data is None and csv_file is not None):
      df = pd.read_csv(csv_file)
      self.values = df['AppraisedValue']
      df = df.drop('AppraisedValue', 1)
      df = (df - df.mean()) / (df.max() - df.min())
      self.df = df
      self.df = self.df[['lat', 'long', 'SqFtLot']

    elif (data is not None and values is not None):
      self.df = data
      self.values = values
    else:
      raise ValueError("Must have either csv_file or data set")

    self.n = len(self.df)
    self.kdtree = KDTree(self.df)
    self.metric = np.mean
    self.k = 5

Do note that we had to set the recursion limit higher since KDTree will recurse and
throw an error otherwise.

There’s a few things we’re doing here I thought we should discuss. One of them is the
idea of normalizing data. This is a great trick to make all of the data similar. Other‐
wise, what will happen is that we find something close that really shouldn’t be, or the
bigger numbered dimensions will skew results.

On top of that we’re only selecting latitude and longitude and SqFtLot, because this is
a proof of concept.

class Regression:
  # __init__
  def regress(self, query_point):
    distances, indexes = self.kdtree.query(query_point, self.k)
    m = self.metric(self.values.iloc[indexes])
    if np.isnan(m):
      zomg
    else:
      return m

Here we are querying the KDTree to find the closest K houses. We then use the met‐
ric, in this case mean, to calculate a regression value.

At this point we need to focus on the fact that, although all of this is great, we need
some sort of test to make sure our data is working properly.
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KNN Testing
Up until this point we’ve written a perfectly reasonable KNN regression tool to tell us
house prices in King County. But how well does it actually perform? To do that we
use something called cross-validation, which involves the following generalized algo‐
rithm:

• Take a training set and split it into two categories: testing and training
• Use the training data to train the model
• Use the testing data to test how well the model performs.

We can do that with the following code:

class Regression:
  # __init__
  # regress
  def error_rate(self, folds):
    holdout = 1 / float(folds)
    errors = []
    for fold in range(folds):
      y_hat, y_true = self.__validation_data(holdout)
      errors.append(mean_absolute_error(y_true, y_hat))

    return errors

  def __validation_data(self, holdout):
    test_rows = random.sample(self.df.index, int(round(len(self.df) * holdout)))
    train_rows = set(range(len(self.df))) - set(test_rows)
    df_test = self.df.ix[test_rows]
    df_train = self.df.drop(test_rows)
    test_values = self.values.ix[test_rows]
    train_values = self.values.ix[train_rows]
    kd = Regression(data=df_train, values=train_values)

    y_hat = []
    y_actual = []

    for idx, row in df_test.iterrows():
      y_hat.append(kd.regress(row))
      y_actual.append(self.values[idx])

    return (y_hat, y_actual)

Folds are generally how many times you wish to split the data. So for instance if we
had 3 folds we would hold 2/3 of the data for training and 1/3 for testing and iterate
through the problem set 3 times (Figure 3-14).
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Figure 3-14. Split data into training and testing

Now these datapoints are interesting, but how well does our model perform? To do
that, let’s take a visual approach and write code that utilizes Pandas’ graphics and mat‐
plotlib.

class Regression:
  # __init__
  # regress
  # error_rate
  # __validation_data
  def plot_error_rates(self):
    folds = range(2, 11)
    errors = pd.DataFrame({'max': 0, 'min': 0}, index=folds)
    for f in folds:
      error_rates = r.error_rate(f)
      errors['max'][f] = max(error_rates)
      errors['min'][f] = min(error_rates)
    errors.plot(title='Mean Absolute Error of KNN over different folds')
    plt.show()

Running this yields the graph in Figure 3-15.

Figure 3-15. The error rates we achieved. The x-axis is the number of folds, and the y-
axis is the absolute error in estimated home price (i.e., how much it’s off by).
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As you can see, starting with folds of 2 we have a fairly tight absolute deviation of
about $77,000 dollars. As we increase the folds and, as a result, reduce the testing
sample, that increases to a range of $73,000 to $77,000. For a very simplistic model
that contains all information from waterfront property to condos, this actually does
quite well!

Conclusion
While K-Nearest Neighbors is a simple algorithm, it yields quite good results. We
have seen that for distance-based problems we can utilize KNN to great effect. We
also learned about how you can use this algorithm for either a classification or regres‐
sion problem. We then analyzed the regression we built using a graphic representing
the error.

Next, we showed that KNN has a downside that is inherent in any distance-based
metric: the curse of dimensionality. This curse is something we can overcome using
feature transformations or selections.

Overall it’s a great algorithm and it stands the test of time.
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CHAPTER 4

Naive Bayesian Classification

Remember how email was several years ago? You probably recall your inbox being
full of spam messages ranging from Nigerian princes wanting to pawn off money to
pharmaceutical advertisements. It became such a major issue that we spent most of
our time filtering spam.

Nowadays we spend a lot less time filtering spam than we used to, thanks to Gmail
and tools like SpamAssassin. Using a method called a Naive Bayesian Classifier, such
tools have been able to mitigate the influx of spam to our inboxes. This chapter will
explore that topic as well as:

• Bayes’ theorem
• What a Naive Bayesian Classifier is and why it’s called “naive”
• How to build a spam filter using a Naive Bayesian Classifier

As noted in Table 2-2, a Naive Bayes Classifier is a supervised and probabilistic learn‐
ing method. It does well with data in which the inputs are independent from one
another. It also prefers problems where the probability of any attribute is greater than
zero.

Using Bayes’ Theorem to Find Fraudulent Orders
Imagine you’re running an online store and lately you’ve been overrun with fraudu‐
lent orders. You estimate that about 10% of all orders coming in are fraudulent. In
other words, in 10% of orders, people are stealing from you. Now of course you want
to mitigate this by reducing the fraudulent orders, but you are facing a conundrum.

Every month you receive at least 1,000 orders, and if you were to check every single
one, you’d spend more money fighting fraud than the fraud was costing you in the
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first place. Assuming that it takes up to 60 seconds per order to determine whether
it’s fraudulent or not, and a customer service representative costs around $15 per
hour to hire, that totals 200 hours and $3,000 per year.

Another way of approaching this problem would be to construct a probability that an
order is over 50% fraudulent. In this case, we’d expect the number of orders we’d have
to look at to be much lower. But this is where things become difficult, because the
only thing we can determine is the probability that it’s fraudulent, which is 10%.
Given that piece of information, we’d be back at square one looking at all orders
because it’s more probable that an order is not fraudulent!

Let’s say that we notice that fraudulent orders often use gift cards and multiple pro‐
motional codes. Using this knowledge, how would we determine what is fraudulent
or not—namely, how would we calculate the probability of fraud given that the pur‐
chaser used a gift card?

To answer for that, we first have to talk about conditional probabilities.

Conditional Probabilities
Most people understand what we mean by the probability of something happening.
For instance, the probability of an order being fraudulent is 10%. That’s pretty
straightforward. But what about the probability of an order being fraudulent given
that it used a gift card? To handle that more complicated case, we need something
called a conditional probability, which is defined as follows:

Equation 4-1. Conditional probability

P A B = P A ∩ B
P B

Probability Symbols
Generally speaking, writing P(E) means that you are looking at the probability of a
given event. This event can be a lot of different things, including the event that A and
B happened, the probability that A or B happened, or the probability of A given B
happening in the past. Here we’ll cover how you’d notate each of these scenarios.

A ∩ B is called the intersection function but could also be thought of as the Boolean
operation AND. For instance, in Python it looks like this:

a = [1,2,3]
b = [1,4,5]

set(a) & set(b) #=> [1]
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A ∪ B could be called the OR function, as it is both A and B. For instance, in Python
it looks like the following:

a = [1,2,3]
b = [1,4,5]

set(a) | set(b) #=> [1,2,3,4,5]

Finally, the probability of A given B looks as follows in Python:

a = set([1,2,3])
b = set([1,4,5])

total = 6.0

p_a_cap_b = len(a & b) / total
p_b = len(b) / total

p_a_given_b = p_a_cap_b / p_b #=> 0.33

This definition basically says that the probability of A happening given that B hap‐
pened is the probability of A and B happening divided by the probability of B. Graph‐
ically, it looks something like Figure 4-1.

Figure 4-1. How conditional probabilities are made

This shows how P(A | B) sits between P(A and B) and P(B).

In our fraud example, let’s say we want to measure the probability of fraud given that
an order used a gift card. This would be:

P Fraud Gi f tcard = P Fraud ∩ Gi f tcard
P Gi f tcard

Now this works if you know the actual probability of Fraud and Giftcard.

At this point, we are up against the problem that we cannot calculate P(Fraud|Gift‐
card) because that is hard to separate out. To solve this problem, we need to use a
trick introduced by Bayes.
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Inverse Conditional Probability (aka Bayes’ Theorem)
In the 1700s, Reverend Thomas Bayes came up with the original research that would
become Bayes’ theorem. Pierre-Simon Laplace extended Bayes’ research to produce
the beautiful result we know today. Bayes’ theorem is as follows:

Equation 4-2. Bayes’ theorem

P B ∣ A = P A ∣ B P B
P A

This is because of the following:

Equation 4-3. Bayes’ theorem expanded

P B ∣ A =
P A ∩ B P B

P B
P A = P A ∩ B

P A

This is useful in our fraud example because we can effectively back out our result
using other information. Using Bayes’ theorem, we would now calculate:

P Fraud ∣ Gi f tcard = P Gi f tcard ∣ Fraud P Fraud
P Gi f tcard

Remember that the probability of fraud was 10%. Let’s say that the probability of gift
card use is 10%, and based on our research the probability of gift card use in a frau‐
dulent order is 60%. So what is the probability that an order is fraudulent given that it
uses a gift card?

P Fraud ∣ Gi f tcard = 60 % · 10 %
10 % = 60 %

The beauty of this is that your work on measuring fraudulent orders is drastically
reduced because all you have to look for is the orders with gift cards. Because the total
number of orders is 1,000, and 100 of those are fraudulent, we will look at 60 of those
fraudulent orders. Out of the remaining 900, 90 used gift cards, which brings the total
we need to look at to 150!

At this point, you’ll notice we reduced the orders needing fraud review from 1,000 to
150 (i.e., 15% of the total). But can we do better? What about introducing something
like people using multiple promo codes or other information?

46 | Chapter 4: Naive Bayesian Classification



Naive Bayesian Classifier
We’ve already solved the problem of finding fraudulent orders given that a gift card
was used, but what about the problem of fraudulent orders given the fact that they
have gift cards, or multiple promo codes, or other features? How would we go about
that?

Namely, we want to solve the problem of P A ∣ B, C = ?. For this, we need a bit more
information and something called the chain rule.

The Chain Rule
If you think back to probability class, you might recall that the probability of A and B
happening is the probability of B given A times the probability of A. Mathematically,
this looks like P A ∩ B = P B A P A . This is assuming these events are not mutu‐
ally exclusive. Using something called a joint probability, this smaller result trans‐
forms into the chain rule.

Joint probabilities are the probability that all the events will happen. We denote this
by using ∩. The generic case of the chain rule is:

Equation 4-4. Chain rule

P A1, A2,⋯, An = P A1 P A2 ∣ A1 P A3 ∣ A1, A2 ⋯P An A1, A2,⋯, An − 1

This expanded version is useful in trying to solve our problem by feeding lots of
information into our Bayesian probability estimates. But there is one problem: this
can quickly evolve into a complex calculation using information we don’t have, so we
make one big assumption and act naive.

Naiveté in Bayesian Reasoning
The chain rule is useful for solving potentially inclusive problems, but we don’t have
the ability to calculate all of those probabilities. For instance, if we were to introduce
multiple promos into our fraud example, then we’d have the following to calculate:

P Fraud ∣ Gi f tcard, Promos = P Gi f tcard, Promos ∣ Fraud P Fraud
P Gi f tcard, Promos

Let’s ignore the denominator for now, as it doesn’t depend on whether the order is
fraudulent or not. At this point, we need to focus on finding the calculation for
P(Giftcard, Promos|Fraud)P(Fraud). If we apply the chain rule, this is equivalent to
P(Fraud, Giftcard, Promos).
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You can see this by the following (note that Fraud, Giftcard, and Promo have been
abbreviated for space):

P F, G, P = P F P G, P F

P F P G, P F = P F P G F P P F, G

Now at this point we have a conundrum: how do you measure the probability of a
promo code given fraud and gift cards? While this is the correct probability, it really
can be difficult to measure—especially with more features coming in. What if we
were to be a tad naive and assume that we can get away with independence and just
say that we don’t care about the interaction between promo codes and gift cards, just
the interaction of each independently with fraud?

In that case, our math would be much simpler:

P Fraud, Gi f tcard, Promo = P Fraud P Gi f tcard ∣ Fraud P Promo ∣ Fraud

This would be proportional to our numerator. And, to simplify things even more, we
can assert that we’ll normalize later with some magical Z, which is the sum of all the
probabilities of classes. So now our model becomes:

P Fraud ∣ Gi f tcard, Promo = 1
Z P Fraud P Gi f tcard ∣ Fraud P Promo ∣ Fraud

To turn this into a classification problem, we simply determine which input—fraud or
not fraud—yields the highest probability. See Table 4-1.

Table 4-1. Probability of gift cards versus promos

Fraud Not fraud
Gift card present 60% 30%

Multiple promos used 50% 30%

Probability of class 10% 90%

At this point, you can use this information to determine whether an order is fraudu‐
lent based purely on whether it has a gift card present and whether it used multiple
promos. The probability that an order is fraudulent given the use of gift cards and
multiple promos is 62.5%. While we can’t exactly figure out how much savings this
gives you in terms of the number of orders you must review, we know that we’re using
better information and making a better judgment.
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There is one problem, though: what happens when the probability of using multiple
promos given a fraudulent order is zero? A zero result can happen for several reasons,
including that there just isn’t enough of a sample size. The way we solve this is by
using something called a pseudocount.

Pseudocount
There is one big challenge with a Naive Bayesian Classifier, and that is the introduc‐
tion of new information. For instance, let’s say we have a bunch of emails that are
classified as spam or ham. We build our probabilities using all of this data, but then
something bad happens: a new spammy word, fuzzbolt. Nowhere in our data did we
see the word fuzzbolt, and so when we calculate the probability of spam given the
word fuzzbolt, we get a probability of zero. This can have a zeroing-out effect that will
greatly skew results toward the data we have.

Because a Naive Bayesian Classifier relies on multiplying all of the independent prob‐
abilities together to come up with a classification, if any of those probabilities are zero
then our probability will be zero.

Take, for instance, the email subject “Fuzzbolt: Prince of Nigeria.” Assuming we strip
off of, we have the data shown in Table 4-2.

Table 4-2. Probability of word given ham or spam

Word Spam Ham
Fuzzbolt 0 0

Prince 75% 15%

Nigeria 85% 10%

Now let’s assume we want to calculate a score for ham or spam. In both cases, the
score would end up being zero because fuzzbolt isn’t present. At that point, because
we have a tie, we’d just go with the more common situation, which is ham. This
means that we have failed and classified something incorrectly due to one word not
being recognized.

There is an easy fix for that: pseudocount. When we go about calculating the proba‐
bility, we add one to the count of the word. So, in other words, everything will end up
being word_count + 1. This helps mitigate the zeroing-out effect for now. In the case
of our fraud detector, we would add one to each count to ensure that it is never zero.

So in our preceding example, let’s say we have 3,000 words. We would give fuzzbolt a
score of 1

3000 . The other scores would change slightly, but this avoids the zeroing-out
problem.
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Spam Filter
The canonical machine learning example is building a spam filter. In this section, we
will work up a simple spam filter, SpamTrainer, using a Naive Bayesian Classifier and
improve it by utilizing a 3-gram tokenization model.

As you have learned before, Naive Bayesian Classifiers can be easily calculated, and
operate well under strongly independent conditions. In this example, we will cover
the following:

• What the classes look like interacting with each other
• A good data source
• A tokenization model
• An objective to minimize our error
• A way to improve over time

Setup Notes
Python is constantly changing and I have tried to keep the examples working under
both 2.7.x and 3.0.x Python. That being said, things might change as Python changes.
For more comprehensive information check out the GitHub repo.

Coding and Testing Design
In our example, each email has an object that takes an .eml type text file that then
tokenizes it into something the SpamTrainer can utilize for incoming email messages.
See Figure 4-2 for the class diagram.

Figure 4-2. Class diagram showing how emails get turned into a SpamTrainer
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When it comes to testing we will focus on the tradeoff between false positives and
false negatives. With spam detection it becomes important to realize that a false posi‐
tive (classifying an email as spam when it isn’t) could actually be very bad for busi‐
ness. We will focus on minimizing the false positive rate but similar results could be
applied to minimizing false negatives or having them equal each other.

Data Source
There are numerous sources of data that we can use, but the best is raw email mes‐
sages marked as either spam or ham. For our purposes, we can use the CSDMC2010
SPAM corpus.

This data set has 4,327 total messages, of which 2,949 are ham and 1,378 are spam.
For our proof of concept, this should work well enough.

Email Class
The Email class has one responsibility, which is to parse an incoming email message
according to the RFC for emails. To handle this, we use the mail gem because there’s a
lot of nuance in there. In our model, all we’re concerned with is subject and body.

The cases we need to handle are HTML messages, plaintext, and multipart. Every‐
thing else we’ll just ignore.

Building this class using test-driven development, let’s go through this step by step.

Starting with the simple plaintext case, we’ll copy one of the example training files
from our data set under data/TRAINING/TRAIN_00001.eml to ./test/fixtures/
plain.eml. This is a plaintext email and will work for our purposes. Note that the split
between a message and header in an email is usually denoted by “\r\n\r\n”. Along
with that header information is generally something like “Subject: A Subject goes
here.” Using that, we can easily extract our test case, which is:

import unittest
import io
import re
from naive_bayes.email_object import EmailObject

class TestPlaintextEmailObject(unittest.TestCase):
  CLRF = "\n\n"
  def setUp(self):
    self.plain_file = './tests/fixtures/plain.eml'
    self.plaintext = io.open(self.plain_file, 'r')
    self.text = self.plaintext.read()
    self.plaintext.seek(0)
    self.plain_email = EmailObject(self.plaintext)

  def test_parse_plain_body(self):
    body = self.CLRF.join(self.text.split(self.CLRF)[1:])
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    self.assertEqual(self.plain_email.body(), body)

  def test_parses_the_subject(self):
    subject = re.search("Subject: (.*)", self.text).group(1)
    self.assertEqual(self.plain_email.subject(), subject)

Unit Testing in Python
Up until this point we haven’t introduced the unittest package in Python. Its main
objective is to define unit tests for us to run on our code. Like similar unit testing
frameworks in other languages like Ruby, we build a class that is prefixed with “Test”
and then implement specific methods.

Methods to implement:

• Any method that is prefixed with test_ will be treated as a test to be run.
• setUp(self) is a special method that gets run before any test gets run. Think of

this like a block of code that gets run before all tests (Table 4-3).

Table 4-3. Python unittest has many assertions we can use

Method Checks
assertEqual(a, b) a == b

assertNotEqual(a, b) a != b

assertTrue(x) bool(x) is True

assertFalse(x) bool(x) is False

assertIs(a,b) a is b

assertIsNot(a,b) a is not b

assertIsNone(x) x is None

assertIsNotNone(x) x is not None

assertIn(a,b) a in b

assertNotIn(a,b) a not in b

assertIsInstance(a,b) isinstance(a,b)

assertNotIsInstance(a,b) not isinstance(a,b)

Do note that we will not use all of these methods; they are listed here for future
reference.

Now instead of relying purely on regular expressions, we want to utilize a gem. We’ll
use the Stdlib of Python, which will handle all of the nitty-gritty details. Making email
work for this particular case, we have:
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import email
from BeautifulSoup import BeautifulSoup

class EmailObject:
  def __init__(self, filepath, category = None):
    self.filepath = filepath
    self.category = category
    self.mail = email.message_from_file(self.filepath)

  def subject(self):
    return self.mail.get('Subject')

  def body(self):
    return self.mail.get_payload(decode=True)

BeautifulSoup is a library that parses HTML and XML.

Now that we have captured the case of plaintext, we need to solve the case of HTML.
For that, we want to capture only the inner_text. But first we need a test case, which
looks something like this:

import unittest
import io
import re
from BeautifulSoup import BeautifulSoup
from naive_bayes.email_object import EmailObject

class TestHTMLEmail(unittest.TestCase):
  def setUp(self):
    self.html_file = io.open('./tests/fixtures/html.eml', 'rb')
    self.html = self.html_file.read()
    self.html_file.seek(0)
    self.html_email = EmailObject(self.html_file)

  def test_parses_stores_inner_text_html(self):
    body = "\n\n".join(self.html.split("\n\n")[1:])
    expected = BeautifulSoup(body).text
    self.assertEqual(self.html_email.body(), expected)

  def test_stores_subject(self):
    subject = re.search("Subject: (.*)", self.html).group(1)
    self.assertEqual(self.html_email.subject(), subject)
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As mentioned, we’re using BeautifulSoup to calculate the inner_text, and we’ll have
to use it inside of the Email class as well. Now the problem is that we also need to
detect the content_type. So we’ll add that in:

import email
from BeautifulSoup import BeautifulSoup

class EmailObject:
  def __init__(self, filepath, category = None):
    self.filepath = filepath
    self.category = category
    self.mail = email.message_from_file(self.filepath)

  def subject(self):
    return self.mail.get('Subject')

  def body(self):
    content_type = part.get_content_type()
    body = part.get_payload(decode=True)

    if content_type == 'text/html':
     return BeautifulSoup(body).text
    elif content_type == 'text/plain':
     return body
    else:
     return ''

At this point, we could add multipart processing as well, but I will leave that as an
exercise that you can try out yourself. In the coding repository mentioned earlier in
the chapter, you can see the multipart version.

Now we have a working email parser, but we still have to deal with tokenization, or
what to extract from the body and subject.

Tokenization and Context
As Figure 4-3 shows, there are numerous ways to tokenize text, such as by stems,
word frequencies, and words. In the case of spam, we are up against a tough problem
because things are more contextual. The phrase Buy now sounds spammy, whereas
Buy and now do not. Because we are building a Naive Bayesian Classifier, we are
assuming that each individual token is contributing to the spamminess of the email.
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Figure 4-3. Lots of ways to tokenize text

The goal of the tokenizer we’ll build is to extract words into a stream. Instead of
returning an array, we want to yield the token as it happens so that we are keeping a
low memory profile. Our tokenizer should also downcase all strings to keep them
similar:

import unittest
from naive_bayes.tokenizer import Tokenizer

class TestTokenizer(unittest.TestCase):
  def setUp(self):
    self.string = "this is a test of the emergency broadcasting system"

  def test_downcasing(self):
    expectation = ["this", "is", "all", "caps"]

    actual = Tokenizer.tokenize("THIS IS ALL CAPS")
    self.assertEqual(actual, expectation)

  def test_ngrams(self):
    expectation = [
      [u'\u0000', "quick"],
      ["quick", "brown"],
      ["brown", "fox"],
    ]

    actual = Tokenizer.ngram("quick brown fox", 2)
    self.assertEqual(actual, expectation)

As promised, we do two things in this tokenizer code. First, we lowercase all words.
Second, instead of returning an array, we use a block. This is to mitigate memory
constraints, as there is no need to build an array and return it. This makes it lazier. To
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make the subsequent tests work, though, we will have to fill in the skeleton for our
tokenizer module like so:

import re

class Tokenizer:
  NULL = u'\u0000'

  @staticmethod
  def tokenize(string):
    return re.findall("\w+", string.lower())

  @staticmethod
  def ngram(string, ngram):
    tokens = Tokenizer.tokenize(string)

    ngrams = []

    for i in range(len(tokens)):
      shift = i-ngram+1
      padding = max(-shift,0)
      first_idx = max(shift, 0)
      last_idx = first_idx + ngram - padding

      ngrams.append(Tokenizer.pad(tokens[first_idx:last_idx], padding))

    return ngrams

  @staticmethod
  def pad(tokens, padding):
    padded_tokens = []

    for i in range(padding):
      padded_tokens.append(Tokenizer.NULL)

    return padded_tokens + tokens

Now that we have a way of parsing and tokenizing emails, we can move on to build
the Bayesian portion: the SpamTrainer.

SpamTrainer
The SpamTrainer will accomplish three things:

• Storing training data
• Building a Bayesian classifier
• Error minimization through cross-validation
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Storing training data
The first step we need to tackle is to store training data from a given set of email mes‐
sages. In a production environment, you would pick something that has persistence.
In our case, we will go with storing everything in one big dictionary.

A set is a unique collection of data.

Remember that most machine learning algorithms have two steps: training and then
computation. Our training step will consist of these substeps:

• Storing a set of all categories
• Storing unique word counts for each category
• Storing the totals for each category

So first we need to capture all of the category names; that test would look something
like this:

import unittest
import io
import sets
from naive_bayes.email_object import EmailObject
from naive_bayes.spam_trainer import SpamTrainer

class TestSpamTrainer(unittest.TestCase):
  def setUp(self):
    self.training = [['spam', './tests/fixtures/plain.eml'], \
                     ['ham', './tests/fixtures/small.eml'], \
                     ['scram', './tests/fixtures/plain.eml']]
    self.trainer = SpamTrainer(self.training)
    file = io.open('./tests/fixtures/plain.eml', 'r')
    self.email = EmailObject(file)

  def test_multiple_categories(self):
    categories = self.trainer.categories
    expected = sets.Set([k for k,v in self.training])
    self.assertEqual(categories, expected)

The solution is in the following code:

from sets import Set
import io
from tokenizer import Tokenizer
from email_object import EmailObject
from collections import defaultdict
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class SpamTrainer:
  def __init__(self, training_files):
    self.categories = Set()

    for category, file in training_files:
      self.categories.add(category)

    self.totals = defaultdict(float)

    self.training = {c: defaultdict(float) for c in self.categories}

    self.to_train = training_files

  def total_for(self, category):
    return self.totals[category]

You’ll notice we’re just using a set to capture this for now, as it’ll hold on to the unique
version of what we need. Our next step is to capture the unique tokens for each email.
We are using the special category called _all to capture the count for everything:

class TestSpamTrainer(unittest.TestCase):
  # setUp
  # test_multiple_categories

  def test_counts_all_at_zero(self):
    for cat in ['_all', 'spam', 'ham', 'scram']:
      self.assertEqual(self.trainer.total_for(cat), 0)

To get this to work, we have introduced a new method called train(), which will take
the training data, iterate over it, and save it into an internal hash. The following is a
solution:

class SpamTrainer:
  # __init__
  # total_for

  def train(self):
    for category, file in self.to_train:
      email = EmailObject(io.open(file, 'rb'))

      self.categories.add(category)

      for token in Tokenizer.unique_tokenizer(email.body()):
        self.training[category][token] += 1
        self.totals['_all'] += 1
        self.totals[category] += 1

    self.to_train = {}

Now we have taken care of the training aspect of our program but really have no clue
how well it performs. And it doesn’t classify anything. For that, we still need to build
our classifier.
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Building the Bayesian classifier
To refresh your memory, Bayes’ theorem is:

P Ai B =
P B ∣ Ai P Ai

∑ jP B ∣ Aj P Aj

But because we’re being naive about this, we’ve distilled it into something much
simpler:

Equation 4-5. Bayesian spam score

Score Spam, W1, W2,⋯, Wn = P Spam P W1 ∣ Spam P W2 ∣ Spam
⋯P Wn ∣ Spam

which is then divided by some normalizing constant, Z.

Our goal now is to build the methods score, normalized_score, and classify. The
score method will just be the raw score from the preceding calculation, while normal
ized_score will fit the range from 0 to 1 (we get this by dividing by the total sum, Z).

The score method’s test is as follows:

class TestSpamTrainer(unittest.TestCase):
  # setUp
  # test_multiple_categories
  # test_counts_all_at_zero

  def test_probability_being_1_over_n(self):
    trainer = self.trainer
    scores = trainer.score(self.email).values()

    self.assertAlmostEqual(scores[0], scores[-1])

    for i in range(len(scores)-1):
      self.assertAlmostEqual(scores[i], scores[i+1])

Because the training data is uniform across the categories, there is no reason for the
score to differ across them. To make this work in our SpamTrainer object, we will
have to fill in the pieces like so:

class SpamTrainer:
  # __init__
  # total_for
  # train

  def score(self, email):
    self.train()
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    cat_totals = self.totals

    aggregates = {cat: cat_totals[c]/cat_totals['_all'] for c in self.categories]

    for token in Tokenizer.unique_tokenizer(email.body()):
      for cat in self.categories:
        value = self.training[cat][token]
        r = (value+1)/(cat_totals[cat]+1)
        aggregates[cat] *= r

    return aggregates

This test does the following:

• First, it trains the model if it’s not already trained (the train method handles
this).

• For each token of the blob of an email we iterate through all categories and calcu‐
late the probability of that token being within that category. This calculates the
Naive Bayesian score of each without dividing by Z.

Now that we have score figured out, we need to build a normalized_score that adds
up to 1. Testing for this, we have:

class TestSpamTrainer(unittest.TestCase):
  # setUp
  # test_multiple_categories
  # test_counts_all_at_zero
  # test_probability_being_1_over_n

  def test_adds_up_to_one(self):
    trainer = self.trainer
    scores = trainer.normalized_score(self.email).values()
    self.assertAlmostEqual(sum(scores), 1)
    self.assertAlmostEqual(scores[0], 1/2.0)

And subsequently on the SpamTrainer class we have:

class SpamTrainer:
  # __init__
  # total_for
  # train
  # score

  def normalized_score(self, email):
    score = self.score(email)
    scoresum = sum(score.values())

    normalized = {cat: (agg/scoresum) for cat, agg in score.iteritems()}
    return normalized
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Calculating a classification
Because we now have a score, we need to calculate a classification for the end user to
use. This classification should take the form of an object that returns guess and
score. There is an issue of tie breaking here.

Let’s say, for instance, we have a model that has turkey and tofu. What happens when
the scores come back evenly split? Probably the best course of action is to go with
which is more popular, whether it be turkey or tofu. What about the case where the
probability is the same? In that case, we can just go with alphabetical order.

When testing for this, we need to introduce a preference order—that is, the occur‐
rence of each category. A test for this would be:

class TestSpamTrainer(unittest.TestCase):
  # setUp
  # test_multiple_categories
  # test_counts_all_at_zero
  # test_probability_being_1_over_n
  # test_adds_up_to_one

  def test_preference_category(self):
    trainer = self.trainer
    expected = sorted(trainer.categories, key=lambda cat: trainer.total_for(cat))

    self.assertEqual(trainer.preference(), expected)

Getting this to work is trivial and would look like this:

class SpamTrainer:
  # __init__
  # total_for
  # train
  # score
  # normalized_score

  def preference(self):
    return sorted(self.categories, key=lambda cat: self.total_for(cat))

Now that we have preference set up, we can test for our classification being correct.
The code to do that is as follows:

class TestSpamTrainer(unittest.TestCase):
  # setUp
  # test_multiple_categories
  # test_counts_all_at_zero
  # test_probability_being_1_over_n
  # test_adds_up_to_one
  # test_preference_category

  def test_give_preference_to_whatever_has_the_most(self):
    trainer = self.trainer
    score = trainer.score(self.email)
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    preference = trainer.preference()[-1]
    preference_score = score[preference]

    expected = SpamTrainer.Classification(preference, preference_score)
    self.assertEqual(trainer.classify(self.email), expected)

Getting this to work in code again is simple:

class SpamTrainer:
  # __init__
  # total_for
  # train
  # score
  # normalized_score
  # preference

  class Classification:
    def __init__(self, guess, score):
      self.guess = guess
      self.score = score
    def __eq__(self, other):
      return self.guess == other.guess and self.score == other.score

  def classify(self, email):
    score = self.score(email)

    max_score = 0.0
    preference = self.preference()
    max_key = preference[-1]

    for k,v in score.iteritems():
      if v > max_score:
        max_key = k
        max_score = v
      elif v == max_score and preference.index(k) > preference.index(max_key):
        max_key = k
        max_score = v
    return self.Classification(max_key, max_score)

Error Minimization Through Cross-Validation
At this point, we need to measure how well our model works. To do so, we need to
take the data that we downloaded earlier and do a cross-validation test on it. From
there, we need to measure only false positives, and then based on that determine
whether we need to fine-tune our model more.

Minimizing false positives
Up until this point, our goal with making models has been to minimize error. This
error could be easily denoted as the count of misclassifications divided by the total
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classifications. In most cases, this is exactly what we want, but in a spam filter this
isn’t what we’re optimizing for. Instead, we want to minimize false positives. False
positives, also known as Type I errors, are when the model incorrectly predicts a posi‐
tive when it should have been negative.

In our case, if our model predicts spam when in fact the email isn’t, then the user will
lose her emails. We want our spam filter to have as few false positives as possible. On
the other hand, if our model incorrectly predicts something as ham when it isn’t, we
don’t care as much.

Instead of minimizing the total misclassifications divided by total classifications, we
want to minimize spam misclassifications divided by total classifications. We will also
measure false negatives, but they are less important because we are trying to reduce
spam that enters someone’s mailbox, not eliminate it.

To accomplish this, we first need to take some information from our data set, which
we’ll cover next.

Building the two folds
Inside the spam email training data is a file called keyfile.label. It contains information
about whether the file is spam or ham. Using that, we can build a cross-validation
script. First let’s start with setup, which involves importing the packages we’ve worked
on and some IO and regular expression libraries:

from spam_trainer import SpamTrainer
from email_object import EmailObject
import io
import re

print "Cross Validation"

correct = 0
false_positives = 0.0
false_negatives = 0.0
confidence = 0.0

This doesn’t do much yet except start with a zeroed counter for correct, false posi‐
tives, false negatives, and confidence. To set up the test we need to load the label data
and turn that into a SpamTrainer object. We can do that using the following:

def label_to_training_data(fold_file):
  training_data = []

  for line in io.open(fold_file, 'rb'):
    label_file = line.rstrip().split(' ')
    training_data.append(label_file)

  print training_data
  return SpamTrainer(training_data)
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trainer = label_to_training_data('./tests/fixtures/fold1.label')

This instantiates a trainer object by calling the label_to_training_data function.
Next we parse the emails we have in fold number 2:

def parse_emails(keyfile):
  emails = []
  print "Parsing emails for " + keyfile

  for line in io.open(keyfile, 'rb'):
    label, file = line.rstrip().split(' ')

    emails.append(EmailObject(io.open(file, 'rb'), category=label))

  print "Done parsing files for " + keyfile
  return emails

emails = parse_emails('./tests/fixtures/fold2.label')

Now we have a trainer object and emails parsed. All we need to do now is calculate
the accuracy and validation metrics:

def validate(trainer, set_of_emails):
  correct = 0
  false_positives = 0.0
  false_negatives = 0.0
  confidence = 0.0

  for email in set_of_emails:
    classification = trainer.classify(email)
    confidence += classification.score

    if classification.guess == 'spam' and email.category == 'ham':
      false_positives += 1
    elif classification.guess == 'ham' and email.category == 'spam':
      false_negatives += 1
    else:
      correct += 1

  total = false_positives + false_negatives + correct

  false_positive_rate = false_positives/total
  false_negative_rate = false_negatives/total
  accuracy = (false_positives + false_negatives) / total
  message = """
  False Positives: {0}
  False Negatives: {1}
  Accuracy: {2}
  """.format(false_positive_rate, false_negative_rate, accuracy)
  print message

validate(trainer, emails)
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Last, we can analyze the other direction of the cross-validation (i.e., validating fold1
against a fold2 trained model):

trainer = label_to_training_data('./tests/fixtures/fold2.label')
emails = parse_emails('./tests/fixtures/fold1.label')
validate(trainer, emails)

Cross-validation and error measuring

From here, we can actually build our cross-validation test, which will read fold1 and
fold2 and then cross-validate to determine the actual error rate. The test looks some‐
thing like this (see Table 4-4 for the results):

Cross Validation::Fold1 unigram model
  validates fold1 against fold2 with a unigram model

        False Positives: 0.0036985668053629217
        False Negatives: 0.16458622283865001
        Error Rate: 0.16828478964401294

Cross Validation::Fold2 unigram model
  validates fold2 against fold1 with a unigram model

        False Positives: 0.005545286506469501
        False Negatives: 0.17375231053604437
        Error Rate: 0.17929759704251386

Table 4-4. Spam versus ham

Category Email count Word count Probability of email Probability of word
Spam 1,378 231,472 31.8% 36.3%

Ham 2,949 406,984 68.2% 63.7%

Total 4,327 638,456 100% 100%

As you can see, ham is more probable, so we will default to that and more often than
not we’ll classify something as ham when it might not be. The good thing here,
though, is that we have reduced spam by 80% without sacrificing incoming messages.

Conclusion
In this chapter, we have delved into building and understanding a Naive Bayesian
Classifier. As you have learned, this algorithm is well suited for data that can be asser‐
ted to be independent. Being a probablistic model, it works well for classifying data
into multiple directions given the underlying score. This supervised learning method
is useful for fraud detection, spam filtering, and any other problem that has these 
types of features.
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1 “New Measure of Human Brain Processing Speed,” MIT Technology Review, August 25, 2009, http://bit.ly/new-
measure-brain; James Randerson, “How Many Neurons Make a Human Brain? Billions Fewer Than We
Thought,” The Guardian, February 28, 2012, http://bit.ly/how-many-neurons; AI Impacts, “Neuron Firing
Rates in Humans,” April 4, 2014, http://aiimpacts.org/rate-of-neuron-firing/.

CHAPTER 5

Decision Trees and Random Forests

Every day we make decisions. Every second we make decisions. Our perceptive brains
receive roughly 12.5 gigabytes to 2.5 terabytes of information per second—an impres‐
sive amount—but they only focus on 60 bits of information per second.1 Humans are
exceptionally adept at taking in lots of data and quickly finding patterns in it.

But we’re not so great under pressure. In Chapter 1 we discussed flight and how
checklists have solved many of its problems. We don’t use checklists because we’re
stupid; on the contrary, it’s because under stress we forget small bits of information.

What if the effects of our decisions were even greater? Take, for instance, classifying
mushrooms in the forest. If you are lucky enough to live in a climate that supports
mushrooms such as morels, which are delicious, then you can see the allure of going
to find your own, as they are quite expensive! But as we all know finding mushrooms
in the forest is extremely dangerous if you misclassify them.

While death by mushroom is quite rare, the effects are well documented. Death caps,
Amanita phalloides, cause liver failure. On the other hand, if you were to eat a Psilo‐
cybe semilanceata by accident, you would be in for a trip. Also known as liberty caps,
these are the notorious magic mushrooms that people ingest to experience psyche‐
delic effects!

While we as humans are good at processing information, we might not be the best at
making decisions that are objective. When our decisions can produce outcomes as
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varied as a psychedelic high, death, or delicious food, we need to apply an algorithm.
For that we’ll use decision trees.

This should never be used to find mushrooms in the woods. Don’t
do it, ever, unless you are a trained mycologist or traveling with an
experienced mycologist. You risk a terrible death if you do so. This
is purely educational and should only be used to see the nuances
between mushrooms as well as understand our fungus friends
better.

In this chapter we will first talk about the nuances of mushrooms and how we will go
about defining success with our model. We’ll first take a fairly folk-theorem approach
to classifying mushrooms using some of the normal classification techniques to
determine whether something is poisonous or not. Then we’ll move into splitting our
data into pieces based on the attributes of mushrooms. We’ll also talk about the ill
effects of a deep tree.

Last, we’ll discuss finding trees using an ensemble method called random forests.
Throughout this chapter we will talk about how to approach this problem with a test‐
ing focus.

The Nuances of Mushrooms
As with any machine learning problem, knowing your domain is important. This 
domain knowledge can make or break many models and mushrooms are no differ‐
ent. These amazing fungi are hard to classify because similar-looking species can have
vastly different effects when eaten. For instance in the Boletus genus there are Boletus
badius (bay bolete), Boletus pulcherrimus, and Boletus manicus (see Figure 5-1).

Figure 5-1. Boletus badius and Boletus pulcherrimus. Source: Wikimedia.
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2 For more information on mushrooms see Ian Robert Hall (2003), Edible and Poisonous Mushrooms of the
World (Timber Press), p. 103, ISBN 0-88192-586-1.

The bay bolete is edible and delicious, Boletus pulcherrimus is poisonous, and Boletus
manicus is psychedelic. They all look fairly similar since they are big fat mushrooms
that share a common top.

If our goal was to find bolete-like mushrooms then we might find ourself in extreme
danger. So what should we do? People have been classifying mushrooms for a long
time and this has led to folk traditions.

Classifying Mushrooms Using a Folk Theorem
Folk traditions have led to a few heuristics we could use to build a model to help us
classify mushrooms:

• Poisonous mushrooms are brightly colored.
• Insects and animals will avoid contact with poisonous mushrooms.
• Poisonous mushrooms will turn rice red if boiled.
• Poisonous mushrooms have a pointed cap. Edible mushrooms have a flat cap.
• Poisonous mushrooms taste bad.
• Boletes are safe to eat.2

All of these are erroneous and unfortunately have killed people who followed some of
them. But we might be able to increase the accuracy of this list by bringing them all
into one unified theorem or folk theorem.

Say, for instance, we first asked whether the mushroom was brightly colored or not,
then asked whether insects or animals will avoid mushrooms, and so forth. We could
keep asking questions until we find ourselves with a generalized answer.

Visually we could represent this as a flow chart (Figure 5-2).

But this is a loose way of building a model and suffers from the fact that we don’t have
data. As a matter of fact, I wouldn’t condone collecting information on whether the
mushroom tasted bad—that just seems dangerous. So what can we do instead?
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Figure 5-2. Folk theorem flow chart

Finding an Optimal Switch Point
Instead of focusing on domain knowledge, we could take a step back and focus on
hard data. There is a data set that the University of California, Irvine owns about edi‐
ble and poisonous mushrooms. Sorry, there’s no information on psychedelic mush‐
rooms in this data, but we can still use the data to come up with a better approach
than the folk theorem.

The data contains quite a few attributes that might help us determine whether a
mushroom is edible or not, such as cap shape, odor, and veil color. Instead of relying
on folktales about what makes a mushroom poisonous or not, what does the data say?

We could, for instance, come up with a probability of each feature adding independ‐
ently to the overall poisonousness of a mushroom. This would be a Naive Bayesian
Classification but has the problem that each feature isn’t independent. There is cross‐
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over. Maybe a mushroom that is bright and flat is okay to eat while a mushroom that
is bright and round isn’t.

Instead, to build this decision tree we can take the overall algorithm:

• Split data into subcategories using the most informational attribute.
• Keep going until threshold.

This algorithm is quite simple. The idea is to take the entire population of mush‐
rooms, and split them into subcategories until we have a tree showing us how to clas‐
sify something (Figure 5-3).

Figure 5-3. Splitting data using categories

Three common metrics are used to split data into subcategories:

1. Information gain
2. GINI impurity
3. Variance reduction

Information Gain
Knowing that our goal is to split a population of mushrooms into subcategories, we
would want to split on attributes that improve our model. We want to take an
attribute such as odor and determine how that affects the classification accuracy. This
can be done using information gain.

Conceptually this is a metric of information theory and tells us how well the attribute
tracks with the overall goal. It can be calculated as Gain = Hnew – Hprevious = H(T) –
H(T | a). This tells us the relative information entropy gain in positive terms. So for
instance if the previous entropy was –2 and the new entropy is –1 then we would
have a gain of 1.
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Information theory primer: entropy is used as a way of determin‐
ing just how descriptive bits are. A canonical example of entropy
would be that if it’s always sunny in Death Valley with a probability
of 100% then the entropy would be 0 to send information about
what the weather of the day was. The information doesn’t need to
be encoded since there’s nothing to report.
Another example of high entropy would be having a complex pass‐
word. The more numerous and diverse the characters you use, the
higher the entropy. The same is true of attributes. If we have lots of
possibilities for mushroom odor, then that would have higher
entropy.

GINI Impurity
Not to be confused with the GINI coefficient, GINI impurity is a probabilistic meas‐
ure. It defines how probable an attribute is at showing up and the probability of it
being mistaken.

The formula for impurity is:

IG f = ∑i = 1
m p f i 1 − p f i = 1 − ∑i = 1

m p f i
2

To understand this, examine a person’s simple taste profile (Table 5-1).

Table 5-1. Taste profile

Like/Not Like Sweet Salty
Like True True

Like True False

Like False True

Not Like False False

Not Like False True

Measuring what the GINI impurity is for the factors “Sweet” and “Salty” would be
calculated this way: sum the probability of that factor in a given class (Like/Not Like)
over each factor (Sweet/Salty).

For instance with “Sweet”:

IG Sweet = 2
3 1 − 2

3 + 0
2 1 − 2

2 = 2
9
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Similarly:

IG Salty = 2
3 1 − 2

3 + 1
2 1 − 1

2 = 2
9 + 1

4 = 17
36

What this means is that the GINI impurity for Salty is higher than the GINI impurity
for Sweet. Intuitively while creating a decision tree we would want to choose Sweet as
a split point first, since it will create less impurity in the tree.

Variance Reduction
Variance reduction is used primarily in continuous decision trees. Conceptually var‐
iance reduction aims to reduce the dispersion of the classification. While it doesn’t
apply to classification problems such as whether mushrooms are edible or not, it does
apply to continuous outputs. If, for instance, we would rather have a model that pre‐
dicts in a predictable fashion:

ξ = E X1 j − E X2 j = μ1 − μ2

Decision trees are wonderful but have a major drawback: sometimes they overfit data.
As we will see in many chapters in this book, overfitting is a big problem. We want to
model our problem without memorizing the data. To solve this we need to figure out
a way of making our model general. We do that through pruning.

Pruning Trees
When building a model to understand the nuances of mushrooms, we don’t want to
just memorize everything. While I highly suggest memorizing all the data for perfect
classifications if you do forage for mushrooms, in this case we need to focus on the
model of the mushroom kingdom. To build a better model we can use pruning.

Decision trees are NP in that they are generally hard to compute but easy to verify.
This is even more amplified by the problem of complex trees. Our goal for pruning is
to find a subtree of the full decision tree using the preceding decision points that
minimizes this error surface:

err prune T, t , S − err T, S
leaves T − leaves prune T, t

Finding the optimal pruned tree is difficult because we need to run through all possi‐
bilities to find out which subtree is the best. To overcome this we need to rethink our
original approach for training the decision tree in the first place. For that we’ll utilize
an ensemble method called random forests.
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Ensemble Learning
We haven’t discussed ensemble learning yet but it’s a highly valuable tool in any
machine learning programmer’s toolkit. Ensemble methods are like meta-
programming for machine learning. The basic idea is to build a model full of many
submodels.

With our mushroom classification model we have discovered that we can find a solu‐
tion but it takes a long time to run. We want to find the optimal subtree that can also
be thought of as a decision tree that satisfies our model.

There are lots of ensemble methods, but for this chapter we will focus on bagging and
random forests.

Bagging
One simple approach to ensemble learning is bagging, which is short for “bootstrap
aggregation.” This method was invented as a way to improve a model without chang‐
ing anything except the training set. It does this by aggregating multiple random ver‐
sions of the training set.

Imagine that we randomly sample data in our data set. For instance, we take a subset
that overlooks something like the poisonous Bolete mushroom. For each one of these
subsamples we train a decision tree using our metrics like the GINI impurity or infor‐
mation gain (Figure 5-4). For each of these models we then have an accuracy, preci‐
sion, and recall associated with each.

Accuracy, precision, and recall are all metrics to determine how viable the model is
that we have built. Many of us already know accuracy but haven’t ran into precision
or recall yet.

The definitions of each of these metrics are:

• Precision = True Positives / (True Positives + False Positives)
• Recall = True Positives / (True Positives + False Negatives)
• Accuracy = (True Positives + True Negatives) / (Number of all responses)

Precision is a measure of how on point the classification is. For instance, out of all the
positive matches the model finds, how many of them were correct?

Recall can be thought of as the sensitivity of the model. It is a measure of whether all
the relevant instances were actually looked at.

Accuracy as we know it is simply an error rate of the model. How well does it do in
aggregate?
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Figure 5-4. Many trees make up a random forest

We now have a set of decision trees that we can aggregate by finding the majority vote
of a classification (Figure 5-5).

Figure 5-5. Voting usually is about picking the winner

This drastically improves performance because it reduces variability in the prediction
but doesn’t have a bunch of bias mixed in. What this implicitly means is that one
decision tree will have a lot of noise contained within it, whereas decision trees in
aggregate average out. This is similar to the central limit theorem.

Random forests
Another method to aggregating tree models together is to randomly select feature
spaces. For instance in our mushroom kingdom we can build decision trees using five
subfeatures at each iteration. This would yield at most 26,334 combinations (22
choose 5). What is intriguing is that we might find more information about our
mushroom kingdom using this because some features might be more collaborative
than others. Like bagging we can take the data and aggregate by votes.

We will be discussing variable importance in a later chapter, but
what is fascinating about decision trees is you can determine what
is an important variable and use this to build features.
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Writing a Mushroom Classifier

For access to all the code contained in this chapter, visit the GitHub
repo.

Getting back to our example: what if we were to build something that classifies mush‐
rooms into poisonous or edible based on the various features associated with them?
There’s an infinite amount of algorithms we could choose, but since we want some‐
thing that’s easy to understand, decision trees are a good candidate.

Coding and testing design
To build this mushroom classifier and regression we have to first build some classes.
The basic idea is to feed in mushroom data that has attributes and whether it’s edible.

From here we define the following classes (see Figure 5-6):

MushroomProblem

Implements validation_data for our use in validating the model

MushroomRegression

Implements a regression tree

MushroomClassifier

A utility class for classification problems

MushroomForrest

An implementation of random forests to classify mushrooms

MushroomTree

An implementation of a decision tree to classify mushrooms

76 | Chapter 5: Decision Trees and Random Forests

https://github.com/thoughtfulml/examples-in-python/tree/master/decision-trees
https://github.com/thoughtfulml/examples-in-python/tree/master/decision-trees


Figure 5-6. Class design for mushroom problem

Testing mushroom classification and regression will take two different forms: square
error (for regression) and confusion matrices (Figure 5-7). Confusion matrices are a
way of determining how well classification problems work.

Figure 5-7. Confusion matrix example with yes or no answers
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Confusion Matrix
Confusion matrices are a way of tabulating how well the classifier works. Given two
categories, we want to test whether our classifier is right. Reading confusion matrices
involves looking at actual and predicted pairs (down the diagonal) for what are classi‐
fied as true classifications. For finding incorrect classifications, any actual and predic‐
ted column row pairs that don’t match are incorrect classifications.

MushroomProblem
To write this classifier we first need to do some setup. For this we will rely on Pandas,
NumPy, and scikit-learn. You’ll notice that we use a lot of Pandas functions that help
put the data into easy-to-use classes and features.

Let’s start by defining the problem. Given a datafile of mushroom training data with
attributes attached to it, we want to load that into a class that will factorize those
attributes into numerical information and output validation data for testing:

from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
from numpy.random import permutation
from numpy import array_split, concatenate
from sklearn.metrics import roc_curve, auc, mean_squared_error
import pandas as pd
import numpy as np

class MushroomProblem:
  def __init__(self, data_file):
    self.dataFrame = pd.read_csv(data_file)
    for k in self.dataFrame.columns[1:]:
      self.dataFrame[k], _ = pd.factorize(self.dataFrame[k])

    sorted_cats = sorted(pd.Categorical(self.dataFrame['class']).categories)
    self.classes = np.array(sorted_cats)
    self.features = self.dataFrame.columns[self.dataFrame.columns != 'class']

  def __factorize(self, data):
    y, _ = pd.factorize(pd.Categorical(data['class']), sort=True)
    return y

This sets up the initial class but then we also need a function that outputs a subset of
data by having a variable amount of folds:

class MushroomProblem:
  # __init__

  def validation_data(self, folds):
    df = self.dataFrame
    response = []
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    assert len(df) > folds

    perms = array_split(permutation(len(df)), folds)

    for i in range(folds):
      train_idxs = range(folds)
      train_idxs.pop(i)
      train = []
      for idx in train_idxs:
        train.append(perms[idx])

      train = concatenate(train)

      test_idx = perms[i]

      training = df.iloc[train]
      test_data = df.iloc[test_idx]

      y = self.__factorize(training)
      classifier = self.train(training[self.features], y)
      predictions = classifier.predict(test_data[self.features])

      expected = self.__factorize(test_data)
      response.append([predictions, expected])

    return response

This first defines the problem we’re trying to solve (i.e., the mushroom classification
problem). From here we can take a few different approaches:

• A regression
• A classifier

— Decision tree
— Random forest

The major difference between them would be how the training method is set up. For
instance, with a regression we’d just need:

class MushroomRegression(MushroomProblem):
  def train(self, X, Y):
    reg = DecisionTreeRegressor()
    reg = reg.fit(X, Y)
    return reg

  def validate(self, folds):
    responses = []

    for y_true, y_pred in self.validation_data(folds):
      responses.append(mean_squared_error(y_true, y_pred))
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    return responses

For our classifiers we can define them as such:

class MushroomClassifier(MushroomProblem):
  def validate(self, folds):
    confusion_matrices = []

    for test, training in self.validation_data(folds):
      confusion_matrices.append(self.confusion_matrix(training, test))

    return confusion_matrices

  def confusion_matrix(self, train, test):
    return pd.crosstab(test, train, rownames=['actual'], colnames=['preds'])

class MushroomForest(MushroomClassifier):
  def train(self, X, Y):
    clf = RandomForestClassifier(n_jobs = 2)
    clf = clf.fit(X, Y)
    return clf

class MushroomTree(MushroomClassifier):
  def train(self, X, Y):
    clf = DecisionTreeClassifier()
    clf = clf.fit(X, Y)
    return clf

While this is great, it doesn’t really answer the question of how you would go about
testing this. How good would this model really hold up?

Testing
The best testing method is to stratify our data into cross-validation folds and deter‐
mine whether we are classifying properly. Otherwise we will output a mean squared
error.

To do this we need some simple code to check:

from classifier import MushroomTree, MushroomForest, MushroomRegression

data = './data/agaricus-lepiota.data'
folds = 5

print "Calculating score for decision tree"

tree = MushroomTree(data)
print tree.validate(folds)

print "Calculating score for random forest method"

forest = MushroomForest(data)
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print forest.validate(folds)

print "Calculating score for regression tree"

regression = MushroomRegression(data)
print regression.validate(folds)

Running this code shows the following output. In the code, actual is the data inside
of the training set. This is the data we hold to be true. preds are results we got out of
the model we built:

Calculating score for decision tree
[preds     0    1
actual
0       844    0
1         0  781,
preds     0    1
actual
0       834    0
1         0  791,
preds     0    1
actual
0       814    0
1         0  811,
preds     0    1
actual
0       855    0
1         0  770,
preds     0    1
actual
0       861    0
1         0  763]
Calculating score for random forest method
[preds     0    1
actual
0       841    0
1         0  784,
preds     0    1
actual
0       869    0
1         0  756,
preds     0    1
actual
0       834    0
1         0  791,
preds     0    1
actual
0       835    0
1         0  790,
preds     0    1
actual
0       829    0
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1         0  795]
Calculating score for regression tree
[0.0, 0.0, 0.0, 0.0, 0.0]

What you’ll notice is, given this toy example, we are able to create a decision tree that
does exceptionally well. Does that mean we should go out to the woods and eat
mushrooms? No, but given the training data and information we gathered, we have
built a highly accurate model of mapping mushrooms to either poisonous or edible!

The resulting decision tree is actually quite fascinating as you can see in Figure 5-8.

Figure 5-8. The resulting tree from building decision trees

I don’t think it’s important to discuss what this tree means, but it is interesting to
think of mushroom poisonousness as a function of a handful of decision nodes.
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Conclusion
In this chapter we learned how to classify data by using decision trees. This can be
useful for making hierarchical classifications and when certain attributes determine
split points well. We showed that decision trees and random forests are both well
suited for classifying mushroom edibility. And remember—don’t use this in the wild
to classify mushrooms! Find a mycologist.
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CHAPTER 6

Hidden Markov Models

Intuition informs much of what we do: for example, it tells us that certain words tend
to be a certain part of speech, or that if a user visits a signup page, she has a higher
probability of becoming a customer. But how would you build a model around
intuition?

Hidden Markov models (HMMs) are well versed in finding a hidden state of a given
system using observations and an assumption about how those states work. In this
chapter, we will first talk about how to track user states given their actions, then
explore more about what an HMM is, and finally build a part-of-speech tagger using
the Brown Corpus. The part-of-speech tagger will tag words in sentences as nouns,
pronouns, or any part of speech in the Brown Corpus.

HMMs can be either supervised or unsupervised and also are called Markovian due
to their reliance on a Markov model. They work well where there doesn’t need to be a
lot of historical information built into the model. They also work well for adding
localized context to a classification. Unlike what we saw with Naive Bayesian Classifi‐
cation, which relied on a lot of history to determine whether a user is spammy or not,
HMMs can be used to predict changes over time in a model.

Tracking User Behavior Using State Machines
Have you ever heard of the sales funnel? This is the idea that there are different levels
of customer interaction. People will start as prospects and then transition into more
engaged states (see Figure 6-1).
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Figure 6-1. A generalized sales funnel

Prospects are “lurkers” who visit the site once or twice but usually don’t engage.
Users, on the other hand, like to browse and occasionally make purchases. Customers
are quite engaged and have bought something but usually don’t buy a lot in a short
time, and thus go back to being users temporarily.

Let’s say that we have an online store and determine that out of prospects that visit
the site, 15% will sign up, and 5% will become customers right away. When the visitor
is already a user, he will cancel his account 5% of the time and buy something 15% of
the time. If the visitor is a customer, he will cancel his account only 2% of the time
and go back to being a user 95% of the time instead of continually buying things.

We could represent the information we have collected in a transition matrix, which
shows the probability of going from one state to another, or remaining in the same
state (Table 6-1).

Table 6-1. Transition probability

Prospect User Customer
Prospect 0.80 0.15 0.05

User 0.05 0.80 0.15

Customer 0.02 0.95 0.03

What the transition probability defines is known as a state machine (see Figure 6-2).
It also tells us a lot about how our current customers behave. We can determine the
conversion rate, attrition rate, and other probabilities. Conversion rate is the proba‐
bility of a prospect signing up, which would be 20%—the probability of going from
prospect to user plus the probability of prospect to customer (15% + 5%). You could
also determine the attrition rate by taking the average of 5% and 2%, which is 3.5%.
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Figure 6-2. User state transition machine

This is an uncommon way of displaying user behavior in analytics, because it is too
explanatory. But it has one advantage over traditional conversion rate calculations:
the ability to look at how a user operates over time. For instance, we could determine
the probability of a user being a prospect given the last four times he was in fact a
prospect. This is the probability of being a prospect (say 80%) multiplied by the four
times they were a prospect before, which were all 80%. The probability that someone
keeps viewing the site and never signs up is low, because eventually he might sign up.

But there is also one major problem with this model: there is no way for us to reliably
determine these states without asking each user individually. The state is hidden from
our observation. A user can view the site anonymously.

That is actually fine, as you will soon see. As long as we are able to observe interac‐
tion with the site and make a judgment call about the underlying transitions from
other sources (think Google Analytics), then we can still solve this problem.

We do this by introducing another level of complexity called emissions.

Emissions/Observations of Underlying States
With our preceding example, we don’t know when someone goes from being a pros‐
pect to a user to a customer. But we are able to observe what a user is doing and what
her behavior is. We know that for a given observation there is a probability that she is
in a given state.

We can determine the user’s underlying state by observing her emitted behaviors.
Let’s say, for instance, that we have five pages on our website: Home, Signup, Product,
Checkout, and Contact Us. Now, as you might imagine, some of these pages matter to
us and others do not. For instance, Signup would most likely mean the prospect
becomes a user, and Checkout means the user becomes a customer.

This information gets more interesting because we know the probabilities of states.
Let’s say we know the emission and state probabilities shown in Table 6-2.
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Table 6-2. Emission and state probabilities

Page name Prospect User Customer
Home 0.4 0.3 0.3

Signup 0.1 0.8 0.1

Product 0.1 0.3 0.6

Checkout 0 0.1 0.9

Contact Us 0.7 0.1 0.2

We know the probability of users switching states as well as the probability of the
behavior they are emitting given the underlying state. Given this info, what is the
probability that a user who has viewed the Home, Signup, and Product pages
becomes a customer? Namely, we want to solve the problem depicted in Figure 6-3.

Figure 6-3. States versus observations

To figure this out, we need to determine the probability that a user is in the customer
state given all her previous states, or notationally, P(Customer | S1, S2), as well as the
probability of the user viewing the product page given that she was a customer multi‐
plied by the probability of signup given the state, or notationally, P(Product_Page |
Customer) * P(Signup_Page | S2) * P(Homepage | S1). The problem here is that there
are more unknowns than knowns.

This finite model is difficult to solve because it involves a lot of calculations. Calculat‐
ing a problem like P(Customer | S1, S2, ⋯, SN) is complicated. To solve this, we need to
introduce the Markov assumption.

Emissions and observations are used interchangeably in HMM nomenclature. They
are the same thing and refer simply to what a process is emitting or what you can 
observe.
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Simplification Through the Markov Assumption
Remember from the Naive Bayesian Classification that each attribute would inde‐
pendently add to the probability of some events. So for spam, the probability would
be independently conditional on words or phrases like Prince and Buy now. In the
model that we’re building with user behavior, though, we do want dependence.
Mainly, we want the previous state to be part of the next state’s probability. In fact, we
would assert that the previous states have a relationship to the user’s current state.

In the case of Naive Bayesian Classification, we would make the assumption that the
probability of something was independently conditional on other events. So spam
was independently conditional on each word in the email.

We can do the same with our current system. We can state that the probability of
being in a particular state is primarily based on what happened in the previous state.
So instead of P(Customer | S1, S2, ⋯, SN), our equation would be P(Customer | SN). But
why can we get away with such a gross simplification?

Given a state machine like the one we have just defined, the system infers probabilis‐
tically and recursively where you have been in the past. For instance, if a site visitor
were in the customer state, then you could say that the most probable previous state
would be user, and that the most probable state before that would be prospect.

This simplification also has one exciting conclusion, which leads us into our next
topic: Markov chains.

Using Markov Chains Instead of a Finite State Machine
We have been talking purely about one system, and only one outcome, thus far. But
what is powerful about the Markov assumption is that you can model a system as it
operates forever. Instead of looking locally at what the process is going to do, we can
figure out how the system will always behave. This brings us to the idea of a Markov
chain.

Markov chains are exceptional at simulating systems. Queuing theory, finance,
weather modeling, and game theory all make heavy use of Markov chains. They are
powerful because they represent behaviors in a concise way. Unlike models such as
neural networks, which can become extremely complex as we add nodes, HMMs only
rely on a few probability matrices; they are extremely useful at modeling system
behaviors.

Markov chains can analyze and find information within an underlying process that
will operate forever. But that still doesn’t solve our fundamental problem, which is
that we still need to determine what state a given person is in given his hidden previ‐
ous state and our own observations. For that, we will need to enhance Markov chains
with a hidden aspect.
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Hidden Markov Model
We’ve talked a lot about observation and underlying state transitions, but now we’re
almost back to where we started. We still need to figure out what a user’s state is.
To do this, we will use a Hidden Markov Model, which comprises these three
components:

Evaluation
How likely is it that a sequence like Home → Signup → Product → Checkout will
come from our transition and observation of users?

Decoding
Given this sequence, what does the most likely underlying state sequence look
like?

Learning
Given an observed sequence, what will the user most likely do next?

In the following sections, we will discuss these three elements in detail. First, we’ll talk
about using the Forward-Backward algorithm to evaluate a sequence of observations.
Then we will delve into how to solve the decoding problem with the Viterbi algo‐
rithm, which works on a conceptual level. Last, we’ll touch on the idea of learning as
an extension of decoding.

Evaluation: Forward-Backward Algorithm
Evaluation is a question of figuring out how probable a given sequence is. This is
important in determining how likely it is that your model actually created the
sequence that you are modeling. It can also be quite useful for determining, for exam‐
ple, if the sequence Home→Home is more probable than Home→Signup. We per‐
form the evaluation step by using the Forward-Backward algorithm. This algorithm’s
goal is to figure out what the probability of a hidden state is subject to the observa‐
tions. This is effectively saying that, given some observations, what is the probability
that happened?

Mathematical Representation of the Forward-Backward Algorithm
The Forward-Backward algorithm is the probability of an emission happening given
its underlying states—that is, P(ek | s). At first glance, this looks difficult because you
would have to compute a lot of probabilities to solve it. If we used the chain rule, this
could easily become expansive. Fortunately, we can use a simple trick to solve it
instead.

The probability of ek given an observation sequence is proportional to the joint distri‐
bution of ek and the observations:
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p ek ∣ s ∝ p ek, s

which we can actually split into two separate pieces using the probability chain rule:

p sk + 1, sk + 2,⋯, sn ∣ ek, s1, s2,⋯, sk p ek, s1, s2,⋯, sk

This looks fruitless, but we can actually forget about x1, ⋯ , xk in the first probability
because the probabilities are D-Separated. I won’t discuss D-Separation too much, but
because we’re asserting the Markov assumption in our model we can effectively forget
about these variables, because they precede what we care about in our probability
model:

p ek ∣ s ∝ p sk + 1, sk + 2,⋯, sn ∣ ek p ek, s1, s2,⋯, sk

This is the Forward-Backward algorithm!

Graphically, you can imagine this to be a path through this probability space (see
Figure 6-4). Given a specific emission at, say, index 2, we could calculate the probabil‐
ity by looking at the forward and backward probabilities.

Figure 6-4. States versus emissions

The forward term is looking at the joint probability of the hidden state at point k
given all the emissions up to that point. The backward term is looking at the condi‐
tional probability of emissions from k+1 to the end given that hidden point.

Using User Behavior
Using our preceding example of Home→Signup→Product→Checkout, let’s calculate
the probability of that sequence happening inside our model using the Forward-
Backward algorithm. First let’s set up the problem by building a class called Forward
Backward:

class ForwardBackward:
  def __init__():
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    self.observations = ['homepage', 'signup', 'product', 'checkout']
    self.states = ['Prospect', 'User', 'Customer']
    self.emissions = ['homepage', 'signup', 'product page', 'checkout',\
                      'contact us']

    self.start_probability = {
      'Prospect': 0.8,
      'User': 0.15,
      'Customer': 0.05
    }

    self.transition_probability = np.array([
      [0.8, 0.15, 0.05],
      [0.05, 0.80, 0.15],
      [0.02, 0.95, 0.03]
    ])

    self.emission_probability = np.array([
      [0.4, 0.3, 0.3], # homepage
      [0.1, 0.8, 0.1], # signup
      [0.1, 0.3, 0.6], # product page
      [0, 0.1, 0.9],  # checkout
      [0.7, 0.1, 0.2] # contact us
    ])

    self.end_state = 'Ending'

Here we are simply importing the information that we had from before—that is, the
transition probability matrix and the emission probabilities. Next, we need to define
our foward step, which is:

class ForwardBackward:
  # __init__
  def forward():
    forward = []
    f_previous = {}

    for(i in xrange(1, len(self.observations))):
      f_curr = {}
      for(state in self.states):
        if i == 0:
          prev_f_sum = self.start_probability[state]
        else:
          prev_f_sum = 0.0
          for (k in self.states):
            prev_f_sum += f_previous.get(k, 0.0) * \
            self.transition_probability[k][state]
        f_curr[state] = self.emission_probability[state][self.observations[i]]
        f_curr[state] = f_curr[state] * prev_f_sum
        forward.append(f_curr)
        f_previous = f_curr
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    p_fwd = 0.0
    for(k in self.states):
      p_fwd += f_previous[k] * self.transition_probability[k][self.end_state]

    {'probability': p_fwd, 'sequence': forward}

The forward algorithm will go through each state at each observation and multiply
them together to get a forward probability of how the state works in this given con‐
text. Next, we need to define the backward algorithm, which is:

class ForwardBackward:
  # __init__
  # forward
  def backward():
    backward = []
    b_prev = {}

    for(i in xrange(len(self.observations), 0, -1)):
      b_curr = {}
      for(state in self.states):
        if i == 0:
          b_curr[state] = self.transition_probability[state][self.end_state]
        else:
          sum = 0.0
          for (k in self.states):
            sum += self.transition_probability[state][k]* \
            self.emission_probability[k][self.observations[x_plus]] * \
            b_prev[k]
      backward.insert(0, b_curr)
      b_prev = b_curr

    p_bkw = 0.0

    for (s in self.states):
      sum += self.start_probability[s] * \
      self.emission_probability[s][self.observations[0]] * \
      b_prev[s]

    {'probability': p_bkw, 'sequence': backward}

The backward algorithm works pretty much the same way as the forward one, except
that it goes the opposite direction. Next, we need to try both forward and backward
and assert that they are the same (otherwise, our algorithm is wrong):

class ForwardBackward:
  # __init__
  # forward
  # backward

  def forward_backward():
    size = len(self.observations)
    forward = forward()
    backward = backward()
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    posterior = {}
    for(s in self.states):
      posterior[s] = []
      for (i in xrange(1, size)):
        value = forward['sequence'][i][s] * \
        backward['sequence'][i][s] / forward['probability'])
      posterior[s].append()

    return [forward, backward, posterior]

The beauty of the Forward-Backward algorithm is that it’s effectively testing itself as it
runs. This is quite exciting. It will also solve the problem of evaluation—remember,
that means figuring out how probable a given sequence is likely to be. Next, we’ll
delve into the decoding problem of figuring out the best sequence of underlying
states.

The Decoding Problem Through the Viterbi Algorithm
The decoding problem is the easiest to describe. Given a sequence of observations, we
want to parse out the best path of states given what we know about them. Mathemati‐
cally, what we want to find is some specific π* = arg max π P(x, π), where π is our
state vector and x is the observations.

To achieve this, we use the Viterbi algorithm. You can think of this as a way of con‐
structing a maximum spanning tree. We are trying to figure out, given our current
state, what is the best path to approach next. Similar to any sort of greedy algorithm,
the Viterbi algorithm just iterates through all possible next steps and takes it.

Graphically, it would look something like Figure 6-5.

Figure 6-5. Viterbi algorithm
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What we see in this figure is how a state like S1 will become less relevant over time,
while a state of S3 becomes even more relevant compared to the others. The arrows
are shaded to show the probability dampening.

What we are attempting to do with this algorithm is traverse a set of states in the most
optimal way. We do this by determining the probability that a state will happen given
its emissions as well as the probability that it will transition from the previous state to
the current. Then we multiply those two together to get the probability that the
sequence will happen. Iterating through the entire sequence, we eventually find our
optimal sequence.

The Learning Problem
The learning problem is probably the simplest algorithm to implement. Given a
sequence of states and observations, what is the most likely to happen next? We can
do that purely by figuring out the next step in the Viterbi sequence. We figure out the
next state by maximizing the next step given the fact there is no emission available
yet. But you can figure out the most probable emission from there as well as the most
probable state, and that is known as the next optimal state emission combo.

If this way of solving doesn’t make sense yet, don’t worry: in the next section, we will
delve further into using the Viterbi algorithm.

Unfortunately, there isn’t any free and easily accessible data available for analyzing
user behaviors over time given page views, but there is a similar problem we can solve
by using a part-of-speech tagger built purely using a Hidden Markov Model.

Part-of-Speech Tagging with the Brown Corpus
Given the phrase “the quick brown fox,” how would you tag its parts of speech? We
know that English has parts of speech like determiners, adjectives, and nouns. We
would probably tag the words in this phrase as determiner, adjective, adjective, noun,
respectively. We could fairly easily tag this example because we have a basic under‐
standing of grammar, but how could we train an algorithm to do so?

Well, of course because this is a chapter on HMMs, we’ll use one to figure out the
optimal parts of speech. Knowing what we know about them, we can use the Viterbi
algorithm to figure out, for a given sequence of words, what is the best tagging
sequence. For this section, we will rely on the Brown Corpus, which was the first elec‐
tronic corpus. It has over a million annotated words with parts of speech in it. The list
of tags is long, but rest assured that it contains all the normal tags like adjectives,
nouns, and verbs.

The Brown Corpus is set up using a specific kind of annotation. For each sequence of
words, you will see something like this:
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Most/ql important/jj of/in all/abn ,/, the/at less/ql developed/vbn countries/nns
must/md be/be persuaded/vbn to/to take/vb the/at necessary/jj steps/nns to/to allo‐
cate/vb and/cc commit/vb their/pp$ own/jj resources/nns ./.

In this case, Most is ql, which means qualifier, important is jj (adjective), and so on
until you reach ./. which is a period tagged as a stop: “ . ”.

The only thing that this doesn’t have is a START character at the beginning. Generally
speaking, when we’re writing Markov models, we want the word at t and also the
word at t – 1. Because most is at the front, there is no word before it, so therefore we
just use a special name, START, to show that there is a start to this sequence. That
way we can measure the probability of going from START to a qualifier.

Setup Notes
All of the code we’re using for this example can be found on GitHub.

Python is constantly changing, so the README file is the best place to find out how
to run the examples.

There are no other dependencies for getting this example to run with Python.

Coding and Testing Design
The overall approach we will be taking to write our part-of-speech tagger is to have
two classes (Figure 6-6):

CorpusParser

This class is responsible for parsing the Brown Corpus.

POSTagger

This class is responsible for tagging new data given the corpus training data.

Figure 6-6. Class diagram for part-of-speech tagger

Our tests in this case will focus on writing good seam tests around the Brown Corpus
and cross-validating an error rate that is acceptable.
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The Seam of Our Part-of-Speech Tagger: CorpusParser
The seam of a part-of-speech tagger is how you feed it data. The most important
point is to feed it proper information so the part-of-speech tagger can utilize and
learn from that data. First we need to make some assumptions about how we want it
to work. We want to store each transition from a word tag combo in an array of two
and then wrap that array in a simple class called CorpusParser::TagWord. Our initial
test looks like this:

import unittest

class CorpusParserTest(unittest.TestCase):
  def setUp():
    self.stream = "\tSeveral/ap defendants/nns ./.\n"
    self.blank = "\t  \n"

  def it_parses_a_line(self):
    cp = CorpusParser()
    null = cp.TagWord(word = "START", tag = "START")
    several = cp.TagWord(word = "Several", tag = "ap")
    defendants = cp.TagWord(word = "defendants", tag = "nns")
    period = cp.TagWord(word = ".", tag =".")

    expectations = [
      [null, several],
      [several, defendants],
      [defendants, period]
    ]

    for (token in cp.parse(self.stream)):
      self.assertEqual(token, expectations.pop(0))

    self.assertEqual(len(expectations), 0)

  def it_doesnt_allow_blank_lines(self):
    cp = CorpusParser()

    for(token in cp.parse(self.blank)):
      raise Exception("Should never happen")

This code takes two cases that are Brown Corpus–like and checks to make sure they
are being parsed properly. The first case is whether we can parse stream correctly into
tokens. The second case is a gut check to make sure it ignores blank lines, as the
Brown Corpus is full of them.

Filling in the CorpusParser class, we would have something that initially looks like
this:

class CorpusParser:
  NULL_CHARACTER = "START"
  STOP = "\n"
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  SPLITTER = "/"

  class TagWord:
    def __init__(self, **kwargs):
      setattr(self, 'word', kwargs['word'])
      setattr(self, 'tag', kwargs['tag'])

  def __init__(self):
    self.ngram = 2

  def __iter__(self):
    return self

  def next(self):
    char = self.file.read(1)

    if self.stop_iteration: raise StopIteration

    if not char and self.pos != '' and self.word != '':
      self.ngrams.pop(0)
      self.ngrams.append(TagWord(word = self.word, tag = self.tag))
      self.stop_iteration = True
      return self.ngrams

    if char == "\t" or (self.word == "" && STOP.contains(char)):
      return None
    elif char == SPLITTER:
      self.parse_word = false
    elif STOP.contains(char):
      self.ngrams.pop(0)
      self.ngrams.append(TagWord(word = self.word, tag = self.pos))

      self.word = ''
      self.pos = ''
      self.parse_word = True

      return self.ngrams
    elif self.parse_word:
      self.word += char
    else:
      self.pos += char

  def parse(file):
    self.ngrams = [
      TagWord(NULL_CHARACTER, NULL_CHARACTER),
      TagWord(NULL_CHARACTER, NULL_CHARACTER)
    ]

    self.word = ''
    self.pos = ''
    self.parse_word = True
    self.file = file
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    return self

As in the previous chapters, implementing a parser using each_char is generally the
most performant way of parsing things in Python. Now we can get into the much
more interesting part: writing the part-of-speech tagger.

Writing the Part-of-Speech Tagger
At this point we are ready to write our part-of-speech tagger class. To do this we will
have to take care of the following:

1. Take data from the CorpusParser
2. Store it internally so we can calculate the probabilities of word tag combos
3. Do the same for tag transitions

We want this class to be able to tell us how probable a word and tag sequence is, and
to determine from a plaintext sentence what the optimal tag sequence is.

To be able to do that, we need to tackle calculating probabilities first, then calculate
the probability of a tag sequence with a word sequence. Last, we’ll implement the
Viterbi algorithm.

Let’s talk about the probability of a tag given its previous tag. Using something called
a maximum likelihood estimate, we can assert that the probability should equal the
count of the two tags together divided by the count of the previous tag. A test for that
would look like this:

from collections import defaultdict
class POSTagger:
  def __init__(self, data_io):
    self.corpus_parser = CorpusParser()
    self.data_io = data_io
    self.trained = False

  def train():
    if not self.trained:
      self.tags = set(["Start"])
      self.tag_combos = defaultdict(lambda: 0, {})
      self.tag_frequencies = defaultdict(lambda: 0, {})
      self.word_tag_combos = defaultdict(lambda: 0, {})

      for(io in self.data_io):
        for(line in io.readlines()):
          for(ngram in self.corpus_parser.parse(line)):
            write(ngram)
      self.trained = True

  def write(ngram):
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    if ngram[0].tag == 'START':
      self.tag_frequencies['START'] += 1
      self.word_tag_combos['START/START'] += 1

    self.tags.append(ngram[-1].tag)
    self.tag_frequencies[ngram[-1].tag] += 1
    self.word_tag_combos["/".join([ngram[-1].word, ngram[-1].tag])] += 1
    self.tag_combos["/".join([ngram[0].tag, ngram[-1].tag])] += 1

  def tag_probability(previous_tag, current_tag):
    denom = self.tag_frequencies[previous_tag]

    if denom == 0:
      0.0
    else:
      self.tag_combos["/".join(previous_tag, current_tag)] / float(denom)

Remember that the sequence starts with an implied tag called START. So here you see
the probability of D transitioning to D is in fact two divided by three, because D tran‐
sitions to D three times but D shows up three times in that sequence.

Default Dictionaries
Dictionaries in Python are similar to associative arrays, hashes, or hashmaps. The
general concept is the same: store some sort of key value pair in a data structure.
Default dictionaries, on the other hand, take it a bit further. In most cases when defin‐
ing a dictionary in Python, if you ask for something that isn’t in the dictionary you
would get a KeyError.

Instead, with default dictionaries you can set a default to always return.

from collections import defaultdict

dictionary = {'a': 'b'}
dictionary['b'] # Yields KeyError

default_dictionary = defaultdict(lambda: 0, dictionary)
default_dictionary['b'] == 0

You’ll notice that we’re doing a bit of error handling for the case when zeros happen,
because we will throw a divide-by-zero error. Next, we need to address the probability
of word tag combinations, which we can do by introducing the following to our exist‐
ing test:

import StringIO
class TestPOSTagger(unittest.TestCase):
  def setUp():
    self.stream = StringIO("A/B C/D C/D A/D A/B ./.")
    self.pos_tagger = POSTagger([StringIO.StringIO(self.stream)])
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    self.pos_tagger.train()

  def it_calculates_probability_of_word_and_tag(self):
    self.assertEqual(self.pos_tagger.word_tag_probability("Z", "Z"), 0)

    # A and B happens 2 times, count of b happens twice therefore 100%
    self.assertEqual(self.pos_tagger.word_tag_probability("A", "B"), 1)

    # A and D happens 1 time, count of D happens 3 times so 1/3
    self.assertEqual(self.pos_tagger.word_tag_probability("A", "D"), 1.0/3.0)

    # START and START happens 1, time, count of start happens 1 so 1
    self.assertEqual(self.pos_tagger.word_tag_probability("START", "START"), 1)

    self.assertEqual(self.pos_tagger.word_tag_probability(".", "."), 1)

To make this work in the POSTagger class, we need to write the following:

class POSTagger:
  # __init__
  # train
  # write
  # tag_probability

  def word_tag_probability(word, tag):
    denom = self.tag_frequencies[tag]

    if denom == 0:
      0.0
    else:
      self.word_tag_combos["/".join(word, tag)] / float(denom)

Now that we have those two things—word_tag_probability and tag_probability
—we can answer the question: given a word and tag sequence, how probable is it?
That is the probability of the current tag given the previous tag, multiplied by the
word given the tag. In a test, it looks like this:

class TestPOSTagger(unittest.TestCase):
  # setUp
  # it_calculates_probability_of_word_and_tag

  def it_calculates_probability_of_words_and_tags(self):
    words = ['START', 'A', 'C', 'A', 'A', '.']
    tags = ['START', 'B','D','D','B','.']
    tagger = self.pos_tagger

    tag_probabilities = reduce( (lambda x, y: x * y), [
      tagger.tag_probability("B", "D"),
      tagger.tag_probability("D", "D"),
      tagger.tag_probability("D", "B"),
      tagger.tag_probability("B", ".")
    ])
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    word_probabilities = reduce( (lambda x, y: x * y), [
      tagger.word_tag_probability("A", "B"), # 1
      tagger.word_tag_probability("C", "D"),
      tagger.word_tag_probability("A", "D"),
      tagger.word_tag_probability("A", "B"), # 1
    ])

    expected = word_probabilities * tag_probabilities

    self.assertEqual(tagger.probability_of_word_tag(words,tags), expected)

So basically we are calculating word tag probabilities multiplied by the probability of
tag transitions. We can easily implement this in the POSTagger class using the
following:

class POSTagger:
  # __init__
  # train
  # write
  # tag_probability
  # word_tag_probability
  def probability_of_word_tag(word_sequence, tag_sequence):
    if len(word_sequence) != len(tag_sequence):
      raise Exception('The word and tags must be the same length!')

    length = len(word_sequence)

    probability = 1.0

    for (i in xrange(1, length)):
      probability *= (
        tag_probability(tag_sequence[i - 1], tag_sequence[i]) *
        word_tag_probability(word_sequence[i], tag_sequence[i])
      )

    probability

Now we can figure out how probable a given word and tag sequence is. But it would
be better if we were able to determine, given a sentence and training data, what the
optimal sequence of tags is. For that, we need to write this simple test:

class TestPOSTagger(unittest.TestCase):
  # setUp
  # it_calculates_probability_of_word_and_tag
  # it_calculates_probability_of_words_and_tags(self):
  def viterbi(self):
    training = "I/PRO want/V to/TO race/V ./. I/PRO like/V cats/N ./."
    sentence = 'I want to race.'
    tagger = self.pos_tagger
    expected = ['START', 'PRO', 'V', 'TO', 'V', '.']
    self.assertEqual(pos_tagger.viterbi(sentence), expected)
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This test takes a bit more to implement because the Viterbi algorithm is somewhat
involved. So let’s go through this step by step. The first problem is that our method
accepts a string, not a sequence of tokens. We need to split by whitespace and treat
stop characters as their own word. So to do that, we write the following to set up the
Viterbi algorithm:

import re
class POSTagger:
  #__init__
  # train
  # write
  # tag_probability
  # word_tag_probability
  # probability_of_word_tag

  def viterbi(sentence):
    parts = re.sub(r"([\.\?!])", r" \1", sentence)

The Viterbi algorithm is an iterative algorithm, meaning at each step it figures out
where it should go next based on the previous answer. So we will need to memoize
the previous probabilities as well as keep the best tag. We can initialize and figure out
what the best tag is as follows:

class POSTagger:
  #__init__
  # train
  # write
  # tag_probability
  # word_tag_probability
  # probability_of_word_tag

  def viterbi(sentence):
    # parts
    last_viterbi = {}
    backpointers = ["START"]

  for (tag in self.tags):
      if tag == 'START':
        next()
      else:
        probability = tag_probability('START', tag) * \
                      word_tag_probability(parts[0], tag)

        if probability > 0:
          last_viterbi[tag] = probability

    backpointers.append(
      max(v for v in last_viterbi.itervalues()) or
      max(v for v in self.tag_frequencies.itervalues())
    )
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At this point, last_viterbi has only one option, which is {PRO: 1.0}. That is because
the probability of transitioning from START to anything else is zero. Likewise, back
pointers will have START and PRO in it. So, now that we’ve set up our initial step, all
we need to do is iterate through the rest:

class POSTagger:
  #__init__
  # train
  # write
  # tag_probability
  # word_tag_probability
  # probability_of_word_tag

  def viterbi(sentence):
    # parts
    # initialization
    for(part in parts[1:]):
      viterbi = {}
      for(tag in self.tags):
        if tag == 'START':
          next()

        if last_viterbi:
          break

        best_previous = max(
          for((prev_tag, probability) in last_viterbi.iteritems()):
            probability * \
            tag_probability(prev_tag, tag) * \
            word_tag_probability(part,tag)
        )
        best_tag = best_previous[0]

        probability = last_viterbi[best_tag] * \
        tag_probability(best_tag, tag) * \
        word_tag_probability(part, tag)

        if probability > 0:
          viterbi[tag] = probability

      last_viterbi = viterbi

      backpointers << (
        max(v for v in last_viterbi.itervalues()) or
        max(v for v in self.tag_frequencies.itervalues())
      )

    backpointers

What we are doing is storing only relevant information, and if there’s a case where
last_viterbi is empty, we’ll use tag_frequencies instead. That case really only hap‐
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pens when we have pruned too far. But this approach is much faster than storing all
of the information in memory.

At this point, things should work! But how well?

Cross-Validating to Get Confidence in the Model
At this stage, it is prudent to write a cross-validation test. This is using a naive model,
but we want to see at least 20% accuracy. So let’s write this into a tenfold cross-
validation spec. Instead of requiring that this model be within a range of confidence,
we will just display the error rate to the user. When I ran the test on my machine, I
got around a 30% error rate. We will talk about how to improve this, but for our pur‐
poses, it’s good given that it looks at only two probabilities:

class CrossValidationTest(unittest.TestCase):
  def setUp(self):
    self.files = Glob('./data/brown/c***')

  FOLDS = 10

  def cross_validate(self):
    for (i in xrange(0,FOLDS)):
      splits = len(self.files) / FOLDS
      self.validation_indexes = range(i * splits, (i + 1) * splits)
      self.training_indexes = range(0, len(self.files)) - self.validation_indexes
      self.validation_files = (file for idx, file in enumerate(self.files))
      self.training_files = (file for idx, file in enumerate(self.files))

      validate(fold)

  def validate(self, fold):
    pos_tagger = POSTagger.from_filepaths(training_files, true)

    misses = 0
    successes = 0

    for(vf in self.validation_files):
      with open(vf,'rb') as f:
        for(l in f.readlines()):
          if re.match(r"\A\s+\z/", l):
            next()
          else:
            words = []
            parts_of_speech = ['START']
            for (ppp in re.split(r"\s+")):
              z = re.split(r"\/", ppp)
              words.append(z[0])
              parts_of_speech.append(z[1])

            tag_seq = pos_tagger.viterbi(" ".join(words))
            for (k,v) in zip(tag_seq, parts_of_speech))
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              misses += sum((k != v) ? 1 : 0
            for (k,v) in zip(tag_seq, parts_of_speech))
              successes += sum((k == v) ? 1 : 0

    print "Error rate was: " + float(misses) / float(successes + misses)

This will yield around a 20% to 30% error rate, which realistically isn’t accurate. Part
of the problem, though, is that the Brown Corpus makes a lot of distinctions between
tags, so the error rate would be much lower if you didn’t care about, say, possessive
pronouns versus regular pronouns.

How to Make This Model Better
As with all of our coding examples, the best way to improve this model is to first
determine how well it works and to iterate. One quick way to make this model oper‐
ate better would be to look back more than one word at a time. So instead of the
probability of a tag given the previous tag, you’d find the probability of a tag given the
previous two tags. You could do that by modifying the corpus tagger. But the example
does work well and is simple to make!

While it seems pedestrian to model part of speech tagging, what we’ve shown here
actually could be used to build a user state model, which we talked about earlier.
While I don’t have access to that kind of data I can distribute freely, this could be used
to look at observations of log data and then mark users as being of a given state (cus‐
tomer, user, prospect).

Taking this even further, we could use this model as a generative process to build
intuition around how our users behave, and when they become less engaged.

Conclusion
Hidden Markov models are some of the most interesting models when it comes to
determining underlying data from a system given some observable data. For example,
you can determine the real state of a user, find the underlying tag of a word, or even
follow musical scores.

In this chapter, you learned about how state machines can be generalized into Mar‐
kov chains, which then can be used to model system behavior forever. We also added
a hidden component to determine the underlying state of a model given emissions
that we can easily observe. You learned that the three stages of using HMMs are eval‐
uation, decoding, and learning, and how to approach solving those problems. Last,
we tagged parts of speech using the Brown Corpus and the Viterbi algorithm.
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CHAPTER 7

Support Vector Machines

In this chapter, we will set out to solve a common problem: determining whether cus‐
tomers are happy or not. We’ll approach this by understanding that happy customers
generally say nice things while unhappy ones don’t. This is their sentiment.

There are an infinite amount of solutions to this problem, but this chapter will focus
on just one that works well: support vector machines (SVMs). This algorithm uses
decision boundaries to split data into multiple parts and operates well in higher
dimensions due to feature transformation and ignoring distances between data
points. We will discuss the normal testing methods we have laid out before, such as:

• Cross-validation
• Confusion matrix
• Precision and recall

But we will also delve into a new way of improving models, known as feature transfor‐
mation. In addition, we will discuss the possibilities of the following phenomena hap‐
pening in a problem of sentiment analysis:

• Entanglement
• Unstable data
• Correction cascade
• Configuration debt
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Customer Happiness as a Function of What They Say
Our online store has two sets of customers, happy and unhappy. The happy custom‐
ers return to the site consistently and buy from the company, while the unhappy cus‐
tomers are either window shoppers or spendthrifts who don’t care about the company
or who are spending their money elsewhere. Our goals are to determine whether cus‐
tomer happiness correlates with our bottom line, and, down the line, to monitor their
happiness.

But here exists a problem. How do we numerically say that a customer is happy or
not? Unfortunately, there isn’t a field in our database explaining how happy our cus‐
tomers are. We know intuitively that happy customers are usually more likely to stay
customers, but how can we test that?

There are two tiers to this problem:

1. We need to figure out whether customers are happy or not, or whether their sen‐
timent is positive or negative in what they say.

2. Does overall customer sentiment correlate with our bottom line?

We also assume that a happy customer means more money, but is that actually true?
How can we even build an algorithm to test something like that?

To start solving this two-tiered problem, we will figure a way to map customers to
sentiment. There are many ways to approach this problem such as clustering custom‐
ers into two groups or using KNN to find the closest neighbors to people we know are
unhappy or happy. Or we could use SVMs.

Sentiment Classification Using SVMs
To be able to map overall customer sentiment, we first need data to use. For our pur‐
poses we have a support system that allows us to export data that was written by our
customers.

Thinking about our customers who have written to us many times in our support sys‐
tem, how would we determine whether they are happy or not? Ways to approach this
include:

• Have support agents tag each individual ticket with a sentiment (positive or
negative).

• Have support agents tag a subset of tickets (X% of all tickets).
• Use an existing tagged database (such as movie reviews or some academic data

set).
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Data Collection
Even though in this chapter we will use an academic data set for the example, I do
want to point out that having a group of people tag a subset is generally the right way
to approach this problem.

In practice we want to achieve the best results for the least amount of work—that is,
getting a good set of ground truth around a problem. In the case of sentiment analysis,
if we were to do this as a product for a company, most likely we would have support
agents collect a subset of tickets (say 30% of all tickets) and as a group tag them either
negative or positive.

An important point here, though, is that humans differ on problems like this. Person
A might think a ticket is positive, while Person B thinks the ticket is negative.

For this reason, it’s important to apply some sort of voting mechanism, whether it’s a
mean or mode. So if we were to tag 30% of all tickets we would want at least three
people tagging each ticket so we could either average the answers or find the most
common answer.

This can actually be used to bootstrap a data set as well. Generally the more consen‐
sus there is on a data point, the more likely a machine learning algorithm will be able
to classify it.

Now that we have data to classify, we can determine what algorithm to use. Since this
chapter is about using SVMs, we are going to use that, although many other algo‐
rithms would work just as well. I’ve decided to use SVMs in this chapter, though,
because they have the following properties:

• They avoid the curse of dimensionality, meaning we can use lots of dimensions
(features).

• They have been shown to work well with sentiment analysis, which is pertinent
to the issues discussed next.1

The Theory Behind SVMs
Let’s imagine we have data from our customers, in this case support tickets. In this
example let’s say the customer is either happy or unhappy with the ticket (Figure 7-1).
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Figure 7-1. Happiness as a function of window shopping and thriftiness

Conceptually, if we were to build a model of what makes a customer happy or
unhappy, we could take our inputs (in this case features from the text) and determine
customer groupings. This would be very similar to KNN and would yield something
like Figure 7-2.

Figure 7-2. Loyal and disloyal customers

This is a great idea, but it has a downside: textual features generally are high in num‐
ber, which as we’ve discussed can incur the curse of dimensionality. For instance, given
a set of support tickets there might be 4,000 dimensions, each defining whether they
said a word in a corpus. So instead of relying on KNN, we should approach this
model via a decision boundary.

Decision Boundary
If you were to look at these data points as a graphic, you might also think about split‐
ting the data into two pieces by drawing a line down the middle. It’s obvious to us
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humans that this might yield a good solution. It also means that anything on one side
of the line is unhappy while anything on the other is happy.

This idea is called a decision boundary method and there are many different algo‐
rithms in this category, including rules-based algorithms and decision trees.

Decision trees and random forests are types of decision boundary methods. If we
were to plot the mushrooms on a n-dimensional plane, we could construct a bound‐
ary that splits the data into its various points.

But for sentiment analysis with 4,000 dimensions, given what we see here, how can
we find the best boundary that splits the data into two parts?

Maximizing Boundaries
To find the most optimal line between the two sets of data, imagine that we instead
draw a margin between the two data pieces (Figure 7-3). If you could find the widest
margin between the two data sets, then you would have solved the problem optimally
and also found the solution that SVMs find.

Figure 7-3. Maximize the margin between the two categories

This is what SVMs do: maximize the breadth of the margin between two (or more)
classifications. The beauty of this algorithm is that it is computationally optimal
because it maps to a quadratic program (a convex optimization).

But as you might notice I’m cheating by showing data that can be separated by a line.
What about data where things aren’t so pretty?

Kernel Trick: Feature Transformation
What if our data isn’t linear? This is where a fundamental concept of improving and
testing models comes into play. Instead of being forced to live in a coordinate system
such as <x0,⋯, x1>, we can instead transform our data into a new coordinate system
that is easier to solve. There are lots of ways of transforming features (which we will
cover in later chapters) but one of them is called the kernel trick.
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To understand it, here’s a riddle for you: in Figure 7-4, draw a straight line that sepa‐
rates the two circles.

Figure 7-4. Two circles inside of each other can’t be separated by drawing a straight line

Well, you can’t. That is, unless you think outside of the box, so to speak.

These look like regular circles, so there doesn’t appear to be a line that you could sep‐
arate them with. This is true in 2D Cartesian coordinate systems, but if you project
this into a 3D Cartesian coordinate system, < x,y > → <x2,√2xy,y2>, you will find that
in fact this turns out to be linear (Figure 7-5).

Now you can see that these two circles are separate and you can draw a plane easily
between the two. If you took that and mapped it back to the original plane, then there
would in fact be a third circle in the middle that is a straight plane.
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Figure 7-5. Separating two circles using a kernel trick

Next time you need a bar trick, try that out on someone.

This doesn’t just work for circles, but unfortunately the visualizations of four or more
dimensions are confusing so I left them out. There are many different types of projec‐
tions (or kernels) such as:

• Polynomial kernel (heterogeneous and homogeneous)
• Radial basis functions
• Gaussian kernels

I do encourage you to read up more on kernels, although they will most likely distract
us from the original intent of this section!
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One downside to using kernels, though, is that you can easily overfit data. In a lot of
ways they operate like splines. But one way to avoid overfitting is to introduce slack.

Optimizing with Slack
What if our data isn’t separable by a line? Luckily mathematicians have thought about
this, and in mathematical optimization there’s a concept called “slack.” This idea
introduces another variable that is minimized but reduces the worry of overfit. In
practice, with SVMs the amount of slack is determined by a free parameter C, which
could be thought of as a way to tell the algorithm how much slack to add or not
(Figure 7-6).

Figure 7-6. Slack introduced into model. The highlighted faces are basically wrong or
incorrect data points.

As I discussed in Chapter 3, overfitting is a downfall of machine learning and induc‐
tive biases, so avoiding it is a good thing to do.

Okay, enough theory—let’s build a sentiment analyzer.

Sentiment Analyzer
In this section, we’ll build a sentiment analyzer that determines the sentiment of
movie reviews. The example we’ll use also applies to working with support tickets.
We’ll first talk about what this tool will look like conceptually in a class diagram.
Then, after identifying the pieces of the tool, we will build a Corpus class, a CorpusSet
class, and a SentimentClassifier class. The Corpus and CorpusSet classes involve
transforming the text into numerical information. SentimentClassifier is where we
will then use the SVM algorithm to build this sentiment analyzer.

Setup Notes
All of the code we are using for this example can be found on the thoughtfulml reposi‐
tory on GitHub.
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Python is constantly changing, so the README file is the best place to get up to
speed on running the examples.

There are no additional dependencies beyond a running Python version to run this
example.

Coding and Testing Design
In this section we will be building three classes to support classifying incoming text to
either positive or negative sentiment (Figure 7-7).

Corpus

This class will parse sentiment text and store as a corpus with frequencies in it.

CorpusSet

This is a collection of multiple corpora that each have a sentiment attached to it.

SentimentClassifier

Utilizes a CorpusSet to train and classify sentiment.

Figure 7-7. Class diagram for movie-review sentiment analyzer
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What Do Corpus and Corpora Mean?

Corpus, like corpse, means a body, but in this case it’s a body of
writings. This word is used heavily in the natural-language process‐
ing community to signal a big group of previous writings that can
be used to infer knowledge. In our example, we are using corpus to
refer to a body of writings around a certain sentiment. Corpora is
the plural of corpus.

Testing in SVMs primarily deals with setting a threshold of acceptance with accuracy
and then tweaking the model until it works well enough. That is the concept we will
apply in this chapter.

SVM Testing Strategies
Besides the normal TDD affair of writing unit tests for our seams and building a solid
code basis, there are additional testing considerations for SVMs:

• Speed of training the model before and after configuration changes
• Confusion matrix and precision and recall
• Sensitivity analysis (correction cascades, configuration debt)

I will talk about these concerns through this section.

Corpus Class
Our Corpus class will handle the following:

• Tokenizing text
• Sentiment leaning, whether :negative or :positive
• Mapping from sentiment leaning to a numerical value
• Returning a unique set of words from the corpus

When we write the seam test for this, we end up with the following:

from StringIO import StringIO
import unittest

from corpus import Corpus

class TestCorpusSet(unittest.TestCase):
  def setUp(self):
    self.negative = StringIO('I hated that so much')
    self.negative_corpus = Corpus(self.negative, 'negative')
    self.positive = StringIO('loved movie!! loved')
    self.positive_corpus = Corpus(self.positive, 'positive')
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  def test_trivial(self):
    """consumes multiple files and turns it into sparse vectors"""
    self.assertEqual('negative', self.negative_corpus.sentiment)

  def test_tokenize1(self):
    """downcases all the word tokens"""
    self.assertListEqual(['quick', 'brown', 'fox'], \
                         Corpus.tokenize('Quick Brown Fox'))

  def test_tokenize2(self):
    """ignores all stop symbols"""
    self.assertListEqual(['hello'], Corpus.tokenize('"\'hello!?!?!.\'"  '))

  def test_tokenize3(self):
    """ignores the unicode space"""
    self.assertListEqual(['hello', 'bob'], Corpus.tokenize(u'hello\u00A0bob'))

  def test_positive(self):
    """consumes a positive training set"""
    self.assertEqual('positive', self.positive_corpus.sentiment)

  def test_words(self):
    """consumes a positive training set and unique set of words"""
    self.assertEqual({'loved', 'movie'}, self.positive_corpus.get_words())

  def test_sentiment_code_1(self):
    """defines a sentiment_code of 1 for positive"""
    self.assertEqual(1, Corpus(StringIO(''), 'positive').sentiment_code)

  def test_sentiment_code_minus1(self):
    """defines a sentiment_code of 1 for positive"""
    self.assertEqual(-1, Corpus(StringIO(''), 'negative').sentiment_code)

StringIO makes strings look like IO objects, which makes it easy to
test file IO–type operations on strings.

As you learned in Chapter 3, there are many different ways of tokenizing text, such as
extracting out stems, frequency of letters, emoticons, and words. For our purposes,
we will just tokenize words. These are defined as strings between nonalpha charac‐
ters. So out of a string like “The quick brown fox” we would extract the, quick, brown,
fox (Figure 7-8). We don’t care about punctuation and we want to be able to skip Uni‐
code spaces and nonwords.
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Figure 7-8. The many ways of tokenizing text

Writing the Corpus class, we end up with:

import re

class Corpus(object):
  skip_regex = re.compile(r'[\'"\.\?\!]+')
  space_regex = re.compile(r'\s', re.UNICODE)
  stop_words = [x.strip() for x in open('data/stopwords.txt').readlines()]
  sentiment_to_number = {'positive': 1, 'negative': -1}

  @classmethod
  def tokenize(cls, text):
    cleared_text = cls.skip_regex.sub('', text)
    parts = cls.space_regex.split(cleared_text)
    parts = [part.lower() for part in parts]
    return [p for p in parts if len(p) > 0 and p not in cls.stop_words]

  def __init__(self, io, sentiment):
    self._io = io
    self._sentiment = sentiment
    self._words = None

  @property
  def sentiment(self):
    return self._sentiment

  @property
  def sentiment_code(self):
    return self.sentiment_to_number[self._sentiment]

  def get_words(self):
    if self._words is None:
      self._words = set()
      for line in self._io:
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        for word in Corpus.tokenize(line):
          self._words.add(word)
      self._io.seek(0)
    return self._words

  def get_sentences(self):
    for line in self._io:
      yield line

Now to create our next class, CorpusSet.

CorpusSet Class
The CorpusSet class brings multiple corpora together and gives us a good basis to use
SVMs:

from StringIO import StringIO
import unittest

from numpy import array

from scipy.sparse import csr_matrix

from corpus import Corpus
from corpus_set import CorpusSet

class TestCorpusSet(unittest.TestCase):
  def setUp(self):
    self.positive = StringIO('I love this country')
    self.negative = StringIO('I hate this man')

    self.positive_corp = Corpus(self.positive, 'positive')
    self.negative_corp = Corpus(self.negative, 'negative')

    self.corpus_set = CorpusSet([self.positive_corp, self.negative_corp])

  def test_compose(self):
    """composes two corpuses together"""
    self.assertEqual({'love', 'country', 'hate', 'man'},
             self.corpus_set.words)

  def test_sparse(self):
    """returns a set of sparse vectors to train on"""
    expected_ys = [1, -1]
    expected_xes = csr_matrix(array(
      [[1, 1, 0, 0],
       [0, 0, 1, 1]]
    ))

    self.corpus_set.calculate_sparse_vectors()
    ys = self.corpus_set.yes
    xes = self.corpus_set.xes
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    self.assertListEqual(expected_ys, ys)
    self.assertListEqual(list(expected_xes.data),
               list(xes.data))
    self.assertListEqual(list(expected_xes.indices),
               list(xes.indices))
    self.assertListEqual(list(expected_xes.indptr),
               list(xes.indptr))

To make these tests pass, we need to build a CorpusSet class that takes in multiple
corpora, transforms all of that into a matrix of features, and has the properties words,
xes, and yes (the latter for x’s and y’s).

Let’s start by building a CorpusSet class:

import numpy as np
from scipy.sparse import csr_matrix, vstack

from corpus import Corpus

class CorpusSet(object):
  def __init__(self, corpora):
    self._yes = None
    self._xes = None
    self._corpora = corpora
    self._words = set()
    for corpus in self._corpora:
      self._words.update(corpus.get_words())

  @property
  def words(self):
    return self._words

  @property
  def xes(self):
    return self._xes

  @property
  def yes(self):
    return self._yes

This doesn’t do much except store all of the words in a set for later use. It does that by
iterating the corpora and storing all the unique words. From here we need to calcu‐
late the sparse vectors we will use in the SVM, which depends on building a feature
matrix composed of feature vectors:

class CorpusSet
  # __init__
  # words
  # xes
  # yes
  def calculate_sparse_vectors(self):
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    self._yes = []
    self._xes = None
    for corpus in self._corpora:
      vectors = self.feature_matrix(corpus)
      if self._xes is None:
        self._xes = vectors
      else:
        self._xes = vstack((self._xes, vectors))
      self._yes.extend([corpus.sentiment_code] * vectors.shape[0])

  def feature_matrix(self, corpus):
    data = []
    indices = []
    indptr = [0]
    for sentence in corpus.get_sentences():
      sentence_indices = self._get_indices(sentence)
      indices.extend(sentence_indices)
      data.extend([1] * len(sentence_indices))
      indptr.append(len(indices))
    feature_matrix = csr_matrix((data, indices, indptr),
                  shape=(len(indptr) - 1,
                       len(self._words)),
                  dtype=np.float64)
    feature_matrix.sort_indices()
    return feature_matrix

  def feature_vector(self, sentence):
    indices = self._get_indices(sentence)
    data = [1] * len(indices)
    indptr = [0, len(indices)]
    vector = csr_matrix((data, indices, indptr),
              shape=(1, len(self._words)),
              dtype=np.float64)
    return vector

  def _get_indices(self, sentence):
    word_list = list(self._words)
    indices = []
    for token in Corpus.tokenize(sentence):
      if token in self._words:
        index = word_list.index(token)
        indices.append(index)
    return indices

At this point we should have enough to validate our model using cross-validation. For
that we will get into building the actual sentiment classifier as well as model
validation.
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Model Validation and the Sentiment Classifier
Now we can get to writing the cross-validation unit test, which will determine how
well our classification works. We do this by having two different tests. The first has an
error rate of 35% or less and ensures that when it trains and validates on the same
data, there is zero error:

from fractions import Fraction
import os
import unittest

from sentiment_classifier import SentimentClassifier

class TestSentimentClassifier(unittest.TestCase):
  def setUp(self):
    pass

  def test_validate(self):
    """cross validates with an error of 35% or less"""
    neg = self.split_file('data/rt-polaritydata/rt-polarity.neg')
    pos = self.split_file('data/rt-polaritydata/rt-polarity.pos')

    classifier = SentimentClassifier.build([
      neg['training'],
      pos['training']
    ])

    c = 2 ** 7
    classifier.c = c
    classifier.reset_model()

    n_er = self.validate(classifier, neg['validation'], 'negative')
    p_er = self.validate(classifier, pos['validation'], 'positive')
    total = Fraction(n_er.numerator + p_er.numerator,
             n_er.denominator + p_er.denominator)
    print total
    self.assertLess(total, 0.35)

  def test_validate_itself(self):
    """yields a zero error when it uses itself"""
    classifier = SentimentClassifier.build([
      'data/rt-polaritydata/rt-polarity.neg',
      'data/rt-polaritydata/rt-polarity.pos'
    ])

    c = 2 ** 7
    classifier.c = c
    classifier.reset_model()

    n_er = self.validate(classifier,
               'data/rt-polaritydata/rt-polarity.neg',
               'negative')
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    p_er = self.validate(classifier,
               'data/rt-polaritydata/rt-polarity.pos',
               'positive')
    total = Fraction(n_er.numerator + p_er.numerator,
             n_er.denominator + p_er.denominator)
    print total
    self.assertEqual(total, 0)

In the second test we use two utility functions, which could also be achieved using
either scikit-learn or other packages:

class TestSentimentClassifier(unittest.TestCase):
  def validate(self, classifier, file, sentiment):
    total = 0
    misses = 0

    with(open(file, 'rb')) as f:
      for line in f:
        if classifier.classify(line) != sentiment:
          misses += 1
        total += 1
    return Fraction(misses, total)

  def split_file(self, filepath):
    ext = os.path.splitext(filepath)[1]
    counter = 0
    training_filename = 'tests/fixtures/training%s' % ext
    validation_filename = 'tests/fixtures/validation%s' % ext
    with(open(filepath, 'rb')) as input_file:
      with(open(validation_filename, 'wb')) as val_file:
        with(open(training_filename, 'wb')) as train_file:
          for line in input_file:
            if counter % 2 == 0:
              val_file.write(line)
            else:
              train_file.write(line)
            counter += 1
    return {'training': training_filename,
        'validation': validation_filename}

What this test does is validate that our model has a high enough accuracy to be 
useful.

Now we need to write our SentimentClassifier, which involves building a class that
will respond to:

build

This class method will build a SentimentClassifier off of files instead of a
CorpusSet.
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present_answer

This method will take the numerical representation and output something useful
to the end user.

c

This returns the C parameter that determines how wide the error bars are on
SVMs.

reset_model

This resets the model.

words

This returns words.

fit_model

This does the big lifting and calls into the SVM library that scikit-learn wrote.

classify

This method classifies whether the string is negative or positive sentiment.

import os

from numpy import ndarray

from sklearn import svm

from corpus import Corpus
from corpus_set import CorpusSet

class SentimentClassifier(object):
  ext_to_sentiment = {'.pos': 'positive',
            '.neg': 'negative'}

  number_to_sentiment = {-1: 'negative',
               1: 'positive'}

  @classmethod
  def present_answer(cls, answer):
    if isinstance(answer, ndarray):
      answer = answer[0]
    return cls.number_to_sentiment[answer]

  @classmethod
  def build(cls, files):
    corpora = []
    for file in files:
      ext = os.path.splitext(file)[1]
      corpus = Corpus(open(file, 'rb'),
              cls.ext_to_sentiment[ext])
      corpora.append(corpus)
    corpus_set = CorpusSet(corpora)
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    return SentimentClassifier(corpus_set)

  def __init__(self, corpus_set):
    self._trained = False
    self._corpus_set = corpus_set
    self._c = 2 ** 7
    self._model = None

  @property
  def c(self):
    return self._c

  @c.setter
  def c(self, cc):
    self._c = cc

  def reset_model(self):
    self._model = None

  def words(self):
    return self._corpus_set.words

  def classify(self, string):
    if self._model is None:
      self._model = self.fit_model()
    prediction = self._model.predict(self._corpus_set.feature_vector(string))
    return self.present_answer(prediction)

  def fit_model(self):
    self._corpus_set.calculate_sparse_vectors()
    y_vec = self._corpus_set.yes
    x_mat = self._corpus_set.xes
    clf = svm.SVC(C=self.c,
            cache_size=1000,
            gamma=1.0 / len(y_vec),
            kernel='linear',
            tol=0.001)
    clf.fit(x_mat, y_vec)
    return clf

Up until this point we have discussed how to build the model but not about how to
tune or verify the model. This is where a confusion matrix, precision, recall, and sen‐
sitivity analysis come into play.

Aggregating Sentiment
Now that we have a model that calculates sentiment from text, there’s an additional
issue of how to take multiple tickets per customer and map them to one measure of
sentiment. There are a few ways of doing this:
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• Mode
• Average (which would yield a score between –1 and 1)
• Exponential moving average

Each has benefits and downsides, so to explain the differences, let’s take an example
of a few customers with different sentiments (Table 7-1).

Table 7-1. Customer sentiment over time

Sequence number Alice Bob Terry
1 1 –1 1

2 1 –1 1

3 1 –1 1

4 1 –1 –1

5 1 –1 –1

6 1 –1 1

7 –1 –1 1

8 –1 1 1

9 –1 1 1

10 –1 1 1

In general you can expect customers to change their minds over time. Alice was posi‐
tive to begin with but became negative in her sentiment. Bob was negative in the
beginning but became positive towards the end, and Terry was mostly positive but
had some negative sentiment in there.

This brings up an interesting implementation detail. If we map these data to either a
mode or average, then we will weight heavily things that are irrelevant. Alice is
unhappy right now, while Bob is happy right now.

Mode and average are both fast implementations but there is another method called
exponential weighted moving average or EWMA for short.

Exponentially Weighted Moving Average
Exponential moving averages are used heavily in finance since they weight recent data
much heavier than old data. Things change quickly in finance and people can change
as well. Unlike a normal average, this aims to change the weights from 1⁄N to some
function that is based on a free parameter α, which tunes how much weight to give to
the past.
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So instead of the formula for a simple average being:

Yt + 1 =
Y0 + Y1 +⋯ + Yt

t

we would use the formula:

Yt + 1 = α Yt + 1 − α Yt − 1 + 1 − α 2Yt − 2 + 1 − α 3Yt − 3 +⋯

This can be transformed into a recursive formula:

Yt + 1 = αYt + 1 − α Yt

Getting back to our original question on how to implement this let’s look at the mode,
average, and EWMA together (Table 7-2).

Table 7-2. Mode, average, and EWMA compared

Name Mode Average EWMA (α = 0.94)
Alice 1 0.2 –0.99997408

Bob –1 –0.4 0.999568

Terry 1 0.6 0.99999845

As you can see EWMA maps our customers much better than a plain average or
mode does. Alice is negative right now, Bob is positive now, and Terry has always
been mostly positive.

Mapping Sentiment to Bottom Line
We’ve been able to build a model that takes textual data and splits it into two senti‐
ment categories, either positive or negative. This is great! But it doesn’t quite solve
our problem, which originally was determining whether our customers were
unhappy or not.

There is a certain amount of bias that one needs to avoid here: just because we have
been able to map sentiment successfully into a given piece of text doesn’t mean that
we can tell whether the customer is happy or not. Causation isn’t correlation, as they
say, and vice versa.

But what can we do instead?
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We can learn from this and understand our customers better, and also feed this data
into other important algorithms, such as whether sentiment of text is correlated with
more value from the customer or not (e.g., Figure 7-9).

Figure 7-9. Generally speaking, the more complaints there are, the less happiness there is

This information is useful to running a business and improves our understanding of
the data.

Conclusion
The SVM algorithm is very well suited to classifying two separable classes. It can be
modified to separate more than two classes and doesn’t suffer from the curse of
dimensionality that KNN does. This chapter taught you how SVM can be used to sep‐
arate happy and unhappy customers, as well as how to assign sentiment to movie
data.

But more importantly, we’ve thought about how to go about testing our intuition of
whether happy customers yield more money for our business.
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CHAPTER 8

Neural Networks

Humans are amazing pattern matchers. When we come out of the womb, we are able
to make sense of the surrounding chaos until we have learned how to operate effec‐
tively in the world. This of course has to do with our upbringing, our environment,
but most importantly our brain.

Your brain contains roughly 86 billion neurons that talk to one another over a net‐
work of synapses. These neurons are able to control your body functions as well as
form thoughts, memories, and mental models. Each one of these neurons acts as part
of a computer network, taking inputs and sending outputs to other neurons, all com‐
municating in orchestrated fashion.

Mathemeticians decided a long time ago it would be interesting to try to piece
together mathematical representations of our brains, called neural networks. While
the original research is over 60 years old, many of the techniques conceived back then
still apply today and can be used to build models to tricky to compute problems.

In this chapter we will discuss neural networks in depth. We’ll cover:

• Threshold logic, or how to build a Boolean function
• Neural networks as chaotic Boolean functions
• How to construct a feed-forward neural net
• Testing strategies for neural networks through gradient descent
• An example of classifying the language of handwritten text
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What Is a Neural Network?
In a lot of ways neural networks are the perfect machine learning construct. They are
a way of mapping inputs to a general output (see Figure 8-1).

Figure 8-1. Neural networks: the perfect black box

What is great about neural networks is that, unlike perceptrons, they can be used to
model complexity. So for instance if we have three inputs and one output we could
arbitrarily set an interior complexity to 2 or 3 just based on our domain knowledge of
the problem.

History of Neural Nets
When introduced, neural networks were about studying how the brain operates.
Neurons in our brains work together in a network to process and make sense of
inputs and stimuli. Alexander Bain and William James both proposed that brains
operated in a network that could process lots of information. This network of neu‐
rons has the ability to recognize patterns and learn from previous data. For instance,
if a child is shown a picture of eight dogs, she starts to understand what a dog looks
like.

This research was expanded to include a more artificial bent when Warren McCul‐
loch and Walter Pitts invented threshold logic. Threshold logic combines binary
information to determine logical truth. They suggested using something called a step
function, which attached a threshold to either accept or reject a summation of previ‐
ous information. After many years of research, neural networks and threshold logic
were combined to form what we call an artificial neural network.

Boolean Logic
As programmers, we’re constantly dealing with Boolean functions, which return
either yes or no (true or false). Another way of thinking about Boolean data is to
encode yes or no with binary bits (0 for false, 1 for true).
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This is such a common occurrence that there already exist many functions that deal
with Boolean data. Functions such as OR, AND, NAND, NOR, and NOT are all Boolean func‐
tions. They take in two inputs that are true or false and output something that is true
or false.

These have been used for great advances in the electronics community through digi‐
tal logic gates and can be composed together to solve many problems. But how would
we go about constructing something like this?

A simple example of modeling the OR function would be the following:

OR a, b = min 1, a + b

Perceptrons
Perceptrons take the idea of Boolean logic even further to include more fuzzy logic.
They usually involve returning a value based on a threshold being met or not. Let’s
say that you’re a teacher and you wish to assign pass/fail grades to your students at
the end of the quarter. Obviously you need to come up with a way of cutting off the
people who failed from the ones who didn’t. This can be quite subjective but usually
follows a general procedure of:

def threshold(x):
  if sum(weights * x) + b > 0.5:
    return 1
  else:
    return 0

x is a vector of all the grades you collected the entire quarter and weights is a vector
of weightings. For instance, you might want to weight the final grade higher. b is just
a freebie to the students for showing up.

Using such a simple formula we could traverse the optimal weightings by determin‐
ing a priori how many people we’d like to fail. Let’s say we have 100 students and only
want to fail the bottom 10%. This goal is something we can actually code.

How to Construct Feed-Forward Neural Nets
There are many different kinds of neural networks, but this chapter will focus on
feed-forward networks and recurrent networks.

What makes neural networks special is their use of a hidden layer of weighted func‐
tions called neurons, with which you can effectively build a network that maps a lot
of other functions (Figure 8-2). Without a hidden layer of functions, neural networks
would be just a set of simple weighted functions.
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Figure 8-2. A feed-forward network

Neural networks are denoted by the number of neurons per layer. For example, if we
have 20 neurons in our input layer, 10 in one hidden layer, and 5 in an output layer, it
would be a 20-10-5 network. If there is more than one hidden layer, then we would
denote it as, say, 20-7-7-5 (the two middle 7s are layers with 7 nodes apiece).

To summarize, then, neural networks comprise the following parts:

• The input layer
• The hidden layer(s)
• Neurons
• The output layer
• The training algorithm

Next, I’ll explain what each of these parts does and how it works.

Input Layer
The input layer, shown in Figure 8-3, is the entry point of a neural network. It is the
entry point for the inputs you are giving to the model. There are no neurons in this
layer because its main purpose is to serve as a conduit to the hidden layer(s). The
input type is important, as neural networks work with only two types: symmetric or
standard.
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Figure 8-3. Input layer of neural network

When training a neural network, we have observations and inputs. Taking the simple
example of an exclusive OR (also known as XOR), we have the truth table shown in
Table 8-1.

Table 8-1. XOR truth

A B XOR(A,B)
0 0 0

0 1 1

1 0 1

1 1 0

Another way of representing XOR is to look at a Venn diagram (Figure 8-4). Given two
sets of data, the shaded area shows the XOR area. Notice that the middle is empty.

Figure 8-4. XOR function in a Venn diagram (Source: Wikimedia)

In this case, we have four observations and two inputs, which could either be true or
false. Neural networks do not work off of true or false, though, and knowing how to
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code the input is key. We’ll need to translate these to either standard or symmetric
inputs.

Standard inputs

The standard range for input values is between 0 and 1. In our previous XOR example,
we would code true as 1 and false as 0. This style of input has one downside: if your
data is sparse, meaning full of 0s, it can skew results. Having a data set with lots of 0s
means we risk the model breaking down. Only use standard inputs if you know that
there isn’t sparse data.

Symmetric inputs
Symmetric inputs avoid the issue with 0s. These are between –1 and 1. In our preced‐
ing example, –1 would be false, and 1 would be true. This kind of input has the bene‐
fit of our model not breaking down because of the zeroing-out effect. In addition to
that, it puts less emphasis on the middle of a distribution of inputs. If we introduced a
maybe into the XOR calculation, we could map that as 0 and ignore it. Inputs can be
used in either the symmetric or standard format but need to be marked as such,
because the way we calculate the output of neurons depends on this.

Hidden Layers
Without hidden layers, neural networks would be a set of weighted linear combina‐
tions. In other words, hidden layers permit neural networks to model nonlinear data
(Figure 8-5).

Figure 8-5. The hidden layer of a network

Each hidden layer contains a set of neurons (Figure 8-6), which then pass to the out‐
put layer.
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Figure 8-6. The neurons of the network

Neurons
Neurons are weighted linear combinations that are wrapped in an activation func‐
tion. The weighted linear combination (or sum) is a way of aggregating all of the pre‐
vious neurons’ data into one output for the next layer to consume as input. Activation
functions, shown in Figures 8-7 through 8-11, serve as a way to normalize data so it’s
either symmetric or standard.

As a network is feeding information forward, it is aggregating previous inputs into
weighted sums. We take the value y and compute the activated value based on an 
activation function.

Figure 8-7. A neuron is a summation of previous inputs
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Activation Functions
As mentioned, activation functions, some of which are listed in Table 8-2, serve as a
way to normalize data between either the standard or symmetric ranges. They also
are differentiable, and need to be, because of how we find weights in a training
algorithm.

Table 8-2. Activation functions

Name Standard Symmetric
Sigmoid 1

1 + e−2 · sum
2

1 + e−2 · sum − 1

Cosine cos sum
2 + 0 . 5 cos sum

Sine sin sum
2 + 0 . 5 sin sum

Gaussian 1

esum2
2

esum2 − 1

Elliott 0 . 5 · sum
1 + ∣ sum ∣ + 0 . 5 sum

1 + ∣ sum ∣
Linear sum > 1 ? 1 : (sum < 0: sum) sum > 1 ? 1 : (sum < –1 ? –1 : sum)

Threshold sum < 0 ? 0 : 1 sum < 0 ? –1 : 1

The big advantage of using activation functions is that they serve as a way of buffer‐
ing incoming values at each layer. This is useful because neural networks have a way
of finding patterns and forgetting about the noise. There are two main categories for
activation functions: sloped or periodic. In most cases, the sloped activation functions
(shown in Figures 8-8 and 8-10) are a suitable default choice. The periodic functions
(shown in Figures 8-9 and 8-11) are used for modeling data with lots of noise. They
generally take the form of either a sine or cosine function.
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Figure 8-8. Symmetric sloped activation functions
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Figure 8-9. Symmetric periodic activation functions
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Figure 8-10. Standard sloped activation functions
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Figure 8-11. Standard periodic activation functions

Sigmoid is the default function to be used with neurons because of its ability to
smooth out the decision. Elliott is a sigmoidal function that is quicker to compute, so
it’s the choice I make. Cosine and sine waves are used when you are mapping some‐
thing that has a random-looking process associated with it. In most cases, these trigo‐
nometric functions aren’t as useful to our problems. Neurons are where all of the
work is done. They are a weighted sum of previous inputs put through an activation
function that either bounds it to 0 to 1 or –1 to 1. In the case of a neuron where we
have two inputs before it, the function for the neuron would be y = ϕ w1ẋ1 + w2ẋ2 ,
where ϕ is an activation function like sigmoid, and wi are weights determined by a 
training algorithm.
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Output Layer
The output layer is similar to the input layer except that it has neurons in it. This is
where the data comes out of the model. Just as with the input layer, this data will
either be symmetric or standard. Output layers decide how many neurons are output,
which is a function of what we’re modeling (see Figure 8-12). In the case of a function
that outputs whether a stop light is red, green, or yellow, we’d have three outputs (one
for each color). Each of those outputs would contain an approximation for what we
want.

Figure 8-12. The output layer of the network

Training Algorithms
As mentioned, the weights for each neuron came from a training algorithm. There
are many such algorithms, but the most common are:

• Back propagation
• QuickProp
• RProp

All of these algorithms find optimal weights for each neuron. They do so through
iterations, also known as epochs. For each epoch, a training algorithm goes through
the entire neural network and compares it against what is expected. At this point, it
learns from past miscalculations.

These algorithms have one thing in common: they are trying to find the optimal solu‐
tion in a convex error surface. You can think of convex error surface as a bowl with a
minimum value in it. Imagine that you are at the top of a hill and want to make it to a
valley, but the valley is full of trees. You can’t see much in front of you, but you know
that you want to get to the valley. You would do so by proceeding based on local
inputs and guessing where you want to go next. This is known as the gradient descent
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algorithm (i.e., determining minimum error by walking down a valley) and it is illus‐
trated in Figure 8-13. The training algorithms do the same thing; they are looking to
minimize error by using local information.

Figure 8-13. Gradient descent down a valley

The Delta Rule
While we could solve a massive amount of equations, it would be faster to iterate.
Instead of trying to calculate the derivative of the error function with respect to the
weight, we calculate a change in weight for each neuron’s weights. This is known as
the delta rule, and it is as follows:

Equation 8-1. Delta rule

Δw ji = α t j − ϕ h j ϕ′ h j xi

This states that the change in weight for neuron j’s weight number i is:

alpha * (expected - calculated) * derivative_of_calculated * input_at_i

α is the learning rate and is a small constant. This initial idea, though, is what powers
the idea behind the back propagation algorithm, or the general case of the delta rule.

Back Propagation
Back propagation is the simplest of the three algorithms that determine the weight of
a neuron. You define error as (expected * actual)2 where expected is the expected out‐
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put and actual is the calculated number from the neurons. We want to find where the
derivative of that equals 0, which is the minimum.

Equation 8-2. Back propagation

Δw t = − α t − y ϕ′xi + �Δw t − 1

ϵ is the momentum factor and propels previous weight changes into our current
weight change, whereas α is the learning rate.

Back propagation has the disadvantage of taking many epochs to calculate. Up until
1988, researchers were struggling to train simple neural networks. Their research on
how to improve this led to a whole new algorithm called QuickProp.

QuickProp
Scott Fahlman introduced the QuickProp algorithm after he studied how to improve
back propagation. He asserted that back propagation took too long to converge to a
solution. He proposed that we instead take the biggest steps without overstepping the
solution.

Fahlman determined that there are two ways to improve back propagation: making
the momentum and learning rate dynamic, and making use of a second derivative of
the error with respect to each weight. In the first case, you could better optimize for
each weight, and in the second case, you could utilize Newton’s method of approxi‐
mating functions.

With QuickProp, the main difference from back propagation is that you keep a copy
of the error derivative computed during the previous epoch, along with the difference
between the current and previous values of this weight.

To calculate a weight change at time t, use the following function:

Δw t = S t
S t − 1 − S t Δw t − 1

This carries the risk of changing the weights too much, so there is a new parameter
for maximum growth. No weight is allowed to be greater in magnitude than the max‐
imum growth rate multiplied by the previous step for that weight.

RProp
RProp is a good algorithm because it converges quicker. It was introduced by Martin
Riedmiller in the 1990s and has been improved since then. It converges on a solution
quickly due to its insight that the algorithm can update the weights many times
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through an epoch. Instead of calculating weight changes based on a formula, it uses
only the sign for change as well as an increase factor and decrease factor.

To see what this algorithm looks like in code, we need to define a few constants (or
defaults). These are a way to make sure the algorithm doesn’t operate forever or
become volatile. These defaults were taken from the FANN library.

The basic algorithm is easier to explain in Python instead of writing out the partial
derivatives. For ease of reading, note that I am not calculating the error gradients (i.e.,
the change in error with respect to that specific weight term). This code gives you an
idea of how the RProp algorithm works using just pure Python code:

import numpy as np
import random

neurons = 3
inputs = 4

delta_zero = 0.1
increase_factor = 1.2
decrease_factor = 0.5
delta_max = 50.0
delta_min = 0
max_epoch = 100
deltas = np.zeros((inputs, neurons))
last_gradient = np.zeros((inputs, neurons))

def sign(x):
 if x > 0:
  return 1
 elif x < 0:
  return -1
 else:
  return 0

weights = [random.uniform(-1, 1) for _ in range(inputs)]
for j in range(max_epoch):
  for i, weight in enumerate(weights):
    # Current gradient is derived from the change of each value at each layer
    # Do note that we haven't derived current_gradient since that would detract
    # from the example

    gradient_momentum = last_gradient[i][j] * current_gradient[i][j]

    if gradient_momentum > 0:
      deltas[i][j] = min(deltas[i][j] * increase_factor, delta_max)
      change_weight = -sign(current_gradient[i][j]) * deltas[i][j]
      last_gradient[i][j] = current_gradient[i][j]
    elif gradient_momentum < 0:
      deltas[i][j] = max(deltas[i][j] * decrease_factor, delta_min)
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      last_gradient[i][j] = 0
    else:
      change_weight = -sign(current_gradient[i][j])* deltas[i][j]
      weights[i] = weights[i] + change_weight

    last_gradient[i][j] = current_gradient[i][j]

These are the fundamentals you need to understand to be able to build a neural net‐
work. Next, we’ll talk about how to do so, and what decisions we must make to build
an effective one.

Building Neural Networks
Before you begin building a neural network, you must answer the following ques‐
tions:

• How many hidden layers should you use?
• How many neurons per layer?
• What is your tolerance for error?

How Many Hidden Layers?
As noted earlier in this chapter, what makes neural networks unique is their usage of
hidden layers. If you took out hidden layers, you’d have a linear combination prob‐
lem.

You aren’t bound to use any number of hidden layers, but there are three heuristics
that help:

• Do not use more than two hidden layers; otherwise, you might overfit the data.
With too many layers, the network starts to memorize the training data. Instead,
we want it to find patterns.

• One hidden layer will do the job of approximating a continuous mapping. This is
the common case. Most neural networks have only one hidden layer in them.

• Two hidden layers will be able to push past a continuous mapping. This is an
uncommon case, but if you know that you don’t have a continuous mapping, you
can use two hidden layers.

There is no steadfast rule holding you to these heuristics for picking the number of
hidden layers. It comes down to trying to minimize the risk of overfitting or underfit‐
ting your data.
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How Many Neurons for Each Layer?
Neural networks are excellent aggregators and terrible expanders. Neurons them‐
selves are weighted sums of previous neurons, so they have a tendency to not expand
out as well as they combine. If you think about it, a hidden layer of 2 that goes to an
output layer of 30 would mean that for each output neuron, there would be two
inputs. There just isn’t enough entropy or data to make a well-fitted model.

This idea of emphasizing aggregation over expansion leads us to the next set of heu‐
ristics:

• The number of hidden neurons should be between the number of inputs and the
number of neurons at the output layer.

• The number of hidden neurons should be two-thirds the size of the input layer,
plus the size of the output layer.

• The number of hidden neurons should be less than twice the size of the input
layer.

This comes down to trial and error, though, as the number of hidden neurons will
influence how well the model cross-validates, as well as the convergence on a solu‐
tion. This is just a starting point.

Tolerance for Error and Max Epochs
The tolerance for error gives us a time to stop training. We will never get to a perfect
solution but rather converge on one. If you want an algorithm that performs well,
then the error rate might be low, like 0.01%. But in most cases, that will take a long
time to train due to its intolerance for error.

Many start with an error tolerance of 1%. Through cross-validation, this might need
to be tightened even more. In neural network parlance, the tolerance is internal, is
measured as a mean squared error, and defines a stopping place for the network.

Neural networks are trained over epochs, and this is set before the training algorithm
even starts. If an algorithm is taking 10,000 iterations to get to a solution, then there
might be a high risk for overtraining and creating a sensitive network. A starting
point for training is 1,000 epochs or iterations to train over. This way, you can model
some complexity without getting too carried away.

Both max epochs and maximum error define our converging points. They serve as a
way to signal when the training algorithm can stop and yield the neural network. At
this point, we’ve learned enough to get our hands dirty and try a real-world example.
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Using a Neural Network to Classify a Language
Characters used in a language have a direct correlation with the language itself. Man‐
darin is recognizable due to its characters, because each character means a specific
word. This correlation is true of many Latin-based languages, but in regards to letter
frequency.

If we look at the difference of “The quick brown fox jumped over the lazy dog” in
English and its German equivalent, “Der schnelle braune Fuchs sprang über den fau‐
len Hund,” we’d get the frequency chart shown in Table 8-3.

Table 8-3. Difference in letter frequency between English and German sentence

 a b c d e f g h i j k l m n o p q r s t u v w x y z ü
English 1 1 1 2 4 1 1 2 1 1 1 1 1 1 4 1 1 2 0 2 2 1 1 1 1 1 0

German 3 2 2 3 7 2 1 3 0 0 0 3 0 6 0 1 0 4 2 0 4 0 0 0 0 1 1

Difference 2 1 1 1 3 1 0 1 1 1 1 2 1 5 4 0 1 2 2 2 2 1 1 1 1 0 1

There is a subtle difference between German and English. German uses quite a few
more Ns, whereas English uses a lot of Os. If we wanted to expand this to a few more
European languages, how would we do that? More specifically, how can we build a
model to classify sentences written in English, Polish, German, Finnish, Swedish, or
Norwegian?

In this case, we’ll build a simple model to predict a language based on the frequency
of the characters in the sentences. But before we start, we need to have some data. For
that, we’ll use the most translated book in the world: the Bible. Let’s extract all the
chapters out of Matthew and Acts.

The approach we will take is to extract all the sentences out of these text files and cre‐
ate vectors of frequency normalized between 0 and 1. From that, we will train a net‐
work that will take those inputs and then match them to a vector of 6. The vector of 6
is defined as the index of the language equaling 1. If the language we are using to
train is index 3, the vector would look like [0,0,0,1,0,0] (zero-based indexing).

Setup Notes
All of the code we’re using for this example can be found on GitHub.

Python is constantly changing, so the README file is the best place to get up to
speed on running the examples.

Coding and Testing Design
The overall approach we will be taking is to write two classes to parse the Bible verses
and train a neural network:
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Language

This class will parse the Bible verses and calculate a frequency of letter
occurences.

Network

This will take language training data and build a network that calculates the most
likely language attached to new incoming text (see Figure 8-14).

Figure 8-14. Class diagram for classifying text to languages

The testing for our neural network will focus primarily on testing the data transmis‐
sion into theanets, which we will test using a cross-validation test. We will set a thres‐
hold for acceptance as a unit test and use that to test.

The Data
The data was grabbed from biblegateway.com. To have a good list of data I’ve down‐
loaded passages in English, Polish, German, Finnish, Swedish, and Norwegian. They
are from the books Acts and Matthew. The script I used to download the data was
written in Ruby and I felt that it wouldn’t be helpful to put it in here translated. Feel
free to check out the script at https://github.com/thoughtfulml/examples-in-python if
you’d like.

Writing the Seam Test for Language
To take our training data, we need to build a class to parse that and interface with our
neural network. For that, we will use the class name Language. Its purpose is to take a
file of text in a given language and load it into a distribution of character frequencies.
When needed, Language will output a vector of these characters, all summing up to 1.
All of our inputs will be between 0 and 1. Our parameters are:

• We want to make sure that our data is correct and sums to 1.
• We don’t want characters like UTF-8 spaces or punctuation entering our data.
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• We want to downcase all characters. A should be translated as a. Ü should also be
ü.

This helps us to make sure that our Language class, which takes a text file and outputs
an array of hashes, is correct:

# coding=utf-8
from StringIO import StringIO
import string
import unittest

from language import Language

class TestLanguage(unittest.TestCase):
  def setUp(self):
    self.language_data = u'''
abcdefghijklmnopqrstuvwxyz.
ABCDEFGHIJKLMNOPQRSTUVWXYZ.
\u00A0.
!~@#$%^&*()_+'?[]“”‘’—<>»«›‹–„/.
ïëéüòèöÄÖßÜøæåÅØóąłżŻśęńŚćźŁ.
'''
    self.special_characters = self.language_data.split("\n")[-1].strip()
    self.language_io = StringIO(self.language_data)
    self.language = Language(self.language_io, 'English')

  def test_keys(self):
    """has the proper keys for each vector"""
    self.assertListEqual(list(string.ascii_lowercase),
               sorted(self.language.vectors[0].keys()))
    self.assertListEqual(list(string.ascii_lowercase),
               sorted(self.language.vectors[1].keys()))

    special_chars = sorted(set(u'ïëéüòèöäößüøæååóąłżżśęńśćź'))
    self.assertListEqual(special_chars,
               sorted(self.language.vectors[-1].keys()))

  def test_values(self):
    """sums to 1 for all vectors"""
    for vector in self.language.vectors:
      self.assertEqual(1, sum(vector.values()))

  def test_character_set(self):
    """returns characters that is a unique set of characters used"""
    chars = list(string.ascii_lowercase)
    chars += list(set(u'ïëéüòèöäößüøæååóąłżżśęńśćź'))

    self.assertListEqual(sorted(chars),
               sorted(self.language.characters))
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At this point, we have not written Language, and all of our tests fail. For the first goal,
let’s get something that counts all the alpha characters and stops on a sentence. That
would look like this:

# coding=UTF-8

from tokenizer import Tokenizer

class Language:
  def __init__(self, language_io, name):
    self.name = name
    self.vectors, self.characters = Tokenizer.tokenize(language_io)

# coding=utf-8
import collections
from fractions import Fraction

class Tokenizer(object):
  punctuation = list(u'~@#$%^&*()_+\'[]“”‘’—<>»«›‹–„/')
  spaces = list(u' \u00A0\n')
  stop_characters = list('.?!')

  @classmethod
  def tokenize(cls, io):
    vectors = []
    dist = collections.defaultdict(int)
    characters = set()

    for char in io.read():
      if char in cls.stop_characters:
        if len(dist) > 0:
          vectors.append(cls.normalize(dist))
          dist = collections.defaultdict(int)
      elif char not in cls.spaces and char not in cls.punctuation:
        character = char.lower()
        characters.add(character)
        dist[character] += 1
    if len(dist) > 0:
      vectors.append(cls.normalize(dist))

    return vectors, characters

Now we have something that should work. Do note that there is the Unicode space
here, which is denoted as \u00a0.

Now we have a new problem, though, which is that the data does not add up to 1. We
will introduce a new function, normalize, which takes a hash of values and applies
the function x/sum(x) to all values. Note that I used Fraction, which increases the
reliability of calculations and doesn’t do floating-point arithmetic until needed:
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class Tokenizer:
  # tokenize

  @classmethod
  def normalize(cls, dist):
      sum_values = sum(dist.values())
      return {k: Fraction(v, sum_values) for k, v in dist.iteritems()}

Everything is green and things look great for Language. We have full test coverage on
a class that will be used to interface with our neural network. Now we can move on to
building a Network class.

Cross-Validating Our Way to a Network Class
I used the Bible to find training data for our language classification because it is the
most translated book in history. For the data, I decided to download Matthew and
Acts in English, Finnish, German, Norwegian, Polish, and Swedish. With this natural
divide between Acts and Matthew, we can define 12 tests of a model trained with Acts
and see how it compares to Matthew’s data, and vice versa.

The code looks like:

# coding=utf-8
from StringIO import StringIO
import codecs
from glob import glob
import os
import re
import unittest

from nose_parameterized import parameterized

from language import Language
from network import Network

def language_name(file_name):
  basename, ext = os.path.splitext(os.path.basename(file_name))
  return basename.split('_')[0]

def load_glob(pattern):
  result = []
  for file_name in glob(pattern):
    result.append(Language(codecs.open(file_name, encoding='utf-8'),
                 language_name(file_name)))
  return result

class TestNetwork(unittest.TestCase):
  matthew_languages = load_glob('data/*_0.txt')
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  acts_languages = load_glob('data/*_1.txt')
  matthew_verses = Network(matthew_languages)
  matthew_verses.train()
  acts_verses = Network(acts_languages)
  acts_verses.train()

  languages = 'English Finnish German Norwegian Polish Swedish'.split()
  @parameterized.expand(languages)
  def test_accuracy(self, lang):
    """Trains and cross-validates with an error of 5%"""
    print 'Test for %s' % lang
    self.compare(self.matthew_verses, './data/%s_1.txt' % lang)
    self.compare(self.acts_verses, './data/%s_0.txt' % lang)

  def compare(self, network, file_name):
    misses = 0.0
    hits = 0.0
    with codecs.open(file_name, encoding='utf-8') as f:
      text = f.read()

    for sentence in re.split(r'[\.!\?]', text):
      language = network.predict(StringIO(sentence))
      if language is None: continue
      if language.name == language_name(file_name):
        hits += 1
      else:
        misses += 1

    total = misses + hits

    self.assertLess(misses,
            0.05 * total,
            msg='%s has failed with a miss rate of %f' % (file_name,
                                    misses / total))

There is a folder called data in the root of the project that contains files in the form
Language_0.txt and Language_1.txt where Language is the language name, _0 is the
index mapping to Matthew, and _1 is the index mapping to Acts.

It takes a while to train a neural network, depending, so that is why we are only cross-
validating with two folds. At this point, we have 12 tests defined. Of course, nothing
will work now because we haven’t written the Network class. To start out the Network
class we define an initial class as taking an array of Language classes. Secondly,
because we don’t want to write all the neural network by hand, we’re using a library
called PyBrain. Our main goal initially is to get a neural network to accept and train.

But now we have an important decision to make: which neural net library should we
use? There are many out there, and of course we could build our own. Probably the
best one out there right now is theanets, which integrates nicely with NumPy and can
actually be utilized for deep learning, autoencoding, and much more than just
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straight feed-forward networks. We will use that, although you could use other libra‐
ries like PyBrain.

import numpy as np
import theanets

from tokenizer import Tokenizer

class Network(object):
  def __init__(self, languages, error=0.005):
    self._trainer = None
    self._net = None
    self.languages = languages
    self.error = error
    self.inputs = set()
    for language in languages:
      self.inputs.update(language.characters)
    self.inputs = sorted(self.inputs)
  def _build_trainer(self):
    inputs = []
    desired_outputs = []
    for language_index, language in enumerate(self.languages):
      for vector in language.vectors:
        inputs.append(self._code(vector))
        desired_outputs.append(language_index)
    inputs = np.array(inputs, dtype=np.float32)
    desired_outputs = np.array(desired_outputs, dtype=np.int32)
    self._trainer = (inputs, desired_outputs)

  def _code(self, vector):
    result = np.zeros(len(self.inputs))
    for char, freq in vector.iteritems():
      if char in self.inputs:
        result[self.inputs.index(char)] = float(freq)
    return result
  def _build_ann(self):
    hidden_neurons = 2 * (len(self.inputs) + len(self.languages)) / 3

    self._net = theanets.Classifier([len(self.inputs),
                     {'size': hidden_neurons, 'activation': 'tanh'},
                     len(self.languages)])

Now that we have the proper inputs and the proper outputs, the model is set up and
we should be able to run the whole crossvalidation.py. But, of course, there is an error
because we cannot run new data against the network. To address this, we need to
build a function called #run. At this point, we have something that works and looks
like this:

class Network:
  def train(self):
    self._build_trainer()
    self._build_ann()
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    self._net.train(self._trainer, learning_rate=0.01)

  def predict(self, sentence):
    if self._net is None or self._trainer is None:
      raise Exception('Must train first')
    vectors, characters = Tokenizer.tokenize(sentence)
    if len(vectors) == 0:
      return None
    input = np.array(self._code(vectors[0]),
             ndmin=2,
             dtype=np.float32)
    result = self._net.predict(input)
    return self.languages[result[0]]

Tuning the Neural Network
At this point there’s quite a few optimizations we could make. Also you could play
around with different hidden-layer activation functions like tanh, softmax, or various
others.

I’ll leave further tuning to you as an exercise in playing around with what works and
what does not. You can try many different activation functions, as well as internal
rates of decay or errors. The takeaway here is that with an initial test to base accuracy
against, you can try many different avenues.

Precision and Recall for Neural Networks
Going a step further, when we deploy this neural network code to a production envi‐
ronment, we need to close the information loop by introducing a precision and recall
metric to track over time. This metric will be calculated from user input.

We can measure precision and recall by asking in our user interface whether our pre‐
diction was correct. From this text, we can capture the blurb and the correct classifi‐
cation, and feed that back into our model the next time we train.

To learn more about monitoring precision and recall, see Chapter 9.

What we need to monitor the performance of this neural network in production is a
metric for how many times a classification was run, as well as how many times it was
wrong.

Wrap-Up of Example
The neural networks algorithm is a fun way of mapping information and learning
through iterations, and it works well for our case of mapping sentences to languages.
Loading this code in an IPython session, I had fun trying out phrases like “meep
moop,” which is classified as Norwegian! Feel free to play with the code.

154 | Chapter 8: Neural Networks



Conclusion
The neural networks algorithm is a powerful tool in a machine learning toolkit. Neu‐
ral networks serve as a way of mapping previous observations through a functional
model. While they are touted as black box models, they can be understood with a lit‐
tle bit of mathematics and illustration. You can use neural networks for many things,
like mapping letter frequencies to languages or handwriting detection. There are
many problems being worked on right now with regards to this algorithm, and sev‐
eral in-depth books have been written on the topic as well. Anything written by Geof‐
frey Hinton is worth a read, namely Unsupervised Learning: Foundations of Neural
Computation.

This chapter introduced neural networks as an artificial version of our brain and
explained how they work by summing up inputs using a weighted function. These
weighted functions were then normalized within a certain range. Many algorithms
exist to train these weight values, but the most prevalent is the RProp algorithm. Last,
we summed it all up with a practical example of mapping sentences to languages.
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CHAPTER 9

Clustering

Up until this point we have been solving problems of fitting a function to a set of
data. For instance, given previously observed mushroom attributes and edibleness,
how would we classify new mushrooms? Or, given a neighborhood, what should the
house value be?

This chapter talks about a completely different learning problem: clustering. This is a
subset of unsupervised learning methods and is useful in practice for understanding
data at its core.

If you’ve been to a library you’ve seen clustering at work. The Dewey Decimal system
is a form of clustering. Dewey came up with a system that attached numbers of
increasing granularity to categories of books, and it revolutionized libraries.

We will talk about what it means to be unsupervised and what power exists in that, as
well as two clustering algorithms: K-Means and expectation maximization (EM) clus‐
tering. We will also address two other issues associated with clustering and unsuper‐
vised learning:

• How do you test a clustering algorithm?
• The impossibility theorem.

Studying Data Without Any Bias
If I were to give you an Excel spreadsheet full of data, and instead of giving you any
idea as to what I’m looking for, just asked you to tell me something, what could you
tell me? That is what unsupervised learning aims to do: study what the data is about.
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A more formal definition would be to think of unsupervised learning as finding the
best function f such that f(x) = x. At first glance, wouldn’t x = x? But it’s more than
just that—you can always map data onto itself—but what unsupervised learning does
is define a function that describes the data.

What does that mean?

Unsupervised learning is trying to find a function that generalizes the data to some
degree. So instead of trying to fit it to some classification or number, instead we are
just fitting the function to describe the data. This is essential to understand since it
gives us a glimpse as to how to test this.

Let’s dive into an example.

User Cohorts
Grouping people into cohorts makes a lot of business and marketing sense. For
instance, your first customer is different from your ten thousandth customer or your
millionth customer. This problem of defining users into cohorts is a common one. If
we were able to effectively split our customers into different buckets based on behav‐
ior and time of signup, then we could better serve them by diversifying our marketing
strategy.

The problem is that we don’t have a predefined label for customer cohorts. To get
over this problem you could look at what month and year they became a customer.
But that is making a big assumption about that being the defining factor that splits
customers into groups. What if time of first purchase had nothing to do with whether
they were in one cohort or the other? For example, they could only have made one
purchase or many.

Instead, what can we learn from the data? Take a look at Table 9-1. Let’s say we know
when they signed up, how much they’ve spent, and what their favorite color is.
Assume also that over the last two years we’ve only had 10 users sign up (well, I hope
you have more than that over two years, but let’s keep this simple).

Table 9-1. Data collected over 2 years

User ID Signup date Money spent Favorite color
1 Jan 14 40 N/A

2 Nov 3 50 Orange

3 Jan 30 53 Green

4 Oct 3 100 Magenta

5 Feb 1 0 Cyan

6 Dec 31 0 Purple

7 Sep 3 0 Mauve
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User ID Signup date Money spent Favorite color
8 Dec 31 0 Yellow

9 Jan 13 14 Blue

10 Jan 1 50 Beige

Given these data, we want to learn a function that describes what we have. Looking at
these rows, you notice that the favorite colors are irrelevant data. There is no infor‐
mation as to whether users should be in a cohort. That leaves us with Money spent
and Signup date. There seems to be a group of users who spend money, and one of
those who don’t. That is useful information. In the Signup date column you’ll notice
that there are a lot of users who sign up around the beginning of the year and end of
the previous one, as well as around September, October, or November.

Now we have a choice: whether we want to find the gist of this data in something
compact or find a new mapping of this data onto a transformation. Remember the
discussion of kernel tricks in Chapter 7? This is all we’re doing—mapping this data
onto a new dimension. For the purposes of this chapter we will delve into a new map‐
ping technique: in Chapter 10, on data extraction and improvement, we’ll delve into
compaction of data.

Let’s imagine that we have 10 users in our database and have information on when
they signed up, and how much money they spent. Our marketing team has assigned
them manually to cohorts (Table 9-2).

Table 9-2. Manual cohort assignment to the original data set

User ID Signup date (days to Jan 1) Money spent Cohort
1 Jan 14 (13) 40 1

2 Nov 3 (59) 50 2

3 Jan 30 (29) 53 1

4 Oct 3 (90) 100 2

5 Feb 1 (31) 0 1

6 Dec 31 (1) 0 1

7 Sep 3 (120) 0 2

8 Dec 31 (1) 0 1

9 Jan 13 (12) 14 1

10 Jan 1 (0) 50 1

We have divided the group into two groups where seven users are in group 1, which
we could call the beginning-of-the-year signups, and end-of-the-year signups are in
group 2.
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But there’s something here that doesn’t sit well. We assigned the users to different
clusters, but didn’t really test anything—what to do?

Testing Cluster Mappings
Testing unsupervised methods doesn’t have a good tool such as cross-validation, con‐
fusion matrices, ROC curves, or sensitivity analysis, but they still can be tested, using
one of these two methods:

• Determining some a priori fitness of the unsupervised learning method
• Comparing results to some sort of ground truth

Fitness of a Cluster
Domain knowledge can become very useful in determining the fitness of an unsuper‐
vised model. For instance, if we want to find things that are similar, we might use
some sort of distance-based metric. If instead we wish to determine independent fac‐
tors of the data, we might calculate fitness based on correlation or covariance.

Possible fitness functions include:

• Mean distance from centroid
• Mean distance from all points in a cluster
• Silhouette coefficient

Mean distances from centroid, or from all points in a cluster, are almost baked into
algorithms that we will be talking about such as K-Means or EM clustering, but the
silhouette coefficient is an interesting take on fitness of cluster mappings.

Silhouette Coefficient
The silhouette coefficient evaluates cluster performance without ground truth (i.e.,
data that has been provided through direct observation versus inferred observations)
by looking at the relation of the average distance inside of a cluster versus the average
distance to the nearest cluster (Figure 9-1).

Figure 9-1. Silhouette coefficient visually
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Mathematically the metric is:

s = b − a
max a, b

where a is the average distance between a sample and all other points in that cluster
and b is the same sample’s mean distance to the next nearest cluster points.

This coefficient ends up becoming useful because it will show fitness on a scale of –1
to 1 while not requiring ground truth.

Comparing Results to Ground Truth
In practice many times machine learning involves utilizing ground truth, which is
something that we can usually find through trained data sets, humans, or other
means like test equipment. This data is valuable in testing our intuition and deter‐
mining how fitting our model is.

Clustering can be tested using ground truth using the following means:

• Rand index
• Mutual information
• Homogeneity
• Completeness
• V-measure
• Fowlkes-Mallows score

All of these methods can be extremely useful in determining how fit a model is.
scikit-learn implements all of these and can easily be used to determine a score.

K-Means Clustering
There are a lot of clustering algorithms like linkage clustering or Diana, but one of
the most common is K-Means clustering. Using a predefined K, which is the number
of clusters that one wants to split the data into, K-Means will find the most optimal
centroids of clusters. One nice property of K-Means clustering is that the clusters will
be strict, spherical in nature, and converge to a solution.

In this section we will briefly talk about how K-Means clustering works.

The K-Means Algorithm
The K-Means algorithm starts with a base case. Pick K random points in the data set
and define them as centroids. Next, assign each point to a cluster number that is clos‐
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est to each different centroid. Now we have a clustering based on the original
randomized centroid. This is not exactly what we want to end with, so we update
where the centroids are using a mean of the data. At that point we repeat until the
centroids no longer move (Figure 9-2).

Figure 9-2. In a lot of ways, K-Means resembles a pizza

To construct K-Means clusters we need to have some sort of measurement for dis‐
tance from the center. Back in Chapter 3 we introduced a few distance metrics, such
as:

Manhattan distance

dmanhattan x, y = ∑i = 1
n xi − yi

Euclidean distance

deuclid x, y = ∑i = 1
n xi − yi

2

Minkowski distance

d x, y = ∑i = 1
n ∣ xi − yi ∣

p
1
p
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Mahalanobis distance

d x, y = ∑i = 1
n xi − yi

2

si
2

For a refresher on the metrics discussed here, review K-Nearest Neighbors in Chap‐
ter 3.

Downside of K-Means Clustering
One drawback of this procedure is that everything must have a hard boundary. This
means that a data point can only be in one cluster and not straddle the line between
two of them. K-Means also prefers spherical data since most of the time the Euclidean
distance is being used. When looking at a graphic like Figure 9-3, where the data in
the middle could go either direction (to a cluster on the left or right), the downsides
become obvious.

EM Clustering
Instead of focusing on finding a centroid and then data points that relate to it, EM
clustering focuses on solving a different problem. Let’s say that you want to split your
data points into either cluster 1 or 2. You want a good guess of whether the data is in
either cluster but don’t care if there’s some fuzziness. Instead of an exact assignment,
we really want a probability that the data point is in each cluster.

Another way to think of clustering is how we interpret things like music. Classically
speaking, Bach is Baroque music, Mozart is classical, and Brahms is Romantic. Using
an algorithm like K-Means would probably work well for classical music, but for
more modern music things aren’t that simple. For instance, jazz is extremely nuanced.
Miles Davis, Sun Ra, and others really don’t fit into a categorization. They were a mix
of a lot of influences.

So instead of classifying music like jazz we could take a more holistic approach
through EM clustering. Imagine we had a simple example where we wanted to clas‐
sify our jazz collection into either fusion or swing. It’s a simplistic model, but we
could start out with the assumption that music could be either swing or fusion with a
50% chance. Notating this using math, we could say that zk = < 0.5, 0.5 >. Then if we
were to run a special algorithm to determine what “Bitches Brew—Miles Davis” was
in, we might find zk = < 0.9, 0.1 > or that it’s 90% fusion. Similarly if we were to run
this on something like “Oleo—Sonny Rollins” we might find the opposite to be true
with 95% being swing.
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The beauty of this kind of thinking is that in practice, data doesn’t always fit into a
category. But how would an algorithm like this work if we were to write it?

Figure 9-3. This shows how clusters can actually be much softer

Algorithm
The EM clustering algorithm is an iterative process to converge on a cluster mapping.
It completes two steps in each iteration: expect and maximize.

But what does that mean? Expectation and maximization could mean a lot.

Expectation
Expectation is about updating the truth of the model and seeing how well we are
mapping. In a lot of ways this is a test-driven approach to building clusters—we’re
figuring out how well our model is tracking the data. Mathematically speaking, we
estimate the probability vector for each row of data given its previous value.

On first iteration we just assume that everything is equal (unless you have some
domain knowledge you feed into the model). Given that information we calculate the
log likelihood of theta in the conditional distribution between our model and the true
value of the data. Notated it is:
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Q θ ∥ θt = EZ ∥ X,θt
logL θ; X, Z

θ is the probability model we have assigned to rows. Z and X are the distributions for
our cluster mappings and the original data points.

Maximization
Just estimating the log likelihood of something doesn’t solve our problem of assigning
new probabilities to the Z distribution. For that we simply take the argument max of
the expectation function. Namely, we are looking for the new θ that will maximize the
log likelihood:

θt = arg maxθ Q θ ∥ θt

The unfortunate thing about EM clustering is that it does not necessarily converge
and can falter when mapping data with singular covariances. We will delve into more
of the issues related with EM clustering in “Example: Categorizing Music” on page
166. First we need to talk about one thing that all clustering algorithms share in com‐
mon: the impossibility theorem.

The Impossibility Theorem
There is no such thing as free lunch and clustering is no exception. The benefit we get
out of clustering to magically map data points to particular groupings comes at a cost.
This was described by Jon Kleinberg, who touts it as the impossibility theorem, which
states that you can never have more than two of the following when clustering:

1. Richness
2. Scale invariance
3. Consistency

Richness is the notion that there exists a distance function that will yield all different
types of partitions. What this means intuitively is that a clustering algorithm has the
ability to create all types of mappings from data points to cluster assignments.

Scale invariance is simple to understand. Imagine that you were building a rocket ship
and started calculating everything in kilometers until your boss said that you need to
use miles instead. There wouldn’t be a problem switching; you just need to divide by a
constant on all your measurements. It is scale invariant. Basically if the numbers are
all multiplied by 20, then the same cluster should happen.

Consistency is more subtle. Similar to scale invariance, if we shrank the distance
between points inside of a cluster and then expanded them, the cluster should yield
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the same result. At this point you probably understand that clustering isn’t as good as
many originally think. It has a lot of issues and consistency is definitely one of those
that should be called out.

For our purposes K-Means and EM clustering satisfy richness and scale invariance
but not consistency. This fact makes testing clustering just about impossible. The only
way we really can test is by anecdote and example, but that is okay for analysis
purposes.

In the next section we will analyze jazz music using K-Means and EM clustering.

Example: Categorizing Music
Music has a deep history of recordings and composed pieces. It would take an entire
degree and extensive study of musicology just to be able to effectively categorize it all.

The ways we can sort music into categories is endless. Personally I sort my own
record collection by artist name, but sometimes artists will perform with one another.
On top of that, sometimes we can categorize based on genre. Yet what about the fact
that genres are broad—such as jazz, for instance? According to the Montreux Jazz
Festival, jazz is anything you can improvise over. How can we effectively build a
library of music where we can divide our collection into similar pieces of work?

Instead let’s approach this by using K-Means and EM clustering. This would give us a
soft clustering of music pieces that we could use to build a taxonomy of music.

In this section we will first determine where we will get our data from and what sort
of attributes we can extract, then determine what we can validate upon. We will also
discuss why clustering sounds great in theory but in practice doesn’t give us much
except for clusters.

Setup Notes
All of the code we’re using for this example can be found on GitHub.

Python is constantly changing so the README is the best place to come up to speed
on running the examples.

Gathering the Data
There is a massive amount of data on music from the 1100s through today. We have
MP3s, CDs, vinyl records, and written music. Without trying to classify the entire
world of music, let’s determine a small subsection that we can use. Since I don’t want
to engage in any copyright suits we will only use public information on albums. This
would be Artist, Song Name, Genre (if available), and any other characteristics we
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can find. To achieve this we have access to a plethora of information contained in
Discogs.com. They offer many XML data dumps of records and songs.

Also, since we’re not trying to cluster the entire data set of albums in the world, let’s
just focus on jazz. Most people would agree that jazz is a genre that is hard to really
classify into any category. It could be fusion, or it could be steel drums.

To get our data set I downloaded metadata (year, artist, genre, etc.) for the best jazz
albums (according to http://www.scaruffi.com/jazz/best100.html). The data goes back
to 1940 and well into the 2000s. In total I was able to download metadata for about
1,200 unique records. All great albums!

But that isn’t enough information. On top of that I annotated the information by
using the Discogs API to determine the style of jazz music in each.

After annotating the original data set I found that there are 128 unique styles associ‐
ated with jazz (at least according to Discogs). They range from aboriginal to vocal.

Coding Design
Although this chapter uses two different algorithms (EM clustering and K-Means
clustering), the code will focus on EM clustering and will follow the data flow in
Figure 9-4.

Figure 9-4. EM clustering class
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Analyzing the Data with K-Means
Like we did with KNN, we need to figure out an optimal K. Unfortunately with clus‐
tering there really isn’t much we can test with except to just see whether we split into
two different clusters.

But let’s say that we want to fit all of our records on a shelf and have 25 slots—similar
to the IKEA bookshelf. We could run a clustering of all of our data using K = 25.

Doing that would require little code because we have the AI4R gem to rely on:

import csv

from sklearn.cluster import KMeans

data = []
artists = []
years = []
with open('data/annotated_jazz_albums.csv', 'rb') as csvfile:
  reader = csv.DictReader(csvfile)
  headers = reader.fieldnames[3:]
  for row in reader:
    artists.append(row['artist_album'])
    years.append(row['year'])
    data.append([int(row[key]) for key in headers])

clusters = KMeans(n_clusters=25).fit_predict(data)

with open('data/clustered_kmeans.csv', 'wb') as csvfile:
  fieldnames = ['artist_album', 'year', 'cluster']
  writer = csv.DictWriter(csvfile, fieldnames=fieldnames)

  writer.writeheader()

  for i, cluster in enumerate(clusters):
    writer.writerow({'artist_album': artists[i],
             'year': years[i],
             'cluster': cluster})

That’s it! Of course clustering without looking at what this actually tells us is useless.
This does split the data into 25 different categories, but what does it all mean?

Looking at a graphic of year versus assigned cluster number yields interesting results
(Figure 9-5).
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Figure 9-5. K-Means applied to jazz albums

As you can see, jazz starts out in the Big Band era pretty much in the same cluster,
transitions into cool jazz, and then around 1959 it starts to go everywhere until about
1990 when things cool down a bit. What’s fascinating is how well that syncs up with
jazz history.

What happens when we cluster the data using EM clustering?

EM Clustering Our Data
With EM clustering, remember that we are probabilistically assigning to different
clusters—it isn’t 100% one or the other. This could be highly useful for our purposes
since jazz has so much crossover.
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Let’s go through the process of writing our own code and then use it to map the same
data that we have from our jazz data set, then see what happens.

Our first step is to be able to initialize the cluster. If you remember we need to have
indicator variables zt that follow a uniform distribution. These tell us the probability
that each data point is in each cluster.

Named Tuples
Tuples in Python are basically immutable arrays. They are fast, and useful when mov‐
ing data around. But what is a named tuple?

Think of named tuples as lightweight objects that we can use instead of defining a
new class. In other languages they might be called structs.

For example, imagine you want to look at points on a Cartesian x,y graph. We could
say that a point is basically just (x,y) or we could use a named tuple:

from collections import namedtuple

point = (1.0, 5.0)

Point = namedtuple('Point', 'x y')
named_point = Point(1.0, 5.0)

point[0] == named_point.x
point[1] == named_point.y

It’s more or less syntactic sugar but it can make the code much easier to read with
lightweight objects to wrap tuple data in.

Stepping back into our example, we first need to write a helper function that returns
the density of a multivariate normal distribution. This is based on how R does this:

from collections import namedtuple
import random
import logging
import math

import numpy as np
from numpy.linalg import LinAlgError

def dvmnorm(x, mean, covariance, log=False):
  """density function for the multivariate normal distribution
  based on sources of R library 'mvtnorm'
  :rtype : np.array
  :param x: vector or matrix of quantiles. If x is a matrix, each row is taken
  to be a quantile
  :param mean: mean vector, np.array
  :param covariance: covariance matrix, np.array
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  :param log: if True, densities d are given as log(d), default is False
  """
  n = covariance.shape[0]
  try:
    dec = np.linalg.cholesky(covariance)
  except LinAlgError:
    dec = np.linalg.cholesky(covariance + np.eye(covariance.shape[0]) * 0.0001)
  tmp = np.linalg.solve(dec, np.transpose(x - mean))
  rss = np.sum(tmp * tmp, axis=0)
  logretval = - np.sum(np.log(np.diag(dec))) - \
              0.5 * n * np.log(2 * math.pi) - 0.5 * rss
  if log:
    return logretval
  else:
    return np.exp(logretval)

Using all this setup we can now build an EMClustering class that will do our EM clus‐
tering and log outputs as needed.

This class has the following methods of note:

partitions

Will return the cluster mappings of the data if they are set.

data

Will return the data object passed in.

labels

Will return the membership weights for each cluster.

clusters

Will return the clusters.

setup

This does all of the setup for the EM clustering.

class EMClustering(object):
  logger = logging.getLogger(__name__)
  ch = logging.StreamHandler()
  formatstring = '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
  formatter = logging.Formatter(formatstring)
  ch.setFormatter(formatter)
  logger.addHandler(ch)
  logger.setLevel(logging.DEBUG)

  cluster = namedtuple('cluster', 'weight, mean, covariance')

  def __init__(self, n_clusters):
    self._data = None
    self._clusters = None
    self._membership_weights = None
    self._partitions = None
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    self._n_clusters = n_clusters

  @property
  def partitions(self):
    return self._partitions

  @property
  def data(self):
    return self._data

  @property
  def labels(self):
    return self._membership_weights

  @property
  def clusters(self):
    return self._clusters

  def setup(self, data):
    self._n_samples, self._n_features = data.shape
    self._data = data
    self._membership_weights = np.ones((self._n_samples, self._n_clusters)) / \
                               self._n_clusters
    self._s = 0.2

    indices = range(data.shape[0])
    random.shuffle(indices)
    pick_k_random_indices = random.sample(indices, self._n_clusters)

    self._clusters = []
    for cluster_num in range(self._n_clusters):
      mean = data[pick_k_random_indices[cluster_num], :]
      covariance = self._s * np.eye(self._n_features)
      mapping = self.cluster(1.0 / self._n_clusters, mean, covariance)
      self._clusters.append(mapping)

    self._partitions = np.empty(self._n_samples, dtype=np.int32)

At this point we have set up all of our base case stuff. We have @k, which is the num‐
ber of clusters, @data is the data we pass in that we want to cluster, @labels are an
array full of the probabilities that the row is in each cluster, and @classes holds on to
an array of means and covariances, which tells us where the distribution of data is.
Last, @partitions are the assignments of each data row to cluster index.

Now we need to build our expectation step, which is to figure out what the probabil‐
ity of each data row is in each cluster. To do this we need to write a new method,
expect, which will do this:

class EMClustering(object):
  # __init__
  # setup()
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  def expect(self):
    log_likelyhood = 0
    for cluster_num, cluster in enumerate(self._clusters):
      log_density = dvmnorm(self._data, cluster.mean, \
                            cluster.covariance, log=True)
      membership_weights = cluster.weight * np.exp(log_density)
      log_likelyhood += sum(log_density * \
                            self._membership_weights[:, cluster_num])

      self._membership_weights[:, cluster_num] = membership_weights

    for sample_num, probabilities in enumerate(self._membership_weights):
      prob_sum = sum(probabilities)

      self._partitions[sample_num] = np.argmax(probabilities)

      if prob_sum == 0:
        self._membership_weights[sample_num, :] = np.ones_like(probabilities) / \
                                                  self._n_clusters
      else:
        self._membership_weights[sample_num, :] = probabilities / prob_sum

    self.logger.debug('log likelyhood %f', log_likelyhood)

The first part of this code iterates through all classes, which holds on to the means
and covariances of each cluster. From there we want to find the inverse covariance
matrix and the determinant of the covariance. For each row we calculate a value that
is proportional to the probability that the row is in a cluster. This is:

pi j = det C e
− 1

2 xj − μi C−1 xj − μi

This is effectively a Gaussian distance metric to help us determine how far outside of
the mean our data is.

Let’s say that the row vector is exactly the mean. This equation would reduce down to
pij = det(C), which is just the determinant of the covariance matrix. This is actually
the highest value you can get out of this function. If for instance the row vector was
far away from the mean vector, then pij would become smaller and smaller due to the
exponentiation and negative fraction in the front.

The nice thing is that this is proportional to the Gaussian probability that the row
vector is in the mean. Since this is proportional and not equal to, in the last part we
end up normalizing to sum up to 1.

Now we can move on to the maximization step:
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class EMClustering(object):
  # __init__
  # setup()
  # expect
  def maximize(self):
    for cluster_num, cluster in enumerate(self._clusters):
      weights = self._membership_weights[:, cluster_num]
      weight = np.average(weights)
      mean = np.average(self._data, axis=0, weights=weights)
      covariance = np.cov(self._data, rowvar=False, ddof=0, aweights=weights)
      self._clusters[cluster_num] = self.cluster(weight, mean, covariance)

Again here we are iterating over the clusters called @classes. We first make an array
called sum that holds on to the weighted sum of the data happening. From there we
normalize to build a weighted mean. To calculate the covariance matrix we start with
a zero matrix that is square and the width of our clusters. Then we iterate through all
row vectors and incrementally add on the weighted difference of the row and the
mean for each combination of the matrix. Again at this point we normalize and store.

Now we can get down to using this. To do that we add two convenience methods that
help in querying the data:

class EMClustering(object):
  # __init__
  # setup
  # expect
  # maximize
  def fit_predict(self, data, iteration=5):
    self.setup(data)
    for i in range(iteration):
      self.logger.debug('Iteration %d', i)
      self.expect()
      self.maximize()
    return self

The Results from the EM Jazz Clustering
Back to our results of EM clustering with our jazz music. To actually run the analysis
we run the following script:

import csv

import numpy as np

from em_clustering import EMClustering

np.set_printoptions(threshold=9000)

data = []
artists = []
years = []
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# with open('data/less_covariance_jazz_albums.csv', 'rb') as csvfile:
with open('data/annotated_jazz_albums.csv', 'rb') as csvfile:
  reader = csv.DictReader(csvfile)
  headers = reader.fieldnames[3:]
  for row in reader:
    artists.append(row['artist_album'])
    years.append(row['year'])
    data.append([int(row[key]) for key in headers])

clusterer = EMClustering(n_clusters=25)
clusters = clusterer.fit_predict(np.array(data))

print(clusters.partitions)

The first thing you’ll notice about EM clustering is that it’s slow. It’s not as quick as
calculating new centroids and iterating. It has to calculate covariances and means,
which are all inefficient. Ockham’s Razor would tell us here that EM clustering is
most likely not a good use for clustering big amounts of data.

The other thing that you’ll notice is that our annotated jazz music will not work
because the covariance matrix of this is singular. This is not a good thing; as a matter
of fact this problem is ill suited for EM clustering because of this, so we have to trans‐
form it into a different problem altogether.

We do that by collapsing the dimensions into the top two genres by index:

import csv

with open('data/less_covariance_jazz_albums.csv', 'wb') as csvout:
  writer = csv.writer(csvout, delimiter=',')

  # Write the header of the CSV file
  writer.writerow(['artist_album', 'key_index', 'year', 'Genre_1', 'Genre_2'])

  with open('data/annotated_jazz_albums.csv', 'rb') as csvin:
    reader = csv.DictReader(csvin)
    for row in reader:
      genre_count = 0
      genres = [0, 0]
      genre_idx = 0
      idx = 0
      for key, value in row.items():
        break if genre_idx == 2
        if value == '1':
          genres[genre_idx] = idx
          genre_idx += 1
        idx += 1
      if genres[0] > 0 || genres[1] > 0:
        line = [row['artist_album'], row['key_index'], \
                row['year'], genres[0], genres[1]]
        writer.writerow(line)
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Basically what we are doing here is saying for the first two genres, let’s assign a genre
index to it and store it. We’ll skip any albums with zero information assigned to them.

At this point we are able to run the EM clustering algorithm, except that things
become too difficult to actually cluster. This is an important lesson with EM cluster‐
ing. The data we have actually doesn’t cluster because the matrix has become too
unstable to invert.

Some possibilities for refinement would be to try out K-Means or other clustering
algorithms, but really a better approach would be to work on the data some more.
Jazz albums are a fun example but data-wise aren’t very illustrative. We could, for
instance, expand using some more musical genomes, or feed this into some sort of
text-based model. Or maybe we could spelunk for musical queues using fast Fourier
transforms! The possibilities are really endless but this gives us a good start.

Conclusion
Clustering is useful but can be a bit hard to control since it is unsupervised. Add the
fact that we are dealing with the impossibility of having consistency, richness, and
scale-invariance all at once and clustering can be a bit useless in many contexts. But
don’t let that get you down—clustering can be useful for analyzing data sets and split‐
ting data into arbitrary clusters. If you don’t care how they are split and just want
them split up, then clustering is good. Just know that there are sometimes odd 
circumstances.
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CHAPTER 10

Improving Models and Data Extraction

How do you go about improving upon a simple machine learning algorithm such as
Naive Bayesian Classifiers, SVMs, or really any method? That is what we will delve
into in this chapter, by talking about four major ways of improving models:

• Feature selection
• Feature transformation
• Ensemble learning
• Bootstrapping

I’ll outline the benefits of each of these methods but in general they reduce entangle‐
ment, overcome the curse of dimensionality, and reduce correction cascades and sen‐
sitivity to data changes.

They each have certain pros and cons and should be used when there is a purpose
behind it. Sometimes problems are so sufficiently complex that tweaking and
improvement are warranted at this level, other times they are not. That is a judgment
people must make depending on the business context.

Debate Club
I’m not sure if this is common throughout the world, but in the United States, debate
club is a high school fixture. For those of you who haven’t heard of this, it’s a simple
idea: high schoolers will take polarizing issues and debate their side. This serves as a
great way for students who want to become lawyers to try out their skills arguing for a
case.

The fascinating thing about this is just how rigorous and disciplined these kids are.
Usually they study all kinds of facts to put together a dossier of important points to
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make. Sometimes they argue for a side they don’t agree with but they do so with
conviction.

Why am I telling you this? These debate club skills are the key to making machine
learning algorithms (and many cases any algorithm) work better:

• Collecting factual and important data
• Arguing different points of view in multiple ways

As you can imagine, if we could collect important or relevant data to feed into our
models, and try different methods or approaches to the same problem, we will itera‐
tively get better as we find the best model combination.

This gets us into what we will be talking about: picking better data or arguing for sol‐
utions more effectively.

Picking Better Data
In this section we’ll be discussing how to pick better data. Basically we want to find
the most compact, simplest amount of data that backs up what we are trying to solve.
Some of that intuitively means that we want the data that supports our conclusion,
which is a bit of cart before the horse; regardless, there are two great methods to
improve the data one is using: feature selection and feature transformation
algorithms.

This sounds like a great idea, but what is the motivation behind picking better data?

Generally speaking, machine learning methods are better suited for smaller dimen‐
sions that are well correlated with the data. As we have discussed, data can become
extremely overfit, entangled, or track improperly with many dimensions. We don’t
want to under- or overfit our data, so finding the best set to map is the best use of our
time.

Feature Selection
Let’s think about some data that doesn’t make a whole lot of sense. Say we want to
measure weather data and want to be able to predict temperature given three vari‐
ables: “Matt’s Coffee Consumption,” “Ice Cream Consumption,” and “Season” (see
Table 10-1 and Figure 10-1).

Table 10-1. Weather data for Seattle

Average temperature (°F) Matt’s coffee consumption (cups) Ice cream consumption (scoops) Month
47 4.1 2 Jan

50 4 2 Feb
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Average temperature (°F) Matt’s coffee consumption (cups) Ice cream consumption (scoops) Month
54 4 3 Mar

58 4 3 Apr

65 4 3 May

70 4 3 Jun

76 4 4 Jul

76 4 4 Aug

71 4 4 Sep

60 4 3 Oct

51 4 2 Nov

46 4.1 2 Dec

Figure 10-1. A graph comparing my consumption of ice cream (in scoops) and coffee (in
cups) with the temperature
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Obviously you can see that I generally drink about 4 cups of coffee a day. I tend to eat
more ice cream in the summertime and it’s generally hotter around that time.

But what can we do with this data? There are at most N choose K solutions to any
data set, so given N dimensions, we can find an enormous number of combinations
of various-sized subsets.

At this point we want to reduce the amount of dimensions we are looking at but don’t
know where to start. In general we want to minimize the redundancy of our data
while maximizing the relevancy. As you can imagine this is a tradeoff: if we keep all
the data, then we’ll know 100% that we have relevant data whereas if we reduce some
number of dimensions we might have redundancy—especially if we have lots and lots
of dimensions.

We have talked about this before as being an entanglement problem with having too
many data points that point to the same thing.

In general, redundancy and relevancy are calculated using the same metrics and on a
spectrum:

• Correlation
• Mutual information
• Distance from some point (Euclidean distance from reference)

So they actually end up measuring the same thing. How do we solve this?

Let’s first take a step back and think about what would happen if we just looked at all 
possibilities.

Exhaustive Search
Let’s imagine that in this case we want to find the best possible dimensions to train
on. We could realistically just search through all possibilities. In this case we have
three dimensions which would equate to seven models (123, 12, 13, 23, 1, 2, 3). From
here we could say that we want to find the model that has the highest accuracy
(Figure 10-2).
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Figure 10-2. Exhaustive search for best features

This unfortunately doesn’t work as well as you go up in dimensions. If for instance
you have 10 dimensions, the possibilities from selecting 10 dimensions, to 1 dimen‐
sion would be 210 – 1. This can be denoted in Pascal’s triangle (Figure 10-3) as a sum
of combinations where:

10
10 + 10

9 +⋯ + 10
1
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Figure 10-3. Pascal’s triangle

Pascal’s triangle shows all combinations for a given row. Since each row sums up to
2n, all we need to do is subtract 1, so we don’t account for zero dimensions.

So as you add dimensions you would have to account for 2n – 1 possible data sets. If
you had 3,000 dimensions (which would be a good reason to use feature selection),
you would have roughly a trecentillion (10903) models to run through!

Surely there is a better way. We don’t need to try every model. Instead, what if we just
randomly selected features?

Random Feature Selection
A lot of the time random feature selection will be useful enough for our purposes.
Reducing the features by half or a certain amount is an excellent way of improving
data overfitting. The added benefit is that you really don’t have to think about it much
and instead try out a random feature selection of a certain percent.

Say for instance you want to reduce the features by 25%. You could randomly see how
it performs for accuracy, precision, or recall. This is a simple way of selecting features,
but there is one major downside: what if training the model is slow? You are still
brute-forcing your way to finding features. This means that you are arbitrarily pick‐
ing a number and hoping for the best. Surely there is a better way.

A Better Feature Selection Algorithm
Instead of relying on random feature selection, let’s think a little more in terms of
what we want to improve with our model. We want to increase relevancy while reduc‐
ing redundancy. Relevancy is a measure of how relevant the dimension in question is
versus the classification whereas redundancy is a measure of how redundant the
dimension is compared to all the other dimensions. Usually for relevancy and redun‐
dancy you either use correlation or mutual information.

Correlation is useful for data that is continuous in nature and not nominal. By con‐
trast, mutual information gives us a discrete measure of the mutual information
shared between the two dimensions in question.

Using our earlier example, correlation would look like the results in Table 10-2 for
relevancy and Table 10-3 for redundancy.
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Table 10-2. Relevancy using correlation

Dimension Correlation to temperature
Matt’s coffee consumption –0.58

Ice cream 0.93

Month 0.16

Table 10-3. Redundancy using correlation

Dimension Matt’s coffee consumption Ice cream Month
Matt’s coffee consumption 1 –0.54 0

Ice cream –0.54 1 0.14

Month 0 0.14 1

As you can see from these two tables, ice cream is highly correlated with temperature
and my coffee consumption is somewhat negatively correlated with temperature; the
month seems irrelevant. Intuitively we would think month would make a huge differ‐
ence, but since it runs on a modular clock it’s hard to model using linear approxima‐
tions. The redundancy is more interesting. Taken out of context my coffee
consumption and month seem to have low redundancy, while coffee and ice cream
seem more redundant.

So what can we do with this data? Next I’m going to introduce a significant algorithm
that brings this all together.

Minimum Redundancy Maximum Relevance Feature Selection
To bring all of these competing ideas together into one unified algorithm there is
minimum redundancy maximum relevance (mRMR) feature selection, which aims to
maximize relevancy while minimizing redundancy. We can do this using a maximiza‐
tion (minimization) problem using NumPy and SciPy.

In this formulation we can just minimize the following function:

Equation 10-1. mRMR definition
max Relevancy − Redundancy

Equation 10-2. Relevancy definition

Relevancy =
∑i = 1

n cixi

∑i = 1
n xi
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Equation 10-3. Redundancy definition

Redundancy =
∑i, j = 1

n ai jxix j

∑i = 1
n xi

2

More importantly in code we have:

from scipy.optimize import minimize
import numpy as np

matrix = np.array([
  [47, 4.1, 2, 1],
  [50, 4, 2, 2],
  [54,4,3,3],
  [58,4,3,4],
  [65,4,3,5],
  [70,4,3,6],
  [76,4,4,7],
  [76,4,4,8],
  [71,4,4,9],
  [60,4,3,10],
  [51,4,2,11],
  [46,4.1,2,12]
])

corrcoef = np.corrcoef(np.transpose(matrix))
relevancy = np.transpose(corrcoef)[0][1:]

# Set initial to all dimensions on
x0 = [1,1,1]

# Minimize the redundancy minus relevancy

fun = lambda x: sum([corrcoef[i+1, j+1] * x[i] * x[j] for i in range(len(x)) \
                     for j in range(len(x))])/ \
                     (sum(x) ** 2) - \
                     (sum(relevancy * x) / sum(x))

res = minimize(fun, x0, bounds=((0,1), (0,1), (0,1)))

res.x

array([ 0.29820206,  1.        ,  0.1621906 ])

This gives us almost exactly what we expected: my ice cream consumption models the
temperature quite well. For bonus points you could use an integer programming
method to get the values to be either 0 or 1, but for these purposes it’s obvious which
features should be selected to improve the model.
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Feature Transformation and Matrix Factorization
We’ve actually already covered feature transformation quite well in the previous chap‐
ters. For instance, clustering and the kernel trick are both feature transformation
methods, effectively taking a set of data and projecting it into a new space, whether
it’s a cluster number or an expanded way of looking at the data. In this section,
though, we’ll talk about another set of feature transformation algorithms that are roo‐
ted in linear algebra. These are generally used to factor a matrix down to a smaller
size and generally can be used to improve models.

To understand feature transformation, let’s take a look at a few algorithms that trans‐
form a matrix into a new, more compressed or more verbose version of itself: princi‐
pal component analysis and independent component analysis.

Principal Component Analysis
Principal component analysis (PCA) has been around for a long time. This algorithm
simply looks at the direction with the most variance and then determines that as the
first principal component. This is very similar to how regression works in that it
determines the best direction to map data to. Imagine you have a noisy data set that
looks like Figure 10-4.

Figure 10-4. Graphical PCA from Gaussian
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As you can see, the data has a definite direction: up and to the right. If we were to
determine the principal component, it would be that direction because the data is in
maximal variance that way. The second principal component would end up being
orthogonal to that, and then over iterations we would reduce our dimensions by
transforming them into these principal directions.

Another way of thinking about PCA is how it relates to faces. When you apply PCA
to a set of faces, an odd result happens known as the Eigenfaces (see Figure 10-5).

Figure 10-5. Eigenfaces (Source: AT&T Laboratories)

While these look quite odd, it is fascinating that what comes out is really an average
face summed up over all of the training data. Instead of implementing PCA now, we’ll
wait until the next section where we implement an algorithm known as independent
component analysis (ICA), which actually relies on PCA as well.

Independent Component Analysis
Imagine you are at a party and your friend is coming over to talk to you. Near you is
someone you hate who won’t shut up, and on the other side of the room is a washing
machine that keeps making noise (see Figure 10-6).
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Figure 10-6. Cocktail party example

You want to know what your friend has been up to, so you listen to her closely. Being
human, you are adept at separating out sounds like the washing machine and that
loudmouth you hate. But how could we do that with data?

Let’s say that instead of listening to your friend, you only had a recording and wanted
to filter out all of the noise in the background. How would you do something like
that? You’d use an algorithm called ICA.

Technically, ICA minimizes mutual information, or the information shared between
the two variables. This makes intuitive sense: find me the signals in the aggregate that
are different.

Compared to our face recognition example in Figure 10-5, what does ICA extract?
Well, unlike Eigenfaces, it extracts features of a face, like noses, eyes, and hair.

PCA and ICA are useful for transforming data and can analyze information even bet‐
ter (see Figure 10-7). Then we can use this more succinct data to feed our models
more useful and relevant information, which will improve our models beyond just
cross-validation.
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Figure 10-7. ICA extraction example

Now that we know about feature transformation and feature selection, let’s discuss
what we can do in terms of better arguing for a classiciation or regression point.

Ensemble Learning
Up until this point we have discussed selecting dimensions as well as transforming
dimensions into new ones. Both of these approaches can be quite useful when
improving models or the data we are using. But there is yet another way of improving
our models: ensemble learning.

Ensemble learning is a simple concept: build multiple models and aggregate them
together. We have already encountered this with random forests in Chapter 5.

A common example of ensemble learning is actually weather. When you hear a fore‐
cast for the next week, you are most likely hearing an aggregation of multiple weather
models. For instance, the European model (ECMWF) might predict rain and the US
model (GFS) might not. Meterologists take both of these models and determine
which one is most likely to hit and deliver that information during the evening news.

When aggregating multiple models, there are two general methods of ensemble
learning: bagging, a naive method; and boosting, a more elegant one.
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Bagging
Bagging or bootstrap aggregation has been a very useful technique. The idea is sim‐
ple: take a training set and generate new training sets off of it.

Let’s say we have a training set of data that is 1,000 items long and we split that into 50
training sets of 100 a piece. (Because we sample with replacement, these 50 training
sets will overlap, which is okay as long as they are unique.) From here we could feed
this into 50 different models.

Now at this point we have 50 different models telling us 50 different answers. Like the
weather report just mentioned, we can either find the one we like the most or do
something simpler, like average all of them.

This is what bootstrap aggregating does: it averages all of the models to yield the aver‐
age result off of the same training set. The amazing thing about bagging is that in
practice it ends up improving models substantially because it has a tendency to
remove some of the outliers.

But should we stop here? Bagging seems like a bit of a lucky trick and also not very
elegant. Another ensemble learning tool is even more powerful: boosting.

Boosting
Instead of splitting training data into multiple data models, we can use another
method like boosting to optimize the best weighting scheme for a training set.

Given a binary classification model like SVMs, decision trees, Naive Bayesian Classi‐
fiers, or others, we can boost the training data to actually improve the results.

Assuming that you have a similar training set to what we just described with 1,000
data points, we usually operate under the premise that all data points are important or
that they are of equal importance. Boosting takes the same idea and starts with the
assumption that all data points are equal. But we intuitively know that not all training
points are the same. What if we were able to optimally weight each input based on
what is most relevant?

That is what boosting aims to do. Many algorithms can do boosting but the most
popular is AdaBoost.

To use AdaBoost we first need to fix up the training data just a bit. There is a require‐
ment that all training data answers are either 1 or –1. So, for instance, with spam
classification we would say that spam is 1 and not spam is –1. Once we have changed
our data to reflect that, we can introduce a special error function:

E f x , y, i = e
−yi f xi
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This function is quite interesting. Table 10-4 shows all four cases.

Table 10-4. Error function in all cases

f(x) y
e
−yi f xi

1 1 1
e

–1 1 e

1 –1 e

–1 –1 1
e

As you can see, when f(x) and y equal, the error rate is minimal, but when they are
not the same it is much higher.

From here we can iterate through a number of iterations and descend on a better
weighting scheme using this algorithm:

• Choose a hypothesis function (either SVMs, Naive Bayesian Classifiers, or some‐
thing else)
— Using that hypothesis, sum up the weights of points that were missclassified:

� = ∑h x ≠ y w

— Choose a learning rate based on the error rate:

α = 1
2 ln 1 − �

�

• Add to the ensemble:

F x = Ft − 1 x + αht x

• Update weights:

wi, t + 1 = wi, te
−yiαtht xi

for all weights
• Renormalize weights by making sure they add up to 1
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What this does is converge on the best possible weighting scheme for the training
data. It can be shown that this is a minimization problem over a convex set of func‐
tions.

This meta-heuristic can be excellent at improving results that are mediocre from any
weak classifier like Naive Bayesian Classification or others like decision trees.

Conclusion
You’ve learned a few different tricks of the trade with improving existing models: fea‐
ture selection, feature transformation, ensemble learning, and bagging. In one big
graphic it looks something like Figure 10-8.

Figure 10-8. Feature improvement in one model
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As you can see, ensemble learning and bagging mostly focus on building many mod‐
els and trying out different ideas, while feature selection and feature transformation
are about modifying and studying the training data.
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CHAPTER 11

Putting It Together: Conclusion

Well, here we are! The end of the book. While you probably don’t have the same
depth of understanding as a PhD in machine learning, I hope you have learned some‐
thing. Specifically, I hope you’ve developed a thought process for approaching prob‐
lems that machine learning works so well at solving. I firmly believe that using tests is
the only way that we can effectively use the scientific method. It is the reason the
modern world exists, and it helps us become much better at writing code.

Of course, you can’t write a test for everything, but it’s the mindset that matters. And
hopefully you have learned a bit about how you can apply that mindset to machine
learning. In this chapter, we will discuss what we covered at a high level, and I’ll list
some suggested reading so you can dive further into machine learning research.

Machine Learning Algorithms Revisited
As we touched on earlier in the book, machine learning is split into three main cate‐
gories: supervised, unsupervised, and reinforcement learning (Table 11-1). This book
skips reinforcement learning, but I highly suggest you research it now that you have a
better background. I’ll list a source for you in the final section of this chapter.

Table 11-1. Machine learning categories

Category Description
Supervised Supervised learning is the most common machine learning category. This is functional approximation. We

are trying to map some data points to some fuzzy function. Optimization-wise, we are trying to fit a function
that best approximates the data to use in the future. It is called “supervised” because it has a learning set
given to it.

Unsupervised Unsupervised learning is just analyzing data without any sort of Y to map to. It is called “unsupervised”
because the algorithm doesn’t know what the output should be and instead has to come up with it itself.
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Category Description
Reinforcement Reinforcement learning is similar to supervised learning, but with a reward that is generated from each step.

For instance, this is like a mouse looking for cheese in a maze. The mouse wants to find the cheese and in
most cases will not be rewarded until the end when it finally finds it.

There are generally two types of biases for each of these categories: restriction and
preference. Restriction bias is what limits the algorithm, while preference is what sort
of problems it prefers.

All of this information (shown in Table 11-2) helps us determine whether we should
use each algorithm or not.

Table 11-2. Machine learning algorithm matrix

Algorithm Type Class Restriction bias Preference bias
K-Nearest
Neighbors

Supervised Instance based Generally speaking, KNN is good
for measuring distance-based
approximations; it suffers from
the curse of dimensionality

Prefers problems that are
distance based

Naive Bayes Supervised Probabilistic Works on problems where the
inputs are independent from
each other

Prefers problems where the
probability will always be
greater than zero for each
class

Decision Trees/
Random Forests

Supervised Tree Becomes less useful on problems
with low covariance

Prefers problems with
categorical data

Support Vector
Machines

Supervised Decision
boundary

Works where there is a definite
distinction between two
classifications

Prefers binary classification
problems

Neural Networks Supervised Nonlinear
functional
approximation

Little restriction bias Prefers binary inputs

Hidden Markov
Models

Supervised/
Unsupervised

Markovian Generally works well for system
information where the Markov
assumption holds

Prefers time-series data and
memoryless information

Clustering Unsupervised Clustering No restriction Prefers data that is in
groupings given some form of
distance (Euclidean,
Manhattan, or others)

Feature Selection Unsupervised Matrix
factorization

No restrictions Depending on algorithm, can
prefer data with high mutual
information

Feature
Transformation

Unsupervised Matrix
factorization

Must be a nondegenerate matrix Will work much better on
matricies that don’t have
inversion issues

Bagging Meta-heuristic Meta-heuristic Will work on just about anything Prefers data that isn’t highly 
variable
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How to Use This Information to Solve Problems
Using Table 11-2, we can figure out how to approach a given problem. For instance, if
we are trying to determine what neighborhood someone lives in, KNN is a pretty
good choice, whereas Naive Bayesian Classification makes absolutely no sense. But
Naive Bayesian Classification could determine sentiment or some other type of prob‐
ability. The SVM algorithm works well for problems such as finding a hard split
between two pieces of data, and it doesn’t suffer from the curse of dimensionality
nearly as much. So SVM tends to be good for word problems where there’s a lot of
features. Neural networks can solve problems ranging from classifications to driving
a car. HMMs can follow musical scores, tag parts of speech, and be used well for other
system-like applications.

Clustering is good at grouping data together without any sort of goal. This can be
useful for analysis, or just to build a library and store data effectively. Filtering is well
suited for overcoming the curse of dimensionality. We saw it used predominantly in
Chapter 3 by focusing on important attributes of mushrooms like cap color, smell,
and the like.

What we didn’t touch on in the book is that these algorithms are just a starting point.
The important thing to realize is that it doesn’t matter what you pick; it is what you
are trying to solve that matters. That is why we cross-validate, and measure precision,
recall, and accuracy. Testing and checking our work every step of the way guarantees
that we at least approach better answers.

I encourage you to read more about machine learning models and to think about
applying tests to them. Most algorithms have them baked in, which is good, but to
write code that learns over time, we mere humans need to be checking our own work
as well.

What’s Next for You?
This is just the beginning of your journey. The machine learning field is rapidly grow‐
ing every single year. We are learning how to build robotic self-driving cars using
deep learning networks, and how to classify health problems. The future is bright for
machine learning, and now that you’ve read this book you are better equipped to
learn more about deeper subtopics like reinforcement learning, deep learning, artifi‐
cial intelligence in general, and more complicated machine learning algorithms.

There is a plethora of information out there for you. Here are a few resources I
recommend:

• Peter Flach, Machine Learning: The Art and Science of Algorithms That Make
Sense of Data (Cambridge, UK: Cambridge University Press, 2012).
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• David J. C. MacKay, Information Theory, Inference, and Learning Algorithms
(Cambridge, UK: Cambridge University Press, 2003).

• Tom Mitchell, Machine Learning (New York: McGraw-Hill, 1997).
• Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, 3rd

Edition (London: Pearson Education, 2009).
• Toby Segaran, Programming Collective Intelligence: Building Smart Web 2.0 Appli‐

cations (Sebastopol, CA: O’Reilly Media, 2007).
• Richard Sutton and Andrew Barto, Reinforcement Learning: An Introduction

(Cambridge, MA: MIT Press, 1998).

Now that you know a bit more about machine learning, you can go out and solve
problems that are not black and white, but instead involve many shades of gray. Using
a test-driven approach, as we have throughout the book, will equip you to see these
problems through a scientific lens and to attempt to solve problems not by being true
or false but instead by embracing a higher level of accuracy. Machine learning is a fas‐
cinating field because it allows you to take two divergent ideas like computer science,
which is theoretically sound, and data, which is practically noisy, and zip them
together in one beautiful relationship.
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The total number of Cuban solenodons is unknown, as they are rarely seen in the
wild. At one point they were considered to be extinct, but they are now classified as
endangered. Predation from the mongoose (introduced during Spanish colonization)
as well as habitat loss from recent construction have negatively impacted the Cuban
solenodon population.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Lydekker’s Royal Natural History. The cover fonts are URW
Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font
is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://www.matthewkirk.com/tml
http://animals.oreilly.com
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