
Web
Applications
on Azure

Developing for Global Scale
—
Rob Reagan

www.allitebooks.com

http://www.allitebooks.org

Web Applications
on Azure

Developing for Global Scale

Rob Reagan

Web Applications on Azure

ISBN-13 (pbk): 978-1-4842-2975-0			 ISBN-13 (electronic): 978-1-4842-2976-7
https://doi.org/10.1007/978-1-4842-2976-7

Library of Congress Control Number: 2017962632

Copyright © 2018 by Rob Reagan

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Gwenan Spearing
Development Editor: Laura Berendson
Technical Reviewer: Fabio Ferracchiati
Coordinating Editor: Nancy Chen
Copy Editor: Teresa F. Horton
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484229750. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Rob Reagan
Chattanooga, Tennessee, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-2976-7
http://www.allitebooks.org

For Brandi. Without your patience and encouragement,
this book would not be possible. I love you.

v

Table of Contents

Chapter 1: �Introducing Azure�� 1

What Is Azure?��� 1

Cloud-Based Compute-on-Demand Services��� 1

Infrastructure-as-a-Service vs. Platform-as-a-Service��� 2

Setting Up Your Machine for Azure Development�� 3

Visual Studio 2015 Community Edition �� 3

Azure SDK��� 4

SQL Server 2016 Express Edition �� 4

SQL Server Management Studio�� 12

Microsoft Azure Storage Explorer��� 12

Redis Desktop Manager��� 12

Setting Up Your Azure Account��� 13

Free Trial��� 13

Purchasing an Azure Subscription��� 15

Enterprise Agreements��� 17

Summary��� 18

Chapter 2: �Web Applications��� 19

Introducing the Verify App�� 20

Building the Verify Web Application��� 21

Creating the Database and Person Tables�� 21

Creating the Web Application��� 22

About the Author��xv

About the Technical Reviewer��xvii

Acknowledgments���xix

Introduction���xxi

www.allitebooks.com

http://www.allitebooks.org

vi

Adding a SQL Server Database Project�� 23

Adding Entity Framework Core to Verify.Web��� 24

Generating the Entity Framework DbContext and Models Classes��� 25

Creating the Service Layer��� 26

Specifying Our Application Settings��� 29

Setting Up Dependency Injection�� 29

Adding the Front-End Controllers��� 31

Deploying to Azure��� 33

Provisioning an Azure SQL Instance��� 33

Deploying the Verify Database�� 37

Creating Our App Services Web App��� 39

Publishing the Verify Application to Azure�� 41

Scaling Web Apps��� 44

Intelligent Use of Threads��� 44

App Service Plans��� 45

Scaling Up�� 46

Scaling Out��� 47

Load Testing��� 51

Creating a Load Test��� 52

Running the Load Test�� 55

Viewing Load Test Results�� 55

Setting Appropriate Autoscale Rules�� 58

Summary��� 59

Chapter 3: �Azure Data Storage Overview�� 61

Data Storage Scenarios �� 61

Session Data��� 62

Persisted Data�� 62

Data Analytics��� 63

Relational Databases��� 63

Azure SQL��� 65

Scaling Azure SQL�� 66

Table of Contents

vii

When to Use Azure SQL�� 68

Other Azure Relational Database Offerings�� 68

NoSQL Data Stores��� 68

Redis Cache�� 69

Azure Table Storage�� 71

Cosmos DB��� 73

Working with Cosmos DB��� 75

Scaling Cosmos DB�� 75

Pricing�� 75

When to Use Cosmos DB�� 76

Summary��� 76

Chapter 4: �Azure SQL Databases��� 77

Introducing Azure SQL Database ��� 78

Licensing�� 80

Single Database vs. Elastic Pool��� 81

Exceeding a DTU Limit�� 81

TaskZilla: Our Example Application�� 82

Creating the TaskZilla Project��� 82

The TaskZilla Data Model�� 84

The Data Access Tier�� 89

The Application Tier�� 94

Controllers and Views��� 102

Finishing Touches��� 107

Running the Application��� 107

Deployment to Azure�� 108

Creating an Azure SQL Database Instance��� 109

Setting Firewall Rules��� 111

Connecting to the New Instance��� 113

Deploying to Azure��� 114

Publishing Schema Changes ��� 122

Rolling Back Schema Changes�� 124

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

viii

Backup and Restore��� 124

Setting Up Alerts�� 127

Scale Up��� 130

Performance Tuning��� 131

Performance Recommendations�� 131

Automating Performance Tuning�� 132

Query Performance Insight��� 133

Geo-replication�� 133

Summary��� 137

Chapter 5: �Azure Table Storage��� 139

How Table Storage Works�� 139

Partitions�� 141

Transaction Support and Batching��� 141

Types of Queries��� 141

Working with Azure Table Storage��� 142

REST API��� 142

Azure Storage Client Library �� 143

Local Storage Emulator�� 143

Table Design Guidelines��� 144

Walkthrough: Restaurant Finder�� 145

Restaurant Finder Requirements�� 145

Designing Our Data Storage��� 146

Setting Up the Project��� 147

Creating Our Restaurant Data Class��� 148

The Data Service Class��� 151

Project Settings�� 156

Dependency Injection��� 157

Loading Demo Data with the RestaurantData Controller�� 158

Azure Storage Explorer��� 161

Point Queries�� 162

Row Range Scan Queries��� 165

Table of Contents

ix

Partition Range Scan Queries��� 168

Full Table Scan Queries�� 172

Editing a Restaurant��� 174

Deleting a Restaurant��� 178

Provisioning an Azure Storage Service�� 179

Using Your Azure Storage Service�� 184

Pricing�� 185

Summary��� 185

Chapter 6: �Cosmos DB��� 187

Introducing Cosmos DB�� 188

Congo, the (Hopefully) Up-and-Coming Online Retail Giant �� 189

Congo Requirements�� 190

Congo Tech Stack��� 190

The Cosmos DB Resource Model��� 191

Partitions: How Cosmos DB Scales to Unlimited Storage�� 193

Data Modeling�� 193

Determining Document Schemas��� 194

Determining Partition Keys��� 197

A Single Collection or Multiple Collections��� 200

Using the Cosmos DB Emulator for Local Development�� 201

Creating a Collection in the Emulator��� 201

Importing Congo Data Using the DocumentDB Data Migration Tool��� 205

Congo’s Initial Data��� 205

Querying a Collection��� 212

Creating the Congo Example Application��� 213

Creating the Project and Solution��� 214

Creating the Model Classes�� 215

Creating View Model Classes��� 219

Creating the Home Page��� 222

The Product Details Page��� 234

Editing a Product�� 237

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

x

Retrieving All Reviews�� 240

Creating a New Review�� 243

Deleting a Review��� 246

Creating a Cosmos DB Account, Database, and Collection�� 249

Scaling��� 254

Summary��� 255

Chapter 7: �Redis Cache�� 257

The Cache Aside Pattern�� 259

Azure Redis Cache��� 260

Example Project: TechStore�� 260

Creating the Project�� 261

Creating the Database�� 262

Adding Entity Framework��� 268

Adding View Models��� 271

Creating the Service Layer��� 274

Creating the Controller and Views�� 278

Running the TechStore Application��� 282

Create an Azure Redis Cache Resource��� 284

Implementing the Cache Aside Pattern with Redis Cache�� 285

Handling Stale Cache Records��� 294

Dealing with a Full Cache��� 294

Setting Time-to-Live��� 295

Viewing Redis Cache Contents�� 295

Connect to a Redis Cache �� 296

Viewing Cache Contents��� 297

Flushing the Cache��� 298

Scaling Azure Redis Cache�� 298

Scaling Up�� 299

Scaling Out��� 299

Using Multiple Caches�� 299

Summary��� 300

Table of Contents

xi

Chapter 8: �WebJobs��� 301

Invoking WebJob Methods��� 302

The WebJob Demo Application��� 304

Creating Our Solution and WebJob Project�� 304

Running Our WebJob Locally�� 307

Creating Our WebJobDemo Web Application�� 308

Running Our WebJob Locally: Part II��� 322

Running a WebJob on a Schedule�� 325

Handling Exceptions with the ErrorTriggerAttribute��� 331

Deploying WebJobs to Azure�� 335

Hosting Requirements�� 335

Deploying a WebJob��� 336

Publishing via Visual Studio�� 338

Monitoring a WebJob in the Cloud�� 339

Summary��� 341

Chapter 9: �Message Queues�� 343

Benefits of Using Message Queues��� 345

Types of Azure Message Queues��� 346

Service Bus Queues��� 346

Azure Storage Queues�� 348

Demo Project: QueueDemo�� 349

Provisioning a Service Bus Resource��� 349

Creating the Sender Console Application��� 353

Using Message Queues to Build Azure Web Applications�� 375

Summary��� 380

Chapter 10: �Other Tips and Tricks��� 381

The Turtles Web Application��� 381

Creating the Solution and Project��� 382

Adding Turtle Code��� 384

Publishing to Azure��� 388

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

xii

How Pages Are Rendered��� 388

Initial Page Request�� 388

Page Parsing and Rendering�� 389

Measuring Page Performance�� 389

Combining and Minifying JavaScript and CSS Files�� 391

Creating Bundles�� 392

Minification��� 395

GZip Compression�� 395

Using Async/Await��� 396

Using HTTP Cache�� 397

Using Appropriately Sized and Optimized Images��� 398

Using External CSS and JavaScript Files��� 399

Moving External JavaScript Files to the Bottom of the Page��� 399

Using Async for Certain External JavaScript Files��� 400

Using a Content Distribution Network�� 400

How Azure CDN Works�� 401

Creating a CDN for the Turtles Web Application�� 402

Integrating a CDN with an ASP.NET MVC App��� 407

Summary��� 414

Chapter 11: �Troubleshooting Web Applications��� 415

An Overview of Available Tools�� 415

Kudu��� 415

Application Insights�� 417

Awful App: Our Example Application�� 418

Web Server Logs�� 418

Browsing Web Server Logs Written to the File System�� 419

Application Logs��� 420

Setting Up Tracing�� 421

Viewing Application Logs�� 422

Kudu Process Explorer��� 422

Table of Contents

xiii

Diagnostics-as-a-Service�� 423

Running DaaS��� 424

Application Events��� 425

Log Stream��� 425

Failed Request Tracing Logs�� 426

Auto Heal�� 429

Setting Up Auto Heal�� 430

Application Insights�� 431

Installing Application Insights��� 432

Debugging Exceptions�� 434

Alerts�� 438

Summary��� 441

Chapter 12: �Deployment�� 443

Proper Deployment Practices��� 444

Follow a Proper Code Promotion Strategy�� 444

Prevent Environment Drift by Treating Infrastructure as Code��� 445

Automating Deployments��� 445

ARM Templates Overview�� 445

ARM Template Components�� 448

Creating ARM Templates�� 451

Downloading ARM Templates for Preexisting Resources in the Azure Portal����������������������� 452

Choosing a Gallery Template�� 456

Creating Templates with a Visual Studio Azure Resource Group Project������������������������������ 456

The Deployment Web Application��� 458

Creating the Database�� 458

Accessing the Database��� 459

The Deployment Web Application��� 461

The Deployment WebJob�� 465

Deploying Azure Resources Using an Azure Resource Group Project�� 468

Creating the Azure Resource Group Project��� 468

Adding a SQL Server��� 470

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

xiv

Deploying from Visual Studio�� 474

Improving Our ARM Template��� 477

Adding Service Bus Resources��� 480

Adding Other Resources��� 480

The Completed Template�� 481

Creating a Production Environment�� 490

Deploying the Application�� 491

Setting Up Build Configurations and Configuration Transforms��� 491

Building and Deploying with Visual Studio Team Services��� 495

Putting It All Together��� 506

Summary��� 506

�Index�� 507

Table of Contents

xv

About the Author

Rob Reagan has been building web applications with Microsoft .NET since the release

of Framework 1.0 and has a long-standing interest in how to architect sites for Internet

scale. He has led projects developing web applications built for hundreds to thousands

of concurrent users for companies such as ExxonMobil, Standard & Poor’s, Fidelity, and

Microsoft. He holds a BA in computer science from Duke, and is currently finishing his

master’s degree in computer science at Georgia Tech. Rob lives in Chattanooga, TN, and

is the CTO at textrequest.com.

www.allitebooks.com

http://www.textrequest.com
http://www.allitebooks.org

xvii

About the Technical Reviewer

Fabio Claudio Ferracchiati is a senior consultant and a senior analyst/developer

using Microsoft technologies. He works at BluArancio S.p.A (www.bluarancio.com) as

Senior Analyst/Developer and Microsoft Dynamics CRM Specialist. He is a Microsoft

Certified Solution Developer for .NET, a Microsoft Certified Application Developer for

.NET, a Microsoft Certified Professional, and a prolific author and technical reviewer.

Over the past ten years, he’s written articles for Italian and international magazines and

coauthored more than ten books on a variety of computer topics.

http://www.bluarancio.com/

xix

Acknowledgments

I am forever grateful to the folks who helped bring this book from a concept to a finished

work. Thanks to Gwenan Spearing for believing in this project, taking a chance on a

new author, and offering guidance along the way. Thanks to Nancy Chen for her near-

infinite patience and her work to keep me on schedule. Thanks to my technical editor

Fabio Ferracchiati, who read through all of the drafts and offered great advice on how to

improve this book. Thanks also to the entire Apress team who worked behind the scenes

to make this book a reality.

Finally, thanks to my wife Brandi, who gave up so many evenings and weekends so

that I could write and pursue a dream.

www.allitebooks.com

http://www.allitebooks.org

xxi

Introduction

Professional developers and hobbyists will likely build dozens of web apps throughout

their careers. Some of those web apps—like the cooking blog you set up for your

mother—will probably never experience heavy traffic. Occasionally, though, we catch

lightning in a bottle and our web apps experience rapidly growing or even torrential

traffic. When that occurs, it’s best if your app is built to withstand the flood.

Several years ago, I found myself in just such a situation. Fortunately, our app was

built on Azure, and we were able to scale to thousands of concurrent users, all of whom

were sending several requests per minute. Along the way, though, we restructured the

code multiple times to support our growing user base. I wrote this book to share the

lessons that we learned when scaling. Hopefully it will shorten your learning curve and

help you avoid some of the bumps and bruises we experienced.

�Who Is This Book for?

This book introduces Azure technologies targeted toward building web applications, and

discusses patterns, practices, and architectures that will help you take your apps from zero

to thousands of concurrent users. It is written for programmers who are already familiar

with building basic web applications using Microsoft ASP.NET MVC and Web API.

�System and Subscription Requirements

With Microsoft’s “Any Developer, Any App, Any Platform” initiative, you can now develop

Azure applications on the Windows, Linux, and OSX platforms. Although it is possible

to do so, the instructions and illustrations in this book apply to Microsoft Visual Studio

2015 Community Edition only.

xxii

The following is the full list of the software that you’ll need to download and install

to follow along with the samples in this book. All of the required software is completely

free, and Chapter 1 contains more detailed instructions on downloading and installing

each application.

•	 Visual Studio 2015 Community Edition: If you already have the

Professional or Enterprise editions, you do not need to download

Community Edition. You will be able to follow along. Community

Edition can be downloaded from https://www.visualstudio.com/vs/

•	 Azure Software Development Kit (SDK): This includes libraries

needed to program against Azure, further integration between Azure

and Visual Studio, and development tools and emulators you’ll need.

You can download it from https://azure.microsoft.com/en-us/tools/

•	 SQL Server Management Studio (SMSS), version 16.5 or greater: This

can be downloaded from https://msdn.microsoft.com/en-us/

library/mt238290.aspx

•	 Microsoft Azure Storage Explorer, version 0.8.5 or greater: This can be

downloaded from http://storageexplorer.com/

•	 Redis Desktop Manager, version 0.8.8 or greater: This can be

downloaded from https://redisdesktop.com/

•	 Azure Cosmos DB Emulator: The latest version can be downloaded

from https://aka.ms/cosmosdb-emulator/

•	 Service Bus Explorer, version 1.0.0 or greater: The Git repo is located at

https://github.com/paolosalvatori/ServiceBusExplorer.git

�Your Azure Subscription
To publish Azure applications to the cloud, you’ll need to set up an Azure subscription.

Microsoft offers a free tier for most services. For example, you can provision an App

Service Plan using the free tier, which will allow you to create several free web apps,

mobile apps, or application programming interface (API) apps. Although processing

power is very limited for these free services, they’re perfect for learning how Azure

works.

Introduction

www.allitebooks.com

https://www.visualstudio.com/vs/
https://azure.microsoft.com/en-us/tools/
https://msdn.microsoft.com/en-us/library/mt238290.aspx
https://msdn.microsoft.com/en-us/library/mt238290.aspx
http://storageexplorer.com/
https://redisdesktop.com/
https://aka.ms/cosmosdb-emulator/
https://github.com/paolosalvatori/ServiceBusExplorer.git
http://www.allitebooks.org

xxiii

There are several services that do not allow a free instance, such as Azure SQL

Databases. Fortunately, Microsoft is currently offering a $200 credit when you sign up for

a free trial. The $200 credit expires after 30 days.

When signing up for an Azure trial account, you will have to verify via phone call or

SMS message, and you will have to enter a valid credit card. Don’t worry—your credit

card will not be charged, even after your $200 credit is exhausted. Once your $200 Azure

credit is consumed or expires, the billable services that you’ve provisioned will stop

working. You’ll have to explicitly upgrade your subscription from a trial to a pay-as-you-

go before your credit card will ever be billed.

To set up an Azure free trial account and claim your $200 credit, browse to

https://azure.microsoft.com. Instructions for creating a trial account are prominently

displayed on the home page. We’ll cover further details on setting up and managing an

Azure subscription in Chapter 1.

Let’s get started!

Introduction

https://azure.microsoft.com/

1
© Rob Reagan 2018
R. Reagan, Web Applications on Azure, https://doi.org/10.1007/978-1-4842-2976-7_1

CHAPTER 1

Introducing Azure
�What Is Azure?
What is Azure? According to Microsoft’s own web site, “Microsoft Azure is a growing

collection of integrated cloud services—analytics, computing, database, mobile,

networking, storage, and web—for moving faster, achieving more, and saving money.”

That’s not a bad definition, but it’s a little wordy. For web app developers, I’d say

that Azure is a cloud-based, compute-on-demand platform and set of services that

has everything you need to build reliable and scalable web applications. It can support

anywhere from a handful to millions of users. Microsoft has been using Azure to host

their own large-scale services such as Xbox One.

Let’s start with the meaning of cloud-based, compute-on-demand, and how these

concepts can save you money. Then we discuss the different categories of Azure services

and talk about the services that are most applicable to web app developers.

�Cloud-Based Compute-on-Demand Services
Back in the dark ages of computing (before 2006), hosting options were limited. If you

wanted to launch a new web application, you had to estimate the max load that your

servers could possibly experience, then lease or purchase servers that could handle

the traffic. The issue was guessing exactly how much traffic your new web app would

experience. It was a classic Goldilocks problem. Because adding additional servers could

take weeks to purchase and configure, you didn’t want to underestimate, have your site

featured on Slashdot, receive a flood of traffic, and watch your servers collapse under

the load. Conversely, you didn’t want to overestimate and pay hundreds of thousands

of dollars for servers that sat idle most of the time. I’ve seen both cases happen, and it

generally ends with management screaming at the poor development team. What’s a

web developer to do?

www.allitebooks.com

http://www.allitebooks.org

2

In 2006, Amazon launched their Amazon Web Services (AWS) platform to address

this very issue. AWS changed how computing resources were purchased. Amazon’s

servers were all virtualized. As a developer, you purchased one or more server instances

with guaranteed computing resources—you didn’t know or care about the underlying

hardware. Spinning up a new server instance could be automated and took only

seconds. Now you could scale both the size of your instance and the number of instances

up or down in near real time. This is compute-on-demand.

Amazon’s second innovation was metered billing. As developers, we were no longer

tied to commitments of purchasing or leasing servers for months at a time. With AWS,

you simply paid for what you used on a per-hour basis.

Amazon made a killing on AWS and continued to improve and expand their product

offering, and Microsoft took notice. As Microsoft is wont to do, they took Amazon’s

great idea and worked to make it even better. In 2010, Microsoft released its own suite of

cloud-based, compute-on-demand services that was originally named Windows Azure.

In the beginning, Azure had a limited number of services and minimal integration with

Visual Studio. Now, Azure has grown to 67 separate services as of the time of this writing.

If you’re a .NET developer building web applications, Azure is the place to be.

�Infrastructure-as-a-Service vs. Platform-as-a-Service
Infrastructure-as-a-Service (IaaS) is a category of cloud computing that refers to

providing virtualized computing resources. When you provision infrastructure as a

service, you receive nothing more than the virtualized resource. Examples in Azure

include virtual machines, networking infrastructure such as virtual networks and load

balancers, and storage services such as Backup and Site Recovery and Storage Account.

With each of these, you can configure low-level details as to how the infrastructure

functions. For example, with a provisioned virtual machine, you have complete control

over the operating system (OS) and how it is configured.

With Platform-as-a-Service (PaaS), you receive a platform for developing

applications. Unlike IaaS, most or all of the underlying infrastructure settings are fixed.

For example, let’s look at Azure Web Apps, which are one of the basic building blocks of

Azure web applications. Azure Web Apps allow you to upload your ASP.NET application

directly to a hosting environment that puts your app on the Web immediately. You have

the ability to change a limited number of hosting settings such as server affinity, the

.NET framework version, and whether or not to enable web sockets. The underlying OS

settings are fixed and inaccessible.

Chapter 1 Introducing Azure

3

Why would you want to build on PaaS instead of IaaS if you’re limited to what you

can configure with PaaS? The beauty of PaaS is that you do not need to worry about

details such as setting up and properly configuring the underlying OS and Internet

Information Services (IIS), configuring networking and managing network security,

or hardening the underlying OS and keeping up to date with the most recent patches.

Instead, you upload your code and verify that your site is answering requests properly.

PaaS takes away a great deal of headaches and risk.

My personal recommendation is to always start a web application project with PaaS

in mind. If and only if you are unable to accomplish everything you need to do within

Azure’s PaaS offering, then consider falling back to IaaS. Throughout this book, we

discuss services from both IaaS and PaaS.

�Setting Up Your Machine for Azure Development
Before diving into Azure development, you’ll need to install some software on your local

machine. This software ranges from software development kits (SDKs) to emulators to

tools that you’ll need to use when managing your live Azure services. These tools are all

free and are listed here.

�Visual Studio 2015 Community Edition
Visual Studio 2015 Community Edition is an excellent integrated development

environment (IDE) for .NET in general, and its integration with Azure is excellent. You’ll

use Visual Studio for rapidly deploying code to Web Apps, WebJobs, browsing Web

App server logs, remote debugging Web Apps, analyzing log files, and browsing Azure

services within your subscription.

If you already have Visual Studio 2015 Professional or Enterprise installed, you do

not need to install Community Edition.

Required: Yes.

Download link: https://www.visualstudio.com/downloads/

Chapter 1 Introducing Azure

www.allitebooks.com

https://www.visualstudio.com/downloads/
http://www.allitebooks.org

4

�Azure SDK
After installing Visual Studio, it’s time to install the Azure SDK. The Azure SDK includes

both the SDK and Azure Tools, which provide deeper Azure integration with Visual

Studio and local emulators for development. If you do not install the Azure SDK, you’ll

have to chase down tools and emulators one by one.

Required: Yes.

Download link: https://azure.microsoft.com/en-us/tools. Choose .NET SDK,

then click the link for your version of Visual Studio.

�SQL Server 2016 Express Edition
This is an instance of SQL Server that you can install to your local machine. It’s very

handy to use when developing web applications that make use of relational data.

Although you can develop against an instance of Azure SQL that is provisioned in the

cloud, it’s much easier to develop locally and avoid latency between your local machine

and an Azure regional data center.

Required: Only for developing applications that use a local relational database. Also,

if you have already installed an instance of SQL Server 2016 Standard, Developer, or

Enterprise on your local machine, you can skip this install.

Download link: https://www.microsoft.com/en-us/sql-server/sql-server-

editions-express

Note  SQL Server 2016 Developer Edition is also free, but requires you to log
in with your Microsoft account and answer a few questions before proceeding to
the download. Developer Edition is a heavier weight install and includes all of the
features of the Enterprise Edition. You are restricted by license to use the Developer
Edition for development purposes only. There are no examples in this book that
require the additional functionality found in the Developer Edition.

You can download and install the Developer Edition here: https://www.
microsoft.com/en-us/sql-server/sql-server-editions-developers.
Note that to download the Developer Edition, you’ll have to register to do so.

Chapter 1 Introducing Azure

https://azure.microsoft.com/en-us/tools
https://www.microsoft.com/en-us/sql-server/sql-server-editions-express
https://www.microsoft.com/en-us/sql-server/sql-server-editions-express
https://www.microsoft.com/en-us/sql-server/sql-server-editions-developers
https://www.microsoft.com/en-us/sql-server/sql-server-editions-developers

5

�SQL Server 2016 Express Installation Walkthrough

There are several options and settings that you must specify when installing SQL Server

2016. Here’s a quick run-through of the installation process and recommended settings.

Step 1: Choose the Installation Type

After downloading the bits from https://www.microsoft.com/en-us/sql-server/sql-

server-editions-express, run the application. This is simply a web downloader that

will download the installer and SQL Server bits.

After launching the downloader, choose the Basic configuration (see Figure 1-1). The

only difference between the Basic and Custom options is that the Custom option lets you

specify the folder in which to place the downloaded binary before installation.

Figure 1-1.  Choose the installation type

Chapter 1 Introducing Azure

www.allitebooks.com

https://www.microsoft.com/en-us/sql-server/sql-server-editions-express
https://www.microsoft.com/en-us/sql-server/sql-server-editions-express
http://www.allitebooks.org

6

After you select Basic, the downloader will begin downloading the SQL Server 2016

Express bits (Figure 1-2).

Step 2: Installation Rule Check

After the installer launches, it will immediately run a rule check to make sure that your

system is able to install SQL Server 2016 Express. You might receive warnings or rules

might fail. In either case, click the Status link next to the warning or failed rule for an

explanation of the problem and how to resolve the issue (Figure 1-3).

Figure 1-2.  Progress bar displays while the SQL Server 2016 downloader retrieves
the installer bits

Chapter 1 Introducing Azure

7

Step 3: Agree to the License Terms

The Apress legal department insists I recommend that you read the license terms in their

entirety and print a copy for your own reference, but we both know that isn’t going to

happen. Select the I Accept the License Terms check box and click Next to continue.

Step 4: Feature Selection

The Feature Selection screen, shown in Figure 1-4, lets you choose exactly what gets

installed. For the examples in this book, you do not need SQL Server Replication,

R Services, or Reporting Services. You are free to install these if you choose to do so.

Figure 1-3.  The rule check will ensure that your system has everything needed
for SQL Server. Click the hyperlink in the Status column to see a description of the
problem if any rule fails or raises a warning.

Chapter 1 Introducing Azure

www.allitebooks.com

http://www.allitebooks.org

8

Click Next to continue, and the installer will run Feature Rules to ensure that your

machine has the necessary prerequisites to install the features you selected. If your

machine passes all Feature Rules, you will automatically be advanced to the Instance

Configuration screen. If your machine fails any Feature Rules, you’ll be shown a list of

problems and suggestions for remediation.

Step 5: Instance Configuration

The Instance Configuration screen, displayed in Figure 1-5, allows you to choose

between installing a default and named instance. On a given machine, there can be only

one default instance, but as many named instances as you want. Each instance will have

Figure 1-4.  Choose the features that you want installed with SQL Server 2016

Chapter 1 Introducing Azure

9

its own set of directories, registry entries, and services that can have unique settings

apart from other instances. The only other significant difference between default and

named instances is that connection strings within your code will reference a default

instance by the machine name only, and named instances must be addressed in the

connection string by machine name and instance name.

I recommend choosing a named instance. After making your choice, click Next to

continue.

Figure 1-5.  The Instance Configuration screen

Chapter 1 Introducing Azure

www.allitebooks.com

http://www.allitebooks.org

10

Step 6: Server Configuration

SQL Server 2016 is composed of multiple Windows services. The Server Configuration

screen, shown in Figure 1-6, allows you to specify how the SQL Server 2016 services are

started. Options are Automatic (the service starts when your machine boots), Manual

(you must explicitly start a service from the command line or Windows Management

Console), or Disabled. Accept the defaults and click Next.

You also have the option on this screen to specify different service accounts that will

be used to run the various services that make up SQL Server. By default, the installer will

create separate accounts for services. I recommend using the defaults unless you have a

compelling reason to do otherwise.

Figure 1-6.  The Server Configuration screen

Chapter 1 Introducing Azure

11

Step 7: Database Engine Configuration

The Database Engine Configuration screen, shown in Figure 1-7, allows you to set the

authentication mode for the server, specify the default location of database and log files

for each database created, nonstandard settings for the TempDB, and whether to enable

FILESTREAM.

It is highly recommended that you set the Authentication Mode to Windows, which

is much more secure and offers benefits such as the enforcement of password policy,

handling of account lockout, and support for password expiration.

If your Windows login doesn’t appear in the Specify SQL Server Administrators list,

click Add Current User. Leave all other defaults on the other tabs, and click Next.

Figure 1-7.  The Database Configuration screen

Chapter 1 Introducing Azure

www.allitebooks.com

http://www.allitebooks.org

12

Complete the Installation

After the Database Configuration Screen, you’ll move to the installation progress screen,

where you’ll sit and watch progress bars until the installation is complete.

�SQL Server Management Studio
Installing SQL Server 2016 will put the database management system and client libraries

on your computer, but it will not include any graphical user interface (GUI) tools for

creating or interacting with databases. That’s what SQL Server Management Studio

(SSMS) is for. In addition to using SSMS for managing your local databases, you’ll

also use it for connecting to and managing your Azure SQL databases. Like the rest of

the tools mentioned, SSMS is free. It can be downloaded here from https://msdn.

microsoft.com/en-us/library/mt238290.aspx

�Microsoft Azure Storage Explorer
Microsoft Azure Storage Explorer is used to examine the state of Azure Tables, Queues,

and Blob storage. Although not required, it is a very handy tool for debugging and

manually managing content. It will work with both the local Azure Storage Emulator

(which is installed as part of the Azure SDK) and live Azure Storage. We discuss how to

use the tool when applicable in upcoming chapters.

Required: No, but you’ll want this if you are building an application that makes use

of Azure Tables, Blob storage, or Queues.

Download link: http://storageexplorer.com

�Redis Desktop Manager
Redis Cache is a service that allows you to build a caching layer between your

application and data store to speed up data access. Although the Azure SDK includes

the libraries necessary to program with Redis Cache, you’ll need to download the Redis

Desktop Manager to view and manage the contents of your Redis Cache.

Also, note that there is no local emulator for Redis Cache. You’ll need to program

directly against a Redis Cache service provisioned on Azure.

Required: Only for managing applications that use Redis Cache.

Download link: https://redisdesktop.com/

Chapter 1 Introducing Azure

https://msdn.microsoft.com/en-us/library/mt238290.aspx
https://msdn.microsoft.com/en-us/library/mt238290.aspx
http://storageexplorer.com/
https://redisdesktop.com/

13

�Setting Up Your Azure Account
You can develop certain Azure solutions locally without having an Azure subscription,

but you must have an Azure subscription before you can provision any services in the

cloud on Azure. Microsoft offers three different types of subscriptions: free trial, pay-as-

you-go, and enterprise agreements. Let’s run through each.

�Free Trial
At the time of this writing, Microsoft is offering a free trial membership. The trial

membership consists of a $200 Azure credit that expires 30 days after creating your free

trial account. Any unused portion of the $200 expires at the end of the 30-day period. You

can use the $200 credit for any combination of Azure services. You cannot use the $200

credit for third-party services offered through the Azure Marketplace.

For many Azure services, Microsoft also offers a free tier. The free tier generally has

limited computing power and some feature restrictions. It is intended to allow you to

explore working with the service and build proof of concepts. Examples of services that

include a free tier are Web Apps, Search, Notification Hubs, Application Insights, and

Scheduler. Once your 30-day $200 Azure credit expires, you can still continue using the

free tier of any Azure services.

After your 30-day trial period has elapsed, any paid services that you have

provisioned will be decommissioned. You can continue using any paid services that you

provisioned if you upgrade to a pay-as-you-go subscription before your free trial expires.

To sign up for a free trial, you’ll need an e-mail address, a credit card, and a phone

number. Your credit card will not be billed; it’s just used as part of Microsoft’s antifraud

measures to weed out nefarious actors such as spam-bots and Nigerian princes. You can

rest assured that even at the end of your free trial, Microsoft will not charge your credit

card for any paid provisioned services unless you explicitly upgrade to a pay-as-you-

go subscription. As part of the verification process when creating a free trial account,

Microsoft might place a $1 verification hold on your credit card. This hold is removed in

three to five days.

Now, let’s sign up for your free account. The process is straightforward.

Go to https://azure.microsoft.com. Click Start Free or Free Account to get started.

You’ll be asked to log in with your Microsoft account (Figure 1-8). If you don’t have

one, click the Get a New Account link. Creating a new Microsoft account requires only an

e-mail address.

Chapter 1 Introducing Azure

www.allitebooks.com

https://azure.microsoft.com/
http://www.allitebooks.org

14

After signing in, you’ll need to provide your name, basic contact information, and

phone and credit card identity verification. You also have to agree to the terms of the

license agreement (Figure 1-9). Once these are complete, your free trial account is

provisioned and you’re ready to begin building applications with Azure.

Figure 1-8.  To start a free trial, log in with your Microsoft account. If you don’t
already have a Microsoft account, click the Get a New Account link.

Chapter 1 Introducing Azure

15

�Purchasing an Azure Subscription
There are two ways to purchase a pay-as-you-go subscription: upgrading a free trial, and

buying a subscription without setting up a free trial.

�Upgrading a Free Trial

To upgrade a free trial, go to https://account.windowsazure.com/subscriptions.

You’ll see the screen shown in Figure 1-10, and can either click the Click Here to

Automatically Convert to Pay-As-You-Go link or click the Add Subscription link. The

difference between the two is that clicking on the former transfers all services you’ve

Figure 1-9.  To complete your free trial, you’ll need to provide basic information
and verify your identity via phone and credit card

Chapter 1 Introducing Azure

www.allitebooks.com

https://account.windowsazure.com/subscriptions
http://www.allitebooks.org

16

provisioned as part of your free trial to a new pay-as-you-go subscription. Clicking the

Add Subscription link creates a second pay-as-you-go subscription in addition to your

free trial. If you create a second subscription, nothing will be transferred over from your

free trial.

�Purchasing a New Subscription Without a Free Trial

If you know you want to purchase a subscription and don’t want to bother with a free

trial, navigate to https://azure.microsoft.com/en-us/pricing/purchase-options,

and click Buy Now. You’ll be asked to sign in to your Microsoft account, and then

prompted to enter your contact information, verify via phone, and enter your payment

information. Once complete, you’ll be ready to provision Azure services.

Figure 1-10.  Upgrade an existing trial subscription to a paid subscription

Chapter 1 Introducing Azure

https://azure.microsoft.com/en-us/pricing/purchase-options

17

�Enterprise Agreements
Enterprise agreements (EAs)make sense when you or your company plan on consuming

more than $1,200 of Azure services per year. The benefits of an EA are as follows:

•	 Discounts on Azure services: With an EA, you’ll receive a discount on

the published pay-as-you-go prices. The percentage discount varies

by service and pricing tier.

•	 A dedicated account executive: If you have billing, account

management, or even technical questions, your account executive

will help you track down the information that you need.

•	 Access to the EA Portal: The EA Portal provides extended billing

information above and beyond what you receive from a pay-as-

you-go subscription. It also provides tools for managing multiple

subscriptions.

So why wouldn’t you elect to purchase an EA rather than a normal pay-as-you-

go subscription? The main reason is that you pay for the first year of an EA up front.

Afterward, you pay quarterly. You’ll have to decide if the discounts on Azure services

warrant yearly or quarterly prepayment.

�Purchasing an EA

Microsoft does not sell EAs directly; all EA subscriptions are sold through Microsoft

Partners. However, not all Microsoft Partners sell EAs. If you work at a larger company

that already has a Microsoft Account Representative, the easiest thing to do is to ask your

account representative to refer you to a partner who can handle selling and servicing an

Azure EA. If you do not have a Microsoft Account Representative who works with your

company, the real fun begins.

If you do not have a Microsoft Account Representative, your best bet for locating

a partner is to call or e-mail the Azure sales team directly. You can find the country-

specific sales phone number or submit an inquiry at https://azure.microsoft.com/

en-us/overview/sales-number

Chapter 1 Introducing Azure

www.allitebooks.com

https://azure.microsoft.com/en-us/overview/sales-number
https://azure.microsoft.com/en-us/overview/sales-number
http://www.allitebooks.org

18

�Summary
In this chapter, we’ve discussed what Azure is and what it can do for you, how to set up

your development environment to begin building Azure applications, and various options

for creating an Azure subscription. Now let’s get started building scalable Azure apps.

Chapter 1 Introducing Azure

19
© Rob Reagan 2018
R. Reagan, Web Applications on Azure, https://doi.org/10.1007/978-1-4842-2976-7_2

CHAPTER 2

Web Applications
Microsoft App Service Web Apps are a PaaS offering that allows developers to quickly

and easily deploy web sites and applications to the Internet. Think of Web Apps as a

cloud-based IIS that is already secured, configured, and just waiting for you to upload

your code. In addition to hosting your application, some of the other benefits that

Web Apps offer include the following:

•	 Scalability: Web Apps allow you to scale up (move to a more

powerful instance) or scale out (add additional instances) almost

instantaneously without having to redeploy your code. With Standard

or Premium Web App instances, you can even set autoscale rules

that will scale up or scale out your application based on real-time

performance metrics such as CPU utilization.

•	 Automatic OS updates: Because this is a PaaS offering, you don’t need

to worry about upgrading or patching the underlying OS; it’s handled

for you.

•	 Ease of deployment: You can publish your application to Web Apps

directly from within Visual Studio with just a few clicks. There are

also other deployment options, such as deploying directly from Git

for continuous integration. You can even script deployments using

PowerShell or .NET.

•	 Integration with other Azure technologies: Your Web Apps can

integrate with other services such as Azure SQL databases, Service

Bus, Azure Redis Cache, and Azure Storage services such as Azure

Queues and Azure Tables.

•	 Simple backup and recovery: Azure makes it very easy to back up and

restore everything deployed to your Web App. You can even include

an Azure SQL database as part of the backup or restore operation.

www.allitebooks.com

http://www.allitebooks.org

20

•	 Robust performance monitoring: Web Apps integrate with

Application Insights, which gives detailed information into requests,

dependencies, exceptions, and tracing. This helps take much of the

guesswork out of debugging logic errors and performance issues.

•	 Multiple language support: Web App Services support applications

written in .NET, Node.js, Python, PHP, and Java. This book focuses on

building Web Apps with .NET.

Of all the hosting technologies that Azure offers (Web Apps, Cloud Services, Virtual

Machines [VMs], and Service Fabric), Web Apps are the simplest to use.

In this chapter, we’ll start with building a very simple example web application called

Verify. We’ll then walk through deploying the Verify web application to Azure. Next,

we’ll load test our deployed application using Visual Studio Team Services performance

testing tools to see how our basic deployment handles traffic. We’ll then discuss various

strategies for scaling Web Apps, and end this chapter with instructions on backing up

and restoring your application.

Let’s dive in.

�Introducing the Verify App
To illustrate Web App features, we’ll build a simple web application called Verify. Verify

allows employers and financial institutions to enter a Social Security number (SSN) and

determine if it is valid.

We’ll build our Verify app using .NET Framework 4.6.1 and ASP.NET Core 1.0.

We’ll include an Azure SQL database for our data store, and will access it using Entity

Framework Core 1.1. Don’t worry about the details of Azure SQL for now; we discuss it in

depth in Chapter 4.

Note  This example application is intended to demonstrate how to deploy an
application to Web Apps and to provide us with something appropriate to load
test and scale. It is stripped down to be as simple as possible and doesn’t include
functionality such as authentication, authorization, or robust client-side input
validation. These features would clutter our codebase and are not important to our
discussion on Web Apps.

Chapter 2 Web Applications

21

�Building the Verify Web Application
The Verify application will consist of an ASP.NET MVC web application and a SQL Server

database.

In the following sections, we’ll walk through building the Verify application step

by step. If you are already comfortable with this tech stack, you can skip ahead and

download the complete source code from the Git repo at https://github.com/

BuildingScalableWebAppsWithAzure/VerifyWebApp.git

�Creating the Database and Person Tables
Let’s start by defining our data model and creating our database. Because our goal is to

allow employers and financial institutions to determine if a provided SSN is valid and

belongs to the appropriate person, we’ll need to track the following fields:

•	 Social Security number

•	 First name

•	 Middle name

•	 Last name

•	 Birthdate

•	 If the person is deceased

Let’s create a table called Person in our local SQL Server instance that has a table

definition as shown in Figure 2-1.

Chapter 2 Web Applications

www.allitebooks.com

https://github.com/BuildingScalableWebAppsWithAzure/VerifyWebApp.git
https://github.com/BuildingScalableWebAppsWithAzure/VerifyWebApp.git
http://www.allitebooks.org

22

�Creating the Web Application
Let’s start by opening Visual Studio 2015, choosing File ➤ New ➤ Project. Under

Installed ➤ Templates, choose Visual C# ➤ .NET Core and select the ASP.NET Core

Web Application (.NET Core) project template. Name the project Verify.Web, select the

Create Directory for Solution check box, and from the list of frameworks, choose .NET

Framework 4.6.1 (see Figure 2-2). Finally, click OK. If you do not see the .NET Core

project templates, you’ll need to make sure that you’ve installed the .NET Core SDK.

Figure 2-1.  The Person table definition in SQL Server 2016 Management
Studio

Chapter 2 Web Applications

23

Next, you’ll be asked to select an ASP.NET Core Template. Choose Web Application

and click OK.

�Adding a SQL Server Database Project
Visual Studio SQL Server Database projects are an excellent way to handle the initial

deployment of a database to a production server. They will also handle deploying

changes to existing databases. Because it’s a Visual Studio project, we can also keep the

current state of our database under source control. We’ll eventually use a SQL Server

Database project to deploy our database to an Azure SQL instance.

To add a SQL Server Database project to our solution, right-click the solution within

Solution Explorer, and choose Add ➤ New Project. Under Installed, select SQL Server,

then select SQL Server Database Project from the list of templates. Name the project

Verify.Database, and click OK (Figure 2-3).

Figure 2-2.  Creating the Verify application project in Visual Studio

Chapter 2 Web Applications

www.allitebooks.com

http://www.allitebooks.org

24

Now that the project has been added to the solution, let’s import the Person table

within our Verify database. The easiest way to do so is to right-click the Verify.Database

project within the Visual Studio Solution Explorer, and select Import from the shortcut

menu. This will open the Import Database dialog box. Specify your database connection

by clicking Select Connection, then click Start.

After the Import Database Utility has finished running, you will see a Person.sql

file under a new dbo ➤ Tables directory in the Verify.Database project. We’re done with

the Verify.Database project for the moment and will return to it when we deploy our

application to Azure.

�Adding Entity Framework Core to Verify.Web
Because we’ll be retrieving data from a SQL Server database, we must decide how our

application will communicate with our database. Entity Framework, Microsoft’s object

relational mapping tool, is the recommended technology for doing so.

As we’ll be working with Azure SQL, there are additional connectivity issues that we

have to address. Like all Azure services, Azure SQL is cloud-based. It allocates a fixed

amount of memory, CPU cycles, and I/O operations to your database depending on

Figure 2-3.  Adding a SQL Server Database project to the Verify solution

Chapter 2 Web Applications

25

the service tier that you choose. Once your application exceeds these limits, you will

experience command timeouts, refused connections, or both. Your data access code

will need to identify when these transient failures occur and automatically retry the

operation. Writing this retry logic from scratch is time consuming, complicated, and

difficult to get right. Fortunately, Entity Framework 6.x and Entity Framework Core 1.0+

both have retry logic automatically built in. This is one of the more compelling reasons to

use Entity Framework over other data access technologies such as plain ADO.NET. We’ll

cover Azure SQL in further detail in Chapter 4.

We currently have two choices when using Entity Framework: using Entity

Framework 6.x or Entity Framework Core. As of this writing, Entity Framework Core

does not support all of the features found in Entity Framework 6.x, but it does include all

of the features we’ll need for this demo. Over time, Entity Framework Core will grow to

feature parity with Entity Framework 6.x.

To add Entity Framework Core to our solution, right-click the Verify.Web project and

select Manage NuGet Packages from the shortcut menu. Next, make sure that you’ve

selected the Browse tab and not the Installed or Updates tabs. On the NuGet package

management screen, be sure to select the Include Prerelease check box. Then search for

and add the following NuGet packages:

•	 Microsoft.EntityFrameworkCore

•	 Microsoft.EntityFrameworkCore.Design

•	 Microsoft.EntityFrameworkCore.SqlServer.Design

•	 Microsoft.EntityFrameworkCore.Tools

•	 Microsoft.EntityFrameworkCore.Tools.DotNet

�Generating the Entity Framework DbContext and Models
Classes
When using Entity Framework, you’ll need to derive a class from Microsoft.

EntityFrameworkCore.DbContext. The DbContext class is responsible for querying

the database, translating query results into object instances, tracking changes made

to entities after they are retrieved from the database, caching, and writing changes

made to entities back to the database. Think of DbContext as the air traffic controller

Chapter 2 Web Applications

www.allitebooks.com

http://www.allitebooks.org

26

that coordinates moving relational data from tables within the database to .NET object

instances, and vice versa. We’ll also need to create classes to hold the data retrieved from

the database.

Fortunately, you don’t have to write that code yourself. Because we’ve already

created our app’s database, we can use Entity Framework’s Scaffold-DbContext

command to reverse engineer our tables and generate our DbContext subclass and

models. In Visual Studio, click Tools ➤ NuGet Package Manager ➤ Package Manager

Console, then run the following command at the Package Manager prompt:

Scaffold-DbContext "Server=[YourSQLServerName];Database=Verify;Trusted_

Connection=True;" Microsoft.EntityFrameworkCore.SqlServer -OutputDir Models

After running this command, you will see a new Models folder in your Verify.Web

project. It will contain two new classes: Person.cs, which is our single-model class, and

VerifyContext.cs, which derives from DbContext.

�Creating the Service Layer
Ultimately, we’ll create a SearchController class that derives from Microsoft.

AspNetCore.Mvc.Controller to process SSN search requests from users who visit

our Verify application web site. It’s a good idea to keep controller classes thin and

not include business logic in them. We’ll put our search logic within a service-tier

class called PersonService. Because we’ll be injecting a PersonService instance into

our SearchController, we’ll need to set up an interface called IPersonService that

PersonService will implement.

	 1.	 Create a new folder in Verify.Web called Services.

	 2.	 Add a new interface to the Services folder called

IPersonService.cs. The code for IPersonService.cs is as

follows:

namespace Verify.Services

{

 public interface IPersonService

 {

 Person RetrievePersonBySSN(string ssn);

 }

}

Chapter 2 Web Applications

27

	 3.	 Add a new class to the Services folder called PersonService.cs.

The code is as follows:

using Verify.Models;

namespace Verify.Services

{

 /// <summary>

 /// �This class handles retrieving a person with a given SSN

 /// from the database.

 /// </summary>

 public class PersonService : IPersonService

 {

 private VerifyContext _verifyContext;

 /// <summary>

 /// �Constructor. Our DbContext subclass is injected via

 /// the DI controller at runtime.

 /// </summary>

 /// <param name="verifyContext"></param>

 public PersonService(VerifyContext verifyContext)

 {

 _verifyContext = verifyContext;

 }

 /// <summary>

 /// �Retrieves and returns a Person instance identified by

 /// their SSN. If no person with

 /// �the specified SSN is found in the database, this

 /// method returns null.

 /// </summary>

 /// <param name="ssn"></param>

 /// <returns></returns>

 public Person RetrievePersonBySSN(string ssn)

 {

 ssn = RemoveNonNumericCharacters(ssn);

 Person requestedPerson = null;

Chapter 2 Web Applications

www.allitebooks.com

http://www.allitebooks.org

28

 if (IsSSNValid(ssn))

 {

 //�we have a nine-digit SSN. Let's search to see

 //who it belongs to!

 requestedPerson = _verifyContext.Person.Find(ssn);

 }

 return requestedPerson;

 }

 /// <summary>

 /// Checks to make sure that the supplied SSN is nine

 /// characters in length.

 /// </summary>

 /// �<param name="ssn">The SSN that we are validating.

 /// </param>

 /// <returns></returns>

 private bool IsSSNValid(string ssn)

 {

 bool isValid = ssn.Length == 9;

 return isValid;

 }

 /// <summary>

 /// �Returns a string containing only the numeric

 /// characters found in str.

 /// </summary>

 private string RemoveNonNumericCharacters(string str)

 {

 string result = string.Empty;

 char[] charArray = str.ToCharArray();

 foreach (char currentChar in charArray)

 {

 if (char.IsDigit(currentChar))

 {

 result += currentChar;

 }

Chapter 2 Web Applications

29

 }

 return result;

 }

 }

}

�Specifying Our Application Settings
In previous versions of ASP.NET MVC and ASP.NET Web Form projects, application

settings were stored in web.config files. In ASP.NET Core, we now store our application

settings in the appsettings.json file. We need to set our connection string within

our project’s appsettings.json file so that our VerifyContext class will know how to

connect to our database.

Open the appsettings.json file within the Verify.Web project. You’ll need to swap

out the connection string for your own. The appsettings.json file should look as

follows:

{

 "ConnectionStrings": {

 "DefaultConnection": "[Your connection string]"

 },

 "Logging": {

 "IncludeScopes": false,

 "LogLevel": {

 "Default": "Debug",

 "System": "Information",

 "Microsoft": "Information"

 }

 }

}

�Setting Up Dependency Injection
Back in the old days, developers built monolithic apps where class dependencies were

hard-coded. If your front-end SearchController class needs a PersonService class to

do its job, within the Search Controller you declare a variable of type PersonService

Chapter 2 Web Applications

www.allitebooks.com

http://www.allitebooks.org

30

and then instantiate the PersonService class. The major downside of this approach was

that it made unit testing difficult. Unit testing a front-end controller class meant that

you would likely execute code all the way down to the data access layer and even hit

the database itself. If a unit test failed, it was difficult to determine if the error was in the

controller method under test, or in one of the dependencies that the controller method

used.

Dependency injection (also called inversion of control) solved this problem.

With dependency injection, we no longer hard-code class dependencies. Instead,

we use a dependency injection container that is responsible for instantiating and

providing dependencies at runtime. This injection of dependencies is typically done

with constructor arguments. In our example, instead of declaring a variable of type

PersonService within our SearchController class, the SearchController class will

receive its PersonService instance via a constructor argument at runtime.

We can take this idea one step further by declaring interfaces for our dependency

classes, and then specifying those interfaces for our constructor arguments in classes

that rely on those dependencies. This allows us to use mocking frameworks to greatly

simplify our unit tests and ensure that we are only exercising the logic within the method

that we are testing and not any code from our dependencies.

Note  A full discussion of dependency injection and mocking frameworks is
beyond the scope of this book. If you’d like to brush up on these concepts, Martin
Fowler has written an excellent article that can be found at http://www.
martinfowler.com/articles/injection.html. Although the examples are
in Java, the concepts are directly applicable to .NET.

In .NET Core web applications, dependency injection is configured in the Startup

class’s ConfigureServices method. To make our Entity Framework’s VerifyContext

class and our PersonService class available for dependency injection, open the Verify.

Web project’s Startup.cs class and add the following code:

// This method gets called by the runtime. Use this method to add services

// to the container.

public void ConfigureServices(IServiceCollection services)

{

 // Add framework services.

 services.AddMvc();

Chapter 2 Web Applications

http://www.martinfowler.com/articles/injection.html
http://www.martinfowler.com/articles/injection.html

31

 //read our connection string from the appsettings.json file.

 string connectionString =

 �Microsoft.Extensions.Configuration.ConfigurationExtensions.

GetConnectionString(

 this.Configuration, "DefaultConnection");

 //�register our VerifyContext class with the dependency injection

 //�container.

 �services.AddDbContext<VerifyContext>(options => options.UseSqlServer

(connectionString));

 //�add our PersonService class to the dependency injection container.

 services.AddTransient<IPersonService, PersonService>();

}

�Adding the Front-End Controllers
Our application will consist of just two pages. The first page prompts the user for an

SSN. The second page shows the search results.

Because we’ve put our search logic in a service class, the front-end controllers become

very simple. Within the Verify.Web ➤ Controllers folder, our HomeController can be

slimmed down to the following code that does nothing but return the appropriate view.

using Microsoft.AspNetCore.Mvc;

namespace Verify.Controllers

{

 public class HomeController : Controller

 {

 public IActionResult Index()

 {

 return View();

 }

 }

}

Chapter 2 Web Applications

www.allitebooks.com

http://www.allitebooks.org

32

Now let’s add our SearchController to the project. Right-click the Controllers

folder in the Verify.Web project, and select Add ➤ New Item, then select MVC Controller

Class from the list of templates. Name the new Controller SearchController.cs. This

controller will have a single method that will receive a SSN, then return the results.

The code for the new controller is as follows:

using Microsoft.AspNetCore.Mvc;

using Verify.Models;

using Verify.Services;

namespace Verify.Controllers

{

 public class SearchController : Controller

 {

 private IPersonService _personService;

 public SearchController(IPersonService personService)

 {

 _personService = personService;

 }

 [HttpGet]

 public IActionResult Index(string ssn)

 {

 �Person requestedPerson = _personService.

RetrievePersonBySSN(ssn);

 return View(requestedPerson);

 }

 }

}

Finally, delete all other Controller classes in the Verify.Web ➤ Controllers folder.

We won’t need them.

For the sake of brevity, we’ll skip the source for our Views and Cascading Style

Sheets (CSS). You can find both of these in the project repo at https://github.com/

BuildingScalableWebAppsWithAzure/VerifyWebApp.git.

Chapter 2 Web Applications

https://github.com/BuildingScalableWebAppsWithAzure/VerifyWebApp.git
https://github.com/BuildingScalableWebAppsWithAzure/VerifyWebApp.git

33

�Deploying to Azure
Now that we’ve put together a simple example app, we can deploy it to Azure. We’ll

first provision an Azure SQL instance and then use our SQL Server Database project

to publish our database to the server. Then we’ll create our App Services Web App and

publish our Verify project.

To get started, log into your Azure account. If you do not yet have an Azure account

set up, flip back to Chapter 1 for a discussion on creating one.

�Provisioning an Azure SQL Instance
Let’s create the database that will host our Person records. After logging in to the Azure

portal, click the plus sign button in the upper left corner to add a new service. Next,

select Databases, then select SQL Database (Figure 2-4).

Figure 2-4.  Provisioning a SQL Azure instance

Chapter 2 Web Applications

www.allitebooks.com

http://www.allitebooks.org

34

Next, you’ll be prompted for basic settings before the Azure SQL instance is created.

•	 Database name: This is the database name that will be created

within your database server. This name must be unique within your

database server only, and be descriptive so that you can identify your

database resource in a list of resources. Adopting a naming convention

is helpful in doing so. Let’s name this database verify-sql.

•	 Subscription: If you have more than one subscription, you can choose

which subscription you’d like to add the database to.

•	 Resource group: A resource group allows you to group one or more

Azure services together for management purposes. You can specify

role-based access to a resource group, lock a resource group to

make sure that no resources within it can be deleted, and generate a

template for automatic provisioning of resources within the resource

group. The ability to generate a template is very handy for reliably

reproducing deployments. For example, you can export a template

and easily reprovision all services within the resource group. This

is excellent for making sure that your staging environment mirrors

your production environment, or vice versa. For web applications,

I recommend keeping all resources belonging to the application

within a single resource group. You can then template the resource

group and provision new environments from the template as needed.

This works great for setting up development, test, and production

environments.

Because this is your first service, you’ll need to create a new

resource group for our Verify application. Name it verify-rg.

We’ll use this resource group for both our Web App and Azure SQL

instances.

•	 Select resource: This gives you the option of starting with a blank

database or restoring from a backup. Select Blank Database.

Chapter 2 Web Applications

35

•	 Server: Your database must live within a server. Let’s provision a new

one. Click the Server option, then on the Server blade, click Create a

New Server. You’ll be asked for a server name, server admin login, a

location, and whether to use a V12 server, which is the latest version.

You should create all new Azure SQL databases using V12. Choose a

location and make note of it. We’ll eventually place our Web App in

the same region.

•	 Use SQL elastic pool: Select No. We discuss this option in detail in

Chapter 4.

•	 Pricing tier: Database power is measured in database transaction

units (DTUs). This measure is an amalgamation of CPU, data and

transaction I/O operations, and memory. Microsoft does not publish

the exact formula for calculating DTUs, but more DTUs means a

more powerful server. The pricing tier basically determines how

much power your database will have, measured in DTUs. We cover

this in more depth in Chapter 4. For the task at hand, click the Pricing

Tier option to open the Choose Your Pricing blade. Make sure that

you select the View All option at the top of the blade. Select the Basic

option.

•	 Collation: This option determines how SQL Server will sort and

compare values. It cannot be changed after you provision the

database. Accept the default, then click Create.

Now that we’ve created our Azure SQL database, we have a bit more configuration to

do. Let’s go to the management screen for our Azure SQL Server (which is different from

the Azure SQL Database resource) by clicking All Resources, located directly below the

Create button on the far left. This will show us every resource that we’ve provisioned.

Find the SQL Server by name and click it to open its management blade (Figure 2-5).

Chapter 2 Web Applications

www.allitebooks.com

http://www.allitebooks.org

36

Azure SQL Servers control connectivity via an Internet Protocol (IP) whitelist at both

the server and database levels. If you whitelist an IP address at the server level, the IP

address can connect to all databases that live on that server. If you whitelist an IP address

at the database level, the IP address can only connect to that database and no others on

the server. If your IP address is not on the server or database whitelist, you will be unable

to connect to the database at all.

It is recommended that administrators whitelist their IP addresses at the SQL Server

level so that they can easily administer all databases on the server. If any other external

users need access to individual databases, whitelist their IP addresses at the database

level.

By default, Azure services are allowed to connect to your database. You can change

this default setting if you like.

To set your firewall rules for this database, click the Show Firewall Settings link. This

opens the Firewall settings blade, shown in Figure 2-6, which list all current valid firewall

rules. You can define a range of IP addresses that are allowed to connect. To quickly add

your current IP address, click Add Client IP. You can also toggle whether or not Azure

services can connect to databases within this server.

Figure 2-5.  The SQL Server management blade

Chapter 2 Web Applications

37

Note that you must click Save after adding, modifying, or deleting a single rule. If

you try to batch several changes together and click Save, the Firewall settings blade will

refuse to cooperate.

�Deploying the Verify Database
We’ve provisioned our Azure SQL Database, so it’s time to upload our Verify database to

our instance. We’ll use our Verify.Database SQL Server Database project in our Visual

Studio Verify solution to do so.

A SQL Server Database project can target different versions of SQL Server, and

deployment will fail if you attempt to deploy to an Azure SQL Database and your project

targets anything else. Let’s make sure that we’re targeting the correct SQL Server version.

Switch back to the Verify solution in Visual Studio. Right-click the Verify.Database project,

and select Properties. Once the project Properties screen appears, go to the Project Settings

screen and ensure that the Target platform is set to Microsoft Azure SQL Database V12.

Figure 2-6.  The SQL Server Firewall settings blade

Chapter 2 Web Applications

www.allitebooks.com

http://www.allitebooks.org

38

Now let’s publish. Right-click the Verify.Database project once again, and select

Publish. This will open the Publish Database dialog box (Figure 2-7). You’ll need to

click Edit for the Target Database Connections field to specify your connection string to

the database. Your connection string can be found on the Azure Portal by going to the

Manage SQL Database blade for your database and clicking Show Database Connection

String. Note that you’ll need to input the username and password that you specified

when creating the Azure SQL Server.

Next, set the Database name field that you’d like to use. You can take the defaults

for the Publish script name; it has no bearing on this process. Finally, you can click

Save Profile to save all of these settings to disk. The next time you need to republish the

database you can click Load Profile to reload your previously saved settings without

having to enter them again.

Once the publishing is complete, you can use SQL Server Management Studio to

connect to your database on Azure.

Figure 2-7.  The Publish Database dialog box

Chapter 2 Web Applications

39

�Creating Our App Services Web App
Now that our database is published to Azure, let’s provision our Azure Web App that will

host our application. We’ll need to first create the Web App resource within the Azure

Portal, publish our application to the Web App using Visual Studio, and then set a few

configuration options for our Web App.

Log in to the Azure Portal at https://portal.azure.com, and click the plus sign

button in the upper left corner to add a new resource. From the menu, select

Web + Mobile ➤ Web App (Figure 2-8).

Next, fill in the required fields to provision our new Web App resource.

•	 App name: This name must be unique across all Azure Web Apps. It

will also determine the public URL for your web app, which will be

[App name].azurewebsites.net. You can, of course, later add one or

more custom domain names that will map to this Web App. In staying

with my simple naming convention, I chose verify-wa. Because the

names must be unique across all Azure Web Apps, you can’t use that

one. Sorry.

Figure 2-8.  Provisioning a new Web App

Chapter 2 Web Applications

www.allitebooks.com

https://portal.azure.com/
http://www.allitebooks.org

40

•	 Subscription: This is the subscription that you’d like to use for this

Web App.

•	 Resource Group: Put this in the previously defined verify-rg Resource

Group. We want to manage the Verify Azure SQL database and Web

App together as they make up the same application.

•	 App Service plan/Location: All Web Apps belong to an App Service

plan. Each App Service plan consists of a region (which is another

term for an Azure datacenter), scale count (how many instances of a

Web App currently exist), and the instance size and SKU. The instance

size determines how powerful your server is in terms of CPU cores,

memory, and disk space. The SKU determines whether you’re on a

Free, Shared, Basic, Standard, or Premium tier. These tiers determine

what features are available to you, such as the ability to autoscale.

•	 Go ahead and click the App Service plan/Location option, which

opens the App Service plan blade. Click Create New because you

don’t yet have an App Service plan defined. Enter verify-asp for

the App Service plan name. For Location, choose the region that

you specified when creating your Azure SQL resource. Placing your

Web App and database within the same region is very important for

performance and cost. If you place them in different regions, your

application will have to make calls to a database located outside

the datacenter, which will slow your site significantly, and will incur

outbound data transfer charges. For the pricing tier, select Free

because we’re working through a learning exercise.

•	 Application Insights: Application Insights is an analytics service that

integrates with Web Apps. It provides excellent tools for logging and

analyzing requests, dependencies, exceptions, and traces. If you

enable Application Insights, a free Basic Tier Application Insights

resource will be provisioned. Of course, you still have to install the

Application Insights library within your application to make use

of the service. Because we’re working through an example and

minimizing complexity, turn Application Insights off. We discuss

Application Insights in detail in a later chapter.

Now click Create to provision your Web App.

Chapter 2 Web Applications

41

�Publishing the Verify Application to Azure
Microsoft has done an excellent job of making the publishing process very simple. The

easiest way to publish is directly from Visual Studio.

To publish, open the Verify solution in Visual Studio. Right-click the Verify.Web

project, and select Publish. This opens the Publish dialog box that will step us through

publishing to our Azure Web App.

�Specify a Publish Profile

The first screen in the publish process is for choosing a profile (Figure 2-9). The profile

specifies which Web App we’re publishing to, the publishing method, and credentials for

connecting to the server. The easiest ways to specify a publish profile are to choose either

the Microsoft Azure App Service or Import options.

•	 Microsoft Azure App Service: Choosing this option allows Visual

Studio to connect directly to your Azure account and list all available

Web Apps. You can choose a Web App, and Visual Studio will

download the appropriate information.

•	 Import: In the Azure Portal on the Overview screen of your Web App’s

management blade, you can download a publish profile (Figure 2-10).

This is simply an XML text document. You can click Import on the

Profile screen within the Publish dialog box, browse to the publish

profile document that you downloaded, and import it.

After specifying a profile, click Next.

Chapter 2 Web Applications

www.allitebooks.com

http://www.allitebooks.org

42

Figure 2-9.  The Publish dialog box Profile screen

Figure 2-10.  Downloading a publish profile from the Web App management
blade in the Azure Portal

Chapter 2 Web Applications

43

�The Connection Screen

The Connection screen lets you choose a publishing method. This is simply how Visual

Studio will get the bits from your computer to the Azure server. You have several options,

but I recommend choosing Web Deploy because we’re doing this from Visual Studio.

Web Deploy performs a diff and only copies over files that have changed. It also works

over a secure connection.

The other fields such as Server, Site name, User name, Password, and Destination

URL will already be prefilled from your publish profile.

�The Settings Screen

The Settings screen allows you to choose your Configuration, Target Platform, and

override database connection strings specified in your appsettings.json file. We’ll

choose a Release Configuration and .NETCoreApp, Version=1.0 for our Target

Framework.

Expand the Databases node, and notice that the DefaultConnection property

defined in our appsettings.json appears here. Replace the connection string listed

here that points to your local SQL Server instance to our Azure SQL connection string.

When Visual Studio performs the publish process, it will transform this connection string

as it copies the appsettings.json file to the Azure Web App.

Click Next to continue.

�Preview

The Preview screen shows the publish profile that will be used, and gives you a chance

to preview what will be published. If you click Start Preview, Visual Studio will build

your application, perform a diff with files on the server, and show you which files will be

copied in the publishing process.

When you are ready, click Publish to publish your application to Azure. Visual Studio

will churn for a bit, and you can view what is happening in the Output window. After the

publish is complete, Visual Studio will launch your browser and navigate to the newly

published Web App.

Chapter 2 Web Applications

www.allitebooks.com

http://www.allitebooks.org

44

�Scaling Web Apps
Now that we’ve published the Verify app to Azure, let’s discuss the various ways to scale

Web Apps to handle increasing amounts of traffic. There are three main ways to do so:

intelligent use of threads, scaling up, and scaling out. Let’s look at each.

�Intelligent Use of Threads
Just like IIS, each Web App has a maximum number of threads available to service

requests. When all of the threads servicing requests to a Web App are busy, new

incoming requests are added to the HTTP request queue until a thread becomes

available. If the HTTP request queue continues to grow faster than threads become

available to service those requests, a couple of bad things can happen. First, response

time grows because requests are waiting before a Web App thread becomes available

and can process them. Second, if the wait time becomes too long, your users could

experience HTTP request timeouts. Not only does this lead to frustrated users, it will also

lead to angry bosses and will ruin your day in general.

Think of worker threads as clerks who work at the paint counter at the local hardware

store. A clerk will service one customer at a time. If customers come to the paint counter

faster than the clerks can help them, a line forms. Sometimes, customers just have quick

questions such as “What aisle is the primer on?” Other times, customers need something

more time consuming that could take five to ten minutes, such as mixing a gallon of paint.

Imagine if, when asked to mix a gallon of paint, the clerk set up the mixing machine,

started the mixer, then stared at the mixer for the full ten minutes it takes to complete

the job. While the clerk is staring at the mixer, customers are lining up at the counter.

Customers would get pretty mad. Why couldn’t the clerk start the mixer, return to the

counter to help other customers, and then return his attention to the mixer after the

mixing process is complete?

This, my friend, is exactly how threads servicing requests in your Web App will

behave unless you make proper use of async and await. Think of those quick customer

questions as simple requests such as materializing a view and returning it to the caller:

It might only take the worker thread a millisecond or two to perform. Think of a long,

drawn-out process like a database query as the equivalent of mixing paint. If you do not

use async and await when accessing the database or performing other time-consuming

Chapter 2 Web Applications

45

processes that require waiting on an external service, your worker threads will wait

until the long-running operation completes and will not service other requests in the

meantime. This can very quickly lead to thread starvation and angry visitors.

Before publishing a site to production or even considering your scaling strategy, go

through your code and ensure that you’re making use of async and await in the following

scenarios:

•	 Accessing external data stores (Azure SQL, Cosmos DB, and even

Azure Table Storage).

•	 External web service calls.

•	 Reading and writing files on disk.

This can lead to huge improvements. It can be expensive or even impossible to

scale out a Web App to handle synchronous code when your server is receiving lots

of requests. In a recent consulting engagement, we identified this particular problem,

properly implemented async and await, and the client was able to scale down from 13

medium Premium Web App instances to two medium Standard instances.

A thorough discussion of threading in general and async and await in particular

is beyond the scope of this book. You can find an excellent treatment of this topic at

https://msdn.microsoft.com/en-us/library/mt674882.aspx.

�App Service Plans
When we created a new Web App for our Verify application, we touched briefly on what

an App Service Plan is. Every Web App belongs to a single App Service Plan, and the App

Service Plan determines what region the Web App runs in. It also determines the scale

count, instance size, and SKU (also called the tier in various Microsoft literature).

The scale refers to how many copies of your app are running in your chosen Azure

datacenter. If you set the App Service scale count to three, there will be three identical

copies of your Web App servicing requests. The instance size and SKU for a Web App

are also set by the App Service Plan. The instance size and SKU settings will apply

to all copies of your Web App running under the App Service Plan. For example, it is

impossible to run a small Standard instance and a medium Premium instance of a Web

App within the same App Service Plan.

Chapter 2 Web Applications

www.allitebooks.com

https://msdn.microsoft.com/en-us/library/mt674882.aspx
http://www.allitebooks.org

46

�Scaling Up
If a single small Standard tier Web App is falling behind and cannot handle traffic, then

fix the issue by moving to a medium Standard tier—problem solved! This is exactly what

scaling up means: moving to a more powerful Web App instance size, service tier, or both.

Scaling up is done through your Web App’s App Service Plan. Within the Azure

Portal, you can either go directly to your App Service Plan management blade, or access

it through your Web App’s management blade by clicking Scale Up, or App Service Plan.

If you go through the App Service Plan, you’ll need to click on the App Service Plan’s

Scale Up link.

The Scale Up screen is straightforward (Figure 2-11). Simply choose the instance

size from the list of available instances. Note that if you choose an instance that is within

a different pricing tier (e.g., going from an instance in the Free to an instance in the

Standard tier), the features available to you might change. Note that by default, Azure

might only show you the recommended instance options. To see all available instances,

make sure to click the View All link in the upper right corner of the blade.

Chapter 2 Web Applications

47

Changes will take place almost immediately. You do not need to redeploy your code.

�Scaling Out
Dr. Grace Hopper once wrote “In pioneer days, they used oxen for heavy pulling, and

when one ox couldn't budge a log, they didn’t try to grow a bigger ox.” That’s why we

typically scale out to handle increased load. You can scale out much further than you can

scale up.

Figure 2-11.  Choosing a new instance size

Chapter 2 Web Applications

www.allitebooks.com

http://www.allitebooks.org

48

Once you add more than one instance of your Web App to your App Service Plan,

Azure automatically provisions a network load balancer that will dole out traffic to your

instances. If in your Web App’s application settings, you have ARR Affinity set to On,

users will be routed to the same instance of your Web App on subsequent visits. If you

disable ARR Affinity, or if a request is from a new visitor, traffic will be allocated in a

round-robin fashion.

To scale out and add (or remove) instances from your Web App, go to the App Service

Plan’s Scale out menu option for your Web App. You can get there by going to your Web

App’s management blade and choosing the Scale out menu option, or choosing the Scale

out menu option directly on your App Service Plan’s management blade. Note that if you

are using an instance in the Free, Shared, or Basic tiers, you will be unable to scale out.

You must be using an instance on the Standard or Premium tiers to do so.

When you open the Scale out blade (Figure 2-12), you’ll have three options for

scaling. You can choose one of the following options in the Scale By drop-down list:

•	 An Instance Count That I Enter Manually

•	 CPU Percentage

•	 Schedule and Performance Rules

Chapter 2 Web Applications

49

Selecting An Instance Count That I Enter Manually will set the instance count at

the number that you specify. You will remain at that instance count until you explicitly

change it. Because you pay for your Web App by the compute hour, this is usually not

a very cost-effective strategy. Most web applications will experience surges and lulls

in traffic. Paying for a fixed number of instances will waste dollars during traffic lulls.

It is, however, a handy tool to use in a pinch if your autoscale rules are not behaving as

expected and your Web App is failing due to heavy traffic.

Scaling by CPU percentage or schedule and performance rules let you scale

computing resources up and down based on load. This is far more cost effective for most

Web Apps, and is the topic of our next section.

Figure 2-12.  Scale out management blade

Chapter 2 Web Applications

www.allitebooks.com

http://www.allitebooks.org

50

�Autoscale

Rather than explicitly setting your instance count, you can specify rules that Azure will

use to dynamically scale in and scale out your instance count based on schedule or

performance rules.

Choosing to scale by CPU percentage lets you set a minimum and maximum number

of target instances and a target range for your aggregate CPU percentage. Your instance

count will always be somewhere between the minimum and maximum instance count

that you specify. If the average CPU percentage falls below your target threshold,

Azure will scale down one instance, unless you are already at the minimum number of

instances in the range that you set. If the average CPU percentage exceeds the top of the

CPU threshold that you specify, Azure will add an additional instance unless you are

already at the top of your specified instance count range.

Finally, there’s scaling by schedule and performance rules. Once you select this

option, you can click Add Rule to scale by a performance metric, or Add Profile to scale

on a fixed time schedule. You can specify zero, one, or many rules or profiles.

Rules pertaining to Web Apps will allow you to scale by CPU percentage, memory

percentage, disk queue length, HTTP queue length, data in, or data out. Note that if there

is more than one instance in your App Service Plan, the value of these metrics will be

averaged across instances. Scaling by averaged Web App metrics isn’t your only option.

You can also scale your instance count in or out based on performance from other

services such as Service Bus Queue or Storage Queue. This is a useful option to detect

that a worker Web App instance is falling behind in processing messages from a queue,

and more instances are needed to drain the queue.

When a condition defined by a rule or profile is met, the scale action defined within

will execute. Because you can combine multiple rules, it is possible for those rules to

conflict. If two scale rules conflict, the order of precedence is as follows:

•	 Rules that add instances will be executed over rules that decrement

the instance count.

•	 If more than one scale out rule is triggered, the rule that will add the

largest number of instances will take precedence.

•	 If more than one scale in rule is triggered, the rule that will remove

the least number of instances will be executed.

Chapter 2 Web Applications

51

�Limits on Scaling Out

There are fixed limits to how many instances you can add during scale out, and it’s based

on the service tier of your instance size. Standard instances are limited to a maximum of

ten, and any instance in the Premium tier can scale up to a maximum of 20.

If you need to scale further, contact Microsoft Azure Customer Support. They are

able to raise your maximum instance count to 50 for the Premium service tier.

One final caveat: Scaling out and adding additional instances is subject to instance

availability within your datacenter. I have seen messages denying a request to add

an additional instance due to no further instances being available at the datacenter.

Generally, this is a transient condition, but it can occur. If you receive this message, try

again in a few minutes.

�How to Define Autoscale Rules

The obvious question from developers who are new to autoscaling is “How do I know

what rules to define?” That’s a great question.

Given a web application and an App Service Plan, it is nearly impossible to calculate

exactly how many requests the app can handle before it nears its breaking point and

requires scaling out. There are simply too many variables to account for. For different

architectures and design decisions, applications will experience problems in different

places as load increases. Knowing where your app will break first (CPU exhaustion,

memory exhaustion, disk queue length growing, etc.) will be a clue as to what metrics

you should use when defining your autoscale rules.

So how do we determine where our app will fail first as load increases? We try to

break it, of course, and we can use Microsoft’s load testing tools to do so.

�Load Testing
Microsoft has created load testing tools that allow us to stress our applications in various

ways before we unveil them to the general public. These tools allow us to specify the

number of users in a pool, the URL(s) each user will hit, and the duration of the test.

Azure will then spin up a botnet and dish out as much punishment to your application as

you desire (and are willing to pay for). You can then examine load test metrics.

Chapter 2 Web Applications

www.allitebooks.com

http://www.allitebooks.org

52

It’s a good idea to understand what in your application will buckle first as traffic

increases, and how much traffic it takes to break things. You can then evaluate if it’s

reasonable to modify your application further to handle such traffic. The answer is not

always yes.

�Creating a Load Test
We’ll perform our load tests using Visual Studio Team Services load testing tools. You’ll

need a Visual Studio Team Services account before you can load test. Like most of

Microsoft’s developer tools, though, there’s a limited free subscription that you can sign

up for to get started. If you don’t already have a Visual Studio Team Services account, go

to https://www.visualstudio.com/team-services/ and create one.

Note  It is possible to access Visual Studio Team Services load testing tools from
directly within the Azure Portal. This option is Performance test and is found on the
Web Apps blade under the Development Tools heading. However, as of the time
of this writing, the integration is a bit buggy. That’s why we’re going directly with
Visual Studio Team Services to perform our tests.

If this is the first time you’ve used Visual Studio Team Services, you’ll be prompted

to create a project. You can choose any name for your project that isn’t already taken,

and specify if you’ll use Git or Team Foundation Version Control. Using the Visual Studio

Team Services repo is not required to make use of the load testing tools.

Once you’ve logged into your Visual Studio Team Services account, navigate to your

Account home, then select Load Test from the top menu.

You’ll see that you have multiple options for creating load tests. These include the

following:

•	 Recording a series of actions through a browser and uploading the

resulting HTTP archive file to use by the testing agents.

•	 Hitting specified URLs to stress an application.

•	 Creating a Visual Studio Web Performance and Load Test project.

This provides greater flexibility, takes more time to author, and

requires Visual Studio Enterprise Edition.

Chapter 2 Web Applications

https://www.visualstudio.com/team-services/

53

For our purposes, we’ll hit specified URLs to stress our Web App.

To create our first load test, do the following:

	 1.	 Click New on the Load Test screen. Select URL Based Test from the

drop-down list.

	 2.	 Give your load test a name. I prefer uniform descriptive names

so that I can identify tests when looking at a table of test results.

I named my first test FreeWABasicDB.

	 3.	 When performing a URL-based test, you can either upload an

HTTP archive file containing prerecorded actions that will be

performed by the testing agents or enter one or more URLs.

We’ll use a single specified URL that will query an SSN from our

database. For our test URL, specify GET for the HTTP method,

https://your-webapp-name.azurewebsites.net/search for

the URL itself, and add ssn for the query string parameter name,

and a valid SSN attached to a Person record that you have already

loaded into your Azure SQL database instance (Figure 2-13).

	 4.	 Now that we’ve specified our URL, click the Settings link to

configure user load, browser mix, and the datacenter that we’ll

launch the test from.

•	 Run duration: This is how long we’ll run this test. I chose two

minutes. Tests are billed by virtual minutes (VUMs) and are

calculated as v-users × run duration. Our first test will be to blast

the server with traffic and see where it fails. Future tests will be

longer in duration as we set our Web App to autoscale in various

ways.

•	 Load pattern: This can be constant or step. Constant hammers

your application with all of the specified v-users from the

beginning of the test. Step will allow you to set an initial number

of v-users, a step duration, and how many v-users to add each

step. When you’re not quite sure at what point your application

will fail, stepping is a useful strategy. If you blast your app with

a constant load pattern of 260 v-users and it fails immediately,

all you know is that the app cannot handle 260 concurrent

Chapter 2 Web Applications

www.allitebooks.com

https://your-webapp-name.azurewebsites.net/search
http://www.allitebooks.org

54

v-users × requests per v-user per second. If you step up v-users

over time, you can see at what point the app failed. For this test,

let’s use a Step Load pattern with a max of 260 users, a start

user count of 120, a step duration of 10 seconds, and a step user

count of 10 users.

•	 Warmup duration will hit your Web App once, then wait for the

duration. We will specify 15 seconds because our Web App is

using the Free tier and might have been unloaded if it hasn’t

received any requests.

•	 Finally, we must choose a location to launch the test from.

I prefer using the same datacenter that is hosting our Web App to

reduce latency.

	 5.	 Click Save to save this test.

Now we’re ready to run.

Figure 2-13.  Configuring a load test

Chapter 2 Web Applications

55

�Running the Load Test
After saving a load test, it will appear in the left column under the Load Tests heading.

To run a test, select it and click Run. This will queue your test as Visual Studio Team

Services gathers and prepares its botnet. Once the test begins, you’ll be able to view

metrics in real time.

�Viewing Load Test Results
On our load testing results screen, we can see the highlights (Figure 2-14).

We are particularly interested in the Avg. Response Time and Failed Requests

results. If Avg. Response Time is reasonable and there were no failed requests, the server

handled the given load quite nicely. Remember that our Verify Web App is residing on

a Free tier instance, which is as small as we can go. We are also querying an Azure SQL

database that is on the Basic tier, which at 5 DTUs is the smallest offered. Even with such

paltry specifications, our Web App handled about 1,100 requests per second from

260 concurrent users without missing a beat. That’s rather impressive. Because we

weren’t able to break the Web App, though, we’re going to have to turn up the volume

and try again.

Figure 2-14.  Results for the first load test

Chapter 2 Web Applications

www.allitebooks.com

http://www.allitebooks.org

56

For the next test, we’ll run for a full four minutes, start with 250 users, and step up 25

users every 15 seconds. As you can see in Figure 2-15, we were able to tip over our Web

App: 17,155 out of 133,044 requests failed, and the average response time was 558.3 ms.

The summary statistics don’t tell the whole story. The average response time

averages using response times from the beginning of our test where the Web App

handled the given load all the way to the end of the test where our Web App was failing.

Click the Charts link to see graphs for Performance and Errors (Figure 2-16). You can see

from the Errors graph that errors began to occur at 1:30 into the test. Cross-referencing

this with the Throughput graph, we see that errors occurred at about 1,052 requests per

second. Also, note that at the 4:00 mark, our Performance chart shows that average page

response time was up to 3.196 seconds.

You might wonder why this test failed at fewer requests per second than our initial

test. Notice on the Charts tab that during our second run that failed, requests per

second built to about 1,200 per second, then fell to about 1,052 per second around the

time that errors begin to occur. This hints at some type of resource exhaustion that our

initial stepped load test didn’t trigger because it was shorter and didn’t involve the same

sustained amount of traffic over time.

Figure 2-15.  Results for our second load test that caused errors

Chapter 2 Web Applications

57

From the test summary screen, we can see that requests have failed. The summary

screen doesn’t show us exactly what failed, though. Click the Diagnostics link to see

errors that occurred in the test (Figure 2-16). We can’t always tell exactly what has broken

in our Web App from seeing the specific HTTP error codes, but it gives us a good place

to start our investigation. We won’t know for sure until we dig into various logs. The next

step is to look at our logs and instrumentation within the Azure Portal to pinpoint what

broke and why.

Note  The Visual Studio Team Services trial account includes 20,000 VUMs per
month. Even if you are only using a single Web App instance from the Standard
tier, you might have trouble causing errors due to load with only 20,000 VUMs
available. Of course, this ultimately depends on how your application is designed.
Be prepared to purchase a Visual Studio Team Services subscription, though, to be
able to simulate enough load to cause a Standard tier instance to fail.

Figure 2-16.  The Diagnostics tab from our second test run

Chapter 2 Web Applications

www.allitebooks.com

http://www.allitebooks.org

58

�Setting Appropriate Autoscale Rules
After you’ve load tested your application, you can dig into performance metrics within

the Azure portal to see what went wrong. Once you’ve found the underlying problem,

you can set your scale rules accordingly. Here’s a checklist to run through after you’ve

tipped over your app by using either load testing tools or making the Reddit front page.

	 1.	 Did the database fail to answer queries in a timely manner? When

using an Azure SQL database, the first possibility to eliminate is if

database resources were exhausted, leading to application errors.

To check, pull up the Azure SQL management blade, and click

Edit on the chart. Set the time range to when your application

experienced errors, and chart the DTU limit and DTU used. This

will quickly tell you if you simply ran out of horsepower and your

queries were throttled. If DTU used bumped up against the DTU

limit, you need to scale your Azure SQL instance. Strategies for

doing so are discussed in Chapter 4.

To be thorough, remove the DTU limit and DTU used from

the chart and add Total database size. Ensure that you haven’t

exceeded your database’s allocated storage.

If you’ve discovered a problem with either of these metrics,

scaling your Web App will not help you, but you do need to scale

your database. If both of these look good, let’s move to your App

Service’s management blade.

	 2.	 Check App Service metrics. You’ll notice that the Overview screen

on the App Service management blade has a large chart. If you

edit the chart, you’ll see that you can graph CPU Percentage,

Data In, Data Out, Disk Queue Length, HTTP Queue Length, and

Memory Percentage. It just so happens that you can set autoscale

rules to key from all of these metrics. Set the time period for the

chart to the time period when you’ve experienced performance

issues. Check each metric. If you find a metric indicating that a

resource is stressed, you can create an autoscale rule that keys off

of that metric.

Chapter 2 Web Applications

59

Even after identifying what metric to use when setting autoscale rules, it can be

useful to perform root cause analysis and see exactly what broke under load in your

code, and if it is cost effective to improve that portion of your source.

�Summary
In this chapter, we’ve created an example web application that included a SQL Server

database. We’ve provisioned an Azure SQL database, Web App, and accompanying App

Service Plan. After deploying our web application and database to Azure, we discussed

scaling strategies, covered basic load testing, and saw how to set appropriate autoscale

rules.

In the next chapter, we look at various Azure data storage technologies and discuss

the difference between traditional relational databases and NoSQL and what Azure has

to offer for each.

Chapter 2 Web Applications

www.allitebooks.com

http://www.allitebooks.org

61
© Rob Reagan 2018
R. Reagan, Web Applications on Azure, https://doi.org/10.1007/978-1-4842-2976-7_3

CHAPTER 3

Azure Data Storage
Overview
Most web applications need to persist user data. Examples of data that your web

application might need to persist include usernames and passwords, order history,

shopping cart contents, or player high scores.

In this chapter, we discuss data storage scenarios that you might encounter when

building web applications. Next, we introduce the pertinent Azure data storage services

available and offer a broad overview of each. We also discuss the pros and cons of each

data service, and rules of thumb for choosing between them when designing your

web application.

This chapter is intended as an introduction to Azure’s data storage technologies.

Think of this chapter as the movie trailer for each Azure data service. This can help you

orient yourself and decide which data services might be a good fit for your application.

Each data service mentioned is covered in depth in upcoming chapters. If you are

already familiar with Redis Cache, Azure SQL, Cosmos DB, and Azure Table Storage, you

can safely skip this chapter.

�Data Storage Scenarios
There are three different data storage scenarios that you might encounter when building

a web application.

62

�Session Data
Session data involves keeping track of information that only needs to be persisted while

a user is interacting with your web application. In e-commerce, items in a shopping

cart or recently viewed items are good examples. After the user makes a purchase or

abandons the cart, you no longer need to keep track of the data.

Back in the old days of smaller web applications built with ASP.NET web forms,

many developers would simply store session data with the System.Web.SessionState

class. The SessionState class was very simple to use and offered developers the option

of storing data in-process, within SQL Server, or a separate session state process.

All three choices were terrible ideas for building scalable applications, and it’s not

hard to see why. Data stored in-process has two shortcomings: Session state can be lost

in a multi-instance front-end application if a user whose session is started on Server A is

then routed to Server B during his or her next request. Even in a single-server scenario,

session data stored in-process is lost if the web application is recycled or crashes. Storing

session data in an external store such as SQL Server or an external session state process

was an improvement because multiple web front-end servers could access session state,

allowing web applications to scale out by adding additional instances.

In Azure, Redis Cache is the preferred data service for storing session data.

�Persisted Data
Some data needs to be stored indefinitely. In e-commerce, examples include items on

a wish list, a user’s purchase history, and payment information. Historically, this type of

data is stored in a relational database such as SQL Server. However, relational databases

run into scalability problems when building web applications at Internet scale.

The biggest problem with relational databases is that to be performant, databases

usually run on a single server. It’s difficult to scale a single relational database across

multiple servers, and scale out is a requirement for building Internet-scale web

applications. The second problem is that sometimes the relational model isn’t the easiest

to work with or the most efficient for certain scenarios.

Various NoSQL options have emerged such as Cosmos DB and Azure Tables to

address these shortcomings.

Chapter 3 Azure Data Storage Overview

www.allitebooks.com

http://www.allitebooks.org

63

�Data Analytics
More and more companies are making use of machine learning to gain insight from

massive amounts of customer or operational data that they have collected over time.

Machine learning algorithms can sift through terabytes or even petabytes of data

to identify relationships. Those insights are then packaged into models that make

predictions or classifications. An example of a prediction might be how likely a customer

is to cancel a service based on his or her interaction history. Amazon and Netflix

customers are very familiar with machine learning classification models, although they

might be unaware that machine learning is responsible. Amazon suggests products that

you might be interested in, and Netflix suggests movies that you might like based on your

past viewing history.

As mentioned, the data sets that machine learning algorithms operate on are

often massive; multiterabyte data sets are not uncommon. The data is almost always

heterogeneous and does not conform to a single schema. Therefore, using a relational

database to store data used in machine learning is not a good idea.

Azure Data Lake is the Microsoft answer to storing massive amounts of data for

consumption by analytics packages such as HDInsight. Analytics and machine learning

are broad subjects and are well beyond the scope of this book. Data analytics and Azure

Data Lake are only mentioned for completeness.

�Relational Databases
Most developers are familiar with relational databases. Examples include SQL Server,

MySQL, and Oracle. Relational databases store data in tables. Tables are made up of one

or more columns, and each column has a specified data type. Each record within a table

is a row.

A schema describes the columns in each table and is a set of rules specifying the

name and data type for each column. Because each row within a table must specify

a value for each column within the table, we say that a relational database has a fixed

schema. For example, if you have a table called Employees that contains columns for

each employee’s Name, City, State, Birthdate, and Social Security Number, and you later

want to add a Phone Number column, you must modify the table’s schema and add a

column for the Phone Number. Schemas are handy for two reasons.

Chapter 3 Azure Data Storage Overview

64

Schemas provide error checking for a table. Once a schema is defined, data that is

inserted or updated must conform to the schema. For example, if I try to insert a string

value of “They’re sure going to notice that, Peter!” into the employee’s Birthdate field

that is defined as a Date data type, the database engine will not allow the insert and will

return an error.

We know exactly what type of data exists for each table and can code accordingly. We

don’t have to worry if the record that we’re retrieving from the Employees database table

actually contains department information; we know exactly what fields we’ll get when

we query the Employees table. This is not a true statement for NoSQL databases, which

we discuss in an upcoming section.

To interact with a relational database, we use structured query language (SQL).

With SQL, we can read, insert, update, or delete data within the database. We can also

use SQL to define stored procedures or functions, which are packaged sets of SQL

statements that we can call to interact with the database.

We’ve already mentioned that data in a relational database is stored in tables. How

do we quickly locate a record within a table if there are many records? The simplest way

to locate a record would be to search a table from the first row until we find the row that

we’re looking for, or until we hit the end of the table. This type of search is called a full

table scan, and it’s very inefficient. For a table with 1 million rows, you’d have to search

all 1 million rows if the record that you’re looking for is the last in the table.

Instead, we can define one or more indexes for a table. An index is a set of lookup

data that “indexes into” a table. These indexes are typically stored internally within the

database as B-trees, which allow log(n) search time where n is the number of records in

a table. This allows us to find records that we’re looking for very fast. The trick is to make

sure that all queries to a database have covering indexes, which means that each query

can make use of one or more indexes to quickly locate the records you’re looking for.

Each table within a database should have a special index called a primary key.

A primary key can be a single column or a combination of columns that uniquely

identify a record within a table. Querying by a table’s primary key will yield the best

performance. Tables can also define columns as foreign keys. A foreign key points

to another table’s primary key. Primary keys and foreign keys are how we define

relationships between tables in a database.

When designing a database, our goal is to translate the details that we care about

from the real world that our application is concerned with into a set of tables. When

creating tables, we have to decide how many tables we need, and how the data within

the tables is related.

Chapter 3 Azure Data Storage Overview

www.allitebooks.com

http://www.allitebooks.org

65

One of our goals is to be sure that data is not repeated within the database. Consider

a database that contains all employees in a company and the project that each employee

is currently assigned to. A simple database design would be to create an Employees

table, and store the project name for each employee’s currently assigned project within

the Employees table. What if a project name changes? You can imagine what a pain it

would be to have to update a project name stored within the database in several hundred

different employee records. If you missed updating a single employee record, the

database is now inconsistent: Some records use the new project name, and other records

that were missed in the update still contain the old project name.

A better design would be to create a Projects table that holds all of the company’s

projects. Each employee record could define a foreign key that points to the appropriate

Projects record’s primary key. Now project names are not repeated in the database.

Making sure that we don’t duplicate data within the database, and that tables relate

to each other in appropriate ways, is called normalization. There are a progressively

stricter set of rules called normal forms that database designers design toward. The

details of database normalization could take several chapters and are beyond the scope

of this book, but if you are interested in relational database design, I encourage you to

investigate them in detail. The important takeaway is that normalization and correct

design of relational databases is very different from the design of NoSQL databases,

which we discuss shortly. In fact, attempting to design a NoSQL database as you would

a relational database will generally lead to terrible performance and will fail to take

advantage of the power of NoSQL technologies.

�Azure SQL
Azure SQL is Microsoft’s cloud-based relational database service. It very closely

resembles the server-based SQL Server product. You can use almost all of the same SQL

syntax between the server-based SQL Server products and Azure SQL. In fact, when

developing web applications with a relational database data store, it’s easiest to install

a SQL Server 2016 Express or Developer Edition to your local machine and develop

against a local instance. When you publish the application to Azure and use Azure SQL,

the same queries for data manipulation and retrieval just work.

There are several important differences between the traditional server-based SQL

Server and Azure SQL. They are covered in the sections that follow.

Chapter 3 Azure Data Storage Overview

66

�Billing

With a server-based SQL Server instance, you must purchase a SQL Server license for the

edition of your choice. With Azure SQL, you provision a database instance on a service

tier and pay by the number of hours that your database is provisioned.

�Performance

A server-based SQL Server instance is limited by the machine resources available,

and any restrictions you’ve placed on how much of the system resources SQL Server

is allowed to utilize. Azure SQL is hosted in a virtualized environment in the cloud,

and performance is limited by DTUs, a combination of CPU, memory, data I/O, and

transaction log I/O. We’re not given the exact formula for calculating DTUs, but you

can think of more DTUs translating into more performance power. The number of

DTUs available to your database is determined by the pricing tier that you select when

provisioning an Azure SQL instance. DTUs range from 5 for a Basic instance to 4,000 for

the largest Premium tier instance.

�Throttling and Retry

Each Azure SQL database instance has service limits. For example, a Basic instance can

only have 5 DTUs and a maximum of 30 concurrent workers. If these limits are exceeded,

one or more of your queries will fail until the database engine has returned to within the

service limits. This is called throttling.

The bad news is that your application must be able to handle failure in case a query

is throttled. If you’re using standard ADO.NET with no custom retry code, you’re going to

have a difficult time when your queries are throttled and your users see an error page.

The good news is that Microsoft Entity Framework 6.x and Entity Framework

Core have automatic retry logic built in. It is highly recommended that you use Entity

Framework to interact with Azure SQL for just this reason.

�Scaling Azure SQL
There are two options for scaling Azure SQL: scaling up and sharding.

Chapter 3 Azure Data Storage Overview

www.allitebooks.com

http://www.allitebooks.org

67

�Scaling Up

Scaling up is simple: You log in to the Azure Portal and change your Azure SQL’s pricing

tier to a larger, more powerful instance. When you do so, there is no need to redeploy or

explicitly move your database; Azure does this for you. This is by far the easiest solution

to scaling. However, if your app continues to grow, you can eventually end up at the

largest Premium instance with nowhere else to go. Your next option is sharding.

�Sharding

Sharding involves horizontally partitioning your data so that data is split across multiple

Azure SQL instances. This is typically for multitenant applications, in which one or more

of your clients’ accounts live in each database instance. Each Azure SQL instance will

have a complete set of tables. For example, assume that your database consisted of two

tables: Employees and Timesheets. Now assume that your application had four clients:

clients A, B, C, and D. A traditional approach would have a single database with tables

Employees and Timesheets, and all data for clients A, B, C, and D would reside in the

same database. A sharded approach works a little differently. In a sharded solution,

you split your clients’ data across two or more databases. A sharded solution for this

application might have two separate Azure SQL databases. Each database would have

tables Employees and Timesheets. However, Database 1 will contain only data from

clients A and B, and Database 2 will contain all data from clients C and D.

Sharding is not a new idea, and it historically causes some difficult problems,

including these:

•	 Maintaining schema changes across all shards.

•	 Querying across all shards for reporting purposes.

•	 Mapping each request from a client to the appropriate shard.

Azure SQL has several features that take the sting out of the aforementioned

problems. These tools are contained in the Elastic Database Client Library, and

will assist you in mapping client requests to the appropriate shard, splitting shards,

combining shards, and querying across all shards.

Chapter 3 Azure Data Storage Overview

68

�When to Use Azure SQL
Relational databases are familiar to most developers, and the relational model has been

used with great success for more than 40 years. Its main downside is that it can only

scale so far before we have to resort to tricks such as sharding. Sharding solves lots of

problems for multitenant applications, but is still more difficult to maintain and can get

very expensive compared to other NoSQL options.

I recommend using Azure SQL as your data store under the following scenarios.

You are migrating an application that already uses a relational database to Azure.

Your data is highly relational and your application allows your data to be sharded.

Like all good craftsmen, we should choose the best tool for the job. If your data will

not accommodate a NoSQL solution such as Cosmos DB or Azure Tables and can be

sharded, you should use Azure SQL. When deciding if your application’s data will fit into

a NoSQL solution, please make sure that you consider reporting requirements.

You can use Azure SQL as part of a hybrid data store of two or more Azure data

services. There’s nothing wrong with storing parts of your data in different Azure data

stores based on your application’s needs. For example, if you’re building a social media

site for pets (and I’m convinced that this thought briefly crosses every developer’s mind

at least once), you might store user and profile information in Azure SQL, and news feed

data in Cosmos DB.

�Other Azure Relational Database Offerings
Azure also offers MySQL and PostgreSQL as fully managed services. These are

mentioned for completeness and are not covered in this book.

�NoSQL Data Stores
NoSQL simply means that a data storage technology is not a relational database. Asking

if a data storage technology is NoSQL might be a useful bit of information if you’re

playing a geeky version of 20 Questions, but it doesn’t convey much useful information.

Chapter 3 Azure Data Storage Overview

www.allitebooks.com

http://www.allitebooks.org

69

NoSQL databases were invented to allow for horizontal scaling across multiple

machines. As we’ve already mentioned, scaling a relational database across multiple

machines is difficult. Other benefits of NoSQL databases include simplicity for certain

problem domains, speed, and the replication of data across machines so that a single

machine failure doesn’t bring down the entire database.

Azure offers three NoSQL solutions that are of interest to web app developers: Redis

Cache, Azure Tables, and Cosmos DB. Let’s look at each, starting with Redis Cache.

�Redis Cache
Azure Redis Cache is a caching service based on the open source Redis Cache. It is a

NoSQL service that allows you to query, insert, update, and delete data based on key/

value pairs. The key is always a string, and the value can be another string, a hash, a

list, a set, or a sorted set. In practice, you can store any type of .NET object that can be

serialized to a JSON string; you’ll just be responsible for deserializing the JSON string

and casting it to the appropriate type on retrieval from the cache. Think of Azure Redis

Cache as a service that provides a giant dictionary in the cloud.

Azure Redis Cache is an in-memory caching service that runs on VMs outside of your

Web Apps. This offers two benefits for building scalable web applications.

Because Azure Redis Cache is implemented as a service outside of your web

application, you can scale out your Web Apps to multiple instances and have all

instances reading from a common cache. Therefore, if the network load balancer

routes users to different instances of your Web App, all data stored in the cache will be

consistent.

Because Azure Redis Cache holds your data in memory, access is very, very fast,

provided that your cache is provisioned in the same datacenter as your other Azure

services.

When you provision an Azure Redis Cache instance, you can choose from multiple

instance sizes in a Basic, Standard, or Premium tier. The Basic tier has no service-level

agreement (SLA) and no replication failover. Therefore, if you try to use an instance from

the Basic tier in production, be aware that if the VM hosting your cache is recycled, you

will lose all data within the cache. Basic instances are cheap and perfect for development

or playing around to become more familiar with the service.

Chapter 3 Azure Data Storage Overview

70

The Standard and Premium tiers are recommended for production jobs. The

Standard tier is replicated, has automatic failover for recovery in case the primary node

fails, and offers an SLA of 99.9% availability. The Premium tier offers the same benefits as

the Standard tier, along with the ability to scale out via Redis Cluster, taking and restoring

snapshots of the cache for disaster recovery, and higher throughput.

Now that you know that Azure Redis Cache is an ultrafast key/value data store, the

next question on your mind is probably “OK, so how do I interact with it?” That’s a very

good question. Because Redis is a mature open source project, there are already lots

of libraries out there for interacting with and managing your Redis Cache. Microsoft

recommends using StackExchange.Redis, an open source library built by, maintained by,

and used by the good folks at StackExchange. Yep, that’s the same company who brought

us StackOverflow.com, where we all go to get answers. The StackExchange.Redis library

is available via NuGet, or you can download and compile it directly from GitHub.

Now for the sort-of bad news: There’s no local emulator for Azure Redis Cache. This

leaves you with two options when developing solutions on your local computer.

You can install your own copy of Redis locally. For Windows users, the best bet

will be to download and install the MSOpenTech Redis port. You can download the

installer from https://github.com/MSOpenTech/redis/releases. You can still use the

StackExchange.Redis library with this local installation. I personally hate this option

because as developers, we are perpetually sweating aggressive deadlines, and the last

thing we need is to have to set up and babysit additional infrastructure. That’s why

I prefer the second option.

You can provision a C0 Basic Azure Redis Cache instance, and use it for local

development. This means that even though you’re developing your web application and

debugging on localhost, all Redis cache calls will go out over the Internet, hit the Azure

Redis Cache service at the datacenter where you provisioned your cache instance, and

return. It’s not exactly a recipe for high performance, but it works just fine. The benefit

is that you don’t have to install and configure yet another local service. The bad news is

that you will incur a charge of $0.055 per hour as of the time of this writing. Don’t forget

to shut down your Azure Redis Cache instance before you go home for the day.

Finally, here is the $64,000 question: What is Azure Redis Cache best used for in

building scalable web applications? There are two scenarios in which it excels.

•	 Maintaining session state in a multiweb front-end scenario: If you

need to maintain session state, Azure Redis Cache is the place to do

it. All Web App instances can access the cache and see the same data.

Chapter 3 Azure Data Storage Overview

www.allitebooks.com

https://github.com/MSOpenTech/redis/releases
http://www.allitebooks.org

71

•	 Building a cache atop another persistent data store: Imagine that you

have data within your app that is accessed very frequently and is

relatively expensive to read from a persistent data store. An example

of such data might be user security settings such as an access control

list. Rather than rereading this information every time a user accesses

your web application, you can cache it in an Azure Redis Cache

instance for very fast retrieval. This comes with considerations. You

will need to consider how long information should live in the cache,

if you’re implementing a lazy loading strategy to populate the cache,

and make sure that if the cached data is updated within the application,

you either update or remove the stale data within the cache.

�Azure Table Storage
Azure Tables are a very simple, highly scalable, and extremely cheap NoSQL service.

Azure Tables store entity records, which are sometimes referred to as rows. An entity

record is simply a subclass of the Microsoft.WindowsAzure.Storage.Table.TableEntity

class that you create. Your subclass can have any properties that you wish. You can even

mix different subclasses in the same Azure Table.

Azure Tables store data in tables. However, these tables are not relational, and

there’s no support for joining tables. I’ve always thought this service was poorly named;

you should think of Azure Table storage as a dictionary and not a relational table.

Conceptually, it is a key/value store. You provide Azure with a key, and it hands you back

the associated entity record identified by the key.

Although Azure Tables is a key/value store, there’s a little more complexity to delve

into. Each Azure Table is made up of one or more partitions. Each partition contains

one or more rows. Each record within an Azure Table is uniquely identified by the

combination of a partition key and a row key. The partition key and row key together

make up the “key” that was mentioned earlier.

Why did Microsoft introduce the concept of a partition into Azure Tables? Doesn’t

it just overcomplicate things? Those were my thoughts when I first read about this

service, but partitions are part of the magic that allows Azure Tables to scale to up to 500

terabytes of data.

Chapter 3 Azure Data Storage Overview

72

Each partition within your table lives on a partition server. Under the covers, Azure

might move partitions around from server to server for load balancing purposes.

Splitting your table data across multiple servers by partition is what allows Azure Table

Storage to scale. Imagine if you had a table called ZipCodes. You defined your partitions

by state so that all zip codes within a given state live in the same partition. Your row

key is the five-digit zip code. This leaves you with 50 partitions that collectively contain

roughly 43,000 zip code records.

If I query my ZipCodes table and pass in a partition key of Tennessee and a zip

code of 37405, Azure will first figure out which partition server contains the data for the

Tennessee partition. It will then jump to the unique zip code record of 37405 and return

it to the caller. This type of query in which both a partition key and row key are provided

is called a point query. It’s blindingly fast and will return a single record. There are other

types of queries such as a row range scan within a partition, a partition range scan that

scans across multiple partitions, and a full table scan across all partitions and all rows.

There is support for transactions, but only within the same partition. If we’re updating

information on zip codes in our previous example, we can only frame a transaction for zip

code records within the same state because they are all part of the same partition.

Working with Azure Table Storage is pretty easy. To interact with Table Storage, use

the Azure Storage Client Library. This can be downloaded separately, but it’s included

with the Azure SDK. There is also an emulator that you can use during development on

your local machine. Finally, there’s an indispensable tool called Azure Storage Explorer

that you can use to view the contents of Queues, Tables, or Blobs in Azure Storage. The

Azure Storage Explorer works on both your local emulator and on Azure.

Azure Table Storage is billed by the number of gigabytes stored per month. When

allocating Table Storage, you can choose between service tiers of Locally Redundant

Storage (LRS), Globally Redundant Storage (GRS), and Read-Access Globally Redundant

Storage (RA-GRS). LRS is the least expensive per GB per month, and RA-GRS is the most

expensive per GB per month. There is also a small charge per 100,000 read and write

operations. At the time of this writing, it’s a paltry $0.0036.

�When to Use Azure Table Storage

Azure Table Storage is by far the cheapest data storage solution available. It’s also

blazingly fast and nearly infinitely scalable. Its main downside is that its only index is the

partition and row keys. There is no way to construct a secondary index without writing

the code to do so yourself.

Chapter 3 Azure Data Storage Overview

www.allitebooks.com

http://www.allitebooks.org

73

Use Azure Table Storage if you only need one index for retrieval (because that’s all

that’s available) and you plan on having many gigabytes of data and a great deal of reads

and writes. If you do not think that your data will grow over several gigabytes or are not

sure if you will need to query on something other than one key, consider Azure SQL or

Cosmos DB.

As mentioned previously, don’t be afraid to mix storage services and use Azure Table

Storage to store part of your application’s data if Table Storage makes the most sense.

Note T roy Hunt, the creator of haveIBeenPwned.com, wrote an entertaining
and informative blog post on how he created a site using Azure Table Storage
that manages more than 150 million records. You can read it at https://www.
troyhunt.com/working-with-154-million-records-on/

�Cosmos DB
Cosmos DB is a NoSQL Azure service that stores documents. Here, document doesn’t

refer to Excel or Word docs; it refers to a JavaScript Object Notation (JSON) document,

which is nothing more than a valid JSON object. Because this can be a mind-bending

concept for developers who have only worked with the relational model, here’s an

example of a JSON document for a musical album that could be stored in Cosmos DB:

{

 "album": "Abbey Road",

 "artist": "The Beatles",

 "release_date": "26 September 1969",

 "tracks": {

 { "title": "Come Together", "written_by": "John Lennon" },

 { "title": "Something", "written_by": "George Harrison" },

 �{ "title": "Maxwell’s Silver Hammer", "written_by:

"Paul McCartney" }

 }

}

Chapter 3 Azure Data Storage Overview

https://www.troyhunt.com/working-with-154-million-records-on/
https://www.troyhunt.com/working-with-154-million-records-on/

74

Relational database designers might freak out when seeing this. After all, if we were

going to represent this data in the relational database paradigm, we’d have separate

tables for Artists, Albums, Tracks, and Composers. These four tables would be associated

by primary/foreign key relationships.

The lack of normalization and having documents containing all information

necessary to satisfy a query is part of the beauty of NoSQL in general and Cosmos

DB in particular. Imagine if we are building a web application that serves up album

information. To retrieve an album’s information from a normalized relational database

would require several joins to return its full information. In Cosmos DB, returning an

album’s information requires a single read.

This raises several further questions for folks coming from a relational database

background. How exactly do we query for this album information? How fast is retrieval

time? How are indexes created? What happens if denormalized data that is repeated

throughout the database needs to change?

Querying for information is actually easy. You can query Cosmos DB using a

modified SQL syntax. The syntax is surprisingly similar to the SQL used in relational

databases. Developers coming from a relational background who are fluent in SQL will

be able to get up to speed fairly quickly.

Retrieval times are on average very, very fast. Cosmos DB’s goal is extremely low

latency reads and writes. Cosmos DB ensures that the read time for at least 99% of read

operations is less than 10 ms. The target latency for writes is 15 ms for at least 99% of

write operations.

In relational databases, indexes are required for fast reads and writes, and database

designers are responsible for defining indexes. This is typically done by examining

how an application needs to access data, then creating covering indexes to ensure

that database engine doesn’t have to resort to table scans on large tables to locate

data. Indexing in Cosmos DB is much simpler: It’s automatically done for you. Yes,

you did read that correctly. Every property on every document within Cosmos DB is

automatically indexed. To save index space, you can explicitly exclude properties from

indexing if you so choose.

In many instances, denormalized data turns out to not be such a horror as long as

it’s done intelligently. When deciding what type of data each document that you store in

Cosmos DB will have, think in terms of exactly how an app will query and update data.

Ideally, you will structure your data in such a way that interactions with an application

can be completed with a single query. Also, think of what data needs to be denormalized

Chapter 3 Azure Data Storage Overview

www.allitebooks.com

http://www.allitebooks.org

75

to satisfy queries, and how likely the data is to change. In our previous album example,

it is extremely unlikely that any of the information listed will change after an album is

published. The risk in denormalizing with our example document is effectively zero.

In the event that denormalized data does change, there are provisions for executing a

transaction that updates all data via JavaScript.

�Working with Cosmos DB
Cosmos DB has its own SDK. You can query a Cosmos DB database using LINQ SQL

statements via an API. Microsoft also has a Cosmos DB emulator that you can install

locally to work with when developing your apps.

�Scaling Cosmos DB
Just like index creation, scaling is something that you don’t have to consider. By default,

Cosmos DB is elastic and can grow to whatever size you need. Throughput (how many

queries Cosmos DB can satisfy in a given period of time) is defined by the developer.

You can even instruct Cosmos DB to be globally available across two or more regions

around the world. Cosmos DB instances in differing regions automatically replicate

and synchronize with one another. You will need to specify a consistency policy that

tells Cosmos DB exactly when other users who are potentially reading from an instance

in another regions see changes made. This is a trade-off between consistency and

performance.

Cosmos DB is truly global scale. If you build atop Cosmos DB, you will never lay in

bed at night staring at the ceiling trying to figure out how to scale your app’s data storage.

�Pricing
Cosmos DB is priced by GB per month stored, and reserved request units per second

(RU/s).

A request unit is a measure that Microsoft created. The Cosmos DB pricing

page gives the definition of an RU as a “measure of throughput in Cosmos DB. 1 RU

corresponds to the throughput of the GET of a 1KB document.” In other words, we don’t

need to worry about CPU, I/O, memory, or drive space. If you want faster performance,

simply dial up the reserved number of RUs for your Cosmos DB instance.

Chapter 3 Azure Data Storage Overview

76

�When to Use Cosmos DB
If you’re creating a new web application, I highly recommend considering Cosmos

DB. Take a look at how your application will access data and what your reporting needs

will be. If it is possible to fit your data into documents, strongly consider Cosmos DB over

a relational database. I can speak from personal experience: As you scale up Azure SQL

databases, it gets expensive. Once you reach the top 4,000 DTU Azure SQL instance and

there’s not another option for scaling up, you’re left with difficult decisions to further

scale your application.

�Summary
In this chapter, we discussed the differences between SQL and NoSQL data storage

solutions, and looked broadly at what Azure offers for each. Now let’s dive into the

specifics of each data storage service.

Chapter 3 Azure Data Storage Overview

www.allitebooks.com

http://www.allitebooks.org

77
© Rob Reagan 2018
R. Reagan, Web Applications on Azure, https://doi.org/10.1007/978-1-4842-2976-7_4

CHAPTER 4

Azure SQL Databases
For nearly 30 years, SQL Server has been Microsoft’s premier relational database

management system (RDBMS) offering. There have been various versions released that

target different scenarios. SQL Server is capable of handling the data storage needs from

lightly trafficked blogs all the way to airline reservation systems. It’s also been a favorite

for developers writing web apps using a Microsoft stack.

Back in the old days (meaning before 2010), setting up SQL Server as the data store

for a highly available and scalable web site was no small undertaking. You had to do fun

things such as these:

•	 Set up and harden a physical or virtual machine to host SQL Server.

•	 Make hardware decisions regarding where the data and log files

would reside.

•	 Create and implement a disaster recovery plan.

•	 Plan for and implement high availability.

•	 Make sure that your SQL Server deployment was secure.

•	 Monitor usage and tune for performance as needed.

•	 Keep current with patches and updates.

Getting these steps right required a highly skilled database administrator (DBA). This

isn’t something that developers could reasonably hope to accomplish in their spare time

by skimming through a few TechNet articles. This, coupled with SQL Server licensing

costs, made standing up such a database an expensive proposition.

78

�Introducing Azure SQL Database
Azure SQL Database is Microsoft’s cloud-based relational database solution. For all

practical purposes, Azure SQL Database is a fully managed version of SQL Server

running within Azure. Because Azure SQL is a PaaS offering, you don’t have to worry

about most of the aforementioned headaches associated with setting up a stand-alone

SQL Server instance.

From a developer’s perspective, there’s almost no difference between a stand-alone

SQL Server instance and an Azure SQL Database instance. It’s extremely common to

develop web applications locally against a stand-alone SQL Server Express or Developer

Edition, then deploy to an Azure SQL Database. We discuss strategies for doing so later

in this chapter. Most of the differences between stand-alone and Azure SQL Database

involve administrative TSQL commands that don’t make sense in a PaaS environment,

or differences in how ancillary services are provided.

Some of the benefits of Azure SQL Databases include the following:

•	 Create an instance in seconds: You can provision an instance and be

ready to program against your new Azure SQL Database in less time

than it takes to brew a pot of coffee.

•	 Automatic performance tuning: SQL Database will monitor your app’s

interaction with the database and automatically suggest indexes

to improve your app’s performance. You can choose to review all

suggestions and choose whether to apply, or you can tell Azure to

automatically add suggested indexes.

•	 Automatic backups: SQL DB will automatically perform full,

differential, and transaction log backups. Storage for backups is

included with your SQL Database instance at no extra charge. The

backup retention period varies based on your chosen service tier.

Databases in the Basic tier will retain backups for the last seven days,

whereas databases in the Premium tier retain backups for 35 days.

These backups enable point-in-time restores.

•	 Point-in-time restore: Using backups, you can restore to a database to

a point in time. This is very handy if a database becomes corrupted, is

accidentally deleted, or if a developer accidentally omits the “where”

clause in a delete statement.

Chapter 4 Azure SQL Databases

www.allitebooks.com

http://www.allitebooks.org

79

•	 Transparent data encryption: Transparent data encryption (TDE)

automatically encrypts each database, transaction log, and backup

when at rest.

•	 Zero downtime for scale up and scale down operations: You can

scale up or scale down your instance size with zero downtime.

This allows you to start with a smaller instance and scale up as your

web application grows.

•	 Manage using SQL Server Management Studio: Connect to and

manage your databases using SQL Server Management Studio, just as

you would your on-premises SQL Server databases.

•	 Geo-replication: With a few clicks and keystrokes, you can replicate

your database to up to four (or to the same) datacenters. Replicas are

read-only and are kept in sync with the primary in near real time. The

delay in data synchronization is mainly due to network latency.

This has several benefits. You can offload read-intensive tasks to a

replicated read-only instance. You can also failover and promote a

read-only secondary to a primary in the event of a datacenter outage.

•	 Failover groups for high availability: Failover with geo-replication has

one downside: After promoting a replicated secondary database as

the new primary, the new primary will have a different connection

string. This is because all secondaries in other datacenters live on

other servers. Therefore, you’ll need to change the connection string

in your web application to point to the new primary. It’s one more

step that you’ll have to perform as part of the disaster recovery

process.

If you add geo-replicated databases to a failover group, you can

use a single connection string to address the primary database

in your failover group. Azure can automatically detect that the

primary is down, and will promote one of your secondaries as

the new primary. Because the primary is addressed with the

same connection string, though, your app doesn’t have to make

any changes. I’m a big fan of automating disaster recovery tasks

so that I’m not interrupted at home with “The Call” from the

operations team.

Chapter 4 Azure SQL Databases

80

•	 Cash flow: Running an Azure SQL Database instance can help your

company’s cash flow. Although most developers don’t really care,

your accounting department sure does. Instead of paying for a SQL

Server license up front, Azure SQL Databases are billed by the hour.

It’s analogous to renting a Zipcar instead of purchasing a vehicle: You

only pay for the time that you use. It’s a lot easier to ask your boss

for $30 per month for an Azure SQL Database instance rather than

several thousand dollars to purchase a SQL Server license.

�Licensing
Azure SQL Database instances are billed by the hour that the instance is allocated. The

hourly rate billed depends on the service tier and instance size that you select.

There are four service tiers: Basic, Standard, Premium, and Premium-RS. Each

service tier has multiple instance sizes available. Here’s a quick rundown of the different

tiers.

•	 Basic: Instances in the Basic tier are great for hosting development

databases or lightly trafficked sites. This is the cheapest tier, and

instances start at around $5 per month.

•	 Standard: Consider a Standard tier instance for web applications

with concurrent workloads and moderate amounts of traffic.

•	 Premium: If your web application is mission critical, has high traffic

volumes, and has heavy I/O needs, go with a Premium instance.

•	 Premium-RS: The Premium-RS tier has the same high I/O

performance as the Premium tier, but has a reduced SLA. Databases

in this tier are great for heavy I/O tasks that aren’t mission critical.

Each instance size within a service tier specifies the maximum database size and

maximum DTUs.

Chapter 4 Azure SQL Databases

www.allitebooks.com

http://www.allitebooks.org

81

�Single Database vs. Elastic Pool
Imagine that your company has three databases that power its day-to-day operations.

Each of these databases is generally quiet and only consumes a dozen or so DTUs on

average. Occasionally, though, each database will burst to around 50 DTUs for a few

minutes, then quiet back down to its normal level. If you had to choose an instance

size for each database, you’d likely go with an S3 instance from the Standard tier, which

allows up to 100 DTUs. At the time of this writing, a single S3 instance costs about $150

per month per database, for a total outlay of $450 per month.

This seems like an awful waste because most of the time, each database has almost

90 DTUs of excess capacity. This is a scenario that’s perfect for elastic pools.

An elastic pool can contain multiple databases that draw on a shared pool of DTUs,

which are called eDTUs. Although the sum of DTU usage of each database cannot

exceed the pool’s maximum DTU limit, each database within the pool can dynamically

use as many DTUs as necessary.

In our previous example, we would likely place our three databases in a Standard tier

100 eDTU pool. This costs roughly $225 per month, giving us a substantial savings over

provisioning each database under the single database model.

�Exceeding a DTU Limit
What happens when a database experiences heavy load and hits its DTU limit? When

a database instance (or databases with an elastic pool) hits the DTU limit, queries will

be throttled. Response times will increase, possibly to the point that timeouts occur and

exceptions occur.

The good news is that we can configure alerts within Azure to let us know when we

start bumping against a DTU limit, and scaling up a database is simple to do and doesn’t

cause any downtime. The bad news is that there isn’t currently an autoscale feature to

automatically scale up and down a SQL DB instance as there is for Web Apps.

We’ll talk about ways to handle errors due to throttling when walking through our

sample application.

Chapter 4 Azure SQL Databases

82

�TaskZilla: Our Example Application
Imagine that we work at AwesomeTech, a software development firm. Our company

has decided to develop TaskZilla, an internal-use web application to help developers

track tasks that they need to perform. Taskzilla is a simple app; it will allow developers to

create, read, update, and delete (CRUD) tasks. Serendipitously, this corresponds to the

database CRUD operations.

Because our goal in this chapter is to explore and illustrate how to use Azure SQL

databases in web applications, we won’t spend much time focusing on parts of the code

base that don’t pertain to SQL Database.

The code is fully commented and available for download at https://github.com/

BuildingScalableWebAppsWithAzure/TaskZilla.git.

The remainder of this chapter assumes that you are familiar with basic relational

database concepts such as queries, tables, columns, and rows. You’ll also need to be

somewhat familiar with Entity Framework. Both of these topics are broad (and deep)

and are beyond the scope of this book.

�Creating the TaskZilla Project
To keep our workload to a minimum, we’ll create TaskZilla as an ASP.NET Web

Application that uses the MVC template. To create the project, follow these steps:

	 1.	 Open Visual Studio 2015 and choose File ➤ New ➤ Project.

	 2.	 In the New Project dialog box, select the ASP.NET Web Application

(.NET Framework) template located under the Installed ➤

Templates ➤ Visual C# ➤ Web heading. Enter TaskZilla for the

Name and Solution Name, then click OK (Figure 4-1).

Chapter 4 Azure SQL Databases

www.allitebooks.com

https://github.com/BuildingScalableWebAppsWithAzure/TaskZilla.git
https://github.com/BuildingScalableWebAppsWithAzure/TaskZilla.git
http://www.allitebooks.org

83

	 3.	 On the next screen, you’ll be asked to select a template. Select

MVC and click OK (Figure 4-2).

Figure 4-1.  Creating a project using the ASP.NET Web Application template

Chapter 4 Azure SQL Databases

84

We’re now ready to move on to creating our data model.

�The TaskZilla Data Model
Our requirements are simple:

•	 Users need to be able to list all tasks in the system.

•	 They should also be able to add new tasks and edit and delete

existing tasks.

•	 Users should be able to securely log in and log out of the application.

•	 Tasks consist of a name, an extended description, a priority, who the

task is assigned to, and the estimated time it will take to complete the

task in hours.

Figure 4-2.  We’ll use the MVC template when creating our project

Chapter 4 Azure SQL Databases

www.allitebooks.com

http://www.allitebooks.org

85

To satisfy our secure login and logout requirements, we’ll make use of ASP.NET

Identity, which is already incorporated in our project template. Identity already has its

own set of tables defined, which will be created in the database when the application is

first run.

�Creating the ASP.NET Identity Tables

Let’s start by actually setting up those ASP.NET Identity tables. To do so, follow these

steps.

	 1.	 First, we need to create a TaskZilla database in your local SQL

Server instance. Open SQL Server Management Studio, connect

to your local SQL Server instance, right-click the Databases folder

on your local instance, and select New Database. In the New

Database dialog box, enter TaskZilla as the database name, then

click OK.

	 2.	 Now that our local database is created, we need to direct our

TaskZilla web application to use it. Open the project’s

web.config file and find the DefaultConnection node located in

the <connectionStrings></connectionStrings> section. Change

this connection string to point to your local SQL Server instance

and the new TaskZilla database that you just created.

	 3.	 Run the application. You’ll see the default ASP.NET MVC welcome

page, shown in Figure 4-3. Behind the scenes, though, our

application used Entity Framework Code First Migrations to create

the tables necessary to support ASP.NET Identity in our TaskZilla

database. If you jump back over to SQL Server Management

Studio and view all tables in the TaskZilla database, you’ll see the

Identity tables that have just been created (Figure 4-4).

Chapter 4 Azure SQL Databases

86

Figure 4-4.  After browsing to our TaskZilla database in SQL Server Management
Studio, we can see the ASP.NET Identity tables created by our TaskZilla web
application.

Figure 4-3.  The default ASP.NET Web Application MVC template welcome
page

Chapter 4 Azure SQL Databases

www.allitebooks.com

http://www.allitebooks.org

87

�Creating Our Tasks and Priorities Tables

Now we’re ready to create our Tasks and Priorities tables that will store task information

in our application.

To create the TaskZilla database, open SQL Server Management Studio, connect to

your local SQL Server instance, and execute the TSQL shown in Listing 4-1.

Listing 4-1.  The TSQL to Create Our Tasks and Priorities Tables

USE [TaskZilla]

GO

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

/* Create the Priorities table. This is a lookup table that will contain

our priorities

 of Low, Medium, and High */

CREATE TABLE [dbo].[Priorities](

 [Id] [int] NOT NULL,

 [Priority] [nvarchar](24) NOT NULL,

 CONSTRAINT [PK_Priorities] PRIMARY KEY CLUSTERED

(

 [Id] ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF,

ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]

) ON [PRIMARY]

GO

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

Chapter 4 Azure SQL Databases

88

/* The Tasks table holds our actual tasks definition. The code below

creates it. */

CREATE TABLE [dbo].[Tasks](

 [Id] [int] IDENTITY(1,1) NOT NULL,

 [Name] [nvarchar](64) NOT NULL,

 [Description] [nvarchar](2000) NULL,

 [AssignedToUserId] [nvarchar](128) NOT NULL,

 [PriorityId] [int] NOT NULL,

 [EstDurationInHours] [decimal](18, 2) NULL,

 CONSTRAINT [PK_Tasks] PRIMARY KEY CLUSTERED

(

 [Id] ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF,

ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]

) ON [PRIMARY]

GO

/* We'll create a foreign key that defines a relationship between the

AspNetUsers

 �table (which holds all of our users) and the Tasks table.

This relationship will

 ensure that each task is assigned to a user */

ALTER TABLE [dbo].[Tasks] WITH CHECK ADD CONSTRAINT [FK_AspNetUsers_Tasks]

FOREIGN KEY([AssignedToUserId])

REFERENCES [dbo].[AspNetUsers] ([Id])

GO

ALTER TABLE [dbo].[Tasks] CHECK CONSTRAINT [FK_AspNetUsers_Tasks]

GO

/* We'll add another foreign key that defines a relationship between tasks and

priorities. Each task will have a priority. */

ALTER TABLE [dbo].[Tasks] WITH CHECK ADD CONSTRAINT [FK_Priorities_Tasks]

FOREIGN KEY([PriorityId])

REFERENCES [dbo].[Priorities] ([Id])

GO

ALTER TABLE [dbo].[Tasks] CHECK CONSTRAINT [FK_Priorities_Tasks]

GO

Chapter 4 Azure SQL Databases

www.allitebooks.com

http://www.allitebooks.org

89

Note that we’ve made sure to define foreign key relationships between our tables.

This will be very important when we set up Entity Framework in the next section.

�The Data Access Tier
We’ve defined our model, so now let’s create our data access tier. There are multiple

technologies that we could use to access our database. Some of the more popular

choices include ADO.NET, Dapper, and Entity Framework.

�Handling Transient Faults

Before choosing a data access technology for our app, let’s talk about one of the primary

differences between a stand-alone SQL Server installation and Azure SQL Database:

transient faults.

When working with Azure SQL Database, we occasionally encounter transient faults.

A transient fault is an ephemeral error that’s usually very short-lived and self-corrects.

These errors can be due to an internal Azure issue. In my experience, though, transient

faults are almost always the result of bumping up against a database DTU limit and

having queries throttled.

If you’re building an app that accesses a stand-alone SQL Server instance that sits

on a local area network (LAN), you don’t have to deal with throttling or spend as much

time worrying about transient faults. Therefore, using ADO.NET is sufficient. If you’re

using an Azure SQL Database and rely on a data access technology with no automatic

retry when transient faults are encountered, however, you’re going to have a bad time.

Occasionally, queries will fail and your users will be frustrated.

There are a couple of ways that we can deal with transient faults. Our first option is

to combine ADO.NET or Dapper with Microsoft’s Transient Fault Handling Application

Block. The Transient Fault Handling Application Block will detect when errors occur and

reissue requests.

The second option is to use Entity Framework. Starting in Entity Framework 6,

Microsoft included a feature called connection resiliency and retry logic. This allows us

to configure Entity Framework to retry requests that fail due to known transient issues

with SQL Azure Database.

Entity Framework has other benefits such as Code First Migrations, which we will

use to deploy our database to Azure SQL Database and issue future schema updates.

We’ll use Entity Framework in TaskZilla.

Chapter 4 Azure SQL Databases

90

�Setting Up Entity Framework

	 1.	 To keep things tidy and organized within the project, let’s create a

Persistence folder to hold our Entity Framework Context class and

generated models. Right-click the TaskZilla project, then select

Add ➤ New Folder. Name this new folder Persistence.

	 2.	 Right-click the new Persistence folder and choose Add ➤ New

Item. In the Add New Item dialog box, select the Visual C# ➤

Data menu item, and select the ADO.NET Entity Data Model

from the list of available items (Figure 4-5). Name the new item

TaskZillaContext and click Add.

	 3.	 Next, the Entity Data Model Wizard will ask how you want to set up

Entity Framework. Select Code First from Database (Figure 4-6).

This will instruct Entity Framework to examine our existing database

and generate a DbContext subclass and associated model objects

based on our existing database schema. Note that this is why it is

very important to make sure that your database has foreign keys

Figure 4-5.  Adding the ADO.NET Entity Data Model to our project

Chapter 4 Azure SQL Databases

www.allitebooks.com

http://www.allitebooks.org

91

that define relationships between tables. If you neglect to set up the

foreign key relationships, Entity Framework has no idea how tables

are related and will not create relationships within generated model

classes.

Figure 4-6.  We’ll use Code First from Database to initialize our DbContext
subclass and associated model classes

Chapter 4 Azure SQL Databases

92

	 4.	 The Entity Data Model Wizard now needs to know which database

it should examine to generate our DbContext subclass and

associated model classes. We’ll need to supply a connection string

to the database we’d like to use. Because we’ve already set up our

DefaultConnection connection string in the web.config file, you

can accept the defaults on this screen (Figure 4-7).

Figure 4-7.  We’ll need to specify a connection string to the database that we want
the Entity Data Model Wizard to use when generating our DbContext subclass and
associated model classes

Chapter 4 Azure SQL Databases

www.allitebooks.com

http://www.allitebooks.org

93

	 5.	 Finally, we need to tell the Entity Data Model Wizard which tables

and views should be included in our application. Note that we

do not want to include every table, as there are several tables

generated to support ASP.NET Identity that we do not need. Expand

the Tables node and select AspNetUsers, Priorities, and Tasks

(Figure 4-8). We’re including AspNetUsers because we will need to

allow our users to assign tasks to specific users within the system.

Figure 4-8.  Choosing the tables we want to include in our Entity Framework
DbContext subclass and models

Chapter 4 Azure SQL Databases

94

	 6.	 Click Finish to generate our Entity Framework code.

After the wizard finishes, you’ll see several new classes in our Persistence

folder. The AspNetUser.cs, Priority.cs, and Task.cs are generated model classes.

Their properties are created based on our database tables that we included. The

TaskZillaContext.cs derives from DbContext and is responsible for moving our objects

back and forth to our relational database.

�The Application Tier
Our Application tier is where the “business logic” resides. The Application tier will

receive requests from our Controllers, then interact with the database using Entity

Framework to fulfill those requests.

�Creating the View Models

Often there’s a mismatch between our database model classes that are generated by

Entity Framework, and the models needed by our Views to interact with the user. This

is why it’s a great idea to have a separate set of view model classes that are used to move

data back and forth to our Views.

For simple applications, you might find that there’s a very close match between

the model classes needed to render Views and the model classes generated by Entity

Framework. You might be tempted to just use the Entity Framework model classes for

passing information back and forth to Views. Don’t do it! As applications evolve, it’s

usually the case that the model classes needed for Views drift from Entity Framework

models. Polluting your Entity Framework models with extra properties to support Views

ends up being a giant mess. Separate the two from the start.

We’ll put our view models in the existing Models folder. The code for our view

models is shown in Listing 4-2. You can place it in a file named TaskDTO.cs in the

Models folder.

Chapter 4 Azure SQL Databases

www.allitebooks.com

http://www.allitebooks.org

95

Listing 4-2.  Our View Model Code

namespace TaskZilla.Models

{

 public enum OpResult

 {

 NoOp, Success, Exception

 }

 /// <summary>

 /// Parent class for our data transport objects.

 /// </summary>

 public class BaseDTO

 {

 public OpResult Result = OpResult.NoOp;

 public string ErrorMessage;

 }

 /// <summary>

 �/// Transports information about a task, the options for priorities,

 �/// and the options

 �/// for users who we can assign the task to back and forth from our

 �/// service layer to

 /// our Controller.

 /// </summary>

 public class TaskDTO : BaseDTO

 {

 public int Id { get; set; }

 [Required]

 [StringLength(64)]

 public string Name { get; set; }

 [StringLength(2000)]

 public string Description { get; set; }

 [Display(Name = "Assigned to")]

 public string AssignedToUserId { get; set; }

Chapter 4 Azure SQL Databases

96

 [Display(Name = "Assigned to")]

 public string AssignedToLabel { get; set; }

 [Display(Name = "Priority")]

 public int PriorityId { get; set; }

 [Display(Name = "Priority")]

 public string PriorityLabel { get; set; }

 [Display(Name = "Est. Duration")]

 public decimal? EstDurationInHours { get; set; }

 public List<PriorityDTO> Priorities { get; set; }

 public List<UserDTO> Users { get; set; }

 }

 /// <summary>

 /// Used to transport all priority types to our Views. This is mainly used

 /// in binding to drop-downs where the user will pick a priority

 /// </summary>

 public class PriorityDTO

 {

 public PriorityDTO() { }

 public PriorityDTO(int id, string priority)

 {

 this.Id = id;

 this.Priority = priority;

 }

 public int Id { get; set; }

 public string Priority { get; set; }

 }

 /// <summary>

 �/// Used to transport a list of users who are valid assignees for a

 �/// task. This

 �/// is used by our Views and is mainly bound to drop-downs where a user

 �/// needs to

Chapter 4 Azure SQL Databases

www.allitebooks.com

http://www.allitebooks.org

97

 /// be selected.

 /// </summary>

 public class UserDTO

 {

 public UserDTO() { }

 public UserDTO(string id, string userName)

 {

 this.Id = id;

 this.UserName = userName;

 }

 public string Id { get; set; }

 public string UserName { get; set; }

 }

}

�Creating the TaskService Class

The TaskService class holds the entirety of our Application tier logic. First, create a

folder called Services. Within the Services folder, create a file called TaskService.cs

and enter the code shown in Listing 4-3.

Listing 4-3.  The TaskService.cs Class

using System.Collections.Generic;

using System.Linq;

using System.Web;

using TaskZilla.Persistence;

using TaskZilla.Models;

using System.Data.Entity;

namespace TaskZilla.Services

{

 /// <summary>

 �/// This is our "business logic" layer. It is responsible for working

 �/// with Entity Framework

Chapter 4 Azure SQL Databases

98

 �/// to handle CRUD operations and translate results into view models

 �/// for consumption

 /// by our controllers.

 /// </summary>

 public class TaskService

 {

 private TaskZillaContext _context;

 /// <summary>

 �/// Constructor. Note that in a production app, we'd inject

 �/// dependencies such as

 /// the TaskZillaContext into this constructor using a dependency

 /// injection

 /// framework like Autofac

 /// </summary>

 public TaskService()

 {

 _context = new TaskZillaContext();

 }

 /// <summary>

 /// Retrieves all priorities defined in the database.

 /// </summary>

 /// <returns></returns>

 �public async System.Threading.Tasks.Task<List<PriorityDTO>>

GetPriorities()

 {

 �List<Priority> prioritiesList = await _context.Priorities.

ToListAsync();

 �List<PriorityDTO> priorityDTOs = DTOHelpers.CopyPriorities

(prioritiesList);

 return priorityDTOs;

 }

 /// <summary>

 /// Returns the task identified by taskId.

 /// </summary>

Chapter 4 Azure SQL Databases

www.allitebooks.com

http://www.allitebooks.org

99

 /// <param name="taskId">Primary key for the requested task</param>

 /// <returns>A populated task instance, if the requested task

 /// is found. Otherwise returns null.</returns>

 �public async System.Threading.Tasks.Task<TaskDTO> GetTaskById

(int taskId)

 {

 Task t = await _context.Tasks.FindAsync(taskId);

 var taskDto = new TaskDTO

 {

 Id = t.Id,

 Name = t.Name,

 Description = t.Description,

 EstDurationInHours = t.EstDurationInHours,

 AssignedToUserId = t.AssignedToUserId,

 PriorityId = t.PriorityId,

 PriorityLabel = t.Priority.Priority1,

 AssignedToLabel = t.AspNetUser.UserName

 };

 return taskDto;

 }

 /// <summary>

 /// returns all users defined in the system.

 /// </summary>

 /// <returns></returns>

 public async System.Threading.Tasks.Task<List<UserDTO>> GetUsers()

 {

 //we'll use a projection since we don't need to retrieve fields

 //such as password...

 var users = await _context.AspNetUsers.Select(p => new

 { Id = p.Id, UserName = p.UserName }).ToListAsync();

 List<UserDTO> userDTOs = new List<UserDTO>();

 foreach (var u in users)

 {

 userDTOs.Add(new UserDTO(u.Id, u.UserName));

 }

Chapter 4 Azure SQL Databases

100

 return userDTOs;

 }

 /// <summary>

 /// Updates a task in the database.

 /// </summary>

 public async System.Threading.Tasks.Task UpdateTask(TaskDTO task)

 {

 var taskToUpdate = await _context.Tasks.FindAsync(task.Id);

 taskToUpdate.Name = task.Name;

 taskToUpdate.Description = task.Description;

 taskToUpdate.PriorityId = task.PriorityId;

 taskToUpdate.AssignedToUserId = task.AssignedToUserId;

 taskToUpdate.EstDurationInHours = task.EstDurationInHours;

 await _context.SaveChangesAsync();

 }

 /// <summary>

 �/// returns all tasks in the system. This demonstrates an inner

 �/// join between

 /// Tasks, Priorities, and AspNetUsers.

 /// </summary>

 /// <returns></returns>

 �public async System.Threading.Tasks.Task<List<TaskDTO>>

GetAllTasksAsync()

 {

 var tasks = await (from t in _context.Tasks

 join p in _context.Priorities on t.PriorityId equals p.Id

 join u in _context.AspNetUsers on t.AssignedToUserId equals u.Id

 select new { Priority = p, Task = t, User = u }).ToListAsync();

 List<TaskDTO> taskDTOs = new List<TaskDTO>();

 foreach (var t in tasks)

 {

Chapter 4 Azure SQL Databases

www.allitebooks.com

http://www.allitebooks.org

101

 taskDTOs.Add(new TaskDTO {

 Id = t.Task.Id,

 Name = t.Task.Name,

 Description = t.Task.Description,

 PriorityId = t.Task.PriorityId,

 PriorityLabel = t.Priority.Priority1,

 AssignedToUserId = t.Task.AssignedToUserId,

 EstDurationInHours = t.Task.EstDurationInHours,

 AssignedToLabel = t.User.UserName

 });

 }

 return taskDTOs;

 }

 /// <summary>

 /// Adds a new task to the database.

 /// </summary>

 /// <param name="newTask">The task to add</param>

 public async System.Threading.Tasks.Task CreateTask(TaskDTO newTaskDTO)

 {

 Task newTask = new Task

 {

 Name = newTaskDTO.Name,

 Description = newTaskDTO.Description,

 AssignedToUserId = newTaskDTO.AssignedToUserId,

 PriorityId = newTaskDTO.PriorityId,

 EstDurationInHours = newTaskDTO.EstDurationInHours

 };

 _context.Tasks.Add(newTask);

 await _context.SaveChangesAsync();

 }

 /// <summary>

 /// Removes a task from the database.

 /// </summary>

Chapter 4 Azure SQL Databases

102

 public async System.Threading.Tasks.Task DeleteTask(int id)

 {

 Task taskToDelete = await _context.Tasks.FindAsync(id);

 _context.Tasks.Remove(taskToDelete);

 await _context.SaveChangesAsync();

 }

 }

 /// <summary>

 �/// Contains helper methods to copy Entity Framework Models into

 /// ViewModels.

 /// </summary>

 public class DTOHelpers

 {

 �public static List<PriorityDTO> CopyPriorities(List<Priority>

priorities)

 {

 List<PriorityDTO> dtos = new List<PriorityDTO>();

 foreach (Priority p in priorities)

 {

 dtos.Add(new PriorityDTO(p.Id, p.Priority1));

 }

 return dtos;

 }

 }

}

�Controllers and Views
Next, let’s add methods to our HomeController class located in the Controllers folder.

The code for our HomeController is shown in Listing 4-4.

Listing 4-4.  The HomeController Class

using System;

using System.Collections.Generic;

using System.Web.Mvc;

Chapter 4 Azure SQL Databases

www.allitebooks.com

http://www.allitebooks.org

103

using TaskZilla.Services;

using TaskZilla.Models;

using System.Threading.Tasks;

namespace TaskZilla.Controllers

{

 /// <summary>

 /// Contains methods to handle views for all task-related activities.

 /// Users must be logged in to access any methods in this controller.

 /// </summary>

 [Authorize]

 public class HomeController : Controller

 {

 private TaskService _taskService;

 /// <summary>

 /// Constructor. In a production app, we'd inject all

 /// dependencies like TaskService

 /// into this constructor using a DI framework like Autofac.

 /// </summary>

 public HomeController()

 {

 _taskService = new TaskService();

 }

 /// <summary>

 /// Shows the user all tasks in the system.

 /// </summary>

 /// <returns></returns>

 public async Task<ActionResult> Index()

 {

 List<TaskDTO> tasks = await _taskService.GetAllTasksAsync();

 return View(tasks);

 }

Chapter 4 Azure SQL Databases

104

 /// <summary>

 /// Shows the create task screen.

 /// </summary>

 /// <returns></returns>

 [HttpGet]

 public async Task<ActionResult> Create()

 {

 �List<PriorityDTO> allPriorities = await _taskService.

GetPriorities();

 List<UserDTO> allUsers = await _taskService.GetUsers();

 TaskDTO task = new TaskDTO();

 task.Priorities = allPriorities;

 task.Users = allUsers;

 return View(task);

 }

 /// <summary>

 /// Handles the validation and creation of a new task.

 /// </summary>

 �/// <param name="taskToCreate">The task that the user wants to

 /// create</param>

 /// <returns>A viewModel indicating whether the create operation

 /// was successful</returns>

 /// <summary>

 /// Called when the user submits a new task.

 /// </summary>

 [HttpPost]

 public async Task<ActionResult> Create(TaskDTO taskToCreate)

 {

 try

 {

 await _taskService.CreateTask(taskToCreate);

 taskToCreate.Result = OpResult.Success;

 }

Chapter 4 Azure SQL Databases

www.allitebooks.com

http://www.allitebooks.org

105

 catch (Exception ex)

 {

 taskToCreate.Result = OpResult.Exception;

 taskToCreate.ErrorMessage = ex.Message;

 }

 return View(taskToCreate);

 }

 /// <summary>

 /// Renders a view that shows a task's details.

 /// </summary>

 /// <param name="id">The primary key of the task to view</param>

 /// <returns>A view containing the requested task's details</returns>

 [HttpGet]

 public async Task<ActionResult> Details(int id)

 {

 TaskDTO task = await _taskService.GetTaskById(id);

 return View(task);

 }

 /// <summary>

 /// Renders a view that will allow the user to edit a specific task.

 /// </summary>

 /// <param name="id">The ID of the task that we want to edit</param>

 �/// <returns>A view populated with the requested task's details.

</returns>

 [HttpGet]

 public async Task<ActionResult> Edit(int id)

 {

 TaskDTO task = await _taskService.GetTaskById(id);

 List<UserDTO> allUsers = await _taskService.GetUsers();

 �List<PriorityDTO> allPriorities = await _taskService.

GetPriorities();

Chapter 4 Azure SQL Databases

106

 task.Priorities = allPriorities;

 task.Users = allUsers;

 return View(task);

 }

 /// <summary>

 /// Writes the edits to a task back to the database, and tells the user

 /// if the update was successful.

 /// </summary>

 /// <param name="task">The task with edits to be saved</param>

 �/// <returns>A view informing the user if the update was

 �/// successful</returns>

 [HttpPost]

 public async Task<ActionResult> Edit(TaskDTO task)

 {

 try

 {

 await _taskService.UpdateTask(task);

 task.Result = OpResult.Success;

 }

 catch (Exception ex)

 {

 task.Result = OpResult.Exception;

 task.ErrorMessage = ex.Message;

 }

 return View(task);

 }

 /// <summary>

 /// Deletes the specified task and tells the user if the

 /// deletion was successful.

 /// </summary>

 /// <param name="id">The ID of the task to delete</param>

Chapter 4 Azure SQL Databases

www.allitebooks.com

http://www.allitebooks.org

107

 �/// <returns>A view telling the user if the deletion was

 �/// successful</returns>

 public async Task<ActionResult> Delete(int id)

 {

 await _taskService.DeleteTask(id);

 return View();

 }

 }

}

The Views for TaskZilla are both trivial and verbose, so we’ll omit them here.

If you’d like to view or download them, check out the GitHub repo for this project at

https://github.com/BuildingScalableWebAppsWithAzure/TaskZilla.git.

�Finishing Touches
Note that the entire HomeController class is marked with the [Authorize] attribute,

meaning that a user must be logged in to execute any of the HomeController methods.

We’ll need to add a node to the <appSettings></appSettings> section of our web.config

file to let ASP.NET know where to direct users who are unauthenticated. To do so, add

"<add key="loginUrl" value="~/Account/Login" />" between the <appSettings>

</appSettings> tags in the web.config.

�Running the Application
After running the application, you’ll be redirected to the /Account/Login screen because

you’re not yet authenticated (Figure 4-9).

Chapter 4 Azure SQL Databases

https://github.com/BuildingScalableWebAppsWithAzure/TaskZilla.git

108

Because this is the first time that the application has run, you’ll need to click on the

Register As a New User link below the login fields to create an account. After creating an

account, you can log in to the site.

Once logged in, you’ll see the main screen that lists all tasks in the system (Figure 4-10).

From this screen, you can add, edit, view, or delete tasks.

�Deployment to Azure
At this point, we’re running TaskZilla against a database on our local SQL Server. It’s now

time to publish our database to Azure. We’ll first need to create an Azure SQL Database

instance.

Figure 4-9.  The TaskZilla login screen

Figure 4-10.  The /home/index page lists all tasks defined in the system

Chapter 4 Azure SQL Databases

www.allitebooks.com

http://www.allitebooks.org

109

�Creating an Azure SQL Database Instance
To create an Azure SQL Database instance, perform the following steps:

	 1.	 Log into the Azure Portal. Click the Add Resource button (the plus

sign at the top of the left toolbar), select Databases, and click the

SQL Database menu item (Figure 4-11).

	 2.	 Next, we need to enter the particulars for our new instance

(Figure 4-12). Here’s a rundown of the fields that we must specify:

•	 Database Name: This is the name of our new database. It must be

unique within the server. For this exercise, enter TaskZilla.

•	 Subscription: This is the subscription that you’d like to bill for all

charges for this new database.

•	 Resource Group: Resource groups allow you to manage resources

that share a similar purpose as a group. We’ll place our TaskZilla

database and Web App in the same resource group. Select Create

New, then enter rg-taskzilla as the resource group name.

Figure 4-11.  Creating a new Azure SQL Database instance

Chapter 4 Azure SQL Databases

110

•	 Select Source: When creating a new Azure SQL Database, we can

start with a blank database, restore a backup of another database,

or begin with an example AdventureWorks database. Select Blank

database.

•	 Server: Each database must live on a server instance. You can

choose one of your existing servers or create a new server. Please

note that this server is not an Azure VM instance that you have

to pay for separately; it’s included with the pricing tier that you

select for your database.

If you create a new server, you’ll need to specify a server

name, which must be unique across all Azure SQL servers.

You’ll also need to specify a server administrative login and

password. These SQL authentication credentials will provide

administrative access to any database that you place on this

server. Finally, you’ll need to specify a region where the server

will be located.

It’s important to make sure that your Azure SQL Database

server and your Web App are located in the same region.

Otherwise, your application will be much slower due to

network latency.

•	 Want to Use SQL Elastic Pool? A SQL elastic pool lets multiple

databases share DTUs. For this example, select Not Now.

•	 Pricing Tier: The pricing tier and instance size that you select will

determine your database’s maximum available DTUs, maximum

database size, and cost. For this example, choose the Basic tier.

The Basic tier will cost roughly $5 per month, but you’ll only pay

depending on for how many hours your database instance exists.

Given how easy it is to scale up or scale down an Azure SQL Database

instance, I don’t agonize over choosing an instance size.

•	 Collation: Accept the default value.

Click Create to create your new database instance. Your database instance might

take a minute or two to allocate.

Chapter 4 Azure SQL Databases

www.allitebooks.com

http://www.allitebooks.org

111

�Setting Firewall Rules
SQL Database maintains an IP address whitelist to determine who can connect to a

database. By default, that whitelist is empty. Before connecting to your new database,

you must add your current IP address to your server’s whitelist by following these steps:

	 1.	 Log into the Azure Portal and navigate to your newly created

database instance. You can do so by clicking the All Resources

icon in the left menu bar, or by clicking the SQL Databases icon on

the left menu bar.

	 2.	 On your new database’s Overview blade, click Set Server Firewall,

located in the header (Figure 4-13).

Figure 4-12.  The Create SQL Database blade

Chapter 4 Azure SQL Databases

112

	 3.	 On the Firewall settings blade (Figure 4-14), click Add Client IP to

add your current IP address to the whitelist. I recommend adding a

descriptive name for each rule. Click Save to update your whitelist.

Figure 4-13.  The SQL Database Overview blade has a link to set server firewall
rules

Figure 4-14.  The Firewall settings blade allows you to add IP addresses to the SQL
Database IP whitelist

Chapter 4 Azure SQL Databases

www.allitebooks.com

http://www.allitebooks.org

113

�Connecting to the New Instance
Let’s make sure that we can connect to our new instance. Let’s open SQL Server

Management Studio, and do the following:

	 1.	 In SQL Server Management Studio, select File ➤ Connect

Object Explorer. This will open the Connect to Server dialog box

(Figure 4-15).

	 2.	 Use the following settings to connect:

•	 Server Type: This should be Database Engine.

•	 Server Name: This is the server name that you defined.

It will be in the format of [server name].database.windows.net.

I used TaskZilla as my server name, so I would enter taskzilla.

database.windows.net.

•	 Authentication: This should be SQL Server Authentication,

because we are going to connect with the server administrator

credentials.

•	 Login: This is the server admin username that you specified when

creating your server. It will be in the format of [username]

@[server name]. If I set my server admin username as

adminZilla, the login would be adminZilla @TaskZilla.

•	 Password: This is the server admin password that you specified

when creating your server.

Chapter 4 Azure SQL Databases

114

After entering your specific information, click Connect to create a connection.

�Deploying to Azure
After connecting with our new database via SQL Server Management Studio, it’s time to

publish our database schema to our Azure SQL Database. We’ll use Entity Framework

Code First Migrations to do so.

Entity Framework Code First Migrations is a very handy tool for scripting database

changes with Entity Framework. When you run the Entity Framework Code First

Migrations tool, it will do the following:

	 1.	 Examine your DbContext subclass to determine your current data

model.

	 2.	 Look back at your previous data model from the last time that you

executed the Entity Framework Code First Migrations tool. It will

then calculate what has changed.

Figure 4-15.  Connecting to our new database using SQL Server Management
Studio

Chapter 4 Azure SQL Databases

www.allitebooks.com

http://www.allitebooks.org

115

	 3.	 Generate the database transformation code needed to bring your

database schema, data, or both up to date from the last time that

the Entity Framework Code First Migrations tool was run. It will

also generate code to downgrade to the previous database state.

You can use this downgrade code in case things go horribly wrong

during your next deployment.

Let’s use our TaskZilla project to walk through an example. Our goals are to enable

Code First Migrations for our local database that currently contains our schema, and to

initialize our Azure SQL Database instance with the necessary tables and reference data

to run the TaskZilla application.

We’ll start by publishing our existing database schema to our Azure SQL Database.

	 1.	 Enable Entity Framework Code First Migrations: Before the fun

begins, we’ll first need to set our project up to include Entity

Framework Code First Migrations. This is done by entering a

command in the Visual Studio Package Manager Console.

	 a.	 With the TaskZilla project open in Visual Studio, go to the

Tools menu option and select NuGetPackage Manager, and

then Package Manager Console. This opens the Package

Manager Console command prompt.

	 b.	 Type Enable-Migrations -ContextTypeName TaskZilla.

Persistence.TaskZillaContext at the PM> prompt, then

press Enter. This will create a new Migrations folder in your

project, along with a Configuration.cs file to support the use

of Code First Migrations.

The reason that we specified the -ContextTypeName argument

is that there are actually two DbContext subclasses in this

project: one for our TaskZilla database tables, and the other

for the ASP.NET Identity provider. We must specify the

ContextTypeName whenever there’s more than one DbContext

subclass in the project.

Chapter 4 Azure SQL Databases

116

	 2.	 Script our existing database schema: We now need to let Code

First Migrations examine our TaskZillaContext to understand

our current data model. Code First Migrations will compare this

with the previously scripted model, then calculate and script

the difference between the two. Because there is no previously

scripted model, Code First Migrations will script the entire

database schema.

At the Package Manager Console prompt, type Add-Migration

InitialCreate. The InitialCreate argument is the name

applied to this new migration.

After this command finishes executing, you’ll note that a new file

with a name in the format of [timestamp]_InitialCreate.cs

has been added to your project. If you open the file, you’ll see that

there are two methods defined, Up() and Down(). These methods

contain code to modify the target database.

	 3.	 Manually modify the generated code (if needed): Before executing

a Code First Migration, we might need to manually tweak the

generated code. You won’t always need to perform this step, but

it’s exactly what we need to do in this case. Open the [timetamp]_

initialCreate.cs file, and comment out the statement to create

the dbo.AspNetUsers table.

This create statement was generated because the AspNetUsers

table is part of our TaskZillaContext. However, we’ll let the ASP.

NET Identity framework handle the creation of this table, and

Code First Migrations will complain if a database object already

exists. You can see the complete [timestamp]_initialCreate.cs

file with the AspNetUsers creation statement commented out in

Listing 4-5.

Chapter 4 Azure SQL Databases

www.allitebooks.com

http://www.allitebooks.org

117

Listing 4-5.  The Generated Code First Up() and Down()Migrations

namespace TaskZilla.Migrations

{

 using System.Data.Entity.Migrations;

 public partial class InitialCreate : DbMigration

 {

 ///the code within the Up() method runs when we run the update-database

 ///command at the Package Manager Console prompt.

 public override void Up()

 {

 �///NOTE: We don't want our Entity Framework Code First

 �///Migration to try to create

 ///this table because it will be created when ASP.NET Identity runs

 ///for the first time.

 //CreateTable(

 // "dbo.AspNetUsers",

 // c => new

 // {

 // Id = c.String(nullable: false, maxLength: 128),

 // Email = c.String(maxLength: 256),

 // EmailConfirmed = c.Boolean(nullable: false),

 // PasswordHash = c.String(),

 // SecurityStamp = c.String(),

 // PhoneNumber = c.String(),

 // PhoneNumberConfirmed = c.Boolean(nullable: false),

 // TwoFactorEnabled = c.Boolean(nullable: false),

 // LockoutEndDateUtc = c.DateTime(),

 // LockoutEnabled = c.Boolean(nullable: false),

 // AccessFailedCount = c.Int(nullable: false),

 // �UserName = c.String(nullable: false, maxLength: 256),

 // })

 // .PrimaryKey(t => t.Id);

Chapter 4 Azure SQL Databases

118

 CreateTable(

 "dbo.Tasks",

 c => new

 {

 Id = c.Int(nullable: false, identity: true),

 Name = c.String(nullable: false, maxLength: 64),

 Description = c.String(maxLength: 2000),

 �AssignedToUserId = c.String(nullable: false,

maxLength: 128),

 PriorityId = c.Int(nullable: false),

 �EstDurationInHours = c.Decimal(precision: 18, scale: 2),

 })

 .PrimaryKey(t => t.Id)

 .ForeignKey("dbo.Priorities", t => t.PriorityId)

 .ForeignKey("dbo.AspNetUsers", t => t.AssignedToUserId)

 .Index(t => t.AssignedToUserId)

 .Index(t => t.PriorityId);

 CreateTable(

 "dbo.Priorities",

 c => new

 {

 Id = c.Int(nullable: false),

 Priority = c.String(nullable: false, maxLength: 24),

 })

 .PrimaryKey(t => t.Id);

 }

 //this code is run if we decide that things have gone bad and

 //downgrade our

 //database to a previous version. It should be the inverse of the

 //changes

 //that are deployed in the Up() method.

Chapter 4 Azure SQL Databases

www.allitebooks.com

http://www.allitebooks.org

119

 public override void Down()

 {

 DropForeignKey("dbo.Tasks", "AssignedToUserId", "dbo.AspNetUsers");

 DropForeignKey("dbo.Tasks", "PriorityId", "dbo.Priorities");

 DropIndex("dbo.Tasks", new[] { "PriorityId" });

 DropIndex("dbo.Tasks", new[] { "AssignedToUserId" });

 DropTable("dbo.Priorities");

 DropTable("dbo.Tasks");

 DropTable("dbo.AspNetUsers");

 }

 }

}

	 4.	 Update our database connection string: When we apply a

Code First Migration, it will execute against the database

specified in our DBContext subclass’s database connection

string. Therefore, we need to open the web.config file and

update the TaskZillaContext and DefaultConnection

node’s connectionString property, which is located in the

<connectionStrings></connectionStrings> section.

You can find your database’s connection string by clicking the

Show Database Connection Strings link in the Overview blade in

the Azure Portal (Figure 4-16).

Figure 4-16.  You can find your database’s connection string by clicking the Show
Database Connection Strings link in the Overview blade in the Azure Portal

Chapter 4 Azure SQL Databases

120

	 5.	 Add reference data to the Code First Migration: Our Priorities table

has priority records defined for Low, Medium, and High priorities.

We want to push these reference records as part of our migration.

To do so, open the Configuration.cs file in the Migrations folder

and update the Seed method to match Listing 4-6.

Listing 4-6.  The Configuration.cs File’s Update Seed Method

protected override void Seed(TaskZilla.Persistence.TaskZillaContext context)

{

 context.Priorities.AddOrUpdate(

 new Persistence.Priority { Id = 1, Priority1 = "Low" },

 new Persistence.Priority { Id = 2, Priority1 = "Medium" },

 new Persistence.Priority { Id = 3, Priority1 = "High" }

);

 }

	 6.	 Run TaskZilla to create the ASP.NET Identity tables: Now that

our web.config’s DefaultConnection and TaskZillaContext’s

connection strings point to our new Azure SQL Database

database, run the TaskZilla app locally from Visual Studio. This

will create the ASP.NET Identity tables within our Azure SQL

Database. You can see these tables as soon as TaskZilla launches

(Figure 4-17). If your project isn’t using ASP.NET Identity, you can

skip this step.

Chapter 4 Azure SQL Databases

www.allitebooks.com

http://www.allitebooks.org

121

	 7.	 Perform the migration: Now it’s time to actually run the Entity

Framework Code First Migration. At the Package Manager

Console prompt, type Update-Database and press Enter. After

the command executes, you’ll see that the Tasks and Priorities

tables have been successfully created in our Azure SQL Database

TaskZilla database.

If you look at the tables in the TaskZilla database on Azure, you’ll see a table called

__MigrationHistory. This table is created by Entity Framework Code First Migrations. It

tracks what migrations have been deployed to the database. This means that if you’ve

defined five separate migrations locally, but only two have been deployed to the target

database, the next time you run the Update-Database command against the target

database, the remaining three migrations will be deployed in order.

Going forward, we’d like to use Code First Migrations to manage both our local

development database schema and our Azure SQL Database instance. Therefore, we

need to initialize our local database to use Code First Migrations.

Figure 4-17.  After running TaskZilla, you’ll see that the ASP.NET Identity tables
have been created

Chapter 4 Azure SQL Databases

122

We first need to change our DefaultConnection and TaskZillaContext connection

strings in web.config to point to our local database. If we run the Update-Database

command, though, Code First Migrations will try to create all database tables in our local

database, which already exist.

To solve this problem, we can comment out all code in the Up() method of our

[timestamp]_InitialCreate.cs class, then run the Update-Database command.

This will create the __MigrationHistory table in our local TaskZilla database, and Code

First Migrations will consider the InitialCreate migration to have been successfully

deployed.

�Publishing Schema Changes
We’ve successfully published our TaskZilla database to Azure using Entity Framework

Code First Migrations, which we can also use to modify our database schema after the

initial publish.

Let’s assume that we need to add an AdditionalComments field to our Tasks table. To

make this happen, we’ll update our Tasks model, create a new migration, and push the

migration to our target database. To do so, follow these steps:

	 1.	 Update our Entity Framework model: Open the Task.cs class in

the Persistence folder. This is our Entity Framework model for the

Tasks table. Add an AdditionalComments property by inserting the

code in Listing 4-7 into the Task class.

Listing 4-7.  The New AdditionalComments Property Definition in the Task Class

[StringLength(256)]

public string AdditionalComments { get; set; }

	 2.	 Generate a new Entity Framework migration: Now we need to

direct the Code First Migration tool to examine our current Entity

Framework model, compare it to the model from our last Entity

Framework migration, and generate code to script the changes.

At the Package Manager Console prompt, type Add-Migration

AdditionalComments and press Enter.

Chapter 4 Azure SQL Databases

www.allitebooks.com

http://www.allitebooks.org

123

When the command finishes executing, you’ll notice a new file

with a file name of [timestamp]_AdditionalComments.cs in

your Migrations folder. Open this file, and you’ll see that the

Up() and Down() methods contain code to add and remove the

AdditionalComments field (Listing 4-8).

Listing 4-8.  Entity Framework Has Scripted the Creation of the Tasks.

AdditionalComments Field in the Up()Method

namespace TaskZilla.Migrations

{

 using System;

 using System.Data.Entity.Migrations;

 public partial class AdditionalComments : DbMigration

 {

 public override void Up()

 {

 �AddColumn("dbo.Tasks", "AdditionalComments",

c => c.String(maxLength: 256));

 }

 public override void Down()

 {

 DropColumn("dbo.Tasks", "AdditionalComments");

 }

 }

}

	 3.	 Publish the migration: At the Package Manager Console command

prompt, type Update-Database. When the command finishes

executing, browse to your TaskZilla database and see that the

AdditionalComments field has been added to the Tasks table

(Figure 4-18). You’ll need to make sure that you change your

TaskZillaContext database connection string in the web.config

file to point to your local database as well, then rerun the

Update-Database command.

Chapter 4 Azure SQL Databases

124

�Rolling Back Schema Changes
You might push a new version of your web application to production and find that there

are serious problems and you need to roll back to the previous version. Rolling back

an Entity Framework Code First Migration is easy to do. You can use the command

Update-Database -TargetMigration [Name of Migration to roll back to]. In

our example, if we wanted to roll back to our initial publish and undo the creation

of the AdditionalComments field, we would use the command Update-Database

-TargetMigration InitialCreate.

I highly recommend testing both publish and rollback migrations in a staging

environment before deploying a new version to production. Your day will go from bad to

worse if you attempt to roll back a new version in your production environment, only to

find out that there are problems with the rollback.

�Backup and Restore
Backups and restores are an area where Azure really shines. To configure backups for

your Azure SQL Database instance, you’ll need to perform the following steps:

	 1.	 Do nothing.

That’s right: There’s nothing for you to do. When a new database is provisioned,

Azure automatically configures backups for you. Azure takes a full backup each week,

differential backups each hour, and transaction log backups at five- to ten-minute

intervals. The backups are stored for seven days for a Basic tier database, and 35 days for

all databases in the Standard and Premium tiers.

Figure 4-18.  The AdditionalComments column has been added successfully

Chapter 4 Azure SQL Databases

www.allitebooks.com

http://www.allitebooks.org

125

Azure’s backup strategy gives us the option for a point-in-time restore. You have the

ability to restore a backup to:

•	 A point in time on the same logical server as the original database.

This is great for those scenarios where users corrupt their own data,

or if a developer forgets a “where” clause on a delete statement.

•	 The deletion time for a database that was deleted.

To restore a backup, do the following:

	 1.	 In the Azure Portal, navigate to your SQL Database’s Overview

blade. Click the Restore link (Figure 4-19).

	 2.	 The Restore blade is shown in Figure 4-20. On the Restore blade,

you’ll need to do the following:

	 a.	 Enter a name for the new database that will be created from

the restored backup.

	 b.	 Next, enter the point in time you’d like to restore this database

to. Pay special attention that the time is designated in UTC.

	 c.	 Finally, specify the pricing tier for the restored database, or

elect to place the database in an elastic pool.

	 d.	 Click OK.

Figure 4-19.  The Restore link used to restore a backup

Chapter 4 Azure SQL Databases

126

The new database will be created from the backup that covers the point in time that

you specified.

Figure 4-20.  The Restore blade allows you to restore a database to a point in
time

Chapter 4 Azure SQL Databases

www.allitebooks.com

http://www.allitebooks.org

127

�Setting Up Alerts
If your SQL Database is experiencing problems, there are two ways for you to find out

that something is going wrong:

	 1.	 Set up alerts, and receive e-mail notifications from Azure when

the thresholds that you define are exceeded in a specified time

period.

	 2.	 Hear about a problem from your customers.

Trust me, the first option is better.

You can set up alert rules to notify you on a wide range of metrics, such as DTU

percentage, absolute DTU usage, CPU percentage, the number of deadlocks in a time

period, the number of active connections to your database, and the list goes on and on.

To illustrate how configuring alerts works, let’s create an alert rule that will send us

an e-mail when DTUs for the TaskZilla database exceed 80% of the maximum DTUs

available.

	 1.	 In the Azure Portal, navigate to the TaskZilla database

management blade. On the left menu, click Alert Rules, located

under the Monitoring heading. This will take you to the Alert

Rules blade, which will list all of the alert rules that you’ve defined

thus far. You’ll need to click Add Alert to create a new rule.

	 2.	 On the Add an Alert Rule blade (Figure 4-21), you’ll need to

provide settings to configure the new alert. For our example, these

are as follows:

•	 Resource: This allows you to select the database to monitor.

Choose your TaskZilla database.

•	 Name: This is a friendly name for the new alert rule. It will appear

on the Alert Rules blade. Name this rule DTUs.

•	 Description: This is a short description of the rule. Enter DTUs

exceeds 80%.

Chapter 4 Azure SQL Databases

128

•	 Metric: From this drop-down list, you can select a metric to

monitor. Select DTU percentage. While you’re here, expand the

drop-down list to familiarize yourself with other metrics that are

available for monitoring.

•	 Condition: Select Greater than.

•	 Threshold: Enter 80.

•	 Period: This is how long the metric must match the condition and

threshold to trigger the alert. For our example, select Over the last

5 minutes.

•	 Who to contact: You can select the check box to e-mail owners,

contributors, and readers. You can also include additional

e-mails, or specify a web hook that will be called when the alert is

triggered.

Click OK button to create the alert rule.

Chapter 4 Azure SQL Databases

www.allitebooks.com

http://www.allitebooks.org

129

Figure 4-21.  The Add an Alert Rule blade allows us to create new alerts on a
specified metric

Chapter 4 Azure SQL Databases

130

�Scale Up
Several weeks after launching, TaskZilla has really caught on. Everyone at your company

is using it to manage their tasks. While sitting at your desk enjoying a well-deserved

afternoon coffee break, you receive an alert from Azure SQL that your DTUs have

exceeded the 80% threshold for the last five minutes. You’ll need to scale up the database

to handle the load.

Fortunately, this is easy to do. Azure allows you to change instance sizes or service

tiers without interruption. To scale up or scale down, do the following:

	 1.	 Log into the Azure Portal and navigate to your Azure SQL

Database management blade.

	 2.	 On the Azure SQL Database management blade, click Pricing Tier

(Scale DTUs) located under the Settings heading. This takes you to

the Configure Performance blade (Figure 4-22).

	 3.	 Simply select the service tier from the tabs at the top (the tabs

are labeled Basic, Standard, Premium, and PremiumRS). Within

each tab, use the slider to select your desired amount of DTUs and

storage. Your selection will correspond to an instance size within

the tier. Based on your selection, Azure will show the service tier

and estimated monthly spend. Click Apply to complete your scale

up or scale down.

Figure 4-22.  The Configure Performance blade, where you can scale up or scale
down your Azure SQL Database instance size

Chapter 4 Azure SQL Databases

www.allitebooks.com

http://www.allitebooks.org

131

Remember that you’re billed on an hourly basis for the number of

hours that your database is provisioned. If you scale up or down

midmonth, you’ll be billed for the hours used at your original

service tier, then for hours used during the remainder of the

month at your new service tier.

�Performance Tuning
Back in the old days (which means before Azure SQL Database), database performance

tuning was a chore. It would usually start with a support ticket complaining about how

an app was running slow. After some general debugging, you’d realize that there was a

problem with database performance. If the culprit query wasn’t immediately obvious,

it was time to resort to the SQL Server Profiler to monitor usage and flag queries that

took a long time to execute. Finally, you’d take a look at the naughty query’s estimated

execution plan to figure out where the bottleneck was and how it could be improved.

At the end of the entire process, this often resulted in creating a new index.

With Azure SQL, the performance tuning process has been greatly simplified. Let’s

take a look at the Performance Recommendations and Query Performance Insight.

�Performance Recommendations
Azure constantly monitors your app’s queries and the resulting database performance.

Over time, Azure will identify missing indexes and alert you that they should be added.

To see all index recommendations, navigate to your Azure SQL Database management

blade and click Performance Recommendations located under the Support +

Troubleshooting heading. This will take you to the Performance Recommendations

blade (Figure 4-23).

Chapter 4 Azure SQL Databases

132

All recommended indexes are displayed in the Recommendations section. The

Tuning History section will display all recommendations that have been applied. You’ll

note that in Figure 4-23, an index is listed as Reverted. If you apply a suggested index and

Azure finds that it negatively affects performance, Azure will roll the index back.

�Automating Performance Tuning
If you navigate to your Azure SQL Database management blade and click Automatic

Tuning, you can specify whether Azure should automatically apply add and drop index

recommendations (Figure 4-24). Whether you should enable automatic performance

tuning is a matter of personal preference and the technology you’ve chosen for updating

your database schema.

Figure 4-23.  The Performance Recommendations blade

Figure 4-24.  Automatic tuning settings. You can inherit the auto tuning settings
from the server, or override them at the database level

Chapter 4 Azure SQL Databases

www.allitebooks.com

http://www.allitebooks.org

133

If you are relying on a Database Project to publish changes to your database schema,

you should not enable automatic performance tuning. Database Projects work by

comparing your existing database schema to the defined database schema, then making

changes to your database to bring it in line with the schema. If Azure automatically

creates suggested indexes, and the new indexes are not present in your Database

Project, your new indexes will be rolled back the next time that your Database Project is

published. If you’re using a Database Project, make sure that the recommended indexes

get added to your database project to prevent rollback.

If you’re using Entity Framework Code First Migrations, this isn’t an issue. Code

First Migrations don’t reconcile your database schema to a defined model; it only

publishes the changes that you’ve explicitly defined in your DbMigration subclass’s Up()

method. Therefore, it is safe to enable automatic performance tuning when using Entity

Framework Code First Migrations.

�Query Performance Insight
The Query Performance Insight blade shows you the most resource-intensive queries for

a given time period. You can choose to see the most resource-intensive queries based on

CPU, I/O, duration, or execution count. This is a great tool to find out what’s driving your

DTU consumption.

I like to check Query Performance Insight before applying Performance

Recommendations to be sure that there aren’t any suboptimal queries that trigger new

index recommendations.

�Geo-replication
When enabled, Geo-replication will asynchronously replicate transactions from your

original database (called the primary) to a secondary copy. The secondary copy can be

in the same region or in a different region. The secondary copy is read-only.

At any time, you can promote the secondary copy to become the primary. Once this

occurs, the old primary becomes the new secondary and is also read-only.

Chapter 4 Azure SQL Databases

134

There are several reasons we might want to enable Geo-replication and keep a

secondary copy of our database, including these:

•	 Disaster recovery: For disaster recovery purposes, the secondary

should live in a separate region. If the primary becomes unavailable,

you can promote the secondary, then update your web application’s

database connection strings to point to the new primary.

•	 Moving a database between regions: If you need to migrate a web

application between regions, consider enabling Geo-replication

and defining your secondary database in the region to which

you’re migrating. Once the initial seeding is complete, Azure will

asynchronously replicate transactions from your primary to your

secondary, keeping the two in sync. When you are ready to complete

the migration, promote your secondary to your primary.

•	 Offload reporting: If your application has DTU-intensive reporting

requirements, create a secondary copy of your database to handle all

reporting requests.

Let’s enable Geo-replication for our TaskZilla database.

	 1.	 In the Azure Portal, navigate to your TaskZilla database

management blade. Click Geo-replication menu under the

Settings heading. This will take you to the Geo-replication

management blade (Figure 4-25).

Figure 4-25.  The Azure SQL Geo-replication blade

Chapter 4 Azure SQL Databases

www.allitebooks.com

http://www.allitebooks.org

135

	 2.	 Your primary (which is your current TaskZilla database) and all

secondary databases are listed. To add a new secondary, click a

region in the Target Regions section. After clicking a region, you’ll

be taken to the Create Secondary blade (Figure 4-26).

Figure 4-26.  The Create Secondary blade

Chapter 4 Azure SQL Databases

136

	 3.	 On the Create Secondary blade, we’ll need to specify our server,

indicate whether this secondary will be part of an elastic pool,

and choose our pricing tier and instance size. The secondary’s

database name will be the same as the primary and cannot be

changed. Note that it is possible to have a different instance size

than the primary, but the primary and secondary must be in the

same pricing tier. After configuring all required options, click OK

to create your secondary database.

After clicking OK, it will take several minutes for Azure to configure your new

secondary. When it’s finished, you’ll see your secondary listed on the Geo-replication

blade (Figure 4-27). Clicking your secondary’s ellipsis button will open a shortcut menu

where you can choose to failover to your primary or stop replication.

Here are a few facts to keep in mind:

•	 Creating secondary replicas isn’t free. Unless you add your secondary

to an existing elastic pool, you’ll pay for the instance size and pricing

tier that you chose when setting up the secondary.

Figure 4-27.  The new secondary is listed on the Geo-replication blade

Chapter 4 Azure SQL Databases

www.allitebooks.com

http://www.allitebooks.org

137

•	 In the event of an outage that makes your primary unavailable, you’ll

need to select the Failover option shown in Figure 4-27 to promote

your secondary to become the primary. It’s very important to realize

that because your secondary database lives on another server, it will

have a separate connection string. As part of the failover process,

you’ll need to update your web application’s configuration string to

point to the newly promoted primary.

•	 You’re not restricted to a single secondary. You can have up to four

secondary databases defined.

�Summary
In this chapter, we introduced Azure SQL Database and discussed how to integrate it

with a web application. In the next chapter, we begin exploring Azure’s NoSQL offerings

by diving into Azure Table Storage.

Chapter 4 Azure SQL Databases

139
© Rob Reagan 2018
R. Reagan, Web Applications on Azure, https://doi.org/10.1007/978-1-4842-2976-7_5

CHAPTER 5

Azure Table Storage
Azure Table Storage is a very fast, very cheap key/value storage service that can scale

to hundreds of terabytes in size. It is part of the Azure Storage service, along with Azure

Queues, Blobs, Files, and Disks. If you have very few keys that you will ever use in

retrieving data, Table Storage might be exactly what you need.

�How Table Storage Works
Azure Table Storage is a NoSQL key/value store. This means that when adding a new

record to a Table Storage table, you’ll specify a key. Whenever you want to retrieve a

record, you pass in the key to a table and Azure Table Storage returns the record. You can

think of each table in Table Storage as a giant, nearly infinitely scalable dictionary.

In Table Storage terminology, a record is called an entity. Azure stores entities in

tables. An entity is simply a collection of properties, and properties are name and value

pairs. Example of properties are First Name = Jim and Address = 100 Main Street. Each

entity can have up to 255 properties.

Each entity in Azure Table Storage has three special properties called the partition

key, the row key, and the timestamp. Entities within the same table that have the

same partition keys will share the same partition, and the row key must be unique

within a single partition. The partition key and row key together make up the single

key that you use when looking up entities in a table. Both the partition and row keys

are required to be strings. An empty string is a valid partition or row key. You get to

specify which properties are used as the partition and row keys, and the choice is very

important for scalability, as we’ll see shortly. The timestamp is a special property that

is set each time an entity is modified. You cannot update the timestamp property, as it

is managed by Azure.

www.allitebooks.com

http://www.allitebooks.org

140

If you are coming from a relational database background and haven’t worked with

NoSQL databases before, Azure Tables might initially seem a little strange. Although you

can define multiple tables, these tables are not relational. Azure Tables does not support

foreign keys or enforce relationships between tables. There are no joins, and you cannot

access data within Azure Tables via SQL. In fact, a single table doesn’t even have an

enforced schema, meaning that you can mix entities with different property types within

a single table.

Let’s look at an example of three entities in an Azure Table (Table 5-1). We’ll call

this table Restaurants, and it will contain basic information on Taco Bell restaurants in

Tennessee.

In this example, the first two records share a partition key of Chattanooga, meaning

that they will both be stored as part of the Chattanooga partition. We can reference

any of these records by querying the Restaurants table and providing the partition and

row keys. The first and third records both have a row key of 100, and this is permissible

because each of these records belongs to a different partition. Note that the first and

third records have a property of HasGorditas, whereas the second record does not. This

shows how it is possible to have different properties for entities that are stored in the

same table. That might seem strange, but you will see how it can be advantageous when

we discuss transactions.

Table 5-1.  Restaurants

Partition Key (City) Row Key (City Business
License Number)

Address HasGorditas Timestamp

Chattanooga 100 88 Broad Street Yes 6/29/2016

12:04:39 AM

Chattanooga 110 1467 Market

Street

8/15/2016

8:13:18 AM

Knoxville 100 41 Cumberland

Blvd.

No 12/22/2016

12:10:01 PM

Chapter 5 Azure Table Storage

141

�Partitions
Relational databases are hard to scale because database files typically live on a

single server, and every server has finite storage capacity. NoSQL databases such as

Azure Tables are able to scale to hundreds of terabytes because they were designed

to distribute data from a single table across many servers, and partitions are the

mechanism for doing so.

All entities in a table that have the same partition key belong to the same partition.

In our previous example, there are two partitions: one for Chattanooga and one for

Knoxville. All data in a partition is stored on a single partition server, and one partition

server may hold many different partitions.

For each partition, Azure has a scalability target of servicing 500 table operations

per second. If a partition server is not experiencing heavy load, you could see higher

throughput. To achieve this target, Azure might move partitions from a hot server to one

that is currently receiving fewer requests.

�Transaction Support and Batching
Table Storage allows you to submit up to 100 operations in a batch. Supported operations

within a batch are insert, update, and delete. All entities within a batch must be part of

the same partition. You cannot include a query within a batch operation, and an entity

can only be modified once within a batch operation.

All operations within a batch are framed within a transaction. All operations succeed

or fail together. If you require transaction support in your application, you must take this

into consideration when choosing your partition keys and deciding what properties will

be a part of each entity.

�Types of Queries
Azure Tables only allow a single index, which is made up of the combination of the

partition key and row key. This functions much like a primary key within a relational

database. Table operations with a specified partition and row key are extremely speedy

and allow Azure Tables to find the entity needed as fast as possible. This is called a point

query.

Chapter 5 Azure Table Storage

www.allitebooks.com

http://www.allitebooks.org

142

Point queries are not the only type of query that you can perform. Other types of

queries include the following:

•	 Row range scan: If you specify a partition key and a partial row key,

Azure will scan the full range of possible matching entities within

a single partition and return the results. The speed of this query

depends on the number of records within the partition that must

be scanned. Although not as performant as a point query, this is the

second fastest query operation.

•	 Partition range scan: If you specify a partial partition key and an

optional partial row key, you’ll perform a partition range scan. Azure

will scan all possible matching partitions and all possible matching

rows within each partition and return the results. The speed depends

on the number of partitions that must be touched, and the number of

entities within each partition that must be examined. This is generally

the third fastest type of query.

•	 Full table scan: This occurs if all partitions must be searched, and

a subset or all entities within each partition must be examined.

Performance depends on the number of partitions and entities that

must be touched. This is generally the least performant type of query.

In a relational database, you can define as many secondary indexes as needed to

ensure that queries can quickly find what’s needed. In Azure Table Storage, though, you

cannot define additional indexes within a table. This is important to understand when

you’re deciding if Azure Table Storage is the best fit for your project.

�Working with Azure Table Storage
When choosing technologies, ease of use is extremely important. Azure Tables provide

several ways to query and manipulate data.

�REST API
You can call Azure Table Storage RESTful web services to perform any Table Services

operation. Results are returned in JSON format or as an ATOM feed, depending on

how you set the ACCEPT request header when making a request. Because the REST

Chapter 5 Azure Table Storage

143

API is a collection of HTTP/HTTPS endpoints, you can make use of the API with any

language that is capable of making HTTP requests. This makes the REST API useful if

you’re programming in a language that doesn’t yet have a Microsoft Azure Storage Client

Library, or if you particularly enjoy tedium and pain.

Microsoft currently has libraries available for .NET, Java, Node.js, C++, Python,

PHP, and Ruby. If you’re using one of these languages, you should definitely use the

appropriate SDK instead of the REST API.

�Azure Storage Client Library
The Azure Storage Client Library provides easy-to-use methods to interact with Table

Storage. You can do anything in the Client Library that you can with the REST API. The

library is available via NuGet, and is also included in the Azure SDK for .NET. Even if

you’ve installed the Azure SDK for .NET, it never hurts to check in NuGet to make sure

that you have the most up-to-date version of the Storage Client Library.

Automatic retry is another compelling reason to make use of the Storage Client

Library. We’ve discussed how Azure stores partitions on partition servers, and that there

are service targets per server. It is possible that if you query a table that resides on a

partition server that is experiencing a large volume of requests, your request might fail.

Another possible cause of failure is querying a partition that is momentarily unavailable

because it is in the process of being moved to another partition server. These issues can

result in an HTTP 503 Server Busy or an HTTP 504 Timeout. Both of these failures are

usually transient and short-lived. Retrying your request is usually successful.

If you’re using the REST API, you can either tell users that is they are out of luck

and their request failed, or you can write your own retry logic. If you’re using the Azure

Storage Client Library, there are several different retry policies that you can enable to

automatically retry your request after failure.

As an added bonus, the Storage Client Library also supports querying Table Storage

via LINQ.

�Local Storage Emulator
Azure Table Storage is billed by average number of gigabytes stored per month, plus a

fraction of a cent per 100,000 transactions. When developing a Table Storage solution,

you can run your application locally and make use of Azure Table Storage. Unless you’re

Chapter 5 Azure Table Storage

www.allitebooks.com

http://www.allitebooks.org

144

dealing with hundreds of gigabytes or terabytes of data during development, the cost to

use the live Azure Table Storage service is negligible. As of the time of this writing, locally

redundant storage is billed at $0.07 per GB per month for the first TB of data stored.

When developing locally and running against the live Azure Table Storage service, you

will still have to deal with latency as data travels between your local machine and your

chosen Azure datacenter.

If you don’t care to incur charges during development or want to avoid network

latency, you can develop using the Azure Storage Emulator. The Storage Emulator

emulates Azure Blob, Queue, and Table services on your local machine. Although the

Storage Emulator won’t scale to the same level as the live Azure Table Storage service, it

is perfectly acceptable to use in debug and testing.

The Storage Emulator is included in the Microsoft Azure SDK, and can also be

installed via a separate download.

�Table Design Guidelines
When designing relational databases, often little thought is given to indexing. We focus

on bringing the database design to second or third normal form. Once we get there,

we know that we can usually write queries to get the data that we need, and define

indexes that cover our queries to ensure that we can get the data quickly. If application

requirements change in the future (and they always do) and we need to add a new query

that results in a large table scan, we can always define additional indexes as needed.

To design scalable solutions with Azure Table Storage, careful thought must be given

to how data will be queried. The partition key and row key make up the only index at

our disposal. Our goal is to choose how we split our data among tables and to choose

appropriate partition and row keys for each table so that we make use of point queries as

often as possible and to avoid heavy row range, partition range, and table scans.

Here is a set of design guidelines you can follow when making these decisions.

In general, choose partition keys that divide your data into smaller partitions instead

of having one giant partition. This has several advantages. First, each partition has a

scalability target of 500 table operations per second at the time of this writing. If you

store all data on a single partition, your application could be throttled to a mere 500 table

operations per second. If instead you split your data across 50 partitions, your theoretical

minimum performance would be 25,000 table operations per second. Second, if you

must resort to row range, partition range, or table scans, performance will be much

Chapter 5 Azure Table Storage

145

better with smaller partitions to search and the ability to search partitions in parallel.

Third, if you have large amounts of data and try to store it all on a single partition, you

might be unsuccessful because your partition server’s drive space has been exhausted.

Microsoft has not yet published the maximum size of a single partition, but be aware that

this is a possibility if you elect to use gigantic partitions.

When choosing a partition key, consider your need for transaction support. If

multiple entities need to participate in a transaction to ensure all updates succeed or fail

together, those entities must be stored in the same table and have the same partition key.

Carefully consider the queries that your application will execute to retrieve data and

determine the keys required for those queries. If you only have a single key, use it as the

partition key. If you have two keys, use one as the partition key and the other as the row

key. If you have more than two keys, consider concatenating keys that will be queried

together to form a compound key. For example, if you know that you’ll query a person

by first and last name, concatenate them together. Bill_Lumberg is a perfectly acceptable

partition or row key.

�Walkthrough: Restaurant Finder
Now that we’ve discussed theory, let’s get down to practice and look at some code. To

do so, we’ll build an application called Restaurant Finder. The application serves an

important purpose: It allows hungry developers to find a Taco Bell by a variety of search

criteria.

To follow along with this example, you’ll need to have installed either the Azure SDK

for .NET or the Azure Storage Client Library and the Azure Storage Emulator. If you don’t

care to manually type the code, you can download the completed project from

https://github.com/BuildingScalableWebAppsWithAzure/TacoBellFinder.git.

�Restaurant Finder Requirements
The requirements for our application are listed here.

The application will have a search page. The searches that a user can perform are:

•	 By city, state, and restaurant ID number.

•	 By address, city, state, and zip code.

•	 By city, state, and zip code.

Chapter 5 Azure Table Storage

www.allitebooks.com

https://github.com/BuildingScalableWebAppsWithAzure/TacoBellFinder.git
http://www.allitebooks.org

146

•	 By state and health rating.

•	 All restaurants that have Gorditas.

For any restaurant, users can update the health rating and whether or not the

restaurant has Gorditas.

Users can delete a restaurant if it has been permanently closed.

�Designing Our Data Storage
After looking at our requirements, the properties that we need to track for each

restaurant are city and state, the restaurant ID number, street address, zip code, health

rating, and whether or not the restaurant has Gorditas.

Our first step is to determine how many tables we will need in our solution. Because

all data elements that we’re tracking are related, let’s store all of them in a single table

called Restaurants.

Next, let’s choose a partition key for the Restaurants table. Given the difficulty of

changing partition and row keys, it’s easy to panic when deciding how data will be stored

in a Table Storage solution. Take a deep breath: Do the best you can on the first pass and

iterate during development if necessary.

We want a partition key that will split our data up into many smaller partitions but

will still allow us to execute as many point queries and potentially smaller row range

scan queries as necessary given the queries that we plan to execute.

Let’s examine our options. Whether a restaurant has Gorditas is a binary value, so

we would have a maximum of two partitions. That would be the worst possible choice.

Health rating is a poor choice because it would give us a theoretical maximum of 100

partitions and is only used in a single query. That’s also a bad choice. Hopefully there are

less than 100 maximum partitions based on health rating; if a county health department

allows a restaurant with a health rating of 17 to stay in business, something is wrong.

Restaurant ID looks interesting and uniquely identifies a single restaurant, but this

would give us N partitions for N records, and Restaurant ID is only used in one query.

State is used in four queries, but would give us just 50 partitions. If we concatenated City

and State together, we would have many smaller partitions. This choice also restricts

our queries to a row range scan on a single partition for the first three queries even if we

choose our row key poorly. It also limits us to a partition scan on our fourth query. We

will have to use a table scan to find restaurants that have Gorditas.

Chapter 5 Azure Table Storage

147

Next, let’s choose our row key. Having Gorditas is not even a candidate for our row

key because the combination of the partition and row keys must uniquely identify a

record. The same problem exists for using health rating as our row key because it is

certainly possible for two restaurants in the same city and state to have the same health

rating. Zip code is not an acceptable choice for the same reason. Two restaurants having

the same address within the same city seems highly unlikely, but possible. We do know

that restaurant ID is guaranteed to be unique, however.

Choosing the restaurant ID as our row key will guarantee the uniqueness of an entity

within a partition in our Restaurants table. It will also allow us to use a point query for

our first query listed in the requirements. This means that the second and third queries

will result in a row range scan across a single small partition of a few dozen entities

at most. Our fourth query by state and health rating will be a partition scan across

all partitions holding records for the specified state, and finding the restaurants with

Gorditas will result in a full table scan. This seems like a good start, but perhaps we can

find some optimizations once we get into the source.

Now that we’ve settled on our table design, let’s write some code.

�Setting Up the Project
We’ll begin by creating our .NET Core project. Open Visual Studio and choose File ➤

New ➤ Project. Next, expand the Visual C# node and select .NET Core, then name your

project TacoBellFinder (Figure 5-1).

Chapter 5 Azure Table Storage

www.allitebooks.com

http://www.allitebooks.org

148

You’ll then be prompted to select a template. Select Web Application and click OK.

Last but not least, let’s add the necessary NuGet package. Right-click your

project, select Manage NuGet Packages, select the Browse option, and search for the

WindowsAzure.Storage package. Once you’ve located it, add it to your project.

Because our focus is on using Azure Table Storage, let’s keep extraneous code

that we’d normally write in production applications to a minimum. We won’t worry

about putting in place frameworks like AngularJS or React, or writing robust client-side

validation.

�Creating Our Restaurant Data Class
When working with relational databases, Entity Framework is kind enough to generate all

data access classes for you. With Table Storage, we get to write them ourselves. The good

news, though, is that the programming model is pretty simple and it’s not hard to do.

Figure 5-1.  Create the .NET Core project

Chapter 5 Azure Table Storage

149

For each table that we want to interact with, we need a single .NET class that derives

from Microsoft.WindowsAzure.Storage.Table.TableEntity. The TableEntity class

defines a few public properties that Table Storage requires, such as PartitionKey,

RowKey, Timestamp, and ETag. The ETag property is a representation of an entity’s last-

modified timestamp and is used by Table Storage when updating entities. If you attempt

to make updates to a table by passing a class that does not inherit from TableEntity, an

exception will be thrown.

Make a new folder called Models in your project, then add a Restaurants.cs class.

The complete code is listed here (Listing 5-1).

Listing 5-1.  Restaurants.cs Class

namespace TacoBellFinder.Web.Models

{

 /// <summary>

 �/// This class holds information about a single Taco Bell restaurant.

 �/// Note that it

 /// inherits from TableEntity. All entities in a table that are manipulated

 /// through the Azure Table Storage SDK must inherit from TableEntity.

 /// </summary>

 public class Restaurant : TableEntity

 {

 public Restaurant()

 { }

 /// <summary>

 /// Constructor.

 /// </summary>

 /// <param name="city">The city where the restaurant is located. This will

 /// be half of the partition key.</param>

 �/// <param name="state">The state where the restaurant is located. This will

 /// be other half of the partition key.</param>

 �/// <param name="restaurantNumber">The unique restaurant Id for this

 �/// Taco Bell.

Chapter 5 Azure Table Storage

www.allitebooks.com

http://www.allitebooks.org

150

 /// This will become the row key.</param>

 public Restaurant(string city, string state, string restaurantId)

 {

 string pKey = state + "_" + city;

 pKey = pKey.ToLower();

 this.PartitionKey = pKey;

 this.RowKey = restaurantId;

 this.City = city;

 this.State = state;

 this.RestaurantId = restaurantId;

 }

 /// <summary>

 �/// This is a convenience method so that we can initialize a

 �/// Restaurant record

 /// in one line of code.

 /// </summary>

 public Restaurant(string city, string state, string restaurantId,

 string address, string zipCode, int healthRating, bool hasGorditas)

 : this(city, state, restaurantId)

 {

 this.Address = address;

 this.Zipcode = zipCode;

 this.HealthRating = healthRating;

 this.HasGorditas = hasGorditas;

 }

 �//Now we can define other properties that are not the row or

 �//partition key.

 public string Address { get; set; }

 public string Zipcode { get; set; }

 public int HealthRating { get; set; }

 public bool HasGorditas { get; set; }

Chapter 5 Azure Table Storage

151

 �//We will repeat our city, state, and restaurantId properties so that

 �//we do not

 //have to parse them from the row or partition keys.

 public string City { get; set; }

public string State { get; set; }

 public string RestaurantId { get; set; }

 }

}

Note that when we set our PartitionKey property, we are lowercasing the entire

string value. This is because both the partition and row keys are case sensitive for

comparison operations. The keys TN_Chattanooga and tn_chattanooga will refer to

different entities. We are not lowercasing our RowKey property only because all restaurant

ID numbers are always numeric.

�The Data Service Class
We will use the Azure Storage Client Library to create our Restaurants table and

populate, read, update, and delete its data. Let’s wrap all calls to the Storage Client

Library in a RestaurantService class. We’ll then use .NET Core’s dependency injection

to inject an instance of RestaurantService into controllers that need it.

Because we’re going to be using dependency injection, we’ll need to first define

an interface called IRestaurantService.cs. Create a new folder in the project called

Services and add the interface. We’ll start by defining a method for populating our

demonstration data (Listing 5-2).

Listing 5-2.  Populating Data

public interface IRestaurantService

{

 Task<bool> InitializeData();

}

The InitializeData method will connect to our Table Storage, check to see if the

Restaurants table exists, and create it if it doesn’t. It will then load all of our data for this

example.

Chapter 5 Azure Table Storage

www.allitebooks.com

http://www.allitebooks.org

152

Let’s create our RestaurantService class that implements the IRestaurantService

interface. Right-click the Services folder that you just created and add the class. The code

is provided in Listing 5-3.

Listing 5-3.  Create RestaurantService Class

using System;

using System.Collections.Generic;

using TacoBellFinder.Web.Models;

using Microsoft.Extensions.Options;

using Microsoft.WindowsAzure.Storage.Table;

using Microsoft.WindowsAzure.Storage;

using System.Threading.Tasks;

namespace TacoBellFinder.Web.Services

{

 public class RestaurantService : IRestaurantService

 {

 private AzureStorageConfig _config;

 /// <summary>

 /// Constructor. Our configuration file containing our account name

 /// and storage key

 /// are injected in.

 /// </summary>

 public RestaurantService(IOptions<AzureStorageConfig> config)

 {

 _config = config.Value;

 }

 /// <summary>

 /// Inserts or replaces all of our initial data for this project.

 /// </summary>

 /// <returns></returns>

 public async Task<bool> InitializeData()

 {

 CloudTable restaurantsTable = await GetRestaurantsTable();

Chapter 5 Azure Table Storage

153

 �//now, let's refresh our data using insert or replace. We'll frame

 �//all of

 //our operations for a single partition together in a batch.

 �//This will give us transaction support, and will ensure that

 �//we're only

 //charged for one storage operation per batch.

 �TableBatchOperation chattanoogaBatchOp = new

TableBatchOperation();

 �Restaurant chattanooga1 = new Restaurant("Chattanooga", "TN", "00001",

 "9918 Pennywood Lane", "37363", 98, true);

 �Restaurant chattanooga2 = new Restaurant("Chattanooga", "TN", "00002",

 "837 Stellar View", "37405", 100, true);

 �Restaurant chattanooga3 = new Restaurant("Chattanooga", "TN", "00019",

 "1467 Market Street", "37409", 97, false);

 chattanoogaBatchOp.InsertOrReplace(chattanooga1);

 chattanoogaBatchOp.InsertOrReplace(chattanooga2);

 chattanoogaBatchOp.InsertOrReplace(chattanooga3);

 await restaurantsTable.ExecuteBatchAsync(chattanoogaBatchOp);

 TableBatchOperation knoxvilleBatchOp = new TableBatchOperation();

 Restaurant knoxville1 = new Restaurant("Knoxville", "TN", "00119",

 "27 Cumberland Blvd", "37996", 88, true);

 Restaurant knoxville2 = new Restaurant("Knoxville", "TN", "00128",

 "987 Scenic Highway", "37994", 88, false);

 knoxvilleBatchOp.InsertOrReplace(knoxville1);

 knoxvilleBatchOp.InsertOrReplace(knoxville2);

 await restaurantsTable.ExecuteBatchAsync(knoxvilleBatchOp);

 TableBatchOperation charlestonBatchOp = new TableBatchOperation();

 �Restaurant charleston1 = new Restaurant("Charleston", "TN", "02006",

 "100 Elm Street", "37310", 95, true);

Chapter 5 Azure Table Storage

www.allitebooks.com

http://www.allitebooks.org

154

 Restaurant charleston2 = new Restaurant("Charleston", "TN", "02298",

 "15010 NE 36th Street", "37996", 97, false);

 charlestonBatchOp.InsertOrReplace(charleston1);

 charlestonBatchOp.InsertOrReplace(charleston2);

 await restaurantsTable.ExecuteBatchAsync(charlestonBatchOp);

 //let's throw in one Taco Bell outside of Tennessee so that we can

 //verify a

 //partition range scan is returning the correct results.

 Restaurant birmingham = new Restaurant("Birmigham", "AL", "92763",

 "839 Sherman Oaks Drive", "35235", 70, true);

 �TableOperation insertBirminghamOp = TableOperation.

InsertOrReplace(birmingham);

 await restaurantsTable.ExecuteAsync(insertBirminghamOp);

 return true;

 }

 /// <summary>

 /// �Returns a reference to the Restaurants table. Will create the table

 ///�if the Restaurants table doesn't exist within the storage account.

 /// </summary>

 /// <returns></returns>

 private async Task<CloudTable> GetRestaurantsTable()

 {

 CloudStorageAccount storageAccount = GetCloudStorageAccount();

 �CloudTableClient tableClient = storageAccount.

CreateCloudTableClient();

 �CloudTable restaurantsTable = tableClient.GetTableReference

("Restaurants");

 await restaurantsTable.CreateIfNotExistsAsync();

 return restaurantsTable;

 }

Chapter 5 Azure Table Storage

155

 /// <summary>

 /// �Attempts to connect to the Cloud Storage Account defined by the

 /// �storage account connection string specified in appsettings.json.

 /// </summary>

 /// <returns>A CloudStorageAccount instance if the connection is

 /// successful. Otherwise throws an exception.</returns>

 private CloudStorageAccount GetCloudStorageAccount()

 {

 CloudStorageAccount storageAccount = null;

 �if (!CloudStorageAccount.TryParse(_config.

StorageConnectionString,

 out storageAccount))

 {

 �throw new Exception("Could not connect to the cloud storage

account.

 Please check the storage connection string.");

 }

 return storageAccount;

 }

 }

 }

Methods in RestaurantService that make calls to the Azure Storage Client are all

marked as async and return a Task<TResult>. Note that if you return a Task instead of

a Task<TResult> and an exception is thrown, the exception will be swallowed and will

not appear in the stack trace. That’s why we’re returning Task<bool> instead of Task for

several of these methods.

Also, note that if you fail to make use of async/await when making a call to Azure

Storage, the thread will block and wait until the call returns. With a few thousand

concurrent requests, this can lead to thread exhaustion and requests stacking up in your

server’s HTTP Request queue. That unfortunate situation will result in longer and longer

wait times and eventually HTTP timeouts. Please make sure that you use async/await.

Chapter 5 Azure Table Storage

www.allitebooks.com

http://www.allitebooks.org

156

You will also notice that connecting to our CloudStorageAccount requires a

connection string, which we are passing into the RestaurantService constructor within

an IOptions<AzureStorageConfig> instance. The connection string contains your

storage account name and key.

Finally, take a look at how each of our inserts is contained within a

TableBatchOperation instance. Storage operations within a TableBatchOperation

must all belong to the same partition and will succeed or fail together. This is

the only mechanism for transaction support within Azure Table Storage. Each

TableBatchOperation can contain up to 100 operations. As an added bonus, we are only

billed one storage transaction per TableBatchOperation.

�Project Settings
In .NET Core, Microsoft recommends creating a separate section per service within the

appsettings.json file. Our appsettings.json file is shown in Listing 5-4.

Listing 5-4.  Appsettings.json File

{

 "Logging": {

 "IncludeScopes": false,

 "LogLevel": {

 "Default": "Debug",

 "System": "Information",

 "Microsoft": "Information"

 }

 },

 "AzureStorageConfig": {

 "StorageConnectionString": "UseDevelopmentStorage=true"

 }

}

We’ve defined a new section called AzureStorageConfig, and added a single

key/value for our StorageConnectionString. Next, we need a way for our dependency

injection system to read the StorageConnectionString and pass it into our

RestaurantService class. To do so, we’ll add the following AzureStorageConfig class to

our Models folder (Listing 5-5).

Chapter 5 Azure Table Storage

157

Listing 5-5.  Add AzureStorageConfig Class

namespace TacoBellFinder.Web.Models

{

 public class AzureStorageConfig

 {

 public string StorageConnectionString { get; set; }

 }

}

Next, let’s wire up our dependency injection that will read and populate our

AzureStorageConfig class and inject our RestaurantService class where it’s needed.

�Dependency Injection
To configure dependency injection, open the startup.cs file and jump to the Configure

method. Change the code in the Configure method to match the code in Listing 5-6.

Listing 5-6.  Configure Dependency Injection

// This method gets called by the runtime. Use this method to add

// services to the container.

public void ConfigureServices(IServiceCollection services)

{

 // Add framework services.

 services.AddMvc();

 // Add these services for TacoBellFinder.

 services.Configure<AzureStorageConfig>(Configuration.GetSection(

 "AzureStorageConfig"));

 services.AddTransient<IRestaurantService, RestaurantService>();

}

That’s all there is to it. The IServiceCollection.Configure<TResult> method will

read and populate the specified section of appsettings.json and make the resulting

instance of type TResult available to inject into services that need it for configuration.

IServiceCollection.AddTransient adds services that you define to the dependency

injection container.

Chapter 5 Azure Table Storage

www.allitebooks.com

http://www.allitebooks.org

158

�Loading Demo Data with the RestaurantData Controller
We’ve written our RestaurantService.Initialize method that will connect to the

Azure Storage account specified in the appsettings.json file, but we’ve yet to decide

how we will call this method. Let’s add a Controller subclass to our Controllers

folder. To do so, right-click the Controllers folder, select Add, and then select New

Item. In the Add New Item dialog box, select the Web API Controller Class, name it

RestaurantDataController.cs, and click Add.

Note  In ASP.NET Core, the MVC Controller Class and Web API Controller Class
templates both inherit from Microsoft.AspNetCore.MVC.Controller. The
only difference between the two options is the “using” statements and example
methods that are generated. The class created by either template can be used for
both WebAPI web service calls and for processing MVC requests.

The RestaurantDataController will have a single method called

Initialize. This method will be called by an AJAX HTTP Post web service call,

and will call our RestaurantService’s InitializeData method. The code for

RestaurantDataController.cs is shown in Listing 5-7.

Listing 5-7.  RestaurantDataController.cs

using Microsoft.AspNetCore.Mvc;

using TacoBellFinder.Web.Services;

namespace TacoBellFinder.Web.Controllers

{

 [Route("api/[controller]")]

 public class RestaurantDataController : Controller

 {

 private IRestaurantService _restaurantService;

 /// <summary>

 /// Dependency injection will inject the RestaurantService instance

 /// into our constructor.

 /// </summary>

Chapter 5 Azure Table Storage

159

 public RestaurantDataController(IRestaurantService restaurantService)

 {

 _restaurantService = restaurantService;

 }

 /// <summary>

 /// �When called, this method will set up our test data for the project.

 /// It will do the following:

 /// 1. Ensure that our table Restaurants is created.

 /// 2. Delete all entities in the Restaurants table.

 /// 3. Insert our handful of test records that we're using for

 /// illustration purposes.

 /// </summary>

 [HttpPost("initialize")]

 public async void Initialize()

 {

 await _restaurantService.InitializeData();

 }

 }

}

We could call this web service endpoint to initialize our Restaurants table and

populate our demo data from an HTTP request generating tool such as Postman or

Fiddler4, but let’s create a simple page with a single button that will allow us to do so

from within the web application. To set up this page, we’ll need to add the following

method to our HomeController.cs class (Listing 5-8).

Listing 5-8.  HomeController.cs Class

[HttpGet("initialize-data")]

public IActionResult InitializeData()

{

 return View();

}

Chapter 5 Azure Table Storage

www.allitebooks.com

http://www.allitebooks.org

160

Now we’re ready to create our View. Right-click on the Views/Home folder and select

Add ➤ New Item. In the Add New Item dialog box, select MVC View Page and name it

InitializeData.cshtml. The source for all Views in this project is found in the Git repo

listed at the beginning of this section; adding the source for every view would make this

book a bit too hefty. Figure 5-2 displays a screenshot of the resulting page. Note that

you’ll also need to swap out the contents of Views/Shared/_Layout.cshtml, which will

contain our menu, stylesheet references, and JavaScript frameworks.

We’re almost ready to click Populate. First, though, a word about where our table will

actually live.

When developing an Azure Table Storage solution, you can either provision an Azure

Storage service within an Azure datacenter and program directly against the live service,

or you can install and use the Azure Storage Emulator on your local machine. The

advantages of using the emulator are that there is zero network latency and it’s totally

free. If you develop against the live Azure Storage service, you will incur a charge and

have to wait for the round trip from your local machine’s development environment to

the Azure datacenter. I personally prefer developing using the emulator, then deploying

to staging and production environments that use the live Azure Storage service when I’m

ready to test and publish.

Switching between the Azure Storage Emulator and the live version of the

service is simple: You just swap out the StorageConnectionString property in the

appsettings.json file. To use development storage, make sure that you’ve installed

and started the Azure Storage Emulator, and set your StorageConnectionString to

"UseDevelopmentStorage=true".

The Azure Storage Emulator is included in the Azure SDK, and can also be

downloaded separately from https://azure.microsoft.com/en-us/downloads/.

Now we’re ready to create our first Azure Storage table and populate it with data. Run

the application, navigate to the URL http://localhost:[your_port]/initialize-data,

Figure 5-2.  Our InitializeData.cshtml view

Chapter 5 Azure Table Storage

https://azure.microsoft.com/en-us/downloads/

161

and then click Populate. If all went well, you should see a message below the Populate

button that reads “The data was successfully loaded.”

That was a bit anticlimactic. This application is asking you to take it on faith that it

actually created a Restaurants table in your storage account and filled it with data. How

can you know for sure? To verify that the application worked as it was supposed to, let’s

fire up Azure Storage Explorer.

�Azure Storage Explorer
Azure Storage Explorer is a handy Windows application that you can use to inspect and

manage the contents of an Azure Storage account that you have permissions to access.

It lets us inspect the contents of tables; create and execute queries; add, edit, and delete

data; and even import and export from a table in comma-separated value (CSV) format.

You definitely need this tool, and it’s totally free. You can download the installer for the

latest version at http://storageexplorer.com/.

Once you’ve installed Storage Explorer, fire it up. A tree view on the left side

of the application contains a list of all Azure Storage accounts you’ve added. By

default, it includes a (Development) account for the local emulator. Drill down in the

(Development) account to the Tables node, and you’ll see the single Restaurants table

(Figure 5-3). There should be a total of eight records.

Figure 5-3.  Azure Storage Explorer, and all records within our Restaurants
table

Chapter 5 Azure Table Storage

www.allitebooks.com

http://storageexplorer.com/
http://www.allitebooks.org

162

We’ve now successfully created our Restaurants table and loaded demo data. Let’s

talk about the different ways we can query and retrieve it.

�Point Queries
Point queries are queries that specify an exact partition key and row key. These types

of queries will return a single record if a match is found. It is by far the fastest query to

execute. When designing your tables, you should strive to make as many queries as

possible run as point queries. In our example, we’ve chosen a partition key made up of

the city and state, and a row key of the unique restaurant ID.

You’ll need to modify the code for the View/Home/Index.cshtml view. Next, we’ll add

the method given in Listing 5-9 to HomeController.cs.

Listing 5-9.  Modify HomeController.cs

[HttpGet]

public IActionResult SearchByCityStateRestaurantId(string cityState, string

restaurantId)

{

 //�In table storage, an empty row or partition key is valid, but not a null.

 //Our MVC model binder will

 �//give us a null string if a string is not submitted. We'll replace null

 �//values

 //with an empty string here.

 if (restaurantId == null)

 {

 restaurantId = string.Empty;

 }

 Restaurant result = _restaurantService.SearchByCityStateRestaurantId(

 cityState, restaurantId).Result;

 List<Restaurant> results = new List<Restaurant>();

Chapter 5 Azure Table Storage

163

 if (result != null)

 {

 results.Add(result);

 }

 return View("Index", results);

}

Because all of our other search methods will return a List<Restaurant>, we’re using

List<Restaurant> as our ViewModel.

Now, let’s add our SearchByCityStateRestaurantId to our IRestaurantService

interface. This new method signature is:

Task<Restaurant> SearchByCityStateRestaurantId(string cityState, string

restaurantId);

Finally, you’ll need to add the code shown in Listing 5-10 to RestaurantService.cs.

Listing 5-10.  Add to Restaurant.cs

/// <summary>

/// This is a point query that will return the single restaurant identified by

/// the partition key cityState and

/// the row key restaurantId.

/// </summary>

public async Task<Restaurant> SearchByCityStateRestaurantId(string

cityState,

 string restaurantId)

{

 CloudTable restaurantsTable = await GetRestaurantsTable();

 �TableOperation query = TableOperation.Retrieve<Restaurant>(cityState,

restaurantId);

 �TableResult retrievedResult = await restaurantsTable.

ExecuteAsync(query);

Chapter 5 Azure Table Storage

www.allitebooks.com

http://www.allitebooks.org

164

 if (retrievedResult != null)

 {

 return (Restaurant)retrievedResult.Result;

 }

 else

 {

 return null;

 }

}

When we run our application with the updated View for Views/Home/Index.cshtml,

we’ll see the screen shown in Figure 5-4.

Executing the query for Chattanooga, TN and a restaurant ID of 00001 gives us the

results in Figure 5-5.

Figure 5-4.  Execute a point query by searching for a restaurant by city, state, and
restaurant ID

Chapter 5 Azure Table Storage

165

�Row Range Scan Queries
Next, we’ll query by city, state, and zip. The city and state will limit our search to a single

partition, and we will have to look through a range of entities within that partition to find

the restaurant records with a matching zip.

Add the following line of code to the IRestaurantService interface:

Task<List<Restaurant>> SearchByCityStateAndZip(string cityState, string zip);

Next, let’s add the corresponding method shown in Listing 5-11 to execute our row

range scan query to RestaurantService.cs.

Listing 5-11.  Execute Row Range Scan Query to RestaurantService.cs

/// <summary>

/// Searches by a city, state, and zip. This will result in a row range scan

/// where we look at all potentially matching entities within a single partition.

/// Note that we are using a continuation token.

/// While it is extremely unlikely that there are more than a thousand restaurants

/// in a single zip code, it doesn't hurt to be prepare for the unexpected.

/// </summary>

Figure 5-5.  The single result for our point query

Chapter 5 Azure Table Storage

www.allitebooks.com

http://www.allitebooks.org

166

public async Task<List<Restaurant>> SearchByCityStateAndZip(string

cityState, string zip)

{

 CloudTable restaurantsTable = await GetRestaurantsTable();

 �string partitionKeyFilter = TableQuery.GenerateFilterCondition

("PartitionKey",

 QueryComparisons.Equal, cityState);

 string propertyFilter = TableQuery.GenerateFilterCondition("Zipcode",

 QueryComparisons.Equal, zip);

 string completeFilter = TableQuery.CombineFilters(partitionKeyFilter,

 TableOperators.And, propertyFilter);

 �TableQuery<Restaurant> query = new TableQuery<Restaurant>().

Where(completeFilter);

 List<Restaurant> restaurantsInZipCode = new List<Restaurant>();

 TableContinuationToken token = null;

 do

 {

 TableQuerySegment<Restaurant> results =

 await restaurantsTable.ExecuteQuerySegmentedAsync(query, token);

 token = results.ContinuationToken;

 foreach (Restaurant r in results.Results)

 {

 restaurantsInZipCode.Add(r);

 }

 } while (token != null);

 return restaurantsInZipCode;

}

Azure Table Storage limits the number of entities returned in a single query

operation to 1,000. If there are more than 1,000 entities that match a query, Azure

will issue a continuation token along with the results. You can then use the supplied

continuation token to query for the next set of results. Azure will keep issuing

continuation tokens until you reach the last set of 1,000 or fewer records.

Chapter 5 Azure Table Storage

167

I recommend placing continuation token logic in your apps even if you think that

a particular query will never return more than 1,000 entities. Programs tend to do

unexplained things, especially at 3:15 a.m. when it’s your turn to be on call for support.

Code defensively and avoid receiving those late-night support requests.

Next, add the code shown in Listing 5-12 to the HomeController class.

Listing 5-12.  Add to HomeController Class

/// <summary>

/// Retrieves all restaurants in a given city, state, and zip. This will

/// �execute a row range scan query against a single partition for matching

records.

/// </summary>

[HttpGet]

public IActionResult SearchByCityStateZip(string cityState, string address,

 string zipCode)

{

 if (address == null) { address = string.Empty; }

 if (zipCode == null) { zipCode = string.Empty; }

 �List<Restaurant> results = _restaurantService.SearchByCityStateAndZip

(cityState,

 zipCode).Result;

 return View("Index", results);

}

Now we’re able to run the application and search for restaurants in Chattanooga, TN

in zip code 37363. The results are displayed in Figure 5-6.

Chapter 5 Azure Table Storage

www.allitebooks.com

http://www.allitebooks.org

168

�Partition Range Scan Queries
A partition range scan query will examine a range of partitions that match a partial

partition key and a range of rows within each partition that could match the row key. To

illustrate this query, we’ll search for all restaurants in a state that have a health rating

greater than or equal to a specified value.

First, add the method signature to our IRestaurantService interface:

Task<List<Restaurant>> SearchByStateAndMinimumHealthRating(string state,

int healthRating);

Next, let’s add the code in Listing 5-13 to our RestaurantService class. This code

will perform the actual partition range scan query.

Listing 5-13.  Perform Partition Range Scan Query

/// <summary>

/// Finds all restaurants in the given state that have the minimum specified

/// health rating. This will require

/// a partition range scan where we will find all partitions that match the

/// supplied state.

/// </summary>

Figure 5-6.  Searching by city, state, and zip code

Chapter 5 Azure Table Storage

169

public async Task<List<Restaurant>> SearchByStateAndMinimumHealthRating

(string state,

 int healthRating)

{

 //�we are building our partition key with [state]_[city]. To do a partition

 ///range scan, we'll have to combine >= and <= operators, and append the

 ///underscore character and a letter to our state. This is because

 //Azure uses lexicographical order of strings when doing comparisons.

 //�We do not need to worry with upper and lower case comparison issues because

 //all of our city and state values are lowercased before insert.

 CloudTable restaurantsTable = await GetRestaurantsTable();

 string partitionKeyGreaterThanOrEqualFilter =

 TableQuery.GenerateFilterCondition("PartitionKey",

 QueryComparisons.GreaterThanOrEqual, state + "_a");

 string partitionKeyLessThanOrEqualFilter =

 TableQuery.GenerateFilterCondition("PartitionKey",

 QueryComparisons.LessThanOrEqual, state + "_z");

 �string healthRatingFilter = TableQuery.GenerateFilterConditionForInt

("HealthRating", QueryComparisons.GreaterThanOrEqual, healthRating);

 string completeFilter =

 TableQuery.CombineFilters(partitionKeyGreaterThanOrEqualFilter,

 TableOperators.And, partitionKeyLessThanOrEqualFilter);

 �completeFilter = TableQuery.CombineFilters(completeFilter,

TableOperators.And,

 healthRatingFilter);

 �TableQuery<Restaurant> query = new TableQuery<Restaurant>().

Where(completeFilter);

 List<Restaurant> restaurantsList = new List<Restaurant>();

Chapter 5 Azure Table Storage

www.allitebooks.com

http://www.allitebooks.org

170

 TableContinuationToken token = null;

 do

 {

 TableQuerySegment<Restaurant> results =

 await restaurantsTable.ExecuteQuerySegmentedAsync(query, token);

 token = results.ContinuationToken;

 foreach (Restaurant r in results.Results)

 {

 restaurantsList.Add(r);

 }

 } while (token != null);

 return restaurantsList;

}

Recall that our partition key is in the format of [state name]_[city name]. We’d

like to scan a subset of partitions that start with the state that we are searching for, but

there are no “starts with” or “contains” query operators. Fortunately, we can construct

something equivalent using greater than or equal to and less than or equal to operators.

To do so, we need to remember that Azure uses a lexicographical ordering for string

comparison when comparing partition and row keys. By creating a filter with the

conditions that the partition key >= [state name]_a and partition key <= [state name]_z,

we are guaranteed to search all partitions for the specified state. Note that this is true

because we are storing all partition keys in lowercase. If not, we’d have to set our filters

considering that in lexicographical ordering, all capital letters sort before all lowercase

letters. If you need a refresher on lexicographical ordering, just consult an ASCII chart.

Now let’s add the method from Listing 5-14 to HomeController.

Listing 5-14.  Add Method to HomeController

/// <summary>

/// Searches by state and health rating. This will result in a partition

/// range scan with all matching states. To simplify this example, if the

/// user has supplied a nonnumeric healthRating, we will return no results.

/// </summary>

[HttpGet]

Chapter 5 Azure Table Storage

171

public IActionResult SearchByStateAndHealthRating(string state, string

healthRating)

{

 int intHealthRating = 0;

 if (! int.TryParse(healthRating, out intHealthRating))

 {

 return View("Index", new List<Restaurant>());

 }

 List<Restaurant> results =

 _restaurantService.SearchByStateAndMinimumHealthRating(state,

 intHealthRating).Result;

 return View("Index", results);

}

When we run the application and search for all restaurants with a health rating

greater than or equal to 90 in Tennessee, we get the results shown in Figure 5-7.

Figure 5-7.  All restaurants in Tennessee with a health rating greater than or equal
to 90

Chapter 5 Azure Table Storage

www.allitebooks.com

http://www.allitebooks.org

172

�Full Table Scan Queries
Now for the most inefficient query of them all: the full table scan. For large tables, these

should be avoided. A full table scan will examine every entity in a table, and it’s caused

by filtering on a property that is not part of the partition or row keys. In our example,

we’ll search for every entity in the Restaurants table that has Gorditas.

To see a full table scan in all of its ugliness, first add this method signature to

IRestaurantService.cs:

Task<List<Restaurant>> HasGorditas();

Next, add the HasGorditas method shown in Listing 5-15 to RestaurantService.cs.

Listing 5-15.  Add HasGorditas Method to RestaurantService.cs

/// <summary>

/// �We're going to look at every record in the Restaurants table to see which

/// �restaurants have Gorditas. This is the most expensive table operation.

/// Please,

/// do not try this at home. Or in a production system.

/// �</summary>

public async Task<List<Restaurant>> HasGorditas()

{

 CloudTable restaurantsTable = await GetRestaurantsTable();

 �string hasGorditasFilter = TableQuery.GenerateFilterConditionForBool

("HasGorditas", QueryComparisons.Equal, true);

 �TableQuery<Restaurant> query = new TableQuery<Restaurant>().

Where(hasGorditasFilter);

 List<Restaurant> restaurantsList = new List<Restaurant>();

Chapter 5 Azure Table Storage

173

 TableContinuationToken token = null;

 do

 {

 TableQuerySegment<Restaurant> results = await

 restaurantsTable.ExecuteQuerySegmentedAsync(query, token);

 token = results.ContinuationToken;

 foreach (Restaurant r in results.Results)

 {

 restaurantsList.Add(r);

 }

 } while (token != null);

 return restaurantsList;

}

The code in Listing 5-16 for our Gordita search for the HomeController class is trivial.

Listing 5-16.  Gordita Search for HomeController Class

/// <summary>

/// Retrieves all restaurants that have Gorditas on the menu.

/// </summary>

[HttpGet]

public IActionResult SearchForGorditas()

{

 List<Restaurant> results = _restaurantService.HasGorditas().Result;

 return View("Index", results);

}

When we run the application and click Search, we see the results shown in Figure 5-8.

Chapter 5 Azure Table Storage

www.allitebooks.com

http://www.allitebooks.org

174

�Editing a Restaurant
When making updates to an entity record, there are two methods for doing so: merge

and replace. You’ll also need to understand how Azure Storage manages concurrency

using ETags.

�ETags

When working with relational databases and issuing update statements, the last writer

wins. With a relational database, the following interleaving of events is possible:

Tim and Sally both read restaurant record A.

Sally updates restaurant record A.

Tim updates restaurant record A without having seen Sally’s changes. Sally’s changes

are overwritten and lost.

Azure Table Storage handles concurrency differently with the ETag. The ETag

property belongs to the TableEntity class, from which all entity classes inherit. It

contains the timestamp for the last time that an entity record was modified. When

issuing an update, Azure will compare the current record’s ETag to the ETag of the entity

instance that you sent containing updates. If the ETags do not match, Azure will throw an

exception.

Figure 5-8.  The results of a full table scan to find all restaurants in all states that
have Gorditas

Chapter 5 Azure Table Storage

175

If you want to ignore concurrency control and ensure that the last writer wins, you

can set an entity’s ETag to “*” before sending it to Azure Storage for an update. This will

perform an update regardless of the value of the current entity’s ETag.

�Merge

The Merge method will compare the entity to merge against the entity residing in Azure

Table Storage. Assuming that the ETags for both match or you have specified that the

ETag should be ignored, Azure will copy the value of all properties that differ from

the entity to merge to the entity already stored in Azure. Null properties in the entity

to merge are ignored. Also, you cannot update a partition or row key with the merge

operation.

The examples in Table 5-2 illustrate merge behavior.

Notice that the entity to merge only updated the Address property because all other

property values were left null.

Table 5-2.  Examples of Merge

Property Entity to Merge Entity Within Azure
Storage

Resulting Entity Within
Azure Storage

Partition Key tn_chattanooga tn_chattanooga tn_chattanooga

Row Key 00001 00001 00001

Timestamp/ETag [timestamp] [timestamp] [timestamp]

Address 803 Chamberlain Blvd 9918 Pennywood Lane 803 Chamberlain Blvd

Zipcode NULL 37404 37404

HealthRating NULL 99 99

HasGorditas NULL True True

Chapter 5 Azure Table Storage

www.allitebooks.com

http://www.allitebooks.org

176

�Replace

As the name implies, the replace operation replaces all values for a given entity. Unlike

merge, replace does not ignore null values in the entity to replace and will overwrite

nonnull values for the entity within Azure Storage with null values. Let’s look at examples

of replace in Table 5-3.

�Updating a Restaurant

For our application, we’ll use the replace method. By this point, you know the drill: Let’s

start by adding in the necessary method signature to our IRestaurantService interface.

Task<bool> UpdateRestaurant(Restaurant r);

Next, let’s add the concrete implementation in our RestaurantService class, as

shown in Listing 5-17.

Listing 5-17.  Add Implementation to RestaurantService Class

/// <summary>

/// Updates the specified restaurant by replacing the record. The replace will be

/// performed based on the row and partition key, and all properties within

/// Table storage for the existing restaurant will be overwritten with

Table 5-3.  Examples of Replace

Property Entity to Merge Entity Within Azure
Storage

Resulting Entity Within
Azure Storage

Partition Key tn_chattanooga tn_chattanooga tn_chattanooga

Row Key 00001 00001 00001

Timestamp/ETag [timestamp] [timestamp] [timestamp]

Address 803 Chamberlain Blvd 9918 Pennywood Lane 803 Chamberlain Blvd

Zipcode 37406 37404 37406

HealthRating NULL 99 NULL

HasGorditas False True False

Chapter 5 Azure Table Storage

177

/// the values stored in r.

/// </summary>

public async Task<bool> UpdateRestaurant(Restaurant r)

{

 CloudTable restaurantsTable = await GetRestaurantsTable();

 TableOperation updateOperation = TableOperation.Replace(r);

 await restaurantsTable.ExecuteAsync(updateOperation);

 return true;

}

Finally, let’s add the method shown in Listing 5-18 to our HomeController.cs file.

Listing 5-18.  Add Method to HomeController.cs

[HttpPost]

public IActionResult UpdateRestaurant(Restaurant restaurantToUpdate)

{

 �bool wasSuccessful = _restaurantService.UpdateRestaurant(restaurantTo

Update).Result;

 return View("RestaurantUpdated");

}

You’ll also need to add the EditRestaurant.cshtml file to this project. In

EditRestaurant.cshtml, you’ll notice that we have hidden fields for ETag, PartitionKey,

RowKey, City, State, and RestaurantId. This is because these values cannot be updated,

so we don’t even bother showing them in the form. We do need their values, however,

when we call replace and send a Restaurant instance back to the server.

The Edit Restaurant screen is shown in Figure 5-9. After updating, the app shows a

message letting you know that the update succeeded.

Chapter 5 Azure Table Storage

www.allitebooks.com

http://www.allitebooks.org

178

�Deleting a Restaurant
We’ve already placed a Delete button on the Edit Restaurant page that we built in the last

section. All that remains is to write a few lines of code to enable the delete.

Let’s start with our HomeController class. Add the method given in Listing 5-19.

Listing 5-19.  Enable a Delete

[HttpPost]

public IActionResult DeleteRestaurant(Restaurant restaurantToDelete)

{

 �bool wasSuccessful = _restaurantService.DeleteRestaurant(restaurantTo

Delete).Result;

 return View("RestaurantDeleted");

}

Next, we add the following method signature to IRestaurantService:

Task<bool> DeleteRestaurant(Restaurant r);

For our short and sweet grand finale, the code from Listing 5-20 goes in

RestaurantService.cs.

Figure 5-9.  The Edit Restaurant screen

Chapter 5 Azure Table Storage

179

Listing 5-20.  RestaurantService.cs

/// <summary>

/// Deletes the supplied restaurant. Remember that Restaurant r must have a

/// partition key and row key defined, and no other properties matter.

/// </summary>

public async Task<bool> DeleteRestaurant(Restaurant r)

{

 CloudTable restaurantsTable = await GetRestaurantsTable();

 TableOperation deleteOperation = TableOperation.Delete(r);

 await restaurantsTable.ExecuteAsync(deleteOperation);

 return true;

}

Clicking Delete on the Edit Restaurant screen will remove the Restaurant from the

Restaurants table. If you’d like to restore the demo data, just click Initialize and click

Populate once again.

�Provisioning an Azure Storage Service
Now that our application is developed, it’s time to move from our local Azure Storage

Emulator to an actual live Azure Storage Service. To do so, log into your Azure account,

then choose New ➤ Storage ➤ Storage Account (Figure 5-10).

Chapter 5 Azure Table Storage

www.allitebooks.com

http://www.allitebooks.org

180

Next, you’ll see a screenful of settings that you must specify to provision a new

Storage resource (Figure 5-11).

Figure 5-10.  Creating a new Storage account

Chapter 5 Azure Table Storage

181

There are a few settings that you must specify. Let’s look at them one by one.

•	 Name: This is the name of your Storage account. It will be used in

your connection string and must be unique across all Azure Storage

accounts.

•	 Deployment model: The Resource manager deployment model lets you

specify a resource group that your new Storage account will belong

to. Placing multiple services that make up an application into the

same resource group allows you to manage them together. Choosing

a Classic deployment model means that you’ll have to manage each

service individually. Choose Resource manager for all new services.

Figure 5-11.  Specify settings for a new Azure Storage service

Chapter 5 Azure Table Storage

www.allitebooks.com

http://www.allitebooks.org

182

•	 Account Kind: Your options are General purpose and Blob storage.

General purpose accounts will allow you to create all storage

services: Queues, Tables, Blobs, and File Storage. A Blob storage

account only allows you to provision Blobs. Selecting Blob storage

will allow you to choose whether you want to make use of hot or

cool tiers for storing your data. This choice affects how fast you can

retrieve blob data and cost for storage. Because we’re working with

Table Storage, select General purpose.

•	 Performance: You can choose Standard or Premium. Premium backs

any Azure VM disks that are moved to blob storage with a solid-state

disk for fast access. It has no impact on performance for Azure Tables.

Select Standard.

•	 Replication: To protect your data, Microsoft offers several different

replication options. This is also important for disaster recovery

planning. The different replication options all affect the GB per

month storage cost.

•	 Locally-redundant storage (LRS): Azure will replicate your data

three times within the same datacenter. Each of the replicas is on

a different fault domain and upgrade domain, so your data will

still be available as service updates are rolled out, or if a hardware

failure occurs on a rack holding one of your replicas. Updates

return after all three replicas have verified the write. This is the

cheapest option, but doesn’t help you with disaster recovery if the

datacenter hosting your tables goes offline.

•	 Zone-redundant storage (ZRS): This option replicates data to

two or more datacenters within the same region. However, it

only applies to block blobs in general-purpose storage accounts.

When using Table Storage, this option does you no good.

Chapter 5 Azure Table Storage

183

•	 Geo-redundant storage (GRS): With GRS, your data is written to

three different replicas within the same datacenter, just as is done

with LRS. In addition, your data is asynchronously replicated to

a datacenter in another region, where it is again replicated three

times. This protects your data in the event of a catastrophic failure

at your chosen primary datacenter, such as if the datacenter

floods with ten feet of water and then catches fire during an

earthquake. In the event of a catastrophic failure, Microsoft will

failover to the secondary data center. You cannot read from the

replicas in the secondary datacenter until this explicit failover.

You also have no control over when the failover occurs. The

failover datacenter is fixed and cannot be changed. For example,

North Central US will always fail over to South Central US.

•	 Read-access geo-redundant storage (RA-GRS): RA-GRS works just

as GRS but with an added bonus: You can read from replicas in

the secondary datacenter. When you provision with RA-GRS, you

will be provided with a second endpoint that you can use in a

connection string for reading only.

Even though finding the nearest Taco Bell can be considered

mission-critical to some developers, we have the ability to

click a button and restore our data as needed. Therefore,

choose LRS to keep costs down.

•	 Storage service encryption: Storage service encryption (SSE) only

applies to Azure Blob Storage, so it’s of no use to you when working

with Azure Tables. For completeness, though, SSE encrypts Blob

storage data at rest using 256-bit AES encryption, which is very

secure. Key management is transparent. At the time of this writing,

there is no way for you to even see your key, revoke keys, or change

your keys. If you are using Blob storage, there is no additional cost to

make use of encryption. You will, however, take a small performance

penalty for doing so.

•	 Subscription: Choose the subscription you want to use for this

new Storage service.

Chapter 5 Azure Table Storage

www.allitebooks.com

http://www.allitebooks.org

184

•	 Resource group: If you’re going to also deploy the TacoBellFinder

application to an App Services Web App, you’ll want to put both

the Storage and Web App services in the same Resource group so

that they can be managed together.

•	 Location: This determines the datacenter that your Storage

service will reside in. I always pick a location that is central to my

expected user base. In general, if you’re launching an application

that will primarily be used in the United States, choose a U.S. data

center and not Japan West.

After entering all settings, click Create.

�Using Your Azure Storage Service
To get started with your newly provisioned Storage account, you only need to replace

your local emulator’s connection string in appsettings.json with the new connection

string for your Azure Storage account.

To find your new connection string, browse to your new Storage service in the Azure

Portal. Under Settings, click Access Keys. This launches the Access Keys management

blade. Finally, click on the ellipsis icon next to key1 and select View Connection String

(Figure 5-12). Copy and paste the connection string into your appsettings.json’s

StorageConnectionString property, and rerun your web application.

Figure 5-12.  Copying the Azure Storage connection string

Chapter 5 Azure Table Storage

185

�Pricing
Azure Table Storage pricing is calculated based on the average GB per month stored, and

on the number of transactions executed.

Storage costs are based on the replication tier chosen. Prices decrease per GB stored

after you reach 1 TB. At the time of this writing, locally redundant storage is the cheapest

at $0.07/GB per month, and read-access geo-redundant storage is the most expensive at

$0.12/GB per month.

Transactions are priced at $0.0036 per 100,000. A transaction includes any read or

write operation. Remember that a single batch containing up to 100 storage operations is

still only billed as one transaction.

As you can see, this technology is extremely cost effective.

�Summary
This wraps up our discussion of Azure Table Storage. We’ve discussed what it is, how it

works, design strategies and guidelines, and walked through an example application.

In the next chapter, we discuss Cosmos DB, Azure’s other NoSQL technology that’s of

interest to web application developers.

Chapter 5 Azure Table Storage

www.allitebooks.com

http://www.allitebooks.org

187
© Rob Reagan 2018
R. Reagan, Web Applications on Azure, https://doi.org/10.1007/978-1-4842-2976-7_6

CHAPTER 6

Cosmos DB
For nearly four decades, developers have been using relational databases such as SQL

Server as a data store. Relational databases have many advantages: They save space

and prevent data duplication through normalization. Perhaps most important, they’re

well understood. If you’ve been building software in the past 20 years, you are likely

intimately familiar with at least one commercial relational database system.

As useful as relational databases are, they have some shortcomings. Relational

schemas are fixed and somewhat difficult to change. The end result is that modeling

nonuniform data is difficult. Pause for a minute and consider how difficult it would be to

design a relational schema that would efficiently handle all products on Amazon.com.

Amazon carries electronics such as audio speakers, which have attributes such as

impedance, minimum and maximum frequency response, and maximum watts.

Amazon also carries running shoes, which have attributes such as heel drop, material,

and weight.

Should we create one giant Products table that has an attribute for every conceivable

property of each product? This would result in a Products table with tens of thousands

of columns, and each product would only have values for a dozen or so. We’d have a

very sparsely populated Products table with lots of wasted space. We could also store

all product details in a ProductAttributes table that consists of ProductId, Property, and

Value columns. Both of these approaches are suboptimal.

A second shortcoming for relational databases is scalability. Once your database

outgrows the processing power of a single server, you’re forced to scale horizontally

by partitioning your data and splitting it across two or more servers. Doing so makes

backups, schema updates, and system-wide queries more difficult. Scalability is

becoming a concern as we build software with global reach and massive data storage

requirements.

188

Developers weren’t the only ones struggling with these limitations. Microsoft was

also wrestling with how to store data for global-scale applications. Microsoft set out to

design a new NoSQL database that is lightning fast, globally scalable, and can handle

workloads of any size. After several years of development and internal use, in 2014

Microsoft released DocumentDB as an Azure PaaS offering. In 2017, Microsoft rolled out

additional features for DocumentDB and changed its name to Cosmos DB.

�Introducing Cosmos DB
Cosmos DB is a planet-scale NoSQL database. It has the following main strengths.

•	 Global scale: With a few mouse clicks, you can replicate your data to

other Azure regions around the globe. Each replica is read-enabled.

Although you can have as many read-enabled replicas as you

wish, only one region will be write-enabled. Cosmos also includes

multi-homing APIs, enabling instances of your web application

running in different datacenters to always read from the closest

replica. This enables you to reduce latency for reads.

•	 Multimodel support: When you create a Cosmos DB database, you

can choose among four different data models and associated APIs.

The available data models are DocumentDB, MongoDB, Table, and

Graph. Choosing the appropriate data model for your project can

greatly reduce complexity. For example, choosing the Graph API

to model social relationships would be easier than attempting to

represent the same data using DocumentDB. In this chapter, we

focus exclusively on the DocumentDB model.

•	 NoSQL: Like other NoSQL solutions, Cosmos DB doesn’t enforce

a schema. This allows you to store data with completely different

schemas. We’ll discuss documents and data modeling in an

upcoming section.

•	 Automatic indexing of all data: By default, Cosmos DB indexes all of

your data. This results in lightning-fast retrieval. In fact, Cosmos’s SLA

guarantees that the end-to-end latency for reads in the same region

for a 1 KB document will be under 10 ms at the 99th percentile.

Chapter 6 Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

189

•	 Limitless throughput: Cosmos DB is billed by the total amount of data

stored plus the number of request units per second (RU/s) that you

have allocated. An RU is a measure of database power. Although the

exact metrics that go into an RU are not publicly defined, we do know

that one RU will read a 1 KB document in one second. Pulling more

performance from Cosmos DB is simply a matter of allocating more

RU/s. Within the Azure Portal, you can allocate up to 250,000 RU/s.

To scale further, call Azure Support and ask them to raise the limit.

•	 Limitless storage: There is no upper limit on the amount of data that

Cosmos DB can store.

To give you a sense of what is possible, Microsoft uses Cosmos DB

as the data store for their Windows Data and Analytics service that

handles crash reporting for Windows. Cosmos DB is also the backing

data store for parts of the Windows Store and Xbox.

In the rest of the chapter, we cover the Cosmos DB resource model, what a Cosmos

document is, and how documents are accessed. We then talk about partitions and how

Cosmos DB scales. We illustrate all of these concepts while working through building out

an e-commerce platform for a new fictitious online retailer.

�Congo, the (Hopefully) Up-and-Coming Online
Retail Giant
Jeff Bezos has made a tremendous amount of money with Amazon by selling all sorts

of items online. How hard could it possibly be to become the world’s most dominant

online retailer? Let’s create another e-commerce platform called Congo, which will

undoubtedly bring Amazon to its knees. While we build out Congo, we’ll cover Cosmos

DB concepts and write some code.

Chapter 6 Cosmos DB

190

�Congo Requirements
For this example app, we’ll create a web application that meets the following requirements:

•	 We will carry products with varying attributes.

•	 Each product will belong to a single product category.

•	 Products can have 0 to N reviews. Each review will have the reviewer’s

name, the review text, and a product rating on a scale of 1 to 5.

•	 There is no limit to the number of reviews that a product can have.

•	 On the home page, visitors will be able to search for products by

name. Visitors can search across all product categories, or limit their

search to a single product category.

•	 In the product search results, we will show the average rating based

on reviews.

•	 When a visitor views the product details page, we’ll show the product

information and the first review. The visitor can then elect to see all

reviews if interested.

We won’t worry about creating an account, logging in, or placing orders because it’s

not pertinent to our discussion of Cosmos DB. We’ll also omit other nonpertinent code

such as checking input for errors.

�Congo Tech Stack
We’ll use ASP.NET MVC for our web application framework, Bootstrap version 3.3.7 for

our grid system and base CSS, and Cosmos DB for our data store.

Cosmos DB is an excellent choice for this application for the following reasons.

•	 It’s schema-less: Various products will have various attributes. For

example, we’ll need to track different properties for automobile tires

and lipstick. For the former, we’ll need to store information about

tread patterns, expected mileage, and size. For the latter, we’ll need to

store color, ingredients, and sheen. Whereas it would be a challenge

to store such disparate information in a relational database, Cosmos

doesn’t enforce a schema and we can store any properties we please

within a document.

Chapter 6 Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

191

•	 Scalable throughput: We expect Congo to handle tens of millions of

page views and transactions per day. Scaling a relational database to

handle such traffic would be extremely difficult. With Cosmos, we’ll

simply reserve more RU/s to handle the load.

•	 Near limitless storage: We plan to eventually carry a million products,

store millions of orders, and track analytics to better understand

customer behavior. This will translate into many terabytes of

information. At the time of this writing, the maximum size of an Azure

SQL DB instance is 4 TB. With Cosmos, we have unlimited storage.

Note  Wondering when you should choose Cosmos DB as a data store? You
should consider Cosmos when you expect your application will handle huge
volumes of data, high data velocity, or data that doesn’t conform to a schema. Data
volume is straightforward: If you expect to store and access more data than will
fit in a relational database offering, consider Cosmos. High data velocity means
that you’re reading and writing data at such throughput that relational databases
might struggle with keeping up. As we’ve seen, throughput with Cosmos is simply
a matter of increasing the reserved RUs. Finally, any application that has data that
is difficult to map to a fixed schema is a candidate for Cosmos.

�The Cosmos DB Resource Model
Before you can work with Cosmos, you must first create a Cosmos DB database account.

A database account is a container for zero or more databases. Provisioning a database

account doesn’t have billing implications.

A Cosmos DB Database is a logical container for one or more collections. A database

also holds users and their associated user permissions.

A collection holds JSON documents and associated JavaScript logic such as

stored procedures, user-defined functions, and triggers. Each collection also has an

assigned throughput capacity that is measured in RU/s. The minimum number of RU/s

that can be assigned to a collection is 400. Because Cosmos DB is billed by the total

amount of data stored and the total reserved RU/s, provisioning a collection has billing

implications.

Chapter 6 Cosmos DB

192

A document is JSON content that holds your data. There’s nothing proprietary about

the JSON document format used by Cosmos. Listing 6-1 shows two separate valid JSON

documents, one for a product category and one for a product.

Listing 6-1.  Two Examples of JSON Documents

{

 "categoryname": "Mobile Phones",

 "categorydescription": "Will that be an Android or iOS device?",

 "id": "2",

 "doctype": "category",

}

{

 "categoryid": "1",

 "productname": "American Stratocaster",

 "attributes": [

 {

 "attribute": "Manufacturer",

 "value": "Fender"

 },

 {

 "attribute": "Model",

 "value": "American Stratocaster"

 }],

 "reviews": null,

 "averagerating": 0,

 "description": "If you watch Jimmy Hendrix play the Star Spangled Banner

 at Woodstock, you'll want one of these guitars.",

 "price": 1350,

 "id": "STRAT-AM-S",

 "doctype": "product"

}

There are several advantages to using JSON documents to store data. JavaScript is

ubiquitous, and nearly every modern programming language has provisions for parsing

and working with JSON. Because most developers are already very familiar with JSON,

using JSON reduces what developers must learn to be productive with Cosmos.

Chapter 6 Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

193

�Partitions: How Cosmos DB Scales to Unlimited
Storage
Azure SQL Database is limited to a database size of 4 TB, so how does Cosmos infinitely

scale? The answer is by using partitions.

Collections are composed of logical partitions, and logical partitions contain

documents. When you define a new collection, you must specify a partition key for the

collection. When you store a document within a collection, Cosmos hashes the value

of the document’s partition key to map the document to a logical partition within the

collection.

Logical partitions are stored in physical partitions. Each physical partition is 10 GB

in size and is stored on highly available SSDs. One physical partition will contain one

or more logical partitions. If your collection contains logical partitions A and B that

are each 3 GB in size, Cosmos might store both logical partitions on a single physical

partition. When a logical partition exceeds 10 GB in size, Cosmos will split the logical

partition and move one or parts both to a new physical partition.

The good news is that aside from specifying a partition key, partition management is

completely transparent to developers.

To meet the SLA, Cosmos places throughput limits on logical partitions for reads

and writes, and ACID transactions are bounded within a single logical partition. This has

several implications that we discuss in greater detail in the next section.

�Data Modeling
Experienced relational database developers can look at the aforementioned

requirements for Congo and have a pretty good idea of how to translate those

requirements into a relational schema. How do we go about translating requirements

into Cosmos DB’s data model?

Being a NoSQL database, Cosmos DB doesn’t enforce a schema at the database level.

Schema enforcement is left up to developers. Before we begin developing Congo, we’ll

need to decide on the types of documents we’ll store and the schema for each.

Chapter 6 Cosmos DB

194

When designing relational data models, we normalize so that data isn’t repeated.

With Cosmos, duplicating data across documents isn’t necessarily a cardinal sin. Our

goals when designing how data will be stored in Cosmos are to do the following:

•	 Minimize the number of retrievals in our application: If we can grab

all data necessary in a single trip to the database, our application

will be more performant than if we have to make many trips to the

database.

•	 Ensure that document growth is bounded: Documents cannot

be larger than 2 MB. As document size increases, read and write

performance decreases.

•	 Spread data across partitions to increase write throughput and

performance: If our application is write-intensive, we want to ensure

that data is spread somewhat evenly across partitions to prevent write

bottlenecks.

•	 Store data that is retrieved together on the same partition: Queries that

retrieve data from multiple partitions are more expensive to perform.

•	 Store data that participates in the same transaction on the same

partition: ACID transactions cannot span partitions unless you are

using a single partition collection.

The first two design goals pertain to how we divide our application data into

documents. The last three pertain to our choice of partition keys for each document.

�Determining Document Schemas
Our first step is to determine how we’ll divide our application’s data into documents. The

main questions when doing so are when to embed child data, and when to break child

data out into a separate document. For example, Congo has multiple product categories,

each containing multiple products. Should we create one large product category

document that embeds an array of its products (Listing 6-2), or should we create a small

product category document and N separate product documents that reference the

parent product category document (Listing 6-3)?

Chapter 6 Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

195

Listing 6-2.  We Could Create a Single Product Category Document That Embeds

All Products Within the Category

{

 "categoryname": "Guitars",

 "products": [

 {

 "productname": "American Stratocaster",

 ... other product properties ...

 },

 {

 "productname": "Gibson Les Paul",

 ... other product properties ...

 }

]

}

Listing 6-3.  We Could Create a Product Category Document, a Separate

Document for Each Product Within the Category, and Reference the Category

Document from Within Each of Its Products

{

 "id": "1",

 "categoryname": "Guitars"

}

{

 "productname": "American Stratocaster",

 "categoryid": "1",

 ... other properties ...

}

{

 "productname": "Gibson Les Paul",

 "categoryid": "1",

 ... other properties ...

}

Chapter 6 Cosmos DB

196

Here are rules of thumb to consider when determining document schemas and

whether to embed or reference.

	 1.	 Consider how data will be queried. If data is queried together,

consider embedding it. This allows us to make a single trip to the

database rather than multiple trips.

	 2.	 If child records are dependent on the parent record and will not

be queried separately, consider embedding the child records.

Otherwise, consider referencing.

	 3.	 If there’s a one-to-one relationship, consider embedding.

	 4.	 If child records will be zero to few, consider embedding. If child

records can grow to an unbounded size, consider referencing

instead of embedding. Unbounded growth of a document can

bump against the 2 MB document size limit, and reads and writes

against larger documents are less performant.

	 5.	 If child records have different write volatilities than parent

records, consider referencing. For example, consider a stock

trading application. If you embedded the stocks that everyone

owns within their account document, you’d have to update each

account document for every tick of every stock.

Let’s return to our example application and revisit our requirements.

•	 Product categories will be queried together to feed our category

drop-down list.

•	 Users can search for products across all categories, or limit their

search to a single category.

•	 On the product page, we’ll display all information for a single

product. We will also show the first product review.

•	 Once the user is on a product page, he or she can request to see all

reviews for the product.

Now let’s apply our rules of thumb to our requirements.

Chapter 6 Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

197

Product categories contain products. Rule 4 applies: Because there is no upper limit

to the number of products in a category, it’s a bad idea to embed products within a

category document. Therefore, we’ll have separate documents for products and product

categories. Rule 2 comes into play as well because products will definitely be queried

apart from their category.

What about reviews? When a visitor browses a product, we’ll show the first review by

default. However, reviews can be unbounded as well. We’ll have a separate document for

each review, and keep a reference in each review to its parent product.

Because we have to show the first review for a product on the product details page,

we’ll be forced to make two queries to do so: one for the product document and a second

for the first review. We also know that reviews will rarely, if ever, be edited. Taking Rule 1

into consideration, we can actually embed a copy of the first review for a product within

the product document as well as write the first review to a separate product review

document. This will allow us to retrieve data for the product page in a single trip to the

database.

�Determining Partition Keys
Before finalizing our data model, we need to consider how we’ll spread documents

across partitions to optimize performance. We do this by specifying a property as the

partition key when we create a collection. This partition key should be present in all

documents. Documents with the same partition key will be stored in the same partition.

The following rules of thumb apply when choosing a partition key for documents in a

collection:

	 1.	 Transactions are scoped to a single partition. Documents that

will participate in the same transaction need to be on the same

partition.

	 2.	 When querying documents, you’ll need to include the partition

key within a query. This allows Cosmos DB to jump directly to

the appropriate partition to perform the query. It is possible

to include multiple partitions within a query, but this is

accomplished via parallel queries and consumes resources. Data

that will be queried together should live on the same partition

Chapter 6 Cosmos DB

198

or should be limited to a few partitions. Without specifying a

partition key, Cosmos will have to scan all partitions, which is

analogous to a full table scan in relational databases.

	 3.	 Although it’s best to keep data that will be queried together on the

same partition, we want to distribute writes as evenly as possible

across partitions. This is because Cosmos has RU/s limitations

on a single logical partition. If all of our data lives on a single

partition and we hit those limitations, we’ll be throttled and write

performance will suffer.

Categories, products, and reviews will be created once and infrequently, if ever,

updated. Because our documents will be read-heavy but not write-heavy, we want to

make sure that we optimize for fast querying.

Creating and updating products, reviews, and categories doesn’t require transaction

support. Therefore, it’s not required that categories, products, or reviews live on the

same partition for transaction support.

Because visitors can query across all products when performing a product search,

it is beneficial that all product documents live in the same partition. All categories will

be queried together to populate our categories drop-down list. It’s useful if all category

documents live on the same partition.

All reviews for a single product will be retrieved together. There’s nothing wrong with

having smaller partitions. We will group all reviews for a single product into the same

partition.

Because there’s not a natural property that exists across all three of our document

schemas, we will introduce a new property called partitionkey. For all category

documents, the partitionkey will be "category". For all product documents, the

partition key will be "product". For all reviews, it will be "review" + the product ID.

Examples of category, product, and review documents are shown in Listing 6-4.

Chapter 6 Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

199

Listing 6-4.  Examples of Our Final Category, Product, and Review Documents

{

 "id": "1",

 "doctype": "category",

 "partitionkey": "category",

 "categoryname": "Guitars",

 "categorydescription": "Fine six stringed instruments for sale."

}

{

 "id": "tay214ced",

 "doctype": "product",

 "partitionkey": "product",

 "categoryid": "1",

 "productname": "Taylor 214 Cutaway Deluxe",

 "attributes": [

 {

 "attribute": "Manufacturer",

 "value": "Taylor"

 },

 {

 "attribute": "Model",

 "value": "214 CE Deluxe"

 },

 {

 "attribute": "Guitar Type",

 "value": "Acoustic"

 },

 {

 "attribute": "Back and Sides",

 "value": "Mahogany"

 }

],

 "firstreview": {

 "reviewername": "D. Dykes",

Chapter 6 Cosmos DB

200

 "rating": 5,

 �"review": "I've played Taylor guitars for years, and wouldn't play

anything else.

 This six-string is well-balanced and a beauty for the price.",

 "createdat": "2017-09-03T11:03:37.34291-04:00",

 "productid": "tay214ced",

 "id": "review_d_dykes",

 "doctype": "product_review",

 "partitionkey": "review-tay214ce"

 },

 "averagerating": 4,

 �"description": "Great for playing in coffee shops and serenading the

people present,

 whether they want to hear you or not.",

 "price": 1699

}

{

 "id": "REVIEW_D_DYKES",

 "doctype": "product_review",

 "partitionkey": "review-tay214ce",

 "productid": "TAY214CED",

 "reviewername": "D. Dykes",

 "rating": 5,

 �"review": "I've played Taylor guitars for years, and wouldn't play

anything else.

 This six-string is well-balanced and a beauty for the price.",

 "createdat": "2017-09-03T11:03:37.34291-04:00"

}

�A Single Collection or Multiple Collections
With relational databases, data is stored in tables. Developers who are new to Cosmos

DB sometimes ask if there should be one collection created per document schema. For

example, is it a good idea for us to create a collection for category documents, a second

collection for product documents, and a third for reviews?

Chapter 6 Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

201

It is perfectly acceptable, and often preferable to store different document types in

the same collection. Recall that when creating a new collection, you must allocate at

least the minimum number of RU/s. Splitting different document types into separate

collections can then become an expensive proposition.

Also recall that transactions are limited to the same partition. Placing documents in

two separate collections guarantees that they cannot participate in the same transaction.

An easy way to ensure that your queries are limited to a particular document type

is to include a doctype property on each document. If you refer back to Listing 6-4,

you’ll see this strategy in action. All category documents have a doctype property with

a "category" value. If we want to only retrieve category documents, we can include the

doctype in our filter criteria. You’ll see this done in example code shortly.

�Using the Cosmos DB Emulator for Local
Development
Rather than create an Azure Cosmos DB collection and incur charges during

development, we can use the Azure Cosmos DB Emulator. The Azure Cosmos DB

Emulator is a service that runs on your local computer and provides nearly the same

functionality as Cosmos DB. Because the Emulator makes use of your machine’s local

file system to store documents, you won’t see the same performance or scalability as

Cosmos DB, and global replication is not available.

The Emulator is an excellent way to develop and test the correctness of your

application before deploying it to Azure for final testing and production. We’ll begin our

Congo development using the Emulator, then publish to Cosmos DB at the end of the

project.

To download the Cosmos DB Emulator, visit https://aka.ms/cosmosdb-emulator.

�Creating a Collection in the Emulator
After installing the Emulator, you’ll find a new Azure Cosmos Emulator icon in your

system tray (Figure 6-1). Click the Emulator icon and select Open Data Explorer to

launch the Emulator in your browser (Figure 6-2).

Chapter 6 Cosmos DB

https://aka.ms/cosmosdb-emulator

202

Figure 6-1.  After installing the Azure Cosmos DB Emulator, you’ll find a new
Emulator icon in your system tray

Figure 6-2.  The main screen in the Emulator interface

Chapter 6 Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

203

Let’s create a collection in the Emulator that we can use for developing Congo. To

create a new collection, do the following:

	 1.	 On the Emulator’s main page, click Explorer (Figure 6-2). This

navigates you to the Explorer page.

	 2.	 On the Explorer page (Figure 6-3) click New Collection to open

the Add Collection drawer. You’ll be prompted for the following

settings:

Figure 6-3.  On the Explorer page, click New Collection to open the Add Collection
drawer.

Chapter 6 Cosmos DB

204

•	 Database id: This is the Database ID of the database that will host this

new collection. You can have as many separate databases defined in

the Emulator as needed. Enter congo-db for the Database id. This will

be used along with the Collection Id when querying the collection.

•	 Collection Id: This is the unique identifier for your new collection.

The Collection Id will be used when creating a connection to the

collection to perform queries. Enter congo-collection.

•	 Storage capacity: This allows you to specify whether your collection

is limited to a single partition or multiple partitions. If you are certain

that your collection will never grow past 10 GB of data, select the

Fixed (10 GB) option. Doing so will mean that all of the documents

in this collection will be stored on a single partition. The main

advantages of choosing the Fixed (10 GB) storage capacity is that all

documents can participate in a transaction, and you won’t need to

specify a partition key when making queries.

If you don’t want to impose a limit on the amount of data that can be stored

in a collection, select Unlimited. This means that you’ll have to consider how

data is partitioned by choosing an appropriate partition key.

Because we expect to grow beyond 10 GB of storage and have already

considered our partitioning, select Unlimited.

•	 Throughput: For development purposes, this setting is somewhat

academic. Because we’re emulating, we won’t get an accurate picture

of performance and no charges will be incurred. Accept the default.

•	 RU/s: This specifies RUs per second. It’s a feature that helps

collections deal with bursty loads. Leave this set to Off.

•	 Partition key: This is the path within each document to its partition

key. Enter /partitionkey.

Click OK to create the new collection in the Emulator.

	 3.	 After creating our new collection, you’ll see the congo-collection

listed beneath the Collections heading.

Next, let’s load some data into our new collection.

Chapter 6 Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

205

�Importing Congo Data Using the DocumentDB Data
Migration Tool
To load our initial Congo documents, we could enter them one by one in the

Emulator’s UI. A faster way, though, is to import documents using the DocumentDB

Data Migration Tool.

The DocumentDB Data Migration tool is an open source desktop application that

will import data into a Cosmos DB collection from a variety of sources such as SQL

Server, MongoDB, CSV files, or JSON documents. It’s a very handy tool, especially if

you’re migrating from another database to Cosmos. To load our application’s data, we’ll

first create a JSON file containing the initial example documents.

�Congo’s Initial Data
The initial data for Congo is specified in Listing 6-5. You can also find this file in the

/Data directory of the completed project on GitHub.

Listing 6-5.  Our Example Data Contains Two Category Documents, Three

Product Documents, and a Couple of Reviews

[

 {

 "id": "1",

 "doctype": "category",

 "partitionkey": "category",

 "categoryname": "Guitars",

 "categorydescription": "Fine six stringed instruments for sale."

 },

 {

 "id": "2",

 "doctype": "category",

 "partitionkey": "category",

 "categoryname": "Mobile Phones",

 "categorydescription": "Will that be an Android or iOS device?"

 },

Chapter 6 Cosmos DB

206

 {

 "id": "tay214ced",

 "doctype": "product",

 "partitionkey": "product",

 "categoryid": "1",

 "productname": "Taylor 214 Cutaway Deluxe",

 "averagerating": 4,

 �"description": "Great for playing in coffee shops and serenading the

people present,

 whether they want to hear you or not.",

 "price": 1699,

 "attributes": [

 {

 "attribute": "Manufacturer",

 "value": "Taylor"

 },

 {

 "attribute": "Model",

 "value": "214 CE Deluxe"

 },

 {

 "attribute": "Guitar Type",

 "value": "Acoustic"

 },

 {

 "attribute": "Back and Sides",

 "value": "Mahogany"

 }

],

 "firstreview": {

 "reviewername": "D. Dykes",

 "rating": 5,

 �"review": "I've played Taylor guitars for years, and wouldn't play

anything else.

Chapter 6 Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

207

 This six-string is well-balanced and a beauty for the price.",

 "createdat": "2017-09-03T11:03:37.34291-04:00",

 "productid": "tay214ced",

 "id": "review_d_dykes",

 "doctype": "product_review",

 "partitionkey": "review-tay214ce"

 }

 },

 {

 "id": "review_d_dykes",

 "doctype": "product_review",

 "partitionkey": "review-tay214ced",

 "productid": "tay214ced",

 "reviewername": "D. Dykes",

 "rating": 5,

 �"review": "I've played Taylor guitars for years, and wouldn't play

anything else.

 This six-string is well-balanced and a beauty for the price.",

 "createdat": "2017-09-03T11:03:37.34291-04:00"

 },

 {

 "id": "review_cfmartin",

 "doctype": "product_review",

 "partitionkey": "review-tay214ced",

 "productid": "tay214ced",

 "reviewername": "CF Martin",

 "rating": 3,

 "review": "I mean, it's Ok. But give me a Martin D-28 any day of the week.",

 "createdat": "2017-09-03T11:03:37.4206531-04:00"

 },

 {

 "id": "strat-am-s",

 "doctype": "product",

Chapter 6 Cosmos DB

208

 "partitionkey": "product",

 "categoryid": "1",

 "productname": "American Stratocaster",

 "averagerating": 0,

 �"description": "If you watch Jimmy Hendrix play the Star-Spangled

Banner at Woodstock, you’ll want one of these guitars.”,

 "price": 1350,

 "attributes": [

 {

 "attribute": "Manufacturer",

 "value": "Fender"

 },

 {

 "attribute": "Model",

 "value": "American Stratocaster"

 },

 {

 "attribute": "Guitar Type",

 "value": "Electric"

 },

 {

 "attribute": "Body",

 "value": "Alder"

 }

]

 },

 {

 "id": "lame",

 "doctype": "product",

 "partitionkey": "product",

 "categoryid": "2",

 "productname": "Apple iPhone",

 "averagerating": 0,

Chapter 6 Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

209

 �"description": "Apple's flagship phone. Can make calls, browse the web,

get email,

 �and annoy you into submission when it wants to install an

update.",

 "price": 699,

 "attributes": [

 {

 "attribute": "Manufacturer",

 "value": "Apple"

 },

 {

 "attribute": "Model",

 "value": "iPhone 7"

 },

 {

 "attribute": "Radio",

 "value": "GSM"

 },

 {

 "attribute": "Network",

 "value": "Verizon"

 },

 {

 "attribute": "Total Storage",

 "value": "256GB"

 },

 {

 "attribute": "Color",

 "value": "Space Gray"

 }

]

 }

]

Note that all JSON documents are stored within an array. Save this JSON data in a

document on your local machine in preparation for the import.

Chapter 6 Cosmos DB

210

You can download the binaries here: https://www.microsoft.com/en-us/

download/details.aspx?id=46436. You can also browse the code or build from source

by visiting the project’s GitHub repo at https://github.com/Azure/azure-documentdb-

datamigrationtool.

After downloading the binaries or building the project, do the following to import

our example data into our new collection in the local Cosmos DB Emulator.

	 1.	 Launch the DocumentDB Data Migration Tool.

	 2.	 On the Source Information screen, click Add Files and choose the

file containing the JSON from the previous section. Click Next to

continue.

	 3.	 Next, we’ll tell the Migration Tool where to send our data on the

Target Information screen. You’ll be prompted for the following

settings (Figure 6-4):

Figure 6-4.  Specifying where to import information

Chapter 6 Cosmos DB

www.allitebooks.com

https://www.microsoft.com/en-us/download/details.aspx?id=46436
https://www.microsoft.com/en-us/download/details.aspx?id=46436
https://github.com/Azure/azure-documentdb-datamigrationtool
https://github.com/Azure/azure-documentdb-datamigrationtool
http://www.allitebooks.org

211

•	 Connection String: The connection string is composed of

the database name, account endpoint, and account key. For

the Emulator, the account endpoint is by default https://

localhost:8081. The Emulator’s account key is always . If you’re

following this tutorial, your database name should be congo-db.

Therefore the full connection string will be database=congo-

db;AccountEndpoint=https://localhost:8081/;AccountKey=C

2y6yDjf5/R+ob0N8A7Cgv30VRDJIWEHLM+4QDU5DE2nQ9nDuVTqobD4

b8mGGyPMbIZnqyMsEcaGQy67XIw/Jw==. Click Verify to confirm that

you are able to successfully connect to your local Emulator.

•	 Collection: This is the Collection Id that we will load documents

into. Enter congo-collection.

•	 Partition Key: This is the path within each document where the

partition key is found. Enter /partitionkey.

•	 Collection Throughput: This is only applicable if the Migration

Tool is creating a new collection. You can leave this at the default

value.

	 4.	 The Advanced Options pane lets you specify an error log file. Click

Next again to see a summary of the import that’s about to take

place. Finally, click Import to execute the import process.

If all goes well, you’ll see a success message. You can then jump back into the Azure

Cosmos DB Emulator, click the Explorer tab, and drill down to the Documents menu

item in congo-collection. You should see a list of all documents that were imported

(Figure 6-5).

Chapter 6 Cosmos DB

212

�Querying a Collection
Developers can query Cosmos DB using Cosmos DB SQL. Cosmos DB SQL is a subset

of ANSI SQL, and will look very familiar to relational database developers. It supports

filtering, projections, aggregations, and ordering of results. Instead of querying tables, all

Cosmos DB queries are executed against a collection.

The biggest difference between ANSI SQL and Cosmos DB SQL is that Cosmos DB

doesn’t support relational joins.

Let’s execute a few queries against the data that we loaded into our Emulator.

Figure 6-5.  After running the DocumentDB Data Migration Tool and returning
to the local Azure Cosmos DB Emulator, we see that our documents were imported
successfully

Chapter 6 Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

213

After opening the Emulator, navigate to the Explorer tab. You’ll need to expand the

congo-db and congo-collection nodes, then click Documents (Figure 6-5).

On the Documents screen, click New SQL Query to open a query window. The query

window prepopopulates with SELECT * FROM c. If you execute this query, you’ll see that

all documents within the collection are returned.

Let’s retrieve a specific document by its unique ID. Enter the query SELECT * FROM c

where c.id = "1". Note that the ID is actually in quotation marks because it is a string

type. When you execute this query, you’ll see that our Guitars category document was

returned.

Next, let’s return all product documents. To do so, use the query SELECT * FROM c

where c.doctype = "product". Our three product documents will be returned.

We can also perform projections and reshape our results or take a subset of fields. We

can retrieve only the product name and price for all product documents with the query

SELECT c.productname, c.price FROM c WHERE c.doctype = "product".

Note  Complete coverage of Cosmos DB SQL is beyond the scope of this book.
You can view the full SQL syntax reference at https://docs.microsoft.com/
en-us/azure/cosmos-db/documentdb-sql-query-reference.

If you’d like to try queries without having to set up the emulator or create a
Cosmos DB collection, you can use Microsoft’s Query Playground to execute
queries against a prepopulated data set from a browser. The Query Playground is
at https://www.documentdb.com/sql/demo.

�Creating the Congo Example Application
Our example application will have several pages:

•	 A home page that allows users to search for products and view all

search results.

•	 A product details page that can optionally show all reviews.

•	 An edit product details page that allows an administrator to update a

product’s name, description, and price.

•	 A page that allows a user to create a new product review.

Chapter 6 Cosmos DB

https://docs.microsoft.com/en-us/azure/cosmos-db/documentdb-sql-query-reference
https://docs.microsoft.com/en-us/azure/cosmos-db/documentdb-sql-query-reference
https://www.documentdb.com/sql/demo

214

If you’d rather avoid the chore of typing, you can clone the final project from GitHub

at https://github.com/BuildingScalableWebAppsWithAzure/congo.git.

�Creating the Project and Solution
Let’s get our hands dirty and write some code. We’ll start by setting up our basic solution

and project.

	 1.	 Open Visual Studio and select File ➤ New ➤ Project.

Select the ASP.NET Web Application (.NET Framework) template

located under the Installed ➤ Templates ➤ Visual C# ➤ Web

category (Figure 6-6). Name the solution Congo. Name the project

Congo.Web. Click OK to continue.

	 2.	 Next, you’ll be asked to choose an ASP.NET Template for your

project. Select MVC, then click OK.

Figure 6-6.  Select the ASP.NET Web Application (.NET Framework) template

Chapter 6 Cosmos DB

www.allitebooks.com

https://github.com/BuildingScalableWebAppsWithAzure/congo.git
http://www.allitebooks.org

215

�Creating the Model Classes
Our model classes are used to hold a representation of categories, products, and reviews.

We’ll also use the model classes to ferry information back and forth between our

application and our Cosmos DB collection.

To keep things organized in the project, I recommend creating a Models folder in

the Congo.Web project to hold all model classes. The code for all of our model classes is

shown in Listing 6-6.

Listing 6-6.  The Code for Our Model Classes

namespace Congo.Web.Models

{

 using Newtonsoft.Json;

 /// <summary>

 /// this is the parent class for all of our Cosmos DB documents.

 �/// Since we're storing documents with different schemas, the DocType

 �/// property

 �/// will let us specify the document type. In this project, that will

 �/// be either be

 /// "product", "review", or "category".

 /// </summary>

 public class CongoDocument

 {

 [JsonProperty("id")]

 public string Id { get; set; }

 [JsonProperty("doctype")]

 public string DocType { get; set; }

 [JsonProperty("partitionkey")]

 public string PartitionKey { get; set; }

 }

}

namespace Congo.Web.Models

{

 /// <summary>

Chapter 6 Cosmos DB

216

 /// Our doctype constants as is stored in the parent class CongoDocument.

 /// </summary>

 public class Constants

 {

 public const string DOCTYPE_CATEGORY = "category";

 public const string DOCTYPE_PRODUCT = "product";

 public const string DOCTYPE_REVIEW = "product_review";

 }

}

namespace Congo.Web.Models

{

 using Newtonsoft.Json;

 /// <summary>

 /// products have differing attributes based on the type of product.

 �/// This acts as a key/value pair for a single attribute. Note that

 �/// this doesn't

 �/// inherit from CongoDocument because it will always be part of a

 �/// Product document.

 /// </summary>

 public class ProductAttribute

 {

 [JsonProperty("attribute")]

 public string Attribute { get; set; }

 [JsonProperty("value")]

 public string Value { get; set; }

 }

}

namespace Congo.Web.Models

{

 using System;

 using Newtonsoft.Json;

 using System.ComponentModel.DataAnnotations;

 /// <summary>

 /// Models a single product review.

Chapter 6 Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

217

 /// </summary>

 public class ProductReview : CongoDocument

 {

 [Required]

 [JsonProperty("reviewername")]

 public string ReviewerName { get; set; }

 [Required]

 [JsonProperty("rating")]

 public decimal Rating { get; set; }

 [Required]

 [JsonProperty("review")]

 public string Review { get; set; }

 [JsonProperty("createdat")]

 public DateTime CreatedAt { get; set; }

 [JsonProperty("productid")]

 public string ProductId { get; set; }

 }

}

namespace Congo.Web.Models

{

 using Newtonsoft.Json;

 /// <summary>

 /// Models a single product category.

 /// </summary>

 public class ProductCategory : CongoDocument

 {

 [JsonProperty("categoryname")]

 public string CategoryName { get; set; }

 [JsonProperty("categorydescription")]

 public string CategoryDescription { get; set; }

 }

}

Chapter 6 Cosmos DB

218

namespace Congo.Web.Models

{

 using Newtonsoft.Json;

 /// <summary>

 /// Models a single product.

 /// </summary>

 public class Product : CongoDocument

 {

 [JsonProperty("categoryid")]

 public string CategoryId { get; set; }

 [JsonProperty("productname")]

 public string ProductName { get; set; }

 [JsonProperty("attributes")]

 public ProductAttribute [] Attributes { get; set; }

 [JsonProperty("reviews")]

 public ProductReview [] TopReviews { get; set; }

 [JsonProperty("firstreview")]

 public ProductReview FirstReview { get; set; }

 [JsonProperty("averagerating")]

 public decimal AverageRating { get; set; }

 [JsonProperty("description")]

 public string Description { get; set; }

 [JsonProperty("price")]

 public decimal Price { get; set; }

 }

}

Note how we can change the name of a property when it is serialized to JSON by using

the Newtonsoft.Json.JsonPropertyAttribute. In this example, we’re following convention

that .NET property names are capitalized, and JavaScript property names are lowercased.

Chapter 6 Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

219

�Creating View Model Classes
Our view model classes are used to represent information as it moves back and forth

between our views and controllers and our service tier. Create a folder called ViewModels

and place all of the code from Listing 6-7 within it.

Listing 6-7.  Congo’s View Model Classes

namespace Congo.Web.ViewModels

{

 /// <summary>

 /// Our view model for a single product category.

 /// </summary>

 public class CategoryVM

 {

 public CategoryVM() { }

 /// <summary>

 �/// Convenience method for copying from a ProductCategory model to

 �/// a CategoryVM.

 /// </summary>

 /// <param name="categoryName"></param>

 /// <param name="categoryDescription"></param>

 �public CategoryVM(string id, string categoryName, string

categoryDescription)

 {

 this.Id = id;

 this.CategoryName = categoryName;

 this.CategoryDescription = categoryDescription;

 }

 public string Id { get; set; }

 public string CategoryName { get; set; }

 public string CategoryDescription { get; set; }

 }

}

Chapter 6 Cosmos DB

220

namespace Congo.Web.ViewModels

{

 using System;

 public class ProductReviewVM

 {

 public string Id { get; set; }

 public string ProductId { get; set; }

 public string ReviewerName { get; set; }

 public decimal Rating { get; set; }

 public string Review { get; set; }

 public DateTime CreatedAt { get; set; }

 }

}

namespace Congo.Web.ViewModels

{

 /// <summary>

 /// Used for submitting information for a new review.

 /// </summary>

 public class WriteReviewVM

 {

 public ProductReviewVM Review { get; set; }

 public string ProductName { get; set; }

 public string ProductId { get; set; }

 public string WriteReviewResult { get; set; }

 }

}

namespace Congo.Web.ViewModels

{

 /// <summary>

 /// The view model for a single product attribute.

 /// </summary>

 public class AttributeVM

 {

Chapter 6 Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

221

 public string Attribute { get; set; }

 public string Value { get; set; }

 }

}

namespace Congo.Web.ViewModels

{

 using System.Collections.Generic;

 /// <summary>

 /// Holds information about a single product. This includes reviews and

 /// attributes.

 /// </summary>

 public class ProductVM

 {

 public ProductVM()

 {

 this.Reviews = new List<ProductReviewVM>();

 this.Attributes = new List<AttributeVM>();

 }

 public string Id { get; set; }

 public string ProductName { get; set; }

 public string Description { get; set; }

 public decimal Price { get; set; }

 public decimal? AverageRating { get; set; }

 public List<ProductReviewVM> Reviews { get; set; }

 public List<AttributeVM> Attributes { get; set; }

 }

}

namespace Congo.Web.ViewModels

{

 /// <summary>

 /// Encapsulates a product search request.

 /// </summary>

 public class ProductSearchRequestVM

 {

Chapter 6 Cosmos DB

222

 public string ProductName { get; set; }

 public string CategoryId { get; set; }

 }

}

namespace Congo.Web.ViewModels

{

 using System.Collections.Generic;

 /// <summary>

 /// Holds a list of all products returned by a query.

 /// </summary>

 public class ProductSearchResultsVM

 {

 public List<ProductVM> ProductResults { get; set; }

 }

}

�Creating the Home Page
Our home page lets visitors query by product name and category, then displays the

search results.

Let’s start by creating our ProductRepository class. This class is responsible for

all interaction with our Cosmos DB collection. To support the home page, we’ll need a

method that retrieves all category documents, and also queries by product name and

category. To create the ProductRepository class, do the following:

	 1.	 Create a new folder in the Congo.Web project called Persistence.

Place a new class file called ProductRepository.cs within this

new folder.

	 2.	 The code for the ProductRepository class is given in Listing 6-8.

Listing 6-8.  The ProductRepository Class

namespace Congo.Web.Persistence

{

 using System;

 using System.Collections.Generic;

Chapter 6 Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

223

 using Congo.Web.Models;

 using Microsoft.Azure.Documents;

 using Microsoft.Azure.Documents.Client;

 using System.Threading.Tasks;

 using Microsoft.Azure.Documents.Linq;

 public class ProductRepository

 {

 //a single DocumentClient instance that is shared across all instances

 //of ProductRepository. We can set up the DocumentClient once and reuse

 //since this is a static member variable.

 private static DocumentClient _client;

 private static Uri _collectionUri;

 private static string _databaseId;

 private static string _collectionId;

 /// <summary>

 /// Should be called before any other methods. We'll call this method in

 /// our Global.asax when

 /// the app launches. This will set up our static member variables.

 /// </summary>

 public static void Initialize(string databaseId, string collectionId,

 string endPoint, string primaryKey)

 {

 if (_client == null)

 {

 _client = new DocumentClient(new Uri(endPoint), primaryKey);

 }

 //all of our documents for this application live in the same

 �//collection. We'll go ahead and create the collection's Uri

 //here and hang

 //on to it for all future requests.

 _collectionUri = UriFactory.CreateDocumentCollectionUri(databaseId,

 collectionId);

 _databaseId = databaseId;

 _collectionId = collectionId;

 }

Chapter 6 Cosmos DB

224

 /// <summary>

 /// Searches the product name field and returns all matching products.

 /// If the categoryId is null, we'll include all categories.

 /// Note that we're using a parameterized query to product against

 /// injection attacks since we're working

 /// with strings provided by users.

 /// </summary>

 /// <param name="categoryId">The ID of the category where we should limit

 /// our product search. If null, search all categories.</param>

 �/// <param name="productName">The name of the product to search

for.</param>

 public async Task<List<Product>> SearchForProducts(string categoryId,

 string productName)

 {

 SqlParameterCollection sqlParams = new SqlParameterCollection();

 //construct our SQL statement. Note the inclusion of the

 //partition key.

 �//If you fail to include the partition key in a query against a

 �//partitioned

 //collection, you will receive an error.

 string sqlQuery = $"select * from c where c.doctype = 'product' and

 c.partitionkey = '{Constants.PARTITIONKEY_PRODUCT}'";

 if (! string.IsNullOrEmpty(categoryId))

 {

 sqlQuery += " and (c.categoryid = @categoryId)";

 sqlParams.Add(new SqlParameter("@categoryId", categoryId));

 }

 if (! string.IsNullOrEmpty(productName))

 {

 �sqlQuery += " and contains(lower(c.productname), lower

(@productName))";

 sqlParams.Add(new SqlParameter("@productName", productName));

 }

Chapter 6 Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

225

 //create our SqlQuerySpec parameterized query

 SqlQuerySpec querySpec = new SqlQuerySpec(sqlQuery, sqlParams);

 �IDocumentQuery<Product> productsQuery = _client.

CreateDocumentQuery<Product>(

 _collectionUri, querySpec,

 new FeedOptions { MaxItemCount = -1 }).AsDocumentQuery();

 List<Product> results = new List<Product>();

 while (productsQuery.HasMoreResults)

 {

 �results.AddRange(await productsQuery.

ExecuteNextAsync<Product>());

 }

 return results;

 }

 /// <summary>

 �/// Returns all product categories defined in the system. We do not

 �/// have to

 /// worry about injection

 /// attacks with this query since we aren't accepting input from

 /// the user.

 /// </summary>

 public async Task<List<ProductCategory>> GetAllCategories()

 {

 IDocumentQuery<ProductCategory> categoriesQuery =

 _client.CreateDocumentQuery<ProductCategory>(

 �_collectionUri, "select * from c where c.doctype =

'category' and

 c.partitionkey = 'category'",

 new FeedOptions { MaxItemCount = -1 }).AsDocumentQuery();

Chapter 6 Cosmos DB

226

 List<ProductCategory> results = new List<ProductCategory>();

 while (categoriesQuery.HasMoreResults)

 {

 results.AddRange(await

 categoriesQuery.ExecuteNextAsync<ProductCategory>());

 }

 return results;

 }

 }

}

The Microsoft.Azure.Documents.Client.DocumentClient

class is used to execute requests against a Cosmos DB service.

Because it is costly to create, we’re storing a reference as a static

member variable so that it’s only created once, then shared across

all ProductRepository instances. To create this instance and

perform other initialization, we’ll call the ProductRepository’s

Initialize method from the Application_Start method in our

Global.asax.

For simplicity, we’re executing SQL statements to perform our

categories and products queries. The DocumentClient class

includes overloaded methods to query via LINQ to Cosmos

DB SQL.

	 3.	 Next, we’ll create our ProductService class, which is our business

logic layer. Given the simplicity of this application, its main job

will be to pass requests from our HomeController class to our

ProductRepository class and map the results to view model

instances.

Create a folder within the Congo.Web project called Services,

and place a new ProductService class within the folder. The code

for the ProductService class is shown in Listing 6-9.

Chapter 6 Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

227

Listing 6-9.  The ProductService Class

namespace Congo.Web.Services

{

 using System.Collections.Generic;

 using Congo.Web.ViewModels;

 using System.Threading.Tasks;

 using Congo.Web.Persistence;

 using Congo.Web.Models;

 /// <summary>

 /// Business logic for interacting with products, categories, and reviews.

 /// </summary>

 public class ProductService

 {

 private ProductRepository _repository;

 /// <summary>

 /// Constructor

 /// </summary>

 public ProductService()

 {

 _repository = new ProductRepository();

 }

 /// <summary>

 /// Returns all product categories defined in the system.

 /// </summary>

 /// <returns></returns>

 public async Task<List<CategoryVM>> GetAllCategories()

 {

 �List<ProductCategory> allCategories = await _repository.

GetAllCategories();

 List<CategoryVM> results = CopyCategoriesToViewModel(allCategories);

 return results;

 }

Chapter 6 Cosmos DB

228

 /// <summary>

 /// Searches for all products whose productName property contains the

 /// value specified in productName. If a categoryId is specified, we will

 /// restrict the search to products within the specified category.

 /// </summary>

 �public async Task<ProductSearchResultsVM> SearchForProducts(string

categoryId,

 string productName)

 {

 List<Product> retrievedProducts = await

 _repository.SearchForProducts(categoryId, productName);

 ProductSearchResultsVM results =

 CopyProductSearchResultsToViewModel(retrievedProducts);

 return results;

 }

 private ProductSearchResultsVM CopyProductSearchResultsToViewModel(

 List<Product> products)

 {

 ProductSearchResultsVM resultsVM = new ProductSearchResultsVM();

 resultsVM.ProductResults = new List<ProductVM>();

 foreach (Product p in products)

 {

 resultsVM.ProductResults.Add(CopyProductToViewModel(p));

 }

 return resultsVM;

 }

 private ProductVM CopyProductToViewModel(Product p)

 {

 ProductVM productVm = new ProductVM()

 {

 Id = p.Id,

 ProductName = p.ProductName,

 Description = p.Description,

Chapter 6 Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

229

 Price = p.Price,

 AverageRating = p.AverageRating

 };

 foreach (ProductAttribute attribute in p.Attributes)

 {

 productVm.Attributes.Add(new AttributeVM()

 {

 Attribute = attribute.Attribute,

 Value = attribute.Value

 });

 }

 //see if there's a first review. If so, add it.

 if (p.FirstReview != null)

 {

 �ProductReviewVM reviewVM = CopyProductReviewToViewModel

(p.FirstReview);

 productVm.Reviews.Add(reviewVM);

 }

 return productVm;

 }

 private List<CategoryVM> CopyCategoriesToViewModel(

 List<ProductCategory> categories)

 {

 List<CategoryVM> categoriesVM = new List<CategoryVM>();

 foreach (ProductCategory c in categories)

 {

 categoriesVM.Add(new CategoryVM(c.Id, c.CategoryName,

 c.CategoryDescription));

 }

 return categoriesVM;

 }

 }

}

Chapter 6 Cosmos DB

230

	 4.	 The HomeController class answers HTTP requests and delegates

processing to the ProductService class. You can delete the

contents of the HomeController class that were created by the

MVC template and add the code in Listing 6-10.

Listing 6-10.  The HomeController Class

namespace Congo.Web.Controllers

{

 using System.Web.Mvc;

 using System.Threading.Tasks;

 using Congo.Web.ViewModels;

 using Congo.Web.Services;

 using System.Collections.Generic;

 using System;

 public class HomeController : Controller

 {

 private ProductService _productService = new ProductService();

 /// <summary>

 /// Returns the home page that includes the product search fields.

 /// </summary>

 public async Task<ActionResult> Index()

 {

 ViewBag.Categories = await _productService.GetAllCategories();

 return View();

 }

 /// <summary>

 /// Searches our Cosmos DB collection for all product documents matching

 /// </summary>

 [HttpPost]

 public async Task<ActionResult> SearchForProducts(

 ProductSearchRequestVM searchRequest)

 {

 ViewBag.Categories = await _productService.GetAllCategories();

 //get our search results...

Chapter 6 Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

231

 ProductSearchResultsVM searchResults = await

 _productService.SearchForProducts(searchRequest.CategoryId,

 searchRequest.ProductName);

 ViewBag.SearchResults = searchResults;

 return View("Index");

 }

 }

}

For the sake of brevity, we’ll skip printing the content Index.

cshtml, but it is available within the Git repository.

	 5.	 Before we run our application, we still need to provide the

information for how to connect to our Cosmos DB service.

This involves modifying the <appSettings> section in

our project’s web.config file with our Cosmos DB service’s

details, and then altering the global.asax.cs file so that our

ProductRepository’s Initialize method is called on startup.

Add the code in Listing 6-11 to your web.config file, and replace

the contents of global.asax.cs with the code in Listing 6-12.

Listing 6-11.  The Additions That You Must Make to Your web.config File’s

<appSettings> Section

<appSettings>

 [... other settings in this section ...]

 <!-- Our Cosmos DB settings. Note that these settings are for the

 Cosmos DB Emulator. You will need to make sure that

 �you have the Emulator running, or swap these out with your Azure Cosmos

DB database

 Id, collection Id, endpoint, and primary key. -->

 <add key="DatabaseId" value="congo-db" />

 <add key="CollectionId" value="congo-collection" />

 <add key="EndPoint" value="https://localhost:8081/" />

 �<add key="PrimaryKey" value="C2y6yDjf5/R+ob0N8A7Cgv30VRDJIWEHLM+4QDU5DE

2nQ9nDuVTqobD4b8mGGyPMbIZnqyMsEcaGQy67XIw/Jw==" />

</appSettings>

Chapter 6 Cosmos DB

232

Listing 6-12.  The Contents of the global.asax.cs File

namespace Congo.Web

{

 using System.Web.Mvc;

 using System.Web.Optimization;

 using System.Web.Routing;

 using Congo.Web.Persistence;

 using System.Configuration;

 public class MvcApplication : System.Web.HttpApplication

 {

 protected void Application_Start()

 {

 AreaRegistration.RegisterAllAreas();

 FilterConfig.RegisterGlobalFilters(GlobalFilters.Filters);

 RouteConfig.RegisterRoutes(RouteTable.Routes);

 BundleConfig.RegisterBundles(BundleTable.Bundles);

 �string databaseId = ConfigurationManager.

AppSettings["DatabaseId"];

 �string collectionId = ConfigurationManager.

AppSettings["CollectionId"];

 string endPoint = ConfigurationManager.AppSettings["EndPoint"];

 string primaryKey = ConfigurationManager.AppSettings["PrimaryKey"];

 �ProductRepository.Initialize(databaseId, collectionId,

endPoint, primaryKey);

 }

 }

}

Chapter 6 Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

233

Our final step is to make sure that you start the Azure Cosmos DB Emulator if it’s

not already running. After doing so, run the application. You should see the screen

shown in Figure 6-7.

Figure 6-7.  The Congo home screen allows visitors to search for a product by name

Chapter 6 Cosmos DB

234

Try searching for “Stratocaster” in All Categories. You’ll see the single result shown in

Figure 6-8.

�The Product Details Page
The Product Details page shows all information about a product, as well as the

first review.

We’ll start with the additions to our data access layer. Add the GetProductById

method in Listing 6-13 to the ProductRepository class.

Figure 6-8.  Searching for a Stratocaster in All Categories

Chapter 6 Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

235

Listing 6-13.  The GetProductById Method, Which Is Used to Retrieve a Specific

Product Document by ID

/// <summary>

/// Retrieves a product document by id.

/// </summary>

public async Task<Product> GetProductById(string productId)

{

 //If you need a single document and you have the id, you don't have to

 �//perform a query. Instead, you can read it directly via its unique

 �//URI. Note that

 �//since this is a partitioned collection, we still have to include the

 �//partition

 //key value in the RequestOptions.

 Uri productDocumentUri = UriFactory.CreateDocumentUri(_databaseId,

 _collectionId, productId);

 �Document productDocument = await _client.ReadDocumentAsync

(productDocumentUri,

 new RequestOptions { PartitionKey =

 new PartitionKey(Constants.PARTITIONKEY_PRODUCT) });

 if (productDocument != null)

 {

 return (Product)(dynamic)productDocument;

 }

 return null;

}

When we have the ID of a document, we don’t have to resort to a SQL query.

Instead, we can construct a URI that directly references the document. Because this is a

partitioned collection, we still must include the partition key for the document that we’re

referencing in the RequestOptions parameter.

Next, we’ll add the code in Listing 6-14 to the ProductService class.

Chapter 6 Cosmos DB

236

Listing 6-14.  The GetProductById Method

/// <summary>

/// Searches for a product by productId. Will return a productVM instance

/// if found.

/// Otherwise returns null.

/// </summary>

public async Task<ProductVM> GetProductById(string productId)

{

 Product p = await _repository.GetProductById(productId);

 if (p != null)

 {

 ProductVM result = CopyProductToViewModel(p);

 return result;

 }

 return null;

}

Finally, add the method given in Listing 6-15 to the HomeController class.

Listing 6-15.  The Product Method in the HomeController Class

/// <summary>

/// displays the details for a single product.

/// </summary>

[HttpGet]

public async Task<ActionResult> Product(string id)

{

 ProductVM product = await _productService.GetProductById(id);

 return View(product);

}

To test, run the application and search for “Stratocaster”. Click View to see the

retrieved product’s details. The product details screen for the American Stratocaster is

shown in Figure 6-9.

Chapter 6 Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

237

�Editing a Product
We’ve successfully queried for product documents and retrieved a single document

by ID. Let’s look at how to update a document in Cosmos DB. Updating is a bit of a

misnomer. Instead of updating portions of a document, Cosmos DB replaces the entire

document in the collection.

If you browse to a product in the Congo application, you’ll see an Edit Product

button at the bottom of the screen. Clicking Edit Product navigates you to the Edit

Product page (Figure 6-10).

Figure 6-9.  The product details page for the American Stratocaster product

Chapter 6 Cosmos DB

238

To support replacing a document, add the code in Listing 6-16 to the

ProductRepository class.

Listing 6-16.  Updates to the ProductRepository Class to Support Updating a

Product Document

/// <summary>

/// There is no concept of updating an existing document. Instead, we

/// replace documents.

/// This method replaces the document with the specified id.

/// </summary>

public static async Task<Document> UpdateItemAsync<T>(string id,

 string partitionKey, T item)

{

 Uri documentUri = UriFactory.CreateDocumentUri(_databaseId,

 _collectionId, documentId);

 return await _client.ReplaceDocumentAsync(documentUri, item,

 new RequestOptions { PartitionKey = new PartitionKey(partitionKey)

});

}

Figure 6-10.  The Edit Product page

Chapter 6 Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

239

The code in Listing 6-17 should be added to the ProductService class. It retrieves

the latest version of the product document, copies updates from a view model class to

the current version, then hands the updated model instance to the ProductRepository

to complete the update.

Listing 6-17.  The UpdateProduct Method That Should Be Added to the

ProductService Class

/// <summary>

/// Writes the values found in vm back to our Cosmos DB collection.

/// </summary>

/// <param name="vm"></param>

/// <returns></returns>

public async Task UpdateProduct(ProductVM vm)

{

 //first, retrieve the product from the database. We're doing so because

 //we are allowing only a subset of fields to be updated, and we are ultimately

 //replacing the document in Cosmos DB.

 Product p = await _repository.GetProductById(vm.Id);

 p.ProductName = vm.ProductName;

 p.Description = vm.Description;

 p.Price = vm.Price;

 await _repository.UpdateItemAsync(p.Id, Constants.PARTITIONKEY_PRODUCT, p);

}

To complete the Edit Product page, add the methods in Listing 6-18 to the

HomeController class.

Listing 6-18.  The EditProduct Methods in the HomeController Class That

Support the Edit Product Page

/// <summary>

/// Shows the edit product page for the specified product.

/// </summary>

[HttpGet]

Chapter 6 Cosmos DB

240

public async Task<ActionResult> EditProduct(string id)

{

 ProductVM product = await _productService.GetProductById(id);

 return View(product);

}

/// <summary>

/// Handles the postback that contains edits made to a product. This will

/// write edits to our Collection, then redirect the caller back to the

/// product details

/// page.

/// </summary>

[HttpPost]

public async Task<ActionResult> EditProduct(ProductVM vm)

{

 await _productService.UpdateProduct(vm);

 return RedirectToAction("Product", new { id = vm.Id });

}

�Retrieving All Reviews
When a product details page loads, we only display the first review. You’ll recall that

we embedded the first review within the product document so that we’d only have to

perform a single query to materialize the product details page. If a user wants to see all

reviews, he or she will need to click the See All Reviews link. We’ll make an AJAX call

within the view to retrieve all reviews, then display them to the user.

To retrieve all reviews for a product, add the code shown in Listing 6-19 to the

ProductRepository class.

Listing 6-19.  Add the GetReviewsForProduct Method to the ProductRepository

Class

/// <summary>

/// Queries the Cosmos DB collection for all reviews for a specific product.

/// </summary>

Chapter 6 Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

241

public async Task<List<ProductReview>> GetReviewsForProduct(string productId)

{

 string sqlQuery = $"select * from c where c.doctype = 'product_review'

 �and c.productid = '{productId}' and c.partitionkey = 'review-

{productId}'";

 IDocumentQuery<ProductReview> reviewsQuery =

 _client.CreateDocumentQuery<ProductReview>(_collectionUri, sqlQuery,

 new FeedOptions { MaxItemCount = -1 }).AsDocumentQuery();

 List<ProductReview> results = new List<ProductReview>();

 while (reviewsQuery.HasMoreResults)

 {

 results.AddRange(await reviewsQuery.ExecuteNextAsync<ProductReview>());

 }

 return results;

}

The additional methods needed in the ProductService are shown in Listing 6-20.

Listing 6-20.  Additional Methods Needed in the ProductService Class to Support

Loading All Reviews for a Product

/// <summary>

/// Retrieves all reviews for a given product.

/// </summary>

public async Task<List<ProductReviewVM>> GetAllReviewsForProduct(string

productId)

{

 �List<ProductReview> allReviews = await _repository.GetReviewsForProduct

(productId);

 List<ProductReviewVM> allReviewsVM = new List<ProductReviewVM>();

 foreach (ProductReview pr in allReviews)

 {

 ProductReviewVM vm = CopyProductReviewToViewModel(pr);

 allReviewsVM.Add(vm);

 }

Chapter 6 Cosmos DB

242

 return allReviewsVM;

}

private ProductReviewVM CopyProductReviewToViewModel(ProductReview pr)

{

 ProductReviewVM reviewVm = new ProductReviewVM()

 {

 Id = pr.Id,

 ReviewerName = pr.ReviewerName,

 Rating = pr.Rating,

 Review = pr.Review,

 CreatedAt = pr.CreatedAt

 };

 return reviewVm;

}

To wrap this section up, add the code in Listing 6-21 to the HomeController.cs file.

Listing 6-21.  The AllReviews Method Should Be Added to the HomeController

Class

/// <summary>

/// Returns a partial view populated with all reviews for a product.

/// </summary>

[HttpGet]

public async Task<ActionResult> AllReviews(string id)

{

 �List<ProductReviewVM> allReviews = await _productService.

GetAllReviewsForProduct(id);

 return View(allReviews);

}

Chapter 6 Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

243

�Creating a New Review
Let’s turn our attention to adding a new document to Cosmos. On the product details

screen, visitors can click Write a Review to navigate to the Write a Review page (Figure 6-11).

Figure 6-11.  The Write a Review page lets visitors create a new product review

The method to write a new document to our Cosmos DB collection is trivial. The

DocumentDB API doesn’t care about the contents of the document; it just needs a

valid JSON document and the URI of the collection that should be written to. The

code to create a new document is shown in Listing 6-22 and should be added to the

ProductRepository class. Note the generic document argument. This method can be

used to add any type of document to the collection.

Listing 6-22.  This Method Adds a Document to Our Cosmos DB Collection

/// <summary>

/// writes the supplied document to the database

/// </summary>

public async Task<Document> CreateDocumentAsync<T>(T document)

{

 return await _client.CreateDocumentAsync(_collectionUri, document);

}

Chapter 6 Cosmos DB

244

Our ProductService needs the code in Listing 6-23. Notice that after a review is

added, we’ll query the associated product document and check to see if a review exists. If

not, we’ll update the product document by setting its FirstReview property to the newly

created review.

Listing 6-23.  The ProductService Class’s WriteReviewToDatabase Method

/// <summary>

/// Adds a review document to the collection.

/// </summary>

public async Task WriteReviewToDatabase(ProductReviewVM review)

{

 ProductReview model = new ProductReview();

 model.DocType = Constants.DOCTYPE_REVIEW;

 model.PartitionKey = "review-" + review.ProductId;

 model.Rating = review.Rating;

 model.Review = review.Review;

 model.ReviewerName = review.ReviewerName;

 model.ProductId = review.ProductId;

 //we'll have the document that was just inserted returned so that we can

 //get the new id.

 model = (ProductReview)(dynamic)await _repository.CreateDocumentAsync(model);

 //next, check to see if there is already a first review for the

 //product. If not, update the product document to include

 //this new review.

 Product p = await _repository.GetProductById(review.ProductId);

 if (p.FirstReview == null)

 {

 p.FirstReview = model;

 await _repository.UpdateProduct(p);

 }

}

Chapter 6 Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

245

All that’s left to do is add the methods in Listing 6-24 to the HomeController class.

Listing 6-24.  The New Methods for the HomeController Class That Are Required

for the Write a Review Page

/// <summary>

/// Renders a page where the user can write a review for the requested

/// product.

/// </summary>

[HttpGet]

public async Task<ActionResult> WriteReview(string id)

{

 ProductReviewVM reviewVm = new ProductReviewVM();

 ProductVM product = await _productService.GetProductById(id);

 WriteReviewVM vm = new WriteReviewVM();

 vm.Review = reviewVm;

 vm.ProductId = id;

 vm.ProductName = product.ProductName;

 return View(vm);

}

/// <summary>

/// Submits a new review from a user. After saving the review, this method will

/// redirect the user back to the product page.

/// </summary>

[HttpPost]

public async Task<ActionResult> WriteReview(WriteReviewVM model)

{

 try

 {

 model.Review.ProductId = model.ProductId;

 await _productService.WriteReviewToDatabase(model.Review);

 model.WriteReviewResult = "Your review was successfully added.";

 }

 catch (Exception)

 {

Chapter 6 Cosmos DB

246

 model.WriteReviewResult = "There was a problem adding your review.";

 }

 return View(model);

}

�Deleting a Review
To delete a document, Cosmos DB requires the document ID, the collection from which

to delete the document, and the document’s partition key.

Remember that Cosmos DB doesn’t enforce relationships between documents; all

relationships must be maintained by the application. Because we’re storing a copy of

the first product review within the product document, we’ll have to handle the following

scenarios.

•	 If a user deletes a review that is not the first review, we can safely

delete the review’s document and be done.

•	 If a user deletes the first review, we’ll need to remove the review’s

document, then remove the copy of the first review that is stored in

the product’s document. We’ll also have to check to see if there are

any other reviews for the product. If so, we’ll need to store a copy of

the next review in the product’s document.

Add the code shown in Listing 6-25 to the ProductRepository class.

Listing 6-25.  The DeleteDocumentAsync Method

/// <summary>

/// Removes a document from the collection.

/// </summary>

/// <returns></returns>

public async Task DeleteDocumentAsync(string documentId, string

partitionKey)

{

 Uri documentUri = UriFactory.CreateDocumentUri(_databaseId,

 _collectionId, documentId);

Chapter 6 Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

247

 await _client.DeleteDocumentAsync(documentUri,

 new RequestOptions { PartitionKey = new PartitionKey(partitionKey)

});

}

The logic to enforce referential integrity is in the ProductService class, shown in

Listing 6-26.

Listing 6-26.  Deleting a Review Requires That We Enforce Referential Integrity at

the Application Level

/// <summary>

/// Removes the specified review from the Cosmos DB collection. Also checks

/// to see

/// if the deleted review is the first review for its associated product. If so,

/// remove the product's first review as well.

/// </summary>

/// <returns></returns>

public async Task DeleteReview(string reviewId, string productId)

{

 await _repository.DeleteDocumentAsync(reviewId, $"review-{productId}");

 //retrieve the associated product. We'll check to see if it includes the

 //deleted review.

 Product p = await _repository.GetProductById(productId);

 if (p.FirstReview.Id == reviewId)

 {

 //we are deleting the first review. Find the next review and set it

 //as the first, if applicable.

 List<ProductReview> allReviews =

 await _repository.GetReviewsForProduct(productId);

 ProductReview nextReview = null;

 if (allReviews.Count > 0)

Chapter 6 Cosmos DB

248

 {

 nextReview = allReviews[0];

 }

 p.FirstReview = nextReview;

 �await _repository.UpdateItemAsync(p.Id, Constants.PARTITIONKEY_

PRODUCT, p);

 }

}

The code that must be added to the HomeController class to support deleting

reviews is shown in Listing 6-27.

Listing 6-27.  The HomeController Class’s DeleteReview Method

/// <summary>

/// Deletes the specified review.

/// </summary>

/// <param name="reviewId">The id of the review to delete.</param>

/// <param name="productId">The id of the product that the review belongs

/// to</param>

/// <returns></returns>

public async Task<ActionResult> DeleteReview(string reviewId, string

productId)

{

 await _productService.DeleteReview(reviewId, productId);

 return RedirectToAction("Product", new { id = productId });

}

Chapter 6 Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

249

�Creating a Cosmos DB Account, Database,
and Collection
We’ve finished with our Congo example and have it running successfully on our local Azure

Cosmos DB Emulator. Now it’s time to create an Azure Cosmos DB service in the cloud.

To do so, follow these steps.

	 1.	 Log into the Azure Portal. Click the New Resource icon in the

upper left corner of the portal to create a new Resource. Search for

“Azure Cosmos DB,” then click Create (Figure 6-12).

Figure 6-12.  Creating a Cosmos DB account

Chapter 6 Cosmos DB

250

•	 ID: This is your account identifier. It must be unique across all

Cosmos DB instances.

•	 API: This sets the API that all databases within this account

will use. You have the choice of SQL (DocumentDB),

MongoDB, Gremlin (graph), or Table (key-value). Select SQL

(DocumentDB).

•	 Subscription: The Azure subscription that should be billed for this

Cosmos DB’s account usage.

Figure 6-13.  Creating a new Cosmos DB account

	 2.	 On the New Account blade, you’ll need to fill in the following

fields (Figure 6-13).

Chapter 6 Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

251

•	 Resource Group: The resource group that will hold this Cosmos

DB account. Create a new group called rg-congo.

•	 Location: You can place this new Cosmos DB account in any

Azure region. For best results, choose the region closest to you.

We’ll also want to make sure that when we deploy our Congo Web

App, we place it in the same region as our Cosmos DB account.

Click Create to create your Cosmos DB account.

	 3.	 Now that we’ve created an account, let’s create our first batabase

and collection. Navigate to the Cosmos DB management blade,

and click Add Collection in the header (Figure 6-14).

Figure 6-14.  The Cosmos DB Account Overview blade. Click Add Collection to
create a new collection

Chapter 6 Cosmos DB

252

On the Create Collection blade, you’ll need to enter values for the following fields

(Figure 6-15).

Figure 6-15.  Creating an Azure database and collection

Chapter 6 Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

253

Collection Id: This is the unique identifier for your new collection.

The Collection Id will be used when creating a connection to the

collection to perform queries. Enter congo-collection.

Storage Capacity: This is where you’ll choose between creating a

collection that is limited to a single physical partition, or one that

allows multiple physical partitions. If you are certain that your

collection will never grow past 10 GB of data, select the Fixed

(10 GB) option. Doing so will mean that all of your documents

in this collection will be stored on a single partition. The main

advantage of choosing Fixed (10 GB) is that the minimum number

of RU/s is 400, which is approximately $25.00 per month. Also, you

aren’t required to specify a partition key when interacting via the

DocumentDB API if you choose the Fixed (10 GB) option.

If you don’t want to impose a limit on the amount of data that can

be stored in a collection, select Unlimited.

You can choose either option for our Congo example application.

To keep costs to a minimum, I recommend selecting Fixed (10 GB).

Initial Throughput Capacity (RU/s): This is the amount of

provisioned throughput per second as measured in RUs. For the

Fixed (10 GB) storage capacity, this setting defaults to 5,000, which

has a monthly cost of approximately $288.00. For this example,

please specify 400 RU/s, which is the minimum amount of RU/s

allowed. You can change the number of provisioned RU/s as

needed with no downtime.

Partition Key: This is the path within each document to the value

that will be used as the partition key. If you leave this field blank,

all documents will be stored in the same logical partition. For our

Congo example application, enter /doctype.

Database: This is the Database ID of the database that will host

this new collection. Enter congo-db for the database name. This

will be used along with the Collection ID when querying the

collection.

Click OK to create the database and collection.

Chapter 6 Cosmos DB

254

The final step is to update the web.config file to make use of our Azure Cosmos DB

URI and primary key. To find the URI and primary key, log into the Azure Portal, navigate

to your Cosmos DB management blade, and click Keys located in the Settings section.

After updating your web.config file, you’ll need to push the Congo example data

into your Azure Cosmos DB Collection using the DocumentDB Data Migration Tool. You

can then run Congo locally against your newly provisioned collection. Optionally, you

can also deploy Congo to an Azure Web App instance located in the same region as your

Congo DB account.

�Scaling
Scaling throughput is simple: Simply add more RU/s to your collection. You can do this

by browsing to your Cosmos DB account in the Azure Portal and selecting Scale. On the

Scale blade, you can set RU/s up and down as needed (Figure 6-16).

Figure 6-16.  The Scale blade allows you to change the Throughput (in RU/s)
setting for the selected collection

Chapter 6 Cosmos DB

www.allitebooks.com

http://www.allitebooks.org

255

If you chose the Fixed (10 GB) storage option when you created your collection,

your only option for scaling is to add more RU/s. A fixed (10 GB) collection is limited

to a maximum of 10,000 RU/s. To scale further, you’ll need to migrate your data to an

unlimited storage collection.

If you provisioned a collection with unlimited storage capacity, you’re limited to a

maximum of 100,000 RU/s. If you need more than this, call Azure support and they will

raise your account’s limit.

�Summary
We’ve discussed what Cosmos DB offers, when it makes sense to use Cosmos, and best

practices for creating data models. We then put theory into practice by building out a

portion of an e-commerce platform. While working through our example app, we also

discussed how to use the Azure Cosmos DB Emulator, the DocumentDB Data Migration

Tool, and how to scale a Cosmos DB collection.

In the next chapter, we’ll introduce Azure’s managed Redis Cache, which can be used

to build a caching layer for frequently accessed data. By serving data from Redis instead

of making expensive trips to a data store, you can turbocharge your web applications’

performance.

Chapter 6 Cosmos DB

257
© Rob Reagan 2018
R. Reagan, Web Applications on Azure, https://doi.org/10.1007/978-1-4842-2976-7_7

CHAPTER 7

Redis Cache
Memory caching is the act of storing data that an application needs in memory where

it can be quickly retrieved. Under certain circumstances, doing so can dramatically

increase both an application’s throughput and performance. Caching data in memory is

especially effective when an application needs to repeatedly access the same data that is

expensive to retrieve or calculate. Let’s take a look at an example where an application

can benefit from memory caching.

TechStore is a fictitious online retailer that sells the latest and greatest gadgets. Once

a week, TechStore reviews its product catalog and adds new products, removes old

products, and updates pricing.

TechStore is built on Azure and has a very simple architecture consisting of three

Web App instances that read and write data to an Azure SQL Database. Their Web Apps

are currently handling several hundred requests per second, and most of these requests

are for product pages. Let’s take a look at how TechStore fulfills a request to serve a

product information page. The high-level steps are illustrated in Figure 7-1.

	 1.	 An HTTP request is received and the Azure network load balancer

routes the request to one of the Web App instances.

	 2.	 The application running on the Web App instance receives the

request and determines which product the user wants to see. The

application then issues requests to the Azure SQL Database to

retrieve the product’s information from various tables.

	 3.	 The Azure SQL Database receives the query, creates an execution

plan, and retrieves the product data. The requested data is read

from the Azure SQL data file that resides on a physical hard drive.

www.allitebooks.com

http://www.allitebooks.org

258

	 4.	 The Azure SQL Database returns the data to the application

running on the Web App.

	 5.	 The application materializes the page using the product data, and

returns the page to the caller.

If we profile a request for a product page, we’d see that the majority of time is spent

waiting on the results from the database query. The reason is that often Azure SQL must

retrieve data from a hard disk, and disk reads are several orders of magnitude slower

than accessing data that’s already in memory.

Consider what would happen if Apple actually released an innovative product after

a five-year drought. Yes, I realize that this is a highly unlikely scenario, but please quit

laughing and bear with me. On the day that this new product is released, TechStore’s

servers would be slammed with tens of thousands of product page requests for Apple’s

amazing new product. Each request would result in a query to the Azure SQL Database

or the same product data.

Figure 7-1.  A request where the Web App must retrieve information from an Azure
SQL Database

Chapter 7 Redis Cache

259

�The Cache Aside Pattern
In such situations, we can use a memory cache to both scale and decrease response

time. The Cache Aside pattern works as follows:

	 1.	 Identify data that is frequently requested and choose to cache

the data. Note that you’ll rarely cache all data in your application

because not all data is frequently requested and cache sizes are

limited compared to a data store backed by disks.

	 2.	 When your application needs data that is cached, first check to see

if the data is currently in cache. If so, use the data from cache. If it

is not in cache, retrieve the data from the data store and cache it.

	 3.	 If cached data is updated, first write the updated data to your

data store, then remove the record that was just updated from the

cache. The next time that the data is requested, it will be read from

the data store and cached.

That’s all there is to it! Figure 7-2 shows the same request in the previous illustration

that is serviced from the cache instead of from a relational database.

Figure 7-2.  Servicing a request from a cache instead of from a relational
database

Chapter 7 Redis Cache

www.allitebooks.com

http://www.allitebooks.org

260

�Azure Redis Cache
Azure Redis Cache is a NoSQL key/value database that can be used to implement the

Cache Aside pattern. Azure Redis Cache is a PaaS that you can provision within the

Azure Portal, then connect to from your code using a connection string and your chosen

Redis client library. Microsoft didn’t create Redis from scratch. Redis is actually a mature,

open source software package that’s been around since 2010. The Microsoft Azure Redis

service is based on the open source version. You can think of Redis as a giant System.

Collections.Generic.Dictionary instance. Each data value within Redis is set and

retrieved with a key of type string. Data values can be strings, serialized .NET objects,

hashes, lists, sets, or sorted sets.

To interact with Redis Cache, you’ll need to use a client library. Because Redis is

extremely popular and there are already multiple client libraries available, Microsoft

elected not to create their own. To interact with Redis from a .NET application, I highly

recommend using the StackExchange.Redis library. This is an open source project

created and maintained by the good folks at StackExchange, who are also the creators of

StackOverflow.com. StackExchange.Redis implements all Redis commands and can be

installed as a NuGet package. We’ll make use of the StackExchange.Redis library in our

example project.

�Example Project: TechStore
At the beginning of this chapter, we referenced TechStore, a fictitious online retailer that

could benefit from implementing the Cache Aside pattern. In the following example,

we walk through the code to do so. Because we’re focusing on implementing the Cache

Aside pattern with Azure Redis, we won’t implement unrelated functionality.

Our TechStore example will consist of just three pages:

•	 Home page: The home page will list all products that are listed in the

database. Clicking a link will navigate to a product details page.

•	 Product details page: This displays product and specification

information.

•	 Edit product page. This page allows administrators to update product

details.

Chapter 7 Redis Cache

261

Our tech stack is equally simple and consists of an ASP.NET MVC application that

talks to a SQL Server database using Entity Framework.

We begin by building a basic version of the TechStore web application that relies

solely on Entity Framework to interact with the database. Then we update the project to

add a caching layer.

�Creating the Project
To create the solution, do the following:

	 1.	 Open Visual Studio and select File ➤ New ➤ Project.

	 2.	 In the New Project dialog box, select the ASP.NET Web Application

(.NET Framework) template located under the Installed ➤ Visual

C# ➤ Web section.

	 3.	 Name the new project TechStore.Web, name the solution

TechStore (see Figure 7-3), then click OK.

	 4.	 You’ll then be asked to choose an ASP.NET template. Select MVC,

then click OK.

Figure 7-3.  Creating our solution and ASP.NET MVC project

Chapter 7 Redis Cache

www.allitebooks.com

http://www.allitebooks.org

262

Now that our project has been created, let’s create our database and populate it with

test data.

�Creating the Database
We’ll use a SQL Server database with a simple two-table schema. The tables and

attributes are listed in Figure 7-4.

I find it easiest to create and maintain a SQL Server database via a SQL Server

Database project. SQL Server Database projects will script and execute TSQL for both

Azure SQL and stand-alone SQL Server instances. It also handles figuring out what

needs to be changed for an existing database when you make changes to the SQL Server

Database project and choose to deploy. If you’re not using SQL Server projects, I highly

recommend that you do so.

To add a SQL Server Database project, do the following:

	 1.	 Right-click the TechStore solution in Visual Studio, then choose

Add ➤ New Project.

	 2.	 In the Add New Project dialog box, choose the SQL Server Database

Project located under Installed ➤ SQL Server (Figure 7-5).

Figure 7-4.  Our TechStore database schema

Chapter 7 Redis Cache

263

	 3.	 Name the new project TechStore.Database, then click OK.

After creating the project, we need to add our tables.

	 1.	 Right-click the TechStore.Database project and select Add ➤

Table.

	 2.	 In the Add New Item dialog box, select the Table template located

under Installed ➤ SQL Server. Name this new table Products,

then click Add.

	 3.	 Click the new Products.sql item that has been added to your

project. This will open the table designer. Here you’ll see the

design surface that lets you add and edit table columns. The TSQL

view is listed below the design surface. Enter the TSQL given in

Listing 7-1 into the TSQL view, then save the Products.sql file.

Figure 7-5.  Adding a SQL Server Database project to the solution

Chapter 7 Redis Cache

www.allitebooks.com

http://www.allitebooks.org

264

Listing 7-1.  The TSQL for Our Products Table

CREATE TABLE [dbo].[Products]

(

 [Id] INT NOT NULL PRIMARY KEY IDENTITY,

 [SKU] NVARCHAR(16) NOT NULL,

 [Name] NVARCHAR(64) NOT NULL,

 [Description] NVARCHAR(512) NOT NULL,

 [NumberInStock] INT NOT NULL DEFAULT 0

)

	 4.	 Next, we’ll add our Specifications table. As we did in Step 2,

add a new Specifications.sql script to this project. Open the

Specifications.sql file and add the code in Listing 7-2.

Listing 7-2.  The TSQL for the Specifications Table

CREATE TABLE [dbo].[Specifications]

(

 [Id] INT NOT NULL PRIMARY KEY IDENTITY,

 [ProductId] INT NOT NULL,

 [SpecName] NVARCHAR(64) NOT NULL,

 [SpecValue] NVARCHAR(128) NOT NULL,

 CONSTRAINT [FK_Specifications_Products] FOREIGN KEY (ProductId)

 REFERENCES [Products]([Id])

)

	 5.	 Now it’s time to provision an Azure SQL Database resource. To do

so, log into your Azure account and provision one as described in

Chapter 4. Because this is a small example, you can choose the 5

DTU database from the Basic pricing tier. Don’t forget to set the

Firewall Rules for your new database so that you can connect from

your PC.

Chapter 7 Redis Cache

265

	 6.	 We now need to publish our SQL Server Database project to our

new Azure SQL Database. First, we need to tell our database

project that we want to publish to an Azure database. Right-click

the TechStore.Database project and select Properties. On the

Project Settings screen, set the Target Platform to Microsoft Azure

SQL Database V12. Click Save.

	 7.	 It’s time to publish. Right-click TechStore.Database and select

Publish to open the Publish Database dialog box (Figure 7-6). You’ll

need to click Edit and enter the connection string information for

your Azure SQL Database. Name the database TechStore, then

click Publish. Your database will be published to Azure.

	 8.	 Now let’s populate our database with test data. Connect to your

Azure SQL Database using SQL Server Management Studio and

open a new query pane. Execute the TSQL code in Listing 7-3 to

populate your tables with test data. Rather than type this code,

I recommend downloading it from the project’s GitHub repo at

https://github.com/BuildingScalableWebAppsWithAzure/

TaskZilla.git. The following product descriptions were sourced

from BestBuy.com to lend a bit of authenticity to our example.

Figure 7-6.  The Publish Database dialog box

Chapter 7 Redis Cache

www.allitebooks.com

https://github.com/BuildingScalableWebAppsWithAzure/TaskZilla.git
https://github.com/BuildingScalableWebAppsWithAzure/TaskZilla.git
http://www.allitebooks.org

266

Listing 7-3.  Our TSQL Test Data

USE [TechStore]

GO

SET IDENTITY_INSERT [dbo].[Products] ON

GO

INSERT [dbo].[Products] ([Id], [SKU], [Name], [Description],

[NumberInStock]) VALUES (1, N'5656023', N'Google Pixel 4G LTE2', N'Bring

the power of Google directly to your fingertips with the Google Pixel.

A large 32GB of storage keep data secure, while unlimited cloud storage

transfers data as needed, and it''s completely automatic. The large 5-inch

screen is protected by Corning Gorilla Glass 4 to ensure the Google Pixel

remains scratch-free.', 5)

GO

INSERT [dbo].[Products] ([Id], [SKU], [Name], [Description],

[NumberInStock]) VALUES (2, N'8532557', N'Apple MacBook Pro', N'It''s

faster and more powerful than before, yet remarkably thinner and lighter.

It has the brightest,

most colorful Mac notebook display ever. And it introduces the Touch Bar —

a Multi-Touch enabled strip of glass built into the keyboard for instant

access to the tools you want,

right when you want them. The new MacBook Pro is built on groundbreaking

ideas. And it''s ready for yours.', 26)

GO

INSERT [dbo].[Products] ([Id], [SKU], [Name], [Description],

[NumberInStock]) VALUES (3, N'4457500', N'Huawei - Smartwatch 42mm

Stainless Steel - Silver Leather', N'With its Bluetooth interface, this

smartwatch easily pairs with your

compatible Apple® iOS or Android device and delivers call, text and app

notifications to keep you informed. Just say "OK Google" to control

functions using spoken commands.

Plus, stay on top of fitness goals with a built-in activity tracker with

heart rate monitor.', 7)

Chapter 7 Redis Cache

267

GO

SET IDENTITY_INSERT [dbo].[Products] OFF

GO

SET IDENTITY_INSERT [dbo].[Specifications] ON

GO

INSERT [dbo].[Specifications] ([Id], [ProductId], [SpecName], [SpecValue])

VALUES (1, 1, N'Carrier', N'Verizon')

GO

INSERT [dbo].[Specifications] ([Id], [ProductId], [SpecName], [SpecValue])

VALUES (2, 1, N'Wireless Technology', N'4G LTE, CDMA, GSM, WCDMA')

GO

INSERT [dbo].[Specifications] ([Id], [ProductId], [SpecName], [SpecValue])

VALUES (3, 1, N'Operating System', N'Android 7.0 Nougat')

GO

INSERT [dbo].[Specifications] ([Id], [ProductId], [SpecName], [SpecValue])

VALUES (4, 1, N'Maximum Usage Time', N'26 hours')

GO

INSERT [dbo].[Specifications] ([Id], [ProductId], [SpecName], [SpecValue])

VALUES (5, 1, N'Screen Size', N'5 inches')

GO

INSERT [dbo].[Specifications] ([Id], [ProductId], [SpecName], [SpecValue])

VALUES (6, 2, N'Hard Drive Capacity', N'128 GB')

GO

INSERT [dbo].[Specifications] ([Id], [ProductId], [SpecName], [SpecValue])

VALUES (7, 2, N'Hard Drive Type', N'Other')

GO

INSERT [dbo].[Specifications] ([Id], [ProductId], [SpecName], [SpecValue])

VALUES (8, 2, N'Operating System', N'Mac OS X 10.9 Mavericks')

GO

INSERT [dbo].[Specifications] ([Id], [ProductId], [SpecName], [SpecValue])

VALUES (9, 2, N'Processor Speed', N'2.7 gigahertz')

GO

INSERT [dbo].[Specifications] ([Id], [ProductId], [SpecName], [SpecValue])

VALUES (10, 2, N'System Memory', N'8 GB')

Chapter 7 Redis Cache

www.allitebooks.com

http://www.allitebooks.org

268

GO

INSERT [dbo].[Specifications] ([Id], [ProductId], [SpecName], [SpecValue])

VALUES (11, 3, N'Operating System', N'Android')

GO

INSERT [dbo].[Specifications] ([Id], [ProductId], [SpecName], [SpecValue])

VALUES (12, 3, N'Water Resistant', N'Yes')

GO

INSERT [dbo].[Specifications] ([Id], [ProductId], [SpecName], [SpecValue])

VALUES (13, 3, N'Screen Size', N'36 millimeters')

GO

INSERT [dbo].[Specifications] ([Id], [ProductId], [SpecName], [SpecValue])

VALUES (14, 3, N'Band Material', N'Leather')

GO

INSERT [dbo].[Specifications] ([Id], [ProductId], [SpecName], [SpecValue])

VALUES (15, 3, N'Internal Memory', N'4GB')

GO

SET IDENTITY_INSERT [dbo].[Specifications] OFF

GO

�Adding Entity Framework
We’ll now add Entity Framework to our application. We could use ADO.NET or another

ORM package such as Dapper, but Entity Framework 6 has built-in support for handling

transient faults such as a temporary loss of network connectivity and retrying queries.

This functionality is needed when working with Azure SQL Databases. To add Entity

Framework to the project, do the following:

	 1.	 First, we need to add the NuGet package for Entity Framework.

Right-click on the TechStore.Web project and select Manage

NuGet Packages. Click the Browse tab and search for

EntityFramework. Select the latest version, then click Install to

add it to your project.

Chapter 7 Redis Cache

269

	 2.	 Next, we need to add our DbContext subclass and associated

model classes. We’ll place these files in a Persistence folder in

the TechStore.Web project.

	 a.	 Add the Persistence folder by right-clicking the TechStore.

Web project and selecting Add ➤ New Folder. Rename the

new folder Persistence.

	 b.	 After adding the Persistence folder, right-click the folder

and select Add ➤ New Item. In the Add New Item dialog box,

select the ADO.NET Entity Data Model located under the

Installed ➤ Visual C# ➤ Data category. Name this new item

TechStoreContext and click Add.

	 c.	 Next, the Entity Data Model Wizard will launch and ask how

you’d like to configure our new Entity Framework model.

Select Code First from database, then click Next.

	 d.	 You’ll now need to tell the Entity Data Model Wizard to which

database you’d like to connect to generate our DbContext

subclass and models (see Figure 7-7). You’ll need to click New

Connection and enter the necessary information to connect

to your Azure SQL Database instance. Also, select the Save

Connection Settings in Web.Config As check box, and enter

TechStoreContext as the key. Click Next to continue.

Chapter 7 Redis Cache

www.allitebooks.com

http://www.allitebooks.org

270

	 e.	 For our last step, you must select the database objects and

settings you’d like to include. Select the Tables treeview

items, then click Finish. You should see Product.cs,

Specification.cs, and TechStoreContext.cs files added to

your Persistence folder.

Entity Framework has now been added to our project. Now it’s time to create our

view models.

Figure 7-7.  The Entity Data Model Wizard asks to which database you’d like to
connect to generate the DbContext and models

Chapter 7 Redis Cache

271

�Adding View Models
I’m not a fan of reusing model classes that are generated by Entity Framework. Because

there’s rarely a one-to-one match between the data model and what needs to be

displayed on pages, it’s architecturally cleaner to have a separate set of view models, and

use a service layer to populate them. We’ll now create the view models that we’ll need for

this application.

For demonstration purposes, we want to display the number of microseconds that

it takes for our server to process requests. When we add our caching layer, we also want

to display to the user whether the request was served from cache or from the database.

Therefore, we’ll have our view model classes inherit from the BaseModel class, shown in

Listing 7-4.

Listing 7-4.  Our BaseModel Class

namespace TechStore.Web.Models

{

 /// <summary>

 /// All of our View Models will inherit from this class. It will contain

 /// the retrieval method

 /// and retrieval time for servicing the request.

 /// </summary>

 public class BaseModel

 {

 public string RetrievalMethod { get; set; }

 public decimal RetrievalTime { get; set; }

 /// <summary>

 /// �Used only when we update an entity. This will transmit any

 /// �notifications

 /// from our service class to the view.

 /// </summary>

 public string LastUpdatedMessage { get; set; }

 }

}

Chapter 7 Redis Cache

www.allitebooks.com

http://www.allitebooks.org

272

Each product in the system will have a variable number of specifications. Because

different types of products will have different attributes, we’re storing specifications as

labels and values. An example of a specification might be Processor speed for a laptop, or

Screen size for a mobile phone. The SpecificationDetails class is shown in Listing 7-5.

Listing 7-5.  The SpecificationDetails Class

namespace TechStore.Web.Models

{

 public class SpecificationDetails

 {

 public string SpecName { get; set; }

 public string SpecValue { get; set; }

 }

}

Our product details and edit product pages will need all of the information for a

single product. A product will have zero or more specifications. Our ProductDetails

class is shown in Listing 7-6.

Listing 7-6.  The ProductDetails View Model Class

using System.Collections.Generic;

namespace TechStore.Web.Models

{

 /// <summary>

 /// This class is our MVC ViewModel for a product.

 /// </summary>

 public class ProductDetails : BaseModel

 {

 public ProductDetails()

 {

 this.Specifications = new List<SpecificationDetails>();

 }

 public int Id { get; set; }

Chapter 7 Redis Cache

273

 /// <summary>

 /// A list of all specifications for this product.

 /// </summary>

 public List<SpecificationDetails> Specifications { get; }

 public string SKU { get; set; }

 public string Name { get; set; }

 public string Description { get; set; }

 public int NumberInStock { get; set; }

 }

}

Our home page will list all products in the system. Our ProductList class will inherit

from BaseModel and have a list of ProductDetails. It’s shown in Listing 7-7.

Listing 7-7.  The ProductList Class

using System.Collections.Generic;

namespace TechStore.Web.Models

{

 public class ProductList : BaseModel

 {

 public ProductList()

 {

 this.Products = new List<ProductDetails>();

 }

 public List<ProductDetails> Products { get; set; }

 }

}

Let’s move on to our service layer.

Chapter 7 Redis Cache

www.allitebooks.com

http://www.allitebooks.org

274

�Creating the Service Layer
Our Entity Framework TechStoreContext class will act as our application’s persistence

layer. Now let’s build our service layer. This layer will be responsible for the application’s

business logic. Our business logic in this application is very simple: We’ll retrieve

and update information from the database. When we add Redis to this solution and

introduce a cache, the service layer will coordinate checking the cache for requested

product information before resorting to looking in the database.

As usual, let’s first define an interface for our service class to implement. Create a

Services folder in the TechStore.Web project to hold our service class and accompanying

interface, then add the IProductService interface as shown in Listing 7-8.

Listing 7-8.  Title Here

namespace TechStore.Web.Services

{

 public interface IProductService

 {

 Task<ProductList> RetrieveAllProducts();

 Task<ProductDetails> RetrieveProductDetails(int productId);

 Task UpdateProductDetails(ProductDetails product);

 }

}

Next is for our actual ProductService implementation. The code is shown in

Listing 7-9.

Listing 7-9.  The ProductService Class

using System;

using System.Threading.Tasks;

using TechStore.Web.Models;

using TechStore.Web.Persistence;

using System.Data.Entity;

using System.Configuration;

using System.Linq;

Chapter 7 Redis Cache

275

namespace TechStore.Web.Services

{

 /// <summary>

 /// This class is responsible for retrieving and updating product information.

 /// </summary>

 public class ProductService : IProductService

 {

 private const string DATABASE_RETRIEVAL = "SQL Server Database";

 private const string REDIS_RETRIEVAL = "Redis Cache";

 private static ConnectionMultiplexer _redisConnection;

 /// <summary>

 /// Retrieves a list of all products from the database. Note that we

 /// are not getting the Specifications since we're just listing products

 /// and not viewing product details.

 /// </summary>

 public async Task<ProductList> RetrieveAllProducts()

 {

 ProductList allProducts = await RetrieveAllProductsFromDatabase();

 return allProducts;

 }

 /// <summary>

 /// Retrieves a single product from the database.

 /// </summary>

 �public async Task<ProductDetails> RetrieveProductDetails(int productId)

 {

 �ProductDetails product = await RetrieveProductFromDatabase

(productId);

 return product;

 }

 /// <summary>

 /// Updates a product in the database

 /// </summary>

Chapter 7 Redis Cache

www.allitebooks.com

http://www.allitebooks.org

276

 public async Task UpdateProductDetails(ProductDetails product)

 {

 await UpdateProductInDatabase(product);

 }

 /// <summary>

 /// �Retrieves a product from the database using the supplied primary

 /// �key.

 /// </summary>

 �private async Task<ProductDetails> RetrieveProductFromDatabase(int

productId)

 {

 ProductDetails product = null;

 using (var db = new TechStoreContext())

 {

 �var productFromDb = await db.Products.Where(b => b.Id ==

productId)

 .Include(b => b.Specifications).FirstOrDefaultAsync();

 if (productFromDb != null)

 {

 product = CreateProductDetails(productFromDb);

 product.RetrievalMethod = DATABASE_RETRIEVAL;

 }

 }

 return product;

 }

 /// <summary>

 /// Updates a Products record in the database.

 /// </summary>

 private async Task UpdateProductInDatabase(ProductDetails product)

 {

 using (var db = new TechStoreContext())

 {

 var productFromDb = await db.Products.FindAsync(product.Id);

 if (productFromDb == null)

Chapter 7 Redis Cache

277

 {

 �throw new Exception("We couldn't find a product for Id " +

product.Id);

 }

 productFromDb.Name = product.Name;

 productFromDb.Description = product.Description;

 productFromDb.SKU = product.SKU;

 productFromDb.NumberInStock = product.NumberInStock;

 await db.SaveChangesAsync();

 product.LastUpdatedMessage =

 "Successfully updated at " + DateTime.Now.ToString("o");

 }

 }

 /// <summary>

 /// �Retrieves all products from the database, stores them in a

 /// ProductList

 /// instance, and returns them to the caller.

 /// </summary>

 private async Task<ProductList> RetrieveAllProductsFromDatabase()

 {

 ProductList allProducts = new ProductList();

 allProducts.RetrievalMethod = DATABASE_RETRIEVAL;

 using (var db = new TechStoreContext())

 {

 var productsFromDb = await db.Products.ToListAsync();

 foreach (Product p in productsFromDb)

 {

 allProducts.Products.Add(CreateProductDetails(p));

 }

 }

 return allProducts;

 }

Chapter 7 Redis Cache

www.allitebooks.com

http://www.allitebooks.org

278

 /// <summary>

 /// �Copies data from our Entity Framework-generated Product class to our

 /// ProductDetails view model class.

 /// </summary>

 private ProductDetails CreateProductDetails(Product p)

 {

 ProductDetails details = new ProductDetails();

 details.Id = p.Id;

 details.Name = p.Name;

 details.Description = p.Description;

 details.SKU = p.SKU;

 details.NumberInStock = p.NumberInStock;

 //now let's set up our specifications

 foreach (Specification s in p.Specifications)

 {

 SpecificationDetails specDetail = new SpecificationDetails();

 specDetail.SpecName = s.SpecName;

 specDetail.SpecValue = s.SpecValue;

 details.Specifications.Add(specDetail);

 }

 return details;

 }

 }

}

�Creating the Controller and Views
Now that our service layer is complete, we’re ready to implement our controller. To do

so, let’s open the HomeController.cs file and delete its contents. You can also delete all

other controller classes that were created as part of the project template; they are not

needed.

Because this is such a small project and we’re working to keep the example simple,

we’ll place all code within our HomeController.cs file. The contents of HomeController.

cs are given in Listing 7-10.

Chapter 7 Redis Cache

279

Listing 7-10.  The HomeController Class

using System.Web.Mvc;

using TechStore.Web.Services;

using TechStore.Web.Models;

using System.Threading.Tasks;

using System.Diagnostics;

namespace TechStore.Web.Controllers

{

 public class HomeController : Controller

 {

 private IProductService _productService;

 private const long NANOSECONDS_PER_SECOND = 1000L * 1000L * 1000L;

 /// <summary>

 /// Constructor. In a production application, the IProductService

 /// instance

 /// should be injected by a Dependency Injection container.

 /// To keep this illustration simple, we'll instantiate our

 /// IProductService

 /// in the constructor.

 /// </summary>

 public HomeController()

 {

 _productService = new ProductService();

 }

 /// <summary>

 /// Returns the home page that lists all products in the database.

 /// </summary>

 [HttpGet]

 public async Task<ActionResult> Index()

 {

 Stopwatch timer = new Stopwatch();

Chapter 7 Redis Cache

www.allitebooks.com

http://www.allitebooks.org

280

 timer.Start();

 �ProductList allProducts = await _productService.

RetrieveAllProducts();

 timer.Stop();

 long requestDuration =

 CalculateRequestDurationInMicroseconds(Stopwatch.Frequency,

 timer.ElapsedTicks);

 allProducts.RetrievalTime = requestDuration;

 return View(allProducts);

 }

 /// <summary>

 /// Returns a product details page for the requested product.

 /// </summary>

 /// <param name="id">The ID for the products record that we'd like to

 /// view. </param>

 [HttpGet]

 public async Task<ActionResult> Product(int id)

 {

 Stopwatch timer = new Stopwatch();

 timer.Start();

 �ProductDetails product = await _productService.

RetrieveProductDetails(id);

 timer.Stop();

 long requestDuration =

 CalculateRequestDurationInMicroseconds(Stopwatch.Frequency,

 timer.ElapsedTicks);

 product.RetrievalTime = requestDuration;

 return View(product);

 }

 /// <summary>

 /// Created the edit product page for the requested product.

 /// </summary>

Chapter 7 Redis Cache

281

 [HttpGet]

 public async Task<ActionResult> EditProduct(int id)

 {

 Stopwatch timer = new Stopwatch();

 timer.Start();

 �ProductDetails product = await _productService.

RetrieveProductDetails(id);

 timer.Stop();

 long requestDuration =

 CalculateRequestDurationInMicroseconds(Stopwatch.Frequency,

 timer.ElapsedTicks);

 product.RetrievalTime = requestDuration;

 return View(product);

 }

 /// <summary>

 /// Updates the product's information. This will update the database

 /// and evict any cache

 /// �record for the edited product so that our cache won't serve stale data.

 /// </summary>

 [HttpPost]

 public async Task<ActionResult> EditProduct(ProductDetails product)

 {

 await _productService.UpdateProductDetails(product);

 return View(product);

 }

 /// <summary>

 �/// Helper method that will take our timer's frequency and elapsed

 �/// time in ticks,

 /// and calculate the number of microseconds that the request took.

 /// </summary>

 �private long CalculateRequestDurationInMicroseconds(long

stopWatchFrequency,

 long elapsedTicks)

Chapter 7 Redis Cache

www.allitebooks.com

http://www.allitebooks.org

282

 {

 �long nanosecondsPerTick = NANOSECONDS_PER_SECOND / Stopwatch.

Frequency;

 long requestLength = elapsedTicks * nanosecondsPerTick;

 return requestLength;

 }

 }

}

The HomeController class delegates the work of retrieving and updating product

information to the ProductService class. The most interesting aspect is the use of the

Stopwatch class to time how long it takes for the service layer to process a request.

For brevity, we’ll skip each page’s markup. You can find the markup along with the

completed example at https://github.com/BuildingScalableWebAppsWithAzure/

TaskZilla.git.

�Running the TechStore Application
We’re now ready to run our application, but to get a true picture of how long it takes

to retrieve product information from the database, you’ll need to provision a Web App

resource and deploy to Azure. If you run the web application locally against a SQL

Azure Database, the majority of page processing time will be due to network latency.

When you create your Web App, make sure that you do so in the same region where you

provisioned your SQL Azure Database. If you’d like to look at a detailed walkthrough for

deploying a Web App to Azure, return to Chapter 2.

After deploying the web application to Azure, you should see the index page shown

in Figure 7-8.

Chapter 7 Redis Cache

https://github.com/BuildingScalableWebAppsWithAzure/TaskZilla.git
https://github.com/BuildingScalableWebAppsWithAzure/TaskZilla.git

283

You’ll notice a large drop in total retrieval time from the initial load to all subsequent

page loads. This is because Azure SQL implements its own caching. The initial page load

runs approximately 400 ms, and subsequent page loads are taking around 10 ms on an

Azure Free Tier Web App.

Let’s click a product link to view a product details page. The product page for the

Google Pixel phone is shown in Figure 7-9.

Figure 7-9.  The product details page for the Google Pixel

Figure 7-8.  The TechStore index page that lists all products

Chapter 7 Redis Cache

www.allitebooks.com

http://www.allitebooks.org

284

The initial page load ran 442 ms.

Clicking the Edit link will take you to the edit page for this product. The edit product

page will also retrieve the product record from the database, and will also write it back to

the database if the user saves his or her edits.

�Create an Azure Redis Cache Resource
Let’s see if we can improve on our product details page load performance by introducing

the Cache Aside pattern using a Redis Cache instance.

Currently, there is no local emulator for Azure Redis, so we’ll need to provision an

Azure Redis Cache instance within the portal. For other projects that use Redis, you’ll

have to do the same.

To create an Azure Redis Cache resource, do the following:

	 1.	 Log into the Azure Portal and click New Resource to create a new

resource.

	 2.	 On the New Resource blade, select Redis Cache, located on the

Databases menu.

	 3.	 On the New Redis Cache blade, you’ll need to fill out information

on your new cache instance. The fields are described as follows:

•	 DNS Name: Enter a unique name for your cache. This name will

become part of the resource’s URI and must be unique. I named

mine TechStore, but because I’ve used that name, you cannot

use it.

•	 Subscription: Choose the subscription you’d like to bill for this

new cache instance from the drop-down list.

•	 Resource Group: I recommend placing all of your resources for

a solution in a single resource group. Select the same resource

group you used when provisioning the TechStore database.

Chapter 7 Redis Cache

285

•	 Location: This is the region in which your Redis Cache will be

provisioned. It is very important that you locate your Redis

Cache resource in the same region where your Web App(s) host

your web application. If you host your Web Apps in one region

and your Redis Cache in another, all performance benefits of

caching will be lost due to network latency between your web

application and the cache. In fact, doing so will make your

application much slower.

•	 Pricing Tier: There are three separate pricing tiers: Basic,

Standard, and Premium. Each tier adds more performance and

features. We discuss these in more detail in the “Scaling Out”

section later in this chapter. For our exercise, choose the cheapest

option, which is C0 Basic. At the time of this writing, this will cost

$16.37 per month.

All of the other features will be disabled when you choose the Basic tier, and are only

enabled if you choose an instance from the Premium tier. Click Create to provision your

new cache instance.

�Implementing the Cache Aside Pattern with Redis Cache
We’re now ready to add a caching layer to our application. Let’s start by caching product

records that we’re currently retrieving from the database.

First, we need to add the necessary NuGet packages to our project. There are

several Redis clients that you could use to work with a Redis instance. We’re going to

use StackExchange.Redis, which is the library that Microsoft recommends. When we

store a ProductDetails instance in our Redis Cache, we need to first serialize it to JSON

format. To do so, use the Newtonsoft.Json library. To add these packages, right-click the

TechStore.Web project and select Manage NuGet Packages. Click the Browse tab, search

for Newtonsoft.Json and StackExchange.Redis and add each of these packages to the

project.

We now need to add our Redis Cache connection string to our web.config file. To

get your Redis Cache connection string, log into the Azure Portal, navigate to your Redis

Cache resource, and click Overview. Under the Keys heading, click the Show Access Keys

link (Figure 7-10).

Chapter 7 Redis Cache

www.allitebooks.com

http://www.allitebooks.org

286

This opens the Manage Keys blade. Copy the connection string listed under

the Primary connection string (StackExchange.Redis). Add this as an entry in the

<appsettings> section in your web.config. The entry will look similar to the following:

<add key="redisCacheConnectionString" value="[cache name].redis.cache.

windows.net:6380,password=[your password],ssl=True,abortConnect=False" />

Next, we need to modify our ProductService class. Before retrieving a product

from the database, we’ll check to see if it exists within our cache. If so, we’ll return the

requested ProductDetails instance. If not, we’ll retrieve it from the database, add it to

our cache, and return it to the caller. The next time that the same product information is

requested, it will already be loaded in our cache from the previous request.

The modified ProductService class is shown in Listing 7-11. Changes that

incorporate Redis for our Cache Aside pattern are shown in bold.

Listing 7-11.  The Modified ProductService Class That Includes a Cache Aside

Pattern Implementation Using Redis Cache

using System;

using System.Threading.Tasks;

using TechStore.Web.Models;

using TechStore.Web.Persistence;

using System.Data.Entity;

using System.Configuration;

Figure 7-10.  Click the Show Access Leys link to find your Redis Cache connection
string

Chapter 7 Redis Cache

287

using System.Linq;

using StackExchange.Redis;

using Newtonsoft.Json;

namespace TechStore.Web.Services

{

 /// <summary>

 �/// This class is responsible for retrieving and updating product

 �/// information.

 /// </summary>

 public class ProductService : IProductService

 {

 private const string DATABASE_RETRIEVAL = "SQL Server Database";

 private const string REDIS_RETRIEVAL = "Redis Cache";

 private static ConnectionMultiplexer _redisConnection;

 /// <summary>

 /// �Constructor that is only called once, no matter how many times this

 /// �class is instantiated. The ConnectionMultiplexer class is

 /// expensive,

 /// and we do not want to re-create it for each request.

 /// </summary>

 static ProductService()

 {

 string redisConnectionString =

 ConfigurationManager.AppSettings["redisCacheConnectionString"];

 �_redisConnection = ConnectionMultiplexer.Connect(redisConnection

String);

 }

 /// <summary>

 /// �Retrieves a list of all products from the database. Note that we are

 /// �not getting the Specifications since we're just listing products and

 /// not viewing product details.

 /// </summary>

Chapter 7 Redis Cache

www.allitebooks.com

http://www.allitebooks.org

288

 public async Task<ProductList> RetrieveAllProducts()

 {

 ProductList allProducts = await RetrieveAllProductsFromDatabase();

 return allProducts;

 }

 /// <summary>

 /// �Retrieves a single product. We'll first look to see if the product is

 /// �in cache. If so, serve it. If not, retrieve it from the database,

 /// add to cache, and then serve it.

 /// </summary>

 �public async Task<ProductDetails> RetrieveProductDetails(int productId)

 {

 ProductDetails product = await RetrieveProductFromCache(productId);

 if (product == null)

 {

 �//we've had a cache miss. We're going to have to retrieve the

product

 //from the database, then add it to cache before returning.

 product = await RetrieveProductFromDatabase(productId);

 await AddProductToCache(product);

 }

 return product;

 }

 /// <summary>

 /// Updates the product in our database

 /// </summary>

 public async Task UpdateProductDetails(ProductDetails product)

 {

 //first, update the product in our system of record.

 await UpdateProductInDatabase(product);

 }

Chapter 7 Redis Cache

289

 /// <summary>

 /// Convenience method for creating a Redis Cache key for a product.

 /// </summary>

 private string CreateProductCacheKey(int productId)

 {

 return "product:" + productId;

 }

 /// <summary>

 �/// Checks our Redis Cache for the requested product. If found, we

 �/// return the

 /// ProductDetails record. If not, we return null.

 /// </summary>

 �private async Task<ProductDetails> RetrieveProductFromCache(int

productId)

 {

 string productKey = "product:" + productId;

 IDatabase cache = _redisConnection.GetDatabase();

 string val = await cache.StringGetAsync(productKey);

 if (val == null)

 {

 //cache miss. We don't have this product cached yet.

 return null;

 }

 �ProductDetails product = JsonConvert.DeserializeObject<Product

Details>(val);

 product.RetrievalMethod = REDIS_RETRIEVAL;

 return product;

 }

 /// <summary>

 /// Adds a product to our Redis Cache.

 /// </summary>

 private async Task AddProductToCache(ProductDetails product)

 {

 string productKey = CreateProductCacheKey(product.Id);

Chapter 7 Redis Cache

www.allitebooks.com

http://www.allitebooks.org

290

 IDatabase cache = _redisConnection.GetDatabase();

 string serializedProduct = JsonConvert.SerializeObject(product);

 await cache.StringSetAsync(productKey, serializedProduct);

 }

 /// <summary>

 �/// Retrieves a product from the database using the supplied primary

 �/// key.

 /// </summary>

 �private async Task<ProductDetails> RetrieveProductFromDatabase(int

productId)

 {

 ProductDetails product = null;

 using (var db = new TechStoreContext())

 {

 var productFromDb = await db.Products.Where(b =>

 �b.Id == productId).Include(b => b.Specifications).

FirstOrDefaultAsync();

 if (productFromDb != null)

 {

 product = CreateProductDetails(productFromDb);

 product.RetrievalMethod = DATABASE_RETRIEVAL;

 }

 }

 return product;

 }

 /// <summary>

 /// Updates a Products record in the database.

 /// </summary>

 private async Task UpdateProductInDatabase(ProductDetails product)

 {

 using (var db = new TechStoreContext())

 {

 var productFromDb = await db.Products.FindAsync(product.Id);

 if (productFromDb == null)

Chapter 7 Redis Cache

291

 {

 �throw new Exception("We couldn't find a product for Id " +

product.Id);

 }

 productFromDb.Name = product.Name;

 productFromDb.Description = product.Description;

 productFromDb.SKU = product.SKU;

 productFromDb.NumberInStock = product.NumberInStock;

 await db.SaveChangesAsync();

 product.LastUpdatedMessage = "Successfully updated at " +

 DateTime.Now.ToString("o");

 }

 }

 /// <summary>

 /// Retrieves all products from the database, stores them in a

 /// ProductList

 /// instance, and returns them to the caller.

 /// </summary>

 /// <returns></returns>

 private async Task<ProductList> RetrieveAllProductsFromDatabase()

 {

 ProductList allProducts = new ProductList();

 allProducts.RetrievalMethod = DATABASE_RETRIEVAL;

 using (var db = new TechStoreContext())

 {

 var productsFromDb = await db.Products.ToListAsync();

 foreach (Product p in productsFromDb)

 {

 allProducts.Products.Add(CreateProductDetails(p));

 }

 }

 return allProducts;

 }

Chapter 7 Redis Cache

www.allitebooks.com

http://www.allitebooks.org

292

 /// <summary>

 /// �Copies data from our Entity Framework-generated Product class to our

 /// ProductDetails view model class.

 /// </summary>

 private ProductDetails CreateProductDetails(Product p)

 {

 ProductDetails details = new ProductDetails();

 details.Id = p.Id;

 details.Name = p.Name;

 details.Description = p.Description;

 details.SKU = p.SKU;

 details.NumberInStock = p.NumberInStock;

 //now let's set up our specifications

 foreach (Specification s in p.Specifications)

 {

 SpecificationDetails specDetail = new SpecificationDetails();

 specDetail.SpecName = s.SpecName;

 specDetail.SpecValue = s.SpecValue;

 details.Specifications.Add(specDetail);

 }

 return details;

 }

 }

}

There are a few points I’d like to bring to your attention in our new ProductServices

class.

•	 When using the StackExchange.Redis library, we use the

ConnectionMultiplexor class to connect to a Redis Cache. This is a

heavyweight object and should be reused between requests. In our

example, we defined our ConnectionMultiplexor as a static member

variable and set it in a static constructor. This ensures that no matter

how many instances of ProductService are created, all instances will

use the same ConnectionMultiplexor instance.

Chapter 7 Redis Cache

293

•	 The read portion of the Cache Aside pattern is implemented in the

RetrieveProductDetails method. We first check the cache for the

requested product. If it doesn’t exist, we retrieve the Product record

from the database, then add it to the cache.

•	 Note that when adding a ProductDetails instance to our cache,

we defined our key for the product as "product:[:productid]".

I recommend prefacing your keys with a string for each different

type of class you store within the cache. This will avoid collisions and

make debugging easier when you are looking at keys currently stored

within a cache.

•	 Each ProductDetails instance that we store within the cache must

be serialized to a string. Serializing to JSON using Newtonsoft.Json

will be your best bet. Remember to deserialize when you retrieve an

object instance from the Redis Cache.

Publish the updated version of TechStore to your Azure Web App, then rerun. Once

the index page loads, click a product link to navigate to a product page. After publishing,

I navigated to the Apple Macbook Pro product page. The product record was retrieved

from Azure SQL and was likely not present within the database’s page cache. The total

request processing time was 530 ms. I requested the page again, and the total request

processing time was 2.9 ms (see Figure 7-11). That, my friend, is the power of memory

caching.

Figure 7-11.  Our total request processing time using Redis Cache was 2.9 ms

Chapter 7 Redis Cache

www.allitebooks.com

http://www.allitebooks.org

294

�Handling Stale Cache Records
Reads from Redis are lightning fast, but our app still has a problem. What happens if

we edit a product record? If you read through the ProductService class, you’ll see that

updates to a product record are written directly to the database. The original unaltered

record remains in cache, blissfully unaware that it’s been changed in the database. To

fix this, we need to make sure that after updating a product record in the database, we

remove the corresponding product record from the cache and add the updated version.

In the AddProductToCache method, calling StringSetAsync will add or replace a value

for a given key.

Adding this functionality is simple; in fact, it’s only a single line of code. Take a look

at Listing 7-12 to see the ProductService’s modified UpdateProductDetails method.

Listing 7-12.

/// <summary>

/// Updates the product in our database, then evicts the old stale record

/// from cache.

/// </summary>

public async Task UpdateProductDetails(ProductDetails product)

{

 //first, update the product in our system of record.

 await UpdateProductInDatabase(product);

 //next, kick the old product instance out of cache and replace it

 //with our updated instance.

 await AddProductToCache(product);

}

�Dealing with a Full Cache
Available Azure Redis Cache sizes range from 250 MB to a whopping 530 GB. Because

cache sizes are finite, it is still possible to fill your cache. When your cache is full, what

happens when you attempt to add the next item?

The answer is that it depends on the maximum memory policy that you’ve specified.

You can check your maximum memory policy by navigating to the Advanced Settings

blade of your Redis resource. By default, Redis uses a volatile least recently used (LRU)

Chapter 7 Redis Cache

295

policy. This means that items within the cache that have been used the least recently

will be evicted from the cache to make room for newly added items. This policy works

well for our application. Suppose that TechStore’s cache was full and we needed to add a

new entry for the iPhone 8. We could safely evict product information for the iPhone 4S,

which likely hasn’t been requested in quite some time. Unless you have a good reason

for doing so, I recommend accepting the default of volatile-lru. Other options include

evicting key/value pairs at random, not evicting and throwing an exception instead, and

evicting a key that has the shortest time-to-live remaining.

This brings us to our next topic, which is explicitly setting time-to-live for a key.

�Setting Time-to-Live
Your application’s data might be temporally sensitive: Data is needed for a given period

of time, then is rarely used afterward. Imagine how we might implement caching on

Reddit.com. New posts are hot and experience many reads. After a few days when a post

has scrolled off of the first few pages, it is rarely accessed. We don’t want old cat meme

posts from five days ago clogging up our valuable cache when we have brand new cat

memes that are experiencing thousands of requests per second. In situations such as

this, it’s best to cache data and tell Redis to evict data from the cache after a set period

of time.

Setting a time-to-live is simple: We just use an overload for the StringSetAsync

method. If we wanted to change TechStore’s AddProductToCache method to expire a

ProductDetails record from cache after one day, we’d use the following line of code:

await cache.StringSetAsync (productKey, serializedProduct, TimeSpan.

FromDays(1));

�Viewing Redis Cache Contents
When developing with Redis Cache, it’s often helpful to view the contents of the cache

or flush its contents. To do so, I recommend a handy tool called Redis Desktop Manager

(RDM). You can download RDM from https://redisdesktop.com. RDM is an open

source project that was created by Igor Malinovskiy and is supported by a host of

contributors.

Chapter 7 Redis Cache

www.allitebooks.com

https://redisdesktop.com/
http://www.allitebooks.org

296

�Connect to a Redis Cache
After installing Redis Desktop Manager, you’ll need to create a connection to your Redis

instance. Click Connect to Redis Server (see Figure 7-12) to open the Connection dialog

box. In the Connection dialog box, you’ll need to supply the following data:

•	 Name: This is the name that will be displayed in the instance list of

available servers. You can name your cache anything you like.

•	 Host: This is the URI of the Redis cache. It will be in the form of [your

cache instance name].redis.cache.windows.net.

•	 Port: Set this to port 6380 for Secure Sockets Layer (SSL).

•	 Auth: This is the primary access key listed on your Redis Cache’s

Access Keys blade in the Azure Portal. To get there, navigate to your

Redis Cache’s management blade, click Access Keys.

We’re not quite done. By default, Azure Redis requires a connection over SSL. Click

the SSL tab in the Connection dialog box, then select the Use SSL Protocol check box.

You can now test your connection, then click OK to add your cache instance to the list of

available caches in Redis Desktop Manager.

Chapter 7 Redis Cache

297

�Viewing Cache Contents
After connecting to a Redis server, your connection will appear in the left pane. To view

the contents of the cache, double-click your connection and expand nodes as needed.

Keys will be displayed as terminal nodes in the tree view. Click a key to view the value.

Notice that in Figure 7-13, we’ve selected the key of product:1. Our ProductDetails

class that has been serialized to JSON appears in the Value panel to the right. This is

another great reason to use JSON as your serialization format.

Figure 7-12.  The Redis Desktop Manager program. Click Connect to Redis Server
to create a connection to your Azure Redis Cache

Chapter 7 Redis Cache

www.allitebooks.com

http://www.allitebooks.org

298

�Flushing the Cache
To flush the entire contents of a cache, right-click a database node within a cache

and select Flush Cache from the shortcut menu. All keys within the database will be

removed.

�Scaling Azure Redis Cache
There are several options for scaling Redis Cache.

Figure 7-13.  The Redis Desktop Manager lets us view the contents of our Redis
Cache

Chapter 7 Redis Cache

299

�Scaling Up
Redis has three different pricing tiers: Basic, Standard, and Premium. Within each tier,

there are various cache sizes. As the cache size within a tier increases, the maximum

number of allowed connections and network performance increases as well. The

simplest way to scale is to move to a more powerful plan. When you do so, the data

within your cache is automatically migrated.

�Scaling Out
All caches within the Basic tier are single instance and have no SLA. These are not

recommended for critical jobs where data cannot be lost. Caches within the Standard

tier allow master/slave replication and automatic failover along with a 99.9% uptime

SLA. Even within the Standard tier, though, you cannot scale beyond 53 GB in size.

Caches within the Premium tier allow clustering and sharding of your data. You can

have up to ten caches participate in a cluster, allowing a maximum combined cache

size of up to 530 GB. You can configure the number of caches in your cluster by clicking

the Redis Cluster Size menu option. Note that if your current cache is not within the

Premium tier, this feature is disabled.

When you enable clustering, Azure will handle distributing your data throughout

the cluster via sharding. This process is transparent to you, and you don’t have to do

anything additional to your code.

�Using Multiple Caches
For the Cache Aside pattern, you do not have to put all of your data within a single

cache. You can create two or more cache instances, and separate your data by type. For

example, TechStore might elect to keep all product data in techstore1.redis.cache.

windows.net, and all customer reviews in techstore2.redis.cache.windows.net. Your

application will have to point to the correct cache to store and retrieve data.

Chapter 7 Redis Cache

www.allitebooks.com

http://www.allitebooks.org

300

�Summary
This chapter covered:

•	 How accessing data in memory is much faster than accessing data

stored on disk.

•	 The Cache Aside pattern. Frequently used data can be stored in a

Redis Cache instance. Your application will first look in the cache

to find the data. If it is not found, it’s retrieved from disk and stored

within the cache.

•	 TechStore, which illustrated the Cache Aside pattern with Redis.

•	 How to view data within a Redis Cache using Redis Desktop Manager.

•	 How to scale Redis Cache.

In the next chapter, we’ll dive into WebJobs.

Chapter 7 Redis Cache

301
© Rob Reagan 2018
R. Reagan, Web Applications on Azure, https://doi.org/10.1007/978-1-4842-2976-7_8

CHAPTER 8

WebJobs
Thus far, we’ve discussed creating Web Apps and several options for data storage. When

building a web application, it’s not just about creating web methods and answering

page requests, though. Sometimes, processes need to run on a schedule, or you need

to respond to events that occur. Examples include sending daily e-mails, texting users a

welcome message when they sign up, creating daily reports, and archiving data.

How can we handle these requirements? We could spin up a VM, then write a set

of console applications to periodically wake up and do some work. We’d also need to

write a monitoring service to check the health of our console applications and restart

them if they crash. We’d also need to set up logging to help us troubleshoot if things go

wrong. Last but not least, we’d need to configure Windows Task Scheduler to execute our

processes at a periodic interval.

Setting up a VM and writing such infrastructure is both tedious and difficult to

support. This is exactly why WebJobs were invented.

So what exactly is a WebJob? A WebJob is a console application that makes use of

the WebJob API. A WebJob runs as a separate process inside an Azure Web App and

can execute functions on a set schedule or respond to events such as the creation of

new Storage Queue messages, Service Bus messages, Azure Table entries, or Azure

Blob entries.

If you’re already running a Web App, WebJobs cost nothing to run. That’s right:

zero, zilch, nada! Inside of a Web App, WebJobs share resources with your main web

application and any other WebJobs living on the same Web App instance. Aside from

your Web App’s physical resources such as CPU and memory, there is no limit to the

number of WebJobs that can live on a single Web App.

www.allitebooks.com

http://www.allitebooks.org

302

�Invoking WebJob Methods
A WebJob will execute one or more methods in response to events that you specify. Some

of the more common events that can trigger the execution of a WebJob method include

the following:

•	 A schedule: You can tell a WebJob to execute a method at a given time

interval. For example, you can specify that a method should be called

every 30 minutes, perhaps to aggregate sales lead data and e-mail a

summary to a sales team leader.

•	 A new Storage Queue message: WebJobs will periodically check a

Storage Queue for new messages. If new messages are found, they

will be deserialized and handed to a method you designate for

processing.

•	 A new Service Bus Queue message: Much like responding to Storage

Queue messages, your WebJob will execute when a new Service Bus

Queue message is created and added to a queue. The message will be

deserialized and passed to your method for processing.

•	 A new Storage Blob: When a new Storage Blob is created, your

designated method will execute.

•	 Blob updates: Similarly, when a Blob is updated, your WebJob

method will be called.

•	 Being explicitly invoked: You can call WebJob methods via an HTTP

Post, much like calling a RESTful web service.

We’ve talked about how WebJobs are simply console applications that run inside

of a Web App, and that methods can be called when certain events occur. How do

we tell a WebJob which method should be called when a specified event takes place?

The answer is that we decorate methods with attributes. For example, in Listing 8-1,

we’ve decorated the ProcessQueueMessage method with the QueueTriggerAttribute

and passed the name of the Storage Queue that we’re monitoring as an argument.

This tells our WebJob that whenever a new message is inserted into the

webjobmessages queue, the ProcessQueueMessage method should be called.

Chapter 8 WebJobs

303

Listing 8-1.  We’ve Decorated a WebJob Method so That It Will Be Called When a

New Storage Queue Message Is Inserted into the Specified Queue

public static void ProcessQueueMessage([QueueTrigger("webjobmessages")]

string message, TextWriter log)

{

 log.WriteLine(message);

}

There are a host of other attributes you can use to instruct Azure to call a method

when certain events occur, such as BlobTrigger and ServiceBusTrigger.

Microsoft has open sourced the entire WebJob API and given developers the ability

to create their own triggers to respond to various events by writing against the Azure

WebJobs SDK Extensions API. Microsoft and other developers have done just that, and

given us additional triggers such as these:

•	 TimerTrigger: This works as a chron job and will execute a method on

a schedule. Before TimerTrigger, we had to use the Azure Scheduler

service or specify a schedule in an external settings.job JSON file.

•	 FileTrigger: FileTrigger will monitor a given directory in your Web

App for new or updated files, and will call the specified method when

those changes occur.

•	 ErrorTrigger: ErrorTrigger is like a WebJob-wide catch block for

exceptions. A method decorated with the ErrorTrigger attribute will

be called when an unhandled exception occurs. This is a great way to

send out alerts to the poor soul on call for support.

•	 TwilioTrigger: TwilioTrigger was written by the communications

juggernaut Twilio. TwilioTrigger will send an SMS message to a

designated number when a WebJob method is called. It’s useful for

combining with other triggers, such as ErrorTrigger.

This is not an exhaustive list of extension triggers, and the list will continue to grow

as Microsoft and other vendors publish more. To see what’s available, visit the GitHub

repo at https://github.com/Azure/azure-webjobs-sdk-extensions.

Chapter 8 WebJobs

www.allitebooks.com

https://github.com/Azure/azure-webjobs-sdk-extensions
http://www.allitebooks.org

304

�The WebJob Demo Application
Now that we’ve had an overview of what WebJobs are and what they can do for you,

let’s walk through an example app and look at some code.

We’ll create an application called WebJob Demo. The WebJob Demo solution

will consist of a WebJob, a shared Models project, and an ASP.NET MVC Core web

application that will allow us to create various events for our WebJob methods to

respond to. We’ll look at several common cases such as responding to queued messages,

executing on a given schedule, and how to handle errors. Throughout this example, we’ll

talk about how to develop WebJobs locally. We’ll end the discussion with deploying our

WebJob to Azure.

Note  You can download the completed solution at https://github.com/
BuildingScalableWebAppsWithAzure/WebJobDemo.git

�Creating Our Solution and WebJob Project
Let’s jump right in by creating our WebJob.

	 1.	 Open Visual Studio and select File ➤ New ➤ Project. This opens

the New Project dialog box.

	 2.	 On the New Project dialog box, select the Azure WebJob template

located under Templates ➤ Windows ➤ Cloud. Let’s name the

project WebJobDemo.WebJob, and name the solution WebJobDemo

(Figure 8-1). Click OK to create the solution and project.

Chapter 8 WebJobs

https://github.com/BuildingScalableWebAppsWithAzure/WebJobDemo.git
https://github.com/BuildingScalableWebAppsWithAzure/WebJobDemo.git

305

	 3.	 Right-click the WebJobDemo.WebJob project, then select Manage

NuGet Packages Add the NuGet packages Microsoft.Azure.

WebJobs, Microsoft.Azure.WebJobs.Core, and Microsoft.

Azure.WebJobs.Extensions.

The Azure WebJob template will create two C# files for us in our new project:

Program.cs and Functions.cs. Let’s start by taking a look at Program.cs (Listing 8-2).

Listing 8-2.  The Program.cs File Provided by the Azure WebJob Project Template

using Microsoft.Azure.WebJobs;

namespace WebJobDemo.WebJob

{

 class Program

 {

 // Please set the following connection strings in app.config for this

 // WebJob to run: AzureWebJobsDashboard and AzureWebJobsStorage

 static void Main()

 {

 var config = new JobHostConfiguration();

Figure 8-1.  Creating our solution and Azure WebJob project

Chapter 8 WebJobs

www.allitebooks.com

http://www.allitebooks.org

306

 if (config.IsDevelopment)

 {

 config.UseDevelopmentSettings();

 }

 var host = new JobHost(config);

 host.RunAndBlock();

 }

 }

}

You’ll notice immediately that this looks suspiciously like a console application, and

indeed it is. The static void Main() method is the entry point for our new WebJob. Now

let’s have a look at the other C# file in this project, Functions.cs (Listing 8-3).

Listing 8-3.  The Functions.cs File Generated by the Azure WebJob Project

Template

using System.IO;

using Microsoft.Azure.WebJobs;

namespace WebJobDemo.WebJob

{

 public class Functions

 {

 �// This function will get triggered/executed when a new message is

written

 // on an Azure Queue called queue.

 �public static void ProcessQueueMessage([QueueTrigger("queue")] string

message,

 TextWriter log)

 {

 log.WriteLine(message);

 }

 }

}

Chapter 8 WebJobs

307

Functions.cs is traditionally where you’ll place all triggered methods for your

WebJob. You can see that we have a single method called ProcessQueueMessages, and

it’s decorated with a QueueTriggerAttribute. The QueueTriggerAttribute instructs

Azure to call our ProcessQueueMessage method whenever a new message is placed on

the Azure Storage Queue named “queue”.

So how does this work behind the scenes? The JobHost class that is instantiated

in the Program class’s Main method is part of the Azure WebJobs SDK. Its purpose is to

manage all of the functions and their associated triggers within a WebJob. When JobHost

is instantiated, it will find all public methods within the project that are decorated with

trigger attributes that respond to events. JobHost will then monitor the specified queues,

blob containers, or file directories to watch for triggering events. When events that we’re

interested in occur, JobHost will call the appropriate methods.

�Running Our WebJob Locally
Let’s run our WebJob locally and see what happens. First, though, we need to do a bit

more configuration. If we open the app.config file, we can see the code shown in

Listing 8-4.

Listing 8-4.  The app.config File for Our WebJobDemo.WebJob WebJob

<connectionStrings>

 <add name="AzureWebJobsDashboard" connectionString=""/>

 <add name="AzureWebJobsStorage" connectionString=""/>

 </connectionStrings>

Azure uses the Storage account referenced by AzureWebJobsDashboard to

write diagnostic logs for WebJobs that have been deployed to Azure. We discuss

logging in further detail an upcoming section. The Storage account referred to by

AzureWebJobsStorage is used by Azure to store runtime and configuration information

about your WebJob. For example, if your WebJob is deployed to a Web App that has

been scaled out to multiple instances, and your WebJob has a method that is scheduled

to run using a TimerTrigger attribute, Azure will ensure that there is only one copy of

your WebJob running. Azure records which Web App instance is hosting your WebJob

by using the Storage account specified by AzureWebJobStorage. You don’t have to worry

about any of the bookkeeping that Azure does in the AzureWebJobStorage Storage

account, but you do have to provide a Storage account for Azure to use to do so.

Chapter 8 WebJobs

www.allitebooks.com

http://www.allitebooks.org

308

Because we’re going to initially test our WebJob locally, you can enter

UseDevelopmentStorage=true for both the AzureWebJobsDashboard and

AzureWebJobsStorage properties in the app.config file.

After updating app.config, run the application. You’ll see a console window appear

with our WebJob’s output (Figure 8-2).

We can see that Azure has successfully located our ProcessQueueMessage method

and is waiting for a message to appear in the queue. To make this demo more exciting,

let’s build a web application that will insert messages into the queue so that our WebJob

can consume them.

�Creating Our WebJobDemo Web Application
Let’s add a new ASP.NET Core Web Application to our project. To add the new project, do

the following:

	 1.	 Right-click the solution in Visual Studio Solution Explorer, select

Add, then select New Project.

	 2.	 In the Add New Project dialog box, select the ASP.NET Core Web

Application (.NET Framework) under the Installed ➤ Visual

C# ➤ Web section. This will run our ASP.NET Core project on the

full .NET Framework rather than using ASP.NET Core 1.0. This is

important because it will allow us to use packages written for the

full .NET Framework that haven’t yet been ported to .NET Core.

Figure 8-2.  The output of running our WebJobDemo.WebJob

Chapter 8 WebJobs

309

	 3.	 Name your new project WebJobDemo.Web, then click OK (Figure 8-3).

Figure 8-3.  Selecting the ASP.NET Core Web Application (.NET Framework)
template

Chapter 8 WebJobs

www.allitebooks.com

http://www.allitebooks.org

310

	 4.	 Finally, select the Web Application template and click OK

(Figure 8-4).

�Creating Our Model

Our goal is to use our new web application to create a Storage Queue message, then have

our WebJob’s ProcessQueueMessage method consume the new message. We could pass

a string as the message, but that’s boring. A better real-world example is to send a class

instance as the payload for the queue message. Let’s create a QueueMessage class that

we’ll use to do so.

Because we’re going to use the same class in both our WebJobsDemo.Web and

WebJobsDemo.WebJob projects, we’ll need to create a new project called WebJobsDemo.

Models that is referenced by both.

Figure 8-4.  The Web Application template will set up a HomeController, an
associated view, and routing. It’ll save us some typing.

Chapter 8 WebJobs

311

	 1.	 Right-click the WebJobDemo solution in the Solution Explorer

window, select Add, and then select New Project.

	 2.	 In the Add New Project dialog box, choose the Class Library that

is located under Installed ➤ Visual C# ➤ Windows ➤ Classic

Desktop (Figure 8-5). Name the class library WebJobDemo.Models,

and click OK.

Figure 8-5.  Add a new Class Library called WebJobDemo.Models to the solution

	 3.	 Next, we need to add our QueueMessage.cs class to our new

WebJobDemo.Models project. Our Class Library template already

gave us a Class1.cs class. Rename the file QueueMessage.cs,

then replace its contents with the code in Listing 8-5.

Chapter 8 WebJobs

www.allitebooks.com

http://www.allitebooks.org

312

Listing 8-5.  The QueueMessage.cs Class

namespace WebJobDemo.Models

{

 /// <summary>

 �/// This class contains information sent as a queue message. We are

 �/// using this

 �/// class as the model for both Service Bus Queues and Azure Storage

 �/// Queues. The

 �/// reason we're using a class instead of just passing in a string as

 �/// the payload

 �/// for both queue types is that it's useful to know how to serialize,

 �/// pass, and

 /// deserialized an object instance. This is much more applicable real

 /// world example.

 /// </summary>

 public class QueueMessage

 {

 public QueueMessage()

 { }

 public QueueMessage(string message)

 {

 this.Message = message;

 }

 /// <summary>

 /// Contains our actual message.

 /// </summary>

 public string Message { get; set; }

 }

}

	 4.	 Finally, add a reference to the new WebJobDemo.Models project

from both the WebJobDemo.Web and WebJobDemo.WebJob projects.

Chapter 8 WebJobs

313

�Creating Our Services for WebJobDemo.Web

We now need code that will place a message in a Storage Queue so that it can be read by

our WebJob. To make that magic happen, let’s create a StorageQueueService.cs class

and place the logic there. Because we’re using dependency injection, we’ll create our

IStorageQueueService.cs interface first.

	 1.	 Add a new folder to the WebJobDemo.Web project by right- clicking

it in the Solution Explorer, selecting Add, and then selecting New

Folder. Name the new folder Services.

	 2.	 Right-click the new Services folder, select Add, and then select

New Item.

When the Add New Item dialog box opens, select Interface, name

it IStorageQueueService.cs, and click Add.

	 3.	 Replace the contents of IStorageQueueService.cs with the code

in Listing 8-6.

Listing 8-6.  Our IStorageQueueService.cs Interface Implemented by

StorageQueueService.cs

using System.Threading.Tasks;

using WebJobDemo.Models;

namespace WebJobDemo.Web.Services

{

 public interface IStorageQueueService

 {

 Task EnqueueMessage(QueueMessage queueMessage);

 }

}

	 4.	 To connect to an Azure Storage Queue, we’ll need to reference a

few libraries. Right-click WebJobDemo.Web and select Manage

NuGet Packages. You’ll need to add WindowsAzure.Storage to the

project.

Chapter 8 WebJobs

www.allitebooks.com

http://www.allitebooks.org

314

	 5.	 For the final step, let’s create our StorageQueueService.cs class.

Right-click the Services folder once again, select Add, and then

select Class. Name the new class StorageQueueService.cs, then

replace the contents of this new class with the code found in

Listing 8-7.

Listing 8-7.  The QueueService.cs Class: The EnqueueMessage Method Will

Enqueue a QueueMessage on the Specified Storage Queue

using System.Threading.Tasks;

using WebJobDemo.Models;

using Newtonsoft.Json;

using Microsoft.WindowsAzure.Storage.Queue;

using Microsoft.WindowsAzure.Storage;

namespace WebJobDemo.Web.Services

{

 public class StorageQueueService : IStorageQueueService

 {

 private readonly string _connectionString;

 /// <summary>

 /// Constructor.

 /// </summary>

 �/// <param name="connectionString">The connection string to the

 �/// Storage account that

 /// we're using.</param>

 public StorageQueueService(string connectionString)

 {

 _connectionString = connectionString;

 }

 /// <summary>

 �/// Serializes queueMessage and adds it to the Storage queue

 �/// webjobmessages.

 /// </summary>

 public async Task EnqueueMessage(QueueMessage queueMessage)

 {

Chapter 8 WebJobs

315

 �CloudStorageAccount storageAccount = CloudStorageAccount.Parse(_

connectionString);

 �CloudQueueClient queueClient = storageAccount.

CreateCloudQueueClient();

 �//queue names MUST be all lowercase and can only contain letters,

 �//numbers, and the

 �//dash character. if you do not follow these rules, Azure will bop

 �//you over the

 ///head with a 400 Bad Request.

 CloudQueue queue = queueClient.GetQueueReference("webjobmessages");

 await queue.CreateIfNotExistsAsync();

 �//to send a class instance as a Storage Queue message payload, we

 �//must first serialize it.

 //to JSON. Newtonsoft's JsonConvert class will do the trick.

 string serializedMsg = JsonConvert.SerializeObject(queueMessage);

 CloudQueueMessage queueMsg = new CloudQueueMessage(serializedMsg);

 await queue.AddMessageAsync(queueMsg);

 }

 }

}

�Creating Our MVC Web Controller and View

Now that our service containing the Storage Queue logic is in place, let’s turn our attention

to setting up our web project’s UI. We’ll make changes to the HomeController.cs file and

its accompanying view. The end result of our efforts will be the screen shown in Figure 8-6.

The UI is pretty simple: Type a message in the Message text box, then click Send.

Chapter 8 WebJobs

www.allitebooks.com

http://www.allitebooks.org

316

Let’s make the changes listed here.

	 1.	 In WebJobDemo.Web, expand the Views ➤ Home folder. Delete

the About.cshtml and Contact.cshtml files; we don’t need them

for this demo.

	 2.	 We are going to need a model class to transport information

back and forth between our HomeController and its view. Right-

click the WebJobDemo.Web project and select Add ➤ New

Folder. Name the new folder ViewModels. Add a new class to the

ViewModels folder called QueueMessageViewModel.cs. Replace its

code with the code in Listing 8-8.

Listing 8-8.  The QueueMessageViewModel Class

namespace WebJobDemo.Web.ViewModels

{

 /// <summary>

 �/// This class carries data back and forth between our HomeController

 �/// methods

 /// and our strongly typed view.

 /// </summary>

 public class QueueMessageViewModel

 {

Figure 8-6.  The UI for our web project will allow us to send a message to our
Storage Queue

Chapter 8 WebJobs

317

 public string StorageQueueMessage { get; set; }

 public string LastPostStatus { get; set; }

 }

}

	 3.	 Open the HomeController.cs file in the WebJobDemo.Web ➤

Controllers folder. Replace the code in HomeController.cs with

the code in Listing 8-9.

Listing 8-9.  The HomeController Class Code

using System;

using Microsoft.AspNetCore.Mvc;

using WebJobDemo.Web.ViewModels;

using WebJobDemo.Web.Services;

using WebJobDemo.Models;

namespace WebJobDemo.Web.Controllers

{

 public class HomeController : Controller

 {

 private readonly IStorageQueueService _storageQueueSvc;

 /// <summary>

 /// Constructor

 /// </summary>

 public HomeController(IStorageQueueService storageQueueSvc)

 {

 _storageQueueSvc = storageQueueSvc;

 }

 [HttpGet]

 public IActionResult Index()

 {

 return View();

 }

Chapter 8 WebJobs

www.allitebooks.com

http://www.allitebooks.org

318

 /// <summary>

 �/// Called when the user submits a message to send to our WebJob.

 �/// This method

 /// passes the message to our StorageQueueService for enqueueing.

 /// </summary>

 [HttpPost]

 public IActionResult Index(QueueMessageViewModel model)

 {

 model.LastPostStatus = string.Empty;

 if (!string.IsNullOrEmpty(model.StorageQueueMessage))

 {

 �//the user has supplied a message. Place the message inside a

 //QueueMessage

 //instance and pass it to our StorageQueueService for enqueueing.

 �QueueMessage queueMsg = new QueueMessage(model.

StorageQueueMessage);

 _storageQueueSvc.EnqueueMessage(queueMsg);

 //tell the user that the message was successfully processed.

 �model.LastPostStatus = "Posted the message \"" + model.

StorageQueueMessage +

 "\" to the Storage Queue at " + DateTime.Now.ToString();

 }

 model.StorageQueueMessage = string.Empty;

 return View(model);

 }

 }

}

	 4.	 Next, let’s update the code for our view. You’ll need to update

the contents of the WebJobDemo.Web ➤ Views ➤ Home ➤

Index.cshtml and the WebJobDemo.Web ➤ Views ➤ Shared

➤ _Layout.cshtml files. To save space, we won’t list the HTML

markup, but you can view the markup or download the completed

project at our GitHub repository.

Chapter 8 WebJobs

319

	 5.	 Our application needs to know what Storage account it’s going

to use to send a queue message, so let’s add that configuration

info to WebJobDemo.Web’s appsettings.json file (Listing 8-10).

We’re initially using the local Azure Storage Emulator to test our

application, so update the StorageConnectionString property to

"UseDevelopmentStorage=true".

Listing 8-10.  The WebJobDemo.Web’s appsettings.json File

{

 "Logging": {

 "IncludeScopes": false,

 "LogLevel": {

 "Default": "Debug",

 "System": "Information",

 "Microsoft": "Information"

 }

 },

 "AzureStorageConfig": {

 "StorageConnectionString: "UseDevelopmentStorage=true"

 }

}

	 6.	 Finally, we need to set up our dependency injection so that our

StorageQueueService will be injected into the HomeController’s

constructor. Open WebJobDemo.Web’s Startup.cs file. Make sure

that you add the "using WebJobDemo.Web.Services" statement.

Then modify the ConfigureServices method so that it matches

Listing 8-11.

Chapter 8 WebJobs

www.allitebooks.com

http://www.allitebooks.org

320

Listing 8-11.  The Contents of Startup.cs’s ConfigureServices Method

// This method gets called by the runtime. Use this method to add services

// to the container.

public void ConfigureServices(IServiceCollection services)

{

 // Add framework services.

 services.AddMvc();

 //configure our dependency injection for our StorageQueueService.

 IConfiguration storageConfig = Configuration.GetSection("AzureStorageConfig");

 string storageConnectionString =

 storageConfig.GetValue<string>("StorageConnectionString");

 �//rather than using IOptions and a custom class for config settings for

 �//our Storage

 �//connection string, we can read the connection string as a string

 �//value, then set up

 //a factory to perform our actual instantiation.

 Func<IServiceProvider, IStorageQueueService> queueStorageFactory = m =>

 new StorageQueueService(storageConnectionString);

 services.AddTransient<IStorageQueueService>(queueStorageFactory);

}

�Running Our Web Application

The moment of truth has arrived: Let’s run our web application and create some Storage

Queue messages. Right-click the WebJobDemo.Web project, select Set as Startup Project,

then run the application. You should see the screen in Figure 8-6 in your browser. Enter

a message in the Message text box and click Send. You should then see a confirmation

alert letting you know that the message was successfully sent (Figure 8-7).

Chapter 8 WebJobs

321

But was it? Programmers are a skeptical bunch, especially when code runs correctly

on the first try. Let’s open Azure Storage Explorer and check to make sure that the queue

message is actually waiting in the Storage Queue.

Note A zure Storage Explorer is a free tool that allows you to inspect
Storage Queues, Blobs, and Tables. You can download the latest version at
http://storageexplorer.com/

Within Azure Storage Explorer, browse to the local emulator and expand the

resources treeview until you find your Storage account’s Queues. You should then

see your webjobmessages queue. Clicking the queue will show that your message was

written successfully (Figure 8-8).

Figure 8-7.  Our Queue message was posted successfully to our Storage Queue

Chapter 8 WebJobs

www.allitebooks.com

http://storageexplorer.com/
http://www.allitebooks.org

322

�Running Our WebJob Locally: Part II
Now that there’s a message waiting in our queue, let’s launch our WebJob locally and see

what happens. Before we do, we need to make sure that our WebJob knows exactly which

queue it should be monitoring.

First, our WebJob’s QueueTrigger needs to know what account it should connect to.

There are two ways to specify a Storage account.

	 1.	 By default, the QueueTrigger will monitor the Storage account

referenced by the AzureWebJobsStorage connection string in

app.config.

Figure 8-8.  Clicking the queue message in Azure Storage Explorer shows the
message’s details and confirms that it was successfully written to the queue

Chapter 8 WebJobs

323

	 2.	 You can override the default settings in Program.cs setting the

JobConfiguration’s StorageConnectionString property.

For simplicity, let’s go ahead and set the AzureWebJobsStorage connection string

in our WebJobDemo.WebJob’s app.config file. Make sure you use the same connection

string that’s set in our WebJobDemo.Web project’s appsettings.json file.

Now that we’ve got the Storage account set properly, we need to tell our WebJob

which queue within the Storage account it should monitor. We do this by specifying an

argument to the method’s QueueTriggerAttribute. Open Functions.cs, and set the

queue name in the QueueTriggerAttribute to webjobmessages.

Now we’re ready to run our application. To make things easier to test, let’s tell Visual

Studio that we want to run our WebJob and our web application simultaneously. To do

so, right-click the solution in Solution Explorer and select Properties. In the Solution

Properties dialog box, expand Common Properties and select Startup Project. Select

the Multiple Startup Projects option (Figure 8-9) and set WebJobDemo.Web and

WebJobDemo.WebJob to start.

Figure 8-9.  The solution’s Properties dialog box allows you to set multiple
startup projects

Chapter 8 WebJobs

www.allitebooks.com

http://www.allitebooks.org

324

Finally, run the application in debug mode. You’ll see both the web and WebJob

projects launch.

In the web application, add a message to the Message text box and click Send

(Figure 8-10). In a few seconds, you should see a log message in the console when our

WebJob picks up the message from the queue and processes it (Figure 8-11).

Figure 8-10.  Using our web application to send a message to our queue

Figure 8-11.  The WebJob console shows that our message was picked up,
processed, and dequeued

Chapter 8 WebJobs

325

You will notice that there is a time lag from when you send a message in the web

application to when the WebJob picks up and processes the message. The reason is

that under the covers, the QueueTriggerAttribute is polling the underlying Storage

queue. Recall that there are two parts to the cost of Azure Storage Queues: average GB

stored per month and transaction costs. At the time of this writing, Microsoft charges

$0.0036 per 100,000 transactions. A transaction is a queue read or write operation. If our

QueueTrigger polled the Storage Queue for new messages as fast as it could, transaction

costs per month could add up to real money. To keep your transaction costs negligible,

the QueueTrigger implements a random exponential back-off algorithm to determine

how often it checks for new messages. As long as the QueueTrigger keeps finding an

empty queue, it will increase the time between checks until it reaches the maximum

wait time. You can configure this maximum wait time using JobHostConfiguration’s

Queues.MaxPollingInterval property. By default, the maximum polling interval is

one minute.

�Running a WebJob on a Schedule
We often need to write code that will run on a set schedule. Perhaps your code needs

to execute every 15 minutes and check your database for new sales leads. Or perhaps

you need to run a nightly job that will wake up at 2:00 a.m. and bill customers’ credit

cards. Microsoft has given us a handy tool to run recurring logic, and it’s called the

TimerTriggerAttribute.

The TimerTriggerAttribute is very easy to use. First, you have to call the JobHost

Configuration class’s UseTimers() method in your WebJob’s Program.cs. If you neglect

to do so, no timers will run. After that, simply decorate the WebJob method that you’d like to

execute, and pass the schedule to the TimerTriggerAttribute as an argument.

�Chrontab or Timespan Expressions

There are two separate overloads for the TimerTriggerAttribute. The first overload is

TimerTriggerAttribute(string scheduleExpression). The scheduleExpression

argument is a standard chrontab expression or a time interval. The TimerTriggerAttribute

can distinguish between the two because a chrontab expression is in the format of

{second} {minute} {hour} {day} {month} {day of the week}, whereas a timespan is in

the format of hh:mm:ss. Examples of chrontab expressions are given in Table 8-1, and

timespan examples are listed in Table 8-2.

Chapter 8 WebJobs

www.allitebooks.com

http://www.allitebooks.org

326

Table 8-1.  Valid Chrontab Expressions

Expression Meaning

0 30 20 * * * Run every day at 8:30 p.m.

0 0 2 * * MON Run every Monday at 2:00 a.m.

0 0 2 * * MON-FRI Run every weekday (Monday through Friday) at 2:00 a.m.

0 */5 * * * * Run every five minutes

Table 8-2.  Valid Timespan Expressions

Expression Meaning

1:00:00 Run every hour from startup

0:30:00 Run every half-hour from startup

0:00:45 Run every 45 seconds

Note that all chrontab expressions use the server’s local time zone. Therefore, a

server located in the East datacenter will have a clock set to UTC – 5:00 for Eastern

Standard Time, whereas the West datacenter will have a clock set to UTC – 8:00 for

Pacific Standard Time.

Note  For a detailed explanation of chrontab syntax, visit
https://en.wikipedia.org/wiki/Cron#CRON_expression

An example is in order. First, open the Program.cs file in the WebJobDemo.WebJob

project. You’ll need to add the line config.UseTimers() before creating the JobHost

instance. Next, open the Functions.cs file. Add the method in Listing 8-12.

Chapter 8 WebJobs

https://en.wikipedia.org/wiki/Cron#CRON_expression
https://en.wikipedia.org/wiki/Cron#CRON_expression

327

Listing 8-12.  The ScheduledMethodUsingTimespanExpression Uses a

TimerTriggerAttribute Initialized Using a Timespan Expression

public static void ScheduledMethodUsingTimespanExpression(

 [TimerTrigger("00:00:30")] TimerInfo timer)

{

 Console.WriteLine("Timer triggered at " + DateTime.Now);

}

This method uses a timespan expression that will fire the TimerTrigger and call

the method every 30 seconds. Set the WebJobDemo.WebJob project as the only startup

project and run the application. You’ll see log messages in the console showing that the

trigger does indeed fire every half-minute (Figure 8-12).

Figure 8-12.  From the WebJob console output, we can see that the TimerTrigger
invoked the method every 30 seconds as expected

We can also use the same TimerTriggerAttribute overload, but specify a chrontab

expression. Listing 8-13 shows a method that will execute every weekday at 10:00 a.m. To

run this method, comment out the previous example, paste this code into Functions.cs,

and run the application. Although it is unlikely that you’re actually executing this code on a

weekday at 9:57 a.m., this method will print its execution schedule, as shown in Figure 8-13.

Chapter 8 WebJobs

www.allitebooks.com

http://www.allitebooks.org

328

Listing 8-13.  This Method Uses a Chrontab Expression to Fire a TimerTrigger

Every Weekday at 10:00 a.m.

public static void ScheduledMethodUsingChronExpression([TimerTrigger(

 "0 0 10 * * MON-FRI", UseMonitor = true, RunOnStartup = true)] TimerInfo timer)

{

 �Console.WriteLine("Firing ScheduledMethodUsingChronExpression at {0}",

DateTime.Now);

 string scheduleStatus = string.Format("Next Execution: '{0}'",

 timer.ScheduleStatus.Next);

 Console.WriteLine(scheduleStatus);

}

�Creating Complex Schedules by Subclassing TimerSchedule

If you need to create an extremely oddball schedule that you cannot express in a

chrontab expression, you can use the second TimerTriggerAttribute overload,

TimerTriggerAttribute(Type scheduleType). For the Type, you’ll need to create a

subclass of one of the following classes that are found in the Microsoft.Azure.WebJobs.

Extensions.Timers namespace and initialize the schedule in your inherited class’s

constructor. Each of these classes inherits from the TimerSchedule class.

Figure 8-13.  The ScheduledMethodUsingChronExpression method’s execution
schedule is printed to the console

Chapter 8 WebJobs

329

•	 DailySchedule: This allows you to specify one or more times within a

day. The TimerTriggerAttribute will fire each day on the specified

times. For example, you might want to specify that a method will

execute daily at 3:27:18 a.m. and 1:09:01 p.m. If you actually do need

to execute a method daily at these times, please e-mail me and tell

me what in the world you’re doing!

•	 ConstantSchedule: This allows you to execute a task for a fixed interval.

For example, you can create a schedule that will execute a method

every 20 minutes. This is not very useful, as it’s much easier to use a

timespan or chrontab expression to accomplish the same thing.

•	 ChronSchedule This subclass allows you to specify multiple chrontab

expressions. The trigger will then fire for each chrontab expression

that the ChronSchedule contains. This is useful for combining

multiple chrontab expressions. For example, you could specify that

a trigger should fire every weekday at 5:00 p.m. and on Saturday and

Sunday at 3:00 p.m.

•	 WeeklySchedule: This allows you to specify a day of the week and

time of day that a trigger should fire. You can add multiple values. For

example, you might specify that the trigger should fire every Monday

at noon, Tuesday at 5:00 p.m., and Saturday at 10:00 a.m.

Now let’s look at an example. The usage is a little strange because we need to create

a subclass of one of the above classes and initialize the schedule in the subclass’s

constructor. Open Functions.cs, comment out all methods, and add the code in

Listing 8-14.

Listing 8-14.  Code That Should Be Placed Inside the Functions Class to

Demonstrate a Complex TimerTrigger Schedule

/// <summary>

/// We inherit from the DailySchedule class if we want to create our own

/// daily schedule.

/// This will set up a TimerTriggerAttribute to call a method at 2:30 a.m.,

/// 4:45 a.m., and

/// 11:10:15 p.m. every day.

/// </summary>

Chapter 8 WebJobs

www.allitebooks.com

http://www.allitebooks.org

330

public class TimerDailySchedule : DailySchedule

{

 public TimerDailySchedule() : base("2:30:00", "4:45:00", "23:10:15")

 { }

}

/// <summary>

/// Takes a type that derives from DailySchedule as an argument. You can do

/// the same

/// thing with a class that inherits from WeeklySchedule, ConstantSchedule,

/// ChronSchedule, or WeeklySchedule.

/// </summary>

public static void ScheduledMethodUsingDailySchedule(

 �[TimerTrigger(typeof(TimerDailySchedule), RunOnStartup = true)]

TimerInfo timer)

{

 �Console.WriteLine("Firing ScheduledMethodUsingChronExpression at {0}",

DateTime.Now);

 string scheduleStatus = string.Format("Next Execution: '{0}'",

 timer.ScheduleStatus.Next);

 Console.WriteLine(scheduleStatus);

}

That’s not a typo: We did just define an inner class within the Functions class called

TimerDailySchedule. In the ScheduleMethodUsingDailySchedule method, we pass the

TimerDailySchedule type as an argument to the TimerTriggerAttribute. When we run

our WebJob, we see that the execution times are in fact what we specified in our oddball

schedule that was defined in the TimerDailySchedule constructor (Figure 8-14).

Chapter 8 WebJobs

331

�Handling Exceptions with the ErrorTriggerAttribute
In life, we must handle terrible situations such as unhandled exceptions in our code or

Tom Brady winning yet another Super Bowl. While the ErrorTriggerAttribute can’t

help in stopping the New England Patriots offense, it can notify you when an unhandled

exception occurs in your WebJob’s job functions.

Using the ErrorTriggerAttribute is simple. All that you have to do is this:

	 1.	 Enable the use of the ErrorTriggerAttribute by calling the

JobHostConfiguration’s UseCore() method in your WebJob’s

Program class. If you don’t call this method when your WebJob

starts up, the ErrorTriggerAttribute will never fire when an

unhandled exception occurs.

	 2.	 Decorate the method that you’d like called when an unhandled

exception occurs. Listing 8-15 shows a method that has been

decorated with ErrorTriggerAttribute and will be called on

each unhandled exception.

Figure 8-14.  After executing our WebJob, we see the expected execution schedule
for our TimerDailySchedule subclass has been written to the console

Chapter 8 WebJobs

www.allitebooks.com

http://www.allitebooks.org

332

Listing 8-15.  A Method Decorated with the ErrorTriggerAttribute

/// <summary>

/// This method be called for uncaught exceptions thrown in this WebJob. This

/// method will be called for each exception that occurs.

/// </summary>

public static void SimpleErrorHandler([ErrorTrigger()] TraceFilter filter)

{

 Console.WriteLine("SimpleErrorHandler: " + filter.Message);

}

Now let’s test and make sure that our method works as expected. To do so, let’s revisit

our ProcessQueueMessage method in the Functions class.

We already have the ability to send a Storage Queue message from our demo web

application to our WebJob. When we do so, the QueueTriggerAttribute trigger that

decorates our ProcessQueueMessage method will fire, and our method will be called.

Let’s add some additional code to the ProcessQueueMessage method that will examine

our queue message text and throw an exception if that text equals error (see Listing 8-16).

Listing 8-16.  We’ve Added Code to Check Our Incoming Message and Throw an

Exception if the Message Is Equal to Error

public static void ProcessQueueMessage(

 [QueueTrigger("webjobmessages")] QueueMessage message, TextWriter log)

{

 if (message.Message == "error")

 {

 throw new Exception("Houston, we have a problem!");

 }

 Console.WriteLine(message.Message);

}

Chapter 8 WebJobs

333

Once more, let’s right-click our solution, select Properties, and change our settings

so that we start both the WebJobDemo.Web and WebJobDemo.WebJob projects

simultaneously. Once the web application fires up, enter error in the message field and

click Send. Next, check the WebJobDemo.WebJob console and take a look at the output

(Figure 8-15).

Figure 8-15.  We can see that our ErrorTrigger did fire when an unhandled
exception occurred

As you can see, the ErrorTrigger did fire, and our SimpleErrorHandler method was

called. In fact, it was called five times. What happened?

When our QueueTrigger receives a message, it hides the message from other readers

for a short period of time. This prevents a queue message from being processed multiple

times if there are multiple readers monitoring a queue. When our ProcessQueueMessage

completes successfully, the QueueTrigger will remove the message from the Storage

Queue. If an exception occurs, our QueueTrigger will make the queue message visible

to other readers once again. This is why you see the error message five times; as an

exception is thrown, our ProcessQueueMessage marks the message as visible. Once the

message is visible, our QueueTrigger fires and reads the message again.

Why five times, though? Storage Queues have the concept of poison messages and

a maximum dequeue count, which we discuss further in Chapter 9. A poison message

is a message that has been dequeued a maximum number of times and has thus been

deemed undeliverable. Once a message is considered poison, it is placed in a separate

queue within the same Storage account. The poison message queue is named [original

Chapter 8 WebJobs

www.allitebooks.com

http://www.allitebooks.org

334

queue name]-poison. You can view the contents of the poison message queue using

Azure Storage Explorer.

�Throttling the ErrorTriggerAttribute

In the previous section, we saw how a single poison message triggered our error

handling method five times. What if you had programmed logic to e-mail or SMS

message yourself whenever an exception occurred? You can imagine how something

could go wrong and generate a few thousand exceptions in a span of minutes, which

would effectively launch a denial-of-service attack on your inbox. To prevent this, there

is an ErrorTriggerAttribute property that allows throttling. We’re guaranteed that the

ErrorTrigger will fire at most once during the Throttle timespan. Let’s comment out the

SimpleErrorHandler method and add a new ThrottledErrorHandler method to our

Functions class (see Listing 8-17).

Listing 8-17.  By Specifying the Throttle Property on Our ErrorTriggerAttribute,

We Can Guarantee That This Method Will Execute at Most Once During the

Throttle Timespan

/// <summary>

/// By setting the ErrorTriggerAttribute's Throttle property, we can limit the

/// number of times this method can be triggered to a maximum of once

/// within the

/// Throttle timespan.

/// </summary>

public static void ThrottledErrorHandler([ErrorTrigger(Throttle = "0:2:00")]

 TraceFilter filter)

{

 Console.WriteLine ("ThrottledErrorHandler: " + filter.Message);

}

Running our previous example again, we can see that our ErrorTrigger only fires

once even though five exceptions are thrown by our poison queue message.

Chapter 8 WebJobs

335

�Deploying WebJobs to Azure
Our WebJob is running successfully locally. Now let’s publish it to Azure.

�Hosting Requirements
WebJobs are deployed to Azure Web Apps. If you already have a Web App provisioned,

there’s no additional cost to adding a WebJob to an existing Web App. There are a few

caveats to take into consideration.

•	 Enable your Web App’s Always On setting. Web App instances in the

Free and Shared tiers will be unloaded from memory to conserve

resources if the web application that’s hosted on the Web App doesn’t

receive a request for 20 minutes. If your WebJob is hosted on a Free

or Shared tier Web App instance that gets unloaded, your WebJob will

be unloaded as well and will cease functioning. To prevent this from

happening, host your WebJobs on a Web App instance in the Basic,

Standard, or Premium tiers.

•	 Azure has a configuration setting called WEBJOBS_IDLE_TIMEOUT

that is denoted in seconds and defaults to two minutes. If your

on-demand WebJob isn’t triggered within the WEBJOBS_IDLE_TIMEOUT

interval, Azure will kill your WebJob. I recommend setting your

Web App’s WEBJOBS_IDLE_TIMEOUT variable to a healthy number of

seconds to prevent this from happening. You can set this variable on

the Web App’s Application Settings screen by adding it to the App

Settings section.

•	 Within a Web App instance, each WebJob has its own process.

However, all web applications and WebJobs on the instance will

share system resources. It is possible for a WebJob to gobble memory

and starve other WebJobs or web applications residing on the same

instance. Be cognizant of shared resources when you’re conducting

capacity planning.

Chapter 8 WebJobs

www.allitebooks.com

http://www.allitebooks.org

336

�Deploying a WebJob
There are two methods for deploying a WebJob: via File Transfer Protocol (FTP) or by

publishing directly from Visual Studio.

�FTP

If you log into your account on the Azure Portal and navigate to your Web App’s

Overview blade, you can download your Web App’s publish profile (Figure 8-16). The

publish profile is an XML document that contains an FTP address, username, and

password that you can use to FTP into your Web App. Note that if you have more than

one instance of your Web App running, they all share the same files.

Figure 8-16.  Download your Web App’s publish profile by clicking More and
selecting Get Publish Profile

You can even use Windows Explorer as your FTP client. Just open Windows Explorer

and paste your FTP address directly into the location bar.

Once you’ve FTPed into your Web App, you can xcopy the files from your

WebJob’s bin\debug or bin\release directory into the appropriate directory, and your

WebJob will begin running. For continuous WebJobs such as our example, the directory

is D:\home\site\wwwroot\app_data\jobs\continuous\{job name}. Let’s give that a try

now with our continuous WebJob.

Chapter 8 WebJobs

337

	 1.	 Right-click on the WebJobDemo.WebJob in Visual Studio’s

Solution Explorer and select Rebuild.

	 2.	 Log into the Azure Portal, navigate to the Web App that we want to

deploy to, and download the publish profile.

	 3.	 While on the Web App’s management blade, select Application

Settings and make sure that Always On is set to On.

Let’s also make sure that our WEBJOBS_IDLE_TIMEOUT variable

is set. Scroll down to the App Settings section. Add the key

WEBJOBS_IDLE_TIMEOUT, and set the value to something

outlandish, like 86,400, to prevent your on-demand WebJobs from

ever timing out.

Next, scroll down further on the Application Settings

panel to the Connection Strings section and add the key

AzureWebJobsDashboard and the value for your Storage account’s

connection string. Unfortunately, Azure cannot read this value

from your app.config file, and you must manually enter it here if

you want to take advantage of the WebJobs Dashboard in Azure.

Don’t forget to click Save at the top of the blade before navigating

away, or your changes will be lost.

	 4.	 Use the credentials from the publish profile to FTP into our

Web App.

	 5.	 Navigate to the folder site/wwwroot/app_data/jobs/continuous.

You might have to create folders from app_data down. Once in the

continuous folder, create a new folder called WebJobDemo to host

your WebJob.

	 6.	 Copy the contents from your WebJobDemo.WebJob project’s

bin\debug folder to the WebJobDemo folder that you just created

on the Web App. Congratulations: You’ve just published your

WebJob!

Chapter 8 WebJobs

www.allitebooks.com

http://www.allitebooks.org

338

�Publishing via Visual Studio
Publishing via Visual Studio is simple. Let’s demonstrate by publishing our

WebJobDemo.WebJob project using Visual Studio’s tooling.

	 1.	 Right-click the WebJobDemo.WebJob project. Select Publish as

Azure WebJob from the shortcut menu.

	 2.	 In the Add Azure WebJob dialog box, update the WebJob name

to WebJobDemo. Azure will not allow periods or other special

characters in the WebJob name. Set the WebJob run mode to Run

Continuously, then click OK (Figure 8-17).

Figure 8-17.  Specifying a WebJob name and run mode. You will only see this
dialog box the first time you publish from Visual Studio. To change these settings
on subsequent publishes, edit the webjob-publish-settings.json file found in your
WebJobDemo.WebJob’s Properties folder.

	 3.	 In the Publish dialog box, you’ll first need to specify which Azure

Web App you want to deploy to. You can either click Microsoft

Azure App Service to log into your Azure account from Visual

Studio and choose a Web App, or you can click Import and choose

a previously downloaded publish profile (Figure 8-18).

Chapter 8 WebJobs

339

	 4.	 After choosing a publish target, click Next to verify any connection

strings that your WebJob might use. Because we’re not making use

of a database in our on-demand WebJob, click Next to advance to

the Settings screen.

	 5.	 On the Settings screen, choose your build configuration and click

Publish. You’ve now successfully published the WebJob via Visual

Studio.

�Monitoring a WebJob in the Cloud
We can verify that our WebJobs were actually published by returning to our Web

App’s management screen in the Azure Portal. If you look through the available menu

options, you’ll see an option labeled Web Jobs. Clicking it will take you to the WebJobs

management blade. This screen will list all WebJobs running on the Web App. You

should see the entry for WebJobDemo (Figure 8-19).

Figure 8-18.  Choosing a Web App as a publish target for our WebJob

Chapter 8 WebJobs

www.allitebooks.com

http://www.allitebooks.org

340

Here’s where things get really cool. Select our WebJobDemo WebJob and click

Logs. You’ll be taken to the WebJob’s Dashboard. Remember how we had to set the

AzureWebJobsDashboard key in our Web App’s properties and specify our Storage

account’s connection string? That was so that Azure could write runtime information

for our WebJobs to a Storage Blob, and this is where the dashboard data that was written

appears (Figure 8-20).

Figure 8-19.  The WebJobs management blade shows our WebJob is running

Chapter 8 WebJobs

341

For continuous WebJobs, we can see the function that is running continuously and

how long it’s been running. We can also click Toggle Output to see logs written by Azure

in addition to any statements that we wrote to Console.

�Summary
We’ve discussed what WebJobs are, built an example, and ran our WebJob locally and in

Azure. In the next chapter, we discuss queues in detail and how they can be used to build

highly scalable web applications.

Figure 8-20.  The Azure dashboard. For continuous WebJobs, we can see the
function that is running, how long it’s been running, and Toggle Output to
view logs. These logs are useful as a starting point for troubleshooting issues in
deployment.

Chapter 8 WebJobs

www.allitebooks.com

http://www.allitebooks.org

343
© Rob Reagan 2018
R. Reagan, Web Applications on Azure, https://doi.org/10.1007/978-1-4842-2976-7_9

CHAPTER 9

Message Queues
A message queue is a service that allows two processes to communicate asynchronously.

Message queues are conceptually very simple. A process that we’ll call the sender

creates a message and adds it to a message queue. A process that we’ll call the receiver

periodically checks the queue for new messages. If a new message is found, the receiver

will process the message and remove it from the queue. Queue implementations

will typically guarantee receivers a first-in-first-out (FIFO) ordering of messages. In

other words, if a sender inserts messages A, B, and C into the queue, messages will be

dequeued by a receiver in the order of A, B, and then C.

Folks who have never worked with messaging queues might be asking “So, what

exactly is a message?” A message is simply information in an agreed-on format that needs

to be communicated to another process. Typically, it’s information that the receiver

needs to do something with. For example, our sender might send a class instance

containing data that needs to be processed. Messages can also be binary data and could

consist of an uploaded image that needs to be filtered, resized, and saved to disk.

Notice that because a sender process is inserting messages into a queue, and

a receiver process is retrieving messages from the queue, the sender and receiver

processes don’t have to know anything about each other to work together. This raises

some interesting possibilities. A sender process could be a .NET Core MVC web

application running inside an Azure Web App, and the receiver could be a WebJob

running in an entirely different Web App. The receiver could be a Node.js application

running inside an Azure VM. The receiver could be a Python app living inside a

corporate network behind a firewall. As you can see, message queues offer you a

tremendous amount of architectural freedom. The important takeaway is that message

queues allow you to break up and decouple your application. This is very useful in

certain scenarios, which we discuss later in this chapter.

When a message queue receives a message, it will save it to persistent storage. Once

a sender inserts a message, it will live in the queue until it is dequeued by a receiver or

344

exceeds a specified message expiration date and is automatically deleted. The persistent

storage of messages means that the sender and receiver processes don’t even need to

be online at the same time to communicate. A sender process could enqueue a message

at 9:00 a.m., and a receiver process running on a schedule could wake up an hour later,

dequeue the message, and process it. Allowing processes to communicate even when

they are not running concurrently is called temporal decoupling.

The final feature we need to discuss in this overview is how receivers read messages

from a message queue. In most implementations, there are two options: read and

dequeue, and read and lock.

With read and dequeue, a receiver will remove a message from the queue when it’s

read. Read and dequeue is usually an atomic operation. Consider what happens, though,

if an exception occurs while the message is being processed. Unless additional steps

are taken, the contents of the message will be lost and the message will never be fully

processed. For some types of messages, occasional message loss is not a big deal. For

other types, lost messages can be catastrophic and get people fired.

When used properly, read and lock will ensure that messages are not lost. When a

message is read, it remains in the message queue but is invisible to all receivers until the

message lock is abandoned, the lock times out, or the message is explicitly dequeued

after successful processing. We can structure our code so that message locks are released

in the event of an exception. When a lock is abandoned or expires, the message will

become visible to any and all receivers, and another attempt can be made to process the

message.

In a read and lock scenario, what happens if we end up with a message that cannot

be processed due to being malformed or an application error? Won’t the message

remain trapped in the message queue, endlessly cycling? Not quite! Most message

queues (including all Azure message queue implementations) have the concept of

poison messages. Each time a receiver dequeues a message, the message’s dequeue

count is incremented. When a maximum dequeue count is reached, the message is

removed from the queue automatically.

Chapter 9 Message Queues

www.allitebooks.com

http://www.allitebooks.org

345

�Benefits of Using Message Queues
We’ve talked in general about how message queues work, but what are the benefits of

using them? Here are the main benefits of using them.

•	 Scalability: Thus far, we’ve discussed how message queues have a

sender and a receiver, but there’s no reason that we couldn’t have

multiple receivers processing messages from the same queue.

Imagine if our sender is a web application that sends messages that

require lots of work to process. We could have a single instance of

our web application sending messages, and multiple instances of

our receiver process to do the work required. Decoupling using a

message queue allows us to scale parts of our application separately.

If queue length continues to grow because messages are being added

faster than they can be processed, we can simply add more receivers

to process messages faster. In fact, Azure Web Apps’ Autoscale feature

can use a message queue’s length as a trigger for when to scale up or

scale out. Scaling out receivers to handle the work needed is called

load balancing.

•	 Elasticity: Message queues can help absorb a burst in workload

and keep your application from collapsing due to a surge in traffic.

Twilio.com’s outbound SMS messaging API is a good real-world

example. When a customer calls Twilio’s outbound SMS API to send

a text message, Twilio receives the message and then immediately

enqueues it. Multiple worker processes receive the messages and

handle the actual sending of the SMS messages. If Twilio tried to

send SMS messages from within their API’s code, their servers could

quickly reach capacity and fail due to a large and unexpected spike

in traffic. A message queue ensures that work will eventually be

done, even if the system lacks the resources to perform the work

immediately. This is also called load leveling.

Chapter 9 Message Queues

346

•	 Temporal decoupling: Because senders and receivers are only

communicating through a message queue, and because messages

within a message queue will remain until they are dequeued or

expire, the sender and receiver do not even need to be running at the

same time to work together. You could design a receiver that wakes

up at a given interval, processes messages until no more messages

remain, then goes to sleep for another hour.

•	 Resiliency: Resiliency is made possible by temporal decoupling. If a

receiver process fails and goes down like a glass-jawed prizefighter,

messages within a message queue are not lost. They can be processed

when the receiver comes back online.

�Types of Azure Message Queues
Azure offers two flavors of messaging queues: Service Bus Messaging Queues and Azure

Storage Queues.

�Service Bus Queues
Azure Service Bus is a messaging service that allows apps to communicate in various

ways. Service Bus encompasses three separate technologies: queues, topics and

subscriptions, and relays. Although we won’t discuss topics and subscriptions or relays

in depth, I do want to make you aware of them and what they’re used for.

Service Bus topics and subscriptions are an implementation of the publish and

subscribe pattern. An application can create one or more topics, and publishers create

messages and add them to individual topics. One or more subscribers can subscribe

to a topic and will receive any messages sent to the topic. Subscribers don’t have to

receive all messages sent to a topic; they can declare filters to determine exactly what

types of messages they’re interested in receiving. Topics and subscriptions are the

way to go if you need to publish messages that need to be sent to N different receivers

simultaneously. This contrasts with message queues, where only one receiver can

process a message sent to a message queue.

Service Bus relays allow two applications that might live behind firewalls to

communicate securely without modifying firewall rules. With Service Bus relays, two

separate applications make outbound connections (which are allowed by most firewalls)

Chapter 9 Message Queues

www.allitebooks.com

http://www.allitebooks.org

347

to a defined Service Bus relay. The Service Bus relay then opens a bidirectional socket

that both applications can use to send and receive data.

Now comes our main event: discussing Service Bus queues. Service Bus queues are

a robust implementation of the messaging queue concept. One or more senders create

and insert messages into a Service Bus queue, and one or more receivers read and

remove messages. Here are some of the more interesting and useful functionalities that

Service Bus queues offer.

•	 Message ordering is guaranteed. If the temporal ordering of three

sent messages is A, B, and then C, the messages will be read in the

order of A, B, and then C.

•	 Receivers can read messages through two different receive modes:

Peek & Lock or Receive & Delete. Peek & Lock allows the receiver to

read a message while locking the message to prevent it from being

read by any other receivers. The Peek & Lock operation is atomic.

The message will remain inaccessible to other receivers until the

receiver explicitly calls the message’s Complete(), Abandon(), or

Deadletter() methods, or until the message lock expires. Calling

Complete() on the message after it is successfully processed will

remove the message from the queue. The Deadletter() method

will remove a message from the queue and place it in the dead

letter subqueue. The dead letter subqueue is a separate queue that

holds messages that cannot be processed. Calling Abandon() will

release the lock on the message and make it visible once again to

all receivers. The Abandon() method is useful to place in the catch

portion of a try/catch block in case something goes wrong during

processing.

Receive & Delete removes a message from the message queue

when it is read. This is the more efficient of the two read modes.

However, if problems occur while processing your message, the

message will be lost and not automatically added back to the queue.

•	 Messages will remain in the message queue until their Message Time

to Live is reached; at that point they will be automatically removed.

There is no maximum on the Message Time to Live.

Chapter 9 Message Queues

348

•	 You can guarantee that a message will be delivered at least once. You

can also guarantee that a message will be delivered at most once.

•	 There is support for automatic dead lettering. If a message’s dequeue

count exceeds a threshold, it will automatically be moved to the dead

letter queue. This ensures that your app will not try to continually try

to process a message that has errored out multiple times.

•	 The maximum size of a queue cannot exceed 80 GB.

�Azure Storage Queues
Azure Storage Queues are part of the Azure Storage service, along with Tables, Blobs,

and Files. Storage Queues are an older technology and not as full-featured. These are the

main differences between Storage Queues and Service Bus queues.

•	 Although Storage Queue message ordering is typically FIFO, ordering

when dequeueing is not guaranteed. Messages that are placed in

the queue in the order of A, B, and then C could be dequeued in the

order of B, A, and then C.

•	 The only receive mode for reading from a Storage Queue is Peek &

Lease. When a message is read, it is made invisible to other receivers

until the lease expires or the message is explicitly deleted.

•	 Messages can live in the queue up to a maximum of seven days

before they are automatically removed.

•	 You can guarantee that a message will be delivered at least once. In

certain circumstances, messages might also be delivered more than

once. You must write additional logic in your receiver to recognize

and handle messages that are dequeued more than once if double

processing is unacceptable in your application.

•	 There is no built-in support for dead lettering messages that exceed

the maximum dequeue count.

•	 The maximum size of a Storage Queue cannot exceed the maximum

size of a Storage account, which is 200 TB.

Chapter 9 Message Queues

www.allitebooks.com

http://www.allitebooks.org

349

You should choose Service Bus queues over Storage Queues unless you need a queue

size more than 80 GB in size, messages will live for seven days or less, and your message

size is less than 64 KB.

�Demo Project: QueueDemo
We’ll now walk through an example of some of the most common features you’ll need

when adding messaging queue functionality to your applications. We’ll build a set of

console applications that will demonstrate sending and receiving messages, scaling out

with multiple receivers, Peek & Lock versus Receive & Delete read modes, exception

handling, and dead lettering.

At the time of this writing, .NET Core Service Bus libraries have not yet been

released. We’ll create this console application using the full .NET Framework 4.6.1.

�Provisioning a Service Bus Resource
Currently, there isn’t a local emulator for any of the Azure Service Bus services.

Therefore, you’ll need to create a Service Bus resource within the Azure Portal to do any

development with Service Bus message queues. So, let’s start by provisioning our Service

Bus resource in the portal.

	 1.	 Log into the Azure Portal. Click the + icon to provision a new

resource. The Service Bus option is located under Enterprise

Integration (Figure 9-1).

Chapter 9 Message Queues

350

	 2.	 Next, we need to fill in a few Service Bus specific settings. The

settings you’ll be prompted for are as follows:

•	 Name: This is the name of your Service Bus namespace. You can

group multiple Queues, Topics and Subscriptions, and Relays

within a single namespace. Enter a name of your choice.

•	 Pricing Tier: Because we’re only working with message queues, the

Basic tier is sufficient for this demo. The Basic tier charges $0.05

per million operations, so this demo will only cost you a nickel.

•	 Subscription: Simply choose your subscription from the drop-

down list. This is the subscription that will be billed for usage.

•	 Resource Group: As discussed in Chapter 2, a resource

group allows you to group multiple services together for

management purposes. Let’s create a new resource group called

servicebusqueue-rg.

Figure 9-1.  Provisioning a new Service Bus resource

Chapter 9 Message Queues

www.allitebooks.com

http://www.allitebooks.org

351

•	 Location: This is the datacenter where your Service Bus resource

will be located. Choose the datacenter closest to you to reduce

network latency.

When you’ve entered this information, click Create.

	 3.	 Thus far, we’ve only created a Service Bus namespace, which is the

container that holds message queues, Topics and Subscriptions,

and Relays. We still need to actually provision our queue within

Service Bus. To do so, navigate to your newly created Service

Bus resource. Click Queues, then click the + icon on the Queue

management blade to create a new Queue. You’ll be prompted for

the settings in Figure 9-2.

Figure 9-2.  Settings required to create a new message queue within a Service Bus
namespace

Chapter 9 Message Queues

352

•	 Name: This is the name of your new message queue.

•	 Max size: This is the max queue size. You can choose 1 GB to 5 GB in

size, in 1 GB increments. After a queue fills up with messages, any

caller attempting to insert a new message will receive an exception.

Interestingly enough, Microsoft does not charge based on max size,

so you are free to choose the maximum of 5 GB.

•	 Message Time to Live: This is how long messages will remain in the

message queue unprocessed before being automatically deleted.

•	 Lock Duration: When using Peek & Lock as the receive mode, a lock

will be issued on a message for the lock duration when the message

is read. During this time, no other receivers can see the message.

If the lock expires and the message has not been explicitly marked

as completed or dead lettered, all receivers will be able to see and

process the message. For our demo, set this to five seconds, which is

the minimum. We’ll use this short lock duration to demonstrate lock

timeout.

•	 Move Expired Messages to the Dead-Letter Subqueue: If this check box

is selected, messages that exceed their time to live will be moved to

the dead-letter subqueue after being removed from the main queue.

I like to make use of this option so that I can see all messages in the

dead-letter subqueue that were not delivered and need attention.

•	 Enable Duplicate Detection: If this check box is selected, Service

Bus will check for duplicate messages sent within a sliding window.

Duplicate messages will be ignored. The default sliding window is

ten minutes and can be increased up to seven days. We’ll leave this

turned off for our demo.

•	 Enable Sessions: Sessions allows you to set a SessionId per message,

and for a single receiver to exclusively receive all messages with the

same SessionId. This is beyond the scope of this chapter, so you can

leave this check box cleared.

Chapter 9 Message Queues

www.allitebooks.com

http://www.allitebooks.org

353

•	 Enable partitioning: Without partitioning enabled, all messages are

written to a single message store, which is the persistent storage for

messages. The implementation details of the message store are both

hidden and unimportant to us. An unpartitioned queue will also use

a single message broker, which is the worker process that handles all

message queue requests. If partitioning is enabled, Azure will spread

your queue across 16 partitions, which gives you multiple message

stores and message brokers. Incoming messages are distributed to

one of the 16 message stores based on the presence of an explicit

partition key, the presence of a session key, or a round-robin

assignment. This entire process is transparent to receivers. Making

use of partitioning doesn’t add additional cost and gives you greater

reliability. I recommend always enabling it.

Once you have finished entering data in the required fields, click Create to create

your queue.

�Creating the Sender Console Application
Now that we’ve created our Service Bus resource and accompanying message queue,

let’s create our console application to create messages and then drop them in our queue.

First, let’s create a new project and solution in Visual Studio. In Visual Studio, select

File ➤ New ➤ Project. In the New Project dialog box, choose the Console Application

template located under Installed ➤ Templates ➤ Visual C# ➤ Windows. Name the

project ServiceBusQueue.Sender, then enter QueueDemo for the Solution Name

(Figure 9-3). After choosing a location for this solution and project, click OK.

Chapter 9 Message Queues

354

Last but not least, let’s add the Microsoft.ServiceBus and Newtonsoft.Json NuGet

packages to this project. To do so, right-click the ServiceBusQueue.Sender project and

select Manage NuGet Packages. On the NuGet package management screen, select the

Browse tab, search for, and then add each one.

�Creating Our Common Models Project

When sending messages, you’ll often want to serialize a class instance with various

properties. Because we’re going to have several console applications in this demo,

let’s create a shared models project to hold our common data class. Right-click the

QueueDemo solution, then choose Add ➤ New Project to open the Add New Project

dialog box. We’ll want to choose the Class Library template, which is located beneath the

Installed ➤ Visual C# ➤ Windows treeview item. Name this project QueueDemo.Models

and click OK.

The Class Library template was kind enough to give us a single code file named

Class1.cs. That’s not a very descriptive name, so let’s rename it QueueMessage.cs. Then

open the QueueMessage.cs file and add the contents in Listing 9-1.

Figure 9-3.  Create a solution and new console application for this example

Chapter 9 Message Queues

www.allitebooks.com

http://www.allitebooks.org

355

Listing 9-1.  Our QueueMessage Class, Which Will Be the Payload of Our Queue

Messages

namespace QueueDemo.Models

{

 public class QueueMessage

 {

 public string Message { get; set; }

 }

}

Our ServiceBusQueue.Sender console app requires a reference to this project. Right-

click the ServiceBusQueue.Sender’s References node in the Solution Explorer, select

Add Reference, and add a reference to this project.

�Getting a Service Bus Connection String

The simplest way to connect to a Service Bus is to use a connection string. To find your

Service Bus connection string, log into the Azure Portal, navigate to your Service Bus’s

management blade, and click Shared Access Policies located under Settings (Figure 9-4).

Figure 9-4.  The RootManageSharedAccessKey is the default shared access policy
that allows clients to send, listen, and manage Service Bus resources

Chapter 9 Message Queues

356

Click the RootManageSharedAccessKey to navigate to the Policy management blade.

Copy the CONNECTION STRING-PRIMARY KEY connection string. We’ll need this for our

ServiceBusQueue.Sender’s app.config file.

The RootManageSharedAccessKey is the default access policy that is created when

a Service Bus resource is provisioned, but you can create multiple policies to tighten

security and fit your needs. Each policy you create can have its own combination

of manage, send, and listen claims. Following the principle of least permissions,

it’s good practice to grant as few claims as needed. For example, if an application is

going to only read messages, you can create a separate access policy for the reader

application and only grant the listen claim. You would then use the new claim’s

CONNECTION STRING-PRIMARY KEY as the connection string when connecting to the

service bus from your reader application. For the sake of simplicity, we’ll use the same

RootManageSharedAccessKey access policy for all applications in our demo.

�Updating the ServiceBusQueue.Sender’s app.config File

Our console app will read the Service Bus connection string from our app.config

file. Remember the connection string that you copied from your Service Bus’s

RootManageSharedAccessKey access policy in the previous section? You’ll need to add

the code in Listing 9-2 to your app.config’s <configuration> section, then substitute

your connection string.

Listing 9-2.  Add Your Service Bus Connection String to app.config

<appSettings>

 <!-- Service Bus specific app settings for messaging connections -->

 <add key="Microsoft.ServiceBus.ConnectionString"

 value="[Your Service Bus Connection String"/>

</appSettings>

�Adding Code to Send Queue Messages

Now we’ll write the code to actually send messages through our Service Bus message

queue. For clarity, we’ll put all code within our console app’s Program.cs file. The

complete source code for Program.cs is shown in Listing 9-3.

Chapter 9 Message Queues

www.allitebooks.com

http://www.allitebooks.org

357

Listing 9-3.  The ServiceBusQueue.Sender’s Program.cs File

using System;

using System.Threading.Tasks;

using Microsoft.ServiceBus;

using Microsoft.ServiceBus.Messaging;

using System.Configuration;

using QueueDemo.Models;

using Newtonsoft.Json;

namespace ServiceBusQueue.Sender

{

 class Program

 {

 static async Task Run()

 {

 //we'll create our MessageSender only once. You should NOT re-create a

 //connection to your Service Bus for each message; that is a

 //very expensive operation!

 string serviceBusConnectionString =

 �ConfigurationManager.AppSettings["Microsoft.ServiceBus.

ConnectionString"];

 string queueName = "demoqueue";

 MessagingFactory senderFactory =

 �MessagingFactory.CreateFromConnectionString

(serviceBusConnectionString);

 //our MessagingFactory has retry logic in case there's a transient error.

 //We'll specify an exponential backoff retry policy.

 �senderFactory.RetryPolicy = new RetryExponential

(TimeSpan.FromSeconds(1),

 TimeSpan.FromMinutes(5), 10);

 �//our MessageSender instance is what actually sends messages to

 �//the queue.

 var sender = await senderFactory.CreateMessageSenderAsync(queueName);

Chapter 9 Message Queues

358

 //type out some instructions for our user...

 �Console.WriteLine("Service Bus message queue sender started. Enter

a message and press enter to send it via the message queue.”);

 Console.WriteLine("Type 'exit' to quit");

 Console.Write(">");

 //we'll keep waiting on the user to type in a new message until

 //they enter "exit" and hit Enter

 //at our command prompt.

 string message = Console.ReadLine();

 while (message.ToLower() != "exit")

 {

 //BrokeredMessage instances are what we can send to our Service Bus

 //message queue.

 BrokeredMessage msg = CreateMessage(message);

 await sender.SendAsync(msg);

 Console.WriteLine("Message sent.");

 Console.Write(">");

 message = Console.ReadLine();

 }

 }

 /// <summary>

 /// This will create a class instance and set the string message as a

 �/// property. We'll then serialize the QueueMessage class instance

 �/// and set

 /// the serialized instance as the BrokeredMessage message body.

 /// BrokeredMessages are what Service Bus message queues send and receive.

 /// </summary>

 private static BrokeredMessage CreateMessage(string message)

 {

 QueueMessage msgPayload = new QueueMessage();

 msgPayload.Message = message;

Chapter 9 Message Queues

www.allitebooks.com

http://www.allitebooks.org

359

 BrokeredMessage brokeredMsg =

 new BrokeredMessage(JsonConvert.SerializeObject(msgPayload));

 return brokeredMsg;

 }

 /// <summary>

 /// Our console app entry point.

 /// </summary>

 static void Main(string[] args)

 {

 Run().GetAwaiter().GetResult();

 }

 }

}

This is a simple console program that will read a line of input from the user, then

send the text entered as a message on our Service Bus message queue. When the user

types exit, the program will end. It will also end if you hit your computer’s power

button, but I’ve been told that’s bad form by our company’s hardware support team on

more than one occasion.

A few things to note:

•	 To send messages to our Service Bus queue, we instantiate a

MessagingFactory class named senderFactory in our Run() method.

You might see several examples online of sending messages using a

Microsoft.ServiceBus.Messaging.QueueClient instance. Although

this is a slightly simpler approach, it will only work for communicating

with message queues. If you use a MessagingFactory instead, it is

trivial to switch from messaging queues to topics and subscriptions if

you ever need to move to a publish/subscribe architecture.

•	 When we call our MessagingFactory’s sendAsync method to send a

message, we’re passing it a BrokeredMessage instance. You can only

send BrokeredMessage instances through a Service Bus queue. You’ll

notice in our CreateMessage method, however, that we serialize our

QueueMessage instance to JSON, then pass the serialized output to

the BrokeredMessage constructor to be used as our payload. You can

also use binary data as the BrokeredMessage payload, which can be

Chapter 9 Message Queues

360

a little more compact. However, I prefer serializing to JSON because

it’s a cross-platform standard and is readable when you’re trying to

troubleshoot issues.

•	 We are using the async version of methods such as

MessagingFactory.CreateMessageSenderAsync and

MessageSender.SendAsync. These both make remote calls to our

Azure Service Bus and are traversing the network to do so. As we’ve

discussed in previous chapters, failure to use async methods will tie

up threads and can lead to thread starvation for your application

when it’s under load.

Let’s run this thing and make sure that it works. Make sure that your

ServiceBusQueue.Sender project is set as the startup project in your solution, then run it

with debugging. You should see the console window and output shown in Figure 9-5.

Figure 9-5.  The output from running the ServiceBusQueue.Sender console
application

Type any random message, such as “Hello from the other side (of the queue),” then

press Enter. You’ll then receive a confirmation that your message has been successfully

sent to our Service Bus message queue.

�Viewing Service Bus Message Queue Messages with
Service Bus Explorer

I’ve asked you to take it on faith that our message was actually enqueued. Now it’s time

to prove it.

In previous chapters, we talked about Azure Storage Explorer, the handy

open source tool that allows you to view the contents of Storage Blobs, Queues, and

Tables. There is a similar tool called Service Bus Explorer for viewing the contents of

Service Bus queues as well as other services such as topics, event hubs, notification

Chapter 9 Message Queues

www.allitebooks.com

http://www.allitebooks.org

361

hubs, and relays. Unfortunately, there isn’t a convenient binary and installer; you’ll have

to clone the Git repo and build it from source. The GitHub project repo can be found at

https://github.com/paolosalvatori/ServiceBusExplorer. Even though building

this utility from source is a few more steps, it’s definitely worth it. This application is an

invaluable tool for developing with Service Bus.

After downloading and building Service Bus Explorer, launch the resulting

executable. Once it opens, select File ➤ Connect from the top-level menu. This will open

a dialog box that will let you create a connection to a Service Bus (Figure 9-6).

Figure 9-6.  Connecting to a Service Bus from the Service Bus Explorer application

Under Service Bus Namespaces, select Enter Connection String as your method

of connecting. You’ll then need to paste your Service Bus connection string in the text

area to the right. This is the same connection string that we set in our app.config’s

Microsoft.ServiceBus.ConnectionString property in the previous section. Finally,

click OK to create the connection.

After connecting, expand the Queues treeview node under your Service Bus’s name,

then click the demoqueue queue node. The content panel of the application will change

to display information about the demoqueue. Click Messages on the content panel to

view a list of all messages sitting in the queue. Make sure to choose Peek mode when

Chapter 9 Message Queues

https://github.com/paolosalvatori/ServiceBusExplorer
https://github.com/paolosalvatori/ServiceBusExplorer

362

prompted and not Receive and Delete. Peek allows us to look at messages without

actually dequeueing them.

The message that we just sent through our console application should be the only

one in the queue. When you select it, you’ll see the JSON for our serialized QueueMessage

class containing the text of the message that we just sent (Figure 9-7).

Figure 9-7.  Viewing the contents of our Service Bus’s demoqueue message queue

�Building Our Service Bus Queue Message Receiver

We’ve successfully sent a message to our Service Bus queue and verified that it is indeed

there. Now let’s look at how to receive messages. To so do, we’ll build a second console

application that polls for new messages within the queue and processes each of them

in turn. For demonstration purposes, our message processing will consist of writing the

contents of each message to the console window.

To create our receiver, let’s add a new console application to the project. Right-

click the QueueDemo solution, then select Add, and select New Project. Just like we

did for our ServiceBusQueue.Sender project, choose the Console Application template

Chapter 9 Message Queues

www.allitebooks.com

http://www.allitebooks.org

363

located under Installed ➤ Templates ➤ Visual C# ➤ Windows. Name the new project

ServiceBusQueue.Receiver, then click OK.

Next, we’ll need to add the necessary packages and references to our new

ServiceBusQueue.Receiver project. In the Solution Explorer, right-click the project and

select Manage NuGet Packages. In the NuGet package manager, add the Microsoft.

ServiceBus and Newtonsoft.Json packages. Then add a reference to the QueueDemo.

Models project.

Now we’re ready for the code. Open the ServiceBusQueue.Receiver’s Program.cs file,

and add the code in Listing 9-4.

Listing 9-4.  Our Queue Message Receiver Code in the ServiceBusQueue.

Receiver’s Program.cs File

using System;

using System.Threading;

using System.Threading.Tasks;

using Microsoft.ServiceBus.Messaging;

using System.Configuration;

using QueueDemo.Models;

using Newtonsoft.Json;

namespace ServiceBusQueue.Receiver

{

 class Program

 {

 /// <summary>

 /// A convenience method for writing to the console

 /// </summary>

 private static void WriteToConsole(string message, ConsoleColor color)

 {

 lock (Console.Out)

 {

 Console.WriteLine(message, color);

 }

 }

 /// <summary>

Chapter 9 Message Queues

364

 �/// Our async method that will listen for incoming queue messages and

 �/// process them.

 /// </summary>

 static async Task Run(CancellationToken cancellationToken)

 {

 string serviceBusConnectionString =

 �ConfigurationManager.AppSettings["Microsoft.ServiceBus.

ConnectionString"];

 string queueName = "DemoQueue";

 MessagingFactory receiverFactory =

 �MessagingFactory.CreateFromConnectionString(serviceBus

ConnectionString);

 �var receiver = await receiverFactory.CreateMessageReceiverAsync

(queueName,

 ReceiveMode.PeekLock);

 var doneReceiving = new TaskCompletionSource<bool>();

 //when our cancellation token's Cancel method is called, we'll run the

 �//asynchronous anonymous function below, which will tell our

 �//MessageReceiver

 //to quit listening for messages, and exit this method.

 cancellationToken.Register(

 async () =>

 {

 await receiver.CloseAsync();

 await receiverFactory.CloseAsync();

 doneReceiving.SetResult(true);

 });

 receiver.OnMessageAsync(

 async message =>

 {

 QueueMessage queueMsg = null;

 var jsonBody = message.GetBody<string>();

Chapter 9 Message Queues

www.allitebooks.com

http://www.allitebooks.org

365

 �queueMsg = JsonConvert.DeserializeObject<QueueMessage>(jsonBody);

 //we “processed” this message successfully. Let's dequeue it!

 await message.CompleteAsync();

 WriteToConsole("Message successfully received and dequeued: " +

 queueMsg.Message, ConsoleColor.DarkBlue);

 },

 �new OnMessageOptions { AutoComplete = false, MaxConcurrentCalls = 1 });

 //don't exit this method until we signal to do so from our

 //cancellationToken instance.

 await doneReceiving.Task;

 }

 //Our entry point to the console application

 static void Main(string[] args)

 {

 Console.WriteLine("Receiver started. Listening for messages...");

 // close the receiver and factory when the CancellationToken fires

 var cts = new CancellationTokenSource();

 var runTask = Run(cts.Token);

 Console.ReadKey();

 cts.Cancel();

 runTask.GetAwaiter().GetResult();

 }

 }

}

There’s a bit of threading code such as the CancellationToken and

TaskCompletionSource instances that are intended to keep this console application from

exiting until the user presses a key. This threading code isn’t important to our discussion

on Service Bus queues.

Chapter 9 Message Queues

366

Let’s walk through our Run method, which is where messages are processed.

•	 Just like in our sender example, we create a MessagingFactory

instance. This class handles authenticating with Azure and

connecting to our Service Bus resource based on the supplied

connection string.

•	 To actually receive messages, we need an instance of the

MessageReceiver class. We get this by calling our MessagingFactory

instance’s CreateMessageReceiverAsync method. As arguments,

we must pass in the name of the queue within our Service Bus’s

namespace that we’d like to monitor, as well as the receive mode.

Our receive mode options are PeekLock and ReceiveAndDelete. For

this example, we’ll specify PeekLock, which means that we need to

explicitly acknowledge that a message has finished processing by

calling the Complete method, which will dequeue the message.

•	 Now that we’ve set up a MessageReceiver instance called receiver,

we’ll call the OnMessageAsync method to begin receiving messages.

Instead of having to poll to see if new messages are available, the

framework will call the anonymous async method that you specify

whenever a new message is received.

•	 OnMessageAsync also takes an OnMessageOptions instance as an

argument that defines how the framework will handle passing

messages to your anonymous method. OnMessageOptions properties

include the following:

•	 AutoComplete: This should be set to true if you want the

OnMessageAsync method to automatically call Complete() when

a message has finished processing without an exception being

thrown. If you set this to false, you’ll have to explicitly call the

message’s Complete() method to remove it from the queue. If

you fail to do so, the message will become visible again after the

message lock has expired and will be reprocessed. Note that this

property only applies if the receive mode is set to PeekLock.

•	 MaxConcurrentCalls: This is an integer value that tells the

framework the maximum number of concurrent threads it can

use to process messages.

Chapter 9 Message Queues

www.allitebooks.com

http://www.allitebooks.org

367

For our example, we’ll set AutoComplete to false so that we can demonstrate calling

Complete(). We’ll also set the MaxConcurrentCalls to 1.

•	 Within our OnMessageAsync’s anonymous method, we receive

a BrokeredMessage instance called message. We then get the

BrokeredMessage’s body, which is a QueueMessage instance that

has been serialized to JSON format. By calling JsonConvert.

DeserializeObject on the message’s body, we receive

back the QueueMessage that was originally enqueued by our

ServiceBusQueue.Sender console application.

•	 Finally, we call our BrokeredMessage’s Complete() method to

dequeue the message, and we write the message to the console.

�Testing Our Service Bus Queue Message Receiver

Let’s run the full demonstration. To make things more interesting, set both the

ServiceBusQueue.Receiver and ServiceBusQueue.Sender to start simultaneously.

We can then send messages and watch as they are received. To do so, right-click

on the QueueDemo solution in the Solution Explorer and select Properties. In the

Solution Property Pages dialog box, select Multiple Startup Projects, and select both the

ServiceBusQueue.Receiver and ServiceBusQueue.Sender’s action to Start (Figure 9-8).

Chapter 9 Message Queues

368

Once you’ve configured both projects to start simultaneously, run with debugging.

You should see both console windows launch. Enter messages in the ServiceBusQueue.

Sender’s console window and press Enter. You should see the message echoed to the

ServiceBusQueue.Receiver’s console window (see Figures 9-9 and 9-10).

Figure 9-8.  Setting both the sender and receiver console app to start simultaneously

Chapter 9 Message Queues

www.allitebooks.com

http://www.allitebooks.org

369

�Message Lock Timeout

When a message is received in PeekLock receive mode, a lock is applied to the message

when it is read from the queue. If the receiver doesn’t explicitly call the message’s

Complete(), Abandon(), or Deadletter() methods, the lock will expire and the message

will once again become visible to any receivers who are monitoring the queue. The lock

duration is specified at the queue level, and can be changed via the queue’s Properties

blade in the Azure Portal.

Recall that when we created our queue in the Azure Portal, we set the lock duration

to five seconds, which is the minimum allowed value. Let’s make some changes to our

Program class in our ServiceBusQueue.Receiver project. Add the code shown in bold in

Listing 9-5 to your Program class’s Run method.

Figure 9-9.  Enter messages and press Enter. These will be sent to our Service Bus queue.

Figure 9-10.  Messages that you send will be echoed to the ServiceBusQueue.
Receiver’s console window.

Chapter 9 Message Queues

370

Listing 9-5.  Add the Code Shown in Bold to the Run Method to Demonstrate

Message Lock Timeout

receiver.OnMessageAsync(

 async message =>

 {

 QueueMessage queueMsg = null;

 var jsonBody = message.GetBody<string>();

 queueMsg = JsonConvert.DeserializeObject<QueueMessage>(jsonBody);

 string loweredMsg = queueMsg.Message.ToLower();

 if (loweredMsg == "timeout")

 {

 �WriteToConsole(DateTime.Now + " : This message will allow the

lock to expire

 and be re-read. Dequeue count: " + message.DeliveryCount,

 ConsoleColor.Black);

 }

 else

 {

 //we processed this message successfully. Let's dequeue it!

 await message.CompleteAsync();

 WriteToConsole("Message successfully received and dequeued: " +

 queueMsg.Message, ConsoleColor.DarkBlue);

 }

 },

 new OnMessageOptions { AutoComplete = false, MaxConcurrentCalls = 1 });

We’ve added code that will check to see if the text of a message is "timeout". If so, we

will not call Complete() on the message and will allow the message lock to expire. Once

the message’s lock expires, it will become visible and be reread. This will continue until

the maximum delivery count for the message is reached, at which point the message will

be moved to the dead letter subqueue.

Once you’ve made the changes just listed, run both the ServiceBusQueue.Sender

and ServiceBusQueue.Receiver projects in debug mode. Enter "timeout" in the sender’s

console window and watch the output in the receiver’s console (Figure 9-11).

Chapter 9 Message Queues

www.allitebooks.com

http://www.allitebooks.org

371

Notice that after our five-second message lock expired, the message became visible

and was dequeued once again. Our timestamps show that the lock is indeed five seconds.

It’s important to point out that when using PeekLock, your queue’s lock duration

should be set long enough to cover processing under heavy load. Otherwise, your

message could be processed twice or more due to the following interleaving of events:

	 1.	 A receiver reads a message with PeekLock and begins processing.

	 2.	 While the original receiver is still processing, the message lock

expires. The message is once again unlocked and visible in the queue.

Another receiver thread dequeues the message a second time.

	 3.	 The original receiver finishes processing the message.

	 4.	 The second receiver finishes processing the message.

To complete this exercise, open the Service Bus Explorer app once again and select

the demoqueue. Click Deadletter in the View Queue panel to verify that after our

message’s dequeue count exceeded the maximum dequeue count, the message was in

fact moved to the dead letter queue.

�Abandoning a Message Lock

Instead of allowing a message’s lock to expire, we can immediately release a lock by

calling the BrokeredMessage’s Abandon() method. This allows any listening receiver to

immediately reread the message. It’s useful to place in a catch block after an exception

has occurred due to some transient set of circumstances. To demonstrate, add the code

shown in bold in Listing 9-6 to the Run method in the ServiceBusQueue.Receiver’s

Program class.

Figure 9-11.  Demonstrating message lock expiration

Chapter 9 Message Queues

372

Listing 9-6.  Demonstrating Abandoning a Message Lock

async message =>

{

 QueueMessage queueMsg = null;

 try

 {

 var jsonBody = message.GetBody<string>();

 queueMsg = JsonConvert.DeserializeObject<QueueMessage>(jsonBody);

 string loweredMsg = queueMsg.Message.ToLower();

 if (loweredMsg == "timeout")

 {

 WriteToConsole(DateTime.Now + " : This message will allow the lock to

 expire and be re-read. Dequeue count: " + message.DeliveryCount,

 ConsoleColor.Black);

 }

 else if (loweredMsg == "exception")

 {

 throw new Exception("Exception thrown for demonstration purposes.");

 }

 else

 {

 //we processed this message successfully. Let's dequeue it!

 await message.CompleteAsync();

 WriteToConsole("Message successfully received and dequeued: " +

 queueMsg.Message, ConsoleColor.DarkBlue);

 }

 }

 catch (Exception ex)

 {

 await message.AbandonAsync();

Chapter 9 Message Queues

www.allitebooks.com

http://www.allitebooks.org

373

 �WriteToConsole(DateTime.Now + " : Abandoning message lock due to

exception.

 �Delivery count: " + message.DeliveryCount + " Exception: " +

ex.Message,

 ConsoleColor.Red);

 }

},

new OnMessageOptions { AutoComplete = false, MaxConcurrentCalls = 1 });

After making the changes, run both the ServiceBusQueue.Sender and

ServiceBusQueue.Receiver projects in debug mode. Enter "exception" in the sender’s

console window. The receiver’s output is shown in Figure 9-12.

Figure 9-12.  The output from our ServiceBusQueue.Receiver when abandoning a
message lock

As soon as a message lock is abandoned, the receiver will reread and lock the

message. This continues until the maximum dequeue count is reached and the message

is dead lettered. You’ll notice that from the timestamps, there is very little delay from

when a lock is released and the message becomes visible to when the message is reread

and locked again.

�Dead Lettering a Message

When processing a queue message, you don’t have to wait for the maximum dequeue

count to be reached to quit attempting to process a message. If you know that you

no longer need to attempt to process a message, you can call the BrokeredMessage’s

DeadLetter() or DeadLetterAsync() methods. These methods will immediately

dequeue the message and move it to the dead letter subqueue.

Chapter 9 Message Queues

374

�Scaling Out

One of the major benefits of using message queues is the ability to decouple parts of

your application and scale them independently. If you find that a queue is increasing

in length because the receiver is falling behind and messages are being added to the

queue faster than they can be processed, you can remedy the situation by adding more

receivers.

Here’s an analogy that we’re all familiar with in the real world. When you go to the post

office during lunch to mail a package, there’s usually a single clerk working at 11:45 a.m.

Under normal circumstances, a single counter clerk is able to handle all customers’

needs in a timely fashion without any single customer having to wait for a long time.

As the number of customers visiting the post office during their lunch breaks increases,

though, the line of customers begins to lengthen.

We could leave our single clerk at the counter to serve a growing number of

customers; eventually the clerk would get to everyone. Alternatively, a second clerk

could work the counter to service the line of customers twice as fast. The moral of the

story is this: You can add additional receivers to drain a queue as load increases, and

remove receivers as load decreases. In fact, this is an option for Web App Autoscale as

discussed in Chapter 2. Instead of keying on CPU utilization or memory pressure, you

can scale up or scale out a Web App instance that hosts WebJobs that are monitoring a

Service Bus queue based on the Service Bus queue length.

To demonstrate this, we’ll launch a single instance of our sender application,

and a couple of instances of our receiver. To make this demo more compelling, let’s

add a Thread.Sleep(5000) call immediately after calling CompleteAsync() on our

BrokeredMessage. This will simulate a heavy workload for queue message processing.

After adding the Thread.Sleep(5000) call, launch both the sender and receiver

console apps. You’ll need to navigate to the ServiceBusQueue.Receiver’s \bin\debug

directory and manually launch a second instance of ServiceBusQueue.Receiver.exe.

When all apps are launched, start entering messages every few seconds into the

sender’s console window to fill up the queue. For my demo, I entered each letter of the

alphabet as a message. Notice how some messages are grabbed and processed by the

first receiver, and others are processed by the second (Figure 9-13).

Chapter 9 Message Queues

www.allitebooks.com

http://www.allitebooks.org

375

Figure 9-13.  Both of our receiver console app instances. Messages were typed in
alphabetical order with a five-second wait after receiving each message

Note  If you enter several messages a second, you might notice that the dequeue
seems out of order. Message A might be delivered before message B if they are
entered almost simultaneously. This is due to differing network latency when
making calls to the Azure queue. B was actually enqueued before A. Rest assured
that the FIFO ordering of messages is preserved.

�Using Message Queues to Build Azure Web
Applications
When developing web applications, you probably won’t make use of console apps.

Instead, you’ll likely send messages from a web application, then receive and process

messages from a WebJob. Microsoft has taken much of the work out of receiving Service

Bus queue messages by providing a ServiceBusTriggerAttribute class that we can use

to mark methods with in triggered WebJobs. The ServiceBusTriggerAttribute handles

all of the bookkeeping required to monitor a Service Bus queue and call our designated

method when new messages arrive.

To demonstrate, let’s add a new WebJob project to our QueueDemo solution. To do so,

right-click the QueueDemo solution, select Add, and then select New Project. Select the

Chapter 9 Message Queues

376

Azure WebJob template located under the Visual C# ➤ Cloud category. Let’s name this

new project ServiceBusQueue.WebJob. Click OK to create the new project (Figure 9-14).

Figure 9-14.  Creating a new WebJob project called ServiceBusQueue.WebJob

Next, we need to add the appropriate NuGet packages to our new WebJob.

Right-click the ServiceBusQueue.WebJob project and select Manage NuGet Packages.

On the NuGet package management screen, select the Browse tab, then search for

and install both the Microsoft.Azure.WebJobs.ServiceBus and Newtonsoft.Json

packages. The former is required to reference the ServiceBusTriggerAttribute,

which we will use to mark a method to be called when new messages arrive. The latter

will be used to deserialize our QueueMessage class instance that we receive. To finish

our project setup, right-click the ServiceBusQueue.WebJob project’s References, select

Add Reference, and add a reference to the QueueDemo.Models project. We’ll need

the QueueDemo.Models so that we can reference the QueueMessage class, which we’ll

deserialize from all of our received messages.

Next, let’s add the required settings to our app.config file. We’ll need to

do three things. First, we need to set Storage connection string values for our

AzureWebJobsDashboard and AzureWebJobsStorage values. As mentioned in the

previous chapter, these are used to log events so that they appear on the Azure Portal’s

Chapter 9 Message Queues

www.allitebooks.com

http://www.allitebooks.org

377

WebJobs Dashboard, and for internal bookkeeping. Second, we need to set the

value of the AzureWebJobsServiceBus connection string. This is what our WebJob’s

ServiceBusTriggerAttribute will use to determine which Service Bus to monitor

for messages. Finally, we’ll need to add an AppContextSwitchOverrides node to our

runtime section. This is required for authentication to work correctly using the latest

version of the Microsoft.ServiceBus package when running with .NET Framework 4.6.1.

This might or might not be applicable to future versions. See the example sections

in Listing 9-7.

Listing 9-7.  Settings That Must Be Added to Your WebJob’s app.config File

<?xml version="1.0" encoding="utf-8"?>

<configuration>

 <connectionStrings>

 <add name="AzureWebJobsDashboard" connectionString="[Your Storage account

 connection string "/>

 <add name="AzureWebJobsStorage connectionString="[Your Storage account

 connection string "/>

 <add name="AzureWebJobsServiceBus" connectionString="[Your Service Bus

 connection string"/>

 </connectionStrings>

 ... a bunch of other boilerplate settings elided for brevity...

 <runtime>

 �<AppContextSwitchOverrides value="Switch.System.IdentityModel.Disable

MultipleDNSEntriesInSANCertificate=true" />

 </runtime>

</configuration>

Now, let’s create the code for our WebJob’s Program class. It’s just a few lines,

shown in Listing 9-8. If you’ve read Chapter 8, which focused on WebJobs, this code

will be very familiar. Note that you have to call the JobHostConfiguration instance’s

UseServiceBus() method. If you fail to do so, new messages to your Service Bus queue

will not trigger the marked method in your Functions class.

Chapter 9 Message Queues

378

Listing 9-8.  The Entirety of the ServiceBusQueue.WebJob Project’s Program.cs File

using Microsoft.Azure.WebJobs;

namespace ServiceBusQueue.WebJob

{

 class Program

 {

 static void Main()

 {

 var config = new JobHostConfiguration();

 config.UseServiceBus();

 var host = new JobHost(config);

 host.RunAndBlock();

 }

 }

}

Let’s jump over to the Functions class in our Functions.cs file. The contents of the

file are shown in Listing 9-9.

Listing 9-9.  Our Functions Cclass Definition

using Microsoft.Azure.WebJobs;

using Microsoft.ServiceBus.Messaging;

using QueueDemo.Models;

using Newtonsoft.Json;

using System;

namespace ServiceBusQueue.WebJob

{

 public class Functions

 {

 �// This function will get triggered/executed when a new message is

 �// written

 // on an Azure Service Bus queue called demoqueue.

 public static void ProcessQueueMessage([ServiceBusTrigger("demoqueue")]

 BrokeredMessage message)

Chapter 9 Message Queues

www.allitebooks.com

http://www.allitebooks.org

379

 {

 //first, we need to deserialize our QueueMessage class.

 var jsonBody = message.GetBody<string>();

 �QueueMessage queueMsg = JsonConvert.DeserializeObject<QueueMessage>

(jsonBody);

 //Write the message to the console for demonstration purposes.

 Console.WriteLine("Message : " + queueMsg.Message);

 }

 }

}

The ProcessQueueMessage method will be called whenever a new message is posted

to the demoqueue Service Bus queue. The ServiceBusTriggerAttribute that we used

to mark our ProcessQueueMessage method with gives us the following functionality:

•	 Whenever a new message is posted to the demoqueue, our trigger

will read the message using the PeekLock read mode. The message is

given to us as a method argument of type BrokeredMessage.

•	 If the function completes without throwing an exception,

the ServiceBusTriggerAttribute will automatically call the

BrokeredMessage’s Complete() method.

•	 If the function throws an exception, the ServiceBusTriggerAttribute

will automatically call the method’s Abandon() method.

•	 If the function runs longer than the Queue’s lock duration, the

ServiceBusTriggerAttribute will automatically renew the

message lock.

As you can see, using the ServiceBusTriggerAttribute takes a great deal of work

out of processing Service Bus queue messages.

We can run our WebJob locally along with our ServiceBusQueue.Sender console

application for demonstration purposes. Just as we did previously, right-click the

QueueDemo solution in the Solution Explorer window and select Properties to open

the solution’s Properties dialog box. On the Startup Project screen, select the Multiple

Startup Projects option and set both the ServiceBusQueue.Sender and ServiceBusQueue.

WebJob projects to start. Make sure that you set the ServiceBusQueue.Receiver’s startup

Chapter 9 Message Queues

380

action to None, or else our receiver console app could snatch messages before the

WebJob gets a chance to see them. When finished, click OK and run the application in

debug. As before, send messages through our sender console app, and you’ll see sent

messages written to the WebJob’s console (Figure 9-15).

�Summary
We’ve discussed basic message queue concepts and looked at Service Bus and Storage

queues. We then walked through a demonstration of Service Bus queue concepts such

as provisioning a Service Bus resource, sending and receiving messages, message lock

timeout, dead lettering, and abandoning messages. We ended the chapter with an

example of how you could use Service Bus queues in a production web application. In

the next chapter, we’ll take a look at other tips and tricks that are useful for scaling web

applications.

Figure 9-15.  Our WebJob’s console window after starting up and receiving a
message from our Service Bus queue

Chapter 9 Message Queues

www.allitebooks.com

http://www.allitebooks.org

381
© Rob Reagan 2018
R. Reagan, Web Applications on Azure, https://doi.org/10.1007/978-1-4842-2976-7_10

CHAPTER 10

Other Tips and Tricks
We’ve all experienced web sites that take several seconds to load. Fifteen years ago,

when DSL connections where considered fast, a page load that took several seconds was

acceptable. This is no longer the case. In fact, since 2010, Google has used page speed

as a ranking factor for search results. A nontrivial percentage of users will abandon

slow sites and skip to the next search result. Given these facts, I strongly believe that

performance should be a feature of every web application.

Throughout this book, we’ve talked in detail about how to use various Azure services

to scale and speed up web apps. There are several tips and tricks, however, that are not

specific to Azure that can help you squeeze performance from your web application. In

some cases, these performance increases can be dramatic. Most of these tips and tricks

are also very easy to implement.

This chapter is structured as a cookbook. We’ll look at each individual optimization

and explain it in detail. We’ll illustrate several of our optimizations by looking at an

example app called Turtles. Let’s get started.

�The Turtles Web Application
With most examples throughout this book, we’ve built the application over time and

added functionality as we went. In this chapter, though, we’ll start with a fully built

application that runs poorly and optimize it throughout the chapter.

The Turtles web application is extremely simple: It’s a single-page MVC application

that uses Bootstrap and doesn’t even have a database. The single page is displayed in

Figure 10-1.

382

Let’s run through the code needed to set this application up.

�Creating the Solution and Project
We’ll start with creating our solution.

	 1.	 Open Visual Studio 2015 and select File ➤ New Project.

	 2.	 In the New Project dialog box, select the ASP.NET Web Application

(.NET Framework) template. It is located under the Installed ➤

Templates ➤ Visual C# ➤ Web category (Figure 10-2).

Figure 10-1.  The completed Turtles web application home page

Chapter 10 Other Tips and Tricks

www.allitebooks.com

http://www.allitebooks.org

383

	 3.	 Name the new web application Turtle, and the solution

Turtle.Web. Click OK to continue.

	 4.	 On the next screen, you’ll be prompted to select an ASP.NET

template. Select the MVC template and click OK. Your project is

now created.

This template includes some extraneous files that we won’t need. Go ahead and

delete the following from the project:

•	 The AccountController.cs and ManageController.cs in the

Controllers folder.

•	 All classes in the Models folder.

•	 The Account and Manage subfolders located in the View folder.

•	 The Project_Readme.html file.

Now that we’ve tidied up, let’s move on to the code.

Figure 10-2.  Choosing the ASP.NET Web Application (.NET Framework) template

Chapter 10 Other Tips and Tricks

384

�Adding Turtle Code
Let’s start with our HomeController.cs. This code is extremely simple; it just serves a

single view. The complete source is shown in Listing 10-1.

Listing 10-1.  The HomeController.cs Code

using System.Web.Mvc;

namespace Turtle.Web.Controllers

{

 public class HomeController : Controller

 {

 public ActionResult Index()

 {

 return View();

 }

 }

}

Next, let’s look in the Views\Shared folder and update our _Layout.cshtml page.

The source for _Layout.cshtml is shown in Listing 10-2.

Listing 10-2.  The Contents of the _Layout.cshtml File

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8"/>

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>Turtles</title>

 <script src="/Scripts/jquery-1.10.2.js"></script>

 <script src="/Scripts/bootstrap.js"></script>

 <script src="/Scripts/respond.js"></script>

 <script src="/Scripts/modernizr-2.6.2.js"></script>

 <link href="/Content/bootstrap.css" rel="stylesheet"/>

Chapter 10 Other Tips and Tricks

www.allitebooks.com

http://www.allitebooks.org

385

 <style type="text/css">

 body {

 padding-top: 50px;

 padding-bottom: 20px;

 }

 /* Set padding to keep content from hitting the edges */

 .body-content {

 padding-left: 15px;

 padding-right: 15px;

 }

 �/* Override the default bootstrap behavior where horizontal

description lists will truncate terms that are too long to fit in the

left column */

 .dl-horizontal dt {

 white-space: normal;

 }

 �/* Set width on the form input elements since they're 100% wide by

default */

 input,

 select,

 textarea {

 max-width: 280px;

 }

 .main-image {

 max-width: 100%;

 }

 </style>

</head>

<body>

 <div class="navbar navbar-inverse navbar-fixed-top">

 <div class="container">

 <div class="navbar-header">

 <button type="button" class="navbar-toggle" data-toggle="collapse"

Chapter 10 Other Tips and Tricks

386

 data-target=".navbar-collapse">

 </button>

 �@Html.ActionLink("All About Turtles", "Index", "Home",

new { area = "" },

 new { @class = "navbar-brand" })

 </div>

 <div class="navbar-collapse collapse">

 <ul class="nav navbar-nav">

 @Html.ActionLink("Home", "Index", "Home")

 </div>

 </div>

 </div>

 <div class="container body-content">

 @RenderBody()

 </div>

</body>

</html>

There are all sorts of bad things going on in _Layout.cshtml, but we’ll get to them in

short order.

Next, let’s update the contents of the \Views\Home\Index.cshtml file. The complete

source is displayed in Listing 10-3.

Listing 10-3.  The \Views\Home\Index.cshtml Source

<h1>Turtles</h1>

<div class="jumbotron">

</div>

<div class="panel panel-default">

 <div class="panel-body">

Chapter 10 Other Tips and Tricks

www.allitebooks.com

http://www.allitebooks.org

387

 <p>

 �Turtles have been around for a very long time. They first

emerged some 157

 million years ago. There are currently 327 known species.

 </p>

 <p>

 �Turtles vary widely in size. Leatherback Sea Turtles have been

measured at six

 �feet in length with a total weight of over 2,000 pounds. The

tiniest species is

 �the speckled padloper tortoise. It is roughly three inches in

length and

 weighs less than a roll of pennies.

 </p>

 <p>

 �Turtles defend themselves by withdrawing into their shells.

Their shells

 are made of bone, and are near impenetrable to most predators.

 </p>

 <p>

 A relatively new species of turtles in Manhattan are known to

 �live underground and have become bipedal. While these

particular turtles

 �are omnivorous, they've shown a particular fondness for pizza

of any type.

 �After forming a symbiotic relationship with a large

anthropomorphic rat,

 �these turtles have fashioned an elaborate self-defense mechanism which

 �is much more sophisticated than withdrawing into their shells.

With the help

 �of Casey Jones and April O'Neil, these rambunctious tortoises

fight crime and

 defend New York against the Foot Clan.

 </p>

 </div>

</div>

Chapter 10 Other Tips and Tricks

388

Last but not least, we need to add our main image to the project. Because it would be

extremely hard for you to type the contents of a large image into your favorite hex editor,

I recommend that you download the image from this chapter’s Git repo. In honesty,

any large image you have laying around will do. The example image that we’re using

for this chapter is 4601 × 3200 in size at 400 dpi resolution. It weighs in at a hefty size of

10.1 MB. Place this image, called Turtle.jpg, in the \content\images folder.

�Publishing to Azure
For our performance tuning, I prefer to look at real numbers from our actual hosting

environment. Although not required for your continued enjoyment of this chapter, I

recommend setting up an Azure Web App F1 Free tier instance, then publish the Turtles

app there. If you’d like a detailed walkthrough for setting up a Web App instance and

publishing, review Chapter 2.

�How Pages Are Rendered
As developers, we spend a lot of time on back-end development to optimize

performance. Once a request hits our .NET code, we worry about efficient algorithms,

finely tuned databases, and caching to make sure that our servers deliver a response in

minimal time. However, it is quite possible to have a finely tuned back end and a poorly

performing web application that leaves users sighing and tapping their fingers while

waiting for your pages to load. A fast back end is only one component of performance.

Before we look at various tips and tricks to decrease page load time, let’s run through a

high-level overview of what happens when users request a page in their browser.

�Initial Page Request
When a user navigates to your web application, there are a few steps involved before

their browser can even request the initial page. These steps include a potential Domain

Name System (DNS) lookup to get your site’s address, opening the initial connection

with your server, and potentially negotiating an SSL connection if your site supports

SSL. After these initial steps complete, the user’s browser sends a request and then waits

for the response. While the browser waits, the page request is traversing the network to

reach your site, your servers are processing the request and sending a response, and the

Chapter 10 Other Tips and Tricks

www.allitebooks.com

http://www.allitebooks.org

389

response traverses back through the network to the user’s browser. We call the time that

is spent traversing the network network latency, or just latency for short. Once the user’s

browser receives the response, it begins parsing the page.

�Page Parsing and Rendering
Now that the browser has the initial page, it starts parsing the HTML from beginning to

end. As HTML elements are read, they are converted into DOM elements and become

part of the DOM tree. As CSS elements are encountered, they are also parsed and

become part of the page’s CSS Object Model (CSSOM). After all HTML and CSS has

been parsed and the DOM and CSSOM have been constructed, they are combined into

a render tree, which is then used to calculate the layout of individual elements and then

painted to the screen.

I’ve glossed over a few important details. When the browser is parsing a page’s

HTML, if it encounters a reference to an external stylesheet, it will suspend DOM

construction and immediately request, wait for, and parse the external CSS before

continuing. It gets even worse, though. If inline JavaScript is encountered, the parser

will be suspended while the JavaScript is executed. Whenever a <script> tag that points

to an external JavaScript file is found, the browser suspends parsing, downloads, and

executes the external JavaScript file.

�Measuring Page Performance
There are various online tools and services such as Yahoo’s yslow.org and Google’s

PageSpeed toolset (https://developers.google.com/speed/pagespeed) that will take

a look at individual pages and make recommendations for improving performance

based on a ruleset. These are excellent tools for diagnosing performance issues due to

front-end code or suboptimal server configuration, and I encourage you to check them

both out. For illustrations throughout this chapter, though, we’ll use Chrome DevTools’s

Network tab. If you aren’t already using it, Chrome DevTools is the Swiss Army knife for

front-end development and debugging.

Chapter 10 Other Tips and Tricks

https://developers.google.com/speed/pagespeed

390

Let’s use Chrome DevTools to see how our Turtles site is performing.

	 1.	 Open Chrome and navigate to the URL for your Turtles web

application on Azure.

	 2.	 Right-click anywhere on the page in Chrome and select Inspect to

open DevTools.

	 3.	 Once DevTools is open, select the Network tab. To see how the

page would perform with no caching, make sure to select the

Disable Cache check box at the top of the page. You’ll then need

to refresh the main page for Turtles in your browser to gather

statistics. The results will then be displayed (Figure 10-3).

Figure 10-3.  The initial performance results for our Turtles site hosted in Azure

Chapter 10 Other Tips and Tricks

www.allitebooks.com

http://www.allitebooks.org

391

There is much performance information available on this screen. Let’s run through

the highlights.

•	 Requested resources that make up the page are listed in the Name

column on the far left of the screen. Resources are listed in the

order in which they are requested. You can see that we began with

eltortuga.azurewebsites.net, then proceeded to request six

additional files. These include four JavaScript files, one CSS file, and

an image.

•	 The Status column tells us the result of each request. Because we

see 200 OK for each request, we know that all files were downloaded

successfully. We’ll revisit this column in future optimizations.

•	 The Time column tells us the total elapsed time from the initial

resource request to when the content was completely downloaded.

Note that this number doesn’t include time spent while the request

was queued. We’ll discuss queued requests and why they occur later

in the chapter.

•	 At the very bottom of the screen, we see the total number of requests,

total size of all content downloaded, and how long it took to

completely render the entire page.

Looking at the bottom of the page, we can see that our simple page took 7.88 seconds

to fully load. For such a simple page, this is fairly awful. Let’s see what we can do to

improve it.

�Combining and Minifying JavaScript and CSS Files
When a page is loaded, the majority of time is typically spent waiting for content to

download from the server. If you hover over a cell in the Waterfall column on the DevTools’

Network tab, you can see a pop-up that displays the various components that make up a

resource’s load time. Figure 10-4 shows the total time to load our main HTML page.

Chapter 10 Other Tips and Tricks

392

Let’s revisit what happens when a page is parsed. Each external JavaScript and CSS

file must be fully downloaded before the page can be rendered. You might think that

because external files can be downloaded in parallel, having multiple JavaScript and CSS

files isn’t such a big deal. However, browsers limit the number of concurrent connections

to a single domain. Chrome’s limitation is six concurrent connections. Therefore, if

your site includes a dozen JavaScript frameworks and CSS files that are all downloaded

separately, the first six can be downloaded concurrently, and the remaining six will be

queued and await an available connection.

The answer is to combine JavaScript files into a single JavaScript file. Likewise, CSS

files need to be combined as well. In ASP.NET MVC, we can make use of ScriptBundles

and StyleBundles to do so. After combining files, the browser will only need to make one

request to retrieve all JavaScript for your site.

�Creating Bundles
Let’s combine the JavaScript files and CSS files in the Turtles app into their respective

bundles.

	 1.	 In the Turtles.Web project, expand the App_Start folder. You

should see a file called BundleConfig.cs, which contains a

class called BundleConfig. The BundleConfig class contains

a single static method called RegisterBundles, which takes a

Figure 10-4.  Hover over a cell in the Waterfall column to view the breakout of how
long a resource took to download

Chapter 10 Other Tips and Tricks

www.allitebooks.com

http://www.allitebooks.org

393

BundleCollection as an argument. There’s nothing magic about

this class’s name, location in the project, or method name; these

are all just conventions. You could even incorporate all bundle

creation directly into your Application_Start method if you

chose to do so.

	 2.	 Inside the BundleConfig class’s RegisterBundles method,

delete the existing code. Replace the method with the contents of

Listing 10-4.

Listing 10-4.  The RegisterBundles Method That Creates our ScriptBundle and

StyleBundle

public static void RegisterBundles(BundleCollection bundles)

{

 bundles.Add(new ScriptBundle("~/scripts/js").Include(

 "~/Scripts/jquery-{version}.js",

 "~/Scripts/modernizr-*",

 "~/Scripts/bootstrap.js",

 "~/Scripts/respond.js"));

 bundles.Add(new StyleBundle("~/Content/css").Include(

 "~/Content/bootstrap.css",

 "~/Content/site.css"));

}

	 3.	 Next, open the project’s Global.asax.cs file. We’ll need to

make sure that the method includes the line "BundleConfig.

RegisterBundles(BundleTable.Bundles);" (see Listing 10-5).

The BundleTable class holds the default BundleCollection, which

stores all defined ScriptBundles and StyleBundles.

Chapter 10 Other Tips and Tricks

394

Listing 10-5.  The Application_Start() Method in the Global.asax.cs File Must

Contain the BundleConfig.RegisterBundles(BundleTable.Bundles) Method Call

protected void Application_Start()

 {

 AreaRegistration.RegisterAllAreas();

 FilterConfig.RegisterGlobalFilters(GlobalFilters.Filters);

 RouteConfig.RegisterRoutes(RouteTable.Routes);

 BundleConfig.RegisterBundles(BundleTable.Bundles);

}

	 4.	 To finish things up, we need to link to our newly created JavaScript

and CSS bundles. Open the _Layout.cshtml file located in the

\Views\Shared folder. Remove all <script> and CSS <link> tags

linking to individual JavaScript and CSS files. Add "@Scripts.

Render("~/Scripts/js");" immediately before the closing

</body> tag. Add "@Styles.Render("~/Content/css")" as the

last line before the closing </head> tag.

	 5.	 Redeploy the application to Azure. When we load the Turtles web

application’s main page and look at the Network tab in Chrome

DevTools, we’ll see that we’re no longer downloading separate

JavaScript or CSS files. Instead, we’re downloading a combined

JavaScript file called js, and a combined CSS file called css

(see Figure 10-5).

Figure 10-5.  All JS and CSS files have been bundled

Chapter 10 Other Tips and Tricks

www.allitebooks.com

http://www.allitebooks.org

395

By combining JS and CSS files into bundles, we’ve cut our total downloads for this

page from seven to four, and dropped our page load time from 7.88 seconds to 6.32

seconds. Not too shabby for a few minutes of work!

�Minification
Minification is the removal of extraneous whitespace and the renaming of JavaScript

variables to shrink the size of a CSS or JavaScript file. By decreasing the size of files,

we can decrease each file’s download time and ultimately our page load time. With

bundling, you get minification for free as long as you are building with the release

configuration.

To see for yourself, navigate to the bundled JS file. You’ll see that whitespace has

been removed and variables have been renamed. The JS bundle weighs in at just

57.1 KB.

As you might imagine, debugging minified JavaScript files is virtually impossible. If

you build and run using the debug configuration, CSS and JS files are not combined or

minified, making debugging possible.

�GZip Compression
File transfer time is a component of page load time. We can decrease file transfer time by

compressing files that our server sends back to browsers, and browsers can decompress

the received files before processing them.

Fortunately, the use of GZip (which stands for GNU Zip, an open source compression

algorithm) has been standard in browsers for years. Azure enables GZip compression for

Web Apps by default, so there’s nothing more for you to do. I mention GZip compression

only to make you aware that it is an optimization that is already occurring.

You can verify that GZip compression is used by examining the response header of a

file downloaded from an Azure Web App. When GZip compression is in use, you’ll see a

response header of Content-Encoding: gzip.

Chapter 10 Other Tips and Tricks

396

�Using Async/Await
Using asynchronous programming in your web applications will not decrease response

time, but it will allow your application to scale under load. Asynchronous calls are

typically used for long-running requests to external services. When you use the await

keyword, you’re instructing the .NET Runtime that the current thread can be returned

to the thread pool while waiting on the asynchronous operation to complete. In the

meantime, the thread can do other useful work. When the operation completes, a new

thread will be assigned from the thread pool to continue execution.

What happens if you do not use asynchronous programming for asynchronous long-

running operations? Failure to use await will result in the current thread blocking and

waiting on the operation to complete. In the event of heavy traffic, this can quickly lead

to a bad situation. When all worker threads are busy, new HTTP requests are queued and

wait for available threads. If requests build in the HTTP request queue faster than they

are serviced, the queue length increases and leads to longer response times. Eventually,

requests will time out and will receive an HTTP 503 Service Unavailable response.

Here’s a real-life illustration that we’re all familiar with that I’ll shamelessly reuse.

Imagine going to the paint counter at the local hardware store to buy a couple of gallons

of paint for your living room. When you arrive, you see that a long line has already

formed. Curious as to what’s causing the holdup, you peer around the corner to the front

of the line. The clerk, Mr. Blocking Thread, takes a single customer’s order, meanders

over to the paint mixer, starts it, and stares at the mixer for the entire five-minute

mixing process. When the paint mixer finishes, he returns to the customer to finish

the transaction. Because there are already 20 people in line ahead of you, you leave in

frustration.

The next day you return to the hardware store’s paint counter with a good book to

read to pass the time. To your surprise, Mr. Blocking Thread has been fired and replaced

with Mr. Asynchronous. Mr. Asynchronous takes an order, starts the paint mixer, and

immediately returns to help the next customer. When a customer’s paint has finished

mixing, he retrieves it and completes the transaction.

A full discussion on asynchronous programming is beyond the scope of this book,

but there are many excellent articles available online that lay out the details.

Chapter 10 Other Tips and Tricks

www.allitebooks.com

http://www.allitebooks.org

397

�Using HTTP Cache
Many sites use the same static content on each page. Examples include logos, site-wide

JavaScript, and style sheets. Because these assets do not change, it makes no sense to

repeatedly download them for each page request. Instead, you can specify that browsers

should cache static assets for a given period of time and serve all subsequent requests

from the cache.

Setting cache control is done by setting the Cache-Control and Expires response

headers. You can accomplish this by adding the code shown in Listing 10-5 to the web.

config file.

Listing 10-5.  Web.config Code That Sets the Cache-Control Response Header to

public and the Expires Header to Tue, 19 Jan 2038 03:14:07 GMT

<system.webServer>

 <staticContent>

 <clientCache cacheControlMode="UseExpires"

 cacheControlCustom="public" httpExpires="Tue, 19 Jan 2038 03:14:07 GMT" />

 </staticContent>

</system.webServer>

Setting cacheControlMode to UseExpires allows us to ask browsers to cache static

assets until a date that is far in the future. Setting cacheControlCustom to public also

allows web proxies to cache static content.

If we republish the Turtles web application to Azure, reload the site, and examine

the results in Chrome DevTools’ Network tab, we see that for the Turtle.jpg image, the

Cache-Control response header has been set to public, and the Expires has been set to

Tue, 19 Jan 2038 03:14:07 GMT (Figure 10-6). This is just as expected. If we look at our

JavaScript or CSS bundle, we’ll see that the Expires response header has been set exactly

one year in the future. This is a “feature” of using bundles, and there is currently no way

to change the Expires response header.

Chapter 10 Other Tips and Tricks

398

Just to prove that subsequent requests will be served from disk, please clear the

Disable Cache check box on the Chrome DevTools Network tab, then reload the Turtles

web app main page. You’ll see the value (from disk cache) or (from memory cache) in

the Size column of the Network tab for our bundles and Turtle.jpg image. Notice that

the total load time for the page has dropped from 2.13 seconds to 368 milliseconds.

�Using Appropriately Sized and Optimized Images
You might’ve noticed that our Turtle.jpg file is a 10.1 MB behemoth of an image. It’s

4,000 pixels wide at a 400 dpi resolution. Because I was a lazy developer, I included the

image in the project without bothering to see what could be done to optimize it.

Right off the bat, there are a few things that we can do to decrease the image’s file

size. At the largest screen size, Bootstrap limits the Turtle image to 1,020 pixels wide. In

addition, most images on the Web are set at a 72 dpi resolution. Let’s fire up your favorite

photo editor and resize this image to a width of 1,020 pixels while preserving the aspect

ratio. We’ll also drop the dpi from 400 to 72. I’ll skip detailed instructions for doing so

because they will depend on the photo editor you choose. If you’re working at a large

company that has an art department, make them do it for you.

Resizing the image dropped the file size from 10.1 MB to 139 KB. This will definitely

decrease our page load time, but we can do better still.

Figure 10-6.  The response headers for Turtle.jpg after enabling HTTP client
caching

Chapter 10 Other Tips and Tricks

www.allitebooks.com

http://www.allitebooks.org

399

Several companies have created tools to shrink the size of images without a

noticeable loss of quality that’s detectable by the human eye. My personal favorite is a

company called JpegMini (http://www.jpegmini.com). They are kind enough to allow

you to minify test images through their web site, and their desktop tool is a paltry $29 at

the time of this writing. Depending on the image, I’ve seen size savings from 0% to 80%.

In summary:

•	 Don’t use an image that is larger than what you will display at

maximum resolution. This wastes bandwidth and increases page

load time.

•	 Set images to 72 dpi unless you have a compelling reason for a higher

resolution.

•	 Consider an image optimization tool such as JpegMini to further

reduce file size.

�Using External CSS and JavaScript Files
When defining CSS and JavaScript, you have two options: You can store script and styles

directly within a page, or you can move them into external .css and .js files. You should

elect to store JavaScript and CSS in external files. The reason is that external files can be

cached by the browser, meaning that you do not have to incur the penalty to transfer

those bytes with each request. If you put CSS and script into a dynamic page, you’ll incur

the cost in time to transmit those bytes every time the page is requested.

Notice that in our _layout.cshtml markup, we have inline styles defined within the

<head> tag. Remove these styles and place them at the bottom of the Site.css file. These

styles will now be moved into our CSS bundle that is cached in the browser.

�Moving External JavaScript Files to the Bottom
of the Page
Earlier in the chapter, we learned that external JavaScript files are parser blocking

resources, and CSS is a render blocking resource. Whereas a page will not start rendering

until all CSS has been downloaded and parsed, the page will render even if not all

Chapter 10 Other Tips and Tricks

http://www.jpegmini.com/

400

JavaScript has been downloaded and executed. We can exploit this fact by moving

our external JavaScript files to the bottom of our page and placing them just above the

closing body tag.

�Using Async for Certain External JavaScript Files
We’ve already touched briefly on what happens when a page is requested. All JavaScript

and CSS files must be downloaded and parsed before a page can be completely

rendered. There’s an exception to this rule, though. Marking an external <script> tag

with the async attribute instructs the browser to continue processing the page, and

to parse and run the script when it becomes available. Essentially, the async attribute

designates an external JavaScript file as nonblocking for the page loading process. Here’s

an example of using the async attribute:

<script src="/scripts/soMuchScript.js" async></script>

So when should you use the async attribute? If you have script that doesn’t interact

with the DOM, you should use the async attribute. This typically applies to third-party

vendor scripts such as user tracking pixels or analytics packages.

If you mark an external JavaScript file that interacts with the DOM with async, you’re

going to have a bad time. In this scenario, it’s possible that the async script fill finish

downloading and will be executed before the DOM has been fully constructed. If your

script attempts to reference a DOM element that hasn’t yet been created, JavaScript

errors will occur. And you will likely hear about it in your Monday morning staff meeting.

Don’t be that guy.

�Using a Content Distribution Network
A content distribution network (CDN) is a global network of servers that cache content

from your web application. Typically, cached content is static such as CSS, JavaScript, or

image assets. CDN servers are usually located on Internet backbones and therefore have

high bandwidth. When a user requests content that is cached by a CDN, that request is

fulfilled from the server within the CDN that is closest to the user making the request.

Chapter 10 Other Tips and Tricks

www.allitebooks.com

http://www.allitebooks.org

401

Using a CDN has several benefits for scalability and performance.

•	 Because requests for content are served by the CDN server closest

to the requestor, network latency is reduced. For example, if a user

in Tokyo requests content from your web application that is hosted

in the Azure East US region it is much faster if static content is

delivered from a Tokyo-based CDN server than making a trip that is

literally halfway around the globe. Reduced network latency leads to

increased performance.

•	 Each request that is served from a CDN server is one less request

that your servers have to handle. This allows your servers to spend

more time doing important things like updating your data store and

generating dynamic responses. Fewer requests for static content

allow your servers to do more before having to scale up or out.

�How Azure CDN Works
Let’s make this a little more concrete by walking through how a request is served from a

CDN. We’ll use our Turtles web application for this high-level illustration. I’m going to

gloss over the details of how to set up a CDN, which is covered in the next section. For

now, assume that our Turtles app is hosted at https://eltortuga.azurewebsites.net,

and our CDN can be reached at https://eltortuga.azureedge.net.

When setting up our web application and CDN, we have to decide which content will

be cached and served from Azure’s CDN servers. For our Turtles app, we’ll use the CDN

to serve our CSS and JavaScript bundles along with our images.

Previously, our main Turtle.jpg image was linked in our index.cshtml file as

"". Because we want to serve this file

from our CDN, we’re going to change this link to our index.cshtml file to

"".

When a browser makes a request to download https://eltortuga.azureedge.net/

content/images/turtle.jpg, the Azure CDN will check its cache. If it doesn’t find the

file, it will make a request to the origin. You guessed it: The origin is our Web App located

at https://eltortuga.azurewebsites.net. It will fetch the asset, cache it, then serve it

back to the browser.

Chapter 10 Other Tips and Tricks

https://eltortuga.azurewebsites.net/
https://eltortuga.azureedge.net/
https://eltortuga.azureedge.net/content/images/turtle.jpg
https://eltortuga.azureedge.net/content/images/turtle.jpg
https://eltortuga.azureedge.net/content/images/turtle.jpg
https://eltortuga.azurewebsites.net/

402

The next time the Turtle.jpg image is requested, the CDN has the image in the

cache and will return it to the caller. Our Web App never even sees the second through

Nth request for Turtle.jpg; these requests are handled by the CDN.

�Creating a CDN for the Turtles Web Application
To make this concept much more concrete, let’s add a CDN for our Turtles web

application.

Our first step is to provision a CDN within the Azure Portal. The steps to do so are as

follows:

	 1.	 Create the CDN service. Click the plus sign to provision a new

service. The CDN service is located under the Web + Mobile menu

option (Figure 10-7).

Figure 10-7.  Select the CDN service

Chapter 10 Other Tips and Tricks

www.allitebooks.com

http://www.allitebooks.org

403

We then need to fill out our CDN profile (Figure 10-8).

Figure 10-8.  The CDN profile

Enter values for the following fields:

•	 Name: This is the name of your CDN resource. Name it something

meaningful, and perhaps even endearing.

•	 Subscription: This is the subscription that will be billed for your CDN

usage charges.

Chapter 10 Other Tips and Tricks

404

•	 Resource Group: I placed the CDN in the same resource group as my

Turtles web application.

•	 Resource Group Location: You cannot actually choose a resource

group location. It is set by the resource group that you choose.

•	 Pricing Tier: There are three separate pricing tiers that you can use:

Standard Verizon, Standard Akamai, and Premium Verizon. All

three of these options will cache static content. Here are the main

differences between the options.

•	 Standard Akamai: This tier does not support custom domain

HTTPS. It does, however, allow you to serve content over

HTTPS. The endpoint URL will be https://<cdn name>.

azureedge.net. Also, the Standard Akamai tier is ready to begin

serving content within a minute of being provisioned. Standard

Verizon can take up to 90 minutes. For this demo, we’re using

Standard Akamai because waiting for 90 minutes just sounds

awful. In the words of a famous American, “Ain’t nobody got time

for that!”

•	 Standard Verizon: This tier does offer custom domain HTTPS as

well as asset preloading.

•	 Premium Verizon: This tier has handy features such as reporting,

real-time stats, real-time alerts, URL redirects and rewrites, and

token authentication. This is also the most expensive option.

Unless you need these features, I’d recommend using one of the

other standard tiers.

After filling out these fields, click Create.

	 2.	 Define a CDN endpoint. An endpoint is a cache for content that is

pulled from a particular origin. An origin can be a Web App, Azure

Storage, a cloud service, or a completely custom source. To define

an endpoint, navigate to the Overview blade for the CDN profile,

then click + Endpoint to define a new endpoint (Figure 10-9).

Chapter 10 Other Tips and Tricks

www.allitebooks.com

http://www.allitebooks.org

405

The fields are described here.

•	 Name: This is the name for your endpoint.

•	 Origin Type: An Azure CDN isn’t just limited to caching assets from

Web Apps. It can also cache assets from Azure Storage, Cloud Storage,

or custom sources. The origin type that you choose will determine the

options in the Origin Hostname field. Select Web App for the origin type.

•	 Origin Hostname: The options for this field are based on what’s been

selected in the Origin Type field. If you selected Web App for the

Origin Type, all Web Apps that are provisioned in this subscription

will appear in this drop-down list. Select your Turtles Web App.

Figure 10-9.  The CDN endpoint fields

Chapter 10 Other Tips and Tricks

406

•	 Origin Path: You can specify a path within your Web App that the

CDN will use when requesting content. For example, you could

define a /content/cdn directory in your Web App and use it to hold

content that will be served by the CDN. I prefer to leave this field

blank, which means all content will be requested relative to the root.

•	 Origin Host Header: When using a CDN with a Web App, leave this

field blank.

Click Add to provision the endpoint.

	 3.	 Configure the endpoint. By default, a CDN will ignore

querystrings when caching. Therefore a file such as /bundles/js

and /bundles/js?aef7cd82 will resolve to the same file. This is

obviously a big problem for caching Style and JavaScript bundles

because the MVC Framework relies on a querystring value for

cache busting. If we kept the default behavior in our CDN and

ignored querystrings, old bundles would remain cached in

our CDN after we updated and republished new JavaScript or

CSS. Let’s change this behavior. Do the following:

	 a.	 Navigate to your endpoint’s management blade, then select

Cache (Figure 10-10).

Figure 10-10.  The CDN Cache configuration blade

	 b.	 Change the Query String Caching Behavior value in the

drop-down list to Cache Every Unique URL, then click Save.

Chapter 10 Other Tips and Tricks

www.allitebooks.com

http://www.allitebooks.org

407

	 4.	 Test. Let’s make sure that our CDN is working as expected. If you

chose the Standard Akamai tier, your CDN should be ready to

service requests within 60 seconds. If you chose the Standard

Verizon tier, your endpoint won’t be ready for another 90 minutes.

I recommend either reprovisioning with Standard Akamai or

taking a break and having a few cups of coffee.

To test, fire up your favorite browser and navigate to our static

image. Because the Turtle.jpg image is located within our Web

App at /content/images/turtle.jpg, you can append that path

to your CDN’s hostname, and you should see the Turtle.jpg

image in all its glory. Because I named my endpoint eltortuga, my

Azure CDN endpoint can be addressed at https://eltortuga.

azureedge.net. The full URL to request the cached Turtles.jpg

image is therefore https://eltortuga.azureedge.net/content/

images/turtle.jpg.

�Integrating a CDN with an ASP.NET MVC App
We now have our CDN set up, an endpoint defined, and have proven that we can

serve content from the CDN. The last step is to integrate our CDN with the Turtles web

application.

�Integrating Bundles

We’ll start with serving our CSS and JavaScript bundles from the CDN. There’s a bit of

complexity in doing so.

First, we’ll revisit our BundleConfig.cs file. First, we have to set the

BundleCollection’s UseCdn property to true. In our application, this is simply:

bundles.UseCdn = true;

Chapter 10 Other Tips and Tricks

https://eltortuga.azureedge.net/
https://eltortuga.azureedge.net/
https://eltortuga.azureedge.net/content/images/turtle.jpg
https://eltortuga.azureedge.net/content/images/turtle.jpg

408

The ScriptBundle and StyleBundle classes have overloaded constructors that will

take a cdnPath argument, which is the path to the bundle when using the CDN. For

example, if our CDN was at https://fastcdn.azureedge.net, our overloaded

constructor for a new ScriptBundle would be:

bundles.Add(new ScriptBundle("~/scripts/js", "https://fastcdn.azureedge.

net/scripts/js") .Include("~/scripts/bootstrap.js"));

Unfortunately, this isn’t going to work very well for us. When the MVC Framework

renders this to our HTML output when a page is requested, it will render:

<script src="//eltortuga.azureedge.net/scripts/js"></script>

You have probably already spotted the problem: Our hash that is appended to the

end of the bundle for cache-busting has been omitted. This is, in my opinion, a glaring

oversight by Microsoft. Because by default StyleBundles and ScriptBundles have their

cache expiration date set a year in the future, the CDN will continue to cache your old

bundles for an entire year. It’ll lead to loads of support problems when you introduce

breaking changes in future updates and your users are still using old styles and scripts

that are cached in the CDN.

You’ll find several articles online (even one from Microsoft) that recommend

appending a version number to your script and style bundles. Although this will solve

your CDN caching problem when new updates are released, it will cause much more

mayhem with the bundles’ cache-control and expires response headers. Recall that

these headers are what instructs the browser to store content in the browser’s HTTP

cache. Unfortunately, deep in the bowels of the System.Web.Optimization library, the

cache-control and expires headers are not set correctly unless the bundle hash that is

calculated by the MVC Framework is properly appended to each bundle’s query string.

The last few paragraphs have been somewhat mind-bending. If understanding the

intricacies of this issue make your head hurt, skip it and follow the steps given next to

properly cache bundles in the CDN and ensure that the cache-control and expires

headers are properly set.

First, we’ll need to make updates to our BundleConfig.cs file. The complete text of

the file is shown in Listing 10-6.

Chapter 10 Other Tips and Tricks

www.allitebooks.com

https://fastcdn.azureedge.net/
http://www.allitebooks.org

409

Listing 10-6.  The BundleConfig.cs File

using System.Web;

using System.Web.Optimization;

using System.Configuration;

namespace Turtle.Web

{

 public class BundleConfig

 {

 public static void RegisterBundles(BundleCollection bundles)

 {

 �//we have to go ahead create and add our Bundles as if there is no

 �//CDN involved.

 �//this is because the bundle has to already exist in the

 �//BundleCollection

 �//in order to get the hash that the MVC Framework will generate

 �//for the

 //querystring.

 Bundle jsBundle = new ScriptBundle("~/scripts/js").Include(

 "~/Scripts/jquery-{version}.js",

 "~/Scripts/modernizr-*",

 "~/Scripts/bootstrap.js",

 "~/Scripts/respond.js");

 Bundle cssBundle = new StyleBundle("~/content/css").Include(

 "~/Content/bootstrap.css",

 "~/Content/site.css");

 bundles.Add(jsBundle);

 bundles.Add(cssBundle);

 bool useCDN = bool.Parse(ConfigurationManager.AppSettings["UseCDN"]);

 if (useCDN)

 {

 //only execute this code if we are NOT in debug configuration.

 bundles.UseCdn = true;

 //grab our base CDN hostname from web.config...

Chapter 10 Other Tips and Tricks

410

 string cdnHost = ConfigurationManager.AppSettings["CDNHostName"];

 //get the hashes that the MVC Framework will use per bundle for

 //the querystring.

 string jsHash = GetBundleHash(bundles, "~/scripts/js");

 string cssHash = GetBundleHash(bundles, "~/content/css");

 //set up our querystring per bundle for the CDN path.

 jsBundle.CdnPath = cdnHost + "/scripts/js?v=" + jsHash;

 cssBundle.CdnPath = cdnHost + "/content/css?v=" + cssHash;

 }

 else

 {

 bundles.UseCdn = false;

 }

 }

 /// <summary>

 �/// This method calculates the bundle hash. The hash is what the MVC

 �/// Framework

 /// appends to the bundle querystring for cache busting.

 �/// Based on the code by Frison B Alexander as shared on

 �/// Stackoverflow.com.

 �/// (http://stackoverflow.com/questions/31540121/get-mvc-bundle-

 �/// querystring)

 /// Licensed under the Creative Commons license.

 /// </summary>

 �private static string GetBundleHash(BundleCollection bundles, string

bundlePath)

 {

 //Need the context to generate response

 var bundleContext = new BundleContext(new

 �HttpContextWrapper(HttpContext.Current), BundleTable.Bundles,

bundlePath);

 //Bundle class has the method we need to get a BundleResponse

Chapter 10 Other Tips and Tricks

www.allitebooks.com

http://www.allitebooks.org

411

 Bundle bundle = BundleTable.Bundles.GetBundleFor(bundlePath);

 var bundleResponse = bundle.GenerateBundleResponse(bundleContext);

 //BundleResponse has the method we need to call, but its marked as

 //internal and therefore is not available for public consumption.

 //To bypass this, reflect on it and manually invoke the method

 var bundleReflection = bundleResponse.GetType();

 var method = bundleReflection.GetMethod("GetContentHashCode",

 System.Reflection.BindingFlags.NonPublic |

 System.Reflection.BindingFlags.Instance);

 //contentHash is what's appended to your url (url?###-###...)

 var contentHash = method.Invoke(bundleResponse, null);

 return contentHash.ToString();

 }

 }

}

There are a few things to note here:

•	 We start by defining our ScriptBundle and StyleBundle just as we

had before. We then check a web.config property called UseCDN to

see if the CDN is enabled.

•	 If the CDN is enabled, we’ll get our CDN hostname from the

web.config property called CDNHostName. We’ll then call our

GetBundleHash for our style and script bundles. This method will

calculate the same hash that the MVC Framework appends for cache-

busting when a CDN is not in use. If you look in the GetBundleHash

method, you’ll see that we have to use Reflection to call the

BundleResponse’s GetContentHashCode method, which is internal.

•	 Finally, we set the CdnPath for each of our bundles. This is composed

of our CDN hostname, our bundle name with the hash appended as a

query string value.

We now need to add the CDNHostName and UseCDN variables to our web.config file.

The code to do so is shown in Listing 10-7.

Chapter 10 Other Tips and Tricks

412

Listing 10-7.  Adding the Necessary Values to Our web.config File

<appSettings>

 [... other settings omitted...]

 <add key="UseCDN" value="true" />

 <add key="CDNHostName" value="//<your endpoint name>.azureedge.net"/>

</appSettings>

If you set the UseCDN property to true, deploy to Azure, and then request the main

page, you’ll see the following output in the Chrome DevTools Network tab for our

JavaScript bundle (Figure 10-11). Note that this is for the first request. You’ll see it’s

served from the CDN (https://eltortuga.azureedge.net) and has an expires date set

exactly one year in the future.

Figure 10-11.  The request and response headers of the initial load for our
ScriptBundle

On the subsequent load, you’ll see that the bundle is served from the disk cache.

Finally, if you modify any script or stylesheet in a bundle and redeploy, a new hash will

be appended to the query string, and the new file will be cached fresh in the CDN.

Chapter 10 Other Tips and Tricks

www.allitebooks.com

https://eltortuga.azureedge.net/
http://www.allitebooks.org

413

�Integrating Image Files

Unfortunately, there are no framework classes or helpers that will allow you to easily

switch between loading an image from the origin while developing, and loading an

image from a CDN for production. Fortunately, though, creating the code to do so is

pretty straightforward.

We’ll build our own custom HtmlHelper extension method to make the magic

happen. First, let’s add a new class to the project called CDNHelper. The full text of the

CDNHelper.cs file is shown in Listing 10-8.

Listing 10-8.  The Full Text of the CDNHelper.cs File

using System.Configuration;

using System.Web.Mvc;

namespace Turtle.Web

{

 public static class CDNHelper

 {

 public static string CDN(this HtmlHelper helper, string imageNameAndPath)

 {

 bool useCDN = bool.Parse(ConfigurationManager.AppSettings["UseCDN"]);

 useCDN = true;

 if (useCDN)

 {

 //we ARE using the CDN.

 var cdnHostName = ConfigurationManager.AppSettings["CDNHostName"];

 string cdnHostAndPath = cdnHostName + imageNameAndPath;

 //cache bustin'. To generate a unique query string, we'll append the

 //assembly version number to the image URL.

 �var version = System.Reflection.Assembly.

GetExecutingAssembly().GetName()

 .Version.ToString();

 cdnHostAndPath += "?v=" + version;

 return cdnHostAndPath;

 }

Chapter 10 Other Tips and Tricks

414

 else

 {

 //Use the relative path. We're not using the CDN.

 return imageNameAndPath;

 }

 }

 }

}

Using this class is very simple. Jump to the project’s Views\Home\Index.cshtml

file and replace the previous tag that linked to the Turtle.jpg image with the

following line:

If we’ve enabled the CDN in our web.config, our CDNHelper class will emit a fully

qualified file name for the image that’s served from our CDN. If not, it will emit the

relative path, which will be served from the origin.

�Summary
In this chapter, we’ve discussed various techniques to decrease page load time and scale

your web applications. Most of these techniques are simple to implement. In certain

circumstances, the effects on performance can be dramatic.

In the next chapter, we’ll look at various tools and techniques for troubleshooting

Web Applications.

Chapter 10 Other Tips and Tricks

www.allitebooks.com

http://www.allitebooks.org

415
© Rob Reagan 2018
R. Reagan, Web Applications on Azure, https://doi.org/10.1007/978-1-4842-2976-7_11

CHAPTER 11

Troubleshooting Web
Applications
Try as we might, it’s impossible to always catch every potential problem during testing.

Sooner or later, you’ll receive The Call. The Call can come at any time, but often it

happens when you’re doing something fun away from the office. It’s usually along the

lines of this: “Something is broken in production and users are being affected. Help!”

The bad news is that you can’t simply attach a debugger to a release build in a

production environment and step through the code until you find the problem. The

good news is that Microsoft has provided several extremely useful tools that can help you

figure out why things have gone sideways. Some of these tools are proactive and will alert

you to problems and attempt to diagnose the issues. Others help you analyze what went

wrong after the fact.

This chapter introduces you to the troubleshooting tools available and offers

guidance on how they can be used to discover what’s going wrong in your web

applications. Let’s dive in.

�An Overview of Available Tools
Most of the troubleshooting tools we discuss are made available by Kudu or

Application Insights.

�Kudu
Kudu is an application that runs as a separate process within an App Service. Kudu

is responsible for managing Git deployments, managing WebJobs, and providing

instrumentation that you can use for debugging and optimizing your Web Apps and

416

WebJobs. Kudu is included in the cost of your App Service Plan, so there’s nothing that

you must install to make use of its functionality.

Note  Kudu is open source. In fact, the Microsoft team responsible for building
and maintaning Kudu commits their code directly to their public GitHub repo. If
you’re ever curious about the finer details of how Kudu works, you can clone or
browse the latest code at https://github.com/projectkudu/kudu

Kudu provides several services that we’re particularly interested in, including these.

•	 A process explorer: You can quickly tell which processes are

consuming memory and CPU time.

•	 Diagnostics-as-a-Service (DaaS): This little gem of a tool will collect

a memory dump and review web server and application logs. It will

then apply rules and generate a report informing you of any issues

that it sees.

•	 Log stream: You can see logs echoed to the screen in near real time.

•	 Debug console: This is an online Explorer window that lets you browse

your Web App’s file system. This is useful for verifying that what you

think is currently deployed is actually deployed, and for checking to

make sure that you did actually deploy the correct values in your web.

config file.

•	 Auto-heal: Auto-heal allows you to create triggers such as max

requests within a given interval, memory utilization, or HTTP

response codes within a certain interval. When a trigger fires, you can

elect to recycle the process, create a log message, or take a custom

action.

We discuss each of these features in further detail in upcoming sections.

There are a couple of ways to access Kudu functionality. Each App Service has a

companion Kudu site that can be reached via the URL https://[yoursitename].scm.

azurewebsites.net. Authentication for each Kudu site is single sign-on, so you can use

the same credentials that you use to log into the Azure Portal.

Chapter 11 Troubleshooting Web Applications

www.allitebooks.com

https://github.com/projectkudu/kudu
http://www.allitebooks.org

417

You’ll notice that the Kudu console is a bit unrefined (Figure 11-1). Over time,

Microsoft has been exposing various Kudu features within the Azure Portal as menu

options on the Web App management blade.

Figure 11-1.  The Kudu site landing page

�Application Insights
Application Insights is a tool that ingests performance data, custom traces, and

exceptions. This information is collected from browsers, your application code, and

the underlying Azure hosting platform. Application Insights processes the collected

telemetry and presents it to you in an easy-to-use format within the Azure Portal. You

can then use Application Insights to find out how users are using your application,

troubleshoot performance problems, and track down the root cause of exceptions.

Application Insights was designed to be simple to integrate with your application.

Because data is batched and sent to the server on a separate thread, you won’t see much

of a performance impact on your application.

Chapter 11 Troubleshooting Web Applications

418

Like most Azure services, Application Insights has a Basic tier that is free to use. The

Basic tier includes 1 GB of free data per month. Additional data is available in the Basic

tier and is priced per GB. The Enterprise tier includes 200 MB of data per application

node per day, and as of this writing is priced at $15 per node per month.

I highly recommend making use of Application Insights in your Web Apps. We’ll walk

through how you can use Application Insights for troubleshooting later in this chapter.

�Awful App: Our Example Application
We’ll use a very simple ASP.NET MVC 5 web application that’s deployed as an Azure

Web App scaled to two instances. This application is very simple, and its main purpose

it to generate trace events, exceptions, and page requests so that you can see various

troubleshooting tools in action. We’ll show snippets of source code in this chapter when

appropriate.

�Web Server Logs
Web Server Logs show each HTTP request to your Web App. Logged information

includes the request timestamp, URL, requester’s IP address, browser, resulting HTTP

status code, ARR Affinity token (if ARRA is enabled), and the time taken to service the

request. All Web Server Logs are in W3C Logging format.

If you have scaled out to more than one Web App instance, all logs for all instances

are combined.

Web Server Logs are not enabled by default. To enable Web Server Logs, navigate

to your Web App’s management blade. Select Diagnostics Logs under the Monitoring

heading. Toggle the setting for Web server logging from Off to either Storage or File

System. Selecting File System will write your logs to your Web App’s file system. If you

select Storage, you’ll be prompted to select an Azure Storage account and Blob container

where your logs will be written.

To access Web Server Logs, you have several options. If you elected to write logs

to Azure Storage, you’ll need to use a tool such as Azure Storage Explorer to view logs.

If you chose to write logs to the file system, you can browse logs within Visual Studio,

browse them within the Kudu site, or download log files via FTP.

Chapter 11 Troubleshooting Web Applications

www.allitebooks.com

http://www.allitebooks.org

419

�Browsing Web Server Logs Written to the File System
�Using Visual Studio

The easiest way to view Web Server Logs written to the file system is to use Visual Studio.

To browse logs using Visual Studio, do the following:

	 1.	 In Visual Studio, select View ➤ Server Explorer.

	 2.	 In Server Explorer, right-click within the pane and select Connect

to Microsoft Azure Subscription. You’ll be prompted for your

Azure credentials.

	 3.	 After logging in, expand App Service ➤ [Resource Group] ➤ [Web

App Name] ➤ Log Files ➤ http ➤ RawLogs (Figure 11-2). Click

any log file to download and view it in Visual Studio.

Figure 11-2.  Viewing Web Server Logs through Visual Studio’s Server Explorer

�Using the Kudu Debug Console

We’ve mentioned that every Web App has a companion Kudu site located at

https://[yoursitename].scm.azurewebsites.net. For example, if your Web App

name was awfulApp, the Kudu site would be located at https://awfulapp.scm.

azurewebsites.net.

Chapter 11 Troubleshooting Web Applications

https://awfulapp.scm.azurewebsites.net/
https://awfulapp.scm.azurewebsites.net/

420

If you visit your Kudu site and sign in with the same credentials that you use to access

the Azure Portal, you can view logs by doing the following:

	 1.	 On the menu bar, select Debug Console. In the drop-down menu,

select CMD. This will open a File Explorer along with what looks

like a command prompt.

	 2.	 You can then navigate to the LogFiles ➤ http ➤ RawLogs directory.

All of your Web Server Logs will be listed (Figure 11-3). Click the

Edit icon next to the log you’d like to see to view it in the browser.

Figure 11-3.  In the Kudu site, all Web Server Logs are listed in the \LogFiles\http\
RawLogs directory

�Browsing Via FTP

You can also retrieve Web Server Log files via FTP. To get your site’s FTP address,

username, and password, you can navigate to your Web App’s Overview blade in the

Azure Portal and download the publish profile. After retrieving the FTP address and

credentials, open an FTP session using your favorite FTP client. All Web Server Log files

are located in the /LogFiles/http/RawLogs directory.

�Application Logs
Application logs capture trace and exception information.

Using the System.Diagnostics.Trace class, you can emit messages to any registered

trace listeners. The Trace class allows you to choose the log level: Verbose, Information,

Warning, or Error.

If you’ve used tracing before, you know that normally you have to register one or

more trace listeners to capture emitted tracing information. By default, Azure Web Apps

already have a Trace Listener defined that will write output to the Application logs.

Chapter 11 Troubleshooting Web Applications

www.allitebooks.com

http://www.allitebooks.org

421

�Setting Up Tracing
To make use of tracing in your web application, do the following:

	 1.	 First, you must enable tracing. Navigate to your Web App’s

management blade, then click Diagnostics Logs under the

Monitoring heading.

	 2.	 Set Application Logging to On. You’ll also need to specify the

logging level using the drop-down list. Your choices are Verbose,

Information, Warning, and Error. Note that Application Logging

will disable itself 12 hours after it is initially set.

	 3.	 Finally, we need to emit tracing information in our code. In the

AwfulApp’s HomeController, I’ve added a WebAPI method called

TraceLogInfo (Listing 11-1). When called, this method emits a

trace using the Information logging level. The TraceLogInfo Was

Called message will then appear in the Application log

(Figure 11-4).

Figure 11-4.  The Application log will include a timestamp, process ID (PID),
logging level, and message for each trace

Listing 11-1.  The TraceLogInfo Method, Which Will Emit a Trace of

TraceLogInfo Was Called at the Information Level

public void TraceLogInfo()

{

 System.Diagnostics.Trace.TraceInformation("TraceLogInfo was called.");

}

Chapter 11 Troubleshooting Web Applications

422

�Viewing Application Logs
Just like Web Server Logs, Application logs are stored on either your Web App’s file

system or in an Azure Storage Blob container. They can be accessed via Visual Studio, the

Kudu console, or FTP.

When viewing Application logs using Visual Studio, expand App Service ➤ [Resource

Group] ➤ [Web App Name] ➤ Log Files ➤ Application. All Application log files will

be listed in the Application folder. Similarly, when viewing files via FTP or the Kudu

console, Application log files will be located in the /LogFiles/Application directory.

�Kudu Process Explorer
The Process Explorer shows all processes running in a Web App. For each process, you

can see the process ID (PID), process name, thread count, memory utilization, and total

CPU time. This is useful as a quick gauge to see if memory, threads, or CPU utilization

are running amok. Note that the displayed metrics are a snapshot in time and do not

offer a historical graph.

There are two places to view process information. On the Web App management

blade in the Azure Portal, there is a Process Explorer menu option that’s located under

the Monitoring heading (Figure 11-5). The advantage of viewing here is that processes

and resource utilization are broken out by instance if you have scaled out to more than

one instance.

Figure 11-5.  The Azure Portal’s Process Explorer for a two-instance Web App

Chapter 11 Troubleshooting Web Applications

www.allitebooks.com

http://www.allitebooks.org

423

The second place to view process information is in the Kudu companion site.

Unlike the Azure Portal’s Process Explorer blade, the Kudu site shows combined

metrics across all instances of your Web App (Figure 11-6). However, within Kudu you

can click a process’s Properties button to view extended details such as what modules

are loaded, individual thread states, and environment variables. To view the Process

Explorer within Kudu, navigate to your Web App’s Kudu companion site located at

https://[yourSiteName].scm.azurewebsites.net. After authenticating with the

same credentials you use to log into the Azure Portal, click Process Explorer in the top

navigation bar.

Figure 11-6.  The Process Explorer within the Kudu companion site

�Diagnostics-as-a-Service
When your web application is experiencing poor performance or availability issues,

DaaS is an excellent tool to help identify the problem.

DaaS is a WebJob that will execute as a separate process within your Web App. When

launching DaaS, you can choose if you’d like it to take and analyze a memory dump, your

event logs, your HTTP logs, or some combination of these. Based on the input given,

DaaS will then apply a set of rules to attempt to determine exactly what’s wrong with

your Web App.

Because DaaS examines the current state of your Web App, it should only be run

when you are experiencing problems. Note that because DaaS consumes computing

resources, it can have performance implications when run. Also, in extremely dire

circumstances where your Web App’s memory or CPU utilization is maxed out, DaaS

might fail to run due to resource starvation.

Chapter 11 Troubleshooting Web Applications

424

�Running DaaS
To launch DaaS, do the following:

	 1.	 In the Azure Portal, navigate to your Web App’s management

blade.

	 2.	 In your Web App’s menu, click Diagnose and Solve Problems.

	 3.	 On the Diagnose and Solve Problems blade, click the Diagnostics

as a Service link in the lower right corner of the page.

	 4.	 On the Diagnostics as a Service page (Figure 11-7), you’ll need to

provide some parameters before launching.

Figure 11-7.  Starting the DaaS

	 a.	 From the drop-down list, select the application type you’d like

to analyze. Your options are ASP.NET, Node.js, or PHP.

	 b.	 Choose the diagnosers you’d like to use. You can choose

to analyze the Event Viewer Logs, Memory Dumps, and/or

HTTP logs. I recommend running them all.

	 c.	 Finally, choose the instances you’d like to include in the

analysis. Click Run.

Once launched, DaaS will run for several minutes. Once data has been collected, it

will take some time to complete the analysis. When complete, you’ll have the option to

download and view each report.

Chapter 11 Troubleshooting Web Applications

www.allitebooks.com

http://www.allitebooks.org

425

�Application Events
Application events show all traces and exceptions in a slightly more readable format

than the Application logs. To access Application events, navigate to the Diagnose and

Solve Problems menu item located on your Web App’s management blade. Once there,

click the Application Events link in the page’s lower right corner. You’ll then be taken to

the Application Events blade (Figure 11-8).

Figure 11-8.  The Application Events blade

Note that you can filter the event log by severity level, date, event ID, source, and instance.

Clicking a row in the Application Events table will display the event details in the

right pane.

�Log Stream
Log stream allows you to see Application and Web Server Logs echoed to the Azure

Portal Log Stream blade in near real time (Figure 11-9). This is useful if you want to see

what’s happening within your application at the current moment.

Chapter 11 Troubleshooting Web Applications

426

To use the Log stream feature, you’ll need to make sure that Application logging

and Web Server logging are switched on within your Web App’s Diagnostics Logs

management blade. After enabling Application and/or Web Server logging, click Log

Stream located under your Web App’s Monitoring menu heading.

Note that for a high-traffic site, using the Log stream feature can be like trying to

drink from a firehose. You can change the logging level on the Diagnostics log blade to

cut down on logs that are echoed. You can also use the Pause button on the Log Stream

page to stop logs from being echoed, thus giving you time to examine logs in more detail.

�Failed Request Tracing Logs
Failed Request Tracing logs (FREB logs) show detailed information for your application’s

failed requests. By default, any request that generates an HTTP response of 400 or greater

will be logged.

For each failed request, Azure creates an XML file containing information such as:

•	 The requested URL that generated the failure.

•	 The App Pool.

•	 The Site ID.

•	 Whether the user was logged in or anonymous.

•	 The HTTP response code.

Figure 11-9.  Output from AwfulApp’s Application log stream

Chapter 11 Troubleshooting Web Applications

www.allitebooks.com

http://www.allitebooks.org

427

•	 Total time taken to process the request.

•	 All request headers.

•	 The complete response, including response headers.

This gives you an excellent toehold when trying to figure out exactly what went wrong.

Before you can access FREB logs, you first must enable the Failed request tracing

setting on your Web App’s Diagnostics Logs blade. After enabling Failed request tracing,

you can click on your Web App’s Diagnose and Solve Problems menu item. On the

Diagnose and Solve Problems blade, click the Failed Request Tracing Logs link in the

lower right corner of the screen. The FREB Logs screen lists all traces in tabular format

(Figure 11-10). Click the .xml file to view trace details.

Figure 11-10.  The Failed Request Tracing blade

You’re not just limited to tracing calls that resulted in an HTTP 400 or greater status

code. Azure also allows you to define your own criteria for what constitutes a failed

request, and you can do so in your web.config file via the <tracing> section. The

web.config settings shown in Listing 11-2 trace all requests that issue a 400 or greater

response code, or take more than five seconds to complete.

Listing 11-2.  Defining Custom Failed Request Tracing in the web.config File

<system.webServer>

 <tracing>

 <traceFailedRequests>

 <remove path="*" />

 <add path="*">

 <traceAreas>

Chapter 11 Troubleshooting Web Applications

428

 <add provider="ASP" verbosity="Verbose" />

 �<add provider="ASPNET"

areas="Infrastructure,Module,Page,AppServices"

 verbosity="Verbose" />

 <add provider="ISAPI Extension" verbosity="Verbose" />

 <add provider="WWW Server" areas="Authentication,Security,Filter,

 �StaticFile,CGI,Compression,Cache,RequestNotifications,

Module,FastCGI"

 verbosity="Verbose" />

 </traceAreas>

 <failureDefinitions timeTaken="00:00:05" statusCodes="400-599"/>"

 </add>

 </traceFailedRequests>

 </tracing>

</system.webServer>

After making these changes to the AwfulApp and redeploying, we can trigger the code

in Listing 11-3 that puts the thread to sleep for 20 seconds before returning to the caller.

Listing 11-3.  The AwfulApp Controller Method That Sleeps for 20 Seconds

Before Returning to the Caller

[HttpGet]

public void SlowRequest()

{

 System.Threading.Thread.Sleep(20000);

}

After specifying that requests taking longer than five seconds should be included in

our FREB logs, and invoking the SlowRequest method, we can see that the SlowRequest

was traced (Figure 11-11).

Chapter 11 Troubleshooting Web Applications

www.allitebooks.com

http://www.allitebooks.org

429

�Auto Heal
I once spent a couple of months chasing a very subtle bug in an MVC application that was

hosted within an Azure Web App. During bursts of traffic, memory would spike, requests

would slow, and then the Websocket component of the application would quit working.

Then I would get The Call, and I’d remedy the situation by restarting the Web App.

For the first couple of weeks during this bug hunt, this seriously disrupted my life.

I took my laptop everywhere just in case. Then I learned about Auto Heal, which is one of

Azure’s more useful debugging and mitigation features.

Auto Heal lets you define triggers for your application. When a trigger fires, you

can specify an action that Azure should automatically take. The following triggers are

available in Auto Heal.

•	 Requests in a time period: If your Web App receives more than X

requests within a specified time period, take an action. This is useful

if you know that your app becomes unstable under a certain load.

•	 Status codes within a time period: If you see X number of requests

that return a specified status code in a given time period, take an

action. For example, if your application begins raining down 200

HTTP 500 errors in a five-minute period, something is wrong and an

action should be taken.

Figure 11-11.  A request taking more than five seconds in our FREB logs. Note that
the Final Status returned is HTTP 200, and the time taken to trigger is just over five
seconds

Chapter 11 Troubleshooting Web Applications

430

•	 Slow requests: If X number of requests occur within a time period,

take an action. You get to specify the number of seconds that

constitutes a slow request.

•	 Memory threshold: If memory exceeds a threshold that you specify,

take an action.

Once a rule is triggered, the actions that you can execute are as follows:

•	 Recycle the Process: Since the earliest days of Windows on the

desktop, turning it off and turning it back on has solved 90% or more

of issues. Why should things be any different on the server? The

Recycle action will recycle the W3WP process along with any of its

child processes.

•	 Log Event: This action writes an entry to the Application Event log

informing you that a rule has fired.

•	 Custom Action: By specifying a custom action, you can call any

executable that you’ve loaded onto your Web App. By default, the

selected executable is DaaSConsole.exe, which is already included

in your Web App’s D:\home\data\DaaS\bin folder. By specifying

the '-CollectKillAnalyze "Memory Dump" 60' argument to

DaaSConsole.exe, Auto Heal will capture a memory dump from

your W3WP process, recycle the W3WP process, and kick off a DaaS

analysis of the memory dump, which will be waiting for your review.

�Setting Up Auto Heal
Auto Heal is available to all Web Apps that are on an App Service Plan of Basic or higher.

To set up Auto Heal, navigate to your Web App’s management blade, then click

Diagnose and Solve Problems. On the Diagnose and Solve Problems blade, click the

Mitigate link under the Tools heading in the lower right corner of the screen to open the

Auto Heal screen in a separate browser tab (Figure 11-12).

Chapter 11 Troubleshooting Web Applications

www.allitebooks.com

http://www.allitebooks.org

431

The first step is to enable Auto Heal by toggling the Auto Heal button to On. This will

enable the trigger and action definitions.

To define triggers, simply click Max Requests, Status Code, Slow Requests, or

Memory Private Set tabs. Note that you can only define one trigger of each type.

After setting up triggers, click the Action tab. At the time of this writing, you can only

set up one action that will be invoked when any of your defined triggers fire. Therefore,

you cannot choose to log an event when a Slow Request trigger fires, and also Recycle

when a Max Requests trigger fires.

When you’re done defining your triggers and action, don’t forget to click Update to

save your changes.

�Application Insights
Application Insights is an excellent tool for tracking down application errors,

performance problems, and availability issues. Let’s walk through an example by

troubleshooting our AwfulApp application.

Figure 11-12.  The Auto Heal management console

Chapter 11 Troubleshooting Web Applications

432

�Installing Application Insights
To add Application Insights to an existing ASP.NET web application, do the following:

	 1.	 Right-click your ASP.NET web app project, and select Add

Application Insights Telemetry from the shortcut menu. This will

open the Application Insights dialog box (Figure 11-13).

Figure 11-13.  Adding Application Insights to an existing ASP.NET web application

	 2.	 Specify the Microsoft account you’d like to associate with your

new Azure Application Insights resource. You’ll then be able to

choose a subscription, and whether you want to use an existing

Application Insights resource, or have Azure create a new one for

you. You can click Configure Settings if you’d like to change the

resource group, Application Insights resource name, or region.

Unless you have a compelling reason to do so, choose the same

region that will host your Web App.

Chapter 11 Troubleshooting Web Applications

www.allitebooks.com

http://www.allitebooks.org

433

	 3.	 Click Add. Visual Studio will install several Application Insights

NuGet packages and update your web.config file.

After adding Application Insights, publish your web application to Azure and make

a few requests to generate metrics. Log into your Azure account, and you’ll see your

new Application Insights resource listed in your list of all resources. If you browse to

the Application Insights overview blade, you’ll see telemetry for the recent requests you

made after publishing (Figure 11-14).

Figure 11-14.  The Application Insights Overview blade shows server response time,
page load time, the number of server requests, and the number of failed requests

Notice that in Figure 11-14, the Page View Load Time value is blank. Click the Learn

How To Collect Browser Page Load Data banner, and you’ll be taken to a screen that

provides Application Insights telemetry JavaScript for client side metrics and events

(Figure 11-15). Paste this code into your master page, which will be _Layout.cshtml if

Chapter 11 Troubleshooting Web Applications

434

you’re using ASP.NET MVC. After saving changes to your master page, republishing, and

making a few requests, you’ll see page view load time metrics in Application Insights.

Figure 11-15.  After clicking the Learn How to Collect Browser Page Load Data
banner on the Application Insights Overview blade, you’ll be given the JavaScript
code that must be inserted into your web application’s master page to collect
client-side metrics and events.

�Debugging Exceptions
To demonstrate exception troubleshooting, I’ve clicked Throw Exception on our

AwfulApp, which calls a WebAPI method on the server that throws an exception and

generates an HTTP 500 response.

On the Application Insights Overview blade, you’ll see an Overview

Timeline heading, beneath which are several charts stacked on top of one another

(Figure 11-16). These include Server Response Time, Page View Load Time, Server

Requests, and Failed Requests. Each of these charts displays aligned time series data. In

the Failed Requests graph, we can see all requests that generated a 400 or greater HTTP

response code (excluding HTTP 401 Unauthorized). Clicking the pink Failed Requests

bar opens the Failed Requests blade, which will provide us with more details on exactly

why the request was unsuccessful.

Chapter 11 Troubleshooting Web Applications

www.allitebooks.com

http://www.allitebooks.org

435

Figure 11-16.  The Application Insights Overview blade includes aligned time
series charts that show Server Response Time, Page View Load Time, Server
Requests, and Failed Requests.

Chapter 11 Troubleshooting Web Applications

436

Figure 11-17.  The Failed Requests time series charts give details on how many
requests failed, whether the failure was due to a dependency (like a database)
or a server exception, and how many users were affected

The Failed Requests blade has a similar interface showing aligned time series

charts. On a minute-by-minute basis, we can see the Total Failed Requests, Dependency

Failures, Server Exceptions, the number of server requests, and the number of users

affected (Figure 11-17).

Chapter 11 Troubleshooting Web Applications

www.allitebooks.com

http://www.allitebooks.org

437

To get details on the server exception, click the pink Server Exceptions bar. This

opens a new blade showing the exception details (Figure 11-18).

Figure 11-18.  Clicking the server exception drills down into the exception details

Application Insights still has more data to give us. Click the exception

(highlighted with a blue background in Figure 11-18), and you’ll see the exception details

(Figure 11-19). These include the URL for the request that generated the exception,

the method that failed, the requester’s device type, and a stack trace. You can also click

links to view full telemetry for the session, for a five-minute window before and after the

exception, or examples of requests that experienced the same problem.

Chapter 11 Troubleshooting Web Applications

438

�Alerts
Application Insights Alerts notify you when various metrics have exceeded a defined

threshold. This is useful for information purposes, or to give you advance notice that

something bad is about to happen to your Web App. You can receive alerts via e-mail,

webhook, or both.

Figure 11-19.  Application Insights provides a great deal of information on exceptions

Chapter 11 Troubleshooting Web Applications

www.allitebooks.com

http://www.allitebooks.org

439

To set up one or more alerts, do the following:

	 1.	 Open your Application Insights Overview blade, then click the

Alerts box (Figure 11-20). This will open the Alert Rules blade.

	 2.	 The Alert Rules blade will list all active alerts. Click on Add Alert to

create a new alert. This will navigate you to the Add an Alert Rule

blade (Figure 11-21).

Figure 11-20.  The Alerts box in the Application Insights Overview blade

Chapter 11 Troubleshooting Web Applications

440

Figure 11-21.  The Add an Alert Rule blade, which allows us to create a new
Application Insights Alert rule

Chapter 11 Troubleshooting Web Applications

www.allitebooks.com

http://www.allitebooks.org

441

	 3.	 The Add an Alert Rule blade allows you to choose a metric,

condition, threshold, and time period when defining a new rule.

You’ll also be able to choose who receives an e-mail when the

alert is triggered, and to optionally specify a webhook to be called.

�Summary
Troubleshooting an application can be a difficult task, especially if done in a high-

pressure situation such as a period of degraded performance or unavailability. In this

chapter, we examined tools that can help you quickly pinpoint and mitigate issues, or

even detect issues before they become a problem. I recommend reviewing these tools

carefully and becoming comfortable with their feature sets before you have to use them

in a production environment in a critical situation.

In the upcoming final chapter, we’ll cover tools that can automate your app’s

infrastructure provisioning and deployment process, thus eliminating checklists and

manual steps that are often the source of deployment errors.

Chapter 11 Troubleshooting Web Applications

443
© Rob Reagan 2018
R. Reagan, Web Applications on Azure, https://doi.org/10.1007/978-1-4842-2976-7_12

CHAPTER 12

Deployment
Let’s start this chapter with a horror story. Many moons ago, I was involved with building

a web application for a new startup. We provisioned the necessary Azure resources

manually using the portal, downloaded our publish profile, and published our app to

Azure through Visual Studio. When we first launched, I think we had three daily active

users, with two of those being our mothers. Over time, though, the site’s popularity grew,

and so did the site’s features and complexity.

Even when we were then dealing with multiple Azure services, we were still

performing manual deployments. To deal with this complexity, we made sure to first test

our code in a staging environment (which we also provisioned manually in the Portal),

then used a checklist to perform the multiple steps necessary to push our deployments

to production. We deployed late at night to make sure that site interruptions were

minimized and to give ourselves a buffer for any potential “oops” scenarios.

The battle-hardened veterans reading about our deployment process are probably

thinking, “Boy, I’ll bet they paid for that.” We did. Eventually a deployment went bad,

and we had several hours of late-night downtime while we scrambled to diagnose the

problem and fix the site. Everyone was sleep-deprived and grumpy the following day.

What exactly was so terrible with our deployment approach? Our sins were as follows:

•	 We manually set up our production and staging environments.

Did the environments match from day one? Possibly. Did the

environments match six months later after a steady stream of new

features and deployments? Probably not. This environment drift

meant that we were not testing our code in an environment that

mirrored production. Eventually, this led to errors slipping through to

production that could’ve been identified in staging.

www.allitebooks.com

http://www.allitebooks.org

444

•	 We were manually performing multistep deployments. Developers

who perform a multistep deployment from memory are begging for

punishment, and eventually they’ll get it. Checklists can cut down on

errors but might miss new or updated steps in a rapidly evolving code

base. With more complicated deployments, Murphy’s Law oftent

rears its ugly head.

�Proper Deployment Practices
Deployments don’t have to be stress-inducing; you can deploy with confidence and ease.

When deploying, developers should do follow the practices outlined here.

�Follow a Proper Code Promotion Strategy
Code promotion simply means that code is deployed and tested in a series of (hopefully)

identical environments before being deployed to production. A simple code promotion

strategy begins with each developer working on his or her own machines. Each

developer’s machine is referred to as a development environment. Once developers

check in code to a revision control system such as Git, the code can be built and

deployed to an environment that mirrors production. This environment is called staging

or integration. After thorough testing in staging, the build can then be deployed to

production.

It’s not often possible for each developer’s environment to exactly mirror the

production environment, but it is vital that staging environments match production. If

your web application runs in production on an Azure S1 Standard Web App with two

instances in the East US datacenter with certain settings, your staging environment

should consist of an identical Azure S1 Standard Web App with two instances in the East

US datacenter with the same settings. Failure to test your code in a staging environment

identical to production can allow defects to slip through the cracks and show up in

production.

Chapter 12 Deployment

445

�Prevent Environment Drift by Treating Infrastructure
as Code
Manually provisioning staging and production environments is an invitation for

environment drift over time. If staging and production environments don’t quite match

up, defects that should be caught in staging can slip through to production. Your Azure

resources in staging and production should always be in sync.

To help accomplish this, Azure offers Azure Resource Management (ARM)

templates. ARM templates are just JSON files that specify all of the Azure resources and

their respective settings that make up an environment. You can describe the desired

environment within an ARM template and deploy the template to Azure using one of

several methods. Azure will then ensure that your environment matches the template by

updating settings or provisioning new resources. You can precede your code deployment

with an ARM deployment to ensure that your environment is provisioned as expected.

We discuss the details of building and deploying ARM templates in this chapter.

�Automating Deployments
Pushing code to production should be scripted. You should use the same script to

publish code to your staging environment that you use for publishing to production.

Scripting deployments ensures that steps aren’t left out or performed incorrectly.

If your staging and production environments are identical, you can use the same

script to target different environments to publish your application to staging and

production. You can then test your code thoroughly within the staging environment, and

deployment to production can be drama-free.

In this chapter, we start by talking about ARM templates and how to create them.

Next, we put together a demo web application, add an Azure Resource Group project

to the solution, and deploy. We finish the chapter with a look at how to automate your

deployments to both staging and production.

�ARM Templates Overview
Azure ARM Templates are JSON files that describe resources within an Azure Resource

Group. These template files can specify both resources and resource settings. You can

create almost any type of Azure resource using an ARM template.

Chapter 12 Deployment

www.allitebooks.com

http://www.allitebooks.org

446

When published, Azure will ensure that the specified resource group contains the

resources defined in the ARM template. If a resource within the template doesn’t exist, it

will be created. If a resource does exist but has settings that differ from those defined in

the template, the existing resource’s settings will be updated to match the template.

This is an excellent tool to provision resources and protect against environment drift.

Because ARM templates are just JSON, they can be checked into source control along

with your code.

Take a look at Listing 12-1 for an example of an ARM template that defines an App

Service and a single Web App.

Listing 12-1.  An Azure ARM Template That Provisions an App Service Plan and a

Web App

{

 �"$schema": "https://schema.management.azure.com/schemas/2015-01-01/

deploymentTemplate.json#",

 "contentVersion": "1.0.0.0",

 "parameters": {

 "DemoAppServicePlanName": {

 "type": "string",

 "minLength": 1

 },

 "DemoAppServicePlanSkuName": {

 "type": "string",

 "defaultValue": "F1",

 "allowedValues": [

 "F1",

 "D1",

 "B1",

 "B2",

 "B3",

 "S1",

 "S2",

 "S3",

 "P1",

 "P2",

Chapter 12 Deployment

447

 "P3",

 "P4"

],

 "metadata": {

 �"description": "Describes plan's pricing tier and capacity. Check details

at https://azure.microsoft.com/en-us/pricing/details/app-service/"

 }

 }},

 "variables": {

 �"DemoWebAppName": "[concat('DemoWebApp', uniqueString(resourceGroup().

id))]"},

 "resources": [

 {

 "name": "[parameters('DemoAppServicePlanName')]",

 "type": "Microsoft.Web/serverfarms",

 "location": "[resourceGroup().location]",

 "apiVersion": "2015-08-01",

 "sku": {

 "name": "[parameters('DemoAppServicePlanSkuName')]"

 },

 "dependsOn": [],

 "tags": {

 "displayName": "DemoAppServicePlan"

 },

 "properties": {

 "name": "[parameters('DemoAppServicePlanName')]",

 "numberOfWorkers": 1

 }

 },

 {

 "name": "[variables('DemoWebAppName')]",

 "type": "Microsoft.Web/sites",

 "location": "[resourceGroup().location]",

 "apiVersion": "2015-08-01",

Chapter 12 Deployment

www.allitebooks.com

http://www.allitebooks.org

448

 "dependsOn": [

 �"[resourceId('Microsoft.Web/serverfarms', parameters('DemoAppService

PlanName'))]"

],

 "tags": {

 �"[concat('hidden-related:', resourceId('Microsoft.Web/serverfarms',

parameters('DemoAppServicePlanName')))]": "Resource",

 "displayName": "DemoWebApp"

 },

 "properties": {

 "name": "[variables('DemoWebAppName')]",

 �"serverFarmId": "[resourceId('Microsoft.Web/serverfarms', parameters

('DemoAppServicePlanName'))]"

 }

 }],

 "outputs": {}

}

�ARM Template Components
Let’s break this template down and look at its constituent parts.

ARM templates can have up to four major sections: parameters, variables, resources,

and outputs.

�Parameters

Parameters are values that are passed into a template that allow you to modify its

behavior. Examples include resource names, resource properties, or whether the

template is being deployed to a staging or production environment.

Parameters are provided in one of two ways: either on the command line if the

template is deployed via Powershell or in a separate JSON parameters file.

In Listing 12-1, take a look at the parameters node. You’ll see that the

template defines two parameters named DemoAppServicePlanName and

DemoAppServicePlanSkuName. Each parameter must specify a data type. You can

optionally provide a default value to use if none is specified. Also, you can specify an

array of allowed values that restrict what can be specified for a parameter’s value.

A parameters section is optional and can be omitted.

Chapter 12 Deployment

449

�Variables

Variables allow you to store the output of one or more ARM template expressions or

functions for use later within the template. Expressions and functions are contained in a

string literal and are denoted by opening and closing brackets. For example, "[concat

(variables('ServiceBusNamespace'), '-staging')]" will concatenate the value of

the ServiceBusNamespace variable with the string literal "-staging". There are quite

a few functions that are built-in and available for your use. You can find a complete list

at https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-

group-template-functions.

In Listing 12-1, you’ll see a single variable named DemoWebAppName that is defined as

follows:

"DemoWebAppName": "[concat('DemoWebApp', uniqueString(resourceGroup().id))]"

This concatenates the string literal "DemoWebApp" with the hashed value of the

Resource Group ID to create a unique name for our Web App. By storing the output

from these functions in the DemoWebAppName variable, we can reuse the value without

having to muddy our template by reevaluating these functions each time. Variables are

primarily for convenience within a template. A variables section is not required within

an ARM template.

Also, note that variable names are not case sensitive.

Expressions and functions aren’t restricted to the variables section; they can be used

anywhere in a template.

�Resources

The Resources section contains an array of Azure resources that will be created or

updated when the template is deployed. Each type of resource has its own properties.

For example, the valid and required properties for defining a Web App will differ from

the properties for defining a Cosmos DB resource.

In our example in Listing 12-1, the template’s resources array defines two separate

resources: an App Service Plan (whose type is Microsoft.Web/serverfarms) and a Web

App (whose type is Microsoft.Web/sites). Here’s a short description of the various

properties in each.

Chapter 12 Deployment

www.allitebooks.com

https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-template-functions
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-template-functions
http://www.allitebooks.org

450

•	 Name: This is the name of the resource. Several types of resources

require that resource names must be unique. Examples include Web

Apps and Service Bus. This is always required.

•	 Type: This is the type of resource that’s being provisioned. This is

always required.

•	 ApiVersion: This is the version of the REST API that’s being used to

create resources. This will vary by resource type. ApiVersion is always

required.

•	 Location: This specifies the region where you want to provision the

resource. Note that not all services are available at all region. The list

of valid options will change by resource type.

•	 Comments: This covers any comments that you’d like to include in

the template. These have no bearing on deployment. Please note that

whereas Visual Studio will happily color-code C#-style comments

within a template, the deployment process will not and will error out

if you try to use them. This field is both recommended and optional.

•	 DependsOn: If a resource requires that another resource is already

provisioned, you can specify the dependency here. When an ARM

template is deployed, resources are provisioned in parallel. Defining

a dependency ensures that the required resource is deployed

before the dependent resource. You can only specify a dependency

on another resource that is within the template. Note that in our

example, the Web App depends on the App Service. If there are no

dependencies, this is not required.

•	 Properties: These are resource-type-specific properties. Notice that

the properties for our Web App differ from the properties in the App

Service.

•	 Resources: This section is used for the definition of child resources.

There are no child resources in the example in Listing 12-1, but we’ll

see them in the upcoming demo project. For example, Azure SQL

Databases are defined as child resources of Azure SQL Servers.

Chapter 12 Deployment

451

How do you know exactly which properties are available for each resource type?

Microsoft has a handy reference for each under the expandable Reference menu at

https://docs.microsoft.com/en-us/azure/templates/.

�Outputs

ARM templates can be nested, where one template calls another to do some work.

This decomposition is useful as your templates become more and more complex.

Breaking templates apart also allows template reuse. This decomposition is similar to

how procedural programs are broken into multiple functions; doing so helps manage

complexity and allows for code reuse.

The fourth and final major section within ARM templates are outputs. Outputs allow

a template to pass an object to its calling template. This is useful for providing calling

templates with constructed values like new resource names.

�Creating ARM Templates
When I viewed an ARM template for the first time and looked over the few hundred lines

of JSON that it contained, my shoulders slumped and I thought to myself, “Great. Here’s

another tedious technology that I’ll have to spend a few hours learning.” The good news

is that you’ll rarely, if ever, start with a blank template and type JSON by hand. Microsoft

has made it very easy to start with an existing template and modify it to fit your needs.

There are several ways to get started authoring ARM templates.

•	 Provision resources within the Azure portal to create your

environment, then download the ARM template for your resources

from the portal.

•	 Microsoft has a large gallery of example templates in GitHub. Find

one that is most similar to your architecture, then modify it to meet

your needs.

•	 Visual Studio has an Azure Resource Group project that includes

various templates that you can choose from. You can choose

resources from a list to add to the template, and the JSON for each

new resource will be added for you.

Let’s look at each of these methods in turn.

Chapter 12 Deployment

www.allitebooks.com

https://docs.microsoft.com/en-us/azure/templates/
http://www.allitebooks.org

452

�Downloading ARM Templates for Preexisting Resources
in the Azure Portal
From previous chapters, you’re already familiar with provisioning Azure resources

using the Azure Portal. Within the Portal, every existing resource within Azure has

an Automation Script menu item on its management blade. Clicking Automation

Script takes you to an Automation Script blade that will allow you to download code

to provision the resource. On the Automation Script blade, you can choose between

downloading an ARM template, a Powershell script, a CLI script, or .NET code. Let’s run

through a quick example to demonstrate.

	 1.	 First, log into the Azure Portal and provision a new Storage

Account. If you need a refresher on how to provision a Storage

Account, review Chapter 6 for a walkthrough. Because scripting an

ARM template will script all objects in a resource group, create a

new resource group for this Storage Account.

	 2.	 After your new Storage Account is created, navigate to its

management blade. You’ll see an Automation Script menu item

located under the Settings heading. Click Automation Script to

bring open the Automation Script blade (Figure 12-1). Note that

each resource, regardless of type, will have an Automation Script

menu item. We’re just using a Storage Account as our example.

	 3.	 The Automation Script blade has several tabs, which include

Template, CLI, PowerShell, .NET, and Ruby. Clicking a tab will

show you the tool-specific deployment script. Because we’re

interested in ARM templates, click the Template tab to see the

ARM script.

	 4.	 Click Download (Figure 12-1) to download the all scripts. This

will initiate a zip file download that contains the JSON template,

a JSON parameters file, and a Powershell script that will perform

the deployment. The .NET, Ruby, and CLI scripts will be included

in the zip file at no extra charge.

Chapter 12 Deployment

453

	 5.	 Unzip the zip file and open template.json in your favorite editor.

You’ll notice that there is a single parameter for the Storage

Account’s name.

Next, open parameters.json. This is the parameters file that feeds

template.json. You’ll see a single parameter for the Storage

Account’s name that corresponds to the parameter defined in

template.json. The parameter name will depend on what you

named your Storage Account in the Azure Portal, so the parameter

names in your template will differ from mine.

To demonstrate deployment, we’re going to use the template and

parameters file to provision another Storage Account with the

same settings as the one we just provisioned in the Portal. Jump

back to the parameters.json file and change the value of your

Storage Account name parameter. Finally, save your parameters.

json file. My parameters.json file is shown in Listing 12-2.

Figure 12-1.  The Automation Script management blade

Chapter 12 Deployment

www.allitebooks.com

http://www.allitebooks.org

454

Listing 12-2.  My parameters.json File After Step 5

{

 "$schema": "https://schema.management.azure.com/schemas/2015-01-

 01/deploymentParameters.json#",

 "contentVersion": "1.0.0.0",

 "parameters": {

 "storageAccounts_sadeploymentdemo_name": {

 "value": "sadeploymentdemo2"

 }

 }

}

	 6.	 Let’s deploy! Open an Azure Powershell window and navigate

to the folder where you extracted the zip file containing your

template and parameters file. ARM templates are deployed

via a Powershell script, which is provided. Once you’re in the

same directory as your scripts, run the following command in

Powershell:

.\deploy.ps1

You’ll be prompted for a few pieces of information (Figure 12-2).

Figure 12-2.  The deploy.ps1 Powershell script will prompt you for several inputs
before executing a deployment

First, you’ll be asked for your Azure Subscription ID. To find this,

go to the Azure Portal and search for Subscription. All of your

subscriptions will be displayed, and you can copy the appropriate

subscription ID.

Chapter 12 Deployment

455

Next, you’ll be asked for the name of the resource group you’d

like to deploy the template to. Enter the name of a resource

group that already exists. You’ll then be asked for a deployment

name, and you can name the deployment anything you like. The

entered deployment name will show up in the resource group’s

deployment logs. Finally, you’ll be prompted to log in to your

account. Enter your credentials, and the deployment will begin.

After the deployment finishes, you can log in to the Portal to see

the new Storage Account that was provisioned.

That exercise demonstrates how you can start with an existing template and use it to

create a completely new resource. The other major use for an ARM template is to tune up

existing resources to ensure that their settings match what’s defined in the template. To

demonstrate this, follow these steps.

	 1.	 Open the template.json file that you deployed in the previous

exercise. Scan down until you find the sku property in the

resources section. The SKU defines the Storage Account’s pricing

tier and data replication. Set the SKU’s name to Standard_GRS and

save the file.

	 2.	 Redeploy the template just as we did in Step 6 in the previous

exercise. After the template is successfully published, log back into

the Portal and check the Performance and Replication settings

on the Storage Account’s Overview tab. You’ll see that they’ve

been set to Standard and Geo-redundant storage (GRS), just as

specified in the template.

I’d like to point out that there’s nothing magic about the deploy.ps1 Powershell

script that we downloaded with our Automation Script. If you open it in your favorite

editor and have a look, you’ll notice that several commands prompt you for information

before running the cmdlet New-AzureRmResourceGroupDeployment. Instead of using the

predefined deploy.ps1 script, you can run this command yourself with the appropriate

arguments to perform your deployment.

Chapter 12 Deployment

www.allitebooks.com

http://www.allitebooks.org

456

�Choosing a Gallery Template
Before starting just about any new project, I first look to see if I can find a codebase to

build from rather than starting from scratch. Microsoft has created an ARM template

gallery that accepts community submissions that conform to a set of guidelines. This is a

great place to start when building out a new ARM template.

You can browse the gallery here at https://azure.microsoft.com/en-us/

resources/templates/. Note that each template listed in this URL will link you to the

template’s folder located on GitHub at https://github.com/Azure/azure-quickstart-

templates/.

Each template lists all parameters required and includes a Powershell script for

deployment.

Even if you don’t start with one of the gallery templates, they’re a great resource for

learning how to accomplish certain tasks using ARM.

�Creating Templates with a Visual Studio Azure Resource
Group Project
The Azure Resource Group Project can be added to any solution. The project template

will create an ARM template, an ARM parameters file, and a Powershell script to use for

deployment.

The real magic of using an ARM Project is that when editing an ARM template, Visual

Studio will display a JSON Outline (Figure 12-3).

Figure 12-3.  Editing an ARM template in Visual Studio

Chapter 12 Deployment

https://azure.microsoft.com/en-us/resources/templates/
https://azure.microsoft.com/en-us/resources/templates/
https://github.com/Azure/azure-quickstart-templates/
https://github.com/Azure/azure-quickstart-templates/

457

By right-clicking the Resources node and selecting Add New Resource, you’ll be

taken to the Add Resource dialog box, where you’ll have the opportunity to choose from

a list of resource types (Figure 12-4). Once chosen, Visual Studio will automatically insert

the necessary JSON and associated parameters into your ARM template. You can then

edit the new resource’s JSON as needed.

As an added bonus, the Add Resource dialog box will handle the provisioning of any

additional required resources. For example, if you add a Web App but don’t already have

an App Service Plan defined within the template, Visual Studio will add the necessary

App Service Plan for you.

We’ll make use of an Azure Resource Group Project in our upcoming demo app.

Figure 12-4.  The Add Resource dialog box lets you choose from a list of resource
types to add to your ARM template

Chapter 12 Deployment

www.allitebooks.com

http://www.allitebooks.org

458

�The Deployment Web Application
Before we can dive into ARM templates and automated deployment, we first need an

example application to deploy. The Deployment Web Application is a Rube Goldberg

contraption that writes messages entered by a user to an Azure SQL database. It

does so by first sending each message to a WebJob via a Service Bus Queue, and the

WebJob handles the database writes. Our goal is to demonstrate the provisioning and

deployment of an application that uses an App Service Web App, Service Bus, WebJob,

and Azure SQL Database.

The solution consists of an ASP.NET MVC Web Application, an Azure WebJob, and

a SQL Server Database Project. We’ll use Entity Framework to write to and query our

database, and we’ll use a Service Bus Queue to handle messaging between our Web App

and the WebJob.

In previous chapters, we’ve covered each of these project types in detail, so we’ll run

through the code quickly. You can download the completed project at https://github.

com/BuildingScalableWebAppsWithAzure/Deployment.git.

�Creating the Database
Let’s start with our database. We’ll need a single database table to hold messages that the

user enters. Later when we look at automated deployments, we’ll make use of a DACPAC

to create and execute TSQL statements to create our database, and later to upgrade our

existing database during subsequent deployments. The easiest way to create a DACPAC

and allow us to version our database scripts is to use a SQL Server Database Project.

	 1.	 Open Visual Studio and create a new project. In the Add New

Project dialog box, select Templates ➤ SQL Server ➤ SQL Server

Database Project. Let’s name the project Deployment.Database,

and the solution Deployment. Click OK to create the project and

solution.

	 2.	 Let’s add our single database table. Right-click the Deployment.

Database project and select Add ➤ Table. Name the new table

ReceivedMessages. In the resulting ReceivedMessages.sql file,

add the code in Listing 12-3.

Chapter 12 Deployment

https://github.com/BuildingScalableWebAppsWithAzure/Deployment.git
https://github.com/BuildingScalableWebAppsWithAzure/Deployment.git

459

Listing 12-3.  The TSQL for Creating Our ReceivedMessages Table

CREATE TABLE [dbo].[ReceivedMessages]

(

 [Id] INT NOT NULL PRIMARY KEY IDENTITY,

 [Message] NVARCHAR(256) NOT NULL

)

We’re now done with our database project. Let’s move on to our database access code.

�Accessing the Database
Both our web application and WeJob will need to talk to the database, so let’s place all

data access code in a common Class Library project.

	 1.	 Right-click the solution, and select Add ➤ New Project. In the

Add New Project dialog box, select the Class Library template

located under the Windows menu item. Name the new project

Deployment.Persistence and click OK.

	 2.	 Now we’ll add our Entity Framework package via NuGet. Right-

click the Deployment.Persistence project and select Manage

NuGetPackages. On the Browse tab in the NuGet Package

Manager, search for EntityFramework and add the latest stable

version to the project.

	 3.	 Rather than walk through the wizards to create our Entity

Framework model and Context, we’ll just copy and paste in

the necessary class files. Add a new class to the Deployment.

Persistence project and call the file ReceivedMessage.cs. The

complete code listing for ReceivedMessage is shown in

Listing 12-4.

Chapter 12 Deployment

www.allitebooks.com

http://www.allitebooks.org

460

Listing 12-4.  The ReceivedMessage Class

namespace Deployment.Persistence

{

 using System.ComponentModel.DataAnnotations;

 public partial class ReceivedMessage

 {

 public int Id { get; set; }

 [Required]

 [StringLength(256)]

 public string Message { get; set; }

 }

}

	 4.	 Now we’ll add our DbContext subclass. Right-click the

Deployment.Persistence project and select Add ➤ New Item.

Under the Code menu item, select the Class template, then

name the new class file DeploymentContext.cs. The code for

DeploymentContext is shown in Listing 12-5.

Listing 12-5.  The DeploymentContext Class

namespace Deployment.Persistence

{

 using System.Data.Entity;

 public partial class DeploymentContext : DbContext

 {

 public DeploymentContext() : base("name=DeploymentContext")

 { }

 public virtual DbSet<ReceivedMessage> ReceivedMessages { get; set; }

 protected override void OnModelCreating(DbModelBuilder modelBuilder)

 { }

 }

}

That wraps up our Deployment.Persistence project. Next, we’ll create our web

application.

Chapter 12 Deployment

461

�The Deployment Web Application
Our web application will allow users to submit messages that will eventually be written

to the ReceivedMessages table in the database. We’ll also create a page that reads the

ReceivedMessages table in the database and displays all messages. You can see the

rendered page for inputting messages in Figure 12-5. The message history page is shown

in Figure 12-6.

Figure 12-5.  Our main page allows users to enter messages

Figure 12-6.  Listing all messages that have been entered

	 1.	 Let’s start by creating our ASP.NET MVC project. Right-click

the Deployment solution and select Add ➤ New Project. Under

the Web menu item, select the ASP.NET Web Application (.NET

Framework) template, name the project Deployment.Web, then

click OK. You’ll be prompted to select a template. Choose the

MVC template, then click OK to create the project.

Chapter 12 Deployment

www.allitebooks.com

http://www.allitebooks.org

462

	 2.	 We’ll use a Service Bus Queue to send the messages entered to

our WebJob, and the WebJob will handle writing the messages

to the database. Therefore, we’ll need to add a reference to the

WindowsAzure.ServiceBus library via NuGet. To do so, right-click

the Deployment.Web project and select Manage NuGet Packages.

On the Browse tab in the NuGet Package Manager, search for

WindowsAzure.ServiceBus and install the latest version.

	 3.	 Next, we need to set a reference to our Deployment.Persistence

project so we can read the database to retrieve all messages

sent. Right-click the Deployment.Web project and select Add ➤

Reference, then add a reference to Deployment.Persistence.

	 4.	 We’ll need to add a view model for our messages. In the Models

folder, add a new class file called MessageModel.cs. The code for

the MessageModel class is shown in Listing 12-6.

Listing 12-6.  The MessageModel Class

namespace Deployment.Web.Models

{

 public class MessageModel

 {

 public string Message { get; set; }

 }

}

	 5.	 We need to update the HomeController class with the methods

necessary to render our two pages. Open the HomeController.cs

file located in the Controllers directory, then add the code from

Listing 12-7.

Listing 12-7.  The HomeController Class

using System.Web.Mvc;

using Deployment.Web.Models;

using System.Configuration;

using Microsoft.ServiceBus.Messaging;

Chapter 12 Deployment

463

using Deployment.Persistence;

using System.Collections.Generic;

using System.Linq;

namespace Deployment.Web.Controllers

{

 public class HomeController : Controller

 {

 [HttpGet]

 public ActionResult Index()

 {

 return View(new MessageModel());

 }

 /// <summary>

 /// Takes a message submitted from our main form and enqueues

 /// it in a Service Bus Queue.

 /// </summary>

 [HttpPost]

 public ActionResult Index(MessageModel model)

 {

 //enqueue our message.

 �string serviceBusConnectionString = System.Configuration.

ConfigurationManager.AppSettings["ServiceBusConnectionString"];

 �string queueName = ConfigurationManager.AppSettings["ServiceBus

QueueName"];

 �var client = QueueClient.CreateFromConnectionString(serviceBus

ConnectionString);

 BrokeredMessage msg = new BrokeredMessage(model.Message);

 client.Send(msg);

 return View(model);

 }

 /// <summary>

 /// Shows a list of all messages that have been written to the database.

 /// </summary>

 /// <returns></returns>

Chapter 12 Deployment

www.allitebooks.com

http://www.allitebooks.org

464

 [HttpGet]

 public ActionResult Messages()

 {

 using (var deploymentCtx = new DeploymentContext())

 {

 �List<ReceivedMessage> allMessages = deploymentCtx.

ReceivedMessages.ToList();

 return View(allMessages);

 }

 }

 }

}

	 6.	 Entity Framework and the QueueClient need to read database

and Service Bus connection strings from the web.config file.

After opening the web.config file, add the following entry in the

<appSettings> section:

<add key="ServiceBusConnectionString" value="[Your Service Bus Connection

String]"/>

Next, add the following entry in the <connectionStrings>

section. You might need to add the <connectionStrings>

</connectionStrings> tags below the closing </appSettings>

tags if Visual Studio did not include it in the default template.

<add name="DeploymentContext" connectionString="[Your SQL Server Connection

String]" providerName="System.Data.SqlClient"/>

For now, you can even leave the value and connectionString

attributes blank for both entries. In the real world, this would

be where you would specify settings for your development

environment. We’ll return to these settings after provisioning our

Azure resources with the ARM template.

Chapter 12 Deployment

465

	 7.	 Finally, let’s update the markup. For brevity, the markup is

available in this project’s Git repo. You’ll need to update the

markup for the _Layout.cshtml in the Views\Shared folder, and

the Index.cshtml file in the Views\Home folder. You’ll need to add

Messages.cshtml to the Views\Home folder as well.

Finally, let’s create our WebJob.

�The Deployment WebJob
Our Deployment WebJob will monitor the Service Bus Queue for any messages sent

from our web application, and will write the contents of any messages received to the

database.

	 1.	 Right-click the solution file, and select Add ➤ New Project. In the

Add New Project dialog box, select the Cloud menu item, then

select the Azure WebJob project template. Name this project

Deployment.WebJob, then click OK.

	 2.	 Because we’re monitoring a Service Bus Queue, we need to add

a reference to the WindowsAzure.ServiceBus library. Right-click

the Deployment.WebJob project, select Manage NuGet Packages,

and seach for WindowsAzure.ServiceBus on the Browse tab. Add

a reference to the latest version. While you’re on the Manage

NuGetPackages screen, also add a reference to Microsoft.Azure.

WebJobs.ServiceBus. This package is needed for our Service Bus

Trigger.

	 3.	 We’ll also need a reference to our Deployment.Persistence project

so that we can write received messages to the database. Right-

click the Deployment.WebJob project, select Add, and then select

Reference. Add a reference to the Deployment.Persistence class

in the Reference Manager dialog box, then click OK.

	 4.	 The Program class is the entry point for our WebJob, and we need

to make a few changes so that the WebJob API knows that we’re

making use of a Service Bus Queue. The completed code for the

Program class is shown in Listing 12-8.

Chapter 12 Deployment

www.allitebooks.com

http://www.allitebooks.org

466

Listing 12-8.  The Program Class

using Microsoft.Azure.WebJobs;

namespace Deployment.WebJob

{

 class Program

 {

 static void Main()

 {

 var config = new JobHostConfiguration();

 config.UseServiceBus();

 var host = new JobHost(config);

 �// The following code ensures that the WebJob will be running

 �// continuously

 host.RunAndBlock();

 }

 }

}

	 5.	 The Functions class holds our ProcessQueueMessages method,

which gets called when new messages are placed in the Service

Bus Message Queue called messages. The source is shown in

Listing 12-9.

Listing 12-9.  The Functions Class

using Microsoft.Azure.WebJobs;

using System.IO;

using System;

using Deployment.Persistence;

namespace Deployment.WebJob

{

 public class Functions

 {

 // This function will get triggered/executed when a new message is written

Chapter 12 Deployment

467

 // on an Azure Service Bus Message Queue called "messages"

 public static void ProcessQueueMessage([ServiceBusTrigger("messages")]

 string message, TextWriter log)

 {

 Console.WriteLine(message);

 ReceivedMessage msgModel = new ReceivedMessage();

 msgModel.Message = message;

 using (var deploymentCtx = new DeploymentContext())

 {

 deploymentCtx.ReceivedMessages.Add(msgModel);

 deploymentCtx.SaveChanges();

 }

 }

 }

}

	 6.	 This WebJob will read the database and Service Bus connection

strings from the app.config file. Although we don’t have to specify

values for either at the moment, we do need to make sure that

there’s a placeholder for each. Open the app.config file and add

the following entries in the <connectionStrings> section:

<add name="AzureWebJobsServiceBus" connectionString="[Service Bus

Connection String]"/>

<add name="DeploymentContext" connectionString="[Database Connection

String]" providerName="System.Data.SqlClient"/>

Our solution is now complete and would run if we’d specified a SQL Server database,

an Azure Storage Account (which is required to run a WebJob), and a Service Bus. We’ll

handle the creation of each of these resources via an ARM template, and we’ll create the

ARM template by adding an Azure Resource Group Project to our solution.

Chapter 12 Deployment

www.allitebooks.com

http://www.allitebooks.org

468

�Deploying Azure Resources Using an Azure
Resource Group Project
The Azure Resource Group Project simplifies the creation of an ARM template that

will script the deployment of Azure resources. After creating an Azure Resource Group

Project, you can deploy the ARM template directly from Visual Studio or integrate it into

a separate deployment process using tools such as the Visual Studio Team Services Build

system.

�Creating the Azure Resource Group Project
To add an Azure Resource Group Project to the solution, right-click the solution and

select Add ➤ New Project. In the Add New Project dialog box, you’ll find the Azure

Resource Group Project template located under the Visual C# ➤ Windows ➤ Cloud

menu item (Figure 12-7). Name the new project Deployment.ARM and click OK.

Figure 12-7.  Adding an Azure Resource Group Project to the solution

Chapter 12 Deployment

469

Before the project is added to the solution, you’ll be asked what template you’d like

to use (Figure 12-8). For this exercise, select Blank Template.

Note that in the upper left corner of the dialog box, there is a drop-down list labeled

Show Templates from This Location. The Azure QuickStart option will display all

templates from Microsoft’s template gallery, which are also listed on GitHub.

After the project is created, you’ll notice that we’re given the following three files to

begin with:

•	 Azuredeploy.json: This is the ARM template that will contain our

parameters, variables, resources, and outputs.

•	 Azuredeploy.parameters.json: This file contains values for all

parameters that do not have default values declared within

azuredeploy.json.

•	 Deploy-AzureResourceGroup.ps1: This is our Powershell script that

will be used to publish the template to Azure.

Figure 12-8.  Choosing a template before the Azure Resource Group Project is
added to the solution

Chapter 12 Deployment

www.allitebooks.com

http://www.allitebooks.org

470

To provision resources for our Deploy web application, we’ll need to define a SQL

Server, SQL Database, Service Bus, Service Bus Authorization Rule, Service Bus Queue,

App Service Plan, and a Web App. Some of these resources, such as the Service Bus

Queue and SQL Database, depend on other resources. Let’s start with defining our

SQL Server.

�Adding a SQL Server
To add a SQL Server definition to our ARM template, click the azuredeploy.json file.

You’ll see that we have the JSON for a bare-bones ARM template along with a JSON

document outline on the far left (Figure 12-9).

To add a new resource to the template, you have the option of typing code directly

into the template, copying and pasting JSON for a new resource, or letting Visual Studio

do the work. For our SQL Server definition, let’s let Visual Studio do the work. Right-click

the Resources node in the JSON Outline window and select Add New Resource from the

shortcut menu.

Figure 12-9.  The bare-bones azuredeploy.json ARM template and the
accompanying JSON outline

Chapter 12 Deployment

471

When you select Add New Resource, the Add Resource dialog box opens (Figure 12-10).

You can scroll through available templates on the left, and enter relevant properties for

the selected resource type on the right. Note that not all Azure resource types are listed;

as we’ll see when we create our Service Bus, we won’t be able to rely on Visual Studio to

provide us with a starting point.

Figure 12-10.  The Add Resource dialog box lets you choose from the most
common resource types to add to your ARM template

Scroll down until you find the SQL Server resource type. Select it, and enter

sqlserver-deployment in the Name field. Click Add to add the SQL Server definition

to the template. The resulting code inserted into our azuredeploy.json file is shown in

Listing 12-10.

Chapter 12 Deployment

www.allitebooks.com

http://www.allitebooks.org

472

Listing 12-10.  Our azuredeploy.json File After Adding a SQL Server Resource

Definition

{

 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/

 deploymentTemplate.json#",

 "contentVersion": "1.0.0.0",

 "parameters": {

 "sqlserver-deploymentAdminLogin": {

 "type": "string",

 "minLength": 1

 },

 "sqlserver-deploymentAdminLoginPassword": {

 "type": "securestring"

 }

 },

 "variables": {

 "sqlserver-deploymentName": "[concat('sqlserver-deployment',

 uniqueString(resourceGroup().id))]"

 },

 "resources": [

 {

 "name": "[variables('sqlserver-deploymentName')]",

 "type": "Microsoft.Sql/servers",

 "location": "[resourceGroup().location]",

 "apiVersion": "2014-04-01-preview",

 "dependsOn": [],

 "tags": {

 "displayName": "sqlserver-deployment"

 },

 "properties": {

 "administratorLogin": "[parameters('sqlserver-deploymentAdminLogin')]",

 "administratorLoginPassword": "[parameters(

 'sqlserver-deploymentAdminLoginPassword')]"

 },

Chapter 12 Deployment

473

 "resources": [

 {

 "name": "AllowAllWindowsAzureIps",

 "type": "firewallrules",

 "location": "[resourceGroup().location]",

 "apiVersion": "2014-04-01-preview",

 "dependsOn": [

 "[resourceId('Microsoft.Sql/servers',

 variables('sqlserver-deploymentName'))]"

],

 "properties": {

 "startIpAddress": "0.0.0.0",

 "endIpAddress": "0.0.0.0"

 }

 }

]

 }

],

 "outputs": {

 }

}

Let’s take a closer look at what’s been done.

First, you’ll notice that two parameters have been added to the parameters section:

sqlserver-deploymentAdminLogin and sqlserver-deploymentAdminLoginPassword.

There are no default values specified. This means that parameters will have to be

specified in a separate parameters JSON file, or that we’ll need to provide values via our

chosen deployment tool when the deployment takes place.

Second, you’ll see that a single variable called sqlserver-deploymentName has

been defined. This is a concatenation of our chosen SQL Server name and the ID of the

resource group that we ultimately deploy to. Because a SQL Server name must be unique

across Azure, appending the resource ID is an attempt to ensure uniqueness. Storing the

name in a variable makes it much easier to refer to throughout the rest of the template.

The last point I’d like to bring to your attention is the use of a child resource. Note

that within the SQL Server object contained in the template’s resources section, there is a

nested firewallrules resource that specifies what IP addresses can connect to this server.

Chapter 12 Deployment

www.allitebooks.com

http://www.allitebooks.org

474

To finish up, let’s specify a value for the sqlserver-deploymentAdminLogin

parameter in our azuredeploy.parameters.json file. We won’t be specifying a value for

sqlserver-deploymentAdminLoginPassword because it’s declared as a securestring

type. We’ll enter a value for this password parameter at the time of deployment.

Open the azuredeploy.parameters.json file and input the script in Listing 12-11.

Listing 12-11.  A Parameter Value Specified in azuredeploy.parameters.json

{

 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/

 deploymentParameters.json#",

 "contentVersion": "1.0.0.0",

 "parameters": {

 "sqlserver-deploymentAdminLogin": {

 "value": "serveradmin"

 }

 }

}

We’re now ready to deploy our template.

�Deploying from Visual Studio
Because we have a SQL Server resource defined, we can deploy this template to Azure to

ensure that it works as expected. To deploy with Visual Studio, do the following:

	 1.	 Right-click the Deployment.ARM project, then select Deploy ➤ New

to open the Deploy to Resource Group dialog box (Figure 12-11).

Within this dialog box, you’ll need to log in to Azure, then specify

the following:

Chapter 12 Deployment

475

•	 Subscription: Choose the subscription that contains the resource

group you’d like to use for deployment. You’ll also have the option of

creating a new resource group in the subscription that you choose.

•	 Resource Group: This is the resource group to which all resources will

be deployed. You can choose an existing resource group within your

selected subscription, or you can select Create New in the drop-down

list to create a new resource group.

For this demo, select Create New. Name your new group

rg-deployment-staging.

•	 Deployment Template: This drop-down list lets you choose the

ARM template to deploy. This is necessary because you could have

multiple templates within an Azure Resource Group Project. Choose

the azuredeploy.json file for this example.

Figure 12-11.  The Deploy to Resource Group dialog box

Chapter 12 Deployment

www.allitebooks.com

http://www.allitebooks.org

476

•	 Template Parameters File: This is the JSON parameters file that

accompanies the chosen Deployment template. This is required,

even if you don’t have any parameters defined within the parameters

file. For our example, select azuredeploy.parameters.json.

Because our SQL Server administrator password parameter is

declared as a securestring type, we’ll need to specify its value.

Click Edit Parameters to do so (Figure 12-12).

Figure 12-12.  The Edit Parameters dialog box lets you override parameters
defined in the ARM parameters file

	 2.	 When the fields in the previous step are specified, click Deploy

to initiate a deployment. You’ll see output echoed to the console.

You’ll also notice that a Powershell window is launched. Within

the Powershell window, you’ll be prompted again for the value of

any parameter of type securestring.

When the deployment completes successfully, you can log in to

the Azure Portal, browse to your specified resource group, and see

that the SQL Server has been successfully deployed.

Chapter 12 Deployment

477

�Improving Our ARM Template
The JSON that Visual Studio provided for our SQL Server definition is very flexible: It

allows us to parameterize the admin username and password. It also concatenates the

SQL Server name that we provided with the Resource Group’s ID to create a unique name.

Remember, though, that our goals are to make sure that we have identical staging

and production environments that we can use to test and deploy our code. We don’t

need to parameterize every possible value because this means that we have to specify

each parameter when we deploy.

We’ll apply the following rules of thumb to the JSON generated by Visual Studio:

•	 Keep parameters to a minimum. If a value can be calculated, store it

in a variable instead of passing it in to the template as a parameter.

•	 If a value isn’t needed more than once, hard-code it.

•	 For each parameter that we use, define a default value if at

all possible.

•	 When creating variables, it’s possible to have nested properties.

I prefer to define one variable per resource, then define as many

nested properties as needed. This makes the template easier to read

and use.

The modified version of our JSON template is given in Listing 12-12.

Listing 12-12.  The Modified azuredeploy.json Template

{

 �"$schema": "https://schema.management.azure.com/schemas/2015-01-01/

deploymentTemplate.json#",

 "contentVersion": "1.0.0.0",

 "parameters": {

 "environmentName": {

 "type": "string",

 "minLength": 1,

 "defaultValue": "staging",

 "metadata": {

Chapter 12 Deployment

www.allitebooks.com

http://www.allitebooks.org

478

 �"description": "The environment type. This will typically be

'staging' or 'production'"

 }

 },

 "sqlServerAdminPassword": {

 "type": "securestring",

 "metadata": {

 "description": "The administrative password for the SQL Server"

 }

 }

 },

 "variables": {

 "sqlserver": {

 "adminLogin": "adminuser",

 �"deploymentName": "[concat('sqlserver-deployment-',

parameters('environmentName'),

 '-', uniqueString(resourceGroup().id))]"

 }

 },

 "resources": [

 {

 "name": "[variables('sqlserver').deploymentName]",

 "type": "Microsoft.Sql/servers",

 "location": "[resourceGroup().location]",

 "apiVersion": "2014-04-01-preview",

 "dependsOn": [],

 "tags": {

 "displayName": "sqlserver-deployment"

 },

 "properties": {

 "administratorLogin": "[variables('sqlServer').adminLogin]",

 "administratorLoginPassword": "[parameters('sqlServerAdminPassword')]"

 },

Chapter 12 Deployment

479

 "resources": [

 {

 "name": "AllowAllWindowsAzureIps",

 "type": "firewallrules",

 "location": "[resourceGroup().location]",

 "apiVersion": "2014-04-01-preview",

 "dependsOn": [

 �"[resourceId('Microsoft.Sql/servers', variables('sqlserver').

deploymentName)]"

],

 "properties": {

 "startIpAddress": "0.0.0.0",

 "endIpAddress": "0.0.0.0"

 }

 }

]

 }

],

 "outputs": {}

}

We’ve also updated our azuredeploy.parameters.json file to account for our new

environmentName parameter. It’s shown in Listing 12-13.

Listing 12-13.  The Updated azuredeploy.parameters.json File

{

 �"$schema": "https://schema.management.azure.com/schemas/2015-01-01/

deploymentParameters.json#",

 "contentVersion": "1.0.0.0",

 "parameters": {

 "environmentName": {

 "value": "staging"

 }

 }

}

Chapter 12 Deployment

www.allitebooks.com

http://www.allitebooks.org

480

You’ll notice that we’ve done the following:

•	 All SQL Server settings are either hard-coded or changed to

properties in our sqlServer variable.

•	 Because we want a duplicate environment between staging and

production, we’ve introduced an environmentName parameter.

This is appended to our SQL Server’s name. Therefore, if our

environmentName parameter is set to production, our SQL Server’s

name will be sqlserver-deployment-production.

�Adding Service Bus Resources
Visual Studio doesn’t offer a template for declaring a Service Bus Namespace, Service

Bus Queue, or Service Bus Authorization Rules. To get the necessary JSON, the easiest

solution is to provision these Service Bus resources in the Azure Portal, then download

an ARM template containing their definitions. You can then copy and paste the Service

Bus resources into our azuredeploy.json file.

If you need to review how to export a template for existing resources, refer back to

the “Downloading ARM Templates for Preexisting Resources in the Azure Portal” section

earlier in this chapter.

�Adding Other Resources
The remaining resources that we need to add to our template are a SQL Database, App

Service Plan, and a Web App. You’ve already seen the mechanics for doing so. You can

choose between provisioning resources in the Portal, downloading the ARM template

from the Automation Scripts tab, and then copying the necessary JSON into your own

template. Alternatively, you can use Visual Studio to insert JSON for the necessary

resources into your template. Regardless of the approach, you can then edit generated

JSON to fit your needs.

Let’s look at the completed template.

Chapter 12 Deployment

481

�The Completed Template
The completed template containing all resources needed for our web app is shown in

Listing 12-14.

Listing 12-14.  The Complete azuredeploy.json File

{

 �"$schema": "https://schema.management.azure.com/schemas/2015-01-01/

deploymentTemplate.json#",

 "contentVersion": "1.0.0.0",

 "parameters": {

 "environmentName": {

 "type": "string",

 "minLength": 1,

 "defaultValue": "staging",

 "metadata": {

 "description": "The environment type. This will typically be 'staging'

 or 'production'"

 }

 },

 "sqlServerAdminPassword": {

 "type": "securestring",

 "metadata": {

 "description": "The administrative password for the SQL Server"

 }

 }

 },

 "variables": {

 "sqlserver": {

 "adminLogin": "adminuser",

 �"deploymentName": "[concat('sqlserver-deployment-',

parameters('environmentName'),

 '-', uniqueString(resourceGroup().id))]"

 },

Chapter 12 Deployment

www.allitebooks.com

http://www.allitebooks.org

482

 "sqldb": {

 �"deploymentName": "[concat('sqldb-deployment-', parameters('environment

Name'))]",

 "edition": "Basic",

 "serviceObjective": "Basic",

 "collation": "SQL_Latin1_General_CP1_CI_AS"

 },

 "storageAccount": {

 �"deploymentName": "[concat('sadeployment', parameters('environment

Name'))]",

 "deploymentType": "Standard_LRS"

 },

 "serviceBus": {

 �"namespace": "[concat('sb-deployment-', parameters('environmentName'),

'-', uniqueString(resourceGroup().id))]"

 },

 "serviceBusQueue": {

 "name": "[concat(variables('serviceBus').namespace, '/messages')]"

 },

 "serviceBusAuthRule": {

 �"listenSendAccessKeyName": "[concat(variables('serviceBus').

namespace, '/ListenSend')]"

 },

 "appServicePlan": {

 �"deploymentName": "[concat('asp-deployment-', parameters('environment

Name'))]",

 "sku": "F1"

 },

 "webApp": {

 �"deploymentName": "[concat('wa-deployment-', parameters

('environmentName'), '-', uniqueString(resourceGroup().id))]"

 }

 },

Chapter 12 Deployment

483

 "resources": [

 {

 "type": "Microsoft.ServiceBus/namespaces",

 "sku": {

 "name": "Basic",

 "tier": "Basic"

 },

 "kind": "Messaging",

 "name": "[variables('serviceBus').nameSpace]",

 "apiVersion": "2015-08-01",

 "location": "[resourceGroup().location]",

 "tags": {

 "displayName": "sb-deployment"

 },

 "properties": {

 �"serviceBusEndpoint": "[concat('https://', variables('serviceBus').

nameSpace,'.servicebus.windows.net:443/')]"

 },

 "dependsOn": []

 },

 {

 "type": "Microsoft.ServiceBus/namespaces/AuthorizationRules",

 "name": "[variables('serviceBusAuthRule').listenSendAccessKeyName]",

 "apiVersion": "2015-08-01",

 "properties": {

 "rights": [

 "Listen",

 "Send",

 "Manage"

]

 },

 "tags": {

 "displayName": "sb-deployment: sendListen"

 },

Chapter 12 Deployment

www.allitebooks.com

http://www.allitebooks.org

484

 "dependsOn": [

 "�[resourceId('Microsoft.ServiceBus/namespaces', variables('serviceBus').

namespace)]"

]

 },

 {

 "type": "Microsoft.ServiceBus/namespaces/queues",

 "name": "[variables('serviceBusQueue').name]",

 "apiVersion": "2015-08-01",

 "location": "[resourceGroup().location]",

 "properties": {

 "defaultMessageTimeToLive": "14.00:00:00"

 },

 "tags": {

 "displayName": "sb-deployment: queue"

 },

 "dependsOn": [

 �"[resourceId('Microsoft.ServiceBus/namespaces',

variables('serviceBus').namespace)]"

]

 },

 {

 "name": "[variables('sqlserver').deploymentName]",

 "type": "Microsoft.Sql/servers",

 "location": "[resourceGroup().location]",

 "apiVersion": "2014-04-01-preview",

 "dependsOn": [],

 "tags": {

 "displayName": "sqlserver-deployment"

 },

 "properties": {

 "administratorLogin": "[variables('sqlServer').adminLogin]",

 "administratorLoginPassword": "[parameters('sqlServerAdminPassword')]"

 },

Chapter 12 Deployment

485

 "resources": [

 {

 "name": "AllowAllWindowsAzureIps",

 "type": "firewallrules",

 "location": "[resourceGroup().location]",

 "apiVersion": "2014-04-01-preview",

 "dependsOn": [

 "[resourceId('Microsoft.Sql/servers',

 variables('sqlserver').deploymentName)]"

],

 "properties": {

 "startIpAddress": "0.0.0.0",

 "endIpAddress": "0.0.0.0"

 }

 },

 {

 "name": "[variables('sqldb').deploymentName]",

 "type": "databases",

 "location": "[resourceGroup().location]",

 "apiVersion": "2014-04-01-preview",

 "dependsOn": [

 "[resourceId('Microsoft.Sql/servers',

 variables('sqlserver').deploymentName)]"

],

 "tags": {

 "displayName": "sqldb-deployment"

 },

 "properties": {

 "collation": "[variables('sqldb').collation]",

 "edition": "[variables('sqldb').edition]",

 "maxSizeBytes": "1073741824",

 �"requestedServiceObjectiveName": "[variables('sqldb').

serviceObjective]"

 }

 }

]

Chapter 12 Deployment

www.allitebooks.com

http://www.allitebooks.org

486

 },

 {

 "name": "[variables('storageAccount').deploymentName]",

 "type": "Microsoft.Storage/storageAccounts",

 "location": "[resourceGroup().location]",

 "apiVersion": "2016-01-01",

 "sku": {

 "name": "[variables('storageAccount').deploymentType]"

 },

 "dependsOn": [],

 "tags": {

 "displayName": "sadeployment"

 },

 "kind": "Storage"

 },

 {

 "name": "[variables('appServicePlan').deploymentName]",

 "type": "Microsoft.Web/serverfarms",

 "location": "[resourceGroup().location]",

 "apiVersion": "2015-08-01",

 "sku": {

 "name": "[variables('appServicePlan').sku]"

 },

 "dependsOn": [],

 "tags": {

 "displayName": "asp-deployment"

 },

 "properties": {

 "name": "[variables('appServicePlan').deploymentName]",

 "numberOfWorkers": 1

 }

 },

Chapter 12 Deployment

487

 {

 "name": "[variables('webApp').deploymentName]",

 "type": "Microsoft.Web/sites",

 "location": "[resourceGroup().location]",

 "apiVersion": "2015-08-01",

 "dependsOn": [

 �"[resourceId('Microsoft.Web/serverfarms', variables

('appServicePlan').deploymentName)]"

],

 "tags": {

 �"[concat('hidden-related:', resourceId('Microsoft.Web/serverfarms',

variables('appServicePlan').deploymentName))]": "Resource",

 "displayName": "wa-deployment"

 },

 "properties": {

 "name": "[variables('webApp').deploymentName]",

 �"serverFarmId": "[resourceId('Microsoft.Web/serverfarms',

variables('appServicePlan').deploymentName)]",

 "siteConfig": {

 "connectionStrings": [

 {

 "name": "DeploymentContext",

 "connectionString": "[concat('Server=tcp:',

variables('sqlServer').deploymentName, '.database.windows.net,1433;Initial

Catalog=', variables('sqldb').deploymentName, ';Persist Security

Info=False;User ID=', variables('sqlServer').adminLogin, ';Password=', para

meters('sqlServerAdminPassword'), ';MultipleActiveResultSets=False;Encrypt=

True;TrustServerCertificate=False;Connection Timeout=30;')]",

 "type": 2

 }

]

 }

 },

Chapter 12 Deployment

www.allitebooks.com

http://www.allitebooks.org

488

 "resources": [

 {

 "name": "appsettings",

 "type": "config",

 "apiVersion": "2015-08-01",

 "dependsOn": [

 �"[resourceId('Microsoft.Web/sites', variables('webApp').

deploymentName)]",

 "[resourceId('Microsoft.Storage/storageAccounts',

 variables('storageAccount').deploymentName)]"

],

 "tags": {

 "displayName": "appSettings"

 },

 "properties": {

 �"ServiceBusConnectionString": "[listKeys('ListenSend',

'2015-08-01').primaryConnectionString]",

 �"AzureWebJobsDashboard": "[Concat('DefaultEndpointsProtocol

=https;AccountName=',variables('storageAccount').deployment

Name,';AccountKey=',listKeys(resourceId('Microsoft.Storage/

storageAccounts', variables('storageAccount').deploymentName),

providers('Microsoft.Storage', 'storageAccounts').

apiVersions[0]).keys[0].value)]",

 �"AzureWebJobsStorage": "[Concat('DefaultEndpointsProtocol=

https;AccountName=',variables('storageAccount').deployment

Name,';AccountKey=',listKeys(resourceId('Microsoft.Storage/

storageAccounts', variables('storageAccount').deploymentName),

providers('Microsoft.Storage', 'storageAccounts').

apiVersions[0]).keys[0].value)]"

 }

 }

]

 }

],

Chapter 12 Deployment

489

 "outputs": {

 "appServiceName": {

 "type": "string",

 "value": "[variables('webApp').deploymentName]"

 },

 "sqlServerName": {

 "type": "string",

 �"value": "[concat(variables('sqlserver').deploymentName, '.database.

windows.net')]"

 },

 "sqlDatabaseName": {

 "type": "string",

 "value": "[variables('sqldb').deploymentName]"

 }

 }

}

If you deploy this template with the environmentName parameter set to "staging"

and then navigate to the resource group that you deployed to, you should see all

resources listed (Figure 12-13). This confirms that our template works as expected.

Figure 12-13.  After navigating to the rg-deployment-staging resource group in the
Azure Portal, we can see all resources that were deployed using our ARM template

Chapter 12 Deployment

www.allitebooks.com

http://www.allitebooks.org

490

�Creating a Production Environment
Now that we’ve deployed our staging environment using an ARM template, let’s create a

duplicate production environment.

	 1.	 Open the azuredeploy.parameters.json file and change

the environmentName parameter value from "staging" to

"production".

	 2.	 Next, right-click the Deployment.ARM project in the Visual Studio

Solution Explorer and select Deploy ➤ New. In the Deploy to

Resource Group dialog box, we want to create a new resource

group called rg-deployment-production. Click Deploy to initiate

the deployment. Don’t forget to open the spawned Powershell

window to reenter the SQL Server admin password.

After the deployment, log in to the Azure Portal and click through to the

rg-deployment-production management blade, then take a look at the resources that it

contains. You’ll see all of the resources defined in our template, each with an appended

-production (Figure 12-14).

Figure 12-14.  All resources in the rg-deployment-production resource group

Chapter 12 Deployment

491

�Deploying the Application
Now that we’ve got the provisioning of our Azure environments under control, it’s

time to turn our attention to deploying our actual application. In this section, we cover

three topics.

First, we talk about how we can set up configuration transforms so that our

web.config and app.config files automatically incorporate the correct settings based on

the build configuration. We close the chapter by automating the entire deployment process.

�Setting Up Build Configurations and Configuration
Transforms
We want to be able to promote our code from development to staging, and from staging

to production. However, settings like database connection strings and Azure Storage

accounts will vary from environment to environment. Manually updating these settings

in configuration files before each deployment is almost guaranteed to lead to errors over

time and is best avoided. Fortunately, we can let our build tools do the job of updating

settings in our configuration files based on our selected build configuration.

�Defining Build Configurations

Build configurations allow you to change how a solution and its projects are compiled.

You’re likely familiar with the two default solution configurations: Debug and Release.

We’re not limited to these two configurations; Visual Studio will let us define as many as

we need. With each build configuration, we have the option to create a configuration-

specific transform file for our web.config and app.config files. We’ll demonstrate

creating these transforms in the next section.

Our development environment will use the Debug build configuration. Our

production environment will use the Release build configuration. Therefore, we need

to define a new build fonfiguration called Staging, which will be used in our staging

environment. To create a new Staging build configuration, do the following:

	 1.	 In Visual Studio, click Build in the top-level menu. Click

the Configuration Manager submenu option to launch the

Configuration Manager dialog box.

Chapter 12 Deployment

www.allitebooks.com

http://www.allitebooks.org

492

	 2.	 The Configuration Manager dialog box allows you to select an

active solution configuration, and to create new configurations.

To create a new configuration, expand the Active Solution

Configuration drop-down list and select New (Figure 12-15).

Figure 12-15.  The Configuration Manager dialog box. Click New to define a new
build configuration. This opens the New Solution Configuration dialog box

	 3.	 In the New Solution Configuration dialog box, enter Staging for

the new configuration’s name, then choose to copy settings from

the existing Release configuration. Because we want the code that

we’re testing in our staging environment to mirror production as

closely as possible, we’re going to build with the same Release

settings.

We now have a Staging build configuration. Let’s create our configuration file

transforms for our web.config and app.config files.

Chapter 12 Deployment

493

�Adding a Staging Transform for Web.config

Navigate to the Deployment.Web project and locate the web.config file. You’ll notice

an arrow next to the web.config file that indicates that the menu item can be expanded.

When you click the expansion arrow, you’ll see the transform files for the Debug and

Release configurations. These are named web.Debug.config and web.Release.config,

respectively (Figure 12-16).

Figure 12-16.  Expanding the Web.config node shows the build-specific
configuration transform files

These transform files are applied at compile time. The transform used is based on

the active build configuration. To define a new transform file for a build configuration,

right-click the Web.config file and select Add Config Transform. This will add

transformation files for any build configuration that doesn’t already have one listed. You

should now see a Web.Staging.config transform file listed beneath the Web.config file.

Next, we need to populate the Web.Staging.config and Web.Release.config files

with the appropriate transforms. The syntax is simple: We’ll specify the entries that we

want transformed, then apply special transform attributes that let our compiler know

how these entries should be applied to the original web.config file. Note that we only

have to specify the entries that we want to transform. The complete Web.Staging.config

file is shown in Listing 12-15.

Listing 12-15.  The Web.Staging.config File

<?xml version="1.0"?>

<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-

Transform">

 <connectionStrings>

 <add name="DeploymentContext" connectionString="[Your Staging database

Chapter 12 Deployment

www.allitebooks.com

http://www.allitebooks.org

494

 connection string]"providerName="System.Data.SqlClient"

 xdt:Transform="SetAttributes" xdt:Locator="Match(name)"/>

 </connectionStrings>

 <appSettings>

 <add key="ServiceBusConnectionString" value="[Your Staging Service Bus

 Connection String]" xdt:Transform="SetAttributes"

xdt:Locator="Match(name)"/>

 </appSettings>

 <system.web>

 <compilation xdt:Transform="RemoveAttributes(debug)"/>

 </system.web>

</configuration>

The values for DeploymentContext and ServiceBusConnectionString will vary

depending on the password that you chose for your staging database, and the SAS key

generated for your Service Bus’s authorization rule. You can retrieve both values from

the Portal.

The Web.Release.config file looks exactly the same as the Web.Stagin.config

file, with the exception that you must swap the DeploymentContext and

ServiceBusConnectionString values with those used in your release environment.

�Transforming the Deployment.WebJob’s App.config

Visual Studio 2015 doesn’t yet have support for adding configuration transforms to

app.config files, so we’ll need to install additional tooling. I recommend adding the

SlowCheetah XML Transforms package to do so. It can be downloaded and installed

from the Visual Studio Marketplace at https://marketplace.visualstudio.com/items?

itemName=VisualStudioProductTeam.SlowCheetah-XMLTransforms.

Once it is installed, simply right-click the app.config file in the Deployment.

WebJobs project, then select Add Transform. Transform files will be added for each build

configuration.

You’ll then need to update settings within the app.staging.config and

app.release.config files based on each environment. The transform file for

app.staging.config is shown in Listing 12-16.

Chapter 12 Deployment

https://marketplace.visualstudio.com/items?itemName=VisualStudioProductTeam.SlowCheetah-XMLTransforms
https://marketplace.visualstudio.com/items?itemName=VisualStudioProductTeam.SlowCheetah-XMLTransforms

495

Listing 12-16.  The app.staging.config File

<?xml version="1.0" encoding="utf-8" ?>

<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-

Transform">

 <connectionStrings>

 <add name="AzureWebJobsDashboard" connectionString="[Staging storage

 account connection string]" xdt:Transform="SetAttributes"

 xdt:Locator="Match(name)"/>

 <add name="AzureWebJobsStorage" connectionString="[Staging storage account

 �connection string]" xdt:Transform="SetAttributes"

xdt:Locator="Match(name)"/>

 <add name="AzureWebJobsServiceBus" connectionString="[Staging Service Bus

 �connection string]" xdt:Transform="SetAttributes"

xdt:Locator="Match(name)"/>

 �<add name="DeploymentContext" connectionString="[Staging database

connection string]"

 providerName="System.Data.SqlClient" xdt:Transform="SetAttributes"

 xdt:Locator="Match(name)"/>

 </connectionStrings>

</configuration>

�Building and Deploying with Visual Studio Team Services
Visual Studio Team Services (VSTS) is an online platform for source control, project

management, load testing, build, and release. VSTS is free for small teams of up to five

developers. You might recall that we used VSTS for load testing our Web Apps in

Chapter 2. If you haven’t already signed up for an account, you can do so at

https://www.visualstudio.com/team-services/.

�Setting Up VSTS

After signing up and logging in for the first time, you’ll be prompted to name your

VSTS account, your first project name, and the type of repository you’d like to use

(Figure 12-17). Enter a name of your choice, enter your desired project name, select Git,

and then click Continue.

Chapter 12 Deployment

www.allitebooks.com

https://www.visualstudio.com/team-services/
https://www.visualstudio.com/team-services/
http://www.allitebooks.org

496

Figure 12-17.  The initial setup screen in VSTS

Next, we’ll need to push code to our project’s Git repository. When we set up our

automated build process, the initial step will be to check out all source from our Git repo.

Click Code in the top toolbar. You’ll see the project’s Git repo details and can import

code using your favorite method. After importing code into the repo, we’re ready to move

on to defining our automated build.

Chapter 12 Deployment

497

�How VSTS Build Works

The build process begins when you define a build. A build definition is a chain of build

tasks that are executed sequentially to create and deploy an application. There are many

different tasks available in VSTS’s build tool. If there’s not a task that meets your needs,

there are provisions for writing your own.

Builds can be triggered manually, or they can be launched in response to a code

check-in on a specific branch in a repository. Launching in response to a code check-

in allows you to set up continuous integration to automatically deploy to a staging

environment.

The VSTS build tool has other incredibly useful features, such as automating the

execution of unit tests and e-mailing interested parties when any part of a build fails.

Now that we’ve hit the highlights, let’s dive into the specifics using our example

application.

�Defining a Build in VSTS

We start by creating our build definition.

	 1.	 In VSTS, click Build & Release on the top menu bar. This will

take you to a listing of all of your build definitions for the current

project. Click New to create a new definition.

	 2.	 You’ll now be taken to a template selection page (Figure 12-18).

There are several templates to choose from, each with a different

arrangement of build tasks. If you choose a template, you’ll be

able to edit, add, and delete tasks as needed. For this example,

click the link to start with an empty process.

Chapter 12 Deployment

www.allitebooks.com

http://www.allitebooks.org

498

Figure 12-19.  The Edit Build page

Figure 12-18.  The build template selection page

�Build Task: Pulling Source from the Repository

After choosing a template or electing to start with an empty process, you’ll be navigated

to the Edit Build page (Figure 12-19). Let’s start by renaming our build definition from

the default name of Deployment-CI to something more meaningful, like Deployment-

Staging. After renaming, let’s configure our first task, which is to pull in source from

the correct branch in our Git repository. We’ll then initiate a build to see how the build

process works.

Chapter 12 Deployment

499

	 1.	 You’ll see that the first and only task in our build is the Get

Sources task. This allows us to specify the repo and branch where

VSTS should pull from. Click it and verify that we’re pulling from

This Project, the correct repository, and the branch of your choice.

Note that if you prefer to host your Git repository elsewhere, you

are still able to do so.

	 2.	 At this point, we have a build defined, even though it only has

one step. Click Save & Queue to save the definition. This will also

queue a build. Queueing a build places the build in a task queue,

where it will be picked up by a hosted agent to execute. As the

build executes, you’ll see status echoed to the console within the

browser. After the build completes, you’ll see a message showing

that the build was successful or that the build failed (Figure 12-20).

Figure 12-20.  The console echoes the output from build tasks as they execute.
When the build is complete, a message will indicate if the build was successful or
failed.

Chapter 12 Deployment

www.allitebooks.com

http://www.allitebooks.org

500

If the build failed, then it’s time to click the Logs link next to the

console and start the debugging process based on the output.

Now that we’ve proven that we can execute the build, click Edit

Build Definition to return to our Edit Build page.

�Build Tasks: Restoring NuGet Packages

We’ve successfully pulled the latest source on the desired branch to our build server.

Before we can actually compile, we need to make sure that all of the necessary NuGet

packages are present. This involves adding a NuGet Restore task to our build definition.

	 1.	 Click Add Task at the bottom of our tasks lists. This opens a list of

all tasks in VSTS in the right pane. On the All tab, scroll down until

you find the NuGet Restore task, then click Add (Figure 12-21).

Figure 12-21.  Adding a NuGet Restore task to the build definition.

	 2.	 After adding the NuGet Restore task, we still need to configure

it. Select the package in the list of Build tasks to bring up its

properties.

In our case, all of the default properties are fine. The default values

instruct the task to restore NuGet packages for all projects in the solution.

Chapter 12 Deployment

501

	 3.	 Click Save & Queue to launch a new build to ensure that we

haven’t broken anything. During the build, you should see NuGet

restore statements echoed to the console.

�Build Tasks: Building the Solution

We have source pulled to the build server and all NuGet packages are restored. Now it’s

time to actually build the application.

To build, we’ll use the Visual Studio Build Solution Task. To add and configure it, do

the following:

	 1.	 Click Add Task to open a list of all available tasks. You’ll find the

Visual Studio Build task on the Build tab. Click Add to add it to the

solution.

	 2.	 Select the new Build Solution task in the left pane to bring up

its configuration options. We’ll need to change the MSBuild

Arguments setting to the following:

/p:DeployOnBuild=true

/p:WebPublishMethod=Package /p:SkipInvalidConfigurations=true

/p:PackageLocation="$(build.artifactstagingdirectory)\\"

This instructs the build task that we want to create a web deploy

package and place it in the artifacts staging directory. A task that

we’ll add later in the build process will pick up the package and

deploy it to Azure.

	 3.	 Click Save & Queue to launch a new build. You should see

MSBuild output in the console window when the Build Solution

task executes.

�Build Tasks: Deploy ARM Template

We have our build successfully defined that packages code for deployment. Now we just

need a place to deploy. We’ll provision our Azure resources using the ARM template

that we created in the Deployment.ARM project. We’ll use an Azure Resource Group

Deployment build task to do so.

Chapter 12 Deployment

www.allitebooks.com

http://www.allitebooks.org

502

Here’s where the magic happens: We can deploy our ARM template with every

single build. If all resources already exist and have the appropriate settings, nothing in

our target Azure environment will change. If resources defined in the ARM template

are missing, however, they’ll be provisioned. If settings differ from what’s defined in the

ARM template, they’ll be updated. This ensures that every time, we’re deploying to the

environment that we expect.

To set up the Azure Resource Group Deployment task, do the following:

	 1.	 Click Add Task. The Azure Resource Group Deployment task is

located on the Deploy tab. Add the task to the build definition.

	 2.	 Click the newly added task to configure it. We’ll need to update

the following settings:

•	 Display Name: Let’s set this to Deploy ARM Template because the

default name is both wordy and uninspiring.

•	 Azure Subscription: Using the drop-down list, choose the Azure

subscription you’d like to use when deploying resources.

•	 Action: Leave the default setting, which is Create or Update

Resource Group.

•	 Resource Group: Type the name of the resource group you’d like to

deploy to. For this exercise, please enter rg-deployment-staging.

If this resource group doesn’t exist, it will be created.

•	 Location: Choose the region you’d like to deploy to. I recommend

choosing the one closest to you to reduce network latency.

•	 Template Location: Select Linked Artifact. This will allow you to

browse for the template within your code base. The other option

is to specify a URL where the template can be found. This is useful

if you’re making use of a gallery template that can be reached via

a URL.

•	 Template: Because you selected Linked Artifact for the template

location, you can click Browse to the right of this text field to

browse to the azuredeploy.json file located in the Deployment.

ARM project.

Chapter 12 Deployment

503

•	 Template Parameters: Click Browse and navigate to the

azuredeploy.parameters.json file located in the

Deployment.ARM folder.

•	 Override Template Parameters: This gives us the option to

supersede any default parameter values or values defined in the

parameters file. Enter the following in this text field:

sqlServerAdminPassword [Your SQL Server Password]

-environmentName staging

When done, click Save & Queue to save and initiate a deployment.

After the deployment completes successfully, you can log into the

Azure Portal and see all resources that were provisioned to the

rg-deployment-staging resource group.

When creating a build definition, it’s sometimes useful to disable

long-running tasks such as this. You can right-click any task and

select Disable Selected Task(s) from the shortcut menu to prevent

this task from executing each time. Don’t forget to enable it when

you’ve finished defining the build.

�Build Tasks: Copy Files Between Directories

When VSTS builds our application, output is written to the $(System.

DefaultWorkingDirectory) directory. Because we are using a DACPAC to deploy our

database to SQL Azure, we will need to use an Azure SQL Database Deployment task to

do so. The problem is that the Azure SQL Database Deployment task doesn’t have access

to read the $(System.DefaultWorkingDirectory). We’re going to need to move our

DACPAC file to a directory that our Azure SQL Database Deployment task can read.

To add a new Copy Files task, do the following:

	 1.	 Click Add Task, and select the Copy Files task. The Copy Files task

is located under the Utility heading.

	 2.	 Click your new Copy Files task to configure it. The necessary fields

are as follows:

•	 Display Name: The display name should be something

descriptive, such as Copy DACPAC to Staging Directory.

Chapter 12 Deployment

www.allitebooks.com

http://www.allitebooks.org

504

•	 Source Folder: Our source folder is

$(System.DefaultWorkingDirectory). This is where the

DACPAC build files will be placed.

•	 Contents: Enter **\Deployment.Database.dacpac. The double

asterisk instructs the task to copy all files in the source folder, as

well as the files in all subfolders. This will ensure that we grab the

DACPAC file needed.

•	 Target Folder: The target folder should be $(build.

artifactstagingdirectory). The upcoming Azure SQL

Database Deployment will be able to read this folder.

�Build Tasks: Azure SQL Database Deployment

The Azure SQL Database Deployment task will deploy the DACPAC contents to the

specified Azure SQL Database instance. The DACPAC file must be in a directory that is

accessible to the task.

To add an Azure SQL Database Deployment task, do the following:

	 1.	 Click Add Task, then select the Azure SQL Database Deployment

task located under the Deploy heading.

	 2.	 Configure the Azure SQL Database Deployment task as follows:

•	 Display Name: Name the task something descriptive, such as

Deploy DACPAC.

•	 Azure Connection Type: Set to Azure Resource Manager.

•	 Azure Subscription: Select the subscription that will contain the

Azure SQL Database.

•	 Azure SQL Server Name: Enter the full name of the Azure SQL

Server that hosts your Azure SQL database. You can find this after

deploying the ARM template for the first time.

•	 Database Name: This is the name of the database that the

DACPAC should be deployed to.

Chapter 12 Deployment

505

•	 Server Admin Login: The administrative username for your Azure

SQL Server instance.

•	 Password: The password for the aforementioned Server Admin

Login.

�Build Tasks: Deploy Web App to Azure

Our Visual Studio Build task compiled and packaged our source code, then copied it to

an artifact staging directory. The package is ready to be picked up and deployed to an

Azure Web App. To handle the deployment, we’ll use the Azure App Service Deploy task.

	 1.	 Click Add Task to open the list of available tasks. On the Deploy

tab, select the Azure App Service Deploy task and add it to the

build definition.

	 2.	 Please update the properties for this task as follows:

•	 Display Name: Enter something meaningful, such as Deploy Web

Application.

•	 Azure Subscription: Using the drop-down list, select the

subscription that contains the App Service where the web app

will be deployed.

•	 App Service Name: Select the App Service where our web

application will be deployed. For this example, please choose

wa-deployment-staging.

•	 Package or Folder: This tells the task where it can find the package

to be deployed. If you’ll recall, in the Visual Studio Build task

we specified the web package output directory as $(build.

artifactstagingdirectory). Therefore, set the value of this field

to $(build.artifactstagingdirectory)/Deployment.Web.zip.

All other fields can be left blank or use the default values.

	 3.	 Click Save & Queue to save this new task and launch a build. After

the build successfully completes, you will be able to browse to

your web app’s staging directory to see the published application.

Chapter 12 Deployment

www.allitebooks.com

http://www.allitebooks.org

506

�Putting It All Together
Last but not least, we need to update our web.config file in the Deployment.Web project

with the appropriate database connection string and Service Bus connection string. We

also must update our Deployment.WebJob’s app.config file to point to the appropriate

storage account for the AzureWebJobsDashboard and AzureWebJobsStorage settings.

Make sure you also set the database connection string and Service Bus connection string

as well. Commit these changes to your Git repository to trigger a new build.

If all goes as expected, your entire VSTS build process should run successfully. If you

navigate to your Web App’s address, you should see the index page for our application

(Figure 12-22).

Figure 12-22.  Our Deployment application was successfully deployed to our
provisioned Web App

�Summary
In this chapter, we’ve covered deployment best practices, MS Build configurations, ARM

templates, deploying infrastructure using an ARM template from Visual Studio, and how

to set up an automated deployment with Visual Studio Team Services build tools.

Chapter 12 Deployment

507
© Rob Reagan 2018
R. Reagan, Web Applications on Azure, https://doi.org/10.1007/978-1-4842-2976-7

Index

A
Abandon() method, 347
Apple Macbook Pro, 293
Application

events, 425
Insights, 40
log, 420, 421

ARR Affinity, 48
ASP.NET MVC 5 web

application, 418
ASP.NET Web Application, 82–83
Auto Heal, 429–431
Azure

data storage (see Data storage)
SDK, 4

Azure Resource Group Project
ARM template, 477, 479–480
completed template, 481–483,

485–486, 488–489
creation, 468–470
production environment, 490
Service Bus resources, 480
SQL Server

Add Resource dialog, 471
ARM template, 470
definition, 470, 472–473
parameters, 473–474

Visual Studio, 474–476
Azure Resource Management

(ARM), 445

Azure SQL Database
alert rules, setting, 129
backups and restores

configuration, 124
point in time, 125
Restore blade, 125–126
Restore link, 125

benefits, 78–80
database schema

AdditionalComments, 122–123
migration, 122
Update-Database

command, 123–124
deployment

connect to new instance, 114
firewall rules, 111–112
instance creation, 109

Entity Framework Code First
Migrations

ASP.NET Identity tables, 121
Down() Migrations, 117–118, 120
existing database schema, 115–116
Generated Code First

Up(), 117–118, 120
tool, 114
Up() method, 122
Update Seed Method, 120–121

Geo-replication
disaster recovery, 134
offload reporting, 134

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-2976-7
http://www.allitebooks.org

508

secondary replicas, 136–137
TaskZilla database, 134–136
web application migration, 134

licensing
DTU limit, 81
service tiers, 80
single database vs. elastic pool, 81

performance tuning
automating, 132–133
Performance Recommendations,

131–132
Query Performance Insight, 133

publish and rollback migrations, 124
scale up, 130–131
stand-alone server, 78
TaskZilla

ASP.NET Identity tables, 85–86
CRUD operations, 82
entity framework, 90–93
execution, 107–108
HomeController class, 107
project creation, 82–84
requirements, 84–85
Tasks and Priorities tables, 87, 89
TaskService class creation, 97
transient faults, 89
view model, 94

Azure Storage Queues, 348–349
Azure subscription

free trial membership, 13–15
purchasing a new subscription, 16
upgrading, 15–16

Azure Table Storage
Azure Storage Client Library, 143
batching, 141
design guidelines, 144–145

entity, 139
local storage emulator, 143
partitions, 141
premium, 182
pricing, 185
REST API, 142
Restaurant Finder

Azure SDK, 160
Azure Storage Explorer, 162
connection string, 184
data class, 151
data service class, 156
data storage design, 146–147
Delete method, 178–179
dependency injection, 157
ETag property, 174–175
full table scan query, 172
HomeController.cs Class, 159
Merge method, 175
Our InitializeData.cshtml

view, 160
partition range scan query, 171
point queries, 165
project setting, 147–148, 156–157
provisioning, 179–184
replace operation, 176
requirements, 145–146
RestaurantData

Controller.cs, 158–159
row range scan queries, 168

Restaurants table, 140
transaction support, 141
types of queries, 141–142

B
Blob storage, 182

Azure SQL Database (cont.)

Index

509

C
Chrome DevTools, 390
Cloud-based service, 2
Comma-separated value (CSV) format, 161
Compute-on-demand service, 2
Content distribution network (CDN), 400

benefits, 401
BundleConfig.cs file, 409–411
CDNHelper.cs file, 413–414
CDNHostName and UseCDN

variables, 411
configuration blade, 406
creation, 402
index.cshtml file, 401
name, 403
origin host header, 406
origin hostname, 405
origin path, 406
origin type, 405
Premium Verizon, 404
pricing tier, 404
profile, 403
resource group, 404
ScriptBundle and StyleBundle

classes, 408
service, 402
Standard Akamai, 404
Standard Verizon, 404
subscription, 403
web.config file, 412

Cosmos DB
account creation, 249
account overview blade, 251
automatic indexing, 188
Congo

DocumentDB Data
Migration Tool, 210

documents importing, 211–212
home page, 233
initial data, 209
model classes, 218
new review creation, 245
product details page, 237
product editing, 239
project and solution, 214
requirements, 190
review deletion, 248
review retrieving, 242
Target Information screen, 210–211
tech stack, 190
view model classes, 219

database and collection, 252–254
data modeling

collections, 200
design goals, 194
document schemas, 197
partition keys, 197

Emulator
Collection drawer, 203
developing Congo, 203
installation, 202
interface, 202, 204

global scale, 188
limitless storage, 189
limitless throughput, 189
multi-model support, 188
new account creation, 250
NoSQL, 188
partitions, 193
querying tables, 212
resource model, 191–192
scaling, 254–255

Create, read, update, and delete (CRUD)
operations, 82

CSS object model (CSSOM), 389

Index

www.allitebooks.com

http://www.allitebooks.org

510

D
Database transaction units (DTUs), 35
Data storage

analytics, 63
Cosmos DB, 73

access data, 76
denormalized data, 74
lack of normalization, 74
LINQ SQL statements, 75
pricing, 75
querying, 74
retrieval times, 74
scaling, 75

NoSQL
Azure Table Storage, 71–72
Redis Cache, 69–70

persisted data, 62
relational database (see Relational

database)
session data, 62

Deadletter() method, 347
DeleteReview method, 248
Dependency injection, 30
Deployment

ARM templates
App Service Plan, 446–448
downloading, 452–455
gallery template, 456
outputs, 451
parameters, 448
resource, 446, 449–451
variables, 449
Visual Studio, 456–457

automation, 445
Azure Resource Group Project

(see Azure Resource Group
Project)

build configurations
app.staging.config, 494–495
ARM template, 502–503
Azure App Service Deploy task, 505
Azure SQL Database, 504–505
Copy Files task, 503–504
definition, 491–492
Edit Build page, 498
index page, 506
NuGet Restore task, 500–501
output, 499
Visual Studio Build Solution

Task, 501
VSTS, 495, 497–498
web.config file, 493–494

model, 181
multistep deployments, 444
prevent environment drift, 445
production and staging

environments, 443
proper code promotion strategy, 444
web application

ASP.NET MVC project, 461
data accessing, 459–460
database creation, 458–459
Entity Framework, 464
HomeController class, 462–464
message history page, 461
MessageModel Class, 462
Service Bus queue, 462
WebJob, 465, 467

Diagnostics-as-a-service (DaaS), 416, 423
Domain Name System (DNS), 388

E
eDTUs, 81
Enterprise Aagreements (EAs), 17

Index

511

F
Failed Request Tracing logs

(FREB logs), 426–429
Failover groups, 79
File Transfer Protocol (FTP), 336
First-in-first-out (FIFO), 343

G
Geo-redundant storage (GRS), 183, 455
Geo-replication, 79
Globally Redundant Storage

(GRS), 72
Google Pixel phone, 283
Google’s PageSpeed toolset, 389
GZip compression, 395

H
HomeController class, 462–464

I
Infrastructure-as-a-Service

(IaaS), 2–3
InitializeData method, 151
Internet Information Services (IIS), 3
Internet Protocol (IP), 36
Inversion of control, 29
IPersonService, 26–29
IRestaurantService.cs, 151
IServiceCollection.Configure<TResult>

method, 157

J
JSON document, 192

K
Kudu application, 415

L
Licensing

DTU limit, 81
service tiers, 80
single database vs. elastic pool, 81

Local area network (LAN), 89
Locally-redundant storage (LRS), 72, 182
Logical partitions, 193

M
Messaging queues

benefits of, 345–346
build web applications

AzureWebJobsServiceBus
connection string, 377

functions class, 378
NuGet package management

screen, 376
ProcessQueueMessage

method, 379
ServiceBusQueue.WebJob, 376, 378
ServiceBusTriggerAttribute

class, 375, 379
WebJob’s app.config file, 377
WebJob’s console window, 380

message locks, 344
MVC web application, 343
QueueDemo (see QueueDemo)
read and dequeue, 344
receiver process, 343
sender process, 344
types of, 346–349

Index

www.allitebooks.com

http://www.allitebooks.org

512

Microsoft Azure Storage Explorer, 12
__MigrationHistory, 121

N
Normalization, 65
NuGet package, 148

O
OnMessage Async method, 366
Operating system (OS), 2

P
Partition keys, 197
Platform-as-a-Service (PaaS), 2–3
Point queries, 142
Pricing tier, 110, 285
Primary key, 65

Q
QueueDemo

provisioning new Service Bus
resource, 349–353

sender console application
abandoning message lock, 372–373
async version, 360
BrokeredMessage’s Complete()

method, 367
BrokeredMessage’s DeadLetter(), 373
CreateMessageReceiverAsync

method, 366
DeadLetterAsync() methods, 373
message lock timeout, 369–371
MessagingFactory’s sendAsync

method, 359

OnMessage Async method, 366
OnMessageAsync’s anonymous

method, 367
QueueMessage class, 355
queue message receiver

code, 363–365
RootManageShared

AccessKey, 355–356
scaling out, 374
Service Bus connection string, 355
Service Bus Explorer, 360–362
Service Bus Queue Message

Receiver testing, 367–369
ServiceBusQueue.Sender console

application, 360
ServiceBusQueue.Sender’s app.

config file, 356
ServiceBusQueue.Sender’s

Program.cs file, 357–359
Service Bus’s demoqueue message

queue, 362

R
Read-access geo-redundant storage

(RA-GRS), 72, 183
ReceivedMessage class, 460
Redis Cache, 12

Cache Aside pattern, 259
client library, 260
Connect to Redis Server, 296–297
multiple caches, 299
scaling out, 299
scaling up, 299
TechStore (see TechStore)
view contents, 297–298
Web App information retrieve, 258

Index

513

Redis Desktop Manager (RDM), 295
Relational database

Azure SQL
billing, 66
NoSQL options, 68
performance power, 66
scaling up, 67
sharding, 67
throttling, 66

design, 65
Employees, 63
indexes, 64
MySQL and PostgreSQL, 68
Phone Number column, 63
primary key, 64
SQL, 64

Resource groups, 109
RestaurantService class, 152–155

S
Service Bus queues, 346–348
Social Security number (SSN), 20
SQL Server 2016 Express Edition

Azure regional data center, 4
Database Engine Configuration, 11
Feature Selection, 7–8
installation rule check, 6–7
installation type, 5–6
Instance Configuration, 8
license terms, 7
local machine, 4
Server Configuration, 10

SQL Server Management Studio
(SSMS), 12, 114

Storage service encryption (SSE), 183
Structured query language (SQL), 64

T, U
TechStore

add connection string, 286
add Entity Framework, 268–270
add view models, 271–273
creation controller and views, 278–282
database creation

database schema, 262
products table, 264
publish database dialog box, 265
specifications table, 264
SQL server database project, 263
test data, 266–268

edit product page, 260
full cache, 294–295
home page, 260
modified ProductService class, 286–293
product details page, 260
project creation, 261
resource creation, 284–285
running application, 282–283
service layer, 274–278
setting time-to-live, 295
stale cache records, 294

Throttling, 66
Transparent data encryption (TDE), 79
Troubleshooting web applications

Application events, 425
Application Insights, 417–418

alerts, 438–439, 441
debugging exceptions, 434, 436–438
installing, 432–434

Application log, 420–422
ASP.NET MVC 5 web application, 418
Auto Heal, 429–431
DaaS, 423–424

Index

www.allitebooks.com

http://www.allitebooks.org

514

FREB logs, 426–429
Kudu, 415

auto-heal, 416
DaaS, 416
debug console, 416
landing page, 417
log stream, 416
process explorer, 416

log stream, 425–426
web server logs

Diagnostics Logs, 418
Kudu Debug Console, 419
log files via FTP, 420
Visual Studio, 419

Turtles web application
ASP.NET Web Application, 383
Async/Await, 396
CDN (see Content distribution

network (CDN))
combineing and minifying

Application_Start() method, 394
combine JavaScript files and

CSS files, 392
minification, 395
RegisterBundles method, 393

external CSS, 399
external JavaScript file, 399, 400
GZip compression, 395
HomeController.cs code, 384
home page, 382
HTTP cache, 397–398
initial page request, 388
_Layout.cshtml file, 384–386
measuring page performance, 389–391
single-page MVC application, 381
sized and optimized images, 398–399
\Views\Home\Index.cshtml, 386

V
Visual Studio 2015 Community Edition, 3
Visual Studio Team Services (VSTS), 495

definition, 497–498
process, 497
setting up, 495–496

W, X
Web applications

app creation, 22–23
benefits, 19–20
database and person table

creation, 21–22
dependency injection, 30
deployment

app services, 39–40
Azure SQL instance, 36
Connection screen, 43
Preview screen, 43
publish profile, 42
Settings screen, 43
verification, 38

Entity Framework
connectivity issues, 24
DbContext class, 25–26
Entity Framework 6.x/Core, 25
NuGet packages, 25

front-end controllers, 32
load testing

creation, 52–54
performance metrics, 58
results screen, 55–57
running load test, 55

scaling
App Service plan, 45
ARR Affinity, 48
auto-scale, 50–51

Troubleshooting web applications (cont.)

Index

515

intelligent use of threads, 44–45
limits on scaling out, 51
management blade, 49
options, 48
scaling up, 46–47

service layer creation, 26
settings, 29
SQL Server Database projects, 23–24
SSN, 20

WebJobs, 465, 467
add ASP.NET Core Web

Application, 308–310
add new Class Library, 311
app.config file, 307
appsettings.json file, 319
Blob updates, 302
Cloud, monitoring in, 339–341
creation, 304–306
ErrorTrigger, 303
ErrorTriggerAttribute, 331–334
FileTrigger, 303
FTP, 336–337
Functions.cs file, 306
HomeController class code, 317–319
hosting requirements, 335
IStorageQueueService.cs interface, 313
JobHost class, 307
new Service Bus Queue message, 302
new Storage Blob, 302
new Storage Queue message, 302, 303
ProcessQueueMessage

method, 302, 307
publishing via Visual Studio, 338–339
QueueMessage.cs class, 312
QueueMessageViewModel class, 316
QueueService.cs class, 314–315

running application
ChronSchedule, 329
chrontab expression, 326, 328
clicking queue message, 322
Complex TimerTrigger

Schedule, 329–330
ConstantSchedule, 329
DailySchedule, 329
QueueTrigger, 322
ScheduledMethodUsing

ChronExpression method, 328
set schedule, 325
solution’s properties

dialog box, 323
Storage Queue, 321
TimerDailySchedule subclass, 331
Timespan expression, 326, 327
WebJob console, 324
WeeklySchedule, 329

scheduled, 302
startup.cs’s ConfigureServices

method, 320
StorageQueueService.cs, 313
TimerTrigger, 303
TwilioTrigger, 303

Web.Release.config file, 494
Web.Staging.config file, 493

Y
Yahoo’s yslow.org, 389

Z
Zero downtime, 79
Zone-redundant storage (ZRS), 182

Index

www.allitebooks.com

http://www.allitebooks.org

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introducing Azure
	 What Is Azure?
	 Cloud-Based Compute-on-Demand Services
	 Infrastructure-as-a-Service vs. Platform-as-a-Service

	 Setting Up Your Machine for Azure Development
	 Visual Studio 2015 Community Edition
	 Azure SDK
	 SQL Server 2016 Express Edition
	 SQL Server 2016 Express Installation Walkthrough
	Step 1: Choose the Installation Type
	Step 2: Installation Rule Check
	Step 3: Agree to the License Terms
	Step 4: Feature Selection
	Step 5: Instance Configuration
	Step 6: Server Configuration
	Step 7: Database Engine Configuration
	Complete the Installation

	 SQL Server Management Studio
	 Microsoft Azure Storage Explorer
	 Redis Desktop Manager

	 Setting Up Your Azure Account
	 Free Trial
	 Purchasing an Azure Subscription
	 Upgrading a Free Trial
	 Purchasing a New Subscription Without a Free Trial

	 Enterprise Agreements
	 Purchasing an EA

	 Summary

	Chapter 2: Web Applications
	 Introducing the Verify App
	 Building the Verify Web Application
	 Creating the Database and Person Tables
	 Creating the Web Application
	 Adding a SQL Server Database Project
	 Adding Entity Framework Core to Verify.Web
	 Generating the Entity Framework DbContext and Models Classes
	 Creating the Service Layer
	 Specifying Our Application Settings
	 Setting Up Dependency Injection
	 Adding the Front-End Controllers

	 Deploying to Azure
	 Provisioning an Azure SQL Instance
	 Deploying the Verify Database
	 Creating Our App Services Web App
	 Publishing the Verify Application to Azure
	 Specify a Publish Profile
	 The Connection Screen
	 The Settings Screen
	 Preview

	 Scaling Web Apps
	 Intelligent Use of Threads
	 App Service Plans
	 Scaling Up
	 Scaling Out
	 Autoscale
	 Limits on Scaling Out
	 How to Define Autoscale Rules

	 Load Testing
	 Creating a Load Test
	 Running the Load Test
	 Viewing Load Test Results
	 Setting Appropriate Autoscale Rules

	 Summary

	Chapter 3: Azure Data Storage Overview
	 Data Storage Scenarios
	 Session Data
	 Persisted Data
	 Data Analytics

	 Relational Databases
	 Azure SQL
	 Billing
	 Performance
	 Throttling and Retry

	 Scaling Azure SQL
	 Scaling Up
	 Sharding

	 When to Use Azure SQL
	 Other Azure Relational Database Offerings

	 NoSQL Data Stores
	 Redis Cache
	 Azure Table Storage
	 When to Use Azure Table Storage

	 Cosmos DB
	 Working with Cosmos DB
	 Scaling Cosmos DB
	 Pricing
	 When to Use Cosmos DB

	 Summary

	Chapter 4: Azure SQL Databases
	 Introducing Azure SQL Database
	 Licensing
	 Single Database vs. Elastic Pool
	 Exceeding a DTU Limit

	 TaskZilla: Our Example Application
	 Creating the TaskZilla Project
	 The TaskZilla Data Model
	 Creating the ASP.NET Identity Tables
	 Creating Our Tasks and Priorities Tables

	 The Data Access Tier
	 Handling Transient Faults
	 Setting Up Entity Framework

	 The Application Tier
	 Creating the View Models
	 Creating the TaskService Class

	 Controllers and Views
	 Finishing Touches
	 Running the Application

	 Deployment to Azure
	 Creating an Azure SQL Database Instance
	 Setting Firewall Rules
	 Connecting to the New Instance

	 Deploying to Azure
	 Publishing Schema Changes
	 Rolling Back Schema Changes
	 Backup and Restore
	 Setting Up Alerts
	 Scale Up
	 Performance Tuning
	 Performance Recommendations
	 Automating Performance Tuning
	 Query Performance Insight

	 Geo-replication
	 Summary

	Chapter 5: Azure Table Storage
	 How Table Storage Works
	 Partitions
	 Transaction Support and Batching
	 Types of Queries

	 Working with Azure Table Storage
	 REST API
	 Azure Storage Client Library
	 Local Storage Emulator

	 Table Design Guidelines
	 Walkthrough: Restaurant Finder
	 Restaurant Finder Requirements
	 Designing Our Data Storage
	 Setting Up the Project
	 Creating Our Restaurant Data Class
	 The Data Service Class
	 Project Settings
	 Dependency Injection
	 Loading Demo Data with the RestaurantData Controller
	 Azure Storage Explorer
	 Point Queries
	 Row Range Scan Queries
	 Partition Range Scan Queries
	 Full Table Scan Queries
	 Editing a Restaurant
	 ETags
	 Merge
	 Replace
	 Updating a Restaurant

	 Deleting a Restaurant
	 Provisioning an Azure Storage Service
	 Using Your Azure Storage Service

	 Pricing
	 Summary

	Chapter 6: Cosmos DB
	 Introducing Cosmos DB
	 Congo, the (Hopefully) Up-and-Coming Online Retail Giant
	 Congo Requirements
	 Congo Tech Stack

	 The Cosmos DB Resource Model
	 Partitions: How Cosmos DB Scales to Unlimited Storage
	 Data Modeling
	 Determining Document Schemas
	 Determining Partition Keys
	 A Single Collection or Multiple Collections

	 Using the Cosmos DB Emulator for Local Development
	 Creating a Collection in the Emulator

	 Importing Congo Data Using the DocumentDB Data Migration Tool
	 Congo’s Initial Data

	 Querying a Collection
	 Creating the Congo Example Application
	 Creating the Project and Solution
	 Creating the Model Classes
	 Creating View Model Classes
	 Creating the Home Page
	 The Product Details Page
	 Editing a Product
	 Retrieving All Reviews
	 Creating a New Review
	 Deleting a Review

	 Creating a Cosmos DB Account, Database, and Collection
	 Scaling
	 Summary

	Chapter 7: Redis Cache
	 The Cache Aside Pattern
	 Azure Redis Cache
	 Example Project: TechStore
	 Creating the Project
	 Creating the Database
	 Adding Entity Framework
	 Adding View Models
	 Creating the Service Layer
	 Creating the Controller and Views
	 Running the TechStore Application
	 Create an Azure Redis Cache Resource
	 Implementing the Cache Aside Pattern with Redis Cache
	 Handling Stale Cache Records
	 Dealing with a Full Cache
	 Setting Time-to-Live

	 Viewing Redis Cache Contents
	 Connect to a Redis Cache
	 Viewing Cache Contents
	 Flushing the Cache

	 Scaling Azure Redis Cache
	 Scaling Up
	 Scaling Out
	 Using Multiple Caches

	 Summary

	Chapter 8: WebJobs
	 Invoking WebJob Methods
	 The WebJob Demo Application
	 Creating Our Solution and WebJob Project
	 Running Our WebJob Locally
	 Creating Our WebJobDemo Web Application
	 Creating Our Model
	 Creating Our Services for WebJobDemo.Web
	 Creating Our MVC Web Controller and View
	 Running Our Web Application

	 Running Our WebJob Locally: Part II
	 Running a WebJob on a Schedule
	 Chrontab or Timespan Expressions
	 Creating Complex Schedules by Subclassing TimerSchedule

	 Handling Exceptions with the ErrorTriggerAttribute
	 Throttling the ErrorTriggerAttribute

	 Deploying WebJobs to Azure
	 Hosting Requirements
	 Deploying a WebJob
	 FTP

	 Publishing via Visual Studio
	 Monitoring a WebJob in the Cloud

	 Summary

	Chapter 9: Message Queues
	 Benefits of Using Message Queues
	 Types of Azure Message Queues
	 Service Bus Queues
	 Azure Storage Queues

	 Demo Project: QueueDemo
	 Provisioning a Service Bus Resource
	 Creating the Sender Console Application
	 Creating Our Common Models Project
	 Getting a Service Bus Connection String
	 Updating the ServiceBusQueue.Sender’s app.config File
	 Adding Code to Send Queue Messages
	 Viewing Service Bus Message Queue Messages with Service Bus Explorer
	 Building Our Service Bus Queue Message Receiver
	 Testing Our Service Bus Queue Message Receiver
	 Message Lock Timeout
	 Abandoning a Message Lock
	 Dead Lettering a Message
	 Scaling Out

	 Using Message Queues to Build Azure Web Applications
	 Summary

	Chapter 10: Other Tips and Tricks
	 The Turtles Web Application
	 Creating the Solution and Project
	 Adding Turtle Code
	 Publishing to Azure

	 How Pages Are Rendered
	 Initial Page Request
	 Page Parsing and Rendering

	 Measuring Page Performance
	 Combining and Minifying JavaScript and CSS Files
	 Creating Bundles
	 Minification

	 GZip Compression
	 Using Async/Await
	 Using HTTP Cache
	 Using Appropriately Sized and Optimized Images
	 Using External CSS and JavaScript Files
	 Moving External JavaScript Files to the Bottom of the Page
	 Using Async for Certain External JavaScript Files
	 Using a Content Distribution Network
	 How Azure CDN Works
	 Creating a CDN for the Turtles Web Application
	 Integrating a CDN with an ASP.NET MVC App
	 Integrating Bundles
	 Integrating Image Files

	 Summary

	Chapter 11: Troubleshooting Web Applications
	 An Overview of Available Tools
	 Kudu
	 Application Insights

	 Awful App: Our Example Application
	 Web Server Logs
	 Browsing Web Server Logs Written to the File System
	 Using Visual Studio
	 Using the Kudu Debug Console
	 Browsing Via FTP

	 Application Logs
	 Setting Up Tracing
	 Viewing Application Logs

	 Kudu Process Explorer
	 Diagnostics-as-a-Service
	 Running DaaS

	 Application Events
	 Log Stream
	 Failed Request Tracing Logs
	 Auto Heal
	 Setting Up Auto Heal

	 Application Insights
	 Installing Application Insights
	 Debugging Exceptions
	 Alerts

	 Summary

	Chapter 12: Deployment
	 Proper Deployment Practices
	 Follow a Proper Code Promotion Strategy
	 Prevent Environment Drift by Treating Infrastructure as Code
	 Automating Deployments

	 ARM Templates Overview
	 ARM Template Components
	 Parameters
	 Variables
	 Resources
	 Outputs

	 Creating ARM Templates
	 Downloading ARM Templates for Preexisting Resources in the Azure Portal
	 Choosing a Gallery Template
	 Creating Templates with a Visual Studio Azure Resource Group Project

	 The Deployment Web Application
	 Creating the Database
	 Accessing the Database
	 The Deployment Web Application
	 The Deployment WebJob

	 Deploying Azure Resources Using an Azure Resource Group Project
	 Creating the Azure Resource Group Project
	 Adding a SQL Server
	 Deploying from Visual Studio
	 Improving Our ARM Template
	 Adding Service Bus Resources
	 Adding Other Resources
	 The Completed Template
	 Creating a Production Environment

	 Deploying the Application
	 Setting Up Build Configurations and Configuration Transforms
	 Defining Build Configurations
	 Adding a Staging Transform for Web.config
	 Transforming the Deployment.WebJob’s App.config

	 Building and Deploying with Visual Studio Team Services
	 Setting Up VSTS
	 How VSTS Build Works
	 Defining a Build in VSTS
	 Build Task: Pulling Source from the Repository
	 Build Tasks: Restoring NuGet Packages
	 Build Tasks: Building the Solution
	 Build Tasks: Deploy ARM Template
	 Build Tasks: Copy Files Between Directories
	 Build Tasks: Azure SQL Database Deployment
	 Build Tasks: Deploy Web App to Azure

	 Putting It All Together

	 Summary

	Index

