
Windows 10
Development with
XAML and C# 7

Second Edition
—
Jesse Liberty
Jon Galloway
Philip Japikse
Jonathan Hartwell

www.allitebooks.com

http://www.allitebooks.org

Windows 10
Development with

XAML and C# 7
Second Edition

Jesse Liberty
Jon Galloway
Philip Japikse
Jonathan Hartwell

www.allitebooks.com

http://www.allitebooks.org

Windows 10 Development with XAML and C# 7

ISBN-13 (pbk): 978-1-4842-2933-0		 ISBN-13 (electronic): 978-1-4842-2934-7
https://doi.org/10.1007/978-1-4842-2934-7

Library of Congress Control Number: 2017962077

Copyright © 2018 by Jesse Liberty, Jon Galloway, Philip Japikse and
Jonathan Hartwell

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Fabio Claudio Ferracchiati
Coordinating Editor: Mark Powers
Copy Editor: Kezia Endsley

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book's product page, located at www.apress.com/
9781484229330. For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Jesse Liberty
Acton, Massachusetts, USA

Jon Galloway
Spring Valley, California, USA

Philip Japikse
West Chester, Ohio, USA

Jonathan Hartwell
Plainfield, Illinois, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-2934-7
http://www.allitebooks.org

To my loving wife, for all of her support over the years.

www.allitebooks.com

http://www.allitebooks.org

v

Table of Contents

Chapter 1: �Getting Started���1

Background��1

Versionless Windows 10���2

The Microsoft Store��2

Windows Design Guidelines���2

Being Fast and Fluid���3

Sizing Beautifully��4

Using the Right Contracts���4

Investing in a Great Tile��4

Feeling like It Is Connected and Alive���4

Roaming to the Cloud���5

UX Guidelines���5

Tooling��5

Visual Studio 2017��5

Blend for Visual Studio 2017��14

Git���18

Using Git in Visual Studio���19

NuGet���24

Installing Your First Package��25

Summary���27

About the Authors���xi

About the Technical Reviewer��xiii

www.allitebooks.com

http://www.allitebooks.org

vi

Chapter 2: �Building Your First Windows 10 UWP App�������������������������29

Creating Your First App���29

App Project Overview���30

App.xaml���39

MainPage.xaml���39

Model View ViewModel (MVVM)���40

The Pattern���40

Creating a Model��41

Creating the ViewModel���47

Updating the Code-Behind���49

Creating the View���49

Testing the App���51

Guidance���52

Navigation��52

Creating a New Page��53

Adding Navigation to the MainPage���55

Handling the NavigatedTo Event���58

The Back Button���58

Summary���59

Chapter 3: �Themes, Panels, and Controls��61

Choosing a Theme���61

Using Panels��64

The Canvas Control���65

The Grid Control��69

The StackPanel Control��74

The RelativePanel Control��76

The Border Control���77

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

vii

Working with Controls ���78

TextBlock and TextBox��79

Spell Check���82

Headers and Watermarks Controls���86

The PasswordBox Control���89

Buttons and Event Handlers Controls���90

The CheckBoxes, ToggleSwitches, and RadioButtons Controls����������������������95

The ListBox, ListView, and ComboBox Controls��98

The Image Control��101

The Slider Control���104

The ProgressBar Control���104

The ToolTip Control���106

The DatePickers and TimePickers Controls��106

Flyouts��108

Understanding Dependency Properties��111

Data Hiding���111

Dependency Properties��113

Summary���117

Chapter 4: �Binding���119

DataContext���120

Creating a Simple Binding���120

Data-Binding Statements���123

Binding Errors��125

FallbackValue���126

TargetNullValue���127

Binding to Elements���127

Binding Modes���130

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

viii

UpdateSourceTrigger���131

INotifyPropertyChanged���132

Binding to Collections��136

Creating the Collection���136

Creating a Data-Bound ListView���141

INotifyCollectionChanged���143

Data Converters���144

Summary���149

Chapter 5: �Local Data��151

Application Data���151

Settings Containers��152

Saving, Reading, and Deleting Local Data ���152

Creating the Data Layer���158

Creating the Repository Interface���159

Creating the DataModel��160

Creating the ViewModel���161

Local Data��166

Using JSON to Format Data��166

Local Data Containers��167

Creating the File Repository���167

Creating the View���173

Roaming���179

User-Specified Locations���180

Creating the FileOperations Class��180

Adding the File Association for JSON Files���184

SQLite���187

Summary���195

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

ix

Chapter 6: �Application Lifecycle��197

The Three Application States���198

Running��199

Suspended��199

Terminated���199

State Transitions��200

Launching���201

Activating��201

Suspending���201

Resuming���201

Terminating��201

Killing��202

Managing the Lifecycle��202

Building the Sample App��203

Adding the Navigation Parameter Class���204

Creating the Details Page���205

Creating the Main Page��207

Handling Adding/Editing List Items���209

Responding to App Suspension���210

The OnSuspending Event��210

The EnteredBackground Event���211

Responding to App Activation��216

Determining the Previous Application State���216

Testing the Restoring Navigation State��216

Testing the Restoring Session Information���217

Summary���218

�Index��221

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

xi

About the Authors

Jesse Liberty is a master consultant for Falafel Software, a Microsoft MVP,

a Telerik MVP, and an author. He creates courses for Pluralsight and hosts

the popular Yet Another Podcast. His blog is also considered required

reading. He was a senior evangelist for Microsoft, a XAML evangelist for

Telerik, a Distinguished Software Engineer at AT&T, Software Architect for

PBS, and Vice President of Information Technology at Citibank. Jesse can

be followed on Twitter at @JesseLiberty.

Philip Japikse is an international speaker,

Microsoft MVP, ASPInsider, MCSD, CSM,

and CSP, and a passionate member of the

developer community. He has been working

with .NET since the first betas, developing

software for over 30 years, and heavily involved

in the Agile community since 2005. Phil is the

lead director for the Cincinnati .NET User’s

Group (http://www.cinnug.org), founded

the Cincinnati Day of Agile (http://www.dayofagile.org), and volunteers

for the National Ski Patrol. Phil is also a published author with LinkedIn

Learning (https://www.lynda.com/Phil-Japikse/7908546-1.html).

During the day, Phil works as an enterprise consultant and Agile coach for

large to medium firms throughout the United States. Phil enjoys to learn

new tech and is always striving to improve his craft. You can follow Phil

on Twitter via http://www.twitter.com/skimedic and read his blog at

http://www.skimedic.com/blog. 

www.allitebooks.com

http://www.cinnug.org/
http://www.dayofagile.org/
https://www.lynda.com/Phil-Japikse/7908546-1.html
http://www.twitter.com/skimedic
http://www.skimedic.com/blog
http://www.allitebooks.org

xii

Jon Galloway is a senior technical evangelist for Microsoft. He's been

developing applications on Microsoft technologies for 17 years on the

desktop and the web, from scrappy startups to large financial companies.

Along the way, he's contributed to several open source projects, started

the Herding Code podcast, and helped build some of the top keynote

demo apps for Microsoft conferences over the past five years. He travels

worldwide, speaking at conferences, Microsoft Web Camps, and developer

events. Jon tweets as @jongalloway.

Jonathan Hartwell has worked professionally with C# for five years and

spent four of those years handling XML. He received his master's degree

in computer science from DePaul University and has an affinity for

programming languages. When not programming, he is either watching

Arsenal play or spending time with his wife and their two dogs. He is

the founder of Voltaire Software LLC, which creates software that helps

developers be more productive.

About the AuthorsAbout the Authors

xiii

About the Technical Reviewer

Fabio Claudio Ferracchiati is a senior consultant and a senior

analyst/developer using Microsoft technologies. He works for BluArancio

(www.bluarancio.com). He is a Microsoft Certified Solution Developer

for .NET, a Microsoft Certified Application Developer for .NET, a Microsoft

Certified Professional, and a prolific author and technical reviewer.

Over the past 10 years, he’s written articles for Italian and international

magazines and co-authored more than 10 books on a variety of

computer topics.

http://www.bluarancio.com/

1
© Jesse Liberty, Jon Galloway, Philip Japikse and Jonathan Hartwell 2018
J. Liberty et al., Windows 10 Development with XAML and C# 7,
https://doi.org/10.1007/978-1-4842-2934-7_1

CHAPTER 1

Getting Started
Windows 10 Universal Windows Platform (UWP) development with C# and

XAML carries a lot of similarities with developing Windows Presentation

Foundation (WPF) applications. Well, they both use XAML and C#. Many

of your existing skills with user interfaces (UIs) and program code can be

leveraged for Windows 10 UWP apps. But there are a lot of differences, as

well. The Universal Windows Platform is the major difference between

UWP applications and WPF applications. An application written on the

UWP can run on whatever hardware implements that functionality, which

includes Xbox, Surface, PC, mobile, and even the Hololens. Apps are

deployed through a central store (as opposed to click-once deployment or

Microsoft Installer packages).

Not a WPF developer? No worries! This book will take you through

everything you need to know to build Windows 10 UWP apps.

�Background
Microsoft released the latest revision of its Windows operating system,

Windows 10, on July 29th, 2015. The release of the Universal Windows

Platform is a continuation on the idea of writing code on one platform

that could run on all supported devices. In order to get their users on the

new operating system, Microsoft offered a free upgrade to Windows 10 to

users who have a valid copy of Windows 7 or 8.1 and are not running an

Enterprise edition.

2

�Versionless Windows 10
With Microsoft’s policy change to auto update whenever there are updates

available, Microsoft is moving away from Windows versions such as

Windows 8.1 and moving toward build versions. Microsoft has announced

that they will be doing feature updates semi-annually every March and

September. The goal is to be able to have everybody on the same build, or

as close to each other, as possible. If Microsoft is able to pull that off, it will

be a major benefit for all Windows developers as it will allow us to better

focus on supporting new features rather than worrying about supporting

obsolete versions of Windows.

�The Microsoft Store
How many times have you had to do tech support for a family member

because he clicked on some random pop-up on the Internet or installed

some software that a friend told him about? The main mechanism for

getting apps is from the Microsoft Store. Having that one central place

to get apps for Windows 10 helps prevent rogue software from getting

installed, increasing the security and reliability of the device. It also

provides a centralized location for developers to place their app for others

to find. For more information about submitting your app to the Microsoft

Store, see Chapter 12.

�Windows Design Guidelines
In order to get your apps accepted into the store, you must make sure

they meet the seven traits of a great app and follow the five Microsoft

design principles. There are additional technical requirements that will be

discussed in Chapter 11.

Chapter 1 Getting Started

https://doi.org/10.1007/978-1-4842-2934-7_12
https://doi.org/10.1007/978-1-4842-2934-7_11

3

Let’s look at the seven traits of a great app first. To achieve greatness, it

must:

•	 Be fast and fluid

•	 Size beautifully

•	 Use the right contracts

•	 Invest in a great tile

•	 Feel like it is connected and alive

•	 Roam to the cloud

•	 Embrace modern app design principles

�Being Fast and Fluid
Modern apps can run on a variety of devices with a wide range of

capabilities. While Microsoft has set minimum standards for all hardware

that carries the Windows 10 logo, it’s important for the success of your

app (as well as the success of Windows 10) that your app doesn’t perform

poorly or cause the hardware to perform poorly. You will see as you

work your way through this book that in order to develop Windows 10

UWP applications, you must use asynchronous programming to ensure

a responsive UI. Additionally, the very design of the Windows 10 UWP

process lifetime management cycle ensures that background apps don’t

drain the battery or use up precious system resources.

Use the async pattern liberally. If your app is taking a long time to load

or to run, people will uninstall it. Or, worse yet, they will write a scathing

review and then uninstall it.

Chapter 1 Getting Started

4

�Sizing Beautifully
Windows 10 devices come in a variety of sizes and screen resolutions. Apps

can be run in a landscape or portrait view as well as resized to share the

screen with other apps. Your app needs to able to adjust to different layouts

and sizes, not only in appearance but also in usability. For example, if you

have a screen showing a lot of data in a grid, when your app gets pinned to

one side or the other, that grid should turn into a list.

�Using the Right Contracts
Windows 10 introduces a completely new way to interact with the

operating system and other applications. Contracts include Search,

Share, and Settings. By leveraging these contracts, you expose additional

capabilities into your app in a manner that is very familiar to your users.

�Investing in a Great Tile
Tiles are the entry point into your applications. A live tile can draw users

into an app and increase the interest and time spent using it. Too many

updates can lead them to turn off updates, or worse yet, uninstall your app.

Secondary tiles are a great way for users to pin specific information to

their Start screens to enable quick access to items of their interest.

�Feeling like It Is Connected and Alive
Users are a vital component to Windows 10 UWP apps. It is important to

make sure that your app is connected to the world so that it can receive

real-time information. Whether that information is the latest stock prices

or information on sales figures for your company, stale data doesn’t

compel users to keep using your app. They already know what yesterday’s

weather was. The current forecast is much more interesting.

Chapter 1 Getting Started

5

�Roaming to the Cloud
Windows 10 allows the user the capability to share data between devices.

Not only can application settings be synced but so can the application

data. Imagine the surprise for a user who enters some data into your app

at work and then picks up another Windows 10 device at home, starts your

app, and the data is right there.

It is important to leverage the cloud whenever possible to make

transitioning from one device to another as seamless as possible.

�UX Guidelines
There are many more guidelines suggested by Microsoft. For the full

guidelines, see http://msdn.microsoft.com/en-us/library/windows/

apps/hh465424.aspx.

�Tooling
While you can certainly remain in Visual Studio the entire time you

are developing your app, leveraging a combination of the available

tooling provides the best experience. For developing Windows 10 UWP

applications, the two main tools you will use are Visual Studio 2017 and

Blend for Visual Studio 2017.

�Visual Studio 2017
In March of 2017, Microsoft released Visual Studio 2017. Among the

changes in the latest version of Visual Studio is support for C# 7. While it

is possible to use Visual Studio 2015 in order to create Windows 10 UWP

applications, the examples in this book may not work with that edition as

we will be using new features only available in C# 7.

Chapter 1 Getting Started

http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx

6

�Versions

If you are reading this book, then you are probably very familiar with

Visual Studio. In this section, I’ll talk about the different versions of Visual

Studio 2017 available to you and some of the differences between them.

If you aren’t very familiar with Visual Studio, don’t worry. As we move

through the chapters of this book, the relevant features will be discussed in

greater detail.

Visual Studio Community Edition

Microsoft has removed the Express editions of Visual Studio and has

moved to a Community Edition as the entry into Visual Studio. It is free

and fully featured, but does come with licensing that allows use in only

certain situations. Verify that you are following the license agreement by

viewing the terms at https://www.visualstudio.com/license-terms/

mlt553321/.

Visual Studio with MSDN

With an MSDN subscription there are two options for developers when it

comes to Visual Studio 2017: Professional and Enterprise. Both versions

allow you to create Windows 10 UWP apps. For a full comparison, you can

check out Microsoft’s comparison at https://www.visualstudio.com/vs/

compare/.

�The Windows 10 Simulator

All versions of Visual Studio come with the ability to run your Windows

10 UWP app in a simulator. This is essentially a remote desktop session

to your PC with the added ability to change orientation, form factor, and

gesture support and to simulate many factors of a tablet (even if you are

developing on a non-touch device).

Chapter 1 Getting Started

https://www.visualstudio.com/license-terms/mlt553321/
https://www.visualstudio.com/license-terms/mlt553321/
https://www.visualstudio.com/vs/compare/
https://www.visualstudio.com/vs/compare/

7

�Creating Your First Windows 10 UWP App

To create a Windows 10 UWP app, create a new project in Visual Studio

2017 by selecting File ➤ New ➤ Project. In the left rail, you will see all of

the installed templates for your Visual Studio installation (your mileage

may vary based on the version you installed and the third-party products

you use). Select Installed ➤ Templates ➤ Visual C# ➤ Windows Store, and

you will be presented with the dialog shown in Figure 1-1.

In Chapter 4, we will go into great detail for all of the project templates,

so for now, select Blank App (XAML). In fact, this will be the starting

template for most of our projects in this book, and is the template I

typically start with when I develop Windows 10 UWP apps. You can leave

the project name as the default App1.

Figure 1-1.  New Project templates for Windows 10 UWP apps

Chapter 1 Getting Started

8

After you create your project, take a look at the default solution folder

(shown in Figure 1-2). The Blank template actually does a lot for us. In

addition to creating the project and bringing in the appropriate references,

it supplies several assets—the App.xaml file and MainPage.xaml. The

Assets folder contains the images for the splash screen and the default

tiles (more on that later in this book), and if you are familiar with WPF, the

App.xaml and MainPage.xaml files should be very familiar. Again, we will

spend a lot of time in the book on those files.

To run the app, you have several options. You can press F5 (to start

with debugging), Ctrl-F5 (to start without debugging), click on Debug in

the menu (to be presented with the same options), or click the toolbar item

with the green arrow (as shown in Figure 1-3).

Figure 1-2.  Default Solution Explorer files

Chapter 1 Getting Started

9

By default, Visual Studio will run your app on the local machine in

Debug configuration. Go ahead and click on the green arrow (or press F5)

to run the app. We would expect to see a completely blank screen, but

instead we are presented with some changing numbers (they change as

you move the mouse around the screen) in the top corners of the screen, as

shown in Figure 1-4. The frame rate counters show you, from left to right,

the UI frame rate (frames per second), the App CPU usage of UI thread,

the system composition frames per second, and the system UI thread CPU

usage. If you run the app without debugging, you will not see the numbers

in the corner. This is because all of the Visual Studio–supplied templates

enable the frame rate counter display while running in debug mode.

Figure 1-3.  Run toolbar utility

Figure 1-4.  Debugging with FrameRateCounter

Chapter 1 Getting Started

10

Turning this off is very simple—you just open App.xaml.cs, and in the

OnLaunched event handler, comment out this line of code:

this.DebugSettings.EnableFrameRateCounter = true;

so that it looks like this:

//this.DebugSettings.EnableFrameRateCounter = true;

Now, when you run you app in debug mode, the numbers are no

longer displayed.

Adding a Basic Page

Even though I typically start with the Blank App template, I rarely keep

the supplied MainPage.xaml (and its code-behind file MainPage.xaml.

cs). Visual Studio provides a Basic Page file template that provides a lot of

necessary functionality. Delete the MainPage.xaml (we will be replacing

this) and right-click your project and select Add ➤ New Item. From the

Add New Item—App 1 dialog, select the Basic Page and name the page

MainPage.xaml, as shown in Figure 1-5.

Note  We call it MainPage.xaml so we don’t have to change App.
xaml.cs. If you want to call the files something else (or change the
page that gets loaded when an app first starts), open App.xaml.cs,
navigate to the end of the OnLaunched event handler and change
the following line to the name of the page you added:

rootFrame.Navigate(typeof(MainPage), e.Arguments);

Chapter 1 Getting Started

11

When you add a new Basic Page, Visual Studio prompts you that it will

add several files into your project. Say Yes! These are extremely helpful files

and will be used extensively throughout the course of this book. However,

for now, we just want to have some text to display. Change the option on

the debug location toolbar to run in the simulator, and then press F5 (or

click the green arrow to start debugging). You’ll now see a title for the app

(running in a window that resembles a tablet) and a series of controls on

the right rail of the simulator, as shown in Figure 1-6.

Figure 1-5.  Adding a new Basic Page

Chapter 1 Getting Started

12

The Simulator Controls

Most of the simulator controls are very self-explanatory, but I struggled in

my early days of Windows 8 apps to remember what each icon stood for, so

I’ve listed the explanations here to help you out.

 Minimize the simulator

 Always keep the simulator on top

The touch modes in the simulator are important to be able to test your

app’s responsiveness to touch if you don’t own (or develop on) a touch

device. The mouse mode button takes you back out of touch mode to

keyboard and mouse mode.

Figure 1-6.  The simulator

Chapter 1 Getting Started

13

 Mouse mode

 Basic touch mode, pinch/zoom touch mode,

and rotation touch mode

The rotation and resolution controls help testing by responding to

different orientations and form factors.

 Rotate clockwise (90 degrees)/rotate

counterclockwise (90 degrees)

 Change the resolution

If you are building a location-aware application, you can test it by

setting the location that is sent to the app from the hardware.

 Set location

The screenshot commands are invaluable for the submission process,

as you will see in Chapter 12. They are also useful to create screenshots for

building documentation, advertising your app on your web site, and so on.

 Copy screenshot/screenshot settings

Chapter 1 Getting Started

https://doi.org/10.1007/978-1-4842-2934-7_12

14

The network control allows for testing occasionally connected

scenarios, bandwidth usage, and making other networks variables.

 Change network properties

 Help

�Blend for Visual Studio 2017
Expression Blend has long been a staple of the WPF developer. Long sold

as a separate product from Visual Studio, it was part of the Expression

suite. Starting with Visual Studio 2012, Blend for Visual Studio was released

as a free companion application for Visual Studio. To open your project

in Blend, you can right-click on any XAML file in Visual Studio 2017 and

select Open in Blend. This will open not just the file that you selected, but

also the entire project/solution.

Many of the features of Blend are covered in subsequent chapters, but

some of the biggest benefits of using Blend are:

•	 Full control of your UI in a compact layout: The Visual

Studio XAML designer pales in comparison to what can

be accomplished in Blend. While I am not a designer

(and don’t make any claims to having design skills),

Blend has enabled me to make much-better-looking

UIs as well as to make changes much faster than in

Visual Studio (regardless of being in design or XAML

mode in Visual Studio).

•	 The ability to easily add animations, gradients, and

styles to your app/page.

•	 The ability to quickly add states to your page (for layout

updates) and state recording.

Chapter 1 Getting Started

15

•	 The ability to view your page in many layouts and

form factors (much like the simulator, but without the

benefit of the page running—WinJS/HTML developers

still have the advantage here).

Additionally, Visual Studio and Blend for Visual Studio keep your files

in sync. If you have your project open in both, when you make changes

(and save them) to your app/pages in one program, switching to the

other program will prompt you to reload. Make sure that you actually

save the changes, as making changes in both without saving will result in

concurrency problems.

�Opening Your Project in Blend for Visual Studio

Visual Studio and Blend work extremely well together. To open your

project in Blend, right-click on the MainPage.xaml in your project and

select Open in Blend (see Figure 1-7).

Visual Studio invokes Blend, opening your entire project (not just the

file you clicked on). Once the file is opened, you will see a screen similar to

Figure 1-8. Blend will open the file you right-clicked on in Visual Studio.

Figure 1-7.  Opening a file in Blend

Chapter 1 Getting Started

16

That’s a lot of windows, but at least in the default layout (much like

Visual Studio, you can change the layout to suit your needs). Let’s look at

them in a little more detail.

Projects, Assets, States, and Data Tabs

The top-left corner of the window contains the Projects, Assets, States, and

Data tabs, which allow you to do the following processes:

•	 The Projects tab shows all of the files in your solution

(much like Solution Explorer in Visual Studio). Nothing

too exciting to report here.

•	 The Assets tab lists all of the assets available to add

to your page. Think of this as a turbo-charged Visual

Studio Toolbox. In addition to controls and panels that

you can add to your page, you can add (and modify)

styles, behaviors, and media.

Figure 1-8.  MainPage.xaml opened in Blend

Chapter 1 Getting Started

17

•	 The States tab allows you to add the Visual State

Manager XAML as well as Visual State groups to your

page. It also allows for easy addition of transitions for

your visual states.

•	 The Data tab gives you access to the Data Context for

the given XAML.

Objects and Timeline

The Objects and Timeline panel (lower left) provides the document

outline as well as the ability to add and modify storyboards (to be used in

conjunction with the Visual State Manager).

Page Designer, Markup, and Code

The center of the workspace is the designer and code editor. Just like in

Visual Studio, you can have a split view, all design, or all markup. You

can also load code files into the center pane. While you get features like

IntelliSense, the development experience doesn’t contain all of the great

features of Visual Studio like navigation and refactoring. Plus, you lose any

productivity plug-ins like Telerik’s JustCode that you might have installed

in Visual Studio.

Properties, Resources, and Data Tabs

The right rail of the workspace contains the Properties, Resources, and

Data tabs, which can be described as follows:

•	 The Properties tab is where I spend a significant

portion of my time in Blend. In addition to the simple

items like Name and Layout properties like Width and

Height, there are a host of properties that are difficult

to set by hand in markup. Brushes, Transforms, and

Interactions can all be set using the Properties panel.

Chapter 1 Getting Started

18

•	 The Resources tab contains all of the application and

page-level resources as well the option to edit and add

more resources.

•	 The Data tab allows you to set the data context for your

page, create sample data, and create different data

sources. This is helpful to see what the page will look

like with data at design time instead of always having to

run the app.

Blend for Visual Studio is an extremely powerful tool and it would take

an entire book to discuss all of the features. My development workflow

involves keeping both Visual Studio and Blend open at the same time,

and I switch back and forth depending on what I am trying to accomplish.

Explore Blend and see what works best for you.

�Git
Software version control has been around for a long time. If you have been

in the Microsoft space for a significant length of time, you might remember

Visual Source Safe. In the .NET world, the MS developer was left with Team

Foundation Server (TFS) as the only integrated source-code-management

(SCM) system.

TFS is a powerful application lifecycle management (ALM) tool (it

includes project management, bug tracking, SCM, and other components).

That is a lot of tooling when you are only looking for SCM. The SCM

portion of TFS is Team Foundation Version Control (TFVC) and is a

centralized SCM system. This means that a single repository is the source

of record, and all developers check their code in and out of this single

repository. Later versions of TFVC include the capability to shelve work

and create branches, providing some isolation for work in progress.

Chapter 1 Getting Started

www.allitebooks.com

http://www.allitebooks.org

19

Git, developed by Linus Torvalds in 2005 for the Linux kernel, is

a distributed version control system (DVCS). This means that every

developer using Git has a full-fledged repository on his local machine with

complete history and tracking capabilities. Many Git users (especially in

a team environment) have a central repository in addition to their local

repository. This frees the developer to spike different ideas, work on

features independent of the rest of the team, and check in rapidly as often

as they like without worrying about network latency or affecting other

team members.

Which SCM system you choose to use is completely up to you. They

both have their merits (and there are many other SCM systems available to

you as well that are very effective in what they do). It’s more how you work

and whom you work with that usually determines which system to use. So

why do I bring up Git specifically in this book? Because if you are a single

developer creating a Windows 8 app, Git is custom tailored to you, and

with Visual Studio 2013 (and updated to Visual Studio 2012), Git support is

now included.

There are entire books written about effectively using Git, so this is just

a quick look into the Visual Studio integration, and not a treatise on DVCS.

�Using Git in Visual Studio
One of the advantages of using Git is its simplicity. A Git repository can be

created anywhere—on a local disk, network share, or web site (like GitHub).

�GitHub for Windows

The easiest way to start working with Git if you are new to the system is to

install GitHub for Windows, which is available from https://windows.

github.com/. Creating a new repository is as easy as clicking on the Create

button in GitHub for Windows. Once Visual Studio is configured to use Git,

any projects created inside an existing repo will automatically tie into the

Git repo.

Chapter 1 Getting Started

https://windows.github.com/
https://windows.github.com/

20

�Enabling Git in Visual Studio 2017

The first step to using Git with your project is to enable the Microsoft Git

Provider. Do this by selecting Tools ➤ Options ➤ Source Control ➤ Plug-in

Selection, and then select the Microsoft Git provider for the Current source

control plug-in, as shown in Figure 1-9.

Selecting Team Explorer (View ➤ Team Explorer) in the right rail of

Visual Studio (the default location) allows you to manage your local Git

repository. By default, VS 2017 creates the appropriate Git ignore files so

local files such as /bin and /obj files, temp files, user files, and so forth

don’t appear in the repository. There are also attributes on how Git should

handle conflicts in project files. To view both of these files, select Git

Settings, as shown in Figure 1-10.

Figure 1-9.  Selecting the Microsoft Git provider

Chapter 1 Getting Started

21

This is also where you enter your username and e-mail address as well

as the default Git directory, as shown in Figure 1-11.

Figure 1-10.  Accessing the Git repository settings

Figure 1-11.  Git settings

Chapter 1 Getting Started

22

�Checking In Changes

To check in changes, select Changes from the same menu, as shown in

Figure 1-10. You will see changes that will be included in this check-in,

excluded changes, and untracked files. To commit the changes, enter a

comment in the text box with the watermark “Enter a commit message

<Required>” and click on Commit. You can also choose Commit and

Push to share your changes with a remote repository or choose Commit

and Sync to share your changes and get the latest version from the remote

repository, as shown in Figure 1-12.

Figure 1-12.  Committing changes to the local repository

Chapter 1 Getting Started

23

�Remote Repositories

There are many places where you can host remote Git repositories, with

the most popular being GitHub (www.github.com). Once you set up a

remote repository, you can point your project to it by entering its URL, as

shown in Figure 1-13.

�Reverting Changes

If you totally mess up while developing, Git makes it very easy to restore

from the repository. Right-click on your file in Solution Explorer and you

will see the Git features exposed—Undo, View History, Compare with

Unmodified, and Commit (see Figure 1-14). Undo does just what it says—it

throws away your changes and restores the file from the repository. It’s like

your own personal security blanket!

Figure 1-13.  Publishing to a remote repository

Chapter 1 Getting Started

http://www.github.com/

24

Again, this isn’t a full explanation of how Git works but a quick

overview of the Visual Studio features that support Git. If you’ve never used

source code control systems, Git is an easy first one to use. You’ll thank

yourself in the end.

�NuGet
From the official NuGet site (www.nuget.org): “NuGet is the package

manager for the Microsoft development platform including .NET. The

NuGet client tools provide the ability to produce and consume packages.

The NuGet Gallery is the central package repository used by all package

authors and consumers.”

Instead of scouring the web for tools to add to Visual Studio, you

can use NuGet as a single source to get a wide variety of add-ins for your

solution. Rather than installing the tools on your development machine,

the packages are installed at the solution level. This permits different

versions to coexist on the same developer machine.

Another very large advantage to NuGet is that each package lists its

dependencies in its package manifest. When a package is installed through

NuGet, all of its dependencies are installed as well.

Yet another benefit of NuGet is the ability to create private NuGet

package sources. To change the source, select Tools ➤ Options ➤ NuGet

Package Manager ➤ Package Sources, as shown in Figure 1-15.

Figure 1-14.  Git functions exposed through Solution Explorer

Chapter 1 Getting Started

http://www.nuget.org/

25

�Installing Your First Package
One of the “can’t live without” packages for developing Windows 10 UWP

apps is Newtonsoft’s Json.NET. We’ll use Json.NET later in this book,

but for now, let’s just install it. There are two ways to install packages—

by using the Package Manager Console command line or by using the

Package Manager GUI.

�Installing from the Command Line

Access the Package Manager Console by selecting View ➤ Other Windows

➤ Package Manager Console if it isn’t currently visible in the bottom rail of

Visual Studio.

Figure 1-15.  NuGet Package Source dialog

Chapter 1 Getting Started

26

Type install-package newtonsoft.json and you’ll see the dialog

shown in Figure 1-16. At the time of this writing, 10.0.2 is the current

version. NuGet will install the current version unless you specify a version.

Another benefit of using NuGet.

�Installing from the Graphical User Interface GUI

Installing from the GUI is very simple and provides a search mechanism if

you don’t know the exact name of the package that you are looking for. For

example, everyone refers to the package as “Json.NET.” The actual package

name in NuGet is newtonsoft.json. This is a great example of where the

search in the NuGet GUI is very helpful.

To access the GUI, right-click on your solution and select Manage

NuGet Packages for Solution, as shown in Figure 1-17.

Select Online in the left rail and enter Json.NET in the search dialog.

You will see results similar to Figure 1-18. Merely click Install to install

Json.NET.

Figure 1-16.  Command-line installation of Json.NET

Figure 1-17.  Launching the NuGet GUI

Chapter 1 Getting Started

27

�Summary
Windows 10 UWP apps represent a very large paradigm shift from

traditional Windows desktop applications (such as WPF or WinForm)

or web apps (such as ASP.NET WebForms or MVC). Whereas traditional

applications were developed with a wide range of tools but no real design

guidelines and no expectations of performance, Windows 10 UWP apps

must meet a series of expectations, both in terms of UI design and app

performance. They are distributed through the Microsoft Store after a

stringent certification process.

Developing Windows 10 UWP apps involves a lot more than just

Visual Studio. Blend for Visual Studio helps build compelling UIs, Git

provides security for your source code, and NuGet enables easy addition of

packages and add-ons to Visual Studio.

Now that you know the tools to use, let’s build that first app!

Figure 1-18.  Installing Json.NET with the Package Manager
GUI

Chapter 1 Getting Started

29
© Jesse Liberty, Jon Galloway, Philip Japikse and Jonathan Hartwell 2018
J. Liberty et al., Windows 10 Development with XAML and C# 7,
https://doi.org/10.1007/978-1-4842-2934-7_2

CHAPTER 2

Building Your First
Windows 10 UWP App
Chapter 1 covered the design guidelines as well as the tooling commonly

used to build Windows 10 UWP apps. In this chapter, we cover some of the

core principles of Windows 10, including its architecture, all of the many

parts of its apps in Visual Studio, the Model-View-ViewModel pattern, and

navigation. All in the context of building your first Windows 10 UWP app.

�Creating Your First App
To create your first app, start Visual Studio and select File ➤ New ➤ New

Project. Then select Templates ➤ Visual C# ➤ Windows Universal. We’ll

talk about the different templates in later chapters, but for now just select

the Blank App and leave the default name as App1, as shown in Figure 2-1.

30

Let’s look at the nodes and files that are created as part of the template.

Much of the project should be familiar to you.

�App Project Overview
When you create a new project, the first thing you will be greeted with is a

pop-up asking for the minimum version of Windows 10 required and the

recommended version of Windows 10 for this application, as you can see

in Figure 2-2. This gives you greater control over what is available to your

application as you can ensure that your users have APIs or other features

that may be required in your application. For now, we will just use the

defaulted selections.

Figure 2-1.  Creating a new Windows 10 UWP app

Chapter 2 Building Your First Windows 10 UWP App

31

The New Project template introduces a significant number of folders

and files, as shown in Figure 2-3.

Figure 2-2.  Picking the target and minimum version of Windows 10
for your application

Chapter 2 Building Your First Windows 10 UWP App

32

Figure 2-3.  Folders and files in the Blank App template

Chapter 2 Building Your First Windows 10 UWP App

33

�Properties

Under the Properties node in the New Project template is the

AssemblyInfo.cs file, which is the standard meta-information container

for C# projects. Feel free to update the information such as description,

copyright, and so on. Most of this information isn’t necessary for modern

apps, but I tend to update the information anyway out of habit.

�References

The template also includes the standard References node, which

is prepopulated with two references: Microsoft.NETCore.

UniversalWindowsPlatform and Universal Windows. These references

provide the vast majority of functionality and must be included.

Throughout this book, we will add references to supplement the default

features available to us.

�Assets

There is also the Assets folder, which contains all of the images that

are part of your application. The tile images and splash screen graphics

go in this folder, as well as any other images or assets that need to be

packaged with your app when it is deployed. Click on one of the images in

Solution Explorer (such as Logo.scale-100.png) and press F4 to view the

properties. The Build Action for the images is set to Content and set not

to copy to the Output directory, as shown in Figure 2-4. Alternatively, you

can have the content copied to the Output directory or run a custom tool,

although you will not want to do that for the images.

Chapter 2 Building Your First Windows 10 UWP App

34

�App1_TemporaryKey.pfx

App1_TemporaryKey.pfx (named after the app—App1 in this case) is the

developer license information for the app. We’ll update this when we work

with push notifications as well as when we get ready to submit our app to

the Microsoft Store later in this book.

�Package.appxmanifest

Package.appxmanifest contains six tabs that describe your application

that we will go on to look at. The actual manifest file is an XML file, but

Visual Studio provides a nice GUI to work with the elements in the file,

saving us from having to memorize the format or definitions. Double-click

on the Package.appxmanifest file to open it in the Visual Studio Editor.

Figure 2-4.  Image Asset properties

Chapter 2 Building Your First Windows 10 UWP App

35

The Application Tab

The Application tab largely replaces AssemblyInfo.cs, but also provides

many more options, as shown in Figure 2-5. The top section includes the

Display Name, Entry Point, Default Language, and Description.

The next section under the tab is for the supported rotations, or the

layout. You can select the rotations as well as the minimum width. For

the layout preferences, if all of the options are checked (or none of them

checked, as in the default), then all rotations are supported. If only some

of the layouts are checked, such as Portrait and Portrait-Flipped, the app

will not rotate when a tablet is changed from Portrait to Landscape. If the

hardware does not support rotation (such as a traditional laptop), then the

setting is essentially meaningless. The following section, Minimum Width,

will be covered in detail in Chapter 5.

Figure 2-5.  Application tab

Chapter 2 Building Your First Windows 10 UWP App

36

The Lock Screen notifications, which are covered in Chapter 9 and

the next category, Tile Update, provides a mechanism to enter URI details

for the source for notifications using a polling mechanism (instead of

push notifications). The Resource Group is a name you can give to your

application where all processes running under your application will

appear under that name.

The Visual Assets Tab

The Visual Assets tab (shown in Figure 2-6) is where you set the Tile

Images and Logo, Splash Screen, and Badge Logo, as well as text that can

appear on the different tiles. Visual Studio 2017 has the ability to generate

the tile images based on a single image and will take that image and

generate the tiles of each size. The splash screen is what is shown as your

app is activated. The default image is the white box on a dark screen. Select

Splash Screen in the left rail to set a new splash screen for your app. By

default, any images specified here should be stored in the Assets folder

previously discussed.

Figure 2-6.  Visual Assets tab

Chapter 2 Building Your First Windows 10 UWP App

https://doi.org/10.1007/978-1-4842-2934-7_9

37

The Capabilities Tab

The Capabilities tab (shown in Figure 2-7) is where you specify what

features you would like the users to allow when they install your app. By

default, Internet (Client) is checked and doesn’t require the user to accept

the capability (it’s assumed that Windows 10 UWP apps can connect to the

Internet).

When users install your app, they will be prompted to allow or deny all

of the capabilities (such as the webcam, the libraries, and so forth). Those

capabilities will also be placed into the Settings charm under Permissions

so that users can change their mind after installation.

Figure 2-7.  Capabilities tab

Chapter 2 Building Your First Windows 10 UWP App

38

The Declarations Tab

The Declarations tab (shown in Figure 2-8) adds capabilities to your app,

such as Background Tasks, File Open, and Save pickers, as well as Search

and Share Target. Note that Share Target is just below Search, but due to

scrolling, it doesn’t appear in the image. Many of these features are also

covered in later chapters.

The Content URIs Tab

The Content URIs tab is where you can specify an external web page that

is permitted to fire the ScriptNotify event. Although we cover push

notifications in Chapter 9, we use Azure Mobile Services instead of the

mechanisms provided here, so this tab isn’t covered in this book.

The Packaging Tab

The final tab, the Packaging tab, is for setting the packaging information.

We cover this in depth in Chapter 11.

Figure 2-8.  Declarations tab

Chapter 2 Building Your First Windows 10 UWP App

https://doi.org/10.1007/978-1-4842-2934-7_9
https://doi.org/10.1007/978-1-4842-2934-7_11

39

�App.xaml
The App.xaml file (and the related App.xaml.cs code-behind file) is

the entry point for your application. We will spend a lot of time in the

code-behind file throughout this book. For this example, we will simply

comment out the following line of code in the OnLaunched event handler to

turn off the frame rate counter.

this.DebugSettings.EnableFrameRateCounter = true;

Open App.xaml.cs, navigate to the OnLaunched event handler, and add

two slashes to the beginning of the line as such:

//this.DebugSettings.EnableFrameRateCounter = true;

�MainPage.xaml
MainPage.xaml is blank and is the default UI page. As in Chapter 1, we

want to delete this page and add a new Basic Page to access the additional

benefits of the SuspensionManager, NavigationHelper, and more.

Remember to add the new Basic Page with the name MainPage.xaml, or

alternatively update App.xaml.cs to load your new page in the OnLaunched

event handler. For example, if you named your new page NewPage.xaml,

change this line

rootFrame.Navigate(typeof(MainPage), e.Arguments);

to this:

rootFrame.Navigate(typeof(NewPage), e.Arguments);

Chapter 2 Building Your First Windows 10 UWP App

www.allitebooks.com

http://www.allitebooks.org

40

�Model View ViewModel (MVVM)
The Model-View-ViewModel (MVVM) pattern is wildly popular among

XAML developers. Derived from Martin Fowler’s Presentation Model

pattern, it leverages many Windows 8.1-specific and XAML-specific

capabilities to make development cleaner. It is so popular that there are a

host of open-source frameworks available, and the pattern has even spilled

over from XAML to web developers.

�The Pattern
The goal of MVVM is to increase the separation of concerns between the

layers of your app, increase testability, and promote code reuse. In this

chapter, we just scratch the surface of the pattern, starting with a brief

explanation of the parts.

�Model

The model is the data for your app. It is not the persistence layer (such as

database or web service) but the object representation of your data. The

structure of this data is typically in the form of entities or data transport

objects (DTOs). They are commonly referred to as POCOs (Plain Old CLR

Objects).

�View

The view is the window (such as MainPage.xaml). The view shows data

to the user and takes input from the user. Beyond that, there shouldn’t

be any other intelligence behind the view. Often, MVVM proponents

strive for zero code-behind. My opinion (and this is not meant to start

an architectural debate) is that removing code from the code-behind is

a pleasant side effect of implementing MVVM properly, but not the goal.

But, either way, the view becomes very lightweight.

Chapter 2 Building Your First Windows 10 UWP App

41

�ViewModel

The ViewModel performs two functions in the MVVM pattern in a XAML

world (it’s a bit different in the web world):

•	 The first function is to be a transport mechanism for

the model required for the window. There is typically

a one-to-one correlation between windows and

ViewModels in my code, but architectural differences

exist, and your mileage may vary.

•	 The second job is to act as the controller for the view

and the model, receiving the user actions from the view

and brokering them accordingly.

ViewModels should also be very lightweight and leverage other classes,

such as commands and repositories, handle the heavy lifting.

�Creating a Model
Let’s start with the model. Add a new folder to your app named Models by

right-clicking your project and selecting Add ➤ New Folder. Next, add a

new Class file named Customer by right-clicking on the new project and

selecting Add ➤ New Item, as shown in Figure 2-9.

Chapter 2 Building Your First Windows 10 UWP App

42

�Adding Customer Properties

For this simple example, we are only going to have two properties—a first

name and a last name. We need to have backing properties to handle

INotifyPropertyChanged events (as we will see in the next section). To

create these properties, open Customer.cs and add the following code:

public class Customer

{

 private string _firstName;

 private string _lastName;

 public string FirstName

 {

 get

 {

 return this._firstName;

 }

Figure 2-9.  Adding the Customer model

Chapter 2 Building Your First Windows 10 UWP App

43

 set

 {

 if (value != _firstName)

 {

 this._firstName = value;

 }

 }

 }

 public string LastName

 {

 get

 {

 return this._lastName;

 }

 set

 {

 if (value != _lastName)

 {

 this._lastName = value;

 }

 }

 }

}

In the setters, we check to see if the value is different before setting

it and updating the backing property. This is to save on calls to the

PropertyChanged event, as you will see in the next subsection.

Chapter 2 Building Your First Windows 10 UWP App

44

�INotifyPropertyChanged

The INotifyPropertyChanged interface has one event and resides in the

System.ComponentModel namespace.

namespace System.ComponentModel

{

 public interface INotifyPropertyChanged

 {

 event PropertyChangedEventHandler PropertyChanged;

 }

}

To implement this interface, add a using for System.ComponentModel

to the Customer class, and then add the interface and the event. The

resulting code is shown next with the property setters and getters omitted

for brevity:

using System.ComponentModel;

public class Customer : INotifyPropertyChanged

{

 // omitted for brevity

 public event PropertyChangedEventHandler PropertyChanged;

}

Next, we need to implement the event, and we want to make sure

something is listening before firing the event off. Add a using for System.

Runtime.CompilerServices as follows:

using System.Runtime.CompilerServices;

Chapter 2 Building Your First Windows 10 UWP App

45

Then, add the code for the OnPropertyChanged method:

private void OnPropertyChanged([CallerMemberName] string member

= "")

{

 �PropertyChanged?.Invoke(this, new PropertyChangedEventArgs

(member));

}

The PropertyChanged event informs the binding engine to reinspect

the data source for the property sent in the event arguments. You can also

include the empty string, which will ask the binding engine to refresh

all bindings on the Custom object. The CallerMemberName attribute will

pass in the method name that executed the OnPropertyChanged method.

For our purposes, we want the setters for each of the properties to call

OnPropertyChanged when a value on the model is updated (but not

when it is set to the same value; hence the added check that we did in the

previous step). The full code is listed here:

public class Customer : INotifyPropertyChanged

 {

 private string _firstName;

 private string _lastName;

 �public event PropertyChangedEventHandler

PropertyChanged;

 �private void OnPropertyChanged([CallerMemberName]

string member = "")

 {

 �PropertyChanged?.Invoke(this, new PropertyChanged

EventArgs(member));

 }

Chapter 2 Building Your First Windows 10 UWP App

46

 public string FirstName

 {

 get

 {

 return this._firstName;

 }

 set

 {

 if (value != _firstName)

 {

 this._firstName = value;

 OnPropertyChanged();

 }

 }

 }

 public string LastName

 {

 get

 {

 return this._lastName;

 }

 set

 {

 if (value != _lastName)

 {

 this._lastName = value;

 OnPropertyChanged();

 }

 }

 }

 }

Chapter 2 Building Your First Windows 10 UWP App

47

�Creating the ViewModel
We are going to create a very simple ViewModel that starts by wrapping

a Customer instance. In real-world examples, you would have

ObservableCollections (discussed later in the book) and probably more

than one model type in your window. As we are just showing the pattern

here, we are going to keep things very simple.

Create a new folder called ViewModels (just like before) and then add

a new class called MainPageViewModel. Note that there aren’t firm rules

around naming your ViewModels, but a popular convention is to add

ViewModel to the end of the view that will be using it.

For starters, we want the ViewModel to instantiate an instance of the

Customer class (again, in a real app, this would come from a repository in

the data access layer). First, add a using for the models.

using App1.Models;

And then create the ViewModel:

public class MainPageViewModel

{

 public Customer MyCustomer { get; set; }

 public MainPageViewModel()

 {

 MyCustomer = new Customer()

 { FirstName = "Bob", LastName = "Smith" };

 }

}

Next, we will create the RelayCommand. The RelayCommand class was

added to our project when we added the Basic Page, and it takes care

of a lot of plumbing that we would have to do ourselves if we created an

instance of ICommand manually. The command (as you will soon see) gets

tied to an actionable UI element, such as a button or a menu option. We

will bind the command in the next section.

Chapter 2 Building Your First Windows 10 UWP App

48

When you create a RelayCommand, it takes two parameters: The first

is the delegate that is executed when the action is taken. The second is

optional and determines if the command is allowed to execute. We are

only going to use the first parameter in this example. Add the namespace

for the RelayCommand, App1.Common:

using App1.Common;

And then add the following code to the MainPageViewModel class:

private RelayCommand _updateNameCommand;

private void UpdateName()

{

 MyCustomer.FirstName = "Sue";

}

public RelayCommand UpdateNameCommand

{

 get

 {

 if (_updateNameCommand == null)

 {

 _updateNameCommand = new RelayCommand(UpdateName);

 }

 return this._updateNameCommand;

 }

 set

 {

 this._updateNameCommand = value;

 }

}

We want to make sure the RelayCommand is not null. We could easily

do that in the constructor for the ViewModel, but I like to do that in the

getter so that the related code is grouped together. The action will change

Chapter 2 Building Your First Windows 10 UWP App

49

the FirstName of the customer to “Sue” from “Bob.” That’s it. We are done

with the ViewModel.

�Updating the Code-Behind
Open MainPage.xaml.cs and add the following using statements:

using App1.Models;

using App1.ViewModels;

Then add the following line of code to the constructor:

this.DataContext = new MainPageViewModel();

This creates a new instance of our ViewModel and sets the

DataContext for the entire view to the ViewModel. Data binding needs

two things—the object that is the source of the data and the path to the

property that is being bound. If a binding statement doesn’t include

a DataContext, the element will look up the element tree (to all of its

parents, in order) to find a DataContext. Once it finds one, it stops and

then attempts to bind the element based on the Path and the found

DataContext. When we assign the DataContext to the entire view,

everything will then use that specified source object.

That’s it. No more code is necessary in the code-behind!

�Creating the View
For the view, we are going to create a very simple form that displays the

first and last name and has a button to execute the name change. The

finished view is shown in Figure 2-10. One thing you’ll notice is the button

right in the middle of the view, after all of that talk about content over

chrome in Chapter 1. Yes, I broke the rules, but we are going to talk about

command bars and app bars later in the book, and I didn’t want to throw

too much new content at you.

Chapter 2 Building Your First Windows 10 UWP App

50

Open MainPage.xaml and add the following XAML just before the final

closing </Grid> tag:

<Grid Grid.Column="0" Grid.Row="1" Margin="120,0,0,0" Width="Auto">

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="Auto"/>

 <ColumnDefinition Width="Auto"/>

 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="Auto"/>

 </Grid.RowDefinitions>

 �<TextBlock Grid.Row="0" Grid.Column="0">First Name</TextBlock>

 <TextBlock Grid.Row="1" Grid.Column="0">Last Name</TextBlock>

 <TextBox Grid.Row="0" Grid.Column="1"

 Text="{Binding Path=MyCustomer.FirstName}"></TextBox>

 <TextBox Grid.Row="1" Grid.Column="1"

 Text="{Binding Path=MyCustomer.LastName}"></TextBox>

Figure 2-10.  View for the MVVM example

Chapter 2 Building Your First Windows 10 UWP App

51

 <Button Grid.Row="2" Grid.Column="1"

 �Content="Update Name" Command="{Binding

Path=UpdateNameCommand}"/>

</Grid>

We will cover the controls and layouts in depth later in this book, so I

just want to focus on the binding for the TextBox elements as well as the

Command property of the Button element. The TextBox controls have a

binding statement of Path=MyCustomer.FirstName and Path=MyCustomer.

LastName. Each of these controls will look at the MainPageViewModel for

the property MyCustomer and then look for the correct property on that

object. This then binds these controls to the first and last name of the

customer.

Buttons also can leverage the command pattern. Instead of double-

clicking on a button to create an event handler in the code-behind,

we bind the button’s click action to a command. In this case, it’s the

UpdateNameCommand we created in the ViewModel. This gives a very clean

implementation of the view and allows for separation of concerns all the

way down.

�Testing the App
Press F5 to run the app (either in the simulator or on your local machine)

and click the button. The First Name is changed to Sue (as in Figure 2-11),

and the view is automatically updated! That is because TextBox bindings,

by default, are two-way. If the source changes, the view is updated; if the

view changes, the source is updated.

Chapter 2 Building Your First Windows 10 UWP App

52

�Guidance
The MVVM pattern is very popular and extremely powerful, but it isn’t for

every app (or every developer). The rest of the code in this book does not

use the pattern to keep the examples simple and clean, but I recommend

that you spend some time learning the pattern so you can make an

educated decision for yourself as to when it will help your architecture.

�Navigation
The next topic that we explore is navigation. All Windows 10 UWP apps are

single-page apps. In XAML, this is implemented by creating a Frame that

all subsequent pages get loaded into. This code was written for us when we

created the new project from the Blank App template.

Open App.xaml.cs and examine the following code (much of it I

omitted to just show the relevant parts):

protected override void OnLaunched(LaunchActivatedEventArgs e)

{

 Frame rootFrame = Window.Current.Content as Frame;

 if (rootFrame == null)

Figure 2-11.  The First Name changed to Sue

Chapter 2 Building Your First Windows 10 UWP App

53

 {

 rootFrame = new Frame();

 rootFrame.NavigationFailed += OnNavigationFailed;

 Window.Current.Content = rootFrame;

 }

 if (rootFrame.Content == null)

 {

 rootFrame.Navigate(typeof(MainPage), e.Arguments);

 }

 Window.Current.Activate();

}

After creating a frame when the app is launched, the method

determines if there is anything in the frame. If it is null, then the app is

started fresh (and not resumed or restored from termination) and a new

frame is created. The current window’s content is then assigned this frame.

If the content is still null, the app navigates to the Main Page (the default

start page for the app).

Navigation is a bit of a misnomer here. This is not like going from one

web page to another. It is really swapping out the contents of the frame

with the contents of the new page.

To see how this works, we are going to add a new Basic Page to the

sample app we started to show the MVVM pattern.

�Creating a New Page
Right-click on the project and select Add ➤ New Item ➤ Basic Page. Name

it PageTwo.xaml, as shown in Figure 2-12.

Chapter 2 Building Your First Windows 10 UWP App

54

�Creating the UI

The UI for the second page will just be a copy of the MainPage without

the buttons, as shown in Figure 2-13. Notice the back button? That comes

along for free as part of the Basic Page template. More on that shortly.

Figure 2-12.  Adding PageTwo.xaml

Figure 2-13.  PageTwo UI

Chapter 2 Building Your First Windows 10 UWP App

55

To create this page, open PageTwo.xaml and enter the following XAML

just before the final closing </Grid> tag:

<Grid Grid.Column="0" Grid.Row="1" Margin="120,0,0,0"

Width="Auto">

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="Auto"/>

 <ColumnDefinition Width="Auto"/>

 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="Auto"/>

 </Grid.RowDefinitions>

 <TextBlock Grid.Row="0" Grid.Column="0">First Name</TextBlock>

 <TextBlock Grid.Row="1" Grid.Column="0">Last Name</TextBlock>

 <TextBox Grid.Row="0" Grid.Column="1"

 Text="{Binding Path=FirstName}"></TextBox>

 <TextBox Grid.Row="1" Grid.Column="1"

 Text="{Binding Path=LastName}"></TextBox>

</Grid>

Notice that the binding statements are exactly the same. This is the

advantage of setting the DataContext at the window level instead of for

each control. We can pass in any data object that has those properties and

it will just simply work.

�Adding Navigation to the MainPage
Navigation commands belong in the top app bar (or command bar), but

for this example, we’ll create a button on the Main Page to trigger the

navigation. To do so, open MainPage.xaml and add the following lines to

the grid that we added for the previous example (the last grid in the XAML).

Chapter 2 Building Your First Windows 10 UWP App

56

In the RowDefinition block, add:

<RowDefinition Height="Auto"/>

At the end of the XAML (before the closing </Grid> tag for the same

grid we’ve been working with), add:

<Button Name="NavigateBtn" Grid.Row="3" Grid.Column="1"

Content="Navigate" Click="NavigateBtn_Click"/>

The full XAML looks like this:

<Grid Grid.Column="0" Grid.Row="1" Margin="120,0,0,0" Width="Auto">

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="Auto"/>

 <ColumnDefinition Width="Auto"/>

 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="Auto"/>

 </Grid.RowDefinitions>

 <TextBlock Grid.Row="0" Grid.Column="0">First Name</TextBlock>

 <TextBlock Grid.Row="1" Grid.Column="0">Last Name</TextBlock>

 <TextBox Grid.Row="0" Grid.Column="1"

 Text="{Binding Path=MyCustomer.FirstName}"></TextBox>

 <TextBox Grid.Row="1" Grid.Column="1"

 Text="{Binding Path=MyCustomer.LastName}"></TextBox>

 <Button Grid.Row="2" Grid.Column="1"

 �Content="Update Name" Command="{Binding Path=

UpdateNameCommand}"/>

Chapter 2 Building Your First Windows 10 UWP App

57

 <Button Name="NavigateBtn" Grid.Row="3" Grid.Column="1"

 Content="Navigate" Click="NavigateBtn_Click"/>

</Grid>

We now need to add the event handler for the button click event. Note

that if we were sticking with MVVM, we would add a command for this, but

to keep things simple (and to match the rest of the examples in this book),

we are just going to add an event handler in the code-behind.

To do this, open MainPage.xaml.cs and add this code:

private void NavigateBtn_Click(object sender, RoutedEventArgs e)

{

 this.Frame.Navigate(typeof(PageTwo),

 ((this.DataContext as MainPageViewModel)!=null) ?

 (this.DataContext as MainPageViewModel).MyCustomer:

 (new Customer() {FirstName="Jane", LastName="Doe"}));

}

First and foremost, the code calls the Navigate method on the

frame. This is the same frame that was created in App.xaml.cs (and

previously explained in the text). The first parameter is required, and it

requires the type of page that is to be loaded into the frame. In our case,

it is typeof(PageTwo). The navigation framework will take this type, use

reflection to create an instance of the page, and load it into the frame.

The second parameter is optional and will be passed into the

page that is being navigated to as the Parameter property of the

NavigationEventArgs. In our case, we want to grab the customer out

of the ViewModel, and the easiest way to do that is to use the window’s

DataContext. If all went well, the DataContext is an instance of the

MainPageViewModel, and we can call the MyCustomer property once we

convert it back to the MainPageViewModel type. We added some defensive

programming to pass in a new Customer instance in case there is an error

along the way.

Chapter 2 Building Your First Windows 10 UWP App

58

�Handling the NavigatedTo Event
Open PageTwo.xaml.cs and add the following override to the

OnNavigatedTo event handler.

�protected override void OnNavigatedTo(NavigationEventArgs e)

{

 this.DataContext = e.Parameter as Customer;

}

This sets the data context for the window as the customer that was

passed in from the page that navigated to PageTwo, which in this simple

case is the Main Page. Now the binding statements in the XAML will use

the customer passed in to show the values on the model, as shown in

Figure 2-13. If the type conversion doesn’t work, the DataContext will be

set to null, and the bindings will fail silently, resulting in a blank form.

�The Back Button
Now to the back button. Open PageTwo.xaml and examine the XAML that

created the back button, as shown here:

<Button x:Name="backButton" Margin="39,59,39,0"

 Click="backButton_Click"

 Style="{StaticResource NavigationBackButtonNormalStyle}"

 VerticalAlignment="Top" AutomationProperties.Name="Back"

 AutomationProperties.AutomationId="BackButton"

 AutomationProperties.ItemType="Navigation Button"/>

Chapter 2 Building Your First Windows 10 UWP App

59

We then add the event handler on PageTwo.xaml.cs with the

following code.

 �private void backButton_Click(object sender,

RoutedEventArgs e)

 {

 Frame rootFrame = Window.Current.Content as Frame;

 if(rootFrame.CanGoBack)

 {

 rootFrame.GoBack();

 }

 }

As you can see, the navigation framework supplied by Microsoft makes

it super simple to load new pages into the mainframe, pass values from

page to page, and ensure that users can navigate back through your app.

�Summary
In this chapter, we looked at the anatomy of a Windows 10 UWP app

project and the myriad of options available to you. We touched on the

MVVM pattern and data binding. Finally, we covered the single-page

nature of Windows 10 UWP apps and using navigation framework to load

different pages into your app.

In the next chapter, we will take a deep look into all of the controls

available for Windows 10 UWP app development.

Chapter 2 Building Your First Windows 10 UWP App

61
© Jesse Liberty, Jon Galloway, Philip Japikse and Jonathan Hartwell 2018
J. Liberty et al., Windows 10 Development with XAML and C# 7,
https://doi.org/10.1007/978-1-4842-2934-7_3

CHAPTER 3

Themes, Panels,
and Controls
Themes provide a consistent display for all of the pages in your app.

Controls provide a way for users to interact with your app. Panels hold the

controls. Together, they help you define your UI. This chapter takes a quick

look at the theme options and then dives deep into the panels and controls

offered out of the box for the Windows 10 UWP app.

�Choosing a Theme
Windows 10 UWP applications use a Light theme by default. Using a

Dark theme is typically more user- and battery-friendly for tablet-based

applications. However, based on your application, the Light theme might

create a better user experience.

The best way to understand the themes is to see them in action. To do

so, open Visual Studio and select New Project ➤ Windows Universal ➤

Blank App (Universal Windows). Name the project Controls1, as shown in

Figure 3-1.

62

In Windows 8, the application theme can be changed in App.xaml by

specifying RequestedTheme="Light || Dark", as shown in the following

code:

<Application

 x:Class="Controls1.App"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/

presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:local="using:Controls1"

 RequestedTheme="Light">

In Windows 10 UWP applications, setting the RequestedTheme in

App.xaml changes the foreground theme but not the background theme

for panels.

Figure 3-1.  New Project in Visual Studio

Chapter 3 Themes, Panels, and Controls

63

To see the Dark and Light themes in action, add a TextBlock to the

Grid in MainPage.xaml, add a style for HeaderTextBlockStyle, and set the

text to "Hello, World". The resulting code is shown here:

<Grid>

 <TextBlock Text="Hello, World"

 Style="{StaticResource HeaderTextBlockStyle}"

/>

</Grid>

When you run the program, "Hello, World" is shown in light text on a

dark background, as shown in Figure 3-2.

In App.xaml, add RequestedTheme="Light" to the <Application />

tag to switch to the Light theme:

<Application

 x:Class="Controls1.App"

 �xmlns="http://schemas.microsoft.com/winfx/2006/xaml/

presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:local="using:Controls1"

 RequestedTheme="Light">

 <!-- Omitted for brevity -->

</Application>

Figure 3-2.  A text block with the default Dark theme

Chapter 3 Themes, Panels, and Controls

64

When you run the program again, all that shows is a dark screen.

This is because the control is set to use the Light theme. In the Light

theme, controls are expecting a light background, so they are configured

to use dark fonts. Panels (covered in the next section) must have their

background set to use ApplicationPageBackgroundThemeBrush in order

for RequestedTheme to take effect.

To do so, change the Grid so that it uses

ApplicationPageBackgroundThemeBrush, as in the following code:

<Grid Background="{ThemeResource

ApplicationPageBackgroundThemeBrush}">

 <TextBlock Text="Hello, World"/>

</Grid>

Run the application again and you will see dark text on a light

background, as in Figure 3-3.

�Using Panels
You can’t discuss controls without first discussing panels. Panels are a

special kind of UI control that “holds” other controls, supplies a place to

put your controls, and helps manage the layout. Panels are not new to

Windows 10 UWP; they have been in XAML since the beginning, with WPF

and Silverlight. The type of panel determines the behavior of the contained

controls (as will be described). Conceptually, they are very similar to ASP.

Figure 3-3.  A text block with a Light theme and the grid configured to
use the requested theme

Chapter 3 Themes, Panels, and Controls

65

NET placeholder controls in that they contain other controls and they can

both have controls added through code during runtime. However, while

ASP.NET placeholder controls are just another option for creating UIs,

the XAML containers are the key components of creating UIs. There are a

number of types of panels available out of the box with Windows 10, the

most important of which are:

•	 Canvas

•	 Grid

•	 StackPanel

•	 RelativePanel

�The Canvas Control
The Canvas control is used primarily in games and other applications

where you need precise (to the pixel) control over the placement of every

object in your application. We’ll show how to use Canvas, but then we

won’t return to it for the rest of the book, as our focus is not on games.

To start, open MainPage.xaml and remove the Grid and the TextBlock.

Next, add a Canvas. Again, to add a Canvas (or any other control), you can

drag it from the toolbox onto the design surface or the XAML, or you can

enter it by hand by typing the following where the Grid used to be:

<Canvas>

</Canvas>

Chapter 3 Themes, Panels, and Controls

66

METHODS FOR ADDING CONTROLS

Depending on how you add controls to your page, the resulting XAML can be

very different. If you do so by dragging a control from the toolbox directly into

the XAML editor, the resulting XAML will be very clean:

<Canvas/>

If you do so by dragging a control from the toolbox onto the design surface

in Visual Studio, there will be a lot more attributes set on the control, as the

design surface interprets where the control is dropped. For example, in my test

app, dragging a control onto the design surface resulted in the following XAML:

<Canvas HorizontalAlignment="Left" Height="100"

Margin="221,399,0,0"

 Grid.Row="1" VerticalAlignment="Top" Width="100"/>

There are advantages and disadvantages to the different methods of adding

controls. The best option is to try them all and determine what works best

for you.

You’ll place controls within the Canvas control (that is, between the

opening and closing tags). If you drag an Ellipse onto the design surface,

Visual Studio will fill in a number of properties for you so that the Ellipse

is visible:

<Ellipse Fill="#FFF4F4F5"

 Height="100"

 Canvas.Left="205"

 Stroke="Black"

 Canvas.Top="111"

 Width="100" />

Chapter 3 Themes, Panels, and Controls

67

Setting the Height and Width to the same value (in this case, 100)

makes the Ellipse a circle. The Canvas.Left and Canvas.Top properties

set the location of the Ellipse with respect to the left and top boundaries

of the Canvas. In this case, the Ellipse is 205 pixels to the right of the left

margin and 111 pixels down from the top boundary.

Change the Fill property to "Red" to see the circle more clearly.

You can place as many objects as you like onto the Canvas. Try the

following XAML:

<Canvas>

 <Ellipse Fill="Red"

 Height="100"

 Canvas.Left="205"

 Stroke="Black"

 Canvas.Top="111"

 Width="100"

 Canvas.ZIndex="1"/>

 <Rectangle Fill="Blue"

 Height="188"

 Canvas.Left="82"

 Stroke="Black"

 Canvas.Top="40"

 Width="118" />

 <Rectangle Fill="Blue"

 Height="137"

 Canvas.Left="278"

 Stroke="Black"

 Canvas.Top="91"

 Width="140"

 Canvas.ZIndex="0"/>

</Canvas>

Chapter 3 Themes, Panels, and Controls

68

The result is shown in Figure 3-4.

Normally, this would create two rectangles and an ellipse (appearing

as a circle since the height and width are set to the same value). The

second rectangle would partially cover the ellipse since it was declared

after the ellipse in the XAML. In this case, however, the ellipse occludes

the rectangle because the ZIndex was set higher for the ellipse (placing the

ellipse “on top of” the rectangle). The ZIndex determines the layering as if

the shapes were on a three-dimensional surface, as shown in Figure 3-5.

Figure 3-4.  Two rectangles and an ellipse

Figure 3-5.  ZIndex

Chapter 3 Themes, Panels, and Controls

69

The Canvas control really comes into its own when you work with

animations, a topic beyond the scope of this book.

�The Grid Control
The Grid control is the workhorse panel of Windows 10 UWP. It is so

commonly used that Microsoft made it the default panel for a new

window.

�Defining Rows and Columns

As one might expect, grids are composed of rows and/or columns. You can

define them using various measurements. The most common way is to

define the actual size:

<RowDefinition Height="50" />

or to define the relative size of two or more rows:

<RowDefinition Height="*" />

<RowDefinition Height="2*" />

This code indicates that the second row will be twice as big as the

first (and will take up two thirds of the available space). An asterisk alone

indicates 1*.

The last way to define them is by declaring a size to be "Auto," in

which case it will size to the largest object in that row or column.

To see this all at work, create a new project named Controls2 and add

the following code in the Grid that is provided:

<Grid Background="{StaticResource

ApplicationPageBackgroundThemeBrush}">

 <Grid.RowDefinitions>

 <RowDefinition Height="100" />

 <RowDefinition Height="Auto" />

Chapter 3 Themes, Panels, and Controls

70

 <RowDefinition Height="*" />

 <RowDefinition Height="2*" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition />

 <ColumnDefinition />

 </Grid.ColumnDefinitions>

 <Rectangle Fill="Red"

 Height="40"

 Width="20"

 Grid.Row="0"

 Grid.Column="0" />

 <Rectangle Fill="Blue"

 Height="40"

 Width="20"

 Grid.Row="1"

 Grid.Column="0" />

 <Rectangle Fill="Green"

 Height="40"

 Width="20"

 Grid.Row="2"

 Grid.Column="0" />

 <Rectangle Fill="Yellow"

 Height="40"

 Width="20"

 Grid.Row="3"

 Grid.Column="0" />

</Grid>

Notice that all the rectangles are the same size (Height="40"), but the

rows are of differing sizes. The result is shown in Figure 3-6.

Chapter 3 Themes, Panels, and Controls

71

The things to notice in Figure 3-6 are: The first rectangle is centered

in a row that is 100 pixels high. The second row is fit to the size of the

rectangle. The next two rows divide the remaining space in the proportion

1:2 and the rectangles are centered in each. The image was cropped to

make all of this more obvious.

Notice that the relative sizes are shown (e.g., 100, 1*, 2*, etc.) around the

borders of the design surface to make it easier to see (and adjust) the sizes.

In this example, we placed everything in the first column to save space

in the figure.

Figure 3-6.  Grid with varying heights

Chapter 3 Themes, Panels, and Controls

72

�Alignment, Margins, and Padding

In setting objects into rows and columns of the Grid, you often want

finer control over their placement. The first properties you might set are

horizontalAlignment and VerticalAlignment. These are enumerated

constants, as shown in Figure 3-7.

Margins are set to further fine-tune the placement of the object within

the grid’s cell. You can set margins as any of the following three types of

values:

•	 A single value: If you set the margin as a single value

in XAML, all four margins (top, left, bottom, and right)

will be set to the entered value.

•	 A pair of values: If you set the margin as a pair of values,

the left and right margins will be assigned the value of

the first number, and the top and bottom margins will

be set to the second value.

Figure 3-7.  Setting the VerticalAlignment

Chapter 3 Themes, Panels, and Controls

73

•	 Four values: Finally, if you set the margins as four

numbers, they will be assigned left, top, right, and

bottom. This is different from cascading style sheets

(CSS) in web development, where the numbers are in

top-right-bottom-left order.

Thus, if you set

Margin="5"

you create a margin of five pixels all around the object. But if you set

Margin = "10, 20"

you create a margin of 10 on the left and right and 20 on the top and

bottom. And, finally, if you set

Margin = "5, 10, 0, 20"

you create a margin of 5 on the left, 10 on the top, 0 on the right, and 20 on

the bottom.

Padding refers to the space within a control between its border and

its contents. You can see padding at work when you create a button and

set the padding—the contents are spaced further from the edges. In

Controls2a, you see that we create three buttons, setting the padding to be

quite small in the second and quite large in the third:

<Grid Background="{StaticResource

ApplicationPageBackgroundThemeBrush}">

 <StackPanel Margin="50">

 <Button Content="Hello" />

 <Button Content="Hello"

 Padding="5" />

 <Button Content="Hello"

 Padding="25" />

 </StackPanel>

 </Grid>

Chapter 3 Themes, Panels, and Controls

74

The result is shown in Figure 3-8.

You can see in Figure 3-8 that the padding affects the spacing around

the content but only within the button, not the spacing between buttons

(which is controlled by the margin).

�The StackPanel Control
The StackPanel control is both simple and useful. It allows you to

“stack” one object on top of another, or one object to the right of another

(horizontal stacking). No room is created between the objects, but you

can easily add space by setting a margin. You can add any control inside a

stack, including another stack.

For example, create a new application (Controls3) and add the

following code:

<Grid Background="{StaticResource

ApplicationPageBackgroundThemeBrush}">

 <StackPanel HorizontalAlignment="Left" Margin="50">

 <Rectangle Fill="Red"

Figure 3-8.  Padding

Chapter 3 Themes, Panels, and Controls

75

 Height="50"

 Width="50" />

 <Ellipse Fill="Blue"

 Height="50"

 Width="50" />

 <StackPanel Orientation="Horizontal">

 <Ellipse Fill="Green"

 Height="20"

 Width="20" />

 <Ellipse Fill="Yellow"

 Height="20"

 Width="20" />

 </StackPanel>

 </StackPanel>

</Grid>

Here, you have two instances of StackPanel—an outer StackPanel

and an inner StackPanel. The outer StackPanel consists of a Rectangle

and an Ellipse stacked on top of another. The inner StackPanel has its

orientation set to Horizontal (the default is Vertical), and within the

inner StackPanel are two somewhat smaller ellipses.

The result is shown in Figure 3-9.

Figure 3-9.  StackPanel objects

Chapter 3 Themes, Panels, and Controls

76

�The RelativePanel Control
The RelativePanel control lets you arrange elements in relation to each

other. Utilizing this panel will allow you to control exactly where you want

elements. For example, we can create something that looks like a flag by

using the following XAML:

 <RelativePanel BorderBrush="Gray" BorderThickness="1">

 �<Rectangle x:Name="WhiteRect" Fill="White" Height="40"

Width="44"/>

 <Rectangle x:Name="BlueRect" Fill="Blue"

 Height="10" Width="88"

 RelativePanel.RightOf="WhiteRect" />

 <Rectangle x:Name="RedLine" Fill="Red"

 Height="10" Width="88"

 RelativePanel.RightOf="WhiteRect"

 RelativePanel.Below="BlueRect"/>

 <Rectangle x:Name="BlueLine" Fill="Blue"

 Height="10" Width="88"

 RelativePanel.RightOf="WhiteRect"

 RelativePanel.Below="RedLine"/>

 <Rectangle x:Name="RedLine2" Fill="Red"

 Height="10" Width="88"

 RelativePanel.RightOf="WhiteRect"

 RelativePanel.Below="BlueLine"/>

 <Rectangle x:Name="GreenRect" Fill="Gold"

 Height="44"

 RelativePanel.Below="WhiteRect"

 RelativePanel.AlignLeftWith="WhiteRect"

 RelativePanel.AlignRightWith="BlueRect"/>

 </RelativePanel>

Chapter 3 Themes, Panels, and Controls

77

In Figure 3-10, you will see there is a white box and lines that alternate

blue and red all on top of a yellow box.

�The Border Control
The Border control is a container that can draw a border, background, or

both around one or more other objects. Technically, the Border control,

like many other controls, can only have a single object as its contents, but

that object can be something like a StackPanel that can in turn have many

objects within it, greatly increasing the utility of the Border. Create another

project called Controls4 and add the following XAML to the Main Page:

<Border BorderBrush="Red"

 BorderThickness="5"

 Height="150"

 Width="150"

 Background="Wheat">

 <StackPanel VerticalAlignment="Center" >

 <Rectangle Height="50"

 Width="50"

 Fill="Blue"

 Margin="5"/>

 <Rectangle Height="50"

 Width="50"

Figure 3-10.  Flag design

Chapter 3 Themes, Panels, and Controls

78

 Fill="Black"

 Margin="5"/>

 </StackPanel>

</Border>

In Figure 3-11, the two squares have 10 pixels between them. That is

because each declared a margin of 5, and the bottom margin of the upper

rectangle was added to the top margin of the lower rectangle (5 + 5).

�Working with Controls
In addition to the various panels, the Windows 10 UWP toolbox is chock-

full of additional controls for gathering or displaying information and/or

for interacting with the end user. You can add controls to your page in a

number of ways:

•	 Open Blend and drag a control onto the design surface.

•	 Open Blend and create the control by hand in XAML.

•	 Open Visual Studio and drag a control onto the design

surface.

Figure 3-11.  Border control

Chapter 3 Themes, Panels, and Controls

79

•	 Open Visual Studio and drag a control into XAML.

•	 Open Visual Studio and create the control by hand in

XAML.

Almost too many choices. For simplicity, we assume that you are

working in Visual Studio. Blend is a powerful tool for XAML design work

(for laying out controls, etc.), and we highly recommend you take a look at

it, but the design work can often best be done in Blend.

Dragging a control from the toolbox onto either the design surface or

directly into the XAML source itself is a great way to add controls to your

page. If your control needs a special namespace, Visual Studio will add

it for you automatically if you drag the control into place. If you add the

control manually by typing the XAML, you’ll have to add the namespace by

hand.

This chapter covers some of the more important controls and panels

but does not endeavor to be exhaustive. A few controls, such as GridView,

won’t be covered in detail until later in the book.

�TextBlock and TextBox
There are a number of simple controls for displaying or retrieving data

from the user. For example, text is typically displayed using a TextBlock

control and is retrieved from the user with a TextBox control. In

Controls5, we create a very simple data entry form as follows:

<Grid Background="{StaticResource

ApplicationPageBackgroundThemeBrush}">

 <Grid.RowDefinitions>

 <RowDefinition Height="50" />

 <RowDefinition Height="50" />

 <RowDefinition Height="50" />

 </Grid.RowDefinitions>

Chapter 3 Themes, Panels, and Controls

80

 <Grid.ColumnDefinitions>

 <ColumnDefinition />

 <ColumnDefinition />

 </Grid.ColumnDefinitions>

 <TextBlock Text="First Name"

 FontSize="20"

 Margin="5"

 HorizontalAlignment="Right"

 VerticalAlignment="Center" />

 <TextBox x:Name="FirstName"

 Width="200"

 Height="40"

 Grid.Row="0"

 Grid.Column="1"

 HorizontalAlignment="Left"

 Margin="5"

 VerticalAlignment="Center" />

 <TextBlock Text="Last Name"

 Grid.Row="1"

 FontSize="20"

 Margin="5"

 HorizontalAlignment="Right"

 VerticalAlignment="Center" />

 <TextBox x:Name="LastName"

 Width="200"

 Height="40"

 Grid.Row="1"

 Grid.Column="1"

 HorizontalAlignment="Left"

 Margin="5"

 VerticalAlignment="Center" />

Chapter 3 Themes, Panels, and Controls

81

 <TextBlock Text="Job Title"

 Grid.Row="2"

 FontSize="20"

 Margin="5"

 HorizontalAlignment="Right"

 VerticalAlignment="Center" />

 <TextBox x:Name="JobTitle"

 IsSpellCheckEnabled="True"

 IsTextPredictionEnabled="True"

 Width="200"

 Height="40"

 Grid.Row="2"

 Grid.Column="1"

 HorizontalAlignment="Left"

 Margin="5"

 VerticalAlignment="Center" />

</Grid>

We start by giving the Grid three rows and two columns, and then

we populate the resulting cells with TextBlock and TextBox controls.

Notice that the default position for a control is in Grid.Row="0" and Grid.

Cell="0", and so we only need to specify when we want a different row or

cell. While it is best programming practice to specify the default as well, it

is so common to assume 0 for a cell or row if not specified, that we show it

that way here.

The result of this code is shown in Figure 3-12.

Chapter 3 Themes, Panels, and Controls

82

The text boxes in the data entry form have an X that shows up on the

right side once the users start typing, allowing them to delete the text and

start over, as shown in Figure 3-13.

Also, notice in the XAML that the two TextBox controls are assigned

names with the x:Name attribute:

<TextBox x:Name="FirstName"/>

This is so that we can refer to them programmatically. That is, we can

refer to them in code, such as in an event handler, which we’ll see in the

next section.

�Spell Check
Windows 10 UWP XAML supports system-driven spell checking and auto-

complete, both built-in and right out of the box. Figure 3-14 shows spell

checking at work. Notice the squiggly underlining of the misspelled word

and the options to correct or add to the dictionary or ignore.

Figure 3-13.  The X in text box for deleting

Figure 3-12.  Simple data entry form

Chapter 3 Themes, Panels, and Controls

83

Unlike Windows 8.1, where you had to explicitly specify you want

to add spell check to your text box, in UWP all TextBox and TextBlock

controls have spell check enabled by default. You can get auto-completion

by setting just the following property on the TextBox:

IsTextPredictionEnabled="True"

The complete XAML for the Job Title text box is shown here:

<TextBox x:Name="JobTitle"

 IsTextPredictionEnabled="True"

 Width="200"

 Height="40"

 Grid.Row="2"

 Grid.Column="1"

 HorizontalAlignment="Left"

 Margin="5"

 VerticalAlignment="Center" />

Figure 3-14.  Spell check

Chapter 3 Themes, Panels, and Controls

84

One thing to note is that in Windows 10 UWP, the text prediction does

not work on devices that have a physical keyboard. When using a mobile

device, the text prediction will work and it uses the device’s internal

dictionary.

If you want to use text prediction on devices with a keyboard, you

should use AutoSuggestBox. If you wanted to use the same example on a

desktop, you would use the following XAML

<AutoSuggestBox x:Name="JobTitle"

 Width="200"

 Height="40"

 Grid.Row="3"

 Grid.Column="1"

 HorizontalAlignment="Left"

 Margin="5"

 VerticalAlignment="Center"

 PlaceholderText="Job Title"

 QueryIcon="Find"

 TextChanged="JobTitle_TextChanged"

 QuerySubmitted="JobTitle_QuerySubmitted"

 SuggestionChosen="JobTitle_SuggestionChosen"/>

Notice that there are a few differences here. First, you can use a query

icon. That is not necessary but if you look at Figure 3-14 you will notice the

icon on the right of the Job Title text box. There are many options (or you

can leave it blank if you want) for this icon and you are able to see them if

you allow Visual Studio to use auto-complete for you.

Another difference is that there are three different event handlers that

are attached to this control. The following code populates the Job Title

suggest box.

Chapter 3 Themes, Panels, and Controls

85

public sealed partial class MainPage : Page

 {

 private List<string> jobs;

 public MainPage()

 {

 this.InitializeComponent();

 �jobs = new List<string>() { "Engineer", "Software

Engineer" };

 }

 �private void JobTitle_TextChanged(AutoSuggestBox

sender, AutoSuggestBoxTextChangedEventArgs args)

 {

 �if (args.Reason ==

AutoSuggestionBoxTextChangeReason.UserInput)

 {

 sender.ItemsSource = jobs;

 }

 }

 �private void JobTitle_QuerySubmitted(AutoSuggestBox

sender, AutoSuggestBoxQuerySubmittedEventArgs args)

 {

 if(args.ChosenSuggestion != null)

 {

 // Do something with the text

 �if(!jobs.Contains(args.ChosenSuggestion.

ToString()))

 {

 jobs.Add(args.ChosenSuggestion.ToString());

 }

 }

 }

Chapter 3 Themes, Panels, and Controls

86

 �private void JobTitle_SuggestionChosen(AutoSuggestBox

sender, AutoSuggestBoxSuggestionChosenEventArgs args)

 {

 sender.Text = args.SelectedItem.ToString();

 }

 }

The TextChanged event is used whenever the user enters text in the

text box. This is where we set the source for the auto suggestions. The

QuerySubmitted event is called when the user actually submits the text

box. Right now, we don’t do anything with the actual selected text except

add it to our list of jobs if it does not already exist in our list. There could

be many other things you do, such as compare to a dictionary or add to

your custom dictionary. The SuggestionChosen event is fired when a user

selects one of the drop-down options. In this case, we are setting the text

on the AutoSuggestBox to what the user selected.

�Headers and Watermarks Controls
In the previous examples, we used a two-column Grid and created text

blocks next to the text boxes in order to create a data entry form. Just like

in Windows 8.1, Windows 10 UWP apps allow us to create headers in place

with many input controls, including the TextBox, the PasswordBox, and the

ComboBox (all shown later in this chapter).

To demonstrate this, create a project called Controls5a and add the

following row definitions into the Grid. The main difference between this

Grid and the one we created in Controls5 is that the height is set to "Auto"

and column definitions are not included.

<Grid.RowDefinitions>

 <RowDefinition Height="Auto" />

 <RowDefinition Height="Auto" />

Chapter 3 Themes, Panels, and Controls

87

 <RowDefinition Height="Auto" />

 <RowDefinition />

</Grid.RowDefinitions>

To create headers for the controls, add the Header attribute into the

markup, as in the sample code shown here:

<TextBox x:Name="FirstName"

 Header="First Name"

 Width="200"

 Grid.Row="0"

 HorizontalAlignment="Left"

 Margin="5"

 VerticalAlignment="Center" />

To add a watermark, use PlaceHolderTextAttribute, as shown in the

following sample code:

<TextBox x:Name="FirstName"

 Header="First Name"

 PlaceholderText="[Enter First Name]"

 Width="200"

 Grid.Row="0"

 HorizontalAlignment="Left"

 Margin="5"

 VerticalAlignment="Center" />

The full code for the page is listed here:

<Grid

 Background="{StaticResource

ApplicationPageBackgroundThemeBrush}">

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto" />

 <RowDefinition Height="Auto" />

Chapter 3 Themes, Panels, and Controls

88

 <RowDefinition Height="Auto" />

 <RowDefinition />

 </Grid.RowDefinitions>

 <TextBox x:Name="FirstName"

 Header="First Name"

 PlaceholderText="[Enter First Name]"

 Width="200"

 Grid.Row="0"

 HorizontalAlignment="Left"

 Margin="5"

 VerticalAlignment="Center" />

 <TextBox x:Name="LastName"

 Header="Last Name"

 PlaceholderText="[Enter Last Name]"

 Width="200"

 Grid.Row="1"

 HorizontalAlignment="Left"

 Margin="5"

 VerticalAlignment="Center" />

 <TextBox x:Name="JobTitle"

 Header="Job Title"

 PlaceholderText="[Enter Job Title]"

 IsSpellCheckEnabled="True"

 IsTextPredictionEnabled="True"

 Width="200"

 Grid.Row="2"

 HorizontalAlignment="Left"

 Margin="5"

 VerticalAlignment="Center" />

 </Grid>

Chapter 3 Themes, Panels, and Controls

89

When you run the project, you get the result shown in Figure 3-15.

�The PasswordBox Control
A variation on the TextBox control is the PasswordBox, which allows

you to collect information from the user that is masked by a “password

character”—which is by default a bullet (●). To demonstrate this, create a

new project called Controls5b. Add a PasswordBox into MainPage.xaml

and substitute a question mark as the password character. Also, turn on the

Reveal button, which allows users to temporarily see the password in clear

text. The XAML is as follows:

<Grid Background="{StaticResource

 ApplicationPageBackgroundThemeBrush}">

 <PasswordBox Margin="5"

 Width="200"

 Header="Password"

 PlaceholderText="Please Enter Your Password"

Figure 3-15.  Password box

Chapter 3 Themes, Panels, and Controls

90

 IsPasswordRevealButtonEnabled="True"

 PasswordChar="?"

 VerticalAlignment="Top"/>

</Grid>

The before-and-after results of typing an entry are shown in Figure 3-16.

The “eye” on the right side of the password box is the Reveal button. It

allows users to see the actual characters being typed. It is not a toggle, as

the characters are only revealed while the Reveal button is pressed.

�Buttons and Event Handlers Controls
Create a new project named Controls6. The Main Page is a form with two

TextBox instances, a Button, and an event handler that will respond to the

button being clicked. In that event handler, we can get the values in the

two TextBox instances. The result will be displayed in a text block.

<Grid Background="{StaticResource

 ApplicationPageBackgroundThemeBrush}">

 <Grid.RowDefinitions>

 <RowDefinition Height="50" />

Figure 3-16.  Password boxes waiting for input (top) and with input
(bottom)

Chapter 3 Themes, Panels, and Controls

www.allitebooks.com

http://www.allitebooks.org

91

 <RowDefinition Height="50" />

 <RowDefinition Height="50" />

 <RowDefinition />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition />

 <ColumnDefinition />

 </Grid.ColumnDefinitions>

 <TextBlock Text="First Name"

 FontSize="20"

 Margin="5"

 HorizontalAlignment="Right"

 VerticalAlignment="Center" />

 <TextBox x:Name="FirstName"

 Width="200"

 Height="40"

 Grid.Row="0"

 Grid.Column="1"

 HorizontalAlignment="Left"

 Margin="5"

 VerticalAlignment="Center" />

 <TextBlock Text="Last Name"

 Grid.Row="1"

 FontSize="20"

 Margin="5"

 HorizontalAlignment="Right"

 VerticalAlignment="Center" />

 <TextBox x:Name="LastName"

 Width="200"

 Height="40"

 Grid.Row="1"

 Grid.Column="1"

Chapter 3 Themes, Panels, and Controls

92

 HorizontalAlignment="Left"

 Margin="5"

 VerticalAlignment="Center" />

 <TextBlock x:Name="Output"

 HorizontalAlignment="Right"

 VerticalAlignment="Center"

 Text=""

 Margin="5"

 FontSize="20"

 Grid.Column="0"

 Grid.Row="2" />

 <Button Name="ShowName"

 Content="Show Name"

 HorizontalAlignment="Left"

 VerticalAlignment="Center"

 Margin="5"

 Grid.Row="2"

 Grid.Column="1" />

</Grid>

There are numerous ways to add an event handler for the click event.

The simplest is to type Click=, and when you press space Visual Studio will

offer to create (and name) an event handler for you, as shown in Figure 3-17.

Figure 3-17.  Event handler

Chapter 3 Themes, Panels, and Controls

93

The name created for you by Visual Studio is <objectName>_Click, so

if your button is named ShowName then the event handler will be ShowName_

Click, although you are free to override this name with anything you like.

Not only does Visual Studio set up the name for your event handler

but it also stubs out the event handler in the code-behind (e.g., MainPage.

xaml.cs).

private void ShowName_Click(object sender, RoutedEventArgs e)

{

}

All you need to do is fill in the logic. In this case, we’ll obtain the string

values from the Text properties of the FirstName and LastName text boxes,

concatenate them, and then place them into the Text property of the

TextBlock Output, as follows:

private void ShowName_Click(object sender, RoutedEventArgs e)

{

 string fn = FirstName.Text;

 string ln = LastName.Text;

 Output.Text = fn + " " + ln;

}

You can of course shorten this by leaving out the intermediate string

variables:

private void ShowName_Click(object sender, RoutedEventArgs e)

{

 Output.Text = FirstName.Text + " " + LastName.Text;

}

We will typically show the longer version, as it makes it easier to see

what is happening and to debug it if anything goes wrong.

Chapter 3 Themes, Panels, and Controls

94

�The HyperLinkButton Control

The HyperLinkButton control looks like a HyperLink but acts like a button.

That is, you can assign a click event handler to the HyperLinkButton that

will be handled before the user navigates to the URL represented by the

HyperLinkButton. HyperLinkButtons are often used inline with text blocks.

Create a new project names Controls6a and add the following XAML

to show a simple HyperLinkButton at work:

<Grid Background="{StaticResource

 ApplicationPageBackgroundThemeBrush}">

 <StackPanel Margin="50">

 <TextBlock Name="Message" />

 <HyperlinkButton Content="Phil Japikse"

 NavigateUri="http://skimedic.com"

 Click="HyperlinkButton_Click" />

 </StackPanel>

</Grid>

Notice that the HyperLinkButton has an event handler. This method is

implemented in the code-behind, like any event handler.

private void HyperlinkButton_Click(object sender,

RoutedEventArgs e)

{

 Message.Text = "Hello Hyperlink!";

}

The code will be called before the hyperlink is navigated to, and

so in this case the message "Hello Hyperlink!" will flash just before

we navigate to the URL. While you can write code that requires user

interaction to take place before the URL is navigated to, it is more common

to use the HyperLinkButton just to navigate to the URL. This gives you the

appearance of a normal (HTML) hyperlink within an XAML application.

Chapter 3 Themes, Panels, and Controls

95

�The CheckBoxes, ToggleSwitches,
and RadioButtons Controls
There are a number of controls that help the users make selections. Two of

the most popular that allow the users to select from a number of options

are CheckBox and RadioButton. ToggleSwitch is the Windows 10 UWP

control of choice when the user is selecting one of two mutually exclusive

choices. Controls7 shows a small form with all three of these controls

added:

<Grid Background="{StaticResource

 ApplicationPageBackgroundThemeBrush}">

 <StackPanel Name="OuterPanel" Margin="50">

 <StackPanel Orientation="Horizontal" Name="RadioButtonsPanel">

 <RadioButton Name="Soft"

 Content="Soft"

 GroupName="Loudness"

 Margin="5" />

 <RadioButton Name="Medium"

 Content="Medium"

 GroupName="Loudness"

 Margin="5" />

 <RadioButton Name="Loud"

 Content="Loud"

 IsChecked="True"

 GroupName="Loudness"

 Margin="5" />

 </StackPanel>

 <StackPanel Orientation="Horizontal"

 Name="CheckBoxPanel">

 <CheckBox Name="ClassicRock"

 Content="Classic Rock"

 Margin="5" />

Chapter 3 Themes, Panels, and Controls

96

 <CheckBox Name="ProgRock"

 Content="Progressive Rock"

 Margin="5" />

 <CheckBox Name="IndieRock"

 Content="Indie Rock"

 Margin="5" />

 </StackPanel>

 <ToggleSwitch Header="Power" OnContent="On"

 OffContent="Off" />

 <ToggleButton Content="Toggle me!"

 Checked="ToggleButton_Checked"

 Unchecked="ToggleButton_Unchecked"/>

 <TextBlock Name="Message"

 Text="Ready..."

 FontSize="40" />

 </StackPanel>

</Grid>

The first thing to notice about this form is that rather than creating the

layout with cells in a Grid, we laid out the controls in a StackPanel. Either

way is valid.

The first StackPanel control consists of three RadioButton controls.

RadioButton controls are grouped using a GroupName (every RadioButton

in a group is mutually exclusive). We set the IsChecked property to true

for the third button—the default is false, and in a RadioButton group only

one button will have the IsChecked value set to true at a time.

The second StackPanel has three CheckBox controls and they are not

mutually exclusive; the user is free to pick any or all of the music choices.

Next, we have a ToggleSwitch. You can see that it has a header and text

for when it is in the on or off position.

Chapter 3 Themes, Panels, and Controls

97

Finally, we have a ToggleButton, which looks like a button but toggles

between a checked and unchecked state and has events that correspond to

being checked or unchecked.

Run the program and click on the buttons and check boxes to see how

they behave, then toggle the switch to see the text and the switch change,

as shown in Figure 3-18.

The only code for all of the previous controls are the event handlers for

clicking the Toggle button, as shown here:

private void ToggleButton_Checked(object sender,

RoutedEventArgs e)

{

 Message.Text = "Button was toggled on!";

}

Figure 3-18.  Radio buttons, check boxes, a toggle switch, and a toggle
button

Chapter 3 Themes, Panels, and Controls

98

private void ToggleButton_Unchecked(object sender,

RoutedEventArgs e)

{

 Message.Text = "Button was toggled off!";

}

�The ListBox, ListView, and ComboBox Controls
Windows 10 UWP continues to support the ListBox control, though it has,

in many ways, been replaced by ListView. They work very similarly, and

they both provide a scrolling list of data. The ListView is more powerful

and more suited to Windows 8.1 Store applications. In their simplest

forms, the use and appearance is identical, as shown in Controls8:

<Grid Background="{StaticResource

 ApplicationPageBackgroundThemeBrush}">

 <StackPanel Orientation="Horizontal" Margin="50">

 <ListBox Name="myListBox"

 Background="White"

 Foreground="Black"

 Width="150"

 Height="250"

 Margin="5">

 <x:String>ListBox Item 1</x:String>

 <x:String>ListBox Item 2</x:String>

 <x:String>ListBox Item 3</x:String>

 <x:String>ListBox Item 4</x:String>

 </ListBox>

Chapter 3 Themes, Panels, and Controls

99

 <ListView Name="myListView"

 Background="White"

 Foreground="Black"

 Width="150"

 Height="250"

 Margin="5">

 <x:String>ListView Item 1</x:String>

 <x:String>ListView Item 2</x:String>

 <x:String>ListView Item 3</x:String>

 <x:String>ListView Item 4</x:String>

 </ListView>

 </StackPanel>

</Grid>

The output is nearly identical in this case, as shown in Figure 3-19.

Figure 3-19.  ListBox and ListView controls

Chapter 3 Themes, Panels, and Controls

100

The ComboBox is very similar to the ListBox. It provides a drop-down

list, but you can also provide watermark text and a header (through

the PlaceHolderText and Header attributes, respectively), as shown in

Controls8a:

<ComboBox Name="myComboBox"

 Background="White"

 Foreground="Black"

 Width="Auto"

 Height="60"

 Margin="5"

 PlaceholderText="Please Select and Item"

 Header="ComboBox Example">

 <x:String>ComboxBox Item 1</x:String>

 <x:String>ComboxBox Item 2</x:String>

 <x:String>ComboxBox Item 3</x:String>

 <x:String>ComboxBox Item 4</x:String>

</ComboBox>

The result, with all three controls, is shown in Figure 3-20.

Chapter 3 Themes, Panels, and Controls

101

Typically, you’ll use the ComboBox when space is tight and when users

select just one choice at a time. You’ll use the ListBox (if you use it at all)

when you want to display all the choices at once and when you want to

allow multiple selections.

�The Image Control
The Image control is used to display (surprise!) an image, typically a jpg

or png file. Its most important property is Source, which is the URI of the

image itself. Controls9 shows how to add two Image controls to the page:

<Grid Background="{StaticResource

 ApplicationPageBackgroundThemeBrush}">

 <StackPanel Margin="50">

 <Image Height="240"

 Width="360"

 Source="Assets/Sheep.jpg"

 Margin="5" />

Figure 3-20.  ListBox and ListView controls with a ComboBox
control

Chapter 3 Themes, Panels, and Controls

102

 <Image Height="240"

 Width="360"

 Source="Assets/PaintedDesert.jpg"

 Margin="5" />

 </StackPanel>

</Grid>

The result is shown in Figure 3-21.

Figure 3-21.  Images presented with the image controls

Chapter 3 Themes, Panels, and Controls

103

To add the images to your page, copy two images into your Assets

folder, click on Add Existing Item to add them to the project, and then

update the name in the Source property of the Image. You can use any

images that you have on your local system or use the images from the

sample code provided along with the book.

If your image does not fit the rectangle described for it by the Image

control, you can set the Stretch property, which is an enumerated

constant, as shown in Figure 3-22.

The effect of each of these constants can be seen in Figure 3-23.

Figure 3-23.  Stretch settings in action

Figure 3-22.  Stretch property

Chapter 3 Themes, Panels, and Controls

104

�The Slider Control
The Slider control allows the user to select from a range of values by

sliding a thumb control along a track. While the thumb is being moved,

the actual value is automatically displayed above the slider, as shown in

Figure 3-24.

The code for creating the slider is shown in Controls10:

<StackPanel Margin="50">

 <Slider

 Header="Select a Value"

 Minimum="0"

 Maximum="100"

 Value="50"

 Width="100"/>

</StackPanel>

�The ProgressBar Control
The ProgressBar control is used to indicate progress, typically while

waiting for an asynchronous operation to complete. If you know the

percentage of progress achieved at any moment, you can use a standard

Figure 3-24.  Slider control

Chapter 3 Themes, Panels, and Controls

105

progress bar, setting its value as you progress toward completion.

Otherwise, you will want to use the indeterminate progress bar.

A ProgressRing works just like the indeterminate ProgressBar but is

typically used to indicate waiting for the system rather than for program

progress.

The code for creating progress bars is shown in Controls11:

<StackPanel Margin="50">

 <ProgressBar Value="50" Width="150" Margin="20"/>

 <ProgressBar IsIndeterminate="True"

 Width="150" Margin="20" />

 <ProgressRing IsActive="True" Margin="20" />

</StackPanel>

The result is shown in Figure 3-25.

Figure 3-25.  A progress bar

Chapter 3 Themes, Panels, and Controls

106

�The ToolTip Control
Tooltips pop up and display information associated with an element.

A tooltip will appear when users hover over the element with a mouse

or tap and hold the element with their finger. Controls12 shows the

code for adding a ToolTip control to a button:

<Grid Background="{StaticResource

 ApplicationPageBackgroundThemeBrush}">

 <StackPanel Margin="50">

 <Button Content="Button"

 ToolTipService.ToolTip="Click to perform action" />

 </StackPanel>

</Grid>

The tooltip is shown in Figure 3-26.

�The DatePickers and TimePickers Controls
Windows 10 UWP allows you to add date and time pickers for XAML-based

applications. To do so, create a new project called Controls13 and add the

following XAML to demonstrate the core functionality of the controls:

<Grid.ColumnDefinitions>

 <ColumnDefinition Width="120"/>

Figure 3-26.  Tooltip

Chapter 3 Themes, Panels, and Controls

107

 <ColumnDefinition Width="Auto"/>

 <ColumnDefinition Width="40"/>

 <ColumnDefinition Width="Auto"/>

 <ColumnDefinition Width="*"/>

</Grid.ColumnDefinitions>

<TimePicker Grid.Column="1" Header="Select a Time" />

<DatePicker Grid.Column="3" Header="Select a Date"/>

The controls are shown in Figure 3-27.

You can see the TimePicker control in action in Figure 3-28.

Figure 3-27.  TimePicker and DatePicker controls

Chapter 3 Themes, Panels, and Controls

108

�Flyouts
Flyouts have been available for HTML/JavaScript developers since

Windows 8. Windows 8.1 adds flyouts for XAML developers. A flyout is an

UI element that overlays the current UI to provide additional information

to the user or provide a mechanism to get confirmation of an action.

Flyouts are attached to other controls and are shown in response to

an action. For example, a flyout attached to a button will show when the

button is clicked. Flyouts are container controls themselves and can hold

any number of additional controls by using a panel.

Figure 3-28.  Using the TimePicker control

Chapter 3 Themes, Panels, and Controls

109

To show the different types of flyouts, create another project called

Controls14. Add the following column definitions in preparation for the

different examples:

<Grid.ColumnDefinitions>

 <ColumnDefinition Width="120"/>

 <ColumnDefinition Width="Auto"/>

 <ColumnDefinition Width="Auto"/>

</Grid.ColumnDefinitions>

�Basic Flyouts

To see how to add a flyout, add the following XAML to the Grid, run the

program, and you will see the result shown in Figure 3-29 (after clicking

the button).

<Button Grid.Column="0" Content="This is a button to launch a

flyout">

 <Button.Flyout>

 <Flyout>

 <StackPanel>

 <TextBlock>This is a flyout message</TextBlock>

 <Button>This is a flyout button</Button>

 </StackPanel>

 </Flyout>

 </Button.Flyout>

</Button>

Chapter 3 Themes, Panels, and Controls

110

�Menu Flyouts

Menu flyouts allow for building menus that remain hidden until needed.

Add the following XAML into Controls14 and run the program to get the

result shown in Figure 3-30.

<Button Grid.Column="1"

 Content="This is a button to launch Menu Flyout">

 <Button.Flyout>

 <MenuFlyout>

 <MenuFlyoutItem Text="First Item"/>

 <MenuFlyoutSeparator/>

 <ToggleMenuFlyoutItem Text="Toggle Item"/>

 </MenuFlyout>

 </Button.Flyout>

</Button>

Figure 3-29.  Flyout attached to a button

Chapter 3 Themes, Panels, and Controls

111

�Understanding Dependency Properties
Dependency properties are like the electric wires and pipes running under

the streets of a big city. You can ignore them, you can even be oblivious to

their existence, but they make all the magic happen and when something

breaks, you suddenly discover that you need to understand how they work.

Before we begin exploring dependency properties, let’s review

properties themselves. To do that, we go back into the dark early days of

C++ when what we had available in a class were methods and member

variables (fields).

�Data Hiding
Back in those dark days, we wanted to store values in fields but we didn’t

want clients (methods that use our values) to have direct access to those

fields (if nothing else, we thought we might later change how we store the

data). Thus, we used accessor methods.

Figure 3-30.  Menu flyout with a regular menu item and a toggle
menu item

Chapter 3 Themes, Panels, and Controls

112

The accessor methods had method semantics (you used parentheses),

and so data hiding was explicit and ugly. You ended up with code that

looked like this:

int theAge = myObject.GetAge();

which just seemed all wrong when what you wanted was

int theAge = myObject.age;

Enter properties. Properties have the wonderful characteristic of

looking like a field to the consumer but looking like a method to the

implementer. Now you can change the way the property is “backed”

without breaking the code that uses the property.

private int _age;

public int Age { get { return _age; } set { _age = value; } }

Age is the property; _age is the backing variable. The consumer can

now write

int theAge = myObject.Age;

Age is a property and so you can put anything you like in the getter,

including accessing a database or computing the age.

If your property getters and setters only return and set the value

(in other words, no additional logic), you can use automatic properties to

save typing. The private field and public property we looked at could have

been written with this single line:

public int Age { get; set; }

The compiler turns this single statement into a declaration of a private

backing variable and a public property whose get returns that backing

variable, and whose set sets that variable.

Chapter 3 Themes, Panels, and Controls

113

�Dependency Properties
Dependency properties are an extension to the CLR and to C# and were

created because normal properties just don’t provide what we need:

declarative syntax that supports data binding as well as storyboards and

animations.

Most of the properties exposed by Windows 10 elements are

dependency properties, and you’ve been using these properties without

realizing it. That is possible because dependency properties are designed

to look and feel like traditional C# properties.

In short, what was needed was a system that could establish the value

of a property at runtime based on input from a number of sources. The

value of a dependency property is computed based on inputs such as

•	 User preferences

•	 Data binding

•	 Animation and storyboards

•	 Templates and styles

•	 Inheritance

A key value of the dependency properties system is the ability to build

properties that automatically notify any interested party that is registered

each time the value of the property changes. This free, painless, and

automatic implementation of the observer pattern1 is tremendously

powerful and greatly reduces the burden on the client programmer

(in fact, the data-binding system depends on it!).

You normally will not have to create dependency properties unless you

are creating a custom control (a topic beyond the scope of this book).

1�See “Exploring the Observer Design Pattern” on the Microsoft Developer
Network for more information: http://msdn.microsoft.com/en-us/library/
Ee817669(pandp.10).aspx.

Chapter 3 Themes, Panels, and Controls

http://msdn.microsoft.com/en-us/library/Ee817669(pandp.10).aspx
http://msdn.microsoft.com/en-us/library/Ee817669(pandp.10).aspx

114

The first thing to know is that in order to support a dependency

property, the object that defines the property (your custom control) must

inherit from the DependencyObject. Virtually all of the types you use for

a Windows Store app with XAML and C# will be a DependencyObject

subclass.

You might then declare your property like this:

public bool Valuable

{

 get { return (bool) GetValue(ValuableProperty); }

 set { SetValue(ValuableProperty, value); }

}

It’s a pretty standard get and set except that you access your

backing variable using GetValue and SetValue to get and set the value

of a dependency property named ValuableProperty (and that is the

idiom, the CLR property name plus the word property equals the name

of the dependency property, thus Valuable plus Property equals

ValuableProperty).

The declaration of the dependency property itself is a bit weirder:

public static readonly DependencyProperty ValuableProperty =

 DependencyProperty.Register(

 "Valuable",

 typeof(bool),

 typeof(MyCustomControl),

 new PropertyMetadata(new PropertyChangedCallback(

 MyCustomControl.OnValuablePropertyChanged)));

Let’s break this down. The first line declares the object (which is really

a reference to a dependency property) as public. It must be static and

read-only, its type is DependencyProperty, and its name (identifier) is

ValuableProperty.

Chapter 3 Themes, Panels, and Controls

115

We set that reference to what we’ll get back by calling the static

Register method on the DependencyProperty class. Register takes four

arguments:

•	 The name of the dependency property wrapper

•	 The type of the dependency property being registered

•	 The type of the object registering it

•	 The Callback

The Callback is of type PropertyMetaData. You can imagine a world in

which there are various pieces of metadata for the DependencyProperty.

At the moment, however, in Windows 10 UWP, there is only one: the

Callback.

The constructor for the PropertyMetaData takes an object of type

PropertyChangedCallback that will be called any time the effective

property value of the dependency property changes. We pass it a reference

to the method to call (which equates to a Callback).

The net of all of this is that we present to the world a CLR property

(Valuable) that is in fact backed by a DependencyProperty that will call

back to the method OnValuablePropertyChanged any time the effective

value of the property changes.

The Callback method will take two arguments:

•	 A DependencyObject control (the control)

•	 An object of type

DependencyPropertyChangedEventArgs

Typically, you’ll cast the first argument to be the type of the control

that contains the property, and you’ll cast the NewValue property of the

DependencyPropertyChangedEventArgs object to the DependencyProperty

that changed. You can then take whatever action you need to based on the

change in the dependency property’s value

Chapter 3 Themes, Panels, and Controls

116

public class MyCustomControl : Control

{

 public static readonly DependencyProperty

 ValuableProperty = DependencyProperty.Register(

 "Valuable",

 typeof(bool),

 typeof(MyCustomControl),

 new PropertyMetadata(new PropertyChangedCallback(

 MyCustomControl.OnValuablePropertyChanged)));

 public bool Valuable

 {

 get { return (bool) GetValue(ValuableProperty);}

 set { setValue(ValuableProperty, value);}

 }

 private static void OnValuablePropertyChanged(

 DependencyObject d,

 DependencyPropertyChangedEventArgs e)

 {

 MyCustomControl control = d as MyCustomControl;

 bool b = (bool) e.NewValue;

 }

}

The key thing is that when you bind to a property (either through data

binding or element binding), it must be a dependency property. Similarly,

if you are going to use animations (for example, to change the opacity

of a control or the style based on values), the animation storyboard only

works on dependency properties. This is normally not a problem, as the

properties you will be inclined to animate or bind to are (almost always)

dependency properties anyway. You can see that quickly by looking at the

Chapter 3 Themes, Panels, and Controls

117

documentation for the properties for any of the UI elements. These will all

be UI elements (or the FrameworkElement, which derives from UIElement)

and UIElement derives from the DependencyObject, which provides the

support for dependency properties.

�Summary
There are a wide variety of controls available for use in your Windows 10

UWP apps that ship with Visual Studio, plus many more available through

the rich third-party ecosystem. Every page starts with a Panel control

(the most common being the Grid), and then additional controls are

added to make the desired UI.

Using controls and handling events for those controls is very similar to

what you find in other XAML environments such as WPF and Silverlight.

This chapter did not cover every type of control available, but provides

information about the core controls. The remaining controls are all

conceptual extensions of the ones described.

Chapter 3 Themes, Panels, and Controls

119
© Jesse Liberty, Jon Galloway, Philip Japikse and Jonathan Hartwell 2018
J. Liberty et al., Windows 10 Development with XAML and C# 7,
https://doi.org/10.1007/978-1-4842-2934-7_4

CHAPTER 4

Binding
The target of the binding must be a dependencyproperty on a UI element;

the source can be any property of any object. That is a very powerful

statement; it means that you don’t have to create anything special in the

source. A simple class such as a POCO (Plain Old CLR Object) will do. The

classes that represent the data are typically referred to as models.

The essential glue in any meaningful Windows UWP application is

showing data in your UI. At its simplest, binding allows you to connect

the value of one object to a property on another object. This connection is

referred to as a binding. The most common use is binding the properties

of a data object (a .NET class) to the controls in the UI. For example, a

customer’s information might be bound to a series of text boxes. This use

case is so prevalent that binding is commonly referred to as data binding.

It is important to note that any dependencyproperty on the control

can be bound to any accessible property on the data source. We’ll see an

example of this later in this chapter.

Note  See Chapter 3 for more information on dependency
properties.

120

�DataContext
As stated earlier, data binding needs a model to supply the data and a

dependencyproperty to receive the value of one of the model’s properties.

If the binding statement specifies the information directly, the binding

engine sends the data value(s) from the model to the control. However,

when multiple controls are bound to the model, a lot of typing is required,

as each binding statement must provide the model’s information. In

addition to the additional work required upfront to bind the UI, if anything

changes about the model (or if the model must be exchanged for another

one), you must update each control with the new information.

If the binding statement does not contain information that specifies

how to find the model, the binding engine will use the DataContext. If the

control does not have a DataContext specified, the binding engine will

walk up the control tree until it finds a DataContext. Once the binding

engine finds a control in the UIElement tree that has a DataContext

specified, the binding engine will use that definition in the binding

statements for all of the controls contained by that element.

Using a DataContext instead of explicitly referencing a model in each

of the binding statements leads to a much more supportable UI. It also

greatly enhances the ability to change the data source during runtime with

a single statement.

�Creating a Simple Binding
The best way to move from theory to practice is to write some simple code

as follows: Create a new Windows 10 UWP project by selecting the Blank

App (Universal Windows) and naming it Binding1. Add a new class to the

Chapter 4 Binding

121

project named Person. This class will become the model to hold the data

and will be bound to the UI. The Person class is shown in the following:

public class Person

{

 public string FirstName { get; set; }

 public string LastName { get; set; }

}

Figure 4-1 shows a prompt with the output we want to display and the

value of the first and last name.

We certainly could create this by adding four text blocks like this:

<StackPanel>

 <StackPanel Orientation="Horizontal">

 <TextBlock Text="First Name: " Margin="5"/>

 <TextBlock Name="txtFirstName" Margin="5"/>

 </StackPanel>

 <StackPanel Orientation="Horizontal">

 <TextBlock Text="Last Name: " Margin="5"/>

 <TextBlock Name="txtLastName" Margin="5"/>

 </StackPanel>

 </StackPanel>

Figure 4-1.  First name and last name

Chapter 4 Binding

122

We would then populate the text blocks by writing the value from the

Person instance into the Text property of the text block:

protected override void OnNavigatedTo(NavigationEventArgs e)

{

 txtFirstName.Text = person.FirstName;

 txtLastName.Text = person.LastName;

}

The OnNavigated event is raised when a XAML page loads into view. It

will be covered later in the book when we talk about navigation. It is used

to set up the state for each page.

While this works and is perfectly valid code, it is inflexible and

incredibly tedious when working with collections. Data binding is much

more powerful, more flexible, easier to maintain, and generally more

desirable.

To change the controls to data bind to the model, start by changing the

XAML as follows:

<StackPanel>

 <StackPanel Orientation="Horizontal">

 <TextBlock Text="First Name: " Margin="5"/>

 <TextBlock Text="{Binding FirstName}" Margin="5"/>

 </StackPanel>

 <StackPanel Orientation="Horizontal">

 <TextBlock Text="Last Name: " Margin="5"/>

 <TextBlock Text="{Binding LastName}" Margin="5"/>

 </StackPanel>

</StackPanel>

The data-binding statements are contained as strings enclosed with

curly braces and start with the word binding. In these examples, the

Text properties of text blocks are bound to the FirstName and LastName

properties, respectively. This is much better; if nothing else, we’ve moved

Chapter 4 Binding

123

from procedural to declarative code, which is more easily manipulated in

tools such as Blend or Visual Studio. We’ll look deeper into the binding

syntax in the next section, but for now, this amount of description is

adequate.

Only the properties on the model are specified, not the model.

This causes the data-binding engine to next check the TextBlock for a

DataContext. Not finding one, it would then check the two StackPanels

(starting with the inner StackPanel), finally moving on to the window

itself.

The DataContext can be set programmatically (in code) or

declaratively (in XAML). In this example, I’ll set the DataContext at the

page level, and I’ll do so programmatically by setting the DataContext of

the class (which is the page itself). The page is the highest-level container,

so all of the elements on the page will inherit the Person class as the

DataContext. To do this, replace the assignments to the text blocks in the

OnNavigatedTo event to the following code:

protected override void OnNavigatedTo(NavigationEventArgs e)

{

 DataContext = person;

}

When the application runs, the DataContext is set to the Person

instance, and the values are filled into the text blocks.

�Data-Binding Statements
As mentioned earlier, a declarative binding statement in its simplest form

is as follows:

<dependencyobject dependencyproperty="{Binding bindingArgs}" />

Chapter 4 Binding

124

The bindingArgs are a set of name-value pairs that further refine the

binding. There are a lot more options to explore, but here are some of the

most commonly used binding arguments:

Path. The path defines the property from the model

that will be data bound to the dependencyproperty.

It can be a simple property or a complex property

chain in dot notation, walking down the properties

of the model, such as Address.StreetName. If there

is only one argument and that argument is not a

binding property, the binding engine will use that

as the path. For example, these two statements are

equivalent:

{Binding Path=Address.Streetname}

{Binding Address.Streetname}

Source. The Source property specifies the model

that the binding statement will use to get the data.

This is unnecessary when the DataContext is set.

FallbackValue. The Binding.FallbackValue

provides a value to display in the control when the

binding fails.

TargetNullValue. The TargetNullValue provides a

value to display in the control when the bound value

is null.

ElementName. XAML allows a control to bind one

of its properties to the property of another control.

This is commonly called element binding. Instead of

using a data context, the binding is set to the name

of the element.

Chapter 4 Binding

125

Mode. The binding mode specifies whether the

binding is OneWay, TwoWay, or OneTime. If Mode is

not specified, it will be set to OneWay.

UpdateSourceTrigger. The UpdateSourceTrigger

determines when an update will be triggered in

two-way binding situations. The possible values are

Default, Explicit, and PropertyChanged.

Converter. Value converters enable binding of

disparate types, such as changing the color of an

element based on the numeric value of a property

on the model.

�Binding Errors
If you haven’t worked in XAML before, there is a very important fact

about data binding that you should know: When a binding statement fails,

nothing happens. That’s right, the user doesn’t get any notification and

there aren’t any error dialogs—it’s just a silent failure.

On one hand, this is very good. In the days of Windows Forms, when

there was a binding error, the user would get a modal dialog box. This

dialog came from the framework and could be very disruptive. Especially

if the binding problem was in a grid, the user would get a steady stream of

modal dialog boxes.

Data-binding errors in the XAML world are very different. Nothing is

presented to the user (unless you purposely add that interaction), and the

default behavior is that the error will only be displayed in one place—in

the output window of Visual Studio. To illustrate this, update the Binding

statement for the LastName property to this:

<TextBlock Text="{Binding LastName1}" Margin="5"/>

Chapter 4 Binding

126

When you run the app, look in the Output window in Visual Studio.

There will be a statement similar to the one that follows (it is actually a lot

longer and might differ slightly on your machine):

Error: BindingExpression path error: 'LastName1' property not

found on 'Binding1.Person, Binding1,...

Note I f you don’t have the Output window open, you can find it on
the Debug menu under Windows ➤ Output.

There are two features in data binding specifically for problem situations:

The FallbackValue provides a safety valve if the binding is in error, and the

TargetNullValue provides a value to display if the source is null.

�FallbackValue
The FallBackValue gives us the ability to specify a value to be shown if the

binding fails. To specify a fallback value, update the Binding statement to

the following:

<TextBlock Text="{Binding LastName1, FallbackValue='Doe'}"

Margin="5"/>

Now, when you run the app, the result will be like Figure 4-2.

It is important to note that the control is not data bound. It is

essentially showing a watermark.

Figure 4-2.  Window using FallbackValue

Chapter 4 Binding

127

�TargetNullValue
Another binding option allows you to specify what to show when the

bound property is null. To illustrate this, correct the Binding statement to

once again bind to LastName and add the TargetNullValue:

"{Binding LastName, FallbackValue='Doe',

TargetNullValue='Unknown'}"

The next change is to alter the creation of the Person class so that it

does not provide a last name.

public Person person = new Person { FirstName = "Jon"};

When you run the project, you get the result shown in Figure 4-3.

Just like the FallbackValue, the value shown in the UI is window

dressing. It does not affect the value of the model.

�Binding to Elements
In addition to binding to objects such as the Person object, you are also

free to bind to the value of other controls. For example, you might add

a slider to your page and a TextBlock and bind the Text property of the

TextBlock to the Value property of the Slider.

Figure 4-3.  TargetNullValue

Chapter 4 Binding

128

To see this, create a new project and name it Binding2. Add the

following XAMLi:

<StackPanel Orientation="Horizontal" Margin="100">

 <Slider Name="MySlider"

 Minimum="0"

 Maximum="100"

 Value="50"

 Width="300"

 Margin="10" />

 <TextBlock Margin="10"

 Text="{Binding ElementName=MySlider, Path=Value}"

 FontSize="42" />

</StackPanel>

That’s all you need; no code required. You’ve bound the text block to

the slider. As the slider changes value, the value in the text block will be

updated, as shown in Figure 4-4.

You might be thinking at this point: “That’s interesting. Why would I

use that?” Element binding is a very powerful technique that can make

your application’s user interface much more interactive.

A common example is enabling or disabling controls based on the

state of other controls. Figure 4-5 is an example where users must check

a box to accept the conditions (perhaps an End User License Agreement)

before they continue. Selecting the check box should enable the button so

the user can continue.

Figure 4-4.  Element binding

Chapter 4 Binding

129

This can certainly be done with code, but it can also be done entirely

in markup by leveraging element binding. Simply binding the IsEnabled

property of the button to the IsChecked property of the check box links

them together. The Binding statement is written like this:

IsEnabled="{Binding ElementName=MyCheckBox,Path=IsChecked}"

When the check box is checked, the button becomes enabled, as

shown in Figure 4-6.

The entire XAML of this example is shown in the following:

 <StackPanel Orientation="Horizontal">

 <CheckBox Name="MyCheckBox"

 Content="I accept the conditions:"

 FlowDirection="RightToLeft" Margin="5"/>

 <Button Content="Continue"

 �IsEnabled="{Binding ElementName=MyCheckBox,Path

=IsChecked}"/>

 </StackPanel>

Figure 4-5.  Accept/Continue button appearing after controls have
been disabled

Figure 4-6.  Button that is enabled after the check box is clicked is
checked

Chapter 4 Binding

130

�Binding Modes
The binding mode sets the direction(s) in which binding takes place.

Binding comes in three “modes”:

•	 OneWay

•	 TwoWay

•	 OneTime

Specifying the mode in a binding statement is optional. If it’s not

specified, the mode is set to the default value of OneWay. The OneTime mode

sets the value of the target when the window first loads and then severs the

binding. Any changes to the source will not update the target. To see this,

update the Binding statement on the text block by adding Mode=OneTime

like this:

Text="{Binding ElementName=MySlider, Path=Value, Mode=OneTime}"

Run the project and the value in the text block will be set to 50 (the

initial value of the slider). Changing the slider will not change the value in

the text block.

OneWay binding mode sets the initial value just like OneTime but then

keeps the connection alive so that changes to the source can be reflected

in the target. Changing the mode to OneWay (or removing the Mode property

completely) returns the example back to one direction, and changing the

slider will change the value in the text block.

It is important to note that this example works because the target is

binding to a dependencyproperty on the Slider. If you were to bind to the

Person class we built for the first binding example and then updated the

source, the target value would not change. This is due to the class (as we

have written it) missing some needed infrastructure. Fortunately, the fix is

to leverage INotifyPropertyChanged. This is very simple and is covered in

the next section.

Chapter 4 Binding

131

TwoWay binding allows for binding back to the source so that user input

can update the data source. This is what you should expect when your

application is binding to application data. To see TwoWay binding at work,

change the TextBlock to a TextBox and set the binding mode to TwoWay as

shown:

<StackPanel Orientation="Horizontal"

 Margin="100">

 <Slider Name="xSlider"

 Minimum="0"

 Maximum="100"

 Value="50"

 Width="300"

 Margin="10" />

 <TextBox Margin="10"

 �Text="{Binding ElementName=xSlider, Path=Value,

Mode=TwoWay}"

 FontSize="42"

 Height="75"

 VerticalAlignment="Top" />

 </StackPanel>

Run the application and move the slider; the value in the TextBox

updates. Now type a new value between 0 and 100 into the TextBox and

press Tab. The value of the slider changes to reflect the value you entered.

That is two-way binding at work.

�UpdateSourceTrigger
In the previous example, the Slider value didn’t change until the TextBox

lost focus, but the TextBox updated immediately when the Slider’s value

changed. Why the different behavior? It is actually very clever how the

Chapter 4 Binding

132

framework determines when to send the update. By default, the update

is sent when the value changes on a non-text-based control and when a

text-based control loses focus. If the screen were to jump around at every

keystroke (or send a lot of error messages while the user is still typing),

users would not be kept around for long.

There are three options for the UpdateSourceTrigger binding property:

•	 Default

•	 Explicit

•	 PropertyChanged

Default leaves the behavior the same as previously explained.

Explicit prevents the binding framework from updating the target,

requiring it to programmatically update values with the call to the

UpdateSource method. PropertyChanged will fire every time a property

changes (except on lost focus).

Change the Binding statement from the previous example by adding

UpdateSourceTrigger=PropertyChanged as follows:

Text="{Binding ElementName=MySlider, Path=Value,

Mode=TwoWay, UpdateSourceTrigger=PropertyChanged}"

Run the program and start typing into the text box. As you type, the

slider will update.

�INotifyPropertyChanged
It is possible for the value of a property in your data to change after it

is displayed to the user. You would like for that value to be updated in

the view. For example, you might be retrieving the data from a database

and the data gets changed by another instance of the program. It can be

imperative that the user interface keep up with these changes.

Chapter 4 Binding

133

Imagine that a customer calls a certain store asking for A History of the

English Speaking Peoples by Winston Churchill. The employee looks on the

application to find out how many books are in stock and sees that there

is one copy left. While he’s negotiating the price with the potential buyer,

another employee sells the last copy of the book. If the first employee’s

screen does not update to show that the store is now sold out of the book,

he’s in real danger of selling a product he doesn’t have.

To prevent this type of situation from occurring, we typically

have the classes that will serve as models in the view implement the

INotifyPropertyChanged interface. This interface consists of exactly one

event: PropertyChanged. You raise this event each time your property

changes, passing in an EventArg that contains the name of your property.

The XAML framework listens for this event and will then update any

control bound to the property on the model that matches the name in the

EventArg. If the EventArg is blank, all properties will be updated.

To illustrate this, create a copy of the Binding1 project and

name it Binding3. Add a helper method to the Person class called

NotifyPropertyChanged that wraps the event to cut down on repetitive

code.

 �public event PropertyChangedEventHandler PropertyChanged;

 �private void NotifyPropertyChanged([CallerMemberName]

string caller = "")

 {

 �PropertyChanged?.Invoke(this, new PropertyChangedEvent

Args(caller));

}

The [CallerMemberName] is part of the System.Runtime.

CompilerServices namespace (so be sure to add that to the Person.cs) and

provides the name of the caller that called it. It is useful for properties with

Chapter 4 Binding

134

INotifyPropertyChanged so that you can call the NotifyPropertyChanged

method without having to pass in the parameter name explicitly. To fire this

event, change the getters and setters for the Person class so that they call

the NotifyPropertyChanged method from each setter, passing in the name

of the property that is changed. That way, each time you set the value of the

property for any reason, the UI will be notified.

private string firstName;

private string lastName;

public string FirstName

{

 get

 {

 return firstName;

 }

 set

 {

 if (value != firstName)

 {

 firstName = value;

 NotifyPropertyChanged();

 }

 }

}

public string LastName

{

 get

 {

 return lastName;

 }

Chapter 4 Binding

135

 set

 {

 if (value != lastName)

 {

 lastName = value;

 NotifyPropertyChanged();

 }

 }

}

To test this, add a button to MainPage.xaml below the text blocks as

follows:

<Button Name="cmdChange"

 Content="Change"

 Click="cmdChange_Click" />

When the button is pressed, modify the FirstName of the person object

as shown:

private void cmdChange_Click(object sender, RoutedEventArgs e)

{

 person.FirstName = "Stacey";

}

Because of INotifyPropertyChanged, the UI will be updated when the

value is changed, as shown in Figure 4-7.

Figure 4-7.  Person changed

Chapter 4 Binding

136

�Binding to Collections
One of the key processes of data binding is showing lists of items. The main

control used to show lists is ListView. To show binding to collections, we

will create an app that takes a list of people and displays it in a ListView

(shown in Figure 4-8).

�Creating the Collection
Before we see this at work, we need to create a list. Start by creating a new

application named Binding4. Instead of manually creating a list of Person

objects, we are going to create a helper function that will generate names

for each of the Person objects. In the Person class, create arrays to hold

some first and last names as well as an array of cities as follows:

private static readonly string[] firstNames = { "Adam", "Bob",

"Carl", "David", "Edgar", "Frank", "George", "Harry", "Isaac",

"Jesse", "Ken", "Larry" };

Figure 4-8.  A data-bound ListView

Chapter 4 Binding

137

 private static readonly string[] lastNames = { "Aaronson",

"Bobson", "Carlson", "Davidson", "Enstwhile", "Ferguson",

"Harrison", "Isaacson", "Jackson", "Kennelworth", "Levine" };

 private static readonly string[] cities = { "Boston",

"New York", "LA", "San Francisco", "Phoenix", "San Jose",

"Cincinnati", "Bellevue" };

We can then “assemble” new Person objects by randomly selecting

from each of the arrays, creating as many people as we need. To keep

things simple, we’ll do this in a static method so that we can call it from our

MainPage.xaml.cs without instantiating an object. ListViews bind very

well with IEnumerables, so we’ll have it return an IEnumerable<Person> as

shown:

public static IEnumerable<Person> CreatePeople(int count)

 {

 var people = new List<Person>();

 var r = new Random();

 for (int i = 0; i < count; i++)

 {

 var p = new Person()

 {

 FirstName = firstNames[r.Next(firstNames.Length)],

 LastName = lastNames[r.Next(lastNames.Length)],

 City = cities[r.Next(cities.Length)]

 };

 people.Add(p);

 }

 return people;

 }

Chapter 4 Binding

138

The entire Person class now looks like this:

public class Person : INotifyPropertyChanged

 {

 �public event PropertyChangedEventHandler

PropertyChanged;

 �private void NotifyPropertyChanged([CallerMemberName]

string caller = "")

 {

 �PropertyChanged?.Invoke(this, new PropertyChangedEv

entArgs(caller));

 }

 private string firstName;

 private string lastName;

 public string FirstName

 {

 get

 {

 return firstName;

 }

 set

 {

 if (value != firstName)

 {

 firstName = value;

 NotifyPropertyChanged();

 }

 }

 }

Chapter 4 Binding

139

 public string LastName

 {

 get

 {

 return lastName;

 }

 set

 {

 if (value != lastName)

 {

 lastName = value;

 NotifyPropertyChanged();

 }

 }

 }

 private string city;

 public string City

 {

 get

 {

 return city;

 }

 set

 {

 if (value != city)

 {

 city = value;

 NotifyPropertyChanged();

 }

 }

 }

Chapter 4 Binding

140

 �private static readonly string[] firstNames = { "Adam",

"Bob", "Carl", "David", "Edgar", "Frank", "George",

"Harry", "Isaac", "Jesse", "Ken", "Larry" };

 �private static readonly string[] lastNames = {

"Aaronson", "Bobson", "Carlson", "Davidson",

"Enstwhile", "Ferguson", "Harrison", "Isaacson",

"Jackson", "Kennelworth", "Levine" };

 �private static readonly string[] cities = { "Boston",

"New York", "LA", "San Francisco", "Phoenix", "San

Jose", "Cincinnati", "Bellevue" };

 public static IEnumerable<Person> CreatePeople(int count)

 {

 var people = new List<Person>();

 var r = new Random();

 for(int i=0; i <count; i++)

 {

 var p = new Person()

 {

 �FirstName = firstNames[r.Next(firstNames.

Length)],

 �LastName = lastNames[r.Next(lastNames.

Length)],

 City = cities[r.Next(cities.Length)]

 };

 people.Add(p);

 }

 return people;

 }

 }

Chapter 4 Binding

141

�Creating a Data-Bound ListView
A ListView lays out the data vertically in a single column. A ListView is

most often used when an application is in Portrait or Snapped mode due to

the reduced width of the view screen when apps are in those two layouts.

A ListViews scroll vertically, which is the preferred scrolling direction for

Portrait and Snapped views.

To create a new ListView, open MainPage.xaml and either drag a

ListView from the toolbox onto the page and name it MyListView or enter

the following XAML:

<ListView Name="MyListView">

</ListView>

We need to set the ItemsSource property of the ListView to the result

of calling the static CreatePeople function we added to the Person class.

Add the following line of code in MainPage. We’ll do this in MainPage.

xaml.cs, in the constructor as follows:

public MainPage()

 {

 this.InitializeComponent();

 MyListView.ItemsSource = Person.CreatePeople(25);

 }

When you run this, you won’t get quite what you were hoping for, as

shown in Figure 4-9.

Figure 4-9.  Binding without a data template

Chapter 4 Binding

142

The binding is working perfectly; there is one entry for each of the

25 Person objects. The problem is that the ListView doesn’t know how

to display a Person object and so it falls back to just showing the name

of the type. Data-bound list controls such as the ListView require an

ItemTemplate to define how each item in the list is displayed. The

ItemTemplate needs to have a DataTemplate that contains the defining

markup to display each item. Update the ListView XAML to match the

following:

<ListView Name="MyListView">

 <ListView.ItemTemplate>

 <DataTemplate>

 �<Border Width="300" Height="Auto"

BorderBrush="Beige" BorderThickness="1">

 <StackPanel>

 <TextBlock>

 <Run Text="{Binding FirstName}" />

 <Run Text=" " />

 <Run Text="{Binding LastName}" />

 <Run Text=" " />

 <Run Text="(" />

 <Run Text="{Binding City}" />

 <Run Text=")" />

 </TextBlock>

 </StackPanel>

 </Border>

 </DataTemplate>

 </ListView.ItemTemplate>

</ListView>

Let’s break down the ItemTemplate. The main container is the

DataTemplate and its DataContext is the current item in the collection.

It’s just a matter of formatting the data to your liking. Inside the TextBlock

Chapter 4 Binding

143

in the sample is a XAML trick that allows for more complex binding into

a single TextBlock. By using the <Run/> markup, you can add multiple

binding statements to build a single TextBlock. In this case, we are

combining the FirstName, LastName, and City data elements with

some punctuation. This pattern will be repeated for all 25 entries in the

ListView, as shown in Figure 4-10.

�INotifyCollectionChanged
Just as you want the application to be updated when the value of

a property changes, you want it to be notified if the contents of a

collection changes (e.g., if an item is added, deleted, etc.). Similar to

INotifyPropertyChanged, there is an interface made just for this scenario:

INotifyCollectionChanged. This interface has just one event:

public event NotifyCollectionChangedEventHandler

CollectionChanged;

This event needs to be called each time an item is added or removed

from the collection. We could inherit from a specialized collection

and code this ourselves (much like we did in the Person class for

INotifyPropertyChanged), but Microsoft has already done the work for

us and provided a custom class called ObservableCollection<T>. You

can use the ObservableCollection<T> class the same way you use other

collection classes.

Figure 4-10.  ListView

Chapter 4 Binding

144

In fact, you can modify Person.cs to use an

ObservableCollection<Person> and the program will continue to work

just like it did before with the added feature that the ListView will be

updated if an item is added or removed from the collection. All we need

to do is simply change the return type of the CreatePeople method

to return ObservableCollection<Person> and change the internal

variable from List<Person> to ObservableCollection<Person>:

public static ObservableCollection<Person> CreatePeople(int

count)

 {

 var people = new ObservableCollection<Person>();

Note T he ObservableCollection class only updates the
client if an item is added or deleted but not if the item is changed
(e.g., a property on an item in the collection is changed). If you want
to receive a notification of the item being changed, you need to
implement INotifyPropertyChanged on the items.

�Data Converters
There are times that you will want to bind an object to a control but the

types won’t match up correctly. For example, you might want to bind a

check box to a value, setting the check mark if the value is anything other

than zero. To do this, you need to convert the integer value to a Boolean,

and for that you need a DataConverter. A DataConverter is any class that

implements IValueConverter, which takes two methods: Convert and

ConvertBack.

Chapter 4 Binding

145

To see this at work, create a new project and name it Binding5. In

MainPage.xaml, we’ll have a CheckBox that will be set if the Num property of

the Person object is not zero. A text block will display the Num property, and

there will be a button that will generate a new Num property at random.

<StackPanel Margin="100"

 Orientation="Horizontal"

 Height="100">

 <CheckBox Name="xCheckBox"

 Content="Is Not Zero"

 Margin="10"

 �IsChecked="{Binding Num,

Converter={StaticResource numToBool}}"/>

 <TextBlock Name="xTextBlock"

 Margin="10"

 FontSize="42"

 VerticalAlignment="Center"

 Text="{Binding Num}"/>

 <Button Name="xButton"

 Content="Generate Number"

 Click="xButton_Click"

 Margin="10" />

 </StackPanel>

Notice that the IsChecked binding for the CheckBox calls on the

DataConverter that was identified in the Resources section:

<Page.Resources>

 <local:IntegerToBooleanConverter x:Key="numToBool" />

</Page.Resources>

Chapter 4 Binding

146

We’ll use the Person class we used in previous iterations, adding a

Num property to the Person class so that we can bind to it (e.g., number of

children, etc.):

public class Person : INotifyPropertyChanged

{

 private string firstName;

 public string FirstName

 {

 get { return firstName; }

 set

 {

 firstName = value;

 NotifyPropertyChanged();

 }

 }

 private string lastName;

 public string LastName

 {

 get { return lastName; }

 set

 {

 lastName = value;

 NotifyPropertyChanged();

 }

 }

 private int num;

 public int Num

 {

 get { return num; }

Chapter 4 Binding

147

 set

 {

 num = value;

 NotifyPropertyChanged();

 }

 }

 public event PropertyChangedEventHandler PropertyChanged;

 �private void NotifyPropertyChanged([CallerMemberName]

string caller = "")

 {

 if (PropertyChanged != null)

 {

 �PropertyChanged(this, new

PropertyChangedEventArgs(caller));

 }

 }

}

The key to making this work, of course, is the converter. Create a

new class called IntegerToBooleanConverter and have it implement

IValueConverter as shown:

public class IntegerToBooleanConverter : IValueConverter

 {

 �public object Convert(object value, Type targetType,

object parameter, string language)

 {

 int num = int.Parse(value.ToString());

 if (num != 0)

 return true;

Chapter 4 Binding

148

 else

 return false;

 }

 �public object ConvertBack(object value, Type targetType,

object parameter, string language)

 {

 throw new NotImplementedException();

 }

 }

The binding mechanism will take care of passing in the value (in this

case num), the targetType (in this case Boolean), a parameter if there is

one, and the language. Our job is to convert the value to a Boolean, which

we do in the body of the Convert method. The net effect is to convert any

non-zero value to the Boolean value true, which sets the check box, as

shown in Figure 4-11.

ConvertBack is used in TwoWay binding scenarios. For example, if you

needed to format a number from the model to resemble the user’s local

currency, you could do that using ConvertMethod. In order to save that

number back into the model, it would need to be changed back into a

number from the string representation that includes the currency symbol

and the commas.

Figure 4-11.  Boolean converter

Chapter 4 Binding

149

�Summary
Binding is a key element of programming for Windows 10 UWP. With data

binding, you can connect a data source, which can be virtually any object,

to a property on a visual element (or you can bind two visual elements

together). Along the way, you can convert data from one type to another to

facilitate the binding. The INotifyPropertyChanged interface allows your

view to be updated when your data changes. TwoWay binding allows your

data object to be changed based on user input.

Chapter 4 Binding

151
© Jesse Liberty, Jon Galloway, Philip Japikse and Jonathan Hartwell 2018
J. Liberty et al., Windows 10 Development with XAML and C# 7,
https://doi.org/10.1007/978-1-4842-2934-7_5

CHAPTER 5

Local Data
All significant Windows 10 UWP applications manage and store data of

some sort. This data can be arbitrarily divided into application data and

user data. The former, application data, refers to the state of the application

at any given time, including:

•	 What page the user is on

•	 Which form fields have been filled out

•	 Which selections and other choices have been made

User data, on the other hand, is data entered by the user specifically to

be processed and stored by the application. User data can be stored in a

number of formats, and it can be stored in a number of places on your disk

or in the cloud.

This chapter starts off by showing you how to store application data

and then explores some of the most popular ways to store user data.

�Application Data
While your Windows 10 UWP application is running, you want to be saving

data all the time. After all, you can switch to another application at any

time and then have only five seconds to store your data at that point.

152

While it’s true that you want to be saving major data points all the

time, there are certain “status” values that you want to store only at the

last minute. This might include visible information, information that’s

selected, currently filled-in fields, and so forth.

A great way to store that information is using an

ApplicationDataContainer control. This can be stored with your local or

roaming settings, and it requires no special permission from the operating

system; these files are considered safe.

�Settings Containers
There are three settings containers that can be used for local storage: local,

roaming, and temporary. Local is stored on the device and persists across

app launches. Roaming is also stored locally but will sync across devices

based on the currently logged-in user. Temporary is, well, temporary. It

can be deleted by the system at any time.

�Saving, Reading, and Deleting Local Data
Let’s create an application that stores, reads, and deletes application data.

Our UI is very simple—it consists of a text box to enter information into, a

text block to display recalled information, and three buttons, as shown in

Figure 5-1.

Chapter 5 Local Data

153

Start with a new project based on the Blank App (Universal Windows)

template and name your app AppSettings. Select the versions of Windows

10 you want to support. In this example, we are going to pick the earliest

version of Windows 10 available as well as the most current version of

Windows 10, as shown in Figure 5-2. This is not a requirement but it

provides the most flexibility when targeting your users. Do note that the

broader your minimum and target versions are, the fewer options you have

for newer features that may have been released in the newest versions of

Windows 10.

Figure 5-1.  View for saving, retrieve, and deleting data

Chapter 5 Local Data

154

Now open MainPage.Xaml.cs and add the following using statement

to the top of the file:

using Windows.Storage;

Then, add the following declaration to the top of the class:

private ApplicationDataContainer settings =

 ApplicationData.Current.LocalSettings;

This creates a local variable that references the local data storage.

Next, open MainPage.xaml and replace the default Grid with the

following XAML:

<Grid Background="{ThemeResource

ApplicationPageBackgroundThemeBrush}">

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="120"/>

 <ColumnDefinition Width="*"/>

 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>

 <RowDefinition Height="140"/>

 <RowDefinition Height="*"/>

 </Grid.RowDefinitions>

Figure 5-2.  Picking the minimum and target versions of
Windows 10

Chapter 5 Local Data

155

 <StackPanel Grid.Column="1" Grid.Row="1">

 <StackPanel Orientation="Horizontal">

 <TextBlock Text="Settings"

 Margin="5" />

 <TextBox Width="100"

 Height="30"

 Name="txtSettings"

 Margin="5"/>

 <TextBlock Text="Setting: " Margin="5"/>

 <TextBlock Name="txtSettingOutput"

 Text=""

 Margin="5"/>

 </StackPanel>

 <Button Name="SaveSettings"

 Content="Save"

 Click="SaveSettings_Click" />

 <Button Name="RetrieveSettings"

 Content="Retrieve"

 Click="RetrieveSettings_Click" />

 <Button Name="DeleteSettings"

 Content="Delete"

 Click="DeleteSettings_Click" />

 </StackPanel>

</Grid>

Go on to open the MainPage.xaml.cs file again and add another

class-level variable. This variable will be used to eliminate the use of

“magic strings,” which can lead to typos and runtime errors.

private string settingName = "UserSetting";

Chapter 5 Local Data

156

When the user clicks the Save button, the content from the text box is

written to the settings collection, and then the text box is cleared. Create

the event handler for the SaveSettings button in MainPage.xaml.cs and

enter the following code:

�private void SaveSettings_Click(object sender, RoutedEventArgs e)

{

 string userValue = txtSettings.Text;

 settings.Values[settingName] = userValue;

 txtSettings.Text = string.Empty;

}

If a UserSetting already exists in the dictionary, the current value will

be overwritten. If it doesn’t exist, it will be created.

Retrieving the text is equally simple. We pull the text out of the settings

collection as an object, and if it is not null, we turn it into a string. If the

setting does not exist, it will come back as null. While still in MainPage.

xaml.cs, create the event handler for the RetrieveSettings button and

add the following code:

private void RetrieveSettings_Click(object sender,

RoutedEventArgs e)

{

 string val = settings.Values[settingName]?.ToString();

 if (!string.IsNullOrEmpty(val))

 {

 txtSettingOutput.Text = val;

 }

}

Chapter 5 Local Data

157

Finally, deleting a setting just requires a call to the Remove method.

We also clear out the output text box. Create the event handler for the

DeleteSettings button and add the following code:

private void DeleteSettings_Click(object sender,

RoutedEventArgs e)

 {

 settings.Values.Remove(settingName);

 txtSettingOutput.Text = string.Empty;

 }

That’s all it takes to manage your application state. Piece of cake. Easy

as pie. The complete code is listed here:

public sealed partial class MainPage : Page

 {

 �private ApplicationDataContainer settings =

ApplicationData.Current.LocalSettings;

 private string settingName = "UserSetting";

 public MainPage()

 {

 this.InitializeComponent();

 }

 �private void SaveSettings_Click(object sender,

RoutedEventArgs e)

 {

 string userValue = txtSettings.Text;

 settings.Values[settingName] = userValue;

 txtSettings.Text = string.Empty;

 }

Chapter 5 Local Data

158

 �private void RetrieveSettings_Click(object sender,

RoutedEventArgs e)

 {

 �string val = settings.Values[settingName]?.

ToString();

 if (!string.IsNullOrEmpty(val))

 {

 txtSettingOutput.Text = val;

 }

 }

 �private void DeleteSettings_Click(object sender,

RoutedEventArgs e)

 {

 settings.Values.Remove(settingName);

 txtSettingOutput.Text = string.Empty;

 }

 }

�Creating the Data Layer
Applications that rely on data are wise to separate data-related classes

into a separate layer. Often, in large applications, this data-access layer is a

separate project. To keep things simple in our examples, we will say that all

classes are the same project for simplicity.

To begin, create a new Windows 10 UWP application using the Blank

Application template and call it LocalFolderSample. In the following

sections, you will create the foundation for the rest of the examples in this

chapter.

Chapter 5 Local Data

159

�Creating the Repository Interface
Basic data operations include Create, Read, Update, and Delete,

commonly referred to as CRUD operations. A very common pattern to

use is the repository pattern. While this section does not attempt to fully

execute the pattern, we will place these functions into repository classes.

We start by creating a common interface for all repositories in the data-

access layer. This is a good practice, even though we are only creating a

single repository in this example.

To begin, create a new folder in your project named Data by right-

clicking the project name and selecting Add ➤ New Folder. Next, add a

new interface by right-clicking the folder you just created and selecting

Add ➤ New Item and then Interface. Name the folder IDataRepository

and enter the following code:

public interface IDataRepository<T>

{

 Task Add(T customer);

 Task<ObservableCollection<T>> Load();

 Task Remove(T customer);

 Task Update(T customer);

}

To use the ObservableCollection, you need to add a using to System.

ComponentModel. At the top of the file, add this statement:

using System.Collections.ObjectModel;

There’s a lot going on in this interface, and it merits some discussion

before we move on. The interface is created using generics so that the

implementing classes can be strongly typed. The ObservableCollection

Chapter 5 Local Data

160

class has been around since Windows Presentation Foundation (WPF),

and it is a class that implements INotifyCollectionChanged and

INotifyPropertyChanged. These events are raised any time items are

added to or deleted from the collection, or when any other changes are

made to the collection class. The data-binding engine in Windows 10 UWP

XAML apps listens for those events and will automatically update the

bound elements to the new values. Additionally, all of the methods have

been defined to return a Task<T> to enable asynchronous operations.

�Creating the DataModel
Next, we need to create the class that will hold and transport the data.

Sometimes referred to as Data Transfer Objects (DTOs) or Plain Old CLR

Objects (POCOs), the term most commonly used is Model. Add a new class

by right-clicking the Data folder and selecting Add ➤ New Item ➤ Class.

Name the class Customer.cs and add the following code:

public class Customer

{

 public int Id { get; set; }

 public string Email { get; set; }

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public string Title { get; set; }

}

Chapter 5 Local Data

161

�Creating the ViewModel
The final class to create is the view model. This class will act as the data

context for the view. To do this, right-click the Data folder and select Add

➤ New Item ➤ Class. Name the file ViewModel.cs. The ViewModel will

use an instance of the data repository interface to get the necessary data

(as well as to make any updates), so we add a class-level variable to hold

the instance. Open ViewModel.cs and add a member variable of type

IDataRepository<Customer>:

private IDataRepository<Customer> data;

To get an instance of the repository into the view model, we use

constructor injection. The constructor takes an IDataRepository and

initializes the local variable as follows:

public ViewModel(IDataRepository<Customer> data)

{

 this.data = data; }

�Implementing INotifyPropertyChanged

In this example, we want the view model to implement

INotifyPropertyChanged instead of the model. Add the interface

INotifyPropertyChanged to the class and create a PropertyChanged event

(this is the only item in INotifyPropertyChanged).

public class ViewModel : INotifyPropertyChanged

{

 �public event PropertyChangedEventHandler PropertyChanged;

Chapter 5 Local Data

162

You will need to add a using to System.ComponentModel as follows:

using System.ComponentModel;

The common implementation is to create a method to encapsulate

the raising of the PropertyChanged event. To do this, create a new method

called RaisePropertyChanged(). Add the following code:

private void RaisePropertyChanged([CallerMemberName] string

fieldName = "")

 {

 �PropertyChanged?.Invoke(this, new PropertyChanged

EventArgs(fieldName));

 }

You will need to add a using to System.Runtime.CompilerServices as

follows:

using System.Runtime.CompilerServices;

This method checks to make sure there is a listener for the event

and then fires it with the fieldname as the event argument. We use the

CallerMemberNameAttribute for the variable fieldname. This allows

us to call RaisePropertyChanged inside a setter without having to pass

in an argument, as it will use the field name that is calling the method.

This will become more important as we develop the rest of the view

model. Note that CallerMemberName requires the parameter to have a

default value. We are also using the null-condition operator, ?, after the

PropertyChanged event. This will allow us to call Invoke, which actually

executes the method tied to the event, if and only if, PropertyChanged is

not null. We could check for nulls, as done in the past, by using an if

statement, but using the null-condition operator will cut down on the

Chapter 5 Local Data

163

boilerplate code that is needed. The following code shows the current

status of the view model:

public class ViewModel : INotifyPropertyChanged

{

 �public event PropertyChangedEventHandler PropertyChanged;

 private IDataRepository<Customer> data;

 public ViewModel(IDataRepository<Customer> data)

 {

 this.data = data;

 }

 �private void RaisePropertyChanged([CallerMemberName] string

fieldName = "")

 {

 �PropertyChanged?.Invoke(this, new PropertyChangedEventA

rgs(fieldName));

 }

}

�Adding the Public Properties

There are two public properties in ViewModel: SelectedItem and

Customers. We can’t use automatic properties because we want to leverage

the PropertyChanged notification system. So we have to use property

statements with backing fields.

Chapter 5 Local Data

164

The first property to create is SelectedItem. Add the following code to

ViewModel.cs:

private Customer selectedItem;

public Customer SelectedItem

{

 get { return selectedItem; }

 set

 {

 if(value != selectedItem)

 {

 selectedItem = value;

 RaisePropertyChanged();

 }

 }

}

In the Setter, if the value has been changed, then the

RaisePropertyChanged method is called.

The next property is Customers, which is an ObservableCollection of

the Customer class. Before adding this property, be sure to add the using

for System.Collections.ObjectModel:

using System.Collections.ObjectModel;

Then, add the property:

private ObservableCollection<Customer> customers;

public ObservableCollection<Customer> Customers

{

 get {return customers;}

Chapter 5 Local Data

165

 set

 {

 customers = value;

 RaisePropertyChanged();

 }

}

Go on to create an async method to load the data:

public async void Initialize()

{

 Customers = await _data.Load();

}

Finally, you are ready to implement the CRUD operations, delegating

the work to the repository. You do this as follows:

internal void AddCustomer(Customer cust)

{

 data.Add(cust);

}

internal void DeleteCustomer(Customer cust)

{

 data.Remove(cust);

}

That’s it for the ViewModel class. By using a repository, we keep the

view model simple, clean, and reusable with different storage approaches.

Chapter 5 Local Data

166

�Local Data
Local data files include any data in your app, including data that the user

entered and should be persisted. One option is to persist this data in the

local or roaming settings as discussed in the previous section. This can be

less than ideal, especially with large amounts of data.

Another option is to store the data in a file located in a folder under

the signed-in user’s name. This is not the same as using LocalSettings.

LocalSettings is a dictionary object that is stored in the registry, and as

such, is limited in size. Local and roaming folders are stored alongside the

app on the disk.

�Using JSON to Format Data
Before getting into the meat of reading and writing data files, we need to

consider the different storage formats available. Local data files are text

files, and as such, all of the data stored will be simple strings. There was a

time that XML was the predominant format for string data. However, XML

is heavy with all of the tags and can be difficult to work with.

The current leader in textual data is JSON—JavaScript Object Notation.

Initially championed by the web for its lightweight format and its ease of

conversion between text and an object graph, JSON is winning the format

war, and most Windows 10 UWP developers are using JSON for local

storage of text.

The leading package with which C# developers can work with JSON

data is Json.NET. One way to add Json.NET to your project is to download

the package from http://json.codeplex.com/, install it (or unzip it based

on the download), and reference the correct assemblies. An easier way to

add it is to use NuGet to quickly and easily add JSON to your project. See

the sidebar for more information.

Chapter 5 Local Data

http://json.codeplex.com/

167

USING NUGET TO INSTALL JSON.NET

Instead of downloading the Json.NET package from http://json.

codeplex.com, you can install it through NuGet. To install Json.NET through

NuGet, choose Tools ➤ Library Package Manager ➤ Package Manager

Console. This will open the console window at the bottom of your screen,

providing you with the Package Manager prompt (PM>). Then, enter the

command to load Json.NET:

PM> Install-Package Newtonsoft.Json

Remember to include the hyphen between Install and Package. A few

seconds later, the package will be installed.

As discussed in the chapter on tooling, you can also use the GUI for NuGet,

which includes a nice search feature. Instead of having to know the exact

package name, you can search for JSON and the pick the correct package.

�Local Data Containers
Just like the settings containers, there are three local data containers that

can be used for local storage: local, roaming, and temporary. Local is stored

on the device and persists across app launches. Roaming is also stored

locally but will sync across devices based on the currently logged-in user.

Temporary is, again, temporary. It can be deleted by the system at any time.

�Creating the File Repository
The actual storage of the file is pretty simple, but we’re going to build

a fully reusable repository model based on the interface we created

earlier. Using the interface as the base allows us to reapply the same

pattern to other storage approaches later. We begin with the data

file itself. To keep things simple, I’ll stay with the idea of storing and

retrieving customer data.

Chapter 5 Local Data

http://json.codeplex.com/
http://json.codeplex.com/

168

To create the file repository, first add a new class file to the Data

directory by right-clicking the directory and selecting Add ➤ New Item ➤

Class. Name the class FileRepository.

Next, add the IDataRepository<Customer> interface to the class and

the required members. The class will look like this:

public class FileRepository : IDataRepository<Customer>

 {

 public Task Add(Customer customer)

 {

 // TODO: Implement this method

 throw new NotImplementedException();

 }

 public Task<ObservableCollection<Customer>> Load()

 {

 // TODO: Implement this method

 throw new NotImplementedException();

 }

 public Task Remove(Customer customer)

 {

 // TODO: Implement this method

 throw new NotImplementedException();

 }

 public Task Update(Customer customer)

 {

 // TODO: Implement this method

 throw new NotImplementedException();

 }

 }

Chapter 5 Local Data

169

Finally, add the required usings for System.Collections.ObjectModel

and Windows.Storage:

using System.Collections.ObjectModel;

using Windows.Storage;

Following this, we need to add the member variables of a string for

the file name of our specific storage file, an observable collection of

Customer, and a StorageFolder referencing the LocalFolder using the

following code:

private string fileName = "customers.json";

ObservableCollection<Customer> customers;

�StorageFolder folder = ApplicationData.Current.LocalFolder;

The constructor calls the Initialize method, which in this example

does nothing. The Initialize method will be used when we cover SQLite

later in this chapter.

public FileRepository()

{

 Initialize();

}

private void Initialize()

{

}

Next, create two helper methods in the FileRepository class to save

and read the collection of customer data to and from disk. We first need to

add the following using statement:

using Newtonsoft.Json;

Chapter 5 Local Data

170

The first helper method serializes the collection of customers and then

private Task WriteToFile()

{

 return Task.Run(async () =>

 {

 �string JSON = JsonConvert.SerializeObject(customers);

 var file = await OpenFileAsync();

 await FileIO.WriteTextAsync(file, JSON);

 });

}

private async Task<StorageFile> OpenFileAsync()

{

 �return await folder.CreateFileAsync(fileName,

CreationCollisionOption.OpenIfExists);

}

Notice that WriteToFile converts the customers collection to JSON,

then asynchronously opens the file to write to, and then finally writes

to the file, again asynchronously. To open the file, we add the helper

method OpenFileAsync. Notice that when opening the file, we handle

CreationCollisions by saying that we want to open the file if it already exists.

Now it’s time to add the methods that handle adding, removing, and

updating the customers in the list. The Add method adds a customer

(passed in as a parameter) to the customers collection and then calls

WriteToFile:

public Task Add(Customer customer)

{

 customers.Add(customer);

 return WriteToFile();

}

Chapter 5 Local Data

171

The Remove method removes a customer (passed in as a parameter)

from the customers collection and then calls WriteToFile as such:

public Task Remove(Customer customer)

 {

 customers.Remove(customer);

 return WriteToFile();

 }

The third interface method is Update. Here, we have slightly more work

to do: we must find the record we want to update and, if it is not null, we

remove the old version and save the new one.

public Task Update(Customer customer)

{

 var oldCustomer = customers.FirstOrDefault(

 c => c.Id == customer.Id);

 if (oldCustomer == null)

 {

 throw new System.ArgumentException("Customer not found.");

 }

 customers.Remove(oldCustomer);

 customers.Add(customer);

 return WriteToFile();

}

READING AND WRITING THE ENTIRE FILE

So why remove the old record and add the new one? While JSON is a very

efficient storage and transport mechanism for text, it is not a relational

database. It is much more efficient to simply remove the old record and

replace it with the new one than to loop through all of the properties and

Chapter 5 Local Data

172

update the record. Since there isn’t a concept of an auto-increment ID (or any

other relational database concept for that matter), we don’t lose anything, and

gain only speed.

A similar question can be asked as to why save the entire file each time there

is a change instead of just updating the individual record. The answer is pretty

much the same: The time and effort it would take to replace/add/change

individual records compared to writing the entire file on each change makes

writing the file each time a much faster and less fragile option.

What if you have a really large text file? Then I suggest looking at a more

database-centric solution, such as SQLite, discussed later in this chapter.

Finally, we come to Load. Here, we create our file asynchronously and

if it is not null, we read the contents of the file into a string. Then, the

string is deserialized into a list of customers and added into the class’s Obs

ervableCollection<Customer>. Prior to flushing out the Load method, we

need to add a using for System.Collections.Generic as follows:

using System.Collections.Generic;

If the Load method isn’t marked as async, you need to do that now.

Then add the following code into the Load method:

public async Task<ObservableCollection<Customer>> Load()

{

 var file = await _folder.CreateFileAsync(

 _fileName, CreationCollisionOption.OpenIfExists);

 string fileContents = string.Empty;

 if (file != null)

 {

 fileContents = await FileIO.ReadTextAsync(file);

 }

Chapter 5 Local Data

173

 IList<Customer> customersFromJSON =

 JsonConvert.DeserializeObject<List<Customer>>(fileContents)

 ?? new List<Customer>();

 _customers = new ObservableCollection<Customer>(

 customersFromJSON);

 return customers;

}

You then deserialize the customer from the string of JSON into an

IList of Customer and create an ObservableCollection of customer from

that IList. Now that the repository is complete, it’s time to create the view.

�Creating the View
The view that we create will be very simple. It will consist of four text boxes

with labels to add a new record with the list of current customers following

the data entry section. It is not an award-winning UI, but enough to show

the concepts of this chapter. The last piece of UI is a command bar that

holds the Save and Delete command buttons. The UI is shown in Figure 5-3.

Chapter 5 Local Data

174

Open MainPage.xaml and add the following styles to the Page.

Resources section:

<Page.Resources>

 <Style TargetType="TextBlock">

 <Setter Property="FontSize"

 Value="20" />

 <Setter Property="Margin"

 Value="5" />

 <Setter Property="HorizontalAlignment"

 Value="Right" />

 <Setter Property="Grid.Column"

 Value="0" />

 <Setter Property="Width"

 Value="100" />

Figure 5-3.  UI for the local data example

Chapter 5 Local Data

175

 <Setter Property="VerticalAlignment"

 Value="Center" />

 </Style>

 <Style TargetType="TextBox">

 <Setter Property="Margin"

 Value="5" />

 <Setter Property="HorizontalAlignment"

 Value="Left" />

 <Setter Property="Grid.Column"

 Value="1" />

 </Style>

 </Page.Resources>

Next, add a CommandBar to the BottomAppBar and add the Save and

Delete buttons:

 <Page.BottomAppBar>

 <CommandBar>

 <CommandBar.SecondaryCommands>

 <AppBarButton x:Name="cmdSave" Label="Save"

 Click="cmdSave_Click" Icon="Save"/>

 <AppBarButton x:Name="cmdDelete" Label="Delete"

 Click="cmdDelete_Click" Icon="Delete"/>

 </CommandBar.SecondaryCommands>

 </CommandBar>

 </Page.BottomAppBar>

Then, create a set of stack panels to gather the data and a ListView to

display the data as follows:

<StackPanel Margin="150">

 <StackPanel Orientation="Horizontal">

 <TextBlock Text="Email" Margin="5" />

 <TextBox Width="200" Height="40"

Chapter 5 Local Data

176

 Name="Email" Margin="5" />

 </StackPanel>

 <StackPanel Orientation="Horizontal">

 <TextBlock Text="First Name" Margin="5" />

 <TextBox Width="200" Height="40"

 Name="FirstName" Margin="5" />

 </StackPanel>

 <StackPanel Orientation="Horizontal">

 <TextBlock Text="Last Name" Margin="5" />

 <TextBox Width="200" Height="40"

 Name="LastName" Margin="5" />

 </StackPanel>

 <StackPanel Orientation="Horizontal">

 <TextBlock Text="Title" Margin="5" />

 <TextBox Width="200" Height="40"

 Name="Title" Margin="5" />

 </StackPanel>

 <ScrollViewer>

 <ListView Name="xCustomers"

 ItemsSource="{Binding Customers}"

 SelectedItem="{Binding SelectedItem, Mode=TwoWay}"

 Height="400">

 <ListView.ItemTemplate>

 <DataTemplate>

 <StackPanel>

 <TextBlock Text="{Binding FirstName}" />

 <TextBlock Text="{Binding LastName}" />

 <TextBlock Text="{Binding Title}" />

 </StackPanel>

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

Chapter 5 Local Data

177

 </ScrollViewer>

</StackPanel>

Notice the binding for ItemsSource and SelectedItem.

The code-behind is straightforward. The first thing we do is instantiate

an IDataRepository and declare the ViewModel:

 public sealed partial class MainPage : Page

 {

 private IDataRepository<Customer> data;

 private ViewModel vm;

This requires adding the namespace for the Data folder:

using LocalFolderSample.Data;

In the constructor, we create the ViewModel passing in the repository,

then call initialize on the VM, and finally set the VM as the DataContext

for the page:

 public MainPage()

 {

 this.InitializeComponent();

 data = new FileRepository();

 vm = new ViewModel(data);

 vm.Initialize();

 DataContext = vm;

 }

All that is left is to implement the two event handlers as such:

 �private void cmdSave_Click(object sender,

RoutedEventArgs e)

 {

 Customer cust = new Customer

Chapter 5 Local Data

178

 {

 Email = Email.Text,

 FirstName = FirstName.Text,

 LastName = LastName.Text,

 Title = Title.Text

 };

 vm.AddCustomer(cust);

 }

 �private void cmdDelete_Click(object sender,

RoutedEventArgs e)

 {

 vm?.DeleteCustomer(vm.SelectedItem);

 }

When you run the application, you are presented with the view shown

earlier in Figure 5-3. Fill in an entry, click the three dots in the lower-right

corner (or swipe up from the bottom) to bring up the app bar, and click

Save. It immediately appears in the list box.

Once you have saved at least one record, the Customers.json file is

saved in application data. You can find it by searching under AppData on

your main drive, which for most people is the C drive (see Figure 5-4).

Chapter 5 Local Data

179

Double-click that file to see the JSON you’ve saved:

[{"Id":0,"Email":"john@domain.com","FirstName":"John","LastName

":"Doe","Title":"Scientist"}]

�Roaming
To change from storing your data in local storage to roaming storage, you

must change one line of code. Back in FileRepository.cs, change the

LocalFolder to a RoamingFolder (see Figure 5-5).

Figure 5-4.  The data file in AppData

Chapter 5 Local Data

180

Hey! Presto! Without any further work, your application data is now

available on any Windows 8 computer that has the application installed.

�User-Specified Locations
Local and roaming files are a valid solution for storing application data,

but sometimes you want to write your data to a more well-known location.

You can do so in Windows 10 by having the user explicitly pick a location at

runtime.

�Creating the FileOperations Class
To create the FileOperations class, we have to make some modifications

to the program we previously wrote. The interface remains the same, but

the implementation of the DataRepository changes a bit, and we add

another class to encapsulate the utilization of the file pickers.

Figure 5-5.  Available settings options

Chapter 5 Local Data

181

Start by adding a new class to the DataModel folder named

FileOperations and add three static class-level variables:

�public static ApplicationDataContainer settings =

ApplicationData.Current.LocalSettings;

�private static string mruToken; private static string tokenKey

= "mruToken";

We need to add a method to create the file if it doesn’t exist:

�private static async Task<StorageFile> CreateFile(string

fileName)

{

 FileSavePicker savePicker = new FileSavePicker();

 �savePicker.SuggestedStartLocation = PickerLocationId.

DocumentsLibrary;

 savePicker.FileTypeChoices.Clear();

 �savePicker.FileTypeChoices.Add("JSON", new List<string>() {

".json" });

 var file = await savePicker.PickSaveFileAsync();

 return SaveMRU(file);

}

You have to add a using to include Windows.Storage.Pickers.

Once the user has selected a file, we want to save the file into the

MostRecentlyUsedList. This list remembers that the user gave permission

to open the file and therefore that the files that are stored in the list are

accessible on successive loads. The code to accomplish this is as follows:

private static StorageFile SaveMRU(StorageFile file)

{

 if(file != null)

 {

Chapter 5 Local Data

182

 �mruToken = StorageApplicationPermissions.

MostRecentlyUsedList.Add(file);

 settings.Values["mruToken"] = mruToken;

 return file;

 }

 else

 {

 return null;

 }

}

Make sure that you have added using: Windows.Storage.

We also use a FileOpenPicker to enable loading a file from the

computer in case the MRUToken isn’t available:

private static async Task<StorageFile> GetFile()

{

 FileOpenPicker openPicker = new FileOpenPicker();

 �openPicker.SuggestedStartLocation = PickerLocationId.

DocumentsLibrary;

 openPicker.ViewMode = PickerViewMode.List;

 // Filer to include a sample subset of file types.

 openPicker.FileTypeFilter.Clear();

 openPicker.FileTypeFilter.Add(".json");

 // Open the file picker.

 var file = await openPicker.PickSingleFileAsync();

 return SaveMRU(file);

}

Chapter 5 Local Data

183

If the MRUToken does exist, we can greatly simplify getting the file by

doing the following:

private static async Task<StorageFile> GetFileFromMRU()

{

 return

 await StorageApplicationPermissions

 .MostRecentlyUsedList.GetFileAsync(_mruToken);

}

Finally, we create the entry method into the FileOperations:

public static async Task<StorageFile> OpenFile(string fileName)

 {

 �mruToken = settings.Values[tokenKey] != null ?

settings.Values[tokenKey].ToString() : null;

 if(mruToken != null)

 {

 return await GetFileFromMRU();

 }

 var file = await GetFile();

 if(file != null)

 {

 return file;

 }

 else

 {

 return await CreateFile(fileName);

 }

 }

Chapter 5 Local Data

184

With the FileOperations class built, there are just a few changes to

make to the FileRepository class. At the top of the FileRepository class,

we need to delete the instantiation of the StorageFolder:

StorageFolder folder = ApplicationData.Current.RoamingFolder;

Then, we update the OpenFileAsync to the following:

private async Task<StorageFile> OpenFileAsync()

{

 return await FileOperations.OpenFile(fileName);

}

Finally, we update the Load method by deleting the first line:

var file = await folder.CreateFileAsync(

 fileName, CreationCollisionOption.OpenIfExists);

and replacing it with this one:

var file = await FileOperations.OpenFile(fileName);

�Adding the File Association for JSON Files
To add a file association for JSON files, open the Package.appxmanifest

file and click the Declarations tab. Open the drop-down list for the

available declarations, select File Type Associations, and click Add, as

shown in Figure 5-6.

Chapter 5 Local Data

185

Once you have added the file type association, you must also fill in a

number of fields in the right rail as follows:

•	 Display Name: json files

•	 Name: json

•	 Content Type: text/plain

•	 File Type: .json

•	 Open Is Safe: checked

Figure 5-6.  Declaring file type associations

Chapter 5 Local Data

186

The filled-out form is shown in Figure 5-7.

After adding the file type association declaration, your app can load

*.json files from File Explorer, as shown in Figure 5-8.

Figure 5-7.  Declarations

Chapter 5 Local Data

187

�SQLite
One of the main benefits of using a repository is that we can swap in

SQLite for our data store. We create a new repository based on the

IDataRepository interface, and the rest of our code largely remains intact.

In fact, the view model remains unchanged, while Customer.cs and

MainPage.Xaml.cs just receive a tiny tweak. To see this in action, create a

new project based on the Blank App template named SQLiteSample.

We are going to be using Entity Framework Core in order to do

the actual communication to the SQLite database. Because of that,

there are two prerequisites that we need to download: Microsoft.

EntityFrameworkCore.Sqlite and Microsoft.EntityFrameworkCore.

Tool. Once that is installed, you might have to restart Visual Studio. If you

don’t restart Visual Studio, you will have issues when it comes to setting up

your migrations.

Figure 5-8.  Opening .json files with the app

Chapter 5 Local Data

188

Now that we have the prerequisites installed, we need to create our

DataContext. This is our repository and it follows the repository pattern.

We will still continue to use the IDataRepository<T> that we created in

previous examples as well. We will create our CustomerContext class,

which inherits from DbContext. We also override OnFiguringEvent so that

we can use SQLite and we pass it in a data source. In this example, we are

using a file named customer.db. See Figure 5-9.

public class CustomerContext : DbContext

{

 public DbSet<Customer> Customers { get; set; }

 �private static readonly string DataSource = "customer.db";

 �protected override void OnConfiguring(DbContextOptions

Builder optionsBuilder)

 {

 optionsBuilder.UseSqlite($"Data Source={DataSource}");

 }

}

We have a DbSet that has type Customer, which we named Customers.

DbSet is the equivalent to a table in SQL. What that code is saying is that

we have a table named Customers.

Before this code will work, however, we need to use the following

namespace:

using Microsoft.EntityFrameworkCore;

Chapter 5 Local Data

189

Finally, we need to install the Microsoft.EntityFrameworkCore.

Sqlite NuGet package. This time, rather than using the console, choose

Tools ➤ Library Package Manager ➤ Manage NuGet Packages for Solution,

which brings up the NuGet GUI. From there, you can search for and install

SQLite, as shown in Figure 5-10.

Figure 5-10.  Microsoft.EntityFrameworkCore.Sqlite NuGet
package

Figure 5-9.  SQLite references for Windows 10 UWP

Chapter 5 Local Data

190

Just like with the earlier example, create a folder named Data and

add the IDataRepository, ViewModel, and Customer classes from

the LocalFolder sample. Because we can leverage the fact that SQLite

is a database engine, we need to do some set up with NuGet first in

order to get our dependencies. You will want to get the following

packages—Microsoft.EntityFrameworkCore.Sqlite and Microsoft.

EntityFrameworkCore.Tools—as shown in Figure 5-11.

Once you have the dependencies installed, you need to create a class

that inherits from DbContext. Name the class CustomerContext and

implement it as shown here.

public class CustomerContext : DbContext

{

 public DbSet<Customer> Customers { get; set; }

 �private static readonly string DataSource = "customer.db";

 �protected override void OnConfiguring(DbContextOptions

Builder optionsBuilder)

 {

 optionsBuilder.UseSqlite($"Data Source={DataSource}");

 }

}

Figure 5-11.  The NuGet packages needed for SQLite

Chapter 5 Local Data

191

We inherit from DbContext and then create a public property named

Customers that is of type DbSet<Customer>. The DbSet class lets the Entity

Framework know that this is a table in the database that maps to the type

Customer, which we will see the implementation of Customer next. We

add a private string member that gives us our database name and override

the OnConfiguring method to ensure we use SQLite instead of any other

database engine. This Customer class looks plain, with no real differences

from before.

public class Customer

{

 public int Id { get; set; }

 public string Email { get; set; }

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public string Title { get; set; }

}

Now, create a new class in the Data directory named

SQLiteRepository, and implement the IDataRepository interface.

Start by adding a using for Windows.Storage, System.Collections.

ObjectModel, and System.IO:

using Windows.Storage;

using System.Collections.ObjectModel;

using System.IO;

Next, add a class-level variable for the location where we want to store

the database:

�private static readonly string dbPath = Path.

Combine(ApplicationData.Current.LocalFolder.Path, "app.

SQLite");

Chapter 5 Local Data

192

We also declare an ObservableCollection<Customer> as follows:

private ObservableCollection<Customer> customers;

Once again, the constructor calls Initialize, but this time Initialize

has real work to do.

public SQLiteRepository()

{

 Initialize();

}

public async void Initialize()

{

 using (var db = new CustomerContext())

 {

 if (!db.Customers.Any())

 {

 db.Database.Migrate();

 �db.Customers.Add(new Customer { FirstName = "Phil",

LastName = "Japikse" });

 �db.Customers.Add(new Customer() { FirstName =

"Jon", LastName = "Galloway" });

 �db.Customers.Add(new Customer() { FirstName =

"Jesse", LastName = "Liberty" });

 �db.Customers.Add(new Customer() { FirstName =

"Jon", LastName = "Hartwell" });

 db.SaveChanges();

 }

 else

 {

 await Load();

 }

 }

}

Chapter 5 Local Data

193

The first step in Initialize is to instantiate an instance of the

CustomerContext, which is the backing of our SQLite database. The

using statement, of course, ensures that this resource will be released

the moment we’re done with it. SQLite is built using COM and other

unmanaged resources, so it’s extremely important to make sure all of the

resources are disposed of. We then check to see if there are any customers

already in the database. If there are no customers, we call Migrate() on

the Database property of our CustomerContext instance. This will create

the table and we will then populate it with hardcoded data. If there is

already customer data in the SQLite database, we just call Load as we did

previously.

�public async Task<ObservableCollection<Customer>> Load()

{

 using (var db = new CustomerContext())

 {

 �return new ObservableCollection<Customer>(await

db.Customers.ToListAsync());

 }

}

Load will connect to the SQLite instance using the CustomerContext

class and then make an async call to turn the Customers table into a

List<Customer>. We then use that to populate our new ObservableCollec

tion<Customer>, which is bound to the UI.

Similarly, the Add and Remove methods make a connection to the

database and insert or delete the customer, respectively. We want to ensure

that we call SaveChangesAsync with the parameter of true so that we are

sure the changes make it back to the database. As of this writing, there are

issues with SQLite and Entity Framework where if you call SaveChangesAsync

without passing in a parameter of true for the acceptAllChangesOnSuccess

parameter, the changes won’t get persisted to the database.

Chapter 5 Local Data

194

public Task Add(Customer customer)

{

 using(var db = new CustomerContext())

 {

 db.Customers.Add(customer);

 return db.SaveChangesAsync(true);

 }

}

public Task Remove(Customer customer)

{

 using (var db = new CustomerContext())

 {

 db.Customers.Remove(customer);

 return db.SaveChangesAsync(true);

 }

}

Next, the Update method, much as it did in the previous cases, finds the

original value for the customer and removes the old value and replaces it

with the new value. It then does an update on the customer in the database.

public Task Update(Customer customer)

{

 using (var db = new CustomerContext())

 {

 �var existingCustomer = db.Customers.Find(customer);

 existingCustomer = customer;

 db.Customers.Update(existingCustomer);

 return db.SaveChangesAsync(true);

 }

}

Chapter 5 Local Data

195

Finally, we copy the XAML after the Page directive from MainPage.

xaml in the previous example into MainPage.xaml in this example. Also,

we copy all of the code from MainPage.xaml.cs starting with the public-

sealed partial class from the previous example and paste it into MainPage.

xaml.cs in this example. Copying the XAML and the C# code in this way

preserves the namespaces and usings in the files. We then just need to

update one line of code where we instantiate the IDataRepository. The

update line should read like this:

private IDataRepository data = new SQLiteRepository();

You can see that we were able to carry the repository pattern that

we used in the first example all the way forward to the SQLite example

successfully, saving us a lot of rethinking and redesign. You have a number

of choices for where and how you store user data, but none of them is

terribly difficult to implement.

�Summary
There are a variety of options to choose from when your app needs to store

data locally on the device. Simple data can be stored in application settings

or in files on the device. More complex data can be stored in SQLite. One

noticeably absent item from the list is the SQL Server. The SQL Server

doesn’t run on ARM devices or under WinRT.

If your app needs to access the SQL Server, it must be done through a

service. In the next chapter, we look into accessing remote data.

Chapter 5 Local Data

197
© Jesse Liberty, Jon Galloway, Philip Japikse and Jonathan Hartwell 2018
J. Liberty et al., Windows 10 Development with XAML and C# 7,
https://doi.org/10.1007/978-1-4842-2934-7_6

CHAPTER 6

Application Lifecycle
In Windows 7, as in all prior versions of Windows (and virtually every other

operating system for that matter), the lifecycle of an application was largely

determined by the user. The user started the application and, when done,

closed the application. The exceptions were crashes and other unforeseen

terminations. For Windows 8.1 modern design apps, the process is very

different from Windows 7 (or even Windows 8.1 desktop applications).

Users can start apps in the usual way by tapping (or clicking) on the app’s

tile, but they can also start with a number of new methods, including

searching and sharing. They can switch from app to app and when they

are finished, they typically do not close the application but simply open

another one.

With the release of Windows 8, the operating system plays a much

larger role in the lifecycle of each application in the new version. When an

app no longer has the focus, Windows 8.1 suspends it. A suspended app

is not running in the background but truly idle. This means no processor

time at all, and only its state is retained in memory. If the user then brings

that app back into the foreground, it once again receives processor time

and returns to normal operations.

Suspended apps can also be terminated by the operating system. The

most common reason for the termination of an app is memory pressure,

although there are some other ways termination can occur. Users also do

not know that their apps have been terminated other than the fact it is no

longer in the list of running apps.

198

Windows 10 Universal Windows Platform (UWP) builds on what was

developed in Windows 8. Like Windows 8, Windows 10 UWP has the

operating system playing a larger role. The operating system can suspend

or terminate applications and will do so if resources are needed. With the

release of Windows 10 Version 1607, however, Microsoft brought back the

concept of apps running in the background. Instead of going directly to the

suspended state, an app may be changed to running in background. The

big difference in Windows 10 UWP running in the background compared to

a normal Win32 application running in the background is that Windows 10

will limit the amount of resources that a Windows 10 UWP application can

consume while running in the background.

�The Three Application States
There are three app states: running, suspended, and terminated. As

just mentioned, the operating system (and not the user) plays a key

role in determining the state of an application. This was implemented

for a number of reasons, but the two that figured most prominently in

the decision were to match how users work with mobile devices and to

conserve battery power and other resources.

In the case of mobile devices, unlike working with a plugged-in

desktop (or laptop), they are designed to be, well, mobile! Battery life is

a crucial element in deciding which mobile device a consumer selects.

Running multiple applications in the foreground would drain the battery

in a very short period of time. That being said, as of Windows 10 Version

1607, applications can now run not only in the foreground but also in the

background. Applications running in the background are much more

limited than the traditional applications. They are given a memory limit

and can still be closed if the system is low on resources.

Tablets have been out long enough that the typical usage pattern is

well known. When users have an app on the screen, it is the focus of their

Chapter 6 Application Lifecycle

199

attention. When an app is moved to the background, then it is out of sight,

out of mind.

�Running
If your user can see your app on his device, it is running. Running apps get

processor time, memory, access to device hardware, and everything else

one would expect.

�Suspended
When the user moves an app to the background (removes it from

view), the app goes into the suspended state. As an app moves into the

background, it has five seconds to store its state. Once the app is in the

background, it is completely isolated from the operating system. Anything

in memory in the app will stay there, but it has no access to processor

threads or any other resources. Therefore, as a developer, you must treat

the suspension event as if your app will be terminated.

The lack of resource utilization minimizes power consumption for

apps that are not in the foreground, helping to extend the battery life of

the device. It also helps to keep foreground apps much more responsive,

as system resources are dedicated to apps in the foreground (which are

visible to the user).

By retaining in memory the state of the app, the user can switch back

to the app by bringing it into view in a near instant, which gives the illusion

that it was running all along in the background.

�Terminated
As discussed earlier, the operating system can terminate apps when certain

conditions exist, most often memory pressure. Since the app does not have

access to any system resources (except for the memory that it was using

Chapter 6 Application Lifecycle

200

when it moved to suspended), no notification is given when a termination

happens.

While the operating system certainly has an algorithm that it follows

in determining which apps to terminate, this information is not available

to you as a developer, and you must assume that as soon as your app is

suspended it will terminate. If you did not save your app’s data and state

(including session and navigation), it will be lost. The next time a user

launches your app, it will appear as if it crashed. And in reality, if your app

doesn’t handle saving its state on suspend, it did crash.

�State Transitions
App state transitions can happen due to user or operating system action.

As shown in Figure 6-1, six actions can affect the state of an app: launching,

activating, suspending, resuming, terminating, and killing.

Figure 6-1.  State transitions

Chapter 6 Application Lifecycle

201

�Launching
Launching an app is a user-driven action. It occurs when a user clicks an

app to load it. This places the app in the running state.

�Activating
Another way for an app to move to running is activation. Activation occurs

through the operating system. Some examples of activation include the

Search and Share charms as well as notifications.

During activation, the arguments passed into the OnLaunched event

provide information on the previous execution state. This enables you

to determine how the app transitioned into the not-running state. If the

previous execution state was terminated, you need to restore the state that

was saved during the suspension process.

�Suspending
The operating system will suspend an app when it is no longer in the

foreground.

�Resuming
When a suspended app returns to the foreground, the app is resumed.

Since suspended apps maintain state, there is no need to do anything in

code to provide the expected user experience.

�Terminating
Your app may be terminated by the operating system for any number of

reasons, including memory pressure requiring that your app be closed to

allow other apps to run, the app taking too long to start, or the app taking

too long to suspend.

Chapter 6 Application Lifecycle

202

�Killing
An app changes directly from running to not running (skipping the

suspended state) only when it is killed. An app can be killed by any of the

following conditions:

•	 The user swiping down from the top of the screen

(or pressing Alt-F4)

•	 The user logging off, shutting down, or restarting the

computer

•	 The user killing the process in Task Manager

•	 The app freezing, taking longer than five seconds to

suspend, or taking longer than 15 seconds to start

•	 The app exit being called

If the user performs a close gesture (swiping down from the top of the

screen), the app suspends for 10 seconds before it gets killed. This provides

a better user experience when an app is accidentally closed. The user can

immediately relaunch the app and still maintain the same state.

�Managing the Lifecycle
For the sample code in this chapter, we start with the Blank App template.

To get started, create a new Blank App project by selecting File ➤ New

Project ➤ Visual C# ➤ Windows Universal ➤ Blank App (XAML) and

setting the name of the project to LifeCycle, as shown in Figure 6-2.

Chapter 6 Application Lifecycle

203

�Building the Sample App
In order to demonstrate saving and restoring data and state, we need a

simple app that has data and more than one page to prove that we can

restore data as well as navigation. The Main Page (shown in Figure 6-3)

includes a list of tasks that need to be completed. Clicking on the Add

button or selecting an item and clicking Edit will bring the user to the

Details Page (shown in Figure 6-4), which allows users to add to or edit the

list values. This app is very simplistic on purpose because the main goal is

to show how to save and restore state and app data.

Figure 6-2.  Creating the LifeCycle project

Chapter 6 Application Lifecycle

204

�Adding the Navigation Parameter Class
When navigating from one page to another, any object can be passed as a

parameter to the new page. In our sample app, we need a custom object to

pass two values back to the Main Page from the Details Page.

Figure 6-3.  Main Page of the Item Tracker app

Figure 6-4.  Details Page of the Item Tracker app

Chapter 6 Application Lifecycle

205

To do so, add a new class to the project named NavigationParameter.

cs. In that class, enter the following code:

public class NavigationParameter

{

 public string OriginalItem { get; set; }

 public string UpdatedItem { get; set; }

}

�Creating the Details Page
The Details Page allows the user to add or edit tasks. Right-click on

the project, add a Blank page named Details.xaml, and complete the

following steps:

	 1.	 Open Details.xaml and add the following markup

just before the closing </Grid> tag:

<Grid Row="1" Margin="120">

 <StackPanel>

 <TextBlock FontSize="20">Item Title</TextBlock>

 <TextBox Name="ItemTitle" Text="New Item" />

 �<Button Name="Submit" Click="Submit_Click"

HorizontalAlignment="Right" Margin="0,20,0,0">

 Save</Button>

 </StackPanel>

</Grid>

Chapter 6 Application Lifecycle

206

	 2.	 Add the stub for the Submit_Click method in

Details.xaml.cs:

public void Submit_Click(object sender, RoutedEventArgs e)

{

 var param = new NavigationParameter

 {

 OriginalItem = this.OriginalItem,

 UpdatedItem = ItemTitle.Text

 };

 this.Frame.Navigate(typeof(MainPage), param);

}

	 3.	 Add a variable to hold the original value if the user

is editing an existing list item. Add this code just

before the constructor:

private string OriginalItem = string.Empty;

	 4.	 Add the following method in Details.xaml.cs to

handle the parameter data (if any):

protected override void OnNavigatedTo(NavigationEvent

Args e)

 {

 if(e.Parameter != null)

 {

 string param = e.Parameter as string;

 if(!string.IsNullOrEmpty(param))

 {

 OriginalItem = param;

 ItemTitle.Text = param;

 }

Chapter 6 Application Lifecycle

207

 else

 {

 �ItemTitle.Text = "Add a new

item...";

 }

 }

 }

�Creating the Main Page
The Main Page contains two buttons and a ListView control that will be

a simple Item Tracker/ToDo app. Open MainPage.xaml and complete the

following steps:

	 1.	 Open MainPage.xaml from the project previously

created. Add the following XAML just before the

closing </Grid> tag:

<StackPanel Grid.Row="1" Margin="120,30,0,0">

 <StackPanel Orientation="Horizontal">

 <Button Name="Add"

 Content="Add"

 Click="Add_Click" />

 <Button Name="Edit"

 Content="Edit"

 Click="Edit_Click" />

 </StackPanel>

 <ListView Name="ItemsList"/>

</StackPanel>

Chapter 6 Application Lifecycle

208

	 2.	 Open MainPage.xaml.cs and add the two-button

click method handlers and the following code:

public void Edit_Click(object sender, RoutedEventArgs e)

{

 �this.Frame.Navigate(typeof(Details), ItemsList.

SelectedValue);

}

public void Add_Click(object sender, RoutedEventArgs e)

{

 this.Frame.Navigate(typeof(Details), string.Empty);

}

	 3.	 Add starter data to the ListView by copying the

following code to the top of the class just before the

constructor:

string[] _defaultItems = {"Go shopping","Motorcycle

maintenance","Build underground lair"};

string[] _items;

	 4.	 Add a using for Windows.Storage at the top of the

file:

using Windows.Storage;

	 5.	 Add an application data container to save the

application data:

private ApplicationDataContainer _settings =

ApplicationData.Current.RoamingSettings;

Chapter 6 Application Lifecycle

209

�Handling Adding/Editing List Items
The OnNavigatedTo method is executed whenever a page is navigated to.

The following code first checks to see if there are items in the application

data container’s roaming settings, which have been added to the

OnNavigatedTo method, and then checks to see if a navigation parameter

was passed in. If so, the list gets updated accordingly, the app data is saved

in the application data container, and the ItemsSource property for the

ListView is set to the item’s collection. On the MainPage.xaml.cs file,

add this code:

�protected override void OnNavigatedTo(NavigationEventArgs e)

{

 �_ items = _settings.Values["StoredItems"] as string[] ??_

defaultItems;

 var param = e.Parameter as NavigationParameter;

 �if(param != null && !string.IsNullOrEmpty(param.

UpdatedItem))

 {

 List<string> items = new List<string>();

 if(!string.IsNullOrEmpty(param.OriginalItem))

 {

 items.Remove(param.OriginalItem);

 }

 items.Add(param.UpdatedItem);

 �_settings.Values["StoredItems"] = items.ToArray();

 }

 ItemsList.ItemsSource = items;

}

Chapter 6 Application Lifecycle

210

�Responding to App Suspension
As previously mentioned, the operating system notifies apps on

suspension, but not when they are killed or terminated. Until the release

of Windows 10 Version 1607, you would handle saving your state in the

OnSuspending event. With the release of Version 1607 came the addition

of running in the background and running in the foreground. Since

Windows 10 Version 1067, any saving of state should happen in the

EnteredBackgroundEvent. For more information on saving app data to

local or roaming settings, refer to Chapter 6.

�The OnSuspending Event
If you are using one of the templates provided, the app-suspending

event already has a handler called OnSuspending in App.xaml.cs.

The out-of-the-box version has three lines as shown here:

private void OnSuspending(object sender, SuspendingEventArgs e)

{

 var deferral = e.SuspendingOperation.GetDeferral();

 �//TODO: Save application state and stop any background

activity

 deferral.Complete();

}

The call to GetDeferral returns an object of type SuspendingDeferral

and it has only one method: Complete. You need to sandwich your work

between these two calls if you are working with asynchronous methods. As

explained in the “Using Async Methods” section, the SuspensionManager

calls are async calls. When using async, the OnSuspending method will

run until you call Complete or the five seconds allocated is exhausted,

whichever comes first. If you are running on versions of Windows 10 prior

to Version 1067, this is where you would handle the save data.

Chapter 6 Application Lifecycle

211

�The EnteredBackground Event
With Windows 10 Version 1607, saving of state should be all done in the

EnteredBackground event. This event signals that the application is now

running in the background rather than the foreground. There are extra

hoops we must jump through as well, though. When an application is

put into the Running in Background state, the amount of memory that is

available to that application decreases. Because of that, we will need to

handle the memory usage events manually too.

In order to keep track of whether our app is running in the background

or not, we need to create a member bool as follows:

 private bool isInBackground;

We then need to attach to the following events: EnteredBackground,

LeavingBackground, AppMemoryUsageLimitChanging, and

APpMemoryUsageIncreased. We do this in the constructor of the App class

in App.xaml.cs. We also initialize our isInBackground variable to false to

indicate that we are not running in the background currently.

public App()

{

 this.InitializeComponent();

 this.Suspending += OnSuspending;

 this.EnteredBackground += OnEnteredBackground;

 this.LeavingBackground += OnLeavingBackground;

 �Windows.System.MemoryManager.AppMemoryUsageLimitChanging +=

MemoryManager_AppMemoryUsageLimitChanging;

 �Windows.System.MemoryManager.AppMemoryUsageIncreased +=

MemoryManager_AppMemoryUsageIncreased;

 isInBackground = false;

}

Chapter 6 Application Lifecycle

212

Because we do not have any heavy objects in this example,

OnEnteredBackground and OnLeavingBackground are rather bare:

�private void OnEnteredBackground(object sender,

EnteredBackgroundEventArgs e)

{

 isInBackground = true;

}

First, the OnEnteredBackground event handler. As stated before, we

don’t have many objects in our application, so there isn’t much to save (we

are already saving on edit as well). We just need to ensure our application

knows we are entering the Running in Background state by setting

isInBackground to true.

While our application is running in the background, we must ensure

that it doesn’t utilize more resources than it is allowed. We do this with

the AppMemoryUsageLimitChanging and AppMemoryUsageIncreased

events. The AppMemoryUsageLimitChanging event will fire whenever

there is a change in how much memory our application is allowed to

consume. This will typically occur when the application is first being run

in the background and when the application transitions to running in the

foreground again. We are only concerned with when the memory limit

decreases because that means we may need to take action. The following

code shows the implementations of the AppMemoryUsageIncreased and

AppMemoryUsageLimitChanging events that are in App.xaml.cs.

private void MemoryManager_AppMemoryUsageIncreased(object

sender, object e)

 {

 �var memUsage = Windows.System.MemoryManager.

AppMemoryUsageLevel;

Chapter 6 Application Lifecycle

213

 �if (memUsage == Windows.System.AppMemoryUsageLevel.

OverLimit

 �|| memUsage == Windows.System.

AppMemoryUsageLevel.High)

 {

 �FreeMemory(Windows.System.MemoryManager.

AppMemoryUsageLimit);

 }

 }

 �private void MemoryManager_AppMemoryUsageLi

mitChanging(object sender, Windows.System.

AppMemoryUsageLimitChangingEventArgs e)

 {

 �if (Windows.System.MemoryManager.AppMemoryUsage >=

e.NewLimit)

 {

 FreeMemory(e.NewLimit);

 }

 }

When the memory usage increases, we want to check our current

usage level and then determine if it is over the limit or if it is high. If it

is either one of those, we need to take action. Whereas when the usage

limit changes, we only need to check to see if our usage is above the new

memory limit. If it is, then we must ensure that we do what we can to

release memory, using the FreeMemory method.

private void FreeMemory(ulong size)

{

 if (isInBackground && Window.Current.Content != null)

 {

Chapter 6 Application Lifecycle

214

 Window.Current.Content = null;

 }

 GC.Collect();

}

The FreeMemory method determines if we are running in the

background and if the current UI is null. If we are running in the

background and we haven’t disposed of the UI, then we are able to easily

take advantage of the space we can gain by disposing of the UI elements.

We set the current UI content to null and then call the garbage collector.

If we had larger objects that we knew we did not need, we could also clean

those up in this instance.

When the application is starting to run in the foreground again, the

LeavingBackground event is fired. Here we set our member variable

isInBackground to false to indicate we are no longer running in the

background and then determine if the current UI is null. Remember, there

is a chance we could have disposed of the UI elements in the FreeMemory

method. Therefore, if we need to ensure that we do not reference null

objects, we call CreateRootFrame.

private void OnLeavingBackground(object sender,

LeavingBackgroundEventArgs e)

 {

 isInBackground = false;

 if (Window.Current.Content == null)

 {

 �CreateRootFrame(ApplicationExecutionState.

Running, string.Empty);

 }

 }

Chapter 6 Application Lifecycle

215

The CreateRootFrame method takes part of the OnLaunched method

and creates the new UI, giving it the default look.

private void CreateRootFrame(ApplicationExecutionState

previousState, object arguments)

 {

 Frame rootFrame = Window.Current.Content as Frame;

 �// Do not repeat app initialization when the Window

already has content,

 // just ensure that the window is active

 if (rootFrame == null)

 {

 �// Create a Frame to act as the navigation

context and navigate to the first page

 rootFrame = new Frame();

 �rootFrame.NavigationFailed +=

OnNavigationFailed;

 �if (previousState == ApplicationExecutionState.

Terminated)

 {

 �//TODO: Load state from previously

suspended application

 }

 // Place the frame in the current Window

 Window.Current.Content = rootFrame;

 }

 }

Chapter 6 Application Lifecycle

216

�Responding to App Activation
When an app is activated, the OnLaunched event is raised. We have already

used this when we registered the root frame of the app. This method is also

where the app session is restored.

�Determining the Previous Application State
The custom event argument for the OnLaunched event

(LaunchActivatedEventArgs) contains a PreviousExecutionState

property of type ApplicationExecutionState. The

ApplicationExecutionState enumeration contains values representing

the five possible states that an app can be in prior to activation:

•	 NotRunning

•	 Running

•	 Suspended

•	 Terminated

•	 ClosedByUser

�Testing the Restoring Navigation State
Visual Studio makes it very easy to test termination and activation.

While an app is running, locate the Suspend menu. It will vary based on

customization, but the default location is the left side of the third row of the

toolbars. (If it isn’t showing, you can enable the toolbar by selecting View

➤ Toolbars ➤ Debug Location.) The Suspend menu gives you the option

to suspend, resume, or suspend and shut down the app being debugged.

This menu is shown in Figure 6-5.

Chapter 6 Application Lifecycle

217

Follow these steps to run the test:

	 1.	 Run the app.

	 2.	 Click Add on the Main Page to navigate to the

Details Page.

	 3.	 Go back to Visual Studio, and on the Suspend menu,

click Suspend and Shutdown. When the app has

completed termination, Visual Studio’s menu bar

returns to the non-running state.

	 4.	 Run the app again, and the app will load with the

Details Page as the current page.

�Testing the Restoring Session Information
To test the restoration of the app state information, use the same process

as the one for testing the restoration of the navigation information:

	 1.	 Run the app.

	 2.	 Select one of the items in the list.

Figure 6-5.  Suspend options in Visual Studio

Chapter 6 Application Lifecycle

218

	 3.	 Go back to Visual Studio, and on the Suspend menu,

click Suspend and Shutdown. When the app has

completed termination, Visual Studio’s menu bar

returns to the non-running state.

	 4.	 Run the app again, and the app will load to the Main

Page with the previous item selected once again.

	 5.	 Click Edit on the Main Page to navigate to the

Details Page. The text box is filled in with the

selected item. Make an edit to the text box.

	 6.	 Go back to Visual Studio and repeat Step 4—

click Suspend and Shutdown. When the app has

completed termination, Visual Studio’s menu bar

returns to the non-running state.

	 7.	 Run the app again, and the app will load to the

Details Page with the text box restored to the

previous value.

�Summary
Because Windows 10 UWP apps can run on many different devices

with many different hardware profiles, the app lifecycle has been

updated to ensure that applications can still run in the background but

not overconsume resources. One of the mechanisms utilized prevents

background apps from stealing precious resources when the user isn’t

actively engaged. When an app isn’t visible on the screen, it may go into a

suspended state or it may run in the background. While suspended, your

app doesn’t have access to any processor cycles. While running in the

background, the amount of resources that an app is allowed to consume is

drastically limited. If system resources become low enough, Windows will

terminate your app.

Chapter 6 Application Lifecycle

219

It is important for your app to gracefully handle app termination. If

your app doesn’t restore session data and state after termination, then the

user will believe (rightly so) that the app crashed and isn’t stable. By saving

the session data and state when an app is suspended (and subsequently

restoring them when an app is started again after termination), the user

experience will be seamless and the user will not have any cause for

concern.

Chapter 6 Application Lifecycle

221
© Jesse Liberty, Jon Galloway, Philip Japikse and Jonathan Hartwell 2018
J. Liberty et al., Windows 10 Development with XAML and C# 7,
https://doi.org/10.1007/978-1-4842-2934-7

Index

A
Application lifecycle

activation
ApplicationExecution

State, 216
restoring navigation

state, 216–217
restoring session

information, 217–218
state transitions, 200

activation, 201
killing, 202
launching, 201
resuming, 201
suspend, 201
terminating, 201

suspension
EnteredBackground

event, 211–215
OnSuspending event, 210

SuspensionManager
Blank App, 202–203
Details page creation, 205–207
Item Tracker app, 203–204
Main page creation, 207–208
navigation parameter

class, 204–205
OnNavigatedTo method, 209

Windows 10
running, 199
suspended state, 199
terminate apps, 199–200

B
Binding

collection
array, 136
data-bound ListView, 136
IEnumerable<Person>, 137
INotifyCollection

changed, 143
ListView creation, 141, 143
Person class, 138–141

DataContext, 120
DataConverter

boolean, 148–149
ConvertBack, 149
IValueConverter, 148–149
methods, 145
Num property, 145
Person class, 146, 147

elements
accept/continue

button, 128–129
check box button, 129
XAML, 128

https://doi.org/10.1007/978-1-4842-2934-7

222

errors
FallbackValue, 126
LastName property, 125
TargetNullValue, 127

INotifyPropertyChanged
EventArg, 133
Person class, 133, 135
text blocks, 135
UI, 134

modes
OneTime, 130
OneWay, 130
TwoWay, 131

Person class creation, 121
statements, 123
text blocks property, 121
UpdateSourceTrigger, 131–132
user interface, 119
XAML, 122–123

Border control, 77, 78

C
CheckBox controls, 95
ComboBox controls, 100
Controls

CheckBox, 95
ComboBox, 100–101
DatePickers and TimePickers, 106
event handler, 92
flyouts

basic, 109
definition, 108
menu, 110–111

headers and watermarks, 86
HyperLinkButton, 94
Image controls, 101, 102
ListBox, 98, 99
ListView, 99
PasswordBox, 89
ProgressBar control,

104, 105
RadioButton, 95–96
Slider control, 104
spell check, 83
StackPanel, 96
Stretch property, 103
TextBlock and

TextBox, 79
TextBox instances, 90
toggle button, 97
ToggleSwitch, 95
tooltips, 106

Controls5a, 86
CRUD operations, 159

D, E, F
Data binding statements, 123
Data-bound ListView, 141
DataContext, 120
Dependency properties

Callback method, 115
data hiding, 111–112
DependencyObject, 114
inputs, 113
Register method, 115

Distributed version control
system (DVCS), 19

Binding (cont.)

Index

223

G
Git

committing changes, 22
DVCS, 19
functions, 23–24
GitHub for Windows, 19
Microsoft Git provider

selection, 20
remote repository, 23
repository settings, 20–21
SCM system, 19
TFS, 18
TFVC, 18

Graphical User Interface (GUI), 26

H
Headers and watermarks

controls, 86

I
Image control, 101, 102

J, K
JavaScript Object Notation

(JSON), 166
Json.NET package, 167

L
ListBox control, 98–101
ListView control, 98–101

Local data
application data

data file, 179
data storage, 153
magic strings, 155
MainPage.xaml.cs

file, 154, 155
Remove method, 157
retrieving text, 156
settings containers, 152
stores, reads, and

deletes, 152
file repository

Add method, 170
creation, 168
FileRepository class, 169
Initialize method, 169
Load method, 172
OpenFileAsync method, 170
Remove method, 171
System.Collections.

ObjectModel and
Windows.Storage, 169

Update method, 171
implement event handlers, 177
JSON, 166
layer

creating repository
interface, 159

DataModel, 160
ViewModel creation

(see ViewModel)
local, roaming, and temporary

data container, 167

Index

224

roaming, 179
Save and Delete command

buttons, 175
SQLite

Add and Remove
methods, 193

advantages, 187
COM and unmanaged

resources, 193
database engine, 190
SqLite NuGet package, 189
Update method, 194
Windows.Storage and

System.Collections.
ObjectModel, 191

XAML and C# code, 195
stack panels, 175
UI, 173–174
user-specified locations

FileOperations
class, 180–183

file associations,
JSON files, 184–186

ViewModel, 177

M
MainPage.xaml file, 8
Microsoft Store, 2
Model-View-ViewModel (MVVM)

app testing, 51
creation, 47

customer model
adding customer

properties, 42
INotifyProperty

Changed, 44–46
DataContext, 49
guidance, 52
patterns, 40–41
view creation, 49

N
NuGet, 24

command line
installation, 25–26

GUI, 26
Json.NET installation, 26–27
package source, 24–25

O
OnNavigatedTo method, 209

P, Q
Package.appxmanifest file

Application tab, 35
Capabilities tab, 37
Content URIs tab, 38
Declarations tab, 38
Packaging tab, 38
Visual Assets tab, 36

Padding, 73–74

Local data (cont.)

Index

225

Panels
Border control, 77
Canvas control

open MainPage.xaml, 65
rectangles and an ellipse, 68
Visual Studio, 66
XAML code, 67
ZIndex, 68

flag design, 77
Grid control

four values margins, 73
horizontalAlignment, 72
margin, 73
padding, 73–74
pair of values margins, 72
rows and columns, 69
single value margins, 72
VerticalAlignment, 72

RelativePanel control, 76
StackPanel control, 74

PasswordBox control, 89
Plain Old CLR Object (POCO), 119
ProgressBar control, 104, 105

R
RadioButton controls, 96
RelayCommand class, 47

S
Slider control, 104
Source-code-management (SCM)

system, 18–19

Spell check, 83
SQLite

Add and Remove
methods, 193

advantages, 187
COM and unmanaged

resources, 193
database engine, 190
SqLite NuGet package, 189
Update method, 194
Windows.Storage and System.

Collections.Object
Model, 191

XAML and C# code, 195
StackPanel controls, 96

T, U
Team Foundation Server (TFS), 18
Team Foundation Version Control

(TFVC), 18
TextBlock and TextBox controls, 79
Themes, 61
TimePicker and DatePicker

controls, 107
ToggleSwitch controls, 95
Tooltips control, 106

V
ViewModel

async method, 165
CRUD operations, 165
customers property, 164

Index

226

implementing INotifyProperty
Changed, 161

MainPageViewModel class, 47, 48
SelectedItem property, 164
System.Collections.

ObjectModel, 164
Visual Studio 2017

Blend for
assets tab, 16
benefits, 14–15
data tab, 17–18
MainPage.xaml, 15–16
objects and timeline, 17
page designer, markup, and

code, 17
projects tab, 16
properties tab, 17
resources tab, 18
states tab, 17

versions
Community Edition, 6
MSDN, 6
simulator, 6

Windows 10 apps creation
App.xaml file, 8
Basic Page file, 10–12
debugging with

FrameRateCounter, 9
new project, 7
run toolbar utility, 8–9
simulator controls, 12–14
solution explorer files, 8

W, X, Y
Windows 10 applications

creation
App1_TemporaryKey.pfx, 34
App.xaml file, 39
assets, 33–34
MainPage.xaml, 39
Package.appxmanifest (see

Package.appxmanifest file)
properties, 33
standard References node,

33
folders and files, 31–32
Git

committing changes, 22
functions, 23–24
GitHub for Windows, 19
Microsoft Git provider

selection, 20
remote repository, 23
repository settings, 20, 21
SCM system, 19
TFS, 18

Microsoft design
cloud roaming, 5
connected and alive, 4
contracts, 4
fast and fluid, 3
sizing beautifully, 4
tiles, 4
UX guidelines, 5

Microsoft Store, 2

ViewModel (cont.)

Index

227

MVVM (see Model-View-
ViewModel (MVVM))

navigation
back button, 58–59
frame creation, 52–53
MainPage, 55
NavigatedTo Event

handler, 58
new page creation, 53–54
UI creation, 54–55

NuGet
command line

installation, 25, 26

GUI, 26
Json.NET installation, 26–27
package source, 24–25

target and minimum
version, 30–31

Visual Studio 2017 (see Visual
Studio 2017)

Windows Presentation Foundation
(WPF), 160

Z
ZIndex, 68

Index

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Chapter 1: Getting Started
	 Background
	 Versionless Windows 10
	 The Microsoft Store

	 Windows Design Guidelines
	 Being Fast and Fluid
	 Sizing Beautifully
	 Using the Right Contracts
	 Investing in a Great Tile
	 Feeling like It Is Connected and Alive
	 Roaming to the Cloud
	 UX Guidelines

	 Tooling
	 Visual Studio 2017
	 Versions
	Visual Studio Community Edition
	Visual Studio with MSDN

	 The Windows 10 Simulator
	 Creating Your First Windows 10 UWP App
	Adding a Basic Page
	The Simulator Controls

	 Blend for Visual Studio 2017
	 Opening Your Project in Blend for Visual Studio
	Projects, Assets, States, and Data Tabs
	Objects and Timeline
	Page Designer, Markup, and Code
	Properties, Resources, and Data Tabs

	 Git
	 Using Git in Visual Studio
	 GitHub for Windows
	 Enabling Git in Visual Studio 2017
	 Checking In Changes
	 Remote Repositories
	 Reverting Changes

	 NuGet
	 Installing Your First Package
	 Installing from the Command Line
	 Installing from the Graphical User Interface GUI

	 Summary

	Chapter 2: Building Your First Windows 10 UWP App
	 Creating Your First App
	 App Project Overview
	 Properties
	 References
	 Assets
	 App1_TemporaryKey.pfx
	 Package.appxmanifest
	The Application Tab
	The Visual Assets Tab
	The Capabilities Tab
	The Declarations Tab
	The Content URIs Tab
	The Packaging Tab

	 App.xaml
	 MainPage.xaml

	 Model View ViewModel (MVVM)
	 The Pattern
	 Model
	 View
	 ViewModel

	 Creating a Model
	 Adding Customer Properties
	 INotifyPropertyChanged

	 Creating the ViewModel
	 Updating the Code-Behind
	 Creating the View
	 Testing the App
	 Guidance

	 Navigation
	 Creating a New Page
	 Creating the UI

	 Adding Navigation to the MainPage
	 Handling the NavigatedTo Event
	 The Back Button

	 Summary

	Chapter 3: Themes, Panels, and Controls
	 Choosing a Theme
	 Using Panels
	 The Canvas Control
	 The Grid Control
	 Defining Rows and Columns
	 Alignment, Margins, and Padding

	 The StackPanel Control
	 The RelativePanel Control
	 The Border Control

	 Working with Controls
	 TextBlock and TextBox
	 Spell Check
	 Headers and Watermarks Controls
	 The PasswordBox Control
	 Buttons and Event Handlers Controls
	 The HyperLinkButton Control

	 The CheckBoxes, ToggleSwitches, and RadioButtons Controls
	 The ListBox, ListView, and ComboBox Controls
	 The Image Control
	 The Slider Control
	 The ProgressBar Control
	 The ToolTip Control
	 The DatePickers and TimePickers Controls
	 Flyouts
	 Basic Flyouts
	 Menu Flyouts

	 Understanding Dependency Properties
	 Data Hiding
	 Dependency Properties

	 Summary

	Chapter 4: Binding
	 DataContext
	 Creating a Simple Binding
	 Data-Binding Statements
	 Binding Errors
	 FallbackValue
	 TargetNullValue

	 Binding to Elements
	 Binding Modes
	 UpdateSourceTrigger
	 INotifyPropertyChanged
	 Binding to Collections
	 Creating the Collection
	 Creating a Data-Bound ListView
	 INotifyCollectionChanged

	 Data Converters
	 Summary

	Chapter 5: Local Data
	 Application Data
	 Settings Containers
	 Saving, Reading, and Deleting Local Data

	 Creating the Data Layer
	 Creating the Repository Interface
	 Creating the DataModel
	 Creating the ViewModel
	 Implementing INotifyPropertyChanged
	 Adding the Public Properties

	 Local Data
	 Using JSON to Format Data
	 Local Data Containers
	 Creating the File Repository
	 Creating the View
	 Roaming

	 User-Specified Locations
	 Creating the FileOperations Class
	 Adding the File Association for JSON Files

	 SQLite
	 Summary

	Chapter 6: Application Lifecycle
	 The Three Application States
	 Running
	 Suspended
	 Terminated

	 State Transitions
	 Launching
	 Activating
	 Suspending
	 Resuming
	 Terminating
	 Killing

	 Managing the Lifecycle
	 Building the Sample App
	 Adding the Navigation Parameter Class
	 Creating the Details Page
	 Creating the Main Page
	 Handling Adding/Editing List Items

	 Responding to App Suspension
	 The OnSuspending Event
	 The EnteredBackground Event

	 Responding to App Activation
	 Determining the Previous Application State
	 Testing the Restoring Navigation State
	 Testing the Restoring Session Information

	 Summary

	Index

