
www.allitebooks.com

http://www.allitebooks.org

Xcode 6
Start to Finish

www.allitebooks.com

http://www.allitebooks.org

The Developer’s Library Series from Addison-Wesley provides

practicing programmers with unique, high-quality references and

tutorials on the latest programming languages and technologies they

use in their daily work. All books in the Developer’s Library are written by

expert technology practitioners who are exceptionally skilled at organizing

and presenting information in a way that’s useful for other programmers.

Developer’s Library books cover a wide range of topics, from open-

source programming languages and databases, Linux programming,

Microsoft, and Java, to Web development, social networking platforms,

Mac/iPhone programming, and Android programming.

Visit developers-library.com for a complete list of available products

Developer’s Library Series

www.allitebooks.com

http://www.allitebooks.org

Xcode 6
Start to Finish

iOS and OS X
Development

Fritz Anderson

New York • Boston • Indianapolis • San Francisco
Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

www.allitebooks.com

http://www.allitebooks.org

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

Xcode is a trademark of Apple, Inc., registered in the U.S. and other countries.

The author and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors
or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained
herein.

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs; and
content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.com
or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact
international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Anderson, Fritz.

Xcode 6 start to finish : iOS and OS X development / Fritz Anderson.
pages cm

Includes index.
ISBN 978-0-13-405277-9 (pbk. : alk. paper)
1. Mac OS. 2. iOS (Electronic resource) 3. Macintosh (Computer)—Programming.

4. iPhone (Smartphone)—Programming. 5. Application software—Development.
I. Title.

QA76.774.M33A534 2015
005.4’46—dc23 2015004190

Copyright © 2015 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior to
any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise.
To obtain permission to use material from this work, please submit a written request
to Pearson Education, Inc., Permissions Department, 200 Old Tappan Road, Old
Tappan, New Jersey 07675, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-13-405277-9
ISBN-10: 0-13-405277-3

Text printed in the United States on recycled paper at Edwards Brothers Malloy in
Ann Arbor, Michigan.
First printing, June 2015

Editor-in-Chief
Mark L. Taub

Senior Acquisitions Editor
Trina MacDonald

Senior Development Editor
Chris Zahn

Managing Editor
John Fuller

Full-Service Production
Manager
Julie B. Nahil

Copy Editor
Stephanie Geels

Indexer
Ted Laux

Proofreader
Kathleen Allain

Technical Reviewers
Duncan Champney
Chuck Ross
Dan Wood

Editorial Assistant
Olivia Basegio

Cover Designer
Chuti Prasertsith

Compositor
Lori Hughes

www.allitebooks.com

http://www.allitebooks.org

v

For the Honorable Betty Shelton Cole,
a tough old broad

v

www.allitebooks.com

http://www.allitebooks.org

This page intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

Contents at a Glance

Contents ix

Acknowledgments xxiii

About the Author xxv

Introduction 1

I First Steps 7

1 Getting Xcode 9

2 Kicking the Tires 17

3 Simple Workflow and Passive Debugging 25

4 Active Debugging 35

5 Compilation 45

6 Adding a Library Target 69

7 Version Control 79

II The Life Cycle of an iOS Application 105

8 Starting an iOS Application 107

9 An iOS Application: Model 117

10 An iOS Application: Controller 141

11 Building a New View 157

12 Auto Layout in a New View 185

13 Adding Table Cells 207

14 Adding an Editor 227

15 Unit Testing 243

16 Measurement and Analysis 265

www.allitebooks.com

http://www.allitebooks.org

viii Contents at a Glance

17 An iOS Extension 279

18 Provisioning 297

III Xcode for Mac OS X 319

19 Starting an OS X Application 321

20 Bindings: Wiring an OS X Application 343

21 Localization 373

22 Bundles and Packages 401

23 Property Lists 417

IV Xcode Tasks 433

24 Documentation in Xcode 435

25 The Xcode Build System 459

26 Instruments 489

27 Debugging 515

28 Snippets 531

V Appendixes 547

A Some Build Variables 549

B Resources 565

Index 579

www.allitebooks.com

http://www.allitebooks.org

Contents

Acknowledgments xxiii

About the Author xxv

Introduction 1
How This Book Is Organized 1

About Versions 4
About the Code 4
Conventions 5

I First Steps 7

1 Getting Xcode 9

Before You Begin 9

Installing Xcode 10

Command-Line Tools 11
Removing Xcode 11

Apple Developer Programs 12

Downloading Xcode 13

Additional Downloads 14
Summary 15

2 Kicking the Tires 17

Starting Xcode 17

Hello World 19
A New Project 19

Quieting Xcode Down 22

Building and Running 22

The Real Thing 24

Getting Rid of It 24

Summary 24

3 Simple Workflow and Passive Debugging 25

Creating the Project 25

Building 29

Running 30

www.allitebooks.com

http://www.allitebooks.org

x Contents

Simple Debugging 32

Summary 34

4 Active Debugging 35

A Simple Test Case 35

Going Active 35

Setting a Breakpoint 36

The Variables Pane 37
Stepping Through 37

Fixing the Problem 39

Behaviors 40
The Fix 42

Summary 43

5 Compilation 45

Compiling 45

Dynamic Loading 52

Xcode and Clang 52

Local Analysis 53

Cross-Function Analysis 55

Indexing 56

Swift 57
Compiler Products 62

Intermediate Products 62
Precompilation 64

Summary 66

6 Adding a Library Target 69

Adding a Target 69

Targets 70

Target Membership 71

Adding Files to a Target 71

Headers in Targets 74

A Dependent Target 74

Adding a Library 75

Debugging a Dependent Target 76

Summary 77

Contents xi

7 Version Control 79
Taking Control 80

Creating a Git Repository by Hand 81

The State of Your Files 82
How Xcode Works with Git 83

Your First Commit 84
Working with Remote Repositories 84

Setting Up a “Remote”— Locally 87

Pushing to the Remote 88

Merges and Conflicts 89

User A 90
User B 93
Back to User A 96

The Version Editor 99
Comparison 99

Blame 101
Log 101

Branching 102

Summary 104

II The Life Cycle of an iOS Application 105

8 Starting an iOS Application 107

Planning the App 107

Model-View-Controller 107
The Model 108
The Views 108
The Controllers 110

Starting a New iOS Project 110

Target Editor 111

What’s in the Project 112

Summary 114

9 An iOS Application: Model 117

Implementing the Model 117

Entities 118
Attributes 118
Relationships 120

xii Contents

Managed-Object Classes 123

Creating the Classes— the Wrong Way 124

Why Doing It Xcode’s Way Is a Mistake 125

The Right Way— mogenerator 126

Preparation 128

Utilities 129
Extensions 129
passer rating 131

Specializing the Core Data Classes 132

Putting Game to Work 132

Putting Passer to Work 133

Some Test Data 134
Source Control and Product Files 136

Making the Model Easier to Debug 139

Summary 139

10 An iOS Application: Controller 141
Renaming Symbols in Objective-C 141

Refactoring the Name of an Objective-C Method 142

Refactoring a Class Name 142

Renaming a Class in Swift 144

Editing the View Controller 144

The Table View 145
Setting Up the Passer List 146

Creating a New Passer 147

Live Issues and Fix-it 148
The Real Passer Rating 149

Another Bug 149

Running Passer Rating 154

Summary 155

11 Building a New View 157

The Next View Controller 157
If You Want to Add a View Controller 157
Storyboards, Scenes, and Segues 158

Building a View 161

Outlets and Assistants, in Passing 162

The Billboard View 164

Contents xiii

Linking Views to a View Controller 166

Auto Layout for the Nonce 167

Lots of Labels 169

Cleaning Up 171

The Table View 174

Outlets 175

Hooking Up the Outlets 177

Checking Connections 177

Connecting GameListController 178

Code Completion and Snippets 180

Code Snippets 181

Testing the Billboard View 183

Summary 184

12 Auto Layout in a New View 185

Why Auto Layout? 185

Limitations of Autoresizing 185

Auto Layout 186

The Thing to Remember 186

The Player Billboard, Revisited 186

Why You Should Do More 187

Factoring Layout into Subviews 188

The Playground 189

StatView 191

Installing StatView 196

Planning Constraints 197

Two Line Counts, Two Labels 200

Constraints for Real 202

Default (Any/Any) 202

Any Height (not Compact) 203

Landscape (wAny/hCompact) 203

Chasing Issues 203

A Tweak 204

Summary 205

xiv Contents

13 Adding Table Cells 207

The Game Table 207
Outlets in the Table View 207
Adding Required Protocol Methods 208

Adding Model-to-View Support 210

A Prototype Cell 211

The Game Table: First Run 211
A Custom Table Cell 214
Adding Some Graphics 217

A Cell with an Image in It 217

Hooking the Image View to the Images 218

The Assets Catalog 219

Adding Images to the Assets Catalog 220

Icons and Launch Displays 221

Summary 225

14 Adding an Editor 227

The Plan 227
Adding a Modal Scene 227

An Embedded View Controller 229
Linking the Editor to the Passer List 231

Static Table Cells 232
The Editor View Controllers 233

The Editor Table 233
Passing the Data to the Editor 235

Getting the Data Back 237

Segues 239

Summary 240

15 Unit Testing 243

The Test Navigator 244

Testing the CSV Reader 246

The CSV Test Code 247
Test Data 252
Running the Tests 252

Testing and the Debugger 254

Adding a Test Class 256

Contents xv

Asynchronous Tests 260

Testing Asynchronous Code 260

Documentation of Last Resort 261

XCTest Assertions 261

Simple Tests 262

Equality 262

Exceptions 263

Summary 264

16 Measurement and Analysis 265

Speed 265

The Debug Navigator 266

Instruments 268

XCTest and Performance 276

Memory 277

Summary 278

17 An iOS Extension 279
Adding the Today Target 280

Designing the Widget 281

Data Access 282

A Shared Library in a Framework 285

The Today Extension 290

Build Dependencies 294

The Result 295

Summary 296

18 Provisioning 297

Apple Developer Programs 297

General (App Store) Program 298

Enterprise Program 298

Provisioning for iOS 299

What You’ll See 300

Registering Your App 300

Protecting Your Assets 303

Prerelease Distributions 304

xvi Contents

The Capabilities Editor 306

OS X-only Capability 306

Capabilities for Both iOS and OS X 306

iOS Capabilities 307

OS X Sandboxing 308

Why Sandbox? 310

Why Not Sandbox? 310

Gatekeeper and Developer ID 311

Getting a Developer ID 311

Using Developer ID 312

Limitations 313

Distribution Builds 314

Basic Build Settings 314

Adjusting the Build Settings 315

The Build 317

Summary 318

III Xcode for Mac OS X 319

19 Starting an OS X Application 321

The Goal 321

Getting Started 322

Model 325

Porting from iOS 326

Adding an Entity 326

Wiring a Menu 330

Target/Action 331

First Responder 332

Loading Data into LeagueDocument 333

Adapting to a Managed Document 334

Testing the Command 335

Identifying a Type for League Data 336

Specifying How the App Handles League Files 338

Application and Document Icons 339

Summary 341

Contents xvii

20 Bindings: Wiring an OS X Application 343

Storyboard Segues in OS X 343

Building the Document Window 345

Loading the Window 345

A Table View 347

Filling the Table— Bindings 350

Object Controllers 352

Binding the Table to the Teams 354

Binding the Columns to Team Properties 355

The Arc of League Document Data 357

From League Table to Source List 357

Capturing the Team Selection 359

From Team to Tables 361

The Passer Section 363

Summary 371

21 Localization 373
How Localization Works 373

Adding a Localization 374

Base Localization 374

Why Base Localization? 375

Something Worth Localizing 376

Game Detail View: Layout 376

Game Detail View: Code 378

Modules and Namespaces 382

Localizing for French 382

Adding a Locale 383

Starting Simple: Credits.rtf 385

Localizing Main.storyboard 389

Localizing Resources 392

Localizing Program Strings 394

genstrings 395

xliff Files 396

The Rest 397

Localizing System Strings 398

Summary 400

xviii Contents

22 Bundles and Packages 401

A Simple Package: RTFD 401

Bundles 403
Application Bundles 403

The Info.plist File 405

Localizing Info.plist 406

Info.plist Keys for Applications 406

Keys for Both iOS and OS X 406

Keys for OS X 409

Keys for iOS 412

Summary 415

23 Property Lists 417

Property List Data Types 417

Editing Property Lists 419

The Property List Editor 422

Why Not the Property List Editor? 427

Other Formats 429
Text Property Lists 429

Binary Property Lists 430

JSON 430
Specialized Property Lists 431

Summary 432

IV Xcode Tasks 433

24 Documentation in Xcode 435
Quick Help 435

Inspector 435

Popover 436

Open Quickly 437

Help 438

The Documentation Window 439
The Navigator Sidebar 439

The Table of Contents Sidebar 440
Class Info 440
Searching and Navigation 440

Contents xix

Keeping Current 444

Your Own Quick Help 446

C-Family Documentation 446

Doxygen 449

Running Doxygen 454

Installing a Docset 455

Swift and reStructuredText 456
Summary 458

25 The Xcode Build System 459

How Xcode Structures a Build 459
Build Variables 462
Settings Hierarchy 463

Levels 464
Editing Build Variables 465

Configurations 466

Adjusting Configurations 466

Configuration Files 468

Creating a Configuration File 468

SDK- and Architecture-Specific Settings 469

Preprocessing xcconfig Files 470

Command-Line Tools 471
xcodebuild 471
xcode-select 472
xcrun 473

Custom Build Rules 474
Builds in the Report Navigator 476

A Simple Build Transcript 476

Summary 487

26 Instruments 489
What Instruments Is 489
Running Instruments 490

The Trace Document Window 492
Toolbar 492
Track Area 494
Detail Area 495
Extended Detail Area 495
Library 499

xx Contents

Tracing 500

Recording 500

Saving and Reopening 503

Tracing without Instruments 504

The Instruments 504
Behavior 504
Core Data 505
Dispatch 505

Filesystem 505

Graphics 506

Input/Output 506

Master Tracks 506
Memory 506

System 507

System— iOS Energy Instruments 509

Threads/Locks 509

Trace 509
UI Automation 510
User Interface 510

Custom Instruments 511
The Templates 512

All Platforms 513
iOS Only 513

Mac Only 513

Summary 514

27 Debugging 515

Scheme Options 515

Info 515
Arguments 516

Options 516

Diagnostics 518

Doing More with Breakpoints 518

View Hierarchy 521

The lldb Command Line 523
Tips 525

Summary 528

Contents xxi

28 Snippets 531

Tricks 531
General 531
Code-Folding Ribbon 535

The Assistant Editor 536
Instruments and Debugging 538

Building 539

Traps 541

V Appendixes 547

A Some Build Variables 549
Useful Build Variables 550

Environment 551
Code Signing 552

Locations 553
Compiler Settings 556

Other Tools 559
Info.plist 559

Search Paths 561
The DEVELOPER Variables 561

Source Trees 562

B Resources 565
Books 565
Books about Swift 566
On the Net 567

Forums 567
Mailing Lists 568

Developer Technical Support 568

Sites and Blogs 569

Face to Face 570
Meetings 570

Classes 570
Other Software 570

Text Editors 571
Helpers 572

Package Managers 574

xxii Contents

Version Control 575
AppCode 576

Alternatives to Cocoa 576

Index 579

Acknowledgments

Only part of the effort that went into putting Xcode 6 Start to Finish into your hands was
spent at a text editor. I am indebted to those without whom this book could not have
been made. Many of them appear in the formal production credits; they deserve
better-than-formal thanks.

Trina MacDonald went through enormous pains to turn a new edition around quickly
in the face of the many changes in Xcode. This was not a sure thing; she made sure it
happened. Thank you.

Lori Hughes stepped in with skill and good humor to give us a head start in getting the
manuscript ready to go on a tight schedule. Julie Nahil, the production manager, stepped
in early to make this possible, in addition to her job-title work of turning the manuscript I
submitted into the book I’d hoped for.

Olivia Basegio made sure the contracts, correspondence, (and advance payments!) all
got through. She guided the reviewers through their work while the book was still in
unassembled pieces on the ground.

The reviewers, Chris Zahn, Gene Backlin, and Josh Day, saved me much
embarrassment, and made this a much better work than it started. Errors remain. Some are
intentional, some not; they are all my own.

Stephanie Geels, the copy editor, made the prosecution of typos, grammar, and which
instance of a particular word gets which typeface, more fun than you’d think. In fact, fun.

A full-time day job is not an author’s best friend (except for the part about paying the
rent). Alan Takaoka, my boss in the Web Services department of IT Services, The
University of Chicago, got me three- and four-day weekends while I wrote. I promised to
keep all my meetings and deadlines while I worked on the book, but somehow none of
them fell on a Monday or Friday. Cornelia Bailey, who manages most of my projects, kept
rescheduling them.

Bess and Kate bore more than daughters should of my doubts and frustrations, and were
simply confident that I would do fine—which was all they needed to do.

This page intentionally left blank

About the Author

Fritz Anderson has been writing software, books, and articles for Apple platforms since
1984. This is his fifth book.

He has worked for research and development firms, consulting practices, and freelance.
He was admitted to the Indiana bar, but thought better of it. He is now a senior iOS
developer for the Web Services department at The University of Chicago. He has two
daughters.

This page intentionally left blank

Introduction

Welcome to Xcode 6 Start to Finish! This book will show you how to use Apple’s
integrated development environment to make great products with the least effort.

Xcode 6 is the descendant of a family of development tools dating back more than 20
years to NeXT’s ProjectBuilder. It started as a text editor, a user-interface designer, and a
front end for Unix development tools. It has become a sophisticated system for building
applications and system software, with a multitude of features that leverage a
comprehensive indexing system and subtle incremental parser to help you assemble the
right code for your project, and get it right the first time.

That much power can be intimidating. My aim in Xcode 6 Start to Finish is to demystify
Xcode, giving you a gradual tour through examples that show you how it is used day to
day. Don’t let the gentle approach fool you: This book will lead you through the full,
best-practices workflow of development with Xcode 6. There are no “advanced topics”
here—I’ll show you version control and unit testing in their proper places in the
development process.

How This Book Is Organized
First, a word on my overall plan. This is a book about developer tools. If it teaches you
something about how to use the Cocoa frameworks, or something about programming,
that’s fine, but that’s incidental to showing you the Xcode workflow. There are many
excellent books and other resources for learning the frameworks; you’ll find many of them
listed in Appendix B, “Resources.”

Every tour needs a pathway, and every lesson needs a story. The first three parts of this
book demonstrate Xcode through three applications—a command-line tool, an iOS app,
and an OS X application—that calculate and display some statistics in American football.
None of the apps are very useful; the graphical apps run almost entirely on sample data.
But they demand enough of the development tools to give you a solid insight into how to
use them.

Xcode supports some technologies, like Core Data and OS X bindings, that are not for
beginners. Xcode 6 Start to Finish dives straight into those techniques, ignoring
conceptually simpler approaches, so I can demonstrate how Xcode works. Other
“advanced” techniques, like unit testing and version control, appear at the points where
best practices require them. This will be the workflow as Xcode supports it.

2 Introduction

I’m using applications for iOS and OS X as examples, but read both Parts II and III,
even if you’re only interested in one platform. The applications are only stories; the
techniques apply to both platforms.

First Steps
In Part I, I’ll take you from installing Xcode and running your first project through basic
debugging skills. You’ll work through a small command-line application. The application
may be simple, but you’ll learn foundational skills you’ll need before adding the
complexity of graphical apps.

m Chapter 1, Getting Xcode—Some things to consider before you download
Xcode 6; two ways to download and install it.

m Chapter 2, Kicking the Tires—Your first look at Xcode, setting up a trivial
project and running it.

m Chapter 3, Simple Workflow and Passive Debugging—Write, build, and run
a simple application, and respond to a crash.

m Chapter 4, Active Debugging—Take charge of debugging by setting breakpoints
and tracing through the program. I’ll show you how to organize your workspace.

m Chapter 5, Compilation—A pause to describe the process of building an
application.

m Chapter 6, Adding a Library Target—Add a library target to a project, and
learn how to build a product from multiple targets.

m Chapter 7, Version Control—Why source control is important, and how to take
advantage of Xcode’s built-in support for versioning through Git and Subversion.

The Life Cycle of an iOS Application
Part II tells the story of a small iPhone app, and how to use Apple’s developer tools to
build it. It introduces you to the graphical editor for user interfaces, and shows how to
profile an app to optimize its speed and memory burden.

m Chapter 8, Starting an iOS Application—You’ll start by creating an iOS
project, and learn the Model-View-Controller design at the core of Cocoa on iOS
and OS X alike.

m Chapter 9, An iOS Application: Model—Design a Core Data schema and
supplement it with your own code.

m Chapter 10, An iOS Application: Controller—Create a controller to link your
model to the on-screen views. On the way, I’ll tell you about refactoring, and
Xcode’s continual error-checking.

m Chapter 11, Building a New View—Design the user-interface views for your
app with the integrated Interface Builder, and take advantage of source-code
completion.

How This Book Is Organized 3

m Chapter 12, Auto Layout in a New View—In Xcode 6, Auto Layout is more
about getting things done than fighting the tools. Learn how to make Cocoa layout
do what you want.

m Chapter 13, Adding Table Cells—While adding an in-screen component to your
app, you’ll debug memory management, and control how Xcode builds, runs, and
tests your apps through the Scheme editor.

m Chapter 14, Adding an Editor—Add an editor view, and get deep into
Storyboard.

m Chapter 15, Unit Testing—Unit testing speeds development and makes your apps
more reliable. I’ll show you how Xcode supports it as a first-class part of the
development process.

m Chapter 16, Measurement and Analysis—Use Instruments to track down
performance and memory bugs.

m Chapter 17, An iOS Extension—Create a system-wide extension and a shared
library to bring your app’s value beyond its own screen.

m Chapter 18, Provisioning—Behind the scenes, the process of getting Apple’s
permission to put apps on devices is complicated and temperamental. I’ll show you
how Xcode saves you from most of the pain, and give you a few tips on how to get
out if it backs you into a corner.

Xcode for Mac OS X
Part III shifts focus to OS X development. Some concepts are more important to OS X
than iOS, but you’ll be learning techniques you can use regardless of your platform.

m Chapter 19, Starting an OS X Application—Carrying iOS components over to
OS X; what the responder chain is, and how Interface Builder makes it easy to take
advantage of it.

m Chapter 20, Bindings: Wiring an OS X Application—As you build a popover
window, you’ll use OS X bindings to simplify the link between your data and the
screen. You’ll also encounter autosizing, a legacy technique for laying out view
hierarchies.

m Chapter 21, Localization—How you can translate your Mac and iOS apps into
other languages.

m Chapter 22, Bundles and Packages—You’ll master the fundamental structure of
most Mac and iOS products, and how both platforms use the Info.plist file to
fit apps into the operating system.

m Chapter 23, Property Lists—Learn the basic JSON-like file type for storing data
in both OS X and iOS.

www.allitebooks.com

http://www.allitebooks.org

4 Introduction

Xcode Tasks
By this point in the book, you’ll have a foundation for digging into the details of the
Xcode toolset. Part IV moves on to topics that deserve a more concentrated treatment
than Parts II and III.

m Chapter 24, Documentation in Xcode—How Xcode gives you both immediate
help on API, and browsable details on the concepts of Cocoa development. Find out
how you can add your own documentation to the system.

m Chapter 25, The Xcode Build System—I’ll show you the fundamental rules and
tools behind how Xcode goes from source files to executable products.

m Chapter 26, Instruments—Using Apple’s timeline profiler, you can go beyond
basic performance and memory diagnostics to a comprehensive look at how your
program uses its resources.

m Chapter 27, Debugging—How to use breakpoint actions and conditions to
eliminate in-code diagnostics. You’ll also find a tutorial on the lldb debugger
command set, for even closer control over your code.

m Chapter 28, Snippets—A roundup of tips, traps, and features to help you get the
most from the developer tools.

Appendixes
The appendixes in Part V contain references to help you master the build system, and find
help and support.

m Appendix A, Some Build Variables—The most important configuration and
environment variables from Xcode’s build system.

m Appendix B, Resources—A compendium of books, tools, and Internet resources
to support your development efforts.

About Versions
This book was finished in the fall of 2014. Xcode 6 Start to Finish is written to early
versions of 10.10, iOS 8.2, and Xcode 6.2.

About the Code
Xcode 6 Start to Finish has many examples of executable code—it’s about a system for
creating code and running it. My goal is to teach workflow. What the code itself does is
practically incidental. In particular, be aware: Much of the code in this book will not
run as initially presented. Xcode 6 Start to Finish is about the development process, most
of which (it seems) entails prosecuting and fixing bugs. You can’t learn the workflow
unless you learn how to respond to bugs.

Conventions 5

So I’ll be giving you buggy code. You may find it painful to read, and if you try to run
it, it will be painful to run. Trust me: It’s for a reason.

Also, sample code for this book is available at informit.com/title/
9780134052779 (register your book to gain access to the code). You’ll find archives of
the projects in this book as they stand at the end of each chapter. With very few
exceptions—I’ll make them very clear—if you want the project as it stands at the start of a
chapter, you should use the archive for the end of the previous chapter.

The chapter archives do not include version-control metadata. If you are following
along with the examples, and using Git (or Subversion) for your work, copy the changes
into your own working directory. If you replace your directory with a sample directory,
you’ll lose your version history.

Conventions
This book observes a number of typographic and verbal conventions.

m Human-interface elements, such as menu items and button labels, are shown like
this.

m File names and programming constructs are shown like this. This will
sometimes get tricky as when I refer to the product of the “Hello World” project
(plain text, because it’s just a noun) as the file Hello World.

m Text that you type in will be shown like this.
m When I introduce a new term, I’ll call it out like this.

I’ll have you do some command-line work in the Terminal. Some of the content will
be wider than this page, so I’ll follow the convention of breaking input lines with
backslashes (\) at the ends. I’ll break long output lines simply by splitting them, and
indenting the continuations. When that output includes long file paths, I’ll replace
components with ellipses (. . .), leaving the significant parts.

For its first 20 years, the Macintosh had a one-button mouse. (Don’t laugh—most
purchasers didn’t know what a mouse was; try pushing the wrong button on an old Mac
mouse.) Now it has four ways to effect an alternate mouse click: You can use the right
button on an actual mouse (or the corner of the mouse where the right button would be);
you can hold down the Control key and make an ordinary click; you can hold down two
fingers while clicking on a multi-touch trackpad (increasingly common even on desktop
Macs); or you can tap at a designated corner of a multi-touch trackpad. And there are
more variations available through System Preferences. Unless the distinction really matters,
I’m simply going to call it a “right-click” and let you sort it out for yourself.

This page intentionally left blank

Part I
First Steps

Chapter 1 Getting Xcode

Chapter 2 Kicking the Tires

Chapter 3 Simple Workflow and Passive
Debugging

Chapter 4 Active Debugging

Chapter 5 Compilation

Chapter 6 Adding a Library Target

Chapter 7 Version Control

This page intentionally left blank

1
Getting Xcode

If you want to use Xcode, you must install it. Developer tools were bundled into OS X in
the early days, but now you must download it, drag the Xcode application into your
/Applications folder, and start it up.

Before You Begin
Before you do anything, be sure you can use Xcode 6. There are two considerations.

Developing for Earlier Operating Systems
When Apple brings out a new version of Xcode, it includes software development kits
(SDKs) for the latest version of iOS (8) and the versions of OS X that it can run on
(Mavericks 10.9 and Yosemite 10.10). In theory, that isn’t much of a constraint: You can
still target earlier OSes; the SDK does the right thing to adapt itself to the earlier versions.

However, there are some APIs that don’t make the cut. (An earlier, incompatible
version of libcrypto was dropped in OS X 10.6 after warnings more than a year in
advance.) The same with PowerPC development: If you need to do that, get a Mac that
can run 10.6 and use Xcode 3.2.6. I’ll explain how use the xcode-select tool to switch
your system between versions of Xcode in the “Command-Line Tools” section of
Chapter 25, “The Xcode Build System.”

Note
People have asked whether they can pluck SDKs from earlier Xcode installations and drop
them into Xcode 6. Ultimately it doesn’t work: The older SDKs rely on compilers and
runtime libraries that are not available in Xcode 6, and Xcode 6 assumes that its SDKs are
built to support the tools it does have. To quote an Apple Developer Tools engineer,
“Xcode receives zero testing in these unsupported configurations.”

Requirements
Apple is cagey about what the operating requirements are for Xcode, and that’s
understandable, because it depends on your usage and preferences.

10 Chapter 1 Getting Xcode

m Xcode 6 runs on OS X Mavericks (10.9) and Yosemite (10.10).
m The download will be about 2 GB.
m How much disk space the installed Xcode takes up depends on what documentation

sets and supplementary tools you download. A fresh installation is about 6.5 GB;
9 GB is not uncommon with options.

m Xcode 6 can be run in 2 GB of memory, but don’t expect to do much more than
look at it. For the examples in this book, 4 GB should be enough, but for
medium-sized projects, my rule of thumb is that you’ll need about 3 GB, plus
another 750 MB for each processor core in your machine. Get more RAM if you
can; I don’t know anybody who has reached the point of diminishing returns.

m Xcode is a 64-bit Intel application. The minima for this book are 64-bit, dual-core,
and 1.2 GHz. More is better.

m Bigger—particularly, wider—displays are better. I’m writing on a MacBook Air
with 1,440 points’ horizontal resolution. With the display-management techniques
I’ll show you, it’s comfortable most of the time. And with my 15'' Retina MacBook
Pro set to show the maximum content, I have no complaints.

The bottom-of-the-line Mac mini on sale as I write this ($599 in the U.S., plus display,
keyboard, and mouse) is fine for the purposes of Xcode 6 Start to Finish, as are most Macs
sold since 2010.

Note
Xcode 6 Start to Finish was written using Xcode up through version 6.2 on a Mac running
OS X 10.10 Yosemite, with allowances for Swift 1.2. If you’re using Mavericks, be aware
that the appearance of the windows won’t match what you see in the illustrations, and
some exercises—Mac storyboards in particular—will not be possible without Yosemite.

Installing Xcode
For most purposes, obtaining Xcode 6 is very easy: Find it in the Mac App Store (MAS),
enter your Apple ID and password, and download it. It’s free. See “Downloading Xcode,”
later in this chapter, for another option, and why you might need it.

Once the download is complete, Xcode will be in your /Applications folder.

Note
Want to see everything you got? Right-click the Xcode icon in /Applications, and
select Show Package Contents. You’ll see the directories and files behind the pseudo-file
representing Xcode. Poke around all you like, but don’t make any changes.

There’s no step three. There are no installation options—there’s no installer. In earlier
versions, developer tools were put in a /Developer directory at the root of the boot
volume (or the one you selected in the installer). No more: All the tools you need for
basic iOS and Mac development are contained in Xcode itself.

Removing Xcode 11

Most of the documentation isn’t installed. Xcode will download it the first time you
run it. It’s not practical to bundle it into the Xcode download: It runs hundreds of
megabytes, it changes more frequently than the developer tools, and you may not want it
all. The Downloads panel of the Preferences window controls the downloads.

One advantage of MAS distribution is that once the App Store application knows it has
installed Xcode, it can alert you to updates. When you accept an update, the App Store
sends only the components that changed, greatly reducing the download time. Downloads
smaller than 100 MB are not unknown.

Command-Line Tools
As installed, Mavericks and Yosemite contain executable files in /usr/bin that have the
names of common development tools—make, gcc, clang, and so on. Open-source
projects that must be built before being installed expect to find those tools in that directory.
But they aren’t the actual programs that go by those names. They are trampolines; when
you run them, they hand off to the real programs elsewhere in the system:

m To the tools embedded in the Xcode application package, if Xcode is present.
m To the tools in /Library/Developer, if present. This is where the contents of the

optional command-line tools package go.
m If none can be found, the trampoline program will offer to download and install the

command-line tools package. You can also do this by executing sudo
xcode-select --install.

In any case, the executable files in /usr/bin will always be trampolines.
So if you’re running Xcode 6, you don’t need a separate package of developer tools.

The system will act as though they were there already—and your Xcode and
command-line builds will use the same tools, which should make most developers a lot
less nervous.

If you don’t want Xcode 6, don’t install it. Run one of the tools, or go to
http://developer.apple.com/downloads and grab an installer; be sure to get the
version that goes with your version of OS X.

Removing Xcode
Your life has changed. The honeymoon is over. You’ve had your look, and you’re done.
You’ve decided to edit a theatrical feature and you need the space. You’re giving your Mac
to your daughter in art school. For whatever reason, you’re done with Xcode. How do
you get rid of it?

In the early days of Xcode, this involved uninstall scripts and directory deletions. Now,
you just drag the Xcode application into the Trash, and you’re done. Almost.

The reason uninstallation was so complicated in earlier Xcodes was that you had to get
rid of the tools, libraries, headers, and frameworks that Xcode would infiltrate throughout
the system. The scripts ran down the inventory and rooted out each item.

http://developer.apple.com/downloads

12 Chapter 1 Getting Xcode

But remember what I said earlier about the command-line tools: The tools and other
files are all inside Xcode. Everything else out in the system is a trampoline to those files.
Throw away Xcode, and you’ll have gotten rid of what previously had been infiltrations. . .

. . . unless you installed the stand-alone Command Line Developer Tools package. You
can find those in /Library/Developer/ along with some large documentation
libraries. Delete that directory. Do the same with ˜/Library/Developer/.

Apple Developer Programs
Anyone can pick up Xcode 6 for free and start developing OS X and iOS software. If your
interest is in distributing Mac software on your own, your preparation is done: Build your
apps, put them on the Net, and God bless you.

However, if you want to distribute your work on the Mac or iOS App Store; assure
users with Gatekeeper that your Mac apps are safe; or even test your iOS app on a device,
you have to go further. You’ll need to pay for a membership in the Mac or iOS Developer
Program. (If you need to, you can join both.)

Apple’s policies and methods for joining developer programs are subject to change, so
the best I can do for you is to give an overview. Start by browsing to
http://developer.apple.com/. Prominently featured will be links to join the iOS
and Mac developer programs. The programs will give you:

m Access to prerelease software, including operating systems and developer tools.
m Access to the parts of the developer forums (http://devforums.apple.com/)

that cover nondisclosed topics.
m Two incidents with Developer Technical Support (DTS), Apple engineers who can

advise you on development strategies and help you with troubleshooting. This is the
only official, guaranteed way to get help from Apple. If you have the time, by all
means go to a developer forum or mailing list first (you’ll find lots of leads in
Appendix B, “Resources”), but if that fails, DTS is the best choice.

m The right to submit your applications for sale in the Mac or iOS App Store.
m In the case of iOS, the right to load your app into a device for debugging purposes

(see Chapter 18, “Provisioning,” for details).
m In the case of OS X, a Developer ID certificate that enables users who use

Gatekeeper to install your app.

Make your choice (whichever you choose, you’ll be offered both programs), and you
will be taken to a page with an Enroll Now button, citing the cost of a year’s membership
($99 in the United States as I write this).

The next step is to establish your status as a “registered Apple developer.” Registered
developers have few privileges beyond having a persistent record with Apple that can be
used to sign up for developer programs. (There are a limited number of resources to which
your assent to terms and conditions entitles you, such as access to the released-product
sections of the developer forums.) If you’re already registered, say so, and skip to the

http://developer.apple.com/
http://devforums.apple.com/

Downloading Xcode 13

signup process. If you’re not, present your Apple ID (such as you might be using with
iTunes) or get one, fill out marketing and demographic questionnaires, and assent to the
terms and conditions of Apple programs. They’ll send you an email you can use to verify
your contact information.

Once that’s done, you’re given your choice of programs. Select all you are interested in
and can afford; the iOS and Mac programs incur separate charges, and there’s no discount.
There’s also a free Safari program, which allows you to develop and sign extensions for the
desktop Safari web browser.

Next you’ll have program-specific licenses to agree to. When that’s done, you’re a
member.

Downloading Xcode
The App Store download is convenient, but it’s not for everybody. New versions of
Xcode—even point releases—may drop features on which you may have relied. Xcode
supports keeping more than one copy of the application on your computer, but the App
Store doesn’t. When you accept an update from the App Store, it seeks out older versions,
wherever they may be, and deletes them. You’ll have to take control of the process
yourself.

Note
See Chapter 25, “The Xcode Build System,” for the xcode-select and xcrun
command-line tools that support using multiple versions of Xcode.

If you’re a developer program member (even a member of the free program), you have
access to http://developer.apple.com/downloads. Use the checkboxes to narrow
the listing to developer tools. You will find every Xcode toolset going back to 1.0 (a
584-MB CD image for OS X 10.3). The currently released version of Xcode will be near
the top. Download it.

If you want a version that Apple has not put out as a public beta, you’ll have to go to
either the iOS or OS X developer center, log in with your paid developer-program
credentials, select the prerelease section, and receive a Mac App Store redemption code.
This will get you the first prerelease version of Xcode, which the Mac App Store
application will update.

You’ll end up with a compressed disk-image (.dmg) file. Double-click it to reveal the
Xcode application. Drag it into /Applications, or wherever you like. If you want to
preserve an earlier version, rename that copy first.

Updates carry two penalties compared to the MAS method: You’ll have to keep track
of their availability yourself, and you’ll have to download the whole toolset again. No
incremental updates for you.

Warning
Apple’s official position is that Xcode 6 is the only version it will support on Yosemite.
Historically, Apple has been very conservative with the word “support” as it applies to

http://developer.apple.com/downloads

14 Chapter 1 Getting Xcode

previous versions of developer tools on newer operating systems. My interpretation is that
Developer Tools has enough on its hands building a major version of Xcode without
exhaustively testing and revising the version they were making obsolete. Maybe it works,
maybe it doesn’t, but Apple isn’t going to stand behind it.

Additional Downloads
Download files for early versions of Xcode topped out at 3 GB. The Xcode 4.3 image was
just over half that size, 1.8 GB.

One way Apple keeps download sizes down is to provide only stubs for OS X and iOS
documentation. The first time you run Xcode, it triggers a download of the full
documentation sets. This annoys people who want 100 percent functionality after
installing Xcode aboard airplanes, but there’s really no alternative: Not everybody needs
every documentation set. Further, Apple updates its documentation much more often than
it updates Xcode, so even if the download included full documentation, you’d have to pull
in the current docs anyway.

Another trick for reducing download size is to recognize that not everybody needs
every development tool. Apple has broken seven toolsets out into downloadable archives.
Not only does this keep these files out of the main download, it allows Apple to free them
from the release cycle of Xcode itself.

Here are the available packages as I write this:

m Accessibility—Tools for auditing and testing accessibility support of your Mac
applications.

m Audio—Applications for examining Core Audio units, plus headers and sample
code.

m Auxiliary—Help Indexer (create Mac application help books), Repeat After Me
(refine your text-to-speech translations), and tools for creating new dictionaries for
the Mac Dictionary application.

m Command-line tools—Commands you can use from the Terminal application for
classic-style development; this is how you’d get the tools without needing Xcode
even to install them.

m Dashcode—Apple’s visual editor for HTML5/CSS/JavaScript to be used as OS X
Dashboard widgets, and for iOS-like web applications.

m Hardware IO—Probes for USB and Bluetooth, as well as the Network Link
Conditioner, which allows you to degrade network performance and reliability to
simulate mobile connectivity in the iOS Simulator.

m Graphics—OpenGL development tools, and the Quartz Composer builder for
chains of image and video filters.

If you want one of the supplemental toolsets, open Xcode and select Xcode→Open
Developer Tool→More Developer Tools. . . . Your default browser will be directed

Summary 15

to the developer downloads site, with the search string set to for Xcode -, which will
show you what’s available.

When you find what you need, click the disclosure triangle to show a description of
the package and a link to download it. You’ll be asked to read and accept the general
license for Apple’s developer tools. Agree, and the download will start.

What you’ll get is a .dmg disk image containing applications and installers. Drag the
apps into /Applications, or wherever else you find convenient—they will not appear
under the Xcode menu.

In addition to the specialized toolsets, there are other components like device-
debugging software and simulators for back versions of iOS. Use the Preferences window,
Downloads panel, Components section to download and install them if you need them.

Summary
Apple has tried to strike a balance between making Xcode easily available to everybody,
and providing choices about what and how much to install. The free installation from the
Mac App Store will get you everything you need to get started with iOS and OS X
development. If your needs are more specialized—if you need older versions, or
customized toolsets—the developer downloads site has it all.

This page intentionally left blank

2
Kicking the Tires

Now you have Xcode. It’s time to start it up and see what it looks like.

Starting Xcode
You’ll find Xcode in the /Applications directory, just like any application. You’ll be
using it constantly, so you’ll want to keep it in the Dock at the bottom of your main
screen. Drag Xcode to the Dock—take care to drop it between icons, and not on one.

Now click the Xcode icon. It bounces to show Xcode is being launched. It will bounce
for a very, very long time. And then it will stop bouncing, and nothing will happen.

The first time any OS X application is launched, the system examines the application
bundle to verify that it matches its cryptographic signature. A typical application has as
many as 2,000 files to check, imposing a delay that is noticeable if you pay attention.

Xcode 6 has some 188,000 files. OS X must validate all of them. This takes minutes.
Apple now displays progress bars for lengthy verifications, which at least assures you that
something is happening. Eventually, Xcode is ready for business.

The first time you run any of Apple’s developer tools—even through the command
line—you’ll be asked to read and accept a license agreement for the tools and SDKs. It’s no
different from any other click-through license process.

Next, Xcode will ask you for permission to install the “additional components” it
needs. Permit it, and present an administrator’s credentials. Those components overlap the
iTunes frameworks, so you may be asked to close iTunes.

Once the progress window clears, you are greeted with the “Welcome to Xcode”
window (see Figure 2.1).

If this is the first time you’ve ever run Xcode, the table on the right will be empty
(“No Recent Projects”); as you accumulate projects, the table will contain references to
them, so you have a quick way to get back to your work. When you accumulate projects
in this list, you’ll be able to select one, but Xcode doesn’t reveal any way to open it. The
trick is to double-click the item, or press the Return key.

18 Chapter 2 Kicking the Tires

Figure 2.1 When you launch Xcode, it displays a “Welcome” window with options for creating a
new project, reopening a recent one, or fetching a project from a source-control repository.

You have four other options:
m Get started with a playground. A playground is a file that accepts code in the

Swift programming language, and interprets it interactively—it’s not just a
type-and-print console. A playground displays all the results of your code in real
time: The results of your code appear instantly, and any changes you make will be
reflected in the whole file.

m Create a new Xcode project. This is obvious enough; it’s how you’d start work
on a new product. You’re about to do this, but hold off for the moment. You could
also select File→New→Project. . . (N).

m Check out an existing project. Xcode recognizes that source control
management is essential to even the most trivial of projects. Your development effort
might start not with your own work, but with collaborative work pulled in from a
source repository. Use this link to get started.

m Open another project. . . (at the bottom of the “recents” list). This will get you
the standard get-file dialog so you can select any Xcode project file you want. You
can do the same thing with the File→Open. . . (O) command.

If you need to get back to the Welcome window, select Window→Welcome to
Xcode (1). If you’re tired of seeing this window, uncheck Show this window when
Xcode launches. (The checkbox appears only when your mouse pointer is over the
window.)

Note
“Show this window when Xcode launches” is not quite accurate. If you had a project open
when you last quit Xcode, it will reopen when you start it up again, and the Welcome
window won’t appear.

Hello World 19

Hello World
Just to get oriented, I’m going to start with the simplest imaginable example project—so
simple, you won’t have to do much coding at all.

A New Project
Click the Create a new Xcode project link. Xcode opens an empty Workspace
window, and drops the New Project assistant sheet in front of it (see Figure 2.2). Select
OS X→Application from the list at left, and then the Command Line Tool template
from the icons that appear at right. Click Next.

The next panel (Figure 2.3) asks for the name of the project and the kind of
command-line tool you want.

1. Type Hello World in the Product Name field. This will be used as the name of
the project and its principal product.

2. Xcode should have filled in the Organization Name for you, from your “me”
card in Contacts. If you listed a company for yourself, that’s what will be in the field;
otherwise, it’s your personal name. Xcode will use this as the name of the copyright
holder for all new files.

3. Virtually all executable objects in the OS X and iOS world have reverse-DNS-style
identifiers that are used to uniquely identify them. The Organization Identifier is
the leading portion of those reverse-DNS names, to be used by every product of this
project. For this example, I used com.wt9t.

4. By default, Xcode infers the unique Bundle Identifier from the organization
identifier and the name of the product. You’ll see later how to change this if you
have to.

Figure 2.2 The New Project assistant leads you through the creation of an Xcode project. First,
you specify the kind of product you want to produce.

20 Chapter 2 Kicking the Tires

Figure 2.3 The Options panel of the New Project assistant lets you identify the product and what
support it needs from system libraries.

5. The Language popup prompts Xcode on how to fill in the system libraries the tool
will use. This is just a plain old C program, with no need for C++ or Apple-specific
support, so choose C.

Click Next; a put-file sheet appears, so you can select a directory to put the project
into. For this example, select your Desktop. One more thing—uncheck the box labeled
Create Git repository on. . . . Source control (Chapter 7, “Version Control”) is a Good
Thing, but let’s not deal with it in this trivial example. Click Create.

If you look on your Desktop, you’ll find that Xcode has created a folder named Hello
World. The project name you specified is used in several places.

m It’s the name of the project directory that contains your project files.
m It’s the name of the project document (Hello World.xcodeproj) itself.
m It’s the name of the product—in this case a command-line tool named Hello
World.

m It’s the name of the target that builds the product. I’ll get into the concept of a target
later; for now, think of it as the set of files that go into a product, and a specification
of how it is built.

m It’s the name of the target’s directory inside the project’s directory.

When you’ve made your choices, Xcode unmasks the workspace for the Hello World
project (Figure 2.4). Don’t look at it too closely just yet. Xcode starts you off with a view
of the settings that control how Hello World is to be built. This is useful information,
but for now, it’s just details.

Hello World 21

Figure 2.4 Once set up, the Hello World project window fills in with a list of source files and a
display of the options that control how the application will be built.

More interesting is the program code itself. The left column of the window is called
the Navigator area. Find main.c in the list, and click it (see Figure 2.5). The Editor area,
which fills most of the window, now displays the contents of main.c. This is the code for
the canonical simplest-possible program, known as “Hello, World.”

The Navigator area displays many different things in the course of development—it’s
not just a file listing. It can display analyses, searches, and build logs. Which list you see
often depends on what Xcode wants to show you; you can make the choice yourself by
clicking the tiny icons in the bar at the top of the Navigator area. Hovering the mouse
pointer over them will show you the names of the various views.

As this book goes on, you’ll meet all of them. For now, you care only about the
“Project” navigator, the file list Xcode starts you out with. Feel free to click the other

Figure 2.5 Clicking the name of an editable file in the Project navigator displays its contents in
the Editor area.

22 Chapter 2 Kicking the Tires

icons, but to keep up with this example, be sure to return to the Project navigator, as
shown in Figure 2.5.

Quieting Xcode Down
But first.

Xcode is a toolset that contains everything its creators could think of to provide a
powerful, helpful environment for writing iOS and OS X applications. Often, you barely
need to begin a task, and Xcode will offer to finish it for you. It will usually be right. I use
these features all the time. I recommend them.

You’re going to turn them all off.
Automatic completions and indentations and code decorations and code fixes are great,

once you know what’s going on, but an automaton that snatches your work out of your
hands, however helpfully, is straight out of The Sorcerer’s Apprentice. Better to start with
what you want to do; once you’re confident of what that is, then you have the discretion
and control to direct Xcode as it helps you.

So you’re going to damp Xcode down a bit. You’ll do all of this in Xcode’s Preferences
window, which you can summon with Xcode→Preferences. . . (comma). The
Preferences window is divided into panels, which you select with the icons at the top of
the window.

To start, make sure the General panel is visible. Under Issues, uncheck Show live
issues.

Next, select the Text Editing panel, which has two tabs. Select the Editing tab, and
uncheck Show: Code folding ribbon, and all the options under Code completion:.

In the Indentation tab, turn off Line wrapping: Wrap lines to editor width and
the Syntax-aware indenting section.

Now Xcode will mostly stay out of your way as you explore.

Building and Running
The program in main.c would run as is, but we have to trick Xcode into keeping its
output on the screen long enough to see it. Add a few lines after the printf call so it
looks like this:

int main(int argc, const char * argv[])
{

// insert code here...
printf("Hello, World!\n");

/**
* Pause, so the console doesn't disappear

**/
char dummy[128];
fgets(dummy, sizeof(dummy), stdin);

Hello World 23

return 0;
}

Now we can run it. Select Product→Run (R).
A heads-up window (“bezel”) appears almost instantly, to tell you “Build Succeeded.”

(If Xcode is in the background, a notification banner will appear saying the build
succeeded, and identifying the project and product involved.)

So. What happened?
Hello World is a console application; it just writes out some text without putting up

any windows. Xcode captures the console of the apps it runs in the Debug area, which
popped into view when you ran the program (Figure 2.6). The Debug area includes a
console view on the right. It says Hello, World! (Figure 2.7).

Click in the console to make it ready for text input, and press the Return key. Hello
World exits, and the Debug area closes.

Note
If the Debug area didn’t hide itself as soon as an application terminated, we wouldn’t have
had to add that fgets() call. That’s easy to change; see the “Behaviors” section of
Chapter 4, “Active Debugging.”

Figure 2.6 The View selector in the toolbar shows and hides the Navigator, Debug, and Utility
areas (left to right) of the project window. Clicking a button so it is highlighted exposes the

corresponding area. Here, the Navigator and Debug areas are selected.

Figure 2.7 Opening the Debug area after running Hello World shows the eponymous output.

www.allitebooks.com

http://www.allitebooks.org

24 Chapter 2 Kicking the Tires

The Real Thing
What Xcode just produced for you is a real, executable application, not a simulation. To
prove it, open the Terminal application (you’ll find it at /Applications/Utilities/
Terminal, and you’d be well advised to add Terminal to your Dock). In Xcode, find the
Hello World product in the Project navigator by clicking the disclosure triangle next to
the Products folder icon. Drag the Hello World icon into the Terminal window, switch
to Terminal, and press the Return key. (The path to a file deep in a directory for build
products is remarkably long, but Terminal takes care of the necessary escaping.) “Hello,
World!” appears.

If you want access to the executable file itself, select it in the Project navigator, then
File→Show in Finder—also available in the contextual menu you get by right-clicking
the Hello World icon. A window will open in the Finder showing you the file.

You’re done! You can close the Workspace window (File→Close Project, W) or
quit Xcode entirely (Xcode→Quit Xcode, Q).

Getting Rid of It
There is nothing magical about an Xcode project. It’s just a directory on your hard drive.
If you don’t want it any more, close the project, select its enclosing folder in the Finder,
and drag it to the Trash. It’s gone. It won’t even show up in the Recents list in the
Welcome to Xcode window, or in the File→Open Recent menu.

That’s it.
Okay, yes, the build products of the project will still stick around in a warren of

directories inside ˜/Library/Developer/Xcode/DerivedData. They aren’t many or
large in this case, but there’s a principle involved.

If you want them gone, the best way is to close the project window, open the
Organizer window (Window→Organizer), select the Projects panel, select the “Hello
World” project, press Delete, and confirm the deletion in the ensuing alert sheet. All trace
of the build products is gone.

Summary
In this chapter, you had your first look at Xcode, and you discovered that it doesn’t bite.
You saw how to create a simple project, one you didn’t even have to edit. You saw what
happens when you run a project in Xcode, how to close a project and quit Xcode, and at
last how to get rid of the project entirely.

Next, we’ll start doing some real work.

3
Simple Workflow and

Passive Debugging

This chapter begins your use of Xcode in earnest. Here’s where I introduce the problem
that is the basis for all of the example code in this book.

The problem is the calculation of passer ratings. In American/Canadian football,
quarterbacks advance the ball by throwing (passing) it to other players. The ball may be
caught (received, a good thing) by someone on the quarterback’s own team, in which case
the ball is advanced (yardage, more is better), possibly to beyond the goal line (a
touchdown, the object of the game); or it may be caught by a member of the opposing
team (intercepted, a very bad thing).

But those are four numbers, and everybody wants a figure-of-merit, a single scale that
says (accurately or not) who is the better passer. The National Football League and the
Canadian Football League have a formula for passer ratings, yielding a scale running from
0 to (oddly) 158.3. A quarterback who rates 100 has had a pretty good day.

Creating the Project
As in Chapter 2, “Kicking the Tires,” you’ll start with a command-line project. Start
Xcode and click Create a new Xcode project, or select File→New→Project. . .
(N). In the New Project assistant sheet, select an OS X Command Line Tool, and
name the tool passer-rating; for Language, once again choose C.

Another difference: When you are shown the get-file sheet to select the location for
the new project, check the box labeled Create Git repository on, and select My Mac.
Git is a version-control system, an essential part of modern development. You’ll learn all
about it in Chapter 7, “Version Control,” but now is the time to start.

Note
Are you ever going to change anything in a project? Get it under version control. Seriously.
Your work will be safer, and you’ll do it faster.

26 Chapter 3 Simple Workflow and Passive Debugging

Again, you’ll be shown target settings, which you can ignore for now. Instead, mouse
over to the Project navigator at the left side of the Workspace window, and select main.c.

Delete everything in the main() function but its outer braces, and replace the body of
the function so the file reads thus (keep the comments at the top of the file):

#include <stdio.h>
#include "rating.h" // Yet to create; initially an error

int main(int argc, const char * argv[])
{

int nArgs;
do {

int comps, atts, yards, TDs;
printf("comps, atts, yards, TDs: ");
nArgs = scanf("%d %d %d %d %d",

&comps, &atts, &yards, &TDs);
if (nArgs == 5) {

float rating = passer_rating(comps, atts, yards, TDs);
printf("Rating = %.1f\n", rating);

}
} while (nArgs == 5);

return 0;
}

You’ll notice that as you type closing parentheses, brackets, and braces, the corresponding
opening character is briefly highlighted in yellow.

The rating calculation itself is simple. Put it into a file of its own: Select File→New
→File. . . (N). You’ll be presented with the New File assistant sheet; see Figure 3.1.
Navigate the source list on the left, and the icon array on the right thus: OS X→ Source
→ C File.

Click Next, and use the save-file sheet that appears to name the file rating (Xcode
will append .c automatically).

The save-file sheet has two custom controls. The Group popup lets you place the new
file in the Project navigator (the source list at the left of the project window). Roughly,
groups are simply ways to organize the Project inspector list; they have no influence on
how the new file will be placed on-disk. Make sure the passer-rating group is selected.

Second is Targets, a table that for now has only one row, passer-rating. A target is a
group of files and settings that combine to build a product. A file that isn’t part of a target
isn’t used to build anything. Make sure that passer-rating is checked.

Note
It’s easy to get the target assignment wrong. Xcode 6 sets the same targets for new files
as the ones for the last files that were added. If you forget to set the proper targets, you
won’t know about it until your app fails to build or mysteriously crashes because a needed
resource wasn’t included.

Creating the Project 27

Figure 3.1 The New File assistant sheet offers many templates you can use to start a new file.
Select the category from the source list on the left, and pick the template from the array of icons on

the right.

Here’s what goes into rating.c:

#include "rating.h"

static
double pinPassingComponent(double component)
{

if (component < 0.0)
return 0.0;

else if (component > 2.375)
return 2.375;

else
return component;

}

float
passer_rating(int comps, int atts, int yds, int tds, int ints)
{

// See http://en.wikipedia.org/wiki/Quarterback_Rating

double completionComponent =
(((double) comps / atts) * 100.0 - 30.0) / 20.0;

completionComponent = pinPassingComponent(completionComponent);

28 Chapter 3 Simple Workflow and Passive Debugging

double yardageComponent =
(((double) yds / atts) - 0.3) / 4.0;
// intentional bug

yardageComponent = pinPassingComponent(yardageComponent);

double touchdownComponent =
20.0 * (double) tds / atts;

touchdownComponent = pinPassingComponent(touchdownComponent);

double pickComponent =
2.375 - (25.0 * (double) ints / atts);

pickComponent = pinPassingComponent(pickComponent);

double retval = 100.0 * (completionComponent +
yardageComponent +
touchdownComponent +
pickComponent) / 6.0;

return retval;
}

Note
You see a few bugs in this code. Well done. Throughout this book, I’m going to give you
some buggy code to illustrate debugging techniques. Just play along, okay?

By now, you’ve missed a couple of braces, and you are tired of tabbing to get the extra
level of indenting. Xcode can do this for you—it’s among the features I had you turn off in
the last chapter.

Open the Preferences window (Xcode→Preferences, comma) and select the
Text Editing panel. In the Editing tab, check Code completion: Automatically
insert closing “}”. In the Indentation tab, check Syntax-aware indenting:
Automatically indent based on syntax.

Now type an open brace in your code, at the end of a line. So what, it’s a brace. Now
press Return. Xcode adds two lines: Your cursor is now at the next line, indented one
level, and a matching closing brace appears on the line after that.

Finally, you’ve noticed that both main.c and rating.c refer to a rating.h, which
notifies main() of the existence of the passer rating function. Press N again, and
choose Header File from the source files. Name it rating, and put this into it:

#ifndef passer_rating_rating_h
#define passer_rating_rating_h

float passer_rating(int comps, int atts, int yds,
int tds, int ints);

#endif

Building 29

Note
Place header files wherever you like among the project groups, but don’t add them to any
targets. There are exceptions; if you need to do it, you’ll know. Chapter 6, “Adding a
Library Target,” has more.

Click Create.

Building
That’s enough to start. Let’s try to run it. It’s easy: Click the Run button at the left end of
the toolbar, or select Product→Run (R). It doesn’t matter if you haven’t saved your
work; by default Xcode saves everything before it attempts a build. Xcode chugs away at
your code for a bit. . . and stops.

m A heads-up placard flashes, saying “Build Failed.”
m The Navigator area switches to the Issue navigator, which shows two items under
main.c. (If the Issue navigator doesn’t appear, click the fourth tab at the top of the
Navigator area.) One is tagged with a yellow triangle (a warning), and the other with
a red octagon (an error). These include descriptions of the errors (Figure 3.2, top).

m When you click one of the items, the editor highlights two lines in main.c. The
line that triggered the warning is tagged in yellow, with a banner describing the
warning; the error line is in red, with a banner of its own (Figure 3.2, bottom).

It seems the only place where I remembered about interceptions was the format string
of the scanf call. The compiler was smart enough to match the number of format
specifiers to the number of arguments of the scanf and complain. Similarly, I left off the
last parameter to passer rating, which is an outright error.

Note
For a compiler, an error is a flaw in your source that makes it impossible to translate your
code into executable form. The presence of even one error prevents Xcode from producing
a program. A warning indicates something in your source that can be translated but will
probably result in a bug or a crash when you run it. Experienced developers do not tolerate
warnings; there is even a compiler option to make a build fail upon a warning just as
though it were an error. Don’t ever ignore a warning.

Note
Need a reminder of what passer rating does with its parameters? Try this: While main
is visible in the Editor area, hold down the Command key and point the mouse at the
symbol passer rating. You’ll see it turns blue and acquires an underline, as if it were a
link on a standard web page. Click it: The editor jumps to the declaration of
passer rating. You can jump back by clicking the back-arrow button in the upper-left
corner of the editor; by pressing

<

←; or by swiping right across the editor area with two
fingers, if you’ve enabled the gesture in System Preferences. (Option-clicking the name

30 Chapter 3 Simple Workflow and Passive Debugging

Figure 3.2 (top) When Xcode detects build errors, it opens the Issue navigator to display them.
(bottom) Clicking an issue focuses the editor on the file and line at which the issue was detected.

gets you a popover that tells you passer rating was declared in rating.h. More on
this in Chapter 24, “Documentation in Xcode.”)

You can dash off a fix very quickly:

do {
int comps, atts, yards, TDs, INTs;
printf("comps, atts, yards, TDs, INTs: ");
nArgs = scanf("%d %d %d %d %d",

&comps, &atts, &yards, &TDs, INTs);
if (nArgs == 5) {

float rating = passer_rating(comps, atts, yards,
TDs, INTs);

printf("Rating = %.1f\n", rating);
}

} while (nArgs == 5);

To be conservative (I don’t want Xcode to run the program if a warning remains),
Product→Build (B) will compile and link passer-rating without running it. You
needn’t have worried: It compiles without error, displaying a “Build Succeeded” placard.

Note
The Issues navigator will show a warning or two. Let’s play dumb and carry on.

Running
Now you have something runnable. Run it (Run button, first in the toolbar; or R).

Running 31

There is a transformation: The Debug area appears at the bottom of the window; and
the View control in the toolbar highlights its middle button to match the appearance of
the Debug area (Figure 3.3).

The right half of the Debug area is a console that you’ll be using to communicate with
the passer-rating tool. If all has gone well, it should be showing something like this:

comps, atts, yards, TDs, INTs:

. . . which is just what the printf() was supposed to do. passer-rating is waiting for
input, so click in the console pane and type:

10 20 85 1 0 <return>

Something went wrong. passer-rating crashed. lldb, the debugging engine, takes
control, and the debugging displays fill up.

m In the Navigator area, the Debug navigator appears, showing the status of the
program when it crashed. The upper part of the navigator contains performance bar
charts that will be useful when you get to more complex projects. Ignore them for
the moment.
What’s left is a stack trace, showing the chain of function calls that led to the crash.
The top line, labeled 0, is the name of the function, svfscanf l, where the crash
occurred; if you click it, you can see the assembly code (the source isn’t available)
focused on the very instruction that went wrong. The next line is scanf, which
you recognize as the function you called from main, the function on the next line.
Xcode identifies main as your work by flagging it with a blue head-and-shoulders
icon. Click that line to see what your code was doing when the crash occurred.

Figure 3.3 Running an app in Xcode opens the Debug area (at the bottom of the project window).

32 Chapter 3 Simple Workflow and Passive Debugging

m In the Debug area at the bottom of the window, the left-hand pane fills with the
names of variables and their values. You see, for instance, “atts = (int) 20,” which is
just what you entered. Chapter 4, “Active Debugging,” discusses this more.

m The Editor area has the most interesting change: A green flag at the left margin and
a green banner at the right of the call to scanf. The banner says, “Thread 1:
EXC BAD ACCESS (code=1, address=0x0).” The message may be truncated; you can
see the full text in a tooltip that appears if you hover the mouse cursor over the
banner.

Note
Xcode has a lot of these banners; often they are the only way it will convey important
messages. You will probably set your editor fonts to the smallest you can comfortably read
so you can see more of your work at once. The banners are one line high, and their
margins take up some space, so the text in them may be smaller than you can comfortably
read. The only solution is to select larger fonts for everyday use; see the Fonts & Colors
panel of the Preferences window.

Simple Debugging
EXC BAD ACCESS entails the use of a bad pointer, perhaps one pointing into memory that
isn’t legal for you to read or write to. (The 64-bit virtual-memory management on OS X
and modern iOS is set so any address that might be derived from a 32-bit integer is illegal,
making it harder to cross ints and pointers.) Reexamine the line in main that crashed the
application and allow a scale to fall from your eyes:

nArgs = scanf("%d %d %d %d %d",
&comps, &atts, &yards, &TDs, INTs);

scanf collects values through pointers to the variables that will hold them. This call does
that for all values except INTs, which is passed by value, not by reference. One of the
warnings I had you ignore said exactly that: “Format specifies type ‘(int *)’ but the
argument has type ‘int’.” Simply inserting an &

nArgs = scanf("%d %d %d %d %d",
&comps, &atts, &yards, &TDs, &INTs);

should cure the problem. Sure enough, running passer-rating again shows the crasher
is gone:

comps, atts, yards, TDs, INTs: 10 20 85 1 0
Rating = 89.4
comps, atts, yards, TDs, INTs: <

<

D>

With the

<

D keystroke, the input stream to passer-rating ends, the program exits,
and the Debug area closes.

Simple Debugging 33

You ordinarily wouldn’t want to run or debug a program under Xcode if another is
running. Instead, you’d like the incumbent app to clear out. There are four ways to do this.

m Simply let the app exit on its own, as you did when you used

<

D to stop
passer-rating, or would by selecting the Quit command in an OS X
application. But this doesn’t work for iOS apps, which in principle never quit. You’ll
have to use one of the other techniques.

m Click the Stop button in the toolbar.
m Select Product→Stop (period).
m Tell Xcode to run an application, the same or a different one, and click Stop in the

alert sheet that appears. See Figure 3.4.

That alert sheet also offers an Add button, which will run and debug the new process
without quitting the old one. Xcode will start a new execution context: You can switch
between them using the jump bar at the top of the Debug area, and the Stop button in
the toolbar becomes a menu you can use to select which instance to stop.

Note
Don’t check the Do not show this message again box. There will come a time when you
want to continue the execution of a program you are debugging, and rather than clicking
the tiny button the debugger provides, you’ll go for the large, friendly Run button in the
toolbar. That time comes to me frequently. The add-or-stop sheet is the only thing standing
between you and the ruin of your debugging session.

For the moment, you’re done: The scanf call will return fewer than five inputs if the
standard input stream ends. You end it as you would in a terminal shell, by pressing

<

D.

Figure 3.4 When you tell Xcode to run an application while it already has an application running,
it displays a sheet asking what you want to do with the existing app. Normally, you’d click Stop, but

there is also the option to Add the new instance to run concurrently with the old one.

34 Chapter 3 Simple Workflow and Passive Debugging

Note
M and A badges are accumulating in the Project navigator. These have to do with version
control. Nothing is wrong. Patience! I’ll get to it in Chapter 7, “Version Control.”

Summary
This chapter stepped you up to writing and running a program of your own. It introduced
the first level of debugging: what to do when your program crashes. It turns out that
Xcode offers good facilities to help you analyze a crash without you having to do much.
You accepted Xcode’s guidance, quickly traced the problem, and verified that your fix
worked.

But we’re not done with passer-rating. There are still bugs in it, and this time
you’ll have to hunt for them.

4
Active Debugging

In passer-rating, you have a program that runs without crashing. This is an
achievement, but a small one. Let’s explore it a little more and see if we can’t turn it into a
program that works. This entails a small test, and maybe some probing of the inner
workings.

A Simple Test Case
Run passer-rating again. Give it the old data set if you like, for a short, mediocre
game; but also try a rating for a quarterback who didn’t play at all:

comps, atts, yards, TDs, INTs: 10 20 85 1 0
Rating = 89.4
comps, atts, yards, TDs, INTs: 0 0 0 0 0
Rating = nan
comps, atts, yards, TDs, INTs:

H’m. Not what you expected. It doesn’t crash, but it’s wrong. A performance in which a
passer never passed should be rated zero. passer-rating gave a rating of “nan,” which
is a code for “not a number.” That indicates a logical error in how the math was done.

Now is the time to use the Xcode debugger to examine what is actually happening in
passer-rating. Don’t stop passer-rating—the debugger lets you instrument your
application without changing it.

Going Active
In your previous encounter with the debugger, it took control over passer-rating
when a fatal error occurred. This time, you want the debugger to take control at a time of
your choosing. By setting a breakpoint at a particular line in passer-rating, you tell the
debugger to halt execution of the application at that line, so that the contents of variables
can be examined and execution resumed under your control.

36 Chapter 4 Active Debugging

Setting a Breakpoint
The easiest way to set a breakpoint is to click in the broad gutter area at the left margin of
the source code in one of Xcode’s editors. Select rating.c in the Project navigator to bring
that file into the editor. Scroll to the first line of the passer rating function and click
in the gutter next to the line that initializes completionComponent (see Figure 4.1,
top). On the screen, a dark-blue arrowhead appears in the gutter to show that a breakpoint
is set there. You can remove the breakpoint by dragging the arrowhead to the side, out of
the gutter; you can move the breakpoint by dragging it up or down the gutter.

You can also set a breakpoint at whatever line the editor’s insertion point or selection is
on by selecting Debug→Breakpoints→Add Breakpoint at Current Line (\).

Note
If you’re keyboard oriented, you can select among the navigators by pressing n, where n
is the number of a tab in the Navigator area. Of course, you’ll still need the mouse to use
the navigator.

There are three ways to avoid a breakpoint. The first is simply to drag it out of the
gutter, but if you’ll want to restore it, you won’t have a marker for the line you were
interested in. If you just want to turn off a breakpoint, click on the dark-blue arrow; it will
turn pale, and the debugger will ignore it (see Figure 4.1, bottom).

Finally, there is a button in the Debug area’s control bar (use the middle segment of the
View selector at the right end of the toolbar to expose the Debug area) shaped like a
breakpoint flag. It’s a toggle: When it’s blue, the debugger will honor all active
breakpoints. When it’s gray, the debugger will ignore all breakpoints. Even if the master
breakpoint control is off, the debugger will take control if the program crashes.

Note
The Breakpoint navigator (the seventh tab in the Navigator area) lists all of the
breakpoints in your project. You can disable or delete breakpoints, or navigate to the
corresponding code.

Figure 4.1 (top) Clicking in the gutter at the left edge of the editor sets a breakpoint at that line of
code. When the application reaches that line, execution will pause, and the debugger will display the
state of the program. (bottom) Clicking an active breakpoint will preserve its place in your code, but

the debugger will ignore it. The breakpoint arrow dims to show it is inactive.

Going Active 37

You don’t have to stop and relaunch a program to start debugging it actively: Setting a
breakpoint doesn’t change your code, and it doesn’t change the executable that was
compiled from it. Now that the breakpoint is set, return to the debugger console, where
passer-rating still awaits your input, and enter those five zeroes again.

Xcode hits the breakpoint, and responds much as it did for that EXC BAD ACCESS
error: The Debug navigator shows a stack trace from main to passer rating, the
variables pane in the left half of the Debug area displays the variables in their current state,
and a green banner appears in the editor with the label “Thread 1: breakpoint 1.1.” At the
left margin, just outside the gutter, is a green arrowhead; as you go along, the arrowhead
marks the line currently being executed.

Note
The Debug area consists of two panes: variables on the left, and console on the right.
A control to show either or both is at the bottom-right corner of the Debug area.

The Variables Pane
Turn your attention to the variables pane. There will be five lines flagged with a purple A
to designate function arguments and one flagged with a blue-green L for the local variable
completionComponent. The arguments are all shown as “(int) 0,” as you’d expect from
the numbers you supplied. The local variable, completionComponent, is also a zero, but
typed double.

But wait a minute, there’s more than one local variable. Where are the rest? The
debugger tries to narrow the list of variables to the ones that are interesting at the
moment. yardageComponent is uninteresting because it hasn’t been set yet. You don’t
need to see the garbage value. If you do want to see everything, use the popup menu at
the bottom left of the variables pane and select Local variables (Figure 4.2, top).

Expose all of the local variables so we can set the values to something that will make it
easier to see when they change: Click the line for each one and press Return
(double-clicking works as well). Type -1 and press Return again (Figure 4.2, bottom).

Note
There’s another way to examine the values of variables as they are displayed in the editor
view. Hover your mouse pointer over a reference to the variable, and Xcode will show a
popover view containing at least the value, and in the case of complex types like structs
and objects, some accounting of the contents. In the case of graphical values, the
QuickLook (eye) button will even show you the graphic. It’s very powerful and will
probably be your first resort as you debug. I’m using the variables pane because it shows
all variables continuously and allows you to change them.

Stepping Through
You’re ready to watch passer-rating execute. Just above the variables pane is a bar
containing a series of controls (Figure 4.3). All controls have menu equivalents, most of
them in the Debug menu.

38 Chapter 4 Active Debugging

Figure 4.2 (top) When you set the scoping popup at the bottom left of the variables pane to
Local, you can see all of the arguments and local variables in the current function. (bottom)
Double-clicking the value portion of a variable’s line allows you to change values on the fly.

Figure 4.3 The bar at the top of the Debug area provides controls for advancing the execution of
the program and navigating through its state.

Fixing the Problem 39

1. The Hide/Show Debug Area (Y) button reduces the Debug area to just the
debugging bar, and expands it again.

2. The Activate/Deactivate Breakpoints (Y) button enables or disables all of the
breakpoints in your project.

3. Continue (

<

Y) lets the program run until it hits another breakpoint or crashes.
4. Step Over (F6) executes the current line and stops at the next one.
5. Step Into (F7) proceeds with execution until it enters the next function called on

this line; you’ll resume control on the first line of that function.
6. Step Out (F8) proceeds with execution until it leaves the current function; you’ll

resume control in the caller.
7. Simulate Location sets the location your app will see when it uses Core Location.

This is a popup menu with a selection of common locations throughout the world.
You can specify a location of your own by providing a JSON GPX file describing it.

8. A jump bar traces the state of the program from the process to the thread to the
current location in the stack trace. Each step allows you to examine a different
process, thread, or level in the call stack, and each step presents a submenu so that
you can set all three levels with one mouse gesture.

Note
Your Mac may be set up so that the F˜keys are overridden by hardware-control functions
like volume and screen brightness or intercepted at the system level for other functions.
Review the settings in the Keyboard tab of the Keyboard panel in System Preferences if
you want to clear these keys for Xcode’s use. Holding down the fn key switches the
function keys between the two uses.

You’re interested in seeing what passer rating does, line by line. Click the Step
Over button (the arrow looping over an underscore). The green arrowhead jumps to the
next line, and something changes in the variables pane: completionComponent’s value
changes to NaN. So now you know: The result is poisoned from the first calculation. Even
if the other values are good, a NaN in any part of a calculation makes the result a NaN, too.

The next line calls pinPassingComponent; does that cure the error? Click Step In
(the arrow pointing down into an underscore). The arrowhead jumps up the page to the
first line of pinPassingComponent. Step through. You’ll find that as component fails
each of the tests in the if statements (NaN doesn’t compare to anything), the arrow
follows execution, jumping over the lines that don’t get executed. Stepping through the
final return jumps execution to the exit point of the function, and then to the next line
of the caller.

Fixing the Problem
The problem in passer-rating was obvious: I never accounted for the possibility of
zero attempts. Time to get back to rating.c and make the fix.

40 Chapter 4 Active Debugging

Behaviors
But if you’ve been following along, you’ll find some annoyances:

m When passer-rating finishes, the Debug area goes away, and you can’t inspect its
output. You’ll have to go to the toolbar and expose it again. A slight pain, but still a
pain.
It was worse in the case of Hello World, because without the fgets() call, the
program would have exited so quickly the debugger console would have closed
before you could see it had opened.

m If passer-rating were slightly different, and didn’t display a prompt before
scanf() accepted input, you’d never see the debugger at all. The debugger bar
would appear at the bottom of the window, but the program would apparently hang
until you expanded the debugger and typed something in. Xcode displays the
debugger only when the program prints something.

m Xcode does open the debugger in response to output, but the Debug navigator
doesn’t show, unless it had been showing before.

m But, stopping for a breakpoint does switch to the Debug navigator.

Opinions may differ on these points, and maybe there’s a majority for each separately.
But it’s unlikely that most users will be satisfied with the combination.

Xcode provides a solution. What I’ve just described is the default, but you can replace
the default. Xcode lets you set behaviors to control what it does when certain events occur.

Note
If this is not the first time you’ve used Xcode, it’s likely you’ve touched the default
behaviors already, and you aren’t seeing what I am. The points are still the same.

Examine the Behaviors panel of the Preferences window (Figure 4.4). You’ll see the
available events listed on the left, divided into building, testing, running, graphical analysis,
searching, integration builds, and file unlocking. You’re interested in the Running
→Starts event—what happens when your application runs under the debugger.

What you’d like is for the Debug area to appear whenever you run your application for
debugging. By default, Xcode does nothing special when you trigger a run: However your
project window is configured is how it will stay, and you won’t get any sort of notification.

If, instead, Xcode presented the full debugging interface without waiting for break
points or output, you’d get your full application status from the start. Here’s how you
do this.

1. Check the box next to the Show/Hide navigator item.
2. Be sure the first popup menu says Show.
3. Select Debug Navigator in the second popup.
4. Check the box next to the Show/Hide. . . debugger item.
5. Select Show from the first popup, and Current Views from the second. You can

also force the debugger to show either or both of the variables and console panes.

Fixing the Problem 41

Figure 4.4 The Behaviors panel of Xcode’s Preferences window lets you determine what Xcode
will do in response to certain events.

The Starts row in the behaviors table now has a check next to it. Its actions now
match the ones for the Pauses and Generates output actions, but there’s no harm in it,
and if you change your mind about Starts, you won’t have to do anything to get back to
where you were.

At the end of the run, I’d like to hide the Debug area and resume the use of the Project
navigator unless the app wrote something out; I’d be interested in seeing that. Leave the
Completes behavior as it is by default: Show navigator Project Navigator, and If no
output, hide debugger.

Note
There’s another way to refer to the debugger output of a program. The last tab of the
Navigator area, labeled with a speech balloon, opens the Report navigator. It contains the
results of every major operation you’ve performed recently, including debug sessions. If
there are more than one, you can examine and compare each of them.

Try it: Run passer-rating one more time, enter some data, get a result, then press<

D to terminate it. The Debug area and Debug navigator appear when the run starts;
when it ends, the Project navigator reappears, but the Debug area remains because
passer-rating wrote into the console. Success.

42 Chapter 4 Active Debugging

Tabs
You also see an option in the Behaviors panel labeled “Show tab named,” and it’s tempting.
True to the notion that Xcode is a browser for your project, you can add tabs to the window,
each of which provides a different perspective on your work. Other text-editing applications
can put separate files in each tab, but that misconceives Xcode’s model. The feature is
much more powerful but, in a way, also fragile.
Select File→New→Tab (T) to switch to a new tab. It starts with the same content you
had when you issued the command. Try selecting a different file in the Project navigator, and
use the toolbar’s View control to expose the Utility area (on the right). Now switch back to
the original tab: Not only does it show the original file, but the Utility area is closed.
Imagine another use. You might have tabs for three different purposes:

m One for straight text-editing: Nothing but the Editor view and the Project navigator.

m One for Interface Builder, which takes up a lot of horizontal space: Navigator
hidden (you’d use the jump bar to navigate); Assistant view (the middle “tuxedo”
button of the Editor control) to show the code for the view’s controller; and the
Utility area shown for access to the component library.

m One for debugging, with the Debug navigator and Debug area displayed.

You can name tabs: Double-click on the tab’s label (by default it shows the name of the file
being displayed). It becomes editable, so you can name the tabs “Edit,” “Interface Builder,”
and “Debugger,” respectively.
With that, you can open the Behaviors panel to set the Completes action to Show tab
named, with the name of your “Edit” tab. Just remember to uncheck the Show navigator
and Debug Navigator actions; the tab is already set up for that. The effect is that you can
set changes in the window’s appearance and function that are much more complex than the
simpler options in the Behaviors panel.
This is great, as far as it goes, but it’s unstable. The same freedom that lets you set each tab
as you like doesn’t prevent your changing that tab, losing the effort you put into arranging it
and focusing it on the right type of file. If you have any behaviors lingering (such as exposing
build issues or showing the Debug area), a simple build-and-go could ruin your carefully
constructed Interface Builder tab, unless your system of tabs and behaviors changes to a
separate context at every event.

The Fix
At last, we get around to repairing passer rating. After all this business with behaviors
and tabs, the fix is an anticlimax. Just add this to the start of passer rating:

if (atts == 0)
return 0.0;

R runs passer-rating one more time. Enter 0 0 0 0 0 at the prompt, and sure
enough, you are rewarded with Rating = 0.0. Press

<

D; the Debug area goes away, and
the Navigator area returns to the Project navigator. Just what you wanted.

Summary 43

Summary
In this chapter, you used Xcode’s debugger to take charge of passer-rating to track
down a bug. You set a breakpoint, stepped through, into, and out of functions, examining
and changing variables as you went.

You also picked up a couple of skills—setting behaviors and tabs—that make it easier to
get control of Xcode’s habit of changing its windows on its own initiative. On the way,
you came to a crucial insight: Xcode isn’t meant to be just a source editor; it is a browser
on the whole flow of your development effort.

Now I’m going to take a break from that flow to have our first, focused view on what
the Xcode tools are doing.

This page intentionally left blank

5
Compilation

Before continuing, let’s review how computer programs get made. If you’re coming to
Xcode from long experience with GNU Make or another development environment, this
discussion will be very familiar to you. Bear with me: I’m going back to basics so every
reader will be on a par for what they know about the build process.

Programmers use source code to specify what a program does; source code files contain a
notation that, although technical and sometimes cryptic, is recognizably the product of a
human, intended in part for humans to read. Even the most precise human
communication leaves to allusion and implication things that a computer has to have
spelled out. If a passer-rating tool were to refer to the local variable yardageComp, for
example, you’d care only that the name yardageComp should consistently refer to the
result of a particular calculation; the central processor of a computer running an
application, however, cares about the amount of memory allocated to yardageComp, the
format by which it is interpreted, how memory is reserved for the use of yardageComp
and later released, that the memory should be aligned on the proper address boundary, that
no conflicting use be made of that memory, and, finally, how the address of
yardageComp is to be determined when data is to be stored or retrieved there. The same
issues have to be resolved for each and every named thing in a program.

Compiling
Fortunately, you have a computer to keep track of such things. A compiler is a program that
takes source files and generates the corresponding streams of machine-level instructions.
Consider this function, which calculates two averages and sends them back to the caller
through a results struct:

void calculate_stats(Results * results)
{

int n = 0, nScanned = 0;
double sum_X, sum_Y;
sum_X = sum_Y = 0.0;

46 Chapter 5 Compilation

do {
double x, y;
nScanned = scanf("%lg %lg", &x, &y);
if (nScanned == 2) {

n++;
sum_X += x;
sum_Y += y;

}
} while (nScanned == 2);
Results lclResults = { .avg_X = sum_X/n

#if CALCULATE_AVG_Y
, .avg_Y = sum_Y/n

#endif
};

*results = lclResults;
}

CALCULATE AVG Y is defined as 1 or 0, depending on whether the function is to calculate
the average of the y values it reads. With average-y included, these 22 lines translate into
54 lines of assembly code (the human-readable equivalent of the bytes the processor would
execute):

_calculate_stats_100000e40:
push rbp
mov rbp, rsp
push r15
push r14
push r13
push r12
push rbx
sub rsp, 0x28
mov r14, rdi
lea rdi, qword [ds:0x100000f82] ; "%lg %lg"
lea rsi, qword [ss:rbp-0x50+var_32]
lea rdx, qword [ss:rbp-0x50+var_24]
xor al, al
call imp___stubs__scanf
xorps xmm1, xmm1
cmp eax, 0x2
jne 0x100000ecb
xor ebx, ebx
lea r15, qword [ds:0x100000f82] ; "%lg %lg"
lea r12, qword [ss:rbp-0x50+var_32]
lea r13, qword [ss:rbp-0x50+var_24]

Compiling 47

xorps xmm2, xmm2
nop word [cs:rax+rax+0x0]
addsd xmm1, qword [ss:rbp-0x50+var_24]

. . .

Note
For the record, this code was produced by the Xcode 5 version of the clang compiler with
optimization set to -O3.

I’ve cut this off at the first 25 lines; you see the kind of output involved. It’s not very
instructive unless you live with assembly every day. Fortunately, I have the useful Hopper
Disassembler, which can reconstruct a C-like function from the byte stream:

function _calculate_stats_100000e40 {
r14 = rdi;
rax = scanf("%lg %lg");
xmm1 = 0x0;
if (rax == 0x2) {

rbx = 0x0;
r12 = &var_32;
r13 = &var_24;
xmm2 = 0x0;
do {

xmm1 = xmm1 + var_24;
var_16 = xmm1;
xmm2 = xmm2 + var_32;
var_8 = xmm2;
rax = scanf("%lg %lg");
xmm2 = var_8;
xmm1 = var_16;
rbx = rbx + 0x1;

} while (rax == 0x2);
}
else {

xmm2 = 0x0;
}
asm{ divsd xmm1, xmm0 };
asm{ divsd xmm2, xmm0 };

*r14 = xmm2;

*(r14 + 0x8) = xmm1;
return rax;

}

You lose the variable names, but you can see the outline. Even at this level, you notice a
difference between the machine code and the source: The compiled function calls
scanf() twice. The read-and-calculate loop in the original function is controlled by
whether scanf(), in the loop, returned two values. That determination is made at the

48 Chapter 5 Compilation

bottom of the loop, but that’s after the input is added to the sums, so the original code
guards the calculations in the middle of the loop by testing whether there are two inputs.
The compiler simplified the loop by making an extra call to scanf() before the loop
starts, eliminating the need for the big if block in the middle.

By now you’ve seen an important point: Your source is your expression of what your
code does, but if you let it, the compiler will substantially rearrange (optimize) it to meet
some criterion—usually speed, but sometimes size or memory pressure. Its only obligation
is to ensure that the emitted code has the same effect. But in the line-by-line details, if you
were to step through optimized code, the program counter would jump apparently
randomly around the lines of your code.

There’s more. Let’s set the CALCULATE AVG Y macro to 0, which does nothing more
than remove the final use of sum Y. The inner loop (while scanf() returns 2) becomes:

do {
var_16 = xmm1;
var_8 = var_32;
rax = scanf("%lg %lg");
xmm1 = var_16;
xmm1 = xmm1 + var_8;
rbx = rbx + 0x1;

} while (rax == 0x2);

If you puzzle this out, you’ll see that sum Y isn’t there at all. The compiler saw that, even
though the variable was used to accumulate a sum, nothing else used it. There’s no point
in doing the sum, so it removed sum Y completely. If you were to trace through this
function in the debugger, you wouldn’t be able to see the value of sum Y, because there is
no value to see.

Fortunately, you can turn optimization off completely, and the reconstructed loop
would look almost identical to what you wrote, including the summing of the sum Y value
that will never be used:

function _calculate_stats_100000e70 {
xmm0 = 0x0;
var_56 = rdi;
var_52 = 0x0;
var_48 = 0x0;
var_32 = xmm0;
var_40 = xmm0;
do {

rax = scanf("%lg %lg");
var_48 = rax;
if (var_48 == 0x2) {

var_52 = var_52 + 0x1;
var_40 = var_40 + var_24;
var_32 = var_32 + var_16;

}

Compiling 49

} while (var_48 == 0x2);
asm{ divsd xmm1, xmm2 };
var_0 = var_40;
var_8 = 0x0;
rax = var_56;

*rax = var_0;

*(rax + 0x8) = var_8;
return rax;

}

This setting (-O0) is what Xcode uses for debugging builds.
When imagining the tasks a compiler must perform in producing executable machine

instructions from human-readable source, the first thing that comes to mind is the choice
of machine instructions: the translation of floating-point add operations into addsd
instructions or expressing the do/while loop in terms of cmpl, je, and jmp. Even this
simple example shows that this isn’t the whole story.

Another important task is the management of symbols. Each C function and every
variable has to be expressed in machine code in terms of regions of memory, with
addresses and extents. A compiler has to keep strict account of every symbol, assigning an
address—or at least a way of getting an address—for it and making sure that no two
symbols get overlapping sections of memory. Here’s how the assembly for the unoptimized
version begins:

push rbp
mov rbp, rsp
sub rsp, 0x40
xorps xmm0, xmm0
mov qword [ss:rbp-0x40+var_56], rdi
mov dword [ss:rbp-0x40+var_52], 0x0
mov dword [ss:rbp-0x40+var_48], 0x0
movsd qword [ss:rbp-0x40+var_32], xmm0
movsd qword [ss:rbp-0x40+var_40], xmm0

In its analysis of calculate stats, the compiler budgeted a certain amount of memory
in RAM for local variables and assigned general-purpose register rbp to keep track of the
end of that block. The 8-byte floating-point number x (var 40) was assigned to the
memory beginning 40 bytes into that block; y was assigned to the eight bytes before that.
The compiler made sure not to use that memory for any other purpose.

In the optimized version, the sums don’t even get stored in memory but are held in the
processor’s floating-point registers and used from there. Register xmm1, for instance, holds
the value of the sum X variable. Once again, the compiler makes sure that each datum has
something to hold it, and that no two claims on storage collide.

In an Xcode project, files that are to be compiled are found in the Target editor: Open
the Navigator area on the left side of the window and select the first tab to display the

50 Chapter 5 Compilation

Project navigator. The item at the top represents the project and all its targets. Select your
product’s name from the TARGETS list.

The files to be compiled in the build of the target are listed in the “Compile Sources”
build phase under the Build Phases tab. See Figure 5.1.

call imp___stubs__scanf

This line is the translation of the call to the scanf() function. What sort of symbol is
imp stubs scanf? Examining a full disassembly of an application using scanf()
won’t tell you much: It traces to a location named imp la symbol ptr scanf, which
is initialized with a 64-bit number. The compiled application does not contain any code,
or any memory allocated, for scanf().

And a good thing, too, as scanf() is a component of the standard C library. You don’t
want to define it yourself: You want to use the code that comes in the library. But the
compiler, which works with only one .c or .m file at a time, doesn’t have any way of
referring directly to the starting address of scanf(). The compiler has to leave that
address as a blank to be filled in later; therefore, in building a program, there has to be an
additional step for filling in such blanks.

The product of the compiler, an object file, contains the machine code generated from a
source file, along with directories detailing what symbols are defined in that file and what
symbols still need definitions filled in. Objective-C source files have the suffix .m; object
files have the same name, with the .m removed and .o (for object) substituted. Libraries
are single files that collect object files supplying useful definitions for commonly used
symbols. In the simplest case, a library has a name beginning with lib and suffixed
with .a.

Figure 5.1 Selecting the project icon in the Project navigator displays an editor for the project and
its targets. The Build Phases tab of the Target editor is a table showing the steps in building the

target. Click the disclosure triangle in a phase’s header to display the files that go into that phase.
Even a simple build has a “Compile Sources” phase (upper) containing every file to be transformed
into object files; and a “Link Binary With Libraries” phase (lower) to designate precompiled system

and private code to bind into a finished product.

Compiling 51

The process of back-filling unresolved addresses in compiled code is called linkage
editing, or simply linking. You present the linker with a set of object files and libraries, and,
you hope, the linker finds among them a definition for every unresolved symbol your
application uses. Every address that had been left blank for later will then be filled in. The
result is an executable file containing all of the code that gets used in the application. See
Figure 5.2.

This process corresponds to the “Link Binary With Libraries” build phase in the
application’s target listing. This phase lists all of the libraries and frameworks against which
the application is to be linked.

Linrg.m

void doRegression ()
{
 . . .
 n = scanf(...
 . . .
 corr = m * sqrt(...);
}

Linrg.o

doRegression ()

scanf()?

sqrt()?

Compila on

sqrt()

sin()

atan()

libm.a

libc.a

scanf()

getc()

Linrg

sqrt()

scanf()

doRegression()

Linkage

Figure 5.2 The process of turning source code into an executable binary, ruthlessly simplified.
You provide source code in Linrg.m (top left); compiling it produces an object file, Linrg.o, that

contains your translated code, plus unresolved references to functions calculate.c doesn’t
define. Other libraries (the notional libm.a and libc.a) contain machine code for those

functions. It’s the job of the linker to merge your code and the other functions you requested into a
complete executable program (bottom).

52 Chapter 5 Compilation

Note
Sharp-eyed readers will have seen that the linkage phase shown in Figure 5.1 contains no
libraries at all. There are two reasons: First, most C compilers will link programs against
the standard C library without being told to. Second, clang implements the modules
extension to C-family languages, which can add libraries to the linkage task whenever one
of their headers is used. See the “Precompilation” section later in this chapter for details.

Dynamic Loading
Actually, it’s one step more complicated than that. Standard routines, such as scanf(),
will be used simultaneously by many—possibly hundreds—of processes on a system.
Copying the machine code that implements scanf() into each application is a pointless
waste of disk space. The solution is dynamic loading: The application leaves the addresses of
common library functions unresolved even in the final executable file, providing the partial
executable code along with a dictionary of symbols to be resolved and the system libraries
to find them in. The operating system then fetches the missing code from a library that is
shared system-wide, and links it into the executable when the application runs.

Dynamic loading saves not only disk space, but RAM and execution time. When a
dynamic library—a collection of object files set up for dynamic linking and having the
prefix lib and the suffix .dylib—is loaded into physical memory, the same copy is made
visible to every application that needs it. The second and subsequent users of a dynamic
library won’t incur memory or load-time costs.

Note
The iOS operating system relies on dynamic libraries for shared services just as any
modern operating system does. iOS 8 brings dynamic libraries to apps, as well, in the form
of frameworks (see Chapter 17, “An iOS Extension”). A framework is useful because it
integrates the code and resources for a library into a discrete bundle that a developer can
link into his applications. Application extensions, which allow iOS apps to provide services
to other apps, are delivered as frameworks.

If dynamic libraries don’t get linked with the application’s executable code until run
time, why do they figure in the linkage phase of the build process at all? There are two
reasons. First, the linker can verify that all of the unresolved symbols in your application
are defined somewhere and it can issue an error message if you specified a misspelled or
absent function. Second, the linker-built tables in the dynamically linked code specify not
only the symbols that need resolving but also what libraries the needed definitions are to
be found in. With files specified, the dynamic loader does not have to search all of the
system’s libraries for each symbol, and the application can specify private dynamic libraries
that would not be in any general search path.

Xcode and Clang
A traditional compiler sticks to what I’ve just described: It’s a command-line tool that
starts, reads your source code, writes some object code, and then stops. That’s what gcc,

Xcode and Clang 53

the Free Software Foundation’s widely used compiler, which Xcode provided or simulated
through Xcode 4, does.

However, gcc had become hard to live with. gcc is. . .mature. Apple needed new
features in C and Objective-C to make Cocoa programs more reliable and easier to write.
It had been extending gcc for years, and publishing its contributions, but making
significant changes to a code base with many stakeholders and dependencies is very slow
business, and some of Apple’s needs were practically inexpressible in the gcc code base.

Also, gcc is published under the GNU General Public License, which requires all code
linked with GPL code to be open source as well. There’s nothing wrong with this, but
Apple’s goals were different: It hoped to integrate its compiler technology into much of its
own software, for which it does not want to publish the source.

Apple’s solution was a new open-source compiler engine in the form of a linkable
library, llvm, first introduced in Xcode 3.2. llvm’s first major product was the
C-language-family compiler clang, but there was much more in store.

m The Xcode text editor links to llvm to get continuous information on the state of
your code from the same parser that will translate it into your product. Open the
Preferences window (Xcode→Preferences. . . comma) and set Issues: Show
live issues to display warnings and errors as you enter your code.

m The llvm library is linked into lldb, the debugging engine under the Xcode
debugger. lldb lets you enter source-code statements on its command line; it will
compile them—compatibly with the code being debugged, because it’s the same
compiler—and inject them into the process you’re debugging.

m OpenCL, the OS X facility that harnesses graphics-chip computing power for
massively parallel computation, relies on storing C-like source code in the client
program. It has to; GPUs are all different. The OS uses llvm to convert the source
text into the binary for the system’s GPU.

m Vendors providing bridges between Cocoa and “managed” or interpreted languages
link the llvm library to their own compilers to translate relatively slow interpreted
code to CPU-native code.

Adopting llvm allowed Apple to make tremendous leaps in its development systems.
Before, the Objective-C language changed very little over the course of decades—a fine
language, but new uses and new insights into code translation were making it less and less
efficient and safe than it could have been. In the years since, llvm has allowed clang to
develop deep insights into the developer’s code, with all that implies for the quality of
diagnostics and generated code.

Local Analysis
The insight the previous generation of compilers have into source code is confined to a
certain scope, no finer than a single line, no broader than a fairly large function. They can
tell you what line an error occurred on; clang can specify the token. They can tell you
that a symbol you used isn’t known; you can ask them to flag certain coding practices for

54 Chapter 5 Compilation

you to double-check. clang can offer to correct the spelling, and recode expressions that
it knows are problematic in the context, which can be very broad.

clang can be made to know about conventions and other constraints on your code. A
common idiom in Cocoa programming is for a method to accept a pointer to the pointer
for an NSError object. If an error occurs, the method can fill the reference with an error
object, thus passing it back to the caller. However, such methods always offer to accept a
NULL pointer, in case the caller wants to ignore the error detail.

Consider this Foundation command-line program, which implements a simple class
with three methods:

#import <Foundation/Foundation.h>

static NSString * const MyErrDomain = @"MyErrDomain";

@interface MyClass : NSObject
- (void) doSomething;
- (BOOL) methodWithErrorRef: (NSError **) error;
@property(nonatomic, assign) BOOL somethingWrong;
@end

@implementation MyClass

- (instancetype) init
{

self = [super init];
if (self) {

_somethingWrong = NO;
}
return self;

}

- (void) doSomething { self.somethingWrong = YES; }

- (BOOL) methodWithErrorRef: (NSError **) error
{

NSError * justInCase =
[NSError errorWithDomain: MyErrDomain

code: -1 userInfo: nil];

*error = justInCase; // Line 29

[self doSomething];
if (self.somethingWrong)

return NO;
else

return YES;
}

Xcode and Clang 55

@end

int main(int argc, const char * argv[])
{

@autoreleasepool {
MyClass * object = [[MyClass alloc] init];
NSError * error;
if ([object methodWithErrorRef: &error]) {

NSLog(@"Method on %@ succeeded", object);
}
else {

NSLog(@"Method on %@ failed", object);
}

}
return 0;

}

Note
Notice that methodWithErrorRef: fills the error output with a catchall error object
before it knows whether an error occurred. Methods that accept NSError* references are
allowed to do that. Callers must not try to determine whether something went wrong by
examining the returned NSError. It may be present, but not valid. Only the method’s
return value can tell you whether it failed.

MyClass is about as simple as it can be, just enough to have a method that appears to do
something, and accepts a pointer to an NSError* pointer. Make clang take a really close
look at it: Select Product→Analyze (B). Soon the Issues navigator appears with one
blue-flagged entry, which in the log appears as:

main.m:29:9: warning: Potential null dereference.
According to coding standards in 'Creating and
Returning NSError Objects' the parameter may be null

*error = justInCase;
˜˜˜˜˜˜˜ˆ˜˜˜˜˜˜˜˜˜˜˜

So that’s a nice feature—Apple taught clang about one of its coding standards, and
clang alerts you when you violate one. It will even identify the character position (the =
assignment operator) where the error occurred. (The editor will show a red caret at that
position.)

Cross-Function Analysis
It goes beyond nice. In main()’s call to methodWithErrorRef:, replace &error with
NULL. Repeat the analysis.

The coding-convention error flag is joined by a “logic error.” Click the disclosure
triangle in the Issues navigator, and step through the details it contains:

56 Chapter 5 Compilation

1. In main(), “Passing null pointer value via 1st parameter ‘error”’
2. “Calling ‘methodWithErrorRef:”’
3. In methodWithErrorRef:, “Entered call from ‘main”’
4. “Dereference of null pointer (loaded from variable ‘error’)”

The original flag was for an in-place violation of a coding convention. This is a
warning of an actual programming error arising from an actual execution path that clang
traced across two methods. See Figure 5.3.

Note
Between the banners and the Issues navigator, it can be hard to see the full text of error,
warning, and analysis messages. The banners often run out of room, even with the tiny
font they use, and the Issues items show only the first few words of the messages. You
can do better: Open the General panel of the Preferences window, and set Issue Navigator
Detail: to Up to Ten Lines. That should be plenty of room.

Indexing
Project indexing was a marquee feature of Xcode 1, and remains at its core. In the
background, Xcode examines your code base, and all of the system files you use, to collect
the type and place-of-definition of every symbol. That information is used so:

m The editor can give a unique color to each construct on the screen.
m You can jump directly to the declaration of a symbol by command-clicking on it.

The gesture works on the semantic unit—command-clicking the first part of

Figure 5.3 Even early on, clang could warn of programming errors that arise from program flows
as they actually occur, even between functions. Expanding a logic error message will show arrows

demonstrating exactly the path that will lead to the error.

Swift 57

fileExistsAtPath:isDirectory: will pick up the whole method name and
won’t bounce you to fileExistsAtPath:.

m You can click in a symbol, and then on the indicator that appears next to it, to
command Edit All in Scope; editing the one symbol will change all other
instances, but only those that refer to the same object.

m The Symbol navigator (second tab in the Navigator area) can show you a directory
of the symbols defined in your project, jumping you to the definition of each. This
works even for @property directives: They normally create hidden methods to set
and examine the property. The Symbol navigator shows the implicit methods.

m The new facility for changing documentation comments into live help text can
choose which documentation among identically spelled methods it should show.

m The refactoring feature can operate on all instances of a complex symbol (like a
multipart method name), and only those, without the limitations of a search for text
or patterns.

m The Assistant editor can be set to display all callers or callees of the method selected
in the main editor. This makes possible the trick of moving callers of an obsolete
method over to a new one by simply stepping through the callers and converting
them until the caller list is empty.

Before the transition to llvm, Xcode had to fall back on its own parser, which could
be made to match the behavior of the gcc compiler only with difficulty. With a slower
indexing parser (and, yes, slower computers), it was common to have re-indexing
interrupt your workflow. Creating an index for a large project still takes time (though you
can continue work while it happens), but after that, you won’t notice it. llvm guarantees
that the indexer and clang work from the same sophisticated code model.

Swift
All very nice for Objective-C and other C-family languages. But that was not all.

clang had made coding for Apple platforms about as efficient and reliable as
possible—if you can tolerate some drawbacks:

m Objective-C is C. Any legal standard C program is a legal Objective-C program.
(This is not true between C and C++.) C was intended to be a convenient, portable
way to write assembly code for minicomputer operating systems. Assembly code
owns the machine it runs on—if the developer wants to declare a ten-byte array and
traverse all of memory from it, forward and back, the developer knows best. That’s
not just an invitation to disaster for application programmers, it’s an all-comers street
fair. But a language that restrains it is not C.

m A tool for coding the bare minimum of an operating system can’t assume, or prefer,
any one method of managing system resources; in particular, C does not, and
cannot, care about dynamic memory management. The standard C library provides

58 Chapter 5 Compilation

routines like malloc() and free() for claiming blocks of memory, but they’re just
functions; the language itself doesn’t know that they do anything special. A language
that enforces memory-management practices is not C.

m In Objective-C, method dispatch—choosing the proper code to execute a message
to an object—is always done on the assumption that any method might have an
independent implementation, whether from subclass overrides or independent
classes’ parallel adoption of a method. This degree of flexibility, called duck-typing, is
powerful, but in practice it’s rarely needed. A smart compiler might convert
lone-implementer methods into direct-address functions, but a C-family compiler
rarely knows enough about the whole program to do it. Java and C++ let (or force)
the programmer to provide that information, but a language that does that is not C.

m Code generation and programming techniques have advanced since the late 1970s.
We know more, and we have the computing power to make them practical: Generic
functions and data types; compilers that are free to choose among radically different
implementations and resource strategies for the same code; passing executable code
across functions—as parameters or function returns—as freely as any other data;
control structures (such as switches) that can test for more than whether two byte
patterns are identical. And more. There have been decades of progress since the
fundamentals of C++ and Objective-C were set.
Especially with llvm at its disposal, Apple has managed to wedge some of these ideas
into a language that remains compatible with C: Cross-function code analysis (in
certain circumstances); blocks; properties and Automatic Reference Counting. But
the language still has to be C, with its limitations on analysis, safety, and expression.

The obvious solution is to create a language that is transparent, safe, and expressive—but
can express the old Objective-C data structures and design patterns. Not an easy task. At
WWDC 2014, Apple announced its solution: the Swift programming language.

I can’t get deep into describing Swift; previous editions of this book avoided discussion
of languages and techniques beyond their influence on the Xcode workflow. But Swift is
“strange” enough that I want to give you a taste of what Swift can do that is at least
difficult to express in Objective-C.

m Generic functions, which express pure algorithms without having to specify in
advance what data types they handle.

m Type inference, by which Swift can enforce rigid data typing without requiring
explicit type declarations in many cases.

m Closures, raw blocks of executable code that can be passed around, called, or even
created, while a program runs. (Functions are just a special case of closures.)

m Currying, a technique for specializing a function by creating a new one that fixes
some of its parameters. The resulting function accepts the other parameters
(classically only one) and returns the result of the original function.

Swift 59

You noticed in Chapter 3, “Simple Workflow and Passive Debugging,” that the
components of a passer rating are pinned to an interval no less than 0.0 and no greater
than 2.375. This was done by adding a function pinPassingComponent() to enforce
exactly that interval. This is how the same thing might be done in Swift:

/******************** Generic pinner: *******************/

/* Given a value, make it no less than a lower bound, nor more
than an upper. The three values need only be of the same type,
and that type must conform to the Comparable protocol.

Comparable promises a type responds to the < operator, plus
the == operator from Equatable; the other relations follow
from those.

*/
func pinComparables<T:Comparable> (value: T, lower: T, upper: T)

-> T
{

if value < lower { return lower }
else if value > upper { return upper }
else { return value }

}

pinComparables(-8.0, 0.0, 2.375) // => 0
pinComparables(1.5, 0.0, 2.375) // => 1.5
pinComparables(7.0, 0.0, 2.375) // => 2.375

/******************** Pinner factory ********************/

/* Given a lower and upper bound, return a closure
that takes a single argument of the same type, and
returns the pinned value.

*/
func limitPinner<T: Comparable> (lower: T, upper: T)

-> (T -> T)
{ return { value in pinComparables(value, lower, upper) } }

/* The new function has the bounds baked-in; the only
variable is the value to be pinned to those bounds.

*/

/*************** Floating-point pinner: *****************/

let pinPassingComponent = limitPinner(0.0, 2.375)
// => a new function, (Double -> Double)

60 Chapter 5 Compilation

println("below: \(pinPassingComponent(-3.3)), " +
"above: \(pinPassingComponent(3.3)), " +
"within: \(pinPassingComponent(1.7))")

)
// => below: 0.0, above: 2.375, within: 1.7

That’s a lot of trouble just to confine a Double to an interval, though that didn’t stop
me from including it in Utilities.swift in the sample code for the chapters to come.
But it doesn’t stop there. String is also Comparable:

/******************* String pinner: *********************/

let stringPinner = limitPinner("Cornelia", "Josh")
// => (String -> String)

for name in ["Alan", "Fritz", "Oren"] {
println(name + ": " + stringPinner(name))

}
// Alan: Cornelia
// Fritz: Fritz
// Oren: Josh

/* All that was necessary was to pass the limits to limitPinner().
Swift inferred the type for limitPinner(), and therefore
pinComparables(), yielding a (String -> String) function
specialized for that range.

*/

Fine, if strange, but what about dates? In Swift, you represent them by the Foundation
(Objective-C) class NSDate, but NSDate is not Comparable; if you applied
pinComparables() to dates, the Swift compiler would reject it.

But you can make it Comparable:

/************* Define < and == for NSDate: **************/
/* Swift lets you define operators, even your own, like "<*>". */
public
func == (one: NSDate, another: NSDate) -> Bool
{ return one.compare(another) == .OrderedSame }

public
func < (one: NSDate, another: NSDate) -> Bool
{ return one.compare(another) == .OrderedAscending }

/************** Now NSDate is Comparable: ***************/
extension NSDate: Comparable, Equatable {}

Swift 61

/****************** Define some dates: ******************/
// Easy way to convert String to NSDate (en_US locale):
let shortFormatter = NSDateFormatter()
shortFormatter.dateStyle = .ShortStyle

/***************** A macabre date span: ****************/
let fBirth = shortFormatter.dateFromString("12/3/1955")
let fDeath = shortFormatter.dateFromString("7/15/2017")

/***** Create a pinning function for the life span: *****/
let inFritzsLifetime = pinnerFunction(fBirth!, fDeath!)

/******************** Some other dates: *****************/
let pearlHarbor = shortFormatter.dateFromString("12/7/1941")
let cBirthday = shortFormatter.dateFromString("12/23/1973")
let probeReachesNeptune = shortFormatter.dateFromString("8/9/2025")

inFritzsLifetime(pearlHarbor!) // => NSDate of 12/3/1955
inFritzsLifetime(cBirthday!) // => NSDate of 12/23/1973
inFritzsLifetime(probeReachesNeptune!) // => NSDate of 7/15/2017

Note
If you study Apple’s documentation of the Swift language, you can find every technique I
used here, but not everything you will, sooner or later, need to know about the Swift
standard library. In Appendix B, “Resources,” I’ll point you to sites where you can browse
the full library, but there is a shortcut: Add import Swift to any playground, hold the
Command key down, and click Swift. Xcode will present a complete listing of classes,
structs, and protocols, with comments to document most of them. Module Darwin for the
UNIX layer works, too, but isn’t as informative.

The first release of the Swift compiler is . . . a first release. Apple Developer Tools is
nowhere close to the ideal implementation. However, some things can be inferred from
the logical structure of the language and what it means for its potential:

Swift gives the compiler enough discretion that it can generalize or specialize code as
needed. For instance, the same function might be dynamically dispatched, provisioned as a
fixed-address routine, or copied into the caller inline, depending on how it is used in the
whole program, not on the developer’s guess. That is only one example of many. The
logical structure of the Swift language makes it possible to generate code that runs faster
than C++, until now the gold standard for speed in an object-oriented language. That’s in
principle; it isn’t there yet.

Using Swift, and Why
Part I of this book sticks to C to simplify the concepts. Once we get into development for iOS
and OS X, we’ll be working exclusively in Swift.

62 Chapter 5 Compilation

There is a reason: Apple has gone through this sort of transition before, through four
processor architectures (at least six, if you count iOS), two byte sexes, two application
frameworks, three desktop operating environments, and even a flirtation with Java. The old
ways are supported, even generously, even for years. But in time, the old way falls off.
Objective-C is not going away soon; probably not for years. But Apple has made clear that
Swift will make your apps, and therefore its products, more stable, secure, and responsive
than Objective-C can.
Cocoa itself, Foundation especially, isn’t going anywhere: NSDate and its family, for
example, give Swift a core library other new languages take years to mature into. If you seek
the missing features in the Swift standard library, look around you: They’re in Cocoa.
But: Over time, Apple will be making advances in its hardware and API; it will set priorities on
how to make them easier for developers to support; it will choose how to allocate its OS and
tools efforts. It’s pretty clear that while Objective-C is dominant today, sooner or later Swift
will come first.
For new development, use Swift unless compelled not to. That includes products already
built in Objective-C: Apple has made the bridge between the two languages as gentle as it
can be.
Of course, I’ve had nearly 40 years to say this sort of thing about dozens of Apple
technologies that have long since sunk from memory.

Compiler Products
Object files are the principal products of the compilation process: You’re most often
interested only in building something you can run and test. But sometimes, the compiler
will identify issues or produce results that, with all diligence, you can’t make sense of. In
such cases, it’s useful to see what the compiler did on the way to translating your code.

Also, the build process will produce files that encapsulate repetitive tasks, like compiling
common header files. These, too, are compiler products.

Intermediate Products
When you are tracing bugs—or are just curious—you may need to see what the compiler
has done in the steps between your source and the executable product. Xcode provides a
way to do this.

C-family compilers were originally run in three stages, each feeding the next. Modern
compilers merge the steps to gain a better understanding of how to generate the best code,
but notionally the steps are still there, and you can get the products of each:

1. The preprocessor takes your code and outputs the “real” source after making simple
string substitutions. When it finds #include and #import directives, it inserts the
contents of the included files into the output stream. Macros from #define
directives are expanded and substituted into the stream. Conditional directives admit
or block sections of code in the input file.

Compiler Products 63

You can see the results of the preprocessor by clicking on the Related Items menu
(at the left end of the jump bar above the editor) and selecting Preprocess. The
editor shows the full interpreted stream of the current source file. This can be long,
but you can track down bugs by making sure that the code you thought you were
compiling, and the symbols you thought you were using, are really there.
Choosing Preprocess from the root item in the jump bar of the Assistant editor will
display a preprocessed version alongside the file you are editing. Also, you can issue
Product→Perform Action→Preprocess.

2. The parser/generator takes the “simplified,” preprocessed code, reduces it to logical
constructs (parsing), and produces the assembly source for a machine-language
program that does what the original source directs (code generation).
There are three ways to call for an assembly listing.

m Selecting Assembly from the Related Items menu, which drops down from
the small array-of-rectangles button at the left end of the jump bar
(Figure 5.4), replaces the editor’s contents with the translated code.

m The Product→Perform Action→Assemble command does the same
thing.

m Selecting Assembly from the Assistant editor’s jump bar will show the
assembly for whatever file is in the Standard editor.

Note
This is not a disassembly like the one I began this chapter with. It is not derived
from the final executable stream of the completed product. It is a representation of
the compiler’s understanding of your code, and features annotations that relate
back to clang’s knowledge of your source.

Note
Unfortunately, as of Xcode 6.3, neither the Assistant editor nor the Related Items
menu will produce assembly or disassembly listings for Swift code. Full support for
Swift is a work in progress; code refactoring is another example. You can expect
these features to come back as time goes on.

3. An assembler reads the assembly source and reduces it to executable bytes in an
object file, with references to be filled in by the linker. The otool command-line
tool has a plethora of options for examining object files and libraries, with
dis-assemblies and file layouts, and limited options for editing. The nm tool is useful
for examining the symbol tables in a library. See man otool and man nm for details.

Note
The three-step translation process has no meaning in Swift: There is no preprocessor, and
the compiler can’t determine exactly what code to generate until it has analyzed the
whole program.

64 Chapter 5 Compilation

Figure 5.4 The small item at the left end of the jump bar above any editor view is the anchor for
the Related Items menu, offering many alternative views of the file displayed in the editor.

Precompilation
Mac and iOS applications draw on frameworks, packages of dynamic libraries, headers, and
resources that define and link to the operating systems, human interface services, and other
services. Frameworks entail huge numbers of large header files. In early days, it made sense
for programmers to speed up builds by carefully choosing the system headers they
included, but the Cocoa frameworks are so interdependent that that isn’t possible. (In fact,
Apple emphatically warns against trying to pull pieces out of frameworks.)

Prefix Headers
Framework headers are usually the first things a C-family implementation file imports,
either directly or through headers of its own. You can set a prefix file to be injected into the

Compiler Products 65

source stream of all your files; in fact, when you instantiate an iOS or OS X project,
Xcode generates a .pch file and sets up the build settings to inject it. A typical prefix file
looks like this:

#ifdef __OBJC__
#import <Cocoa/Cocoa.h>

#endif

That’s convenient, but doesn’t solve the problem of speed if the prefix is to be read and
converted every time you compile a file. The .pch extension gives a clue to the solution:
The file’s intended purpose is as source for a precompiled header; if you opt for
precompilation, clang will read the .pch and save its parsing state. All subsequent uses of
the prefix header will reload that saved state, saving you the time that repeating the
compilation would have taken. There is another build setting for precompilation, and by
default, it is on.

Note
Again, this is C-family; Swift depends on modules and API it pulls in automatically from
other source files.

Modules
The clang supplied with Xcode 5 added modules to the C-family languages. The
designers saw a problem: Notionally, the #include and #import directives that have
been a part of C since its inception are nothing more than commands for pouring the
uninterpreted text of one file into another. The included file defines symbols and macros
that the compiler applies in the order it sees them. If you reorder the includes in your
source files, the reordering of the definitions could change their meanings. Further,
because you could insert defines among your includes, there is no way to be sure you can
share precompiled inclusions among implementation files; even the same sequence of
includes could yield completely different code.

The llvm engineers’ response is a system of modules, to be added to the C-family
programming languages. Unlike header files brought in by the preprocessor, each module
is a discrete unit and can come into the compilation state as completely parsed units. Swift
is designed exclusively for modules, which are usable unchanged for Swift and
Objective-C alike.

There is a price: For the full benefit, you can’t modify the effects of included headers
by interleaving your own macro definitions. (It forces the compiler to generate a unique
module file for just that case.) If you ever found it a good idea to do that, it’s because bad
design in the headers forced you. If you deliberately exploited order dependencies among
your header files, you were insane, and should have stopped.

For a concrete instance, the C standard libraries might be encapsulated into an umbrella
module called std, and you could request only the parts you want by asking for
sub-modules like std.io or std.strings. You can invoke the module feature directly

66 Chapter 5 Compilation

by replacing your framework includes and imports with the @import Objective-C
directory, so

#import <Foundation/Foundation.h>

becomes

@import Foundation;

Command-clicking the module name will take you to the framework’s umbrella header.
Unfortunately, none of the living authors of the many billions of C/C++/Objective-C

source files are going to amend them to replace preprocessor directives with @import
directives. For legacy code, when clang sees an #include or #import, it tries to build a
module on the fly and use the module from then on.

Apple has modularized the system libraries, so the worst of the
#include-and-recompile cycle has already been eliminated. If you examine the
preprocessed version of your source, you’ll find that the contents of the system headers
have been replaced with “implicit imports.” If you want to pre-build modules of your
own, you can describe the structure by providing a module.map file.

The module.map file does something else: It associates libraries with each module. If
you #include/#import a header from a modularized framework, you don’t have to add
the framework to the “Link Binary With Libraries” build phase.

Swift adds another level: Objective-C code is subject to namespace collisions when
objects from different libraries unwittingly adopt the same names. If you’re lucky, the
linker will detect the duplicate definitions and refuse to emit an executable file. If not—as
may be the case with the dynamic symbols used throughout Objective-C—you won’t
know until your app makes very strange errors in very strange places.

For this reason, Swift code uses modules to confine symbols to the modules that define
them (even the public ones). Your own application is a module, with a name based on the
app name: The ASCII alphanumerics go through unchanged, and everything else is
replaced by an underscore.

If you use a symbol from another module in a way that might give rise to a conflict,
Swift will require you to prefix the symbol with the name of the defining module: If you
have a class named Parser, and you use a library XMLParser that provides its own class
Parser, you can safely refer to the library class as XMLParser.Parser.

Xcode 6’s new-project and -target templates for Objective-C are set to use modules by
default. If you want the automatic linking feature as well, set “Link Frameworks
Automatically” to Yes—that’s the default, as well.

I’ve left many of your questions unanswered; visit http://clang.llvm.org/docs/
Modules.html to learn more.

Summary
This chapter was a short but essential review of what happens when you compile and link
a program. You saw how compilation not only translates your code into machine-

http://clang.llvm.org/docs/Modules.html
http://clang.llvm.org/docs/Modules.html

Summary 67

executable code, but also transforms it. The biggest task in building an executable is not
translation, but the bookkeeping involved in allocating space to data and code and how it
culminates in the linkage phase. Linkage can be done all at once, as in a static linker, but
iOS and OS X rely heavily on dynamic linkage, where much of the heavy work is done as
the program starts running.

This page intentionally left blank

6
Adding a Library Target

The passer rating function is a tremendous achievement—and hard-won. It plainly
has applications beyond that simple command-line tool, so let’s encapsulate its services for
use in other programs.

All right, no, it isn’t, but doing so will introduce some important skills. So, you can
create a static library (an archive of reusable code) for passer rating, moving its code
from the passer-rating tool into the new library, and linking it back into the tool.

Adding a Target
You don’t need to start a new project to create a library—it’s better if you don’t. Open the
passer-rating project in Xcode and click the top entry, representing the project, in the
Project navigator. This brings up the Project/Target editor.

Like all editors, it has a jump bar at the top. The next bar contains the tabs that
organize the target’s settings. At the very left end is a button with a triangle on it. This
opens the master list of the objects the Project/Target editor can work on. If you don’t see
the master list on the left side of the editor, click this button to disclose it. The list contains
listings for the project itself, and for the sole target, passer-rating (Figure 6.1).

At the bottom of the master list is a + button. Click it.
This produces a New Target assistant sheet, which organizes the available templates in

the way you’ve already seen for projects and files.

1. In the column on the left, select OS X → Framework & Library.
2. You’re given a choice of linkable targets. Pick Library (passer rating doesn’t

involve anything more than standard C, and doesn’t need the dynamic linkage
provided by a framework), and click Next.

3. Name the product. You may be aware that Unix static libraries have names of the
form libname.a. Don’t worry about that; just provide the base name passer, and
the build system will take care of naming the file.

4. Select None (Plain C/C++ Library) from the Framework popup.
5. Select Type: Static, and accept Project: passer-rating.
6. Click Finish.

70 Chapter 6 Adding a Library Target

Figure 6.1 Click the button on the left end of the Project/Target editor’s tab bar to disclose the
master list of objects the editor can work on.

The Editor area is filled with a Target editor for the new “passer” target. For simple
targets like C libraries and tools, the editor has three tabs:

m Build Settings lets you set all the options that control how the target is to be built.
Even for so simple a library, there are quite a few of these. You can cut down by
selecting the Basic and Combined filters. There is at least one all-caps setting that
Xcode calls “User-Defined.” These refer to clang. Xcode treats them this way
because the passer library doesn’t contain any source files yet, and Xcode doesn’t
know about clang until something in the build process uses it.

m Build Phases is something you saw before, in Chapter 5, “Compilation.” It
describes the components of the target and how they will be converted for use in
building it. This is the first thing Xcode will show you when you create a target.

m Build Rules allow you to change the tools the Xcode build system uses to process
files into the target. You can define rules of your own so you can add custom files
and processes, but most developers never bother with it. You can learn more in
Chapter 25, “The Xcode Build System.”

Select the Build Phases tab.

Targets
What have you done? What is a target? Let’s step back from the details of the Target editor.

A target describes a single build process in Xcode: It has a specific product, a specific set
of files that go into the product, and a specific set of parameters for the build process.

Targets are organized into build phases. A build phase accepts files that are members of
its target and processes them in a particular way. Source files (.c, .m, .swift, and .cpp
files, most commonly, but other files for other compilers, as well) go into a “Compile
Sources” phase; libraries, into a “Link Binary With Libraries” phase; and so on.

Target Membership 71

Note
Chapter 25, “The Xcode Build System,” covers build phases and their role in the Xcode
build system in detail.

You can change the files and settings as much as you like, but the type of the product,
which determines what build process will be used, can’t change. If you’ve started a static
library, for instance, and then decide you need a dynamic library instead, you’re out of
luck. You have to create a new target for a dynamic library and add the source files again.

Target Membership
Targets consist of a product (which you specified), build settings (which you’ve accepted),
and member files, of which the passer target has none. You’ll have to add something—
specifically rating.c.

Adding Files to a Target
There are three ways to do this.

m Click the project item in the Project navigator, and select the library target, passer,
from the Targets list. Select the Build Phases tab. Find rating.c in the Project
navigator, and drag it into the “Compile Sources” phase. The label will show that
there is one item in the phase, and the phase will open to show rating.c in the list
(Figure 6.2).

Figure 6.2 You can add a source file to a target by dragging it from the Project navigator into the
“Compile Sources” phase. This gives you the most control of the role the file will play in the build

process.

72 Chapter 6 Adding a Library Target

m Undo that by selecting rating.c in the Compile Sources table, and clicking the –
button at the bottom of the table (or pressing the Delete key), so you can try
another way.

Note
Removing a file from a build phase, even all build phases, won’t delete the file or
remove it from your project.

Now click the + button at the bottom of the Compile Sources table. A sheet
containing the project outline drops down. Click rating.c, and then the Add
button. If you click Add Other. . . , you can select files on-disk and add them to
the build phase and the project in one step.

m The third way is to come at it file-to-target: Click rating.c in the Project
navigator. Then expose the Utility area by clicking the right-hand segment of the
View control at the right end of the toolbar. Make sure the first tab, the File
inspector, is selected. The File inspector lets you control the way Xcode treats the
selected file (or files; if you select more than one in the Project navigator, the
settings will affect all of them). One of the sections is Target Membership, listing
all the targets in the project. For rating.c, click the checkbox for the passer target
(Figure 6.3).

The advantage to working from the build-phase end is that you have control over
which phase a file goes into. Yes, .c files should almost always be compiled, but suppose
you were creating a programmer’s editor for OS X that has file templates embedded in it.
Your TemplateFile.c file looks like C source—it is—but you want it bundled as a text
file, not compiled as source. The phase you want is “Copy Files” (available only for

Figure 6.3 A table in the File inspector lets you select which targets a file is to contribute to.

Target Membership 73

application and bundle targets), not “Compile Sources.” If you start from the build phase,
there’s no ambiguity.

Working from the file’s end of the chain has an advantage of its own: If your project has
many targets, the checkboxes allow you to set all memberships at once, without having to
visit the Target editors and hunt for the files. Xcode will guess which build phases they
should go into, but its guesses are usually correct.

When you create a new file, using File→New→File. . . (N), you get a shortcut to
assigning targets from the file end: The save-file dialog for the new file includes a picker
for the targets to which you want to add it. Similarly, when you add files, File→Add
Files to. . . (A), you’re given a target picker. Again, Xcode will guess at the build
phases (Figure 6.4).

Warning
The target picker may not be set for the targets you expect. This is easy to miss, and the
resulting errors will puzzle you.

However you added rating.c to the passer library, remember to remove it from the
passer-rating target. The whole point of having a library is that clients don’t have to
include the source for the services it provides.

Figure 6.4 The save-file sheet for creating a new file includes a table for selecting the targets the
file is to contribute to. The table is always set to the last-selected set of targets.

www.allitebooks.com

http://www.allitebooks.org

74 Chapter 6 Adding a Library Target

Headers in Targets
What about rating.h? You can’t add it to an application target from the file end:
Headers themselves aren’t compiled—they merely contribute to implementation files. If
you want them inside an application bundle for some reason, you can drag them into the
“Copy Bundle Resources” phase.

rating.h can be added to a library target. You can choose the role the header plays in
your product:

m Project, if it’s to be visible only inside your project, as an element in a build.
m Public, if it’s to be installed somewhere like /usr/local/include, or the
Headers directory of a framework.

m Private, if it’s to be installed in the PrivateHeaders directory of a framework.

One of the phases the Build Phases tab of the target editor is “Headers.” This phase is
available only for library and framework targets. Expanding it reveals sections for the
Public, Private, and Project categories. The process is the same as for adding files to the
other build phases: Drag the header from the Project navigator into the proper role; or
click the + button to choose a header from a browser. The latter method will put the
selected header into the project category, but you can drag it to the one you want.

A Dependent Target
Next to the Run and Stop buttons in the toolbar is the Scheme control, which sets the
target and CPU architecture to be used for actions like running a product. Select passer -
My Mac, then select Product→Build (B). Xcode builds the library, and reports
success.

Now switch the scheme popup to passer-rating - My Mac. Click Run. The build
fails. Let’s see why. Select the Report navigator (last tab at the top of the Navigator area).
The navigator lists all the events in the recent history of the project; the top item should
be the build you just attempted. Select it; you’ll see a summary of the build, including an
item carrying a red ! icon.

That item says the problem occurred at the “Link” step. Click the stack-of-lines button
at the right end of the item to reveal the transcript for that part of the build. The last part
is the linker’s complaint:

Undefined symbols for architecture x86_64:
"_passer_rating", referenced from:

_main in main.o
ld: symbol(s) not found for architecture x86_64
clang: error: linker command failed with exit code 1 (use -v to see

invocation)

In other words, main() uses passer rating, but the linker couldn’t find that function.
See Figure 6.5.

A Dependent Target 75

Figure 6.5 The Report navigator lists all of the problems that arose in your build. Clicking on an
issue displays the location of the problem. In this case, the error came at the link phase, so the

editor displays the link command and the error messages it printed.

This makes sense: You removed rating.c, and therefore passer rating, from the
passer-rating target, and you haven’t told that target where to find it. Yes, the file and the
library product are still in the project, but it’s the passer-rating target, not the project, that
determines what files go into the passer-rating tool.

Note
Chapter 25, “The Xcode Build System,” shows in-depth how to interpret build transcripts.

Adding a Library
So you need to correct the passer-rating, which means going to the Target editor. You
know the drill: In the Project navigator, select the passer-rating project at the top of the
list. In the targets list, select passer-rating, and then the Build Phases tab.

You want to link libpasser.a, the product of the passer target, into passer-
rating. It’s straightforward: Open the “Link Binary With Libraries” build phase, and
click the + button. A sheet appears with a two-section list. The first section, titled
“passer-rating Project,” lists the libraries the project produces—in this case, only
libpasser.a. Select it and click Add.

Note
A popup containing Required and Optional appears next to the name of libpasser.a.
Always use Required until you have enough experience to know why you wouldn’t.

76 Chapter 6 Adding a Library Target

Note
If you’re building a Cocoa (iOS or OS X) application, you can also add libraries in the
Linked Frameworks and Libraries section of the General tab in the Target editor.

Now click Run. The build succeeds, passer-rating runs, and when you enter
some test data, it works. Everything is great.

Implicit Dependencies
In a more traditional build system, your work would not be finished. Suppose you added a
printf() call to rating.c. The change in the file would cascade to a rebuild of
libpasser.a.
And there the changes would stop. Such build systems have to be told when a product (such
as passer-rating) must be updated in response to a change in a constituent library.
Changing rating.c would not get the updated library linked into passer-rating, and
when you run it, there would be no call to printf().
Xcode is subtler than that. When it sees the product of a library target used in another
target, it knows to bring the library up-to-date, so the target that uses it gets the latest
version. This is almost always what you want.
If it’s not what you want (usually because you have to keep compatibility with an old project),
use the Scheme editor. Open it by selecting Product→Scheme→Edit Scheme. . . (<).
(On U.S. keyboards, this amounts to period.) The Scheme editor controls the
environment in which targets are built and run.
Make sure passer-rating is selected in the popup at the top of the editor sheet that slides
down, and select Build from the master list. Uncheck Find Implicit Dependencies. Click OK
when you’re finished.
Now you can choose which targets (dependencies) will be rebuilt when the consumer target
is rebuilt. In this example, click the top item in the Project navigator to open the Target editor
for the passer-rating target, and disclose the “Target Dependencies” phase. Click the +
button to select the passer target, and Add it to the dependency list.
Then remove it, go back to the Scheme editor, and enable implicit dependencies again.
There’s no point in making yourself crazy.

Debugging a Dependent Target
One more thing. Suppose you develop a new interest in libpasser.a and want to
debug it as it is called by the command-line tool. The tool and the function are produced
by different targets; does that matter?

See for yourself: Set a breakpoint at the assignment to completionComponent. Run
passer-rating.

Sure enough, the debugger stops the application at the breakpoint. Xcode will
consolidate the debugging information across the targets that go into the current
executable.

Summary 77

Summary
You’ve divided the passer-rating application into a main executable and a static
library. It hardly deserves it, but it’s just an example.

On the way, you created a target to assemble and build the files needed for the new
library, and distributed files between the library and the main program. You added the
libpasser.a library product to the main passer-rating target.

You saw that Xcode does right by you in two important ways: Adding the library to the
application target not only linked the library into the application, it ensured that the
library is always brought up-to-date when the application is built. And, it incorporated the
debugging information from the library so you can examine the working of the library
while the application is running.

Next, a chapter about hygiene.

This page intentionally left blank

7
Version Control

There isn’t much to the passer-rating project—less than a hundred lines of source, plus
the contents of the project file—but you have already invested time and trouble in it. So
far, you’ve only created three files, but soon you will be moving on from creation to change.
If you’re like most programmers, you are conservative of the code you’ve written. An old
function may no longer be required, but it may still embody an insight into the underlying
problem.

One solution might be simply to keep all of the obsolete code in your active source
files, possibly commented out or guarded by #if 0 blocks, but this bloats the file and
obscures code that actually does something. Once the revisions get more than one layer
deep, it can be difficult to track which blocked-out stretch of code goes with which.

A source-control (or version-control) system is a database that keeps track of all of the files in
a project and allows you to register changes to those files as you go. Version control frees
you to make extensive changes secure in the knowledge that all of the previous versions of
each file are still available if you need to roll back your changes.

You may have heard of version control and concluded that it’s only for large projects
with many developers. It is true that it makes it much easier to manage large code bases
and to coordinate the efforts of large teams. But even if you work alone:

m You will still make extensive changes to your source.
m You will still need to refer to previous versions.
m You will still need to revert to previous versions to dig yourself out of the holes you

dug with those extensive changes.
m You will find it easier if you can make changes cleanly, rather than trying to make

sure you caught all the obsolete code in comments and #if 0 blocks.
m You will likely need to work on more than one computer, each of which will

contribute different changes to your code base.

As I said in Chapter 3, “Simple Workflow and Passive Debugging,” if you are going to
change your code, ever—if you save a file more than once—you ought to put it under
version control. Xcode 6 makes it easy.

80 Chapter 7 Version Control

Note
Xcode 6 supports two version-control systems: Subversion and Git. Subversion is in wide
use, but it has been overtaken by distributed systems like Git. Most open-source projects
are now shared through public services like GitHub, or private repositories on the Net.
Xcode’s workflow has centered on Git since Xcode 4. I regret it, but for simplicity’s sake,
I’m only covering Git.

Taking Control
So I’ve convinced you. You want to get your project under source control. How do you
start?

If you took my advice in Chapter 3, you’ve started already. When you place a new
project on disk, Xcode offers a checkbox, Create Git repository on, followed by a pop-
up menu that defaults to My Mac (Figure 7.1). You checked it. The passer-rating/
directory contains a hidden .git/ directory that indexes the project, and Xcode tracks
the files you add and edit.

If you used the Welcome window (Window→Welcome to Xcode, 1), you may
have chosen Check out an existing project, which would have led you through the
process of cloning a remote repository into your local storage. The cloning process creates
a .git directory, and the copy is under the control of the local repository.

There is a third option. If you’ve registered an Xcode server in the Accounts tab of the
Preferences window, the Create Git repository on popup will include the name of that
server. If you select it, Xcode will still create a .git directory for a local repository in
your project directory, but it will also negotiate with your server to set up a remote
repository on that machine. Other developers (or your other computers) will then be able
to coordinate their work with a central copy of the project.

Note
Xcode Server is a feature of Yosemite Server. The server-management application includes
a configuration panel for Xcode, just as it does for mail and the web. Yosemite Server is a
simple add-on (early versions of OS X Server were pricey replacements for the retail OS)
costing about $50 in the Mac App Store. As a paid member of the Mac Developer
Program, you can download the current version for free.

Figure 7.1 When you create a project, Xcode offers to create a local Git repository to control it.

Taking Control 81

Creating a Git Repository by Hand
Most of the time, you’ll use the automated methods for creating or retrieving a local
repository, and you don’t have to think about it. Still, you must know how to bring an
existing project under control if Git had never touched it.

There’s one optional step I recommend: Create a .gitignore file to tell Git that
certain files and directories are off limits. They won’t be included in mass additions to the
repository, and they won’t be listed in status messages as unmanaged. It’s simple. Open the
Terminal application (/Applications/Utilities/Terminal) and get busy:

$ # Focus on the project's directory:
$ cd /path/to/my/project
$
$ # Enter the contents of the file, closing with control-D
$ cat > .gitignore xcuserdata/ .DS_Store

<

D
$ # Want to add other files?
$ # Include them in that last command,
$ # or append them to the existing .gitignore
$ # with "cat >> .gitignore" (two carets).
$

Note
Apple’s distribution of Git already knows to ignore some files and directories.

Note
Xcode 6 and Yosemite do a bit of legerdemain with command-line developer tools like git.
See “Command-Line Tools” in Chapter 1, “Getting Xcode.”

$ # Add a Git repository to this directory:
$ git init
Initialized empty Git repository in

/Users/xcodeuser/Desktop/MyProject/.git/
$
$ # Tell Git you want to control everything in "." (this
$ # directory tree), except for what's in .gitignore:
$ git add .
$
$ # Tell Git to record the files you added,
$ # logging it as "Initial commit"
$ git commit -m 'Initial commit'
[master (root-commit) f0d59bf] Initial commit
9 files changed, 819 insertions(+)
create mode 100644 .gitignore ...

This is all you need do so far as Git is concerned, but if the project was open while you
did it, Xcode won’t notice. You’ll have to quit and restart Xcode before the Source

82 Chapter 7 Version Control

Control menu recognizes your project, and source-control status flags appear in the
Project navigator.

Part of the metadata Git attaches to the files it tracks is the name and email address of
the person who made each change, line by line. The first time you try to commit to a Git
repository, if you have not configured your name and address, Git will balk and demand
that you make the settings. It will give you examples of the commands you will have to
issue.

If your first-ever repository was created by Xcode, this presents a problem. The first
thing Xcode does with a new project is to commit almost all the files it instantiates from
the project template. That commit will fail if you haven’t set your Git identity. Xcode will
display Git’s message in an alert sheet, and the commit will not have gone through. You’ll
have to fix it in Terminal:

$ # Focus on the project directory (use your own path)
$ cd /path/to/my/project
$
$ # Set your metadata (your own address and name)
$ git config --global user.email "xcodeuser@example.com"
$ git config --global user.name "Xcode User"
$
$ # Do the commit Xcode couldn't
$ git commit -m 'Initial commit'

Note
Once the local repository is in place, you can also make up for the lack of a link to a
remote repository. See the “Working with Remote Repositories” section later in this
chapter.

The State of Your Files
Xcode presents a model of source control that is close to that of the version-control system
you chose. Subversion and Git are different; I’ll show you how Git sees files, and how
Xcode reflects that view.

In Git’s world, a file can be in one of six states.

m Ignored—The file’s name matches a pattern in the .gitignore file. Git will never
attempt to manage it, unless you explicitly add it to the repository.

m Untracked—Git sees the file, but it’s neither in the repository nor staged for adding
to the repository. There is no history of its previous contents. The git add
command stages it for entry into the repository.

m Modified—In a way, a modified file isn’t much different from an untracked one: Its
contents won’t go into the repository until it is staged. However, its previous
contents are in the repository and can be compared against the current version, or
restored. It, too, can be readied to commit its contents with the git add command.

The State of Your Files 83

m Staged—The file has been designated (with git add) for inclusion in the next
commit. Why doesn’t the add command simply put the modified/new contents
into the repository? Because you usually make logical changes to your project in
more than one file—a method in an .m file, its declaration in a header, and its use in
other .m files—and it doesn’t make sense to register or roll back changes that are
only partway made. When you stage a file, you’re assembling it into a conceptual
group that will arrive in the repository all at once.

m Unmerged—You changed the file and attempted to pull in changes from another
repository, and the two sets of changes couldn’t be reconciled. Git marks the file to
highlight the conflicts, and warns you if you attempt a commit without resolving the
conflict. When you modify and restage the file, Git takes it that the conflicts are
resolved and stops complaining.

m Unmodified—The file’s current state, as registered with git commit, is what’s in
the repository. So far as Git is concerned, there’s nothing more to be done with it
unless you want to inspect or restore an earlier state. When you edit and save the file,
it becomes “modified,” and the add/commit cycle begins again.

If you delete a file, that counts as a modification. git rm will stage the deletion for the
repository. If you move or rename a file, that’s equivalent to a git rm of the file at its old
location or name, and git add at the new one. git mv will do it all in one step.
However you do it, Git will notice that the “old” and “new” files are identical, and the
file’s track in the history will be unbroken.

How Xcode Works with Git
Xcode’s view of a Git repository is slightly different, because its demands as an IDE require
another layer of abstraction. As Xcode presents them, files have six states.

m Unmodified, with no badge on the file’s entry in the Project navigator. The file’s
history is in the repository, and you haven’t saved any changes.

m Modified, with an M badge. The file is in a repository, but you’ve changed your
working copy since it was last committed. Git will see these files as “modified,” but
not “staged.” Xcode’s version-control model has no “staged” status. When you
commit a revision, Xcode lets you choose which files to include in the commit, and
stages and commits them at the same time.

m Added, with an A badge. You’ve created a new file in the project (File→New
→File. . . , N), or added an existing one and copied it to the project directory
(File→Add Files to. . . , A). Xcode will stage added files, but will still let you
withhold them from a commit.

m Renamed, with an A+ badge. You’ve moved or renamed a file in the project.
Xcode stages such files, but will still let you withhold them from a commit.

m Conflicted, with a red C added to any other status indicator. When you merge
changes from another repository into your own, it may not be possible to determine
which lines from which files are to survive the merge—more on this soon. Xcode

84 Chapter 7 Version Control

flags these with a C and will refuse further commits until you use Source Control
→Mark Selected Files as Resolved to clear the conflicted state. Git’s approach is
slightly different: It tracks conflicted files, but clears the conflicts when you edit and
stage them.
See “Merges and Conflicts,” in this chapter, for how you can resolve conflicts in a
file.

m Unknown, marked ?. The file is in the project directory, but not in the repository.
This is equivalent to Git’s “untracked” state.

Your First Commit
If you created a Git repository along with your project, Xcode has already done your first
commit—all of the source files, and all of the configurations that aren’t one-user-only are
already in the repo.

But what about the first commit you do? Set up an experiment:

1. If you didn’t have Xcode create a repository for the passer-rating project, use the
techniques I just showed you to add one.

2. Open the passer-rating project.
3. If you just now created the local repository (and possibly restarted Xcode), the

Project navigator will be full of files marked M. Otherwise, make a change to one of
the files and save it; the file will pick up the M badge in a few seconds.

4. Select Source Control→Commit. . . (C). A sheet will appear (Figure 7.2)
showing your changes and offering a text-editing area for your notes on what you
changed.

Note
The Commit editor, which shows the changes you’re committing in a file, is a real editor.
You can make last-moment changes, and those will be a part of the file as it is committed.

Working with Remote Repositories
Git is a distributed source-control system. To simplify, every developer has a repository
containing the whole history of the project. The repositories are peers; in principle, none
of them are authoritative. The concept that Subversion has of a single repository feeding
the truth to clients in the form of snapshot copies of the project has no inherent expression
in Git.

However, it’s common to have such a central repository for a project, one on a machine
that is continuously available, is backed up, and has a stable hostname and IP address. That
way, multiple developers, or a single developer with more than one computer, can keep
each other current.

Working with Remote Repositories 85

Figure 7.2 The Commit editor sheet contains a variant on the Comparison editor. It highlights the
changes made in each file. The source list on the left side of the window allows you to withhold files

by unchecking them. The file to be committed can still be edited. The area at the bottom receives
your message describing the new revision. Xcode will not permit you to complete the commit without

a message.

Usually these are “bare” repositories, cloned or inited with the --bare option so
they do not include the literal set of controlled files that developers would have in their
working copies.

Note
A local working copy may be associated with more than one remote repository, but let’s
keep it simple.

Xcode has three ways to deal with remote repositories.
m Cloning an Existing Repository: The remote is known to exist. You can clone it

by selecting Check out an existing project from the Welcome window (1).
The Source Control→Check Out. . . command has the same effect. Obviously,
the remote repository was there; you wouldn’t have a clone otherwise.

m Creating a Repository with Xcode Server: The remote does not exist, but
Xcode can make it exist. If you have an Xcode server registered in the Accounts
tab of the Preferences window, you can ask the server to create a bare repo for you.
If your project has a local repository in its working copy, you can select the working
copy in the Source Control menu, and then Configure. . . . The Configure
Repository sheet will drop down; select the middle tab, Remotes.
Click the + button at lower left and select Create New Remote. . . . You’ll be
asked to identify the Xcode server from a list of the ones you registered in the
Accounts preferences and to give it a name for local reference. (The name has to be
usable by the Git tools; Xcode will reject names that don’t fit the need.) See
Figure 7.3, top right.

86 Chapter 7 Version Control

Figure 7.3 Using the Configure Repository sheet (bottom) available for a project in the Source
Control menu, you can add an existing repository as a remote (top left), or negotiate a completely

new repository with an Xcode server (top right).

Xcode logs into Xcode Server and negotiates the creation of the repo, and the server
does the rest. Push your working copy onto the remote (Source Control
→Push. . . , and select the remote and branch). You’re done. On the server, the
Server control application’s Xcode panel shows the new repository (Figure 7.4).

Figure 7.4 Adding a repository to an Xcode server from Xcode adds the new repo to the list in the
control application on the server.

Working with Remote Repositories 87

m Adding a Reference to a Repository: Selecting Add Remote. . . from the +
button in the Configure Repository editor shows a simple dialog sheet that asks you
for a local name and a URL for a repository (Figure 7.3, top right). Xcode updates
your working copy’s configuration with the pointer to the remote. Xcode will show
the remote and its branches whenever you push or pull files with it.
Add Remote. . . has exactly the same effect as the most common variant of git
remote add on the command line. That includes the fact that this is only a local,
named reference to a remote repository. Creating the reference in Xcode does not
ensure that the repo exists or is reachable.

Setting Up a “Remote”—Locally
You don’t need a fancy purpose-made server to work with a remote repository. You don’t
even need another machine. You can do everything I’m going to show you in this chapter
using a “remote” that’s nothing more than a local file directory.

You’re going to create a “bare” (no working files) repository in /Users/Shared/,
marked as “shared,” where all users can get at it. Open the Terminal, and do this:

$ # Work on the "Shared" user
$ cd /Users/Shared
$
$ # Create a directory for Git repositories...
$ mkdir git
$
$ # ... and work on that
$ cd git
$
$ # Create a shareable, bare repository named passer-rating.git
$ git init --bare --share=all passer-rating.git
Initialized empty Git repository in /Users/Shared/git/passer-rating.git/
$
$ # The directory contains just the repository infrastructure
$ ls -l passer-rating.git/
total 24
-rw-rw-r-- 1 fritza staff 23 Jul 7 15:56 HEAD
drwxrwsr-x 2 fritza staff 68 Jul 7 15:56 branches
-rw-rw-r-- 1 fritza staff 171 Jul 7 15:56 config
-rw-rw-r-- 1 fritza staff 73 Jul 7 15:56 description
drwxrwsr-x 11 fritza staff 374 Jul 7 15:56 hooks
drwxrwsr-x 3 fritza staff 102 Jul 7 15:56 info
drwxrwsr-x 4 fritza staff 136 Jul 7 15:56 objects
drwxrwsr-x 4 fritza staff 136 Jul 7 15:56 refs
$

With this, /Users/Shared/git/ includes a repository named passer-rating.git.
It’s a “bare” repository because there is no working directory containing files you can edit
and check in, and there never will be. Its sole purpose is to hold work from other clients.

88 Chapter 7 Version Control

The --shared flag tells Git that whenever it makes changes to the repository, they should
be given filesystem permissions that preserve other users’ access to the repo.

Note
Readers have felt cheated that this “remote” repository isn’t on a different machine, but
that’s not what the term means in Git. A remote repository is one that isn’t your local
repo. It doesn’t matter where it is—it could even be another subdirectory of your home
account. Simply add an item to the Repositories list in the Accounts panel of the
Preferences window, and enter a URL—file, ssh, http, whatever—giving the host and
path for the repo, and your credentials to access it. Once the link is established, Git hides
the details of where the remote actually is. As I write this book, I’m using a repo on an
Xcode server because it fits my workflow and I want to demonstrate some other features,
but you can follow along with a file remote and see no difference.

Note
What, by the way, is a Git server? Git transactions can take place over HTTP or HTTPS,
but the most common setup for small teams is a Unix box running an ssh server, on which
the stock Git package has been installed. That’s it. There is no software package that is a
“Git server.” And not every remote repository is a server, anyway—all repos are peers,
and it’s perfectly legitimate to push and pull revisions with another developer’s local
repository. There are far too many variants to cover in this book; I’ll recommend complete
guides later in this chapter and in Appendix B, “Resources.”

Return to your passer-rating project in Xcode, and from the Source Control menu,
select your local repository and branch, and then Configure passer-rating. . . (or
whatever your local is named). The Configure Remote editor appears as I showed earlier
in this chapter. In the Remotes tab, select Add Remote. . . from the + popup menu.
Name the remote origin (the expected name for the primary remote) and enter the
URL file:///Users/Shared/git/passer-rating.git.

You’re now ready to use the origin repository using exactly the same techniques no
matter where it’s located.

Pushing to the Remote
New bare repositories have absolutely no content, and if you try to clone (retrieve a new
copy) from one, you’ll get an error message from Git. You have to push your files into the
remote, thus filling its database with your files and the history they accumulated back to
the creation of your local repo.

If you got here by adding a regular remote repo by hand, you weren’t sure the remote
existed or was reachable—that’s not how Git works, it’s just a convenience name for a
URL. When the push dialog appears, Xcode pauses briefly before filling the remote/
branch popup. In that period, Xcode does verify that the remote exists and accepts
connections; if it doesn’t, Xcode won’t add it to the popup. See Figure 7.5.

Click Push. The dialog will show an activity spinner as the push is negotiated with the
remote and your changes are transferred. When it’s done, a green checkmark badge
appears briefly, and the sheet retracts.

file:///Users/Shared/git/passer-rating.git

Merges and Conflicts 89

Figure 7.5 Selecting Source Control→Push. . . drops a concise dialog with which you can
designate what remote, and branch within the remote, you want to push to. If you have a local

branch that the remote does not, the popup menu will include the option of creating the branch on
the remote.

Merges and Conflicts
All your work so far has been done under one user account on your Mac; call that “User
A.” Let’s imagine that User A is working with User B. For the sake of example, User B
will be played by a second account on the same Mac. In practice, your collaborators will
be other people—or you—using different computers.

User B doesn’t have a copy of the passer-rating project, but we’ve already seen how easy
it is for her to get one. She can

m Open the Welcome to Xcode window (1), and select Check out an existing
project; or

m Select Source Control→Check Out. . . .

Xcode will present a window that lists some repositories it already knows about, plus a
text field for the URL of any other. Xcode knows about some repositories because you
registered them in the Accounts panel of the Preferences window. And, of course, it
knows about remotes you added to other projects.

But User B is a stranger to all of that. She’ll have to enter the URL for the passer-rating
repository and click Next. The checkout window shows progress bars as it goes through
the process of gaining access to the remote, and then offers a get-file sheet for her to select
a directory to receive the project folder.

Note
Or, User B might be given a window telling her that whatever is at the other end of the URL
she entered “doesn’t appear to be a git repository,” which could mean anything. It covers
bad credentials, bad connection, bad URL. . . but the usual explanation is a bad URL.
Consult whoever gave you the URL and a Git tutorial for the formats Git expects for remote
URLs.

With that, User B has a complete copy of the master branch of the passer-rating
directory, including the complete revision history. The remote from which she checked
out is linked to the local repo as origin, and pushes and pulls go through it by default.

90 Chapter 7 Version Control

User A
User A has definite ideas about code style. In particular, he doesn’t like the long identifiers
in rating.c for the components of the passer rating. He does a search-and-replace to
change all instances of Component to Comp.

Change: Replace All in File
He did this by selecting Find→Find. . . (F), and typing Component into the text
field that slides down into the editor. As he typed, the editor highlighted its contents to
show the matching text. He has a choice of options from a popover window he can
summon by clicking the magnifying-glass icon in the search field and selecting Edit Find
Options. . . from the drop-down menu (Figure 7.6). He can search by literal text or
regular expression, whether the match must be at the beginning, at the end, anywhere in,
or all of a word. He can make the search case sensitive, and let it wrap around to the start
of the document when it reaches the end.

He definitely wants to make the search case sensitive, so as not to disturb the
component parameter to pinPassingComponent.

If he wants more flexibility, but doesn’t want to bother with regular expressions, he can
stick with a text search, set the insertion point in the search field, and select Insert
Pattern (

<

P). This will show a drop-down with common wildcard patterns, like
word characters, various kinds of whitespace, and even email, IP, and web addresses.
Selecting one adds it to the search text.

Note
You’ll wish it did more. The great thing about wildcard patterns in regular-expression
searches is that you can pick out the actual content the wildcard matched and use that to
refine the search or build the replacement. When you use the simplified find patterns, once
the pattern matches, you have no access to the details.

To replace, he clicks the popup menu at the left end of the search bar, and changes it
from Find to Replace. (Or he could have selected Find→Find and Replace. . . ,

F, in the first place.) Another field appears to receive the replacement text; he enters

Figure 7.6 Selecting Edit Find Options. . . from the drop-down menu attached to the search
badge brings up a popover box to adapt in-file searches to your needs.

Merges and Conflicts 91

Comp. The Replace field offers three actions: Replace substitutes the field contents for
the single highlighted search result in the document. All does the replacement for every
instance of the match. And if he holds down the Option key, All will become All in
Selection. He wanted to cover the whole file, so he released the Option key and clicked
All.

Note
If User A wanted to do a replace-in-selection, he’d have to do a dance that other editors
don’t require. The usual way is to make your selection, enter the find and replace strings,
and call for in-selection replacement. It can’t work that way for Xcode because in-file
searches are incremental: You can’t set up a search-and-replace without losing your
selection in favor of the search results. So User A would have had to enter his search and
replacement text first, then select the range he wanted to operate on.

Change and Conflict: The Copyright Claim
Also, he’s noticed that Xcode has copyrighted all the files to Fritz Anderson (see the
sidebar). User A is greedy; he wants the riches to be had from passer-rating for
himself. He uses the Find navigator to replace every instance with “User A.” I’ll show you
how User B did the same thing later in this chapter.

Selective Commits
Ideally, Git revisions represent coordinated changes to the project. Each commit serves a
discrete purpose, even if more than one file is changed. User A has made edits for two
purposes—pilfering the copyright and cleaning up the variable names. If you followed the
ideal of conceptual revisions, that’s now a problem because rating.c embodies both. On
the other hand, it’s against human nature to expect a programmer to edit a file, accomplish
one task, commit it, and only then make changes for the other task.

Git accommodates this with a “cherrypicking” option to its add command, and
Xcode’s Commit editor takes it further. The marker between the last-committed and
current versions of a group of lines has two controls (Figure 7.7). The right end of the
marker drops down a menu allowing you to exclude the change from the planned commit
or to remove the change from the uncommitted file entirely. The left end of the marker is
a toggle: If it is a checkmark, the change will be checked in; if it’s a prohibition mark, the
change ribbon will turn gray, and this commit won’t include that change. This is another
example of how Xcode’s version-control support puts a wrapper on the technical details of
the underlying system.

User A does two commits: The first is to be for the coding-style changes, so he
unchecks the copyright changes, leaving them for the second commit. Eventually, he’ll
push his accumulated commits into the shared repository.

Whose Project Is It?
Xcode’s templates for source files include a standard comment at the beginning showing the
name of the file (which it knows because it created and named the file), the date it was

92 Chapter 7 Version Control

Figure 7.7 (top) Xcode’s Commit sheet offers two ways to manage multiple changes to a file. The
drop-down menu disclosed from the right end of the change marker lets you withhold a change from

this commit, or even abandon the change for good. (bottom) The check/prohibit toggle button is a
more convenient way to withhold a change. The second range of lines has turned gray, showing they

will not be committed.

created (because it knows when it created it), the name of the person who created the file,
and a copyright notice (the year of which it knows from when it created the file). The names
of the creator and copyright holder may surprise you. How did it get those?
Like any modern operating system, OS X has user accounts under which all user applications
run. When you set up your Mac on its first run, you gave a short user name and longer
natural name to the first, administrative user of the computer. If you added accounts, you
provided natural names for those users, too. Xcode fills in the “Created by” line of the
comment from that natural name.
The copyright claim includes a copyright holder and a year, as by law it must. Xcode could fill
this in from the user’s natural name, but that’s almost never necessary. When you create a
project or target, Xcode asks you for an Organization Name, which it uses for the copyright
holder. For your own work, you’d enter your name (Fritz Anderson), but if it’s work for hire,
you’d enter the name of the owner of the project (The University of Chicago).
Failing that, Xcode will use the company name on the “Me” card in the Contacts application.
Failing that, it will use the full name on the “Me” card.
If you don’t set an organization name at the start, you can always select the project itself in
the Project navigator (top item in the list), open the File inspector (expose the Utility area on

Merges and Conflicts 93

the right, and select the first tab, which looks like a sheet of paper), and edit the
Organization field.

User B
User B has opinions of her own about copyright—she assumes (mistakenly) that the claim
is good only if made in the full legal name of the author. She replaces all of the claims by
“Fritz Anderson” in her copy with “Frederic F. Anderson.” Also, she sets the
Organization name in the Project inspector, so the problem won’t come up again.

She makes her changes to the copyright notice using a global search-and-replace. She
starts by selecting the Find navigator (third tab), or Find→Find in Project. . . (F).

The Find navigator contains a search field and some options (Figure 7.8).
We’ll get back to the options in detail, but what she sees is the following:
m At the top, a path control cascading from the action (Find) through the search type

and word-boundary selections (Text and Containing by default). She wants to do a
replace, not just a find, so she clicks the first segment and changes it to Replace.

m A button (it shows itself to be a button only when the mouse cursor hovers over it)
that says In Project, to select the file set the search is to cover. She clicks it to see
the options, and the provision for creating her own, then clicks it again; an
in-project search is just what she wants.

m A popup menu to choose case sensitivity. It doesn’t matter now, but she should
remember to look, or she’ll get more or less than she expects.

Figure 7.8 The Find navigator presents a search field and affordances for configuring the search.

94 Chapter 7 Version Control

m The magnifying-glass drop-down in the search field itself, giving a history of recent
searches, and the same character-pattern palette the in-file search field offers.

User B types Fritz Anderson in the search field and presses Return. The list below
it fills with all the matches, organized by file, showing each match in context. It’s only a
single line, but it’s better than nothing, and it’s not much trouble to click an entry to get
the whole story. See Figure 7.9.

Note
The buttons that execute a global replace won’t be active until a search has been done.
You’re not allowed to fly blind.

User B has a problem: She wants to correct the copyright claim, but the files should
still identify Fritz Anderson as the creator. She has more matches than she wants. She has
two ways to deal with this.

m She can command-click on each instance she wants to replace, and then click
Replace (which is now active, because there would be a difference between
replacing just the selections and doing a Replace All, which would replace all
instances, selected or not).

m She can click Preview.

Figure 7.9 The results of a find-in-project come in the form of a table grouped by file, showing the
matches in a one-line context. The Find navigator has been switched over to Replace mode and is

ready to replace all instances of “Xcode User” with “Fritz Anderson.”

Merges and Conflicts 95

Figure 7.10 Clicking the Preview button in the multi-file replace view displays a comparison of
each match, after and before the replacement. A toggle at each match lets you accept or reject the

changes.

If she opts for a preview, a variant of the familiar Comparison editor drops (Figure 7.10)
containing a source list of all the matches, and the after-and-before contents at each
match. Click the toggles to accept or reject each replacement. She rejects the creator
credits, and clicks Replace.

This being the first time she issues a command with project-wide effects, Xcode will
drop a sheet offering to take a snapshot of the project (Figure 7.11). A snapshot is an
archive of the whole project that provides a last-resort way to revert to the state of the
project before the change.

You can recover the snapshot through the Projects panel of the Organizer window
(2); select your project and a snapshot, and a button below the snapshot list will offer
to Export Snapshot. Xcode uses the word “export” advisedly—the result will be a

Figure 7.11 The first time you attempt a project-wide change, Xcode offers to create a snapshot
that preserves the current state of the project.

96 Chapter 7 Version Control

separate directory with the contents of the snapshot, not a reversion of the project you’re
working on.

You can change your mind about snapshots by selecting File→Project Settings. . .
and editing the Snapshots tab.

Snapshots mimic the habits of developers who don’t practice version control, but they
aren’t a replacement. It’s awkward to do them frequently, there is no way to segregate
changes by their purpose, and there is no way to browse the back versions. Think of
snapshots as disaster recovery if version control goes completely wrong.

User B commits her changes to the local repository, and then pushes it.

Back to User A
This is where User A does his push (Source Control→Push. . .). And it doesn’t work.
An alert sheet slides down to tell him that his copy of the repository, even without his
changes, had fallen behind the one he’s trying to push to. (“Behind” in the colloquial
sense is a difficult word to apply to a network of developers whose files, as here, are
actually newer than the remote repository reflects. In version control, a local copy is
behind the remote if the remote has changes that the local hasn’t seen yet.)

He has to pull the remote’s contents into his local set before he can push his own
changes. He chooses Source Control→Pull. . . (X); he selects origin/master
from the popup (it should be the only choice) and clicks Pull. An activity indicator spins
while Git retrieves the remote’s content, and then a progress pie says Xcode is “detecting
conflicts” in what it found.

And it found some, in all three of the files he was trying to push. If this were command-
line Git, this would be tedious, because you’d have to refer to the list of conflicts, then
hunt down the markup Git adds to the conflicted files, remember which versions of the
conflicted lines you want to keep, save your decisions, and use git add to put them in
the staging list.

Merging Revisions
Xcode reduces this to the point where your only headache is in deciding what version is to
prevail. Immediately upon detecting the conflicts, it tells you that you can’t proceed with
your push until you’ve examined them all and made your choices. The source list at the left
side of the comparison sheet that appears lists every file that would be altered by the pull
(Figure 7.12). Some of these are benign—Git could figure out how to merge the changes
line by line—but if there is a line that was changed by the two contributors after their
versions split from their common ancestor, Git can’t make a choice. You have to resolve it.

rating.c is the most interesting file—it contains a conflicted line, but also some lines
Git had no trouble choosing. User A’s local version is more or less on the left, and the
version that would be pulled is on the right. A control at the bottom of the editor
(Figure 7.13) lets him pick which version he wants of each group of lines.

Note
I say “more or less” because there are three things to show—your version, the remote’s
version, and the result of your choices between them—and Xcode makes do with only two

Merges and Conflicts 97

Figure 7.12 (left) When you pull a version of the working files that conflicts with your own,
Xcode’s Merge editor lists the conflicted files with a red C marker. (right) Once the conflicts are

resolved, the C markers turn gray, and you can complete the pull.

Figure 7.13 The control at the bottom of the Merge editor gives you four choices for resolving
differences between the local and remote versions of a group of lines: the local version followed by
the remote; the local version; the remote version; or the remote followed by the local. The options to

use both versions are available only for conflicts.

views. The view on the left shows the result of your choices. You can see your lines, but
only if you opt to use them in the final merge. The control implies you’d be choosing the
version “on the left,” but it’s not visible on the left until you choose it.

Lines without Conflicts
Let’s start with the easy part: the lines that don’t conflict. By default, command-line Git
does unconflicted merges automatically: If only one version has changed a line since the
common ancestor of the two, the change wins.

Xcode gives you more control. The Merge editor draws blue ribbons to highlight each
group of changed lines, with a marker in the middle that looks like a sliding switch. The
local version is on the left, and the remote is on the right. The slider points to the version
that wins. You can’t use the marker directly. Instead, select the ribbon for a change group
(look for the outline a selected group picks up—it’s easy to miss), and use the control at
the bottom of the editor sheet to make your choice (see Figure 7.14). The options to use
both versions, one after the other, aren’t available for unconflicted lines.

Figure 7.14 Git doesn’t let you pick and choose groups of lines to be merged from a pull, but
Xcode displays all the potential changes and lets you choose whether to accept them.

98 Chapter 7 Version Control

Conflicted Lines
That leaves the conflicts. User A and User B started with a common version that claimed
copyright for Fritz Anderson. Independently, they changed the claims, using different
names. Git has no way to prefer one over the other, so it reports a conflict and forces you
to decide. Conflicted lines are joined by red ribbons, again with a lozenge in the middle.
But this time, there is no slider: With no way to choose, the lozenge contains a question
mark (Figure 7.15, top).

It’s up to User A to resolve the conflict, using the control at the bottom of the sheet. In
this case, he’ll concede User B’s use of “Frederic F. Anderson” and select the third segment
(use remote) of the control. For the rest, the no-conflict lines, he’s adamant about those
shortened variable names. He picks the second segment (use local) to keep his changes.

With all the conflicts cleared (see the source list on the right side of Figure 7.12),
Xcode enables the Pull button, and only then does User A’s working set reflect the results.

Committing the Choices
Deconflicting edits are no different from any other kind of edit. They’re present on disk,
but not in any repository. As with any other modified files, the Project navigator flags
them with M badges. User A must commit the merged files to his local repository
(providing a commit message explaining the merge), and then push the state of his repo
out to the remote. Assuming the remote hasn’t picked up any more changes from User B,
the push goes through.

He can send an email to User B to let her know there are changes for her to pull. Or
he could just let her discover them for herself, but that says something worrisome about
how A and B are getting along.

Figure 7.15 (top) When part of a file has picked up independent edits since the last common
revision, it’s a conflict, which Xcode highlights in red. Because it can’t choose between them, the

marker in the middle of the highlight ribbon contains a question mark. The control at the bottom of
the Merge sheet lets you choose among (second through last) local-before-remote, local, remote,

and remote-before-local.

The Version Editor 99

The Version Editor
Checking files into version control, or even merging them, is not much use if you can’t
see what you changed. Xcode’s Version editor (third segment of the Editor control in the
toolbar) lets you do just that. Click the Version editor segment and hold the mouse button
down (Figure 7.16). The Version editor has three views:

m You’ll use the Comparison editor most frequently; you’ve already seen it, in
specialized forms, whenever refactoring or version-control actions require a
side-by-side display of changes.

m Blame displays files broken up to reflect which commit was responsible for the
current version of a line.

m The Log view lists all commits that affected the current file.

I’ll cover each, starting with the Comparison view.

Comparison
If you’ve been following along, the passer-rating project has accumulated a few revisions
by a couple of authors. Select one of your source files and switch the editor to the Version
view. It splits into two panels: The left side shows your file in its current state, saved or not.
The right side shows what it looked like the last time you committed it. See Figure 7.17.

Just now, they’re probably identical, but try editing the current copy of the file. A blue
band appears across the editor, stretching from your changes to the equivalent position in
the committed version. If you made changes within a line, the differences are highlighted
in a muted yellow.

The editor panes are real editors: You can make any changes you want, though any
changes you make to a committed version won’t stick. Between the columns, in each of
the change ribbons, is a numbered marker. Clicking it selects that change; once a change
ribbon is selected, you can move rapidly among them with the Up- and Down-Arrow
keys. The triangle at the right end of the marker signals a drop-down menu with the
single command Discard Change, letting you wind those lines back to their form in the
earlier revision.

Figure 7.16 The right segment of the Editor control anchors a drop-down menu to select the
three version-control editing styles.

100 Chapter 7 Version Control

Figure 7.17 The Comparison view of the Version editor puts two versions of a file side by side,
with a highlight connecting the changes you made between the two versions. The jump bar at the

bottom lets you select among versions and branches.

Note
If you just want to abandon all the changes you made to a file since the last revision,
there’s no need to do it piecemeal. Right-click the file in the Project navigator and select
Source Control→Discard Changes. . . from the contextual menu. If you expose the File
inspector in the Utility area, a section will give the full details of the file’s version-control
status, including a Discard. . . button. If you want to abandon the changes to all your files,
there’s Source Control→Discard All Changes. . . .

The editor isn’t confined to the last two versions. You’ll find a jump bar at the bottom
of each pane, with segments representing the repository, branch, and revision the pane
displays. Each segment is a popup menu; you can set the halves of the editor to any
revision you like, and you’ll be shown the differences between them.

There’s an even easier way to select revisions. Click the clock icon at the bottom of the
gutter between the panes. You’ll be rewarded with a timeline, a black bar with hash marks;
the shorter marks represent the revisions that affect this file, the longer ones dates (see
Figure 7.18). Move your mouse pointer over the timeline; Xcode displays a popover
showing the date, the revision ID, the committer, and the description for that version.

There are arrowheads on either side of the timeline. Clicking the timeline moves the
arrow on that side to the click location, and that side of the editor is filled with that
revision of the file.

The graphical Comparison editor is a great way to visualize the changes in your code,
but it’s not usable if you want to communicate the differences to others. You could give
them full access to your repositories, urge them to buy Macs, sign up as Apple developers,
and install Xcode; or you could select Editor→Copy Source Changes, which will put
a listing of the differences, in the style of the diff command-line tool, onto the clipboard.

The Version Editor 101

Figure 7.18 Clicking the clock icon at the bottom of the center column of the Comparison editor
reveals a timeline of revisions for the current file. Hovering the mouse pointer over a tick displays

information about that revision. Clicking to either side of a tick will display the corresponding version
in the editor view on that side.

Blame
The Comparison view shows your revisions along one axis, the accumulated changes
between two revisions. The Blame view lets you see another: who wrote what parts of
your current file, when, and why. Choose Blame from the Version-editor segment in the
toolbar to expose the Blame view.

Note
“Blame” is the technical name for this perspective on a version-control system and
probably reflects the mood of developers as they track down the perpetrator of this or that
change. Subversion tactfully offers “credit” as a synonym.

The right-hand panel in the editor goes away, to be replaced by a column of
annotations. Each note matches up to lines in your code. At minimum, it shows the
author and date of the last commit that changed those lines; if room permits, the
annotation will include the commit message. See Figure 7.19. You can get the full details
of any commit by clicking the information button in the annotation box.

As always, you can select any revision from the jump bar at the bottom of the editor to
see how contributions arrived and were overwritten over the history of the file.

Log
The Log view gives a third perspective on the history of a file. Select Log from the
Version editor’s drop-down menu in the toolbar. This is a single view of the file, as of the
revision you select from the jump bar. The column to the right shows the full information
for every revision that affected that file, and only those revisions.

Revisions that have files uniquely associated with them (merges don’t) include a
notation like Show 2 modified files. Clicking the notation drops a comparison-browser
sheet with a source list containing every file in that revision and a side-by-side comparison
of the selected file after and before the commit.

102 Chapter 7 Version Control

Figure 7.19 (top) The Blame column annotates each group of lines in a file with the details of the
commit that was responsible for them. Bigger blocks of lines permit more information to be shown.

The bars at the right margin are more intense for more recent revisions. (bottom) Clicking the
information button in an annotation pops up the full details of the commit, including address-book

information about the person responsible, so you can render your compliments at the click of a
mouse.

Note
The git command-line tool will give you something similar that might suit you better: git
log --name-only will print every revision in the current history, with the commit
messages and a list of the files that were changed in each.

Branching
One more thing. Programming is not a linear activity. I’ve gone through the revision
process as though it were a unitary march of progress with every step leading surely to a
bigger, better program. That’s not real life. In real life, you have ideas that may or may not
be useful in your product, and you shouldn’t pollute the often-parallel progress of your
“good” revisions while you play with them.

You do this with branching, which lets you accumulate revisions along separate lines
(branches) of development and merge them as you need. passer-rating (so far) is too simple
to provide a good example, so I’ll just explain how it works; you can follow along with
Figure 7.20.

Every project in Git or Subversion starts with one branch, which Git calls master.
This example begins with just the one branch. Our developer comes up with a good idea
and creates a branch she calls good-idea (the quality of her ideas doesn’t extend to the
names she makes up). She does this by selecting New Branch. . . from her working
copy’s submenu in the Source Control menu. A sheet appears so she can give the branch

Branching 103

master

good-idea

branch merge merge

Figure 7.20 The main line of development of this project goes along the revisions in the master
branch. A developer has an idea she wants to try out, so she creates the good-idea branch,
occasionally merging in the improvements from master. When she’s done, the good-idea

changes can be folded back into master.

its name, and she clicks Create. The sheet shows an activity spinner, reports success, and
goes away. The local repository is now focused on good-idea.

She then does the normal work of revising and testing her program. In the meantime,
she also needs to maintain the program on the master branch, which reflects what has
gone out to users, and which other developers are using as the common meeting point for
their own revisions. She switches back to the master branch using the Source Control
→working copy→Switch to Branch. . . command. The command summons a sheet
displaying all branches, local and remote, that are available to her; she selects master,
clicks Switch, and gets busy. See Figure 7.21.

Figure 7.21 The Switch-Branch sheet displays all available branches, local and remote. (Remote
branches may take a few seconds to appear if getting a list entails a network transaction.) Selecting

a branch and clicking Switch checks the files on that branch out into the working copy.

104 Chapter 7 Version Control

In Figure 7.20, both branches progress by a couple of revisions, and she decides her
work on good-idea can’t proceed without taking account of changes made to master.
She can do this by selecting Source Control→working copy→Merge from
Branch. . . if she is on the good-idea branch; she selects the source branch (master)
from the picker sheet, and clicks Merge. Or, if she is on the master branch, she selects
Merge into Branch. . . and selects good-idea.

Either way, she’ll be presented with the merge-comparison sheet so she can review the
changes and approve them one by one.

She makes a few more revisions to good-idea before she is satisfied that her idea really
was good and it’s ready to go into the main branch. She selects Merge into Branch. . . ,
chooses the master branch, and completes the final merge.

Summary
This was a long chapter, but there’s a lot to version control, and the benefits of mastering it
are immense. When you created your first project, Xcode provided a Git repository for
you, just by your checking a box. If you had registered an account on an Xcode server,
you could even have Xcode hook you up with a fresh remote repository. In this chapter,
you began to use it, committing your work step by step. Then you were able to compare
versions of your work to see what was done when, and to get a measure of forgiveness, of
which there is not enough in this world.

Xcode’s support for Git and Subversion is good enough for day-to-day work, but it’s
not comprehensive. You dipped into the command line to round out repository manage-
ment. There is much more to Subversion and Git than I can cover in one chapter. The
command-line interfaces to those packages are very powerful, and you should at least look
at them to learn what’s available. The best resources are:

m Git—Pro Git, the best beginner-to-advanced treatment of Git. You can read it
online for free at http://git-scm.com/book, but consider supporting Scott
Chacon, the author, by buying a physical or electronic copy.

m Subversion—Version Control with Subversion, written by (some of) the authors of
Subversion and revised with each release of the tool. Find it at
http://svnbook.red-bean.com/.

In particular, seek out and understand the idea of tagging a revision, which allows you
to mark the place in your project’s history that corresponds to (for instance) a release.
Tagging is the biggest gap in Xcode’s version-control support.

This takes me to the end of my generic introduction to Xcode. Now that you have a
background, you can proceed to the tasks Xcode was really built for: producing graphical
applications for iOS and OS X.

http://git-scm.com/book
http://svnbook.red-bean.com/

Part II
The Life Cycle of an iOS

Application

Chapter 8 Starting an iOS Application

Chapter 9 An iOS Application: Model

Chapter 10 An iOS Application: Controller

Chapter 11 Building a New View

Chapter 12 Auto Layout in a New View

Chapter 13 Adding Table Cells

Chapter 14 Adding an Editor

Chapter 15 Unit Testing

Chapter 16 Measurement and Analysis

Chapter 17 An iOS Extension

Chapter 18 Provisioning

This page intentionally left blank

8
Starting an iOS Application

Now that you have the basic skills down, let’s move on to a real project. You’ll build an
iPhone application that manages a list of quarterbacks and displays their game and career
statistics.

Planning the App
Before coding, it’s best (though not customary) to know what you’re doing. Specifically,
what are you going to present to the app’s user, what data do you need to keep to make
that presentation, and how do you translate between the data and the presentation?

Model-View-Controller
The Model-View-Controller (MVC) design pattern formalizes those questions into an
architecture for graphical applications. The Cocoa Touch application framework is
designed to implement applications that follow the MVC pattern. If you don’t follow it,
you will find yourself “fighting the framework”: Winning through to a finished
application would be difficult, and maintaining it would be miraculous. The Xcode
development tools are designed to support Cocoa programming and therefore the MVC
pattern. MVC divides the functionality of an application into three parts, and each class in
the application must fall into one of them:

m Model objects embody the data and logic of a particular problem domain. Models
tend to be unique to each application. You can create your own subclasses of
NSObject or NSManagedObject to give life to your models.

m View objects handle user interaction, presenting information and enabling the user
to manipulate data or otherwise influence the behavior of the program. Views are
usually drawn from a repertoire of standard elements, such as buttons, tables,
scrollers, and text fields. Views ideally know nothing about any problem domain:
A button can display itself and report taps without needing to know what tapping
means to your application. In iOS, views are instances of UIView or its many
subclasses.

108 Chapter 8 Starting an iOS Application

m Controller objects mediate between the pure logic of the model and the pure
mechanics of the views. A controller object decides how views display and how user
actions translate into model events. In iOS, controllers are almost always instances of
subclasses of UIViewController.

Okay, in practice some classes won’t fall exactly into model, view, or controller. If you
have a view custom-built to display your particular data, making that view completely
independent of your data model makes no sense. Still, MVC is an important discipline: If
you fudge on it, you should be aware that you’re fudging and consider whether you can
restore the MVC separation.

The Model
From the nature of a passer rating, all you need is one model class: a Passer to carry one
passer’s name, and the total attempts, completions, yards, touchdowns, and interceptions.
Let’s make this a little more interesting: Ratings can be calculated over as many attempts as
you like and are usually calculated per-game as well as in a career aggregate. So Passer
should “own” any number of Game objects, with details of the game (who played, what
date, and so on) as well as the passing statistics for that game.

The model then looks like the diagram presented in Figure 8.1.
What about a passer’s aggregate statistics—the career yards, touchdowns, and rating?

Those can be pulled out of his Games—it will turn out not to be hard at all.

The Views
iOS applications don’t usually have a concept of documents, but even simple ones acquire
many screens’ worth of views. You’ll deal in passers and their games, and you need to view
and edit both.

Passer

First Name

Last Name

Current Team

Games

Game

When Played

Our Team

Our Score

Their Team

Their Score

Attempts

Completions

Yards

Touchdowns

Interceptions

Figure 8.1 The summary description of what data a passer-rating app would need leads to the
plan shown in this diagram: A Passer object serves only to identify a single player; his career

statistics are in a set of Game objects that Passer “owns.”

Planning the App 109

You need a list of passers, who can be created or edited in a separate view; and a view
devoted to a selected passer, with a list of games that need a view of their own to create or
edit them. A sketch of the flow appears in Figure 8.2.

Note
That’s what a full version of Passer Rating should look like, and getting it down on paper is
an essential step. Alas, this book will run out of Xcode examples before we complete
the app.

Typically, each phase of an iOS application displays a view object—a UIView—that fills
the screen. That main view usually contains a hierarchy of other views. For instance, the
Passer editor at the lower-left corner of the sketch (refer to Figure 8.2) consists of a

Figure 8.2 A rough sketch shows how we’d like the iOS Passer Rating app to look and flow. It
starts (top left) with a list of passers. Tapping a row shows the detailed record for that passer (top

right). The user can add or edit passers (bottom left) and games (bottom right).

110 Chapter 8 Starting an iOS Application

wrapper UIView; it contains a navigation bar (UINavigationItem, at the top), which in
turn contains two buttons (UIBarButtonItem, at either end). It also contains a table
(UITableView) with three rows (UITableViewCell), each containing a label
(UILabel) and a text-entry field (UITextField).

The Controllers
iOS applications are organized around a sequence of view controllers, objects derived from
UIViewController. Each view controller mediates between model objects and the
views that fill the device’s screen. For each full-screen view you see in the sketch, you
must provide a UIViewController subclass to link the data in the model to the views
on the screen; you may need to provide more if the visible views require it. In the life
cycle of a view, the controller comes first; when it is initialized, it creates or loads the view
objects and sets them up to reflect the model.

Now, even a simple application like this slides four main views onto and off of the
screen, according to a precise hierarchy. Managing the relationships between them—which
to slide in, which to slide back to—would seem to be an involved task, and it is. But,
thankfully, it is not a task you need to worry much about. UIKit, the user-facing part of
iOS, provides umbrella view controllers (such as UINavigationController) that
manage the navigation tasks for you by taking ownership of your controller objects. All
you need to do is request a transition between the views, and the umbrella takes care of
the rest.

Note
The screen of the iPhone 6 Plus is midway between those of iPad and the non-plus
iPhones. In iOS 8, Apple introduced a way to present an iPad side-by-side view for master
and detail displays that reverts to the screen-by-screen hierarchy on smaller screens. It’s
an impressive feature, but it doesn’t have much effect on the Xcode workflow.

Starting a New iOS Project
Start by creating a new Xcode project, selecting File→New→Project. . . (N).
Select Application under iOS, and from the array of application types, select
Master-Detail Application. Passer Rating follows the common pattern of presenting a
progression of lists and detail views, under a navigation bar that provides a “breadcrumb”
trail back up the tree. The Master-Detail Application template is a skeleton for such an
app. Click Next.

The next panel in the New Project assistant lets you name the project Passer
Rating. That much is obvious.

The next item is Organization Name; whenever Xcode creates a new text file, it
includes a copyright notice, and this is to be the name of the holder.

Organization Identifier is the next field. Every application in the iOS (and OS X)
universe has a string that uniquely identifies it. The Passer Rating app needs one. The
customary way to produce a unique identifier is to reverse the order of your domain name,

Starting a New iOS Project 111

add a dot, and then give the application name, suitably encoded for the OS. I own the
wt9t.com domain, so I’d fill in com.wt9t.

Note
You don’t have a domain name of your own? Next you’ll be telling me you don’t have a
T-shirt for the project. Get one (a domain name). They’re cheap, and you don’t have to do
anything else with them.

Xcode generates an identifier for you and displays it just under the company ID:
com.wt9t.Passer-Rating.

The Language popup allows you to choose Swift or Objective-C as the primary
language for the application code. It’s possible to mix the two in a single project—see
Apple’s guide on the subject—but this project will be pure Swift.

Devices determines whether the template should include UI setups for iPhone, iPad,
or both. Select iPhone; Passer Rating presents so little information that spreading it across
an iPad screen would be absurd.

Last of all, check the Use Core Data box. Core Data is Cocoa’s object-persistence and
relational framework, and will be very handy for keeping the database organized. The
project template will add a number of convenient housekeeping methods for getting a
Core Data–based application running.

Click Next, and you’ll be shown a get-folder sheet like the one you first saw in
Chapter 2, “Kicking the Tires.” Pick a spot, and be sure to set Source Control to create a
local (My Mac) Git repository.

Clicking Create unmasks the project window as before, and once again, you see the
Target editor.

Note
If this project were to include Objective-C classes, you’d also have to specify a Class Prefix
in the Project Document section of the File inspector. This would be three letters (two is
no longer recommended) for Xcode’s class templates to prepend to the names of your new
classes. Objective-C has no namespaces; if you chose an “obvious” name for a class, you’d
likely be sharing it with another in Cocoa or a third-party library. The collision might halt
your build in the link phase, or it might lead to bugs that could be very difficult to track
down. Prefixing the class names with something you hope is unique cuts down on the risk.

Target Editor
The Passer Rating project consists of two targets: “Passer Rating,” which produces the
app, and “Passer RatingTests,” which will contain the application test suite. Xcode will
initially show you the General editor for the Passer Rating target. (Click the Passer
Rating project item at the top of the Project navigator to bring it up yourself.) It provides
an interface for the basic settings that identify your project—its identifier, target
environment, orientations, and where it can find the images that are the face UIKit puts
on your app. It also keeps a list of the libraries the target will link to.

Take note of the Deployment Target field in the “Deployment Info” section: This is
where you designate the minimum version of the operating system your app will accept. It

112 Chapter 8 Starting an iOS Application

won’t run on anything less, and you can be assured that you can use all of that OS’s
features freely. The project template set this to the latest version (8.2 as I write this). We’ll
be exploring features unique to iOS 8, so leave the setting alone.

There is another concept, the SDK, which you can find in the Build Settings tab. In
Xcode’s parlance, an SDK is a tree of headers, libraries, and other resources that let your
app use the features of a particular version of an OS. In the past, Xcode came with a
library of development kits for back versions of OS X, but now you’ll get only the latest
iOS and the one or two versions of OS X that the Xcode can run on.

Even though you no longer have a choice of SDKs, you should remember the rule:
The target version is the earliest version on which you will run, and the SDK version is the
latest version from which you can draw functionality. If you want to be compatible back to
iOS 5.1, set the target to 5.1, use the current SDK, and be careful not to use any features
from later OSes. The build system will link your app so it does not require the newer API
in order to run.

Note
Also, if you target an OS that is earlier than the SDK, the build system will give you the
behavior of the older OS, even if the later one fixes bugs and adds features—you’ll be
given the behavior you developed for and expected.

What’s in the Project
The project template you chose for Passer Rating includes a lot:

Note
If you don’t see the Navigator area, highlight the button near the right end of the toolbar
that shows a bar at the left side of the window rectangle; the Project navigator is the
first tab.

m Class AppDelegate: The application itself is represented by an object of class
UIApplication, which you should never have to subclass or replace. True to the
delegation pattern used throughout Cocoa, all of the unique behavior of the
application comes through the methods of a delegate object, which the application
object calls into. AppDelegate is declared as a subclass of UIResponder, and an
implementor of the UIApplicationDelegate protocol (it promises to include
the methods UIApplication needs from its delegate). The template for the
.swift file contains a good starter for managing the application life cycle, including
setting up the Core Data database.

m Main.storyboard: A storyboard is a graphical representation of the layout of your
user interface, plus the top-level flow between the screens in your program. We’ll be
living with this one throughout this project.

m Class MasterViewController: This is, as the name says, the controller for the
master (root-level) view of Passer Rating, which the design says will be a table of
passer names and ratings. Because navigation-based applications almost always start

What’s in the Project 113

with a table, the template makes MasterViewController a subclass of
UITableViewController, which is suited for running a table view. The
implementation file includes skeletons of the methods you’ll need to fill in the table.
It also provides an instance of NSFetchedResultsController, which does a lot
to bridge Core Data data stores with tables.

m Class DetailViewController: The controller for the next layer of Passer Rating
is the one that will be seen when the user taps a passer’s name. The template declares
it a simple subclass of the generic UIViewController.

m Images.xcassets is a catalog of the minimum set of images iOS will require in
order to run an application. It starts with AppIcon, which is what you’d think it is.
As screen sizes, UI conventions, and resolutions have proliferated, and human nature
being what it is, Xcode projects accumulated a large number of such images, many
of them long-since obsolete. The media-assets catalogs wrap them all up in a single
project entry, with a slot for each variant. Applications seeking an asset need only ask
for it by name, and the asset-catalog mechanism will provide the best fit for the
environment.
If you want your app to run on iOS 7 or earlier, you should also have a
LaunchImage, for the image—don’t call it a splash screen—that displays in the
ideally tiny period between launch and being ready for work. Click the + button
below the image-set list, name it LaunchImage, fill in the (now huge) variety of
image slots, and register the name of the set in the General tab of the Target editor.

m LaunchScreenxib replaces the LaunchImage file and image set. This is an
Interface Builder screen layout to be displayed at launch. Because the layout in
interface files can (should) adapt to any screen size, orientation, and resolution, you
won’t have to provide a multiplicity of PNGs for every possible
combination—current or future. The template gives you a generic layout including
the app’s name and copyright information; you should adapt it to the actual initial
appearance of your app. If you don’t provide a launch layout, iOS use the next-best
launch image, and if necessary, “zoom” your existing UI to fit the screen. See
Chapters 11 and 12, “Building a New View” and “Auto Layout in a New View,”
for extensive details on Interface Builder and layout.

m Passer Rating.xcdatamodeld: Core Data isn’t a full-service database, but if you
have a background in SQL, there are helpful analogies. The Data Model file is the
equivalent of an SQL schema. It defines the entities (think “tables”) that will hold
the data, and the attributes (think “columns”) those entities will have. It also sets up
one-to-many and many-to-many relationships between entities (think “never having
to look at a join table again”). Xcode provides a graphical editor for data models.

m In the Supporting Files group, Passer Rating-Info.plist: This is the source
file that yields an Info.plist file to be embedded in the application. It provides
basic information on what the application can do, what data it can handle, and how
it is presented to the user in the Home screen. Some of that information is presented

114 Chapter 8 Starting an iOS Application

to the user as text, so its content is merged with the application’s InfoPlist-
.strings for the user’s language. (Chapter 21, “Localization,” covers localization
in OS X, but most of the concepts apply to iOS, as well.)

Note
An Objective-C project would also contain a main.m file for the executable file’s
entry point, and Passer Rating-Prefix.pch to set up the symbols for compiling
the ObjC class files. Neither is needed for Swift.

m The “Passer RatingTests” target has a class file and Info.plist support similar to
the app target’s.

Note
An older Objective-C project would include a Frameworks group to display system and
third-party libraries to be linked dynamically into the application. That’s rarely necessary
any more. Both Swift and Objective-C rely on importing modules, which take care of
precompiled symbols and linkage automatically.

Xcode’s template for the project also includes a panoply of build settings, specifying
how Passer Rating is to be compiled, linked, and organized.

The project is fully functional, as far as it goes. Run it: Product→Run (R). Xcode
builds the app, and in a few seconds, the iOS Simulator starts up and launches Passer
Rating. Out of the box, the app is the iOS/Core Data equivalent to “Hello World”: It
shows an empty table under a navigation bar with Edit and + buttons. Tapping the +
button adds a row with the current date and time; tapping the new entry pushes the
“detail” view into view; the Edit button in the root list (or swiping across a row) lets you
delete rows. You can close and reopen the app to find that the rows you added are still
there. See Figure 8.3.

Summary
In this chapter, you began work on an iOS application. Before doing anything in Xcode,
we decided what the app would do and what it would look like.

Once that was done, you knew enough to have Xcode create the project. You explored
the Project editor and saw how it managed the configuration of the application itself.
Then you explored the files Xcode’s template provided.

The “empty” application Xcode provided was runnable; you found that running it
launched the iOS Simulator, which allowed you to use the app.

Now you’re ready to make the empty app your own, to start implementing the design
we put together in this chapter. We’ll start with the model.

Summary 115

Figure 8.3 The skeletal code that comes with the Core Data + Master-Detail Application project
template is enough to produce an app that will run in the iOS Simulator. It will add rows to its table,

and, as shown here, it will respond to the Edit button by offering to delete rows.

This page intentionally left blank

9
An iOS Application: Model

It’s time to put some flesh on Passer Rating’s data design. The Core Data framework for
iOS and OS X provides a powerful system for managing object-relational graphs and
persisting them in an SQLite database.

Note
SQLite (you will make it a gentler world if you tolerate both “ess-cue-light” and
“see-kwel-light”) is the full-featured SQL database library and command-line tool at the
foundation of Core Data. The Core Data API is agnostic about its bottom layer (on OS X,
there are two alternatives) and affords no direct access to the underlying database. The
library is a standard component of both iOS and OS X. See http://sqlite.org.

Xcode includes essential support for Core Data. In this chapter, you’ll see how to use
Xcode’s graphical editor to turn a data design into an executable data model.

Implementing the Model
Core Data is going to store the model objects for you and track their relationships to each
other. To do that it needs a managed-object model, which specifies what entities are in the
data store, and what properties and relationships they have. In the completed application, this
is kept in a .mom file, which is efficient but not human-readable. For development, you
will be editing an Xcode data-model file (.xcdatamodel) that displays all this
information graphically, in a format not too different from the model sketch in Figure 8.1.

Note
As your application evolves, so will your data model. Data files created with one
managed-object model are not compatible with another. Core Data provides techniques for
migrating data stores to later models, if it has the full sequence of models available to it.
The aggregated versions are kept in directories—.momd for use at run time, and
.xcdatamodeld in Xcode.

http://sqlite.org

118 Chapter 9 An iOS Application: Model

Entities
Select Passer Rating.xcdatamodeld in the Project navigator. The Data Model editor
comes in two parts. The column on the left lists the top-level contents of the model, the
main ones being entities. Entities describe individual records in the Core Data database. If
you’re familiar with SQL databases, these are roughly like tables.

The model supplied from the template is very simple: There is one entity, Event. If
you select it in the editor, you’ll see its properties in three tables. (If you don’t see tables,
make sure the Editor Style control at the lower right has the first segment selected, for
the tabular layout.)

m Attributes hold simple data like strings, dates, or numbers. Event has one
attribute, timeStamp; you see in the top table that this attribute is of type Date.

m Relationships link entities one-to-one, one-to-many, or many-to-many. Core Data
maintains relationships without your having to deal with keys or joins.

m Fetched Properties define fetch requests (queries for objects matching search
criteria). These amount to relationships that are not continually updated as the
database changes; to get a current object set, you’d have to refire the fetch yourself.
Fetched properties have their uses, but you won’t have any of those uses in this
project.

Click the right half of the Editor Style control to have a look at the other view of the
model. This gives you a diagram of the whole model, in which each entity is represented
by a box that contains its attributes and relationships. With only one entity, having only
one attribute, the diagram is unprepossessing.

Let’s make something to see of it. Switch back to the Table style. Select the Event
entity and press the Delete key. You want to add entities of your own. Going by
Figure 8.1, you need two: Game and Passer. Game has some interesting content, so let’s
start with that.

1. The bar at the bottom of the editor has two circled + buttons, and if you look
carefully, you’ll see the tiny triangle that tells you it is an anchor for a drop-down
menu; each can add more than one kind of thing. The thing you want to add is an
entity for games.
Hold the mouse button down on the + button on the left and select Add Entity.
An entity named Entity appears in the entities section of the editor. Double-click
the entity’s name in the list to make it editable; name it Game.

2. Game will refer to Passer, so it should be in the model even if we don’t fill it in
right away. Click Add Entity again (the most recent use of the button sticks), and
name the resulting entity Passer.

Attributes
So now you have Game and Passer entities, but they don’t hold any data. Entities are
aggregates of simple data; these are attributes.

Implementing the Model 119

3. With Game still selected, click the + button at the bottom of the Attributes list. A
new attribute appears in the table with its name ready for editing.

4. Name the new attribute whenPlayed. You’ll notice that the Type column for
whenPlayed says it is of Undefined type. That’s undesirable, but you’ll take care of
that soon.

5. Instead, create some more attributes: attempts, completions, interceptions,
ourScore, ourTeam, theirScore, theirTeam, touchdowns, and yards.

Note
Remember to press Return when you’re finished editing a name; if you add another
attribute before doing so (depending on how you do it), Xcode will abandon the edit
and leave the name as attribute.

6. You’re running up the score on the errors reported in the status area in the toolbar,
because none of those attributes have types. Let’s take care of that. Start with
whenPlayed: Select Date from the popup in the Type column.

7. “Scalar type” is not everything there is to say about an attribute. Click the right end
of the View control (rightmost in the toolbar) to expose the Utility area. The
Utility area is divided into an upper section, the Inspector, and a lower one, the
Library. Drag the bar at the top of the Library down to make the Inspector as large
as possible, and click the third tab to show the Data Model inspector.

8. Select yards in the Attributes list; this loads the properties of that attribute into the
inspector (see Figure 9.1).

Figure 9.1 The Data Model inspector, focused on Game’s yards attribute. This is another way to
set the type of the attribute, and it allows you to set detailed information on how Core Data is to

treat it.

120 Chapter 9 An iOS Application: Model

The inspector has three sections, the first of which, Attribute, is the most interesting.
The name, yards, is right. The Properties checkboxes reflect how Core Data stores the
attribute. Leave Transient (the attribute would be in the model, but not persisted) and
Indexed (Core Data would efficiently retrieve Game objects by yards) unchecked.
Uncheck Optional: The record of the game isn’t complete unless it counts the yards
gained.

In the second half of the section, set the Attribute Type to Integer 32—an integer in
the range of plus-or-minus two billion. When you do that, Validation fields appear to
receive a Minimum, Maximum, and Default for the attribute. Core Data will refuse to
save an object with an attribute out of range; and if you make an attribute mandatory, it’s
wise to have Core Data initialize it to something legal. Zero is a good choice for a new
record. To enable a default (which we want for this project) or a validation (which we
don’t), check the respective checkboxes.

Note
There is an argument to be made that you shouldn’t make an attribute mandatory, or set
validation conditions, until late in the development process. Core Data will raise an error if
you try to save an object in which a mandatory attribute isn’t set or any attribute isn’t in
range. If your code isn’t finished, you might not have gotten around to setting everything.

The third section, Advanced, has to do with the system-wide Spotlight search feature.
The Spotlight box exposes the attribute for indexing. Store in External Record File is
for Mac applications like Mail, which keeps messages in a Core Data store for its own use,
but wants to link those records to files (one per record) that Spotlight can search.

The User Info part lets you add any information you like, in key-value form, to the
description of this attribute. You won’t be introspecting the database’s metadata, so you can
ignore this section. Versioning gives hints to Core Data if you revise the schema for your
database—it will migrate your data to the new schema if it can. Ignore it.

That’s yards taken care of, and six more integer attributes to go. This looks tedious.
There’s a better way. Click attempts; then hold the Command key down and click
completions, interceptions, ourScore, theirScore, and touchdowns. Now all
six to-be-integer attributes are selected.

Turn your attention to the Data Model inspector, and change the properties as before:
not optional, integer 32, default, and minimum zero. You’ve just set the properties of all
six attributes.

ourTeam and theirTeam should be non-optional strings; check the Min Length box
and set a minimum-length validation of ten characters or more.

And that sets up the attributes for Game. Do the same for Passer, with three
mandatory string attributes, firstName, lastName, and currentTeam. Use your
judgment on defaults and validations.

Relationships
The data model so far is not very useful. You can store and enumerate Passers, and you
can do the same with Games, but quarterbacks participate in games, and Game is the only

Implementing the Model 121

thing that holds a quarterback’s actual performance. Core Data calls the link between two
entities a relationship.

9. Make sure the Passer entity is selected. A passer may start with no games played
but will eventually play in many. Choose Add Relationship from the drop-down
on the right-hand + button; click the + button under the Relationships table; or
select Editor→Add Relationship. A new entry appears in the Relationships list.

Note
If you don’t see the new relationship, make sure the disclosure triangle next to the
“Relationships” label is open.

Note
Whenever you’re in doubt about what you can do in an editor, check the Editor
menu. It shows different commands depending on the type of editor you are using,
so it changes a lot. What’s available now may be very different from what you saw
the last time you opened that menu.

10. Name it games (it’s a good idea to name a relationship the same as the related entity,
plural if the relationship is to be to-many).

11. Select Game from the popup in the Destination column of the Relationships table.
Game doesn’t have any relationships yet, so there’s nothing to do yet with the Inverse
column.

12. Turn to the Data Model inspector, which now shows options for a relationship. The
items at the top reflect your choices from the table, so you can leave them alone.
Optional is checked, which is right, because the passer may not have played at all.

13. For the Type, select To Many, because a passer may play in more than one game.
(Note that Core Data will take care of record IDs and foreign keys silently.)

14. There is an Ordered checkbox. Normally, an object’s to-many relationship is
represented as a set, an unordered collection of unique objects. Checking Ordered
makes the relationship an ordered set; like an array, its elements have an inherent
order; like a set, no element can appear more than once.
This example has no inherent or preferred ordering for related objects, and ordered
relationships come with a performance penalty, so we won’t be using them.

15. Don’t bother with setting a minimum or maximum: The relationship is optional, so
a minimum is irrelevant, and we’re okay with however many Games may be linked to
this Passer.

16. The Delete Rule is important. What happens if the Passer is removed from the
database? You wouldn’t want its Games to remain; there’s no point in having statistics
that aren’t related to any Passers. You have four choices:

m No Action does nothing when the Passer is deleted; the Games will be
orphaned and they will have dangling references to the now-deleted Passer.
You don’t want that.

122 Chapter 9 An iOS Application: Model

m Nullify is scarcely better; the Games remain in the database, but at least their
back-references to the Passer are closed off.

m Deny goes too far, as it would prevent a Passer from being deleted so long
as it had any Games. You’d have to unlink all of them before you could delete.

m What you want is Cascade. Deleting a Passer would pursue the relationship
and delete all of the objects it reaches: No Passer, no Games.

17. The rest of the inspector covers the global-search, metadata, and versioning
attributes I showed you for attributes. Again, you don’t care.

At this point, you can ask a Passer for all of its Games, and it can give them to you.
But you can’t ask a Game for its Passer. You need to establish an inverse relationship. Select
the Game entity, and create a relationship named passer. The destination is Passer; the
inverse is games.

Note
In fact, it’s so rare not to want an inverse for a relationship that momc, the compiler that
translates .xcdatamodels into .moms, will warn if you don’t specify one.

Now that you have both ends of the one-to-many relationship, you can specify an
inverse: In the Inverse column, specify games. In the Data Model inspector, the
relationship is not optional: A Game without a Passer makes no sense, and we’d like Core
Data to enforce that. Setting the Type to To One lets Core Data know to treat passer as
a direct link to one Passer, and not to a set of many. And for this relationship, the
Delete Rule should be Nullify—you want the Passer to live, with its relationship to
this Game removed.

The data model is complete. Click the Graph (right-hand) side of the Editor Style
control at the bottom to see all the entities laid out in a diagram (Figure 9.2) that looks a
lot like the original design in Figure 8.1. (You’ll have to drag the two entity blocks apart if
they overlap.)

You can edit—even create—the data model in the Graph view if you wish; it’s just a
matter of using the Add buttons and the Data Model inspector.

Note
This data model would not pass muster as a design for a “real” database. The name Game
is a misnomer, as it implies a particular event held at a particular place and time, at which
at least two quarterbacks make passes; but you’re using Game to refer to one passer’s
performance at that event. A more sophisticated model would make the Game entity
describe the event and use a join to link between Passers and Games and hold one
quarterback’s performance at that game. Further, a quarterback may play for many teams
during his career, and it would be interesting to list all the games a team played; the model
should normalize a Team entity out of Passer and Game. Noted. It’s just an example.

Managed-Object Classes 123

Figure 9.2 The Graph style of the Data Model editor shows all the entities in the model laid out in
a block diagram. The one-to-many relationship between Passer and Game is shown by an arrow

with one head at the Passer end and many on the Game end.

Managed-Object Classes
You could begin using the data model right away. You could ask Core Data to instantiate a
Game as a generic object of class NSManagedObject that can set, store, and return its
attributes when you pass it a name: aGame.setValue(aDate, forKey:
"whenPlayed"). You could instantiate a Passer the same way, and it would be an
NSManagedObject that handled those attributes. It would work. It worked for the
dummy Event entity when you ran the project template unaltered.

But. . .
You’ll have noticed a lot that isn’t in the data model. There is no passer-rating

attribute—the point of the whole application—anywhere. Passer has no attributes for
career attempts, completions, yards. . . . What are you going to do about that?

What you’re going to do is to calculate passer rating and other stats while the
application is running, rather than storing them. Those statistics are derived from the
numbers you do store. In order to do those calculations, you’ll need Swift methods that
draw on the attributes of Passer and Game. And to have those methods, you’ll need
classes (subclasses of NSManagedObject, as it happens) that implement them. You need
.swift files for each.

Note
For safety’s sake, if you’re following along, commit your project now. Remember the “Your
First Commit” section of Chapter 7, “Version Control.”

124 Chapter 9 An iOS Application: Model

Creating the Classes—the Wrong Way

Here’s the way Xcode provides for creating NSManagedObject subclasses, and it is
wrong. If you want to follow along anyway, make sure you did that commit I just told you
to do, and then start a new branch for just this experiment (Source Control→Working
Copy→New Branch. . .)—call it native-mo-classes. Once we’re done with the
exercise, you can jump back to the master branch, and carry on from where you left off.

Select File→File. . . (N). Navigate the New File assistant to iOS→Core Data
→NSManagedObject subclass. The description says that this is “An
NSManagedObject subclass,” but that undersells it. Click Next.

Note
You can get to the same place without the template picker by selecting Editor→Create
NSManagedObject Subclass. . . while the Data Model editor is visible, so long as at least
one entity is selected.

The next two pages are unique to creating NSManagedObjects. The first shows you a
list of the data models in your project (only one in this case). Check the boxes next to each
one from which you want to draw classes. The next page lists all of the entities defined in
those models; check those off to select the classes you want to generate. You want to create
custom classes for Passer and Game, so check both and Click Next.

A get-file sheet appears for you to select a directory to receive the source files. To be
tidy, create a directory just for the model objects: With the Passer Rating source
directory selected, click New Folder, and name it Model. Make sure the new directory is
selected in the file browser by clicking on it.

In addition to the pickers for the Project-navigator group (put it into the group for the
Passer Rating target) and targets (just the app target, not the tests), the get-folder sheet
presents a Language popup (choose Swift), and a checkbox labeled Use scalar
properties for primitive data types. NSManagedObject is a container for object
values—numbers like completions must be wrapped in NSNumber objects.

This is true to the way Core Data works, so this exercise will leave the box unchecked;
but boxing and unboxing the numbers is more work for you. If you check this box, your
new subclasses will expose numbers in their native forms, doing the translation for you.

Click Create. You’ll see two new files in the Project navigator for the Passer and
Game code. They should have A badges to show they have been added to the local
repository, but have not yet been committed. Because you want to keep the Project
navigator tidy, select the new files (shift- or command-clicking as necessary) and then File
→New→Group from Selection. They’ll be wrapped in a group named “New
Group,” which you can rename (for instance, to Data Model) by clicking on it and
pressing Return.

The project and data-model files pick up M badges, to reflect the addition of the files,
and the assignment of classes to the Passer and Game entities.

Managed-Object Classes 125

Note
The Project navigator represents groups by yellow folders, and you probably associate
folder icons with filesystem directories. That isn’t so in this case. At the first
approximation, Xcode’s yellow group folders are simply a convenient way to organize your
files. Files stored in the same directory can be in different groups; moving a file to another
group doesn’t move it on disk.

You’re on a speculative branch for this experiment, and it’s time to go back to the
master branch. Xcode (and Git) will complain if you do that without committing your
changes, so do that, and select Switch to Branch. . . from your project’s submenu under
Source Control.

Note
If you didn’t create a branch, select Source Control→Discard All Changes. . . to wind
back to a version created before you generated the class files.

Why Doing It Xcode’s Way Is a Mistake
Now, a thought experiment: You created the Passer and Game classes because you want
to go beyond the simple accessors Core Data provides you. You’d want to add methods
like this:

/// Fetch an array of all games played on a certain date.
/// :bug: As implemented, the games must have been played
/// at the same instant.
class func gamesOnDate(date: NSDate,

inContext context: NSManagedObjectContext)
-> [Event]?

{
// Ask for all Games...
let req = NSFetchRequest(entityName: "Game")
// ... played on a certain date
req.predicate = NSPredicate(format: "whenPlayed = %@", date)
// Do the fetch:
var error: NSError?
let result: [AnyObject]? = context.executeFetchRequest(req,

error: &error)
if result == nil {

// If it were no-matches, result would be [].
// A nil means there was an error; log it.
NSLog("gamesOnDate fetch failed; error = %@",

error!)
}
return result as? [Event]

}

All is well. Next, add a string property, weather, to the Game entity. And. . . now what?

126 Chapter 9 An iOS Application: Model

If you want a reliable way to keep Game up with changes in your data model—and
some day they will be a lot more complex than this—you’d want to repeat the process of
generating it from the data model. When you try this, Xcode will do. . . nothing. The
change remains in the data model, but Game.swift won’t have changed.

Note
If the generated class files were an Objective-C .h and .m pair, Xcode would warn you that
they were to be overwritten. It is likely that by the time this book sees print, the same will
happen for Swift class files.

You’re in a corner. It’s not so hard now—just add another @NSManaged var
declaration—but as the model becomes more complex, changes like this become
error-prone at best.

The Right Way—mogenerator
Xcode’s treatment of Core Data isn’t history’s first instance of the problem of enhancing
automatically generated code. In object-oriented programming, the solution is almost
always to let the generator have sole control over the class it creates, and subclass that for
your customizations. Unfortunately, Xcode’s managed-object class generator isn’t quite
flexible enough to do this for you—you’re left to cobble the subclasses by hand.

Jon “Wolf ” Rentzsch has created mogenerator, a command-line tool that does
exactly that. Download and install the tool from http://rentzsch.github.io/
mogenerator/; the installer will put mogenerator into /usr/local/bin, which
makes it available from the command line.

Note
Tools like mogenerator have to adapt to developments like Swift, and while they adapt,
they can change rapidly. Your best strategy to keep up is to pull in the latest version from
GitHib: https://github.com/rentzsch/mogenerator.

This time, you will be using the “live” copy of the project, which you’ve already
restored. Xcode’s generator fills in the class names itself, but mogenerator needs you to
set them yourself. Expose the Data Model inspector in the Utility area. Select Game and
set Class to Game, and for Passer, Passer.

mogenerator is a command-line tool, with many options. You only need to use a
select few with the same parameters every time. This is a job for a shell script you can run
from the terminal:

#! /bin/bash

echo $(which mogenerator)

Conjure a name for the generated files
OUT_DIR="`dirname "$1"`/mogenerated"

http://rentzsch.github.io/mogenerator/
https://github.com/rentzsch/mogenerator
http://rentzsch.github.io/mogenerator/

Managed-Object Classes 127

mogenerator --model "$1.xcdatamodeld" \
--swift \
--output-dir "$OUT_DIR"

ls "$OUT_DIR"

Note
The options for generating Swift managed-object classes are concise; Objective-C output
requires a little more caretaking. Run mogenerator --help to see what’s available.

You’ll find this script as run mogenerator.sh in the sample code. Copy it into your
project directory, or just above, so entering paths won’t be so tedious, open the Terminal
application, and start it up:

$ # Make the script containing the script current.
$ cd parent-directory
$ # In this example, this directory contains the project directory
$ ls Passer\ Rating
AppDelegate.swift Info.plist
Base.lproj MasterViewController.swift
DetailViewController.swift Passer Rating.xcdatamodeld
Images.xcassets
$ # Make sure the script is executable
$ chmod +x run_mogenerator.sh
$./run_mogenerator.sh Passer\ Rating/Passer Rating
/usr/local/bin/mogenerator
2 machine files and 2 human files generated.
Game.swift Passer.swift _Game.swift _Passer.swift
$

With this, the project directory contains a new directory named mogenerated,
containing .swift files for the Game and Passer classes you’ll be using, and
Game.swift and Passer.swift classes that are directly connected to those entities.
When you change your data model, just run mogenerator again: It will regenerate the
underscore files (which of course you’ve left untouched) to reflect the changes, while
leaving your work undisturbed.

Note
mogenerator, Swift, and the Swift interface to Core Data may take some time to settle
down. You’re not supposed to edit the machine (underscore) files, but from time to time,
you may have to fix compiler warnings and even crashes. See Chapter 17, “An iOS
Extension,” where mogenerator’s default code has to be edited to make it usable in
libraries.

The new files have to be part of the project before you can use them. One way to do
this is to open a Finder window to display their icons, and drag them (one-by-one, or
together, or in their enclosing folder) into the Project navigator. Be sure to clear the filters

128 Chapter 9 An iOS Application: Model

at the bottom of the navigator—it will accept new files only if you can see where in the
whole project you are dropping them.

The other way is to select File→Add Files to “Passer Rating”. . . (A). A
get-file sheet descends for you to choose the files (if they’re in the same directory,
command-clicking will add to the selection) or their enclosing directory.

Identifying the files is not enough. Xcode needs some more information, which it
collects in a drop-down sheet in the case of a drag, or in an extension to the get-file sheet.
The options are:

m Destination: Copy items if needed—In this case, the new files are in the
directory tree rooted at the project file. That’s not always the case; you may be
importing source or resources from another project. You might want Passer Rating
simply to refer to shared files, but more often you want your project directory to be
a self-contained package of everything the project needs. In that case, check this
box; Xcode will copy the added files to your project directory.

m Added folders:—If you add a directory to your project, you could mean one of
two things: In this case, adding the mogenerated directory is simply a convenient
way to add each of the files it contains. Selecting Create groups creates a yellow
group folder in the Project navigator that contains the files in the directory. But
imagine an app that contains portraits of presidents of the United States, and you
want to be free to change or add portraits in the years to come. The directory itself
is a resource to be copied into the finished app, with everything it contains. If that’s
your plan, select Create folder references. The folder reference will be shown in
the Project navigator with a blue icon.

m Add to targets:—This is a table showing every target in the project; in this case,
just Passer Rating and Passer RatingTests. You’re familiar with targets and
memberships from Chapter 6, “Adding a Library Target.” This table is a convenient
way to take care of all the new files at once. If C-family source is among them, don’t
worry about the header files; Xcode is smart enough to keep them out of targets.
(Adding an .h file to a target makes it a resource to be copied into the app product,
which you’d rarely want to do.)

In this case, be sure Added folders: is set to Create groups for any added folders;
and select Passer Rating as the sole target. The files are in the project directory tree already,
so there’s no need to copy them.

Click Finish if you’ve dragged the files, or Add if you’re using the add-files sheet.

Preparation
Previous versions of this book stuck closely to the code Xcode generated from the project
template. My idea was that you should see only what was crucial to the workflow. This
time it’s different.

Preparation 129

Passer Rating has requirements all its own—every application does. The template code
does too little, and too much, because it is built to provide as much guidance as possible
on how to proceed. In some cases, what it does to produce a generic app structure is too
clever to make a good example.

This time, I’ll be aggressive about revising the template code to make the process
clearer. The first targets will be infrastructure in the form of utilities and extensions. I’ll
build these up as the need occurs, but here is where we start. I’m keeping it short here, but
you can learn more from the comments in the sample code.

Utilities
Utilities.swift will build up conversions and common facilities like string
formatting, file handling, and—for this chapter—the same pinning function we saw in
Chapter 5, “Compilation.”

/************* Pinning functions ***************/
/// Pin a `Comparable` between two limit `Comparable`s of the
/// same type.

func pinComparables<T:Comparable> (
value: T, lower: T, upper: T) -> T

{
if value < lower { return lower }
else if value > upper { return upper }
else { return value }

}

/// Given a lower and upper bounds, return a function that
/// will pin a `Comparable` between them.

func limitPinner<T: Comparable>
(lower: T, upper: T) -> (T -> T)

{ return { value in pinComparables(value, lower, upper) } }

Extensions
Extensions.swift will add functions and properties to existing classes.

The first is for NSFetchedResultsController, which apps use to manage the
retrieval of Core Data objects. Given an entity, selection criteria, a sort order, and a way to
group the data, NSFetchedResultsController handles the details of loading the data,
and presents it to the app neatly packaged up as sections and rows.

iOS applications typically use fetched-results controllers to fill the sections and rows of
UITableViews: You select the object by converting the section and row into a two-level
index path and passing it to the results controller through objectAtIndexPath.

This sounds like a subscript: You shouldn’t have to do the paperwork to convert two
numbers into a path and put it into a long-winded function call. Fortunately, Swift lets
you define subscripts:

130 Chapter 9 An iOS Application: Model

/******************* NSFetchedResultsController *******************/

/** Add subscripts to NSFetchedResultsController. */
extension NSFetchedResultsController {

/** Return a managed object given an index path. */
subscript (indexPath: NSIndexPath) -> NSManagedObject {

return self.objectAtIndexPath(indexPath) as! NSManagedObject
}

/** Return a managed object given section and row numbers. */
subscript (section: Int, row: Int) -> NSManagedObject {

let indexPath = NSIndexPath(forRow: row, inSection: section)
return self[indexPath]

}
}

UITableView also retrieves objects—cells—by path or section-and-row, via the
cellForRowAtIndexPath function. Turn it into an instance function of the table view:

/******************* UITableView *******************/

/** Add subscripts to retrieve a table-view cell by path or section+row.

*/
extension UITableView {

/** Return a table-view cell given an index path.

:bug: Should check the arity (2) of the path.
:bug: Does not handle the exception raised for indices

out of range.

*/
subscript (indexPath: NSIndexPath) -> UITableViewCell {

return self.cellForRowAtIndexPath(indexPath)
}

/** Return a table-view cell given section and row.
Implemented through self.cellForRowAtIndexPath.

:bug: Could bounds-check the section and row, but does
not.

*/
subscript (section: Int, row: Int) -> UITableViewCell {

let indexPath = NSIndexPath(forRow: row, inSection: section)
return self.cellForRowAtIndexPath(indexPath)

}
}

Preparation 131

passer rating
We wrote a C function for calculating passer ratings in Chapter 3, “Simple Workflow and
Passive Debugging.” This time we do it in Swift, taking advantage of the generic pinner
functions in Utilities.swift:

/// Define a function that pins a Double to the range for
/// a component of an NFL/CFL passer rating.
let ratingPinner = limitPinner(0.0, 2.375)

/// Calculate the NFL/CFL passer rating, given performance
/// statistics for a game (or any other time period).
func passer_rating(#completions: Int, #attempts: Int,

#yards: Int, #touchdowns: Int,
#interceptions: Int)
-> Double

{
// See http://en.wikipedia.org/wiki/Quarterback_Rating

if (attempts <= 0) { return 0.0 }

// Statistic-per-attempt, with both converted to Double,
// recurs in all four components. Make the definitions
// easier to read and understand by encapsulating it.
func perAttempt(stat:Int) -> Double {

return Double(stat) / Double(attempts)
}

// Compute the components to sum into the rating
let components = [

(100.0 * perAttempt(completions) - 30.0) / 20.0,
(perAttempt(yards) - 3.0) / 4.0,
20.0 * perAttempt(touchdowns),
2.375 - (25.0 * perAttempt(interceptions))

]

// Pin the components and add them up
let retval = components.map(ratingPinner).reduce(0.0, +)
return 100.0 * retval / 6.0

}

The Swift way to write this function is very different from the C:
m It creates the pinning function (ratingPinner) by specializing the generic pinner.
m passer rating defines an internal function (perAttempt) to simplify code that had

cluttered and obscured the C version.
m Instead of each value being tucked into its own local variable, the components are

treated as items in an array. The variables were necessary only because there was no

132 Chapter 9 An iOS Application: Model

better way to keep the values around for further processing, not because we needed
to identify them anymore.

m The pinner applies to all the component values; you can map a function over an
array with the components.map(ratingPinner), which applies
ratingPinner to each item and returns an array with each result.

m We then want the sum of the pinned components. They’re all going into the same
number, and we don’t have to identify each of them—which C forced us to do. The
Array method reduce takes a starting point, and applies a function of your
choosing to accumulate a result. “Plus” is a function, and if you’re calculating a
grand total, you’d start from zero. anArray.reduce(0.0, +) yields a Double
with the total.

Using concepts like dynamically defined functions and array processing lets us express
the top-level meaning of passer rating without burying it in the bottom-level
management of the lifetime of a numeric value. It is also about three-fourths the line
count of the C version, despite being more generously commented.

Specializing the Core Data Classes
We’ve made a start on the plumbing, and now we can start on using the Game and
Passer classes to make sense of what’s in the database. mogenerator gave us
underscore-named classes to take care of the “dumb” end of managing games and passers
as database records; the plain classes will put them to work in Passer Rating.

Putting Game to Work
mogenerator put a number of convenience properties and methods into the
machine-owned classes. In Game, for instance, you find this:

@NSManaged var attempts: Int32
@NSManaged var ourTeam: String

@NSManaged instructs Swift to treat these properties not as code or fronts for in-memory
data, but as portals to the Core Data storage for the values.

We have Game.swift all to ourselves. Let’s add our first extension to the stored
data—what the app is supposed to be all about:

@objc(Game)
class Game: _Game {

var passerRating: Double {
return passer_rating(

completions: Int(self.completions),
attempts: Int(self.attempts),
yards: Int(self.yards),

Specializing the Core Data Classes 133

touchdowns: Int(self.touchdowns),
interceptions: Int(self.interceptions)
)

}
}

We put # marks on the arguments for passer rating, so we have to include the
argument labels in the call; not a bad thing, because there’s no inherent reason the
parameters should be in the order they are, and the labels protect against putting values in
the wrong places.

passerRating is a Double-valued property of Game. It’s computed (not stored), and
because there’s only one body of code associated with it, it can only be read, not set.

Putting Passer to Work
Passers should have passer ratings, too, but Passer doesn’t include the underlying totals to
compute them; those all come through the games at the other end of the to-many games
relationship. So we must add code that exposes the totals as computed properties, and
derive the career rating from that:

/// The passer’s career passer rating
var passerRating: Double {
return passer_rating(

completions: self.completions,
attempts: self.attempts,
yards: self.yards,
touchdowns: self.touchdowns,
interceptions: self.interceptions)

}

/** Helper function to get the sum of a career statistic
@param attribute the name of a key for an integer attribute of Game

*/
func sumOfGameAttribute(attribute: String) -> Int
{

let keyPath = "@sum.\(attribute)"
return self.games.valueForKeyPath(keyPath) as Int!

}

var attempts:Int { return sumOfGameAttribute("attempts") }

var completions:Int { return sumOfGameAttribute("completions") }

var yards:Int { return sumOfGameAttribute("yards") }

var touchdowns:Int { return sumOfGameAttribute("touchdowns") }

var interceptions:Int { return sumOfGameAttribute("interceptions") }

134 Chapter 9 An iOS Application: Model

We’ve taken advantage of the key-value coding method valueForKeyPath: to pull (for
instance) the attempts of each game from the games set, and then to sum (@sum) the
results.

You can use aggregate keypaths to derive some other interesting facts about a
passer—for instance:

var firstPlayed: NSDate {
return self.games.valueForKeyPath("@min.whenPlayed") as! NSDate

}

var lastPlayed: NSDate {
return self.games.valueForKeyPath("@max.whenPlayed") as! NSDate

}

var teams: [String]
{
let theGames: AnyObject =

self.games.valueForKeyPath(
"@distinctUnionOfObjects.ourTeam")

return theGames.allObjects as [String]
}

Some Test Data
Passer Rating won’t work without data. In a finished product, that would be easy: The
user provides his own data. But we can’t wait for a full suite of editors in the app to see
how it works. You need some test data to preload into the app.

This can take the form of a CSV file. I have a script, generate-games.rb, that will
produce a good-enough data set:

firstName,lastName,attempts,completions,interceptions, ...
Jimmy,Carter,37,11,1,0,56,2010-03-24,Boise Bearcats,2, ...
Andy,Jackson,33,8,1,1,30,2010-03-24,Modesto Misanthropes,9, ...
James,Madison,20,15,0,4,241,2010-04-14,San Bernardino Stalkers,47, ...
Quinn,Adams,9,3,1,1,17,2010-04-14,San Bernardino Stalkers,47, ...
...

Note
The script runs to nearly 300 lines, so look for it in the sample code. The output is
flawed—team A is recorded as playing at team B on the same day that team B is at
team C, and Big Bill Taft turns out to be a much better quarterback than you’d expect.
Those aren’t relevant to exercising what the app does; for further information, check the
Wikipedia entry for “YAGNI.”

If the sample data doesn’t exist, or doesn’t reflect the latest version of
generate-games.rb, it should be (re)built. Can Xcode take care of this?

Specializing the Core Data Classes 135

Yes. First, add generate-games.rb to the project by the add-files command you saw
before, or simply by dragging it in from the Finder. Don’t include it in any target; it’s just a
tool, not in itself a component in the built application.

Now open the Project editor (click the top row of the Project navigator), and select the
Passer Rating target. Click the Build Phases tab to reveal the agenda for building it. We
want that agenda to include running generate-games.rb. Do this by selecting Editor
→Add Build Phase→Add Run Script Build Phase. A new phase, labeled “Run
Script,” appears at the bottom. It’s no good running generate-games.rb after the
“Copy Bundle Resources” phase moves the sample data into the application, so drag the
new phase up so it comes before. Double-click on the phase’s title and change it to
Generate Test Data.

The Run Script editor (click the disclosure triangle if it isn’t visible) comes in three
parts:

m At top, you provide the script to be run. This won’t be generate-games.rb: The
script works by writing to standard output, which you’ll have to redirect to a file. So
for the Shell, specify the vanilla /bin/sh, and for the script, the one-liner

/usr/bin/ruby "${SRCROOT}/Passer Rating"/generate-games.rb \
> "${SRCROOT}/Passer Rating"/sample-data.csv

(I’ve broken the line with a \ for readability, but you should put it all on one line.)
The quotes are necessary. The SRCROOT shell variable will expand to a path to your
Passer Rating directory, and the space there and in the rest of the path will
confuse the sh interpreter.
Be very careful: It’s not always clear when a build variable or path will pass through a
shell; assume you don’t have to escape unless the context makes it obvious that you
will.
I arrived at the quoting you see here by trial and error. The Generate Test Data
phase failed because the interpreter couldn’t find paths cut off at spaces. I tinkered
with placement until the errors stopped.

m Next comes a table of input files. If Xcode knows what files go into and out of a
phase, its build system can skip the phase if the inputs haven’t changed since the last
run. Click the + button below the Input Files table and enter
"$(SRCROOT)/Passer Rating"/generate-games.rb.

m For an output file, enter "$(SRCROOT)/Passer Rating"/sample-data.csv.
In both cases, include the quotes.

Note
Experienced UNIX shell programmers will be disturbed to see variable references of the
form $(VAR), using parentheses instead of braces. In a shell script, this would evaluate
the variable and then attempt to execute it. The Xcode build system is different: It treats
parenthesized variable references the same as braced, and always requires that you
delimit the variable names one way or another. But: your code for other interpreters, such
as the body of this script phase, has to conform to the practice for those interpreters.

136 Chapter 9 An iOS Application: Model

This run-script phase says, “Run the Ruby script generate-games.rb, sending the
output to sample-data.csv in the project root directory. If the output file is already
there and is newer than the script, don’t bother.”

Note
At least that’s how it’s supposed to be. For this purpose at least, every Xcode in the last
ten years has run the script regardless.

Now all you have to do is make sure sample-data.csv is part of the Copy Bundle
Resources build phase, so it will make its way inside the Passer Rating app. Click the
disclosure triangle to expose the table of files to be included, click the + button to add the
CSV file and. . .

There are a couple of problems. The first is that, not knowing what to do with an .rb
file when you added it to the project, Xcode dumped it into the copy-resources phase.
You don’t want generate-games.rb to be in the product. Easy enough: Select its entry
in the table and click –.

The bigger problem is a chicken-and-egg thing: sample-data.csv doesn’t exist, so
there’s no way to put it into the table. The solution is to do a build (Product→Build,

B). That runs generate-games.rb and puts sample-data.csv in the project
directory. Now you can click the + button, then the Add Other. . . button to find the
CSV file. Xcode offers to add the file to the project, which is just what you want.

When they’re all set up, the script and resources build phases should look like
Figure 9.3.

Xcode marks both the Ruby and the CSV file for inclusion in the source-control
repository, as evidenced by the A badges next to their names in the Project navigator.

Source Control and Product Files
Strictly speaking, sample-data.csv is a product file, completely reproducible from
generate-games.rb, and there should be no point in treating every hit on the script as
a significant source-control event. It shouldn’t go into a repository. . .

. . . but we’re going to include it anyway to demonstrate integration builds in
Chapter 15, “Unit Testing.”

If you were to do it the right way, you’d look around in the Xcode menu commands,
and the File inspector, and the Commit editor. . . and find there is no way to do that from
within Xcode. You’d have to break out the Terminal.

The first thing to do is to prevent Xcode from including sample-data.csv in the
next commit. Tell Git to remove the file from the staging area:

$ git status
On branch master
Changes to be committed:
(use "git rm --cached <file>..." to unstage)
...
new file: sample-data.csv
...

Specializing the Core Data Classes 137

Figure 9.3 The Generate Test Data and Copy Bundle Resources build phases, set up to run the
generate-games.rb script and produce sample-data.csv, which is then copied into the

Passer Rating product. Main.storyboard is shown in red because Xcode has never been able to
keep track of storyboard files. It’s harmless.

$# The offending file is there
$# and Git gives a hint on how to remove it:

$ git rm --cached sample-data.csv

$# That took care of it for now:
On branch VersionControl
Changes to be committed:
(use "git rm <file>..." to unstage)
...
... sample-data.csv isn't there ...
... but it is here: ...

Untracked files:
(use "git add <file>..." to include in what will be committed)
sample-data.csv
../Passer Rating.xcodeproj/project.xcworkspace/xcuserdata/
...

Git may be subtle, but it is not malicious. When you ask for the status of your working
directory, it shows you what files will be in the next commit, but it also tells you how to

138 Chapter 9 An iOS Application: Model

withdraw a file. Once you do, Xcode badges sample-data.csv with a ?, which at least
means it won’t commit it, and Git calls it “untracked.”

That’s all you really need, but such files accumulate in the sidebar in the Commit
editor, as though Xcode hoped you might relent. Clutter hides significant information, so
you’d prefer never to see that file, or any .csv file, in source-control listings again. You
saw the .gitignore file in Chapter 7, “Version Control,” and here it is one more time:

$ # Make sure you're in the same directory as
$ # the .git local-repository directory
$ ls -a
. Passer Rating
.. Passer Rating.xcodeproj
.DS_Store Passer RatingTests
.git run_mogenerator.sh
.gitignore
$ # append something to the .gitignore file
$ # (which will be created if it isn't there)
$ cat >> .gitignore *.csv xcuserdata/ <

<

D>

What this does is tell Git (and Xcode) not to mention any .csv files when they report on
the state of source control. I added the xcuserdata/ directory as well. It preserves
information particular to your use of the project, from schemes and breakpoint lists to the
file you last selected in the Project navigator. You can mark the important things as
“shared” if you need them to be visible to all users; and Xcode won’t treat every tab
selection as a significant source-control event.

Did it work?

$ git status
On branch master
Changes to be committed:
... still no sample-data.csv ...
Untracked files:
(use "git add <file>..." to include in what will be committed)
#
.gitignore
... none here, either ...
$# (Let's make sure the .gitignore file sticks around:)
$ git add .gitignore

I won’t go into the details of the simple CSV parser (SimpleCSVFile) I built, and the
code I added to Passer and Game to make them clients of the parser. If you need the
details, they’re in the sample code. The application delegate is set up so that when the app
starts up, it loads its Core Data store from the CSV.

Summary 139

Making the Model Easier to Debug
You’ve already run Passer Rating with the dummy data model from the template. This has
stored a Passer Rating.sqlite file in the app’s documents directory. If the contents of
that file don’t match up with the current managed-object model (.mom), Core Data will
report an error and your application will be crippled. (The code that comes with the
template actually crashes the app.)

But you’ve changed the model to add Passer and Game. You’ll probably change it
again.

What I do in the early stages of development is to delete the .sqlite data file at the
start of every run. Eventually, of course, you’ll want your persistent data to persist, but this
is a quick, easy way to save yourself some headaches.

Find var persistentStoreCoordinator in AppDelegate.swift. Add some
code after the declaration of storeURL:

if _persistentStoreCoordinator == nil {
let storeURL = self.applicationDocumentsDirectory

.URLByAppendingPathComponent("Passer_Rating.sqlite")
#if ALWAYS_DELETE_STORE

// For ease in debugging, always start with a fresh data store.
NSFileManager.defaultManager().removeItemAtURL(storeURL, error: nil)

#endif

Swift does not have a preprocessor such as you might be used to from C-family languages.
There are no macros, and what had been #defined symbols in the Objective-C API are
converted to names for Swift constants. There is one exception: You can guard blocks of
code with #if . . . #end directives.

But you can’t do it as casually as you can in C: No #if 0 blocks to temporarily (worse,
permanently) disable code while still keeping it in the source file. The #if’s argument has
no value; there are no comparisons or arithmetic; the argument is either defined (exposing
the contents of the #if block) or not (hiding them from the compiler). And, the only way
you can define it is as a build setting (or a command-line argument to the swiftc tool).

Open the Build Phases tab of the Target editor, and search for Other Swift
Flags. Usually, this will be empty. Double-click the field for the setting in the Passer
Rating target, and enter -D ALWAYS DELETE STORE. That will admit the
removeItemAtURL statement to the program code.

Summary
You’ve started building an iOS application in earnest. You learned how to use the Data
Model editor to construct a Core Data managed-object model that embodies your design,
making entities that describe the data types, and endowing them with attributes that have
suitable types and constraints. You also traced relationships among the entities to express
the fact that Passers play Games.

140 Chapter 9 An iOS Application: Model

You went one step further into the model by writing its first actual code. You had
Xcode build NSManagedObject subclasses from the entities, and made first-class objects
out of the database records.

Finally, the need for test data drove you to your first encounter with the Build Phases
tab in the Target editor. You added a script phase that generates test data, and set the phase
up so that it produces it on demand.

10
An iOS Application: Controller

If I were smart, I’d start unit-testing the model as soon as the first draft was done, before
adding the complexity of a human-interface layer. But I’m not smart; I’m going to put
testing off until Chapter 15, “Unit Testing.”

Instead, let’s go ahead with the first cut at a real app. Xcode’s Master-Detail Application
template provides a working version of the first table. Let’s convert that into a table of
quarterbacks and their ratings.

You remember from the “The Controllers” section of Chapter 8, “Starting an iOS
Application,” that the view comprising a full-screen stage in an iOS application is managed
by a view controller, a subclass of UIViewController. iOS services view controllers with a
defined repertoire of method calls throughout the life cycle of the view: loading, response
to events, and teardown. It is your responsibility to provide a UIViewController that
supplies these methods. In this chapter, I’ll fill out the initial controller,
MasterViewController.

Note
Again, I can’t supply complete listings for the files you’ll be working on. The project
template will provide much of what I don’t show, so you’ll have that in front of you already.
For the rest, see the sample code you can get by following the instructions in the
Introduction. Note that the sample code folders do not include Git repositories; use them
for reference only. Switching from your own version-controlled directory to a sample will
lose your repo.

Renaming Symbols in Objective-C
Just for this section, I’m going to back off to the Objective-C version of Passer Rating I
showed in Xcode 5 Start to Finish. The reason is that Xcode provides powerful tools for
refactoring, using Xcode’s insight into your code to make intelligent edits to your source.
The problem is that for now, the tools are ObjC only. In time they will surely support
Swift, but not yet. Let’s pretend we’re working with Passer.h, Passer.m, and the
Objective-C classes that use them.

142 Chapter 10 An iOS Application: Controller

In the first version of the Passer class, I have a convenience constructor, a class
method named quarterbackWithFirstName:last:inContext:. This is wrong. By
Cocoa conventions, a convenience constructor should begin with the name of the class,
and I think it’s bad style to say last: when the argument sets a property named
lastName: it should be passerWithFirstName:lastName:inContext:.

Refactoring the Name of an Objective-C Method
You’ve done a global search-and-replace before, in Chapter 7, “Version Control;” this is
just a matter of finding every instance of quarterbackWithFirstName:last:in-
Context:and substituting passerWithFirstName:lastName:inContext:, right?

Not so fast. You’ll have to take care of the second part of the selector, and that means
examining every instance of last: to make sure it’s part of the quarterbackWith-
FirstName:last:inContext: selector. To be correct, a search would have to involve a
regular expression that captures all, and only, the uses of those strings that are the selector
for that method. That means accounting for the arguments that come between the parts;
the possibility that a call might be spread across more than one line; interpolation of line
and delimited comments; uses of the bare selector in @selector expressions; and
preventing changes to a possible method named quarterbackWithFirstName:last:-
team:inContext:.

If you’re a regular-expression hobbyist, you might be able to come up with
search-and-replace expressions that work. But they would take more time to formulate and
verify than it would to do all the changes by hand. Refactoring does it right the first time.

quarterbackWithFirstName:last:inContext: was declared in PRPasser.h
and defined in PRPasser.m. Open either file, and click anywhere in the name of the
method. Select Edit→Refactor→Rename. . . .

A sheet appears, with just the original selector shown. As you edit the selector, you’ll
find that Xcode will not accept a new name—it will display an error message—unless it
has the same number of colons as in the original selector. That makes sense; if the number
of arguments differs, there’s no way to redistribute them.

Click Preview, and examine the changes in the comparison sheet. (Xcode will
probably offer to make a snapshot of your project, as it did in Chapter 7, “Version
Control.”) Every use of the symbol—the declaration, the definition, and calls, whether on
one line or three—are changed. Xcode can do this because refactoring doesn’t rely on
searching at all: It has an index of all uses of the symbol, so it can differentiate it from
near-misses and ignore issues of spacing and parameters.

Click Save, and commit the change to version control. (Yes, really. You should commit
every time you have a group of modified files that represent a single, logical change to
your project. If you commit frequently, your commit log will reflect your intentions, and
not be just a list of mini-backups.)

Refactoring a Class Name
There was another naming problem, this time with the MasterViewController class.
The name, provided by the project template, is descriptive in its way, but it described the

Renaming Symbols in Objective-C 143

class’s role, but not what it did. It’s a list of passers, and the name ought to reflect it:
PasserListController. This is another case for the name-refactoring tool.

Surely this can be done with a search-and-replace? That doesn’t quite work. For one
thing, though it isn’t the case here, MasterViewController might appear as a substring
of some other symbol.

For another, the name of MasterViewController isn’t just in text files. iOS apps are
laid out in .nib and .storyboardc files—object archives—which refer to classes by
name. .xib files, from which Xcode compiles NIBs, and .storyboard files, from
which .storyboardcs are derived, are ultimately XML, but the XML is emphatically
not human-editable. You’d have to go into a special editor, Interface Builder, and ferret
out all the references.

You’d find the class name MasterViewController in either the .m or .h file, and
click on it. Then select Edit→Refactor→Rename. . . , as before. Enter Passer-
ListController, and make sure you check the Rename related files box. Click
Preview, and have a look at the changes:

m Wherever MasterViewController had appeared in the source files, Xcode
substituted PasserListController. You’ve seen this already.

m The files whose base names had been MasterViewController now have the base
name PasserListController.

m In the .m files for PasserListController and AppDelegate,
#import "MasterViewController.h"

has been changed to
#import "PasserListController.h"

so the renaming of the files carried over into the #import directives.
m Main.storyboard is included in the list of changed files. Look at the

comparisons: You’ll see some complex XML, and the class-name references are
changed. You’d also see that this wasn’t a simple search-and-replace in the XML
source; the refactoring made structural edits to the files that would not have been
safe for you to do by hand.

m The names of the files in the header comments wouldn’t change. Refactoring
renames only the symbols, not the contents of comments or strings. Xcode can’t be
sure which occurrences of a string in human-readable content are literal and not
symbolic.

Save and commit the changes. The Commit editor flagged the Passer-
ListController files as A+, to indicate that they’ve been “added” under their new
names. Behind the scenes, Git will record a deletion of the files with the old names, and
the addition of them under the new names; and it will bridge the old histories into the
new entries. Xcode spares you the messy details.

That’s what Xcode can do for you in Objective-C. Now back to Swift. . .

144 Chapter 10 An iOS Application: Controller

Renaming a Class in Swift
Xcode’s master-detail application template seeded your project with two view controller
classes, MasterViewController and DetailViewController. These are okay for
placeholders, but they don’t tell you what the classes are for.

We know what they are for: One lists passers, and the other lists games. They should be
PasserListController and GameListController.

Fortunately, though we don’t have the refactoring tools, Swift is a simpler language, and
Xcode’s Find navigator is now powerful enough for this job. So long as you are careful, all
you need is a global find-and-replace, and a change in the name of one file.

You saw the Find navigator at work in Chapter 7, “Version Control,” so this shouldn’t
be hard for you: Click the third tab in the Navigator area, and use the chain of popup
menus to select Replace→Text→Matching. The string to search for is
MasterViewController, and the replacement is PasserListController. Press
Return in the find field to fill the navigator’s list with all occurrences of the class
name—you’ll see that it even catches the name of the master-controller scene in
Main.storyboard. Perfect. Click Replace All, and you’re done.

Repeat the process to change DetailViewController to GameListController.
Now rename the files: Click the file’s name in the Project navigator (first tab), and

move the mouse pointer a little bit; or simply press Return with the file selected. Either
way, the file’s name is selected for editing. Enter the base names
PasserListController and GameListController. The project file acquires an M
version-control badge to show its file roster has changed, and the renamed files are marked
with A+. Now would be an excellent time to commit the changes.

Editing the View Controller
The new PasserListController method is still set up to display the placeholder
Event entity from the template. That’s long gone, and you’ll have to substitute your own
code to show Passers. The template code is set up to use NSFetchedResults-
Controller, an auxiliary class that provides many services for listing, grouping, sorting,
and editing a list of Core Data objects.

NSFetchedResultsController is a very powerful facility, but it’s daunting unless
you are comfortable with the underlying Core Data technology. Cocoa books rightly treat
Core Data as an advanced topic, and the fetched-results controller is one step above that.

However, we can clean up the worst of it. The template Xcode gave us for the master
(now passer-list) controller is too simple (the Event entity has just one attribute) and too
clever (it employs a number of tricks to make itself generic) at the same time. We can cut
it down.

We took the first step in Chapter 9, “An iOS Application: Model,” by adding subscripts
to NSFetchedResultsController: The template contains a number of calls to
objectAtIndexPath(), which is verbose and requires a cast of the result:

let object = fetchedResultsController.objectAtIndexPath(indexPath)
as! NSManagedObject

Editing the View Controller 145

Swift needs to qualify property names with self only in the presence of a function
argument in the same name, and the subscript definition is not only more terse, it takes
care of casting the result to NSManagedObject:

let object = fetchedResultsController[indexPath]

The template pulls the Core Data managed object context through the initialized
fetchedResultsController, even though PasserListController has a
managedObjectContext property of its own. Here is how that property is defined:

var managedObjectContext: NSManagedObjectContext?

. . . which is to say, the variable is an optional NSManagedObjectContext, because it
must start out as nil and wait for the AppController to initialize it. Later references to
the property will have to be unwrapped with the ! operator: managedObjectContext!.

That’s not necessary, because we can see (or are at least willing to bet) that the property
will always be initialized before it is used. Change the declaration to

var managedObjectContext: NSManagedObjectContext!

and you never have to remember to unwrap it yourself. Code with unnecessary
optional-value handling is much harder to read. This allows you to turn

let context = fetchedResultsController.managedObjectContext

into

let context = managedObjectContext

and eliminate even that, because there’s no need to use a context variable to “simplify”
the long retrieval of the value from the fetched-results controller.

The Table View
PasserListController is a subclass of UITableViewController, itself a subclass of
UIViewController that takes care of some of the details of screens that consist solely of
tables. Table views fill themselves in through the Delegate design pattern: The table
provides almost all of the user-side behavior, and calls back to the controller (or other
object)—the delegate—to provide the details that make a particular use of the table special.
A UITableView doesn’t keep any data itself; it pulls it from the data-source delegate.

Note
In fact UITableViews have two delegates: One named dataSource to supply the
content, and another, delegate, to handle table-wide operations like inserting and
deleting cells.

Data sources serve up the cells that make up the rows of the table; they create
UITableViewCells and fill them in with data. Typically, this is done only when the table
asks for a row (in the method tableView(, cellForRowAtIndexPath:)). The

146 Chapter 10 An iOS Application: Controller

controller you get from the template factors the task of populating the cell into the custom
configureCell(cell:,atIndexPath:) method. Find that method, and substitute
this:

func configureCell(cell: UITableViewCell,
atIndexPath indexPath: NSIndexPath) {
let passer = fetchedResultsController[indexPath] as! Passer
cell.textLabel.text = "\(passer.firstName) " +

"\(passer.lastName) " +
"\(passer.passerRating))"

}

The indexPath carries the section (always zero for this simple list) and row for the cell;
the NSFetchedResultsController subscript method we created makes it simple to
pull out the matching Passer. The method sets the text content of the cell with the
passer’s name and rating.

Setting Up the Passer List
The fetchedResultsController method sets up a fetch request (think of it as a
SELECT, if you’re SQL-minded) that describes and sorts the objects for presentation to the
view controller. The template gives you code that is “clever,” to make it as generic as
possible; knowing what we know about Passer, and using the shortcuts we created, we can
cut it down:

var fetchedResultsController: NSFetchedResultsController {
// Already there? Return it.
if let existing = _fetchedResultsController { return existing }

// Set up the fetch request (think SELECT in SQL) for
// the contents of the table.
let fetchRequest = NSFetchRequest(entityName: "Passer")
fetchRequest.fetchBatchSize = 20

// Order by last name, then first.
fetchRequest.sortDescriptors = [

NSSortDescriptor(key: "lastName", ascending: true),
NSSortDescriptor(key: "firstName", ascending: true)

]

// Create the fetched-results controller.
_fetchedResultsController = NSFetchedResultsController(

// Passer, ordered last name, first
fetchRequest: fetchRequest,
// In my context
managedObjectContext: managedObjectContext,

Editing the View Controller 147

// No sections
sectionNameKeyPath: nil,
// Generic name for the cache
cacheName: "Master")

_fetchedResultsController!.delegate = self

// The fetch doesn't work? Bail. Don't try this at home.
var error: NSError? = nil
if !_fetchedResultsController!.performFetch(&error) {

abort()
}

return _fetchedResultsController!
}
var _fetchedResultsController: NSFetchedResultsController? = nil

Creating a New Passer
The insertNewObject method gets called when the user taps the + button in the
navigation bar; the link is made in viewDidLoad. The code in the middle inserts an
Event in the database and sets its timeStamp. As supplied in the template, insert-
NewObject pulls the entity (table) type from the fetchedResultsController, and
instantiates the new object from that.

That’s clever, but you already have a generator for Passer instances that avoids all the
filibuster. Replace the body of the method with:

func insertNewObject(sender: AnyObject) {
// Create using mogenerator's convenience initializer
let newPasser = Passer(

moc: managedObjectContext)

// We added a default-value dictionary and
// a way to initialize a Passer from it:
newPasser.setValuesForKeysWithDictionary(

newPasser.defaultDictionary)

// Save the context.
var error: NSError? = nil
if !managedObjectContext.save(&error) {

abort()
}

}

Giving every new Passer the same name and team isn’t ideal, but it lets us move on and
get back to it later.

148 Chapter 10 An iOS Application: Controller

Live Issues and Fix-it
I’ve made some substantial changes, and I’d like to see whether the compiler will accept
them. In a traditional workflow—and if you followed my advice in the “Quieting Xcode
Down” section of Chapter 2, “Kicking the Tires,” you’re in a traditional workflow—you’d
run the file through a check compilation.

Xcode 6 has a command to do just that: Product→Perform Action→Compile
will compile just the file in the current editor, without rebuilding the whole project. The
command is buried two layers deep, but you could always use the Key Bindings panel of
the Preferences window to assign a convenient key equivalent.

If you select the command, and you and I are in sync (go to the sample code if we
aren’t), there won’t be any errors, but there will be an error flag in insertNew-
Object—“Incorrect argument label in call (have ‘moc:’, expected
‘managedObjectContext:’).” Easy enough; replace moc with managedObjectContext,
just like it says.

There’s another way to do this, which most people prefer; it’s a matter of taste. Back in
Chapter 2, I had you go into the Preferences window, General panel, and uncheck Show
live issues. Go back and check it.

What happens now? With no errors, nothing much. Try undoing that change from
moc to managedObjectContext. The error flag returns instantly—you no longer have
to ask Xcode to recompile. Now you notice something: The red badge in the margin for
errors usually contains a “!”. This badge has a white dot.

Click the badge. A Fix-it popover appears, offering a change in your source that would
clear the error (or at least put it off till later in your code). See Figure 10.1. In this case it
contains only one option, but it’s the right one: Change moc to managedObject-
Context. If there were more than one possibility, you’d be offered them. Highlighting

Figure 10.1 (top) The red badge for some Swift errors contains a dot instead of an exclamation
point. (bottom) Clicking the dot brings up a Fix-it popover that suggests a correction for the error. The

suggested correction is shown temporarily in your code.

The Real Passer Rating 149

one will show what your code would look like if the change were carried through. Press
Return or double-click the highlighted suggestion to accept the change.

For C-family languages, Fix-it uses the llvm library to gain insights into your code and
to check what it finds against questionable coding practices. For instance, this sort of loop
is idiomatic in C programming:

int ch;
while (ch = getchar())

putchar(ch);

but using an assignment (=) in a Boolean context like the condition of a while loop
smells. Meaning an equality test (==) and doing an assignment is a very common error.
When the missing-braces-and-parentheses warning is enabled, Xcode will detect that you
could mean either assignment or comparison, and the Fix-it popover will offer corrections
that suit either interpretation. See Figure 10.2.

The Real Passer Rating
If all has gone well, you no longer have a boilerplate application: You have an app that
calculates and displays passer ratings. Let’s try it out. Select Product→Run (R).

Another Bug
By now you know that when I say something like “if all has gone well,” the app will crash.
And so it has: The Debug navigator shows a trace back through an exception handler, and
the console says

Terminating app due to uncaught exception 'NSInvalidArgumentException',
reason: '*** -[NSDictionary initWithObjects:forKeys:]:
count of objects (1) differs from count of keys (12)'

followed by a stack trace that last touched your code at. . . a very long symbol. You can
pick it out as yours only by the familiar-looking substring SimpleCSVFile. Like C++,

Figure 10.2 When more than one solution is possible (as in this assignment in the condition of a
while loop), Fix-it will offer the alternatives and demonstrate what the corrected code would

look like.

150 Chapter 10 An iOS Application: Controller

Swift keeps track of functions through “mangled” names that identify their host classes,
parameter types, and return types. These are not human-readable.

Fortunately, the Xcode toolchain carries a demangling tool you can run from the
command line (lines backslash-broken to fit the page, and indented for readability):

$ xcrun swift-demangle _TFC13Passer_Rating13SimpleCSVFile3runfS0_\
FFGVSs10DictionarySSSS_GSqCSo7NSError_GSqOS_8CSVError_

_TFC13Passer_Rating13SimpleCSVFile3runfS0_FFGVSs10DictionarySSSS_\
GSqCSo7NSError_GSqOS_8CSVError_ --->

Passer_Rating.SimpleCSVFile.run (Passer_Rating.SimpleCSVFile)
(([Swift.String : Swift.String]) -> ObjectiveC.NSError?)
-> Passer_Rating.CSVError?

It would be nice to see what was going on in SimpleCSVFile.run(block:), but after
the app ran through the exception handler, that information was lost. It would be nice if it
weren’t.

Note
An exception is a signal by program code—your own or in the system—that something has
gone wrong. When an exception is raised, execution resumes at the nearest caller that
has registered to handle it. If nothing does handle it, the last-resort handler kills the
application. That’s what happened here. Coders in other languages often use exceptions
as routine control structures. Cocoa avoids them for reasons of performance and stability,
and Swift makes them effectively inaccessible. In Cocoa/Objective-C/Swift, exceptions
are reserved for conditions severe enough to threaten the integrity of the app and its data.

There is a way to do that. Open the Breakpoint navigator, which shows you a list of all
the breakpoints you set in your project. It isn’t confined to what you created by clicking in
the margins of your source; in particular, you can set an exception breakpoint, which will halt
execution whenever an exception is raised.

You’ll find a + button at the bottom-left corner of the Breakpoint navigator. If you
click it, you’ll be shown a popup menu, from which you can select Add Exception
Breakpoint. . . . An “All Exceptions” breakpoint appears in the list. You can configure it
(right-click it, or Option-Command-click to see a popover), but the default behavior is
good enough.

Note
One case for editing the breakpoint is to cut off C++ exceptions, which some OS libraries
use routinely.

With the exception breakpoint set, run Passer Rating one more time. Now when the
exception is raised, the debugger shows you the last point of contact with your code:

let values = NSDictionary(objects: fields,
forKeys: headers)

as! [String: String]

The Real Passer Rating 151

and the stack trace in the Debug navigator shows you the backtrace you got in the console
message before. Almost.

The main part of the Debug navigator is taken up by the stack trace, showing all of the
pending functions from the crashed/breakpointed function at the top, to the root start
function at the bottom. Your functions are highlighted in two ways: First, their names are
shown in black instead of gray, to show that Xcode can display their source code.

Second, they are marked with a blue icon with the head-and-shoulders badge that
Apple customarily uses for “user.” The icon indicates the framework the function came
from. Other examples are a purple mug for the Cocoa frameworks, an olive series of
dotted lines (which may represent layers of bricks) for Foundation and Core Foundation, a
dark-pink briefcase for the event-servicing frameworks, and a tan circle for the runtime
library.

Not many of these are interesting. There is a lot that goes on inside Cocoa, and beyond
knowing what called you, what you called, and what crashed, there’s not much profit in
watching Cocoa crawl around inside itself. Xcode understands. In the bottom-left corner
of the Debug navigator is a button (Figure 10.3) that filters the stack trace. When it is
highlighted, you see only frames for which there are debugging symbols, or at which
control passed between libraries. When it is not, you see everything.

The debugger, especially the description of the exception, tells you what you need:
The last of our lines to be executed was, you remember,

let values = NSDictionary(objects: fields,
forKeys: headers)

as! [String: String]

The exception message said that there was only 1 object for 12 keys, so immediately you’re
interested in fields and headers. Have a look at the variables pane at the left of the
Debug area. Click the disclosure triangles in the left margin. Sure enough, the fields
variable holds an NSArray (which is the public, abstract class—what’s shown is the
concrete subclass NSArrayI) with one element, an empty string. headers, the
instance variable backing the headers property, points to an array of 12 elements.

So the question is, what would cause a line to present a single empty element? Well, if
the file ends with a newline character, the “last” line, as delimited by the last newline, will
be empty. Disclosing the contents of self in the variable display confirms this:
lineCount is exactly the number of lines in sample-data.csv.

Note
I’m guessing. I haven’t tested. I’m wrong.

The solution is to add one test before the assignment to values:

// Blank line; go to the next one
if fields.count <= 1 { continue }

152 Chapter 10 An iOS Application: Controller

Figure 10.3 (left) By default, frames that are probably irrelevant to your code are redacted from
the stack trace in the Debug navigator. Their place is taken by lines across the display. (right)

Clicking the button at the bottom-left of the navigator expands the list to show all frames.

The Real Passer Rating 153

And, because the CSV parser ought to catch some errors:

if fields.count != headers.count {
// There should be as many fields as headers
return .LineFormat(path, lineCount,

headers.count, fields.count)
}

. . . where .LineFormat is an enumerated value of the CSVError enum. CSVError
defines four error types, each with its own combination of data for the details. You can
find the whole thing in the sample code, but here is a taste:

enum CSVError {
case LineFormat(String, Int, Int, Int)
case EmptyFile(String)
case NoSuchFile(String)
case ClientError(String, Int, NSError)

func code() -> Int {
switch self {
case .LineFormat: return -3

...
}

}

// Representing the SimpleCSVFile-side error
// conditions is easy; translating them into
// NSErrors, a little more involved:
var nsError: NSError {

var userDict:[NSString:AnyObject] = [:]

switch self {
case let .NoSuchFile(fileName):

...
case let .EmptyFile(fileName):

...
case let .LineFormat(fileName, lineNumber, expected, actual):

userDict = [
NSFilePathErrorKey : fileName,
NSLocalizedDescriptionKey :

"File \(fileName):\(lineNumber) has " +
"\(actual) items, should have \(expected)",

CSVErrorKeys.ExpectedFields.toRaw() : expected,
CSVErrorKeys.ActualFields.toRaw() : actual

]
case let .ClientError(fileName, lineNumber, error):

...
}

154 Chapter 10 An iOS Application: Controller

return NSError(domain: WT9TErrorDomain,
code: code(),
userInfo: userDict)

}
}

Running Passer Rating
Everything is fixed now, I promise. Run the app. The iOS Simulator starts, and after a
delay, you see the first cut at Passer Rating (Figure 10.4). It required a little focused effort
on the controller end, but the data model seems to be holding up with some
reasonable-looking results. When you swipe across a row in the table, or tap the Edit
button, the app offers to delete a passer, and when you tap Delete, the passer collapses out
of sight. The + button creates one passer with the name “FirstName LastName,” but that’s
all you asked for. As far as it goes, the app works (until you tap one of the passer’s entries
in the list; the app will crash when it can’t find the timeStamp attribute in Passer).

Figure 10.4 The first real version of Passer Rating, at last. It reads the sample data, lists the
passers and their ratings, and responds to commands to add and delete passers. The format of the

ratings themselves can be cleaned up later.

Summary 155

Note
Deleting passers in the running app is a little frightening because you can do that only so
many times—at most 43, from this data set. However, you’re not going to run out because
I’ve rigged AppDelegate to reload the sample data set every time the app is run.

When you’re done, click the Home button at the bottom of the simulated iPhone (or
Hardware→Home, H, if your screen can’t accommodate the simulated devices at a
one-for-one scale), and return to Xcode. But wait: The Stop button in the Workspace
window’s toolbar is still enabled. What’s going on?

Remember that iOS apps don’t halt when the Home button is pressed; they go into
suspension in the background, and can resume their run at any time. The Stop button is
still active, and the debugger is still running, because Passer Rating hasn’t quit. Tapping its
icon on the home screen will bring it to the foreground again, still running.

This is the right thing to do, but not always what you want. If you want your app to
stop, click the Stop button. Or, simply go on with your work, and issue the Run
command. Xcode will present a sheet offering to stop the incumbent.

Warning
The alert that offers to stop the incumbent process offers to suppress this warning in the
future. Don’t check that box. Suppose you are engaged in a long debugging session, and
you are at a breakpoint. You want to resume running. You’re concentrating on your work,
not the tool. Which button, labeled with a triangle, will you reach for? The tiny Continue
button tucked into the lower middle of the window? Or the large, friendly Run button at the
top left, which would ruin your debugging history if that alert didn’t save you?

Summary
In this chapter, I proved the data model by turning it into a real iPhone application. On
the way, I showed you how to change class and file names from what Xcode’s template
gave you into something practical and informative.

You came across Fix-it, which offers automatic fixes of syntax errors and warnings, and
Live Issues, which exposes errors and warnings as you type. The combination, made
possible by the nimble llvm library, won’t be enough to remove “check compilation”
from your vocabulary, but you’ll find that the moment-to-moment support will keep you
working with fewer breaks in your flow.

A bug in Passer Rating’s CSV parser gave you a chance to get better acquainted with
the Debug navigator, and to see how it can do a little data mining to make debugging
easier. And, you used the debugger console to get a better idea of what’s going on.

This page intentionally left blank

11
Building a New View

The passer list works well enough now. It’s not fancy, but it very nearly matches the
wireframe in Figure 8.2. One thing it is lacking is a transition from a list of passers to a
passer summary and a list of games. For this, you will create a new view controller and
make the acquaintance of Interface Builder.

The Next View Controller
The thing to remember is that unless you are doing some custom drawing or event
handling, there’s little reason to create a new subclass of UIView. The standard views are
so generic, versatile, and easy to combine that making a new one is rare. What isn’t rare is
the need to set the content of views and respond to the events they capture. You know
already that this is the business of the controller layer of the MVC design pattern, for
which you’ll need a subclass UIViewController.

If You Want to Add a View Controller
This time around, it wasn’t necessary to add a view controller. The master-detail project
template provided a detail view, and all you had to do was a little renaming and
repurposing. What would you have to do to create a new view controller?

It’s not hard. First, you need .swift source files for a subclass of UIView-
Controller. Select File→New→File. . . (N), and pick the iOS→ Cocoa Touch
template. You’d name the class, select UIViewController as the superclass, find that
Xcode had appended ViewController to the class name you’d just typed, and change
your class name back. Select Swift for the Language. This being a view controller, there
will be a checkbox, Also create XIB file, that I’ll discuss shortly.

Note
Xcode’s revision of the name you chose for your class is annoying, but the principle is
sound: Pick a name that describes the role. It seems obvious, but the temptation to call a
controller for editing passers either PasserEditor or PasserEditorView is strong.

158 Chapter 11 Building a New View

Click Next, and use the get-folder sheet as you have before, to pick a place for the files
on-disk, select a project group to display them, and assign them to one or more targets.

In principle, you’re done. Your controller could build its entire view tree in code by
implementing the .loadView() method.

In practice, you’d rarely do that. You would instead embody the controller’s view in a
layout created in an Interface Builder document—usually a storyboard so you can
integrate it into the flow of your application design. If you need a stand-alone design—for
instance, if you intend to use the same layout repeatedly in different contexts—you’d
isolate the view in its own XIB file.

That’s the purpose of the checkbox, Also create XIB file that became active when
you elected UIViewController as the superclass. If you check it, Xcode will create a
XIB linked to the new class.

If you want to add your controller to the storyboard flow, you’d add it and its view
to the canvas as a scene. Create the scene by looking for View Controller in the Object
library in the Utility area, and dragging it into the canvas, where it will bloom to the
size of a screen. Click the bar above the scene to select the controller, and use the
Custom Class field in the Identity inspector (third tab) to identify your new class as
the controller.

Storyboards, Scenes, and Segues
Superficially, Interface Builder looks like a tool for drawing UI layouts. And that is part of
what it does: More accurately, Interface Builder is a visual editor for the relationships
between objects in your application. What-goes-where is just one kind of relationship.

Note
From the 1990s through Xcode 3, Interface Builder was a separate application. There are
other editors in Xcode that are also radically different from the main code editor, but
because of its long history of being a stand-alone application, people still speak of IB as a
thing apart.

You’ve seen UI-layout editors before, on many other platforms: Most of them emit
executable code that constructs the view hierarchy described in the editor; or they work
on files that the build process turns into executable code; or at least they construct data
streams that script the creation of UI objects. IB is similar in that the files it works on are
compiled and installed at build time for use in the target application.

That’s where the similarity ends. Remember this: There is no code. There is no script.
Interface Builder products are not executable; instead they are archives of Cocoa objects.
The archives include links between objects and methods both within themselves and
externally. Many newcomers who are used to other systems want code so they can “see
how it’s really done.” The IB products are how it’s really done. Except in trivial cases, it’s
hard to produce code that mimics NIB loading correctly; and in some cases (particularly
on OS X) it isn’t possible.

The Next View Controller 159

Note
That is at least where you should start your thinking. On iOS, it’s often useful to
instantiate, arrange, and link views dynamically—it’s how many project templates start
out—but code should not be the first technique you try. Interface Builder can be
intimidating because it feels magical. As with most of Cocoa, it does things you may be
used to controlling yourself. Relax. In the long run, if you learn to use Interface Builder
effectively, you’ll spend much less of your life fighting the operating system.

A storyboard goes beyond even that: It provides a canvas that holds scenes, each
representing a controller that runs (roughly) a whole screen at a time; linked by segues
running from individual controls to the next scene to be presented. When tapping a
button in the running app triggers a segue, the tap goes directly to UIKit, which creates
the next scene and its controller, gives the outgoing controller a chance to touch up the
new one’s configuration, and moves the scene onto the screen. Again: The storyboard
product makes a lot happen that you may be accustomed to controlling yourself. If you
can adjust your thinking to take advantage of the flow, you’ll find you can do almost
anything, and much more easily.

Arranging Your Tools
Interface Builder has peculiar needs for its editing space. A completed storyboard is very
large. You can zoom in or out using the Editor→Canvas→Zoom submenu, or by
pinch gestures with a trackpad, but even if you are working on a single scene in your app,
every pixel in the canvas view is precious. A Mac screen that is otherwise respectable for
development probably won’t show all of an iPad layout at once.

Note
At the maximum, zoomed-in scale, the canvas displays the layout to match the screen
point-for-point. This is the only scale at which Interface Builder allows you to lay out views.
However, you can add scenes and link outlets, actions, and segues in zoomed-out views.

At the left edge, IB has a document outline view that you’ll rarely want to close, and on
the right, you need the Utility area open to create and adjust the views you insert. If you
use an Assistant editor (and sometimes you must), things get tighter still. What you don’t
need are the Navigator area, because you’ll spend most of your time on one IB document,
or the Debug area.

This is a job for tabs. You probably already have your workspace window set up as you
prefer for editing source files. Start from there. Select File→New→Tab (T). This is
where you’ll do all your IB work, so double-click on the tab’s name and change it to
Interface Builder.

Now configure the tab: Use the Project navigator to select Main.storyboard. With
the View control in the toolbar (three rectangles with portions highlighted), close the
Navigator and Debug areas and open the Utility area. The bottom part of the Utility area
is called the Library; select the Object library tab (the third one, with the cube) to show
the repertoire of objects you can put into the canvas or a scene.

160 Chapter 11 Building a New View

With the Project navigator gone, how will you get to other files? That’s not a problem
in this project: Passer Rating has one storyboard, and that’s all it will ever need. But sooner
or later you’ll have a project with more than one file that needs attention from Interface
Builder. How do you switch among them without shoving the Navigator area back into
the window?

You’ve probably already noticed the bar that spans the top of the Editor area. This is the
jump bar. It presents a number of controls for navigating your project directly. What
interests you at the moment is the path control, spanning most of the bar. It takes the form
of a series of arrow-shaped segments. Each segment is a link in the chain that starts with
the project and goes down through the project’s groups, to the file on which the editor is
focused. (In the case of structured documents, it will go on through the hierarchy of
functions or IB objects.) If the current file has a selection, one last link identifies the
selection by name. See Figure 11.1.

Clicking a segment displays a popup menu offering a choice of the projects, groups,
files, and selections available at that level in the hierarchy. The popup is itself hierarchical,
so you can trace a new path for the editor. If one level of the jump bar has too many items
to search by eye, you can narrow it incrementally by typing a search string—the search key
isn’t consecutive, so alcon will turn up the PasserListController and
GameListController Swift files.

This suggests a strategy if you have many XIBs and storyboards, and want to work on
them in a dedicated Interface Builder tab. Open the Project navigator again. In the
search field at the bottom, type .xib to narrow the list down to the project’s XIBs.

Figure 11.1 (top) The jump bar runs across the Editor area between the tabs and the editor itself.
The main part of it is a path control tracing from the project through your groups to the current file
and its selection. (bottom) Each level of the path control is a hierarchical popup menu that lets you

set the path.

Building a View 161

Figure 11.2 Interface Builder is easier to use if you give it its own tab, configured for the purpose.

Command-click each so they are all selected. Then select File→New→Group from
Selection. All of your XIBs are now in a common group, which means that they are all at
the same level in your jump bar. You can move your storyboard files to the same group.
The file segment of the path control will switch you among the design files directly. You
can close the Project navigator for good. Your workspace should look like Figure 11.2.

Building a View
The Master-Detail Application template provides a detail controller class (the one we’ve
renamed to GameListController) and realizes it in Main.storyboard as the third
scene in the canvas (Figure 11.3). The first scene, marked with the single arrow that shows
it is the initial scene in the storyboard, is for a UINavigationController. It is joined

Figure 11.3 The master-detail project template fills Main.storyboard with three scenes:
a navigation controller that contains a master scene (Passer List Controller), which cascades to a

detail scene (Game List Controller).

162 Chapter 11 Building a New View

by a root view controller segue to its initial content, the PasserListController that
presents the roster of passers. In turn, a push segue links it to the next step, the game list.

The navigation controller is a wrapper on the other two; it manages a stack of views
that slide into and out of the screen as the user navigates a hierarchy, such as from a passer
in a list to the passer’s detailed record. It also maintains a navigation bar at the top of the
screen to display the current view’s title and a back button so the user can step back
through the hierarchy (from passer to passer list). The first scene linked to it is the root view,
the first view the navigation controller will display.

The succeeding views in the controller stack all display navigation bars, but those
controllers don’t actually manage those bars: The bars are there so you can allow for the
space as you work the layout out.

The last view in the chain, the “detail” view that we’ve renamed GameList-
Controller, comes from the template as a plain view, empty but for a single label; the
template simply filled the label with the time-of-day held by the dummy Event entity.
That’s not what we want, but before we get rid of it, there’s something to notice.

Note
All UIViewControllers have a title property that UINavigationController uses
to fill in the title in the navigation bar. The Master-Detail template has filled these with
“Master” and “Detail,” which is beginning to get tedious. Select each scene with the
canvas zoomed in to 100 percent. The active scene will show three icons in the bar at the
top; the first represents the view-controller object. Click it, and then select the Attributes
inspector (fourth tab at the top of the Utility area). Set View Controller—Title to Passers
and Games, respectively. Then, select the navigation bars in each scene, and set the titles
there, too.

Outlets and Assistants, in Passing
Click the middle item in the Editor group in the toolbar—it looks like two linked rings,
to suggest the display of two related things. This adds an Assistant editor to the Editor area.
This probably ruins the window layout you worked so hard to construct, so make
adjustments until you have something like Figure 11.4.

At base, the Assistant editor is just another editor, allowing you to see more than one
file as you work on them. And that is one way you can use it. What makes the Assistant
editor special is that it can automate its choice of content, adapting itself to what you do in
the main editor. The jump bar in the assistant determines the relationship it will pursue.
Use the first segment as a menu to set the assistant to Automatic, and click on the various
objects in the IB canvas. You’ll see that the assistant shows the source code that backs each
object.

Click the white bar above the Game Controller scene. As fits the pattern, the Assistant
editor fills with GameListController.swift. If more than one file met the need, the
control at the right end of the jump bar would show how many matched, and would
present arrowheads on either side to switch between them.

The template has added this line to the class declaration:

@IBOutlet var detailDescriptionLabel: UILabel!

Building a View 163

Figure 11.4 Adding the Assistant editor by clicking the middle button in the Editor group (the one
that looks like linked rings) requires some adjustments to the project layout.

So: One of the properties of the controller is a reference to the label in the middle of the
view. There’s something more—notice the @IBOutlet attribute. It is merely a signal to
Interface Builder that this property of the view controller is eligible to receive a pointer to
something in the scene.

Note
The UILabel type carries an exclamation point, which you saw earlier in the “Editing the
View Controller” section of Chapter 10, “An iOS Application: Controller.” It guarantees
that although the value will start as nil, Swift can assume it will be non-nil before your
first use of it.

For your first look at what this means, hover the mouse cursor over the dot you see in
the gutter next to the line (Figure 11.5). That dot shows that a link has been made
between an IB object and that outlet. Interface Builder demonstrates the link by
highlighting the label in the canvas when the mouse hovers over the linkage dot.

Figure 11.5 @IBOutlet properties are meant to be filled with pointers to objects that will be
realized when a scene is loaded. Hovering the mouse cursor over the linkage bubble next to an

outlet property highlights the corresponding object in the controller’s scene.

164 Chapter 11 Building a New View

That’s all there is to see this time around; there will be much more later. For now, we
don’t need that label. Select it in the game-controller scene, and press Delete. After taking
note that the connection bubble next to the property var is now empty, select the line
and delete that, too. Now that the outlet property is no longer defined, Xcode will flag an
error on the reference to it in configureView(); delete those lines, too.

Warning
If you go the other way around, and forget to delete the label, you’re heading for a crash:
When the scene loads, the storyboard still calls for linking the label. UIKit will look for the
outlet property in the controller, and will throw an exception when it doesn’t find it. The
error message will be only vaguely helpful, and you’re on your own finding the dangling
reference. Make sure you clean up both ends.

The Billboard View
Now you can add content of your own. The design calls for two elements: a billboard
containing overall statistics for the passer, and a table with the details of each game. Start
with the billboard.

The billboard will contain labels of various sizes and styles. First, add the container
itself. Click in the search field at the bottom of the Object library (third tab, bottom part
of the Utility area), and type UIView. You’ll see an entry labeled “View.” Drag it out of
the library and into the scene in the editor. As you drag it, it transforms into a rectangle
that sizes itself to the available space in the scene. Let it go.

You don’t want the billboard to take up the whole space. Click on it to display resizing
“handles” at the sides and corners. Given how large the new view is, this may not help
you much—it’s white-on-white, and there’s no way to identify which corner or side
you’re dealing with. Select Editor→Canvas→Show Bounds Rectangles to show the
edges of the view. Better.

Drag the bottom edge up until the view takes up about the top quarter of the available
space (168 points). This may be a bit tricky—IB clips the handles to the edge of the
superview. It may be easier to grab the top handle, size it down, then drag the resized view
up until it abuts the navigation bar.

The billboard view is supposed to be light gray, to match the navigation bar. In the
Attributes inspector, there’s a Background control, which has two parts: The left part is a
color well, which you can click to get a color palette to edit the color. The right part is a
drop-down menu containing standard colors. Click the color well to bring up the
color-picker palette; click the magnifying-glass button and then the navigation bar that’s
already in the scene. The inspector should look like Figure 11.6.

Pretty nice, eh? Use the first segment of the Assistant editor’s jump bar to display a
Preview of the layout. (Select the GameListController scene if it isn’t already
selected.) You’ll see something like Figure 11.7, with the scene rendered as it will be on
screen.

The Preview view includes a + button in the lower-left corner to add device layouts to
the display, such as the various sizes of iPhones and iPads. Each preview has a white bar at

Building a View 165

Figure 11.6 The Attributes inspector for the passer billboard view should look like this when
you’re done.

Figure 11.7 Selecting the Preview view in the Assistant editor’s jump bar displays a
straightforward rendering of the selected scene. Controls at the lower left change the presentation

of the view for different screen sizes, orientations, and idioms.

166 Chapter 11 Building a New View

the bottom naming the format (“iPhone 4-inch,” for instance), and providing a button
that will rotate the view. You can choose any of them more than once: The second time
you add a layout, it will appear in the other orientation from the existing one, allowing
you to monitor changes in your layouts in both orientations at once.

There are a couple of fixups to do. First, we’ll arrange to make the billboard visible to
GameListController, and then make the briefest possible acquaintance of Auto Layout.

Linking Views to a View Controller
View controllers exist to link your data to your views. GameListController needs
direct access to its main view (through the view property, which is linked automatically in
Storyboard scenes) and to its subviews (which you must identify and link yourself). The
instance variables containing those pointers are marked with the @IBOutlet attribute.
@IBOutlet has no effect on the generated code. It is merely a signal to Interface Builder
that the property is eligible for linking to an object in a storyboard or NIB.

Select the game list scene in the storyboard canvas; make sure it is visible while the
Assistant editor is open. From the first item in the assistant’s jump bar, select Automatic
→GameListController.swift. Experiment: Click another scene or view, and see
that the assistant tracks the selection and displays the corresponding controller’s source
code. Get back to the GameListController scene.

Hold the Control key down and drag from the billboard view into the controller’s
class block. It doesn’t matter where, so long as it isn’t in content blocks like enums or
funcs. A horizontal insertion bar appears in the code, labeled to show that if you release
the mouse button there, you’ll be creating an outlet or an action method (which I’ll get to
later). See Figure 11.8.

When you release the mouse button, Interface Builder presents a popover dialog for
you to specify the kind of link you want to create, and what you want to name it. Call it
billboard and click Create.

Your class now includes a new line of code:

@IBOutlet weak var billboard: UIView!

This shows an outlet for a UIView named billboard. weak means that the controller
doesn’t “own” the view, and, if every other owner (such as the view tree) relinquishes it,
billboard will become nil. You’ve seen the ! before—the var is “implicitly
unwrapped,” which is your promise that by the time your code starts using it, billboard
will refer to an actual object, so Swift will free you from having to decorate every
reference with a !.

One more thing: If you have the document outline expanded (click the button at the
lower-left corner of the canvas, if not), and you expand the outline under “Games Scene,”
you’ll find a UIView containing a UIView. This means that the root view that comes with
the scene contains another view, which we know is the billboard. As this scene becomes
more complex, the generic names won’t be useful.

Building a View 167

Figure 11.8 (top) Control-dragging from a view in a storyboard scene into the code for the
scene’s controller shows an insertion bar for an outlet or an action. (bottom) Releasing the mouse

button brings up a popover for you to specify the kind of link, its type, and its name. Clicking
Connect inserts an @IBOutlet for the view.

With the billboard view still selected, go to the Identity inspector (third tab in the
Inspector panel) and type Billboard in the Label field in the Document section. Tab
out of the field, and find that the billboard now appears in the outline under that name.

Auto Layout for the Nonce
Next, Auto Layout. Auto Layout is a technique for ensuring that your views are always
placed and sized as you intend them, no matter the size or orientation of the screen—this
view spaced 8 points below that, centers aligned, and so on. Expressing “intention” is a
hard thing to do right, and Apple was at pains to do it right. Unfortunately, that requires
you to take pains, too.

168 Chapter 11 Building a New View

For the moment, we will do the very least we have to do to make the billboard display
correctly on the screen (or at all; Auto Layout’s best guess at what we want crushes the
billboard to zero height in landscape orientation). This chapter is quick-and-dirty. I’ll go
into depth in Chapter 12, “Auto Layout in a New View.”

You express your intentions as a system of constraints, which Cocoa reconciles to lay out
your views. It is versatile and effective. The core principles are not hard to understand:
Every view’s size and placement on both axes should be completely specified by a chain of
constraints that must not contain contradictions. Simple.

Simple to understand, but not to get right. I wasn’t satisfied with the constraints system
for the billboard view we’re about to build until I had produced nearly 40 of them. (This
was with Xcode 5; Xcode 6 represents a lot of progress.) Some conflicts are inevitable, and
you have to give Auto Layout a way out by assigning priorities among them, and in a long
chain of dependencies, there’s a lot of trial and error. Doing the billboard view right
would consume most of this chapter.

This chapter will be all about building the billboard view. There are five things you
must do to get over the immediate problem of the billboard disappearing:

1. Click the white bar above the GameListController scene, and select Editor
→Resolve Auto Layout Issues→Add Missing Constraints in Game List
Controller. This will put best-guess constraints on the billboard view’s position
relative to its nearest neighbors.

2. If you still have the Preview assistant open to show a 4-inch screen in portrait mode,
you see that the billboard is compressed vertically, from the intended height of 168
points to 106. If you rotate the preview, the height of the billboard goes to nothing.

3. Select the billboard view, and look at the Size inspector (fifth tab): At the bottom of
the panel is a list of the constraints IB added to the view. Horizontally, the “leading”
and “trailing” spaces (I’ll get to that terminology soon) are fixed to the container,
and those don’t seem to be a problem; you want the sides glued to the sides of the
screen.
The top and bottom edges are placed relative to the respective layout guides, notional
lines in the screen view that represent the extent to which upper and lower bars
(navigation, tab, status, toolbar) compress the usable vertical space. As I placed and
sized the billboard, the top edge is at the upper guide, and 368 from the lower. The
upper guide, allowing for the status and navigation bars, is 134 points from the top
of the screen. So when the device is turned to landscape, the billboard’s available
height is 320 – (0 + 64) (bars) – 368 (bottom margin) = –112
points. The “missing constraints” did not serve us well.
On reflection, we care about the billboard’s being just below the upper bars (we have
a constraint for that), we don’t care about its keeping a consistent distance from the
bottom (but IB gave us a constraint for that); for now, we do care about its having a
consistent height (but we don’t have a constraint for that).

4. Select the billboard view itself. An i-beam line extends from its bottom edge to the
bottom of the view, representing the bottom-edge constraint. Click to select it. (It’s

Building a View 169

hard to catch, but IB gives you a hint by highlighting it when the mouse cursor is
over it.) Press Delete to get rid of it.

5. At the lower-right corner of the editor, you see a palette of button groups. The
one with four segments governs Auto Layout. With the billboard view still selected,

click the Pin button
()

. A popover view appears in which you check

the box marked Height. Click Add 1 Constraint at the bottom of the popover.

That’s it; the billboard behaves as intended on all screen sizes and orientations, in the
preview and the simulator. There will be one more step once you’ve populated the
billboard.

Lots of Labels
The billboard view consists of 14 instances of the UIKit class UILabel. Some of them are
labels in the colloquial sense—static text that identifies something else on the screen.
Others are “labels” because even though the application will change their content, the
user can’t. They’ll be placed in three groups:

m The name label, across the top
m The left-side group, consisting of labels and values for cumulative statistics like total

attempts
m The right-side group, with summary information like the overall passer rating, the

passer’s most recent team, and the span of his career

Note
The cries of horror you will be hearing will be those of professional graphic designers.
Ignore them. They’re used to it.

The Name Label
This is only one label, extending across the top of the view.

Type label into the Library search field to turn up the label (UILabel) view. Drag it
into the top of the billboard view. The Attributes inspector will have a Text field; fill it
with FirstName LastName as a placeholder, and discover that most of what you typed
was truncated (with an ellipsis) because the label was too narrow. UILabels adjust their
text size (down to a limit you can set) to fit the content to the bounds of the label; if that’s
not enough, they truncate. Stretch the label across the top of the detail view so no
shrinkage is necessary.

The passer’s name is pretty important, so let’s give it some emphasis. The Font element
in the inspector shows the text to be “System 17.0.” Click the boxed-T button to open
the Font popover (Figure 11.9). Make it System Bold and 18 points.

The Right-Side Group
Now a label for the passer rating, on the right side, just under the name. This is really,
really important, and I have no taste, so make it big, bold, and red. Fill it with 158.3 and
set the font to System Bold, 52 points (you’ll need to stretch the bounds). For

170 Chapter 11 Building a New View

Figure 11.9 (left) Clicking the T button in the Font field in the Attributes inspector displays a
popover to specify the font, style, and size for the text in a view. (middle) The Font popup menu
offers you the “System” fonts, plus the dynamic-typography categories. (right) Selecting Custom
from the Font popup enables the Family popup, which offers every font family available in iOS 8.

Alignment, choose right-aligned (the third segment), so numbers less than 100 will line
up. Click the color well at the left end of the Text Color control in the inspector; that
gets you the Colors palette. Use the fifth tab in the palette, and select the “Maraschino”
crayon. The passer rating is now really, really red. Experiment with Shadow and Shadow
Offset, if you like.

A label for a team name, System Bold, 14 points, right justified, should go under the
big rating label. Set its text to Tacoma Touchdown-Scorers, the longest team name in
the data set, so you can be sure it will fit. In the Attributes inspector, there’s a stepper for
Lines; if you set it to 2, the team name can wrap to two lines. Resize the label so the
whole name is visible.

And this is the last one, I promise: A label to show the start and end dates of the passer’s
career: Below the team name, System, 12, right justified. Fill with the widest plausible
content, 10/29/2015–10/29/2015.

Note
If your curiosity led you to the Preview assistant, you probably found the results of the
layout so far discouraging—the right column is partly or wholly beyond the right end of the
billboard. We’ll fix it soon.

The Left-Side Group
The statistics come next. Start with one label, Attempts, System, 14-point, regular, sized
to fit, and positioned under the left end of the name label. You need four more captions,
and you can save some effort by duplicating the one you just set up: Edit→Duplicate
(D), or hold down the Option key and drag. Line those up under the original, then edit
each so that they read Attempts, Completions, Yards, Touchdowns, and
Interceptions.

Note
You can set the text style of multiple items by selecting them all and setting the style in
the Attributes inspector.

Building a View 171

Next, the labels for the statistics themselves. Insert five UILabels next to the stat-name
labels. Throughout the process, Interface Builder will snap your views to blue guide lines
that show standard spacing and alignment with their neighbors. In the case of views with
text content, you’ll also be given a dotted line when the view’s baseline is aligned with its
neighbors. When in doubt, align baselines.

I suggest filling the value labels with 00,000 as a guide to the minimum necessary
width. The identical content won’t help in listings, so select each, and in the Identity
inspector, set its Xcode label to correspond to the statistic it is to display. The
statistic-name labels will show up in listings with their content, so distinguish the numeric
labels with a #: #Attempts, #Completions, and so on.

Make their text style the same as the stat-name labels, only right-justified.
Just for fun, make sure the Game List Controller scene is selected, and select the Editor

→Resolve Auto Layout Issues→Update Frames command, which you can also find

in the third button
()

of the Auto Layout group in the canvas.

No. All the labels were moved out of sight. If you select them in the document outline,
you’ll see that they’ve all been moved to a Y position of –64, which would be the top
edge of the scene, relative to the top of the billboard. With nothing to guide it, Auto
Layout resolves the (absent) constraint network by putting everything in the same place.
You have to add some constraints so it won’t wreck your display. Undo (Edit→Undo,

Z, did I need to tell you?) the layout.
Again making sure the game list scene is selected, select Editor→Resolve Auto

Layout Issues→Add Missing Constraints. Once again, Interface Builder will take its
best guesses at what you intend for the layout and create constraints accordingly.

If you click around among the labels, you’ll see blue i-beams and alignment strokes
representing the constraints. The network of constraints is complete and consistent, so the
Update Frames command is disabled.

It looks good enough for now. See Figure 11.10.

Cleaning Up
But it isn’t. Because Auto Layout is the result of a mathematical solution to a complex
network of constraints that may be contradictory or insufficient, you can’t always predict
how it will go wrong when it does. What follows is the story of what I saw when I ran

Figure 11.10 The billboard view as it comes from the hard work of filling in the constituent
labels. The lines around the labels are their layout rectangles, which are the criteria Auto Layout

uses to calculate layout.

172 Chapter 11 Building a New View

this layout through the Preview assistant and the iPhone 5 simulator. You will see
something different—I saw different things between the preview and the simulator—but
we should come out the same by the end.

The Columns Collide
Figure 11.11 shows the first problem, apparent even in the Preview assistant.

The statistics in the left column run into the rating, team name, and dates on the right.
By default, Interface Builder has you edit scenes in a generic form factor that might adapt
itself to any size or shape of screen, and the generic width didn’t tip us off that a 320-point
screen wouldn’t allow the room our layout needed.

If you look again at the layout, you’ll see that the bounds of the number labels are
much wider than necessary—above 70 points. In my layout—I almost guarantee yours will
be different—Interface Builder set a fixed width for the #Attempts label, and aligned the
leading and trailing edges of the other four to it; the effect being to make all five the same
width. If we resize the #Attempts label, the other four will follow.

Figure 11.11 The Preview assistant’s guess at the billboard layout has the views in the left half
overrunning the ones on the right.

Building a View 173

Select #Attempts, and expose the Size inspector. Find the numerical width constraint
in the list, and click the Edit button for it. A popover will appear showing that the
constraint is set to be equal to 72 (or the like). Change the number to 48 (that’s what
worked for me) and tab out of the field. All the integer-stats labels will narrow (the other
four are tied to #Attempts, remember), and the Preview assistant shows that the columns
no longer overlap. It doesn’t look perfect, but it’s good enough; we’re going to replace all
of it in the next chapter.

The Billboard Collapses
The simulator tells a different story. The billboard view is there, but it occupies only a
20-point-wide swath in the middle of the view. The right column goes left from the right
edge, the left column from the left edge, so the two seem to be exchanged on the screen.

Obviously, something was wrong with the constraints on the edges of the billboard. I
looked closely at the Size inspector for the billboard and found that the leading and trailing
edges were fixed to the leading and trailing edges of the top layout guide. And, it appears,
the breadth of the guide line might be 20 points, or 320 points beginning 160 points to
the left of the view. . .

That’s just wrong. If I’d done the layout myself, I would have fixed the edges to the
edges of the root view, the one that contains the billboard. Double-click those leading and
trailing constraints and press Delete to get rid of them.

Then, with the billboard selected, click the Pin () button to bring up a popover for
adding constraints to a view (Figure 11.12). Uncheck Prefer Margin Relative, make
sure the left- and right-neighbor boxes show 0, and make the struts between them and the
center solid (and therefore effective) by clicking them.

The Update Frames popup should be set to Items of New Constraints so the
billboard will move to its newly constrained position (which shouldn’t be different in this
case). The alternative is All Frames in Container, but I’m never bold enough to expose
myself to a total rearrangement after adding only a couple of constraints.

Then click Add 2 Constraints to install them. Two things to remember:
m You have to click the Add . . . Constraints button to install the new constraints.

Clicking away, or bringing another window forward, will make the popover
disappear, but it won’t add the constraints.

m The constraints will be added. The popover does not edit existing constraints.
Whatever you create with the Pin button will be added to the constraint set, even if
another such constraint is already there.

174 Chapter 11 Building a New View

Figure 11.12 The Pin () button displays a popover window for adding constraints to a view. In
this case, you want to set the leading and trailing edges to be zero points from the nearest neighbor
(the sides of the main view). Clicking the struts next to the fields so they become solid indicates you

want to add those constraints. Note that the Prefer Margin Relative button is unchecked.

The Table View
It’s almost an afterthought—we don’t yet have a table view to hold the individual game
performances, taking the form of a UITableView. Typing table in the Library search
field should show you a “Table View.” Drag it into the lower part of the main view. (Take
care not to use the “Table View Controller” instead.) You’ll have to expand it to fit the
available space. This isn’t too hard at the sides and bottom, because Interface Builder
“snaps” the edges to the bounds of the main view, but it won’t give you any help with the
top edge.

This is something that Auto Layout actually makes easier. Place the table view in the

lower part of the scene, and size it so it is clear of all neighbors. Click the button in
the Auto Layout group at the bottom right of the canvas to expose the Pin popover. Set
all four spacing fields to 0, making sure the drop-down menu for the upper spacing makes
it relative to the billboard view.

Note
IB prefers side margins to be inset by a standard amount (16 pixels), and by default
calculates edges relative to that inset. Uncheck Prefer margin relative to ensure that the
sides stick to the sides of the root view itself.

Outlets 175

Set the Update Frames menu in the popover to Items of New Constraints, and
click the acceptance button at the bottom, which now has the label Add 4 Constraints.
The table view will snap to exactly the position and size you want, with the added benefit
that it will resize in sync with the rest of the scene.

Outlets
We just added 14 labels to the billboard view, and nine of them display names, dates, and
statistics taken from the Passer Rating data store. You know how to do this: Control-drag
into the class declaration in GameListController.swift to create @IBOutlets
linking the labels to the controller.

Every NIB, and every Storyboard scene, has an owner. This is an object that is external
to the scene (or NIB); the loading mechanism then fills the @IBOutlet properties with
pointers to objects in the scene. Storyboards and XIBs have different treatments for
owners:

m Interface Builder’s editor for XIBs includes an “object” in the document outline
named “File’s Owner.” This object does not literally exist in the XIB; Interface
Builder shows it in a section of the document outline for placeholders. It stands in
for the owner object that will load the XIB (actually its NIB product) at run time.

m In a storyboard, each scene belongs to a UIViewController subclass. The
controller’s placeholder appears in the document outline, and in the top bar when
the scene is selected, as a yellow circle with a “view” in the middle.

When you create a subclass of UIViewController, UITableViewController,
NSWindowController, or NSViewController, Xcode enables a checkbox marked
Also create XIB file (OS X projects will add “for user interface”). If you check it,
Xcode will create a XIB in addition to the new class’s .swift file. Xcode knows what the
owner class will be, so it sets the class of File’s Owner accordingly.

If you create a XIB alone, Xcode would not know what the class of File’s Owner
should be, and you would have to set it yourself: You’d select the File’s Owner icon in the
document outline and open the Identity inspector (third tab in the Inspector view in the
Utility area). The first field will be a combo box to enter the name of the owner’s class.
The box will autocomplete as you type.

It’s the same with view controllers in a storyboard: After you drag a view controller into
the canvas to create a scene, the owner is identified as a plain UIViewController. You
must edit the class name in the Identity inspector to point the scene at the right controller.

Note
There are other kinds of controller in the object library, some of which you’d subclass
(UITableViewController always), some not. Use those, not the plain view controller,
and set the controller class as needed.

Back to the specifics of GameListController. We have to hook the controller’s
@IBOutlets to objects in its scene. You could type in var declarations for all the labels

176 Chapter 11 Building a New View

you’ll be using. Try it: Display the Assistant editor and select Automatic from its jump
bar to show GameListController.swift.

Somewhere inside the declaration of class GameListController, declare the
outlet for the “dates” label:

class GameListController: UIViewController {
@IBOutlet weak var datesLabel: UILabel!

Go back to the document outline sidebar at the left edge of the canvas (click the button in
the lower-left corner if it isn’t visible), and right-click on “Games,” the Englished name of
the scene’s owner. A small black heads-up display (HUD) window appears, containing a
table of outlets, among them datesLabel. There’s a bubble at the right end of that row
in the table. Drag from it to the label you set up with a range of dates, and release; the
adjoining column in the HUD fills with a reference to the label (Figure 11.13).

Now, when the scene is loaded, the owning GameListController’s datesLabel
property will contain a pointer to that label.

Note
The first icon in the white bar above the scene represents the same controller object; the
right-click method works there, too. Also, the bubble next to the outlet declaration in
GameListController.swift contains a black dot—you can drag from there to an
element in the storyboard and make the link that way.

This is a great way to link views to outlets—if the outlet properties are already defined,
as they might be if you were reusing an existing File’s Owner object and dropping it into a
scene.

In this case, it would be tedious, because the outlet vars haven’t been declared. The
control-drag-into-source is the better option.

Figure 11.13 Right-clicking the “GameListController” entry in the document outline opens
a heads-up display window that includes the controller’s outlets. Drag from an outlet’s linkage

bubble to a view in the controller’s scene, and the outlet’s @property will be filled with a pointer to
that view.

Outlets 177

Hooking Up the Outlets
Before you go on a spree of making outlet connections, taking a little care will pay off:
There is a + button next to the right end of the assistant’s jump bar. Click it. The Assistant
area is now divided into two editors. Use the lower editor’s jump bar, starting at the
Manual category, to navigate to Passer.swift. You want the names of the new outlets
to match up with the names of the Passer properties they display, and the new editor
will give you a reference for the property names.

Now control-drag from the variable labels to make new properties in GameList-
Controller. Use this convention in naming the outlets: Take the name of a Passer
property, and add Label to it. The team name label goes into the controller interface as
currentTeamLabel, attempts as attemptsLabel, and so on.

Note
Interface Builder can also link controls to action methods, declared with the IBAction
tag in the class @interface. When you trigger a control that you’ve linked to an
IBAction, the action method is executed. See the “Wiring a Menu” section of
Chapter 19, “Starting an OS X Application,” for an example.

GameListController needs to know about the table view, as well. Control-drag a
link from the table into GameListController, and name the new outlet tableView.

Checking Connections
Do one last pass to verify that everything is connected to what it’s supposed to connect to:
With the storyboard in the main editor, and the @IBOutlet declarations for GameList-
Controller showing in an Assistant editor, run your mouse down the connection dots,
and make sure every view gets highlighted in turn.

If an outlet isn’t connected, or is connected to the wrong view, drag from the
connection bubble to the correct view. An @IBOutlet can refer to at most one
view—it’s just a single pointer. A view can be connected to many outlets because it has no
reference back to the outlets. Checking the outlets, one by one, and reconnecting them as
needed will be enough to get you out of any tangles.

There is an exception to the one-view-per-outlet rule: You can have an outlet collection.
So far as the Swift code goes, a collection is little different from a single-object connection;
the only new thing is that the type of the outlet is an array of the views in the collection:

@IBOutlet var numericLabels: [UILabel]!

The billboard contains five labels that display integers. We may want to clear all of them
out simultaneously. The naı̈ve approach would be to keep an array var, and fill it with all
the outlet variables:

var numericLabels:[UILabel]!
...
numericLabels = [attemptsLabel, completionsLabel,

yardsLabel, touchdownsLabel,
interceptionsLabel]

178 Chapter 11 Building a New View

But that’s accident prone: Some day, you will add, drop, or rename labels in that list, and
it’s not always clear when in the life cycle of the view controller you should initialize the
array that is after the label outlets are initialized, but before any possible use of
numericLabels.

This is why there are outlet collections. Start by control-dragging from one of the
integer labels (such as the one marked “Attempts”) into GameListController.swift,
as before. But this time, when the outlet popover appears, choose Outlet Collection for
the Connection type, not Outlet. Name the collection (numericLabels is fine), and
accept UILabel as the Type.

The collection starts with one member, the one you created the collection from. Drag
from the bubble in the gutter next to the collection outlet var to each of the other
integer-valued labels. Each will be added to the collection.

Note
If you add a label by mistake, control-click on it to bring up a heads-up display, find the link
to numericLabels, and click the small x next to it.

The function to empty all the labels becomes very simple:

func emptyIntegerLabels() {
for label in numericLabels {

label.text = ""
}

}

Note
Outlet collections do not guarantee the order of the views in their arrays. If the order is
important, select each of the views in Interface Builder and set the Tag value of each to a
distinct number (it’s well down in the Attributes inspector, in the “View” category); then
check the tag property of the view to confirm its identity.

Connecting GameListController
Interface Builder is great, but you still have to write code to get data from the model into
the view. You’ll make some changes to GameListController.

The template provides a setter for detailItem, setDetailItem:, that calls through
to a configureView method. That’s where you’ll move the statistics in Passer to the
labels in the view.

The template Xcode gave you had to be generic, but you know what kind of object
the detail item will be. Rewrite the declaration of the property:

var detailItem: Passer? {
didSet {

// Update the view.
self.configureView()

}
}

Outlets 179

The configureView Method
Here’s configureView. It’s a little long, but there’s a point I want to make:

let integerProperties = [
"attempts", "completions", "yards",
"touchdowns", "interceptions"

]

func configureView() {
if detailItem == nil { return }
let passer = detailItem!

for name in integerProperties {
let stat = passer.valueForKey(name) as! Int
let label = self.valueForKey("\(name)Label") as! UILabel
label.text = "\(stat)"

}

// ratingFormatter is defined in Utilities.swift
// It formats a number into a decimal string
// with a mandatory single digit after the
// decimal point.
let ratingString =

ratingFormatter.stringFromNumber(
passer.passerRating)

passerRatingLabel.text = ratingString

currentTeamLabel.text = passer.currentTeam

// shortDateFormatter is defined in Utilities.swift
// It formats a date into a short string according
// to the user's locale. In US English, this would
// be mm/dd/yyyy.
let startDate = shortDateFormatter.stringFromDate(

passer.firstPlayed)
let endDate = shortDateFormatter.stringFromDate(

passer.lastPlayed)
datesLabel.text = "\(startDate) { \(endDate)"

fullNameLabel.text = passer.fullName
title = passer.fullName

}

How configureView Works
Here’s where the care in naming the label outlets pays off:

1. Loop through the integer property names in integerProperties.

180 Chapter 11 Building a New View

2. Get the corresponding integer from the passer by key-value coding (an Objective-C
technique that gives access to object properties through string paths—the same
feature is available in Swift for all objects that descend from Objective-C classes, or
are tagged with the @objc attribute). In this case the name of the attribute is the key
string.

3. Append “Label” to the property name, and use that as the KVC key to get the
corresponding UILabel outlet from the controller itself.

4. Format the integer value as a string and put it in the label’s text property.

Consolidating the names of the Passer properties in an array, and making the names
of the outlet vars a simple variant on the property names, relieves the need to repeat the
same assignment pattern for each property-label pair. Changes in the number or names of
the properties can be handled simply by editing the property-name array.

Code Completion and Snippets
You probably fumbled a bit as you filled in all this code. Cocoa Touch is a huge API, and
nobody remembers every symbol and method name. NSString has more than 130
methods in its Objective-C interface. If you don’t have a crib, you might be pausing to
look up spellings all the time. Here is where you turn on another feature I had you turn
off in the “Quieting Xcode Down” section of Chapter 2, “Kicking the Tires.”

Open the Preferences window (Xcode→Preferences. . . , comma), and turn to
the Editing tab of the Text Editing panel. Check Suggest completions while typing.

Now try the line let startDate = shortDateFormatter.stringFrom-
Date(passer.firstPlayed) again, typing sho. Xcode pops up a window offering to
complete the symbol and shows the proposed completion in gray in the editor
(Figure 11.14). There are about a dozen symbols beginning with sho, so you can scroll
the popup through all of them. Pressing the Up- or Down-Arrow key lets you choose.

Automatic completion is surprisingly good. It’s context sensitive, and I’ve found that
when I’ve recently used one symbol from an enum list,or even if I’m typing in a context in

Figure 11.14 With autocompletion on, typing a partial symbol will yield a list of possible
completions, including a brief description of each. Select one and press Return to accept a

completion.

Outlets 181

which that enum type is expected, the next suggestions prefer other members of the same
enum.

Continue typing to refine the completion list. When the selected completion shares a
prefix with other suggestions, pressing the Tab key will advance the cursor through the
common prefix, narrowing the completion list. If you’re satisfied with the current
suggestion, press Return and continue editing.

Completion is sometimes perverse, offering suggestions that have nothing to do with
what you want. This is particularly painful when you want to type a symbol (e.g.,
completion) that shares letters, but not case, with another (e.g., COMPLETION). You can
type to the end of your desired spelling, but Xcode will insist on the other one. If this
happens to you (or if you simply want to suppress the popup), press Escape, and the
completions will go away.

Note
Don’t like automatic completion at all? If Escape key shows code completions is checked,
you can summon the code-completion window whenever you want it. Even with
escape-completion turned off, you can still invoke completion with

<

Space.

Code Snippets
Code completion doesn’t stop at spelling. Xcode supports code snippets (see the second tab,
marked with braces, in the Library section of the Utility area), which are blocks of code
you can insert and edit for your purposes.

Passer Rating calls for saving the app’s managed-object context whenever a Passer or
Game object changes. An example is at the end of PasserListController.insert-
NewObject(sender:). The pattern

// Save the context.
var error: NSError? = nil
if !managedObjectContext.save(&error) {

abort()
}

is a stereotype that comes up in the app repeatedly. If the code were easier to enter, it
might even be possible to do something better than that foolish abort() call.

Comment-out the existing code for reference, and paste a copy of it in the same place;
you could use the code as a snippet unchanged, but let’s include some placeholders so it
can be customized:

var error: NSError? = nil
if !managedObjectContext.save(&error) {

NSLog("In %@: could not save %@",
"<#method name#>",
"<#how failed#>")

182 Chapter 11 Building a New View

// MOCSaveException is defined in Utilites.swift
NSException.raise(MOCSaveException,

format: "Context: %@",
arguments: getVaList(["<#how failed#>"]))

}

The placeholders are bracketed in <# #> pairs, with some text to cue the coder on the
sort of thing that should replace them. You might want to shift the placeholder code to the
left margin (Editor→Structure→Shift Left, [), so the leading whitespace won’t
appear when the snippet is expanded.

Select the snippet text, and drop it into the Snippet library pane (bottom of the Utility
area, second tab). The border of the area will highlight, and you can release the mouse
button. See Figure 11.15.

The new snippet will appear at the bottom of the list, with a generic name like “User
Snippet.” Double-click it to expand a popover displaying the snippet’s content. Click Edit,
and the popover allows you to label it, select the scope (language, context) in which it
should be available, and—most important for the moment—the completion shortcut.
Enter savemoc for the shortcut, and see Figure 11.16 for the rest. Click Done.

Go back to the main editor and delete your work on the snippet. Type sav; the
resulting completion popup will show you the name of your snippet, and the description
you supplied. Press Return to insert the snippet text, with the placeholders highlighted.
The Tab key will step you through them, and when you’re finished, this is what you’ll
have:

var error: NSError? = nil
if !managedObjectContext.save(&error) {

NSLog("In %@: could not save %@",
"PasserListController.insertNewObject",
"the new Passer")

Figure 11.15 After building up a code snippet, select it and drag it into the Clipping library in the
second tab at the bottom of the Utility area.

Testing the Billboard View 183

Figure 11.16 Find the snippet you dragged in (as “User Snippet”), double-click it, click Edit, and
fill in the labels, context, and completion shortcut.

// MOCSaveException is defined in Utilites.swift
NSException.raise(MOCSaveException,

format: "Context: %@",
arguments: getVaList(["Trying to save a new passer"]))

}

With a template to work from, you can produce better-performing and more consistent
code without tedium.

Testing the Billboard View
Everything should be in place now. Run Passer Rating. Xcode builds the app and installs it
in the iOS Simulator, which launches it. (The app takes a long time to load that CSV
file—long enough that you might worry that iOS would kill it for being nonresponsive,
but there are things you can do about that. See Chapter 16, “Measurement and Analysis.”)

Select a passer from the initial view. Something like the view in Figure 11.17 should
appear. All of the labels are filled in. It works. The game table is still empty, but you’ve
made progress in making the data available to the user.

184 Chapter 11 Building a New View

Figure 11.17 Running Passer Rating and selecting a passer shows that the passer-detail view
works.

Summary
This was a long chapter, but you got a lot done. The passer table at the root of the
application came almost fully implemented from the project template; all you had to do
was change some formats and data-table names. This time, you took a view from
practically nothing to a display of the unique data Passer Rating manages.

You provisioned the screen with a table and a container view for the summary
billboard. After that, it was all labels, but you learned how to lay them out and how to use
the Attributes editor to fit them to their purposes. And, I showed you how to finesse the
problem of Auto Layout, at least for a while.

Data displays need data, and controller objects move data from the model to the views.
Using Interface Builder with an Assistant editor, you gave GameListController direct
access to the data labels and filled them in from the Passer object.

And, at least through the billboard display, it works. The rest, the table of games, will
come in Chapter 13, “Adding Table Cells,” later on. But first I will (and you should) take
a closer look at laying out that billboard view.

12
Auto Layout in a New View

Chapter 11, “Building a New View,” was about creating scenes in Passer Rating. To
preserve that focus, I finessed the issue of Auto Layout with a quick workaround. For the
purpose of an exercise, you don’t need to do more solely for a screen the size and shape of
a 4.7-inch iPhone; Passer Rating is not a professional-grade product.

You’ll need to know more sooner or later, and this chapter is a closer look at Auto
Layout. You can put it off, or even skip it. I won’t know.

Note
If you attempted Auto Layout in Xcode 4, you found it was a nightmare, and I wouldn’t
blame you if you were a bit phobic on the subject. It got better in Xcode 5, and much
better in Xcode 6. However, the new workflow is available only if you select at least
Xcode 5.0 in the Opens in popup in the File inspector. If you choose Xcode 4.6
compatibility—maybe you or a coworker have to open the file in Xcode 4 for
legacy—you’re back to the horrible old workflow.

Why Auto Layout?
For decades, NeXTStep, Cocoa, and Cocoa Touch used autoresizing to adapt the layout of
views to changes in geometry—the resizing of a window or the rotation of a device.
Autoresizing was very simple: Notionally, each view had “springs,” which would permit it
to be resized on one or both axes, and “struts,” which governed whether an edge of the
view would maintain its distance from the corresponding edge of its container. As the
superview resized, the subviews would adjust according to the spring-and-strut rules.

Limitations of Autoresizing
This worked. Mostly. But there were some things it couldn’t do, things that would have
been common had they been easy. Application code would have to intervene for special
cases, and some requirements had to be met by trial and error.

Layout can’t be a matter of the window pushing or pulling on its contents, which push
or pull on theirs, and so on down the line. Suppose you have a label that absolutely must

186 Chapter 12 Auto Layout in a New View

be readable in full, and it’s three layers down in the containment hierarchy. Its container
must not become so small that the full label can’t be shown; so the container above must
not become small enough for that to happen; and so on to the container above that, up to
the root view of the window. The only place to enforce that must-not-shrink requirement
is in the size limits for the window itself: Experiment, see how small the window can get
without pressuring the label, write that dimension down, and set it in the parameters for
the window.

Now translate the label from English to German: Pour your translations into a duplicate
XIB file, see how the widths work out, and repeat the experiments to determine how to
constrain the window.

You have ten international markets. And there’s another label that must be readable at
all times, and its content is determined in code. This entails some arithmetic.

We have computers to do arithmetic. In the real world, constraints on size and layout
propagate up and down—and even across—the containment hierarchy. There have to be
compromises and priorities: “I want this label to be centered and wide enough to show its
contents (I don’t need it wider), but it has to be at least 8 points away from the controls on
either side, and to preserve that distance, respond first by moving it off-center, and if you
must, by narrowing the label. Stop the window (three layers up) from resizing if it means
making the label any narrower than 120 points. As for the next ten views. . .”

Auto Layout
Auto Layout can express all of this. And while Auto Layout has a reputation for complexity,
it’s a lot simpler than writing code to implement that description.

Internally (meaning: don’t think too hard about this), any two views can be related to
each other by constraints. A constraint applies to a specific property in each view (such as
location of edge, center, or baseline; height, width) and specifies gaps and alignments by
an offset, a multiplier, and a priority. Views may have “inherent” sizes, and some views
(usually ones containing text) can resist being drawn wider or narrower than their contents.
Auto Layout takes all of these constraints and reconciles them to produce an overall layout
that satisfies as many as possible, sacrificing lower-priority ones to meet higher priorities.

The Thing to Remember
“Satisfying all constraints” imposes a duty on you: For each view, on each axis, the chain
of constraints should fully specify the view’s location and size (sufficiency). And, the
constraints must not contradict (consistency). If those conditions are not met, Auto Layout
will raise exceptions, and Interface Builder will post warnings.

The Player Billboard, Revisited
In Chapter 11, “Building a New View,” I had you put together the billboard view at the
top of the PRGameListController view with little thought of declarative layout. You

The Player Billboard, Revisited 187

switched a couple of constraints to get a bug out of the way, and asked Interface Builder to
do the rest.

Why You Should Do More
It’s good enough for a start, but there are flaws. Unless you were very careful about
alignments, the generated constraints were a little off of your intention, and when you
turned the billboard to landscape, your narrow elements wasted most of the available space
(Figure 12.1).

Note
What I show in Figure 12.1 shows how my constraint network played out. Your own may
look different, but probably no better.

Start by examining the constraint system you have now. There are a few ways to
explore: If you select a view in the canvas editor, it will display lines to show the
constraints that apply to it; the Size (fifth) inspector will include a list of those constraints,
and double-clicking an item will select that constraint. The constraint objects themselves
stand alone in Constraints categories you’ll find throughout the document outline. (You
may have to dig; it helps if you enter the name or type of the view you’re looking for.)
Selecting one will highlight it in the editor. Selecting one in the editor canvas itself
requires some dexterity, but Interface Builder helps by highlighting the bar when you’re
pointing to it, and providing a slightly wider hit area than is visible.

Figure 12.1 The automatically generated constraint system you can get from Interface Builder is
workable, but it doesn’t make the best use of the area available in landscape orientation.

188 Chapter 12 Auto Layout in a New View

Whose Constraint Is It, Anyway?
The way Interface Builder displays constraints makes it tempting to say that a view that is
subject to a constraint “owns” it. In the sense you’re probably thinking about, that isn’t so. A
constraint is an independent object— you can even point an @IBOutlet at it. Except for
size constraints, they link to two views; neither view is privileged, neither is an owner. That
you can get at a constraint through one of its views is a convenience.
However, each constraint is owned by a view. A constraint between two views is held by their
first common container.

Once a constraint is selected, you can delete it or use the Attributes (fourth) inspector
to edit it.

Note
The Editor→Canvas menu contains a number of options for what information Interface
Builder will show, particularly as relates to constraints. What interests us now are Show
Bounds/Layout Rectangles, which frame views according to either the .frame property
of the UIViews, or, what may be different, the bounds that Auto Layout uses to measure
spacing and alignment. Also, there are options that expose constraint
relationships—some essential, and some useful as debugging aids.

One thing to notice: When you ask Interface Builder to add missing constraints, it can
only guess at your intentions, but the guesses aren’t too bad. One thing is particularly
good: Most of the constraints cascade. Usually, the most important thing about the layout
of a view is not its absolute location, but how it lines up with another.

Consider a partial calendar view that consists of a row of day-of-week labels, and below
it a few rows of buttons representing the days. You don’t care about the x-and-y location
of a day-of-month button; you only want it to be centered on its day-of-week label, and
below the label by a multiple of the height of a row.

A good Auto Layout network gives absolute locations to as few views as possible. The
strategy for the calendar view would be to provide an absolute location for one
day-of-week label—the first, last, or middle day—and let relative (centering, spacing)
constraints do the rest. If you move that one label, the rest of the layout takes care of itself.

Factoring Layout into Subviews
In Chapter 11, “Building a New View,” I had you lay out each and every label in the
billboard. For the stats column on the left, that meant a subnetwork of size, spacing, and
alignment specifications that was very fragile and very confusing. For five pairs of labels,
identical but for the text they contain, that makes no sense. In this section, we’re going to
factor that complexity out by defining a custom view that wraps both the name and the
value of the integer statistics. On the way, I’ll show you how to create custom views that
you can configure directly in Interface Builder.

Factoring Layout into Subviews 189

What should such a UIView subclass—call it StatView—look like? Nothing exciting:
Just a rectangle with two text areas, one for the name, one for the value. See Figure 12.2.

The process of laying out the name and total will be up to a new UIView subclass,
StatView, to be defined in its own source file StatView.swift. Don’t create the file
yet. A StatView may be simple, but some things have to be tweaked before they look
right. How does it lay out its contents? (It’s going to be a single view object, so it can’t use
Auto Layout.) What fonts look good? How does it determine its “fitting” size (minimal
needed to fully present its content)? Events like layout generate a cascade of callbacks into
a view—how do you sort out which callback should trigger a StatView’s internal layout?

The Playground
One of the blessings of Swift is that it is complete enough that it can be executed
interactively (or nearly so) in a Run-Edit-Print Loop (REPL): You enter your code, the
REPL interprets it, and you see the results. There is a command-line REPL (type swift,
or xcrun swift in Mavericks), but Xcode 6 includes a visual edit-and-display
environment, the playground, that makes it easy to develop even moderately complex
software, even if it produces graphical output—such as the contents of a view.

That’s the skeleton. Where do we put it?
Select File→New→File. . . (N). In the template chooser that drops down, select

iOS→ Source→ Playground, then go through the usual steps to save the new file and
associate it with your project. You shouldn’t place it in any target.

Warning
iOS and OS X playgrounds are different environments, depending on different frameworks.
If your playground doesn’t behave as you expect, look to the top of the file and see
whether the first import is for Cocoa or UIKit.

The only executable line in the new playground will be an assignment to a String
variable (Swift knows it’s a String because its initial value is one): var str = "Hello,
playground". There is a gray column on the right side of the editor pane, containing
one line, next to the assignment statement: "Hello, playground".

Attempts 19,456

sideMargins interMargin

verticalMargins

fontColor

valuename

fontSize

Figure 12.2 A wireframe for a simple view that displays a label and an integer. StatView will
have inspectable properties for the label, the value, and the color and size of its text.

190 Chapter 12 Auto Layout in a New View

Let’s start with a simple example: Extracting a square root by Newton’s Method.
Replace the contents of the playground with this:

import UIKit

func newton_sqrt(square: Double,
epsilon: Double = 0.001)

-> Double
{

func close_enough(one: Double,
two: Double)

-> Bool {
println("close_enough(\(one), " +

"\(two), \(epsilon))")

let diff = abs(one - two),
denom = max(abs(one), abs(two))

if denom == 0 { return true }
return (diff / denom) <= epsilon

}

var lag = square
var guess = square / 2.0

while !close_enough(guess, lag) {
lag = guess
guess -= (guess * guess - square) / (2.0 * guess)

}

return guess
}

// newton_sqrt(200, epsilon: 0.0001)

Xcode colors and error-checks playground code just as it would in any other editor. So
far, nothing impressive: It just sits there.

Now un-comment the call to newton sqrt. The gray column comes alive as the
function executes: The inital assignments to guess and lag are tagged with 100.0 and
200.0, respectively; loop contents get counts: (8 times).

Note
A converging algorithm like this depends on getting the terminal condition right; you’re
likelier than not to get it wrong on the first try and find yourself in an infinite loop. If that
happens, press period to stop the loop. You will have a few seconds to edit the code to
hard-code a break into the loop.

Factoring Layout into Subviews 191

What about that println() call in the embedded close enough function? You don’t
want to know that it printed something eight times, you want to see what was printed.

Open the Assistant editor (the paired-ring item in the toolbar). If the root of its jump
bar isn’t set to Timeline, switch it over. The timeline includes a white box, Console
Output, showing the output.

That’s not all. The heart of newton sqrt is the last computation in the loop:

guess -= (guess * guess - square) / (2.0 * guess)

If you hover the mouse pointer over the gray margin of the playground, you’ll see two
symbols appear, a QuickLook eye and a bubble. In a simple case like this, the QuickLook
popover won’t tell you anything you didn’t see in the margin, but for more complex data
types, QuickLook will show you array contents, struct members, and so on.

Click the bubble on that line. This is new: Another box appears in the timeline, this
time containing a line chart showing the value computed on that line at each iteration.
That’s going to be useful. See Figure 12.3.

StatView
Now we’re ready to clear out this playground and attack StatView. There are obvious
properties we’d like to see—they’re the API it shows its clients:

m A String for the name of the statistic
m An Int for the value

Figure 12.3 Playgrounds allow you to write entire classes, monitor their execution, and refine
them in real time. The Timeline assistant displays compiler errors, console output, and expression

results over time. Swift syntax gives Unicode characters first-class treatment, so some variables can
have “real” mathematical names.

192 Chapter 12 Auto Layout in a New View

m A font size
m A font color

That gets us a start on the class:

import UIKit
import QuartzCore

internal let defaultFontSize:Double = 17.0
internal let verticalMargins:CGFloat = 2.0
internal let sideMargins:CGFloat = 2.0
internal let interMargin:CGFloat = 4.0

@IBDesignable
public
class StatView: UIView {

/// Set the label string to be displayed
/// at the left side of the view
@IBInspectable public
var name: String = "" {

didSet {
nameLayer.string = name
setNeedsLayout()

}
}

/// Set the integer value to be displayed
/// at the right side of the view
@IBInspectable public
var value: Int = 0 {

didSet {
statLayer.string = "\(value)"
setNeedsLayout()

}
}

/// Set the size of the font to be used
@IBInspectable public
var fontSize: Double = defaultFontSize {

didSet {
textFont = UIFont.systemFontOfSize(

CGFloat(fontSize))
setUpLayers()
setNeedsLayout()

}
}

Factoring Layout into Subviews 193

@IBInspectable public
var fontColor: UIColor = UIColor.blackColor() {

didSet {
nameLayer.foregroundColor = fontColor.CGColor
statLayer.foregroundColor = fontColor.CGColor

}
}
// More to come

}

@IBDesignable and @IBInspectable—what are those?
Up through Xcode 3, and in Project Builder before it, it was possible to create linkable

frameworks that included the resources and code that could draw and operate a view
(NSView). The IB plugins could provide their own attribute-inspector forms to set the
unique properties of the included views.

Plugins disappeared in Xcode 4, an all but total rewrite. Experience had shown that
injecting arbitrary code into privileged software is a very bad idea. Developers had to fall
back on inserting blank UIView placeholders into their layouts, changing the classes in the
Identity inspector, and waiting for the simulator to show them what the outcome was.

As of Xcode 6, Interface Builder accepts designable views for Live Rendering. IB uses the
code and resources of custom views in the layout scenes, and offers controls to set their
properties. You designate a view as designable by declaring it @IBDesignable public.
You expose properties for editing in IB by declaring them @IBInspectable public.

StatView lays itself out as two Core Animation text layer objects (CATextLayer).
Text layers have their limitations, but for this application, they offer the right mix of
features and convenience. The contents and font size are all marked @IBInspectable.

The layout and measurement of the contents has to be flexible in response to changes
in the view’s frame; those come from outside as the view is placed in its superview and
managed by Auto Layout. Here are the highlights—the sample code tells the whole story:

@IBDesignable
public
class StatView: UIView {

// ...

public required override init(frame: CGRect) {
fontColor = UIColor.blackColor()
super.init(frame: frame)
setUpLayers()
setNeedsLayout()

}

public required init(coder aDecoder: NSCoder) {
// ...

}

194 Chapter 12 Auto Layout in a New View

private let nameLayer = CATextLayer()

private let statLayer = CATextLayer()

private var textFont =
UIFont.systemFontOfSize(CGFloat(defaultFontSize))

private var idealSize = CGSize(width: 100, height: 22)

private
func setUpLayers()
{

let layerFont = UIFont.systemFontOfSize(CGFloat(fontSize))
for subLayer in [nameLayer, statLayer] {

subLayer.fontSize = CGFloat(fontSize)
subLayer.font = layerFont

subLayer.foregroundColor = fontColor.CGColor
subLayer.backgroundColor = UIColor.clearColor().CGColor
subLayer.contentsScale = UIScreen.mainScreen().scale

}
nameLayer.truncationMode = "end"

layer.backgroundColor = UIColor.clearColor().CGColor
layer.addSublayer(nameLayer)
layer.addSublayer(statLayer)

}

override
public func layoutSubviews()
{

// Minimum bounding boxes of the element
let stringAttrs = [NSFontAttributeName: textFont]
let statString = "\(value)"
var statSize:CGSize = statString.sizeWithAttributes(stringAttrs)
statSize.width += 3.0
let nameSize: CGSize = name.sizeWithAttributes(stringAttrs)

// Minimum bounding box of the content
idealSize = // ...

// Frame for the statistic in the current bounds
let statFrame = // ...

// Frame for the name in the current bounds
var nameFrame = // ...

Factoring Layout into Subviews 195

// Set the respective frames
nameLayer.frame = CGRectIntegral(nameFrame)
statLayer.frame = CGRectIntegral(statFrame)

}

public
override func intrinsicContentSize() -> CGSize {

return idealSize
}

}

We saw how Playground lets you monitor the execution of simple numeric code while
you worked; how about graphical output?

Add this after the class definition:

var statBounds = CGRect(x: 0, y: 0, width: 200, height: 20)
let theView = StatView(frame: statBounds)
theView.name = "Interceptions"
theView.value = 123

Already there’s something to notice: You don’t have a view hierarchy to hold it, but you
can create a StatView and set its properties. The margin indicates some activity,
including some internal structure names out of the lldb debugger, but nothing
helpful—but notice that the “value” of the assignments is the StatView itself.

Click the inspection bubble on that last line, the assignment to value. What you see in
the timeline is this:

theView.value = 123

Intercep ons 123

3

. . . a rendering of the StatView.
Drop the font size and adjust the bounds to fit:

theView.frame = adjusted

Intercep ons 123

3

Keep the frame, but increase the font size so the content will no longer fit the width:

theView.fontSize = 16.0

Interce... 123

3

Looks ready for the real world. Use File→New→File. . . (N), create an empty Swift
file named StatView.swift (you don’t need a class template), remove the import

196 Chapter 12 Auto Layout in a New View

Foundation line, and paste in the StatView definition. Make sure it’s part of the Passer
Rating target.

Installing StatView
Now for the experiment. Return to Main.storyboard, and remove all the integer-stat
name and value labels. (You’ve done a version-control commit, so this isn’t scary.) On my
storyboard, that takes the number of constraints in the billboard from 56 to 13.

Find UIView in the Library pane of the Utilities area, and drag it into the billboard
where the Attempts name and number had been. Adjust it to a reasonable size and
change its class (Identity inspector, third tab) to StatView. While you’re in that inspector,
set its Document: Label to Attempts. Interface Builder knows how to identify
UILabels by their content, but not StatViews.

Watch the status view in the middle of the toolbar: Xcode compiles inspectable views
just for the purpose of rendering them in Interface builder. When that finishes, there’s no
apparent change in the view—the class as written has no default values. But the Attributes
inspector has a new “Stat View” section, with Name, Value, and Font Size fields. The
numeric fields even have steppers to nudge the values up and down. See Figure 12.4. Set
these to Attempts, 11230 (just as a placeholder), and 14. Adjust the location and size
accordingly.

Note
The first time Interface Builder sees a live-editable view (including after a cleaning of the
derived-products cache that contains code for IB’s use), it will render the view’s frame
with no contents. Further, if, as with StatView, the layout relies on the preferred size of
the view, IB will complain that the constraint set is ambiguous—there are no constraints
defining the size of those views. The size constraints will appear only when the view
classes have been compiled for display. Wait a minute or so, and you should see the error
flags disappear.

Figure 12.4 Designating StatView as @IBDesignable and its content and font size as
@IBInspectable allows StatViews to appear as they would at run time, and brings the

inspectable properties through to the Attributes inspector.

Planning Constraints 197

Note
Because a designable view is code that runs in Interface Builder as well as in your app,
you can debug it in IB, too: Select the view and then Editor→Debug Selected Views.

Now we can go to town. We could repeat the drag/drop/new class/resize process, but
the Attempts StatView is right for most of it, so duplicate it four times, either by Edit
→Duplicate (D), or simply by option-dragging from the original into a new position.

Note
Don’t confuse the editing Duplicate with the File→Duplicate. . . (S) command, which
is for saving a copy of the active file under a new name.

Change the names of the new StatViews to Completions, Yards, Touchdowns,
and Interceptions; you might need to adjust the widths to match that of the widest view.
Hand-align the leading and trailing edges.

Do not set any constraints.

Planning Constraints
In Chapter 11, “Building a New View,” I had you trust Interface Builder’s guesses on the
intended layout, with just a few tweaks to relieve the biggest errors. We won’t do that
here. To do Auto Layout right requires a detailed, thoughtful plan.

One thing to consider is that a classic iPhone screen is only 320 points on its smaller
axis. The billboard we drew is 168 points tall on my storyboard (yours may vary, it doesn’t
matter). In portrait, accounting for the status and navigation bars, on a 4-inch screen,
about half of the screen is available to the game table—enough to be useful.

Not so in landscape orientation (Figure 12.1). The billboard, plus navigation bar, plus
status bar approach three-quarters of the available height. At the minimal row height of 44
points, there is room for two rows, and taller custom rows are out of the question. The
billboard should have a separate, shorter layout for landscape.

Before iOS 8 and Xcode 6, this was bad news. If you wanted layouts that were not just
tweaked, but qualitatively different, you had to keep separate constraint networks in code,
and respond to orientation changes by swapping them. Layouts for large-screen devices
such as iPad have the same problems, though iOS alleviates the problem by
accommodating parallel resources for the two screen sizes. That’s not practical any more.

iOS 8 responds with size classes. The details are sophisticated, but so far as Interface
Builder is concerned, all you need to know is that each axis is either compact (narrow, like
an iPhone in portrait orientation, or short, like an iPhone in landscape), or regular (like
iPads in either axis). Interface Builder allows you to identify any constraint as being for
compact or regular environments, or to say it is for any environment, compact or regular.

Three classes on two axes make nine environments; some constraints are inactive in
some environments; and some are active in more than one (but not all) environments. No
graphical presentation can express it fully and well. If you try to do it by eyeball and on the
fly, you will be lost.

198 Chapter 12 Auto Layout in a New View

Back off and consider the goals.
The main thing is to make the billboard shorter. There’s much more room on the

horizontal axis, so if we can move some of the information into a third column, that’s a
win. Figure 12.5 shows the goal, which can be summarized as follows:

m The five-row stack of StatViews can be broken into two stacks of three and two.
m The passer rating can be shifted up close to the top of the billboard, because the

passer’s name is unlikely to span the width of a “regular” screen.
m Accordingly, the trailing edge of the passer’s name can be pulled back to an offset

from the rating label, not the trailing edge of the billboard.
m There will usually be no need to allow vertical space for the team name to span two

lines.

On my layout, the billboard that had been 168 points tall in portrait becomes 107 points
in landscape; enough for one-and-a-half extra table rows of standard height. Worth doing.

That’s the goal. Now the strategy. The first thing to remember is that every view
should have some kind of complete constraint set for every combination of size classes,
even if the set isn’t ideal for all of them. Doing this silences Interface Builder’s warnings
(there could be dozens) of faulty constraint sets, and ensures that if you miss something, or
Apple introduces yet more screen sizes, Auto Layout won’t punish you with grossly
inappropriate layouts.

The plan for regular-height screens in Figure 12.5 is the most conservative; it’s a good
fallback for any combination of width and height you hadn’t provided for explicitly. So the
any-width, any-height (wAny/hAny) layout should hold what our plan shows as
any-width, regular-height (wAny/hRegular).

Figure 12.5 The original layout of the billboard view (top) used two columns to put as much
information as possible into the restricted width of a classic iPhone screen. Having a wider screen
(bottom) adds room for a middle column to hold elements that had been at the bottom of the first.

Planning Constraints 199

m Any Layout (including hRegular)
Here, then, is the fallback layout:

m The passer-name label is anchored to the top and left of the billboard.
m The passer name spans the full width of the view.
m The name and the Attempts, Completions, and Yards StatViews are

left-aligned with each other.
m The Touchdowns and Interceptions StatViews are left-aligned with each

other.
m The Touchdowns StatView is aligned with Yards.
m All StatViews, and the passer-name label, have the same fixed vertical space

between them.
m All StatViews are the same width, at least wide enough for the widest

content, plus a little padding. Experimenting shows this should be about 140
points minimum.

m The rating label is anchored to the trailing edge of the billboard, and wide
enough to fit its content.

m The top of the rating label is aligned with the top of the Attempts
StatView, and therefore clears the bottom of the name label.

m The trailing edges of the rating, team, and date-range labels are aligned.
m The bottom of the billboard is a fixed distance below the Interceptions
StatView; the StatView column is the taller of the two, and should
determine the height of the billboard.

m The team name label’s leading edge observes a distance of at least 4 points from
the trailing edge of the Yards StatView.

m The team name label is tall enough to accommodate two lines.
m Compact Height (such as classic iPhone landscape)

The three-column-wide layout is a different story:
m The top of the rating label lines up with the top of the passer-name label.
m The name label ought to be the width of its content, but it’s more important

that it keep a fixed distance from the leading edge of the rating.
m The top of the Touchdowns StatView is aligned with the top of Attempts.
m The team name label’s height is reduced to accommodate one line. It’s

important that it be wide enough to show all its content.
m The center of the Touchdowns StatView is lined up with the center of the

billboard. This, and changing its top to line up with Attempts, moves it and
Interceptions to the middle column.

m However, centering is less important than giving full width to the team name.
If the name is wide, the middle column should be pushed off-center.

200 Chapter 12 Auto Layout in a New View

That’s a lot, but once you’ve learned how to think about layout, it’s not really hard, just
painstaking. You’re a programmer. You know the difference.

Two Line Counts, Two Labels
Forcing a two-line label to lay itself out in a single line is close to impossible. The label
will force its single-line width, or truncate, or wrap, and there’s no good way to guarantee
it will do something that is both consistent and desirable.

The solution is to have two team-name labels, one for a single line, and one for two.
Select the existing team-name label, and press Delete to get rid of it.

Note
You did a version-control commit before doing this, right?

We’re interested in two cases:

m Short (“compact height”) screens should have a one-line label, regardless of width.
m Any other screen height can afford a two-line label; in fact, needs one, because the

billboard will likely be narrow enough to require a line break.

You’ve noticed that the bottom of the Interface Builder canvas has a bar labeled wAny
hAny. This indicates that the layout you do will apply to any size or orientation of the
device screen. The choice of labels is for specific sizes. Click on the bar; you’ll see a
size-class picker (Figure 12.6) that responds to mouse movements by highlighting
rectangles. The left column and top row represents “compact” screens on those axes; the

Figure 12.6 (left) By default, the Interface Builder canvas is set up for creating generic
(wAny/hAny) layouts. (middle) Classic iPhones need wCompact/hRegular. (right) Interface Builder
recommends that landscape orientation for classic iPhones be set up with wAny/hAny. Dots appear

among the nine cells to show which configurations will be affected by the selected classes.

Two Line Counts, Two Labels 201

right and bottom “regular,” and the middle column and row, “any,” or don’t-care
dimensions. The default class, wAny/hAny, is right in the middle.

Select wAny hCompact. The size-class bar changes from white to blue to indicate
that everything you do will apply only to that combination of size classes.

Note
Don’t kid yourself with these abstract size classes. For 2015, at least, you’re designing for
320-point iPhones. Click the GameListController icon (the first one) above the
game-list scene, and in the Attributes inspector, select a non-Plus iPhone from the Size
popup, and the Orientation corresponding to your target size class.

Drag a UILabel from the object library into the proper place for a team name, and
format it as before. Set it to have one line; fill in the Label Text with something
unreasonably long like one-liner with place and team name. Constrain it to a
single-line height (like 20 points). See the “for both” paragraph below, for common
constraints.

Look at the bottom of the label’s Attributes inspector. There will be two checkboxes:
The first will be simply Installed. If the view were to be displayed in all circumstances,
this would be checked, but we don’t want that; make sure it’s cleared. Below it is a box
labeled wAny hC - Installed. That is checked: The view will be in the billboard on any
compact-height layout.

Note
If your ideas about layout are more intricate, click the + button next to the plain Installed
button, and select any combination of size classes to add a new Installed switch.

Switch the canvas’s view classes to wAny/hAny. The one-line team label will
disappear (it’s not installed for any but compact height). Drag in the two-line UILabel;
format it the same as the other, but make it narrower, two lines tall, and set Label Lines
to 2. Give it the text two-liner with place and team name; not only will it
challenge the layout, it will make the label easier to find in the document outline.
Constrain this label to a two-line height (36 points). If you look at the bottom of its
Attributes inspector, you’ll find that it is Installed for wAny hAny, making it the default.

For both, set the trailing (right) edge to that of the rating label (158.3); that fixes their
horizontal position, because the rating has a defined margin into the billboard. Set the top
edge to a distance of 8 points from the rating label, which will fix its vertical position. Set
the bottom edge to a distance of 8 points from the date-range level; given that the date
label has a fixed margin from the bottom of the billboard when the height is compact, this
completely defines the height of a short billboard.

GameListController will have to set both labels when it sets up the billboard.
Control-drag from one of them into GameListController.swift, and create an outlet
collection; I named it teamLabels. The outlet will be declared as an @IBOutlet for
[UILabel]!, and a connection bubble will appear next to the declaration. Drag from the
bubble to the other label, thus adding that label to the collection. Now, when the

202 Chapter 12 Auto Layout in a New View

storyboard loads, teamLabels will be an array containing references to both labels.
Change

currentTeamLabel.text = passer.currentTeam

to

for label in teamLabels {
label.text = passer.currentTeam

}

I just got you through the hard part—you had to place two labels, and their constraint
sets, and at least one of them is invisible at any time. The rest is tedium. Do a
version-control commit now.

Constraints for Real
As for the constraints on the permanent views, the plan forces us to start from scratch. I
repeat: If you start from a complete set of constraints and try to adapt them to other size
classes by cut-and-try, you will get yourself into serious trouble.

Focus Interface Builder on the game-list scene, open the document outline at the left
side of the canvas, and expand every view within the billboard view. The views that have
constraints will have blue subcategories that contain them. Select everything in those blue
folders (except for the constraints on the team-name labels) and press Delete to remove
them.

Delete only the constraints under the billboard view itself, not the ones at the top level
of the scene. They hold the billboard and table views in place, and there’s no need to risk
losing track of them if we accidentally update the view frames.

Try not to hit anything in the Resolve Auto Layout Issues menu, whether in the

Editor menu or the widget in the canvas. If you trigger a layout before you’re ready
for it, views will fly beyond the bounds of their containers, and one or both dimensions
will go to zero.

Default (Any/Any)
Start with the default—wAny hAny. Run through the “Any Layout” checklist above.

You can do most of these with the popover (or the Editor→Pin submenu,
depending on which makes more sense to you). Here are some more hints:

m Don’t set any absolute constraints—point insets, sizes or spacing—you don’t have to.
If you want a column of StatViews down the left edge of the billboard, set the
leading edge of the passer-name label to a fixed distance (8 points) from the
billboard’s leading edge; then align all the StatViews to that. Change the indent of
the name label, and all the StatView go with it.

m Pay close attention to the division between the hAny and hCompact layouts. The
first three StatViews (Attempts, Completions, Yards) line up with each other; and

Constraints for Real 203

the last two (Touchdowns, Interceptions) line up. How the two groups align with
each other depends on whether the height class is Compact.

m You can set the StatViews to have equal widths by command-clicking on each and
selecting Editor→Pin→Widths Equally. Do the same for Heights Equally.

m You can rely on the rating label to be wide enough, because text containers “know”
the minimum width they need to display their content. By default, Interface Builder
sets this constraint (Content Compression Resistance) to have a priority of
750—important, but if the layout doesn’t work with the natural width, this will be
sacrificed to fulfill constraints with higher priority.

Any Height (not Compact)
If you’re careful, and you’re certain that you’ve competed the full constraint set for a view in
the currently selected size class, you can have Interface Builder trigger those constraints;
this would be useful when you pin the name label to the right edge of the billboard and
want to see whether it lays out as expected. Select that view (only) and then Editor
→Resolve Auto Layout Issues→(Selected Views) Update Frames (=, or the

equivalent in the popover). If it doesn’t work out, you can always undo.
The critical thing to remember is that in this two-column layout, all five StatViews

line up, but you don’t do that directly. You’ve set the defaults that the Attempts/
Completions/Yards group aligns at the leading edges, and the Touchdowns/
Interceptions group aligns at their leading edges. To get the effect of the whole column
lining up, just align the leading edges of Touchdowns and Attempts; the default
alignments will take care of the rest.

Landscape (wAny/hCompact)
Switch to wAny/hCompact, and follow the checklist. The main difference is that
Touchdowns and Interceptions move to the center column. Break the leading-edge
alignment between Touchdowns and Attempts, and add top-edge alignment to those
two StatViews. That, and center-aligning Touchdowns in the billboard, completely
specify the layout of the center column.

Chasing Issues
All along, you’ve been selecting individual views and triggering Selected Views: Update

Frames (=) in either Editor→Resolve Auto Layout Issues or the popup.
When you’re sure of your placements for the entire view, select the view-controller
placeholder icon (rightmost in the scene’s upper bar) and choose All Views in Game-
ListController: Update Frames. Undo and repair as needed.

When things are mostly under control, take note of the red or yellow badge next to the
controller’s name in the document outline. Click it; a list of Auto Layout issues appear.
The red badges show cardinal sins: The constraints on the horizontal or vertical placement
of a view are either insufficient or contradictory. Click one of these; the problem view will
be highlighted.

204 Chapter 12 Auto Layout in a New View

In the case of insufficient constraints, you will be given a moderately informative
tooltip describing the problem. In the case of conflicting constraints, a popover will appear
showing them, and you can check off the ones you can sacrifice.

The yellow badges note views that are merely misplaced. If you highlight such a view,
you’ll see a dotted outline where Interface Builder thinks the view should go if its
constraints were fired. Clicking the badge on a warning affords a popover giving you the
choice of moving the view to conform to the constraints; changing the constraints to
conform to the view; or allowing Interface Builder to replace the view’s constraint set
with its best guess of what the intended placement should be. You’ll have the option of
applying your chosen solution to all the views in the container.

A Tweak
It almost works (Figure 12.7, top). On an iPhone 5 in landscape orientation, the
unreasonably long one-line team name runs into the middle column, and is forced to
truncate itself. This is a shame, because this may be the only place to see the full name of
the team, and while it’s nice to have the middle column centered, there is empty space to
its left.

What’s happening is that new constraints come in with the highest priority—1,000.
Auto Layout must enforce those constraints. As for the label (and some other views, mostly
text containers), it “knows” what width it has to be to display its contents in full. This is
the Content Compression Resistance Priority (Horizontal) constraint. By default,
this has a priority of 750. The centering of the Touchdowns and Interceptions

Figure 12.7 (top) By default, the centering of the middle column trumps the “desire” of the
team-name label to display its full contents. (bottom) Changing the priority of the centering

constraint to below the full-contents constraint allows the team-name label to push the middle
column off-center if necessary.

Summary 205

StatViews trumps the preferred width of the team name label, which then has to
truncate its contents.

Find the centering constraint—it’s in the Size inspector for the Touchdowns
StatView, where you can click Edit; or you can find it in the document outline by
typing Touch in the search field, and double-click it. Either way, you’ll be able to edit the
priority of the constraint. All you need is for centering to be lower than 750; 749 will do.

Now when you run Passer Rating, the long contents of the team-name label push the
Touchdowns column off center if necessary. See Figure 12.7, bottom.

Summary
That was a lot of work. You can understand why many developers avoided Auto Layout as
long as they could, especially if they walked away from Xcode 4’s. . . unsatisfactory support
for it. There are now four iPhone formats in two orientations each. “As long as possible”
has come to an end. Apple had been hinting, then warning, of this for more than two
years before the introduction of the iPhone 6.

Auto Layout can be very complex, but with a few habits, it can be brought down to
mostly only tedious:

m Remember the One Rule: Every view, for both axes, must have constraints that
specify the locations of its edges, completely and without inconsistency. Look at
everything through that lens.

m Plan! Make a sketch. Study it. Decide what you want to accomplish, and the
minimal set of constraints you need to do it. If you can clearly state what you want,
you’re not far from a specification.

m Make as few absolute constraints—spacing, size, alignment offsets—as you can. If
you have a grid, identify the one element you can anchor to an absolute position
and size, and make all the other members of the group aligned, or equal-sized, or
centered. That way, changing just the anchored views will bring the rest of the
layout along for free.

m Interface Builder’s “suggested” constraints aren’t that bad for a start—they even
observe the anchor-and-align rule when possible. If your requirements are simple,
you may be able to get by with just a tweak from the suggested set; if nothing else,
the suggestions may be useful to keep your views from flying away or collapsing as
you bring in your planned constraints.

m Most important, do not add constraints off the top of your head. Without a plan,
you will inevitably violate the One Rule, and from there you’ll thrash to the point
where a working layout system will be impossible.

This page intentionally left blank

13
Adding Table Cells

You’ve filled the game-list view with everything but. . .a list of games. In this chapter,
you’ll hook up the game table, produce a custom view for the table cells, and pick up
some techniques along the way.

The Game Table
The master-detail project template provided the root-controller class that became
PasserListController. That was a subclass of UITableViewController. It was
preconnected to its table, and was provided with an NSFetchedResultsController
that needed little modification to deliver Passers to the table.

GameListController is not a table-view controller; it’s just a UIViewController
for a view that happens to include a table. Table-view controllers are already connected to
their tables; you’ll have to do the connecting yourself.

The first thing to do is to modify the declaration of GameListController to promise
that it will implement the methods the table needs to display cells and respond to events:

class GameListController: UIViewController,
UITableViewDataSource,
UITableViewDelegate

Outlets in the Table View
You have to connect the table view to the controller. That’s been done at the controller’s
end—you set the tableView property when you built the view in Interface Builder. But
the table view has to know where it can get its data (its dataSource property) and what
will handle its events (the delegate property). Return to the storyboard, focus on the
Game List Controller scene, and control-drag connections from the table to the yellow
controller icon in the bar below the scene. Select dataSource from the heads-up menu
that will appear; repeat the process for delegate.

208 Chapter 13 Adding Table Cells

Note
Earlier, you created and linked @IBOutlets in GameListController from views in its
scene; this time you’re linking a view outlet to the controller.

Warning
It’s common for UIKit objects to rely on delegates and data sources. Unless they are
connected, they do nothing. Despite their importance, Interface Builder doesn’t make it
obvious that you should connect them. Forgetting to do so is one of the most common
causes of bugs, no matter how experienced you are.

Adding Required Protocol Methods
Once the parser catches up to the change, the activity view in the middle of the toolbar
will flag an error. This is Swift calling out your failure to implement the data-source
methods you promised.

In the Issues (fourth) navigator, the red-badged error message is annotated,
“. . . /GameListController.swift:12:1: Type ’GameListController’ does not conform to
protocol ‘UITableViewDataSource’.” Open the disclosure triangle, and you will find the
specific methods you’re missing: tableView(, numberOfRowsInSection:) in one
case, tableView(, cellForRowAtIndexPath:) in the other.

Go to the bottom of the declaration of class GameListController, and add this
function:

// MARK: - UITableViewDataSource

func tableView(tableView: UITableView,
numberOfRowsInSection section: Int)

-> Int {
if let passer = detailItem {

return passer.gameArray.count
}
else { return 0 }

}

Note
The // MARK: directive puts the text in the rest of the line into the function popup in the
last segment of the jump bar. If you prefix it with a hyphen, the label will be preceded by a
dividing line.

It would be nice if Xcode could help with autocompletion—it knows about the
UITableViewDataSource API. You can start typing tableView(, but then you get to
the end of the main function name; autocompletion puts you at the first parameter name,
and there’s no way to get to the rest of the signature from the keyboard. The best you can
do is to scroll through the completion list to find the declaration you need. We can hope
this will be fixed by the time you read this.

The Game Table 209

enum CellType: String {
case Basic = "Basic Game Cell"
case Tall = "Tall Game Cell"
case Fancy = "Fancy Game Cell"

}

let gameCellType = CellType.Basic

func tableView(tableView: UITableView,
cellForRowAtIndexPath indexPath: NSIndexPath)

-> UITableViewCell {
// ...

let cell = tableView.dequeueReusableCellWithIdentifier(
gameCellType.rawValue)
as! UITableViewCell

let passer = self.detailItem!
let game = arrangedGames![indexPath.row]

switch gameCellType {
case .Basic:

let playedStr =
shortDateFormatter.stringFromDate(game.whenPlayed!)

let ratingStr =
ratingFormatter.stringFromNumber(game.passerRating)!

let content =
"vs \(game.theirTeam) \(playedStr) - \(ratingStr)"

cell.textLabel?.text = content

case .Tall:
// ...

case .Fancy:
// ...

}

return cell
}

Note
I’ll lead you through three variants on the layout of the game cell in this chapter. The
variant in use is selected by the gameCellType instance variable, which is either
.Basic, .Tall, or .Fancy. tableView(, cellForRowAtIndexPath:) switches
among them to initialize each cell type as needed. Later, when I get to the other variants,
I’ll show only the new code (mostly whatever goes in the case clauses); the rest will stay
the same. The table in Main.storyboard contains a prototype for each variant.

210 Chapter 13 Adding Table Cells

Adding Model-to-View Support
arrangedGames is a property of GameListController that caches the games
relationship in the Passer being displayed.

The Passer.gameArray property is an array of Games, derived from the games
relationship from Passer, and sorted by date into an array. Whenever a new passer is
assigned to detailItem, the cached game list is dropped; if the list is wanted later,
arrangedGames fetches it.

var detailItem: Passer? {
didSet {

// Drop the game cache
_arrangedGames = nil

// Update the billboard.
if billboard != nil {
self.configureView()

}
// Update the table
if tableView != nil {
tableView!.reloadData()

}
}

}

// ...

// MARK: - Game cache

var arrangedGames: [Game]? {
if let passer = detailItem {

if _arrangedGames == nil {
// The game array isn't known, and there's
// a Passer to supply one. Get the array
// and remember it.
let gameSet = passer.games as NSSet
let dateSort = NSSortDescriptor(key: "whenPlayed",

ascending: true)
_arrangedGames =

gameSet.sortedArrayUsingDescriptors([dateSort])
as? [Game]

}
}
return _arrangedGames

}
// Games cache; reload if nil
var _arrangedGames: [Game]? = nil

The Game Table: First Run 211

A Prototype Cell
You’ve noticed that the placeholder for UITableView is labeled “Table View / Prototype
Content.” Prototype cells allow you to create and lay out custom cells in the table itself;
when UIKit calls your tableView(, cellForRowAtIndexPath:) method, you ask
the table to instantiate a cell.

Note
If a table in a stand-alone view has a custom cell, you have to create the cell yourself,
loading a separate NIB for just that cell.

Search the Object library (at the bottom of the Utility area, third tab) for cell to find
“Table View Cell,” and drag it into the table, where it becomes a prototype instance of
UITableViewCell. For the first pass at the game table, we’re sticking to a simple, single-
string format: Use the Style popup in the Attributes inspector, and select Basic.

The tableView(, cellForRowAtIndexPath:) method we have for the .Basic
case asks the table view for a cell with the identifier “Basic Game Cell”. Enter that in the
Identifier field.

We don’t yet have an editor for game instances, but let’s be prepared: Select Detail
from the Accessory popup to put a circled-i button in the cell, which will eventually lead
to the editor. The finished cell should look like Figure 13.1.

The Game Table: First Run
Now go back to your code-editing view, because you’re about to run the app.

Run it, and select a passer. So far, so good. The table fills with cells for each game the
passer played. The detail button is there as expected. The strings overrun the width of the
cells, but it’s just a prototype to see whether the table works at all (Figure 13.2).

Have a look at the Debug navigator. The application isn’t halted, so the area for the
stack trace is empty, but at the top of the navigator you’ll find four bar graphs, labeled
CPU, Memory, Disk, and Network (Figure 13.3).

Xcode comes with Instruments, a sophisticated tool for capturing event-by-event
performance data and displaying it on a time scale. It’s a powerful debugging tool, but it
requires a special build, and then some setup. (Hold the mouse button down on the
toolbar’s Run button to see that there is a Profile action that runs your app under
Instruments.)

Figure 13.1 The prototype for the simple “starter” cell for display in the game table.

212 Chapter 13 Adding Table Cells

Figure 13.2 The new mechanism for filling in cells for a Passer record works on the first try.

The Game Table: First Run 213

Figure 13.3 Bar graphs at the top of the Debug navigator show trends in the processor, memory,
storage, and network usage of your application. Clicking the round gauge button above the graphs

toggles their presence in the navigator.

Note
You’ll learn more about Instruments in Chapters 16, “Measurement and Analysis,” and 26,
“Instruments.”

For most developers, the incentives work out that profiling with Instruments is a special
occasion—special enough that some developers never run it at all until their applications
get into obvious performance trouble. That kind of trouble is the effect of performance
bugs that accumulated, unobserved, over the whole development process.

There’s another reason performance bugs don’t become obvious: The iOS Simulator is
not an emulator. It is an OS X application that floats on top of hardware that is ten times
as fast as an actual device, and, with paged memory, has practically unlimited memory, not
a hard gigabyte. Bugs that would be serious on an actual device may not be noticeable in
the Simulator.

The debug-time graphs provide a continuous reminder of performance issues. They
aren’t high-precision, but you can see trends. Even if your app doesn’t run into visible
trouble on a Mac, the absolute numbers in the graphs will warn you when you approach
the actual limits of a device.

In this case, the only appreciable hit on the CPU comes when you scroll the game table,
as the app fetches new data and fills in recycled cells for display. It’s not a big hit, and you
don’t see any persistent demand. The same goes for memory: Usage escalates as the data is
loaded, and a little more when you first scroll the list and cause OS caches to fill, but in my
case, it settled in around 22 MiB. In a 1-GiB machine, that’s nothing. No worries so far.

214 Chapter 13 Adding Table Cells

Note
You’ll see from Figure 13.3 that memory usage dropped to practically zero for a while, to
return when the game table was scrolled (as indicated by the burst in CPU usage).
Evidently the OS X virtual-memory system paged the game data out while the app was
idle, and brought it back in when it came back into use.

A Custom Table Cell
The default table cell leaves practically no room for information about games. If you want
to see your data, you’ll have to make a cell of your own.

A new table cell calls for a new prototype cell in the game table. Drag a new
UITableViewCell from the Object library into the table. This time we’ll go far beyond
UIKit’s standard cells, so set the Style popup to Custom, and its identifier to Tall Game
Cell.

A prototype cell is a view like any other; you drag views into it and customize them as
you need. It’s a standard-size table-view cell, as wide as the table and 44 points high (the
recommended minimum size of a tappable object). That’s not tall enough to accommodate
what we want to do. We need a custom cell. Drag the top or bottom edge of the cell (or
use the Size [fifth] inspector) to make it taller; my experiment left me with a cell 85 points
high.

Now you go through much the same drudgery as for the passer-detail view in
Chapter 11. Remember to set the Accessory view to Detail:

m A large label for the game rating. I used 158.3 (the maximum rating), System Bold,
30 points, blue, left justified. Put it in the upper-left corner. The initial size of the
label is too small to accommodate the content, but dragging a resizing handle will

make it snap to a large-enough size. Use the popover to anchor it 8 points from
top and left, and lock in the height and width.

Note
For the leading and trailing edge spacing, the popover will offer to Constrain to
margins, which are a standard inset from the sides of a superview. In this case, it’s
easiest to uncheck the option.

m At the top right, a label for the teams, scores, and the date of the match. For size, fill
it with

Tacoma Touchdown-Scorers 88
Tacoma Touchdown-Scorers 88
12/12/12

Use the Lines stepper/field to make the field accommodate three lines; the easiest
way to enter multi-line text is to use the Text field and use Option-Return for line

breaks. Make it System Italic, 10 points, right justified. Use to lock in the size,
and pin it to top 8 points, left 8 points.

A Custom Table Cell 215

Figure 13.4 The finished layout of the game-list cell.

m Across the bottom, a label in System 14 points, left justified. Size it with 999/999

- 999 yd - 99 TD - 99 INT; as before, use to lock it down.

When you’re done, you should have something like Figure 13.4.

Note
I also added Auto Layout constraints to the labels, but let’s not revisit that process.

What about connecting the cell to GameListController? For the passer-detail view,
you used @IBOutlets for the connections, but the controller manages only one of those
views at a time. For the game cell, it will be reloading the prototype cell over and over
again. There can’t be a single outlet for the cell or its labels. What the controller will have
at any moment is a pointer to the cell it is working on right then. It can pull pointers to
the labels from that.

This is done by setting the tags of the labels. Every UIView—cells and labels
included—can have an integer associated with it. You can retrieve the view from its
hierarchy if its tag is unique by sending viewWithTag() to any ancestor view with the
subview’s tag.

By default, the tag is 0. Use the Attributes inspector to set the rating label’s tag to 1, the
scoring label to 2, and the statistics label to 3. You’ll find the Tag field low in the
inspector, in the “View” section.

Finally, with the cell selected, expose the Size inspector. Take note of the height (85
points in my case). UITableView normally doesn’t measure the rows it presents; there’s
one height for all of them, and by default it’s 44 points. Select the game table in the
GameListController scene. Tables put a “Table View Size” section at the top of the
Size inspector. Set Row Height to the height of your cell (85). The basic cell will also
grow to 85 points, but that doesn’t matter anymore.

Save all your work, and check it in.
Now modify tableView(, cellForRowAtIndexPath:) in GameList-

Controller.swift to load the compiled GameTableCell NIB whenever it needs a
fresh cell. The method can then find the labels, and format the game data into each.

let gameCellType = CellType.Tall

enum TallCellTag: Int {
case RatingLabel = 1
case ScoreLabel = 2

216 Chapter 13 Adding Table Cells

case StatsLabel = 3
// More on this later:
case ReactionImage = 4

}

func tableView(tableView: UITableView,
cellForRowAtIndexPath indexPath: NSIndexPath)

-> UITableViewCell {
// Internal function to translate between the label enum
// and the actual UILabel for which it stands.
func labelWithTag(tag: TallCellTag) -> UILabel

{ return cell.viewWithTag(tag.rawValue) as! UILabel! }

// ...
switch gameCellType {
case .Basic:

// ...

case .Tall:
labelWithTag(.RatingLabel).text =

ratingFormatter.stringFromNumber(game.passerRating)!

labelWithTag(.ScoreLabel).text =
"\(game.ourTeam) \(game.ourScore!)\n" +
"\(game.theirTeam) \(game.theirScore!)\n" +
shortDateFormatter.stringFromDate(game.whenPlayed!)

labelWithTag(.StatsLabel).text =
"\(game.completions!)/\(game.attempts!) - " +
"\(game.yards!) yd - \(game.touchdowns!) TD - " +
"\(game.interceptions!) INT"

case .Fancy:
// ...

}

return cell
}

Run Passer Rating one more time. When you tap a passer, his full record appears,
including the complete statistics on every game. The display portions of the app behave as
specified, as you can see in Figure 13.5.

Note
The tagged-label approach worked well for this simple case. However, if your needs were
more complex—more intricate data, or even custom drawing—tagged subviews won’t be
enough. You’d need to create a new subclass of UITableViewCell. Such a subclass

Adding Some Graphics 217

Figure 13.5 The text-based custom cell displays complete game-by-game information in a
readable form.

would have outlets of its own for its labels and would expose a property that would accept
a Game object as its represented object. Setting the Game would cause the custom cell
class to fill its labels from it. tableView(, cellForRowAtIndexPath:) could simply
set the game property and not worry about the details of the cell view.

Adding Some Graphics
I’m never satisfied. Football is an emotional sport, its fans alternating jubilation with
despair. The game list should reflect this. There should be a graphic in each row expressing
how the passer’s performance feels.

A Cell with an Image in It
This calls for yet another custom cell. Fortunately, all the contents of the previous cell can
carry over with little change. Select the custom game cell in Interface Builder, and
duplicate it (by Edit→Duplicate, D—don’t choose Duplicate. . . in the File menu).

218 Chapter 13 Adding Table Cells

1. In the Attributes inspector, change the new cell’s Identifier to Fancy Game Cell.
2. Resize the cell to a height of 96 points. This should also change the table’s general

row height.
3. Change the statistical-summary label to two lines, and use Option-Return to put a

line break between “yd” and the number of “TD”s.
4. Search the Object library for Image, which will show you an image view

(UIImageView). Drag it in, put it into the lower-left corner of the cell, and resize it
to 30 × 30 points.

5. Constrain its bottom edge to 8 points above the bottom of the cell, set its leading
edge to align with that of the rating label, and fix its height and width to 30.

6. Give the image view a tag of 4.

The result should be like Figure 13.6.

Hooking the Image View to the Images
You have to finish tableView(, cellForRowAtIndexPath:) (excerpts):

let gameCellType = CellType.Fancy

// ...

func tableView(tableView: UITableView,
cellForRowAtIndexPath indexPath: NSIndexPath)

-> UITableViewCell {
// func labelWithTag(), cell, passer, game...

switch gameCellType {
case .Basic:
// ...

case .Tall:
// ...

Figure 13.6 The last iteration of the game cell adds a UIImageView to the lower-left corner.

Adding Some Graphics 219

case .Fancy:
labelWithTag(.RatingLabel).text =
ratingFormatter.stringFromNumber(game.passerRating)!

labelWithTag(.ScoreLabel).text =
"\(game.ourTeam) \(game.ourScore!)\n" +
"\(game.theirTeam) \(game.theirScore!)\n" +
shortDateFormatter.stringFromDate(game.whenPlayed!)

labelWithTag(.StatsLabel).text =
"\(game.completions!)/\(game.attempts!) - " +
"\(game.yards!) yd\n\(game.touchdowns!) TD - " +
"\(game.interceptions!) INT"

let reactionView = cell.viewWithTag(TallCellTag.ReactionImage
.rawValue)

as! UIImageView
// Fetch the reaction image for the rating
let reactionImage = (game.passerRating < 122.0) ?

UIImage(named: "Despondent"):
UIImage(named: "Elated")

// Set the image.
reactionView.image = reactionImage;

}

return cell
}

The Assets Catalog
That leaves the images themselves. I drew up a couple of badge images (PNG, with
transparency) and produced single-resolution and double-resolution (60 × 60 pixels)
versions (find these in the icons and images folder in the sample code):

m Despondent.png - 30 × 30 pixels
m Despondent@2x.png - 60 × 60 pixels
m Elated.png - 30 × 30 pixels
m Elated@2x.png - 60 × 60 pixels

Note
If you can, draw up at least your simple images in a vector-drawing application, and let it
take care of scaling the images for single- and multiple-resolution sizes.

Image Sets
Before Xcode 5, if you had images to embed in your application, you simply dragged
them into the Project navigator and did the usual negotiation about whether it should be

220 Chapter 13 Adding Table Cells

copied, its target memberships, and its place in the group hierarchy. Keeping a rigorous
group hierarchy, giving each functional group its own folder in the navigator so you
know what images are being used for each purpose, would keep the image zoo under
control.

Few humans do such things. I’ve seen projects that evolved through adding, replacing,
and discarding images to the point where dozens of the .pngs in the project navigator
were orphans. Clearing out the deadwood is nearly impossible, because there’s no way to
be certain which are still in use.

That’s gone. You no longer have to keep references to image files in the Project
navigator. When you create a new iOS application target, the template includes an asset
catalog, a container with the .xcassets extension. Its entry in the Project navigator looks
like a folder, but it doesn’t open in the navigator. Instead, it presents an editor for the
catalog—select Images.xcassets.

An asset catalog contains image sets, each of which contains representations of what is
notionally a single image, adapted for the resolutions and devices on which they will be
displayed. Images in image sets can be retrieved by the name of the set; UIKit will do the
work of selecting the suitable representation without your having to specify it.

The sets keep the many representations out of the Project navigator, and group them by
function. When you have to replace an image, there’s only one place you have to go, and
the catalog editor will take care of cleaning up the obsolete representations.

By default, the catalog includes an AppIcon set for the application’s icon. If you intend
your app to run on iOS 7 or earlier, you should provide a LaunchImage set for the static
image that iOS would display while your app is launching.

Note
An OS X application can keep its icon set in an asset catalog, as well.

The editor is divided into a “Set list,” a source list of image sets on the left side, and the
“Set viewer,” the main view. Select a set from the source list, and the Set viewer will show
all the representations in that set. The Utilities area adds an Attributes inspector (third tab)
for each image and image set.

Adding Images to the Assets Catalog
Drag the six image files into the Set list of the assets catalog. That’s it. Xcode will infer the
set grouping and resolutions from the names and the actual sizes of the images
(Figure 13.7).

The new code for tableView(, cellForRowAtIndexPath:) already uses
UIImage(named:) to retrieve images by name from the asset catalog. Run Passer Rating
again; the build process compiles the catalog into a single binary file that UIKit can
efficiently use, and the app launches. (You can still use asset catalogs in projects targeted for
iOS versions earlier than 6. For compatibility, catalogs are not compiled; their contents are
placed separately in the application’s bundle.)

Adding Some Graphics 221

Figure 13.7 Dragging image files at single-, double-, and treble-resolution into the Set list of an
assets catalog sorts them by name into image sets and displays each resolution of each set. Setting

Render As Template Image prepares the images for tinting when UIKit displays them.

Note
The first time Xcode 6 opens an older project, it adds an asset-catalog file. This is
harmless—you don’t have to use it—but the General tab of the Target editor will help you
migrate your icons and launch images into the catalog. That’s harmless, too, and a very
good idea.

Select a passer and scroll through the game list. Games in which the passer earned a
rating of 122 or above are greeted with elation; lesser performances, with despondency
(Figure 13.8).

Note
Class UIImage provides an extremely useful tool for handling resizable images. Consider a
button for an OS X dialog. The button’s shape and background are provided by a template
image. The template is no more than the left end cap (with its rounded corners), a one-
pixel column demonstrating how to color the body of the button, and the right end cap.
Applying -[UIImage resizableImageWithCapInsets:] to the template yields a
special UIImage that, when rendered in a wider rectangle, fills the space by preserving
the proportions of the end caps, and stretching that single pixel across the width between
them. The Image Set editor lets you slice a managed image into three or nine segments.
Expose the feature with Editor→Show Slicing. There isn’t room in this book for a full
discussion, but it’s well worth your time to look into it.

Icons and Launch Displays
While we’re here, it’s time to fill in the icons and—if you need them for iOS 7 or
earlier—launch images. In the asset catalog, select the AppIcon image set. If you’ve dealt
with icons for iOS applications before, what you see may come as a pleasant surprise: the
set carries wells for double- and treble-resolution images for iPhone Spotlight, Settings (29
points—58 pixels—on a side), and the Home-screen app icon.

The repetition of “iPhone” and “iOS 7,8” should be a clue: The Passer Rating
application is an iPhone-only app targeted at iOS 8. The Attributes inspector for an icon
image set carries checkboxes for iPhone and iPad icons for iOS 6 through 8, plus a box for
Mac icons.

222 Chapter 13 Adding Table Cells

Figure 13.8 The final incarnation of the game cells includes a graphical assessment of the
passer’s performance in that game.

Adding Some Graphics 223

The checkbox labeled iOS icon is pre-rendered is a convenience for setting the flag
in the app’s Info.plist file that tells iOS that the “gloss” effect iOS put on application
icons in versions 6 and earlier is not wanted.

Adding iOS 6 slots for iPhone gives you three more images to fill for the smaller
application icon at two resolutions and a single-resolution Spotlight/Settings icon.

Note
Note that the icon wells are labeled in points, not pixels. An iPhone application icon,
pre-iOS 7, is 57 points on a side, and that’s how it’s labeled. That’s 57 pixels at single
resolution, but at 2×, it’s 114; and so on for 3× images. You’re expected to do that math
yourself.

Check all the iOS boxes. To cover every icon style for two devices running two
operating systems, you’d have to provide 16 icon images. If you were building a Mac icon
set instead, you’d have to fill 10 spaces.

Note
A long-standing bug in the image set editor has the icon slots running off the right side of
the editor canvas. You can get around this by hiding the side navigators and narrowing the
set list.

Let’s not get crazy; uncheck all but the iPhone/iOS 7 and 8 options; that’s three icons,
at 2× and 3×, respectively. I’ve drawn Passer Rating’s icon in the six sizes required, and I
dropped each image file into its respective slot. Done (Figure 13.9).

Now launch the image, which is necessary if you can’t use the launch XIB or
storyboard the application template provides for iOS 8 or later. (I’ll come to the reasons
you should provide a XIB/storyboard soon.) Assuming it isn’t running already, an
application launches when the user taps its icon on the Home screen. The launch process
concludes when the app is ready to respond to user actions. Both the OS and the app do
some work before the app is ready for service. This can take some time even now—it took
more on the iPhone as it was in 2007.

Apple resorted to some stagecraft. In the period before an application is running, iOS
pulls a launch image (or launch screen XIB or storyboard) from the app’s bundle and
displays it until the app can present its first active screen and respond to user actions. This
is a user-experience trick: Showing the user something that looks like the app’s main screen

Figure 13.9 The complete repertoire of application icons can be covered in six images if you set
the Attributes inspector’s checkboxes to limit the set to iOS 7 and 8 on iPhone.

224 Chapter 13 Adding Table Cells

assures the user she’s running the app she intends and gives her the impression that the
device is responding to her more quickly than it really can.

Note
This isn’t a “splash screen.” A real splash screen blocks the user’s access to her data for
a certain amount of time. A launch image (or XIB) goes away as soon as the app is ready
for use. Ideally, the interval between tapping your application’s icon and its being ready for
service is zero, and the launch display should never appear at all. That ideal will be tested
in Chapter 16, “Measurement and Analysis.”

Launch images come first in this history, so I’ll start with those.
Select the LaunchImage image set. In the Attributes inspector, select Portrait

orientation for all sizes of iPhone for iOS 8 and Later, iOS 7 and Later, and iOS 6
and Earlier, covering the status bar or not. (For a commercial product, we’d include a
landscape image for iOS 8.) The Attributes inspector offers many more options for iPad
(portrait and landscape), and the same for iOS 6 and earlier (including iPad images that
don’t cover the status bar).

Taking into account the single-resolution variants supported by iOS 6, there are 20
possible images (the status-bar variants mean that the practical maximum is 18). You begin
to see the appeal of a launch XIB.

Back off and uncheck everything but the iPhone Portrait orientations for iOS 7 and 8,
and give thanks: It’s only four images. I used the File→Save Screen Shot (S)
command to capture screen shots of the passer-list screen. I masked all text out with my
favorite graphics editor. Launch images should not have anything that looks like data or
reflects the locale. There is only one set of launch images for all locales. A transition from
an image of an English-language button to the live button is smooth; but if you’re using a
German localization, the appearance of foreign-language text that is replaced by the local
text is jarring.

Note
When you take screen shots for purposes like this, make sure the iOS Simulator’s screen
is shown full size: Window→Scale→100% (1).

That’s the historical context. iOS 8 introduces launch storyboards (which include XIBs).
You can provide an Interface Builder product for a stand-alone view; the new-app
template gives you one to start from. This gives the system something to present that
doesn’t depend on the shape or resolution of the device’s screen—the large,
treble-resolution iPhone 6 Plus is obviously just the beginning. If you don’t provide a
launch layout, iOS will assume your app isn’t ready for modern screen sizes, and will
“zoom” it to fit the screen.

If it isn’t there (maybe you’re working with an existing project), create the storyboard
and register its base name in the General tab of the Target editor. Because the launch files
are arranged through Auto Layout, using size classes, one file can reliably fill any screen the
app launches into. Remember that the NIB (compiled XIB) will be drawn before any of

Summary 225

your code has executed—there’s no view controller backing the display. It’s just for show,
as a way to use one file to show your initial screen on any iOS screen, current or future.

Summary
This chapter told the story of how Passer Rating fills its game table from a Passer’s
games set. This took us to another feature of Storyboard, the ability to specify prototype
cells for a table. We advanced through three stages:

m A simple text-only cell as provided by iOS, just to test the mechanism
m A cell with a custom layout that can display the full information about a game in a

compact and interesting (or you could make it interesting) format
m A development of the full-information cell that supplemented the contents with a
UIImageView

The image was silly, but it yielded an in-depth look at the asset-catalog feature, which
makes it much easier than before to manage the explosion of system images an iOS
application might have to carry.

This page intentionally left blank

14
Adding an Editor

The last substantive change we’ll make to Passer Rating is to add an editor for passers.
The task itself will be very quick—you know how to add a scene, and the concepts of the
editor are not difficult. But it’ll give us the chance to take a deeper look at Storyboard.

The Plan
We already know roughly what we want to do—the layout is already there in Figure 8.2 in
Chapter 8, “Starting an iOS Application.” It’s a modal view (it slides up from the bottom),
containing a table with rows for editing a passer’s first and last names and the name of his
current team. Save and Cancel buttons allow the user to exit the editor one way or
another.

Adding a Modal Scene
Bring Main.storyboard into the editor, and use Editor→Canvas→Zoom
→Zoom Out ({) to zoom out to give you room to drag in a new view. Find “View
Controller” (UIViewController) in the Library portion of the Utility area (make sure
the third tab, for the Object library, is selected), and drag it in just below the game-list
controller (the segue arrow will be easier to follow that way).

Key Equivalents
The deeply buried commands to zoom the Interface Builder canvas in and out have little to
recommend them, especially on the U.S. keyboard. Zoom Out ({) is effectively [,
which is awkward in itself, and because it involves holding the Shift key at the start of an
animation, the transition runs at less than half speed.
The solution is to open the Key Bindings panel of the Preferences window and type Zoom in
the search field. There are a lot of commands with that word in them, so look for the items
marked “Editor Menu for Interface Builder. . . .” (The full text of the description is never
visible, because the column in which it appears is not resizable.)

228 Chapter 14 Adding an Editor

The second column contains the key equivalent for each command; click a cell, and any key
combination you press will be assigned to the menu item; click away from the field to make
the change permanent. The equivalents I chose were = for Zoom to 100%; [for Zoom
Out; and] for Zoom In.
Any (maybe all) of these will conflict with keys assigned to other commands. If Xcode flags
the assignment in yellow, this isn’t a problem— the two commands are active in different
contexts, such as in a debugger view and Interface Builder, and the context determines the
command. If the combination is flagged red, the conflict is between two commands that may
be active in the same context. Click the Conflicts filter in the key list to expose all the issues,
and decide how you want to resolve the clashes.
The search field in the Key Bindings tab has a popup menu at the left margin that lets you
filter your search by description, keys used in the equivalents, or both.

Note
The Apple terminology for invoking a command from the keyboard has always been
“equivalents,” in recognition of research showing that while the user isn’t aware of it,
remembering the key combination and shifting the hands to enter it is slower than
using a mouse to pick the command from a Mac-style top-of-screen menu. On a Mac,
such key combinations are not “shortcuts,” nor do they “accelerate” anything.
Nobody believes that, but the point lives on in Cocoa UI terms.

Select the new scene, and the Identity inspector (third tab, top of the Utility area).
Name the Class PasserEditController. Make a mental note to build such a class.

The scene consists of two parts: A toolbar at the top, and a table below it. It would be
tempting to control this scene with a UITableViewController, but if you do that, the
whole scene must be a UITableView. We don’t want that.

Contrariwise, we don’t want to just drop a UITableView into the scene, either. We’re
going to take advantage of static table cells for the editing form, and you can’t have those
without a UITableViewController. It seems we’re stuck.

While pondering this, drag a UIToolbar in, and put it at the top of the scene—you’ll
have to zoom to a scale of 100 percent. Set the constraints to be zero from the leading and
trailing edges of the superview, and zero from the Top Layout Guide (the imaginary line
below any bars at the top of the screen—you may have to start the top well below any top
bars before you get the top guide as an option).

The toolbar already contains a button labeled Item. Toolbars don’t have any vertical
layout, and they take care of their own horizontal layouts: Drag in a “Flexible Space Bar
Button Item” (it’s inert, but yes, it’s technically a button) to the right of it, and another
UIBarButtonItem to the right of that.

Now you have two buttons labeled Item. There is a time to be enigmatic, but
human-interface design is not it. Select the button on the left. If this were a UIButton,
you’d edit a Title field in the Attributes inspector. Bar-button items are different, because
very often they have standard titles or icons. Look at the “Bar Button Item” section of the
Attributes inspector.

Adding a Modal Scene 229

m Set the Style popup to Bordered. Putting borders around buttons went out of style
with iOS 7, but that’s the historic name for what we want, and if you run on iOS 6,
you’ll get the dark-gray sunken appearance.

m Have a look at the Identifier popup. It starts at Custom, which allows you to set
the title, as you’d expect. But there are many items offering standard button types.
Some of them correspond to icons—a Stop button carries a large saltire—but some
get rendered as strings, like Save. What’s the good in that? iOS renders
“acceptance” buttons in a heavier font, and because the title is standard, it will
localize the title. Choose Save from the Identifier popup.

m Select the left-hand button in the bar and set its identifier to Cancel.

These buttons should do something. They will, soon.
Toolbars don’t have a way to label themselves the way navigation bars can. Cheat: Drag

in a UILabel, title it Edit Passer, set it in System Bold, 17. Select the label and the
bar (you can’t put the label in the bar), and use the alignment control to align it
horizontally with the center of the outer view (IB doesn’t recognize subviews of toolbars);
and the pin control to fix the distance from the top edge. The content will run off the end
of the label, but if you have the Resolve Auto Layout Issues menu redo the layout for
the scene, the label’s content will push it out so the full text is visible.

An Embedded View Controller
To review: We can’t have a UITableViewController, because we need that toolbar.
But if we simply drop a UITableView in, we can’t have the static table cells that will
make our lives so much easier.

Note
Other developers might solve this by putting the editor in the same UINavigation-
Controller chain as the other scenes; or wrap the editor’s table-view controller in an
additional navigation controller stack just to get a top bar. I’m having you do it this way so
I can show how you can break out of the navigation-controller stack and still have control;
and how you don’t have to fall prey to dilemmas like this.

So we’re going to have our UITableViewController. And our toolbar. Without
compromise. The trick is the embedded view controller, in which the editor view cedes a
container for another controller to run.

Type contai into the search field at the bottom of the Library panel, to find and place
“Container View” into the Passer Edit scene. This doesn’t look good. It’s too small, but
some constraints will take care of that (zero to bottom, leading, and right edges of the
container; zero to the bottom of the toolbar).

The container seems to have brought another view controller with it. Probably
Interface Builder has placed it inconveniently, but that, too, is easy to deal with: Zoom the
canvas out so you can drag the child scene to the right of the editor. You find that the new
scene has sized itself to match the container. Good. You also find that the new scene has
assigned itself a UIViewController. Bad. See Figure 14.1.

230 Chapter 14 Adding an Editor

Figure 14.1 The editor view has its toolbar and a container for its table, but the container view
brought in a plain UIViewController, when we need a UITableViewController.

The reason it’s bad is that we need a UITableViewController. That’s ultimately a
subclass of UIViewController, but if you simply set the class of the existing controller,
Interface Builder won’t correct its presentation to include the tools for building a table.
This is the wrong scene for the wrong controller.

Bring in the right controller. Find the Table View Controller object and drag it into
the canvas. As far as Interface Builder knows, this is a stand-alone scene, so it is shown at
the screen size you’re currently using for the storyboard. Not a problem.

Control-drag from the container view in the editor scene to the new table-controller
scene. A heads-up window will appear so you can set the type of segue you want. Click
embed, which is the only choice you have. The container can have only one embedded
controller, so the embed segue to the interloping UIViewController is broken. Select
its scene and press Delete.

Select the new table controller, and use the Identity inspector to set its class name to
PasserEditTableController. It’s unwieldy, but a stranger (including you, next
month) will need every part of the name to understand what the class does.

Note
Setting the controller class name should be all you need to produce a storyboard with the
proper connection to the controller. Sometimes not. In such cases—as I write this,

Adding a Modal Scene 231

embedded controllers are—you have to set the name of the module in which the class is
to be found. In the Identity inspector, set Module to the application’s main module
Passer Rating. The application module takes the alphanumerics in the name of the
application with underscores replacing anything else.

Segues should always have names. Select the embed segue and use the Attributes
inspector to set the Identifier to something like Passer Edit Embed.

Linking the Editor to the Passer List
We need a way to get from the root list of passers to the editor. This is complicated—but
only slightly—by the fact that there will be two uses for the editor: to work on the
content of an existing Passer, and to populate a new one.

We can do most of the jump from an existing Passer in Interface Builder.
PasserListController.viewDidLoad() hasn’t changed since the project

template gave it to us. Part of what that method does is to set the right button of its
navigation item to the standard Add button. We need to use that button as the root of a
segue, and code isn’t the way to do it.

Drag a bar button from the Library into the right end of the navigation bar in the
passer-list controller scene. Select the standard Add identifier in the Attributes inspector.
Control-drag from the new Add button to the passer-editor scene.

Note
I bet your editor scene and the Add button can’t fit on the screen at the same time. Good
news: You can’t do much with the zoomed-out view of the canvas, but you can drag segues.

You’ll be offered a menu of segue types; choose Present Modally. The segue is to be
triggered by a tap on the accessory, and it should present the editor modally (sliding up
from the bottom over the Passer list).

Note
With its bigger screen, the iPad offers other ways to present modal views. Consult the
documentation for modalPresentationStyle.

Provide an identifier for the new segue: Edit passer. The Attributes inspector for
the segue offers other Transition styles, but let’s not get fancy; experiment with them
yourself.

Note
It’s an identifier, not a coding symbol. There’s no compiler to tell you the identifier should
be uncomfortable for a human to read.

Now for editing an existing Passer. UITableViewCells can display one of five
standard accessories at the right end of the row:

m Disclosure, a right-facing caret to indicate that tapping the cell will disclose the
next-lower layer of the hierarchy.

232 Chapter 14 Adding an Editor

m Detail, a circled i, which will summon an editor for the object the cell represents.
You have to tap the accessory itself to get the editor. (In iOS 6 and earlier, this was a
chevron in a blue circle.)

m Detail Disclosure, which shows both the caret and the circled i to show that tapping
the detail button will show an editor, and tapping anywhere else in the row will
navigate to another screen.

m A checkmark.
m No accessory at all.

The passer table’s prototype cell has the disclosure accessory because we’ve been using
the cell to advance to a display of one passer’s record. Now that we want to edit it, we
need a detail-disclosure accessory. Select the cell in the Passer List Controller table, and use
the Attributes inspector to set Accessory to Detail Disclosure.

The detail-disclosure accessory is a button. As such, it can trigger a segue. You will be
tempted to drag an additional segue from it to the editor controller. That will work, as far
as it goes, but there is a problem: In order to edit an existing passer, the prepareFor-
Segue (, sender:) method has to know which passer it is. By the time control gets
to that method, that information is lost; one accessory tap looks like any other.

Leave the question aside for the moment.

Static Table Cells
Now we can build the editing form from the table embedded in the Passer Editor scene.
Zoom in on the table in that scene and select it. You will make these changes:

m Change Content from Dynamic Prototypes to Static Cells.
m Notice that Sections is set to 1. That’s what we want.
m Change Style to Grouped. Plain style is better for sectioned data—it keeps the

section header on screen even when you scroll far down in the section—but a
grouped table is better for a static presentation.

m Selection should be No Selection.

Now move on to that one section. To select the section, either find it in the document
outline, which you can expand with the arrowhead button at the lower-left corner of the
canvas, or by control-shift-clicking on the section in the scene, and picking the section.

You’ll make two changes: Set Rows to 1, and set Header to Passer. (IB will force it
to all-caps, but that’s okay.) The form will have three rows, but if you lay out one, and
duplicate it twice, you’ll have three identical layouts without more trouble.

You’re down to one cell. Drag a label into it (vertically centered in container; fixed
leading margin; no width specified—let the intrinsic text-content constraint take over),
and set the title to First Name. Drag in a UITextField and put it at the right end of
the cell (fixed trailing edge, width 190 points at priority 751, baseline aligned with the
label, leading space to the label greater than or equal to 4 points). Scroll the Attributes
inspector down a little to find some popups that set the behavior of the keyboard for the

The Editor View Controllers 233

field; Set Capitalization to Words (which fits proper names better), and turn
Correction and Spell Checking off.

Select the section again, and set it to have three rows; as I promised, the three have the
same layout. Set the label titles to First Name, Last Name, and Current Team. Just to
be stylish, set the Placeholder Text in the text fields to First, Last, and Team.

The Editor View Controllers
We’ve worked up quite a debt in unimplemented code, and now we must pay off.

Create the promised classes, PasserEditController (a subclass of UIView-
Controller) and PasserEditTableController (subclass of UITableView-
Controller).

The last two statements in viewDidLoad() in PasserListController set up an
Add button for the passer list’s navigation bar. Remove them. This obsoletes
insertNewObject, but it’s harmless, and it would be a distraction to remove it.

The Editor Table
The editor table doesn’t have to do much. It must keep track of its text fields and their
contents; and it has to accept and return the strings the fields edit. If we carefully choose
the names of the fields and the properties that back them, we can automate much of the
task of shuttling data between the fields and the Passer properties. The Passer values
are firstName, lastName, and currentTeam. The names of everything else will be, or
be derived from, those names.

Now that we have class files, we can link the fields to PasserEditTable-
Controller. Rig your Interface Builder tab so the Assistant editor is visible and the first
segment of its jump bar set to Automatic; and the Navigator and Utility areas are hidden
to make room. The assistant will show the controller’s source files when its scene is
selected. Control-drag from each field into the top of the definition of
PasserEditTableController in PasserEditTableController.swift.

Add one more var property, making the top of the class definition look like this:

class PasserEditTableController: UITableViewController {
@IBOutlet weak var firstNameField: UITextField!
@IBOutlet weak var lastNameField: UITextField!
@IBOutlet weak var currentTeamField: UITextField!

weak var parent: PasserEditController!
// ...

The controller’s API uses a dictionary to pass the editor’s values in and out. One might
think the best way to get the values into and out of the editor would be to call out each in
a String property, but this technique has the advantage of removing the structure of the
data from the API, and providing a single way to pass the data back and forth regardless of
whether it’s for an existing or new record. Also, there are Key-Value Coding (KVC)

234 Chapter 14 Adding an Editor

methods that make it easy to get and set object properties through dictionaries. The
dictionary keys will be firstName, lastName, and currentTeam.

Here’s how you’d move the field values into and out of the editor table:

let propertyNames = ["firstName", "lastName", "currentTeam"]
var values:[String:String] {

get {
var retval: [String:String] = [:]
for name in propertyNames {

let field = valueForKey("\(name)Field") as! UITextField
retval[name] = field.text ?? ""

}
return retval

}
set {

for name in propertyNames {
let field = valueForKey("\(name)Field") as! UITextField
field.text = newValue[name] ?? ""

}
}

}

override func viewDidLoad() {
super.viewDidLoad()
// prepareForSegue comes before the view is populated with its
// text fields. There are other ways to solve this, but in this
// case, we call out to the wrapper view for the values now that
// the table is ready for them.
parent.childReadyForValues()

}

If the editor table is simple, the container does practically nothing:

class PasserEditController: UIViewController {
override func prepareForSegue(segue: UIStoryboardSegue,

sender: AnyObject?) {
if segue.identifier! == "Passer edit embed" {

childEditor = segue.destinationViewController as!
PasserEditTableController

childEditor.parent = self
}

}

// As a convenience to the client, hold a reference to whatever
// we're editing. PasserEditController doesn't do anything with it.
var representedObject: Passer?

// MARK: - Child editor support

The Editor View Controllers 235

var childEditor: PasserEditTableController!
var editValues: [String:String] {

get {
return childEditor.values

}
set {

_savedValues = newValue
childEditor?.values = newValue

}
}
var _savedValues: [String:String]?

func childReadyForValues() {
childEditor.values = _savedValues!

}
}

The embed segue is like any other: It has a source controller and a destination controller.
When it is triggered (by loading the edit controller from the storyboard), it gets a
prepareForSegue(, sender:) message, as it would for any other segue. From that,
it can get a pointer to the embedded controller (there’s no way to link an outlet to the
child in Interface Builder).

Note
prepareForSegue(, sender:) depends on the embed segue having an identifier
(Passer edit embed). Be sure to select the embed segue between the edit controller and
its table sub-controller and set its name in the Attributes inspector.

However, at that moment, the views haven’t been instantiated in either the parent or
the child; and while the parent can rely on its own views’ existence when viewDid-
Load() is called, it can’t be sure about the child. Therefore, the transaction of handing the
values to be edited off to the child has to wait until it is ready. PasserEditController
takes care of this by publishing a childReadyForValues() method to receive the signal.

Passing the Data to the Editor
First, let’s get the data into the editor. We have an entry to the editor in the form of the
Edit passer segue, but we have two uses for it. One of them, adding a Passer, is
straightforward: Have the Add button trigger a segue; there’s only one Add button.

The other use, for editing an existing passer, is trickier. There is no one origin; you
have to know which passer triggered the transition. If you hooked up the detail button
directly to the segue, that information would be lost. So you have to do some processing
ahead of time, while you still can identify the passer.

236 Chapter 14 Adding an Editor

The most straightforward way to do this is to add an old-fashioned UITableView-
Delegate method to PasserListController:

// Remove the in-code setup for the add button so
// the one connected to the editor segue is used:
override func viewDidLoad() {

super.viewDidLoad()
self.navigationItem.leftBarButtonItem = self.editButtonItem()

}

...

// Handle the new Edit passer segue:
override func prepareForSegue(segue: UIStoryboardSegue,

sender: AnyObject?) {
switch segue.identifier! {
case "showDetail":

let indexPath = self.tableView.indexPathForSelectedRow()!
let object = (fetchedResultsController[indexPath] as Passer)
(segue.destinationViewController as GameListController).detailItem = object

case "Edit passer":
let editor = segue.destinationViewController as PasserEditController
if let passer = _passerToEdit {

// The accessory button was tapped; capture the selected
// Passer and its values
editor.editValues = passer.dictionaryWithValuesForKeys(

["firstName", "lastName", "currentTeam"])
editor.representedObject = _passerToEdit

}
else {

// The Add button was tapped; there is no existing
// Passer, and all the values are blank.
editor.editValues = ["firstName":"", "lastName":"", "currentTeam":""]
editor.representedObject = nil

}

default:
println("Unhandled segue in PasserListController (\(segue.identifier))")

}
}

...

// Respond to a tap on the accessory button for a Passer
override
func tableView(tableView: UITableView,

accessoryButtonTappedForRowWithIndexPath
indexPath: NSIndexPath) {

_passerToEdit = (fetchedResultsController[indexPath] as Passer)

The Editor View Controllers 237

performSegueWithIdentifier("Edit passer",
sender: _passerToEdit)

}

It’s been a long time since we’ve run Passer Rating. Do it now; tap on the detail-disclosure
button on one of the rows, or on the Add button. The new editor slides up from the
bottom, populated correctly. You can edit the fields (see Figure 14.2).

Getting the Data Back
What you can’t do is close the editor, nor get your work back into the model. Up through
iOS 5, the most straightforward way to get this done was to declare a protocol that
PasserListController could implement. When the Cancel or Save button is
pressed, the editor would use the delegate methods to signal the results to the list
controller, its delegate.

But why do this, when Storyboard can eliminate the editor-side code, and free the
client from setting a delegate outlet and conforming to a strict API?

You can’t dig out of a view controller with an ordinary segue. If you control-dragged a
segue from the Cancel button back to the PasserListController,you’d get a segue

Figure 14.2 The new editor fills itself from exiting Passers as hoped. You just can’t close it.

238 Chapter 14 Adding an Editor

that creates a new passer-list controller. That’s what most segues do—they create view
controllers.

What you want is an unwind segue. An unwind (or exit) segue shops itself up the chain
of view controllers until it finds one that can handle the transition. (If you think of that
chain as the sequence of modal and navigation presentations that arrived at the scene
where the segue was triggered, you’ve got a workable idea, but it’s a bit more complex,
and you can modify it in code.)

A view controller declares its readiness to handle an unwind segue by implementing an
@IBAction method with one argument of type UIStoryboardSegue. The Swift
compiler and the runtime don’t care about those properties—the information is lost by
then. Interface Builder does care about them. Even as @IBAction in a method declaration
tells IB that a method is a candidate to handle control events, the combination of
@IBAction and the argument type adds the method to IB’s candidates for unwind
handlers.

By its nature, the target for an unwind segue is undefined. The undefined target of a
control action is represented by the First Responder placeholder. The undefined handler
for an unwind is represented by the red Exit icon (the last) in the bar above the scene
containing the sender. You always start an exit segue from the placeholder (the opposite
from the way you create other segues), by control-clicking on the placeholder. This brings
up a heads-up list of all unwind @IBActions defined in the project. Drag from the bubble
for the handler to the control that should trigger that unwind. See Figure 14.3.

Before you can do that, you have to provide the handlers. There are two exits from the
editor: Cancel and Save. PasserListController needs a handler for each:

// MARK: - Editor completion
@IBAction func editorDidSave(segue: UIStoryboardSegue) {

let editor = segue.sourceViewController as! PasserEditController
// representedObject is set if the editor comes from an
// accessory button. If it’s nil, it’s from the + button.
let passer = editor.representedObject ??

Passer(managedObjectContext: managedObjectContext)

Figure 14.3 Control-clicking on the Exit placeholder opens a list of all unwind handlers in the
project. Drag from the bubble next to the desired handler to the control that will trigger the segue.

Existing triggers are labeled with the handler name. Dragging from an already-filled handler entry will
add another control as a potential trigger.

Segues 239

passer.setValuesForKeysWithDictionary(editor.editValues)

// From the "savemoc" snippet:
var error: NSError? = nil
if !managedObjectContext.save(&error) {

NSLog("In %@: could not save %@",
"editorDidSave()",
"Could not update from edited values")

// MOCSaveException is defined in Utilites.swift
NSException.raise(MOCSaveException,

format: "Context: %@",
arguments: getVaList(["Could not update from edited values"]))

}
NSLog("Hit didSave: \(segue.identifier)")

}

@IBAction func editorDidCancel(segue: UIStoryboardSegue) {
// If the edit was canceled, there's nothing to do.
NSLog("Hit didCancel: \(segue.identifier)")

}

That works. You can create a new passer (albeit without a link to any games, and therefore
no career dates or ratings), or edit an existing one, and the changes show up in the passer
list and in the passer-detail view. If you cancel, nothing happens. That’s how it’s supposed
to be.

Segues
By now we’ve seen four kinds of connection that can appear on the storyboard canvas:
Show Detail (to advance through a navigation controller); Present Modally (to slide up a
view for a one-screen sidetrack for something like an editor); Embed (container-child
relationship); and Relationship, which is not an actual segue but a connection between a
controller that presents a series of views (such as a navigation controller) and the first of
that series (the root view controller).

There are three others: Present As Popover (presents the destination controller in an
iPad popover view); Show Detail (the destination controller becomes the detail part of a
split view); and Custom (your own UIStoryboardSegue subclass). See Figure 14.4.

Note
Unwind segues don’t appear on the canvas at all—by their nature, they don’t have
predetermined endpoints, and therefore no graphical representation.

240 Chapter 14 Adding an Editor

Figure 14.4 The Storyboard editor represents segues by seven types of arrows: a) Show, or Show
Detail, for pushing the next controller onto a navigation stack. b) Present Modally, to present the next

controller as a modal view. c) Present As Popover, a UIStoryboardPopoverSegue to present
the destination controller as an iPad popover. d) Custom, representing a UIStoryboardSegue

class you write yourself. e) Relationship, which shows that the container view on the left, such as a
navigation-controller scene, dynamically manages content scenes, of which the scene on the right is

the first. f) Embed, showing that the controller on the left sets a portion of its view aside for the
single controller on the right.

Summary
In the course of adding a modal editor for Passer Rating, we decided we wanted a
presentation like that of an ordinary UIViewController, but with a UITableView
showing static cells. If you want static cells, you have to use a UITableViewController,
which we didn’t want.

We solved the problem by employing the embed segue, to set aside a portion of the
editor controller’s view to be run by a table-view controller.

With the table view in hand, we added static cells to create the form we needed for the
editor. You saw how to take advantage of the Key-Value Coding technique to move the
edited data between three controllers and the model with the minimum of fuss.

You arranged a modal segue to get into the editor; on the way, I showed you how to
solve the problem of a segue that might come from a source that could be lost by the time
you saw it.

Having gotten the data in, we had to get it out. This was an opportunity to set unwind
segues by creating handlers for the transitions we needed and linking the Cancel and Save
buttons to an Exit placeholder attached to their scene.

Summary 241

And last, you saw a gallery of the kinds of segues you’ll see in your work with
Storyboard.

You also learned something that you may have to explain to your managers: Storyboard
saves a lot of effort, and cuts your exposure to errors, but it’s not magical. You can’t build
an application “just by drawing.” Every scene has to be backed by a controller object you
provide, at least as a skeleton, in advance. The demos that look magical (and seduce
nontechnical managers) hand-wave the significant coding effort you’ll still have to put in.

With three of the four views we planned in Figure 8.2 squared away, the Passer Rating
app looks to be well in hand. There’s one thing, though.

I don’t trust those ratings.

This page intentionally left blank

15
Unit Testing

All of your development so far on the passer-rating projects has left out one essential
consideration:

How do you know it works?
Yes, you know generally what to expect, and you’ve used the Xcode debugger to verify

that what the application does makes sense, but you don’t have the time, and most people
don’t have the discipline, to monitor for every possible error. Ideally, for every change to
your application, you’d verify that nothing broke. With a prompt warning, you can isolate
the problem to the last thing you did.

This discipline of verifying each little part of your application is called unit testing. The
meticulous search for errors is the sort of mind-numbing, repetitive, perfectionist task you
bought a computer to do.

This is a well-enough understood problem that solutions have been devised in the form
of testing frameworks. Such frameworks make it easy to take your code, more or less in the
actual context in which you use it, present it with known inputs, and compare the results
with what you expect. If everything is as expected, the test succeeds; otherwise it fails.
The framework provides a way to run all the tests, record the results, and report on them.

Unit testing is a first-class part of Xcode. Any product template you choose will include
a target for the product, and a parallel target constitutes a test suite, linked against the
XCTest framework.

The suite consists of subclasses of XCTestCase, which implement tests as methods
whose selectors begin with test. The code in the test methods exercises a small,
manageable part of the product’s functionality and challenges the results with assertions. An
XCTest assertion macro checks the results against its criterion—Boolean true or false,
equality, and the like—and if the criterion fails, it records the failure and a message you
provide to describe it.

Although the test suite is a separate target, it can’t be run independently. It is bound to
the product target and is treated as the implementation of the product’s Test build action.
You remember that Xcode recognizes five goals for a build: Run, Test, Profile, Analyze,
and Archive. You’re already familiar with Run—it’s how you execute an application for

244 Chapter 15 Unit Testing

debugging—and Analyze. We’ll get to Profile in Chapter 16, “Measurement and
Analysis,” and Archive in Chapter 18, “Provisioning.” This chapter is about Test.

Selecting the Test action (Product→Test, U):
m Builds the product
m Builds the test target
m Launches the product
m Injects the test suite into the project, runs the tests, and collects the results
m Closes the product

If any test failed, the failure message is attached to your code and the Issue navigator in
the same way that syntax errors are.

Note
Xcode’s project templates come with test targets, but that was not always the case; in
Xcode 4, test targets were optional, and before that, you had to add them yourself. If your
project doesn’t have a test target, select the project file, which is the top line in the
Project navigator, to display the Project/Target editor. Click the + button below the
source list, or select Editor→Add Target. . . . (A small button at the left end of the Project
editor’s tab bar opens and closes the source list.) Xcode will drop the familiar New Target
assistant sheet. You’ll find a “Cocoa Touch (or Cocoa) Testing Bundle” target in the Other
category. Be very sure that you select the target from the list for the platform you intend;
if your product is iOS, and the test is OS X, things become confusing very quickly. In
addition to the usual details, you’ll be allowed to choose a Target to be Tested.

The Test Navigator
Xcode 6 confers its highest honor on unit testing by giving it its own navigator
(Figure 15.1). The navigator lists every test case (XCUnitTest subclass) in the project, and
every test method in those classes. The status of the last run of a test is shown by a
green-checkmark or red-X diamond badge next to it.

Those badges are not merely informative: Clicking a test or a whole test case runs just
those tests. If you are working on just one test, you don’t have to run the entire test suite
just to get the results you need.

Those badges also show up in the margins of the test code (see Figure 15.2). Clicking
the badge repeats just that test. If a test has never been run (or never run since the project
was open), there will be no mark, but if you hover the mouse over the row, a “play”
button will appear.

The Test Navigator 245

Note
The Test navigator makes it easy to manage and run tests, but there is another list of
tests in the Scheme editor. The Info tab for the Test action lists all test suites and their
tests, from which you can select the ones you wish to run. The Test navigator is for
running a test or a test class as you work on bugs. The list in the Scheme editor governs
the tests and classes that will be run when you select the full-up Test action. This is
important for your own day-to-day work, but you can also share those settings with others
by checking the Shared box at the bottom of the sheet. Shared schemes are available not
just to your partners, but to drive the automated build and test process in Xcode Server.
See Figure 15.3.

Figure 15.1 The Test navigator lists every XCUnitTest class in the test target, and every test
method in those classes. Flags in the right column indicate the result of the last run of those tests:

a red-X diamond for failures, a green-checkmark diamond for successes. Tests that haven’t been run
have no mark at all, but hovering the mouse pointer over their names gives you a “Play” button to

click.

Figure 15.2 The success and failure flags are repeated in the margin next to the code for test
methods. Clicking a badge reruns just the one test.

246 Chapter 15 Unit Testing

Figure 15.3 The Test panel of the Scheme editor lets you select which tests will be run in the next
run of the Test action. By checking the Shared box at the bottom of the sheet, you can make the
current scheme available to all users of the project, and not just private to your own workspace.

Testing the CSV Reader
Let’s see how this works by constructing some tests of SimpleCSVFile, the rudimentary
parser for .csv data files. We already have a Passer RatingTests.swift file; change
the test class to CSVFileTests, and rename the file accordingly: the class, by doing a
search-and-replace in the Swift file; and the file itself by selecting it in the Project
navigator, pressing return, and typing the new name. Press Return to commit the name
change—the file will pick up the A+ source-control badge to show it has been
re-“added” to the local repository under its new name.

The file comes with four methods.

m setUp is run before each test (selector beginning with test) method.
m tearDown is run after each test. Together with setUp, you can create fresh,

consistent conditions for each test.
m testExample is just that: An example method that’s a test, because its selector

begins with test, containing only an XCTAssert(true, ...). Running the
Test action without doing anything else will show this test as passing.

m testPerformanceExample is a skeleton for a test that calls measureBlock() to
measure the performance of your code. For now, the only metric measure-
Block() collects is elapsed “wall” (as in clock-on-the-wall, not processor clock)
time, but the API has room for more metrics in the future. We’ll see more of
performance measurements in Chapter 16, “Measurement and Analysis.”

Testing the CSV Reader 247

Note
Remember that you can’t rely on the order in which tests will be run. If a test needs a
specific starting condition that isn’t covered by setUp, the test will have to configure the
conditions itself. If you really need a test to use the end-state of a previous test, your best
bet is simply to put both tests in the same method.

The CSV Test Code
We can do more with our tests than reflect cheery acceptance. Replace testExample
with something better, as well as some housekeeping code (these are excerpts, with some
of the existing code left in for context):

import Foundation
import UIKit
import XCTest
import Passer_Rating

class CSVFileTests: XCTestCase {
enum TestFiles: String {

case GoodFile = "2010-data-calculated.csv";
case TooManyFields = "too-many-fields.csv";
case NotEnoughFields = "not-enough-fields.csv";

}

// The SimpleCSVFile object to investigate (set in each test)
var csvFile : SimpleCSVFile? = nil
// An array of the dictionaries SimpleCSVFile presents while parsing.
var records : [[String:String]] = []

// When the file name is set, load up a parser
var csvFileName: String? = nil {

didSet {
if let fileName = csvFileName {

let bundle = NSBundle(forClass: CSVFileTests.self)
let csvPath = bundle.pathForResource(fileName, ofType: "")

// Yes, assert that the test bundle contains what you
// think it does. Do you really want to scour your code
// for a test "failure" that came from a bug in the
// test itself?
XCTAssertNotNil(csvPath,

"Finding \(fileName) in the test bundle.")

csvFile = SimpleCSVFile(path: csvPath!)
XCTAssertNotNil(csvFile,

"Loading \(fileName) from the test bundle.")
}

248 Chapter 15 Unit Testing

else {
csvFile = nil

}
}

}

override func setUp() {
super.setUp()
records = []

}

override func tearDown() {
super.tearDown()

}

// MARK: - Error handling

// Utility method to verify the NSError object from the
// CSVError item is as expected.

func checkNSErrorContent(error: CSVError,
requiredDict: [NSObject:AnyObject],
domain: String = WT9TErrorDomain) {

let nsError = error.nsError
XCTAssertEqual(nsError.domain, domain,

"CSVError object had the wrong domain.")

if let csvErrorDict = nsError.userInfo {
// If the NSError had a userInfo dictionary,
// compare it against the keys and values passed in
// through requiredDict.
for (key, requiredValue) in requiredDict {

if let csvValue: AnyObject = csvErrorDict[key] {
let csvStrValue = "\(csvValue)"
let requiredStrValue = "\(requiredValue)"
XCTAssertEqual(csvStrValue, requiredStrValue,

"CSVError.nsError wrong value for required key \(key)")
}
else {

XCTFail("CSVError.nsError lacked required key \(key)")
}

}
}
else {
XCTFail("CSVError objects are supposed to have dictionaries")

}
}

Testing the CSV Reader 249

func testNoSuchFile() {
// The parser gets a path that doesn't resolve to a file.
let noSuchFile = "no-such-file.csv"
csvFile = SimpleCSVFile(path: noSuchFile)

// Run the parser. It should not pass any data back.
let result = csvFile?.run{ _ in
XCTFail("Nonexistent file should never present a record.")
return nil

}

// It should return a .NoSuchFile error.
switch result! {
case let .NoSuchFile(fileName):
// The file in the error should match the given path.
XCTAssert(fileName.hasSuffix(noSuchFile),

"Nonexistent file path should come back through the error")

// The NSError from the error object should identify the
// file and explain the error.
checkNSErrorContent(result!, requiredDict: [

NSFilePathErrorKey: noSuchFile,
NSLocalizedDescriptionKey: "No such file \(noSuchFile)"
]

)

default:
XCTFail("Wrong return for no-such-file.")

}
}

func testFileReadsCompletely() {
// Parse a known-good game file
// just to see if the record count is right.
csvFileName = TestFiles.GoodFile.rawValue
let result = csvFile!.run { record in
self.records.append(record)
return nil

}

if let realResult = result {
// You can't XCTAssertNotNil and refer to `result!` in the
// message string. XCT evaluates the message before testing
// the not-nil condition. When `result` _is_ nil, the string
// interpolation will crash on the attempt to unwrap it.

250 Chapter 15 Unit Testing

XCTFail(
"The good file should produce no errors; got \(realResult).")

}
XCTAssertEqual(328, records.count,

"Wrong number of records from \(csvFileName).")
}

}

As I said, it’s mostly housekeeping. What’s most interesting are the functions whose names
begin with XCT. These come from XCTest. Here, they verify that the requested test file
exists and can be read (XCTAssertNotNil), that it could be parsed (XCTAssert on the
success of run()), and that the number of records matched the count I made in advance
(XCTAssertEqual). A full list will come later in this chapter.

You can see the obsessiveness that goes into a good test; in fact, these tests are probably
not obsessive enough. It’s tedious, but once it’s written, the test harness does the hard
work, and you won’t be single-stepping through every line of the parser as it plows
through hundreds of records.

Xcode will be pelting you with undefined-symbol errors by now. None of the Passer
Rating classes or methods are recognized in your test target. Swift symbols—naming
classes, functions, and types—are organized into modules, having roughly the same scope as
each library or executable unit. SimpleCSVFile is part of the application module,
Passer Rating; for the Passer RatingTests module to see it,

m The Swift file that refers to SimpleCSVFile must include the statement “import
Passer Rating.” The SimpleCSVFile.swift file shown above does this already.

m SimpleCSVFile.swift must attach the public attribute to every function and
type to be used from other modules.

Add public attribute wherever it’s needed in SimpleCSVFile.swift:

public
enum CSVErrorKeys: String {

// ...

public
enum CSVError: Printable {

case LineFormat(String, Int, Int, Int)

// ...

// While we're at it, make it easier to print out error objects.
// Defining a `description` property makes a type comply
// with `Printable`, so it can be interpolated into a string
// with `\()`.

Testing the CSV Reader 251

public var description: String {
var retval = "CSVError."
switch self {
case let .NoSuchFile(fileName):

retval += "NoSuchFile(\(fileName))"
case let .EmptyFile(fileName):

retval += "EmptyFile(\(fileName))"
case let .LineFormat(fileName, lineNumber, expected, actual):

retval += "LineFormat(\(fileName):\(lineNumber), " +
"expected \(expected), got \(actual))"

case let .ClientError(path, line, error):
retval += "ClientError(\(path):\(line), " +

"NSError = \(error))"
}

return retval
}

public
var nsError: NSError {

var userDict:[NSString:AnyObject] = [:]
// ...

}

public
let WT9TErrorDomain = "com.wt9t.error"

// ...

public
class SimpleCSVFile {
// ...

public
init(path: String) {

// ...

public
func run(block: ([String: String]) -> NSError?

) -> CSVError?
{

Now that the SimpleCSVFile class and its associated types and data are visible to other
modules, the undefined-symbol errors should go away.

252 Chapter 15 Unit Testing

Test Data
The CSVFileTests class relies on three data files, listed in enum TestFiles:
2010-data-calculated.csv, a known-good data file; too-many-fields.csv,
which has more record fields than headers; and not-enough-fields.csv, which
doesn’t have enough. The last two were constructed for the sole purpose of verifying that
SimpleCSVFile catches the error and refuses to continue work.

Later in this chapter, we’ll be testing the accuracy of the passer rating function,
and we’ll need a typical game-data file and another file of ratings independently calculated
from the same records.

For that, you’ll need a data set that is fixed, not the one that periodically regenerates
itself as a part of Passer Rating’s build process, so take the current edition of
sample-data.csv, and copy a year’s worth of games—328 in the toy league I created,
covering 32 passers—into a separate file (2010-data.csv in my tests).
2010-data-calculated.csv is the “gold standard” version of the file, an input for the
test methods, containing known-correct results for all of the calculations.
2010-data.csv is the “normal” data file to be used by Passer Rating as it makes those
calculations for itself.

Drag the test data files into the Project navigator under the test-target group or use File
→Add Files to. . . (A) to select them from the get-file sheet. In either case, make
sure they go into the test target only.

Note
To ensure that the tests are reproducible, the test data should be checked into source
control.

Running the Tests
Let’s execute the test by holding the mouse button down on the Action button at the left
end of the toolbar and selecting Test, or by selecting Product→Test (U). Xcode
builds Passer Rating and then the test bundle. The first thing that happens is that Xcode
reports the build succeeded (if it didn’t, clean it up; I’ll wait).

When the build finishes, you’ll see the iOS Simulator launches and opens Passer
Rating. This is normal: XCTest works by injecting your test code into your running
application. Your tests will run under actual operating conditions, not in an isolated
test-bench environment. That’s why it was not necessary to link SimpleCSVFile.swift
into the test target.

Passer Rating closes as swiftly as it appeared (net of how long it takes to reload the
game data every time), and the next thing you see is the Issues navigator, which (if you’ve
been keeping up) has one red flag. See Figure 15.4. Except for the red badge being a
diamond instead of an octagon, test failures are no different from the errors you’d get from
a compilation: Click one, and you’ll be shown the assertion’s message spread in a banner in
your test code.

Testing the CSV Reader 253

Figure 15.4 One of the tests of SimpleCSVFile failed. The locations and messages from the
failures appear in the Issues navigator.

One of the failures comes in testTooManyFieldsError(), where SimpleCSVFile
is deliberately fed a file with more record fields than headers. The parser refuses the file,
which is good, and returns a CSVError object with all the expected information. . .

func testTooManyFieldsError() {
csvFileName = TestFiles.TooManyFields.rawValue
let result = csvFile!.run { record in

XCTFail("CSV file with the first data line bad should not call out")
return nil

}

if let realResult = result {
switch realResult {
case let .LineFormat(file, line, expect, actual):
// Verify the associated values
XCTAssert(file.hasSuffix(csvFileName!),

"File name reported in the LineFormat error")
XCTAssertEqual(expect, 16, "Expected fields")
XCTAssertEqual(actual, 17, "Actual fields")

/**************** Failed ****************/
XCTAssertEqual(line, 2, "First record is on line 2")
/**/

// Verify the NSError conversion
checkNSErrorContent(realResult, requiredDict: [

NSFilePathErrorKey : file,
NSLocalizedDescriptionKey :

"File \(file):\(line) has " +
"\(actual) items, should have \(expect)",

CSVErrorKeys.ExpectedFields.rawValue : expect,
CSVErrorKeys.ActualFields.rawValue : actual
])

254 Chapter 15 Unit Testing

default:
XCTFail("Expected a LineFormat error, got \(realResult)")

}
}
else {

XCTFail(
"File with too many fields in the first record " +
"should yield an error.")

}
}

. . . except for that one about the line number where the error was found. The error
should have occurred at line 2, the line after the header, containing the first game data;
that’s where the mismatch should become apparent. The associated Int value in the
CSVError LineFormat case should say so. Instead, the test reports it occurred at line 3.
That’s wrong.

Testing and the Debugger
What’s going on? You need to see what the parser is doing on those lines. Fortunately, the
debugger works in unit tests. Set a breakpoint at the start of SimpleCSVFile.run(),
and run just testTooManyFieldsError() by clicking the red diamond next to its
name in the Test navigator or as it appears in the margin of the definition of the method.

The breakpoint at run() fires, but look at the stack trace in the Debug navigator: The
call came from AppDelegate via Game. This isn’t the test run; because you’re running
the test in the full context of Passer Rating, you’re seeing the parsing run from the
initialization of the app. Click the Continue button in the debugger bar, and wait for the
second call to run().

Now you’re at the test run, and you can step into prepareToRun(). It reads the file
into a string, then bursts it into an array of lines:

linesFromFile = realContents.componentsSeparatedByCharactersInSet(
NSCharacterSet.newlineCharacterSet())

When prepareToRun() returns, run() uses a for loop to step through
linesFromFile, bursting each line at the commas to get fields.

If you’re watching the variables display in the Debug area, you see something on the
second pass through the loop that you’d expect should be the first line of the data: The
string for that line is empty! The first line of data doesn’t come through until the third pass
through the loop, and the method reports the error line as number three.

With a little thought, it should come to you: This is the CSV file that was exported
from the spreadsheet of precalculated statistics. CSV has its origins in Microsoft Excel, and
as codified in the Internet Engineering Task Force’s RFC 4180, CSV is supposed to have
Windows-style line endings—carriage-return, line-feed. The componentsSeparated-
ByCharactersInSet() method burst the file at each occurrence of a character in the

Testing and the Debugger 255

newlineCharacterSet(), not caring that in this file, the CRLF pair represents a single
line separator.

Note
In practice, almost nobody observes RFC 4180. Every implementor has his own ideas
about quoting, escaping, treatment of numerics, and line endings. This is an instance of
write conservatively, read liberally: Make sure your CSV files are strictly compliant with
the standard, but tolerate flaws in others’.

Fight down the temptation to simply open the file in a text editor that will convert the
line endings. SimpleCSVFile is supposed to work with real CSV files (so long as they
don’t have any commas or quotes in the fields); it may have a life beyond this one project;
and it really ought to handle a line delimiter that will probably appear in most of the files
it sees.

It so happens that Extensions.swift has an extension on String that does just
what we need:

extension String {
/// Break the receiver at line endings and return
/// the lines in an array of String.
func brokenByLines() -> [String]
{

let scanner = NSScanner(string: self)
let lineEnders = NSCharacterSet.newlineCharacterSet()
var retval = [String]()

scanner.charactersToBeSkipped = nil
while !scanner.atEnd {

// Alternate between skipping line breaks and
// reading line content.
var token: NSString? = ""
scanner.scanCharactersFromSet(lineEnders,

intoString: nil)
var success: Bool
success = scanner.scanUpToCharactersFromSet(lineEnders,

intoString: &token)
if success {

retval.append(token! as! String)
}

}
return retval

}
}

In prepareToRun(), replace

linesFromFile = realContents.componentsSeparatedByCharactersInSet(
NSCharacterSet.newlineCharacterSet())

256 Chapter 15 Unit Testing

with

linesFromFile = realContents.brokenByLines()

This time all of the methods in CSVFileTests come through clean.

Adding a Test Class
Now that you’re sure the data is coming in as you expect it, you can build a RatingTest
class to read the CSV that contains the precalculated values for the rating and its
completion, yardage, touchdown, and interception components, and compare their
presumably correct (or at least independently calculated) values against the values the
passer rating function produces.

Those numbers never leave passer rating as originally written, so let’s make them
easier to test by breaking them out:

// Note that the function is now declared `public`.
public
func passer_rating(#completions: Int, #attempts: Int,

#yards: Int, #touchdowns: Int,
#interceptions: Int)
-> Double

{
// See http://en.wikipedia.org/wiki/Quarterback_Rating

if (attempts <= 0) { return 0.0 }

// Compute the components to sum into the rating
// CHANGED: Break the component calculations into a separate func.
let components = rating_components(completions: completions,

attempts: attempts, yards: yards,
touchdowns: touchdowns,
interceptions: interceptions)

// Add the components up
let retval = components.reduce(0.0, +)
return 100.0 * retval / 6.0

}

public
func rating_components(#completions: Int, #attempts: Int,

#yards: Int, #touchdowns: Int,
#interceptions: Int)
-> [Double]

{

Adding a Test Class 257

// Statistic-per-attempt, with both converted to Double,
// recurs in all four components. Make the definitions
// easier to read and understand by encapsulating it.
func perAttempt(stat:Int) -> Double {

return Double(stat) / Double (attempts)
}

return [
(100.0 * perAttempt(completions) - 30.0) / 20.0,
(perAttempt(yards) - 0.3) / 4.0,
20.0 * perAttempt(touchdowns),
2.375 - (25.0 * perAttempt(interceptions))

].map(ratingPinner)
}

Now create the test class: File→New→File. . . (N) and select an iOS Test Case
Class. The sheet that Xcode presents allows you to enter a name (RatingTest), and a
superclass, defaulted to XCTestCase.

But for the class name, the new RatingTest.swift file is identical to the one that
came with the project template. The complete listing of the test must be left to the sample
code—there’s just too much of it to print in full. Here are the main points:

1. setUp() uses SimpleCSVFile to read 2010-data-calculated.csv, which
contains the “golden” calculations, generated independently from a spreadsheet. It
loads the data, as Dictionarys, into an array named games.

2. testCalculation() loops through games, runs the passer-rating calculations on
the statistics, and compares the results against the golden values.

The testCalculation() loop does its real work in the XCTest... assertions:

// This is inside the record-by-record loop
// For each record, define a function that
// yields the integer value corresponding to
// a key string:
func i(key: String) -> Int {

return record[key]?.toInt() ?? 0

// lhs ?? rhs evaluates to lhs! if non-nil,
// to rhs if lhs is nil.
//
// Therefore:
// If there is no value for `key` in `record`,
// that's nil, the lhs expression short-circuits
// to nil, so return zero.
// If the value for `key` in `record` can't be
// interpreted as an integer, that's nil, so
// return zero.

258 Chapter 15 Unit Testing

// Otherwise, return the value for `key` in
// `record`, as an integer.
//
// Swift can be terse, but it is ruthless.

}

// Compare the two component sets, within epsilon
var allComponentsGood = true
for i in 0 ..< gcValues.count {

allComponentsGood = false
XCTAssertEqualWithAccuracy(components[i], gcValues[i], epsilon,

"\(componentNames[i]) does not match at line \(lineNumber)")
}

// If the components checked out, compare the passer ratings,
if allComponentsGood {

let goldenRating = self.componentFormatter.numberFromString(
record["rating"]!)
as Double

let myRating = passer_rating(
completions: i("completions"),
attempts: i("attempts"),
yards: i("yards"),
touchdowns: i("touchdowns"),
interceptions: i("interceptions")

)
XCTAssertEqualWithAccuracy(myRating, goldenRating, epsilon,

"Passer ratings don't match at line \(lineNumber)")
}

. . . and if you looked up the passer-rating formula on Wikipedia, you wouldn’t be
surprised that the three assertions you see here—that the yardage component and the
rating, calculated two ways, should match the “right” answers—generated 292 test failures.
See Figure 15.5 for the results in the Report navigator.

Note
In the sample code, you’ll see the error-tolerance variable’s name is not epsilon, but ε. If
you have Unicode, why settle for second-best?

The assertion errors are variants on a single theme (line broken to fit the page):

RatingTest.swift:88: error:
-[Passer_RatingTests.RatingTest testCalculation] :
XCTAssertEqualWithAccuracy failed:
("2.375") is not equal to ("1.9") +/- ("0.001")
- Yards does not match at line 1

Adding a Test Class 259

Figure 15.5 The Report navigator chronicles all major events in a project since the project was
opened. Selecting a Test run displays every failed assertion in the run. Fortunately, the descriptive

strings attached to the assertions make it easy to determine exactly which value went wrong.

The assertion XCTAssertEqualWithAcuracy checks whether two floating-point values
are close enough to be called equal. The yardage component from the in-app calculation,
2.375, doesn’t match the precalculated value of 1.9. This points straight at this line in
rating.swift:

(perAttempt(yards) - 0.3) / 4.0,

That should be 3.0, not 0.3. That’s the bug. Select Product→Test (U), or the Test
action from the leftmost button in the toolbar, to run all the tests for the Passer Rating
project. The Report navigator shows green checkmark badges on all tests. This is what
you want to see (Figure 15.6).

My unease about the ratings I was seeing was right, and now I have a test of 328 games
to make sure that if it ever goes wrong again, I’ll know right away.

Figure 15.6 Running all tests in a project creates an entry in the Report navigator that details the
results of every test case.

260 Chapter 15 Unit Testing

Note
When you program a Cocoa application, you get used to referring to embedded files
through NSBundle.mainBundle() ([NSBundle mainBundle]). This doesn’t work for
test classes because the main bundle for testing is the application, not the test suite. The
right frame of reference is to the bundle containing the class itself:
NSBundle(forClass: RatingTest.self).

Asynchronous Tests
In earlier versions of Xcode, Apple emphasized a distinction between logic tests, in which
elements of an application are linked into the test bundle and exercised on their own, and
application tests, which are run in the context of the application. Now, all testing is done in
the application context.

It’s not hard to gain insight into an application’s state: Because Passer Rating is
completely initialized before it’s turned over to your tests, you can ask the
UIApplication singleton for the application delegate (AppDelegate), get the
application’s managedObjectContext, and have complete access to the game database.
Your code can edit the store, and, for instance, delete a Passer and verify that the
deletion cascades to its Games. If you’re ingenious, you can send Passer-
ListController (the top item in the UINavigationController that is the root
controller for the app delegate’s window property) a message indicating that a passer editor
(coming soon) has returned with new data.

Testing Asynchronous Code
But that takes you only so far. The things that most need reproducible tests in an
application are the human interactions and network transactions, and those depend on
delayed returns from the run loop or completion callbacks. This isn’t easy at all; on the
simple model we’ve seen so far, test cases will have exited before there would be any results
to examine.

Xcode 6 still hasn’t solved the human-interface testing problem—probably no
automated test framework could. But for asynchronous operations like networking,
XCTest adds an “expectations” mechanism that lets a test wait (up to a timeout) for an
operation to complete. Passer Rating doesn’t have any such operations, but here is the
general outline:

m Use the expectationWithDescription() method your test case inherits from
XCTestCase to create an “expectation” object as a handle for XCTest to manage
the pause in the test.

m Create an asynchronous operation, something that incorporates a callback block.
The networking API in Cocoa consists almost exclusively of such high-level
operations.

XCTest Assertions 261

m In the callback block, send fulfill() to the expectation object, effectively waking
up the testing mechanism. Now you can put all the assertions you need to the
callback data.

m After you’ve set up the operation and given it its callback block, trigger (resume,
start. . .) the operation.

m Keep your test case from exiting by calling
waitForExpectationsWithTimeout(, handler:), giving it a time limit on
how long it should wait, and a block to execute when all expectations have been
fulfill()ed. If there was no timeout, and no failures, the NSError parameter to
the block will be nil; otherwise, it will describe the outcome.

Documentation of Last Resort
It can be frustratingly hard to find definitive documentation for new API like this. If you
know the symbol you’re looking for, or something closely related, you can get to the
interface declarations for the XCTest framework. One way to do this is to type an
assertion name and command-click on it. Xcode will display what look like documented
stubs for the XCTest classes. This file does not literally exist—Xcode is showing you a
translation it generated on-the-fly from the Objective-C header files.

This gets us to the other approach: Select File→Open Quickly. . . (O) and start
typing something—anything—that might seem related to what you are looking for. The
Open Quickly viewer will show a list filtered by what you typed, matching even strings
that don’t include your input consecutively. For instance, typing xctexpe turns up
XCTestExpectation and XCNotificationExpectationHandler. Double-clicking
(or selecting and pressing Return) on either one will take you to the Objective-C header
that declares (and in the case of XCTest, documents) the symbol.

For more on looking up API, see Chapter 24, “Documentation in Xcode.”

XCTest Assertions
Assertions—statements that test for expected conditions—are the core of unit testing. If the
condition is not met, XCTest logs it as a failure. In Objective-C, assertions are
implemented as macros that wrap more primitive methods. One purpose of the macros is
to hide some ugly code that validates the types of the values being tested as the tests are
being run.

That kind of run-time testing isn’t necessary in Swift—the compiler is plenty strict on
data types on its own. In practice, this means that for every type of data to be tested, there
should be a separately declared assertion func. Generic typing cuts the variants down to a
handful; and overloading of function names means that even though Swift needs five
different generics to assert inequality, you see only the one XCTAssertNotEqual ()
function. Command-click on XCTAssertNotEqual in your code to draw back the
curtain.

262 Chapter 15 Unit Testing

Assertion function names begin (with one exception) with XCTAssert. The initial
parameters vary as necessary, but you are always allowed a description String. The
description is optional. (Objective-C assertions end with a format string and however
many additional parameters will satisfy the format.) Hence:

XCTAssertEqualWithAccuracy(components[i], gcValues[i], epsilon,
"\(componentNames[i]) does not match at line \(lineNumber)")

Notice that your annotation only has to describe the circumstances of the test; XCTest
will print out the particulars of any mismatch.

Here are the available assertions. See the Swift or Objective-C interfaces for the exact
details of how to call them and what they do.

Simple Tests
These are the simplest assertions—true or false, nil or not.

m XCTFail—This is the simplest of them all. XCTest logs a failure, plus your
formatted message.

m XCTAssertTrue / XCTAssert—Fails if the Boolean expression you test is false.
Use this or XCTAssertFalse if you have complex conditions that the more
specific assertions don’t handle. For Objective-C tests, the usual rules for Boolean
tests apply: zero or nil values are false, anything else is true.

m XCTAssertFalse—Fails if the Boolean expression you test is true.
m XCTAssertNil—Fails if the object pointer you test is not nil.
m XCTAssertNotNil—Fails if the object pointer you test is nil.

Equality
Equality assertions test for whether two things are equal. They have to be of the same
type, to start with. Swift will enforce this, and the requirement that they implement the
Equatable protocol, at compile time; Objective-C won’t let you know until the
mismatch—even so minor as using a signed-integer constant to check the count of an
NSArray—makes the test fail.

m XCTAssertEqual—Fails if the values you test are not equal.
m XCTAssertNotEqual—The complement of XCTAssertEqual.
m XCTAssertEqualWithAccuracy—Never test floating-point values for exact

equality; you have to assume there will be rounding errors with anything but trivial
calculations on trivial values. Instead, decide on an epsilon value—how close the two
can be for you to call them equal—and test whether the values are within that
margin. Pass the two values and your epsilon to the macro; it will fail if they differ
by more than that.

m XCTAssertNotEqualWithAccuracy—The complement of
XCTAssertEqualWithAccuracy.

XCTest Assertions 263

m XCTAssertEqualObjects (Objective-C only)—Fails unless [value1 isEqual:
value2]. This is equality of the values of two objects, and not just their pointers
(for which you’d use XCTAssertEqual). Take care for the order of the objects, as
isEqual: doesn’t have to be reflexive. Objective-C needs this variant because its
scalars can be compared with plain-old-data operations like ==, but objects can’t.
Swift doesn’t make the distinction.

m XCTAssertNotEqualObjects (Objective-C only)—The complement of
XCTAssertEqualObjects.

m XCTAssertGreaterThan

m XCTAssertGreaterThanOrEqual

m XCTAssertLessThan

m XCTAssertLessThanOrEqual (Swift only)—These tests are exposed in the
autogenerated Swift interface, but not in the corresponding Objective-C header.

Exceptions
These assertions are available to Objective-C tests only. Older Cocoa API may throw
exceptions if called under improper conditions, like being on the wrong thread or
receiving illegal parameters. You might throw some exceptions of your own—but not in
Swift. Apple has always discouraged the use of exceptions for routine flow control, and has
gone so far as to drop direct support for them in Swift.

Note
The original reason was that Objective-C exception handling imposed too much of a
performance penalty, even when no exceptions are thrown. This is no longer the case, but
current thinking is that modern, heavily concurrent and interdependent applications simply
cannot piece themselves or their data back into working order after a catastrophic failure.

Exception assertions deal with expressions that have two effects: some sort of
calculation plus the presence or absence of a throw. The expression parameter to the
macros will usually be more elaborate than single values. Bear in mind that assignments
and comma expressions are legal, so you can still capture values while you test for
exceptions. You can encapsulate complex expressions in helper methods; exceptions
thrown inside them will propagate up to the assertion macro.

The XCTest macros evaluate the expressions only once.

m XCTAssertThrows—Fails if the expression you submit does not raise an exception.
m XCTAssertNoThrow—Fails if the expression you submit raises an exception.
m XCTAssertThrowsSpecific and XCTAssertNoThrowSpecific—Fails if an

exception of a specific class is not (or is) thrown. This way you can test that your
code is doing what you expect with your own subclass of NSException, while
distinguishing different exceptions thrown by other libraries.

264 Chapter 15 Unit Testing

m XCTAssertThrowsSpecificNamed and XCTAssertNoThrowSpecific-
Named—Some exceptions (usually NSExceptions) aren’t distinguished by class, but
by a subtype indicated by the exception’s name. These assertions fail upon the
absence or presence of an exception of the given class and name.

Summary
Automated testing is a liberating discipline for a programmer. Any change you make
probably doesn’t have any effect on anything else, but most bugs live in the space between
“probably” and “actually.” A good testing régime relieves you of obsessive audits that never
answer the question: Does it all still work? You’ll know; and with that confidence, you’ll
be free to make bold changes to your application.

In this chapter, you learned about XCTest, the Xcode framework for unit-testing
applications, and how to build tests from the XCTestCase class. I walked you through
part of the exhaustive task of producing a test suite that would verify that the process of
reading a CSV and pulling accurate statistics from it works correctly. In the course of it,
you found a couple of bugs that would be at least tedious to discover by checking the
whole application by hand. Now that you have this test, you won’t have to worry that
something you do in the future will bring those bugs back.

Finally, I ran through the assertions that XCTest makes available to verify that what you
expect is what actually happens.

Now, let’s move on from whether Passer Rating works, to how well.

16
Measurement and Analysis

Passer Rating has quite a way to go before it’s useful for the general public, but you’ve
run it several times, and begun a testing régime, and you’re pretty confident that to the
naked eye, it works.

As usual, the qualifier (“to the naked eye”) outweighs “it works.” There are issues in
Passer Rating of speed and memory performance. Before you can act, you have to know
what’s going on—you have to profile the app. The Instruments application is the tool for
profiling applications.

Note
If you follow along with me—I recommend starting from the sample code for the end of the
previous chapter—your statistics won’t match mine. You and I have different computers,
different devices, different operating systems, background loads, free RAM and storage. . .
all of which can have big effects on how a measurement run will turn out. In this chapter,
I’ll stick to two significant figures, which is the limit of what’s meaningful.

Speed
The sample code has been changed so that generate-games.rb produces a league
history from 2014 to 2053—13,054 games, 1.1 MB in size. You’ll find the product,
sample-data.csv, in the same directory. Substitute them into your project, and run the
app in the simulator.

Passer Rating takes an appreciable amount of time to start up; with the enlarged data
set, if you ran the app on a device, it wouldn’t start at all: When you launch, the screen
shows the startup image for 21 seconds, and then you’re back to the home screen. It takes
too long: If your app doesn’t respond to user actions for more than 20 seconds, the system
watchdog timer kills it. It has to be faster.

Note
In crash dumps, you’ll know that the watchdog killed the app if the exception code is
0x8badf00d.

266 Chapter 16 Measurement and Analysis

To analyze speed, I’ll be working with Passer Rating on an iPhone 6. The iOS
Simulator provides a lot of insight into how an app will work, but it is only a simulator: It
has multiples of the RAM available to a device, and if it should run out, it can page
memory to disk. It exposes the OS X API, and the shared API is optimized for a different
processor. And, especially, the simulator has a much faster CPU.

To install Passer Rating on a device for testing, you have to be a paid member of the
iOS Developer Program, register the device, and obtain a signing certificate.

Note
You may have a different device to test on, or if you aren’t an iOS Developer Program
member, you won’t be able to test on a device at all. If you can’t participate, just read
along. You can find the details of getting permission to load an app into an iOS device, and
how to do so, in Chapter 18, “Provisioning.”

The Code Signing Identity that authorizes Xcode to install your app on a device can
be set on a per-configuration basis. Typically the “Debug” configuration would use your
developer certificate and “Release,” the distribution certificate. But we’re not at the point
of distribution, so set the identity to iOS Developer for both.

Plug in the device, and use the second segment of the scheme control (next to the
Run and Stop buttons) to direct the next build to it. If you’ve already enabled the device
for development, Xcode will have arranged for a development profile that includes Passer
Rating and your device. (See the Provisioning chapter if this isn’t clear.)

Note
Xcode’s iPhone SDKs come with symbol tables for the current Mac and iOS operating
systems, but these aren’t updated for bug-fix releases; instead, when Xcode runs into a
device with an OS minor version it hasn’t seen before, it loads the new table from the
device itself. The Devices window (Window→Devices, 2) will explain. It should take
only a minute or two.

The Debug Navigator
Click the Run button; Xcode will do a fresh build targeted at a device and install the
product in your phone. When that’s done, it launches Passer Rating.

Note
If the phone is locked with a passcode, you’ll have to unlock it before Xcode will let you
proceed.

The Debug navigator gives us the first clue: During initialization, the performance bar
graphs show the app comes close to saturating one of the cores in the device—90 percent
of CPU, sometimes less, sometimes 100 percent or more. See Figure 16.1. (Modern
devices have two or three processor cores, so a process could take 200 or even 300 percent,
but the major work in Passer Rating isn’t threaded yet, so it uses one core at a time.)

Speed 267

Figure 16.1 The first clue that something is wrong with Passer Rating’s performance at startup is
the CPU bar graph in the Debug navigator, which shows it taking around 100 percent of the time on

one of the device’s processor cores.

Click on the CPU bar graph in the Debug navigator, and you’ll see more of the story: a
detailed running history of how much processor time Passer Rating is soaking up
currently, over time, and as a proportion of the available resources (Figure 16.2).

Figure 16.2 Clicking one of the bar graphs at the top of the running Debug navigator presents
the details of the Passer Rating’s resource usage currently, over time, and as a percentage of

available resources.

268 Chapter 16 Measurement and Analysis

My first guess was that SimpleCSVFile was so simple that it was inefficient. My
temptation was to dive into the parser code, audit it, tinker with the works, introduce
“speed optimizations” maybe duck into Objective-C or even asm blocks in the C code,
and try again.

Don’t do this. Don’t guess. Instruments will tell you exactly where your app is spending
its time. That’s the “low-hanging fruit”; make those parts of your code faster, and you’ve
done more to solve the problem than if you’d nibbled around the periphery.

Use the Stop button to halt the app.

Instruments
Profiling an application is easy, or at least easy to start. Xcode provides an action for it.
Select Product→Profile (I), or the Profile option in the Action button in the toolbar.
(You probably think of it as the Run button, but if you hold the mouse down on it, it
offers all four of the routine actions.)

The profiling application, Instruments, will launch and offer you a choice of what kind
of profiling you want to do. See Figure 16.3. This chapter will show you the basics of
what Instruments can do; Chapter 26, “Instruments,” goes into much more depth.

Note
On later runs, Instruments will use the same trace template. Or, you can use the Scheme
editor to preselect the template you want.

Pick the Time Profiler template, and click Choose. A window for a new trace document
appears, containing a track for Time Profiler. Instruments comes with 22 document
templates, each containing a selection from a repertoire of profiling modules. Alas, these
modules are called instruments. Be on the lookout, and I’ll try to be clear on which I mean.

Figure 16.3 When Instruments starts, it presents a template picker for the profiling suites
it offers.

Speed 269

Trace documents can be customized: Select Window→Library (L) to reveal a
library of the available instruments. Drag your choices into the track view at the top of the
document window. (If an instrument won’t work with the platform you’re working on, a
yellow caution flag will appear in the lower-right corner. You won’t need the flag; it seems
that if an instrument is exactly what you need, it won’t work for your app.)

If you selected Profile in Xcode, Instruments stands ready to profile your app. If Passer
Rating doesn’t launch immediately, click the Record button at the left end of the toolbar
to launch it and start recording. In this case, Time Profiler examines Passer Rating every
millisecond to see what code is executing, and the call chain that led to it.

As with many instruments, Time Profile reports statistical data: Over a long enough
run, moment-to-moment samples will build up an overall picture of the “hotspots” where
the app is spending its time. This is the low-hanging fruit: If a single method is responsible
for most of the time spent in the app, any improvement will make the whole app
noticeably faster.

iOS and Instruments give you some grace when you’re measuring performance: The
watchdog timer does not fire, and Passer Rating is allowed to run as long as you need,
even though it is unresponsive. In my setup, It took about 50 seconds to present the initial
passer list—more than twice the limit. Embarrassing. See Figure 16.4.

Figure 16.4 This trace of Passer Rating paints a discouraging portrait of the CPU being nearly
saturated for more than a minute. The top part of the window is the Trace area, with a track showing

CPU usage over time. Below it is the Detail area, for cumulative stack traces of the code that was
executing.

270 Chapter 16 Measurement and Analysis

An Honest Profile
It’s worse than that. I cheated. Look at the top of Passer.swift:

var allPassers: [String: AnyObject] = [:]

enum PasserFetchStrategy {
case HorribleKludge;
case StraightCoreData;

}

let fetchStrategy:PasserFetchStrategy = .HorribleKludge

When Game .loadGames() reads a record from the sample file, it calls Passer-
.existingPasserByName (, last:, context:) to check for an existing Passer
object to link to the Game object. If there is no existing Passer, it creates one.

That lookup eats up a lot of time, which would have distracted from the other points I
had to make. The horrible kludge is this: When it’s asked for a Passer, existing-
PasserByName (, last:, contect:) doesn’t do a Core Data fetch at all. It looks
the object up in an in-memory dictionary, allPassers.

Let’s pretend we don’t know about that. Unmask the real Core Data code by changing
fetchStrategy from .HorribleKludge to .StraightCoreData. Run the profile
again.

This is not good. On my iPhone 6, the data set loads in 59 seconds. Three times the
watchdog timeout. A fresh-faced programmer will blame the code optimizer: By default,
the project templates set the build configuration for profiling to Debug, in which the
Swift compiler is set to -Onone—no optimization at all. Open the Scheme editor
(Product→Scheme→Edit Scheme. . . , <), select the Profile action, and change
Build Configuration to Debug. That gets you -Ofast. Does that help?

Profile again. 46 seconds. It’s better, only a bit more than twice the timeout limit.
More experienced developers learned this lesson long ago: Turning the knobs all the

way up is rarely good enough. We have to think about what Passer Rating is actually
doing. The Time Profiler instrument will tell us.

Note
There is another setting, -Ounchecked, which removes all the runtime safety checks on
dereferencing nil, staying within the bounds of arrays, and the like. The better of opinion
is that this is a bad idea, even if you’ve tested comprehensively and are sure the checks
aren’t needed. No test is comprehensive. Better to crash at the spot of the error rather
than let the app walk dead and crash far from the critical spot. I’d like to give you the run
time with an unchecked build, but the Swift compiler in Xcode 6.1.0 crashed when I tried.

The Time Profile
The key is in the timeline at the top of the window. You see an area graph of how much
of the device’s processing capacity the app used at each moment. From just after launch to
the moment the passer list appears,the CPU (at least one core of the two) is saturated,

Speed 271

100 percent or close to it. There is a solid block for a short period, and then occasional
notches, when the app waited for data to be written out to store. That part of the app
takes up 90 percent or more of the startup time, and is where we start.

Note
If the high-load part of the track is crowded into the left end of the display, you can zoom
in. First, make sure the app has stopped; the track will accumulate time even if the app is
paused. You’re done collecting data, so click the Stop button (which had been the Record
button). There are three ways to zoom in: View→Snap Track to Fit (

<

Z) will expand the
display so that the entire record will fill the timeline view. Control-dragging across a span
that interests you expands the display to show just that span. Finally, below the label area
at the left end of the timeline is a strip with a small knob in it. Dragging it right will zoom
in, and dragging left will zoom out. It’s like a spring-loaded audio shuttle—the farther you
drag, the faster you zoom, so be gentle.

Drag the mouse across that latter part of the track. When you select a part of a trace,
the statistics in the detail area at the bottom of the window are filtered to just that time
period. (If you don’t see a detail area, click the next-to-last button in the toolbar, the one
that looks like a window with its bottom edge highlighted.)

Time Profiler displays the processing load as a tree of functions and the functions they
call. The first line of the display is labeled “Main Thread.” The Running Time column
shows Passer Rating spent all its time in that thread; not surprising. As you click the
disclosure triangles next to the labels, you see the functions that were called from that
level—the OS launch function start, then the runtime root main, and eventually
something you care about, Game.loadGames(, context:, error:). Below that,
the trace splits into separate calls, among them the chain through the process of reading
the CSV file and converting it into Passer and Game objects down through
SimpleCSVFile.run(). As the call tree branches, the percentages show what
proportion of the total run time went into each.

The tree is intricate; it contains a lot of functions you can’t do anything about, because
they’re in the operating system. You can cut it down: Open the Extended Detail view (to
the right of the call-tree detail, click the last button in the toolbar if you don’t see it) and
select the Display Settings inspector (middle tab). This inspector filters the display. Check
Hide Missing Symbols and Hide System Libraries. Now you see just your
application code (most of which you, and not the compiler, wrote) and how much time it
took up. You can now chase down the tree, searching for the biggest time sinks.

This is informative, but not the best perspective. You can display the time sinks without
having to chase them down. Click Invert Call Tree. What this shows is every function
that was a time sink; the tree below each is every call chain that led to it. This can be
crucial.

For example: objc msgSend, which dispatches Objective-C method invocations, is
called whenever you use an Objective-C object. That’s everywhere. With Invert Call
Tree and Hide System Libraries off, use the search field to find objc . Option-click
on the disclosure triangle for the main-thread entry, expanding its call tree completely.

272 Chapter 16 Measurement and Analysis

objc msgSend appears everywhere, a millisecond here, a millisecond there. Set Invert
Call Tree, and you can see the function takes up more than 9 percent of the app’s time.
How an expensive function was called does not matter as much as how expensive it is.

Note
As a system function—and an unavoidable one—you can’t do anything about
objc msgSend. That’s why you set Hide System Libraries to narrow the list down to your
own code. You can do something about your code.

First Attempt—Batching Saves
The filtered tree fingers Game.loadGames(, context:, error:) as the main
culprit, at 41 percent of the loading process. Double-click the line for that function.
Instruments reads Game.swift, and shows the loadGames function, with highlights on
the most time-consuming lines (see Figure 16.5). In this case, the save of each new Game,

if !context.save(&savingError) {

consumes more than half the time spent in the function. save() is part of Core Data; so
long as that’s our persistence method, there’s nothing we can do about it. However, we can
call it less often, saving only every ten games rather than every one:

// in loadGames()
var batchingCount = 10
let batchSize = 1

// ...

Figure 16.5 Double-clicking on a line in a Time Profiler call tree displays that function’s source
code, highlighting the most time-consuming statements.

Speed 273

parsingError = csvFile.run { (values) in
// Initialize a new Game, connect it to a Passer...

if ++batchingCount % batchSize == 0 {
var savingError: NSError? = nil
if !context.save(&savingError) {

println("Game.loadGames() CSV loop: save did not work. " +
"Line: \(csvFile.lineCount)")

if let realError = savingError {
println("Error description = "+

"\(realError.localizedDescription)")
}
else {

println("But the error came back nil!")
}
return savingError!

}
}
return nil

}

// ... respond to parsing errors...

// One more save in case the last objects
// didn't make it into the looped save:
var savingError: NSError? = nil
if !context.save(&savingError) {

println("Game.loadGames() CSV loop: save did not work. " +
"Line: \(csvFile.lineCount)")

return false
}
// ... on to the rest of the function

The next profiling run shows many fewer pauses for saving the changes—a tenth as many,
in fact. From launch to passer list, 33 seconds. Just over twice as fast as the First run. This
is progress; make it another 50 percent faster, and the app will actually launch on a user’s
phone.

Second Attempt—Batching Game Assignments
The top consumer of processor time is SimpleCSVFile.run(). Double-click that line
of the call tree to find that it spends 63 percent of its time here:

if let userErr = block(values) {

That doesn’t make a lot of sense. This is a call into the block passed to run by
Game.loadGames(, context:, error:); that block is our own code. It turns out
that setting Hide Missing Symbols obscures block code. Uncheck it to reveal the tree as

274 Chapter 16 Measurement and Analysis

it descends into the block. The new champion is Passer.addGamesObject() at
23 percent. This comes from the loadGames loop, as the new Game is linked to its
Passer object.

Let’s repeat the batching strategy. This time it’s a little trickier: Instead of adding a new
Game to the Passer’s games relationship right away, each Passer should accumulate the
new games and add them as a group every so often. Here’s an excerpt from Passer:

let queueCapacity = 20
var gameQueue: NSMutableSet = NSMutableSet()

// Put a game into the gameQueue bag;
// put the accumulated games into this Passer
// once enough have come in.
func enqueueGame(aGame: Game) {

gameQueue.addObject(aGame)
if gameQueue.count >= queueCapacity {

flushGameQueue()
}

}

// Add the accumulated games all at once
func flushGameQueue() {

self.addGames(gameQueue)
gameQueue.removeAllObjects()

}

class func forAllPassersInContext(
context: NSManagedObjectContext,
body:(Passer) -> ()) {
// ... fetch all Passers from the context and
// pass each to the closure the caller provides...

}

// Flush the game caches of all Passer objects
class func flushGameQueues(#context: NSManagedObjectContext) {

forAllPassersInContext(context) { $0.flushGameQueue() }
}

In the loadGames loop, Game replaces

parsingError = csvFile.run { (values) in
// ...
newGame.passer = passer
// ...

}

with calls that accumulate new games into their Passers:

Speed 275

parsingError = csvFile.run { (values) in
// ...
passer.enqueueGame(newGame)
// ...

}
// ...
Passer.flushGameQueues(context: context)

26 seconds. Getting closer.

Third Attempt—The Horrible Kludge
Now the biggest consumer is Passer.existingPasserByName(, last:,
context:), at 24 percent of the total during the loadGames loop. This is where we
started, with my guess that the .HorribleKludge option was the best thing I could do
to make Passer Rating tolerable for testing. I’d guessed wrong, but now it’s our last, best
option.

Change

let fetchStrategy:PasserFetchStrategy = .StraightCoreData

to

let fetchStrategy:PasserFetchStrategy = .HorribleKludge

One last time through the profiler: 20.1 seconds. On the latest-model iPhones (as I write
this), Passer Rating, loading the 16,000-line sample file, has a sporting chance of surviving
long enough to display data. There’s more work to be done, but trebling the performance
of a critical stretch of code is a good day’s work.

Note
Now that we’ve sacrificed our principles, we can move on to rationalizing it. In the data
set we have, there are fewer than 50 passers. Keeping 50 keys and object records—or
even hundreds—is not a great demand on memory, and is a big win for speed. However:
The keys I’ve used assume the full name of every quarterback is different, and the table
indexes only one database, one NSManagedObjectContext. If we move on to a data
model with more than one league (as we will when we get to the Mac application), we
can’t have a global dictionary. Last: This doesn’t solve the problem, it just delays the
problem until you reach 16,000 records. The right solution is to free up the main thread to
serve user events immediately by putting the loading process on a background thread.

There’s always something more you can do, subject to how comfortable you’d be with
the tradeoff between performance and code complexity. The division of CPU time is flat
enough now that algorithmic tweaks are harder to find. What you’d do next, instead, is to
experiment with the constants that determine how often games are flushed into passers,
and the data flushed into the store. You’re no longer interested in analyzing the call tree,
just the total clock time for loading the data.

Fortunately, there’s a tool that fits this task.

276 Chapter 16 Measurement and Analysis

XCTest and Performance
Xcode 6 brings another way to gauge the performance of your app. The bar graphs in the
Debug navigator give you approximate, whole-app hints that you might want to
investigate further, and Instruments will give you particulars down to processor
instructions, if you wish. There’s room for something in between.

The biggest problem is that you have to pay attention. The bar graphs have to be visible,
and you have to look away from the device’s screen. Instruments works well if you focus
on problem areas you might even know about. There’s no practical way to check whether
your latest work has inadvertently harmed performance; it’s not realistic to expect you to
be careful enough with more than one host device, or to keep long-term records to see
trends; and anything that requires eyeballs can’t be automated, either as a part of your
routine, or for integration builds.

You’ve read Chapter 15. You know this is a perfect case for unit testing. Xcode 6
introduces performance metrics to the XCTest framework.

The template for a unit-testing subclass includes a sample performance test,
testPerformanceExample (), that contains only a call to measureBlock ().
measureBlock is very simple: it puts a timer on the code in the closure you supply. It
runs the block ten times, and records the average and standard deviation for the run.

When you look at the results of a performance test, you’ll appreciate those ten runs.
Performance depends on factors you can’t control or reproduce, such as network
bandwidth, or CPU time and memory claimed by other processes. Even jiggling the
phone might trigger motion events that wake background apps registered with Core
Motion. An average and margin are the best you can do.

There is a downside: If you’re investigating a very time-consuming operation, the ten
iterations mean that the performance test will take ten-times-forever. In the case of Passer
Rating, you might want to cut the sample-data file down to eight seasons or so. That
shouldn’t matter if the issue is with the read-Game loop, and not with the accumulation.

Each time you run a performance test, Xcode shows the results in the margin of the
test, and more informatively in the Results navigator. See Figure 16.6. Clicking on the test
results, whether in the navigator or in the source code, produces a popover showing the
timing for each of the ten runs.

If you need to run code that shouldn’t contribute to the timing, you can exempt it by
fencing it with stopMeasuring() and startMeasuring().

You’re usually interested in the effect your changes have on performance. The report
on a performance run offers to make that run the baseline (Set Baseline) for comparison
with later ones. Those reports will be based against the baseline performance.

Performance measurements can vary, but if the error margin in the average within a
single test exceeds 10 percent, Xcode will suggest that the data is too scattered for a
meaningful average. By default, it will report the test as failed, and won’t make a
permanent record of it; you can click the Set Baseline button (or Edit in later runs) to
force Xcode to accept the average.

Memory 277

Figure 16.6 The Results navigator displays cumulative results for performance tests. Clicking the
timing at the left end of the log entry opens a popover showing the ten runs from the last test, and a

comparison to the earlier test you’ve designated as a baseline.

The only thing XCTest measures for now is the real-world duration of the code in a
measureBlock call. If you call up the interface for XCTest (see the “Documentation of
Last Resort” section of Chapter 15, “Unit Testing”) to see hints of a future in which other
metrics will be available for you to control through the measureMetrics method.

In the case of Passer Rating, your performance-test method should set up a Core Data
stack of its own in the setUp() function, and tear it down in tearDown(). Look at
AppDelegate.swift for the managedObjectContext property and the properties it
calls upon.

Memory
In earlier editions of this book, I spent half of this chapter describing the memory
instruments—Allocations and Leaks. Until the last couple of years, memory-management
bugs were of far greater concern than time performance: One way or another, by losing
memory to orphaned objects (leaks) or attempting to give back memory you don’t own
(over-releasing), mismanaging memory crashes apps.

That’s still the case, but Cocoa has developed to the point where it proved too hard to
demonstrate memory bugs in an app as simple as Passer Rating. Automatic Reference
Counting, which automatically pairs claims on memory with releases, and Swift, which
closes off most of the remaining openings to errors, have all but eliminated memory bugs.
All but: These are conveniences, not total solutions. Cocoa developers still have to
understand Cocoa’s reference-counted memory management.

In particular, you should understand retain cycles, in which object A claims to own
object B, and vice versa. A can’t be returned to the memory pool because B claims it; B
can’t be released because A claims it. There are a number of solutions: weak, unowned,
and unsafe/undretained references. If B’s hold on A is weak, A can be released,

278 Chapter 16 Measurement and Analysis

because a weak reference can’t save it. A still has a strong reference to B, and with the
dissolution of that link, B will be released as well.

Apple’s documentation, including a chapter in The Swift Programming Language, explains
these issues in depth. I’m glad, but regretful, that there’s no good way to illustrate them in
an overview chapter like this.

Summary
In this chapter, I showed you three tools for testing performance and memory bugs in
Cocoa applications: the summary graphs and displays in the Xcode Debug navigator; the
time-based profiling application, Instruments; and the measureBlock method in the
XCTest unit-testing framework.

Instruments served well in tracking down a fatal performance bug in Passer Rating. It
relieved you of trial-and-error fixes to code that wasn’t the problem, by pointing you to
the exact parts that were the problem. It provided the tools to measure what you did, and
the courage to take radical steps when they were needed.

There is a lot more to Instruments, both the details of the application itself, which I’ll
cover in depth in Chapter 26, “Instruments,” and the techniques for applying each
instrument.

17
An iOS Extension

Frameworks have been part of Cocoa since the days of NeXTStep. A framework is a
kind of bundle, a directory that is meant to be treated as a single, indivisible unit (see
Chapter 22, “Bundles and Packages,” for details). In the case of a framework, the directory
contains a dynamic library, plus the resources—NIBs, image files, etc.—the library needs
to provide an integrated, shareable, reusable package of services.

Frameworks are in wide use in OS X not just as open or commercial projects to pass
among themselves, but as units of the operating system itself. Look in /System/Library
and /Library to find Frameworks/ directories for every function in OS X that isn’t at
the level of the Unix kernel.

As an offshoot of the Darwin operating system, iOS, too, is built around system
frameworks for Foundation, UIKit, and much more. However, Apple had a strict rule: All
the executable code in an app had to be compiled into a single binary sealed into the
application package. The exceptions were scripts that provide program logic (like Lua in
Corona SDK), so long as they were not changeable; or JavaScript loaded into UIWebView.

And, there were to be no dynamic libraries, and therefore no frameworks. If you
wanted to add prepackaged code to your iOS application, you had to incorporate it as a
static library or build it from source.

iOS 8 changes this. One of the features is that apps can now offer system-wide services
such as activities (handlers for data from any other app), notifications, and “today” widgets.
These could be done simply by running the whole provider app in the background, but
that’s expensive in memory and performance. The only reasonable way to do it is to factor
those services into single-purpose packages—frameworks.

In this chapter, we’re going to add a widget for the user to see when she drags the
Notification Center down from the top of the screen. It’s not going to be ambitious, nor
particularly useful; but neither is Passer Rating. “Passer of the Day” (POTD) will display a
summary of the career of the last passer selected in the app.

280 Chapter 17 An iOS Extension

Adding the Today Target
The first step will be to add the Passer of the Day target to the project—nothing more,
there will be other work to do, but the target has to exist before you can do it. Select File
→New→Target. . . , or click the + button at the bottom of the source list in the Project
editor.

Note
Don’t see the source list? Try clicking the toggle button in the top-left corner of the editor.

This gets you the New Target assistant sheet that has become so familiar to you. Select
iOS→Application Extension→Today Extension and click Next.

Note
Be sure you’ve selected the category in the iOS section; selecting OS X for iOS, or vice
versa, is a frequent source of confusion.

The Options sheet is unremarkable, but for two things.

m The Organization Identifier is not editable. The extension’s identifier must be
derived from that of the application in which it is to be embedded.

m There is an additional popup, Embed in Application:. An extension must be
packaged in a containing app. You are given a choice of all application targets in the
project; in this case, Passer Rating is your only choice.

Clicking Finish will produce one more sheet, an alert asking whether you want to
“activate” the scheme for the Passer of the Day target. This is a bit dramatic—you have a
new target to work on, of course you want to select its running environment—but there is
a purpose: Extensions must be contained in one of your applications, but when they run,
they are hosted in the context of other applications. Today widgets execute in the
Notification Center, for which the iOS Simulator provides a host pseudo-application.

The new target adds a reference to NotificationCenter.framework to the project
and to the “Link Binary With Libraries” build phase of the widget. It adds an “Embed
App Extensions” build phase to the Passer Rating target. This is no different from any
other Copy Files build phase, but it is preset to move POTD into the app’s Frameworks
directory, and it has a descriptive name.

There will be a new Passer Rating.entitlements file, a property list with the
key com.apple.security.application-groups; the value is an empty array, which
Xcode will soon fill in for us.

The target itself consists of TodayViewController.swift for a UIView-
Controller that may include methods from NCWidgetProviding; MainInterface-
.storyboard for the widget layout; PasseroftheDay.entitlements; and a
Supporting Files group containing the widget’s Passer Rating-Info.plist.

That’s a start.

Designing the Widget 281

Designing the Widget
The layout of the widget itself is nothing remarkable—just a slight variation on the
billboard view in GameListController, based on the landscape (wAny/hCompact)
layout, because vertical space is at a premium in the Notification Center. The interesting
part is the design of the executable components. See Figure 17.1.

Passer Rating and Passer of the Day are not stand-alone entities.

m POTD needs to know which passer was last selected in Passer Rating.
m Both use StatView, which simplifies data management and makes Auto Layout

much easier.
m They need common access to a single database.
m Both use a core data stack and NSManagedObject subclasses to process the objects

in the database.

Figure 17.1 Creating GameDB.framework gives Passer Rating and Passer of the Day a single
code base for data access and the common StatView.

282 Chapter 17 An iOS Extension

You could do most of this by compiling Game.swift, StatView.swift, and the
Code Data-related properties that are already in AppDelegate directly into the two;
when developers shared “libraries” among themselves, the easiest way to do it was to
simply dump the library source into their projects. There would be a common source-code
base, but no common object code. All that would remain would be data access.

Data Access
Ordinarily, an app’s data is isolated in its sandbox; other applications—including
extensions—have no access unless the user affirmatively shares them with document-
sharing, access to resources like the photo library, or through the clipboard. Extensions are
no different.

iOS makes an exception: Applications and applets can claim an entitlement to access
common data by declaring that they subscribe to an application group. This can’t be done
arbitrarily—you can’t stick the Pages group into your application .entitlements file
and read the user’s documents. Application groups must be registered with Apple; any
claim one of your apps or extensions makes on a group is checked against the group
identifiers for your developer-programs team.

Registering an App Group
Here’s how you connect apps with a group:

Open the Project editor by selecting the top entry in the Project navigator, then select
the Passer Rating target. Click the Capabilities tab. Find App Groups, and click the
switch to turn it ON. (Apple still sees the need for labels in a switch, for itself.)

The section expands to display a table of App Groups, which is empty for now. Click
the + button below the table, and type group.com.wt9t.Passer-Rating.widget.
(Apple will reject it if you aren’t registered with the iOS Developer Program as me—make
your own ID.) Press Return or Tab to complete the entry. The checklist below the table
summarizes what Xcode will do:

m Add the “App Groups” entitlement to your entitlements file (this adds the group ID
to the array value of com.apple.security.application-groups in Passer
Rating.entitlements)

m Add the “App Groups” entitlement to your App ID (by which it means adding it to
your app’s registration with Apple)

m Add the “App Groups containers” entitlement to your App ID (again, adding it to
the app’s registration)

Xcode will negotiate the latter two with Apple Developer Programs online. If the ID
belongs to someone else, or there is some other problem, you’ll be alerted. Sometimes the
problem can be worked out by having Xcode repeat the negotiation—there will be a
button for that.

See Figure 17.2.
Next, do the same for Passer of the Day in the Capabilities tab of its Target editor.

The process is identical, but now that Xcode knows about your group ID, it will offer to

Designing the Widget 283

Figure 17.2 Once Apple accepts your group registration, the Capabilities tab of the Target editor
will show all the automated steps as complete.

autofill it. Now the group has been registered with Apple for both Passer Rating and
POTD.

Sharing Defaults
What did all of this do? Applications and extensions that share a group can make selected
data available to each other—the identical files and user defaults (preferences).

When the user selects a passer from the PasserListController view, Passer Rating
can put the passer’s first and last names (which are, pathetically, the only keys we use for
the Passer entity) into a shared NSUserDefaults domain, one having the same name
as the app group:

public
let GameDBContainerKey = "group.com.wt9t.Passer-Rating.widget"
public
let GameDBPasserFirstKey = "GameDB.lastPasser.firstName"
public
let GameDBPasserLastKey = "GameDB.lastPasser.lastName"

/* ... */

override func prepareForSegue(segue: UIStoryboardSegue,
sender: AnyObject?) {

// Work with the shared defaults repository,
// not the single-app one

let defaults = NSUserDefaults(suiteName: GameDBContainerKey)!

if let segueID = segue.identifier {
switch segueID {
case "showDetail":

let indexPath = self.tableView.indexPathForSelectedRow()!
let object = (fetchedResultsController[indexPath] as! Passer)
defaults.setObject(object.firstName,

forKey: GameDBPasserFirstKey)

284 Chapter 17 An iOS Extension

defaults.setObject(object.lastName,
forKey: GameDBPasserLastKey)

(segue.destinationViewController as!
GameListController).detailItem = object

case "Edit passer":
/* ... */

}
}
defaults.synchronize()

}

When Passer of the Day fills in its view, it can recover the first and last names from the
shared defaults:

func fillViewContents() -> NCUpdateResult {
let defaults = NSUserDefaults(suiteName: GameDBContainerKey)!
let selectedFirstName = defaults.stringForKey(GameDBPasserFirstKey)
let selectedLastName = defaults.stringForKey(GameDBPasserLastKey)
/* ... */

}

The shared defaults store is one part of what Apple calls the shared “container.”

Sharing Files
Group containers can also share file storage, such as the Core Data store of Game and
Passer objects. Both Passer Rating and Passer of the Day can reach that file through a
URL into the container directory:

/// A URL to the App Group container directory.

var sharedDocumentsDirectory: NSURL {
let fm = NSFileManager.defaultManager()
return

fm.containerURLForSecurityApplicationGroupIdentifier(
GameDBContainerKey)!

}

/// The URL for the Passer Rating data store.

var storeURL: NSURL {
return self.sharedDocumentsDirectory

.URLByAppendingPathComponent("Passer_Rating.sqlite")
}

/// The app's NSPersistentStoreCoordinator, nearly unchanged
/// from the template code.

A Shared Library in a Framework 285

var persistentStoreCoordinator: NSPersistentStoreCoordinator {
if _persistentStoreCoordinator == nil {

var error: NSError? = nil
_persistentStoreCoordinator =

NSPersistentStoreCoordinator(
managedObjectModel: self.managedObjectModel)

if _persistentStoreCoordinator.addPersistentStoreWithType(
NSSQLiteStoreType,
configuration: nil,
URL: storeURL,
options: nil,
error: &error) == nil {

// Again: Never abort() out of production code.
abort()

}
}
return _persistentStoreCoordinator

}
var _persistentStoreCoordinator: NSPersistentStoreCoordinator!

Then, both apps can edit and access the same Core Data file. In the real world, we’d have
to take exquisite care to ensure that neither app will change the data store while the other
is using it. That one client—POTD—will only be reading the database mitigates the
problem, but doesn’t eliminate it. In this example, my solution to the problem will be to
ignore it.

Note
Until now, our strategy for the data-store file had been to delete it and rebuild at every run
of Passer Rating. It was useful while the data model was under development, and we
needed a performance challenge. It’s untenable now that a second client must refer to the
same data—never mind that iOS won’t tolerate a Today widget that won’t be ready for
display for 20 seconds. The sample code will show you how the Core Data stack
initialization and the managed-object classes were changed so the database would be built
only if it is absent.

A Shared Library in a Framework
I still won’t have you fill in the workings of the Passer of the Day extension. The unique
parts shouldn’t be particularly interesting by now—it’s just a view controller and a
storyboard. What is interesting is how POTD and Passer Rating can do more to share
resources.

We’ve concentrated on sharing data through app groups, which is essential to the work
of POTD, and handwaved the issue of shared resources and shared function. The two apps
have a lot in common.

286 Chapter 17 An iOS Extension

m They need to set up a Core Data stack based on the common data store.
m They read (and Passer Rating writes) Games and Passers.
m They both use StatViews for the detailed statistics.
m They use the same date and number formatters.
m Only Passer Rating uses the sample-data.csv file, but if something outside the

app is to handle the rest of the Core Data business, it makes no sense to keep that
one part inside.

m If that’s the case, it doesn’t make sense to keep SimpleCSVFile away from the
workings of the data store—it’s used nowhere else.

m Passer ratings belong to Games and Passers; the app doesn’t compute them
anywhere else, and if it did, then so might POTD. There goes rating.swift.

Why duplicate all this? The code belongs in a shared library; shared code plus resource
files makes a framework. A framework can manage a single data store and isolate it from
the specialized workings of the app and the widget.

Factoring the shared code out of Passer Rating begins with adding a framework target:
File→New→Target. . . , and select iOS→Framework & Library→Cocoa Touch
Framework. Click Next, and name the framework GameDB, and set the Language to
Swift. Once again, the Options page offers Embed in Application:, with Passer
Rating the only available option. In OS X, you can distribute a framework that could go
into a Library/ directory and be shared across all processes. iOS restricts third-party
frameworks to the context of single applications.

Because you designated Passer Rating as the container for the framework, Xcode takes
the liberty of adding GameDB.framework to the app’s “Link Binary With Libraries”
build phase, and to its “Target Dependencies”—see that section of the Build Phases tab
in the app’s Target editor, joining Passer of the Day. Whenever you build Passer Rating,
Xcode makes sure the other two have been built first.

Xcode gives you just a few files: GameDBTests.swift for the unit-test target that tags
along, and Passer Rating-Info.plists for both the framework and the tests. One
thing might surprise you: GameDB.h. No need to look back—you did specify the
language as Swift. However, shared libraries are shareable to Objective-C code, and can be
written in Objective-C as well. GameDB.h is an umbrella header, which should
#include headers for Objective-C classes you want to expose to clients.

Note
Xcode takes care of exposing your Swift API to Objective-C by generating a module-
name-Swift.h file that contains @interfaces for all symbols you define as public.
Find Using Swift with Cocoa and Objective-C in iBooks for full details; it’s free.

Another surprise: There is no source file. You have to create one of your own.
Frameworks are built around a single root class that initializes the library; they can expose
other classes, but you have to create the root class and identify it in the framework’s
Passer Rating-Info.plist.

A Shared Library in a Framework 287

Do that: Create a new class, GameDB (N, iOS→Source→Cocoa Touch Class).
GameDB will contain an initialize() class function to set up the library, and hold the
loadSampleData() function that had been a part of AppDelegate in Passer Rating.

private var _gameDB: GameDB? = nil
public
func sharedGameDB() -> GameDB {

if _gameDB != nil { return _gameDB! }

_gameDB = GameDB()
return _gameDB!

}

public
class GameDB: NSObject {

override public class func initialize() {
initUtilities()

}

/// The bundle that contains this class (the framework),
/// where resource files are to be found.
var gameDBBundle = NSBundle(forClass: GameDB.self)

/**
Create and initialize the data store.

:param: baseName the base name of the .csv file containing
the initial data.

:param: createIfAbsent whether the file should be created
if it isn't there. The app, which has time to do this,
should pass true; the widget, false.

:param: error a by-reference pointer to an NSError, valid
only if the function returns false

:returns: true if, one way or another, the data store is
present and loaded.

:returns: false if the data store is absent, and could/should
not be created.

*/
public
func loadSampleData(baseName: String,

createIfAbsent: Bool,
error: NSErrorPointer)

-> Bool
{

// Is the store file there? If so, the work is done.
if storeExists { return true }

288 Chapter 17 An iOS Extension

// By here there is no store. Can we create one?
createStore = createIfAbsent
if !createStore { return false }

// Yes, create it.
if let csvPath = gameDBBundle.pathForResource(

baseName, ofType: "csv") {
// .loadGames will call through to
// sharedGameDB().managedObjectContext,
// which in turn will create the Core Data stack.
let success = Game.loadGames(csvPath, error: error)
return success

}
return false

}

public
var managedObjectContext: NSManagedObjectContext {

if _managedObjectContext == nil {
let coordinator = self.persistentStoreCoordinator
_managedObjectContext = NSManagedObjectContext()
_managedObjectContext.persistentStoreCoordinator =

coordinator
}
return _managedObjectContext

}
var _managedObjectContext: NSManagedObjectContext!

/* ... and so on through the rest of the Core Data stack.
See the original code in AppDelegate.swift.
... */

}

Now transfer the managed-object classes to GameDB, and the supporting utilities, by
selecting them all in the Project navigator, and using the File inspector checkboxes to
reassign them from Passer Rating to GameDB:

m Passer Rating.xcdatamodeld

m rating.swift

m SimpleCSVFile.swift

m StatView.swift

m Utilities.swift

m Game.swift

m Game.swift

m Passer.swift

A Shared Library in a Framework 289

m Passer.swift

m sample-data.csv

Passer Rating uses almost all of the extensions in Extensions.swift exclusively. The
one exception is the brokenByLines() extension to String; copy that over into
GameDB.swift.

Note
Swift classes can’t be used in other modules—clients of frameworks, or unit tests—unless
they and the methods you want to publish are marked in Swift as public. Those APIs, in
turn, can’t be made public unless their superclasses are public. This bites in the case of
Game and Passer. Those are created by mogenerator, and the whole point is that you

shouldn’t edit them. The version of mogenerator that was current when I wrote this
didn’t declare the machine classes and their @NSManaged attributes public; they had to
be edited. A pull request has gone in to add those tags; check your machine-side code,
and edit it as necessary.

Now that we’ve committed the managed-object classes to a single store, we can
simplify them by having them refer to a global NSManagedObjectContext. See the
sample code for the details.

With everything wrapped up, select GameDB in the Scheme popup in the toolbar,
and then Product→Analyze (B). There will build errors, for this is a world of sin
and pain. Sort them out.

Next, switch to the Passer Rating scheme, and analyze, correcting errors as you go.
You’ll have dozens, from AppDelegate, GameListController, PasserEdit-
Controller, and PasserListController: The Core Data and other symbols that
went into GameDB.framework are no longer visible in the Passer Rating module;
you have to add import GameDB to bring those objects back into scope.

AppDelegate becomes much simpler. The functions and properties that handled Core
Data are gone. Most of the other functions from the template can be left empty. The
exceptions are here:

@UIApplicationMain
public
class AppDelegate: UIResponder, UIApplicationDelegate {

override public class
func initialize() {

// Initialize the shared defaults store with
// empty first and last names.
let groupDefaults = NSUserDefaults(

suiteName: GameDBContainerKey)
groupDefaults?.registerDefaults([

GameDBPasserFirstKey: "",
GameDBPasserLastKey: ""])

}

290 Chapter 17 An iOS Extension

var window: UIWindow!

func application(application: UIApplication!,
didFinishLaunchingWithOptions launchOptions: NSDictionary!)

-> Bool {
let navigationController =
self.window!.rootViewController as! UINavigationController

let controller =
navigationController.topViewController as! PasserListController

var error: NSError? = nil
return sharedGameDB().loadSampleData("sample-data",
createIfAbsent: true, error: &error)

}

func applicationWillResignActive(application: UIApplication!) {
// Update the store for the widget to read
sharedGameDB().saveContext()

}

func applicationWillTerminate(application: UIApplication!) {
sharedGameDB().saveContext()

}

// ... plus application{Did/Will}Enter{Back/Fore}ground,
// and applicationDidBecomeActive, which are empty.

}

Run Passer Rating and satisfy yourself that it works with all the data functions factored out
into the library. (Having trouble? That’s what the sample code is for.) You’ll be pleased at
how much more tolerable the app is now that it no longer has to rebuild its database every
time.

The Today Extension
With everything else stable, you can afford to concentrate on the Passer of the Day
extension.

MainInterface.storyboard starts you with a 320-point-wide scene with a
UILabel in the middle. Xcode knows this is a Notification Center widget, so it gives the
view a dark-gray background to simulate the dark-vibrant NC view. See Figure 17.3.

The task will be easier than the exhaustive process I put you through in Chapter 12,
“Auto Layout in a New View.” Complex Today widgets can benefit from size classes: iPad
will run iPhone-only apps in an iPhone-sized emulator, but the Notification Center will
be full-width regardless. The layout should look good on any screen, and you might want

The Today Extension 291

Figure 17.3 The Passer of the Day widget consists of two labels, for name and rating, plus five
StatViews. All should be control-dragged into @IBOutlet vars in TodayViewController.

to take advantage of the extra space to show more information. Fine. We won’t be doing
that.

Put labels at the top of the view for the passer’s name and rating. Set them in the
dynamic Headline font, aligned leading for the name and trailing for the rating, Color
white, Background Default, which is clear. Pin them 8 points from the top and nearest
edge of the view and align their baselines.

Note
Interface Builder will encourage you to use offsets from abstract margins and layout
guides. Resist—you may have to use the popups in the top and bottom fields to force the
offsets to use the near edge of the view, but I’ve found the absolute offsets more reliable
than the “intelligent” ones.

For the StatViews: Vertically, 8 points to the nearest neighbor—sides of the
superview, offsets from the view above. All heights and widths equal. Align the top edges
of the ones in the left column with the ones in the right.

Here’s a trick for getting the widths right: In the document outline at the left side of
the canvas, control-drag from the Attempts StatView to the widget’s superview, and
select any X-offset constraint—you’re going to change it. Select the Attempts view, find
the new constraint in the Size inspector, double-click on it. Change the constraint so that

(center of the view) = (trailing edge of Attempts) + 8
or

(trailing edge of Attempts) = (center of the view) - 8

The equal widths and side-edge offsets do the rest: The near-center edges of the
StatViews all keep a distance of 8 points from the center; therefore, the distance between

292 Chapter 17 An iOS Extension

the left and right columns is always 16 points. The effect is sparse on a wide screen, but
the look is consistent.

The distance between the Yards item and the bottom of the wrapper view ensures that
the widget will always be tall enough to display its contents.

Make the Font Color white, and the Font Size 14. If you have to use a scaled-down
window in the iOS Simulator, the strokes will be attenuated and hard to read, but if you
set Window→Scale→100%, you’ll find the lettering clear.

The StatViews will all show up in the document outline and constraint descriptions
as “Stat View,” with no way to tell them apart unless you click on them and see which
view highlights in the canvas. Use the Document:Label field in the Identity inspector to
set usable names. Another thing to check in the Identity Inspector: Module should be
GameDB; that’s where the definition of the view is.

Note
@UIDesignable views rely on Interface Builder’s building and executing their classes to
render them. The Xcodes available as I write this are not reliable at getting this done; it’s
common that the compilation of StatView.swift isn’t quick enough to survive IB’s
timeout. The best you can do is to select one of them and then Editor→Debug Selected
Views.

You may be way ahead of me: Control-drag from the view elements into
TodayViewController so it can set their contents:

import UIKit
import NotificationCenter
import GameDB

class TodayViewController: UIViewController, NCWidgetProviding {

@IBOutlet weak var passerNameLabel: UILabel!
@IBOutlet weak var ratingLabel: UILabel!
@IBOutlet weak var attemptsStat: StatView!
@IBOutlet weak var completionsStat: StatView!
@IBOutlet weak var yardsStat: StatView!
@IBOutlet weak var touchdownsStat: StatView!
@IBOutlet weak var interceptionsStat: StatView!

var laggingFirstName = ""
var laggingLastName = ""

override func viewDidLoad() {
super.viewDidLoad()
fillViewContents()

}

override func didReceiveMemoryWarning() {

The Today Extension 293

super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.
// You must take this more seriously than you might

}

func widgetPerformUpdateWithCompletionHandler
completionHandler: ((NCUpdateResult) -> Void)!) {

completionHandler(fillViewContents())
}

func fillViewContents() -> NCUpdateResult {
// Pull Passer Rating's passer selection in from
// the common preferences. The keys are defined in
// GameDB.swift.

let defaults = NSUserDefaults(suiteName: GameDBContainerKey)!
let selectedFirstName = defaults.stringForKey(GameDBPasserFirstKey)
let selectedLastName = defaults.stringForKey(GameDBPasserLastKey)

if selectedLastName == nil || selectedLastName == nil {
return .Failed

}

if selectedFirstName == laggingFirstName &&
selectedLastName == laggingLastName {

return .NoData
}

laggingLastName = selectedLastName!
laggingFirstName = selectedFirstName!

let passer = Passer.passerWithFirstName(selectedFirstName,
last: selectedLastName)

passerNameLabel.text = passer.fullName

// ratingFormatter is an NSNumberFormatter that came in when
// you transferred Utilities.swift to GameDB.
ratingLabel.text =

ratingFormatter.stringFromNumber(passer.passerRating)!

attemptsStat.value = passer.attempts
completionsStat.value = passer.completions
yardsStat.value = passer.yards
touchdownsStat.value = passer.touchdowns
interceptionsStat.value = passer.interceptions

294 Chapter 17 An iOS Extension

return .NewData
}

}

iOS installs extensions that are embedded in container apps, but they run in the context of
hosting apps. That’s easy to see in the case of action or export extensions: Any app can
present them, and the apps must configure the extensions and transfer data to them. When
you Product→Run them, you have to designate the host app with the Executable
popup in the Scheme editor, or declare you want Xcode to Ask on Launch.

Today widgets execute in the Notification Center, a single system-wide facility. The
Simulator uses a special process, Today, to host them. Today doesn’t appear in the
Executable menu, so select Ask on Launch (making sure the Passer of the Day target is
selected). When you run the widget, the Simulator displays the Notification Center, with
your widget in place (you hope).

You can set breakpoints and debug Passer of the Day just as you would any other
program. Because lldb (and therefore the Xcode debugger) can target more than one
process for debugging, you can go back to Xcode, select the Passer Rating scheme, and
run that, too. The jump bar in the Debug area lets you switch between the contexts.

There’s more: If you have a library (static or dynamic) in the same project as an app that
uses it, you can break into its code and debug it, too. You don’t have to specially “launch”
the library (the concept makes no sense) or designate it for debugging at all.

Build Dependencies
Chances are, you haven’t found it so easy to build and run Passer Rating and the Passer of
the Day widget all together. You may be seeing a lot of compilation errors that say neither
app recognizes GameDB symbols, even after you’ve taken care to import GameDB in
every source file that refers to them. Changes to the library might not show up in one or
the other.

Here’s the problem.

m When you created both the POTD and the GameDB targets, you designated Passer
Rating as the containing application.

m Xcode modified the build phases for Passer Rating to show that the app depends on
both the extension and the framework. You can see this in the first section of the
Build Phases tab for the app’s Target editor. That’s good.

m It also added GameDB.framework to Passer Rating’s “Link Binary With Libraries”
phase. That’s not necessary, but good.

m Xcode never asked whether Passer of the Day depends on GameDB.framework, so
it doesn’t appear in POTD’s link-with-libraries phase, but if you import a module,
the build system silently adds it to the link phase. That’s good.

The Result 295

m What Xcode doesn’t figure out is that POTD depends on GameDB.framework. It
doesn’t register that changing the framework should force a rebuild of the extension.
That’s a problem.

m Passer Rating does depend on both, but the build system does not guarantee the
order in which dependencies are processed—Xcode is even free to build dependent
targets concurrently. Even if the app build does update both targets, it’s likely neither
will use the current version of the other. That’s bad.

You have to tell Xcode about the dependency: Select Passer of the Day’s Target editor
and the Build Phases tab. Click the disclosure button on the “Target Dependencies”
phase, and the + button under the table. A sheet will drop that lists all the targets in the
project. Select GameDB and click Add.

Note
Do not add Passer of the Day as a dependency of GameDB.framework. First, it’s not true.
Second, you’ll have set it up so that Passer of the Day must be built after
GameDB.framework, which must be built after Passer of the Day. . . . Xcode will detect
the circular dependency and refuse to go through with the build. Think through the actual
dependencies. If you really do have a circular dependency, refactor your libraries; this isn’t
just a technicality, it’s defective design.

The Result
With everything in place, select the Passer of the Day scheme and one of the iOS
Simulator targets, select Product→Run (R), and choose the Today process as the
host. The Simulator should display the Notification Center’s Today tab, including POTD.
See Figure 17.4.

Figure 17.4 The complete Passer of the Day widget summarizes the career of the past-selected
quarterback from the Passer Rating app, whether it is running or not.

296 Chapter 17 An iOS Extension

Drag up from the bottom of the screen to dismiss the Center, launch Passer Rating
(you’ll have to have built it recently enough to be compatible with the widget), and tap a
passer in the initial screen. Drag from the top to expose the Notification Center again.
The POTD widget should show the passer you selected, and his statistics.

Summary
Frameworks are an essential part of Cocoa development. Making them available for iOS
development gives every app the ability to extend the system and other apps with its
unique services.

In this chapter, you saw how to build a Today widget, the simplest kind of extension.
We went through how extensions can share data with their applications through App
Group containers. We went further by factoring the shared functions of the two apps into
a common shared library—a framework—that incorporates both executable code and data
resources.

Next: How to put your apps out into the world.

18
Provisioning

Here’s the short of it: Apple does not want any app running on any iOS device that isn’t
written by someone it trusts. It doesn’t want any apps in general circulation that it doesn’t
curate through its App Store. At each stage of the life cycle of your app—from testing on
your desktop, to circulating it among beta testers, to final distribution—you have to jump
through some hoops.

For the first several years, the process was straight out of Lovecraft: You had to manage
two signing certificates by generating requests on your Mac; upload them to Apple’s
provisioning portal; wait for the portal to issue the certificates; download, and install them
in your keychain. You had to log in to register a unique identifier for every product. You
had to log in to register every device you wanted to debug on. For each application, you
had to log in to request a “provisioning profile” for each purpose of debugging, beta
testing, and shipment to the App Store, and install them into Xcode. Change any of the
certificates or devices? Log in, and reissue the profiles.

The potential for error was enormous. Nobody got it right.
As Xcode has developed, more and more of the burden has shifted from the portal web

site to Xcode itself. Today, the process is almost transparent. You’ll still need to understand
the underlying principles, but until it comes time to circulate your app, Xcode does it all
for you.

This chapter will show you the triangle of identities—signing, application, and
device—that go into provisioning an iOS app for installation on a device, and how to turn
those identities into provisioning profiles. I’ll start with the process for iOS applications,
then explain the differences for OS X.

Apple Developer Programs
To get your app onto a device, Apple has to trust you (or if it can’t, it at least has to be able
to identify you and track you down). It needs your name and address, your assent to the
licensing terms, and a payment that both defrays its costs and verifies you are who you say
you are. Early on, you’ll have to pony up for a paid iOS developer program ($99 in the
United States for the past eight years).

298 Chapter 18 Provisioning

To join, visit http://developer.apple.com/, click the large image for the iOS
(or Mac) Developer Program, and proceed from there. A shortcut to the same process is to
open the Accounts panel of Xcode’s Preferences window, hold down on the + button,
and select Add Apple ID. . . . A sheet will drop down asking for the Apple ID and
password associated with your developer registration, but it will also have a Join a
Program. . . button that takes your browser straight into the application process.

General (App Store) Program
There are two kinds of registration for the general iOS and Mac developer programs.

Organizations
Organizations (companies) are entities with credentials like a DUNS number from the
Dun & Bradstreet credit-rating organization. Apple allows them to have more than one
developer working on the company account; these are organized into a hierarchy of actors,
with different levels of privilege.

m Team Members may install apps for development purposes, subject to the
authorization of senior members of the team. Members can’t authorize anything;
they can only post requests to Admins or the Agent.

m Team Admins can invite others to the Organization account, approve devices for
use in development, manage signing identities, issue distribution profiles, approve
requests from Team Members, and do all the things Team Members can do.

m There can be only one Team Agent because the Agent represents the legal
authority and identity of the Organization. She is responsible for keeping the
program membership in good standing and reviewing and accepting contracts.

Individuals
The story is much simpler for developers registered in the Individual program: Access is
available to only one person, who acts as Team Agent. No permissions, no restrictions.

Enterprise Program
Apple has a separate “Enterprise” developer program for organizations wishing to develop
apps for in-house use. Member organizations can distribute apps, like expense trackers,
strictly within themselves, without having to publish them through the App Store. The
apps can be installed on an unlimited number of devices, subject to a provisioning profile
that must be renewed every three years. Enterprises have Members, Admins, and Agents,
as with the Organization account.

Apple’s B2B program offers another way to distribute an application, even a custom
version of an application, to an organization. The organization doesn’t have to qualify for
or maintain an Enterprise membership, and there is no awkwardness about allowing
outside developers access to Enterprise credentials. A B2B release is distributed through
the App Store, but it is not visible to the general public. The organization makes a bulk
purchase of the custom app for its employees, who are given claim codes for use on their

http://developer.apple.com/

Provisioning for iOS 299

App Store accounts. That’s only a snapshot of the B2B program; see http://developer
.apple.com for the current details.

Provisioning for iOS
Here is what happens in the iOS provisioning process—the process of getting an
application from Xcode to a device. Xcode (usually) hides the details from you, but there
are always corner cases that will be hard to deal with if you don’t know what’s really going
on.

Note
The process for OS X provisioning is closely analogous, except that you must apply both a
distribution certificate and an installation certificate when you submit applications to the
Mac App Store.

Authorization to install an app always consists of three identities.

m A signature—The app must be cryptographically signed by a developer (or in the
case of general distribution, a Team Admin or Agent) to identify it with the
developer-program membership. The certificate represents a signing identity. Apple
issues the signing certificates.

m An application ID—This identifies the particular app. It’s a simple string, made
unique through the reverse-domain convention, that you register to your program
membership through Apple. This is the same as the bundle ID set in the
application’s Info.plist. For Passer Rating, this is com.wt9t.Passer-Rating.

m An authorized device—App Store and Enterprise applications can be installed on
any iOS device in the world. For development and beta, the device has to be
registered with Apple for your program membership. Your program has 100
registrations, and each lasts a year; you can unregister a device, but its slot won’t be
available to you until the anniversary of your membership.

On the basis of these, Apple will issue a provisioning profile. It binds your app ID, one or
more authorized signers, and one or more devices together into a cryptographic bundle
that assures your iOS device that it’s permitted to accept the app. There are development
profiles for tethered debugging, ad hoc profiles for beta testing, and distribution profiles
for forwarding to the App Store.

Note
Ad hoc (beta) distribution may pose a political problem if you develop for an organization.
The 100-device registry is a finite resource of the organization and must be managed. You
can’t develop if you can’t register new devices, but there will be pressure to authorize
copies for the CEO, your boss’s boss, your boss’s boss’s committees. . .all of whom will
“test” your app by running it once to show to their friends. Before the question arises,
make sure your organization establishes a policy that conserves the device registry for
testing and development.

http://developer.apple.com
http://developer.apple.com

300 Chapter 18 Provisioning

What You’ll See
Xcode 6 does almost all of this itself. The portal site, renamed “Certificates, Identifiers &
Profiles,” is still there, but it mostly serves as a dashboard for your provisioning
information, as an additional interface for performing registrations, and as the only
interface for obtaining distribution profiles and certificates. You can reach it by logging
into http://developer.apple.com/membercenter/.

Note
“Certificates, Identifiers & Profiles” is a cumbersome name, so I’ll keep calling it the
“portal.”

Registering Your Team Membership
Before you do any developer-program-related work, open the Preferences window and
select the Accounts panel.

The Accounts panel gathers the addresses and credentials for three kinds of network
services: Source-code repositories; Xcode Server accounts; and, what interests us here, the
Apple IDs for a registered developer. My own setup is varied enough to make a good
example—see Figure 18.1.

To add an Apple ID, hold the mouse down on the + button at the bottom left of the
source list, and select Add Apple ID. . . from the menu that drops down. You’ll be asked
for the Apple ID you use for development, the account password, and a description of the
account so you can identify it in the list.

With the credentials in hand, Xcode logs into your developer account, identifies all the
teams you belong to, and downloads all of the provisioning profiles associated with your
team memberships. If you don’t have all of the signing certificates you’re entitled to,
Xcode will apply for them and install them. If you don’t have Apple’s intermediate
signing-authority certificates, Xcode installs them. Figure 18.1 shows what my entry looks
like.

If you find you still lack a signing certificate you need, click the + under the certificate
list in your team-member detail sheet (Figure 18.1, bottom), and select the type of
certificate you need. Xcode will apply for the certificate, download it, and install it.

Registering Your App
When you create an iOS project, the General tab of the Target editor will protest that
Xcode doesn’t know of any provisioning profiles for the product. To get a profile, you
have to be on the team of a developer-program member. You’ll be invited to select one of
your team memberships from a popup menu. You can also decline to select a team
(None), possibly because you don’t have a membership, nor do you work for anyone who
does. Or, Xcode may not be aware of your registration as a developer with Apple. Add an
Account. . . will open the Accounts panel of the Preferences window to take care of
that.

http://developer.apple.com/membercenter/

Provisioning for iOS 301

Figure 18.1 When an Apple ID account is added to the Accounts panel of the Preferences
window, (top) Xcode fetches all developer-program teams that ID is associated with. (bottom)

Selecting a team membership and clicking View Details. . . displays all certificates and provisioning
profiles available to that team member.

302 Chapter 18 Provisioning

Note
The terminology can get a bit tangled. A program member is a person or organization that
has paid $99 to have access to the App Store, provisioning profiles, prerelease software,
and the like. Each program member has a team. Individual-program members have
themselves as a one-person team. Organizations can have the hierarchy of team members
I discussed at the beginning of this chapter. A registered developer hasn’t paid a dime to
Apple; he’s merely clicked the Register link tucked into the corner of the developer
.apple.com web page. Apple collected an Apple ID from him and got his assent to a
terms-of-service agreement. A mere registered developer doesn’t belong to any team, but
organizational program members can invite him.

Selecting the team gives Xcode another opportunity to serve. Now that it knows
which program membership owns the product, it joins the company identifier and
product name you gave when you created the target into a Bundle Identifier, which it
registers with Apple. Xcode and Apple know the signing identities for all the team
members, the application ID, and your team’s roster of registered devices. That’s all three
of the prerequisites to issuing a provisioning profile: Xcode asks Apple for a Team
Provisioning Profile for the app—one that recognizes the developer certificates of everyone
on your team—and installs it. By the end of all this, your whole team is authorized to load
your app into any registered device for debugging.

Note
There are two kinds of team provisioning profile. The generic one has an application ID of

*, meaning it will authorize any application. For a while, that was the one-and-only team
profile. In the modern era, access to Apple’s cloud services is granted per-application
identifier; apps that use those services have to have profiles specifically for their
respective identifiers. These are still called team profiles because they carry the developer
identities and registered-device rosters of the whole member organization.

Note
You remember that if you’re a mere Member of a team, you don’t have the authority to
register devices or application identifiers, or even to issue yourself a development signing
certificate. Instead of delivering them to you immediately, the provisioning system will
email the Admins and Agent asking them to approve your requests. When they do, have
Xcode refresh your information by clicking the circular-arrow button in the team-member
details sheet (Figure 18.1, bottom).

You say your device isn’t registered? Plug it in, assure it that it can trust your computer,
and find it in the Devices browser, Window→Devices (2). Select the top line of the
device’s entry, and click the Enable for Development button in the main view. Xcode
will ask you which of your teams should register the device (you can choose more than
one). Xcode installs (or exposes) some performance-debugging facilities on the device
itself (Settings→Developer, just above the panels for applications); downloads the

Provisioning for iOS 303

symbols for your device’s version of iOS, if Xcode hadn’t seen that version before; and
registers the device with the teams you selected. A change in the authorized-device list
means a change in the provisioning profiles, so Xcode repeats the download of all of the
affected profiles.

Note
In some cases—for beta (ad hoc) users particularly—it’s not practical or desirable to plug
the device into Xcode. Those devices have to be hand-entered in the portal. Enter the site,
select the iOS section (if you have a choice), and select the Devices section from the
source list on the left. Click the + button and enter a convenient name for the device, and
its UDID. This is a 40-character hexadecimal string that uniquely identifies the device. The
Devices organizer displays the UDID prominently; nontechnical users should plug the
device into iTunes, select it, and click the serial number to reveal the UDID. The text is not
selectable, but the usual Copy gesture will put the string onto the clipboard so the user
can mail it to you.

Protecting Your Assets
This is a lot of work, even if you didn’t have to do much of it yourself. You can get most
of it back, or retrieve it on another machine, just by adding the same accounts to the
Accounts panel and reentering your credentials.

But there is one part Apple and Xcode can’t restore for you: Your signing identities rely
on public/private key cryptography. Xcode generates a private key for each certificate it
applies for. As the name says, it’s private. Apple never sees it. It exists only in your
keychain: Look for it in the login→Certificates section of the Keychain Access
application; if a certificate has a disclosure triangle next to it, opening it will reveal the
private key—in fact, this is a good way to diagnose a missing private key, which is a
common cause of code-signing problems.

If it’s lost, it’s gone. Irrecoverable. The only remedy is to revoke that certificate and
apply for a new one, which makes all applications that rely on it, and aren’t already in the
App Store, stop working.

So back it up. You can preserve just the key pairs by selecting the certificates in
Keychain Access and selecting File→Export Items. . . (E), but Xcode can do better
for you. In the Accounts panel, select Export Accounts. . . from the menu attached to
the gear button at the bottom of the source list. Xcode will lead you to a
password-protected archive of all your assets. Keep it somewhere safe, away from your
development machine.

Note
If you distribute signing certificates to support a consortium of developers on an “open”
project, expect Apple to revoke the certificates and ban you from its developer programs.
Personal accountability for the use of developer credentials is part of the deal.

304 Chapter 18 Provisioning

Prerelease Distributions
Apple draws a line between installations of applications on an iOS device.

Development is the process of loading an app for debugging. It’s an interaction between
the device, the developer, and the debugger. It requires a development signing certificate
for the developer personally.

Distribution refers to any dissemination of an application for nontethered use by other
devices; the app can be installed over the air without the need for a desktop computer.

Note
The word “distribution” has picked up synonyms over the years in serial attempts to make
the purpose clear. The signing identity for the purpose has the common name “iPhone
Distribution.” The portal refers to those certificates as “Production.” The build
configuration for the purpose (actually, you’d probably have more than one) is “Release.”
The usual way to create a distribution package is with the Archive build action, the result
of which is an archive, so the process may be called “archiving.”

In-House Betas
When your app has progressed enough to need testers who don’t use Xcode, you can
create an Ad hoc package. An ad hoc distribution may be installed on any device, one of up
to a hundred, registered to your team.

They can install through iTunes, but more commonly, they accept an over-the-air
(OTA) installation. Using their devices, they follow an itms-services: URL. The
URL leads to a manifest file, which in turn contains the URL for the application package
(.ipa) itself, plus resources like descriptions and download icons. These assets can be
hosted on any HTTPS server.

Enterprise distribution is closely related. The differences are that the app can be
installed on any device, not just registered ones; and your license requires you to restrict
access to members of your organization.

Earlier versions of Xcode helped you make ad hoc and Enterprise distributions by
collecting the URLs and text for the manifest when you saved the distribution .ipa.
Xcode no longer does this. However, the manifest is just a property-list (.plist, see
Chapter 23, “Property Lists”) file, and the specifications can be found on the Internet or
in older Apple documentation.

Apple’s current emphasis is on Mobile-Device Management (MDM) systems for
distributing ad hoc and Enterprise applications. MDM for iOS has many advantages,
including an App Store–like catalog of the apps you need to distribute, and push
notification for updates. There are commercial firms that will provide MDM services to
you, or what may be easiest, you can use the Profile Manager in Xcode Server to handle
the registrations, hosting, cataloguing, and pushes.

Apple promises that developers who use ad hoc distribution for purposes other than
testing, or in-house distribution for use outside of the licensed organization, will be
terminated. Bear it in mind.

Provisioning for iOS 305

TestFlight Beta Distribution
Beta distribution is new. Apple now provides a service, TestFlight, that uses the App Store
distribution system to send your beta software out to as many as 1,000 testers. All you have
to do is give the email addresses for the invitations, and all they have to do is to install
TestFlight on their devices. The app will manage the download, and keep them up with
new betas as you release them.

Apple still needs some control: One of the reasons for App Store curation is that Apple
must assure its customers that they won’t be exposing themselves to malware. You can
imagine what an opportunity it would be for a criminal to invite a thousand people to try
out his fun game, a hidden part of which is a password logger.

So you must submit public betas to Apple just as you would for a published app. The
differences are

m You register the app with iTunes Connect as new (if it is new) or as a newer version
of an existing app, but you designate it as a prerelease. Prerelease registrations are
quick because they need none of the metadata specific to the App Store, and
submitting the test version directs the app to TestFlight, not the store. The version
currently in the store is untouched.

m The registration adds a beta-testing entitlement to the prerelease version, prompting
the iOS runtime to connect it to logging, reporting, and update services.

m You need a new copy of the app’s distribution profile, one that reflects the beta
entitlement. Refreshing your profiles in the Accounts preference panel will fetch it
for you.

m You build and archive the app as before. You apply the Validate. . . and Submit. . .
actions to the archive as you would for a product release (see “The Build” later in
this chapter).

m Apple will review the app for signs of malice or other gross offensiveness. If it finds
none, it posts the test version and sends out your invitations.

The TestFlight app takes care of downloads and update pushes, and harvests logs and
user comments to return to you.

Note
Apple provides another, “internal” service under the TestFlight name. It will distribute over
the air to as many as 25 testers, with as many as 10 devices each, so long as they are
registered with iTunes Connect as part of your organization, and have enough privileges to
deter you from using anyone you wouldn’t trust implicitly.

TestFlight is not the single answer to every testing need. It is set up for apps that are
“beta” in the strict sense of the word: Feature-complete, and usable by people who
understand the purpose of the app more than how it’s built.

It isn’t suited to releases that have gaps, stubbed-in functions, known bugs, or other
things that developers and product managers can work around, but “civilians” shouldn’t be

306 Chapter 18 Provisioning

expected to. For those purposes, distribute ad hoc. Even if you’re a solo developer, you can
still register your friends’ devices so they can test for you.

The Capabilities Editor
What I’ve described covers the bare minimum of the registrations and certifications you’ll
need to distribute an application. There are additional capabilities that need some
combination of additional credentials and continuing support from Apple; or advertising in
the app’s Info.plist file (see “Bundles and Packages”); or claims in its entitlements file;
or linkage to additional system frameworks.

Xcode 6 provides a unified editor for the most common capabilities in the Target
editor’s Capabilities tab. Each facility has an on/off switch. Clicking the disclosure
triangle describes what the facility is and what Xcode will do to enable it for your
product. Some capabilities have further options.

OS X-only Capability
All of the capabilities available to OS X are also available to iOS, except for one: App
Sandbox. It’s a long story, which I’ll tell later in “OS X Sandboxing.”

Capabilities for Both iOS and OS X
The remaining six OS X capabilities are also available to iOS:

m iCloud is the shared-storage service for a user’s Apple devices. Turning on the
capability will register the requirement with Apple and put the store identifier into
your entitlements file.

m Game Center is the Apple-hosted mediator for leaderboards and player challenges.
Xcode will register your app as using Game Center; note the need for GameKit in
your Info.plist, and link GameKit.framework to the app. iOS apps are
automatically registered for Game Center, but you must still turn the capability on
to use it. Additionally, you must log into iTunes Connect (itunesconnect
.apple.com) to obtain the necessary credentials for your app.

m In-App Purchase lets you sell application services from your app. There are
restrictions on what you can sell—see the review guidelines and the IAP
documentation for details. Flipping the switch links StoreKit.framework and
adds IAP to the app’s registration with Apple. You will still have to register your IAP
products with iTunes Connect.

m Keychain Sharing lets your applications share credentials through a common
keychain. Each app must list each shared keychain’s identifier in its entitlements file.
This option lets you manage that list.

m The Maps capability is slightly different between the two platforms. On OS X, it
links the MapKit framework and claims privileges for displaying maps. All iOS apps
are privileged to display maps; this capability advertises that your app can provide

The Capabilities Editor 307

routing information for specific areas of the world, and specific combinations of
transportation, so you can specialize in streetcars and ferries in Atlantic City.

m App Groups must be registered with Apple under your application ID. Apps that
share a group identifier can have access to common files, and communicate with
each other, as a relaxation of the normal app-sandboxing policies. You add container
IDs in reverse-DNS form, beginning with group: group.com.wt9t.football.
Containers are registered with Apple, and your team’s group IDs can be refreshed
from Developer Relations just as team provisioning profiles are.

iOS Capabilities
m Passbook is the system for putting bar-coded tickets and coupons on the user’s

screen. Publishers of Passbook-enabled apps manage the passes centrally and push
changes out to users through Apple’s push server (think of an airline selling a ticket
weeks before a flight, and pushing a seat assignment into an on-screen boarding pass
shortly before boarding). The capability registers the app’s claim with Apple and in
the entitlements file; PassKit.framework is added to the link phase.

m Apple Pay claims the right to accept payments for physical goods and services
through Apple’s payment-clearance system. The claim and the necessary identifiers
are registered with Apple and in the entitlements file.

m Personal VPN permits the app to configure and provide an on-device VPN
service. It is registered with Apple and claimed in the entitlements file; selecting the
capability links NetworkExtension.framework.

m Inter-App Audio is a specialized service that allows one app to exchange MIDI
commands and audio streams with another. Activating it registers the entitlement
with Apple, adds it to the application entitlements file, and links AudioToolbox
.framework, with which you are about to share a long adventure.

m Background Modes exposes checkboxes for your app to claim the privilege of
running periodically while it is not the frontmost application. iOS permits only
limited operation in the background, and your app must declare the services you
want in its Info.plist. Apple’s reviewers will check to see that your app is doing
what you claim with its background privileges.

m Associated Domains An iOS app may claim a special relationship with an
HTTP/HTTPS server by listing the server’s domain name as an associated domain.
One use for this would be with Handoff: The user of a Mac is browsing a page at
apple.com; there’s nothing special about that host, so a handoff of the browsing
task would simply open Safari to the same URL.
Suppose you had a weather-radar service, available as a web site and an iOS app.
Your app could claim an association with your site’s domain name, and be launched
to show the same radar display as was on the browser. (There are safeguards against
apps’ hijacking others’ pages.)
This capability lists the associated domains, prefixed by a keyword of your choosing
to describe the kind of activity your app would be willing to take over.

308 Chapter 18 Provisioning

m HomeKit is Apple’s framework for linking apps to home-automation systems that
control heating, cooling, lighting, and the like. HomeKit takes care of registering
the home’s “users,” and cataloguing rooms and areas within the house. It can then
present users with all the controls available to particular rooms, or group actions
provided by different apps. HomeKit apps can be controlled through Siri.
All of this requires interapplication communications and cross-device administration
through iCloud. Turning on the capability claims the entitlement, registers your app,
and links the HomeKit framework.

m Data Protection indicates that all document-file access by the app should be
encrypted to one degree or another. The protection levels are Complete (locking
the device cuts off all access to a file, even if you had it open); Complete Unless
Open (your app can keep access to a file if the file was open when the device was
locked); or Complete Until First Login (the file becomes readable the first time the
user unlocks the device after startup).
However, you can only specify those levels in the portal’s listing of your app’s
privileges. You can always specify encryption options on individual files and data
blocks in your code.

m HealthKit is a secure database shared by apps on a device. They can exchange
information, so one app can track walking distance; another, meals; and a third, total
calories gained and expended. The iOS Health app provides a shared control panel
for collecting, displaying, and securing the contents of the database.
The capability claims the relevant entitlement, registers the capability to Apple, and
advertises it to the device itself.

m Wireless Accessory Configuration. Apple calls its system for communicating
between iOS devices and accessories (including AirPlay and some HomeKit devices)
MiFi. Accessory makers can get specifications and support by registering with Apple
at https://developer.apple.com/programs/mfi/. On the device side, the
Wireless Accessory Configuration entitlement allows the app to communicate with
a particular MiFi device for setup.

OS X Sandboxing
iOS has a strict security régime that keeps each app in a “sandbox,” an environment in
which an app has no access to files outside the application package or that it did not create,
nor to device services except as permitted by the OS.

OS X 10.7 Lion introduced sandboxing to the Mac as an opt-in for most applications,
and mandatory for all apps sold through the Mac App Store. You can’t get access to Apple
services like iCloud or Game Center without selling through the App Store, and you can’t
get into the App Store without sandboxing.

The idea is to make it harder to attack the user’s Mac by having the operating system
block any service the developer didn’t declare. If you didn’t say you need to operate a
socket for incoming network connections, and your app suddenly attempts to do that, the

https://developer.apple.com/programs/mfi/

OS X Sandboxing 309

change must (the theory goes) have come from malware that exploited a weakness in
your app.

By default, the sandbox is completely closed to everything but direct interaction with
the user. It can’t even read or write files. Everything else is an exception, which you must
claim through the app’s entitlements file. You must sign (and, for the App Store, Apple
must countersign) the app to seal it against alteration. You declare your requested
entitlements in an .entitlements file (in the property list format; see Chapter 23,
“Property Lists”). The build process embeds them in the signed application binary.

The Capabilities tab of the Target editor gives you checkbox access to the most
common entitlements. When you turn sandboxing on, Xcode adds a your-app-name
.entitlements file to the application target. The repertoire is:

m Network
m Incoming connections (Server)
m Outgoing connections (Client)

m Hardware
m Camera
m Microphone
m USB
m Printing

m Apps
m Contacts
m Location
m Calendar

m No Access, Read Access, or Read/Write Access to
m User-selected file
m Downloads folder
m Pictures folder
m Music folder
m Movies folder

Note
There are many more possible sandbox entitlements. Some are obscure (deservedly or
not), such as access to AppleScript, shared preferences, or files that have the same base
names as files the user had authorized in the same directory. Some are temporary
exceptions, which could mean that Apple is still working out how to implement the
privileges they represent; or it could mean that Apple means eventually to close off those
privileges, and is giving developers time to figure out workarounds. And some you may
have to invent for yourself, in the (usually forlorn) hope that Apple’s reviewer will open the
sandbox to some privilege that your app absolutely needs. Search the Documentation
organizer for the Entitlement Key Reference, ask around in the developer forums at
http://devforums.apple.com/, and comb through WWDC videos. This is one of the
few instances where the forums are of more use than Stack Overflow.

http://devforums.apple.com/

310 Chapter 18 Provisioning

Take special note that if you want to read and write files outside your app’s sandbox
directory, you must ask for the privilege. Even then, you will gain access only to files that
your user has explicitly designated. These could be dragged and dropped onto your app’s
icon in the Finder or the Dock, or into one of your windows (if you handle file drops); or
through PowerBox (so named because it’s. . . like a box), the secure OS X process that
replaces the open-file and save-file sheets.

If you submit your app for App-Store review, be sure to include a justification for every
entitlement you claim—common, uncommon, or exceptional—in the review notes. For
example, “MyEditor is an editor for document files and must have read and write access to
user-identified files. It needs to make outgoing network connections to download
templates and to validate user-entered URLs.”

Why Sandbox?
The most powerful incentive for adopting sandboxing is that you can sell your app through
the App Store. This isn’t just a matter of having a convenient way to distribute your work
and collect payments. App Store access enables your app to use a number of OS X features
that require the use of Apple servers:

m iCloud
m In-app purchase
m Push notifications
m Game Center

But there is another reason. Sandboxing is intended to prevent an application from
being an attack vector. Even if the app gets pwned, it can’t erase a user’s files, send her
contacts to an identity thief, or operate a spam SMTP server (always granting that the
latter two could still happen if the app originally asked for the necessary privileges). A
sandbox error that crashes your product is embarrassing, but embarrassments happen, and
people will wait (briefly) for a fix. A breach that ransacks the user’s system will ruin you.

Why Not Sandbox?
If sandboxing doesn’t fit your application’s needs, don’t use it. The only costs are that you
won’t be able to sell through the Mac App Store, and thus make use of Apple-served
features.

What needs would interfere with sandboxing? Basically, if you want general-purpose
access to resources that belong to the system or other applications, you can expect
sandboxing to pinch. Common trouble spots are

m Gaining privileged access to system resources or access-restricted files. If you’ve
written an editor for system-configuration files, you’re out of luck.

m Writing an assistive application. The sandbox will let you expose your UI through
the accessibility API, but if you want to send accessibility events to another
application—a technique that many developers use as poor-man’s inter-application
communication—the sandbox will stop you.

Gatekeeper and Developer ID 311

m You can receive and respond to Apple events (most commonly from AppleScript),
but you can send them only to applications you list in a temporary exception
entitlement. An Open Scripting Architecture script editor won’t work in the
sandbox.

m You can’t access other apps’ preferences unless, under a temporary exception, you
list the domains you want to access. Also, you can share data among apps in a suite
by having each declare themselves to belong to an “application suite” keyed to your
development team ID.

m You can’t load kernel extensions. Are you surprised?

These are all useful, reasonable things to do; you just can’t do them and work in the
sandbox.

Gatekeeper and Developer ID
OS X 10.8 Mountain Lion introduced Gatekeeper, another way to reassure your users
about the safety of your apps, without the limits the sandbox imposes. When Gatekeeper is
in effect, all downloaded applications (or executable documents like scripts) are on a
blacklist, and users will not be permitted to open them. Only apps that come from
“identified” developers are on the whitelist.

You become “identified” by obtaining a Developer ID cryptographic signing identity
from Apple and applying it to your app. Signing with a DevID clears it for execution, with
only a one-time warning that it had been downloaded from the Internet.

Getting a Developer ID
Developer ID is available to any member of the $99 Mac Developer Program. In fact,
once you’re in the program, DevID is almost impossible to avoid: When you enter your
developer account in the Accounts panel, the DevID certificate is created and installed.
This is another public/private key pair, so secure it either by creating a developer-account
archive or exporting it from Keychain Access.

As a paid member of Apple’s Mac Developer Program, you will have five signing
identities; be careful to keep them straight in your mind and in your keychain.

m Developer ID Application is the certificate you’ll apply to get your app past
Gatekeeper. Don’t bother to set any certificate in the “Code Signing Identity” build
setting; Xcode asks you to choose your Developer ID certificate when you click the
Export. . . button in the Archives organizer.

m Developer ID Installer is used to assure Gatekeeper about non-application
products like installer packages and .xip archives. Xcode never touches the DevID
installer certificate; you use it with the productsign and xip command-line tools.

Note
xip is pronounced “chip.”

312 Chapter 18 Provisioning

m 3rd Party Mac Developer Application sounds similar to the Developer ID
Application certificate, but the closer analogue is the “iPhone Distribution” identity
on the iOS side: In a build to be uploaded to the Mac App Store, you select this
identity in the “Code Signing Identity” build setting. As with the iOS distribution
certificate, the certificate has to match up with the application’s ID through a
provisioning profile you get from Apple.

m 3rd Party Mac Developer Installer is not an analogue to the Developer ID
Installer certificate. Unlike with iOS packaging, you use separate signing identities
to prepare an application for validation and submission to the Mac App Store. The
Developer Application certificate is used in the build process. The Developer
Installer certificate is applied when you click Validate. . . or Export. . . in the
Archives organizer. You’ll be presented with a choice of installer certificates; choose
the default Xcode offers you unless you are positive you need something else.

m The Mac Developer certificate is different from the two “3rd Party Mac
Developer” certificates, for all that it has nearly the same name. The concept is most
similar to the “iPhone Developer” identity you use for iOS development. It is the
build-time signing identity you apply to debug builds when you’re testing
identity-sensitive features like sandboxing, Developer ID, and access to Apple cloud
services. This, too, matches to a provisioning profile, in this case a development profile.

Using Developer ID
Open an Xcode project containing a Mac application target, and select Product
→Archive. All going well, Xcode will show you the Archives organizer with your
application archive displayed. Click Export. . . . A sheet drops down presenting your
options (Figure 18.2). The top choice, Export Developer ID-signed Application, is
the one you want. Click Next.

Once you’ve chosen the distribution method, Xcode examines the archive, the
provisioning profile, and your keychain. It then gives you a popup menu to select the
signing identity you want to apply—the one it selects is usually correct.

An activity spinner turns for a while as the cryptographic signatures are assembled, and
at last you are given a put-file sheet so you can save the completed application.

That’s it. Xcode gets you a certificate, it signs your app with it, it puts the app on disk.
It’s actually more trouble to save an unsigned application. You’re free to distribute the app
however you like; any method—.zip archives, disk images, CD-ROMs, email
attachments, paper tape—that a Mac application can survive. The only difference is that
when a user of Gatekeeper downloads it, OS X will let her run it.

Note
Once you start embedding frameworks or helper tools in your app, things get complicated;
each needs its own signature independent of the application’s. This should be easier than
it is, and it may have become so by the time you read this. Until then, have a look at Jerry
Krinock’s solution on GitHub at https://github.com/jerrykrinock/
DeveloperScripts/blob/master/SSYShipProduct.pl.

https://github.com/jerrykrinock/DeveloperScripts/blob/master/SSYShipProduct.pl
https://github.com/jerrykrinock/DeveloperScripts/blob/master/SSYShipProduct.pl

Gatekeeper and Developer ID 313

Figure 18.2 The sheet that appears when you click Export. . . on a Mac archive offers the choice
of creating a Developer ID–signed application package.

Limitations
Developer ID is not a panacea. It doesn’t guarantee that the application is secure. It does
not prevent an app from doing something malicious. It detects the app’s signature only the
first time it is launched from download quarantine; if something injects malicious code at
run time, the OS won’t detect it. It doesn’t apply to any file that wasn’t downloaded or was
downloaded by means other than the usual browsers or mail applications. Unlike App
Store products, it does not attest that someone has reviewed the app for security or quality.

Note
Gatekeeper will restrict downloaded documents, as well, if they are of a “dangerous” type,
like scripts or installer packages. The productsign tool can apply your “Installer”
Developer ID to packages, and xip can produce archives of “dangerous” files that can be
expanded safely by double-clicking them. See the respective man pages.

The only assurance that Gatekeeper gives—and the UI is careful to say so—is that the
developer of an app is “identified.” When you signed up for the Mac Developer Program,
you gave enough information that Apple can find you. If it discovers you’ve been
distributing malware, it can revoke your Developer ID, and your applications won’t run
any more. Want to continue distributing malware? Come up with another identity and
bank account, and pay another $99. Cheap if you’re an evil mastermind, but most
scammers won’t bother.

Which is why you can’t get a Developer ID without paying for the Mac Developer
Program.

Developer ID and sandboxing are separate concepts. If you want your app to be in the
Mac App Store, sandboxing is mandatory and DevID is pointless. Outside the App Store,

314 Chapter 18 Provisioning

neither excludes or requires the other. DevID says only that an app came from a (so far)
reputable source. It does not say that the app is safe, or secure. You might want to consider
sandboxing as a backstop to your secure-coding practices.

Distribution Builds
Once your project goes from development to distribution (you remember this is any
dissemination of an app to be run untethered), Xcode is still friendly, but higher
maintenance.

If Xcode has a distribution profile on-hand that matches your application ID, it will
match the profile to your app, and the profile will specify the necessary signing certificate.
Good.

Basic Build Settings
The build settings for your product are the key to the selection of the profile and the
signing identity.

The (INFOPLIST FILE) setting is the name of the precursor for your product’s
Info.plist file. The precursor you see in the Project navigator is almost a complete
Info.plist, but it has some build-setting references that have to be resolved, and it’s
missing some keys. The build process finishes up the file and installs it in the app bundle as
Info.plist.

Note
Info.plist is at the core of most OS X and iOS products; learn more about property list
files in Chapter 23, “Property Lists,” and the content of Info.plist in the “The
Info.plist File” section of Chapter 22, “Bundles and Packages.”

Info.plist is where your app specifies its application ID (CFBundleIdentifier),
which is how the build system can identify the matching provisioning profile.

At least that is how it could go, and did until recently. Now, it has been recognized that
release builds could be ad hoc or for publication, and provisioning profiles may be issued
with wildcard application IDs. So the build settings now include a key,
PROVISIONING PROFILE, that you set to precisely identify the profile you mean; the
popup list will include every profile Xcode knows about. It’s optional now, but Apple
warns that it will be required soon.

The profile knows what signing identity it requires. If you leave the signing identity
build setting (CODE SIGN IDENTITY) to accept a generic “iPhone Developer” or “iPhone
Distribution” identity, the build system will pick the right one. You can select a different
identity, but if it’s one that Xcode doesn’t match to your app, it’s probably the wrong one.

Note
In Chapter 25, “The Xcode Build System,” we’ll get into the way Xcode classifies build
settings by purpose and destination platform. For now, notice that the project template

Distribution Builds 315

puts profiles and identities for iOS devices in device-only special cases. This is because if
you are running a Debug build, you may want to run it on your iPhone (which would require
an iOS developer signature) or the iOS Simulator application (which should not have any
signature). Don’t change the scope of a setting unless you know why you’re doing it;
tidiness is not enough.

If all those ducks are in a row, you’re ready to do an Archive build. Barring special
circumstances.

Adjusting the Build Settings
It may not be so simple. In my work, we’ve had to work on the same basic product, using
three means of distribution:

m A straightforward article that’s headed for the App Store, as I showed you. It needs
development profiles, and a final App Store distribution profile. When we test
though TestFlight, we use the same target—the only difference is that the beta is
registered in the Prerelease tab in iTunes Connect.

m A beta version for ad hoc distribution among devices registered in the developer
portal, perhaps of the current App-Store product, perhaps of the next generation. It
needs an ad hoc distribution profile.

m An in-house version, distributed under our Enterprise license. It must have its own
application ID, because it has to be provisioned out of our Enterprise account, and
Apple won’t let us reuse the App Store version’s ID. It needs a distribution profile of
its own, issued under that program membership.

Let’s tease out the Enterprise-versus-App Store issue first: Two developer-program
memberships means two different teams, each with its own distribution signing certificate
and its own source for provisioning profiles. Xcode’s integration with the provisioning
process weds each target to a single team membership. Our product must have two targets,
one for App Store–related builds, and one for Enterprise. There are two products, each
following an independent path to distribution, and we don’t have to worry about both at
once.

Note
Projects, of course, can have many targets, each with its own team membership. There’s
nothing wrong with keeping the App Store and Enterprise targets in the same project.

Let’s proceed with the other two products: the App Store article and its beta
counterpart.

We don’t have to treat the beta as a separate product. It can share its application ID,
icons, and versioning progression with the release article. If so, the two can share an
Info.plist. It’s easy; all you have to do is clone a “beta” build configuration from the
Release configuration that simply selects the “ad hoc” (beta) distribution profile.

316 Chapter 18 Provisioning

Note
Chapter 25, “The Xcode Build System,” covers build configurations in exhaustive detail,
but here’s the short of it: The process of building an application invokes many separate
tools, each with many options to configure its behavior and identify its inputs and outputs.
A build configuration is a package of those settings. You can have more than one—by
default, you get Debug and Release—to tailor the process to the purpose of a build.

Generating the beta product then becomes a simple matter of choosing the
configuration. If you duplicate the App Store target’s scheme and name it something like
MyApp beta, and select the beta configuration for the Archive action, you can switch
between the release methods just by selecting a scheme from the popup menu in the
toolbar.

Apple doesn’t recommend this for serious development. If your product is already in the
App Store, your beta product is going to be an early version of the next release. If the beta
and the released version share application IDs, the beta will overwrite the public release
app on your testers’ devices. Few people will volunteer to beta-test software if it means
losing the working version. So CFBundleIdentifier, the app ID, has to be different.

CFBundleVersion, what Apple is calling the “build number,” will probably be
different, too. You’ll have many betas for MyApp 1.1, all of them with the same
“marketing” CFBundleShortVersionString (1.1). If the CFBundleVersion is also
1.1, you’ll find that iOS (and the OS X installer) won’t replace the beta app with new
betas—the OS refuses to install an application package that has the same CFBundle-
Version as the incumbent. For an example of a build number, select Xcode→About
Xcode to see the difference between a “marketing” version number (6.1) and a “build”
number (6A1052c).

If the identifier and the bundle version have to be different, then the beta and final
products must each have their own Info.plist, the file that sets those properties (and
others) for an application bundle. Your project does not contain a literal Info.plist;
instead, it contains precursors named Info.plist that must be processed into the
Info.plist to be installed in the application package.

Select your product’s precursor file in the Project navigator, and then select
File→Duplicate. . . (S). Give the new file a suitable name reflecting the target name
and its purpose as a beta. Edit the new file:

m Give the file its own CFBundleIdentifier (bundle ID), because you don’t want
to overwrite the release article on your testers’ devices. You’ll have to register the ID
with the portal, and (for a beta product) have Apple issue an “ad hoc” provisioning
profile for that ID.

m Create names for the betas’ own icon files—your testers would like to be able to tell
the beta apart from the production app. You’ll have to add the icon keys by hand:
The build system creates the icon records from your settings in the target editor, but
for a custom plist, you’ll have to do it yourself. See Chapter 22, “Bundles and
Packages,” for the keys and their meaning.

m Set CFBundleVersion to conform to the build-versioning scheme you’ve chosen.

Distribution Builds 317

m You’d want a beta to have a distinctive name, but leave Bundle name
(CFBundleName) alone. By default, it’s set to ${PRODUCT_NAME}, which is taken
from the Build Settings for the current configuration.

Create such a configuration: Create an “Ad Hoc” build configuration by cloning the
Release configuration in the Project editor. That will add an Ad Hoc variant to all of the
settings in the Target editor’s Build Settings tab. Adjust the settings for the Ad Hoc
variant as needed by clicking the setting’s line and clicking the disclosure triangle to
expose the Ad Hoc configuration: At least, select your cloned Info.plist precursor file,
set Product Name to something that distinguishes the beta version, and select the ad hoc
provisioning profile.

Then create a new scheme for building the beta version: Use Product→Scheme
→Manage Schemes. . . to reveal the list of the project’s build schemes. Duplicate the
default scheme for your product, give it a name (My App Ad Hoc) and click Edit. . . .
For the Archive action, set the Build Configuration to your custom ad hoc
configuration. The scheme will appear in the popup menu in the project window’s
toolbar. You can switch between the beta and final releases instantly.

Eventually, your new version will be good enough that its replacing the old one is no
loss. That’s the point at which you can move on to a TestFlight public beta, using the
scheme you set for App Store releases.

The Build
The goal is to produce an archive from which you can generate a distributable product. To
produce an archive you must have

m The necessary distribution (and in the case of OS X, installation) identities, with
both the public and private keys, in your keychain.

m A provisioning profile that authorizes the kind of distribution you intend.
m A build configuration that selects the proper profile, and an Info.plist that

declares a matching bundle ID.
m A scheme, the Archive action of which designates the correct build configuration.
m The scheme, and a target-device (not simulator) destination, selected in the scheme

popups at the left end of the project window’s toolbar.

Select Product→Archive. Wait. Assuming there are no build errors, the Archives
organizer will appear with your product selected.

Note
This is another of those “if all goes well” situations. If there’s a regular compilation,
linkage, or resource error, you know what to do. If it’s a provisioning problem—the profile,
the identifier, the certificates—every unhappy build is different. In the Documentation
browser, look up the Troubleshooting chapter of the App Distribution Guide, and work from
there.

318 Chapter 18 Provisioning

If you’re headed for an App Store, you’ll have to have registered the app with iTunes
Connect, providing all the necessary marketing, legal, and technical
information—including your application ID. And you must have told iTC that the app is
“Ready for Upload.” (It’s up to you to get the application ready.)

With that done, you can click the Validate. . . button to subject your app to some
automated tests. Then you can click Submit. . . , and tell Xcode to submit the binary to
the App Store.

And that takes you into review and, we hope, to release.

Summary
Provisioning applications for development and release has always been intricate, but it’s
gotten better. Xcode and Apple Developer Programs do what they can to make the
process as painless as possible for as many developers as possible.

But you should understand the underlying principles—what the provisioning system
expects, and how Xcode wraps the process—in case your needs are atypical or if
something just goes wrong. I reviewed the three prerequisites to installing an app on an
iOS device: signature, application ID, authorized device. Everything else is a variation on
the common theme.

With that in mind, the magic Xcode performs with your developer privileges should
have been clearer to you. You saw the interplay of identities, entitlements, and permissions
come together to produce an application you can distribute, whether through an App
Store, or (in the case of OS X applications) by your own means, with at least some
assurance to your users that you are doing no harm.

Part III
Xcode for Mac OS X

Chapter 19 Starting an OS X Application

Chapter 20 Bindings: Wiring an OS X
Application

Chapter 21 Localization

Chapter 22 Bundles and Packages

Chapter 23 Property Lists

This page intentionally left blank

19
Starting an OS X Application

Now you can advance to Xcode skills that apply to OS X development. If you’re a Mac
developer, I hope you haven’t skipped Part II, “The Life Cycle of an iOS Application.”
Most of what I showed you in the iOS part of this book applies to Mac projects as well,
and I won’t be repeating them in these chapters.

By the same token, if your interest is in iOS, don’t stop reading. You aren’t done yet!
Bundles and property lists aren’t the priority for you that they are in OS X, but you have
to know about them and their place in Cocoa development. In particular, have a look at
the section on Info.plist in Chapter 22, “Bundles and Packages.”

What you’re going to do now is to port the Passer Rating iPhone app to OS X.
Because you kept a good separation in the Model-View-Controller design, the model
layer of the application could come through unchanged (though you’re going to expand it
a bit). The view and controller layers will be all new; the human-interface layers for the
two platforms, UIKit on iOS and AppKit on the Mac, share some concepts but are very
different.

Warning
This chapter builds upon the work in the iOS Passer Rating application. The narrative
concentrates on the workflow of setting up an OS X application, at the expense of
complete transparency about everything that was needed for the adaptation. After you
have Xcode instantiate the project template, you must download the sample code (if you
haven’t already), or you won’t be able to follow along. The tradeoff was not easy for me to
make, but the alternative was to drown the Xcode techniques (the subject of this book) in
code listings and diffs. I’ll guide you through the process, but have the finished code for
this chapter handy so you can fill in the gaps.

The Goal
A desktop application is a different sort of thing from a mobile app. Desktop apps present
their information in windows, and users expect data-handling windows to represent
documents, each of which stores its data in its own file. Mac Passer Rating could present only
one window for only one data set, but as you’ll see, it’s not much more trouble to work

322 Chapter 19 Starting an OS X Application

with documents. That way, the user can organize passer statistics into leagues, which he
can exchange with others.

The top level of the iOS Passer Rating app was a list of passers. Does that make sense if
you have more than one document? If you have documents for discrete leagues, it may be
better if you take teams as the root of the data set. This will entail a slight rework of the
data model, which I’ll get to presently.

So a league (the document) has a list of teams. Each team has a list of passers that have
(at least for a time) played for it. Each passer has a list of game performances. When you
were working on the iPhone screen, you were restricted to showing only one level of the
hierarchy at a time. On the desktop, you can make it all visible. Something like
Figure 19.1 is what you’ll be shooting for.

Getting Started
Starting a Cocoa application project is scarcely different from what you saw in Chapter 2,
“Kicking the Tires”: Select File→New→Project. . . (N), which will give you an
empty workspace window and a New Project assistant sheet. Select OS X→Application
from the master list at the left, and the Cocoa Application icon from the array at the right.
Click Next.

Now you come to the panel of project options, and there are quite a few of them.

m Product Name will be Mac Passer Rating. It’s a dumb name for an
application—the user knows she’s using a Mac, and doesn’t care that there are other
versions—but it helps you keep track of things if the project has a distinctive name.
You can rename the product later by seeking out “Product Name” in the Build
Settings tab of the Target editor.

m The Organization Name—the copyright holder—your name (Fritz Anderson).

Figure 19.1 Mac Passer Rating as we want it to look, at least for the purpose of this example. A
document represents a “league” composed of teams (left table). Selecting a team fills the upper

table with the passers who have played on it. Selecting a passer lists all of his game performances
in the lower table. Clicking on a game brings up a popover window with the details.

Getting Started 323

m Company Identifier forms the prefix for the application ID. For my purposes, this
is com.wt9t. Enter your own.

m The Bundle Identifier concatenates the company identifier and the product name.
This is how the application will be identified to the system and (if you intend to sell
through the Mac App Store) to Apple. The field isn’t editable; it’s just for your
information.

m The choices for Language are Objective-C and Swift. We are Modern, so select
Swift.

m Yosemite and Xcode 6 bring storyboards to Mac development; we want one. Check
Use Storyboards.

m Check Create Document-Based Application because the app will produce
documents. The document options in this panel have big effects on the boilerplate
code Xcode’s template will produce for you.

m OS X relies on filename extensions to regulate which files go with which
applications. Mac Passer Rating won’t be sharing any common document types, so
fill Document Extension with something distinctive like leaguedoc—you
shouldn’t include a dot. Don’t feel you have to restrict yourself to three or four
characters: The people who use Mac Passer Rating won’t ever have to type the
extension.

m You used Core Data for iOS Passer Rating, and you’ll use it here. Check Use Core
Data.

Now click Next, which drops a select-directory sheet for you to place the project
directory (which will be named Mac Passer Rating, like it or not). Make your choice,
check Create git repository on, select an Xcode server if you have one, My Mac if not,
and click Create. The Workspace window now fills with the skeleton of the application.

m Document.swift defines the class that loads and stores the league data, and
presents it for display and editing. Document is the controller class in the Model-
View-Controller pattern. AppKit, the Cocoa framework for Mac applications,
encompasses a sophisticated scheme for managing documents, centered on the
NSDocument class. NSDocument responds to requests to read, save, present, or edit
its data; your document subclass merely customizes the standard behavior.
Because you asked for a document that uses Core Data, Document is a subclass of
NSPersistentDocument, which does even more for you. It takes care of loading
and saving data, and it handles undo and redo events.
Let’s start now on renaming classes and files so they make sense for their roles in the
application: Do a global replace to change Document to LeagueDocument;
WindowController to LeagueWindowController; and ViewController to
LeagueViewController. Remember to set the last segment of the Find popover
to Matching to find only the exact words, and to update the file names.

324 Chapter 19 Starting an OS X Application

Warning
This doesn’t do the whole job. The Find navigator promises to change the class names in
the storyboard, but you will have to select each of these objects, and change their class
names with the Identity inspector.

You’ll also want to rename the window-controller scene (Identity inspector,
Storyboard ID “League Window Controller”).

m Document.xcdatamodeld is an empty data model for the original Document
class. We’ll be deleting it—we have a nearly complete model from Passer
Rating—but not yet.

m Images.xcassets is a container for icons and the images you will use in your
application. Image sets relieve the burden of tracking the ever-proliferating gaggle of
images in various sizes and resolutions that go into a modern application. See the
“Image Sets” section of Chapter 13, “Adding Table Cells,” for the details.

m Info.plist, in the Supporting Files group, is a precursor to the Info.plist file
that describes the properties and behavior of the application to the Finder and
Launch Services. The General and Info tabs of the Target editor provide a
(relatively) simple way to customize this file. Remember, the “Bundles and
Packages” and “Property Lists” chapters will tell you more about Info.plist.
InfoPlist.strings provides a dictionary that matches Info.plist entries to
translated versions.

m Were this an Objective-C project, Supporting Files would include Mac Passer
Rating-Prefix.pch, the source for the project’s precompiled header. Review the
“Precompilation” section of Chapter 5, “Compilation,” for a review.

m Main.storyboard will be compiled into the human interface for the application.
m AppDelegate.swift defines AppDelegate, the application-delegate class. It is

rare that you’d have to subclass NSApplication, AppKit’s fundamental application
class; every customization you’d routinely need can be done through the delegate.
Mac Passer Rating doesn’t need even that: we won’t touch the file.

As with the iOS template, Mac Passer Rating is runnable as is. Select Product→Run
(R). In a moment, you’ll be running the application, which won’t look like much—just
a menu bar with Mac Passer Rating in it. Select File→New→File. . . (N), and
you’ll see a document window that you can close, resize, and even save to a file that will
reopen if you double-click it in the Finder. See Figure 19.2.

Note
If you save a document file at this stage, be sure to delete it. You’ll be changing the data
model for Mac Passer Rating. Once upon a time, Core Data would simply crash and leave
you guessing, but now it throws an exception with the description, “The autosaved
document. . . could not be reopened. The managed object model version used to open the
persistent store is incompatible with the one that was used to create the persistent
store.” Watch the debugger console.

Model 325

Figure 19.2 The document-application template is runnable as is. You can create a new
document and save it to a file that you can reopen in the Finder. I got eager, and filled in the AppIcon

set in Images.xcassets, to be picked up by the standard About box.

Warning
NSPersistentDocument is supposed to handle all of the standard behaviors of an OS X
document: Creating, reading, editing, and saving. You need only add the specifics for your
application. However: If you select File→Duplicate. . . , S, and save the new file,
AppKit will write what appears to be a document file, plus files of the same name with
-wal and -shm appended. Without these, the document file will be rejected as corrupt.
This has been the case through two major revisions of OS X. The best solution as I write
this is the open-source BSManagedDocument class, from Mike Abdullah.

Once the novelty has worn off, you’ll want to turn this application into something
about football.

Model
As I said, adding a third level to the hierarchy—the team—requires a rework of the model.
The data model and supporting classes from the iOS Passer Rating app are a good place to
start.

Now we can throw Document.xcdatamodeld away in favor of the existing one.
Select it in the Project navigator and press Delete; when Xcode asks what you want to do
with it, click Delete. The name of the model file doesn’t matter, so don’t worry about the
replacement’s having another; by default NSPersistentDocument loads all the compiled
.mom files and merges them into a single model.

326 Chapter 19 Starting an OS X Application

Porting from iOS
Select File→Add Files to “Mac Passer Rating”. . . (A) to drop a get-file sheet.
(The command is available only if the Project navigator is visible.) Navigate to the
directory containing the source for the iOS Passer Rating app, and select these files (hold
down the Command key to select more than one file):

m SimpleCSVFile.swift

m rating.swift

m The mogenerated directory, or whatever container you had for the Game and
Passer classes

m Passer Rating.xcdatamodel (Data-model files are portable between OS X and
iOS projects.)

m Extensions.swift

m Utilities.swift

You’ll have to adapt some of the files to OS X—some import UIKit, and
Extensions.swift should lose the extensions to UITableView and
NSFetchedResultsController.

Note
If you didn’t follow along in the iOS part of this book, you can recover these files from the
sample code. If you arranged your iOS source directory so that some files are in different
subdirectories, you’ll have to make a different add-files pass for each directory.

Check Copy items into destination group’s folder (if needed); select Create
groups for any added folders so the mogenerated class files come in individually, and
not as whatever their directory happens to contain when you build; and make sure Mac
Passer Rating is checked in the Add to Targets table. Click Add. The files appear in
the Project navigator; you’ll want to select them all, issue File→New→Group from
Selection, and rename the resulting group something like Model.

Note
This would be a good time to commit the project to the local repository.

Adding an Entity
The next step is to factor (database-savvy developers would say normalize) ourTeam out of
Game and into a new entity, Team. Click on Passer Rating.xcdatamodel, and (using
the skills you picked up in Chapter 9, “An iOS Application: Model”) create the Team
entity, with one attribute, teamName. teamName should be a string, indexed, not
optional, and with an obviously invalid default name like UNASSIGNED NAME. Add a
relationship, games, tracing to many of the Game entity; deletion should cascade.

Game can lose the ourTeam string attribute, and gain team, a to-one relationship to
Team, nullifying on delete. Be sure to set up this relationship as the inverse of Team’s

Model 327

games. When you’re done, the diagram view of the data model should look like
Figure 19.3.

As with Passer and Game, you will want to add a convenience method that will
generate a Team; that will require an NSManagedObject subclass to wrap the Team entity.

You’ll still have to create the Team class, and you’ll need to bring the existing machine
classes up-to-date with the changed model. Select the Team entity in the Data Model
editor, expose the Core Data inspector (third tab at the top of the Utility area), and set
Class to Team.

Now open Terminal, and regenerate the class files:

$ # cd to the same directory that includes Passer Rating.xcdatamodeld.
$ cd 'whatever/Mac Passer Rating'
$ # Run mogenerator.
$ mogenerator --model Passer Rating.xcdatamodeld \

--output-dir mogenerated \
--swift

3 machine files and 1 human files generated.
$

Note
mogenerator will preserve the human-editable Game.swift and Passer.swift files,
so there’s no danger in running it on this new project. If you haven’t kept the old code
around, you can find the directory in the sample code for the end of this chapter. Note well
that Part III will rely on Passer.swift and Game.swift as they were before Chapter 17,
“An iOS Extension.” This project won’t include any extensions, and there will be no
app-group container or system-wide store.

Figure 19.3 For the Mac, the Passer Rating model adds a Team entity. Each Team relates to
many Games. Game’s ourTeam string attribute goes away, as its purpose is served by

team.teamName.

328 Chapter 19 Starting an OS X Application

Use File→Add Files to “Mac Passer Rating”. . . (A) to add the mogenerated
directory to the project. It should go into the Mac Passer Rating target and be added as a
group of files, and not a reference to a living folder.

We were going to add a convenience method to Team so we can find and create Teams.
Turn to Team.swift, and create the method and a couple of derived properties:

import Foundation
import CoreData

@objc(Team)
class Team: _Team {

class func teamWithName(name: String,
context: NSManagedObjectContext,
create: Bool)

-> Team?
{
var retval: Team? = nil

let fetch = NSFetchRequest(entityName: "Team")
fetch.predicate = NSPredicate(
format: "teamName = %@", name)

var error: NSError? = nil
let result = context.executeFetchRequest(fetch,
error: &error)

if let records = result {
if records.count > 0 {

retval = (records[0] as! Team)
}
else if create {

retval = Team(managedObjectContext: context)
retval?.teamName = name

}
}
else {
NSLog("\(__FUNCTION__): Could not execute a fetch of \(name)")

}
return retval

}

var ownTotalScore: Int {
return self.games.valueForKeyPath("@sum.ourScore") as! Int

}

var oppTotalScore: Int {
return self.games.valueForKeyPath("@sum.theirScore") as! Int

}

Model 329

var passers: [Passer] {
let unionOfPassers =
self.games.valueForKeyPath("@distinctUnionOfObjects.passer")
as! NSSet?

if let passerSet = unionOfPassers {
return passerSet.allObjects as [Passer]

}
else {
return []

}
}

}

The model has changed, and Passer and Game should change. Where you create a new
Game, in csvFile:readVal̄ues:error:, use teamWithName(, context:,
create:) to link up to a Team rather than recording the ourTeam string directly:

newGame.team =
Team.teamWithName(values["ourTeam"]!,
context: context, create: true)!

Elsewhere, wherever a team name was referenced through ourTeam in Game, refer to
team.teamName. For instance, in Passer.swift:

var teams: [String]
{

let theGames: AnyObject =
self.games.valueForKeyPath(

"@distinctUnionOfObjects.ourTeam")!
return theGames.allObjects as! [String]

}

becomes

var teams: [String] {
let theGames: AnyObject =

self.games.valueForKeyPath(
"@distinctUnionOfObjects.team.teamName")!

return theGames.allObjects as! [String]
}

And remember to revert existingPasserByName(, last:, context:) to the
version that looked up Passers in a particular NSManagedObjectContext, instead of
keeping one in-memory table for the whole app:

class func existingPasserByName(first: String!,
last:String!,

330 Chapter 19 Starting an OS X Application

context: NSManagedObjectContext!
-> [Passer]

{
. . .

And make sure existingPasserByName(, last:, context:) uses Core
Data—the passers have to be found in the specified context, not pulled in from a global
dictionary:

let fetchStrategy:PasserFetchStrategy = .StraightCoreData

Note
You’ll want to refer to the sample code for the end of this chapter for all the details.

Wiring a Menu
Let’s get this thing doing something before we go much further. Will LeagueDocument
load up some sample data (yes, the same .csv sample you labored with on iOS) and
display at least some team names?

The first thing to do is to add a menu item to Mac Passer Rating’s Edit menu to load
up a document. Select Main.storyboard in the Project navigator; Interface Builder will
appear with three scenes in the canvas: the Application scene, the Window Controller
scene, and the View Controller scene. We’re interested in the Application scene, which
consists of placeholders for the App Delegate and First Responder, plus the Main Menu.

Main Menu embodies the application menu bar. The OS X project template starts you
with a loaded-out menu bar ready for grammar-checking, rich-text tables, and more.
Click the Edit label in the Application scene to drop the Edit menu down. The lower
half of the menu contains a lot of items having to do with searching and speech that don’t
fit Mac Passer Rating. Click on each, and press Delete.

While you’re at it, delete the Format and View menus, too; but take care to close the
menus before pressing Delete: In the peculiar hierarchy of AppKit menus, the menu bar is
a menu; it contains menu items, whose contents may themselves be menus. If you try to
delete an open Format menu (for instance), Xcode will delete the menu, but not the
menu item that contained it. You can tell by the fact that a gap remains in the menu bar
where the menu was. Select that and delete it; or close the menu so the Delete key will
kill both the item and the menu it contains.

You add a menu item by dragging it from the Object library (in the lower part of the
Utility area, third tab) into the menu. Type menu into the library’s search field. Find
“Menu Item,” and drag it to the bottom of the open Edit menu. See Figure 19.4.

Double-click in the Item label, and replace the name with Fill with Test Data;
and in the blank area at the right end of the menu item, double-click, hold down the
Command key, and press t to make the key equivalent T.

Wiring a Menu 331

Figure 19.4 Dragging a new menu item into a menu.

Note
When I did this, I held down the Shift key to get what I thought would be a capital T. This
resulted in a key equivalent of T; not what I wanted. I reselected the field and hit
Delete; this made the key equivalent Delete. This is a good time to make friends with the
Attributes inspector, the fourth tab in the upper part of the Utility area. When you have a
menu item selected, the top two fields are Title and Key Equivalent, and the latter has an
x button to clear it.

Target/Action
Now you want the menu item to do something. As in the iOS app, user-interface elements
direct a message (an action) at an object (the target) when they are triggered. You haven’t
written the action method yet, but you can make up a name for it: fillWithData:.

What about the target? You’ll search Main.storyboard in vain for a reference to
LeagueDocument—that’s a class that’s associated with individual documents, not the
application as a whole. To what Cocoa object will you assign the task of responding to
fillWithData:? I don’t know, says a stubborn part of your subconscious, anything that
wants to respond to it, I guess.

This turns out not to be a stupid answer in Cocoa. AppKit keeps a continually updated
responder chain, a series of potential responders to user actions. The chain begins at the
“first responder,” which may be the selected view in the front window, and then proceeds
to the front window, the window’s document, and finally to the application itself. You
may have noticed that each scene in the storyboard has in its title bar (when the scene is
selected), and in its listing in the document outline, a red cube, which represents the First
Responder. A user interface control can designate the First Responder, whatever it
may be at the time, as the target of its action, and AppKit will shop the action up the
responder chain until it finds an object that can handle it.

332 Chapter 19 Starting an OS X Application

Note
The responder chain is a little more complicated than that. For more information, consult
Apple’s documentation for NSApplication, NSResponder, and the related Programming
Topics articles.

Note
Like the other placeholder icons in Interface Builder scenes, First Responder does not
literally exist in the storyboard. It is a proxy, a way for objects within the storyboard to
make reference to outside objects. These are File’s Owner, which is the object that
caused the compiled storyboard to load; First Responder, the current starting point for the
responder chain; and Application, the NSApplication object that embodies the
application as a whole. If you don’t see a Placeholders section, click the boxed-triangle
button next to the bottom of the sidebar to expand it to labeled icons.

First Responder
If you try control-dragging an action link from the new menu item to the First
Responder icon, you’re balked. Interface Builder presents a HUD for the link, asking you
to choose the method selector for the desired action. The list it presents does not include
fillWithData: because you just made that up. Before you can make the link, you have
to tell Interface Builder that fillWithData: is a possible action.

Interface Builder allows you to do this by selecting the First Responder object in the
top bar of a scene, or in the document outline, and exposing the Attributes inspector
(fourth tab). The inspector shows an empty table for user-defined actions that a responder
might answer to. Click the + button, click the new row to put focus on the table, press
Return to make the Action label editable, and type fillWithData:. The “Type”
column presents a combo field of possible control types that might send that action; you
can leave it as id, the generic object type, unless you want IB to offer to originate the
action from senders of that type only. We don’t care. Interface Builder now knows that in
this storyboard, fillWithData: is one of the actions a responder might perform.

Note
In AppKit, action methods must take one argument: fillWithData:, with a colon, not
fillWithData, without—the names are distinct. If you leave the colon off, IB will
supply it.

Now you can control-drag from the new menu item to First Responder, and the HUD
will contain fillWithData:. The display will even be scrolled close to it, as a rough
match for the item’s label. Make the connection. See Figure 19.5.

Note
The Connection inspector (sixth tab in the inspector portion of the Utility area) affords
another way to make the connection—and to break it. Select First Responder and the
Connection inspector. The “Received Actions” section fills with the same long list of
actions you saw in the connection HUD when you control-dragged to the FR icon, but it’s
larger and easier to scroll. Next to each selector is a bubble; dragging from it to the menu

Wiring a Menu 333

Figure 19.5 Control-dragging from a menu item to First Responder produces a heads-up window
that includes fillWithData:, the method we had added to the First Responder’s repertoire of

action methods.

item would make the connection, and a label would appear showing where the connection
went to. An x button next to the connection label lets you break the connection.

Loading Data into LeagueDocument
Importing the .csv file is simple—most of the work was done on the iOS side. Add
sample-data.csv to the project, then edit fillWithData() into
LeagueDocument.swift:

@IBAction
func fillWithData(sender: AnyObject) {

let mainBundle = NSBundle.mainBundle()
if let csvPath = mainBundle.pathForResource(

"sample-data", ofType: "csv") {
var error: NSError? = nil
let success = Game.loadGames(csvPath,

context: self.managedObjectContext,
error: &error)

}
}

334 Chapter 19 Starting an OS X Application

Attaching the @IBAction directive to fillWithData() tells Xcode that the function is
eligible to receive commands from UI elements; in response, Xcode puts a connection
bubble in the gutter next to the declaration. If you put LeagueDocument.swift in the
assistant editor for Main.storyboard, you could drag from the bubble to any element
that could send a command—a menu item, a button—and from then, triggering the
control would trigger the action.

In this case, the connection bubble is not filled. Edit→Fill with Test Data (T)
gets sent to First Responder, not the document itself. It would not be accurate to show
the connection on that particular function, because for all Xcode knows, the responder
chain might hit another object implementing fillWithData() first.

Adapting to a Managed Document
For Passer Rating, we set up the Core Data stack in the application delegate. This makes
sense: There is only one data store for the whole application.

A OS X application built upon Core Data–backed documents is a different matter.
Every document has its own store, managed by the NSPersistentDocument superclass
of the LeagueDocument object. NSPersistentDocument is lazy: You can perform as
many Core Data operations as you please in its managed-object context, but the backing
data store is never created until the document itself is saved for the first time.

When will that first save happen? You don’t know. Xcode’s project template starts you
on an app that adopts the autosaving, state-restoration, and versioning behavior expected
of modern apps. The user can request a save to mark progress or to choose the name and
location of a document, but before that happens, the system will save the contents even of
an “untitled” document deep within the user’s Library/ directory.

And until that first autosave happens, the Core Data context will have no store, and
calling save() to write into it will cause an exception. Passer Rating, having a data file
from the start, could save the managed-object context periodically in the run of
Game.loadGames(); Mac Passer Rating can’t.

Edit loadGames() to get it out of the business of writing to the data store:

public
class func loadGames(csvFilePath: String,

context: NSManagedObjectContext,
error: NSErrorPointer)

-> Bool
{

let csvFile = SimpleCSVFile(path: csvFilePath)
var parsingError: CSVError? = nil

parsingError = csvFile.run { (values) in
let newGame: Game! = Game(managedObjectContext: context)
assert(newGame != nil, "Could not create a Game")

let passer:Passer = Passer.passerWithFirstName(
values["firstName"]!,

Wiring a Menu 335

last: values["lastName"]!,
context: context)

passer.enqueueGame(newGame)
passer.currentTeam = values["ourTeam"]!

for key in allGameNumericAttributes {
newGame.setValue(values[key]!.toInt(),

forKey: key)
}
newGame.team =

Team.teamWithName(values["ourTeam"]!,
context: context, create: true)!

newGame.theirTeam = values["theirTeam"]!
newGame.whenPlayed = DATE_from_yyyy_MM_dd

(values["whenPlayed"])
return nil

}

if let pError = parsingError {
if error != nil { error.memory = pError.nsError }
return false

}

Passer.flushGameQueues(context: context)
return true

}

Also, I cut sample-data.csv down to just 8 seasons, from the 40 we had in Chapter 16,
“Measurement and Analysis.” We’re through with torture tests.

Note
The “DATE” in the listing is not what you’ll find in the sample code. The name of that
function, defined in Utilities.swift, begins with the Unicode emoji for a calendar leaf.
I have too much fun.

Testing the Command
This is enough for you to see whether the menu command works. Set a breakpoint at the
beginning of fillWithData:. Run Mac Passer Rating. With Yosemite’s state-restoration
feature in place (you can turn it off in the Options tab of the Scheme editor’s Run panel),
you may see the document window from your first run; if not, make a new one with N.
Save the document (anywhere, any name). Then select Edit→Fill with Test Data
(T).

336 Chapter 19 Starting an OS X Application

Note
If the command is dimmed (inactive) check Main.storyboard to see whether it’s
connected to First Responder. AppKit will activate a menu item only if something in the
responder chain implements its action method.

Two things will happen. First, the breakpoint you set at the beginning of
fillWithData: will trigger, so you know the menu item worked. Second, if you
continue, the title bar will add the gray Edited flag, to show that the command resulted in
a change of the document’s contents—even if you can’t see it.

Now save the document—File→Save. . . (S). This gets you the save-file sheet you
expect, but you might not have expected the File Format popup menu it contains. On
iOS, Core Data stores are SQLite database files. On OS X, where Core Data originated,
there are three types of stores: SQLite, Binary, and XML.

m SQLite is the most useful for most purposes. It’s fast, and can handle data with
hundreds of thousands of records. The SQL layer gives you more sophisticated
search predicates and statistical fetches (like the @sum of all the completions in all
of a Passer’s Games).

m But for smaller data sets, SQLite files are bulky, and aren’t big enough for the
efficiencies of a true database to be apparent. The Binary format provides a
compact format that is faster for small data sets. It does not, however, give you the
sophisticated queries and calculations a relational database provides.

m XML stores are adequate for small data sets, but the real purpose is for debugging:
The format is human-readable, so you can write out just enough records and
relationships to exercise the feature you’re investigating, and see how the store
reflects it.

Saving in the respective formats will get you files with the extensions .sqlite,
.binary, and .xml. Descriptive, but they don’t associate the files with your app, and
affording all three types of storage isn’t an attractive feature for most users.

Identifying a Type for League Data
Matching an application to its file types is one of the many functions of Info.plist.
The Target editor (click the top row of the Project navigator, and make sure the Mac
Passer Rating target is selected) provides a special editor for Info.plist in the Info tab.
The categories we’re interested in are Document Types, which describes how a
document file relates to the application, and Exported UTIs, which describes how such
files are to be treated by the system in general.

Click the disclosure triangles for both; we’re going to add a Uniform Type Identifier
(UTI) for League data, and pare the document type down to a reference to the UTI. See
Figure 19.6.

Start with the UTI. We’re going to define the type ID com.wt9t.league for the
content of League files. A League file has

Wiring a Menu 337

Figure 19.6 The template for a Core Data document–based application defines the document
file only in terms of the app. It’s cleaner to separate the type definition (which you define for a

Uniform Type Identifier) from the document definition (which declares what Mac Passer Rating, in
particular, does with League files).

m A Description of League File, which is what will be shown as the file type in
the Finder.

m The Identifier com.wt9t.league.
m An Icon named League, which we will add to Images.xcassets soon.
m The type Conforms To public.data. UTIs are defined as refinements of

well-known types. For instance, a system that doesn’t know how to handle an XML
property list might be able to fall back to com.apple.property-list,
public.xml, public.data (a byte stream), or public.item
(“something-or-other”).
The most useful references to UTIs are in UTType.h and UTCoreTypes.h. The
command line open -h UTType.h will find a header file and open it in the
default editor for C headers; if you prefer a different application, add -a
applicationName.

338 Chapter 19 Starting an OS X Application

m Extensions—you have only one, leaguedoc. Don’t include the dot. Strangely, the
template for application targets asks for an extension, but never records it anywhere.

m Mime Types—use the most generic, application/octet-stream.
m You won’t be publishing a reference for the type as a Reference URL; you don’t

want to put the data on the clipboard, so you don’t need Pboard Types; and sadly,
the pre-OS X document-type identifiers (OS Types) are all but unsupported. Leave
them all blank.

A League file will be an SQL Core Data store, and as you’ve seen, that’s a special case
for documents. Open the Additional exported UTI properties subview, and click in
the table that appears. Type Core in the Key column; you should be offered the
completion “Core Data persistent store type;” make it a String, and select SQLite as the
Value.

Specifying How the App Handles League Files
The Document Types entry can now be reduced to a description of how Mac Passer
Rating handles League documents, plus a reference to the com.wt9t.league for the
system-wide details.

m Remove all the “Additional document type properties” by clicking the x buttons at
the top-right of each. The UTI supplies that information.

m The Name is, once again, League File. The Finder, through Launch Services,
would use this string to display the file type if there were no UTI definition, but the
name is still used within the NSDocument system as an in-app label for the
document type.

m The Uniform Type Identifier is com.wt9t.league.
m Class tells AppKit which of your NSDocument classes handles this type of

document. You rarely have to write a dispatcher of your own; this item tells the
loader, NSDocumentController, the name of the class, which is enough to
instantiate (in our case) a LeagueDocument object, which can take care of reading,
display, and writing from there.
This used to be simply the name of the class, but Yosemite introduces modules,
which segregate class names among the libraries in an application. The full name of
LeagueDocument is Mac Passer Rating.LeagueDocument. The module
name, before the dot, identifies the class as being a part of the application’s main
module, which is named after the app, with non-alphanumerics replaced by
underscores.
The app product’s name is apt to change over the course of development, so Xcode
fills this in as $(PRODUCT MODULE NAME).LeagueDocument. The build variable
PRODUCT MODULE NAME will be filled in with the correct name when Info.plist
is copied to the application package.

m Mac Passer Rating’s Role for League files is as an Editor. This cues Launch Services
about what happens when the user double-clicks a file icon, or selects the Finder’s

Wiring a Menu 339

File→Open With menu. A “viewer” app can read the file, and possibly convert
the contents into a document it can save; an “editor” can open, save, and create the
file; and a role of “none” means that while the file is associated with the app—the
app may define the file’s icon and type—it isn’t a document, and the Finder should
not open the app when the file’s icon is double-clicked.

m You have to provide a UTI, or an Extensions list, or Mime Types for a document
type. We have a UTI, so the other two fields should be left blank.

m There’s no need to define an Icon; the UTI does that.
m Keep Bundle: Document is distributed as a bundle unchecked. A bundle

document looks like a single, indivisible icon in the Finder, but is in fact a directory
containing the components of the document. That isn’t the case here. Chapter 22,
“Bundles and Packages” will tell you more.

Application and Document Icons
I had you set the icon for com.wt9t.league to “League.” As part of my preparation for
this chapter, I put together a set of icon images for both the application and the document.
See Figure 19.7. When you select Editor→New OS X Icon while editing
Images.xcassets, you are given an image set with five point sizes (16, 32, 128, 256,
and 512), in single and double resolutions. These get compiled into an icon-set .icns
archive, and when the Finder needs to render the icon, it can pick the image that fits best.

Ideally, each image would be crafted to its purpose, showing richer detail in the larger
sizes, and clear, assertive shapes in the smaller. Those choices would be reflected in the two
resolutions for each size: ten images in total.

In practice, when the 2x image for one size has the same pixel count as the 1x image
for the next, people copy the same image over. They create the bitmaps from the same
vector drawing. If you are just meatballing it, you can get away with a 128×128 image,
and accept the way it gets fuzzy as the OS scales it up and down.

Figure 19.7 A full icon suite for OS X comprises up to ten images. In practice, some sizes can be
omitted, and the double-resolution image for one size can be duplicated to serve as the

single-resolution image for the next larger.

340 Chapter 19 Starting an OS X Application

Note
If you can get a PDF vector rendering of an image, you have a better option: One of the
options in the Attributes inspector for an image set is Image Set: Types. Choosing Vectors
from the popup reduces the set to a single “Universal” slot. Drop the PDF into it, and
NSImage or UIImage will render it in any size you need. The result is as sharp as any
bitmap you could provide. Be aware that the rendering will scale lines as well, so a
three-point line in a large view may become a hairline in a small one. Sometimes you want
this, sometimes not.

One of the image sets contains the Passer Rating logo superimposed on a generic
document icon. I named the set League. When it builds Mac Passer Rating, Xcode
generates League.icns from the image set, and includes it in the application bundle.

However, the .icns archive exists only in the finished application; it’s nowhere to be
found in the project directory. When you type League in the Icon field, Xcode renders it
as a gray question mark. If, on the other hand, you composed the .icns yourself (there is
an Icon Composer app for it in the add-on Graphics Tools for Xcode package), you could
drop it into the image well, and Xcode would add the archive to the project.

The file specification, cut down and tailored to Mac Passer Rating, should look like
Figure 19.6, bottom. Now, when you save a League file, Finder will recognize its relation
to the app, and display it accordingly (Figure 19.8).

Figure 19.8 Filling in the specs for the document-file type provides a name and icon
for the file type.

Summary 341

Summary
This chapter started you off on some new Xcode skills, against the background of an OS X
version of the passer-rating project. To do this, you had to go through some conversions:
You created a document-based Core Data application, and you imported existing code.

You saw that modern Mac applications are built from a storyboard with at least two
root scenes: the Application scene, which contains the main menu bar and the application
delegate; and the controller for the app’s document windows. This posed a conundrum
when an app-wide facility—a menu command—had to communicate with a
document-specific facility: editing the content of a specific document when the screen
might contain many. You learned how the First Responder proxy in Interface Builder, and
the responder chain, bridge the gap.

Finally, we adapted the way Mac Passer Rating must cooperate with OS X’s policies for
saving and displaying files: Because the OS will save the file autonomously, we let go of our
own Core Data saves. We also committed to a choice of file formats, and identified Mac
Passer Rating’s league files as belonging to the application, and carrying a distinctive icon.

This page intentionally left blank

20
Bindings: Wiring an OS X

Application

If you have another look at Figure 19.1, you’ll see that even in the abbreviated form Mac
Passer Rating will take, there will be more than 20 pieces of information distributed across
4 displays, to be filled in, edited (in some cases), and coordinated across updates. This is
going to involve some tedious, repetitive code and a lot of communications infrastructure
through the network of objects, isn’t it?

Not as much as you’d think. AppKit (the Mac-specific part of Cocoa) offers a facility
called bindings, supplemented by NSController classes, which are subtle when you first
encounter them, but once you master them, can cut your coding burden by an order of
magnitude.

Note
Experienced Mac programmers—and Apple itself—will warn you: Bindings are an
advanced topic. If this were a book about AppKit, I’d be taking you through an initial round
of doing it the “easy,” though verbose, way. My purpose in this book is to show you how to
take advantage of Interface Builder’s support of bindings, which is a major feature.

Storyboard Segues in OS X
Apple made storyboards available to OS X applications in Yosemite and Xcode 5. The
relationship among controllers in a desktop application is much more complex than in a
mobile one: Most segues among iOS view controllers replace one full-screen controller
with another. You can embed a controller within another’s scene, but it’s a matter of
convenience more than necessity.

It’s different in OS X. Application windows typically depict the whole content of
documents; they contain discrete and largely independent displays of that content.
Yosemite expects that nontrivial windows will be tiled with several view controllers, and
each may in turn contain others. Containment is a feature in an iOS scene; it is the

344 Chapter 20 Bindings: Wiring an OS X Application

essence of an OS X scene. Named segues link child scenes to parents, just as the transition
segues do in iOS.

Let’s take a moment for the strategy behind putting a nested chain of all-but-
independent view controllers on the screen at once. I want to talk about the structure of
the league window as it will be when we’re done, because it’s important to understand from
the start how to reconcile the quasi-independent nature of OS X view controllers with
their need to share focus on one set of data. This chapter tells the story of how, precisely,
to approach that problem. We’re on a journey. What’s the reward?

Not every relationship among storyboard scenes is a segue; you saw it in iOS, where a
UINavigationController’s root-controller relationship doesn’t trigger a prepare-
ForSegue(, sender:) anywhere: It’s more like filling the navigation controller’s
rootViewController property as if it were an @IBOutlet.

You see much more of the segue-that-isn’t in OS X storyboards, because it’s so
common that multiple view controllers will coexist in a single window. In the league
window you see in Figure 19.1, there will be three: The window controller’s window
contains a split-view controller—Interface Builder will draw a line from the window to
the split-view scene. In turn the two halves of the split view will link to the separate view
controllers for the league list and the team detail.

The relationships those lines represent do not trigger a prepareForSegue(,
sender:) message to the parent controllers. You can’t name them. In fact, they have no
configuration at all—the Attributes inspector is blank when you select one.

There’s a second factor: NSDocument, and therefore LeagueDocument, loads the
window controllers that will present its content from the storyboard and binds the
controllers to itself with addWindowController. But it has no control over when the
controllers will be ready to receive its contents: Window controllers load their windows
lazily. The document can pass the data itself to the controllers, but they won’t yet be able
to render it because the windows and their constituent views don’t exist. Only when some
application event calls for putting them on the screen, or some func asks for the
controller’s window property, will AppKit instantiate them, their view hierarchies, and if
needed, their chain of sub-view controllers.

Note
It’s common that developers will exercise a bit more control over window instantiation by
calling window and throwing the actual value away: windowController.window.

Once the window exists, a controller can receive data for it without having to make a
special case of accepting it but waiting to push it to the view layer. When both controller
and view are ready, the document object will receive windowControllerDid-
LoadNib(). The parameter will point to the controller, so the document can push its
data into it. The controller, in turn, parcels the data out to its subcontrollers and views.

Note
It’s a tempting thought that Interface Builder should be able to connect a document or
window controller directly to its subcontrollers by way of @IBOutlets. It’s so simple, so

Building the Document Window 345

direct, that you’ll spend hours trying to figure out how to do this one little thing (as I did),
and why the documentation won’t tell you how. I’ll save you the trouble: IB won’t let you
do it. You remember from iOS that you can’t string outlets between view controllers. It’s
the same here; that the controllers will all be on-screen at the same time doesn’t change
it. You have to sew up all the relationships at run time. It’s not obvious, but once you
accept it, it’s not that hard.

We’re going to do it the other way around. All LeagueWindowController needs to
access all of the document contents is the NSManagedObjectContext that every
NSPersistentDocument has. Everything else can be a fetch against the context. The
window can reach the managed-object context because its document property was set
when it was added to the doc’s controller list. On the other side, it can get the league and
team subcontrollers by asking the split-view controller for them.

Building the Document Window
Because we know that each layer of the controller hierarchy can always see at least its own
views and the controllers it contains, we have all the control we need over loading the
view controllers; instantiating their windows (or views); and passing the data they need
down the chain from the document.

Loading the Window
The original makeWindowControllers() method in LeagueDocument.swift is as
straightforward as can be: It instantiates the controller identified as “League Window
Controller” and adds it to its list of window controllers:

var windowController: LeagueWindowController!
override func makeWindowControllers() {

let storyboard = NSStoryboard(name: "Main", bundle: nil)!
windowController = storyboard

.instantiateControllerWithIdentifier("LeagueWindow")
as! LeagueWindowController

addWindowController(windowController)
}

The instantiateController. . . method loads the window controller and its window
from the storyboard. The before that method returns, LeagueWindowController gets
its windowDidLoad message. It takes that opportunity to capture the view controllers it
contains, and to set a watch on something named teamArrayController in the league
view controller—we’ll find out more about that soon.

// Use this as an ID tag for notices that a Team has been selected.
// It's passed as part of the addObserver(...) call,
// which will be explained later.

346 Chapter 20 Bindings: Wiring an OS X Application

typealias KVOContext = UInt16
var teamSelectionChange = KVOContext(12)

// For the first part of this chapter, the league window will be
// relatively simple. windowDidLoad() will have to do more once
// the content of the window develops. When needed, change
// usingSplitView to `true` to unmask the full functionality.
private let usingSplitView = false

var splitViewController: NSSplitViewController!
var leagueViewController: LeagueViewController!

// Uncomment this line when the split view and the team-detail
// view are added to the window:
// var teamDetailController: TeamDetailController!

// ...

override func windowDidLoad() {

if usingSplitView {
// Top-level controller in the window is the split controller
splitViewController = contentViewController

as! NSSplitViewController

// First item in the split controller is the team list
var splitItem = splitViewController.splitViewItems[0]

as! NSSplitViewItem
leagueViewController = splitItem.viewController

as! LeagueViewController
}
else {

leagueViewController = contentViewController
as! LeagueViewController

}

// Watch the Team table for changes to the selection.
// More on this later.
leagueViewController.teamArrayController.addObserver(

self, forKeyPath: "selectedObjects",
options: NSKeyValueObservingOptions(0),
context: &teamSelectionChange)

Building the Document Window 347

if usingSplitView {
// The second item in the split controller is the team details
splitItem = splitViewController.splitViewItems[1]

as! NSSplitViewItem
teamDetailController = splitItem.viewController

as! TeamDetailController
}

}

After LeagueWindowController hooks up with its components, control returns to
LeagueDocument, which calls addWindowController to complete its link to the
window controller. That process includes setting the document property of the window
controller. Now that LeagueWindowController knows about its document, it can
capture the document’s managed-object context, and pass it down to the LeagueView-
Controller—it will need the MOC so it can pull the team records from the soup that is
LeagueDocument’s Core Data store:

override var document: AnyObject? {
didSet {

if let document = document as? LeagueDocument {
leagueViewController.managedObjectContext

= document.managedObjectContext
}

}
}

A Table View
Mac Passer Rating should have something that can display some data—a simple table to
display the names of teams and the total points they and their opponents have scored.
That’s the job of the LeagueViewController.

The view’s scene in Main.storyboard includes a label, “Your document contents,”
so it won’t be blank. Delete the label. Open the Object library at the bottom of the Utility
area (third tab, a square-in-circle), and search for table. Drag the Table View into the
LeagueViewController scene. The view you dropped into the scene looks as simple as
the UITableView in iOS. It isn’t. UITableView is a subclass of UIScrollView; it
manages every aspect of the table that isn’t specific to your application.

The AppKit table you dragged into the scene appears to be as simple, but if you look at
it in the document outline, you find it is a tree of views up to seven layers deep. See
Figure 20.1. The root is a scroll view, which contains scroll bars, a “clip view” that
manages the panning of the table itself as it scrolls, plus the table headers, which are in the
“scroll view” because they are exempt from scrolling.

348 Chapter 20 Bindings: Wiring an OS X Application

Figure 20.1 The apparently simple table view from the object library is actually a scroll view
containing a tree of views and cells.

Okay?
Table views are one of the components of Cocoa that have decades of history behind

them. The distinct subviews imply that you can select the behavior you want by omitting
some—for instance, getting a static grid view by removing the actual NSTableView from
the scroll view. That may have been true once; it isn’t now. Everything you see is
mandatory; if you don’t want a feature, you must turn it off, not delete it.

It used to be worse: Table views were based on cells, subclassed from NSCell. These
are not views; think of them as subroutines: Tell a cell to draw itself at a location on
screen, and it will do so. If you want to present the same thing (possibly with different
data), use the same cell and tell it to draw there. NSTableViews usually had only one
NSCell per column, re-used to draw each row. Cells are much less resource-intensive
than views. Most of AppKit’s control views, such as text fields and buttons, rely on
NSCells to draw their contents and respond to events.

This is an ingenious solution to the problem of putting a lot of structured elements on
the screen of a computer that is a hundred times slower than a modern one, with a
hundredth the memory. In the 21st century, we can afford to use views. From OS X 10.7
(Lion), NSTableView provides a view-based mode.

Let’s start slow, with just a single table showing team names, the number of points they
scored, and the number of points scored against them. Select the table view; it’s hard to do

Building the Document Window 349

in the deep stack of views, but the document outline and the shift-control-click popup are
your friends (Figure 20.2). In the Attributes inspector, set the table for three columns.

Pick your method and go one level down from the scroll view to select the table.
The Attributes inspector gives you three levels of settings, for each level in

NSTableView’s place in the class hierarchy: first as a table view, then as a control view,
and finally just as a view. Make these changes to the “Table View” section.

m Verify that the Content Mode is View Based.
m For Columns, set 3.

Figure 20.2 Shift-control-clicking on an Interface Builder view summons a popup window that
lets you select any view among the layers drawn at that point. The alternatives of selecting the view

you want from the document outline or tracing it through the jump bar work well; pumping the
mouse button until the view you want is selected does not.

350 Chapter 20 Bindings: Wiring an OS X Application

m You want columns to have Headers, Resizing (you can adjust the width by
dragging the edge of a header), and Reordering (moving columns left and right
through the display). Check them all.

m For Column Sizing, set Sequential. That way, when resizing the table makes it
wider, the first column will grow wider until it reaches the limit you set, and then
the second up to its maximum, and then the third.

Everything else can remain as it is.
So you’ve set three columns—where’s the third? When you resized the table to fill the

window, the second (and then last) column resized to fill the available space. The third
column was added to the right, out of sight. Select the second column: Graphical handles
will appear to either side, which you can drag to narrow the column enough to bring the
third column into sight.

But you shouldn’t have to do this by eye. Select each column in turn, and use the Size
inspector to set the initial, minimum, and maximum widths. As with other settings in
Interface Builder, you can select more than one view (such as the total-score columns) and
set the width and limits for both at once.

While you’re selecting columns, you’ll see that the Attributes inspector offers a Title
field. Name the columns Team Name, Own, and Opp.

Note
I made the Team Name column’s width 240, with limits of 64 and 400. The two score
columns are 64. . . 64. . . 120.

Let’s see how it works so far. The Simulate Document command from earlier
Xcodes is gone—the transition to windows composed from independent view controllers
in a storyboard means that a simulation of a layout amounts to running the whole
application. So. . . run the whole application: Product→Run (R). The document
window appears (Figure 20.3, top) with the table in place. You can drag the edges of the
column headers to resize them, or drag them by the middle to reorder them. If resizing the
columns makes the table wider than the window, you can scroll it. This is progress.

Resize the window (Figure 20.3, bottom). It seems layout issues will follow you
wherever you go in Cocoa.

We’ve done Auto Layout before; it’s not much different with AppKit than UIKit. By
now you don’t even have to think: Select the “Bordered Scroll View,” which is the

outermost container of the table, and use the to stick the edges to the edges of the
containing view. Run Mac Passer Rating again; the table resizes. Breathe. Commit.

Filling the Table—Bindings
The league table is in place, and AppKit has provided some useful services for it, but that
does nothing for the actual display. NSTableView supports delegate and data-source
methods much like those of UITableView, and for an application like this, we should
prefer to use those methods.

Filling the Table— Bindings 351

Figure 20.3 (top) The new table looks well enough until (bottom) you resize the window. This is
yet another layout problem.

But Xcode 6 Start to Finish has never let good sense stand in the way of demonstrating an
Xcode feature, and it’s not beginning now. We’re going to use bindings, a merger of
Key-Value Coding (KVC), Key-Value Observing (KVO), and subclasses of
NSController, which will track changes in the model and the view, and propagate the
changes between them.

352 Chapter 20 Bindings: Wiring an OS X Application

Object Controllers
You’re still editing Main.storyboard, and focusing on the LeagueViewController.
Type array in the Object library’s search field, which should narrow the list down to
“Array Controller,” an instance of NSArrayController, which is a kind of
NSController that provides automated access to groups of objects. Drag the icon into
the view-controller scene. The controller won’t show up in the view, but it will appear in
the bar at the top of the scene, and as a member of the scene in the document outline.

Note
We’ve seen icons in Interface Builder that were mere placeholders. “First Responder” and
“File’s Owner” do not literally exist in a scene or a XIB; they just stand in for outside
objects that will be resolved while the application is running. The NSArrayController
icon isn’t a placeholder—it is an object that does literally exist in the NIB archive, to be
reconstituted when the NIB (the compiled product of a XIB or a scene) is loaded.

Make sure the array controller is selected, and use the Attributes inspector to set Mode
to Entity Name, and the Entity Name field to Team. Don’t check any of the items; you
just need to examine the teams, so they shouldn’t be Editable; memory and speed won’t
be a consideration, so Uses Lazy Fetching won’t be useful.

And, make sure Prepares Content is unchecked. If an NSController object is told
to prepare its content, and it doesn’t already have an instance of the kind of object it
manages, it will create one. This is usually what you want: If you’re editing something, you
want your editor to have something ready to edit from the start.

In this case, you’re at the mercy of the loading process: An object controller that
manages Core Data objects needs a managed-object context to work with. If you look
closely at makeWindowControllers() in “Loading the Window,” earlier in this
chapter, you can see that LeagueWindowController and its view controller don’t even
see the document’s Core Data context until after they have been initialized. Object
controllers throw exceptions when you ask them to prepare Core Data content without a
managed-object context to prepare it in. If Prepares Content isn’t checked, the array
controller won’t touch Core Data until you let it.

Complete the setup of the array controller by switching to the Identity inspector and
setting the Xcode Label in the Document section to Team Array. This will be the first
of four object controllers, and you’ll want to be able to tell them apart in lists and popups.

The table view and the “Team Array” array controller belong to the
LeagueViewController; tie them to it by opening the Assistant editor so it shows
LeagueViewController.swift, and control drag from each into the class definition
to create outlets:

@IBOutlet var teamArrayController: NSArrayController!
@IBOutlet weak var tableView: NSTableView!

Filling the Table— Bindings 353

Now we start getting into bindings. Bindings rely on the KVO protocol. Any object can
ask to be notified when any specified property of another object changes. There are many
details, conditions, and caveats to that—look up KVO in the Documentation browser for
the whole story—but the short of it is that properties of objects, and attributes of Core
Data objects, can be observed for changes.

NSController and its specializations, like NSArrayController, use KVO to link
the values of the objects they manage to user-interface elements. The links go both
ways—a model object’s values get propagated to the screen as they change, and editing a
value on the screen updates the model, automatically. These links are called bindings. (This
is a gross oversimplification, but it’s enough to get you through Interface Builder’s support
for them.)

You’ve set up what is now the Team Array controller so that it observes objects of the
Team entity. Where are those objects to be found? In the managed-object context
(NSManagedObjectContext) of the current document. The document and the array
controller are at opposite ends of a chain.

m The LeagueDocument, being a Core Data-based NSPersistentDocument, has
the NSManagedObjectContext that manages the document’s storage.

m The document sees only its neighbor in the chain, the LeagueWindow-
Controller. It passes the context down into the window controller’s
managedObjectContext property.

m The window controller knows about the LeagueViewController it loads from
the storyboard; the view controller has a managedObjectContext property for
the window controller to fill.

m The view controller comes in from the storyboard with the Team Array
NSArrayController, which needs the object context to retrieve the data. It sets
the array controller’s managedObjectContext property.

m The Team Array controller stands alone. Watch as this chapter progresses: The array
controller is the only direct user of the document’s Core Data content. Cocoa
initialized the document object by creating the context, but so far as the code of
Mac Passer Rating is concerned, everything but the array controller is a mere
custodian for this one consumer.

The last step is reached when the view controller receives the managedObject-
Context. It can then trigger the fetch of the Team roster:

var managedObjectContext: NSManagedObjectContext! {
didSet {

// Pass the MOC to the array controller.
teamArrayController.managedObjectContext = managedObjectContext
// Ask the array controller for alphabetical order.
teamArrayController.sortDescriptors = [

NSSortDescriptor(key: "teamName",
ascending: true)]

// Have the team controller ask for the team roster.

354 Chapter 20 Bindings: Wiring an OS X Application

teamArrayController.fetchWithRequest(nil,
merge: false
error: nil)

}
}

Binding the Table to the Teams
Each row of the team table represents one instance of the Team class. In a view-based
table, the table itself distributes the instances among its rows, and has to know how to pull
them in. Without an NSArrayController, we’d set up the view controller or some
other object to implement NSTableViewDelegate and NSViewTableView-
DataSource, just as we would for UITableView in iOS. The table would ask for the
number of records, and pull them in as needed.

NSObjectController and its subclasses take care of all that, at the expense of a steep
learning curve, with no code. The two are linked by a binding. Select the table view and
select the Bindings inspector (seventh tab). The inspector shows more than a dozen
properties that can be linked into the table. The one we want is Content, in the Table
Content section.

Click the disclosure triangle. What you’ll see is a basic binding editor; the editors for all
other bindings build on these elements.

m The Bind to checkbox determines whether a binding is active at all. Check it.
m The popup next to it gives you a choice of sources for bindings. This will include

File’s Owner, the Shared User Defaults Controller (so you can control
preferences directly), and any NSController objects in the scene. The
NSArrayController we call Team Array manages the Team objects, so select
Team Array.

m Array controllers take care of selecting and sorting the objects they serve out; the
results come through their arrangedObjects property. The Controller Key to
access them is arrangedObjects, which Interface Builder should have filled in for
you.

m Model Key Path will be important later, when the table’s cells need specific
properties of each Team, such as names and statistics. This binding is for the whole
array, so leave it blank.

m Value Transformer is used for user-interface bindings. A value transformer is like
an adapter between one form of data (e.g., whether a property is nil) to another
(whether a button should be enabled). It saves having to create additional properties
in model objects just to accommodate particular views. You want the objects as they
are, so leave the field blank.

m Check Raises For Not Applicable Keys. If it is checked, and the property (model
key path) you bind to can’t be accessed through Key-Value Coding, AppKit will

Filling the Table— Bindings 355

raise an exception at run time. It’s imaginable that you wouldn’t want that condition
flagged, but usually it’s an error, and you’ll want to halt when it happens.

Binding the Columns to Team Properties
The table now knows the records it is to display—the objects from the application’s Model
layer—but not what to display from them. If you ran Mac Passer Rating, you could select
rows, but there would be nothing in them. Each cell in a row must be told what to display.

The cells have a deeper hierarchy than you’d think; they are not the single views
UITableViews deal in. Look again at Figure 20.1.

m Each column has an NSTableViewCell (or subclass) view, one-to-one.
m Each cell view is the root view for the control views that provide displayable,

clickable, and editable contents of the cell.
m In AppKit, controls usually depend on NSCell subclasses to run them.
m Cells may have attachments that modify their behavior.

NSTableView assigns a reference to the object a row represents to each
NSTableViewCell, through the cell’s objectValue property. It’s up to the cell and its
subviews to link their content to the content of the model object.

To start, use the document outline to select League View Controller→View
→Bordered Scroll View→Clip View→TableView→Name (the column)→Table
Cell View (NSTableViewCell)→Table View Cell (an NSTextField that
confusingly has that default text).

This time we use the Bindings inspector to set the Value binding in the Value section.
This editor is more complicated. Bind the value to Table Cell View (named, alas,
NSTableViewCell), and use the key path objectValue.ownTotalScore
(objectValue is the Team object, ownTotalScore is the property of the object we
want to display).

m Allows Editing Multiple Values Selection: If this is set, and the user selects more
than one object (such as when we selected all the integer attributes of Game in
Chapter 9, “An iOS Application: Model”), editing this one control would set the
given property in all the selected objects. The team name isn’t editable, and editing
multiple selections in one selected row makes no sense; leave it unchecked.

m Always Presents Application Modal Alerts: If a control fails to validate, the
usual behavior is to present the validation alert as a sheet attached to the window in
which the error occurred. If you want a free-floating alert, check this box.

m Conditionally Sets Editable, Enabled, or Hidden: You set these properties of
this text field (making it uneditable turns it into a label) in the Attributes inspector,
but if the field is bound, you can override them case by case—maybe you want to
dim the contents, but only for certain records. Don’t set these unless you know you’ll
need them. Conditionally Sets Editable, in particular, can lead to surprises, if not
crashes, if Cocoa spontaneously allows the user to edit values that shouldn’t change.

356 Chapter 20 Bindings: Wiring an OS X Application

m Continuously Updates Value: Usually, the model doesn’t want to learn of new
values for data until the user is finished entering them; the values in progress might
trigger expensive actions or validation alerts. There are reasons, however, to want
the in-progress content.

m The model, or a custom NSObjectController you write, should evaluate
the in-progress values to intervene in the editing to (for instance) display a red
flag while the value is incomplete.

m You may have noticed this in many Mac applications: If you edit a text field,
the edited contents take effect when you press Tab or Return to formally
close your edit. If the value isn’t continuously updated, this is when it is
reported to the controller and the model. If you click elsewhere instead of
pressing a “completion” key, the new content is not reported. If the value is
continuously updated, the controller and model can catch the final value no
matter how editing stops.

We won’t be editing the team name, so don’t check the box.
m Raises For Not Applicable Keys: We saw this in the table-content binding: A

guaranteed crash if the property you name doesn’t exist. Leave it checked.
m Validates Immediately: Whether the cell’s content should be checked for validity

as soon as you move on to another control, or should wait until the whole record is
finished. We aren’t editing the team name; skip it.

m Multiple Values Placeholder: If you do select more than one object, but the
relevant property is different among them, this is what the control should display
until the user supplies a common value. It’s a placeholder; it never gets into the
model.

m No Selection Placeholder: What to display when the NSArrayController has
no selection. For instance, a label that describes the selected objects (“3 teams
selected”) could substitute “Select a Team.”

m Not Applicable Placeholder: Your NSObjectController subclass may decide
to characterize a property’s value as “not applicable.” If Team had a property for the
brand of the artificial turf in its stadium, and a team plays on grass, the property
would not be applicable.

m Null Placeholder: Another way for a property to be inapplicable or unspecified is
for it simply to be nil, which controls usually represent as “(null).” This is what you
display instead.

Do the same for ownTotalScore and oppTotalScore. These are numbers. The
binding mechanism doesn’t care that they are, and NSTextField will apply a reasonable
format to display them, so there’s no need to worry. Using the Attributes inspector to set
the text-field views to right justification would be a nice touch.

All going well, the team table should be all wired up. Run Mac Passer Rating. If you
don’t have a previous League document open already, create one (N) and fill it with the

The Arc of League Document Data 357

Figure 20.4 The first version of Mac Passer Rating shows a sorted list of teams with their total
scores. NSArrayController made it possible to do this with almost no code, even if it involved
more effort in this trivial application. The less trivial your app, the more work you can save by using

bindings.

sample data (T). This time, all does go well. The document window shows the teams
and the total scores, for and against. See Figure 20.4.

Commit.

The Arc of League Document Data
This gets us only a short way toward the goal set by Figure 19.1 in Chapter 19, “Starting
an OS X Application.” The team table should be reduced to a source list that selects a
team and its passers.

From League Table to Source List
The first thing is to remove the last two columns of the League table. Such is the price of
Progress. Select the “Own” and “Opp” columns and press Delete. Select the table view
and remove the header by unchecking the Headers box in the Attributes inspector. (Do
not try to delete the header view; remember that NSTableView needs its stereotyped
view hierarchy.) Change the Highlight to Source List, which gets you the distinctive
background color and selection style for a Mac-style source list.

The design calls for a split view, dividing the source list on the left from the detail view
on the right. One way to accomplish this would be to add an NSView to hold the detail
views on the right-hand side of the LeagueViewController scene, adjust the Auto
Layout constraints on the source and detail views so they abut and together fill the scene,
select both, and then Editor→Embed in→Split View. This would insert an
NSSplitView that would contain the views in its halves. There would be some tweaking
to do, but most of the work would simply be to connect the new labels and tables to the

358 Chapter 20 Bindings: Wiring an OS X Application

model, either by way of additonal NSControllers or directly from the LeagueView-
Controller.

Instead, we’ll adopt the Yosemite pattern of controlling each functional area of a
window with its own NSViewController object. Instead of putting the master (Team)
table and the detail view in a split view, all under the control of the LeagueView-
Controller, we will add an NSSplitViewController, and make the two views its
contents.

Keep your eye on the distinction: LeagueViewController will no longer be the sole
controller in the window. Its scene will no longer constitute the whole content in the
window. That whole-window role will now belong to the NSSplitViewController
provided by AppKit. LeagueViewController will control just one of the two sides of
the split, with the other managed by what we can call TeamDetailController.

Go to the Object library (bottom of the Utility area, third tab) and search for split,
uncovering the “Vertical Split View Controller.” Drag it into the canvas. (Be sure you grab
the controller, not the bare view.) The controller scene comes with a two-way split and
two view-controller scenes attached. There is almost nothing you can edit in an
NSSplitViewController; it’s there for bookkeeping and layout.

Note
In point of fact, NSSplitViewController isn’t so simple; it takes care of things that
would be tedious and repetitive for you to do yourself; and having access to the internals
of AppKit, it can, for instance, not load one of its subcontrollers at all if its part of the split
is hidden.

Delete the scenes that came with the split controller; they’re not magic, and we can’t
put a controller in first place if there are any there already. Control-drag from the
split-controller scene to the LeagueViewController, making it the first, and so far
only, element in the split.

Next, drag an NSViewController into the canvas, and control-drag a connection to
it from the split-view scene. The split view shows a two-way split between the master and
detail views. Make the new view controller your own: Select it, and in the Identity
inspector, name the class TeamDetailController.

Xcode will start pestering us about there being no such class as TeamDetail-
Controller, so make an empty one: File→New→File. . . (N) to create a Swift
class definition for TeamDetailController as a subclass of NSViewController. Just
enough to give us some peace.

Complete the new hierarchy by control-dragging from the LeagueWindow-
Controller’s icon in the window scene’s title bar down into the split-view controller,
making the split view the content view for the window. The line that appears between the
two, and the lines that run from the NSSplitViewController and the two view
controllers, are “relationships,” not segues. No existing controller will get a call to
prepareForSegue(, sender:) to initialize the incoming scene.

This isn’t really a problem, though: NSSplitViewController keeps a list of its
NSSplitViewItems, which hold the respective view controllers. As an NSWindow-

The Arc of League Document Data 359

Controller, LeagueWindowController has a contentViewController property
that points to the split-view controller. There’s a seamless path from the document, to the
window, through the split view, down to the view controllers.

You saw in the “Building the Document Window” section above that the code for
traversing the split view was already in windowDidLoad, but blocked off by the
usingSplitView flag. Set it to true to enable the full process. (The sample code shows
only the full-process version of windowDidLoad.)

Change usingSplitView to true, and uncomment the line declaring the team-
DetailController property. It might be a good idea to flip back to “Building the
Document Window” to review the way windowDidLoad works now.

Capturing the Team Selection
Think about what happens when you use the document window: You select a team from
the source list (the LeagueViewController half of the split), and the detail view (the
TeamDetailController half) responds to the selection by displaying the team’s
information. The change in selection, and which object was selected, has to be passed
from the master to the detail, and being in different scenes, they can’t communicate
directly. The window controller, which has direct access to both, has to mediate.

You can see the complete arc of the process in Figure 20.5.

m You’ve already done the first part: LeagueViewController pulls Teams from the
document’s Core Data store, and fills its table with them.

Figure 20.5 The contents of the league document window follow a path from the table of Teams
drawn from the document’s Core Data store, through a sequence of selections of Team, Passer,

and Game. Each step is mediated by an NSObjectController or NSArrayController.

360 Chapter 20 Bindings: Wiring an OS X Application

m You’ve probably clicked on some of the rows in the list of teams; the next thing we’ll
do is to make your selection of a team into an event that carries through to the
team-detail view in the other half of the window.

m That “event” leaves the LeagueViewController to be captured by the
LeagueWindowController.

m The event identifies the Team that the user selected; the window controller passes
the Team down into the TeamDetailController.

. . . and we’ll leave the rest for later.
I called the user’s click on a team in the league-view table an “event.” Cocoa has many

mechanisms for objects to communicate with each other. This time, I’m going with
Key-Value Observing.

Note
When any object starts observing a property of class X, the Objective-C runtime library
(it’s still there in Swift applications) creates a new subclass of X that has its own setter
method for the property under observation. When any code sets the observed property,
the wrapper method first takes note of the original value, calls through to the “real” setter
method in X, and when the setting is done, triggers the observation methods of all objects
that are observing the property.

Knowing this makes a bit more sense of the addObserver statement in League-
WindowController’s windowDidLoad method. The call tells the LeagueView-
Controller’s Team Array controller. . .

leagueViewController.teamArrayController.addObserver(

to register self, the LeagueWindowController,

self,

as an observer of the selectedObjects property.

forKeyPath: "selectedObjects",

There is no need for any special reporting on the before-and-after values of the property,
and here’s a tag value to make it easier to identify the event when it comes in:

options: NSKeyValueObservingOptions(0),
context: &teamSelectionChange)

LeagueWindowController defines the standard observeValue. . . method that
catches all the property-changed events.

override func observeValueForKeyPath(keyPath: String,
ofObject object: AnyObject,
change: [NSObject : AnyObject],
context: UnsafeMutablePointer<Void>) {

The Arc of League Document Data 361

if context == &teamSelectionChange {
if let selection = object.valueForKeyPath("selectedObjects")

as? [Team] {
teamDetailController?.representedObject =

(selection.count > 0) ? selection[0] : nil
}

}
}

Note
It’s an override function because NSObject—and therefore every class in
Cocoa—already implements it, and you have to add the override attribute to claim the
function’s place in the inheritance path. Swift has many such qualifiers, and it is particular
that you should supply every attribute necessary, and only those. The easiest way to do
this for an inherited or protocol function is to type the function’s name—just the name, no
keywords—and trigger code completion. If Xcode comes up with the function signature
you want, it will also provide all the adornments.

The function checks the context parameter to verify that it matches the arbitrary tag
we passed in, thus proving the event is a change in the set of selected objects in the Team
Array controller. It treats the selectedObjects as an array of Team objects ([Team]).

If there are any selected Teams (there should be at most one), the function takes the
first one and passes it down to the TeamDetailController as its represented-
Object. If no Teams are selected, the representedObject is set to nil.

Which completes the top arc in Figure 20.5.

From Team to Tables
Bindings are built on Key-Value Observing. They extend KVO by linking model and
view objects by having them observe each other. The binding editors you’ve seen in the
Bindings inspector are presented once for every property of a view; you identify the object
and its property that will exchange observations with the property of the view that the
editor controls.

Note
You can bind properties of any two Cocoa objects in code, whether the pair are model and
view or not. Few developers are happy to do so: The support for mutual bindings built into
Interface Builder and the standard Cocoa objects is (believe it or not) easy to work with;
getting the necessary behavior right to make your all-new classes bind properly can be
difficult.

The TeamDetailController view consists of two tables, one of Passers, the other
of Games. You’ve bound up a table before; you know we’ll need an NSArrayController
for each, one for Passers, the other for Games. These controllers need a source. In the
case of the League table of Teams, that source was a direct fetch of all Team objects in the
document’s store.

362 Chapter 20 Bindings: Wiring an OS X Application

Once the user selects a team, and the Team object finds its way to TeamDetail-
Controller, it no longer matters that the objects are Core Data managed objects. The
detail controller doesn’t have to hit the database to find the passers on a team; it has the
team itself, which can provide the list of passers directly.

This leads to the following definition of TeamDetailController:

class TeamDetailController: NSViewController {

var currentTeamName: String? {
let team = representedObject as? Team
return team?.teamName

}

class func keyPathsForValuesAffectingCurrentTeamName()
-> NSSet {

// There is no setter method that KVO could use to trigger a
// changed-value observation for currentTeamName.
// currentTeamName is computed, never assigned; the
// computed value changes only when representedValue changes.

// keyPathsForValuesAffecting<PropertyName>() lets a class
// say, "send out an observation whenever any of the properties
// in this list change."

// Changing representedObject would change the computed value
// of currentTeamName, so return an NSSet containing
// "representedObject".
return NSSet(array: ["representedObject"])

}

@IBOutlet var gameArrayController: NSArrayController!
@IBOutlet var passerArrayController: NSArrayController!
@IBOutlet var teamObjectController: NSObjectController!

override
var representedObject: AnyObject? {

didSet {
teamObjectController.content = representedObject

}
}

}

Bindings are hard to get your mind around, but give them credit: TeamDetail-
Controller consists of four assignments, a constant object, and a data access. We’re
going to have a system of labels and tables that respond to the user’s selection of
3 variables, each filtering the next, including string formatting and sourcing data to the
tables, in 19 parsable lines of generously formatted code.

The Arc of League Document Data 363

Let’s complete the arc I began in “Capturing the Team Selection.” I left off where the
window controller passes the selected Team object into TeamDetailController:

m The TeamDetailController maintains an NSObjectController to “manage”
the Team that is to be the focus of the view. In principle, this isn’t
necessary—binding editors do provide for binding directly to a property of the view
controller itself; in practice, the notifications of changes work better if you leave as
much of the chain as possible to NSController objects. When its represented-
Object property is set, TeamDetailController makes it the content object
for the object controller.

m An NSArrayController provides the content for the upper table, a table of
Passers. Tables are usually run by NSArrayControllers; this one is set for
Mode Class (not Entity—there’s no contact with the main Core Data store), Class
Name Passer.

The Passer Section
The upper half of the Team Detail view shows the Passers associated with the selected
Team. It is a label, controlled by the Team Object controller, and a table controlled by an
NSArrayController that manages a list of Passer objects.

Passer Array Controller
The big differences between the NSArrayController in the LeagueViewController
scene are that the controlled objects are of Class (not Entity) Passer, and the source of
the “Content Array” in the Bindings inspector is taken from the passers array from the
Team Object’s selection. Even though the Team Object controller, is an NSObject-
Controller, with only one object to select, it has a selection property, and that’s
what you should draw from.

Do not prepare content, do not make the content editable. In the Identity inspector,
name it Passer Array; there will be another array controller, and you’ll need to tell them
apart.

This binding draws from a passers property of Game, which we don’t have yet: The
Core Data schema links Teams only to Games; the game list has to be drawn by tracing
through the Passers to their Games.

Add this property to Team:

var passers: [Passer] {
// Team doesn't have a relationship to Passer, except
// by way of .games. Have .games list the Passers
// in all Games, with the duplicates filtered
// out (a "distinct union" of Passers).

let unionOfPassers = self.games.valueForKeyPath(
"@distinctUnionOfObjects.passer")

as NSSet?

364 Chapter 20 Bindings: Wiring an OS X Application

if let passerSet = unionOfPassers {
return passerSet.allObjects as! [Passer]

}
else { return [] }

}

Note
The Content Array binding for the Passer Array controller could have used @distinct-
UnionOfObjects.passer, but let’s keep the relationship in code—binding parameters
are hard to debug.

Passer-Table Label
Drag a label into the scene, allowing Interface Builder to guide you on the standard
margins from the top and sides of the root view. Stretch it out to the standard margin from
the right edge of the root view, and select Editor→Resolve Auto Layout Issues
→Add Missing Constraints. The Team Detail view doesn’t need any adaptive layout;
just place the views where you want them, and let IB add the constraints.

The contents of the label should adjust to the selected Team, which means binding to
the Team Object NSObjectController. The label will have two bindings you haven’t
seen before:

m The label should describe the passer table using the name of the team, as in “Passers
for the Birmingham Bearcats.” You’d expect formatted text to come from
application code, but the Value With Pattern binding can often put simple
formatted text into UI elements without having to resort to code.
Open the Value With Pattern→Display Pattern Value1 editor and bind it to
Team Object, selection, teamName—so far, what you’d expect. With-pattern
editors add a field, Display Pattern. This field has a simple syntax: Write out the
literal text, and add a placeholder for the bound value, as in Passers for the
%{value1}@. It’s always value plus a numeral. You’ll see the reason for the
numeral soon.
The editor includes the special-case placeholder fields. The next step shows why we
don’t care what those are.

m We’re also going to set the Hidden binding. If there is no team name to display,
there’s no way to fill the phrase “Passers for the. . . ” that isn’t awkward. Better to
make the phrase go away. The binding is Team Object, selection, self. Every
NSObject has the self property; it returns the object itself, which is convenient
for cases like this, where you must specify a property, but want the object itself
instead.
The next field is Value Transformer. Enter NSIsNil—autocompletion will finish
it for you. Descendants of NSValueTransformer bridge values of one type to
another; a more sophisticated example would be if an object had an RGB color
property that should be displayed by name, such as “green” or “magenta.”

The Arc of League Document Data 365

We want to hide the label when the selection is nil, because there is no Team to
display. That’s a yes-or-no Boolean question, and nil isn’t a Boolean value.
NSIsNil takes any pointer and returns whether the pointer is nil. If
selection.self is nil, the transformer yields true (or YES in Objective-C),
signaling that the label should be hidden.

Passer Table
This is yet another table view; except for the content being Passers, there isn’t much
new.

Find the Table View in the Object library, and drag it into the view. View Based;
standard margin from the label, flush against the sides of the superview; Add Missing
Constraints to lock those in; minimum width of 400 to keep it readable and constrain the
width of the window; height fixed at 120 points.

Use the Identity inspector to set the enclosing NSScrollView’s Document Label to
Passer roster, so you can tell it apart from the game table that will come later.

Seven columns with headers, labeled Name, Rating, Att, Comp, Yards, TDs, INTs.
Select each column in turn. The Attributes inspector has a section for the default sort

order for a column. For the numeric columns, set sorting to:

m Sort Key, the name of the PasserClass property that corresponds to the column.
m Selector. The field will default to compare:, a method of both NSString and
NSNumber, which is what you need. The notation is Objective-C, so remember to
include the trailing colon.

m Order: Ascending, initially. Clicking the column header will toggle the order
between ascending and descending.

Note
By now, you’ll be getting yellow warnings from Interface Builder about incorrect frames for
views in the TeamDetailController scene. Some of these are genuine problems for
you to solve by working on constraints and placements. However, in the version of Xcode
I’m using, there are warnings about the clip views that surround the table views. I wasn’t
able to clear those warnings, but I saw no ill effects from them. Even Xcode has trouble
getting Auto Layout right. As with any warnings, take Auto Layout warnings seriously, but
if you’ve made a serious effort, and there are no visible problems, just let them go.

Set the Sort Key for the Name column to lastName, so we can stick to a simple
compare: of strings. In a better app, Passer would have its own comparison method to
yield lastName, firstName ordering, but let’s keep it simple.

These are the default sort orders; we want the user to be able to change the order of the
table by clicking a header. The table will use the Passer Array NSArrayController’s
arrangedObjects array. Array controllers can change the order and content of the
arrangedObjects by applying its own sort descriptors and selection predicates.

When a column header is clicked, we want the array controller to change the sort
descriptors it uses to produce the arrangedObjects. This entails yet another binding.
Select the table view, the Bindings inspector, and the Sort Descriptors binding. Bind the

366 Chapter 20 Bindings: Wiring an OS X Application

table’s sort descriptors to Passer Array, sortDescriptors. Any change to the table’s
sort order (as determined by clicks on the headers) will change the array controller’s, and
vice versa.

Users should be able to select Passers from the table. Doing so should tell the Passer
Array controller to update its selected object. Yet another binding. Edit Selection
Indexes, and bind to Passer Array, selectionIndexes.

Note
Don’t let the plural bother you. It’s the only binding available, and because the Selection
→Multiple box is unchecked, there will always be at most one selected Passer.

Finally, and most familiar: Bind the table’s Content to Passer Array,
arrangedObjects. That array will reflect the NSArrayController’s sorting and
filtering properties.

For the cells, again, this is just as before (with one exception): Dig down into the table,
the column, the table cell view, to the view that renders the relevant property of the
Passer for the row. Bind to Table Cell View, Model Key Path objectValue
.attempts (or whatever the Passer property the cell is to display; see Table 20.1).
Remember to uncheck Conditionally Sets Editable so the application doesn’t
spontaneously turn the data labels into editable text fields. (What we’ve been treating as
“labels” are in fact just NSTextFields with the Editable boxes unchecked.)

Table 20.1 Property Names for the Numeric Columns in the Passer Table

Column Head Property

Rating passerRating

Att attempts

Comp completions

Yards yards

TDs touchdowns

INTs interceptions

Note
Interface Builder knows it is managing objects of class Passer; the autcompletion
feature of the Model Key Path field should be able to suggest the names of Passer
properties. This feature has always been spotty, and on the version of Xcode I’m using,
there’s no autocompletion; the field is tagged with a gray exclamation-mark flag. So long
as the cell shows the right number when you run the app, you don’t need to worry.

The Name column is a small exception: Passer does have a .fullName property, but
we’re not going to use it. Instead, let’s use Value With Pattern again, but for two values,
lastName and firstName. The first step is obvious: Disclose the Display Pattern
Value1 editor, and bind it to the Table Cell View with Model Key Path
obectValue.firstName.

The Arc of League Document Data 367

What now? That editor doesn’t afford a way to use two values.
But the next one does. Binding Display Pattern Value1 adds an additonal binding

editor, Display Pattern Value2 (and so on). It’s just the same, except the Model Key
Path is objectValue.lastName.

The trick is in the Display Pattern field: Make that %{value1}@ %{value2}@.

The Document Window so Far
It’s been a while since Mac Passer Rating has been in runnable shape, so let’s have a look:
Product→Run (R), Figure 20.6.

It’s almost what we want. The problem is in the Rating column. The passer ratings go
on for an unlimited number of significant figures, until they are truncated with ellipses
when they run into the margin of the cells. The custom is to cut ratings off at the first digit
of the fraction. Must we add a property to Passer that yields a properly formatted string?

No. Select the Team Detail scene in Interface Builder. Type formatter in the search
field of the Object library to find green icons representing a repertoire of automatic
formatters for numbers, dates, and even byte counts. Drag a number formatter into the
rating cell. IB will place the formatter where it belongs in the hierarchy—the NSCell
inside the NSTextField that displays the rating. (If it attaches to the NSTextField
instead, that’s not a problem.) The cell will look no different in the canvas, but the
formatter is there.

Run Mac Passer Rating again. . . no, we overshot. The ratings now have no fractions.
We’ll have to customize the formatter. It’s not visible in the storyboard canvas, and it
doesn’t show up in the jump bar or when you control-shift-click on the cell. You can find
it in the document outline. Select it and turn your attention to the Attributes editor.

What you got was a formatter with Behavior OS X 10.4 Default (avoid 10.0+; it’s
there for backward compatibility), Style None. We know that won’t do, and neither will
the other preset styles (though the Spell Out style could be fun); experiment with the

Figure 20.6 The passer table turned out well, with one exception.

368 Chapter 20 Bindings: Wiring an OS X Application

Unformatted sample field, and see the result in the Formatted view. You’ll have to
switch to OS X 10.4 Custom.

This yields you many, many formatting options, for positive and negative values,
padding, prefix and suffix strings, rounding strategies. . . . We need only a couple of
settings (Figure 20.7).

All we want is to have at least one digit before and after the decimal place: 153.8,
14.0, 0.3, and so on. Those controls are near the bottom of the Attributes inspector. For
Integer Digits, set the Minimum to 1; the Maximum will be 3 in practice, but you
don’t need the formatter to enforce it. For the Fraction Digits, the Minimum and
Maximum should both be 1.

Run the app again; so far, so good.

Note
Let’s begin to think about localization: You may have noticed that unless you set explicit
formatting strings at the top of the inspector, you don’t have any control over the grouping
separator (thousands, a comma in the U.S.) or the decimal separator (a period in the U.S.).
That is because these marks are locale-dependent: Some regions use space or period for
grouping, and comma to mark fractions. These are controlled by the system-wide locale
settings from the Language & Region panel of the System Preferences utility. If you, an

Figure 20.7 The customization options for an NSNumberFormatter are many, but if you just
want the number to be shown with at least one digit on either side of the decimal point, you need

only two fields.

The Arc of League Document Data 369

American, display 1.345 to a German user, she will read it as what you would call “one
thousand three hundred forty-five,” which could be disastrous. Having a system-wide
setting removes the possibility. iOS and OS X provide many formatting utilities that will
apply the proper formats; don’t just plow ahead with something like the printf() family.

Game-Table Label
Finishing up with the lower part of the Team Detail view, for the game table, is no great
departure from what we’ve seen before, so I’ll rush you through.

The label below the passer table will include the name of the selected passer. Because
the selection in the passer table is bound to the selectionIndexes of the Passer Array
controller, a click in the table will point the controller’s selection key to the Passer
for that row.

Place a new label below the passer table, left and right edges aligned to those of the
“Passers for” label. Have IB add the missing constraints. The Display Pattern should be
Games played by %{value1}@. Save time by using the fullName property this time:
Bind to Passer Array, selection, fullName.

Game Array Controller
This is a reprise of what you did with the Passer Array controller: The controlled objects
(Identity inspector) are of Class Game; the content array (Bindings inspector) is the
gameArray of the selection of the Passer Array controller.

Note
This strategy is too simple: It pulls in all of the passer’s games, not just the ones played
for the selected Game. Let’s make up a reason for doing that and save the trouble.

Game Table
Drag another table view in. Flush with the bottom and sides, standard margin from the
game-table label. Unlike the other views, the game table has no constraint (explicit or
content-based) on its height. This flexibility allows the document window to change
height.

The columns should be Us (the Game’s teamName property and ourScore, formatted
as %{value1}@ - %{value2}@; Them (the same, except for the use of theirTeam as
the name); When (whenPlayed); and Rating (the Game’s calculated passerRating
property).

Run Mac Passer Rating. Figure 20.8 shows the miserable record of Herbert Hoover as
he was traded around the league. His skills are not the only problem here.

Almost all of the team names and scores in the second column run off the left end of
the column, with ellipses showing the truncation. This was acceptable for numbers, whose
digits are less significant the farther right they are. In this case, the user can make out the
team names, even if truncated, but not the scores, which are essential information.

Also, all of the dates are “Monday”. They, too are truncated, and the full format
including the day of the week isn’t useful.

370 Chapter 20 Bindings: Wiring an OS X Application

Figure 20.8 The game table needs some work on formatting.

I’m sure you noticed that in addition to a number formatter, Interface Builder lets you
bring in a date formatter. Drop one on the When cell, and in the Attributes inspector, set
it for

m Behavior: OS X 10.4+ Default

m Date Style: Medium—watch the Sample view to see the effect.
m Relative Date: No. You want the calendar date, even if it could also be called

“Yesterday.”
m Time Style: No Time Style. Football teams never play more than one game a day,

so the time doesn’t matter. Besides, showing the time will give away that the data set
cheats, and sets each game for midnight.

As for the Them column, you can control the truncation policy of NSTextFields
(which includes labels). Select the Them cell’s text field content, and use the Attributes
inspector to set Layout to Truncates (rather than attempt to wrap to an additional line,
or making the content scrollable) and Line Break Truncate Middle. This will put the
ellipses in the middle of the team-and-score cells, to show both enough of the team names
to identify them, and the scores.

Do the same in the Us column.
Now that you have both the table (with its headers) and the Game Array controller,

you can bind the sort descriptors as you like. For the Us and Them columns, I
recommend sorting on the respective team names.

And that brings us to the document window we wanted from Figure 19.1.

Summary 371

Summary
Bindings are a tremendous convenience in OS X programming, and even this long chapter
can’t cover everything. In this chapter, I gave you an introduction to what bindings can do
for you, but more to the point, I showed what Xcode can do to support them. It is possible
to set up bindings in code, but Interface Builder is indispensable to getting them right,
easily (comparatively) and quickly.

I showed you how bindings and formatters can render your data in forms that your
model classes don’t directly support, saving you from having to alter your model to
accommodate per-view variations in presentation.

You used number and date formatters, and truncation controls, to control how
information is presented in table cells and labels.

This page intentionally left blank

21
Localization

I’m pretty satisfied with Mac Passer Rating, at least as an example, but what would make
it perfect would be if I could see it in French (they play football in Québec)—an
application named Quart-Efficacité. Users of OS X specify what languages they
understand by setting a list of available languages in order of preference in the Language
tab of the Language & Region panel of the System Preferences application. When a
user’s list sets French at a higher priority than English, I’d like MPR to present menus,
alerts, and labels in the French language.

Note
The localization techniques I’ll show you are identical to the ones you’d use for an iOS app.

My plan for this chapter is a bit involved: First, I’ll show you the core concepts behind
localization in Cocoa. Next, I’ll show you “how it’s really done,” the techniques Cocoa
uses to find and use translations and adaptive layouts; I’ll show how Xcode helps you create
the files Cocoa localization needs to get the job done. You’ll know what the result is
supposed to be.

And then, very briefly, I’ll tell you why you don’t have to do it that way, and why you
shouldn’t.

How Localization Works
Cocoa applications load resources through the NSBundle class. When asked for a
resource, NSBundle first searches the subdirectories of the application bundle’s
Resources directory in the order of the user’s preferences for language. Language
subdirectories are given such names as English.lproj, fr.lproj, or en-GB.lproj;
plain-text language names are deprecated; you should use ISO-standard language
abbreviations, optionally suffixed with a code to identify a regional variant.

If a directory that matches the user’s language and region (such as fr-CA.lproj for
Canadian French) can’t be found, OS X falls back to the language-only variant
(fr.lproj); then so on, down the list of the user’s preferred languages; then to the base

374 Chapter 21 Localization

localization (in Base.lproj); and finally to strings and layouts in unlocalized resources,
not in any .lproj directory.

If you look at the Mac Passer Rating target directory in the Finder, you’ll see a
Base.lproj directory containing Main.storyboard.

Bring up Main.storyboard in Interface Builder, and look at the jump bar above the
Editor area. As you expect, it progresses from the project, through the enclosing groups, to
the file itself. But there’s one more level: It has the same name as the file, with (Base)
appended. So far as Xcode is concerned, what you’re seeing is only one of many possible
variants on that file—the one that appears in Base.lproj.

Note
If you create an unlocalized resource of your own, Xcode won’t initially track it for
localization. Do not try moving it to an lproj yourself. At the very least, the file’s name in
the Project navigator will turn red, meaning Xcode can no longer find it; solve that by
clicking the tiny folder button in the File inspector when the red label is selected. Worse,
you may confuse the localization mechanism. Experience has shown that Xcode can be
fragile when resources are localized behind its back. It is getting better all the time, but
don’t tempt fate.

Adding a Localization
Earlier versions of Xcode (up through version 3) treated localization on a file-by-file basis:
You could put files of the same name—Main.storyboard, Credits.rtf—into
separate lproj folders, but that was your business. Xcode took no notice of their being
related.

This falls short of what a project needs on two counts. First, it’s just inconvenient: If
you’re working on the English version of a resource, you’ll want to work on the French
version in parallel. Second, the point of internationalization is to produce a product that
conforms to the user’s locale; conceptually, you don’t internationalize a file, you
internationalize the whole project. Xcode now organizes the process of localization as a
property of the whole project, not just file by file.

Base Localization
Xcode starts from a base localization. The idea is that base localization files embody the
fundamental structure of the localizable resources, whereas the language/region-specific
files fill in the details: Base.lproj contains Main.storyboard, which specifies the
layout of the whole app, except for the document window itself.

Note
The strings in the storyboard are all in English, but that’s incidental; it is in the Base
localization because it is the authoritative layout.

Adding a Localization 375

The French localization will use the same layout, from the same storyboard. You do not
have to redo the layout. Instead, you supply a .strings file, a dictionary that provides
the French text that Cocoa will substitute for French-speaking users.

Note
If you’re working from an older project, you won’t have a Base localization. Xcode will
start you on the process if you check Use Base Internationalization in the Info tab of the
Project editor. It will present you with every file it understands to be localizable, and it
asks whether you want to keep it in the English locale or move it to Base; and if you do
move it to Base, whether you want to create a .strings file to separate the
English-language content from the Base content—which in principle isn’t in any language.

Why Base Localization?
Base localization works from the principle that, as much as possible, you should have one
set of assets—storyboards and XIBs most prominent among them—that is authoritative for
the application, and supply only enough information to cover the differences for each
localization. This is much easier than duplicating those assets for each language and locale.

There are reasons you might want to keep a duplicate layout for another language—the
cultural differences I mentioned earlier are good ones—but usually you don’t need to do
this, and you shouldn’t. Take it to the extreme: You are supporting a dozen languages in
three or four scripts. (This isn’t uncommon, and you want to be rich enough to have this
problem.) That’s 12 layouts. Now add a row of buttons to one of them. And then to all the
rest. Remember you have to link outlets and actions for each.

No. You’d rather not do that.
The classic justification for multiple layouts was that the same idea may be expressed in

only two characters in a CJK script, but require. . . a lot in German. Some developers solve
this by laying out for German, and if that means the Japanese get tiny islands of kanji in an
expanse of dialog sheet, it can’t be helped. Most developers would rather not do that,
either.

And in the case of right-to-left scripts (Arabic, Hebrew), the need for duplicate layouts
seems inescapable. The OK button has to be at the lower left, not the lower right as it is in
L-T-R layouts.

You remember the pain I put you through in Chapter 12, “Auto Layout in a New
View,” admittedly an extreme case; for Mac Passer Rating, the default constraints offered
by Interface Builder were enough. Here is where it pays off: Just as iOS size classes allow
you to use the same storyboard for radically different layouts, the same storyboard can
produce correct layout for kanji, Arabic, and German: Remember the compression
resistance of text-containing views? The longer German label will push out the enclosing
view (cascading out to the bounds of the window, if necessary) to make room.

If you get Auto Layout right, your views will accommodate even absurdly large
content. See Figure 21.1.

What about Hebrew? Remember how all the horizontal spacing constraints were
described as “leading” and “trailing,” not “left” and “right”? Auto Layout knows that in

376 Chapter 21 Localization

Figure 21.1 With proper Auto Layout, the game-view popover will present an orderly appearance
even if one of its labels is pushed out by an absurdly long title.

Hebrew, the leading side of controls and text is on the right. If you did it right, Auto
Layout will flop the layout for right-to-left scripts.

Something Worth Localizing
I’ve sold you once again (haven’t I?) on the benefits of Auto Layout. Mac Passer Rating as
it stands doesn’t make much use of Auto Layout: It’s just there to make sure everything
sticks to each other; there’s hardly any text at all to challenge the layout.

Game Detail View: Layout
Fortunately (for the purposes of demonstration), there is one piece missing from the plan
in Figure 19.1: A popover showing the details of a game selected from the lower table in
the team detail view.

This entails yet another view controller. Drop a View Controller scene into the
Main.storyboard canvas. Use the Identity inspector to set the controller Class to
GameDetailController. The class file will come shortly.

Note
Notice that the field below, Module, is empty but for a placeholder saying “None.” That will
come back to us.

Size the scene’s root view at 360 width, 220 height. Drop labels into the top half as
shown in Figure 21.2, and MacStatViews in the bottom. It would be nice to attach
NSNumberFormatters, in the Decimal style to the score labels; you must attach an
NSDateFormatter in the Full date style (no time style) to the date label, in order to
demonstrate localized layout.

Once again, I’ll cut down on the network of constraints by creating an OS X version of
the StatView label-and-number view class, MacStatView. Aside from adaptations to fit
AppKit instead of UIKit, there’s not much to be learned from it; you can find
MacStatView.swift in the sample code for this chapter.

Something Worth Localizing 377

Figure 21.2 The Game Detail scene is not elaborate; the top half are labels, the bottom,
MacStatViews.

Let’s see how fast we can run through the constraints:
m Make the date label, at the top, observe the standard spacing from the top and sides

of the enclosing view.
m For every view below the date, on the left side of the view, align the leading edges

to the leading edge of the date, and their trailing edges to each other.
m For the views on the right, align their trailing edges to the trailing edge of the date,

and their leading edges to each other.
m Make all the stat views of equal height and width.
m Put a minimum width on any one of the stat views of something like 110 points,

and minimum height 25. Do this by setting a size constraint in the popover.
That will be an absolute constraint; turn it into an at-least constraint by selecting the
constraint, and changing the Relation popup to Greater Than or Equal in the
Attributes inspector.

m The views on the left side will determine the vertical placement of everything else:
m Pin the vertical spacings between the date and the team names at 8 points.
m Align the baselines of the team-name labels with their respective scores.
m Align the tops of the left-hand MacStatViews with their neighbors to the

right.
m Pin the bottom of the Touchdowns stat view to the standard distance from

the bottom of the view.

378 Chapter 21 Localization

m Interface Builder is still complaining that the width or horizontal placement of the
stat views is ambiguous. Here’s a trick:

m Drag a constraint from the Attempts stat view to the containing view. It
doesn’t matter what the relationship is, because you’re going to change it.

m Select the new constraint, and in the Attributes inspector change it to First
Item: Mac Stat View.Trailing; Relation: Equal; Second Item:
Superview.Center X; Constant: -8. (Select Reverse First and Second
Item from one of the item popups if the views aren’t in the right order.)
The meaning is clear if you just read it off: “The trailing edge of the stat view
is equal to the center of the container minus eight.”

m Pin the horizontal spacing between Attempts and Completions at 16,
which ensures that Completions will align 8 points to the right of center.

m The edges of the other stat views being pinned to Attempts or
Completions, their placement becomes unambiguous, too.

m The equal-width constraint on all the stat views ensures that owing to the
compression-resistance constraint they carry (select one of them and look in
the Size inspector), they will all be as wide as the one with the widest content;
that, in turn, pushes the outer view to the width that accommodates all the
views.

Finally, control-drag from the Team Detail scene to the new Game Detail scene, and
accept the Popover style for the resulting segue. Select the segue and give it the name
Show game popover in the Attributes inspector.

Also, set the Anchor View by dragging from the connection bubble in that field to the
game table in the Team Detail scene. This sets the table as the place from which the
popover is to be placed. Because we want the popover to appear to the right of the table,
set Preferred Edge to Right.

Game Detail View: Code
We have the game-detail layout, but not the code behind it. Create a new class,
GameDetailController, a subclass of NSViewController. Start it off with one
property, and one modifier on the existing NSViewController property
representedObject:

var game: Game!
override var representedObject: AnyObject? {

didSet {
game = representedObject as? Game
// loadStatViews()

}
}

Having a game property, with an implicitly unwrapped type of Game already attached, is
more than just a convenience.

Something Worth Localizing 379

But first, add @IBOutlets for the MacStatViews. This should be easy for you by
now: Open the assistant editor and focus it on the new GameDetailController
.Swift (it should be one of the Automatic options in the jump bar). Control-drag from
each stat view into the class definition, and name each:

@IBOutlet weak var attemptsView: MacStatView!
@IBOutlet weak var yardsView: MacStatView!
@IBOutlet weak var touchdownsView: MacStatView!
@IBOutlet weak var completionsView: MacStatView!
@IBOutlet weak var interceptionsView: MacStatView!

What about the labels in the upper half? Try this: Control-drag from the date label at the
top onto the declaration of the game property of GameDetailController. The
property definition itself should highlight—see Figure 21.3, top.

Interface Builder offers to bind the label to the game property. Grab onto this with both
hands: Leave Bind as Value (you can choose any of the bindable properties of the view);
self in GameDetailController; and the Key Path game.whenPlayed for the value.
Click Connect.

Figure 21.3 Control-dragging from a view that exposes key-value bindings to a key-value
observable property in a controller class lets you bind the two, even though the controller class is not

a subclass of NSController.

380 Chapter 21 Localization

Note
Why didn’t I tell you about this in Chapter 20, “Bindings: Wiring an OS X Application”? In
that chapter, we were linking up a chain of selected objects, and collections subject to
sorting and filtering into arrangedObjects. NSController classes are built to handle
those concepts, not just direct access between two objects.

Do the same for the team names and scores: game.team.teamName, game.our-
Score, game.theirTeam, and game.theirScore.

The stat views have to be filled in in the usual way. Add loadStatViews to
GameDetailController, uncomment the call to it in the didSet block for
representedObject, and add a call to viewDidLoad:

func loadStatViews() {
if attemptsView == nil || game == nil { return }

attemptsView.numericValue = game.attempts as! Int
yardsView.numericValue = game.yards as! Int
touchdownsView.numericValue = game.touchdowns as! Int
completionsView.numericValue = game.completions as! Int
interceptionsView.numericValue = game.interceptions as! Int

}

override func viewDidLoad() {
super.viewDidLoad()
loadStatViews()

}

Also, add a way to trigger the popover. Yosemite adds gesture recognizers, long a feature of
iOS. A gesture recognizer detects mouse and trackpad gestures in the view to which it is
attached. There is a repertoire of recognizers in the Interface Builder object library; type
gest in the search field, and drag a click recognizer into the game table in the Team
Detail Controller scene.

Interface Builder selects the new recognizer; in the Attributes inspector, mate it to the
Primary button, require 2 clicks, and make sure it is Enabled. A double-click recognizer
would have no way to tell the difference between a double click (which should trigger the
recognizer) and a single click (which should go through to the view); it has to delay the
delivery of the single click until the time runs out for the second click. That’s not an issue
for this case—this will be the only recognizer, and it wants the single click itself—so
ignore the Delays Events checkboxes.

The easiest way to make a gesture do something is to treat it as if it were a control
event, like the click of a button. Control-drag from the recognizer to
TeamDetailController.swift, and have IB create an IBAction named
gameTableClicked.

private let kGamePopoverSegue = "Show game popover"

@IBOutlet weak var gameTable: NSTableView!

Something Worth Localizing 381

@IBAction func gameTableClicked(sender: NSClickGestureRecognizer) {
// What row was clicked? (If < 0, none was.)
let location = sender.locationInView(sender.view!)
let row = gameTable.rowAtPoint(location)

if row >= 0 {
// Get the game for that row and trigger the popover segue.
let game = gameArrayController.arrangedObjects[row] as? Game
if let theGame = game {

self.performSegueWithIdentifier(kGamePopoverSegue,
sender: theGame)

}
}

}

I also added an outlet for the game table, since gameTableClicked needs to refer to it. If
the click corresponds to a Game, gameTableClicked triggers the “Show game popover”
segue, which means there should be a prepareForSegue method to set the details of the
transition:

override
func prepareForSegue(segue: NSStoryboardSegue,

sender: AnyObject?) {
if let segueID = segue.identifier {

switch segueID {
case kGamePopoverSegue:

let popoverController = segue.destinationController
as GameDetailController

popoverController.representedObject = sender as! Game
default:

println("Unrecognized segue identifier \"\(segueID)\"")
}

}
}

Note
A reminder: If you type prepareForSegue and trigger autocompletion, Xcode will give
you the full interface for the function, including override, func, and the parameter
labels. Given how hard it can be to keep track of the modifiers for scope, overriding, and
so on, this is a big help. Conversely, remember not to type func or the modifiers yourself:
Xcode will insert duplicates anyway, and pepper you with syntax errors until you
straighten it out.

Run Mac Passer Rating. Load the document with test data if necessary (Edit→Fill
with Test Data, T). Select a team and passer, and click on a game.

382 Chapter 21 Localization

Modules and Namespaces
It crashes. The console says,

Unknown class GameDetailController in Interface Builder file
at path /Users/fritza/Library/Developer/Xcode/DerivedData/...

This brings up a class of bugs that are hard to track down if you don’t know where to
look. How can GameDetailController be unknown? You’re probably looking at
GameDetailController.swift in the same window as this message.

Objective-C has the problem that every class goes into the same name space. That’s
why you avoid generic class names like Shape: If you create a class with that name, it’s
likely your app will link into some other library that uses the same name for a different
class. The time-honored solution is to prefix all of your class names with letters that you
can hope will avoid collisions. Foundation and AppKit use NS, and UIKit uses UI. Apple
has taken to recommending that developers use three letters to prefix their own classes, this
giving them a sporting chance (but no better) of staying clear of each other.

Swift is name-spaced. Every class belongs to some module; class names must still be
distinct within a module, but classes with the same name in different modules won’t
interfere with each other. If you need access to the contents of another module, you
import it into the Swift file in which you need access, as in “import Cocoa.” You can
access objects in other modules only if they are declared public; if the object’s symbol
might conflict with one of your own, you have to prepend the module name and a dot to
the name.

Your application has a default module, which normally has the name of the target, with
non-alphanumerics replaced by underscores. In the case of Mac Passer Rating, the
application module is Mac Passer Rating.

And there’s your problem: We created the GameDetailController scene before we
defined the class. When we told Interface Builder that the class was GameDetail-
Controller, there was no such class, and IB had no idea where it might be found.
So—as we noticed—the Module field in the Identity inspector was blank.

GameDetailController is in the Mac Passer Rating module; type the name into
the Module field, or reenter the class name, which will prompt Interface Builder to
complete the module name.

Run it again, and select a game. The popover appears, looking as you’d hope.

Localizing for French
This section will walk you through the process of localizing the Mac Passer Rating itself;
we’ll get to how it’s treated by the Finder (or the iOS home-screen springboard) later.
We’ll start by adding another language to the project structure, and then how to approach
storyboards, file resources, and in-app code.

Localizing for French 383

Adding a Locale
Localization begins in earnest when you open the Project editor (select the top item in the
Project navigator, and choose the whole-project icon at the top), then click the + button
under the Localizations table. Editor→Add Localization will give you the same: A
choice from a few common languages, and a further choice for an astonishing variety of
languages and regions in which they are spoken (Figure 21.4).

Figure 21.4 Add a localization to a project by clicking the + button below the Localizations table
in the Project editor, or by selecting Editor→Add Localization and taking your pick. There are a lot

to pick from.

384 Chapter 21 Localization

Note
The project I’ve started you with has only one file—Main.storyboard—in the
Base.lproj directory, and therefore only one resource it will recognize as localizable. To
add variety, I’ve added Credits.rtf to the Base.lproj directory of the sample code.
(Previous versions of Xcode included this very file as part of the application template.)
The app template wires the About. . . menu item to the application method orderFront-
StandardAboutPanel:, which tries by various means to put an About box together. If it
finds a Credits.rtf, or .rtfd, or .html, its contents are added to the box.

Note
What you’re looking at isn’t just a list of languages—the dialects of French in Burkina
Faso and Chad are not much different. But there is more to localization than just
language. This is a list of locales. You could get away with the same English text
throughout the Commonwealth; but if you want to depict an animal (some areas that use
Commonwealth English are sensitive about some kinds of animals), or center a map on the
capital city, the difference between New Zealand and India is significant, even if both treat
corporate nouns as plural.

By whichever method, select French (fr).
Xcode drops a sheet (Figure 21.5) listing all the localizable files it found in the Base

directory. You can uncheck any you don’t want to bring into the new locale, but we want
them all.

The second column, Reference Language, shows the version of the file from which
the French localization will be derived. These are the Interface Builder resources to be
scanned for strings, or files that should be copied over for translation. If Mac Passer Rating
had developed a more complex set of resources, it might make a difference whether your

Figure 21.5 When you select the French localization, Xcode shows you the resources it found in
the lproj directories, and how it proposes to generate the localization resources.

Localizing for French 385

new locale’s main storyboard should be derived from the broad-layout copy you made for
German, or the compact one you have for Simplified Chinese. But we’re just starting out,
we have only one version of each file, so the popup menus in this column have one choice
each.

The third column, File Types, lets you choose the form the localized resource will
take. In particular, for Interface Builder layouts, you have a choice of a Localizable
Strings file (the default); or Interface Builder document type, a complete duplicate of
the “reference” layout.

Click Finish. The obvious change is that the Localizations table now has a row for
“French.” The real change is in the Project navigator. Type fr in the search field at the
bottom of the navigator; you will see that some files aren’t “files” any more, but groups
with disclosure triangles. Each contains a resource of some kind tagged “(French).”
Credits.rtf, is simply a duplicate but for the added tag; the file attached to
Main.storyboard is a .strings file. (Figure 21.6, top).

Starting Simple: Credits.rtf
Let’s start simple, with the straightforward replacement of the contents of Credits.rtf.
The file I’m using—it used to come with the application template—contains a brief,
humorous list of credits (like With special thanks to: Mom). See Figure 21.7. Brevity
and humor are virtues, so I’ll just translate it.

Select Credits.rtf in the Project navigator. Take the Base version (with the “(Base)”
tag attached) or the container (the one with the disclosure triangle), which will give you
the reference version, which happens to be in English. It’s important that we be in sync
here—the French version starts out with the identical content, and it’s easy to find that
you’re working on the wrong version.

Xcode has an RTF editor, so the credits appear in the editor as they would in the
About box. (It’s the standard AppKit rich-text editor, so if you want one of your own, it’s
about 30 lines of code.) If you look in the jump bar, you’ll see the progression from the
project, down the enclosing groups to Credits.rtf, and then Credits.rtf (Base).

Figure 21.6 When the “French” localization was added, the localizable resources picked up
counterparts that were either modifiers or outright replacements for the originals.

386 Chapter 21 Localization

Figure 21.7 AppKit generates an About box for your application if you don’t supply your own. If
the Credits.rtf file is present, it goes into a scrolling display in the middle of the window.

The last segment will jump you between the localizations. You can jump to the other
localization from that segment of the bar.

The File inspector for each version of a file includes a common Localization table,
listing all the locales in the project. You can remove a localization for a file by unchecking
the locale in the table. Or, if you visit another version of the file, you can add a localized
version by checking its entry in the table (Figure 21.8).

Have a glance at the project tree in the Finder. en.lproj and Base.lproj have been
joined by fr.lproj. Main.storyboard in the Base folder has been matched in the
French folder with Main.strings.

What about Credits.rtf? Despite its starting out in Base.lproj, Xcode puts its
French counterpart in a fr.lproj folder in the project directory, not the Mac Passer
Rating target directory. This may be a bug, and you won’t see it in a future version. Xcode
still finds the file, and includes it in the application package where it belongs.

The idea of localization in Xcode is that you are given a copy of a “reference” version
of a resource (usually the Base version, but you can choose another when you add the
localization) for you to edit as the locale requires. It’s getting to the point where, if you can
imagine a way two files in a project might relate to each other, Apple can say, “There’s an
assistant for that.” Select Credits.rtf, activate the Assistant editor, and from the root of
the jump bar, select Localizations.

If there were more than one localization, you could step through them with the
arrowheads at the right end of the jump bar, or by pressing

<

Left Arrow or Right
Arrow, but there’s only one alternative this time. By now, you should have the English
version in the main (left) editor and the French version in the Assistant (right) editor.

Localizing for French 387

Figure 21.8 The File inspector for all versions of the Credits.rtf file includes a Localization
table to enable or disable localization of the file for a locale.

Replace the contents of each line of the French file with:
m Les ingénieurs: Certains gens
m Conception d’interface humaine: D’autres gens
m Test: On espère que ce n’est pas personne
m Documentation: N’importe qui
m Nous remercions particulièrement: Maman

The obvious way to test this localization is to shuffle your language preferences in the
System Preferences application, launch Mac Passer Rating, and see whether the About box
contains the new text. This would, however, also make any other application you launch
use the French localization until you switch the preference back. This is inconvenient
unless you prefer to work in French.

Note
Changing the system-wide language preference will be necessary when you edit
InfoPlist.strings to localize things like the display name of the application. You’ll
have to build the app, change the preference, and relaunch the Finder using Escape.

You can change the language preference for an Xcode target with the Scheme editor
(Product→Scheme→Edit Scheme. . . , <). Select the Run action, and the

388 Chapter 21 Localization

Options tab. The Application Language popup will include every language for which
the app is localized, plus:

m System Language, which uses the priority list from the Language & Region
panel of System Preferences.

m Double Length Pseudolanguage, which renders all the strings from the Base
localization twice, to challenge the layout.

m Right to Left Pseudolanguage, which makes Auto Layout’s layout solutions
assume a right-to-left language like Hebrew or Arabic.
This is why horizontal constraints refer to “leading” and “trailing” edges, and not
“left” and “right.” (Even when the label is Left or Right, you usually get
leading-and-trailing constraints.) You can request an explicit left-or-right constraint
by selecting it in Interface Builder, and in the Attributes inspector unchecking
Respect language direction either item; the menu items for the edges then
become Left and Right.

Switch the language to French and run the app. Not much has changed—we’ve done
nothing with the menu and window contents, though system-supplied strings like number
and date formats and automatically generated menu titles have switched over. Select Mac
Passer Rating→À propos de Mac Passer Rating. Where once the credit text was in
English, it now is in French (Figure 21.9). It’s a start.

Figure 21.9 Providing a French version of Credits.rtf and setting the Application Language
in the Scheme editor to French lead AppKit to use the localized version of the credits in the

automatically generated About box.

Localizing for French 389

Localizing Main.storyboard
Before Xcode 5, and OS X Mavericks (10.9), this was not a pleasant section to read, nor
to write. Localizing a XIB (storyboards weren’t available) entailed going to the command
line to analyze the original, extract all the strings, generate a .strings file, then
synthesize the original and the translated strings into a new, localized XIB for you to
maintain for the rest of your life.

Things are better now. When you choose to localize an Interface Builder resource,
Xcode takes care of extracting the strings, and AppKit reads the .strings file when it
loads the resource and substitutes the translations. Select MPRGameViewController.xib
from the Project navigator. As before, it’s shown as a group, and clicking it displays the
primary version—in this case, the one and only copy of the XIB in the Base
localization—and, if you select Localizations in the Assistant editor’s jump bar, you’ll see
not a duplicate of the XIB, but the extracted .strings file.

As provided, the file is simply a restatement of the base strings:

/* Class = "NSTableColumn"; headerCell.title = "When"; ... */
"v8C-L2-cIW.headerCell.title" = "When";

/* Class = "NSMenuItem"; title = "Clear Menu"; ... */
"vNY-rz-j42.title" = "Clear Menu";

/* Class = "NSTableColumn"; headerCell.title = "Us"; ... */
"vcc-ie-bqj.headerCell.title" = "Us";

/* Class = "NSMenuItem"; title = "Help"; ... */
"wpr-3q-Mcd.title" = "Help";

/* Class = "NSMenuItem"; title = "Copy"; ... */
"x3v-GG-iWU.title" = "Copy";

/* Class = "NSTableColumn"; headerCell.title = "Yards"; ... */
"xIc-Wa-jK0.headerCell.title" = "Yards";

...

It’s a series of key-value pairs. The keys are Interface Builder’s internal identifiers for the
elements, and each is commented with the class and original content. To get a French
rendering of a label, edit the strings. They’re in the fr.lproj directory, AppKit sees from
its name that it matches the storyboard in Base.lproj, and it merges them.

Note
It’s not likely you would, but don’t give a .strings file the same base name as an
Interface Builder document if you don’t intend to localize them.

390 Chapter 21 Localization

The technical task is easy, though tedious in a large project: Replace “Touchdowns”
with “Touchés,” “Attempts” with “Tentées,” and so on. In my experience, the social task
of getting a domain expert to come up with translations is the hard part.

The preceding excerpt becomes:

/* Class = "NSTableColumn"; headerCell.title = "When"; ... */
"v8C-L2-cIW.headerCell.title" = "Quand";

/* Class = "NSMenuItem"; title = "Clear Menu"; ... */
"vNY-rz-j42.title" = "Effacer le menu";

/* Class = "NSTableColumn"; headerCell.title = "Us"; ... */
"vcc-ie-bqj.headerCell.title" = "Nous";

/* Class = "NSMenuItem"; title = "Help"; ... */
"wpr-3q-Mcd.title" = "Aider";

/* Class = "NSMenuItem"; title = "Copy"; ... */
"x3v-GG-iWU.title" = "Copier";

/* Class = "NSTableColumn"; headerCell.title = "Yards"; ... */
"xIc-Wa-jK0.headerCell.title" = "Verges";

The equivalents that are specific to Mac Passer Rating are

Touchdowns Touchés

Attempts Tentées

Yards Verges

Interceptions Interceptées

Completions Captées

Rating Efficacité

Quarterback Quart

Fill with Test Data Remplissez avec les données de test

AppKit does not give you translations of standard menu items like Cut or Quit. You have
to fill in the .strings file yourself.

Apple can give you a little help here. It has a localization-support page at
https://developer.apple.com/internationalization/, where you can
download tools (developer registration required). Look for “AppleGlot” in the Downloads
section. The AppleGlot tool itself hasn’t gotten much attention, but the real trove is in the
glossary files that Apple used to translate its applications and system software. They’re in
many languages, among them French. I won’t fill up more pages with the full translation
of the menus and other items; see fr.lproj/Main.strings in the sample code.

You’ve finished the translation; now run the application. Figure 21.10 shows a League
document window under the three localized options. The top window uses the doubled

https://developer.apple.com/internationalization/

Localizing for French 391

Figure 21.10 The Mac Passer Rating League document window, running under three application
languages set in the Scheme editor. (top) The Double Length Pseudolanguage duplicates every

string in the layout. (middle) Right to Left Pseudolanguage flops the layout, putting the source list
at the left, and rejustifying most of the data. (bottom) The French language adopts the localized

formats and strings—except for the labels above the passer and game tables.

392 Chapter 21 Localization

pseudolanguage. It looks about as you’d hope, except that if you narrow the window, the
labels in the team detail view don’t prevent its getting too narrow to display them fully.
You’ve learned something.

The second window adopts the right-to-left pseudolanguage. Sticking by the default
leading/trailing constraints got us quite a lot, but the justification on the numeric and date
columns bears attention.

The third is the French. You don’t see it here, but the menus are translated. The date
and number formats are correct, and so are the column headers. The proper names are
supposed to come through untranslated. The problem is the labels for the passer and game
tables. They’re still in English.

If you go back to the Scheme editor, check Localization Debugging: Show
non-localized strings, and run again; any strings that don’t yet have a localization will be
shown in all-caps. The labels (and the format patterns in the tables) show up as
un-localized. I localized them; I double-checked; the formats are still the ones for the Base
localization.

This is a bug in Yosemite. I hope it’s fixed by the time you read this, but for this book,
it’s an opportunity. So is the game-detail popover. It shows the date of the game in proper
French, but the stat-view labels are still in English—MacStatView isn’t a localizable
control.

These are opportunities to explore two more strategies for localization.

Localizing Resources
AppKit won’t localize the MacStatViews for you, so you have to do it yourself. But it
hasn’t left you on your own:

Any resource can be localized. When an application asks NSBundle.mainBundle()
for a path to a file, NSBundle first looks for it in the app’s .lproj directories first. If the
preferred language is French, and a file of the desired name is in fr.lproj, NSBundle
will return a path to that file. Failing that, it goes down the user’s list of preferred locales;
then to Base.lproj; and finally to the common Resources directory in the application
package.

So we’ll add an English-language list of labels for the stat views, and then localize it for
French. The list will take the form of a property list (.plist) file. Chapter 23, “Property
Lists,” explains the topic in-depth, but for now, just pull in stat-labels.plist from
the sample code. It’s been added to the Project navigator; feel free to click on it and see
what’s there.

Localizing for French 393

The English version, in Table 21.1, is trivial.

Table 21.1 The English Mapping between the Stat View Labels in the Storyboard and the
Ones for Display in an English Locale Is Trivial

Attempts Attempts

Completions Completions

Yards Yards

Touchdowns Touchdowns

Interceptions Interceptions

If you’re playing along, you can find the Property List template in the new-file assistant
under “Resources.” Name it stat-labels.plist and put it in the Base.lproj
directory. Make the root element a dictionary, and fill in the keys and values as shown.
(See Chapter 23 for the technique.)

Next, use the File inspector to add a French localization by checking the French box
under Localizations. Use the Localizations view in the Assistant editor, or simply click
the (French) version in the Project navigator, to edit the French version (Table 21.2) like
this:

Table 21.2 The French Mapping for the Stat View Labels Makes Some Changes

Attempts Tentées

Completions Captées

Yards Verges

Touchdowns Touchés

Interceptions Interceptées

Then, when the popover loads, edit the names of the stat views:

override func viewDidLoad() {
super.viewDidLoad()

// Read the home-grown localization dictionary for the stat views
let mainBundle = NSBundle.mainBundle()

394 Chapter 21 Localization

if let statLabelURL:NSURL = mainBundle.URLForResource(
"stat-labels", withExtension: "plist") {

if let labelMap = NSDictionary(contentsOfURL: statLabelURL)
as? [String:String] {

// Use the IB-provided names to look up the localized ones.
for statView in [attemptsView, yardsView, touchdownsView,

completionsView, interceptionsView] {
statView.name = labelMap[statView.name]!

}
}

}
// Fill in the numbers.
loadStatViews()

}

Running Mac Passer Rating in both English and French shows the labels adjust to the
current locale—the URLForResource(, withExtension:) call directed the URL
for stat-labels.plist to the file in the proper .lproj.

Localizing Program Strings
Sticking with bindings to format the “Passers for. . . ” and “Games played. . . ” labels will
be tricky at best. There is API for establishing and modifying bindings, but there is a
reason most people avoid it. This is our chance to look at the third case for localization:
strings generated in code.

Putting switch statements or per-language formatting objects, or other piecemeal
locals-management into code is exactly what AppKit has allowed us to avoid so far. It
helps us here, too: Your code can refer to localizable strings by key, and the localized
strings will be pulled out of the .lproj at run time.

The process starts with the code that uses the string. We’ll have Team and Passer
generate the label strings themselves. This is a need peculiar to TeamDetail-
Controller, so it makes the most sense to put the code into extensions in Team-
DetailController.swift:

extension
Passer {
func passerGameHeader() -> String {

let format = NSLocalizedString("Games played by %@",
comment: "Format string for the label over the games table")

let retval = NSString(format: format, fullName)
return retval as! String

}
}

extension
Team {
func teamPasserHeader() -> String {

Localizing for French 395

let format = NSLocalizedString("Passers for the %@",
comment: "Format string for the label over the passers table")

let retval = NSString(format: format, teamName)
return retval as! String

}
}

Where you’d otherwise use a string literal, you invoke NSLocalizedString(,
comment:). The first argument is a key for looking up the localized version of the string,
and the second (comment:) provides the context a translator might need to determine the
correct phrasing for the particular use.

Note
NSLocalizedString(, comment:), as shown here, is actually an invocation of
NSLocalizedStringfull, with three of the arguments defaulted so the search takes place in
Localizable.strings in the search path within the main bundle. In Objective-C, the
optional arguments are taken care of by wrapping the big function invocation in C
preprocessor macros.

Now all you need is a strings file—Localizable.strings—for each .lproj, to fill
in the correct string at run time. There are two ways to do this.

genstrings
The first sends you to the command line to run the genstrings command. At its
simplest, here is all you have to do:

$ # Focus on the target directory
$ cd 'Desktop/Mac Passer Rating/Mac Passer Rating/'
$ # This is the directory containing your source files.
$ genstrings *.swift
$ ls
...
Localizable.strings
...
$

The new Localizable.strings file contains a dictionary of all the invocations of
NSLocalizedString(, comment:), with both keys and values equal to the key
string, and the comment you gave appearing in a comment line:

/* Format string for the label over the games table */
"Games played by %@" = "Games played by %@";

/* Format string for the label over the games table */
"Passers for the %@" = "Passers for the %@";

That’s the Base version. Add it to the project, display it in the editor, and use the File
inspector to add a French localization: When you click the Localize. . . button, Xcode
tells you it will have to move the file into an .lproj folder, and asks which one. Move it

396 Chapter 21 Localization

to Base. The table of locales is now open to you; click French, and you know the routine
from here:

/* Format string for the label over the games table */
"Games played by %@" = "Jeux de %@";

/* Format string for the label over the games table */
"Passers for the %@" = "Quart-arrières des %@";

All that’s left is to drop the Display Pattern bindings for the labels and replace them with
plain Value bindings, thus working around the bug. For each label, uncheck the pattern
binding, and check the Value binding.

m The label on the upper table, for passers, is bound to Team Object, selection,
teamPasserHeader.

m The one on the lower, for passers’ games, is Passer Array, selection,
passerGameHeader.

Important: The failed localizations for the pattern bindings are still in Main.strings.
Edit Main.strings to delete them or comment them out.

Run Mac Passer Rating one more time: The labels appear in the proper languages.

xliff Files
I took you through all of this because you can’t analyze your localizations and dig out the
corner cases without getting your hands on the way Cocoa has localized applications for
decades, and still does. You have to know these techniques. But you don’t have to use
them.

Xcode 6 introduces support for the .xliff XML schema for exchanging translation
dictionaries. At any time in your localization efforts, you can display the Project editor
(Project navigator, top item, select the project itself), and select Editor→Export for
Localization. . . . Xcode will ask you whether you want to export just the development
strings (that is, in Base, Info.plist, and in-code), or the strings for the locales you’ve
added. Pick one, give the export a name, and place it on-disk.

The result will be a directory with the name you picked, containing .xliff files for
each locale (elided and line-wrapped for space):

<xliff ...>
<file original="Mac Passer Rating/Base.lproj/Main.storyboard"

source-language="en" datatype="plaintext" target-language="fr">
<header>

...
</header>
<body>

...
<trans-unit id="aTl-1u-JFS.title">

<source>Print...</source>
<target>Imprimer...</target>

Localizing for French 397

<note>Class = "NSMenuItem"; title = "Print..."...</note>
</trans-unit>
<trans-unit id="aUF-d1-5bR.title">

<source>Window</source>
<target>Fenêtre</target>
<note>Class = "NSMenuItem"; title = "Window"...</note>

</trans-unit>
<trans-unit id="bib-Uj-vzu.title">

<source>File</source>
<target>Fichier</target>
<note>Class = "NSMenu"; title = "File"...</note>

</trans-unit>
...

</body>
</file>
</xliff>

The top-level <file> elements identify each source file; one nice feature is that even if
you have .strings files in place for an InterfaceBuilder document, the translations will
be identified with the XIB or storyboard, not the .strings.

The initial content of the strings will be marked as <source> elements; you can add
translations as <target> elements. This gives you a single file to pass on to your
translator. When she’s done, she can pass it back, and you can select Editor→Import
Localizations. . . to integrate the changes.

This solves one big problem with .strings files: What happens when you change a
storyboard, adding a scene, or, what turns out to be worse, adding and removing labels or
controls? The answer with .strings is that because the changes occurred only in the
base-language file, you’d have to save a copy of the localization files, remove the
localization from the storyboard, and add it back. The resulting .strings file would
contain only the English-language content, and you’d be left to merge the translations
you’d done into it.

When you export an .xliff, you get a listing of existing translations, and the structure
of the base storyboard. It’s already merged, and all you have to do is fill in the gaps.

The Rest
Edit the French .strings file and check your work so far by running Mac Passer Rating.
Most strings will still be in English, but if you trace down to the game popover, you
should see results. . .

. . . except you don’t. The labels, for which the .strings file did provide translations,
are all overwritten by the application with numbers, proper names, or a date. The first two
shouldn’t be translated, and the date relies on the system-wide date formatter provided by
OS X, and your system as a whole is still set for English formats.

The stat views are another matter: They aren’t standard AppKit elements, so AppKit
doesn’t know how to apply a .strings file to them. You’ll have to set their labels
in-code.

398 Chapter 21 Localization

Localizing System Strings
You saw earlier that localizing Main.storyboard didn’t take care of the application
menu (Mac Passer Rating). There are other gaps, as well: The default About box
contains the English application name and copyright notice; if you viewed MPR’s icon on
a French localization of the Finder, it would have the English name, and its documents
would be labeled in English.

All of these strings come from Info.plist, which I cover in Chapter 22, “Bundles
and Packages,” and Chapter 23, “Property Lists.” There has to be only one Info.plist
in a bundle directory (such as an .app bundle), but you can change how its contents are
presented through a .strings file in the .lproj directory corresponding to the user’s
locale.

You localize Info.plist just as you would any other resource—by adding a
.strings file, in this case InfoPlist.strings. When you start, there is no such file
in the project, because the only locale is the Base one, and by definition, there’s no
localization to do. When you added the French language, again there was no
InfoPlist.strings, because there were no translations yet.

There are two kinds of keys by which InfoPlist.strings can pick the strings to be
localized: If you want to set a value corresponding one-to-one with an Info.plist key,
use that key as the key for the translation. Otherwise, use the string that appears in the base
Info.plist.

To do what Mac Passer Rating needs, you first have to add two keys to the base source
file for Info.plist. Select that file in the Project navigator, and add two rows:

m Bundle display name (CFBundleDisplayName). As a placeholder, set this to the
string ${PRODUCT NAME}; the actual string will be pulled from the localization files.

m Application has localized display name (LSHasLocalizedDisplayName)
tells Launch Services and the Finder that they must take the extra trouble of looking
up the localized version of the app’s name.

Next, the localized values of the Info.plist keys for French. Ordinarily, you’d create
an InfoPlist.strings file in fr.lproj, and write the key-value pairs for
CFBundleName (Quart-Efficacité), CFBundleDisplayName (also Quart-
Efficacité), and NSHumanReadableCopyright (Copyright... Toutes droits
reservèes.).

Note
You might think that you could use the File inspector to add a French localization to the
Info.plist file, just as you did for Main.storyboard, and get an InfoPlist
.Strings file. That doesn’t work: Xcode follows the strategy it uses for other resource
files, and duplicates the base Info.plist into the fr.lproj directory. You have to
create the InfoPlist.strings yourself.

This is all fr.lproj/InfoPlist.strings need contain (some lengthy strings are
elided, and line breaks added):

Localizing System Strings 399

/* One-to-one values for Info.plist keys */
"NSHumanReadableCopyright" =

"Copyright ... Toutes droits reservées.";
"CFBundleDisplayName" = "Quart-Efficacité";
"CFBundleName" = "Quart-Efficacité";

/* The file-type string is inside an array, and a single plist key
doesn't correspond to it. Use the untranslated value as the key: */

"League File" = "Fichier de Ligue";

Testing the Info.plist localization comes in two parts. The first is easy: Run Mac
Passer Rating and verify that the application menu and About box are as you expect.

Finder behavior is trickier, because you have to set your preferred language in the
Language & Text panel of System Preferences, and then relaunch the Finder so it will
pull the localized strings. System Preferences tells you to log out and log back in to see the
results of the change. There’s another way: Press Escape, select Finder, and click
Relaunch. Finder will reappear in your selected language.

Note
While you’re in Language & Text, visit the Formats tab to be sure that the Region:
matches the language you chose. The switch should be done automatically, but if you
created a custom format set, it will stick. If it does, you won’t see localized date and time
formats in your applications.

If all went well with the InfoPlist.strings modification, Finder should present
Mac Passer Rating as Quart-Efficacité. See Figure 21.11.

Figure 21.11 When displayed in a French Finder, Mac Passer Rating should be displayed as
Quart-Efficacité.

400 Chapter 21 Localization

Summary
In this chapter, I gave you an overview of the tasks that go into localizing a Mac
application; the same techniques apply to iOS.

You saw how to add a localization to a file that the application template put into the
default Base.lproj directory, as well as how to add localizations to the project and to an
unlocalized file.

I then went on to techniques for translating menus (easy) and UI layouts. Once upon a
time, if you wanted localized layouts, you had to produce separate XIB files, one way or
another. The ibtool command-line tool made it possible to extract strings from one XIB
and inject them into another, but it was an easy process to get wrong. Modern Xcodes,
and the application frameworks’ acceptance of .strings files at run time, have made it a
matter of a few clicks (and several calls to your translator’s voicemail).

Then came techniques to apply .strings files to the application code
itself—InfoPlist.strings for Finder strings, and Localizable.strings for strings
that would otherwise be hard-coded in your source.

We started caring about how Mac Passer Rating presented itself in the Finder, so we
walked through the intricate process of adding icons and file types to the application
package.

And, I covered how to test your localization at run time and in the Finder.

22
Bundles and Packages

Many of Xcode’s products take the form of packages, directory trees that the Finder
presents as single files. Let’s pause to consider the problem of resources. Resources are the
sorts of data that are integral to an application, but for one reason or another aren’t suitable
to incorporate into source code: strings, lookup tables, images, human-interface layouts,
sounds, and the like.

In the original Mac OS, applications kept resources in resource forks, mini-databases kept
in parallel with the data stream one normally thinks of as a file. The problem with the
Resource Manager was that it did not scale well to sets of many, large, or changeable
resources. The catalog written into each resource file was fragile, and any corruption
resulted in the loss of every resource in the file. Modern apps use many more and much
larger resources, and the tasks involved in managing them become indistinguishable from
the tasks of a filesystem. Filesystems are a solved problem; they are as efficient and robust as
decades of experience can make them. Why not use the filesystem for storing and
retrieving resources?

One reason to avoid shipping application resources as separate files is that an application
that relies on them becomes a swarm of files and directories, all more or less critical to the
correct working of the application, and all exposed to relocation, deletion, and general
abuse by the application’s user. Meanwhile, the user, who just wants one thing that does
the application’s work, is presented with a swarm of files and directories.

OS X provides a way to have the flexibility of separating resources into their own files
while steering clear of the swarming problem. The Finder can treat directories, called
packages, as though they were single documents.

A Simple Package: RTFD
A package can be as simple as a directory with a handful of files in it. The application that
creates and reads the package determines how it is structured: what files are required, the
names of the content files, and what sort of subdirectory structure is used.

A common example of an application-defined package is the RTFD, or rich text file
directory. The Apple-supplied application TextEdit, in its Info.plist file, specifies what

402 Chapter 22 Bundles and Packages

kinds of documents TextEdit can handle; among these is NSRTFDPboardType, which is
listed as having suffix rtfd and is designated as a package file type. When it catalogs
TextEdit, the Finder notes that directories with the .rtfd extension are supposed to be
packages and so treats them as if they were single files, without displaying the files within.

It is sometimes useful to look inside a package, however, and the Finder provides a way
to do that. Right-clicking on a package file produces a popup menu containing the
command Show Package Contents (see Figure 22.1). Selecting that command opens a
new window showing the contents of the package directory, which can be further
navigated as in a normal Finder window.

In the case of RTFD, the package directory contains one plain RTF file, TXT.rtf.
The RTF file incorporates custom markup, such as

The icon looks like this:\
\
\pard\tx560\tx1120\tx1680\tx2240\tx2800\tx3360\tx3920\tx4480
\tx5040\tx5600\tx6160\tx6720\pardirnatural
\cf0 {{\NeXTGraphic icon60@2x.png \width2400 \height2400
}}\

Here, the markup refers to a graphics file—in this case, icon60@2x.png—that is also in
the RTFD directory.

Note
Cocoa’s AppKit application framework provides support for package-directory documents.
NSDocument subclasses handle package reading and writing by overriding
readFromFileWrapper(,ofType:,error:) and fileWrapperOfType(,error:).
The NSFileWrapper class provides methods that assist in creating and managing
complex file packages.

Figure 22.1 Right-clicking a package document in the Finder presents a menu that includes the
command Show Package Contents, which shows the files within the package.

Application Bundles 403

Bundles
A bundle is a particular kind of structured directory tree. Often, bundles are shipped as
packages—the most familiar type of bundle, the application, is an example—but the
concepts are separate. A directory can be a bundle without being a package, or a package
without being a bundle, or it can be both. Table 22.1 has examples.

Table 22.1 Examples of Directories That Are Bundles or Packages or Both

Not Bundle Bundle

Not Package Other directories Frameworks

Package Complex documents Applications

There are two kinds of bundles in OS X: versioned bundles, which are used for
frameworks—structured packages of dynamic libraries, headers, and the resource files that
support them—and modern bundles, which are used for applications and most other
executable products.

Note
“Modern” is a relative term; modern packages were in NeXTStep long before Cocoa.

At the minimum, a modern Mac bundle encloses one directory, named Contents,
which in turn contains all the directories and files composing the bundle. The Contents
directory contains an Info.plist file, which specifies how the bundle is to be displayed
in the Finder and, depending on the type of the bundle, may provide configuration data
for loading and running the bundle’s contents. Beyond that, what the Contents folder
contains depends on the type of the bundle.

Application Bundles
OS X applications are the most common type of bundle (see Figure 22.2). An application
directory has a name with the suffix .app. The .app directory is a file package; even
though it is a directory, the Finder treats it as a single entity. This allows the author of the
application to place auxiliary files for the application in a known place—inside the
application bundle itself—with little fear that they will be misplaced or deleted.

The Contents directory of an OS X application bundle most commonly contains

m Info.plist, an XML property list file that describes such application details as the
principal class, the document types handled, and the application version. More on
this file in the next section.

m Resources, a directory containing the application icon file, images, sounds,
human-interface layouts, and other parameterized content for the application.
Common content, such as button images, may be found in the Resources
directory itself; localizable files are kept in .lproj directories. There will typically
be a Base.lproj directory for the default layouts and strings, with additional

404 Chapter 22 Bundles and Packages

Figure 22.2 The structure of a typical application bundle. The executable file is at Contents
/MacOS/Application. The default structure of the application’s human interface is specified in a

compiled storyboard, Contents/Resources/Base.lproj/Main.storyboardc;
presumably, a French .strings file is inside Contents/Resources/fr.lproj. The custom

image for a button, Login button.png, is common to all languages and therefore appears in the
Resources directory itself.

.lproj directories to supply customizations for specific locales. When an
application seeks a resource, the Cocoa or Core Foundation bundle managers will
look first in the .lproj directory that corresponds to the current language and
locale.

m MacOS, a directory containing the executable binary for the application, along with
any other executables.

The Info.plist File 405

m Frameworks, a directory of frameworks that are themselves versioned bundles,
containing a dynamic library, resources needed by the library, and header files
needed by users of the library. An application typically includes a framework because
it links to the framework’s library.

Note
What about iOS apps? They’re packages—the Finder treats them as unitary files—but not
bundles. Everything except the localization .lproj directories and directories you
explicitly add to the application resources is in the .app bundle directory. Have a look:
Hold down the Option key and select Library from the Finder’s Go menu. Pass through
Developer/Xcode/DerivedData and find the name of one of your iOS projects (a long
hash string will follow it). In that directory, Build/Products is where you’ll find
directories for combinations of build configurations and target operating systems. Your
.app files will be there. Right-click on any, and select Show Package Contents.

The Info.plist File
The Info.plist file, found in the Contents directory of any modern bundle and at
the root of the .app bundle for iOS applications, is the locus of much of the information
OS X and iOS need to make sense of a bundle. This file provides icon and naming
information to the Finder/Home screen, flags and environment variables to Launch
Services, “default” screen images in various sizes and orientations for iOS apps, and
specifications for the basic structure of applications and plugins. It’s a property list
(.plist) dictionary file, a format I’ll cover in Chapter 23, “Property Lists.”

The Target editor’s General and Info tabs form a specialized editor for the target’s
Info.plist. They’ll give you at least a first cut at the settings you need without much
trouble.

You can also edit the Info.plist file directly, using the Property List editor (see
Chapter 23, “Property Lists”). Sort of. The Info.plist you will be editing is a
precursor of the file that will go into the product package.

What you’re seeing is a source file that Xcode will process to generate the final
property list. It’s this processing phase that allows you to use build-variable references
instead of literal values for some of the keys. The handling of the target-specific
Info.plists is special: They are not to be included in any build phase of your
target—that will just copy the unprocessed source file into the application’s Resources
directory. Instead, the name of the file is specified in the INFOPLIST_FILE build variable.
The build system picks it up from there.

Note
There are a number of build settings that control processing of Info.plist. Check the
“Packaging” section of the Build Settings tab of the Target editor. Among them are the
option to use C-style preprocessor directives in the source file. Unfortunately, once you
use them, you are committed to editing the file as XML text because the Property List
editor destroys all content that isn’t property-list XML.

406 Chapter 22 Bundles and Packages

Note
Most targets need their own Info.plists. A project with more than one target has more
than one Info.plist file to manage. Versions of Xcode before 6 handled the potential
collision by prefixing the target’s name to the precursor file’s: my
framework-Info.plist. Xcode 6 insists on segregating target files in their own
directories, and has dropped the target-prefix convention, but you may run into it in older
projects.

Localizing Info.plist
Some Info.plist properties are localizable. A file named InfoPlist.strings should
be in the .lproj directory for each localization of your application. Localizable keys can
then be assigned per-locale values. For instance, InfoPlist.strings in the
English.lproj directory might include the pair:

CFBundleName = "PasserRating";
CFBundleDisplayName = "Passer Rating";

The same file in the fr.lproj directory might include

CFBundleName = "Q-Effic";
CFBundleDisplayName = "Quart-Efficacité";

For users whose language preferences place French above English, the Mac Passer
Rating icon will be labeled Quart-Efficacité. The name of the bundle directory,
however, will still be PasserRating.app, even if the casual user doesn’t see it.

The Xcode Property List editor customizes itself for Info.plists. When the name of
a file ends in Info.plist, it will fill the dictionary key column with popup menus
offering the keys peculiar to that kind of property list. This means that you should avoid
using Xcode to edit property lists whose names end that way (like the DirectoryInfo
.plist file you’re setting up for some names and addresses) but aren’t actual
Info.plists.

Info.plist Keys for Applications
Info.plist keys have proliferated as more and more OS services need to characterize
the needs and capabilities of applications. In earlier editions of this book, I was able to list
almost every key—even a couple whose names appeared nowhere on the Internet. That’s
not possible any more.

What you’ll see here are the most frequently used keys for application Info.plists.
I’ve itemized the dictionary keys, followed by the plain-English labels used by the Property
List editor.

Keys for Both iOS and OS X
The keys in this section apply to application bundles on both OS X and iOS.

Info.plist Keys for Applications 407

m Structure

m CFBundleExecutable (Executable file), the name of the executable file,
which may be an application binary, a library, or plugin code. It corresponds
to the EXECUTABLE NAME build setting, which in turn is derived from
PRODUCT NAME (plus an optional prefix and suffix, which you’d rarely use).
A bundle that mismatches this entry with the actual name of the executable
file will not run. Applications must specify this key.

m CFBundleIdentifier (Bundle identifier), a unique identifier string for the
bundle, in the form of a Java-style reverse domain package name, such as
com.wt9t.Passer-Rating. Xcode initializes this to the company ID you
supplied when you chose the project template, followed by ${PRODUCT-
NAME:rfc1034identifier}, and you can expect to leave it alone. All
bundles must specify this key.

m CFBundleInfoDictionaryVersion (InfoDictionary version), a
compatibility-check version number for the Info.plist format. Xcode
injects this version number when it builds bundles. I’ve never seen a version
number other than 6.0. All Info.plist files should include this key.

m CFBundlePackageType (Bundle OS Type code), optional on iOS, the
four-character type code for the bundle. Applications are type APPL,
frameworks are FMWK, plugins are BNDL or a code of your choosing. See also
CFBundleSignature. OS X applications must specify this key.

m CFBundleSignature (Bundle creator OS Type code), optional on iOS,
the four-character creator code associated with the bundle. OS X applications
must specify this key, but it’s rare for it to be anything other than ????.

m NSPrincipalClass (Principal class), the name of the bundle’s main class. In
an OS X application, this would normally be NSApplication; in iOS,
UIApplication.

m NSMainNibFile (Main nib file base name), the base (no extension) name of
the application’s main NIB file, almost always MainMenu on OS X, and
MainWindow on iOS (when a main NIB is used at all). Use NSMainNib-
File˜ipad (Main nib file base name (iPad)) to specify a separate NIB for
your app when it’s launched on an iPad.

m NSMainStoryboardFile (Main storyboard file base name), the base (no
extension) name of the application’s main Storyboard file, usually Main on
OS X. The iOS equivalent is UIMainStoryboardFile; see below.

m User Information

m CFBundleGetInfoString (Get Info string), Mac only, a string that
supplements the version information supplied by CFBundleShortVersion-

408 Chapter 22 Bundles and Packages

String and CFBundleVersion. Formerly, this key was used for copyright
strings, but that is now handled by NSHumanReadableCopyright.

m CFBundleIconFile (Icon file), the name of the file in the Resources
directory that contains the bundle’s custom icon, a file in .icns format for
Mac, .png for iOS. You can omit the extension. An iOS application would
prefer CFBundleIconFiles, an array of standardized names for the various
rendering sizes of the application icon.
All of this is moot in Xcode 6. The General tab of the Target editor lets you
specify images for icons, either file by file or through an asset catalog. From
that, the build system will inject the necessary icon references into
Info.plist.

m CFBundleShortVersionString (Bundle versions string, short), a short
string with the product version, such as 4.3.4, of the bundle, suitable for
display in an About box or by the App Store. See also CFBundleGetInfo-
String. This key may be localized in InfoPlist.strings. Applications
must specify this key.

m CFBundleVersion (Bundle version), the build version of the bundle’s
executable. In the past, this string was nearly identical to the short version
string, with maybe a suffix like b2 to mark prerelease versions, or a serial
number of the build that produced this binary: 2.1b4 (2133). The current
practice is to use just the build serial number. iOS will refuse to install a new
binary over an existing application unless the bundle version of the new binary
is greater than the previous one. An integer serial number is easiest for you to
generate, and for iOS to parse.

m CFBundleDisplayName (Bundle display name), the name for the Finder or
Home screen to display for this bundle. The value in Info.plist should be
identical to the name of the application bundle; localized names can then be
put in InfoPlist.strings files for various languages. The OS will display
the localized name only if the name of the application package in the
filesystem matches the value of this key. That way, if a Mac user renames your
application, the name he intended—and not the localized name—will be
displayed. Project templates will initialize this key to ${PRODUCT_NAME}. See
also CFBundleName. Applications must specify this key.

m CFBundleName (Bundle name), the short—16-character maximum—name
for the application, to be shown in the About box and the Application
menu. See also CFBundleDisplayName. This key may be localized in
InfoPlist.strings; Xcode initializes it to ${PRODUCT_NAME}.
Applications must specify this key.

m Localization

m CFBundleDevelopmentRegion (Localization native development region),
the native human language, and variant thereof, of the bundle, like fr-CA for

Info.plist Keys for Applications 409

Canadian French. If the user’s preferred language is not available as a
localization, this is the language that will be used.

m Documents and URLs

m CFBundleDocumentTypes (Document types), an array of dictionaries
specifying every document type associated with the application. Use the Info
tab of the Target editor for the application target to edit these; you’ll save
yourself some headaches.

m CFBundleURLTypes (URL types), an array of dictionaries defining URL
schemes, such as http:, ftp:, or x-com-wt9t-custom-scheme:, for
which the application is a handler. Use common schemes with care; if you’re a
web browser, you support http:, but if you just happen to pull some
resources from an HTTP server, don’t advertise yourself to the whole system
as being able to service http URLs. This tag is much more useful in iOS,
where your application’s custom scheme can provide a handy interapplication
communications method for other applications, email, and the web. See
Apple’s documentation, and the Info tab of the Target editor, for details.

m UTExportedTypeDeclarations (Exported Type UTIs), an array of
dictionaries that describe the types of documents your application can write,
and which you want Launch Services to know about. The entries center on
declaring a UTI and the chain of UTIs the principal UTI conforms to. This
key is used by Spotlight to build its list of document types. UTIs take
precedence over the declarations in CFBundleDocumentTypes as of
OS X 10.5. Again, it’s easier to manage this list through the Info tab of the
Target editor. See Apple’s documentation for the format of the dictionaries.

m UTImportedTypeDeclarations (Imported Type UTIs), an array of
dictionaries that describe the types of documents your application can read,
and which you want Launch Services to know about. The entries are the same
format as used in UTExportedTypeDeclarations. The Info tab of the
Target editor provides an easy editor for this.

Keys for OS X
These keys apply only to OS X applications and cover launch configurations, help
facilities, and information on the documents and URLs the application handles. The
Info.plist structure antedates OS X, so many keys have fallen into obsolescence, but
the OS has to support them for backward compatibility. The template you instantiate for a
new application target will give you everything you need to start, and the Info tab will
help you with almost everything you’d ever need to fit what you want to do, but there’s no
substitute for following the OS release notes.

410 Chapter 22 Bundles and Packages

m Structure

m CSResourcesFileMapped (Resources should be file-mapped), if YES or
<true/>, Core Foundation will memory-map the bundle resources rather
than read the files into memory.

m ATSApplicationFontsPath (Application fonts resource path), a string. If
your application contains fonts for its own use, it contains the path, relative to
the application’s Resources directory, to the directory containing the fonts.

m User Information

m NSHumanReadableCopyright (Copyright (human-readable)), a copyright
string suitable for display in an About box. This key may be localized in
InfoPlist.strings. Applications must specify this key.

m LSApplicationCategoryType (Application Category). This is a string
containing an Apple-defined UTI that describes for the Mac App Store what
kind of application this is—Business, Lifestyle, Video, etc. Ordinarily, you’d set
this in the General tab of the application’s Target editor, so you don’t have to
bother with the UTIs. When you submit your app through iTunes Connect,
you will be allowed two categories for your listing; make sure the primary one
is the same as your LSApplicationCategoryType.

m Help

m CFAppleHelpAnchor (Help file), the base name, without extension, of the
initial help file for the application.

m CFBundleHelpBookFolder (Help Book directory name), the folder—in
either the Resources subdirectory or a localization subdirectory—containing
the application’s help book.

m CFBundleHelpBookName (Help Book identifier), the name of the
application’s help book. This name should match the name set in a <meta>
tag in the help book’s root file.

m Launch Behavior These keys control how Launch Services launches and
configures a Mac application. iOS has a “Launch Services” framework, but there is
no public interface for it.

m LSBackgroundOnly (Application is background only), if it’s the string 1, the
application will be run in the background only and will not be visible to the
user.

m LSEnvironment (Environment variables), a dictionary, the keys of which are
environment-variable names, defining environment variables to be passed to
the application upon launch.

m LSGetAppDiedEvents (Application should get App Died events), indicates,
if YES or <true/>, that the application will get the kAEApplicationDied
Apple event when any of its child processes terminate.

Info.plist Keys for Applications 411

m NSSupportsSuddenTermination (Application can be killed immediately
after launch). When you log out, restart, or shut down, OS X takes care that
all running applications will be given the chance to clean up, ask the user to
save files, and so on. If this key is <true/>, the system will shut down your
application with a BSD kill signal instead. You can still use NSProcessInfo
methods to restore the ask-first policy (such as when you are in the middle of
writing a file), but the kill policy makes shutdowns much quicker.

m LSMinimumSystemVersion (Minimum system version), a string in the form
10.x.x, specifying the earliest version of OS X or iOS this application will run
under. Under OS X, if the current OS is earlier (back through 10.4), it will
post an alert explaining that the app could not be run.

m LSMinimumSystemVersionByArchitecture (Minimum system versions,
per-architecture), a dictionary. The possible keys are i386 and x86

412 Chapter 22 Bundles and Packages

m OSAScriptingDefinition (Scripting definition file name), the name of
the .sdef file, to be found in the application’s Resources directory,
containing its AppleScript scripting dictionary.

m NSServices (Services), an array of dictionaries declaring the OS X services
this application performs, which will appear in the Services submenu of
every application’s application menu, subject to the Keyboard Shortcuts tab
in the Keyboard panel of System Preferences. The dictionaries specify the
pasteboard input and output formats, the name of the service, and the name of
the method that implements the service. See Apple’s documentation for
details.

Keys for iOS
These tags are unique to iOS applications. In general, if you want to customize any
Info.plist key for a particular device, create a custom key composed of the base name,
followed by a hyphen, then iphoneos, a tilde, and a device specifier (one of iphone,
ipod, or ipad). For example: UIStatusBarStyle-iphoneos˜ipad. In practice, you
can omit the -iphoneos part: UIStatusBarStyle˜ipad.

m Structure

m UIMainStoryboardFile, the base name of the storyboard package that is
the root of the application. Use this, or NSMainNibFile, but never both. If
you have a separate storyboard for iPhone or iPad only, add the base name to
UIMainStoryboardFile˜ipad or ˜iphone. (ipad and iphone are
all-lowercase.)

m UILaunchStoryboardName (Launch screen interface file base name), the
base name of a storyboard that iOS will display instead of a default screen
image while your application is launching. With the proliferation of screen
sizes, the use of a storyboard, which can adapt to many sizes, makes more
sense than having a bitmap image for each size. You’ll find a discussion in the
section “Icons and Launch Displays” in Chapter 13, “Adding Table Cells.”
Note well that if you do not have a launch XIB or storyboard, iOS takes that
as a sign that your app is not prepared to run on a screen like the iPhone 6 or
6 Plus. If there are only images, your app will run “zoomed” to fit the larger
screen.

m LSRequiresIPhoneOS (Application requires iOS environment), whether
Launch Services will refuse to launch the application except on an iOS device.
The tag is optional, because it should go without saying.

m CFBundleIconFiles (Icon files), an array of filenames for the application
icons. These are expected to be the same icon in the various sizes needed by
different iOS platforms; the system will look through the files themselves to
pick the proper one. If you omit the file extensions, the system will find

Info.plist Keys for Applications 413

“@2x” and “@3x” Retina Display variants automatically. Overrides
CFBundleIconFile. (optional)

m UIAppFonts (Fonts provided by application), an array of paths within the
application bundle for application-supplied font files.

m UIRequiredDeviceCapabilities (Required device capabilities), an array
of strings, like telephony, wifi, or video-camera, that describe what
device features your application cannot run without. This is used by iTunes
and the App Store to save users who don’t have those features from buying
and installing your app.

m UIRequiresPersistentWiFi (Application uses Wi-Fi). The Property List
editor’s summary is a little misleading. By default, iOS will shut down the
Wi-Fi connection if you haven’t used it for half an hour. If this key is present
and YES, the Wi-Fi transceiver will be turned on as soon as your application is
launched, and it will stay on as long as it is running.

m UISupportedExternalAccessoryProtocols (Supported external
accessory protocols), for an array of strings naming all the external-device
protocols your application supports. The protocol names are specified by the
manufacturers of the accessories.

m User Presentation

m UIStatusBarStyle (Status bar style), the style (gray, translucent, or opaque
black) of the initial status bar. The names of the styles used in the iOS API are
used, the default being UIStatusBarStyleDefault.

m UIStatusBarHidden (Status bar is initially hidden), if YES, the status bar is
hidden when your application is launched. Before coveting those 20 extra
pixels, please consider whether you want your customers to shut down your
app whenever they need to check the time or see whether they’re running out
of power.

m UIInterfaceOrientation (Initial interface orientation), indicating the
screen orientation the application starts up in. Look up enum
UIInterfaceOrientation in the UIKit headers for the available values;
the Info.plist entries are supposed to be the names of those orientations.
The default is UIInterfaceOrientationPortrait.

m UISupportedInterfaceOrientations (Supported interface orientations,
Supported interface orientations [iPad], and Supported interface orientations
[iPhone]), an array naming the orientations your app will support on the iOS
or iPad. If you don’t specify UIInterfaceOrientation, iOS will use the
device’s orientation if it is in the list; if not, it will default to one that is.

˜ipad and ˜iphone variants are permitted.

414 Chapter 22 Bundles and Packages

m UIPrerenderedIcon (Icon already includes gloss and bevel effects), if YES,
iOS will not add a shine effect to it. This setting is obsolete as of iOS 7, which
never puts a shine effect on icons.

m UIViewEdgeAntialiasing (Renders with edge antialiasing). If you draw a
Core Animation layer aligned to fractional-pixel coordinates, it normally isn’t
anti-aliased. You can set this key to YES if you draw that way and want to take
the performance hit of making it look nice.

m UIViewGroupOpacity (Renders with group opacity), if YES, allows Core
Animation sublayers to inherit the opacity of their superlayers. Cooler
appearance, slower performance.

m UILaunchImageFile (Launch image), UILaunchImageFile˜ipad
(Launch image [iPad]), and UILaunchImageFile˜iphone (Launch image
[iPhone]), the name of the file that is shown between the time the user selects
your app in the Home screen and the time when it can render its content.
This worked well when there were three combinations of size, resolution, and
orientation to support. Use UILaunchStoryboardName instead; a simple
storyboard will do a much better job.
Besides, this key has been made obsolete by. . .

m UILaunchImages (set through Target editor/assets catalog only), an array of
dictionaries describing the launch images iOS may display when launching the
app. Each dictionary specifies a filename, minimum OS version (so your
launch image can match the iOS 7 appearance of your app), size, and
orientation.

m Behavior

m UIApplicationExitsOnSuspend (Application does not run in
background), if true, tapping the Home button on the iOS device will shut
down your app, rather than putting it into the background. Think hard before
publishing an app that does this.

m UIBackgroundModes (Required background modes). iOS gives apps a grace
period of no more than ten minutes to perform tasks from the background if
they ask for it. An app can claim ongoing exceptions such as media playback,
VoIP, location updates, server checks, and more. The easiest way to make the
claims is by turning on Background Modes in the Capabilities tab of the
Target editor. Be prepared to defend your claim in the App Store review
process.

m UIFileSharingEnabled (Application supports iTunes file sharing), if YES,
the contents of the app’s Documents/ directory will be visible while the
device is plugged into iTunes. This allows your users to move files between
their devices and their computers.

m UINewsstandApp (Application presents content in Newsstand), if <true/>,
the app claims it is a downloader and renderer for Newsstand subscription

Summary 415

content. iOS will present it as a title in the Newsstand group, rather than as a
stand-alone application. If you are offering a Newsstand app, you must fill in
other keys, such as UINewsstandIcon.

m NS*UsageDescription (Privacy - * Usage Description) “*” is one of
eleven privacy-related keys such as Camera, HealthShare, Location, or
PhotoLibrary. The list will grow as Apple adds features to its products that
have privacy implications. For each such feature your application might use,
iOS will ask whether the user grants access to it. These keys are for your
explanations for why you want access.

m MKDirectionsApplicationSupportedModes (Maps routing app
supported modes). For an application that gives routing direction, this is an
array of modes of travel, indicating, for instance, that the app provides routes
for road travel, foot, and subways. Use the Maps section of the Capabilities
tab in the Target editor to check off the services you provide.

m Localization
There are a number of Info.plist keys that advertise the app’s ability to conform
its text and appearance to the user’s locale. Chapter 21, “Localization,” covers them.

Summary
This chapter explored bundles and package directories, important concepts in both OS X
and iOS development. Most of Xcode’s product types are bundles. I reviewed the structure
of simple packages and application bundles and examined the Info.plist file, which
communicates a bundle’s metadata to the operating system.

This page intentionally left blank

23
Property Lists

Cocoa uses property lists (also called plists, after the common extension for property-list
files) everywhere. They are the all-purpose storage medium for structured data, both for
application resources and even application documents. Though I’ve put this chapter into
the OS X section of this book, property lists are important to iOS developers, as well.

m Many of Apple’s standard formats for configuration files are simply specifications of
keys and trees for property lists. If you want a configuration file of your own, you
could do much worse than a specialized plist file.

m In particular, applications on iOS and OS X alike include an Info.plist file that
tells the system how the app is to be presented and what kinds of data it handles. See
Chapter 22, “Bundles and Packages,” for details.

m The property-list format is very mature—older than OS X itself. Cocoa can parse
plist files in one line of code, directly into Foundation data types.

Note
A confession: Property lists are central to Cocoa development. If you want to write
software for iOS or OS X, you have to be able to read them by eye, create them by hand,
and use them programmatically. They aren’t going away. But see the “JSON” part of the
“Other Formats” section near the end of this chapter. More and more products need to
exchange data with servers and devices running other operating systems. For broad data
interchange, JSON is a better choice.

Property List Data Types
A property list is an archive for the fundamental data types provided by the Objective-C
Foundation framework. It consists of one item of data, expressed in one of seven data
types. Five property list types are scalar—number (including integer and real), Boolean,
string, date, and data—and two are compound—ordered list and dictionary. An ordered
list can contain zero or more objects of any property list type. A dictionary contains zero
or more pairs, consisting of a key string and a value object of any property list type.

418 Chapter 23 Property Lists

A property list can express most collections of data quite easily. A passer’s performance
in a single game could be represented as a dictionary of numbers with the keys attempts,
completions, interceptions, touchdowns, and yards. A game could be a
dictionary containing the date, team names, scores, and the performance dictionary.

Both Core Foundation and Cocoa provide reference-counted object types that
correspond to the property list types (see Table 23.1).

Table 23.1 Property-List Types in Cocoa and Core Foundation

Data Type Cocoa Core Foundation Markup

Number NSNumber CFNumber <integer>
<float>

Boolean NSNumber CFBoolean
<true/>
<false/>

Text
NSString

NSMutableString
CFString

CFMutableString
<string>

Date NSDate CFDate <date>

Binary Data NSData
NSMutableData

CFData
CFMutableData

<data>

List
NSArray

NSMutableArray
CFArray

CFMutableArray
<array>

Associative Array
NSDictionary

NSMutableDictionary
CFDictionary

CFMutableDictionary

<dict>
<key>...
plist type ...

</dict>

In fact, you can pass a Cocoa property list pointer to a Core Foundation routine for the
corresponding type; you can also use a CFTypeRef for a property list type as though it
were a pointer to the corresponding Cocoa object. (Crossing the border between
Foundation’s Objective-C world and Core Foundation’s pure-C world raises some
memory-management issues that Automatic Reference Counting can’t work out for itself.
Search for “Transitioning to ARC Release Notes” in the Documentation organizer for
the details of the bridge family of type casts that give ARC the hints it needs.)

Beyond that, Swift’s Array, Dictionary, and scalar types bridge seamlessly with the
Foundation data types. Almost: First, at this early state of the language, the bridging can
run into bugs. Second, at the boundary between Swift and property-list API, all
Dictionarys are [String:AnyObject], and all Arrays are [AnyObject],
AnyObject being the Swift type that encompasses Objective-C objects such as the
contents of property lists. Converting between the data you want to represent and the data
types Swift can accept can be challenging.

Editing Property Lists 419

Note
The dictionary data type in Cocoa requires only that the keys in a dictionary be objects of
an immutable, hashable type; Core Foundation dictionaries can be even more permissive.
However, if you want to use a Cocoa or Core Foundation dictionary in a property list, all
keys have to be strings.

Editing Property Lists
When you started the Passer Rating iPhone app, the first thing Xcode showed was the
Target editor for the application. The third tab, Info, is a specialization of the Property
List editor for Info.plist, which contains a dictionary describing to the OS how the
application is to be presented. Each line of the top section represents one key-value pair at
the top level of the dictionary; the Info editor refines the experience by wrapping some of
the top-level keys (such as document and data types) into distinct lists of convenient
graphical editors. See Figure 23.1.

Figure 23.1 As soon as an application project is created, Xcode presents a Target editor to edit
its Info.plist file. The first and third tabs, General and Info (shown here), are specialized editors

to set the application’s presentation and behavior.

420 Chapter 23 Property Lists

Still, it’s just an editor for a particular kind of property list. Let’s have a look at the real
thing. Use the search field at the bottom of the Project navigator to search for plist. The
only file surviving in the navigator should be Info.plist. Click on it.

Not much to see. It’s Xcode’s generic Property List editor, which is just a little simpler
than the Target editor’s Info tab. What’s the big deal? Do this: Right-click on the file’s
name in the Project navigator, and select Open As→Source Code. Now the Editor
area fills with something like this:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>

<key>CFBundleDevelopmentRegion</key>
<string>en</string>
<key>CFBundleDocumentTypes</key>
<array>

<dict>
<key>CFBundleTypeExtensions</key>
<array>

<string>leaguedoc</string>
</array>
<key>CFBundleTypeIconFile</key>
<string>League</string>
<key>CFBundleTypeMIMETypes</key>
<array>

<string>application/octet-stream</string>
</array>
<key>CFBundleTypeName</key>
<string>League File</string>
<key>CFBundleTypeRole</key>
<string>Editor</string>
<key>LSTypeIsPackage</key>
<false/>
<key>NSDocumentClass</key>
<string>$(PRODUCT_MODULE_NAME).LeagueDocument</string>
<key>NSPersistentStoreTypeKey</key>
<string>SQLite</string>

</dict>
</array>
<key>CFBundleExecutable</key>
<string>$(EXECUTABLE_NAME)</string>
<key>CFBundleIconFile</key>
<string></string>
<key>CFBundleIdentifier</key>
<string>com.wt9t.$(PRODUCT_NAME:rfc1034identifier)</string>
<key>CFBundleInfoDictionaryVersion</key>

Editing Property Lists 421

<string>6.0</string>
<key>CFBundleName</key>
<string>$(PRODUCT_NAME)</string>
<key>CFBundlePackageType</key>
<string>APPL</string>
<key>CFBundleShortVersionString</key>
<string>1.0</string>
<key>CFBundleSignature</key>
<string>????</string>
<key>CFBundleVersion</key>
<string>1</string>
<key>LSMinimumSystemVersion</key>
<string>$(MACOSX_DEPLOYMENT_TARGET)</string>
<key>NSHumanReadableCopyright</key>
<string>Copyright © 2014 Fritz Anderson. All rights reserved.</string>
<key>NSMainStoryboardFile</key>
<string>Main</string>
<key>NSPrincipalClass</key>
<string>NSApplication</string>

</dict>
</plist>

You likely are relieved to see that the property-list format is XML and that Cocoa’s
built-in writer for .plist files indents it nicely. The top-level element is <plist>,
which must contain one property list element—in this case, <dict>, for the
Info.plist dictionary. A <dict> element’s contents alternate between <key> string
elements and property list value elements. One of the keys, CFBundleDocumentTypes,
has an <array> value. An <array> may contain zero or more property list elements, of
any type—in this case, only one <dict> describing Mac Passer Rating’s document type. I
covered Info.plist keys at length in Chapter 22, “Bundles and Packages.”

Note
I’m indulging in two cheats here. First, what you’re looking at is not the Info.plist that
will be inserted into the application bundle. It’s a source file for a compiler that the build
system uses to fill in variables and insert some invariant keys—you see variable names
like ${PRODUCT NAME}. Second, the Info.plist in the app bundle won’t be an XML file;
it will be a binary plist, as I show later in this chapter.

What’s good about XML is that it is standard: Correct XML will be accepted by any
consumer of a document type definition, regardless of the source. A .plist file generated
by any Cocoa application will be treated the same as one generated by a text editor.

What’s bad about XML is that it must be correct. If you forget to close an element or
miss the strict alternation of <key> and values in <dict> lists, you will get nothing out
of Apple’s parser.

Usually, you don’t have to worry about this sort of thing because you’ll be using the
Property List editor in its graphical form. You don’t see the opening and closing tags, so

422 Chapter 23 Property Lists

you can’t omit them. The editor forces you to put a key on every element in a dictionary
and restricts you to the legal data types. Simple.

However, sometimes it’s not practical to use the Property List editor to create or
maintain property lists. Let’s have a look at how the editor works, and then I can develop
why it’s not for every task.

The Property List Editor
We’re going to create a property list that describes how to make an omelet. I’ll leave to
you what the file would be good for. Bring Xcode forward. Select File→New→File. . .
(N), and navigate the New File assistant thus: OS X→ Resource→ Property List.
(You can get the same thing from the iOS part of the assistant.) If you have a project
window open, you’ll be shown the usual put-file sheet. Call it Omelet. (Xcode will add
.plist for you.) The other controls for disposing the new file in the project are now
long-familiar to you.

You’ll be presented with the same kind of Property List editor that you saw for the
Info.plist file, only it’s empty, but for a single line at the top, labeled Root. The
Property List editor lets you generate <dict> or <array> plists, and the popup menu in
the second column lets you choose which. Make sure it’s a Dictionary.

But there’s no obvious control for adding any content. What to do? There are two
approaches.

Look at the Editor menu. It’s dynamic, adjusting its content to the type of the active
editor. Now that it’s a Property List editor, you’ll find the command Add Item. Select it,
and a new row appears in the editor.

Or, hover the mouse cursor over the Root row. A + button will appear in the first
column. Clicking it will add a row. See Figure 23.2, top.

The new row will be a key-value pair for the dictionary, with a key, represented as a
text field that is open for editing; a type, represented as a popup listing the possible plist
types; and a value, which is editable if the type is a scalar.

The omelet recipe will have three sections, named Ingredients, Material, and
Method. Ingredients should be a dictionary, with the keys naming the ingredients; the
values should be dictionaries themselves, keyed quantity and unit. So name the first
new row Ingredients, and set its type to Dictionary, as in Figure 23.2, top.

You want more items in the recipe. You want the Material and Method elements to
be siblings of Ingredients, and you want to add ingredient dictionaries as children of
Ingredients. That’s two styles of adding rows to the editor.

Select the Ingredients row, and press the Return key (or, click the + button at the
right of the Key cell, or select Editor→Add Item). This produces a new sibling row,
which you can name Material and make a dictionary. See Figure 23.2, middle.

Select the Ingredients row again. At the left margin of the row, there is a disclosure
triangle that is turned to the right, indicating that the container is closed. Click the
triangle to open the container, which doesn’t make much difference because a new
dictionary doesn’t have any contents to show.

Editing Property Lists 423

Figure 23.2 (top) Selecting Editor→Add Item inserts the first element in a new property list.
Select from a popup menu in the Type column to indicate the data type the element represents.

(middle) Pressing the Return key or clicking the + button when a container element is closed inserts
a new element that is a sibling of the selected container. (bottom) If the container is open, pressing

Return or clicking + inserts the new element as a child of the container.

Now press Return. A new row appears, but this time it is indented to show that the
new element is inside the Ingredients dictionary (Figure 23.2, bottom). The difference
is whether the disclosure triangle points closed or open. If closed, you get a sibling at the
same level. If open, you get a child, enclosed in the container.

So now you have an element inside Ingredients. Name it Eggs, and make it a
dictionary. Open Eggs, press Return (or click the + button) twice to create new elements
named quantity (type Number, value 3—it’s a generous omelet) and unit (type
String, value count). You’ve completed your first ingredient.

Note
Make a mistake? Undo works as normal. If you want to get rid of an item, select it and
press Delete, or click the – button in its Key column. Deleting a container deletes all of its
contents as well.

424 Chapter 23 Property Lists

Add more siblings to Eggs—or children to Ingredients—as shown in Table 23.2.

Table 23.2 The Remaining Ingredients in an Omelet

Mushrooms Count 2

Salt Pinch 1

Butter Ounce 2

Doing this the obvious way, clicking new-sibling and new-child buttons at each step,
and setting the same unit and quantity keys for each new dictionary, is tedious. There are
some shortcuts.

m Once you have one dictionary (Eggs) set up the way you want it, select that
dictionary by clicking on the container row (Eggs), and Edit→Copy (C). When
you paste the row you’ve copied, it will be inserted as though you had clicked the +
button on the selected row. So select the Ingredients dictionary while it’s open, or
the Eggs dictionary while it’s closed, and Edit→Paste. You’ll have to change the
pasted element’s key and change the values of the “unit” and “quantity” keys, but
that’s the minimal work you’d have to do anyway.

m When you’ve finished editing a key or value, the Tab key will take you to the next
visible editable string.

m The Return key will close a text-field cell if one is open. Pressing it again will create
a new element (sibling or child) as though you’d clicked the + button on the selected
row. The new row will have the key string (if it’s in a dictionary) or the value string
(if it’s not) ready for editing. The initial type will be for a string, which is probably
the type you’d want if you’re motoring through several new rows at a time.

The Material dictionary should be simple key/string pairs, as shown in Table 23.3.

Table 23.3 Materials for Making an Omelet

Bowl Small

Fork Table fork or small whisk

Crêpe pan 10” nonstick

Spatula Silicone, high-heat

Egg slicer Optional, for slicing mushrooms

Editing Property Lists 425

The Method array should contain strings, as shown in Table 23.4.

Table 23.4 Instructions for Making an Omelet

Heat pan to medium (butter foams but doesn’t burn)

Warm eggs in water to room temperature

Slice mushrooms

Sauté in 1/4 of the butter until limp, set aside

Break eggs into bowl, add salt

Whisk eggs until color begins to change

Coat pan with 1/2 the butter

Pour eggs into pan, and tilt to spread uniformly

When edges set, use spatula to separate from pan, then tilt liquid into gaps

Leave undisturbed for 30 seconds

Loosen from pan, and flip (using spatula to help) 1/3 over

Top with mushrooms

Slide onto plate, flipping remaining 1/3 over

Spread remaining butter on top

It’s important that Method’s strings appear in order, so it has to be an array. If it’s not in
the order you want, you can drag items into the order you want. See Figure 23.3.

When you’ve done it all, your Property List editor should look like the one in
Figure 23.4.

Search-and-replace works in property lists as it does in regular text files. If you click
Find→Find. . . (F), the find bar appears. If you type butter, the containers open to
show and highlight all instances of the string. Clicking the left- and right-arrow buttons in
the find bar (or pressing G or G) navigates among the found rows, but it doesn’t
enable them for editing.

If you want to replace butter with margarine, Find→Find and Replace. . . (F)
will add a replacement row to the find bar. (Or, use the popup at the left end of the find
bar to select Replace instead of Find.) Put margarine in the second field, and click the
All button, thus confirming your standing as a barbarian.

Find→Find in Workspace/Project. . . (F) works, too. The Find navigator
appears, you enter butter, and the plist appears in the list of matches.

426 Chapter 23 Property Lists

Figure 23.3 You can reorder array elements by dragging them where you want them.

Figure 23.4 The Property List editor showing the finished Omelet.plist. You can open or
close all of the subelements in a dictionary or array by holding the Option key when you click the

disclosure triangle.

Editing Property Lists 427

Why Not the Property List Editor?
The Property List editor generated a correct property list with all the data in what seems
to be the most direct way possible. What more is there to say?

It isn’t perfect. Right-click on the file in the Project navigator, and select Open As
→Source Code from the contextual menu. Once again, you’ll see the plist in the XML
format in which it is stored.

You have doubts about your recipe. Maybe a little garnish would be nice, but you can’t
decide. So you add an XML comment to the Methods array:

<key>Method</key>
<array>

.

.

.
<string>Slide onto plate, flipping remaining 1/3 over</string>
<string>Spread remaining butter on top</string>
<!-- Should I add parsley? -->

</array>

Using the contextual menu, select Open As→Property List again. Make a tentative
advance in presentation by adding Parsley (sprig, 1) to the Ingredients dictionary.
(You’ll have to open the dictionary; Xcode saves open/collapsed state, but reverts to
all-collapsed if you change editors.) Switch back to Source Code.

The comment you added is gone. If you use the Property List editor to change a property
list, it will destroy any content that isn’t property-list data. Similarly, if you take advantage
of the build option to apply a preprocessor pass to the compilation of Info.plist, so
you can have #includes and conditional content, those directives will be lost if they pass
through the Property List editor.

Warning
If you intend to treat property lists as normal source files, using comments for notes or to
comment content out, you must never edit them with the graphical editor. Viewing them is
okay—in fact, it’s unavoidable, because Xcode puts you back in the graphical editor every
time you return to the file—but don’t change them.

Commenting and preprocessing aside, a text editor can just be the best tool for the job.
Large and repetitive structures are a bit easier to handle in XML text, it’s easier to handle
programmatically generated files, and maybe you just like to work with source.

There’s a way you can do this without forcing the Source Code editor every time.
Select your property-list file in the Project navigator, and open the Utilities area (using the
right-hand button in the View control in the toolbar). Make sure the File inspector tab
(the first one) is selected. You’ll see various information about the file and its status in your
project (Figure 23.5, left); the one you’re interested in is the setting in the Type popup
menu.

It starts with Default - Property List XML. Scroll through the menu (it will be quite
a ways down) until you find the Property List / XML group, and select XML.

428 Chapter 23 Property Lists

Figure 23.5 The popup under the filename in the File inspector chooses the editor and syntax
that Xcode will apply to that file. You can force Xcode always to use the XML editor for a particular
.plist file by selecting XML in the Property List / XML group, instead of Property List XML.

Nothing happens to the editor. Select a different file in the Project navigator, then go
back to Omelet.plist. Now it appears as an XML file, and always will, without your
having to tell Xcode to switch.

Note
That Xcode labels Property List XML as a default suggests that you might be able to
change the default, and get the plain-XML editor all the time, without setting it for each
file. In Xcode 3, you could do that. The feature disappeared with Xcode 4.

If you commit to creating and editing property lists in XML, you lose the safety of the
Property List editor in keeping the syntax correct. There are a couple of ways to reduce
the risk.

First, you can start your own .plist files by editing a known-good .plist file. It’s
difficult to omit the processing instruction or the <plist> skeleton if they are already in
the file.

Second, you can use the macro or glossary facilities of your text editor to create a
document skeleton and wrap your entries in proper tags. Bare Bones Software’s BBEdit
comes with a .plist glossary for just this purpose.

Once you have your property-list file, you’ll need to know whether it is syntactically
correct—if it isn’t, you can’t use it. The best way is to use the plutil tool. In the

Other Formats 429

Terminal, type plutil pathToPropertyList. You will see either pathTo-
PropertyList: OK, or a diagnostic message pointing to the first line that confused the
parser. See man plutil for details.

Note
One of the commonest errors is forgetting that the text portions of the property list XML
are parsed character data, which means that < and & must be represented by < and
&.

Other Formats
If you stick to editing property lists as text, you’ll find that text editors can display and edit
only most property-list files. There are two other formats a plist file may use. One is also
text, the other is binary.

Text Property Lists
Property lists came to Cocoa’s architecture from its ancestor framework, NeXTStep. In
NeXTStep, property lists were encoded in what Apple calls a legacy format, but it is used
often enough that you should be familiar with it. defaults, the command-line interface
to the preferences system, the bundle specifications for the editor TextMate, and many of
the internal Xcode configuration files use the text format.

Note
I have worked on projects to produce apps for presenting the work of non-technical
scholars. Someone will tempt you to offer the scholar a “simple” XML schema to make her
content machine-readable. Assume the data really is complex enough to make XML a
sensible option, and nevermind the technical issues. Hand-coding non-trivial XML is hard
enough for you and me; I have never seen even PhDs consistently produce usable XML.
Structured text formats, like classic plist or JSON, are the way to go.

Text property lists have only two primitive types: string and data (Table 23.5).

Table 23.5 Encoding for Text-style Property Lists

Type Coding

String “Two or more words” or oneWord

Data < 466f6f 626172 >

List (Shirley, “Goodness and Mercy”, 1066)

Associative array { key = value; “key 2” = < 332e3134313539 >; }

Strings are surrounded by double-quote characters, which may be omitted if there are no
spaces in the string. Number, date, and Boolean values must be stored as string
representations, and the application that reads them is on its own for converting them to
their respective types. The convention for Boolean values is to use the strings YES and NO.

430 Chapter 23 Property Lists

Data elements are delimited by angle brackets and contain pairs of hexadecimal digits,
representing the bytes in the data. Any whitespace in the digit stream will be ignored.

Arrays are surrounded by parentheses, and the elements are separated by commas.
Dictionaries are surrounded by braces, and the key = value pairs are followed by
semicolons, which means that the last element must be closed off with a semicolon.

Binary Property Lists
With OS X 10.2 (Jaguar), Apple introduced a binary property-list format. Binary plists are
smaller and load faster. Programmatically generated plists are binary by default; Xcode, for
instance, writes Info.plists in binary. Property lists can be converted between XML
and binary format in place using the plutil command-line utility in the form

plutil -convert format pathToFile

where format is either binary1, for conversion to the binary format, or xml1 for the
XML format; and pathToFile is the path to the file to convert.

Note
Both Xcode and BBEdit will translate binary property-list files into XML for editing.

The build settings INFOPLIST OUTPUT FORMAT and PLIST FILE OUTPUT FORMAT
influence how Xcode writes Info.plist and other plist files, respectively, into your
product. By default, these are binary, but you can set them to XML.

JSON
JSON is not an alternate property-list format, but it is more and more an alternative
solution. It, too, organizes data primitives into arrays and dictionaries.

Property lists have some advantages, or at least little cost:
m The root object doesn’t have to be an array or dictionary.
m There is a way to express infinite or not-a-number numeric values.
m There is a way to distinguish integer, real, and Boolean value types.
m Property lists can contain NSDates; end of story. There is no standard representation

for dates in JSON; most developers agree on the ISO8601 text format, but writing
and parsing even standard date formats is surprisingly hard to get right in every case.

m Property lists can contain binary data as part of the binary stream, or XML CDATA,
or angle-bracketed base64 code. There is no standard format for binary data in
JSON. You can base64-encode your data into a string and insert that, but that’s
another application-specific convention you have to agree on.

m With decades of tuning behind the software, Apple’s plist codecs are as fast as they
can be. Most implementations of JSON (for the moment) are a little slower, with
JSONKit a notable exception.

m The size of binary plist files is in the neighborhood of JSON. (If download speed is a
concern, however, most servers will zip-compress outgoing data, which is a bigger
win for text than binaries.)

Specialized Property Lists 431

Apple’s plists fall short of the ideal one way or another:
m XML is verbose; XML plists are significantly bigger than the equivalent JSON.
m The text format has fewer distinct data types, and is restricted to ASCII (or an 8-bit

character set, if both sides agree on one).
m The binary format does better than either, and doesn’t have the parsing overhead,

but humans can’t read it, and so can’t debug it without converting to one of the
other formats.

m There are libraries that scripting software can use to create and consume plists, but
add-ons, especially niche add-ons, can have performance and reliability problems.

m JSON has a null data value, equivalent to an Objective-C or Swift nil. The
problem is that nil isn’t an object—if you want to indicate a null value in an
NSArray or NSDictionary, you have to use the singleton NSNull() object. But
NSNull is not a permissible type in a property list.

m There are Internet standards for the JSON format.
m Property lists cannot natively represent cross-references among objects. (The
NSCoder archiving family uses a plist schema that handles object references, but
that’s an application of the format, not part of the format itself.)

m As a practical matter, plists are readable only by Apple devices. That’s
unacceptable in a cross-platform application, which means essentially any
client-server system.

Cocoa has the NSJSONSerialization class to bridge JSON to the Foundation data
types, similarly to NSPropertyListSerialization for property lists. Neither
representation fully supports all the data types you might have put in your data; there are
only so many property list types, and so many JSON types. Both classes have methods that
will check your object trees to verify that they can be formatted.

I’ve gone most of the way through the chapter explaining how you can use property
lists to store and transmit data. And that’s what I should do: The format is key to Cocoa
development, and it’s not going away. But:

If you’re going to exchange data with other platforms, use JSON.

Specialized Property Lists
Many of Cocoa’s standard “file formats” are simply property lists with stereotyped keys
and enumerated values. Xcode knows about these stereotypes; you can assign a type to a
plist by opening it, and right-clicking in the editor view. The contextual menu includes a
Property List Type submenu. If Xcode encounters a stereotyped plist, such as
Info.plist or an iOS Settings bundle, it will choose the repertoire of common keys and
values.

Once a property list type is established, the Key column in the Property List editor
assumes a much more active role. Xcode now knows what keys this particular plist
supports and what types are appropriate to those keys.

432 Chapter 23 Property Lists

For example: An iOS application Info.plist will include the key UTExported-
TypeDeclarations. If you add a row to the plist, the key field is no longer a simple text
field, but a combo field (a text field with a scrollable list of choices) in which “Exported
Type UTIs” is an option. If you select it, Xcode changes the type of the row to
array—because the UTExportedTypeDeclarations element must have an array value.

If you open that array, and add a row to it, Xcode will create a dictionary—
UTExportedTypeDeclarations must contain dictionaries—prepopulated with the
three keys (and types) required of those dictionaries.

For a key that has a restricted set of scalar values, Xcode will set the element to the
proper type, and instead of an editable value field, the value column will contain a popup
of English-language names for the legal values.

Note
The values are still editable text, and if you click in most of their area, you’ll get an editing
field. For the popup menu, click on the arrowheads at the right end of the row.

Remember that combo fields are text fields, not menus. Xcode offers them wherever
it’s legal to enter a custom value. Treat that key or value as editable text, and ignore the
attached list. The list isn’t comprehensive or restrictive; if something you need isn’t there,
type it in yourself.

The combo fields’ lists scroll to offer presets that match what you’ve typed. This is
handy, but the matching is case sensitive. If you aren’t finding what you expect, try typing
with an initial cap.

Having English-language equivalents for all of your keys and values cuts you off from
the actual content of those elements; even if XML editing isn’t to your taste, you may
want to audit what’s going into your file. There are two strategies for this:

m Open the Utility (right) area, select Quick Help (the second tab), and click in a row.
Quick Help will show the English name and the “declaration,” the actual encoded
key. You’re out of luck for English-language values.

m Select Editor→Show Raw Values & Keys (or the same command from the
contextual menu). The Property List editor will switch over to its “normal”
behavior, displaying the uninterpreted keys and values.

Summary
This chapter introduced property lists, a ubiquitous data-storage format in Cocoa. You’ve
seen how to use the Property List editor and text tools to manage them. I showed you the
other ways property lists can appear on OS X and iOS, and how Xcode adapts itself to the
stereotyped formats of well-known specializations of the plist format. By now, you should
be pretty comfortable with the concept.

Part IV
Xcode Tasks

Chapter 24 Documentation in Xcode

Chapter 25 The Xcode Build System

Chapter 26 Instruments

Chapter 27 Debugging

Chapter 28 Snippets

This page intentionally left blank

24
Documentation in Xcode

The combined documentation for developer tools and the current versions of OS X and
iOS run to about a gigabyte and a half, and Apple updates it continually. Xcode
incorporates an extensive help and documentation system to give you quick access to the
documents while you are coding, and a browser for when you need to go into more
depth. In this chapter, I’ll show you how to make the most of the facilities Xcode
provides, and how you can add your own documentation.

Quick Help
Quick Help is Xcode’s facility for getting you information about the API with as little
interruption as possible. The presentation is lightweight but thorough, and if you need to
go deeper, the links are there.

Inspector
Quick Help is available on permanent view in almost every editor. Simply expose the
Utility area (third segment of the View control at the right end of the toolbar) and select
the Quick Help inspector (second tab).

m If you’re editing source, and the editing cursor is in a symbol for which Apple has
documentation, Quick Help will show you a summary of how a method (for
instance) is invoked, a description of what it does, the types and purposes of its
parameters, and what it returns. It will tell you the earliest version of the OS that
supports it, and it will offer you cross-references to overview documentation, related
API, and the header file in which the symbol is declared. The information is drawn
from the docset corresponding to the SDK you’re using, and formatted to match the
language. See Figure 24.1, left.
Quick Help works on your own symbols, too, but all you will get is a reference to
the declaration—unless you provide documentation of your own. More on that later.

m When you select an object in Interface Builder, Quick Help provides
documentation for the object’s class.

436 Chapter 24 Documentation in Xcode

Figure 24.1 (left) When the Quick Help inspector is open, and the text cursor is in any
documented symbol, the inspector displays a summary of the symbol, parameters, and other

information. It includes clickable cross-references. (right) If you hold down the Option key and click
on a documented symbol, Xcode displays a popover window with the same information.

m In the Project/Target editor’s Build Settings tab, selecting a row will fill Quick
Help with what will usually be the most complete documentation you can find of
the setting. The description includes how the setting might get a default value, the
build variable underlying the setting (see Appendix A, “Some Build Variables”), and
the compiler flag, if any, the setting sets.

m In property list editors, and the Info tab of the Target editor, if Xcode displays an
English-language equivalent of a key in the editor, Quick Help will show you the
underlying key.

Popover
Holding down the Option key and mousing into a symbol will put a dotted line under it
and highlight it in blue. If you click, a popover appears with most of the content you’d see
in the Quick Help inspector. See Figure 24.1, right. (You can do the same thing by
selecting Help→Quick Help for Selected Item,

<

?.)
Option-double-clicking on a symbol brings up the Documentation browser and jumps

to a catalog of documentation about the symbol. It’s not a search—your search settings in
the browser have no effect. The gesture takes you directly to the documentation without
any searching.

Open Quickly 437

Figure 24.2 If there is more than one definition for a symbol, command-clicking will produce a
popup listing all definitions, and offering to search the project for it or to reveal symbols that contain

the string you command-clicked, in the Symbol navigator.

An abbreviated form of Quick Help is also available during code completion. When
the completion popup is showing, click on one of the choices, and see a few words of the
symbol’s description, and a link to details, at the bottom of the popup.

Now is the time to mention command-clicking:
m Command-clicking on a symbol opens the file in which the symbol is defined and

highlights the definition. The search is context sensitive: Often, more than one class
will implement a method, but if the context makes the class of the receiving object
clear, a command-click will take you directly to the definition of the method for
that object. If the class can’t be identified for certain—this is often the case for
delegate-protocol methods—a popup menu offers you the choice. See Figure 24.2.

m Adding the Option key to a command-click shows the declaration in the Assistant
editor; remember that adding the Option key to any navigational gesture directs the
result to the Assistant editor.

Open Quickly
Most programmer’s editors have some sort of open-quickly or open-selection command
that lets you select a filename and have the editor find and open the file named in the
selection. Xcode’s File→Open Quickly. . . (O) does the same. But that doesn’t
end it.

The Open Quickly dialog has a search field that does an incremental search of the
names of the files, local and system, that your project can access. All of the possible
matches, including directory paths, are listed in a table.

There’s more: The search extends to symbols, not just filenames. Enter brokenBy-
Lines, and you’ll be shown the match and its location in Extensions.swift. This is
not a simple incremental match. Apple anticipated that you might want to look up a
symbol or file whose name you don’t quite remember; just enter the parts you do
remember: Enter bblin, and it will find (among others) brokenByLines. See
Figure 24.3.

438 Chapter 24 Documentation in Xcode

Figure 24.3 The Open Quickly dialog finds files and symbols accessible to your project based on
an incremental search. It is not necessary to remember the whole name; any sequence you enter

will be matched against any sequence of characters in the name, consecutive or not.

Help
Like every OS X application, Xcode has a Help menu. The first item in it is not a menu
item at all, but an incremental search field. As you type, the contents of the menu are
replaced with items in two sections:

m Search lists every menu item that contains the text you typed. Mousing over the
listed items opens up the corresponding menu and places a pointer next to the item.
Clicking on a listed item has the same effect as selecting the item itself.
Some “hidden” items will be shown, and some will not. “Alternate” items that
appear only when you hold down a modifier key (open the Navigate menu and
press and release the Option key to see what I mean) will be found. You will not
find menu items that Xcode has removed, in particular commands in the Editor
menu that don’t apply to the current editor.

m Documentation and API Reference, 0, opens the Documentation browser.
More about that shortly.

m Xcode Overview opens the Documentation browser on a series of articles
introducing Xcode and how to use it.

m Release Notes are version-by-version summaries of the changes and issues in
Xcode. “Release notes” doesn’t sound like much, but for most Apple technologies,
the notes can be as important as the “real” documentation. Where the regular

The Documentation Window 439

documentation has to tell you how Xcode is meant to work, the release notes will
tell you what features have issues, and how to work around them.

m What’s New in Xcode itemizes the new features and services of each release of
Xcode 6, with links to details. There are also links to the new-features documents
for releases back to Xcode 4.1.

m Quick Help for Selected Item,

<

?, is the same as option-clicking. It displays a
popover with Quick Help for the selection.

m Search Documentation for Selected Text,

<

/, is the equivalent to an
option-double-click: It’s a menu item and key combination to bring the
Documentation browser up on the contents of the selection.

The Documentation Window
Quick Help is good for focused reference, but you also need simply to read the
documentation. To do this, you use the Documentation browser (Window
→Documentation and API Reference, 0).

The Documentation browser consists of a large view for content, plus two sidebars you
can open with buttons in the toolbar. See Figure 24.4.

The Navigator Sidebar
The Navigator sidebar has two tabs. The first presents an outline of the entire
documentation library. This will eventually reach every page in the documentation sets,
but there are thousands of pages, and the tree that leads to class references is five layers
deep. The first layer or two have descriptive names like “Data Management,” but unless
you have a miraculous sense of how Apple thinks of such things, there doesn’t seem to be
much use in the Library navigator.

Figure 24.4 Buttons in the toolbar of the Help browser show two sidebars, a navigator that
indexes the documentation library, and a table-of-contents list for the currently displayed document.

440 Chapter 24 Documentation in Xcode

The second tab is the Bookmark navigator. It’s straightforward: The documentation
pages, and every indexable section within the pages, carry bookmark buttons; click one,
and the name of the section and article appears in the bookmark list. Clicking a bookmark
returns you to that location; you can reorder the list by dragging, and a contextual menu
lets you delete bookmarks or open them in new tabs.

The Table of Contents Sidebar
The second column is for a table of contents. Apple’s documentation is organized into
“books,” “articles,” and “sections.” The table of contents lays out the structure of a major
division in an outline view.

If the document on display is an API reference, the outline makes good use of Apple’s
standard layout for class references, with major divisions for task-grouped method lists,
class methods, and instance methods.

Class Info
Another feature of class references is a header section outlining a class’s superclasses and
implemented protocols, its framework, the OS releases in which the class is available, a
declaration header, and links to related documents and sample code. See Figure 24.5.

And when you’re looking at a class or reading an article, you may want to browse to
other pages not directly cross-referenced, but on the same subject. This is the most useful
feature of the Library navigator: Select Editor→Reveal in Library to see the Library
navigator with the outline opened to the current document—and the related items around
it.

Searching and Navigation
The Documentation browser follows the conventions of a web browser: It has a search bar,
back and forward buttons, bookmarks, tabs, and ways to share the contents.

I’ve already covered bookmarks, and I shouldn’t have to tell you about back and
forward buttons. The browser doesn’t offer the common gesture of scroll-left to navigate
backward and scroll-right, forward. (If you’re interested in the gesture in general, it’s in the
Trackpad and Mouse panels of System Preferences.)

Tabs
Command-clicking on a link opens the linked page in a new tab; the New→Tab (T)
command gets you a new, blank browsing environment. You can drag tabs across the bar to
reorder them.

Searching
The search bar is the main way you’ll navigate the documentation. At the first level, it’s
simple: Type your search terms; as you type, the browser displays a drop-down list showing
a selection of matching articles (Figure 24.6). Press Return to accept the leading result, or
click in the drop-down to select another match. This is almost ideal.

The Documentation Window 441

Figure 24.5 The class-summary frame at the top of class references shows the basic information
for the class, including references to documentation and sample code.

If you decide you need to see another article—and this will happen frequently, because
the “selected,” and even the “best,” matches are often not useful—the experience
deteriorates. There is no way to recover the suggestion drop-down unless you back off the
last character of the search field and type it again.

But returning to the search field and pressing Return again gets you the “Show All
Results” page, which is the most useful result of a documentation search. (It’s also available
if you select Show All Results in the suggested-results drop-down.)

442 Chapter 24 Documentation in Xcode

Figure 24.6 Typing in the search field produces a drop-down menu of some of the articles that
match the search term.

The page shows all articles that match the search string, tabbed between API, SDK
overviews, developer-tools topics, and sample code. The drop-down is one-way; the
all-results page is a page with a place in the browser’s history. If one result is unsatisfactory,
you can go back to the results and try again. And, it contains every match for your search,
not just a best-guess selection. The only advantage to the drop-down is that the entries
display the title of the next-higher division of the documents. See Figure 24.7.

You can restrict the search by clicking the magnifying-glass button in the search field.
This will produce a popover containing a choice of OS X and iOS to search
documentation for those platforms only; All SDKs to force the browser to search all of
the available docsets; and Automatic, to allow it to guess the scope of the search from
context, such as the currently selected target in the front project window (Figure 24.8).

The Documentation Window 443

Figure 24.7 The most valuable product of a search is the all-results page, listing all matching
articles by title, organized by the scope of the article.

Figure 24.8 Clicking the magnifying-glass button in the search field produces a popover window
for you to choose the scope of your documentation searches.

Export
The Export button, at the right end of the toolbar, gives you options for alternative views
of the current documentation page and for sharing references to it. You can bookmark the
page, view its underlying HTML in Safari, fetch the PDF document that includes the
contents of the current page, or view it in iBooks. If a playground is attached to the page,
the Export menu will open it.

444 Chapter 24 Documentation in Xcode

There are two other options, Email Link and Message. Each page in the
documentation set can be reached by an xcdoc URL. Following an xcdoc link opens
Xcode and the Documentation browser and displays the page.

Email Link creates an email message in Mail.app containing the URL; Message pops
up a window containing the URL and a field to receive a destination as understood by the
Messages application. Click Send, and the recipient sees the link in Messages, a
compatible instant-message service, or an SMS text.

Keeping Current
Xcode and Apple’s documentation do not come out on the same schedule. They can’t.
Even if it were practical to halt one team while the other caught up to a release, the
documents will still be extended and revised, and be ready for the public, at a much faster
pace than a complex set of developer tools can.

When you first install Xcode, you don’t have a complete local documentation library.
What is packaged into ˜/Library/Developer/Shared/Documentation/DocSets is
a skeleton of a couple hundred megabytes with minimal content, filled in with references
to content at developer.apple.com. The equivalent local library is an order of
magnitude larger. Not including the full library makes downloading Xcode faster, and it
frees Apple from providing an obsolete library (or having to rebuild the Xcode distribution
every few weeks as documentation is revised).

Note
In earlier releases of Xcode, docsets were kept in an all-users library at
/Library/Developer/Documentation/DocSets, and before that, inside the
/Developer tree. Now, each user has a personal copy of the documentation.

So the first thing you’re going to do when you install Xcode is to run it, need it or not.
It will immediately compare its local document set with what’s on Apple’s servers, and it
will commence a download of a gigabyte or more.

Documentation is provided in documentation sets (docsets), essentially large web sites plus
the indexes that make Quick Help, the browsing outline, and full-text searching possible.
Each docset is nearly self-contained, though it can have references out to the web.

The entries at the top level of the Documentation browser’s Library navigator
correspond to the current docsets. (Only the documentation for the current operating
systems and developer tools is included, even if you still have older docsets installed.)

Docsets have to be downloaded and (on an irregular schedule) updated. Some, like
current OSes and the developer tools, download automatically, but others, for older
systems or “retired documents,” are optional. You control the download process through
the Downloads panel of the Preferences window (Figure 24.9).

Docsets (and additional development tools) are shown with checkmarks if they are
present and up-to-date, and as download (circled-arrow) buttons plus estimated sizes if
they are not. If you choose to download an item, its status is replaced by a progress bar
showing how far the download has come.

Keeping Current 445

Figure 24.9 The Downloads panel of the Preferences window lists all of the documentation sets
and other tools Xcode can install or update over the Net. Some are optional, shown with a circled

down-arrow and their sizes.

By checking the Check for and install updates automatically box, you allow
Xcode to download hundreds of megabytes of revised documentation at the most
inconvenient moment possible—a consideration if your Internet connection is relatively
slow. If you want better control over the process, there’s a Check and Install Now
button to start downloads on demand. (Remember to click this button whenever it’s
convenient; updates are rarely publicized.)

In previous versions of Xcode, the Downloads panel, or the documentation display
itself, showed the location of the docset package, the version number, and other
information. No longer. You needed the version number to report bugs, but the viewer
now carries a floating Provide Feedback link, which includes the version in its report to
Apple.

You still need to report the version if a docset won’t load for you at all. You can find
the version number by navigating to the docset in the Finder, right-clicking its icon to
select Show Package Contents, and inspecting the Info.plist inside the Contents
directory. You’re looking for the CFBundleVersion key.

446 Chapter 24 Documentation in Xcode

Your Own Quick Help
Xcode’s documentation system is not closed. Development systems have generated
documentation sets from specially formatted comments in the API for many years. The
ancestor of most of these systems is JavaDoc, and the most commonly used all-purpose
generator is Doxygen (http://www.doxygen.org/), which derives its vastly expanded
markup language from that.

Xcode 5 introduced a way to add your own documentation to Quick Help. This system
relies on a built-in parser for comments in the HeaderDoc format Apple has used since the
introduction of OS X. The same markup can be used to feed third-party documentation
aggregators, like Doxygen, to publish overall guides to your API and install them in the
Documentation browser. This system is still in place for C-family languages in Xcode 6.

But not for Swift. Xcode does not recognize HeaderDoc comments in Swift source.
Instead, it captures documentation comments written in a radical subset of
reStructuredText (reST). Conversely, the C-family system does not recognize reST
comments. There is no aggregator to compile stand-alone reference guides.

Note
reStructuredText is a simple markup language that can produce rich-text documents while
still being readable as is. Its original use was for generating Python documentation. Find
an overview of the language at http://docutils.sourceforge.net/docs/user
/rst/quickref.html. The easiest way to play with reST is to install the restview
package by way of the pip package manager for Python. (You’ll have to install pip first,
and remember to use sudo.)

That, at least, was the situation as of Xcode 6.2. To be fair, the only “documentation”
for the feature has been one sentence in a release note and a casual conversation between a
blogger and an Apple engineer. Even though the technique is good enough for purposes
of Quick Help, Apple is not recommending it, nor claiming it is ready for use. That will
surely be better by the time you read this.

Note
My “authoritative” source is the NSHipster blog at http://nshipster.com/swift-
documentation/.

C-Family Documentation
This is one time I’ll fall back on techniques for C-family code, if only to prepare you for
the features you can hope for in the new reST-based system.

How to Generate Quick Help
If you know how to write documentation comments (you’ll learn in the next section),
getting Xcode to incorporate them in Quick Help is trivial: It just does it.

Here is the in-code declaration for -[SimpleCSVFile run:error:], the only
SimpleCSVFile method accessible to client code:

http://www.doxygen.org/
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://nshipster.com/swift-documentation/
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://nshipster.com/swift-documentation/

Your Own Quick Help 447

/**
Parse the CSV file.
Loops through the lines of the input file, interpreting the first line
as unique keys for the data fields contained in the remaining lines.

The keys and values for each line are gathered into an NSDictionary,
which is presented line-by-line through the supplied block.

It is an error for the file to have a line with a different number of
fields than specified in the header line.

@bug The parser does not handle quoted or escaped fields at all.

@param block A block the caller supplies to accept
record-by-record data from the receiver.

@param[out] error A pointer to an `NSError` object pointer, or nil.
If non-nil, and an error occurs (signified by a
return value of `NO`), `*error` will describe the
problem.

@return `YES` if parsing succeeded.
@return `NO` if it did not. If an `NSError**` parameter

was supplied, `*error` will describe the problem.

*/
- (BOOL) run: (SimpleCSVRecordBlock) block

error: (NSError **) error;

The comment begins with /** to signal that this is for documentation, followed by a
one-sentence summary that will show up in high-level indexes of the API. Then comes a
lengthier description, and specially marked-up annotations of -[SimpleCSVFile
run:error:]’s parameters and return value.

You don’t have to do anything else. Option-click any occurrence of -[SimpleCSV-
File run:error:], and you’ll get a popover containing the same formatted Quick
Help as you’d get for any symbol in an Apple SDK; simply clicking on a symbol fills the
QuickHelp inspector (Figure 24.10).

The Build Settings tab in the Target editor includes a setting for “Documentation
Comments” warnings. When the switch is on, clang will give you a running assessment
of the validity of your comments, such as whether the parameter names you specify
correspond to the names in the declaration.

Documentation Comment Syntax
Xcode’s help parser recognizes a concise set of markup symbols to give meaning to parts of
the comment—such as for parameters, return types, and special notes. The markup
keywords are prefixed with either @ or \.

448 Chapter 24 Documentation in Xcode

Figure 24.10 Click any symbol that has a documentation comment where it is declared, and you
will see a popover with the formatted documentation. Xcode does not interpret style markup in the

documentation. Compare to the documentation recovered from the reStructuredText comments
attached to the same method in Swift in Figure 24.14.

m @param—The first word is the parameter name; everything thereafter is a
description. There can be more than one @param directive. If you follow the
@param with [in], [out], or [inout], the rendered documentation will
annotate it as being input-only, output-only (as it would be for pointers to
NSError*), or both.

m @return—Describes the return value of a function/method.
m @exception—The first word is the name of an exception a function/method

could raise; the rest is a description. There can be more than one @exception.
Doxygen only.

m @bug—Commentary on a bug in the API.
m @todo—Commentary on work yet to be done for the API.
m @warning—Text that will be presented with a red bar in the margin.
m @deprecated—Flags and indexes an API as deprecated, with your notation.
m @see—An external URL or an internal symbol that Doxygen will link to.
m @author—The name, URL, or email address of the author of the annotated code.

If you provide an email address, remember to escape the @ with a \.
m @c, @p—One word of “code” or “parameter” text that will be set in a monofont.

Stretches of more than one word should be set out in the corresponding HTML
markup.

m @em, @e, @i—One word to be set in italics.
m @b—One word to be set in boldface.

Your Own Quick Help 449

The character-style tokens are awkward to write and read. Doxygen supports
Markdown style markup, so code symbols could be rendered as `symbol` and not @c
symbol. Further, Markdown tokens can apply to phrases, not single words. When not
using Markdown, Doxygen accepts HTML markup for phrases; Xcode ignores HTML.

Xcode doesn’t interpret Markdown for Quick Help, so you have to choose between a
faithful rendering and an annotation that’s easier to read and write in the source, and not
too bad in the rendered text, versus having Quick Help render your notes as you intend.
For my part, I prefer to use Markdown.

Doxygen
Doxygen (http://www.doxygen.org/) is a much more powerful system. It has an
enormous repertoire of tags to generate detailed help systems, with clickable dependency
and inheritance diagrams, indexes, and search. It can target languages as diverse as
Objective-C, Java, and FORTRAN (but not yet Swift). It can generate HTML, LATEX,
Docbook, Xcode docsets, and many more. The variety of tags and configuration options
can be confusing, but once you’ve settled on the subset you’ll use, you don’t need to think
of anything more than writing your docs. The results are worth the effort; see
Figure 24.11.

This book can’t cover all the variants of markup and options Doxygen affords. If you
need to know more, browse the manual at http://www.doxygen.org/, or download
the PDF of the current edition.

Preparation
Getting a basic installation of Doxygen is simple: Go to the web site, select Downloads
→Sources & Binaries, and find the .dmg containing the latest version. Download it,
mount the disk image, and drag the Doxygen app into the /Applications directory.

I recommend you install the GraphViz package of command-line graphics tools, so
Doxygen can generate class and dependency diagrams. The Homebrew package manager
makes this very easy:

m Install Homebrew if you haven’t already. Go to http://brew.sh, copy the ruby
command on that page, and paste it into the Terminal. The documentation there
will help you with troubleshooting—if you’ve installed anything in /usr/local on
your own, brew may ask you to think twice about what you’ve already installed.
You should not need to use the sudo command; if a permissions-related error
occurs, go back to the Homebrew site and look for troubleshooting advice.

m Enter brew update to ensure you have all the current “recipes” for downloading
and building packages.

m Enter brew install graphviz. The Graphviz tools will be installed in /usr
/local/Cellar/graphviz/version/bin/. Enter ls /usr/local
/Cellar/graphviz to discover the actual version number.

http://www.doxygen.org/
http://www.doxygen.org/
http://brew.sh

450 Chapter 24 Documentation in Xcode

Figure 24.11 Doxygen renders the markup for -[SimpleCSVFile run:error:] shown
earlier in this chapter into cross-referenced and indexed HTML.

Configuring Doxygen: Basic Settings
doxygen proper is a command-line tool that processes your source code under the
direction of a configuration file. The Doxygen app for OS X is mostly an editor for the
configuration. Double-click Doxygen to run it.

Warning
Three years after the introduction of Gatekeeper, the security provision that by default
refuses to launch applications that had not been signed by Mac Developer Program
members, Doxygen isn’t signed. If you are using Gatekeeper (you should), Finder will block
you. To get around this, right-click on the Doxygen application icon, select Open, and click
Open in the warning alert that ensues.

What you’ll see is a “wizard” window with a list of views at the left, and a form at the
right. See Figure 24.12.

doxygen being a Unix command-line tool, it needs a working directory. The first
thing you’ll do is set it, using the affordance at the top of the window. There’s a text field

Your Own Quick Help 451

Figure 24.12 The doxygen command-line tool is wrapped in a graphical “wizard” for editing the
configuration file for your project.

there to enter the path directly, but use the Select. . . button to pick the Passer
Rating project directory—that’s the directory that contains the project file, not the one
that contains the source.

Now it’s time to fill out the configuration. You do this in two stages; the Wizard tab
presents a simplified English-language interface that you can use for most of the setup.
Then you round it out in the Expert tab, which is just a structured editor for the
configuration file.

Warning
Doxygen (for the moment) works with a remarkable number of languages, but (for the
moment) Swift is not among them. These steps are for the Objective-C version of the iOS
Passer Rating as it existed in Xcode 5 Start to Finish.

452 Chapter 24 Documentation in Xcode

Project Panel
The Project panel points Doxygen at its source and destination directories and accepts
project-wide settings like the title and logo.

m Project name—Passer Rating iOS

m Project synopsis—Something brief to explain what Passer Rating is: iOS demo
project for Xcode 6 Start to Finish

m Project version or id—1.0

m If you supply a logo image, bear in mind that it will be rendered full-size on every
page of the documentation. If the image is huge, the page headers will be huge. I
used the 60× 60 icon for Passer Rating.

m Source code directory—Doxygen works by going through your source files,
parsing and indexing them. Use Select. . . to choose the source directory within
the project directory. Check Scan recursively to search subdirectories as well.

m Destination directory—This is where the generated documentation goes. Do not
put it in the source directory; the version-control implications could be nightmarish.
Click the Select. . . button, and in the select-file dialog, select the project directory,
and click New Folder. Enter a name like docs. Select that new directory and click
Choose.

Mode Panel
The Mode panel determines, at a rough level, how Doxygen is to interpret your
source files.

m For the desired extraction mode, pick All Entities. Doxygen will generate
documentation for all methods, constants, functions, etc., even if you haven’t yet put
documentation comments on them. In a production project, you might want to
filter out things you’ve decided not to document, but for this demo, it will be fun to
see what Doxygen can turn up.

m You are also asked to “optimize” for the language the project is written in.
Objective-C is not on offer, but this is a radio group, so you have to pick one. Leave
this option alone; you’ll take care of it in the Expert tab.

Output Panel
Doxygen can produce documents in any or all of five different formats. Check only
HTML, with navigation panel, and With search function. The Change color. . .
button gives you hue, saturation, and value sliders to dress up the emitted pages; suit
yourself.

Diagrams Panel
Select Use dot tool from the GraphViz package, and have fun: Check all of the
available graph types.

Your Own Quick Help 453

Expert Settings
If you want, you can go to the Run tab, run Doxygen, and have it show you the results
(but you haven’t told it where to find GraphViz yet, so go back to the Diagrams panel
and choose some other option). But you can get better results if you use the Expert tab.

To serve a multitude of needs and tastes, Doxygen has a multitude of options. They are
all documented in the manual you can download from the web site. They are all in the
Expert tab. You will need to touch very few, but it’s not going to be easy: The expert
settings fall into 17 panels, some of them very long. The options have been put into some
order of related elements, but it’s not always easy to see what that order is. You will have to
pick through the items to track down the ones you need.

The Expert tab labels each setting with the name it has in the key-value pairs in the
configuration file. If you hover your mouse over a name, an explanation will appear in the
text area at the bottom left. Each setting has an editor appropriate to its data type. Settings
labeled in black haven’t changed from their defaults; if you change one, it will be labeled
in red.

Project Panel
Check JAVADOC AUTOBRIEF (just above halfway through the list) to emulate JavaDoc’s
feature in which the first sentence of a documentation block is harvested as a short
description in summary tables. Otherwise, you’d have to call out brief descriptions with
@brief.

In the Mode panel of the Wizard tab, you were forced to “optimize” the output to
present the API for a particular language, none of them Objective-C. You get to undo this
by locating all the OPTIMIZE OUTPUT FOR . . . items near the bottom of the list, and
unchecking them.

Doxygen infers the language of a source file from its extension, so when it parses your
.m files, it will recognize them as Objective-C. .h files remain ambiguous, which is the
right thing for many projects. Relieve the ambiguity by adding a line to the EXTENSION
MAPPING table that follows the optimization checkboxes: Enter h=Objective-C in the
text field, and click the + button.

HTML Panel
The HTML panel controls the formatting of the HTML Doxygen produces. This is
where you set up Doxygen to index your documentation as an Xcode docset. The settings
come about a third of the way down the list.

m GENERATE DOCSET is the master setting. Check it.
m DOCSET FEEDNAME sets a name for a grouping of documentation sets. The set

you’re building now is for the iOS Passer Rating app, but it might be part of a suite
of docsets for Xcode 6 Start to Finish. Set it to Xcode 6 Start to Finish.

m DOCSET BUNDLE ID is a unique identifier for this set; it sets the bundle identifier in
the docset’s Info.plist. I used com.wt9t.x6stf.docs.ios.

454 Chapter 24 Documentation in Xcode

m DOCSET PUBLISHER ID, by contrast, uniquely identifies you as the source of this
and other docsets. I used com.wt9t.x6stf.docs.

m DOCSET PUBLISHER NAME is your name as presented to humans. I’m Fritz
Anderson.

Dot Panel
Set DOT PATH to the same /usr/local/Cellar/graphviz/version/bin path you
collected when you had Homebrew install GraphViz.

Warning
If you still have a legacy GraphViz and Doxygen setup, you’ll find that dot will want to
draw on tools from the X11 package. Because Doxygen will run dot once or twice for
every @interface and file in your project, it will spawn dozens of instances of the X11
app. Because you likely don’t have the X11 infrastructure installed on your Mac, each
instance will wait for you to authorize it to install the X11 libraries. This is undesirable.
The tools from the current GraphViz won’t do this, so be sure to enter the bin/ from your
latest installation.

Running Doxygen
You’ve been creating a reusable configuration file, and you should save it. Select File
→Save (S). The default name for the file is Doxyfile, and there’s no reason to change
it. I recommend placing it in the proposed working directory, which is the directory that
contains Passer Rating.xcodeproj.

At last you are ready to produce some documents. Select the Run tab and click Run
doxygen. The text area fills with the run log, which is intimidatingly long. If you elected
dot as the graphics generator, and a lot of graph types, some of the dot processing may
take a while.

The doxygen tool will not halt with formatting errors, nor even call them out
conspicuously. Be sure at least to skim the log for error messages. The first run may take a
couple of minutes, but doxygen has the grace not to regenerate graphs for structures that
have not changed.

When processing is done, click Show HTML output. Your preferred web browser
will open the root page of the generated documentation (which will be index.html in
the html subdirectory of your designated documentation folder).

This will be the designated “main,” or overview, page, and if you don’t specify one, it
will be blank but for a navigation bar at the top. Clicking in the bar shows you more:
indexes of classes and their members; files and their contents; to-dos and bugs. If you asked
Doxygen for a client-side search interface, every page will include a search field that will
do an incremental search of the docset.

Your Own Quick Help 455

Note
The contents of the docs directory are all derived data. You should not add the directory
to your version-control repository. Take this moment to add docs/ to your .gitignore
file.

Installing a Docset
When you set GENERATE DOCSET, Doxygen adds a Makefile that will direct make to
install the docset into ˜/Library/Developer/Shared/Documentation/DocSets,
where Xcode can find it. In Terminal, set the working directory to the generated HTML
directory, and run make:

$ # Assuming you're in the project directory:
$ cd docs/html
$ make install

...
Output from make

...
$

Note
Don’t use sudo to run make. It’s not necessary—you already have write privileges for your
own Library/Developer directory—and you’d be creating directories and files owned
by root, which you won’t be able to change or delete.

Quit and reopen Xcode, and open the Documentation browser. Your docset should
show up in the Library navigator’s outline. The outline will trace through all the indexes
in the set. Click on one, and the browser will display the corresponding page. The table of
contents sidebar will almost work—it will fill in as you’d hope when you arrive at a class
reference page, but clicking an item clears the table out after taking you to your selection.
See Figure 24.13.

Figure 24.13 A makefile in the http directory Doxygen produces installs your documentation for
use by the Xcode Documentation browser.

456 Chapter 24 Documentation in Xcode

Note
Doxygen has the annoyance that its terminology and formatting aren’t tailored to
Objective-C; it’s hard to minimize its C++ conventions. There are other options, and they
have the advantage of matching the style of Apple’s own docs. Apple’s HeaderDoc is
supplied with the Xcode tools—look for HeaderDoc in the Documentation browser. It is
simple to generate a suite of HTML documentation—all that’s involved are a couple of
command-line tools and customizing some template files. However, things rapidly become
difficult when you try to generate a docset; you’re left to hand-code some of the indexes.
Search the tools documentation for HeaderDoc for more information. appledoc,
http://gentlebytes.com/appledoc/, is an open-source generator that will produce
docsets. It’s not as mature as Doxygen, and while appledoc’s narrower focus makes the
configuration system less complex conceptually, the lack of a graphical editor hurts it.

Swift and reStructuredText
The story on user-generated documentation from Swift code is brief: As I write this—I
expect it to change very quickly—Xcode’s documentation system for Swift has no other
purpose than to provide content for Quick Help. It does this fairly well, with a little room
for growth, but there is no support for generating aggregated reference documents such as
you would get from Doxygen or HeaderDoc.

Note
To be fair, this is no different from Apple’s policy before Swift: Xcode itself has never taken
responsibility for generating reference documents. (HeaderDoc is maintained, but it’s a
legacy from the days when NeXT was on its own for generating documentation.) The
problem is not that Apple doesn’t provide a documentation aggregator; it’s that so far,
nobody does.

Documentation comments for Swift are written in the reStructuredText markup
language. They are set out with either a double-asterisk comment block (/** ... */) or
line-by-line triple-slashes (///)

reStructuredText has a rich grammar for laying out text and applying styles and
cross-references, but the Xcode grammar provides only the minimum that Quick Help
can render:

m Body text, obviously. No style markup, URLs are plain text. Paragraphs must start at
the left margin of the source text (see below for what “left margin” means), unless
you mean to indent them. I don’t recommend indenting them, because you’ll usually
keep the Quick Look inspector narrow enough to make indented text awkward.

m Itemized lists (bullets). Start a line at the left margin with an eligible bullet character
such as * or -. Consecutive items do not need blank lines between them. A sublist
should have a space before its items, but keep the limited width in mind and be
sparing.

m Enumerated lists. Begin the item with a number or letter followed by a period
(other delimiters are accepted). Changing the enumeration or bulleting style is

http://gentlebytes.com/appledoc/

Swift and reStructuredText 457

supposed to have the effect of introducing a sublist, but that hasn’t made it into the
6.2 interpreter. Regardless of the value of an enumerator, the items will be
numbered consecutively. (“1. . . . 4.” will show as “1. . . . 2.”)

m Field lists. Begin the paragraph with a keyword bracketed by colons (e.g.,
:returns:), and the text will be formatted into a section of the help. Only two
tags receive special treatment:

m :param: indicates a parameter for a func. Use one for each parameter. The
first word after the directive will be set in a monospaced font, and the
following text will appear on the next line. All :param:s are consolidated
into a single “Parameters” section.

m :returns: indicates the return value of a func. There is no special
treatment for any part of the text. You can have more than one, which is
useful because you often want to call out special return values, as with
Returns the index of the item in the Array

nil of no item is found

Multiple :returns: clauses are consolidated into a single “Returns” section.
Other field lists are recognized, but are not given the special treatment of getting
their own sections in the Quick Help display. Writing
:bug: The parser does not handle quoted field values.

will place a labeled-and-indented paragraph in the body of the description. See
Figure 24.14.

Figure 24.14 reStructuredText comments will attach Quick Help documentation for the Swift
definition that follows that is about as good as that for HeaderDoc comments in Objective-C. This is

the same SimpleCSVFile method as shown in Figure 24.10.

458 Chapter 24 Documentation in Xcode

Quick Help’s idea of the “left margin” of a document comment will leave half your
documentation indented apparently at random, but makes sense once you catch on to the
principle. The least-indented line of the comment block defines the “left margin.” ///
comments are easiest: If all text appears two (or one, or three. . .) spaces after the last slash
on the line, the help text is rendered as flush-left. If any of the text appears one space more
after the last slash, it will be indented; if one space less, it defines the left margin and
everything else is indented.

The left margin in a block comment is counted from the beginning of each line. The
least-indented comment line becomes the least-indented paragraph in the help text. If you
have text on the same line as the /**, the space between it and the second asterisk counts
as its margin.

More words won’t help; experiment on your own.
Rich-text markup, as for italic or monospaced text, is passed through Quick Help as is.

So are section titles, tables, images. . . if it’s not on this list, it isn’t there. This is no different
from how C-family comments are treated.

Summary
This chapter took you on an in-depth tour of Xcode’s documentation system. You saw
how to use Quick Help to get on-the-spot guidance on APIs, Interface Builder objects,
and build settings, and how to quickly access the declarations of methods and other
symbols in your code.

I showed you the Documentation browser and how to navigate it and search for
articles. You learned how to manage and update your document sets.

You discovered how easy it is to generate Quick Help for your own code: Add some
comments with standard markup to your declarations, and you’re done. clang will even
warn you if you get the syntax wrong.

Finally, I introduced Doxygen, a system for generating thorough, indexed, and
searchable documentation sets. Doxygen should be able to produce and install
documentation sets you can examine in Xcode’s Documentation browser, and I showed
you how it ought to work. Unfortunately, it doesn’t work with Xcode 6 yet.

25
The Xcode Build System

If you’re used to building software with Unix tools like make, odds are you don’t quite
trust IDEs like Xcode. In a makefile, you can directly set compiler options, even file by
file. You can designate build dependencies, so a change to a header file will force
recompilations of the implementation files that depend on it—clang even has a mode
that generates the dependency trees.

At first glance, Xcode doesn’t give you that control. It’s “magic,” and while you’re
proud to make magic for your users, you don’t trust it for yourself.

This chapter aims to take some of the magic out of the Xcode build system. Even if
you aren’t a veteran of make-based projects, you’ll gain a better understanding of what
Xcode does for you and how you can control it.

How Xcode Structures a Build
A makefile is organized around a hierarchy of goals. Some goals, such as the frequently
used clean or install targets, are abstract, but most are files. Associated with each goal
is a list of other goals that are antecedents—dependencies—of that goal and a script for
turning the antecedents into something that satisfies the goal. Most commonly, the
antecedents are input files for the programs that the script runs to produce a target file.
The genius of make comes from the rule that if any target is more recently modified than
all of its antecedents, it is presumed to embody their current state, and it is not necessary
to run the script to produce it again. The combination of a tree of dependencies and this
pruning rule make make a powerful and efficient tool for automating such tasks as
building software products.

The organizing unit of a makefile is the target-dependency-action group. But in the
case of application development, this group is often stereotyped to the extent that you
don’t even have to specify it; make provides a default rule that looks like this:

%.o : %.c
$(CC) -c $(CPPFLAGS) $(CFLAGS) -o $@ $<

460 Chapter 25 The Xcode Build System

So all the programmer need do is list all the constituent .o files in the project, and the
built-in rule will produce the .o files as needed. Often, the task of maintaining a makefile
becomes less one of maintaining dependencies than one of keeping lists.

In the same way, Xcode makes dependency analysis a matter of list-keeping by taking
advantage of the fact that projects are targeted at specific kinds of executable products,
such as applications, libraries, tools, or plugins. Knowing how the build process ends,
Xcode can do the right thing with the files that go into the project.

A file in an Xcode workspace belongs to three distinct lists.
Projects. A file appears once in the Project navigator for each project it belongs to.

This has nothing to do with whether it has any effect on any product of a project. It might,
for instance, be a document you’re keeping handy for reference, or some notes you’re
taking. If you’re working with a workspace, a file might be in the workspace without
being in any project; the easiest way to do this is to make sure no project is selected
(command-click to undo any selections) and select File→Add Files to. . . (A).

Note
To be more precise, there are no files “in” a project or workspace. Projects and
workspaces keep references to files. Xcode makes tracking files and building easier if a
project’s inputs are in a tree descending from the directory that holds the project file; but
if the files are in anything, they’re in the tree. The project just knows where they are.

Targets. A file may belong to zero or more targets in a project. A file is included in a
target’s file list because it is a part of that target’s product, whether as a source file or as a
resource to be copied literally into the product. When a file is added to a project, Xcode
asks you which targets in the project should include the file. You can also add files to a
target through the checkboxes in the File inspector, or by dragging them into a build
phase in the Target editor.

A target is identified with the set of files that compose it. There is no concept of
including or excluding files from a single target on the basis of its being built with a
Release or Debug configuration. If you need disjoint sets of files, make a separate target
for each set; a file can belong to more than one target, and you can set preprocessor
macros per-target. This does mean that the two targets have to coordinate their settings;
.xcconfig files, introduced later this chapter, make that very easy.

Build Phases. What role a file plays in a target depends on what phase of the target the
file belongs to. When a file is added to a target, Xcode assigns it to a build phase based on
the type of the file: Files with clang or Swift-compilable suffixes get assigned to the
Compile Sources phase; libraries, to the Link Binary With Libraries phase, and most
others to the Copy Bundle Resources phase. (See Figure 25.1.)

Build phases are executed in the order in which they appear in the Target editor. You’d
almost always want the Compile Sources phase to complete before Link Binary With
Libraries phase—that’s the way they come—but you can drag them into any order you like.

When you create a target, either in the process of creating an Xcode project or by
adding a target to an existing project, you specify the kind of product you want to
produce, and you can’t change it except by making another target. The target type forms

How Xcode Structures a Build 461

Figure 25.1 Build phases in a modest project. You gain access to build phases by selecting a
project item in the Project navigator, clicking on a target, and then the Build Phases tab in the

Target editor. The phases are represented by tables that can be expanded to reveal the files that
belong to them. One of the ways to add a file to a phase is to drag it into the phase’s table.

462 Chapter 25 The Xcode Build System

one anchor—the endpoint—in the Xcode build system’s dependency analysis: It tells the
build system what the product’s desired structure (single file or package) is and how to link
the executable.

The other anchor of the build system is the set of build-phase members for the target.
The Compile Sources build phase, along with the sources you add to it, yield object files,
which are the inputs to the linkage phase implicit in your choice of target type. The
various file-copying phases and the files you supply for them yield the copy commands
needed to populate the auxiliary structure of an application.

What a makefile developer does with explicit dependencies and the default rules,
Xcode does by inference: It determines how new files are to be processed into a product,
and how that processing is to be done. Even if you use the product of one target to build
another, Xcode will detect the dependency and incorporate the build of the dependent
target into the process for the composite target. All Xcode needs is for the two targets to
be within the same workspace—they don’t even have to be in the same project.

Build Variables
The action for the default make rule for .c files parameterizes almost the entire action.
The command for the C compiler and the set of flags to pass are left to the makefile
variables CC, CPPFLAGS, and CFLAGS. You set these flags at the head of the file to suitable
values, and all the compilations in your build comply.

Xcode relies similarly on variables to organize build options, but at a much finer
granularity. There is one variable for each of the most common settings. For instance, the
variable GCC ENABLE CPP RTTI controls whether clang’s -fno-rtti will be added to
suppress generation of runtime type information in C++. This variable is set by a popup
(“Enable C++ Runtime Types”) in the Build Settings tab of the Target editor. See
Figure 25.2.

Let’s have a good look at the Build Settings tab. Select a project in the Project
navigator to fill the Editor area with the Project/Target editor, then select a target. Click
the Build Settings tab. Right under the tab bar, you’ll see two pairs of buttons:
Basic/All, and Combined/Levels. Basic narrows the list down to a handful of essential
elements; I’ll get to the distinction between the combined and by-level presentations
shortly. For now, the most straightforward presentation is All and Combined.

The list you see is a front end for most of the build variables Xcode maintains for this
target. If you have the Utility area (right-hand area in the View control) visible, and the
Quick Help (second) inspector selected, you can see a description of any setting you
select. In brackets, at the end of the description, are the name of the build variable the
item controls and what compiler option, if any, it affects. Both the label and the
description are searchable: The list in Figure 25.2 was narrowed down to two entries by
typing rtti into the search field at the top of the list.

Settings Hierarchy 463

Figure 25.2 The list of settings in the Build Settings tab of the Target editor is extensive, but you
can get it under control by typing something relevant to the setting in the search field. Typing rtti

narrows the list down to a setting for C++ runtime type information, but also to a setting whose
description merely refers to RTTI. The Quick Help inspector in the Utility area explains each setting,

including the name of the associated build variable and the compiler flags it sets.

Note
It’s common for closely crafted makefiles to customize the compiler flags for some of the
source files. The Xcode build system allows for this. In the Build Phase tab, the table for
the Compile Sources phase has a second column, “Compiler Flags.” Double-click an entry
in that column to get a popover editor for additional flags for that file. You won’t get Quick
Help for what you enter, but you can explore the Build Settings list to see what options are
available. What you type will be added to the flags used in compiling the file—it’s not
possible to override the general settings, and it’s not possible to make separate per-file
settings for different configurations.

Settings Hierarchy
The “Combined” list of settings shown in the Build Settings tab is the authoritative list
of what flags and directives will be applied in building the target. However, the Xcode
build system provides richer control over those settings. What’s in the combined list is a
synthesis of settings that come from a hierarchy of up to six layers.

m BSD environment variables
m Xcode’s own default values
m The current configuration set for the whole project
m The current configuration set for the current target
m Command-line arguments to the xcodebuild command-line tool, if you’re using it
m Added per-file compiler options

Figure 25.3 illustrates how the hierarchy works.

464 Chapter 25 The Xcode Build System

Figure 25.3 The hierarchy of build settings in Xcode and xcodebuild. A setting may be made
at one or more of these layers, but the topmost setting in the hierarchy controls. Settings in higher
layers may refer to settings from lower layers by the variable reference $(inherited). The top

layer, command-line settings, is present only in an xcodebuild invocation.

You’ll deal most often with target and project settings; the others rarely arise. The
project level allows you to set policies for every target in the project—things like the root
SDK or warnings you always want to see—so a change in one place affects all. You can still
exempt a product from the general policy by putting an alternate setting into its target:
The target setting will override the project setting.

Levels
With this in mind, you can click the Levels button in the bar under the Build Settings
tab (Figure 25.4). The Target editor now shows four columns for each setting,
representing the default, project, and target values, and the net value that is actually
effective for the target. You can edit only the middle two columns—target and project.
The level that is responsible for the effective setting is highlighted in green.

Note
The same Build Settings tab is available in the Project editor, but without the target-level
column.

Each level that sets (not just inherits) a value is shown in bold with a green background.
The distinction between setting and inheritance is important: If, for instance, you set a
string setting to empty at the target level, the effective setting will be an empty string, not
the setting inherited from the project; if you change the project setting, the effective
setting, through the target, will still be blank—watch for that green box. Likewise, setting
a value to be the same as the value to the right isn’t an acceptance of the inherited value;
it’s just an override that happens to repeat the inherited value.

If you want to remove an override from the hierarchy, select the line for that setting,
and press the Delete key. The setting won’t go away—it will just clear the value from the
level (project or target) on which the editor is operating. You’ll see the effect when you

Editing Build Variables 465

Figure 25.4 With the Levels view selected, the Target editor shows how each level of the settings
hierarchy contributes to the settings that will be used to build the target. The chain proceeds from
right to left, starting with Xcode’s default for the project type at the right, through the project and

target levels, and to the net setting on the left. You can edit the settings at the project or target level.
The place where the operative value for a setting is selected is highlighted in green.

see the current level’s value lose its boldfacing, and the green box go down to the
next-lower level. When you select a different row in the table, the cells that don’t carry
values will be blank.

Editing Build Variables
The Build Settings table is intelligent about what values you can put into it.

m Some values—such as the multiple flags you can put into the “Other C Flags”
setting—are logically lists. Xcode lets you edit the items individually, in a table to
which you can add and remove rows.

m Some settings, such as Booleans or code-signing identities, are constrained to the
few values that make sense for them. The Value column shows a popup menu with
the possible values.

m Any value can be edited free-form—if you click in the value and move the mouse
pointer a little, you are in a text field.

m If you are editing a value at the target level and want to supplement, rather than
replace, the inherited value, include $(inherited) where you want the original
setting to appear.

The Build Settings table is filtered for your consumption. Underlying the descriptions
in the Setting column are the names of variables Xcode uses to specify the build; and the
Value column displays the settings as they effectively are, not as they actually are. You’ll see
this when editing the text of variables whose value depends on the content of other

466 Chapter 25 The Xcode Build System

variables: The “Architectures” setting may look like “Standard” in the list, but if you edit
it as text, you find it’s $(ARCHS STANDARD).

Note
If you’ve done shell scripting, you’re used to delimiting environment variable names in
braces: ${VISUAL}. Strings in parentheses are replaced by the output of the commands
they contain. This is not so when you use Xcode build variables. Use parentheses to refer
to them: $(SDKROOT).

You can change the table to display the underlying variable names and values. The
command Show Setting Names in the Editor menu will reveal the names of the build
variables; Show Definitions shows the raw text of the settings.

Configurations
So far, I’ve treated build settings as the product of a simple hierarchy of defaults and
overrides. But build settings can be varied on another axis: A target may have different
settings based on your purpose in building it, such as debugging, release, or distribution.
You encapsulate these settings in build configurations, which you can select for each action in
your product’s scheme.

When it generates a new project for you, Xcode provides two configurations, Debug
and Release, which it sets up with reasonable values for those two purposes. In general,
the Debug configuration generates more debugging information and turns off code
optimization so your program will execute line by line in the debugger, as you’d expect.
Both OS X and iOS run apps on two or more processor architectures, and the Debug
configuration will save time by building the target for one architecture only.

Switching between configurations is easy: The Info tab for each action in the Scheme
editor includes a Build Configuration popup that lets you choose the configuration you
use for that action. You can make the switch and take an action in one step by holding
down the Option key while invoking the action; the Scheme editor sheet will drop down,
and you can make your changes before proceeding.

If your target depends on other targets, even in other projects, those other targets will
be built with the configuration you set at build time, so long as they have a configuration
of the same name; otherwise they will be built in their default configurations.

Adjusting Configurations
The point of a build configuration is to have alternate settings for each purpose. This is
where you get into conditional settings. As you’ve browsed the Build Settings tab, you’ve
noticed that some settings have disclosure triangles next to them (Figure 25.5), and their
values are tagged with a grayed-out “<Multiple values>.” These settings have different
values depending on which configuration is being used. Click the triangle, and the row
opens to show subrows for each available configuration. You can make your choices there.

Configurations 467

Figure 25.5 When a setting has different values for different configurations, its value is displayed
as “<Multiple values>,” and Xcode displays a disclosure triangle for the row. Opening the triangle

shows the configurations and their values.

If you hover the mouse pointer over a row for which there are no per-configuration
settings, a temporary disclosure triangle appears. Opening that row will again show the
values (identical until you change them) assigned to the setting for each configuration.

Figure 25.6 ties it all together: It shows how settings can percolate up from the defaults,
through the project and target settings, and finally to the values that will direct and
condition the build process. You can add configurations of your own, if you need to. The
Info tab of the Project editor includes the list of all the configurations available to the
project. You start out with Debug and Release. To create your new configuration, click

Figure 25.6 A complete example of the inheritance of build settings. By default, Xcode sets all
compilations to optimize for size (bottom); that setting survives into Release builds, but for the

Debug configuration, the target turns optimization off. The project sets the base SDK for all builds to
iPhoneOS, meaning whatever iOS SDK is current (middle). The developer defines a DEBUG LEVEL
macro to different values depending on the configuration (top). The result is a set of build settings

tailored to debugging (top left) and release (top right).

468 Chapter 25 The Xcode Build System

the + button; this will pop up a menu offering to duplicate one of the existing
configurations—it doesn’t make sense to offer a new, empty configuration, because the
new configuration has to include some settings. Make your selection, enter a name, and
you’re done.

Configuration Files
Configurations, too, come with disclosure triangles. Open one, and you’ll see a list of the
targets the project contains. This lets you select a configuration file that adjusts the settings
for each target.

What’s a configuration file? Here’s the rationale: Say you have several projects. Perhaps
you have policies for settings you must have for all of them, and the defaults supplied by
Xcode aren’t appropriate for you. If you just use the Project/Target editor, you will have
to make those settings by hand for each configuration in each project. If your requirements
vary by target type, it gets that much worse.

Configuration (.xcconfig) files are the solution. These are text files that contain
key-value pairs for any settings you want to enforce.

Creating a Configuration File
You start on an xcconfig file by selecting File→New→File. . . (N), and finding
“Configuration Settings File” in the Other category (OS X or iOS, it doesn’t matter) of
the New File assistant. The assistant will then put you through the routine of naming and
placing the file and assigning it to a project. It will offer to make the new file part of a
target. You don’t want your configuration file copied into your products, so make sure
none of the targets are selected.

Note
An xcconfig file has to be included in a project—not a target—before the project can
find and use it.

When you’ve done that, you find you have a text file that’s empty but for a comment
block with your name, copyright, and date at the top. What to do now? You can get one
step closer from the command line: If you give the xcodebuild command the target,
architecture, and configuration you’re interested in, along with the -showBuild-
Settings option, it will print all the environment variables that would prevail in the
course of a build:

$ xcodebuild -showBuildSettings -configuration Release
Build settings for action build and target "Mac Passer Rating":

ACTION = build
ALTERNATE_GROUP = staff
ALTERNATE_MODE = u+w,go-w,a+rX
ALTERNATE_OWNER = fritza
ALWAYS_SEARCH_USER_PATHS = NO
ALWAYS_USE_SEPARATE_HEADERMAPS = YES

Configuration Files 469

APPLE_INTERNAL_DEVELOPER_DIR = /AppleInternal/Developer
APPLE_INTERNAL_DIR = /AppleInternal
...

But there’s a problem: Not every build setting carries through into the build-process
environment. Xcode consumes GCC ENABLE CPP RTTI, for instance, when it constructs
the clang build commands it will issue. The symbol never makes it out of the build
system to be visible in this list. Still, it’s a start. Remember that you don’t have to put every
setting into a configuration file—in principle there is no defined, limited set of them—and
if you intend to have different settings by SDK or architecture, you’ll have to get
xcodebuild to generate each settings list separately, and merge them as shown in the
next section.

Once that is done, you can return to the Project editor’s Info tab and use the popups in
the “Based on Configuration File” column to select the xcconfig file.

SDK- and Architecture-Specific Settings
Cocoa development often involves targeting different SDKs and processor architectures
with different binaries. You may have ARMv7 assembly in your iOS app that isn’t
runnable on ARMv6 devices or the simulator. You may want to use the OS X 10.6 SDK
for 32-bit builds, but 10.7 for 64 bits. The xcconfig format allows for these. For
instance, the file may contain

(1) GCC_VERSION = com.apple.compilers.llvm.clang.1_0
(2) GCC_VERSION[sdk=iphonesimulator4.3][arch=*] =

com.apple.compilers.llvmgcc42
(3) GCC_VERSION[sdk=iphoneos4.3][arch=armv6] = 4.2

1. Use clang for any builds, unless a condition overrides it.
2. If the build uses the iOS Simulator 4.3 SDK, use the gcc-fronted llvm compiler.

(I broke the line for space; it should be all on one line.)
3. If the build is for iOS 4.3 on a device and for the ARMv6 architecture, use gcc 4.2.

(This insane configuration—Xcode doesn’t even come with gcc or llvmgcc, and
gcc was terrible at generating ARM code—is only an example.)

The matching to SDK and architecture is done by glob expression, which means that if
you have to express a range of matches, like “any iOS 8,” you can match on iphoneos8*,
as an override to an unconditional setting for other OSes.

Note
The graphical editor also allows you to set conditions. When you hover the mouse pointer
over a configuration in a setting, a small + button appears; clicking it will add a condition
row inside the configuration. The title of that row is a drop-down menu, in which you can
select from the available conditions. See Figure 25.7. Because Xcode arranges conditional
settings within configurations, you’ll have to duplicate conditions for each configuration.

470 Chapter 25 The Xcode Build System

Figure 25.7 The + button next to the per-configuration label of a build setting lets you select a
combination of architecture, OS, and platform to which a new conditional setting will apply.

Preprocessing xcconfig Files
As with C-family source files, you can insert the contents of one xcconfig file into
another with an #include directive. That way, you can have a base configuration file
containing settings common to all your targets and build configurations, and #include
that in files that are specific to each of them.

This enables an interesting trick. Consider the following configuration file (call it
common.xcconfig):

MY_LIBS_FOR_DEBUG = -lmystuff_debug
MY_LIBS_FOR_RELEASE = -lmystuff
OTHER_LDFLAGS = $(MY_LIBS_FOR_$(WHICH_LIB))

There may be a Debugging.xcconfig file that sets:

WHICH_LIB = DEBUG
#include "common.xcconfig"

Command-Line Tools 471

. . . and a Release.xcconfig file that contains:

WHICH_LIB = RELEASE
#include "common.xcconfig"

The effect is that OTHER LDFLAGS will be set to the value of -lMY LIBS FOR DEBUG
from Debug.xcconfig, and -lMY LIBS FOR RELEASE from Release.xcconfig. In
this simple case, it would have been easier just to set OTHER LDFLAGS yourself, but quite
sophisticated conditional configurations can be built up this way.

There are no header search paths for xcconfig files. If you #include a file, it has to
be in the same directory.

Command-Line Tools
Sometimes there is no substitute for a command-line tool. The Unix command line
presents a well-understood interface for scripting and controlling complex tools. Apple has
provided a command-line interface to the Xcode build system and toolsets through three
main commands: xcodebuild, xcrun, and xcode-select.

xcodebuild
Using xcodebuild is simple: Set the working directory to the directory containing an
.xcodeproj project package, and invoke xcodebuild, specifying the project, target,
configuration, and any build settings you wish to set. If only one .xcodeproj package is
in the directory, all of these options can be defaulted by simply entering

$ xcodebuild

That command will build the first target in the current configuration of the only
.xcodeproj package in the working directory. Apple’s intention is that xcodebuild
have the same role in a nightly build or routine-release script that make would have.

In building a target, specify one of seven actions for xcodebuild:
m build, the default, to build the specified target out of SRCROOT into SYMROOT.

This is the same as the Build (for debugging) command in the Xcode application.
m test runs the test suite for the selected scheme. You can specify a destination to

select an attached device or a simulator configuration.
m analyze has the same effect as selecting Product→Analyze. You should specify a

target, and you must specify a scheme.
m archive, to do the equivalent of the Product→Archive command in Xcode.

You must specify the workspace and scheme for the build.
m clean, to remove the product and any intermediate files from SYMROOT. This is the

same as the Clean command in the Xcode application.
m install, to build the specified target and install it at INSTALL DIR (usually
DSTROOT). The Installation Preprocessing build variable is set. There is no direct

472 Chapter 25 The Xcode Build System

equivalent to this action in Xcode because there is no way to elevate Xcode’s
privileges for setting ownership, permissions, and destination directory.

m installsrc, to copy the project directory to SRCROOT. In Project Builder, Xcode’s
ancestor, this action restricted itself to the project file package and the source files
listed in it, but it now seems to do nothing a Finder copy or command-line cp
wouldn’t do.

Note
Settings like SRCROOT can be set for a run of xcodebuild by including assignment pairs
(SETTING=value) among the parameters.

If more than one project or workspace package is in the current directory, you must
specify which you are interested in, with the respective -project or -workspace
option, followed by the name of the package. Not specifying a target is the same as if you
had passed the name of the first target to the -target option; you can also specify
-alltargets.

xcodebuild uses the configuration you specify in the Scheme editor panel for the
build action, unless you pass a -configuration flag in the command. For the
commands that require a scheme, you must name it with the -scheme option; setting a
scheme is a good idea anyway.

As in the scheme selector in the toolbar of a project window, you may specify a
-destination, such as a simulator configuration, operating system, attached device,
architecture, or platform, all provided as key-value pairs. Find the details by typing man
xcodebuild at a command line.

See man xcodebuild for full details.

xcode-select
It is perfectly legal to have more than one copy of Xcode on your computer. This most
commonly happens shortly after WWDC in June of every year: Apple announces new
versions of its operating systems, and seeds them to developers along with a prerelease
version of Xcode that comes with the not-yet-final SDKs for those systems. In the
meantime, those developers still need to develop and maintain their apps for systems in
current release. They need both the current-release Xcode and the seeding version.

Warning
If you need to do this, do not accept updates from the Mac App Store; they will remove all
previous versions of Xcode. See the “Downloading Xcode” section of Chapter 1, “Getting
Xcode,” for details.

Each version of Xcode comes with its own set of tools and SDKs—that’s why you’re
interested in having two. If you’re invoking xcodebuild or a tool like clang from the
command line, how can you be sure you’re getting the right one? For command-line
tools, it is not enough to trust in the version in /usr/bin: The tools in that directory are
not the tools themselves. If you inspect them, you’ll see that no matter how massive they

2015/4/21 10:24 Page 473 #473Command-Line Tools 473

ought to be, they are all about 14 KB in size. That’s because they are trampoline apps that
refer to the “real” ones in the Xcode bundle (or the command-line tools download
directory if you downloaded them without Xcode). So you have to make those
trampolines bounce to the versions you want.

You can do this with xcode-select. At its simplest,

$ sudo xcode-select --print-path

will tell you which Xcode is current, and

$ sudo xcode-select --switch /Applications/Xcode-6.2.app

will make a particular version of Xcode (6.2, in this case) current. xcode-select keeps
track of the Developer directory in the Xcode package, but it will let you get by with
the full path to the application, including the .app suffix.

Note
When you download an Xcode beta, you’ll find Apple has named it Xcode-beta, which is
uninformative. I prefer to rename it with the version number, as shown here.

Note
xcode-select changes Xcode for all users on your machine and affects system assets,
so you must prove administrative privileges, such as through sudo, to make the change.

xcrun
If you have different projects requiring different SDKs and toolsets, you have a problem.
Not with Xcode itself—the IDE always finds its own versions—but with scripts and
makefiles. Having the same makefile produce a different product depending on the admin’s
mood is no way to run a business.

xcrun lets you force the choice of an SDK and a toolset. If you need to find clang,
for instance, you can run

$ # Find the currently-selected version of the Swift compiler:
$ xcrun --find swiftc
/Applications/Xcode-Beta.app/Contents/.../usr/bin/swiftc
$ # What SDKs are installed?
$ xcodebuild -showsdks
OS X SDKs:
OS X 10.9 -sdk macosx10.9
OS X 10.10 -sdk macosx10.10

iOS SDKs:
iOS 8.2 -sdk iphoneos8.2

iOS Simulator SDKs:
Simulator - iOS 8.2 -sdk iphonesimulator8.2
$ # Run the Swift compiler for the 10.10 SDK:
$ xcrun --sdk macosx10.10 swiftc -print-ast SimpleCSVFile.swift

474 Chapter 25 The Xcode Build System

Custom Build Rules
Xcode’s build system can be extended to new file types and processing tools. The default
rules in the build system match file extensions to product types and process any source files
that are newer than the products. You can add a custom rule that instructs the build system
to look for files whose names match a pattern and apply a command to such files. See
Figure 25.8, top.

Figure 25.8 (top) The Build Rules tab of the Target editor lets you match up file types with the
tools that will process them for a build. When you first examine the list, it contains the default suite
of actions for the standard file types. (bottom) Selecting Editor→Add Build Rule adds a row to the

table, in which you can specify a file type and the rule (possibly your own script) to process it.

Custom Build Rules 475

Note
Another way to extend the build system is by adding a Run Script build phase. You’ve
already seen it in the “Some Test Data” section of Chapter 9, “An iOS Application: Model.”
Run Script phases allow a lot more flexibility in how to structure the action, but they
sacrifice the build rule’s applicability to every file of a given type.

Create a rule by selecting Editor→Add Build Rule while the Build Rules tab is
visible, or by clicking the + button at the top of the view. A row appears at the top of the
table, containing an editor for your new rule. The Process popup menu allows you to
select from some of the types of source files that Xcode knows about and includes a
Source files with names matching: item for you to specify source files with a glob
expression (like *.lemon).

The Using popup shows all of Xcode’s standard compilers, or you can select Custom
script: to open an editor for your own script (see Figure 25.8, bottom). Don’t worry
about the size of this field; it will grow vertically as you type.

You may use any build variable you like in the shell command. Additionally, some
variables are specific to custom rule invocations:

m INPUT FILE PATH, the full path to the source file
(/Users/xcodeuser/MyProject/grammar.lemon)

m INPUT FILE DIR, the directory containing the source file
(/Users/xcodeuser/MyProject/)

m INPUT FILE NAME, the name of the source file (grammar.lemon)
m INPUT FILE BASE, the base, unsuffixed, name of the source file (grammar)

Apple recommends that intermediate files, such as the source files output by parser
generators, be put into the directory named in the DERIVED FILE DIR variable.

Note
In this example, adding a .lemon file to the project won’t do what you’d hope. The build
rule recognizes the file as a source file, but Xcode doesn’t: Simply adding the file will put
it into a Copy Bundle Resources build phase. You’ll have to drag the file from the copy
phase to the Compile Sources phase. After that, with the product file in the
derived-sources directory, the product file will be compiled automatically.

You can’t delete or edit the defaults that are initially in the rules list, but any rule you
add will override a corresponding rule that appears lower in the list. You can set priorities
by dragging your rules higher or lower. You won’t be able to drag a rule down among the
standard rules, but that doesn’t matter: Why would you add a custom rule, then specify
that the standard one should override it?

476 Chapter 25 The Xcode Build System

Builds in the Report Navigator
You set the build system into motion by selecting an action or by issuing the Build (B)
command, or one of its relatives, from the Product menu. (Build is just an alias for
Product→Build For→Build For Running, R.)

Note
Once you’ve memorized the keyboard commands for actions like Run, Test, Profile, and
Analyze, you can hold down the Shift key to do the corresponding build without going
through with the action.

The result, if everything goes well, is a file or package embodying your product. If it
doesn’t, the now-familiar Issues navigator will list all the errors, warnings, and notes that
turned up, and you can select an issue to jump to the place in your source that raised it.

But sometimes that isn’t enough. You want to see how the build was done, right or
wrong—perhaps you suspect that a step hadn’t been taken. And, if you run into an error in
linkage or code signing, the Issues navigator is of limited help because there is no
corresponding source file. That’s where the Report navigator comes in.

The Report navigator (the eighth tab in the Navigator area) contains an item for each
major event in the life of your project, such as actions or source-control
commands—anything that could generate text logs from tools that handle the events.

Do a build, select the Report navigator, and click the top item representing the results
of the last action you took. What you’ll see is a summary of the steps that went into the
action (see Figure 25.9).

The buttons immediately below the tab bar offer the choices All/Recent and All
Messages/All Issues/Errors Only. The latter group filters the list in order of
importance: The all-messages setting lists everything that happened, good or not; the
others eliminate the entries for successful steps and for steps that would not prevent the
build from completing.

The All setting displays every step that contributed to the current state of the target.
That’s not the same as a list of what happened the last time you did a build: Your last build
did not repeat compilations for source files that had not changed; the contributions for
those files come from earlier builds. The All setting folds those older compilations into a
complete history of the current target. If you want to restrict the list to what was done in
the last build, select Recent.

A Simple Build Transcript
What follows is the build transcript for archiving Passer Rating, a simple app built from
only 14 Swift files and a handful of resources.

I ran the project through an Archive build, which processed every element of the app,
including both the armv7 and arm64 architectures. When the build was done, I selected
it in the Report navigator, selected All of the history, and All Messages. I selected

A Simple Build Transcript 477

Figure 25.9 The log for a build can be filtered to narrow it to the items you want to focus on. If you
select All Messages (not shown), you’ll get a list of every action taken in the build, including the

steps that succeeded. If you select Errors Only, the list narrows down to error messages only.

Editor→Copy Transcript for Shown Results (All, All Messages) as Text, and
pasted the results into a text editor.

The transcript is 96 KB of text in 590 lines. The commands that went into the build
were in single lines that approached 6,000 characters, involving filesystem paths of around
270. What follows is less a “transcript” of that build process, and more a “schematic.”

m Most of the build tools are run from directories deep inside the Xcode application
package itself. The intermediate paths are elided to Xcode.app.

m The intermediate and final products are built in a complex tree inside ∼/Library
/Developer/Xcode/DerivedData. Those are elided to ∼/Library
/Developer/Xcode/... until the last element or two of the paths.

m ∼/TargetDirectory appeared in the transcript as a full pathname from /Users
through the target directory within the project directory.

478 Chapter 25 The Xcode Build System

m I broke lines with backslashes. I indented lines that continued, or were contained by,
other commands.

If you want the full, undiluted experience, just do what I did, and inspect the results.
Here’s the summary:

Build target Passer Rating

Write auxiliary files

/bin/mkdir -p ˜/Library/Developer/.../Passer\ Rating.build
write-file ˜/Library/Developer/.../Passer\ Rating.hmap
write-file ˜/Library/Developer/.../Passer\ Rating-generated-files.hmap
/bin/mkdir -p ˜/Library/Developer/.../arm64
write-file ˜/Library/Developer/.../arm64/Passer\ Rating.LinkFileList
write-file ˜/Library/Developer/.../swift-overrides.hmap
/bin/mkdir -p ˜/Library/Developer/.../armv7
write-file ˜/Library/Developer/.../armv7/Passer\ Rating.LinkFileList
write-file˜/Library/Developer/.../Passer\ Rating-project-headers.hmap
...

Create product structure

/bin/mkdir -p ˜/Library/Developer/Xcode/.../Passer\ Rating.app

SymLink ˜/Library/Developer/Xcode/.../Passer\ Rating.app \

˜/Library/Developer/Xcode/.../Applications/Passer\ Rating.app
cd "˜/projects/Passer Rating"
export PATH="Xcode.app/.../usr/bin:/usr/bin:/bin:/usr/sbin:/sbin"
/bin/ln -sfh ˜/Library/Developer/Xcode/.../Passer\ Rating.app \

˜/Library/Developer/Xcode/.../Applications/Passer\ Rating.app

The build system starts by creating the root build directory and the subdirectories for the
arm64 and armv7 architectures, and initializes some scratch files. It creates the application
package (remember it’s just a directory with the .app extension), and makes an internal
link.

Each stage of the build begins with the “invocation” of a pseudo-command that shows
the intention of the block that follows, containing the actual command-line invocations
that carry out the intention. You’ll see that most of the build process works through
external tools, rather than methods within the Xcode IDE itself.

In this case the pseudo-command is SymLink. Xcode performs the link with the
standard ln command, but notice that before the build calls out to any command-line
tool, it always sets the PATH environment variable to one that looks to /usr/bin within
Xcode’s current SDK before falling back on the standard system paths.

A Simple Build Transcript 479

CompileSwiftSources normal arm64 com.apple.xcode.tools.swift.compiler
cd "˜/projects/Passer Rating"
export PATH="Xcode.app/.../usr/bin:/usr/bin:/bin:/usr/sbin:/sbin"
Xcode.app/.../swiftc -target arm64-apple-ios8.2 \
-module-name Passer_Rating \
-O -D ALWAYS_DELETE_STORE \
-sdk Xcode.app/.../SDKs/iPhoneOS8.2.sdk -g \
-module-cache-path ˜/Library/Developer/DerivedData/ModuleCache \
-I ˜/Library/Developer/.../BuildProductsPath/Release-iphoneos \
-F ˜/Library/Developer/.../BuildProductsPath/Release-iphoneos -c \
-j4 ˜/Target-Folder/AppDelegate.swift \

˜/Target-Folder/mogenerated/Game.swift \

˜/Target-Folder/PasserEditController.swift \

˜/Target-Folder/PasserListController.swift \

˜/Target-Folder/SimpleCSVFile.swift ˜/Target-Folder/StatView.swift \

˜/Target-Folder/rating.swift \

˜/Target-Folder/mogenerated/_Passer.swift \

˜/Target-Folder/PasserEditTableController.swift \

˜/Target-Folder/Extensions.swift \

˜/Target-Folder/mogenerated/Passer.swift \

˜/Target-Folder/Utilities.swift \

˜/Target-Folder/mogenerated/_Game.swift \

˜/Target-Folder/GameListController.swift \
-output-file-map \

˜/Library/Developer/.../Passer\ Rating-OutputFileMap.json \
-parseable-output -serialize-diagnostics \
-emit-dependencies -emit-module \
-emit-module-path \

˜/Library/Developer/.../Passer_Rating.swiftmodule \
-Xcc -I˜/Library/Developer/.../swift-overrides.hmap \
-Xcc -iquote -Xcc \

˜/Library/Developer/.../Passer\ Rating-generated-files.hmap \
-Xcc -I˜/Library/Developer/.../Passer\

Rating-own-target-headers.hmap \
-Xcc -I˜/Library/Developer/.../Passer\

Rating-all-target-headers.hmap \
-Xcc -iquote \

-Xcc ˜/Library/Developer/.../Passer\
Rating-project-headers.hmap \

-Xcc -I˜/Library/Developer/.../include \
-Xcc -IXcode.app/.../usr/include \
-Xcc -I˜/Library/Developer/.../DerivedSources/arm64 \
-Xcc -I˜/Library/Developer/.../DerivedSources \
-emit-objc-header -emit-objc-header-path \

˜/Library/Developer/.../Passer_Rating-Swift.h

480 Chapter 25 The Xcode Build System

How does Swift know about all the Swift files in the project without your having to
cross-reference them in your code? Simple: It compiles them all at once, from an
invocation that passes every one of them to the compiler. In the course of the build,
swiftc, the Swift compiler, emits hmap files; the extension stands for “header map,”
recalling its original purpose of recording dependencies within and across source files.

The last two switches in the swiftc invocation ask for an Objective-C header,
PasserRatingSwifth. This is an essential ingredient in making Swift code accessible
from Objective-C: You get a -Swift.h header file for each of your modules for free; all
your ObjC code has to do is to #include it, and you can carry on. Here’s a sample:

SWIFT_CLASS("_TtC13Passer_Rating8StatView")
@interface StatView : UIView
@property (nonatomic, copy) NSString * name;
@property (nonatomic) NSInteger value;
@property (nonatomic) double fontSize;
- (instancetype)initWithFrame:(CGRect)frame OBJC_DESIGNATED_INITIALIZER;
- (instancetype)initWithCoder:(NSCoder *)aDecoder \

OBJC_DESIGNATED_INITIALIZER;
- (void)layoutSubviews;
- (CGSize)intrinsicContentSize;
@end

The header redeclares every construct in your Swift modules that you mark as @objc and
public. If some of your methods or data structures don’t translate to the Objective-C
model, they can’t be bridged.

Notice that the @interface is prefaced with a declaration of the “mangled” class
name, TtC13Passer Rating8StatView. Swift’s source-code symbols are heavily
overloaded between modules, generic types, and function signatures; and then they have to
be pushed through linkers and other tools that are language-agnostic and need names that
make the distinctions explicit. Like C++, Swift reduces all the qualifications to a string
that encompasses the name and all its qualifiers. You can recover the human-readable name
by passing it to the swift-demangle tool (available only by way of xcrun):

$ xcrun swift-demangle TtC13Passer Rating8StatView
TtC13Passer Rating8StatView ---> Passer_Rating.StatView

The next step is to do it all again:

CompileSwiftSources normal armv7 com.apple.xcode.tools.swift.compiler
cd "˜/projects/Passer Rating"
export PATH="Xcode.app/.../usr/bin:/usr/bin:/bin:/usr/sbin:/sbin"
Xcode.app/.../swiftc -target armv7-apple-ios8.2 \
-module-name Passer_Rating

...

This seems gratuitous, until you notice the difference in the pseudo-command: The first
invocation called for compiling the source down to instructions for the arm64 processor;
this time, the target is armv7. Every target architecture needs a build of its own—one of

A Simple Build Transcript 481

the ways the Debug configuration speeds its builds is that it limits itself to the single
architecture the product is about to run on.

Ditto ˜/Library/Developer/.../DerivedSources/Passer_Rating-Swift.h \

˜/Library/Developer/.../arm64/Passer_Rating-Swift.h
cd "˜/projects/Passer Rating"
export PATH="Xcode.app/.../usr/bin:/usr/bin:/bin:/usr/sbin:/sbin"
/usr/bin/ditto \

-rsrc ˜/Library/Developer/.../arm64/Passer_Rating-Swift.h \

˜/Library/Developer/.../DerivedSources/Passer_Rating-Swift.h

Ditto ˜/Library/Developer/.../DerivedSources/Passer_Rating-Swift.h \

˜/Library/Developer/.../armv7/Passer_Rating-Swift.h
...

The newly minted bridging headers are moved to more convenient directories. The
ditto command is similar to the cp copy command, with options to exclude items like
version-control directories, and to handle extended attributes compatibly.

DataModelVersionCompile \

˜/Library/Developer/.../Passer\ Rating.app/Passer_Rating.momd \
Passer\ Rating/Passer_Rating.xcdatamodeld

cd "˜/projects/Passer Rating"
export PATH="Xcode.app/.../usr/bin:/usr/bin:/bin:/usr/sbin:/sbin"
Xcode.app/Contents/Developer/usr/bin/momc \
-XD_MOMC_SDKROOT=Xcode.app/.../SDKs/iPhoneOS8.2.sdk \
-MOMC_PLATFORMS iphoneos ˜/Target-Folder/Passer_Rating.xcdatamodeld \

˜/Library/Developer/.../Passer\ Rating.app/Passer_Rating.momd

The .mom file Passer Rating uses at run time is compiled from your data-model design.

Ld ˜/Library/Developer/.../Passer\ Rating normal armv7
cd "˜/projects/Passer Rating"
export IPHONEOS_DEPLOYMENT_TARGET=8.2
export PATH="Xcode.app/.../usr/bin:/usr/bin:/bin:/usr/sbin:/sbin"
Xcode.app/.../clang -arch armv7 \
-isysroot Xcode.app/.../SDKs/iPhoneOS8.2.sdk
-L˜/Library/Developer/.../BuildProductsPath/Release-iphoneos \
-F˜/Library/Developer/.../BuildProductsPath/Release-iphoneos \
-filelist ˜/Library/Developer/...Passer\ Rating.LinkFileList \
-Xlinker -rpath -Xlinker @executable_path/Frameworks -dead_strip \
-LXcode.app/.../usr/lib/swift/iphoneos -Xlinker -add_ast_path \
-Xlinker ˜/Library/Developer/.../armv7/Passer_Rating.swiftmodule \
-miphoneos-version-min=8.2 -framework MapKit \
-framework NetworkExtension \
-Xlinker -dependency_info \
-Xlinker \

˜/Library/Developer/.../Passer\ Rating_dependency_info.dat \
-o ˜/Library/Developer/.../Passer\ Rating

482 Chapter 25 The Xcode Build System

Ld ˜/Library/Developer/.../Passer\ Rating normal arm64
cd "˜/projects/Passer Rating"
export IPHONEOS_DEPLOYMENT_TARGET=8.2
export PATH="Xcode.app/.../usr/bin:/usr/bin:/bin:/usr/sbin:/sbin"
Xcode.app/.../clang -arch arm64 \
-isysroot Xcode.app/.../SDKs/iPhoneOS8.2.sdk

...

Here’s where the linker gets run to wire up (almost) all the unsatisfied references among
your modules and the system frameworks. Note that this, too, has to be done once per
target architecture.

The linker is the clang C-language compiler. By the time it reaches linkage, your
code has lost all of its Swift-like attributes—it’s just binary indexed by mangled symbols.

Ditto ˜/Library/Developer/.../Passer_Rating.swiftmodule/arm.swiftmodule \

˜/Library/Developer/.../Passer_Rating.swiftmodule
...

Ditto ˜/Library/Developer/...Passer_Rating.swiftmodule/arm.swiftdoc \

˜/Library/Developer/.../Passer_Rating.swiftdoc
...

The interfaces for a Swift module go into .swiftmodule and .swiftdoc files in a
.swiftmodule directory. ditto assembles them; there is one package per architecture.

CreateUniversalBinary \

˜/Library/Developer/.../Passer\ Rating.app/Passer\ Rating \

normal armv7\ arm64
cd "˜/projects/Passer Rating"
export PATH="Xcode.app/.../usr/bin:/usr/bin:/bin:/usr/sbin:/sbin"
Xcode.app/.../lipo \
-create ˜/Library/Developer/.../Passer\ Rating \

˜/Library/Developer/.../Passer\ Rating \

-output ˜/Library/Developer/.../Passer\ Rating.app/Passer\ Rating

The lipo tool was created when “universal”—multiple-architecture—binaries were called
“fat” binaries. It takes libraries and executables that are identical but for their architectures,
and archives them into single files from which the operating system can select the needed
version. In this case, the universal carries the armv7 and arm64 binaries.

PhaseScriptExecution Generate\ Test\ Data \

˜/Library/Developer/.../Script-...990D.sh
cd "˜/projects/Passer Rating"
/bin/sh -c \"˜/Library/Developer/.../Script-...990D.sh\"

CpResource Passer\ Rating/sample-data.csv \

˜/Library/Developer/.../Passer\ Rating.app/sample-data.csv

A Simple Build Transcript 483

cd "˜/projects/Passer Rating"
export PATH="Xcode.app/.../usr/bin:/usr/bin:/bin:/usr/sbin:/sbin"
builtin-copy -exclude .DS_Store -exclude CVS -exclude .svn \

-exclude .git -exclude .hg -strip-debug-symbols \
-strip-tool Xcode.app/.../strip -resolve-src-symlinks \

˜/Target-Folder/sample-data.csv \

˜/Library/Developer/.../Passer\ Rating.app

These pseudo-commands execute the “Generate Test Data” script and copy the resulting
sample-data.csv file into the application package. It’s only one text file, but the
builtin-copy “tool” takes care to strip out extraneous files, remove unnecessary symbol
information, and ensure that symbolic links stay clean.

CompileStoryboard Passer\ Rating/Base.lproj/Main.storyboard
cd "˜/projects/Passer Rating"
export PATH="Xcode.app/.../usr/bin:/usr/bin:/bin:/usr/sbin:/sbin"
export XCODE_DEVELOPER_USR_PATH=Xcode.app/Contents/Developer/usr/bin/..
Xcode.app/Contents/Developer/usr/bin/ibtool --target-device iphone \

--errors --warnings --notices --module Passer_Rating \

--minimum-deployment-target 8.2 --output-partial-info-plist \

˜/Library/Developer/Xcode/.../Main-SBPartialInfo.plist \

--auto-activate-custom-fonts --output-format human-readable-text \

--compilation-directory \

˜/Library/Developer/Xcode/.../Passer\ Rating.app/Base.lproj \

˜/Target-Folder/Base.lproj/Main.storyboard

/* com.apple.ibtool.document.warnings */

˜/Target-Folder/Base.lproj/Main.storyboard:aD1-LC-OKV:
warning: Constraint referencing items turned off \
in current configuration. \
Turn off this constraint in the current configuration.

Storyboards get a compilation step, too. This step generated a warning, prefaced by the
pathname of the source file and the object ID of the offending element. (If the source
were textual code, this would be a line number.) The Xcode IDE turns these into a yellow
badge, a link to the location of the problem, and the message.

CompileAssetCatalog ˜/Library/Developer/Xcode/.../Passer\ Rating.app \

Passer\ Rating/Images.xcassets
cd "˜/projects/Passer Rating"
export PATH="Xcode.app/.../usr/bin:/usr/bin:/bin:/usr/sbin:/sbin"
Xcode.app/Contents/Developer/usr/bin/actool \
--output-format human-readable-text --notices --warnings \
--export-dependency-info \

˜/Library/Developer/.../assetcatalog_dependencies.txt \
--output-partial-info-plist \

˜/Library/Developer/.../assetcatalog_generated_info.plist \
--app-icon AppIcon --launch-image LaunchImage \

484 Chapter 25 The Xcode Build System

--platform iphoneos --minimum-deployment-target 8.2 \
--target-device iphone --compress-pngs \
--compile ˜/Library/Developer/.../Passer\ Rating.app \

˜/Target-Folder/Images.xcassets

2014-11-22 20:51:13.416 IBCocoaTouchImageCatalogTool[21763:1375516] \
CoreUI(DEBUG): CSIGenerator using LZVN Compression coreui ...

/* com.apple.actool.document.notices */

˜/Target-Folder/Images.xcassets: \
./LaunchImage.launchimage/[iphone][736h][3x][portrait]...: \
notice: This launch image only applies to iOS 6.x and prior \

but the minimum deployment is 7.0 or later.
/* com.apple.actool.compilation-results */

˜/Library/Developer/.../Passer Rating.app/AppIcon29x29@2x.png

˜/Library/Developer/.../Passer Rating.app/AppIcon29x29@3x.png
...

˜/Library/Developer/.../Passer Rating.app/LaunchImage-800-667h@2x.png
...

˜/Library/Developer/.../Passer Rating.app/Assets.car

Asset catalogs are picked apart and rearranged for efficient access at run time. This includes
processing PNG files into a format that is perfectly legal, but not recognized by some
graphics applications. If you poke around in your iOS .app packages, don’t be alarmed if
you can’t examine the PNG files.

The catalog compiler issues a couple of notices about images being present that won’t
be used with an app that will never run on iOS 6 or earlier; and a progress list of the assets
it processed. The Xcode IDE doesn’t pass those on for display, but you can see them in the
full transcript, or by expanding the step in the log as displayed by the Report navigator.

ProcessInfoPlistFile \

˜/Library/Developer/.../Passer\ Rating.app/Info.plist \
Passer\ Rating/Info.plist
cd "˜/projects/Passer Rating"
export PATH="Xcode.app/.../usr/bin:/usr/bin:/bin:/usr/sbin:/sbin"
builtin-infoPlistUtility ˜/Target-Folder/Info.plist \

-genpkginfo \

˜/Library/Developer/.../Passer\ Rating.app/PkgInfo \

-expandbuildsettings -format binary -platform iphoneos \

-additionalcontentfile \

˜/Library/Developer/.../Main-SBPartialInfo.plist \

-additionalcontentfile \

˜/Library/Developer/.../assetcatalog_generated_info.plist \

-o ˜/Library/Developer/.../Passer Rating.app/Info.plist

I’ve been telling you all along that the Info.plist in your project window is only a
precursor for the one that is sealed into your finished app. Here’s where the transformation
happens. The process includes information provided by the storyboard

A Simple Build Transcript 485

(Main-SBPartialInfo.plist) and the asset catalog (assetcatalog-
generated infoplist).

GenerateDSYMFile ˜/Library/Developer/.../Passer\ Rating.app.dSYM \

˜/Library/Developer/.../Passer\ Rating.app/Passer\ Rating
...
Touch ˜/Library/Developer/.../Passer\ Rating.app
...
Stripping ˜/Library/Developer/.../Passer\ Rating.app/Passer\ Rating
...
SetOwnerAndGroup fritza:staff ˜/Library/Developer/.../Passer\ Rating.app
...
SetMode u+w,go-w,a+rX ˜/Library/Developer/.../Passer\ Rating.app
...

The excitement is dying down. Xcode generates a .dSYM package as an external
repository for the app’s debugging information; touches the app to ensure it is newer than
any of its components, which keeps modification-date dependencies straight; removes the
last debugging information from the app; and sets the filesystem permissions.

ProcessProductPackaging \

˜/Library/MobileDevice/Provisioning\ Profiles/...0bca.mobileprovision \

˜/Library/.../Passer\ Rating.app/embedded.mobileprovision
cd "˜/projects/Passer Rating"
export PATH="Xcode.app/.../usr/bin:/usr/bin:/bin:/usr/sbin:/sbin"
builtin-productPackagingUtility \

˜/Library/MobileDevice/Provisioning\ Profiles/...0bca.mobileprovision \
-o ˜/Library/.../Passer\ Rating.app/embedded.mobileprovision

Xcode finds the distribution profile for the application, and binds it into the .app package.

CopySwiftLibs ˜/Library/Developer/Xcode/.../Passer\ Rating.app
cd "˜/projects/Passer Rating"
export ACTION=build
export AD_HOC_CODE_SIGNING_ALLOWED=NO
export ALTERNATE_GROUP=staff

...
export arch=arm64
export variant=normal
Xcode.app/.../swift-stdlib-tool --verbose --copy

Copying libswiftCore.dylib from \
Xcode.app/.../usr/lib/swift/iphoneos to ...Passer Rating.app/Frameworks

Copying libswiftCoreGraphics.dylib from \
Xcode.app/.../usr/lib/swift/iphoneos to ...Passer Rating.app/Frameworks

Copying libswiftFoundation.dylib from \
Xcode.app/.../usr/lib/swift/iphoneos to ...Passer Rating.app/Frameworks

...

486 Chapter 25 The Xcode Build System

iOS 7 and OS X 10.9 have no built-in support for Swift-generated code—they don’t have
the runtime libraries the compiled binaries rely on. The solution is to embed the runtimes
in the application itself.

The CopySwiftLibs pseudo-command goes on:

Codesigning libswiftCore.dylib at .../Passer Rating.app/Frameworks
/usr/bin/codesign '--force' '--sign' '376...780' '--verbose' \

'.../Passer Rating.app/Frameworks/libswiftCore.dylib'
Codesigning libswiftCoreGraphics.dylib at .../Passer Rating.app/Frameworks
/usr/bin/codesign '--force' '--sign' '376...780' '--verbose' \

'.../Passer Rating.app/Frameworks/libswiftCoreGraphics.dylib'
...

... one by one, it applies the distribution signing identity to all the copied runtime libraries.

ProcessProductPackaging Passer\ Rating/Passer\ Rating.entitlements \
.../Passer\ Rating.app.xcent

cd "˜/projects/Passer Rating"
export PATH="Xcode.app/.../usr/bin:/usr/bin:/bin:/usr/sbin:/sbin"
builtin-productPackagingUtility \

˜/Target-Folder/Passer\ Rating.entitlements \
-entitlements -format xml -o .../Passer\ Rating.app.xcent

CodeSign ˜/Library/Developer/.../Passer\ Rating.app
cd "˜/projects/Passer Rating"
export CODESIGN_ALLOCATE=Xcode.app/.../codesign_allocate
export PATH="Xcode.app/.../usr/bin:/usr/bin:/bin:/usr/sbin:/sbin"
/usr/bin/codesign --force --sign 37...80 \

--entitlements ˜/Library/Developer/.../Passer\ Rating.app.xcent \

˜/Library/Developer/.../Passer\ Rating.app

Validate ˜/Library/Developer/.../Passer\ Rating.app
cd "˜/projects/Passer Rating"
export PATH="Xcode.app/.../usr/bin:/usr/bin:/bin:/usr/sbin:/sbin"
export PRODUCT_TYPE=com.apple.product-type.application
Xcode.app/.../usr/bin/Validation \

˜/Library/Developer/.../Passer\ Rating.app

Touch ˜/Library/Developer/.../Passer\ Rating.app.dSYM
cd "˜/projects/Passer Rating"
export PATH="Xcode.app/.../usr/bin:/usr/bin:/bin:/usr/sbin:/sbin"
/usr/bin/touch -c ˜/Library/Developer/.../Passer\ Rating.app.dSYM

And now the process wraps up. The app claims privileges from the system, if only the
privilege of allowing itself to run under the supervision of a debugger. The Process-
ProductPackaging pseudo-command generates the final .entitlements file and
processes it into the application package.

Summary 487

The signing identity gets applied to the .app package as a whole, then the product is
examined for consistency. (This is not the same as the validation you can request before
submitting an application to the App Store.) Last, the .dSYM debugging-symbol package is
touched, bringing its modification date current, so it too will be immune to rebuilds
until some file up the chain is changed.

Note
The .dSYM package is crucial, even if this is a distribution article, and not for debugging.
Both the compressed binary (.ipa) and the .dSYM go into the archive (.xcarchive from
which you extract the final product. The .dSYM is matched exactly to that build: It carries
a unique ID that is duplicated in the product; Spotlight indexes the ID so the system can
match any binary or crash report to its debugging information. Crash reports will have
none of your application’s symbols—they’ve been stripped. If Xcode or other tools can find
the corresponding symbol directory, it can “symbolicate” the reports into intelligible stack
traces. Always preserve the archive packages of anything you distribute.

Summary
This was an important chapter if you want to know how Xcode really works. It explains
how the build system built into Xcode itself takes the place of traditional makefiles and
the effort needed to keep them current. It showed how a build is divided into phases that
“contain” files to be worked on. Settings for compilers and other tools are an essential part
of configuring a build, and you saw how Xcode organizes them by project, target, and
configuration.

You saw how you can use the build system from a script, so your builds can be managed
without having to trigger them manually from the IDE.

Finally, you examined the Report navigator, how to get a transcript of the commands
that underlie the build process, and how to analyze a transcript.

This page intentionally left blank

26
Instruments

Instruments is a framework for software-measurement tools called. . . instruments.
(Capital-I Instruments is the application, small-i instruments are components of the
Instruments application.) The analogy is to a multi-track recording deck. Instruments
records activity into tracks (one per instrument), building the data on a timeline like audio
on a tape.

You’ve seen Instruments before, in Chapter 16, “Measurement and Analysis,” where it
helped you track down some memory and performance bugs in the Passer Rating iPhone
app. It deserves a closer look. You’ll learn how to navigate the Instruments trace window,
and how to choose instruments to fit your needs.

What Instruments Is
The focus on a timeline makes Instruments unique. Historically, profiling and debugging
tools did one thing at a time. You had Shark (available with Xcode 2 and 3), which
sampled a running application to collect aggregate statistics of where it spent its time.
Shark had several modes for taking different statistics; if you wanted another mode, you
ran Shark again. Shark’s profile data was aggregated over the whole session; if you wanted
to profile a particular piece of your application, there was a hot key for you to turn
profiling on and off.

Separately, there was a profiling application called MallocDebug, which collected
cumulative, statistical call trees for calls to malloc and free. The results were cumulative
across a profiling session, so you’d know how the biggest, or most, allocations happened,
but not when.

If you needed the distribution and history of object allocations, by class, there was an
Object Alloc application.

And if you wanted to know how the application was spending its time while it was
making those allocations, you quit MallocDebug or Object Alloc and ran the target app
again under Shark, because the other apps did only one thing.

Instruments is different. It is comprehensive. There are instruments for most ways you’d
want to analyze your code, and Instruments runs them all at the same time. The results are

490 Chapter 26 Instruments

laid out by time, in parallel. Did pressing a Compute button result in Core Data fetches?
Or had the fetches already been done earlier? Did other disk activity eat up bandwidth? In
the application? Elsewhere in the system? Is the application leaking file descriptors, and if
so, when, and why? If you’re handing data off to another process, how does the recipient’s
memory usage change in response to the handoff, and how does it relate to the use of file
descriptors in both the recipient and master applications?

Instruments can answer these questions. You can relate file descriptors to disk activity,
and disk activity to Core Data events, with stack traces for every single one of these,
because Instruments captures the data on a timeline, all in parallel, event by event. And,
you can target different instruments on different applications (or even the system as a
whole) at the same time.

For events—like individual allocations or system calls—Instruments keeps a complete
record each and every time. For time profiling, Instruments does statistical sampling, but it
keeps each sample. That means that even if you want an aggregate, you get to pick the
aggregate.

Say the list of passers in Passer Rating stutters when you scroll it. With Shark, you’d
have to start Passer Rating, get to where you’d be scrolling as quickly as you could, do the
scrolling, and then kill it at once so your statistical sample wouldn’t be polluted by
whatever followed the part you were interested in. And you’d be too late, because the
CPU time soaked up by initialization would swamp the little spikes incurred by reloading
the passer table cells.

Note
Shark mitigated the problem by allowing you to set a delay before it started sampling, and
a duration for the sample.

In Instruments, by contrast, you don’t have to worry about one part of the program
polluting your statistics. You can select just the part of the timeline that has to do with
scrolling, and you can see what your app was doing just then.

Note
Most of the power of Instruments lies in the analysis tools it provides after a recording is
made, but don’t ignore the advantage it provides in showing program state dynamically: If
you can’t see when a memory total or file I/O begins and settles down (for instance), you
won’t know when to stop the recording for analysis in the first place.

Running Instruments
In the “Measurement and Analysis” chapter (16), you started Instruments from Xcode by
issuing Product→Profile (I), or selecting the Profile variant of the large Action
button at the left end of the Xcode toolbar. You could set the trace template you wanted
in the Profile panel of the Scheme editor; there’s even a shortcut: Hold down the Option
key while making any other gesture that starts profiling, and you’ll be offered the Profile

Running Instruments 491

panel of the Scheme editor before you go on. With profiling integrated into the Xcode
workflow, this will be the most common way you’ll use Instruments.

For specialized uses, you’ll want to go beyond the few templates the Profile action
gives you. Instruments can run and attach to applications independently, and you can set
up any instruments you like for the trace.

As delivered, Instruments does not appear as an application anywhere in the Finder. As
with other developer tools, it is kept inside the Xcode.app bundle. The Profile build
action launches Instruments and points it at your target application. If you want to use
Instruments with a different target (another app, or a running process), select Xcode
→Open Developer Tool→Instruments. Instruments will launch like any other
application. Its icon will appear in the Dock, and I advise you to keep it there by
right-clicking its icon and selecting Options→Keep in Dock.

When you start Instruments, it creates a document (called a trace document) and displays
a sheet offering you a choice of templates populated with instruments for common tasks
(see Figure 26.1). A list of templates Apple provides can be found in “The Templates” later
in this chapter.

At the top of the New Trace assistant is a hierarchical menu, Choose a profiling
template for:. The first segment lets you select a device—your computer; an attached
iOS device; an iOS Simulator type; or, if you saved targeting information in a custom
template, the option simply to go along with the saved target. You’ll be able to change the
target once the trace document is open.

Figure 26.1 When you create a new trace document in Instruments, it shows you an empty
document and a sheet for choosing among templates prepopulated with instruments for common

tasks.

492 Chapter 26 Instruments

The Trace Document Window
The initial form of a trace document window is simple: A toolbar at the top, and a stack of
instruments in the view that dominates the window. Once you’ve recorded data into the
document, the window becomes much richer. Let’s go through Figure 26.2 and identify
the components.

Toolbar
The toolbar falls into three parts for five major functions. The controls at left 1 control
recording and the execution of the target applications. There is a Record/Drive &
Record/Stop button to start and stop data collection, and a Pause button for suspending
and resuming data collection.

Note
When you start recording, you will often be asked for an administrator’s password. The
kind of deep monitoring many instruments do is a security breach, and the system makes
you show you are authorized to do it.

The Target chooser designates the device and the process all instruments in the
document will target, unless you specify a different target for individual instruments. The
choices are

Figure 26.2 A typical Instruments window, once data has been recorded. The Extended Detail
area (at right) has also been exposed. I discuss the numbered parts in the text.

The Trace Document Window 493

m The first segment of the menu allows you to choose a device, either your computer
or a mobile device attached to it. The second segment will fill with the eligible
targets on that device.

m All Processes—Data will be collected from all of the processes, user and system, on
the target device. For instance, the Core Data instruments (Mac only) can measure
the Core Data activity of all processes. Not every instrument can span processes; if
your document contains no instruments that can sample system-wide, this option
will be disabled.

m Choose Target. . . —A sheet will drop, presenting a browser for selecting a target
binary. This includes applications, dynamic libraries, extensions, and processes that
may be started by launchd daemons.

m Edit target name. . . —Drops the Choose Target... sheet, focused on the
executable you’ve already set for the trace document. From here, you can set the
arguments and environment variables to pass to the chosen target when it is
launched.

m Recent Executables—A section for the applications and other processes you’ve
most recently examined.

m App Extensions—A section for extension plugins that have registered themselves
with the system.

m Running Applications—This section is what it sounds like. Data will be collected
from an application that is already running; select it from the submenu. Some
instruments require that their targets be launched from Instruments and cannot
attach to running processes. If you use only non-attaching instruments, this section
will be disabled.

m System Processes—The same, for system daemons currently running in the
background. What you see at first is a selection of the currently most-active
processes. If you select the More. . . item, the menu will extend to all running
system processes.

The Target popup is not selectable while Instruments is recording.
While recording is in progress, the clock 2 displays the total time period recorded in

the document. Otherwise, it shows the position of the triangular “playback head” slider in
the time scale at the top of the Track area (Figure 26.3). Trace documents can store more

Figure 26.3 The left half of a trace document’s toolbar displays a clock and controls for selecting
and running the main target to be traced. The clock view shows the duration while recording is in

process, and the time marked by the triangular “playback head” when it is not. It also shows the run
being displayed if there is more than one.

494 Chapter 26 Instruments

than one run of a trace; click the disclosure button at the left end of a track to see all
previous runs for comparison. The clock shows the currently selected run.

You can move between runs without expanding a track through the Previous Run
(Quote) and Next Run (Apostrophe) commands in the View menu.

The right section of the toolbar provides convenient controls for display.
Library 3 , with a + icon, shows and hides a palette of available instruments, which

you can drag into the Track area.
The Strategy control 4 selects among perspectives on the Trace area.

m It’s easiest to start with the middle segment, Instruments, because the Time display
is the most intuitive: Each instrument has its own track, showing the
instant-by-instant statistics it has collected for the whole process.

m CPU, the first segment, splits the instrument tracks to show the collected data
identified with the processor core responsible for the event.

m Threads also splits instrument data, but by the thread subprocess responsible for the
event; threads are not necessarily confined to a single core over its lifetime, and often
threads are created for single purposes, allowing you to analyze the events roughly by
purpose.

Note
The CPU and Threads perspectives aren’t available for every instrument.

The Detail selector 5 is like the control in the Xcode toolbar that discloses the
specialized areas in a project window. The first segment shows and hides the Detail area
7 , which presents the data behind a trace raw, or analyzed by various criteria. The second
segment exposes the Extended Detail area, which is used for configuring an instrument,
filtering its data, and displaying a stack trace for events and statistical aggregates.

Track Area
The Track area 6 is the focus of the document window and the only component you see
when a document is first opened. This is the area you drag new instruments into. Apple
describes the Track area as being divided between the Instruments Pane on the left, and the
Track pane on the right. For clarity, I’m going to avoid yet another sense of the word
“instruments,” and treat track rows as single units, with a name block on the left and a
trace on the right.

Most instruments will display subsets of the data they collect if you select a time span
within the recording. To do so, drag the playback head across the span you’re interested in.
The span will be highlighted, and the Detail area 7 will be restricted to data collected in
the span. Click anywhere in the Track area to clear the selection.

Sometimes, you’re interested in the shape of your app’s performance throughout its run;
sometimes you need to see the sequence of events during a single interaction with the app;
and you may even be interested in processor events recorded over the course of a
millisecond. Different tasks need different scales.

The Trace Document Window 495

The scale of the Track area can be controlled by what looks like a slider below the
configuration blocks. In fact, it behaves like a joystick: The track compresses while you
hold it to the left, and expands while you hold it to the right.

You can also change scale by dragging in the Track area while holding a modifier key
down: Shift-dragging will zoom in, spreading the interval you select to the breadth of the
window. Control-dragging zooms out. The location or direction of the drag doesn’t
matter; the time interval you sweep out will be the size of the currently displayed interval
within the new, expanded interval. The shorter your drag, the further the track will zoom
out.

Selecting View→Snap Track to Fit (

<

Z) will scale the Track area so the entire
recording is given the full breadth of the window.

You can also scale a track vertically, by selecting it and using Decrease Deck Size
(–) or Increase Deck Size (+) in the View menu.

The name block shows the instrument’s name and icon. To the left is a disclosure
triangle so you can see the instrument’s tracks for previous runs in the document. To
change the vertical order of instrument tracks, drag them by the name block. You can’t
drag an instrument out of the document; if you want to delete a track, click the name
block to select the track, and press Delete.

The trace to the right of the name block displays a timeline of the data the instrument
collected. Most instruments have many options that determine what data they collect, and
how. Before you run your first trace (if you’re given the chance—Instruments launches and
traces immediately if it’s started from Xcode), examine each instrument’s configuration in
the Settings inspector (first tab in the Extended Detail area) to see that you’ll get what you
need. You can change a configuration at any time between runs.

Detail Area
The Detail area 7 appears when you’ve run a trace. Click the first segment of the
toolbar’s Detail selector to display it.

When you select an instrument in the Track view, the Detail area shows the collected
data in tabular form. What’s in the table varies among instruments, and most instruments
have more than one kind of table. The first segment of the Detail jump bar 8 controls
which table is displayed. As you drill down into the data for a detail row, elements are
added to the jump bar; click higher-level elements to return to the corresponding views.
The Display Settings inspector (second tab in the Extended Detail area) provides filters to
further refine the currently displayed table.

Extended Detail Area
The Extended Detail area 9 consists of three tabs that roughly correspond to your
progress in analyzing your application.

m Record Settings configures an instrument in preparation for a recording run.
m Display Settings offers filters that refine the data displayed in the Detail area.
m Extended Detail shows some kind of expansion on a datum in the Detail table.

496 Chapter 26 Instruments

Record Settings
The Record Settings tab configures the instrument you have selected in the Trace area.
Each instrument has its own configuration options, but some are common to most of
them.

In the Track Display section, there are two popups, for Style and Type.
The usual Style menu selects among graphing styles for the numeric data the

instrument records. These may include
m Line Graph. The track is displayed as a colored line connecting each datum in the

series of collected data. You can choose the color in the list of the available series.
m Filled Line Graph is the same as Line, but the area under the line is colored.
m Point Graph. Each datum is displayed as a discrete symbol in the track. You can

choose the symbols in the list of available series in the inspector.
m Block Graph is a bar graph, showing each datum as a colored rectangle. In

instruments that record events, the block will be as wide as the time to the next
event.

m Peak Graph shows the data collected by an instrument that records events (like the
Core Data instruments) as a vertical line at each event. Every time something
happens, the graph shows a blip.

m Stack Libraries draws a bar for each event the instrument measures. The height of
the bar depends on the depth of the call stack at the event; the bars are divided into
colored segments, with a different color for each library that owns the caller at that
level.

m Some instruments have graph styles of their own. The Time Profiler instrument has
three custom styles:
m CPU Usage is the classic format: An area graph shows the moment-to-moment

time demands the application makes on all processor cores.
m Deepest Stack Libraries shows a bar chart in which the height of the bars

represents the depth of the call stack at each moment. The bars are color-coded to
identify the libraries responsible for each call in the stack. The color code is the
same as the one used in the icons in the Extended Detail area.

m User and System Libraries is the same bar chart, but there are only two colors
showing how much of the stack passed through system libraries.

m The Allocations instrument also has three custom styles:
m Current Bytes is an area graph showing how much memory is in use.
m Allocation Density shows how many allocations were made in each increment

in time. When your app makes a flurry of allocations, it shows up as a peak in the
graph.

m Active Allocation Distribution filters the allocation-density graph to show
where the allocations were made that were still alive at the end of the trace.

The Trace Document Window 497

Note
Most instruments record events, not quantities that vary over time. In fact, the data
displayed may not even be a continuous variable, but may be a mere tag, like the ID of a
thread or a file descriptor. The Peak Graph style is the most suitable style for event
recordings. Such displays are still useful, as they give you a landmark for examining the
matching data in the other tracks. Stack Libraries would also be good, but it takes a very
sharp eye to discern patterns in the call stacks of infrequent events.

The Type menu offers two choices for instruments that can record more than one data
series. Overlay displays all series on a single graph. The displayed data will probably
overlap, but in point and line displays this probably doesn’t matter, and filled displays are
translucent, so the two series don’t obscure each other. Stacked displays each series in
separate strips, one above the other.

You can change the Track Display settings even after the instrument has collected its
data.

For instruments that can collect more than one series, a Select statistics to list section
shows a checkbox for each available series, with a popup to select the shape of points for a
Point Graph, plus a color well.

Display Settings
The Display Settings tab filters the table’s contents after you’ve collected data. The options
vary by instrument and table type, but most instruments collect call trees, and will have a
“Call Tree” section among the options. The call-tree display options are

m Separate by Category—In the Allocations instrument, the normal call tree
displays all allocations of any kind. This is useful if you need to know how much
memory was allocated in any one function, regardless of what the allocations were
for. If you select Separate by Category, the call tree list is sorted by the type of
the allocation. You can expand the row for the symbol name NSImage and see code
paths that led to the creation of OS X image objects.

m Separate by Thread—Call trees are normally merged with no regard for which
thread the calls occurred in. Separating the trees by thread will help you weed out
calls in threads you aren’t interested in.

m Invert Call Tree—The default (top-down) presentation of call trees starts at the
runtime start or main function, branching out through the successive calls down
to the leaf functions that are the events the instrument records. Checking this box
inverts the trees, so they are bottom-up: You start at the function (usually
objc msgSend in Objective-C applications) where the event occurred, and branch
out to all the successive callers.

m Hide Missing Symbols—Checking this box hides functions that don’t have
debugging symbols associated with them. Most of the libraries in the system
frameworks include symbols for their functions, and those can at least suggest what’s
going on. (And, of course, your code has symbols, because you’ve made sure your

498 Chapter 26 Instruments

“Debug Information Format” build setting is set to “DWARF with dSYM File”—it
won’t inflate the size of your code.)

m Hide System Libraries—This skips over functions in system libraries. Reading the
names of the library calls may help you get an idea of what is going on, but if you
are looking for code you can do something about, you don’t want to see them.
Using this option along with Invert Call Tree will often tell a very explicit story
about what your code is doing. objc msgSend is so ubiquitous in Cocoa code that
finding it in a stack trace doesn’t tell you much; paring the trees down to where all
those calls came from tells you everything.

m Flatten Recursion—This lumps every call a function makes to itself into a single
item. Recursive calls can run up the length of a call stack without being very
informative.

m Top Functions—This is a very useful filter, but hard to describe. You remember in
Chapter 16, “Measurement and Analysis” that we wanted to know specifically what
Passer Rating function was taking up the most time as the Game database was being
built.
The initial display of the call tree told us that main took up 100 percent of the app’s
time; we could then disclose the functions main called and see how much time they
took; and so on down the stack, eventually passing, at one level or another, through
our code.
Then we inverted the call tree; that told us what the most expensive functions were,
no matter how they got to be called. We could work through the disclosures until,
again, we could see our functions on this or that call chain.
Finally, we checked Hide System Libraries, which cut off the tree at our own
functions. At that point, we could see our most expensive functions, listed by the
total time spent running them—the time spent in the system calls they made was
added up and attributed to our code. That aggregated time was the most valuable
information we got from this technique.
Top Functions does the same thing, without having to prune any functions out of
the tree. The Call Tree list in the Detail area shows every function in the app, with
the total time spent in them. The first line would be main, which was running or
calling the rest of the app code 100 percent of the time. (The Self column will still
show the amount of time spent executing the function’s own code.)
Suppose main called functionA and functionB; the next line in the table might
be functionA with 80 percent—nevermind that it was already counted in main.
The next line might be functionC, called by functionA, taking 50 percent; and
next functionB at 20 percent.
With a comprehensive list like this, you have a guide to one of the most fruitful
strategies in optimizing an application—not the speed of a run of instructions, but
the algorithm that runs them. Top-function analysis gives you the total call pattern,
including a loop in Cocoa that calls into your code.

The Trace Document Window 499

Note
Stack traces in the Extended Detail inspector also reflect your settings of these filters.

You can also add call-tree constraints, such as minimum and maximum call counts. The
idea is to prune (or focus on) calls that are not frequently made. Another constraint that
may be available (for instance, in the Time Profiler instrument) can filter call trees by the
amount of time (minimum, maximum, or both) they took up in the course of the run.

There’s one feature that will do you a lot of good, but it’s easy to miss: At the far left
end of the Detail jump bar is what looks like a label that identifies the selected instrument.
That’s what it usually happens to show, but it’s a popup menu. You can use it as another
way to select an instrument track for the Detail view, but at the top is another item, Trace
Highlights. Many instruments—especially Activity Monitor—can render their data as bar
or pie charts, broken down by process, thread, or event type, or share of resources. When
you select the highlights view, the Detail area will fill with the available charts.

Extended Detail
The third tab in the Extended Detail area is itself named Extended Detail. It typically
includes a stack trace when you select an item in the Detail area that carries stack
information. When the selected item is part of a call tree, the Extended Detail area shows
the “heaviest” stack, the one that accounts for most of whatever the instrument keeps
track of. There’s a Hide system calls in the stack trace button at top-right to truncate
the list to your own code and its immediate callers and callees.

Selecting a frame in the call stack highlights the corresponding call in the call-tree
outline. Double-clicking on a frame shows the corresponding source code in the Detail
area, with banners showing where the instrument “hit” in the function, and what
proportion of those function hits fell on which lines.

Note
When you double-click a stack frame to see the source code in the Detail area, the
Extended Detail area fills with annotations on the function call that generated that frame.
The Detail area’s jump bar adds a segment for the listing (Call Trees→Call Tree
→-[SimpleCSVFile run:error:]. You can return to the call tree in the Detail area and the
stack trace in the Extended Detail area by clicking the previous segment (Call Tree).

Library
Instruments are made part of an Instruments trace document either by being instantiated
from a template or by being dragged in from the Library window.

The Library palette (Window→Library, L, or the + toggle button in the toolbar)
lists all of the known instruments. Initially this is a repertoire of Apple-supplied tracks, but
it is possible to add your own. The palette lists all known instruments. Selecting one fills
the pane below the list with a description. See Figure 26.4. Some descriptions include a
(?) button, which only takes you to the root page of the Instruments manual in Xcode’s
Documentation browser.

500 Chapter 26 Instruments

Figure 26.4 A scrolling list of available instruments dominates the Library palette. The selected
instrument is described in the panel below. Selecting a category from the popup menu narrows the
list down by task, and the search field at the bottom allows you to find an instrument from its name

or description.

The Library gathers instruments into groups; these are initially hidden, but they can be
seen if you select Show Group Banners from the Action (gear) popup at the lower-left
corner of the palette. The Action menu will also allow you to create groups of your
own—drag an instrument into your group to add it; or smart groups, which filter the
library according to criteria you choose. The popup at the top of the palette narrows the
list down by group, and the search field at the bottom allows you to filter the list by
searching for text in the names and descriptions.

Note
Note the split-view dimple under the group popup; drag it down, and the popup is replaced
by a table of sections.

Tracing
Now we can turn to the trace document as a document—how to get data into it, how to
save that data.

Recording
There is more than one way to start recording in Instruments.

Tracing 501

The most obvious is to create a trace document and press the Record (red-dot) button
in the toolbar. Recording starts, the target application comes to the front, you perform
your test, switch back to Instruments, and press the same button, now displaying the
black-square “stop” symbol.

The first time you record into a document that contains a Mac User Interface
instrument (Mac targets only), the instrument captures your interaction with the target
app into a list of events like key presses, mouse moves, and clicks. The Record Settings
inspector’s Action popup allows you to have the next run Record UI events as before, or
Drive them, replaying the recorded actions, on the next run.

Note
The iOS side of Instruments gives you the same facility through the Automation
instrument. Drop the instrument into the Track area, and attach a JavaScript script that
will drive your application. When the Track runs, Automation will perform the UI actions
you prescribed, and the other instruments will accumulate traces that you can compare
directly between runs. Search the Documentation browser for “UI Automation JavaScript
Reference” for details.

A second way to record is through a global hot key combination. To set the
combination, Open the Keyboard panel in System Preferences, select the Shortcuts tab,
and seek out the Development group under Services. The group includes a number of
profiling actions, such as collecting a time profile of the application under the mouse
cursor. One of the options is Toggle Instruments Recording. Set the combination by
clicking the add shortcut button in that row of the table.

Note
I never remember these global hot keys. Do yourself a favor and check the box next to the
service, so it will show up in the Services submenu of the application menu. The
Instruments-related command will appear with its hot key combination. If there’s no
combination, you’ll know that the app you’re running has probably taken the combination
for itself.

Instruments gives you a shortcut to the System Preferences window in the General tab
in its own Preferences window: an Open Keyboard Shortcut Preferences button.

With the Toggle Instruments Recording hot key set, set up a trace document for
the app you want to record—but don’t run it. Run the app, then press the key
combination you chose. Instruments will start recording. Press it again, and recording
stops.

If you assign a key combination for other Instruments services, such as Allocations &
Leaks, then Instruments will create a new trace document targeting the front application
and record its memory activity. The same with File Activity, System Trace, and the
other services that share the names of Instruments templates.

Take special note of the three Time Profile commands, which target the active
application, the background application that has a window under the mouse pointer, or
the whole system. The option of pointing the mouse at one of the target’s windows allows

502 Chapter 26 Instruments

you to start simultaneous traces on more than one application without having to disturb
their place in the window ordering.

Displaying an ongoing trace, especially for more than one application, puts a significant
performance burden on the system; I’ll get into the details shortly. This can be a particular
problem if you use hot keys to record more than one application. If you check Always
use deferred mode in the General tab of the Preferences window, you can ensure that
your hot-key traces will be as lightweight as possible.

The third way to record is through the Mini Instruments window. Selecting View
→Mini Instruments hides all of Instruments’ windows and substitutes a floating
heads-up window (see Figure 26.5) listing all of the open trace documents.

The window lists all of the trace documents that were open when you switched to
Mini mode; scroll through by pressing the up or down arrowheads above and below the
list. At the left of each item is a button for starting (round icon) or stopping (square icon)
recording, and a clock to show how long recording has been going on. Stopping and
restarting a recording adds a new run to the document.

Closing the Mini Instruments window activates Instruments and restores the trace
windows.

As with the hot keys, Mini Instruments has the advantage that it’s convenient to start
recording in the middle of an application’s run (handy if you are recording a User Interface
track that you want to loop). It eliminates the overhead of updating the trace displays.

I mentioned the burden a tracing session can put on the performance of your
computer. While a trace runs, Instruments analyzes the data it collects, building up profiles
and tables. Often it has to refer back to earlier data (like matching memory events to
blocks and updating living-versus-transient counts) to keep the analysis current.

Computers are fast, but the process takes resources away from the target application
(thus making it difficult to measure your app against real-world conditions) and can force
Instruments to skip data points. You can prevent this by deferring analysis until the trace
stops. File→Record Options. . . (R) sets parameters for tracing, like delaying data
collection until a fixed time after launching the application, or limiting collection to a

Figure 26.5 The Mini Instruments floating window. It lists each open trace document next to a
clock and a recording button. Scroll through the list using the arrowheads at top and bottom.

Tracing 503

fixed period. The option you’re interested in is the Deferred Mode checkbox. While it’s
checked, Instruments will black out the trace window until the run ends. Once the run
does end, the blackout will continue as Instruments conducts the postmortem analysis, and
then you’ll see your trace. See Figure 26.6.

Saving and Reopening
Like any other Macintosh document, a trace document can be saved. The document will
contain its instruments and all the data they’ve collected. There can be a lot of
data—potentially, full stack traces for events only microseconds apart—so expect a trace
document to be large. Gigabytes are not uncommon. Trace documents generally respond
well to ZIP archiving.

Another option is to save your document as a template. It’s likely that you will come to
need a uniform layout of instruments that isn’t included in the default templates provided
by Apple. You can easily create templates of your own, which will appear in the template
sheet presented when you create a new trace document. Configure a document as you
want it, and select File→Save as Template. . . .

The ensuing save-file sheet is the standard one, focused on the directory in which
Instruments looks for your templates, ∼/Library/Application Support/
Instruments/Templates. The name you give your file will be the label shown in the
template-choice sheet. At the lower-left of the sheet is a well into which you can drag an
icon to be displayed in lists that include your custom templates. For instance, if your

Figure 26.6 File→Record Options. . . (R) produces a sheet in which you can restrict the
scope of an Instruments tracing session and improve the efficiency of the trace by deferring analysis

until after the trace is done. In this case, an instrument in the trace document requires deferred
analysis.

504 Chapter 26 Instruments

template is for testing your application, you’d want to drop your application’s icon file
here. Holding the mouse button over the well will display a popup menu so you can
choose Apple-provided icons. The panel provides a text area for the description to be
shown in the template-choice sheet.

m The document’s suite of instruments, and their configurations, will be saved in the
template.

m The template will include the target you set.
m If you include a prerecorded User Interface track, the contents will be saved. This

way you can produce uniform test documents simply by creating a new trace
document and selecting the template.

As you’d expect, you can reopen a trace document by double-clicking it in the Finder,
or by using the File→Open. . . command. All of the data is as it was when the
document was saved. Pressing Record adds a new run to the document.

Tracing without Instruments
There are three ways to run traces without having to launch Instruments. With the
instruments command-line tool, you can select the target application and either a
template or an existing trace document to capture the trace data. The DTPerformance-
Session framework allows you to initiate traces from your source code without having to
bother with the Instruments app’s template and document infrastructure. And iprofiler
provides the same lightweight profiling service from the command line. See man
instruments, man iprofiler, and the DTPerformanceSession documentation for
details.

The Instruments
There are 44 instruments that come with the Instruments application, plus any custom
instruments you might create yourself. The Library palette, Window→Library (L),
lists them all. The list in this section follows the Library’s organization, adding details as
I’ve gleaned them.

Some instruments aren’t documented beyond the sentence or two they get in the
Library, plus what is implied by the data they display. The listing rarely identifies which
platform the instrument can target. In some cases, I can make up the gap; in others, my
guess is as good as yours, often because they crash before you can see the results.

Behavior
m Sudden Termination (Mac only)—Audits the OS X feature of directly killing

apps that volunteer that they’d be safe to kill. This instrument flags all of your
filesystem activity that happens while you’ve signaled the system that a sudden kill
would be okay. If you’re actively reading and writing files, it may not be a good idea
to subject yourself to termination without notice.

The Instruments 505

Core Data
m Core Data Saves—At each save operation in Core Data, records the thread ID,

stack trace, and how long the save took.
m Core Data Fetches—Captures the thread ID and stack trace of every fetch

operation under Core Data, along with the number of objects fetched and how long
it took to complete the fetch.

m Core Data Faults—Core Data objects can be expensive both in terms of memory
and in terms of the time it takes to load them into memory. Often, an
NSManagedObject or a to-many relationship is given to you as a fault, a kind of
IOU that will be paid off in actual data when you reference data in the object.
This instrument captures every firing (payoff) of an object or relationship fault. It
can display the thread ID and stack depth of the fault, as well as how long it took to
satisfy object and relationship faults.

m Core Data Cache Misses—A faulted Core Data object may already be in
memory; it may be held in its NSPersistentStoreCoordinator’s cache. If,
however, you fire a fault on an object that isn’t in the cache (a “cache miss”), you’ve
come into an expensive operation, as the object has to be freshly read from the
database. You want to minimize the effect of cache faults by preloading the objects
when it doesn’t impair user experience.
This instrument shows where cache misses happen. It records the thread ID and
stack trace of each miss, and how much time was taken up satisfying the miss, for
objects and relationships.

Dispatch
m Dispatch (Mac only)—Records Grand Central Dispatch events, the status of

queues, and the duration of dispatched tasks.

Filesystem
m Directory I/O (Mac only)—Records every event of system calls affecting

directories, such as creation, moving, mounting, unmounting, renaming, and
linking. The data include thread ID, stack trace, call, path to the file directory
affected, and the destination path.

m File Activity (Mac only)—Records every call to open, close, fstat,
open$UNIX2003, and close$UNIX2003. The instrument captures thread ID, call
stack, the call, the file descriptor, and path.

m File Attributes (Mac only)—For every event of changing the owner, group, or
access mode of a file (chown, chgrp, chmod), this instrument records thread ID, a
stack trace, the called function, the file descriptor number, the group and user IDs,
the mode flags, and the path to the file affected.

m File Locks (Mac only)—Records the thread ID, stack trace, function, option flags,
and path for every call to the flock system function.

506 Chapter 26 Instruments

m I/O Activity (iOS only)—Combines the functionality of all the Mac-only
instruments in this category into one comprehensive instrument for iOS. By default,
it only collects how long each call lasted, but click the Configure button to see
what else is available.

Graphics
m Core Animation (iOS)—Collects statistics for the current state of OpenGL,

including wait times for callers, counts of surfaces and textures, and how full video
RAM is, as it relates to your app’s use of the high-level Core Animation framework.

m GPU Driver (Mac or iOS)—collects the same statistics as the Core Animation
instrument, at the lower level of OpenGL/OpenGL ES. There are two instruments
of the same name. Drag one of them into your trace document; if you guess wrong,
a yellow warning triangle will appear in the lower-right corner of the track, and you
should try the other.

m OpenGL ES Analyzer (iOS)—Analyzes your app’s usage of OpenGL ES, flagging
stalls and other errors, yielding a ranked table of problems and suggestions on how to
avoid them.

Input/Output
m Reads/Writes—reads and writes to file descriptors. Each event includes the

thread ID, the name of the function being called, a stack trace, the descriptor and
path of the file, and the number of bytes read or written.

Master Tracks
m User Interface (Mac only), on first run, records mouse and keyboard events as you

use your OS X application. You’ll be asked to authorize Instruments to control your
application, through the System Preferences application→Security & Privacy
→Privacy→Accessibility. After that, running the trace plays your UI events back
so you can have a uniform baseline for your program as you make adjustments.

m Cocoa Layout (Mac only) records any changes to NSLayoutConstraint objects,
either in the target application or anywhere in the system. It’s not very easy to pick
what you need out of the collected data; the best approach is to track down the view
you’re interested in, and enter its address in the search field.
My copy of Instruments puts Cocoa Layout in the “Custom Instruments” category,
not Master Track, but it makes more sense for me to put it next to User Interface.

Memory
m Allocations (iOS and Mac)—Collects a comprehensive history of every block of

memory allocated during the run of the trace. Every event is tagged with the block
address and the current stack trace. Configuration options let you track Cocoa
reference-counting events and create “zombie” objects. You learned how to use it in
Chapter 16, “Measurement and Analysis.”

The Instruments 507

m Leaks (iOS and Mac)—Tracks the allocation and deallocation of objects in an
application in order to detect the objects’ being allocated and then lost—in other
words, memory leaks. Leaks does not rely simply on balancing allocations and
deallocations; it periodically sweeps your program’s heap to detect blocks that are
not referenced by active memory. If the Allocations instrument is set to monitor
zombies, Leaks won’t record because zombie objects, which are never deallocated,
are all leaked. For an extensive example, see Chapter 16, “Measurement and
Analysis.”

m Shared Memory (Mac only)—Records an event when shared memory is opened
or unlinked. The event includes calling thread ID and executable, stack trace,
function (shm open / shm unlink), and parameters (name of the shared memory
object, flags, and mode t). Selecting an event in the Detail table puts a stack trace
into the Extended Detail pane.

m VM Tracker (iOS and Mac)—Takes a “snapshot” of the virtual-memory zones
associated with your application, recording the size of each zone, and whether it is
shared or private. The trace shows total usage, but the real story is in the “dirty”
trace: The VM system can share things like system libraries across applications from a
single chunk of physical RAM, and memory that the app hasn’t written to is
“clean”—the system can simulate that memory as zeroes without taking up any
actual RAM. As soon as your app writes to memory, those addresses become dirty,
and they must consume precious physical memory.
Don’t bother with VM Tracker on the iOS Simulator; at the virtual-memory level,
it’s a Mac application with no relation to how memory would be used on an iOS
device.
By default, you have to click a Snapshot Now button in the Options view to
collect heap data. You can check Automatic Snapshotting if you want to collect
data periodically.

System
Two kinds of instruments fall into the System category: instruments that actively record
the state of the target machine, and those that read logs an iOS device had recorded as it
had been used untethered to a Mac. I’ll treat them as if they were separate.

m Activity Monitor (iOS and Mac)—An analogue to the Unix top command, with
the option to focus on only one process. This instrument is too varied to explain
fully here, but its features should be easy to understand if you explore its
configuration inspector. It collects 31 summary statistics on a running process,
including thread counts, physical memory usage, virtual memory activity, network
usage, disk operations, and percentages of CPU load. Remember that you can have
more than one Activity Monitor instrument running, targeting different applications
or the system as a whole.

508 Chapter 26 Instruments

m Connections (iOS only)—Measures all IP networking activity for an iOS device or
any of its processes, in real time.

m Counters and Event Profiler (Mac only)—Track CPU and low-level system
events using hardware diagnostic counters built into each core of the CPU. The data
are eye-wateringly primitive, but if you’ve come to optimizing your code instruction
by instruction, such as locating possibly inefficient branches, these instruments are
the way to go.
Window→Manage Flags. . . (T) controls which flags are to trigger a count
in Counters. Expect a noticeable performance hit when Counters is running. For
Event Profiler, Window→Manage PM Events. . . (P) sets the flags to audit.

m Process (Mac)—Records thread ID, stack trace, process ID, exit status, and
executable path for each start (execve) and end (exit) event in a process.

m Sampler (iOS and Mac)—Periodically samples the target application at fixed
intervals (1 ms by default, but you can set it in the inspector), and records a stack
trace each time. This instrument has been superseded by Time Profiler, except in
cases, like measuring graphics performance, when it is essential to minimize the
effect of CPU sampling on other measurements.

m Spin Monitor (Mac only)—Focuses on one OS X application, or all, and logs stack
traces when they become unresponsive. An application is “unresponsive” when it
has spent more than a few seconds without attempting to collect a human-interface
event. This is when the multicolored spinning “beachball” cursor occurs. This is a
serious fault in an application, but you can’t often reproduce spins. Spin Monitor
sleeps most of the time, taking up very few resources until a spin activates it.

m Time Profiler (iOS and Mac)—Periodically samples the target application at fixed
intervals (1 ms by default, but you can set it in the inspector), and records a stack
trace each time. You can then get a statistical picture of what parts of your
application are taking up the most time. This is an essential tool, doing what most
people mean when they speak of profiling an application. Chapter 16,
“Measurement and Analysis,” demonstrated the use of Time Profiler.
When Time Profiler is in a trace document, a bar is added above the Track area that
lets you refine the profile: The segment control at the left provides an overview trace
(middle), or it can divide the trace among CPU cores (left) or by thread (right). A
series of popup menus let you restrict the trace by processor core, process, and
thread; and they let you color-code by user and kernel load. A popup at the right
end of the bar shows the colors used in the chart.

Note
A number of instruments from Xcode 5 have been removed—almost all the ones with
“Monitor” in their names. These weren’t really unique instruments, just Activity Monitor
with a couple of statistics enabled. If you miss them, use Activity Monitor and check off
the statistics that interest you. If you use the Stacked graph type and Increase Deck Size
to make the track taller, you’ll have the same effect.

The Instruments 509

System—iOS Energy Instruments
The Instruments Library puts iOS energy instruments in the “System” category, but they
are different. They don’t rely on Instruments to run the trace, because running them only
when the device is tethered to a Mac would be counterproductive. When you designate a
device for development, Xcode (or Instruments) installs a daemon on the device that can
log activity that influences power drain.

You can analyze the logs when the device is plugged into Instruments again. Open
Instruments and select File→Import Energy Diagnostics from Device.

By default, logging is off and must be turned on with the Settings app. The daemon
itself can be turned off with the Developer panel in Settings or by an untethered reboot.
If the battery runs out entirely, the daemon won’t restart.

These are the instruments that analyze the usage logs:
m Bluetooth, GPS, and WiFi—Log when the respective radios are on.
m CPU Activity—This instrument is a compact version of Activity Monitor showing

the total load on the CPU, with breakouts for the foreground app, audio, and
graphics.

m Display Brightness—This instrument records the on/off state and brightness
setting of the device’s backlight. Ambient-light adjustments don’t get logged.

m Energy Usage—Overall power drain on a scale of 20. When the device is plugged
or unplugged to a power source, the event is flagged.

m Network Activity—Logs overall network usage in terms of bit and packet rates.
m Sleep/Wake—Logs whether the device is asleep, along with sleep-transition states.

Threads/Locks
Thread States (Mac only)—Represents each thread in the target application by a block,
colored to indicate the state of the thread—running, waiting, suspended, etc.—at each
moment. The Record Settings inspector has the color code (see Figure 26.7).

Trace
Scheduling, System Calls, and VM Operations (iOS, Mac)—These keep a complete
record of the transitions between threads; between your user code and the underlying
kernel; and of the layout of your working memory as managed by the virtual-memory
system. You can read the duration of the time your code had to wait for kernel-level
processing to complete. The track has two “strategies” for display, selectable through a
segmented control at the left end of the bar that these instruments will insert above the
time track.

These instruments force the use of deferred mode, and they insert a bar above the time
scale to select display “strategies”: bar graphs of “event density,” or timelines that show
state and flag transitions—click a flag and get a description of the transition type, timing,
and a stack trace.

The bar includes a popup to narrow the display to specific processes and threads.

510 Chapter 26 Instruments

Figure 26.7 The Thread States instrument shows the state of every thread in a process as a
stack of color-coded bars.

UI Automation
Automation (iOS only)—Executes a JavaScript script that exercises the UI of an iOS
application on a device or the iOS Simulator. Add other instruments to the trace
document to produce a package that can reproduce a test and record the performance of
your app as you develop it. You configure the instrument in the Options view of the
Detail area. The most important part is the Scripts section, where the Add drop-down
menu allows you to Import. . . a .js file to the track or Create. . . one in an editor
within the Detail area.

UI Automation comes with an extensive class tree; consult the “Instruments User
Guide” and the “UIAutomation Reference Collection” for details.

User Interface
Carbon Events (Mac only)—Monitors events returned from WaitNextEvent. Carbon
Events records an event at every return from WaitNextEvent and its cousins. It captures
the thread ID, the stack trace, the event code, and a string (like “Key Down”) that
characterizes the event.

Cocoa Events (Mac only)—Records the event objects dispatched through every call
to -[NSApplication sendEvent:]. It captures the thread ID, the stack trace, the
event code, and a string (like “Left Mouse Down”) that characterizes the event.

Custom Instruments 511

Custom Instruments
Many of the instruments included in Instruments consist of code specially written for the
task, but most involve no native code at all. They are made from editable templates: You
can examine these instruments yourself—this may be the only way to get authoritative
details on what an instrument does—and you can create instruments of your own.

Let’s see what a scripted instrument looks like. Create a trace document from the File
Activity template, select the Reads/Writes instrument and then Instrument→Edit
‘Reads/Writes’ Instrument (or simply double-click on the instrument’s label). An
editing sheet (see Figure 26.8) will appear with fields for the instrument’s name, category,
and description, and a long scrolling list of probes, handlers for events the instrument is
meant to capture.

Figure 26.8 shows the event list scrolled to the condition called PWrite, in the domain
System Call, for the symbol pwrite. It is to trigger when pwrite is entered. Next
comes the text of a script to be executed when the probe is triggered. Instruments uses the
DTrace kernel facility, which has its own scripting language; for instance, this event might

Figure 26.8 The Edit Instrument sheet for the Reads/Writes instrument. The sheet is dominated
by an editable list of events the instrument is to capture. The portion that specifies how to record

entries to the system pwrite function is shown here.

512 Chapter 26 Instruments

put the time at which the event occurred into a thread variable of the probe, so that a
pwrite-exit probe could calculate the duration of the call and record it. In this case, the
scripting text is blank.

Then comes a series of items specifying what information is to be kept, for the trace
graph or for the Detail view. In the case of Reads/Writes, this is

m The name of the function.
m The name of the executable.
m The first argument (the file descriptor), which is an integer to be labeled “FD.”
m A string, to be labeled “Path,” calculated from an expression in the DTrace language:

a file path, derived from the file descriptor within the executable.
m The third argument (the size of the write), which is an integer to be labeled “Bytes.”

At the bottom of the edit sheet is a drop-down menu that controls whether the
instrument records a stack trace for its events, and whether the stack should be taken from
user, kernel, or no space.

Integer-valued records are included in the configuration inspector’s list of Statistics to
Graph and are eligible to display in the instrument’s trace. This accounts for the odd
presence of “tid” (the thread ID) in the list of available plots you’ll see if you click the
Configure button in the instrument-configuration popover.

The customization sheet is a front end for the scripting language for the
kernel-provided DTrace tool; only kernel-level code is capable of detecting call events in
every process. The section “Creating Custom Instruments,” in the Instruments User Guide,
offers enough of an introduction to the language to get you started on your own
instruments.

To make your own instrument, start with Instrument→Build New Instrument. . .
(B). An instrument editing sheet will drop from the front trace document, and you can
proceed from there.

If visiting https://wikis.oracle.com/display/DTrace/Documentation has
made you a DTrace expert, you may find it more convenient, or more flexible, to write
your scripts directly, without going through the customization sheet. Select
File→DTrace Script Export. . . to save a script covering every instrument in the
current document, and File→DTrace Data Import. . . to load a custom script. You
can export DTrace scripts only from documents that contain DTrace instruments
exclusively.

The Templates
Between iOS, OS X, and the iOS Simulator, there are 22 trace-document templates built
into Instruments, and as you’ve seen, you can add your own. The Templates assistant
presents these in four sections: one for each platform, plus yours.

https://wikis.oracle.com/display/DTrace/Documentation

The Templates 513

This section lists all of the available templates, with the instruments they contain, sorted
by platform. iOS Simulator shares some instruments with both iOS and OS X; I’ll call
them out in the platform lists.

All Platforms
Six templates are platform independent: They appear in all three parts of the source list.

m Blank: a document with no instruments in it
m Activity Monitor: Activity Monitor
m Allocations: Allocations, VM Tracker
m Leaks: Allocations, Leaks
m System Trace: Scheduling, System Calls, VM Operations
m Time Profiler: Time Profiler

iOS Only
These seven templates are for iOS targets only, though one of them, Automation, is also
available in the iOS Simulator.

m Automation: Automation (also on iOS Simulator)
m Core Animation: Core Animation, Time Profiler
m Energy Diagnostics: These are the analyzers for logs a device accumulates while

it’s untethered from Instruments—Bluetooth, CPU Activity, Display Brightness,
Energy Usage, GPS, Network Activity, Sleep/Wake, WiFi

m GPU Driver: GPU Driver, Time Profiler
m Network: Connections
m OpenGL ES Analysis: GPU Driver, OpenGL ES Driver
m System Usage: I/O Activity

Mac Only
Nine templates are for OS X applications, which in a few cases includes the simulator.

m Cocoa Layout: Cocoa Layout
m Core Data: Core Data Cache Misses, Core Data Fetches, Core Data Saves (also on

iOS Simulator)
m Counters: Counters
m Dispatch: Dispatch
m File Activity: File Activity, File Attributes, Directory I/O, Reads/Writes (also on

iOS Simulator)
m Multicore: Dispatch, Thread States
m Sudden Termination: Activity Monitor, Sudden Termination

514 Chapter 26 Instruments

m UI Recorder: User Interface
m Zombies: Allocations, preconfigured to track zombie objects (also on iOS

Simulator)

Summary
Instruments is a big topic, and I’ve put you through most of it. You started with a tour of
the trace document window and moved on to populating it from the Library window. You
learned general principles of how to configure an instrument track.

You saw the various ways to start and stop recordings, including human-interface
recordings that can be played back to generate repeatable tests for your applications.

You walked through a partial inventory of the instruments and document templates
Apple supplies and how to create your own.

As your needs and expertise progress, you’ll want to consult the Instruments User Guide,
to be found in Xcode’s Documentation browser.

27
Debugging

Debugging is intrinsic to the development process. The first parts of this book tell the
story of a development process, and basic debugging techniques followed naturally. In this
chapter, I want to call out a few subjects to provide you with a better grasp of how you can
get the most out of the Xcode debugger and the lldb debugging system that underlies it.

We’ll take a look at the Run action in a build scheme and how it sets the conditions for
your debugging session. Then, I’ll help you build the skills to make breakpoints more than
mere stopping places. And we’ll have a look at the command line for the lldb debugger,
as it’s used both in the Terminal and in the debugger console. Finally, a few short tips and
techniques.

Scheme Options
Schemes have come up repeatedly in Xcode 6 Start to Finish, but I want to go through the
scheme editor for the Run action, from which you’ll do most of your debugging. It
includes many options to access the OS’s debugging features. The Run scheme editor has
four tabs, and here they are, one by one.

Info
The options in the Info tab can be seen in Figure 27.1, top.

m You can choose whether to Debug the Executable at all.
m You have a choice of the privilege level at which the target will run.

m You can run and debug with your user privileges (Me).
m You can run with root privileges (so long as you can provide admin credentials).

m Ordinarily, you want to run and debug your application Automatically, as soon as
the build completes. But sometimes you have an app that needs specific inputs and
conditions from some other process that launches it. The Wait for executable to
be launched radio button makes lldb wait until your app starts, and attach once
it’s running.

516 Chapter 27 Debugging

Figure 27.1 Info (top) and Arguments (bottom) tabs for the scheme’s Run action.

Arguments
The Arguments panel (Figure 27.1, bottom) has two tables: one for command-line
arguments, and one for environment variables. Use the + and – buttons to add and remove
them. A checkbox will appear next to each item so you can choose which settings should
be passed to your application on a particular run.

Argument entries can contain spaces, which will be treated as delimiters when the
application is launched; that is, they will result in separate items in the traditional argv
array. If you mean to pass an argument that contains a space, escape it with a backslash as
you would on a command line.

The Expand Variables Based On popup menu lets you use the value of a build
variable in your arguments and environment values; just include the variable’s name like
this: ${SETTING NAME}. Each target has its own set of build variables, and this menu lets
you choose which set is used.

Options
The Options tab for the Run action is different depending on whether the target is for
Mac or iOS. These controls affect runtime conditions that don’t directly match up to
system-defined environment variables—like location, working directories, graphics state,
and whether you have to deal with potentially frustrating features like launch-time state
restoration.

Scheme Options 517

Mac
If you check Allow Location Simulation, you’ll be given a choice of locations for the
debug environment to report to Location Services. You can select from a menu of
locations, or add a GPX file for a custom location.

In OS X, Cocoa applications are subject to automatic state restoration, wherein the OS
will attempt to reopen previously open documents and configure them as they were. By
checking Persistent State: Launch application without state restoration, you can
save yourself the headaches that may come when you simply want your app to start from
zero.

The Versions browser works by loading the previous versions of a document into
separate document objects and having them draw themselves. Debugging a plethora of
transient, near-identical documents would be. . . a challenge, but if you need to do it,
check Document Versions: Allow debugging when using document Versions
Browser.

The POSIX working directory is a sore point in Mac development, because when
Xcode debugs an application, the working directory is set to the one that contains the app;
whereas applications launched from Finder get /, the root of the filesystem (though this is
not guaranteed). Checking Working Directory: Use custom working directory: sets
the working directory for debugging runs. There’s a field for entering the path and a
button to open a get-directory sheet.

We saw Localization Debugging: Show non-localized strings in Chapter 21,
“Localization.” Any text that isn’t drawn from the .lproj localization directory is
rendered as all-caps or uninterpreted format strings. We also explored the use of the
Application Language and Application Region popups.

XPC services are small executables that isolate parts of an OS X application that might
threaten security or make the app less stable. You’re probably aware that modern web
browsers do much the same thing to prevent plugins from gaining access to the browser
proper.

If you check Debug XPC services used by this application, Xcode will attach the
debugger to XPCs as they launch, as separate process objects in the lldb session.

View Debugging is a new feature in Xcode 6. If you enable it, you can see an
explosion of your application’s view hierarchy in the debugger. More on that soon.

iOS
The iOS options deal with configuring the simulator and setting up debugging on devices.
Here are the options that are unique to iOS.

m When you plug a development-enabled device into your Mac, you can use the
Devices organizer to navigate to an application and extract its data into a data
package. This is vital if you need to reproduce a bug that’s dependent on the state of
your application. Once you’ve added the data package to your project, the
Application Data popup can select it for loading into the simulator at application
startup.

518 Chapter 27 Debugging

m Apple expects that routing (turn-by-turn directions) applications can provide data
only for parts of the globe; you’ll upload a coverage (GeoJSON) file to iTunes
Connect so the App Store knows what parts of the world your app should be sold
in. Routing App Coverage File configures the simulator to restrict your app to
those regions.

m The Xcode debugger provides comprehensive tools for debugging OpenGL ES and
Metal on iOS devices. GPU Frame Capture enables or disables the frame-capture
button on the debugger’s control bar, allowing you to examine your builds step by
step.

m iOS can launch apps in the background if they need to poll net resources for data
they can download behind the scenes. Checking Launch due to a background
fetch event simulates this kind of launch, instead of forcing the app onto the screen.

m XPC Services are worth mentioning, because Xcode 6 adds support for iOS
extensions with this option.

Diagnostics
The Diagnostics tab controls a number of diagnostic and logging options for both OS X
and iOS that historically were controlled by environment variables. The most famous is
detecting overreleased objects by setting NSZombieEnabled to YES. Diagnostics
presents the most frequently used options as checkboxes. Search the Documentation
browser for Technical Note TN2124, “Mac OS X Debugging Magic,” for a description of
them and their use. The “Debugging Magic” notes (the iOS version, TN2239, isn’t
available as I write this, but tech notes with changeable content often drop out of sight
from time to time) are worth reading all the way through.

Note
The “zombie” technique is a useful way to track down attempts to use an object that had
been deallocated by Cocoa’s memory-management system. Ordinarily, accessing a
disposed-of object would crash, usually in objc msgSend as your app tries to send the
dead object a message. Sometimes the access would go to a completely different object
that had been allocated into the same address as the dead object. Either way, it’s difficult
to determine what the overreleased object had been. When you enable zombies, objects’
memory is never freed; they are simply replaced by “zombie” objects that remember what
the class of the old object was, and halt execution whenever you try to send them a
message. The result is that your app crashes at the first attempted access—there’s no
chance of a succession of accesses that turned out to be harmless—and you have at least
a class name to narrow your search for the cause. Zombies are available through this
panel, through environment variables, and as an option for the Allocations instrument.

Doing More with Breakpoints
Many developers, even if they regularly use breakpoints, believe logging is the only way to
pull control flow and state out of their programs when it’s not practical to stop dead at

Doing More with Breakpoints 519

Figure 27.2 A breakpoint action can provide a more refined log than an NSLog() in the
source code.

every pass through a segment of code. Not so. If you take nothing else away from this
chapter, remember this: Almost never do you have to compile println(), NSLog(), or
other printing functions into your application for debugging.

Use breakpoint options instead of NSLog()s. The options popover (Figure 27.2) is a
little intimidating, but everything in it has a purpose, and once you understand what you
can do, it all falls into place.

Let’s start with some code from Game.swift based on println():

var passerRating: Double {
let rating = passer_rating(

completions: Int(self.completions!),
attempts: Int(self.attempts!),
yards: Int(self.yards!),
touchdowns: Int(self.touchdowns!),
interceptions: Int(self.interceptions!))

if theirTeam.hasPrefix("M") {
println("\(__FUNCTION__) - their team = \(theirTeam)")
println("\(self.description)")

}

return rating
}

Imagine that the problem we’re tracking somehow involves passer ratings coming in Games
in which the opponent’s team name begins with “M.” It could happen.

1. Delete the if statement, including its body. The whole point is that you don’t
need it.

2. Click the margin at return... to make a breakpoint appear.

520 Chapter 27 Debugging

3. Right-click the breakpoint arrow and select Edit Breakpoint. . . , or simply
option-command-click it, to expose the breakpoint options popover.

4. You’re only interested in “M” teams, so in the Condition field, reproduce the
condition in the if statement: enter theirTeam.hasPrefix("M"). Breakpoint
conditions can execute expressions in any language being debugged. For
Objective-C expressions, you must cast method return types—lldb can’t infer the
return type of every possible method implementation. Swift is tight enough about
typing that you don’t need to specify.

5. In the Action popup, select Log Message, and type %B - rating = @rating
@. Anything you bracket with @ signs is interpreted as an expression, which is
substituted into the message. You have the option of speaking the message instead of
printing it.

Note
You also have the option of playing a sound or executing a debugger command, a
shell script, or an AppleScript.

6. However, the @ ... @ notation isn’t as useful as you’d think. If you want to print an
object value, this syntax doesn’t help because the interpreter sees only a pointer, and
prints the hexadecimal address. Your alternative is to use the expression debugger
command, such as expr -O -- self, where the -O option tells lldb to print the
object’s description; for the comfort of gdb veterans, lldb provides the old po as an
alias.
So click the (+) button and add a Debugger Command. Type po self in the
text field.

7. In the Options section, check Automatically continue after evaluating. The
NSLog()s didn’t stop execution, so neither will this breakpoint.

8. Click away from the popover to close it.

Note
The replacement of NSLog() calls is complete when you check Automatically continue
after evaluating actions in the options popover for a breakpoint. When the breakpoint hits,
it will perform all its actions, but it won’t halt the program.

Now run your app, and find that your debugger console fills with the breakpoint
location, rating, opponent’s name, and the contents of the Game object.

To be sure, in this simple case, it’s trivial to construct logging code that does what you
need—that’s what we started with. But if you first notice the error only after the app had
built up state for a long time, and you decide to instrument the problem, it is not practical
to kill the app, insert the logging code, rebuild it, and work it to the point where it
triggers the bug. Breakpoints don’t need a rebuild, their presence doesn’t change the state
of the program itself (unless you want it to), and they can be modified on the fly.

View Hierarchy 521

Note
In earlier versions of Xcode, when you set exception or symbolic breakpoints in the
Breakpoint navigator, you got a popover with breakpoint options immediately. This was
useful for exceptions because the exception breakpoint can limit itself to Objective-C or
C++ exceptions. Some of the Cocoa internals are implemented in C++ that makes liberal
use of exceptions, which opens you up to a lot of false positives. Right-click on the new
breakpoint and select Edit Breakpoint. . . from the contextual menu.

View Hierarchy
I mentioned the Enable user interface debugging checkbox in the Options panel of

the Run action in the Scheme editor. When UI debugging is on, a button appears in
the Debug area’s control bar. When you click it, the target app pauses, and the editor area
of the project window fills with an exploded view of the active window. The usual
scrolling gestures pan over the model, dragging rotates it, and the –, =, and + buttons
zoom in and out. See Figure 27.3, top.

The Debug navigator picks up a popup menu at its top-right corner. When you click

the button, the menu sets to View UI Hierarchy, the other choices being View
Processes by Thread and View Processes by Queue, which show the more
traditional stack traces. In the UI hierarchy view, the Debug navigator shows a complete
outline of the window’s views, similar to the document outline in Interface Builder, but
much more thorough.

With the UI panel visible, two new inspector tabs appear in the Utility area.
m The Object inspector (third tab) provides comprehensive information about any

view you select.
m The Size inspector (fourth tab) shows the location and size of the view’s frame, and a

list of the Auto Layout constraints.

The controls at the bottom of the view adjust the presentation.
m The slider at the left sets the spacing between the view layers.
m There is a toggle for showing and hiding views that exist, but are not visible because

they are beyond the bounds of their containers. Figure 27.3, bottom, shows that
Cocoa has prerendered the rows of the game table below the visible bottom of the
table.

m The box with the I-beam across it, when highlighted, shows the constraints on any
view you select in the panel. All views are replaced with wireframe outlines, and its
constraints are drawn in blue around it. Selecting a constraint ought to give you full
details in the Object inspector, but as of Xcode 6.1, it’s not all there yet.

m The third button restores the scale of the view layout, centers it, and turns it face-on.
m The fourth control is a popup menu to display just the contents, or the wireframe

boundaries, or both.

522 Chapter 27 Debugging

Figure 27.3 (top) Clicking the button in the debugger control bar presents an exploded view
of the front window of the target application. (bottom) The controls at the bottom of the view adjust
the contents: The lower-left slider has spread the views apart; the first of the toggle buttons reveals
the views that had been clipped from view by their containers; and the range slider at lower-right hid

the layers farther to the rear.

The lldb Command Line 523

m Next, three buttons to zoom the view in or out, or to restore the scale to normal.
m The double slider on the right controls how much of the hierarchy will be visible.

Moving the left slider to the right filters the back views from the display; moving it
to the right side removes the forward views.

The lldb Command Line
The conditions and commands that you can put into a breakpoint-options popover are just
a taste of what you can do with the lldb command line. The lldb command language is
large but much more compact and consistent than gdb’s. Nobody can say for sure that it’s
more powerful, but one of the reasons Apple replaced gdb is that the complex of gdb
settings and command options is so intricate that few users can get the maximum value
out of it.

The general pattern of lldb commands is

noun verb options... arguments...

The noun portion classifies the available commands. The subsequent verbs and options
refine your input to specific actions. The following is a list of built-in, permanent
debugger command categories. A few of them are useful only on the command line, but
most are wrapped in Xcode’s debugging UI. Almost all can be used from the Xcode
debugger’s own console.

m quit—If you’re using lldb on the command line, the first thing you’ll want to
know is how to get out.

m apropos and help—These are the commands you’ll be using the most, at least for a
while. The lldb web site has a good tutorial, but it can’t cover every subcommand
and option you’ll want to use. The command-line help system is your best resource.
Enter help breakpoint, and you’ll get a list of all the verbs for the breakpoint
noun; help breakpoint set will show you the available options for setting a
breakpoint.

Note
The tutorial at http://lldb.llvm.org/tutorial.html is a great starting
place.

m platform—lldb’s central concept is a hierarchy of containers to organize and
control a debugging session. platform is the outermost. This noun lets you
examine and select the various devices and architectures that lldb can target—a
single instance of the debugger can target more than one at a time—and discover the
processes lldb can access.

m target—With target, you designate an executable as the focus of a session. You
can designate more than one target, so you don’t need to run a second instance of
lldb to debug both a server and a client. Xcode provides this service when you run
a target while another is running: It drops a sheet asking whether you want to quit

http://lldb.llvm.org/tutorial.html

524 Chapter 27 Debugging

the existing target, but if you choose to leave it running, the debugger will work on
both simultaneously.

m process—This is the third layer of lldb containers. You can launch a target (thus
creating a process) or attach to an existing process. The process level is where you’d
interrupt execution, send POSIX signals, or kill the process.

m thread—Most of what you think of when you think about debugging is in this
container. The thread level is where you get stack traces and control execution by
stepping through the program.

m frame—This is the innermost layer. It allows you to focus on the chain of
frames—levels of the stack trace—at the point where execution is currently stopped.
You can get a dump of variables at each level. The frame variables command
alone gives you just the local variables (Objective-C and @objc objects will be
expanded if you add the -O option). But it’s much more flexible than that; type
help frame variable for the extensive list of options.

m breakpoint—This category creates, deletes, lists, and attaches conditions and scripts
to breakpoints. Because you can attach expression commands to a breakpoint,
you can get away with executing anything you like in an application when the
breakpoint triggers. watchpoint manages special breakpoints that trigger whenever
a variable or memory region is changed—on the Mac or an iOS device.

m expression—The expression command is incredibly powerful. It will evaluate
and print the result of any expression in the language of the file you’re stopped in;
lldb embeds the llvm compiler library, so it uses exactly the compiler that was
used to build your application. The expression interpreter will even compile your
expression into machine code before evaluating it.
It can be any kind of expression: You can do assignments and increments. You can
declare local or global variables. You can execute conditionals and loops. Remember
the -O option if you want to print the description of an Objective-C object.

m command—You’ll start out with the alias verb to create shortcuts for commonly
used commands; lldb comes with a set of aliases that map many gdb commands.
command verbs also let you load Python modules for more sophisticated commands
using the lldb module, which gives Python complete access to lldb’s internal
state; lldb will even give Python plugins access to the target program’s memory
space, so you can format the internal data of an object without having to run any of
the object’s methods.

There are many more command categories than I can list here, useful as they are:
commands for manipulating memory and registers, listing source code and disassembly,
and building a custom configuration. Look for LLDB Quick Start Guide in the
Documentation browser. In the console, the help command is your friend.

For daily use, however, most people find debugging a program through printing its
state from a command line to be like sucking the app through a straw. Xcode’s debugging
UI wraps most of these commands in a much more usable presentation that puts the whole

Tips 525

state of the program on-screen at a glance. You can even use features like summary
for-matters and Python-defined functions by putting them in user-, target-, or
directory-specific .lldbinit configuration files.

Tips
Here are a few quick tips to help you in debugging your apps.

m By default, breakpoints are private to you—it’s not likely that others on your team
are interested in how you’re working on your part of an app. But you can make a
breakpoint public. Right-click on it in the Breakpoint navigator (sixth tab), and
select Share Breakpoint. The breakpoint will move to a section marked
“(Shared),” and it will be visible to users with different user names.

m Breakpoints are also private to the projects in which they were set. By default, a
breakpoint applies only to the project that was active when it was set. If you share a
source file among projects in a workspace, the breakpoint will trigger only during
the run of its project’s target. If you want it to trigger regardless of the project,
right-click on it in the Breakpoint navigator, and select Move Breakpoint To
→User.

m The variables view takes up the left side of the Debug area (so long as you select the
left-side button from the two at the bottom-right corner of the Debug area. One
big improvement is the “Return Value” pseudo-variable. Often you will have a (not
very) complex statement like
labelString = masterObject.descriptionDictionary.objectForKey("name")

where -descriptionDictionary is a method you had defined. Step into
descriptionDictionary. Step out; the program counter is now just before the
call to objectForKey:. What dictionary will objectForKey: be sent to?
Previously, there was no way to know without digging around through the stack
pointer. Now, the “Return Value” line of the variables view will show you.

Note
As I write this, “Return Value” didn’t always show up or was easy to miss—at the
machine-code level, a returned value has a very short lifetime; the bits get assigned
or passed elsewhere, and the fact that they came from a function call is quickly
forgotten.

m Perhaps you want a console window, just a command-line interface to see your
printed output and type application input and debugger commands. Xcode 6’s
default appearance is discouraging, but it’s more adaptable than it looks.
Double-click any file in a navigator, or tear a tab away from the top of a project
window. Either way, you’ll have a separate window. Use the toolbar in that window
to show the Debug area and hide the Navigator area. Drag the bar at the top of the
Debug area to the top of the window,so the editor views disappear. Select View

526 Chapter 27 Debugging

→Hide Toolbar to make the toolbar go away. Use the visibility control at the
bottom-right corner of the window to make the variables and console view visible,
according to your taste.
You now have a console window. It’s not perfect: The title of the window will show
the name of whatever was in the window’s editor when you started. And, as always,
it’s fragile. If one of your behaviors changes the format of the front window, you’ve
lost your layout. If you close what you’re going to think of as your “project”
window, the “console” window will be the last surviving window, and when you
reopen the project, you’ll have only your console, and you’ll have to get busy with
the View menu to dig yourself out.

m You may find you have to authenticate yourself—possibly repeatedly—to enable the
debugger and Instruments to breach security to the extent of permitting you to
examine and change the state of another application (the one you’re trying to
debug). To silence the security dialogs, enter sudo DevToolsSecurity
-enable on the command line.

m The po (print-object) command in the lldb console will print the results of the
object’s description method (or debugDescription, which is usually the same
thing). The default implementation, from NSObject, just prints out the object’s
class and address, which is of little help. If, instead, you enter p
*objectVariableName, lldb will treat the object as a C struct and display all
of its instance variables.

Note
The print-object/po command is just an alias for lldb’s expression -O --
objectVariable.

Another strategy worth trying for objects responding to the Swift Printable
protocol is to enter expr println("object.description").

m I mentioned the watchpoint command family in the lldb command line, which
allows you to set a kind of breakpoint that triggers when a variable changes value,
not necessarily at any one line of your source. Watchpoints allow you to catch bugs
where a value changes, and you can’t determine how.
Xcode provides a graphical interface for watchpoints, but it’s not obvious. To set a
watchpoint, first set an unconditional breakpoint at the first moment the variable
comes into scope—you can’t work on the variable until lldb can identify it, and
the variable has to be in the current scope for lldb to do that. Look for the variable
you’re interested in in the variables pane. You may have to use the disclosure triangle
on an object to expose an instance variable, if that’s what you’re interested in.
Right-click on the variable’s row and select Watch “variableName”. The next
time something changes the value of the variable, Xcode will break in.

Tips 527

Watchpoints having no fixed location in the source code, there’s no marker in any
editor view that represents one. You can find watchpoints in a special category in
the Breakpoint navigator, where you can edit, deactivate, or delete it.
Watchpoints work on iOS devices as well as on Macs.

m When you’re debugging, the top bar of the Debug area, containing all the stepping
and other flow-control buttons, is visible at the bottom of the project window, even
if you’ve hidden the Debug area. At the left end of the bar is a control that expands
and retracts the Debug area. If anything has been printed in the console since you
last looked at the full Debug area, this control will highlight in blue.

m The Debug menu provides menu and key equivalents to all the flow-control
buttons in the debugger. Add/Remove Breakpoint at Current Line (\) and
Create Symbolic Breakpoint. . . (\) will be useful if you prefer to avoid
mousing as you type.

m The Step Over and Step Into commands (both in the Debug menu and in the
debugger bar) have two additional variants:
m Instruction advances the program counter to the next machine instruction in the

current function (Over) or the next instruction in the course of execution, even if
that means descending through a function call (Into). The variants appear in the
menu; clicking the buttons with the Control key pressed does the same thing.

m Thread is a little more subtle. Cocoa applications are threaded; there’s no way
around it. When you do a step-over or a step-into, not only does the thread you
see in the debugger advance, so does any other thread that was executing at the
same time. You have no control over what thread that would be, still less what
code it is executing or what effect it might have on the state you are debugging.
Step Over Thread and Step Into Thread freeze all other threads while you
advance the thread you’re debugging. Hold down Shift and Control while clicking
the buttons, or select the commands in the Debug menu, to get the effect.

m If you’re comfortable with using lldb from the command line, you can set symbolic
breakpoints that match a regular-expression pattern. Say you want to stop at entry to
any method whose selector begins with passer. You can do that by using the -r
option of the breakpoint set command:
(lldb) breakpoint set -r passer.*
Breakpoint created: 8: regex = 'passer.*', locations = 8,

resolved = 8

lldb says you just created breakpoint 8; breakpoint list lets you examine it:
(lldb) breakpoint list 8
8: regex = 'passer.*', locations = 8, resolved = 8

8.1: where = Mac Passer Rating`
-[LeagueDocument passerTable] + 16 ...

8.2: where = Mac Passer Rating`
-[LeagueDocument passerArrayController] + 21 ...

528 Chapter 27 Debugging

8.3: where = Mac Passer Rating`
-[PRGame passerRating] + 19 at PRGame.m:117 ...

...

It turns out the command set the breakpoint at eight locations (I’m showing only
three of them). lldb separates locations from the breakpoints that have effect at
them. You can clear the breakpoint from all eight locations by deleting it:
breakpoint delete 8.
Multi-location breakpoints don’t show up in Xcode’s Breakpoint navigator, nor in
editor margins.

m Sometimes breakpoints get set in your code with no indication in the Xcode UI. It’s
not supposed to happen, but it will happen to you. You can repair this by typing
breakpoint list at the lldb command line, finding the number of the
phantom breakpoint, and listing the numbers of the breakpoints you want to clear at
the end of a typed breakpoint delete command.

m Here’s something that isn’t in the menus, and I really wish it were: If you use Step
Into enough times in a debugging session, inevitably you will find you’ve stepped
into a function for which there is no debugging information, or no source code. If
you’re good enough to reliably navigate through such code on your own, you don’t
need this book.
lldb has a way out: Entering thread step-in -a true (-a is short for
--avoid-no-debug) at the lldb command line gets you past frames for which
there is no debugging information, so the debugger doesn’t come back to you until
it hits your code again.

m If you don’t remember to break on exceptions, you will inevitably find that you’ll
hit one, and you won’t get control of the debugger until the exception stack has
wound down to the run loop, or even your main function.
You can forestall this for OS X applications by setting the user default (preference)
NSApplicationShowExceptions to YES in the Terminal command line:
$ # Set it for an app whose ID is com.yourdomain.application.id
$ defaults write com.yourdomain.application.id\
> NSApplicationShowExceptions YES
$ # Set it for every app you run:
$ defaults write -g NSApplicationShowExceptions YES

Summary
Most of Xcode 6 Start to Finish is an examination of how to integrate Xcode’s debugger
into your daily workflow. That made this chapter into an opportunity to examine some
details that can guide you on the way from effectiveness to mastery.

First, we’d been leaving the debugging environment to the defaults Xcode’s project
templates provide. The defaults are useful, but there are details—environment variables,
location sensing, background processing, and cooperation with subtasks—that have to be

Summary 529

addressed as your application becomes more sophisticated. That’s the job of the Run
action in the Scheme editor.

Next, we explored the power of Xcode’s breakpoints. They aren’t just for halting the
application for you to poke around. You can set up your breakpoints so they automate the
way you gather information about how your app works. With conditions and counts and
prints, they can all but eliminate the need to change your code just to get a log of how the
app executes, or to flick the Continue button time after time while you wait for a critical
piece of data to arrive.

The power of breakpoints comes from the power of the lldb debugger. Xcode’s
debugger is a wrapper on lldb, and it’s a good one. But some day, you’ll need even more
control and insight. lldb’s command language is direct and elegant, and I showed you the
outlines and the philosophy that makes sense of its design.

The UI Debugging view is pretty—and useful. I showed you how to get a live
perspective on the visual presentation of your apps. Bugs in visualization are almost by
definition difficult to visualize; this will take you a long way to bringing more bugs under
control.

Finally, I passed along some small—but I hope, helpful—tricks that have helped me in
my long hours of debugging.

This page intentionally left blank

28
Snippets

X code 6 Start to Finish relies mostly on narrative to take you on a tour of using Xcode for
Cocoa development. I tried to cover as much as I could in the first three parts, and I
mopped up the remaining big topics in the fourth. That leaves some small topics—tricks
and traps—that didn’t fit anywhere else.

Tricks
General

m If you’re used to Unix or Linux development in C-family languages, you’re
accustomed to global macros like NDEBUG and DEBUG, and expect them to be set for
you.
If the argument to the standard C assert() macro is zero, it halts the program. If
NDEBUG is set, assert() does nothing, so you can publish code that may still
exhibit the bug you put in the assertion for, but at least it won’t crash.
The NS BLOCK ASSERTIONS macro does the same with Cocoa’s NSAssert family
of assertion macros; as do optimization levels for Swift assertions.
Many developers like to define a DEBUG macro to guard logging and assertion code.
It’s not a standard macro, but it’s very common.
Xcode’s project templates define DEBUG=1 for the Debug configuration; NDEBUG
and NS BLOCK ASSERTIONS are never set. An easy way to cut down on the size of
your released code is to open the Build Settings tab in the Target editor and
double-click the value for the Release version of the “Preprocessor Macros” setting.
You’ll get a table to enter the definitions; click the + button to add lines. Set
NDEBUG and NS BLOCK ASSERTIONS, and don’t set DEBUG at all. Remember to
include $(inherited) to preserve definitions made at other levels.

Note
Don’t prefix the symbols you put in “Preprocessor Macros” with -D, even though
that’s what would go into the clang command line; the setting does that.

532 Chapter 28 Snippets

Note
A shorthand for setting NS BLOCK ASSERTIONS is to set “Enable Foundation
Assertions” (ENABLE NS ASSERTIONS) in the Build Settings tab, setting Yes for
debugging builds, and No for release.

m The Editor menu is extremely variable—it adjusts to the type of file in the active
editor. If you’re sure there’s a feature for doing what you want, but you can’t find it
by typing in the field at the top of the Help menu, be sure to bring up a related file,
and click on it to adjust the Editor menu.

m In a complex project, an object in a XIB may take part, as provider or recipient, in
dozens of outlets, actions, and bindings, each with its own context-limited editor.
You don’t have to click through all of the editors; select the object, select the
Connection (sixth) inspector, and all of the connections will be there in one place.

m If you command-click on a system-provided symbol in a Swift file (including Swift
itself, in import Swift), you will see a fully commented interface file for the class
that defines the symbol, in Swift. There is no such file (at least not yet). It is an
on-the-fly translation of the Objective-C @interface file.
This is ingenious, but there is one omission: API that Apple has marked as
deprecated in the ObjC header doesn’t carry over into the translation. You can see
the point—Apple doesn’t want to encourage the use of deprecated API, nor to
maintain that API so it will be Swift-compatible.
But what happens when you use a method that was okay when you wrote it, but
was then deprecated? This shouldn’t happen with API Apple has released as final—at
least not for another year or two—but it does happen for preview software, and
during Apple’s process of settling on the methods that should carry over to Swift.
The nice thing about the .h files that have to accommodate legacy code is that the
deprecations are still there, usually with comments telling you what to use instead.
In the Swift interface, all you’re told is that the method you’re trying to use doesn’t
exist and never has.
If Swift gaslights you like this, open an Objective-C source file, File→Open
Quickly. . . (O), and begin typing the symbol you’re looking for. (You can’t do
this when a .swift file is showing—Xcode will force you into the Swift
interfaces.) When you see the header you need, double-click it, and you’ll see the
old API and (you hope) what you should use instead.

m You can’t subclass a Swift class in Objective-C. Ever. Not even if you declare
everything @objc and public. clang will tell you “Cannot subclass a class with
objc subclassing restricted attribute.” Every Swift class has that attribute. If
you define a class in Swift, you can extend it with an ObjC category, but its
subclasses are Swift forever.

m You may find some user-defined items at the bottom of the Build Settings table. In
general, this is how Xcode preserves settings it doesn’t recognize. What it recognizes
depends on the context: If, for instance, you have a project that doesn’t have any

Tricks 533

compilable files, Xcode won’t load its list of compiler options, and those options will
be shown as user-defined.
Older projects are another source of unrecognized settings. Some options are no
longer supported in Xcode 6. When you open a project, Xcode may even offer to
“modernize” your project by removing them. What you do about this is up to you.
Usually, it’s a good idea, but if you’re sharing the project file with others who are
building for older Xcodes or OSes, in which those settings might still be relevant,
you will want to preserve those settings for their benefit.

m One setting that I haven’t mentioned is $(inherited). Targets inherit build
settings from the project, which in turn inherits settings from Xcode’s defaults.
Sometimes you want to add to, not replace, a setting from the next-lower level. Use
$(inherited) to insert the inherited value in your setting.

m You’ve seen Xcode’s offer to incorporate directories as “folder references” when you
add files to a project. The Project navigator shows two different kinds of folder icon:
What you’ve seen throughout this book are “group” folders. Basically, these are
simply organizational tools, a way to gather files you’ve decided are related. Each file
in a group is itself a member of the project.
But sometimes adding a folder to a project means adding the folder itself. Suppose
that you were building an educational program about presidents of the United States
and wanted the Resources directory of the application to include a subdirectory
containing a picture of each president. Your intention is that the application copy
that directory in, with whatever it may contain—as new administrations or
replacement portraits come in—not the particular files.
In such a case, when you add the portrait folder, you check Create folder
references for any added folders in the add-files sheet. The folder you dragged
in will appear in the list in the same blue color as folders in the Finder, not in the
yellow of Xcode’s file-grouping folders. The folder reference can then be dragged
into the Copy Bundle Resources build phase; the folder and its contents, whatever
they might be at build time, will be copied into the product’s Resources directory.

m In Chapter 4, “Active Debugging,” I mentioned how OS X usually supersedes the
default debugger-control keys (the F keys) for hardware control. You aren’t stuck
with Xcode’s choices. The Key Bindings panel of the Preferences window lists all
of the editor functions and application commands, and allows you to set or change
the key equivalents for any of them. The default set can’t be changed, but click the
+ button to create a customizable copy.
The Conflicts button in the key table’s header is particularly useful. It will show
you all of the Xcode assignments that are superseded by the system or by other key
assignments in Xcode.

534 Chapter 28 Snippets

Note
The number of text operations available in Xcode is staggering; the list in the Key
Bindings table is worth a look. You’ll find useful editing actions, like
move-by-subword (underscores and internal caps) (

<

Left- or Right-Arrow), you’d
never have known about.

m I’ve made much of the fact that the Project navigator is not a directory or filesystem
tool; that it reflects the way you want to structure the project, and not the placement
of files in the filesystem’s directories. This isn’t quite true.
If an Xcode project’s file references were arbitrary, they’d have to be absolute paths.
That would mean that all of the files would be identified by a path that ran through
your home directory. Suppose you were sharing the project with another developer.
The project and its files would be in her directory, and the reference to your home
directory would be wrong.
The solution would seem to be to keep the path relative to the project file—and
indeed that is one of the options. It is not, however, the option Xcode uses by
default. The default is Relative to Group, as shown in the Location popup in the
File inspector. There are other choices, such as relative-to-build-products,
relative-to-Xcode’s internal Developer and SDK directories, and, yes, the absolute
path. If you have defined source trees, you can make the path relative to one of
those, too.
But what does “relative to group” mean? If you click on a group folder, you’ll see in
the File inspector that groups, too, have paths (which can, in turn, be absolute or
relative). Groups still aren’t directories: More than one group can refer to the same
file directory, and not all members of a group have to be in the same place.
Putting a filesystem location on a group has the advantage that you can have two
directories in your filesystem containing files that have the same names. Maybe the
one contains live classes, and the other “mocks” for testing. Switching between the
two would then be a simple matter of changing the path of the corresponding group.
If the group’s directory does not enclose a file in the group, that file’s path will be
stored as project relative.

m Renaming is another file-management service the Project navigator provides. It uses
the same gestures as in the Finder: To rename a file or group, click once to select it,
then again a couple of seconds later. The item becomes editable. Or, select the item
and press Return.
If the project is under version control, Xcode will do the necessary work to ensure
that the change is noted in the repository.

m Suppose you’ve written something like this in an Objective-C header file:
extern NSString * const PRPFirstNameKey;
extern NSString * const PRPLastNameKey;
extern NSString * const PRPCurrentTeamKey;

Tricks 535

and you want to add the corresponding declarations to an implementation file. The
first thing you would naturally do is to paste the declarations from the header. Stop
there. Hold down the Option key, and notice that the mouse cursor has changed to
crosshairs. Drag from the first letter of the first extern to the space after the
last one.
You have a column selection. Press Delete. The externs are gone.
This is an editor feature, and isn’t specific to Objective-C.
It would be nice if you could type into the column and have your text appear on
each line; or copy a column, click elsewhere in the text, paste, and have the column
content inserted into the insertion point and the lines below. TextMate does this.
Xcode does not.

m By default, the Find navigator does a straightforward search across all the text files in
the project. As you saw in Chapter 7, “Version Control,” global search has some
simple options, readily understood. There are some deeper features:
m You don’t have to search just for text. The cascading popup menus at the top of

the Find navigator offer not just text and regular expressions, but References
(only the uses of the symbol you entered) and Definitions (definition of a
method, function, or global variable). Doing a search for Find→Definitions
→Matching stat (Ignoring Case) turns up eight matches for the StatView
class, its statLayer let variable; the StatsLabel enum constant in
GameListController.swift; and the five @IBOutlets for the StatViews
in TodayViewController. No uses or other substrings, just definitions.

m Below the left end of the global search field is a label that says something
innocuous like In Project or In Workspace. This is a button that slides in an
outline of the groups in the project (and of the projects in a workspace). If you’ve
been disciplined about keeping all of the files for a subsystem tucked away each in
their groups, you have a great way to narrow your searches by subsystem.

m There is another category in the scope outline, “Search Scopes,” which starts out
empty except for a placeholder named New Scope. . . . Clicking it triggers a
popover for you to name and define a custom search scope. In Figure 28.1, a
“Property Lists” scope is defined as files that are included in the workspace and
have the plist extension. If I search for text containing wt9t in that scope, I’ll
be shown only the bundle and document IDs in my Info.plist precursors.

Code-Folding Ribbon
When I had you abate some Xcode features in Chapter 2, “Kicking the Tires,” you went
to the Text Editing panel of the Preferences window and turned off Show: Code
folding ribbon. The feature is useful, but “noisy”—with the ribbon visible, mousing
into the left margin of the editor puts transient highlights in the content.

Many text editors implement folding: You click on a control, usually in the margin, or
use a menu command or key equivalent, and the editor collapses the selected block of text.

536 Chapter 28 Snippets

Figure 28.1 Clicking the scope button below the global-search field opens a list of potential
search scopes and an affordance for defining scopes of your own— in this case, property-list files

within the workspace.

A possibly long stretch of code is elided to a single line, and you’re able to see the
higher-level structure of a function.

The code-folding ribbon does the same thing: Turning it on adds a stripe between the
gutter and the text area of the editor. The deeper the text next to the ribbon is nested, the
darker the ribbon gets. When you mouse into the ribbon, Xcode highlights the text to
show the extent of the code block containing that line. Clicking the ribbon collapses that
block. See Figure 28.2.

The collapsed text is replaced by a yellow bubble with an ellipsis in it. Double-clicking
the bubble or clicking the disclosure triangle in the ribbon expands the text. You can find
menu commands for code folding, and their key equivalents, in the submenu at
Editor→Code Folding.

The Assistant Editor
You’ve done a lot with the Assistant editor, but let me cover the basics all in one place:
The Assistant editor is shown when you click the middle segment of the Editor control in
the Workspace window’s toolbar; when you press Return, or when you navigate to a
file while holding down the Option key.

m The wow feature of the Assistant editor is that it can track what file is displayed in
the primary editor and show a counterpart, like the .h file for a .c file. If there is
more than one counterpart—for instance, when there is a second header file for a
private interface—the Counterpart assistant will rotate among the three when you
click the arrow buttons in the assistant’s jump bar or press

<

Up- or
Down-Arrow.
The options for autofilling the Assistant editor go beyond counterparts: You can
direct the assistant to related files in the class hierarchy, related Interface Builder files,
files that include or are included by the primary editor, and processed content, like
assembly and disassembly. As I mentioned in Chapter 5, “Compilation,” the assistant
can display the callers or callees of a selected function; and it can show the test
methods that exercise the selected function.

Tricks 537

Figure 28.2 When enabled in the Text Editing panel of the Preferences window, the code-folding
ribbon appears as a strip at the left margin of the editor views. It shows progressively darker bands
for each level of nesting in the code. Hovering the mouse pointer over the ribbon (top) highlights the
lines at that level of nesting (or deeper). (middle) Moving to a deeper level dims the areas outside

the highlighted scope. (bottom) Clicking the ribbon collapses the highlighted scope; its contents are
replaced with an ellipsis bubble, and a disclosure triangle appears in the ribbon next to it.

m The Option-key gesture to put a destination file into the assistant pane can be
modified. The Navigation panel of the Preferences window lets you customize
how Xcode responds to navigational gestures:
m Simple click navigation can go to the primary editor (the big one on the left) or

whatever editor you’re using at the moment.
m Adding the Option key can send the selected file to the Assistant editor, an

additional assistant pane, a new tab, or a new window.
m Double-clicking can direct the file to a new window or a new tab.

538 Chapter 28 Snippets

m Further, if you navigate with the Option and Shift keys, Xcode will offer you a
heads-up display offering you a graphical picker for placing the file in an existing
or a new view. See Figure 28.3.

m You can have more than one Assistant view; there’s a + button at the top-right
corner of the view to add another. The x button next to it, of course, closes the
pane.

m You aren’t stuck with the side-by-side arrangement of the primary and Assistant
editors. The View→Assistant Editor submenu offers you a choice of dividing the
primary and Assistant areas vertically or horizontally, or cascading all editors in
coequal rows or columns. Putting the assistant below the main editor makes
dragging outlet and action connections between Interface Builder and source files
much easier.

Instruments and Debugging
m It bears repeating: Apple keeps two technical notes, “Mac OS X Debugging Magic

(TN2124),” and “iOS Debugging Magic (TN2239),” continually updated with the
latest techniques for making debugging easier. Search for Debugging Magic in the
Documentation browser. It’s worth 20 IQ points.

m The Leaks and Allocations instruments take care of most memory problems, but not
all of them. Sometimes, unused objects persist in memory, but because they have
residual references, they aren’t visible as leaks. Allocations has a button in its options
area titled Mark Heap. Get your application started up and stable, and click Mark
Heap. Then do something that will consume memory, but should return it to its

Figure 28.3 The Navigation Chooser appears when you select a file with the Option and Shift
keys depressed. It is a graphical browser that lets you choose where the file is to be displayed. The

menu equivalent is Navigate→Open in. . . (<). A new window appears to the left in Cover
Flow; placeholders for existing tabs, and a new one, run across the top of the presentation.

Tricks 539

original state—like opening a document, editing it, and closing it. Do it repeatedly.
Mark the heap again.
The heapshot-analysis table will show you all of the objects that were created, but
not deallocated, at the end of the process. Not all will be leftovers—objects can
legitimately accumulate in caches—but you should satisfy yourself that they are what
they should be.
Apple engineer Bill Bumgarner has an excellent tutorial on this. Search the web for
his name and “heapshot.”

Building
m Not an Xcode tip, but something every programmer should take to heart: Compiler

warnings are there for a reason. clang and swiftc are very, very good at catching
common programming errors and violations of the coding conventions on which
Cocoa relies. Many of the questions raised on support forums (see Appendix B,
“Resources”) arise from novices ignoring warnings. Fix every warning. Then run
the analyzer (Product→Analyze, B) and fix those, too.

m Xcode assumes that products built with the Run action (or Product→Build
(B), which is a synonym for Build for Running) are debugging articles and not
fit for release to other users; and that Archive builds, which are fit for release, are
comparatively rare. Xcode therefore does not take much trouble to make build
product files easy to find.
For archive builds, open the Archives organizer (Window→Organizer, second
tab), select the archive, and click Export. . . ; you will have several options that will
save an executable. The simplest are Export as a Mac Application or Save for
iOS App Store Deployment.
For run builds, do the build, find the product in the Products group in the Project
navigator, and choose Show in Finder in the contextual menu.

m In Chapter 25, “The Xcode Build System,” I said there is no way to change the set
of files in a target, so if you have debug and release versions of a file, you can’t switch
between them in the Debug and Release configurations of your target. As applied to
libraries, this isn’t strictly true. The trick is to take the library out of the Link Binary
With Libraries file, which will keep the build system from adding it to the linker
command; and instead pass the name of the desired library in the “Other Linker
Flags” (OTHER LDFLAGS) build setting.
In the Build Settings tab of the Target editor, search for other to find the setting.
Open the disclosure triangle next to it, double-click the value for the Debug
configuration, and click the + button to add an item to the list. Add the library
(suppose it’s named libmyname debug.a) by typing -lmyname debug into the
new row. Do the same, for the release version of the library, in the Release item.

540 Chapter 28 Snippets

At build time, those flags will be added to the command lines for linking, with
either the name of the debug version or the release version, depending on the
configuration.

m The linker has strong opinions on what libraries it should link into an executable. In
particular, for OS X builds, it will always link dynamic libraries (.dylib) in
preference to static libraries (.a). You can override this by making sure the full path
to the .a appears in the link command line. Just add the full path to the library,
including the suffix and the lib prefix, to the “Other Linker Flags”
(OTHER LDFLAGS) build setting. You can reduce the dependency on the file paths
on your machine by using the BUILT PRODUCTS DIR build variable instead of the
directory path.

m The optimization-setting flag for clang—C-family languages, including
Objective-C—goes in a progression from -O0 (none at all) to -O3 (everything). The
temptation, when driving for the sleekest, whizziest application, is to turn the knob
up full and let the optimizer fly. And yet the standard Release setting for
optimization in Xcode is -Os—optimize for size. What’s going on?
The problem is that -O3 optimization can dramatically increase the size of the
generated code: llvm will autonomously convert function calls to in-line code, so
that the content of those functions will be repeated throughout the application. It
will turn counted for loops into n iterations of the loop body, one after the other,
because it’s quicker to run straight through four copies of the same code than to
keep a counter, test it against four, and conditionally branch.
All of these optimizations are ingenious, but they can be short-sighted. Modern
processors are much faster than the main memory buses that serve them; waiting for
loads of data or program instructions can stall a processor for a substantial portion of
time. Therefore, very fast cache memory is put between the processor and RAM, to
make the instruction stream available at a pace that keeps up with the CPU. But
cache sizes are limited. An application that has been doubled in size by unrolling and
inlining everywhere will overrun the cache and hit RAM to fetch instructions at
least twice as often. In the usual case, “faster” code runs more slowly than smaller
code. Keep the Release configuration at -Os.

Note
Swift’s optimization options are different, running from -Onone to -Ofast to
-Ounchecked. The Swift compiler has no legacy of uncached CPUs to
accommodate; -Ofast is roughly equivalent to -Os in clang, plus runtime safety
checks.

m For Objective-C, clang is diligent about policing memory-management practices
and API deprecations. Use a deprecated method, pass a @selector with
retain/release semantics clang can’t guess, or use a string variable for a format
string, and you will be warned.

Traps 541

Fine, but sometimes you know what you’re doing, and you don’t want to be harried
by warnings you have soberly decided are nothing to worry about. clang selects the
warnings it gives through command-line flags like -Wdeprecated for deprecated
methods.

m You could suppress the deprecation warning for the whole target by searching
for it in the build settings and turning it off. You probably don’t want to do
this: You’re doing this upon sober reflection on the warnings you got, right?
You’ll want to know when other deprecations arise that you do care about.

m You can turn the warning off for just one file. Find it in the table in the
Compile Sources build phase, and double-click on its row. You’ll get a
popover in which you can enter compiler flags for just that file—in this case
-Wno-deprecated. This is finer-grained, but usually unwise.

m You can isolate the lines that concern you: Bracket it with #pragmas that save
clang’s warning state, tell it to ignore deprecations, and then restore the
warning after the problem line:
#pragma mark -UISearchDisplayContollerDelegate
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wdeprecated"

// UISearchDisplayController is deprecated in iOS 8.
// Low priority; won't fix for now.
-(BOOL)searchDisplayController:

(UISearchDisplayController *)controller
shouldReloadTableForSearchString:(NSString *)searchString

{
// ...

}
#pragma diagnostic pop

Traps
Development is hard. Therefore Xcode is hard, both because it has to do a lot, and
because any application that has to do a lot is subject to bugs and annoyances. Here are a
few things to watch out for.

m In most OS X apps that edit documents, the title bar includes a “proxy icon” that
stands for the document file. You can drag and drop it with the same effect as if you
had dragged the document icon from the Finder. If you control- or command-click
in the title, a menu of the directory chain to the document drops down. Selecting an
item opens it in the Finder.
Xcode moves its entire toolbar into the title-bar space, so there’s no room for the
filename or proxy icon. When a file is displayed in one of the editor views, its item
in the jump bar behaves just as the proxy and title do in regular windows.

542 Chapter 28 Snippets

m When you remove an @IBOutlet from your source, clang and Swift react
immediately, flagging errors and warnings on all references in your project—except
for outlet connections in your XIBs and storyboards. You won’t hear of it until the
NIB loader starts throwing exceptions that say the target object “is not key-value
coding compliant” for the missing outlet name. As soon as you change an outlet (or
an @IBAction), audit the related objects in Interface Builder. Most of these will be
in File’s Owner or the view controller; select it and look in the Connection (sixth)
inspector for orphaned connections.
If you’re just changing the name of an Objective-C outlet, use Edit→Refactor
→Rename. . . . The refactoring mechanism will change the IB documents
accurately and safely.

m In the name of simplicity, Xcode presents a bare search field for in-document search.
There are options to be had. The magnifying-glass icon at the left end of the search
field anchors a drop-down menu, and the first item is Show Find Options. . . .
Selecting it gets you a popover presenting options for case sensitivity; prefix, suffix,
partial, or whole-word matching for text; or regular expressions.
Clicking anywhere else—such as to execute the search—makes the popover
disappear. There is now no visible indication of what the next search will do. Your
selections will persist, and you are expected either to remember them or to click on
the tiny magnifying glass and select an item in a miniaturized menu. If your in-file
searches yield surprising results, check the settings.
If the results are surprising, but you don’t know they are (if you knew what was in
the file, you wouldn’t need to search it), and you ship a bug because of it, that’s too
bad. But you got to use an uncluttered search field.

m Traditional regular-expression engines use & in replacement fields to stand for the
full string that matched the search expression. Xcode uses $0 instead.

m One big gap in Xcode’s version-control support is tags. When your work comes to a
significant milestone, like a version release, you’ll want to mark the revision with a
name that will allow you to return the project to that point. All version-control
systems allow for this. Xcode won’t set, display, or revert to tags. You’ll have to go to
the command line and use the git tag or svn cp subcommands.

m If you look in the AppleScript Editor application for the Xcode dictionary, you’ll see
what purports to be an extensive scripting interface that you could use, for instance,
to create and configure Xcode projects programmatically. It might disquiet you to
see many references to Xcode 3. Experiment, if you’d like—some of the commands
perform as promised. Most do not.

m However: You can script Xcode for things like text transformations—say, to generate
documentation comments from a function declaration. OS X, and NeXTStep
before it, features services, filters and utilities you can find in the Services submenu
of an application menu, or in contextual menus. Services are sensitive to the current

Traps 543

selection—OS X knows to offer a text-based service only when text is
selected—and can replace the selection with the output of the service tool.
The Automator feature of OS X produces applets from chains of scripts and services;
you can use Automator to create a service. The editor is in /Applications
/Utilities. Create a document, and select the Service type. Browse the Library
sidebar to see the actions the system and your applications offer you.
An example: Swift, like C++, achieves its symbol-overloading and namespacing
features by identifying objects internally with names derived from a full description
of their scope and attributes. The compiled binaries are full of identifiers like
TFC17Mac Passer Rating20LeagueViewControllerm19teamArrayCon-
trollerGSQCSo17NSArrayController .

m Set the context to Service receives selected (text) in (any application).
m Drag the “Run Shell Script” tile from the Library list.
m Set Pass input: (to stdin), so the selected text will go as an input stream into

the script.
m Enter xcrun swift-demangle -compact as the script.
m Drag the “Copy to Clipboard” tile under the script tile, so that the connectors

mate.
m Save the Service under some convenient name like Demangle Swift
Symbol (there will be no file location associated with it—it goes into a
directory reserved for Automator services).

m Quit and reopen any application (such as Xcode) you want to use the service.
m Select the symbol, and Xcode→Services→Demangle Swift Symbol (or

the same, from the Services submenu of the contextual menu).
m Paste. The result should be Mac Passer Rating.LeagueViewControl-
ler.teamArrayController.materializeForSet :
ObjectiveC.NSArrayController!.

m You can give your action a system-wide hot key in the Keyboard panel of
System Preferences.

m Most of the targets you’ll build with Xcode will be bundles that include an
Info.plist that the build system will process and install in the final product. By
misadventure, this file might find its way into the target’s Copy Bundle Resources
build phase. That conflicts with the build system. Xcode will warn you if it sees this
happening in a build.

m In general, source files should not end up in the Copy Bundle Resources phase.
This can happen if you check the box that assigns a C-family .h file to a target. This
isn’t necessary to build the product; the compiler will find and interpret the header
on its own. Xcode interprets your adding the target membership as meaning you
want to treat the file as a bundle resource.

544 Chapter 28 Snippets

m You can’t have a XIB or storyboard open in more than one editor. Interface Builder
products are literal archives of Cocoa objects. Concurrent access to an object
network is a tremendous headache, and I don’t blame Apple for allocating its
resources elsewhere.

m When you drag an NSTextView into a view in Interface Builder, you’re really
dragging the NSTextView inside an NSScrollView and the clipping view that
comes between them. (You saw the same thing in Chapter 20, “Bindings: Wiring an
OS X Application” with NSTableView.) If you attempt to connect an outlet to the
text view, you may end up connecting to the scroll view (or to nothing, if your
outlet is typed to accept only a text view).
The problem is that the scroll view can be larger than the text view; the text view is
only as tall as the text it contains. Add some “Lorem ipsum” text to the view, drag
the connector to that, and you’ll connect to the text view.

m Being a dynamic language, the Objective-C compiler allows any object to receive
any message. Implementations may be completely unrelated; all the compiler has to
do is load the receiver, the selector, and the parameters onto the stack and call for
the message to be dispatched.

Note
Swift’s AnyObject type affords the same flexibility, but it won’t let you send the
object a message until you cast it to a class or prototype that implements the
method—which pins down the return type, and eliminates this problem.

This works well, but the ideal breaks down with the return value: It might be an
integer, a float, a pointer, or a struct, and depending on the processor architecture,
those results may be stored in completely different locations. The compiler has to
generate the instructions to take the result from the correct place.
Things are still fine if all implementations of methods with a given signature return
the same result type; so long as the compiler has seen some declaration of the
method, it can proceed. Even if the compiler has seen declarations of different
return types, it can still do the right thing if the receiving object’s class is known.
Where it breaks down is when the receiver is declared to be id or Class, and so
provides no indication of what methods it implements or how they return. In the
past, the compiler would silently guess what return type you expect, an abundant
source of obscure bugs. clang now demands that you use a cast on the receiver of
the method call to remove the ambiguity.

m HFS+, the recommended filesystem for OS X, is case preserving—files will get
names in the same case as you provide—but case insensitive: Xcode.txt,
XCODE.TXT, and xcode.txt all refer to the same file. Most other Unix variants are
case sensitive, so if you import code, be on the lookout for the assumption that the
following two lines refer to different files:
#include "polishShoes.h"
#include "PolishShoes.h"

Traps 545

By the same token, make sure that your code uses filenames with consistent letter
casing. Even if you don’t expect to port your work, HFS+ isn’t the only filesystem a
Macintosh application sees, and on iOS, HFS+ is case sensitive. But: The iOS
Simulator runs on the OS X filesystem. On the “iOS” that runs in the simulator,
HFS+ is not case sensitive.

This page intentionally left blank

Part V
Appendixes

Appendix A Some Build Variables

Appendix B Resources

This page intentionally left blank

A
Some Build Variables

This appendix offers a brief (though you may not believe it) list of the major build
variables that control the Xcode build system. Build variables determine compiler flags,
search paths, installation behavior, and essential information like product names. A
comprehensive explanation of Xcode’s build variables can be found in the Documentation
browser by searching for Build Setting Reference.

You can see all the build variables that are available to Run Script build phases by
creating a phase that consists of only one line like echo, then checking Show
environment variables in build log. Do a build, find the build at the top of the Log
navigator (eighth tab), and select the All and All Messages filters. Click the script phase,
and then on the lines-of-text button that appears at the right end of the row.

You’ll find there are nearly 350 variables. This appendix lists the more useful ones. For
the purposes of example, the conditions of the build are those shown in Table A.1.

Table A.1 Build Environment for the Settings Examples

Project PasserRating

Target Passer Rating Target

Product Passer Rating.app

Scheme Passer Rating

Configuration Debug

SDK iOS 8.2

Xcode 6.2

Build OS 10.10.2

User fritza

550 Appendix A Some Build Variables

Note
I’ve chosen distinct names so you can identify the origins of the automatically set
variables. The templates start projects with the main target, scheme, and product name
having the same values. You wouldn’t ordinarily change that, but it is possible. I did leave
the target and build scheme names the same, because the build system never sees
scheme names. Schemes merely organize build configurations for targets; the
configurations and their settings are what matter to the build system, not how they were
selected.

Some of these settings have no corresponding interface in the Build Settings tabs of
the Target or Project editor. You can set these—if they are not read-only—by selecting
Editor→Add Build Setting→Add User-Defined Setting. Xcode will add a new
line to the list, and you can enter the setting’s name in the Setting column and the value
under the level at which you want to set it. Boolean values should be entered as YES or NO.

The authoritative name for a build variable is its “setting name”—the name of the
actual build variable, as visible in environment variables and substitutable into other
settings and Info.plist expansions. You can find the corresponding entries in a Build
Settings tab by typing the setting name, plain-language name, or any part of the
long-form description into the tab’s search field.

Note
Settings can be made conditional according to what processor architecture the product is
being built for or what SDK is being used. See Chapter 25, “The Xcode Build System,” for
details.

The Build Settings tab can display setting names instead of the plain-language “setting
titles.” The Show Setting Names/Show Setting Titles item in the Editor menu
toggles between the “real” names and the descriptive titles.

Similarly, you can control how setting values are displayed. A setting may be defined in
terms of another setting, as when you specify an installation directory by $(HOME)
/Applications. By default, Xcode displays embedded build variables by expanding
them, because the build system will see only the fully expanded strings. The Show
Definitions/Show Values (for the unexpanded value expressions) item in the Editor
menu changes the display so that variable references are shown either literally
(Definitions) or as interpreted (Values).

Useful Build Variables
With no further ado, here is a list of selected build variables. I’ve grouped them by general
function, and then by a rough general-to-specific order within those groups.

Some of these variables appear to be obsolete: Apple no longer documents them, and
the target templates no longer use them by default. The build system still sets them as
environment variables, presumably to preserve compatibility with old run-script build
phases, but the best bet is not to use them for new development.

Useful Build Variables 551

Others are obviously used, but Xcode does not expose predefined descriptions or
defaults for them. Often, these settings must have values that are strictly derived from
other settings, and overriding them would break the build.

Environment
These are read-only variables that you can use in scripts or to build up other build settings.

m PROJECT—The name of the Xcode project, without extension. Unless you
override it, PROJECT NAME follows this setting.
(PasserRating)

m ACTION—The name of the xcodebuild action that was entered in the command
line or generated by Xcode to match the Product action that triggered the build.
(build)

m PROJECT NAME—The name of the project that contains the target that is being
built. Most intermediate and project paths go through a directory with this name.

m PLATFORM NAME—The name of the target platform, macosx, iphonesimulator,
or iphoneos. This setting appears to be obsolete; Apple no longer documents it.
(macosx)

m PRODUCT NAME—The name of the target package and binary, unadorned by
prefixes, suffixes, or extensions.
(Passer Rating)

m FULL PRODUCT NAME—The file or directory name of the target package.
(Passer Rating.app)

m PRODUCT TYPE—A reverse-DNS-style identifier for the kind of product the target
produces. This defines the endpoint in the build process, from which the build
system infers all the steps necessary to generate the product.
(com.apple.product-type.application)

m HOME—The path to your home directory, just as it would be in bash.
m USER—The user name of the person doing the build. There is a corresponding UID

variable for the numeric user ID.
m GROUP—The group name of the person doing the build. There is a corresponding
GID variable for the numeric group ID.

m PATH—The standard Unix PATH environment variable, specifying the order in
which directories should be searched when Unix commands are invoked.
(various paths to Xcode’s toolchain and shadow bin and libexec directories;
followed by the standard directories in the general filesystem)

m MAC OS X VERSION ACTUAL—A six-digit number designating the version of OS X
on which the build is being done. The first two digits will be 10, the next 10, and
the last, the minor version. The format changed with Yosemite; before, the setting
was 10, followed by one each for the major and minor versions.
(101002)

552 Appendix A Some Build Variables

m MAC OS X VERSION MAJOR—A six-digit number that is the same as MAC OS X
VERSION ACTUAL, but with the minor set to zero.
(101000)

m MAC OS X VERSION MINOR—A four-digit number that designates the current OS
version, omitting the leading 10. In Yosemite, the first two digits will always be 10;
the second two are the minor version.
(1002)

m MAC OS X PRODUCT BUILD VERSION—The build number for the current OS.
(14Cnnn)

m XCODE VERSION ACTUAL
(0620),
XCODE VERSION MAJOR
(0600),
and XCODE VERSION MINOR
(0620)–This is the same version information as in the MAC OS X VERSION settings,
but for Xcode itself.

Code Signing
These settings control provisioning issues, including the selection of the provisioning
profile and the signing identity.

m AD HOC CODE SIGNING ALLOWED—Controls whether an ad hoc distribution
profile will be accepted for this build.
(NO)

m CODE SIGN IDENTITY—The signing identity to be used for the build. This may be
in a reduced form such as iPhone Developer or iPhone Distribution. If so,
the build system will consult the provisioning profile for the full common name of
the required certificate.
You should not explicitly set the identity if you can avoid it: Otherwise, team
members will force their own certificates, and then check the project into source
control. The other team members get project files that require a certificate they
don’t have. This sets off an arms race in which developers compete to jam their own
certificates into the common project file.
Use the generic identities. Xcode will figure it out. If it can’t, you have a
provisioning problem that will probably get worse when you start building for
distribution. It’s hard to fix, but you have to do it.
(iPhone Developer)

m CODE SIGNING ALLOWED—Signify whether the code-signing step will be
performed at all. The “allowed” switch must be YES before “required” is even
considered.
(NO)

Useful Build Variables 553

m CODE SIGN ENTITLEMENTS—The path to the .entitlements plist claiming
permission to use certain privileged services, relative to the project folder.
(Passer Rating Target/Passer Rating.entitlements)

m CODE SIGN RESOURCE RULES PATH—The path to a property list that directs
codesign to ignore some files in the product package, so as not to freeze files that
have to be modified after signing.

m OTHER CODE SIGN FLAGS—Identifies any additional command-line flags you need
to pass to codesign. You usually don’t want to change Xcode’s choice of settings
for iOS builds, or for Mac builds destined for Developer ID or the Mac App Store.

m PROVISIONING PROFILE—This was the UUID of a valid provisioning profile that
matches the bundle ID set in Info.plist. New targets will not set this; Xcode
will find the correct profile on the basis of the application ID and the signing
identity you choose. There’s no point in setting the profile independently, as
anything other than the one that matches is in error.

Locations
Source Locations

m PROJECT DIR—The directory that contains the project file.
(/Users/fritza/Desktop/PasserRating)

m PROJECT FILE PATH—The full path to the project file.
(/Users/fritza/Desktop/PasserRating/PasserRating.xcodeproj)

m SDKROOT—The root of the tree in which to search for system headers and libraries;
this is simple for OS X SDKs, but it gets more involved once you get into the
platform and OS options in the iOS SDK. This should be the same as SDK DIR, and
the last component should be the same as the base name in SDK NAME.
(/Applications/Xcode.app/.../iPhoneSimulator8.2.sdk)

m SRCROOT—The folder containing the source code for the project, usually the
project document’s directory. SOURCE ROOT is a synonym.
(/Users/fritza/Desktop/PasserRating)

Destination Locations
These are the directories to which object files, derived files, and products are directed in
the course of a build. Many of these are somewhere in the “derived-data” directory for
your project. You can set that directory using the File→Project (or Workspace)
Settings. . . command, in the Build tab, but typically you’ll use the default directory,
within the Library folder of your home directory. The path to the default directory goes
deep and involves a unique identifier string, so it’s not practical for me to spell out in this
list; you can depend on its beginning with the name of your target. If you see a path
beginning with /Users/fritza/Library, you can assume that it’s the derived-data
directory.

The whole idea of the derived-data directory is to put all the files—they are many and
large—that Xcode generates in managing and building your projects, all in one place.

554 Appendix A Some Build Variables

These files are “derived” in that they contain only information that can be reconstructed
from your source files and settings. You do not want to put derived files in your project directory
tree if you intend to share it or put it under revision control. If you must put the
derived-data directory in your project directory, make sure to give it a name you can
match in the ignored-files patterns in your Subversion or Git configuration.

If you want to inspect the derived-data directory, open the Organizer (Window
→Organizer), and select the Projects panel. Find your project in the list on the left, and
see the panel at the top of the detail view. The full path to the directory will be shown
(middle-truncated if the window is too narrow). Next to it will be a small arrow button
that will show the directory in the Finder.

m OBJROOT—The folder containing, perhaps indirectly, the intermediate products,
such as object files, of the build. Unless you override the location for intermediate
files, this folder will be buried deep in your user Library directory.
(/Users/fritza/Library/Developer/Xcode/DerivedData/ /Passer
Rating-. . . /Intermediates)

m SYMROOT—The container for folders that receive symbol-rich, meaning
not-yet-stripped, versions of the product. This, too, is buried in your own Library
directory.
(/Users/fritza/Library/Developer/-. . . /ArchiveIntermediates/
/Passer Rating/-BuildProductsPath)

m DSTROOT—The directory into which the product will be “installed.” For iOS
targets, this is simply a holding directory. For OS X, it is usually in the /tmp tree,
and the project will make and populate subdirectories in DSTROOT as though it were
the root of your filesystem. It is relevant only in install builds. Nowadays, it’s
useful only if you’re building and testing system or kernel software.
(/tmp/Passer Rating.dst)

m BUILT PRODUCTS DIR—The full path to the directory that receives either every
product of the project or, if the products are scattered, symbolic links to every
product. A script can therefore depend on reaching all of the products through this
path. By default, $(SYMROOT)/$(CONFIGURATION), and therefore deep within
your Library directory. CONFIGURATION BUILD DIR is a synonym.
(/Users/fritza/Library/Developer/-Xcode/DerivedData/
Passer Rating-. . . /Build/Products/Debug-iphonesimulator)

m TARGET BUILD DIR—The directory into which the product of the current target is
built.
(/Users/fritza/Library/Developer/-Xcode/DerivedData/
Passer Rating-. . . /Build/Products/Debug-iphonesimulator)

m DERIVED FILE DIR—The directory that receives intermediate source files
generated in the course of a build, such as the sources generated by the bison
parser generator. This variable is paralleled by DERIVED FILES DIR and
DERIVED SOURCES DIR. If you have a more general need for a place to put a

Useful Build Variables 555

temporary file, consult the Xcode documentation for PROJECT TEMP DIR or
TARGET TEMP DIR.
(/Users/fritza/Library/Developer/. . . /Build/Intermediates/
Passer Rating.build/Debug-iphonesimulator/Passer
Rating.build/DerivedSources)

m OBJECT FILE DIR—The directory containing subdirectories, one per architecture,
containing compiled object files. It’s in the derived-data folder, which by default is
deep within your Library directory.
(/Users/fritza/Library/Developer/. . . /Build/Intermediates/
Passer Rating Target.build/Debug-iphonesimulator/Passer
Rating.build)

m SKIP INSTALL—If NO, the build system will take all actions necessary to distribute
the build products in their final directory locations. In practice, there is no actual
installation; the “installation” tree is confined to an Xcode archive package.
Exporting the archive will merge the tree into whatever root you choose.
If you want to create a stand-alone framework, you must set SKIPINSTALL to NO;
otherwise the framework will exist only as a partially built temporary in the
derived-products directory, for the use of other products while they are in
development.
(NO)

Bundle Locations
m If the product is a bundle, like an application or a framework, WRAPPER NAME is the

base name of the bundle directory.
(Passer Rating)

m WRAPPER EXTENSION and WRAPPER SUFFIX—The extension and extension-with-
dot for the bundle directory, if the target is a bundle.
(app and .app)

m If SHALLOW BUNDLE is YES, the other settings in this section are moot, because the
product bundle is like an iOS application—all of the files, except for localizations,
are to be found immediately inside the bundle directory, without the OS X bundle
structure.
(YES)

m CONTENTS FOLDER PATH—The path, within the target build directory, that
contains the structural directories of a bundle product.
(Passer Rating.app)

m EXECUTABLE FOLDER PATH—The path, in a bundle target in the target build
directory, into which the product’s executable file is to be built. Not to be confused
with EXECUTABLES FOLDER PATH, which points to a directory for “additional
binary files,” named Executables.
(Passer Rating.app)

556 Appendix A Some Build Variables

m EXECUTABLE PATH—The path, within TARGET BUILD DIR, to the executable
binary.
(Passer Rating.app/Passer Rating)

m FRAMEWORKS FOLDER PATH—The path, in a bundle target in the target build
directory, that contains frameworks used by the product. This is set for iOS builds
even though you can’t have a framework in an iOS application. For MyMacApp.app,
it would be MyMacApp.app/Contents/Frameworks. There are variables for
other possible bundle directories; see the Xcode documentation for more.
(Passer Rating.app/Frameworks)

m UNLOCALIZED RESOURCES FOLDER PATH—The directory, within a bundle
product in the target build directory, that receives file resources that have no
localization—not even the base localization. For MyMacApp.app, it would be
MyMacApp.app/Contents/Resources.
(Passer Rating.app)

Compiler Settings
These settings control how the build system produces executable code. Many of these have
the prefix CLANG or GCC , even though gcc is no longer included in Apple’s developer
tools, substituting clang. They carry over the prefix for backward compatibility.

Note
While the build variables expose a great number of clang settings, bear in mind that your
scripts will have read-only access to them; any changes you make won’t be visible outside
your script. The GCC and CLANG variables are primarily useful as substitutes into other
build settings, including those you might create yourself. You might, for instance, assign a
setting string to a preprocessor variable in GCC PREPROCESSOR DEFINITIONS so you
could experiment with compiler settings and permit your code to print the build settings
directly.

m ARCHS—The CPU architectures for which Xcode is to generate product code.
These must come from among the VALID ARCHS list; by default, this is the value of
ARCHS STANDARD. (See Chapter 25, “The Xcode Build System,” for how the build
system handles multiple-architecture products.) Note that iOS apps bound for the
simulator will use your Mac’s hardware, so this setting will point to an Intel
processor.
(x86 64)

m ARCHS STANDARD—The default set of architectures Xcode will build for.
(i386 x86 64)

m ARCHS STANDARD 32 BIT
(i386), ARCHS STANDARD 64 BIT
(x86 64), and ARCHS STANDARD 32 64 BIT
(i386 x86 64)—The standard architectures you’d use instead of ARCHS STANDARD
if you’re particular about whether the target should be 64-bit, 32-bit, or both.

Useful Build Variables 557

m NATIVE ARCH—The architecture on which the current build is taking place. This is
the same as CURRENT ARCH and (if the target is OS X) NATIVE ARCH ACTUAL.
Note that you can’t really use CURRENT ARCH in a script—Run Script build phases
are run only once per build, so the value you see for CURRENT ARCH is only one of
the architectures that will actually be built. If your script must hit every architecture
being targeted, have it iterate through ARCHS.
(i386)

m NATIVE ARCH 32 BIT and NATIVE ARCH 64 BIT—These are like NATIVE ARCH,
but refer to the 32-bit and 64-bit variants of the development architecture. On an iOS
build, these settings are moot—they are the respective Intel architectures.
(i386 and x86 64)

m CLANG CXX LANGUAGE STANDARD—The dialect of C++ clang should accept.
(gnu++0x)

m CLANG ENABLE MODULES—Whether C-family languages should accept @module
directives, and in turn should be compiled into modules. Swift code always uses
modules.
(YES)

m DEFINES MODULE—Whether the code generated by the build will constitute a
module.
(NO)

m MODULE NAME—The name of the module the generated code defines.
(empty—not defining a module)

m PRODUCT MODULE NAME—The name of the module the generated code will be
sorted into. This is important now that APIs and Swift code are all segregated into
by-module namespaces.
(Passer Rating)

m CLANG ENABLE OBJC ARC—Whether clang should generate Automatic
Reference Counting code, and enforce ARC conventions, for Objective-C code.
Swift code always uses ARC.
(YES)

m GCC OPTIMIZATION LEVEL—The strategy clang is to use in rearranging the code
it generates for efficiency, by one measure or another. The possible values include
-O0 a literal translation, best for debugging; -O3, the most while still maintaining
standards compliance; -Ofast, “aggressive,” going for speed at the possible sacrifice
of standards compliance; and -Os, “fastest, smallest,” which will probably be fastest
of all, because the other methods generate much more code, which will likely
overrun the processor’s code cache and introduce halts to wait for code to load from
memory.
(0)

m SWIFT OPTIMIZATION LEVEL—The optimization strategy for Swift. The levels are
-Onone, no optimization, best for debugging; -O, optimized as much as possible

558 Appendix A Some Build Variables

while maintaining runtime consistency checks; -Ounchecked, with all the
consistency checks removed. Gamble on releasing an -Ounchecked product only
after you’ve exhausted every possible means to trigger a check in -Onone code, and
again with -Ounchecked.
(-Onone)

m GCC VERSION and GCC VERSION IDENTIFIER—The compiler version to use,
which is fixed at Apple clang 1.0; there have been no backward-compatibility
issues so far. The difference between the two is that the identifier uses underscores
instead of dots.
(com.apple.compilers.llvm.clang.1 0)

m GCC PREPROCESSOR DEFINITIONS—A space-separated list of symbols to be
defined in all compilations. Items of the form symbol=value assign values to the
symbols. Symbols defined in this way will be incorporated in precompiled headers.
Related is GCC PREPROCESSOR DEFINITIONS NOT USED IN PRECOMPS, which
specifies symbols defined in every compilation but not incorporated in precompiled
headers. This allows you to share precompiled headers between build configurations,
with variants in global definitions taken as options in the respective configurations.
Swift will accept preprocessor symbols for testing by preprocessing directives like
#if. The directives accept only simple values; they will not do any expansions the
way C-family languages expand macros. If you want to define these, add -D
symbol to OTHER SWIFT FLAGS.
(DEBUG=1)

m GCC ENABLE OBJC GC—Controls whether the project compiles Objective-C source
with support for garbage collection. This setting is no longer available in the Build
Settings editor, as Apple forbids garbage collection in all new development.

m It’s good practice to treat a build as failed even if the only issues were warnings, not
errors: Even if an executable binary could be generated, it won’t be.
GCC TREAT WARNINGS AS ERRORS isn’t set by default, but maybe it should be; in
most cases, warnings point out logical mistakes that you’ll have to debug anyway.
(NO)

m GCC WARN INHIBIT ALL WARNINGS—The inverse of
GCC TREAT WARNINGS AS ERRORS. clang won’t emit any warning messages. If
doing this seems to you like a good idea, please warn your customers.

m OTHER CFLAGS, OTHER CPLUSPLUSFLAGS, and OTHER SWIFT FLAGS—Catchall
variables for compiler options that do not have their own build variables for C or
Swift compilation. OTHER SWIFT FLAGS is the only way you can set preprocessor
symbols for Swift code.
Apple tries to incorporate every reasonable flag in the Build Settings tab, so you
should rarely need to use this setting. It’s a good idea to type a flag into the settings
tab’s search field to see whether a direct setting is available. For linker flags, the
equivalent is OTHER LDFLAGS (empty).

Useful Build Variables 559

m GCC WARN . . . —clang accepts a lot of warning flags, and most of them have
equivalents in the build variables. Click around in the Build Settings tab with the
Quick Help inspector (Utility area, on the right, second tab) to see what the
warnings do and what the build-variable equivalent is.
Many developers use -Wall as a shortcut for a comprehensive set of warnings, and
the clang engineers provide an even stricter -Weverything, which they insist is
mostly for debugging the compiler. The Build Settings tab doesn’t expose those
options, so put them in OTHER CFLAGS if you need them.

m EMBEDDED CONTENT CONTAINS SWIFT—If your target uses Swift in its main code,
the build system knows to include the Swift runtime libraries for compatibility with
OS X 10.9 and iOS 7. The system will not detect Swift code in your plugins and
helper apps for itself; if your app includes such, set this to YES to add the runtime to
them as well.

Other Tools
As you saw in Chapter 25, “The Xcode Build System,” compilers aren’t the only build
tools. Here are some settings for the others.

Asset Catalog Compiler
The images in an .xcassets catalog archive must be processed into more compact forms,
and Info.plist must be patched to identify the application’s icons and launch images.

m ASSETCATALOG COMPILER APPICON NAME—The name of the image set
containing the application’s icon.
(AppIcon)

m ASSETCATALOG COMPILER LAUNCHIMAGE NAME—The name of the image set for
the launch image.
(LaunchImage)

m COMPRESS PNG FILES—Whether to compress PNG image files before adding
them to the product package.
(YES)

Info.plist
The Info.plist file in the project is just a source file for the Info.plist that will
appear in the final package. The build process includes a step for resolving build-setting
references, inserting mandatory keys, and, optionally, applying a C-style preprocessor.

m INFOPLIST FILE—The name of the file that will be the source for the bundle’s
Info.plist file, if the product of this target is a bundle. This should not be
Info.plist, as a project with more than one target will need to specify more than
one Info.plist file.
(Info.plist)

560 Appendix A Some Build Variables

m If YES, INFOPLIST PREPROCESS preprocesses the INFOPLIST FILE, using a
C-style preprocessor. You can specify a prefix file with INFOPLIST PREFIX -
HEADER and set symbols with INFOPLIST PREPROCESSOR DEFINITIONS.
(NO)

m INFOPLIST EXPAND BUILD SETTINGS—Controls whether build settings should
be expanded in the generated Info.plist. This allows you, for instance, to fill the
CFBundleExecutable key with ${EXECUTABLE NAME }, and be assured that if
you ever change the name of the product, Info.plist will always be in sync.
(YES)

m INFOPLIST OUTPUT FORMAT—Your choice of the possible file formats for the
Info.plist property-list file. This is binary if you want the binary format; anything
else gets you an XML plist.
(binary)

m INFOSTRINGS PATH—The path, starting with the application package, to the
InfoPlist.strings file for the development locale. The development locale is
identified by DEVELOPMENT LANGUAGE.
(Passer Rating.app/English.lproj/InfoPlist.strings)

m CREATE INFOPLIST SECTION IN BINARY—Some single-file products, such as
stand-alone libraries and command-line tools, must contain information for Launch
Services and Finder. There can’t be a separate Info.plist file, so this option adds
a Mach-O binary section for the Info.plist data.
(NO)

m STRINGS FILE OUTPUT ENCODING—.strings files map symbolic strings (usually
English-language names) to strings that would be used for display in a particular
language. (See Chapter 21, “Localization.”) This is the encoding for the processed
string, historically UTF-16, but there is now a binary format that Cocoa can use
more efficiently.
(binary)

Java
Apple abandoned Java as an OS X development language around 2002. (Java seemed like a
good idea at the time; it always does.) There are a dozen Java-related settings still around,
mostly with the prefix JAVA . Xcode does not expose them. They don’t do anything.
Ignore them.

Others
Some variables point to standard Unix tools. Development tools are usually found inside
the Xcode.app package; others are simply the standard Unix commands to be found in
the /bin, /usr/bin, /sbin, or /usr/sbin trees. Most Make-like systems factor tool
names out this way, so switching to a custom tool is simply a matter of changing the single
definitions.

The pointer variables (the tools they point to should be obvious to anyone who needs
them) include CHOWN, CHMOD, CP, ICONV, LEX, SED, and YACC.

Useful Build Variables 561

There are four commands of the form REMOVE something FROM RESOURCES. These
YES/NO switches determine whether version-control directories, and headers, should be
ignored when copying files into the product bundle.

Search Paths
m HEADER SEARCH PATHS—A space-delimited list of paths to directories the compiler

is to search for headers, in addition to standard locations, such as /usr/include. If
you add your own paths, carry the default paths through by putting $(inherited)
at the beginning or end of your list. If the headers in question are in frameworks, set
FRAMEWORK SEARCH PATHS instead. SDKROOT is prepended to the paths of system
headers and frameworks.
(/Users/fritza/Library/. . . Build/Products/Debug-iphone-
simulator/include/Applications/Xcode.app/. . . /usr/include)

m LIBRARY SEARCH PATHS—A space-delimited list of paths to directories the linker
is to search for libraries. If set, SDKROOT is prepended to the paths of system
libraries. Developers sometimes are given libraries in production and debug forms,
as binaries, with no source; they’d like to use one version of the library in Debug
builds and the other in Release builds. A solution is to put the two library versions
in separate directories and specify different LIBRARY SEARCH PATHSes for the two
build configurations.
(/Users/fritza/Library/. . . Build/Products/Debug-iphone-
simulator)

m IPHONEOS DEPLOYMENT TARGET—The minimum version of iOS on which the
product can run; symbols in the SDK from later versions of the OS are weak-linked.
There is also a MACOSX DEPLOYMENT TARGET.
(8.2)

The DEVELOPER Variables
The settings that begin in DEVELOPER were a big part of the build environment in
previous versions of Xcode, and the build system still sets them for the benefit of
run-script build phases. They are read-only, so they appear nowhere in the default values
in the Build Settings tab. Apple no longer documents them. I’m including them in case
you have no alternative.

Many of the DEVELOPER paths had parallel SYSTEM , SYSTEM DEVELOPER ,
PLATFORM , and PLATFOTM DEVELOPER settings, as the tool and frameworks sets may
vary depending on whether you’re developing for OS X or iOS.

The only survivor is SYSTEM LIBRARY DIR, the root of the installation path for OS X
frameworks.

If you’re looking for the paths to Xcode’s development tools, you’re better off using
xcrun --find to pick out the ones that fit the current Xcode and any particular SDK
you want. See man xcrun for more details.

562 Appendix A Some Build Variables

m DEVELOPER DIR—The directory you chose for the Xcode installation. The
DEVELOPER variables are important, because they track the currently selected
Xcode if you have more than one installed. See man xcode-select.
(/Applications/Xcode.app/Contents/Developer)

m DEVELOPER APPLICATIONS DIR—The folder inside DEVELOPER DIR containing
Xcode and the other developer applications. You may be better served by using
open -a application-name if all you want to do is to launch a user application.
(/Applications/Xcode.app/Contents/Developer/Applications)

m DEVELOPER BIN DIR—The folder inside DEVELOPER DIR containing the BSD
tools, like clang, that Xcode uses. If you write scripts that execute development
tools like clang or yacc directly, use this path instead of /usr/bin. The tools in
this directory are the versions that correspond to the version of Xcode you’re using.
(/Applications/Xcode.app/Contents/Developer/usr/bin)

m DEVELOPER FRAMEWORKS DIR—The folder inside DEVELOPER DIR that contains
development frameworks, such as for unit tests. There’s also a QUOTED variant that
you can use with the confidence that a shell interpreter won’t mangle it.
(/Applications/Xcode.app/Contents/Developer/Library/Frameworks)

m DEVELOPER LIBRARY DIR—The folder inside DEVELOPER DIR containing files
(templates, plugins, etc.) that support the developer tools.
(/Applications/Xcode.app/Contents/Developer/Library)

m DEVELOPER SDK DIR—The folder inside DEVELOPER DIR that contains the
software development kit for the platform the target will run on. (Simulator targets
run on OS X.)
(/Applications/Xcode.app/Contents/Developer/Platforms
/MacOSX.platform/Developer/SDKs)

m DEVELOPER TOOLS DIR—Contains BSD tools, like SetFile, that are specific to
OS X development and would not be expected to be in /usr/bin.
(/Applications/Xcode.app/Contents/Developer/Tools)

m DEVELOPER USR DIR—The folder inside DEVELOPER DIR that you should use as a
prefix for the standard include, sbin, share, and other directories you’d
ordinarily look for in the root /usr directory.
(/Applications/Xcode.app/Contents/Developer/usr)

Source Trees
A source tree provides a particular kind of build variable, a path to a directory or to the
root directory of a tree with a known structure. The path can be a location to receive
build results or provide access to a system of libraries and headers. When used to build
source paths, a source tree provides a reliable shorthand for packages that do not belong in
the directory tree of any one project.

Source Trees 563

For example, I use the eSellerate libraries in my OS X projects. I define a source tree
for the eSellerate libraries by opening the Preferences window, selecting the Source Trees
tab of the Locations panel, and clicking the + button to add an entry. I choose
ESELLERATE DIR for the setting name and eSellerate Directory for the display name,
and I type the full path name for the root of the eSellerate SDK into the path column.

Now, when I add a file reference to my project, I can use the File inspector in the
Utility area to set Location to Relative to eSellerate Directory. Regardless of who
copies or clones my project, so long as they have defined an ESELLERATE DIR source
tree, the project will find that file in their copy of that directory. I don’t have to care about
the details of the path, and I especially don’t have to set up double-dot relative directory
references.

Source trees are global—they span projects—but are per-user.

This page intentionally left blank

B
Resources

I’ve tried to make this book thorough, but it isn’t comprehensive. Xcode is too big to
cover exhaustively, and Apple constantly updates it. Further, your needs as a Cocoa
programmer go beyond simply using the tools. This appendix is a brief reference to
resources you can use to go further and keep current.

Books
Before the iOS gold rush, there were few books about Cocoa and Xcode, and they were
mostly pretty good. Now, there are a lot more, and there is more. . . diversity. These are a
selected few.

m Buck, Erik, Cocoa Design Patterns (2009). Cocoa conforms to a few fundamental
patterns, and once you have those down, you’ve gone a long way toward
understanding most of iOS and OS X programming. Erik Buck’s book is six years
old, but the fundamentals haven’t changed.

m Conway, Joe, and Hillegass, Aaron, iOS Programming: The Big Nerd Ranch Guide,
fourth edition (2014). What Aaron Hillegass’s Cocoa Programming for OS X (see
below) did for Mac programmers, this book does for iOS. A stand-alone book from
the ground up, it takes you from a dead start (or at least from C programming) to
some advanced topics.

m Hillegass, Aaron, and Preble, Adam, Cocoa Programming for OS X, fourth edition
(2011), and Claude, Juan Pablo, and Hillegass, More Cocoa Programming for OS X: The
Big Nerd Ranch Guide (2013). This book was a classic from the first edition. The
series is where Mac programmers have started for more than a decade. A fine
introduction, and a tour by example from beginning to advanced topics. Highly
recommended.

m Kochan, Stephen, Programming in Objective-C, sixth edition (2013). The leading
book about Objective-C, teaching it as your first programming language—it does
not assume you have any grounding in C or object-oriented programming. Kochan

566 Appendix B Resources

teaches the Foundation framework, but treads only lightly on the Cocoa application
frameworks.

m Lee, Graham, Test-Driven iOS Development (2011). Test early, test every day: Lee’s
book shows you how.

m Napier, Rod, and Kumar, Mugunth, iOS 6 Programming Pushing the Limits: Advanced
Application Development for Apple iPhone, iPad and iPod Touch (2012). Napier goes deep
into subjects that will get beginning-plus developers well into advanced techniques.

m Neuberg, Matt, Programming iOS 8: Dive Deep into Views, View Controllers, and
Frameworks (2014). Matt Neuberg offers an exhaustive (800 pages) introduction to all
aspects of iOS programming. Many regard this as the capstone of iOS instruction:
Other books will lead you through the steps to producing applications that exhibit
some advanced features of iOS. Neuberg takes a thousand pages because he explains
the underlying principles step by step. You will not merely have done; you will have
understood.

m Neuberg, Matt, iOS 8 Programming Fundamentals with Swift: Xcode and Cocoa Basics
(2015). This is a lighter (400+ pages) book, more a tutorial than a text.

m Sadun, Erica, The Core iOS Developer’s Cookbook, fifth edition (2014). Or any book
with Erica as the author, particularly with the word “Cookbook” in the title. She is
one of the clearest and most readable technical writers in the business. Many people
swear by her iOS books.

m Sharp, Maurice; Sadun, Erica; and Strougo, Rod, Learning iOS Development: A
Hands-on Guide to the Fundamentals of iOS Programming (2013). This book starts you
at the beginning of the development process and hits all of the major issues in
bringing an iOS app to App Store quality.

Books about Swift
Swift poses a problem for this list. It’s a new language, still changing, and the only people
who can really claim to be masters aren’t writing any books, because Apple doesn’t let its
employees do that. Nobody has made a name, and most of those who have made names in
Cocoa-related technical writing are publishing just as Xcode 6 Start to Finish goes to bed, or
even months thereafter.

Here are what I see in the preorder lists that look good to me, on the basis of blurbs
and the reputations of the authors and publishers. I can’t offer details.

m Kochan, Stephen, Programming in Swift (Developer’s Library), sixth edition (2015).
m Manning, Jonathon and Buttfield-Addison, Paris, Swift Development with Cocoa:

Developing for the Mac and iOS App Stores (2015).
m Mark, David and Nutting, Jack, Beginning iPhone Development with Swift: Exploring

the iOS SDK (2014).

On the Net 567

m Nahavandipoor, Vandad, iOS 8 Swift Programming Cookbook: Solutions & Examples for
iOS Apps (2014).

On the Net
Do you have a question? Use Google. Or whatever search engine you prefer. Somebody has
probably asked your question before and gotten a satisfactory answer. Even if you intend to
ask on a public forum or list, search first. Apple’s documentation is on the web, and the
search engines’ indices are still better than the one in the Documentation browser. If
you’re having trouble pinning down a query, remember to include some unique symbol
from the related API, or at least something like iOS.

Then, if you can’t find a good answer, consider whether the Cocoa API documentation
makes the answer to your question obvious. Reread Apple’s documentation one more
time. Then ask. If you can say you’ve made a diligent attempt to find the answer yourself,
the people who can help you will be satisfied that you’ve done your homework, and you
are worth helping.

Forums
Early editions of Xcode Unleashed praised mailing lists (and mailing-list archives), and even
USENET groups. Time has moved on. People have become comfortable getting and
keeping their knowledge in the cloud. Lists that carried more than 100 messages a day a
few years ago now tick along with 20 or fewer. If you want to ask a question, a web forum
may be the better bet.

m I’ll put the second-best first. The Apple Developer Forums ought to be the main
resource for finding solutions to OS X and iOS problems. They were established to
solve the problem that, before iPhone OS 2 went public, there was no way to discuss
unpublished API. As a paid developer-programs member, you can ask questions
about nondisclosed topics freely. (The Developer Tools section is available to the
general public with a free registration as an Apple developer.) Some Apple
engineers, having started with the private forums, never branched out to public
venues like mailing lists and Stack Overflow.
The drawbacks, however, are crippling. The forums are closed to external search
engines, and the internal search facilities are ludicrous. The indexer is not
customized to the subject of the forums, so if you look for a symbol declared in one
of the Apple frameworks, the search engine may suggest that you really meant some
technical term from veterinary medicine. You can narrow your search by time, but
you can’t go back 12 months (unless you conduct your search on New Year’s Eve)
because the search engine offers only the calendar year.
The big, universal search engines prioritize results by the number of responses they
attract—solutions usually float to the top. Not so on the Apple forums: When you
enter your search terms, some encouraging result might flicker past in the Web 2.0

568 Appendix B Resources

windowlet that pops up, but when it settles down, most of what you get are single
messages from other hapless seekers.
But if you’re looking for solutions for NDA software, the Apple Developer Forums
are the only game in town. http://devforums.apple.com/.

m Better, much much better: Stack Overflow, http://stackoverflow.com/. It’s
open to search engines, the postings have usable metadata, and most of the threads
you’ll find will have at least one high-quality answer (though it is sometimes a trick
to decide which answer that is). Very little chat, a whole lot of solutions. If your
mission is problem solving, and not just reference, save yourself some trouble and
prefix your search queries with site:stackoverflow.com.

Mailing Lists
Apple hosts dozens of lists on all aspects of developing for its products. The full roster can
be found at http://www.lists.apple.com/mailman/listinfo. Remember that
like all technical mailing lists, these are restricted to questions and solutions for specific
problems. Apple engineers read these lists in their spare time, and they are not required to
answer postings; they cannot accept bug reports or feature requests. Take those to
http://bugreport.apple.com/.

These three lists will probably be the most help to you:

m xcode-users—Covers Xcode and the other Apple developer tools. It does not
deal with programming questions; if you want to ask about what to do with Xcode,
rather than how to use it, you’ll be better off asking in cocoa-dev.
http://www.lists.apple.com/mailman/listinfo/xcode-users/

m cocoa-dev—This is for questions about the Cocoa frameworks, for both OS X
and iOS. http://www.lists.apple.com/mailman/listinfo/cocoa-dev/

m objc-language—Handles questions about the Objective-C programming
language. Questions about Cocoa programming (except for the primitive data types
in Foundation) are not on-topic here.
http://www.lists.apple.com/mailman/listinfo/objc-language/

There is no consensus favorite for a Swift mailing list; there may never be one. The
swift-language Google group, https://groups.google.com/forum/#!forum/
swift-language, attracts just over a post a day. Swift questions also crop up in
xcode-users and objc-language.

Developer Technical Support
One resource is in a class by itself. As part of your $99 developer-program membership,
you get two incidents with Apple Developer Technical Support (DTS). (You can get more
in 5- or 10-packs at about $50 per incident.) If you have a critical question that needs the
right answer right away, forums and mailing lists aren’t the way to go. The people who
really know the right answer aren’t required to be there, aren’t required to answer, and are
not allowed the time to research your problem for you.

http://devforums.apple.com/
http://stackoverflow.com/
http://www.lists.apple.com/mailman/listinfo
http://bugreport.apple.com/
http://www.lists.apple.com/mailman/listinfo/xcode-users/
http://www.lists.apple.com/mailman/listinfo/cocoa-dev/
http://www.lists.apple.com/mailman/listinfo/objc-language/
https://groups.google.com/forum/#!forum/

On the Net 569

If you file a DTS incident, you will be assigned an engineer who will respond within
three days. He will have access to OS source code and to the engineers who wrote it. He
(usually) will be able to come up with a solution to your problem that works and will
work even if Apple revises the OS under you.

DTS isn’t a gatekeeper for insider techniques. Almost everything that has an answer has
(or will have) a public answer. What you’ll be getting is an engineer with good
communications skills, and enough of a knowledge base to respond to your particular
problem.

Sites and Blogs
m For reference problems, the first place on the web to go is http://developer
.apple.com/, the site for Apple Developer Programs. It has everything you’ll find
in Xcode’s documentation packages, plus more articles, downloadable examples,
business resources, screencasts, and a portal to the iOS, OS X, and Safari developer
pages. A good strategy for getting official (public) information from Apple is to do a
Google search restricted to site:developer.apple.com.

m If you find a bug in Apple software, or need a feature, go to http://bugreport
.apple.com (you’ll need to register with Apple as a developer, but the free
program will do). Be sure to file a complete report (Apple has guidelines for you),
and if you’re looking for a new feature, be sure to make a concrete case for how it
will improve your product or workflow.
https://developer.apple.com/bug-reporting/ will bring you up to speed
on the details.

m Apple has an official blog for Swift: https://developer.apple.com/swift
/blog/. Posts come a little more than once a month, but they go into detail, and of
course, they are authoritative.

m https://www.cocoacontrols.com—is a clearinghouse for UI components for
iOS and OS X. As I write this, its catalog listed 1,763 components.

m NSHipster, http://nshipster.com/, is a weekly blog of “overlooked bits in
Objective-C, Swift, and Cocoa.” Each article surveys one aspect of Cocoa
programming—#pragma directives, UICollectionView—and reduces it into a
concise, accessible introduction. With just a little bit of irony.

m You can get a commented listing of the interfaces in the Swift standard library by
typing import Swift in a playground or Swift source file, and command-clicking
on Swift. It’s nearly 10,000 lines in a single page. There’s a cleaned-up and
organized version at http://swiftdoc.org.

m Mike Ash’s Friday Q&A blog covers iOS and OS X topics in depth and breadth.
The blog itself (updated, as you might expect, nearly every week) is at http://
www.mikeash.com/pyblog/. You can buy it in ebook form from the links at
http://www.mikeash.com/book.html. Send him money; he deserves it.

http://developer.apple.com/
https://developer.apple.com/bug-reporting/
https://developer.apple.com/swift/blog/
https://www.cocoacontrols.com
http://nshipster.com/
http://swiftdoc.org
http://www.mikeash.com/pyblog/
http://www.mikeash.com/pyblog/
http://www.mikeash.com/book.html
http://developer.apple.com/
http://bugreport.apple.com
http://bugreport.apple.com
https://developer.apple.com/swift/blog/

570 Appendix B Resources

m There are many sample-code projects on GitHub, https://github.com. Plug
“ios sample code github” (or “os x” or “cocoa” instead of “iOS”) into your search
engine, and browse at leisure.

Face to Face
Sitting down with a more experienced developer, and asking how you can accomplish
what you want to do, can do more to get you on your way, and faster, than any book
(except this one). There are user groups all over the world where you can get help and
share your experiences; and there are classes you can take to get up to speed.

Meetings
m CocoaHeads, http://cocoaheads.org/, is an international federation of user

groups for Cocoa programmers. They meet every month in more than 100 cities
worldwide. The web site depends on each group’s keeping its information
up-to-date; my local group hasn’t updated in nearly two years. You can still use the
list for contacts.

m NSCoder Night is more a movement than a user group; it has no central (and very
little local) organization. Cocoa programmers gather as often as weekly in pubs and
coffee houses to share experiences and code. The get-togethers occur in nearly 60
cities around the world. Unfortunately, the web site hasn’t been updated since 2011,
and the link to a promised wiki is dead. Google NSCoder night your city , ask
around at user groups and colleges, and if all else fails, start one!

Classes
There are any number of companies and educational institutions that will teach you Cocoa
programming. I’ll mention two good ones, one at the high end, and one at the low, but
check with your local college; you may be pleasantly surprised.

m Stanford University, CS 193, Developing Apps for iOS, available through iTunes U at
https://itunes.apple.com/us/course/developing-ios-7-apps-for/
\penalty-\@M%toendlongline˜comp.id733644550. This is a 20-part lecture
series from a course taught by the Computer Science department at Stanford
University.

m Big Nerd Ranch, http://bignerdranch.com/, Aaron Hillegass’s training
company, provides week-long boot camps on OS X, iOS, Cocoa, Rails, Android,
and OpenGL at locations in North America and Europe. Your fee (starting at
$3,500) includes lodging, meals, and transportation to and from the airport.

Other Software
The Xcode tools aren’t everything. There are things they can’t do, and there are things
they don’t do well. This section examines some tools that can make your life easier.

https://github.com
http://cocoaheads.org/
https://itunes.apple.com/us/course/developing-ios-7-apps-for/penalty-%5C@M%25toendlongline%CB%9Ccomp.id733644550
http://bignerdranch.com/
https://itunes.apple.com/us/course/developing-ios-7-apps-for/penalty-%5C@M%25toendlongline%CB%9Ccomp.id733644550

Other Software 571

There’s more to consider: You’ll be using any number of productivity tools to organize
your efforts and provide resources for your apps. (I recommend a good, lean
bitmapped-graphics editor, for instance.) I can only survey a few programming tools.

Prices are US dollar equivalents as of late 2014, rounded to the nearest dollar (I have to
round for Euro-denominated prices, so x.99 dollar amounts get rounded, too.)

Text Editors
The Xcode editor is a machine for producing Cocoa source code. It is crafted to a specific
ideal of how a text editor should work. Maybe you don’t share that ideal; maybe you need
more direct access to text formats for which Xcode interposes a higher-level editor; maybe
you need your own tools to customize your work environment.

Even if you’re happy with Xcode for most tasks, as a committed Cocoa programmer
you’ll probably use one or more of these editors as well.

m BBEdit, from Bare Bones Software, is particularly good with large files and HTML.
It will open anything. Its support for AppleScript, Unix scripting, and “clipping”
macros make it readily extensible. This book was written in LATEX with BBEdit. It is
available from Bare Bones directly.
http://www.barebones.com/products/bbedit—$50.

Note
I should disclose that Bare Bones sometimes sends me documentation work; I’m in
the credits for BBEdit 11. I’d been a happy user of BBEdit for more than a decade
before, and had recommended it in earlier editions of this book, before Bare Bones
approached me.

m Bare Bones provides a capable “light” version of BBEdit, TextWrangler. What you’ll
miss are BBEdit’s extensive tools for web development, text completion,
version-control support, built-in shell worksheet, and ponies.
http://www.barebones.com/products/textwrangler/ - Free.

m TextMate 2 beta, from MacroMates, is a text editor with a huge capacity for
customization. Syntax coloring and powerful keyboard shortcuts are available for
dozens of languages and applications. TextMate has an active user community, and
many developers whose products consume formatted text provide free TextMate
extension bundles.
TextMate 2 was declared “90 percent complete” in 2009. A “pre-alpha” went public
at the end of 2011, and it has attracted fans. The source was published under the
GNU General Public License in August 2012. You can purchase a license for the
current, supported build at http://macromates.com—$50 (EUR 39).

m Sublime Text 2 is a GUI editor for Mac, Windows, and Linux. You can customize it
with JSON-based scripts and Python plugins. It recognizes dozens of language
syntaxes, and it indexes both source and library code. Multiple selection allows you
to edit common occurrences of a string simultaneously. I hear that skeptics of the

http://www.barebones.com/products/bbedit
http://www.barebones.com/products/textwrangler/
http://macromates.com

572 Appendix B Resources

future of TextMate are gravitating to Sublime Text and finding that TextMate
bundles carry over. http://www.sublimetext.com—$59.

m emacs and vi are supplied with every standard installation of OS X. If you have any
background in the Unix command line, you probably know how to use one of these
and have nothing but contempt for the other.
There are graphical variants of both. Check XEmacs, www.xemacs.org, for an X
Window graphical emacs. MacVim is the most popular Mac-native graphical editor
in the vi family, available at http://code.google.com/p/macvim/ as source
and installable binaries. Vico, http://www.vicoapp.com, is an editor with vi
key bindings that can use TextMate language bundles. All are free of charge.

Helpers
There are many, many supplemental tools for Cocoa developers—check the “Developer
Tools” category in the Mac App Store for scores of choices. Here are a few of the most
useful:

m Dash styles itself a “documentation browser and code snippet manager.” You can
start with Cocoa document sets, but you can add scores of references for Ruby on
Rails, Java, jQuery, Arduino. . . on and on. The application is built around a search
interface that leads you to matches in all the active documentation sets; you’re
encouraged to build task-specific groups of the docsets you need for one project.
Select a page (for instance, a Cocoa class reference), and all of the categories and
entries on that page are displayed in a convenient index at the left edge of the
window.
The snippet manager holds code in any of dozens of languages. Select the
abbreviation for one, and trigger the Dash service. The selected snippet will appear
in a heads-up window so you can edit placeholders. These are more intelligent than
Xcode’s because editing one placeholder will edit other appearances of the same
placeholder to match. Press Return to paste the completed code. Dash does a lot,
and it’s getting better at making everything it does accessible to an untrained
user—but it still routinely posts popovers (you can suppress them) explaining
fundamental uses. http://kapeli.com/dash/, and the Mac App Store. Free to
download, $10 for full features.

m Hopper Disassembler, you remember, was the tool I used to produce pseudocode from
a compiled C function in Chapter 5, “Compilation.” If you need an analytical
disassembler for your work, you’re either an optimization wizard or in deep trouble
with what you suspect is a compiler bug. Either way, you need it.
You present the app with your compiled code, and it presents its best-guess partition
of the byte stream into data, dynamic-linkage jump tables, and code, which it tries
to break down into functions and sub-blocks within them. Then it’s up to you to
correct the partitions and to rename objects (including the stack offsets that define
local variables) as you cycle through the task of making sense of the machine code.

http://www.sublimetext.com
http://www.xemacs.org
http://code.google.com/p/macvim/
http://www.vicoapp.com
http://kapeli.com/dash/

Other Software 573

As you saw, Hopper will give you pseudocode, which is great for presentation and
essential to solving the puzzle.
It has hooks into the debugger. The promotional material says it works with gdb,
but we can hope it can get by with lldb.
The developer (a very patient man as he dealt with me) designed the UI for his own
needs. The application is meant to be run from the keyboard, using letter (not
Command-key) commands. It takes some getting used to, but it’s the best game in
town.
A limited demo is available for free from the developer’s web site, http://www
.hopperapp.com. Purchase directly from the developer for $89.

m Kaleidoscope is a first-class file-comparison and merging editor. The first time you use
it, you’ll think of it as a glorified diff—a display of the differences between two files,
little different from the comparison editor in Xcode. But the Xcode comparison
editor goes only one way, to accept or refuse changes between versions of a file; it’s a
merging tool. Kaleidoscope lets you transfer divergent lines of text from one file to
the other. So it’s a general merge tool. It can be integrated into Versions,
SourceTree, and the git and svn command-line tools.
And it does whole directories. And if you have more than two versions of a file, you
can queue them up so you can select any two to compare.
And it compares images, giving you a flip comparison, a split view, or a bitmap of
the changed pixels.
And that’s why it’s worth 70 bucks. http://www.kaleidoscopeapp.com—$70
from the Mac App Store or direct.

m mogenerator—In Chapter 8, “Starting an iOS Application,” I showed you that
even though Xcode’s Data Model editor can generate NSManagedObject
subclasses from your data model, it’s much better to rely on mogenerator. There’s
no reason to repeat the reasons. Use it.

Note
The mogenerator package includes the xmod plugin, which in Xcode 3 could
monitor your data-model files and regenerate the machine-side classes
automatically. Unfortunately, plugins disappeared from Xcode at version 4.

m PaintCode is just cool. At first glance, it’s a vector-based drawing application,
moderately well featured. It’s interesting that you can define colors by name, base
other colors on variants of the plain ones, and produce gradients from the defined
colors. If you have a shape filled with the named gradient, and change the base
color, the derived color and gradient change to match.
The thing is, this is a code editor. As you build your drawing, PaintCode generates the
Swift, Objective-C, or C# code that will reproduce it. It includes expression editors
for things like bounds or offsets, and variables that can be coded as locals or function
parameters. I rarely use PaintCode’s code unchanged, but it saves me half a day’s

http://www.hopperapp.com
http://www.kaleidoscopeapp.com
http://www.hopperapp.com

574 Appendix B Resources

fooling around to get my arcs to go the right way.
http://www.paintcodeapp.com—$100 from the Mac App Store.

Package Managers
Xcode comes with most of the tools you’d need to build most free and open-source
software (FOSS). However, even though you have all the tools you need to build
everything from scratch, you don’t have time to research the dependencies among libraries
and the build options necessary to make them work together. That’s why most operating
systems and most scripting languages come with package managers, which take care of all
the details and simply get you what you need to get on with your work.

OS X doesn’t have a package manager, but four volunteer communities’ projects
provide the manager software and ports of many FOSS packages. All of them work from
the command line; at their simplest, it’s just a matter of invoking the manager’s command
(fink, brew, port, pod) with the package name. There are also graphical wrappers.

Third-party package managers have a problem in that they will not be the only
mechanism for installing software on a system. If you run a makefile of your own, or open
an installer package that installs its own components, or even use another package
manager, the installed products will interfere with each other. Each manager has its own
strategy for at least protecting its products from outsiders.

m Fink is the oldest of the four, having been founded in 2000. It is a Mac/Darwin
derivative of Debian’s package-management tools like apt-get. Build products go
into the /sw directory. Fink has not had a binary installation since OS X 10.5
(Leopard); you will have to bootstrap by building the source distribution. The
installation instructions list PowerPC as an available platform, which is good news if
you are still nursing a PPC Mac along (as I did with my PowerMac G4, 2000-2013).
http://fink.thetis.ig42.org

m CocoaPods is specifically for Objective-C projects. The client software is distributed
as the cocoapods Ruby gem. The web site consists of some background
information and a search field so large, you may not realize it is one. (It’s the red
“SEARCH*” at the top.) Enter author, name, keyword, or other relevant
information, and the incremental search shows you the matching pods.
http://cocoapods.org

m Homebrew, “The missing package manager for OS X,” is the newest. Based on Ruby
and Git, it’s clean, and many new projects make it their preferred method of
delivery. Build products go into the homebrew directory of your home directory
and are then linked from /usr/local. http://brew.sh.

m MacPorts (formerly DarwinPorts) is old enough that it once identified itself with
Darwin, not the Mac, when Darwin was still a serious contender as an open-source
Unix. The project strives to keep its packages compatible with the current version of
OS X, plus the two before. Its library has grown to nearly 18,000 packages. The
MacPorts tree is rooted at /opt/mports. http://www.macports.org.

http://www.paintcodeapp.com
http://fink.thetis.ig42.org
http://cocoapods.org
http://brew.sh
http://www.macports.org

Other Software 575

Version Control
As Chapter 7, “Version Control,” showed, source control is a big subject, with many
subtleties, and the bare command-line interfaces for the systems are a bit tangled. I’ve
already recommended Pro Git and Version Control with Subversion as the best guides to the
command-line tools.

Xcode’s source-control system insulates you from the worst of it, but most developers
find they still get into tangles, or need functions—tagging being the leading
example—that Xcode simply doesn’t provide.

The people best equipped to deliver an easy way to use source-control systems are
programmers. They are their own market, and this has produced a great number of finely
crafted, feature-filled graphical source-control managers. Too many for me to evaluate and
list here.

A few stand out.
m Git itself comes with some cross-platform (Tk) tools for managing repositories.

Before I switched to SourceTree, gitk, which you launch from the command line,
was my favorite way to visualize the branching structure of a repository. It gives you
diffs between a revision and its immediate predecessor. If you’ve installed Xcode,
you’ve installed all the Git tools - Free.

m SourceTree, from Atlassian, is a well-regarded, comprehensive application for
managing Git and Mercurial repositories. When you first launch it, you give it your
credentials for any of the major remote-repo providers, allow it to scan your
directories for repositories, and approve the set of repos you’ll allow it to manage.
The UI is. . . busy, with 19 controls in the toolbar. But comprehensive management
of a Git repo is a busy task, and the presentation becomes quite accessible after a few
minutes. Ignoring the doc directory from Chapter 24, “Documentation in Xcode,”
was a matter of a few clicks; the feature was easy to find.
It’s compatible with OS X 10.6 and up. Atlassian promotes its own cloud
software-management services, including Bitbucket, a repository service that is free
to projects with up to five participants. http://www.sourcetreeapp.com - Free.

m GitHub is the dominant provider of public Git-repository hosting. It provides a
simple interface for managing your GitHub-hosted repositories, showing version
diffs and branches. It concentrates on keeping you up-to-date in synchronizing your
projects with their remotes—on GitHub. GitHub means their app to be a simple,
powerful interface for its product. Nothing wrong with that; it’s very good at what it
does. http://mac.github.com - the application is free.

m Versions is the leading Subversion client for OS X, having won an Apple Design
award for its UI design. It provides the usual services—version comparisons,
commits, branch management—and communicates with the Subversion repository
using its built-in implementation of Subversion 1.7—there’s no need to install

http://www.sourcetreeapp.com
http://mac.github.com

576 Appendix B Resources

anything else, and no worries about possible mismatches between the app and
whatever version of svn is installed on the system.
http://www.versionsapp.com—$59, $39 for students, and a free 30-day demo.

AppCode
JetBrains AppCode is an evolution of the free IntelliJ IDE specifically for iOS and OS X
development. Its refactoring facilities dwarf those of Xcode, and its code analysis will do
everything from correcting the spelling of program symbols in your comments to
detecting dead methods, to offering to implement functions and methods you’ve used
without defining, to automated testing, and more. It is a machine for sitting down and
ripping through code. If that’s your priority, you should download the demo. It includes
embedded builds of clang for static analysis, lldb for debugging, and several unit-test
systems, including XCTest.

Xcode still does some things better. Its version-control facilities are easier to work with
day to day. It has a better debugger. It supports an integration system that eliminates much
of the pain of unit testing, analysis, and beta distribution. It has Interface Builder;
AppCode has “UI Designer,” which works with storyboards and XIBs, but that requires
faith in reverse-engineering those formats with every new release of Xcode. AppCode
can’t build iOS distributions. AppCode can work off of Xcode projects, but Xcode is still
the best way to create Xcode projects. So, frequently, developers who use AppCode use it
as a complement to Xcode—an external tool—rather than make it their primary IDE.
Even Xcode fanatics (if there are such) should root for AppCode, to keep up the arms race
that Apple has to run against it.

There are four tiers of licenses, including $99 for individual use, $199 for organizations,
and free for education. http://www.jetbrains.com/objc/

Alternatives to Cocoa
Xcode 6 Start to Finish teaches Xcode, and incidentally Cocoa, but there are alternatives.
Here are some you should explore.

Titanium and PhoneGap are frameworks for writing cross-platform mobile
applications, including iOS. Both are built around JavaScript. They provide callouts to
native libraries for access to features like GPS, accelerometers, and cameras. Both are open
source, with support from their parent companies—Adobe for PhoneGap and
Appcelerator for Titanium.

You will still need an iOS Developer Program membership to run your apps on a
device.

Adobe PhoneGap
You develop PhoneGap applications mostly with whatever tools you are most comfortable
using to build web sites, including Adobe Dreamweaver. UI specification comes from
HTML5 and CSS. The programming language is JavaScript. To test apps, you come back
to Xcode for building and running in the iOS Simulator. PhoneGap applications are
wrapped in a native application that hosts the app in a UIWebView (in iOS).

http://www.versionsapp.com
http://www.jetbrains.com/objc/

Other Software 577

PhoneGap is praised as good, for what it is: a “write once, run everywhere”
development tool. It restricts itself to common-denominator features among the target
devices (in part driven by the fact that HTML browsers vary among platforms, even if they
mostly use WebKit). The communication between the HTML and native sides pass
through a narrow pipe of JavaScript injection (to the HTML side) and a specialized URL
scheme (to the “real” app).

http://phonegap.com/—Open source; no charge, premium support and training
are available through an “enterprise” service.

Shotts, Kerri, PhoneGap 3.x Mobile Application Development (2014).

Appcelerator Titanium
Titanium is more ambitious. What’s common among platforms is provided in the
common Titanium API, but it also provides platform-specific libraries so you can adopt
native-code views and UI idioms. For the IDE, you use Titanium Studio, based on
Eclipse, and complete your builds for simulation and installation with Xcode (for iOS).

You code a Titanium application in JavaScript, but that’s (mostly) not what the app
runs. The build process translates parts of your JS code into Objective-C (for iOS) code,
which is compiled into the application. There remains a JavaScript-like interpreter in your
app to handle language features that only JS can do—it’s where your app gets the
dynamism that JS provides. These shims call down into native code that implements most
of your application. Slick.

Titanium UIs are built from JavaScript specifications. Independent developers are
working on interface-building tools but, as I write this, there are none in Titanium Studio.
You can build HTML views, but HTML is not the native form for Titanium—you simply
feed your HTML source into a web view, which is the “real” view so far as Titanium is
concerned. For native components—navigation bars, buttons—Titanium gives you the
native objects, not images that are never quite lookalikes.

http://www.appcelerator.com/—Open source; no charge, premium support
and training available for a fee.

Brousseau, Christian, Creating Mobile Apps with Appcelerator Titanium (2013).

A Biased Assessment
The opinion of a developer who has sunk decades into native development: There is a
place for alternative frameworks, but not as big as some hope. If you are developing
in-house applications, you are usually looking to leverage time and talent into producing
an application with specific functionality, without having to commit to a single vendor,
and without having to satisfy a public market. Write-once-run-anywhere (WORA) is a
reasonable choice for those goals.

This strategy is a disaster when applied to commercial products. The non-captive
market has paid a premium for its iPhones (and Nexuses. . .), and demands apps that pay
off on the latest features and capabilities. Non-native development will never keep up, and
native-code competitors will have a time-to-market advantage. The temptation is to
believe that a WORA app can afford to work like one platform, or the other, or neither,
and paying customers won’t care; they do. WORA tools are like any modern application

http://phonegap.com/
http://www.appcelerator.com/

578 Appendix B Resources

frameworks—they can deliver prototypes that look pretty good, and run fairly well; then
comes the remaining 95 percent of the development effort, making something worth
charging money for. This can involve months of chasing down special cases on each
platform (even WebKit behaves differently on different phones). By that point,
performance becomes a serious problem: Facebook’s Mark Zuckerberg called
HTML-only development “the biggest mistake we made as a company.”

And even for in-house development, you have to ask the question: You’re relying on a
BYOD (bring your own device) policy. Did your people buy iPhones and iPads (and
Nexuses. . .) because they are portable, or because the apps on those devices are quick,
efficient, and easy to use? If the latter, you have to deliver value on a par with those other
apps, and WORA may be a waste of money.

Both frameworks tempt developers who want to avoid learning native APIs and (for
iOS) a new language. It’s a false economy: You end up learning a large API anyway; to the
extent the API is smaller, it reflects platform features you won’t have access to. A
cross-platform framework is a different platform altogether, and the hope that you can just
drop your web developer into a large mobile project, without a long learning curve, is
likely forlorn.

Index

A

.a (static libraries), 69, 539

Accessibility package, 14

Accessory setting

details, 232
editors, 211

Accounts panel

Apple ID, 298
Developer ID, 311
iOS provisioning, 300–301, 303
remote repositories, 88–89
version control, 80

ACTION variable, 551

Actions

for wiring menus, 331
xcodebuild, 471–472

Activate/Deactivate Breakpoints, 39

Active Allocation Distribution style, 496

Activity Monitor instrument, 507–508

AD HOC CODE SIGNING ALLOWED, 552

Ad-hoc distributions, 299, 304, 315–316

Add, 33

Add 4 Constraints, 175

Add an Account, 300

Add Apple ID, 298, 300

Add Breakpoint at Current Line, 36

Add Build Rule, 474–475

Add Entity, 118

Add Exception Breakpoint, 150

580 Index

Add Files to

availability, 326

get-file sheets, 128, 252

mogenerated directory, 328

projects, 460

target pickers, 73

Add Item, 422-423

Add Localization, 383

Add Missing Constraints, 171, 364–365

Add Missing Constraints in Game List
Controller, 168

Add Other, 72

Add Relationship, 121

Add Remote, 87–88

Add/Remove Breakpoint at Current Line, 527

Add Run Script Build Phase, 135

Add shortcut, 501

Add Target, 244

Add to targets, 128

Add User-Defined Setting, 550

Added file state, 83

Added folders, 128

Additional exported UTI properties view, 338

addWindowController method, 347

Adobe PhoneGap, 576–577

Advanced attributes for models, 120

Agent applications, 411

Alert sheets

in debugging, 33

Git messages, 82

version control, 96

Alignment of labels, 170–171

All 2 Constraints, 173

All Entities, 452

All Frames in Container, 173

All in builds, 462, 476

All Issues, 476

All Messages, 476

All Processes, 493

Allocation Density style, 496

Allocations & Leaks service, 501

Allocations instruments, 496, 506, 538

Allow Location Simulation, 517

Allows Editing Multiple Values Selection, 355

alltargets, 472

Also create XIB file, 158, 175

Always Presents Application Modal Alerts,
355

Always use deferred mode, 502

Analysis and measurement, 264

memory, 277–278
speed. See Speed

Analysis message display, 56

analyze action for xcodebuild, 471

Anchor View, 378

Antecedents in makefile goals, 459

Antialiasing, 414

.app directory, 403

App Extensions, 493

App groups, registering, 282–283

App Store

Enterprise program, 298, 315–316
OS X applications, 309
program members, 302
provisioning, 297–299
sandboxing, 308-311
TestFlight distributions, 304–305
Xcode downloads, 10–13
Xcode updates, 472

.app suffix, 473

Appcelerator Titanium, 577

AppCode, 576

AppDelegate class

description, 112, 289–290
OS X applications, 324

Index 581

AppIcon image set, 221

Apple Developer Forums, 567

Apple developer programs, 12–13, 297–299

Apple Pay system, 307

AppleGlot tool, 391

Application Data popup, 517

Application IDs, 299

Application Language popup, 388, 517

Application Region popup, 517

Applications

bundles, 403–405

icons, 339–340

Info plist keys for, 406–409

iOS. See iOS

registering, 300–303

tests, 260

/Applications directory, 10, 17

applicationWillResignActive method, 290

applicationWillTerminate method, 290

Apps Groups, 307

apropos in lldb, 523

Architecture-specific build settings, 469–470

archive action in xcodebuild, 471

Archives organizer, 312, 317

ARCHS, 556

ARCHS STANDARD, 466, 556

ARCHS STANDARD 32 BIT, 556

Arguments panel, 516

Ask on Launch, 294

Assembly listings, 63

assert macro, 531

Assertions

description, 243

XCTest, 261–264

Asset catalogs, 484, 559

ASSETCATALOG COMPILER APPICON NAME,
559

ASSETCATALOG COMPILER LAUNCHIMAGE NAME,
559

Assets, protecting, 303

Assets catalog, 219

adding images to, 220–221
image sets, 219–220

Assignments (=) in Boolean contexts, 149

Assistant editor

assembly display, 63
caller display, 58
connection checks, 176
Editor area, 162
Interface Builder, 159
jump bar, 164–165
linking views, 166
localizations, 389, 393
Option-key navigation, 437
overview, 536–538
Preview, 165–166
views, 162, 176–177

Associated Domains, 307

Associative arrays, 418, 429

Asynchronous tests, 260–261

At sign (@) notation, 520

atIndexPath method, 146

ATSApplicationFontsPath key, 410

Attributes for models, 118–121

Attributes Inspector, 164–165

Audio package, 14

@author keyword, 448

Authorization in iOS provisioning, 299

Authorized devices in iOS provisioning, 299

Auto Layout, 185

labels, 171, 200–202
localizations, 375–378
overview, 186
permanent views, 202–205
planning constraints, 197–200

582 Index

Auto Layout (continued)

purpose, 185–186

size classes, 197

size constraints, 186–188

subviews, 188–197

views, 167–169

Automatic code completion, 22, 28, 180–183

Automatic for Assistant editor, 162

Automatic Reference Counting, 58

Automatic Snapshotting, 507

Automatically continue after evaluating
actions, 520

Automation instrument, 510

Autoresize limitations, 185–186

Auxiliary tools, 14

B

@b bold comment format, 448

B2B program, 298

Background Modes, 307

backslashes (\) for breaking input lines, 5

Badges for test navigator, 244

Bar graphs in Debug navigator, 211–213,
266–267

Base localization, 373–376

Baseline performance, 276

Basic button, 462

BBEdit text editor, 571

Beta distributions, 299, 304–306, 315–316

Billboard view

overview, 164–166

size constraints, 186–188

testing, 183–184

Binaries, fat, 482

Binary property lists, 430

Binary stores, 336

Bindings, 343

columns to team properties, 355–357

document window, 345–350

filling, 350–357

game array controller, 369

game table, 369–370

game-table labels, 369

League table to source list, 357–359

object controllers, 352–354

Passer section, 363–364

passer table, 365–367

passer-table labels, 364–365

running, 367–369

storyboard segues, 343–345

tables to teams, 354–355

team selection, 359–361

teams to tables, 361–363

Blame view in Comparison editor, 99,
101–102

Block Graph style, 496

Blogs, 569–570

Bluetooth instrument, 509

Bookmark navigator, 440

Books, 565–567

Borders for buttons, 229

Branching in version control systems,
102–104

Breakpoint navigator, 150

breakpoint set, 527

Breakpoints, 35

listing, 150

lldb, 524

removing, 36

setting, 36–37

tips, 525

unit testing, 254

working with, 518–521

Index 583

brokenByLines method, 289

@bug keyword, 448

build action in xcodebuild, 471

Build Configuration popup, 466

Build For Running, 476

Build New Instrument, 512

Build Phases tab

description, 70
libraries, 75
targets, 50, 71–72, 460–461
text data, 135
widget, 294–295

Build Rules tab, 70, 474–475

Build settings, 462–463, 549–550

code signing, 552–553
Compiler, 556–559
DEVELOPER, 561–562
environment, 551–552
Info.plist, 559–560
Java, 560
locations, 553–556
search paths, 561
source trees, 562–563

Build Settings tab

build settings, 462–466, 550
code size, 531
flags, 558
hierarchy, 463–464
packages, 405
product names, 322
Quick Help, 436, 447
release size, 532
SDK, 112
targets, 70, 317

Building views, 161–162

labels, 169–171
outlets and Assistant editors, 163–164

Builds and build system, 459

command-line tools, 471–473

configuration files, 468–471

configurations, 466–467

custom rules, 474–475

dependencies in widget, 294–295

distribution, 314–318

projects, 22–23, 29–30

Report Navigator, 476–477

settings, 462–463, 465–466

settings hierarchy, 463–465

structures, 459–462

transcript, 476–487

tricks, 539–541

BUILT PRODUCTS DIR, 554

builtin-copy tool, 483

Bulleted lists, 456

Bumgarner, Bill, 539

Bundle Identifier setting

new projects, 19

OS X applications, 323

Bundles, 279, 401, 403

application, 403–405

Info.plist keys and file, 405–409

location settings, 555–556

.strings files, 392

targets, 543

Button borders, 229

C

.c files, 462

@c comment format, 448

Call-tree detail, 271

Call-tree list, 498

584 Index

Canvas

segues on, 239

view controllers, 159

Canvas menu, 188

Capabilities editor, 306–308

Capabilities tab, 282–283, 309

Capitalization, 233

Carbon Events instrument, 510

Cascade delete rule, 122

CC, 462

Cell-based views, 348

cellForRowAtIndexPath method

custom cells, 215–217

images, 218–219

outlets, 208–209

prototype cells, 211

table view, 145

Cells. See Tables and table cells

Certificates

code signing, 552

Developer ID, 12, 311–312

distribution builds, 314–315

Identifiers & Profiles site, 300

iOS provisioning, 299, 303

private keys, 303

team membership, 300–301

CFBundleIconFiles key, 412

CFBundleVersion, 316

Change color, 452

Check and Install Now, 445

Check for and install updates automatically,
445

Check Out, 89

Check out an existing project, 17, 80, 85, 89

checkNSErrorContent method, 248

Choose a profiling template for, 491

Choose Target, 493

clang compiler, 47

builds, 482
cross-function analysis, 55–56
drawbacks, 57–58
indexing, 56–57
local analysis, 53–55
modules, 65–66
overview, 52–53
precompilation, 64

CLANG CXX LANGUAGE STANDARD, 557

CLANG ENABLE MODULES, 557

CLANG ENABLE OBJC ARC, 557

Class Info settings, 440–441

Class Prefix, 111

Classes (educational), 570

Classes (objects)

managed-object. See Managed-object
classes

name refactoring, 142–143
object allocations by, 489
renaming, 144
specializing, 132–138

clean action for xcodebuild, 471

Cloning repositories, 85

close enough function, 189–190

Close Project, 24

cocoa-dev list, 568

Cocoa Events instrument, 510

Cocoa language application frameworks

alternatives, 576–577
Core Data, 111
libraries, 76
pointers, 54

Cocoa Layout instrument, 506

Cocoa Touch framework, 107, 180, 286

CocoaHeads meetings, 570

CocoaPods package manager, 574

Code completion, 22, 28, 180–183

Index 585

Code completion: Automatically insert
closing “}”, 28

Code-folding ribbon, 535–536

CODE SIGN IDENTITY, 314, 552

CODE SIGNING ALLOWED, 552

CODE SIGNING ENTITLEMENTS, 553

Code Signing Identity, 266

CODE SIGNING RESOURCE RULES PATH, 553

Code signing settings, 552–553

Code snippets, 181–183

Color

buttons, 221

labels, 170, 189

views, 164

Color controls

palette, 164

well, 164

Column Sizing setting, 350

Columns, 172–173

Combined for build settings, 462

Combo fields for property lists, 432

Command Line Developer Tools package, 12

Command Line Tool template, 19

Command-line tools, 11

builds, 471–473

package, 14

Comments

documentation, 447–449

reStructured Text, 456–457

Commit editor, 84–85

Commit sheet, 91

Commits

selective, 91–93

version control systems, 84–85, 98

Company Identifier setting, 323

Comparison editor, 99–100

Blame view, 101–102

Log view, 101

Compile Sources build phase, 50, 460–462

Compilers and compiling, 45

build settings, 556–559

clang, 52–53

controllers, 148–149

cross-function analysis, 55–56

dynamic loading, 52–53

indexing, 56–57

intermediate products, 62–64

linking, 50–52

local analysis, 53–55

precompilation, 64–65

process, 45–52

warnings, 29–30, 539

Completes action, 42

Completion, code, 22, 28, 180–183

componentsSeparatedByCharactersInSet
method, 254–255

COMPRESS PNG FILES, 559

Condition field for breakpoints, 520

Conditionally Sets Editable, 355, 366

Configuration files, 468–471

Configure Repository sheet, 85

configureView method, 178–179

Conflicted file state, 83–84

Conflicts

assignments, 533

version control systems, 89–98

Connecting outlets, 163–164

Connection inspector for First Responders, 332–
333

Connections for outlets, 177–180

Connections instrument, 508

Console applications, 23

Console windows, 526

586 Index

Constraints

description, 188

labels, 200–202

planning, 197–200

size, 186–188

trace document window, 499

views, 168, 186–188

Contained extensions, 280

Container apps, 294

Content Compression Resistance, 203

Content Compression Resistance Priority, 204

Contents directory, 403

CONTENTS FOLDER PATH, 555

Continue, 39

Continuously Updates Value, 356

Controller Key setting, 354–355

Controllers layers, 141

MVC model, 108, 110

object, 352–354

view. See View controllers

Converting

data types, 429

property list formats, 430

Copy Bundle Resources build phase

build rules, 475

folder references, 533

sample-data.csv, 136–137

targets, 74

Xcode structures, 460

Copy for dictionaries, 424

Copy items into destination group’s folder
(if needed), 326

Copy Source Changes, 100

Copy Transcript for Shown Results, 477

Core Animation instrument, 506

Core Data

events, 490

model objects, 117

Core Data Cache Misses instrument, 505

Core Data Faults instrument, 505

Core Data Fetches instrument, 505

Core Data Saves instrument, 505

Counters instrument, 508

CPU Activity instrument, 509

CPU bar for speed analysis, 267

CPU perspective, 494

CPU Usage style, 496

Create a new Xcode Project, 17, 25

Create Document-Based Application, 323

Create folder references, 128

Create folder references for any added
folders, 533

Create Git repository on, 20, 25, 80, 323

Create groups, 128

Create groups for any added folders, 128, 326

CREATE INFOPLIST SECTION IN LIBRARY,
560

Create New Remote, 85

Create NSManagedObject Subclass, 124

Create Symbolic Breakpoint, 527

Credits.rtf file, 385–388

Cross-function analysis, 55–56

CSResourcesFileMapped key, 410

.csv data files, 246

CSV Reader, 246–251

CSVError class, 253

CSVFileTests class, 247

Current Bytes style, 496

Current Views, 40

Custom build rules, 474–475

Custom instruments, 511–512

Index 587

Custom script, 475

Custom segues, 239

Custom table cells, 214–217

D

DarwinPorts package manager, 574

Dash styles tool, 572

Dashcode package, 14

Data access in widget, 282–285

Data formatters for numbers, 367–368

Data Model editor, 118

Data Model inspector, 119–122

Data Protection, 308

Data types for property lists, 417–419,
429–431

dataSource property, 207

Date attribute, 119

Date data type

property lists, 417–419, 429

Swift, 60

Debug area

breakpoints, 36

components, 23, 31–33

hiding, 23, 40–41

variables, 37, 254, 525

DEBUG macro, 531

Debug navigator, 31

actions, 42

Game table, 211–212

speed analysis, 266–268

stack trace, 151–152

Debug Selected Views, 195, 292

Debug XPC services used by this application,
517

Debugging, 515

breakpoints. See Breakpoints

controllers, 149–154

dependent targets, 76

lldb command line, 523–525

models, 139

problem fixes, 39–42

projects, 32–34

scheme options, 515–518

stepping through code, 37–39

tips, 525–528

tricks, 538–539

UI Hierarchy, 521

unit testing, 254–256

Variables pane, 37–38

views, 521–523

Debugging-symbol package, 486

Decrease Deck Size, 495

Deepest Stack Libraries style, 496

Default attribute, 120

Default - Property List XML, 427–428

Defaults, sharing, 283–284

Deferred Mode, 502

#define directive, 62

DEFINES MODULE, 557

Definitions, 535

Delays Events, 380

Delegate design pattern, 145

delegate property, 207

Delete Rule for relationships, 121

Deleting

menus, 330

projects, 24

Deny delete rule, 122

588 Index

Dependencies

implicit, 76

makefile goals, 459–460, 462

widget, 294–295

Dependent targets, 74–76

Deployment Target field, 111-112

@deprecated keyword, 448

DERIVED FILE DIR, 475, 554–555

Derived files, 553–554

description method, 526

Descriptions for exceptions, 151

Designable views, 193

Designing widget, 281–282

destination for xcodebuild, 472

Destination locations

Doxygen, 452

settings, 553–555

Detail area in trace document window, 495

Detail Disclosure, 232

DetailViewController class, 113

DEVELOPER APPLICATIONS DIR, 562

DEVELOPER BIN DIR, 562

DEVELOPER DIR, 562

/Developer directory, 10

DEVELOPER FRAMEWORKS DIR, 562

Developer ID, 311–314

Developer ID Application identity, 311

Developer ID Installer identity, 311

DEVELOPER LIBRARY DIR, 562

Developer programs, 12–13, 297–299

DEVELOPER SDK DIR, 562

Developer Technical Support (DTS),
12, 568–569

DEVELOPER TOOLS DIR, 562

DEVELOPER USR DIR, 562

Development process in iOS applications,
304

Devices settings, 111, 302–303

Diagnostics tab, 518

Diagrams panel, 452–453

Diamond badges, 244

Dictionaries

object properties, 233

property lists, 417–419, 422, 424,
431–432

didReceiveMemoryWarning method,
292–293

didSet method, 247–248, 378

Directives in Swift, 139

Directories for localization, 373–374

Directory I/O instrument, 505

Discard All Changes, 100, 125

Discard Changes, 99–100

Disclosure triangles in trace document
window, 495

Disk image (.dmg) files, 13–14

Disk Monitor instrument, 508

Disk space requirements, 10

Dispatch instruments, 505

Display Brightness instrument, 509

Display Pattern field, 364, 366–367, 369

Display requirements, 10

Display Settings tab, 497–499

Distributed source-control systems, 84

Distributions

builds, 314–318

iOS applications, 304

prerelease, 304–306

ditto command, 481

.dmg (disk image) files, 13–14

Do not show this message again, 33

Dock, 17

DOCSET BUNDLE ID setting, 453

DOCSET FEEDNAME setting, 453

Index 589

DOCSET PUBLISHER ID setting, 454

DOCSET PUBLISHER NAME setting, 454

Docsets (documentation sets)

installing, 455–456

overview, 444–445

searching, 442

Document class, 323–324

Document Extension setting, 323

Document outlet sidebar, 176

Document outline view, 159

Document Versions: Allow debugging when
using document Versions Browser, 517

Document window, building, 345–350

Document.xcdatamodeld file, 324

Documentation, 435

docsets, 444–445

Documentation window, 439–444

downloading, 11

Doxygen, 449–456

help menu, 438–439

Open Quickly, 437–438

Quick Help, 435–437, 446–449

reStructured Text, 456–458

Documentation and API Reference settings,
438

Documentation sets (docsets)

installing, 455–456

overview, 444–445

searching, 442

Documents

application bundles, 409

icons, 339–340

OS X, 321–322

Dollar sign ($) setting, 533

Dot panel in Doxygen, 454

DOT PATH setting, 454

Double Length Pseudolanguage, 388, 391

Downloading

docsets, 444–445

packages, 14–15

Xcode, 13–14

Downloads panel, 11, 15, 445

Doxygen generator, 446

basic settings, 450–454

comments, 449

docset installation, 455–456

expert settings, 453

preparation, 449–450

running, 454–455

DSTROOT, 554

.dSYM packages, 485

DTPerformanceSession framework, 504

DTrace Data Import, 512

DTrace Script Export, 512

DTrace tool, 511–512

DTS (Developer Technical Support), 12,
568–569

Duck-typing, 58

Dynamic libraries (.dylib), 539

Dynamic loading, 52–53

E

@e keyword, 448

Edges for views, 228

Edit All in Scope, 57

Edit Breakpoint, 520–521

Edit Find Options, 90

Edit for targets, 493

Edit Instrument sheet, 511

Edit ‘Reads/Writes’ Instrument, 511

Edit Scheme, 76, 270, 387

590 Index

Editing

build settings, 465–466
property lists, 419–429
view controllers, 144–147

Editing tab, 22, 28, 180

Editor area, 32, 162

Editor control, 42

Editor menu, adjusting, 532

Editor Style control, 118

Editor table, 233–235

passing data to, 235–237
retrieving data from, 237–239

Editor view controllers, 233–235

Editors, 227

Assistant. See Assistant editor
Capabilities, 306–308
Commit, 84–85
Comparison, 99–102
Data Model, 118
linking, 231–232
Merge, 97
Project, 375
Property List, 406, 422–429
RTF, 385–386
segues, 240
static table cells, 232–233
Target. See Targets and Target editor
text, 571–572
Version, 99

ellipses (...) for file paths, 5

@em keyword, 448

emacs text editor, 572

Email Link, 444

Embed in Application, 280, 286

Embedded view controllers, 229–231

Enable for Development button, 302

ENABLE NS ASSERTIONS macro, 532

Enable user interface debugging, 521

#end directive, 139

Energy Usage instrument, 509

enqueueGame method, 274

Enterprise developer program

ad-hoc distributions, 304
Apple developer programs, 298–299
build settings, 315

Entities, 117

models, 118
OS X applications, 326–330

Entitlement chains, 306

Enumerated lists, 456–457

Environment settings, 551–552

Epsilon values, 262

Equality assertions, 262–263

Errors

compiler, 29–30
debugging. See Debugging
displaying, 53, 55
unit testing, 254

Errors Only, 476

Escape key shows code completions, 181

Event Profiler instrument, 508

Events, 490, 508

EXC BAD ACCESS message, 32

Exception breakpoints, 150

@exception keyword, 448

Exceptions, 150–154

assertions, 263–264
temporary, 309

EXECUTABLE FOLDER PATH, 555

EXECUTABLE PATH, 556

existingPasserByName function, 329–330

Expand Variables Based, 516

expectationWithDescription method, 260

Expert tab in Doxygen, 451–453

Export Accounts, 303

Index 591

Export as a Mac Application, 539

Export button in Documentation window, 443

Export Developer ID-signed Application, 312

Export for Localization, 396

Export Items, 303

Export Snapshot, 95

Exported UTIs category, 336

expression, 524

expression interpreter, 524

Extended Detail area, 495–496

Display Settings, 497–499

Record Settings, 496–497

Extensions.swift file, 129

extern keyword, 535

F

F-keys, 39

Face to face support, 570

Family popup for labels, 170

Fat (universal) binaries, 482

Features, turning off, 22

Fetched Properties table, 118

fetchedResultsController method, 146

Field lists in reStructuredText, 457

File Activity instrument, 505

File Attributes instrument, 505

File Format menu, 336

File inspector tab, 72

File Locks instrument, 505

File Types column, 385

Files

adding to targets, 71–73

configuration, 468–471

renaming, 534

searching, 535

sharing, 284–285
states, 82–83

File’s Owner setting, 332, 354

Filesystem instruments, 505–506

Fill With Test Data, 334

Filled Line Graph style, 496

Filling bindings, 350–357

fillViewContents method, 284

fillWithData, 332–336

Filtering stack trace, 151–152

Find and Replace, 89, 425

Find for property lists, 425

Find Implicit Dependencies, 76

Find in Project, 93

Find in Workspace/Project, 425

Find navigator, 144

Finder

bundles, 403
docset versions, 445
instruments, 491
iOS apps, 405
packages, 402

Fink package manager, 574

First Responders, 332–333

Fix-it popover, 148

Flatten Recursion, 498

FlushGameQueue method, 274

FlushGameQueues method, 274

Folders

new projects, 20
references, 533

Font field for labels, 169–170

Fonts & Colors panel, 32

Fonts for widget, 292

forAllPassersInContext method, 274

Format menu, deleting, 330

Formats tab for strings, 399

592 Index

Formatters for numbers, 367–368

Forums, 567–568

FOSS (free and open-source) software, 574

Foundation command-line program, 53

Fraction Digits setting, 367

frame in lldb, 524

Frameworks

benefits, 52
in compiling, 51
header files, 64, 74
libraries in, 76, 285–290
Objective-C, 114
overview, 279
playgrounds, 189
testing, 243

Frameworks directory, 405

FRAMEWORKS FOLDER PATH, 556

Frameworks groups in iOS projects, 114

Free and open-source software (FOSS), 574

free function, 489

French localization, 375

Credits.rtf file, 385–388
locales, 383–385
Main.storyboard, 389–392
process, 382
resources, 392–394
strings, 394–397

fulfill method, 261

FULL PRODUCT NAME, 551

fullViewContents method, 293–294

Function keys, 39

G

Game Center mediator, 306

Game table, 207

first run, 211–213

Model-to-View support, 210
outlets, 207–208
protocol methods, 208–209
prototype cells, 211
table cells, 214–217

GameDB class, 287–289

GameDetailController class, 376–382

GameListController class, 144

billboard view, 164, 166, 201
connections, 177–180, 215
outlets, 175–177
tables, 207
widget, 281

gameTableClicked method, 381

Garbage collection, 558

Gatekeeper, 12, 311–314

gcc compiler, 53

GCC ENABLE CPP RTTI, 462

GCC ENABLE OBJC GC, 559

GCC OPTIMIZATION LEVEL, 557

GCC PREPROCESSOR DEFINITIONS, 558

GCC PREPROCESSOR DEFINITIONS NOT
USED IN PRECOMPS, 559

GCC TREAT WARNINGS AS ERRORS, 558

GCC VERSION, 558

GCC VERSION IDENTIFIER, 558

GCC WARN flags, 559

GCC WARN INHIBIT ALL WARNINGS, 558

General editor for iOS projects, 111

General settings

automatic features, 22
controllers, 148
icons, 221
images, 221
Info.plist file, 405
instruments, 501–502
iOS projects, 113
Issue Navigator detail, 56

Index 593

libraries, 76

property lists, 419

registering apps, 300

Target editor, 224

GENERATE DOCSET setting, 453

Generate Test Data build phase, 137

Generic team provisioning profiles, 302

genstrings utility, 395–396

Gestures for navigation, 537–538

Get Started with a playground, 18

Git version-control system, 25, 575

OS X applications, 323

repositories. See Repositories

servers, 88

Xcode with, 83–84

GitHub, 575

.gitignore files, 81

Global hot key combinations, 501

GNU General Public License, 53

Goals for makefiles, 459

GPS instrument, 509

GPU Driver instrument, 506

GPU Frame Capture, 518

Graphics, 217

assets catalog, 219–221

icons and launch images, 221–225

image views, 218–219

table cells, 217–218

Graphics instruments, 506

Graphics package, 14

Graphs in Debug navigator, 211–213

GraphViz package, 449

GROUP, 551

Group from Selection, 124, 161

Group popup, 26

Grouped style, 232

Groups, framework, 114

H

Handoff, 307

hAny bar, 200–202

Hardware capabilities, 309

Hardware IO package, 14

hCompact, 202

HEADER SEARCH PATHS, 561

HeaderDoc format, 446, 456

Headers, 29

library targets, 74

prefix, 64–65

Heads-up (HUD) window, 176

HealthKit framework, 308

Heights Equally, 203

Hello World project, 19

building and running, 22–23

creating, 19–22

deleting, 24

Help

application bundles, 410

help menu, 438–439

lldb, 523–525

Quick Help, 435–437, 446–449

help breakpoint, 523

help command, 523

Help menu, 438–439

HFS+ filesystem, 544–545

Hidden binding, 364

Hide Missing Symbols, 271, 273, 497–498

Hide/Show Debug Area button, 38

Hide system calls in the stack trace button,
499

Hide System Libraries, 271–272, 498

594 Index

Hide Toolbar, 526

Hiding Debug area, 41

Highlight setting, 357

HOME, 551

Homebrew package manager, 449, 574

HomeKit framework, 308

Hooking up outlets, 177

Hopper Disassembler tool, 47, 572–573

Hosted extensions, 280

Hosting apps, 294

Hot key combinations, 501

HTML and Doxygen, 453–454

HUD (heads-up) window, 176

I

@i comment format, 448

@IBAction type

linking controls to actions, 177
unwind segues, 238

@IBDesignable type, 193

@IBInspectable type, 193

@IBOutlet type

array controllers, 352
constraints, 188
MacStatView, 379
outlets, 175–177
removing, 542
view controllers, 163, 166

iCloud capabilities, 306

Icons

applications and documents, 339–340
launch images, 221–225

Identifier popup, 229

#if directive, 139

Ignored file state, 82

Image sets, 219–220

Image Views, 218–219

Images. See Graphics

Images.xcassets catalog, 220

OS X applications, 324
overview, 113

Implicit dependencies, 76

#import directive, 62

Import Energy Diagnostics from Device, 509

Import Localizations, 397

In-app purchases, 306

In-house distributions, 304, 315

In Project, 535

In Workspace, 535

#include directive, 62, 470

Increase Deck Size, 495

Indentation tab, 22, 28

Indexed attribute, 120

Indexing, 56–57

Individuals in Apple developer programs, 298

Info.plist file, 324, 431–432

advertising in, 306
application keys, 406–409
background modes, 307
builds, 315–316, 485
bundles, 403, 405–406, 409, 415
gloss effect, 223
localizations, 406
OS X applications, 324
packages, 401–402
property lists, 420, 422
settings, 559–560
strings, 398

Info tab

application keys, 409–410
builds, 466–467, 469
Info.plist file, 405
localizations, 375
property lists, 419–420

Index 595

Quick Help, 436
schemes, 515–516
tests, 245

INFOPLIST EXPAND BUILD SETTINGS, 560

INFOPLIST FILE, 314, 405, 559

INFOPLIST OUTPUT FORMAT, 430, 560

INFOPLIST PREPROCESS, 560

InfoPlist.strings file, 387, 398, 406

INFOSTRINGS PATH, 560

Inherited setting, 533

INPUT FILE BASE, 475

INPUT FILE DIR, 475

INPUT FILE NAME, 475

INPUT FILE PATH, 475

Input lines, breaking, 5

Input/output instruments, 506

Insert Pattern, 90

insertNewObject method, 147

Inspectable properties, 189, 196

install action for xcodebuild, 471–472

Installing

docsets, 455–456
Xcode, 11

installsrc action, 472

instantiateController method, 345

Instruction, 527

Instruments, 504

behavior, 504
Core Data, 505
custom, 511–512
Dispatch, 505
filesystem, 505–506
graphics, 506
input/output, 506
iOS energy, 509
master tracks, 506
overview, 489–490

recording, 500–503
running, 490–491
saving and reopening, 503–504
speed analysis, 268–272
system, 507–509
templates, 512–513
threads/Locks, 509–510
trace, 509
trace document window, 492–500
tricks, 538
UI automation, 510
user interface, 510

Integer Digits setting, 368

Intentions for views, 168

Inter-App Audio service, 307

Interface Builder

Auto Layout, 186
class names, 143
constraints, 187–188
designable views, 193
game detail, 378–380
inspectable properties, 189, 196
linking views, 166
localizations, 385, 389
outlets, 175, 177, 208
permanent views, 202
property editing, 332
scene editing, 172
size classes, 197
table views, 349
view controllers, 158–161, 163, 238
widget, 291

Interface Builder tab, 42, 160

Intermediate compiler products, 62–64

Interpreted languages, 53

Invert Call Tree, 271–272, 497–498

I/O Activity instrument, 506

596 Index

iOS

application bundles, 406–409, 412–415

Auto Layout. See Auto Layout

capabilities, 306–308

energy instruments, 509

measurement and analysis. See
Measurement and analysis model. See
Models

MVC design pattern, 107–110

as packages, 405

porting from, 326–330

prerelease distributions, 304

provisioning. See Provisioning

scheme options, 517–518

starting projects, 110–112

table cells. See Tables and table cells

templates, 112–114

unit testing. See Unit testing

view controllers. See View controllers

widget extension. See Widget

“iOS Debugging Magic (TN2239)”, 538

iOS Enterprise developer program

Apple developer programs, 298

build settings, 316

iOS icon is pre-rendered, 223

iOS Simulator

limitations, 213, 266

memory, 507

speed analysis, 266

templates, 513

tests, 252

IPHONEOS DEPLOYMENT TARGET, 561

iprofiler, 504

ISO-standard languages, 373

Issue navigator, 29

Issue Navigator Detail, 56

Issues: Show live issues, 53

Items of New Constraints, 175

J

Java, Build settings for, 560

JetBrains AppCode, 576

Join a Program, 298

JSON format for property lists, 430–431

Jump bars

Assistant editor, 164–165

description, 160–161

K

Kaleidoscope tool, 573

Keep in Dock, 491

Key Bindings panel

controllers, 148

key equivalents, 227–228

Preferences window, 533–534

Key Equivalent field, 331

Key-Value Coding (KVC), 180, 233–234

Key-Value Observation (KVO), 351, 353, 361

Key-value pairs

localizations, 389

property lists, 422

Keyboard panel, 39, 412, 501

Keyboard Shortcuts tab, 412

Keychain sharing, 306

keyPathsForValuesAffectingCurrentTeamName
method, 362

Keys for applications, 406–415

KVC (Key-Value Coding), 180, 233–234

KVO (Key-Value Observation), 351, 353, 361

Index 597

L

Labels

building views, 169–171
constraints, 200–202
tags, 215

Language & Region panel, 373

Language & Text panel, 399

Language popup, 111

Language setting, 323

Language tab, 373

Launch behavior for bundles, 410–411

Launch due to a background fetch event, 518

Launch images, 221–225

Launch storyboards, 224

LaunchScreen.xib layout, 113

Layout

Auto Layout. See Auto Layout
localizations, 375–378

Layout guides for views, 168

layoutSubviews function, 194–195

Leading edges of views, 228

LeagueDocument class, 333–334

LeagueViewController class, 344, 347,
358–360, 363

LeagueWindowController class, 345–347

Leaks instrument, 507, 538

Left-side group for labels, 169–171

Levels for build settings, 464–465

libcrypto API, 9

Libraries

adding, 75–76
dynamic, 52–53
instruments, 499–500, 504
object, 51, 347–348
static, 69, 539
targets. See Library targets

/Library/Developer directory, 11–12

Library navigator, 444

Library palette, 504

LIBRARY SEARCH PATHS, 561

Library targets, 69

adding, 69–71
debugging, 76
dependent, 74–76
description, 70–71
headers, 74
membership, 71–73

Library window, 499–500

limitPinner function, 129

Line Graph style, 496

Line wrapping: Wrap lines to editor width, 22

Link Binary With Libraries build phase,
50–51, 66, 75, 460

Linking and linkers

editing, 51
editors, 231–232
process, 50–52
tricks, 540
views, 166–167

Lion, 308

lipo tool, 482

Lists in reStructured Text, 456–457

Live Rendering, 193

lldb debugger

command line, 523–525
linking description, 53

LLDB Quick Start Guide, 525

.lldbinit files, 525

llvm library, 53, 149

loadGames function, 272–274, 334–335

Loading

document window, 345–347
dynamic, 52–53
LeagueDocument data, 333–334

loadSampleData method, 287–288

598 Index

loadStatViews method, 380

loadView method, 158

Local analysis, 53–55

Local remote repositories, 87–88

Local variables, 37

Locales, 383–385

Localizable Strings file, 385

Localizable.strings file, 395–396

Localization Debugging: Show non-localized
strings, 517

Localizations, 368, 373

adding, 374–376

application bundles, 408–409

base, 374–376

French. See French localization

game detail, 376–382

Info.plist, 406

locales, 383–385

modules and namespaces, 382

overview, 373–374

strings, 398–399

Locations

Doxygen, 452

settings, 553–556

Locks instruments, 509–510

Log Message, 520

Log view for Comparison editor, 99, 101

Logic tests, 260

Login button.png, 404

Logs

vs. breakpoints, 518–519

builds, 476–477

lproj system, 373–374

LSApplicationCategoryType key, 410

LSBackgroundOnly key, 410

LSEnvironment key, 410

LSFileQuarantineEnabled key, 411

LSFileQuarantineExcludedPathPatterns
key, 411

LSGetAppDiedEvents key, 410

LSMinimumSystemVersion key, 411

LSMinimumSystemVersionByArchitecture
key, 411

LSMultipleInstancesProhibited key, 411

LSRequiresIPhoneOS key, 412

LSUIElement key, 411

LSUIPresentationMode key, 411

M

Mac App Store. See App Store

Mac Developer identity, 312

Mac OS X. See OS X

“Mac OS X Debugging Magic (TN2124)”, 538

MAC OS X PRODUCT BUILD VERSION,
552

MAC OS X VERSION ACTUAL, 551

MAC OS X VERSION MAJOR, 552

MAC OS X VERSION MINOR, 552

Machine instructions, 49

MacOS directory, 404

MacPorts package manager, 574

MacStatView class, 376

Mailing lists, 568

Main.storyboard file, 112, 389–392

MainInterface.storyboard file, 290

Makefile goals, 459

makeWindowControllers method, 344–345

malloc function, 489

MallocDebug application, 489

Manage Flags, 508

Manage PM Events, 508

Manage Schemes editor, 317

Index 599

Managed-object classes, 117, 123

creating, 124–128

source control and product files,
136–138

specializing, 132–138

test data, 134–136

Managed object contexts, binding, 352–353

managedObjectContext property, 353

Maps capability, 306–307

Margins in reStructured Text, 456–458

MARK directive, 208

Mark Heap, 538

Mark Selected Files As Resolved, 84

Master branches in version control systems, 102–
103

Master-Detail Application template, 161–162

Master tracks instruments, 506

MasterViewController class, 112, 141–143

Matching, 144

Mavericks version, 9–11

Maximum attribute, 120, 368

MDM (Mobile-Device Management) systems,
304

measureBlock method, 246, 276

Measurement and analysis, 264

memory, 277–278

speed. See Speed

Meetings, 570

Membership, target, 71–73

Memory, 277–278

instruments, 506–507

problems, 538

RAM, 49

requirements, 10

Memory Monitor instrument, 508

Menus, wiring, 330–331

file types, 336–338

First Responders, 332–333

icons, 339–340

League Files, 338–339

LeagueDocument data, 333–334

managed documents, 334–335

targets and actions, 331–332

testing commands, 335–336

Merge editor, 97

Merge from Branch, 104

Merge into Branch, 104

Merges in version control systems, 89–98

Messages

analysis, 56

Documentation window, 444

logs, 520

Objective-C compilers, 544

Metadata in Git, 82

Method names, refactoring, 142

Min Length setting, 120

Mini instruments, 502

Minimum attribute, 120, 368

missing-braces-and-parentheses warning, 149

MKDirectionsApplicationSupportedModes key,
415

Mobile-Device Management (MDM) systems,
304

Modal scenes, 227–233

Mode settings

Doxygen, 452

object controllers, 352

Model Key Path field, 354, 366–367

Model-to-View support, 210

Model-View-Controller (MVC) design pattern,
107–108

controllers, 110

models, 108

views, 108–110

600 Index

Models

attributes, 118–121

debugging, 139

entities, 118

implementing, 117

managed-object classes. See
Managed-object classes

OS X applications, 325–330

relationships, 120–123

Modified file state, 82–83

module.map file, 66

MODULE NAME, 557

Modules, 65–66

localizations, 382

Swift in, 289

symbols, 250

Modules extension, 52

mogenerator tool, 126–128, 573

More Developer Tools, 14

Mouse buttons, 5

Mouse pointer variables, 37

Move Breakpoint To, 525

Multiple Values Placeholder, 356

MVC (Model-View-Controller) design pattern,
107–108

controllers, 110

models, 108

views, 108–110

N

Name labels, 169–170

Names

product, 322

refactoring, 142–143

Namespaces, localizations, 382

nan (not a number), 35

NATIVE ARCH, 557

NATIVE ARCH 32 BIT, 557

NATIVE ARCH 64 BIT, 557

Navigation panel for gestures, 537–538

Navigators, 21

Breakpoint, 150
Debug, 211–212
detail settings, 56
Documentation window, 439–440
Issue navigator, 29
Library, 444
Project, 36
Report, 476
Symbol, 57

NDEBUG macro, 531

Net resources, 567–570

Network Activity instrument, 509

Network Activity Monitor instrument, 508

Network capabilities, 309

New Branch, 102

New File assistant, 26–27

New Folder

Doxygen, 452
subclasses, 124

New OS X Icon, 339–340

New Project assistant, 19–20, 27

iOS, 110
OS X, 328

New Scope, 535

New Target assistant, 69, 280

New Trace assistant, 491

newton sqrt function, 189

Next Run, 494

.nib files, 143

nm tool, 63

No Access, 309

No Action delete rule, 121

No Selection Placeholder field, 356

Index 601

Normalizing entities, 326

Not a number (nan), 35

not-enough-fields.csv file, 252

Notification Center widget, 290, 294–295

NS BLOCK ASSERTIONS macro, 531–532

NSAppleScriptEnabled key, 411

NSApplicationShowExceptions setting, 528

NSArray class, 151

NSArrayController class, 352–353

NSBundle class, 373, 392

NSCoder Night meetings, 570

NSController class, 352

NSError class, 54–55

NSFetchedResultsController class, 113,
129–130, 144, 207

NSFileWrapper class, 402

NSHumanReadableCopyright key, 408, 410

NSLocalizedString class, 395

NSJSONSerialization class, 431

NSLog function, 519–520

NSMainNibFile key, 407

NSManagedObject class, 145

MVC model, 107

subclass creation, 124

widget design, 281

NSManagedObjectCollector class, 353

NSManagedObjectContext class, 289

NSNull class, 431

NSObject class, 107

NSPersistentDocument class, 334, 353

NSPrincipalClass key, 407

NSRTFDPboardType file type, 402

NSScrollView, 544

NSServices key, 412

NSSplitView class, 357

NSSplitViewController class, 358

NSString class, 180

NSSupportsSuddenTermination key, 411

NSTextFields, 370

NSTextView, 544

NSZombieEnabled setting, 518

Null Placeholder, 356

Nullify delete rule, 122

Numbers

data formatters, 367–368
property lists, 417–418, 429

O

.o files, 460

-O3 optimization, 540

objc-language list, 568

Object allocations by class, 489

Object controllers, 352–354

OBJECT FILE DIR, 555

Object files, 50–51

objectAtIndexPath method, 144

Objective-C programs

assertions, 261–262
characteristics, 57–58
choosing, 111
compiler messages, 544
data types, 417–418
namespaces, 382
optimization settings, 540
optional arguments, 395
renaming symbols in, 141–143
shared libraries, 286
source files, 50
support for, 62

OBJROOT, 554

observeValueForKeyPath method, 360–361

-Ofast optimization, 540

-Onone optimization, 540

602 Index

Open another project, 18

Open GL ES, 518

Open in instruments, 504

Open Keyboard Shortcut Preferences, 501

Open Quickly, 261, 437–438, 532

Open Recent, 24

OpenCL facility, 53

OpenGL ES Analyzer instrument, 506

Optimization

compiler, 48–49

speed, 272–275

tricks, 540–541

Option key, 537–538

Optional for libraries, 75

Options panel, 19–20

Options tab

localizations, 388

schemes, 516

Ordered for relationships, 121

Ordered lists, 417–418

Organization Identifier, 110, 280

Organization Name setting

iOS projects, 110

new projects, 19

OS X projects, 323

Organizational Identifier setting, 19

Organizations in Apple developer programs,
298

Organizer window

derived files, 554

snapshots, 95

trash, 24

Orientation constraints, 197–198

-Os optimization, 540

OS X, 321

application keys, 409–412

bindings. See Bindings

bundles. See Bundles

capabilities, 306–307

entities, 326–330

frameworks. See Frameworks

goals, 321–322

localizations. See Localizations

models, 325–330

porting from iOS, 326–330

property lists. See Property lists

sandboxing, 308–311

starting applications, 322–325

storyboard segues, 343–345

wiring menus, 330–340

OSAScriptingDefinition key, 412

OTA (over-the-air) installations, 304

OTHER CFLAGS, 558

OTHER CODE SIGN FLAGS, 553

OTHER CPLUSPLUSFLAGS, 558

OTHER SWIFT FLAGS, 558

otool tool, 63

outlet collections, 201

Outlets

building views, 163–164

code completion and snippets,
180–183

connections, 177–180

hooking up, 177

overview, 175–176

table view, 207–208

Output panel in Doxygen, 452

Over-the-air (OTA) installations, 304

Overlay for instruments, 497

P

@p code-text comment, 448

Package managers, 574

Index 603

Packages, 401

downloading, 14–15

RTFD, 401–402

PaintCode tool, 573–574

@param parameter comment, 448

Passbook system, 307

Passer Array controller, 363–364

Passer class, 212, 231–232

passer rating function, 131, 256

Passer ratings project overview

building, 29–30

controllers, 154–155

creating, 25–29

debugging, 32–34

running, 30–32

test case, 35

PasserEditController class, 228, 233–235

PasserEditTableController class, 230, 233

passerGameHeader method, 394

PasserListController class, 160, 162, 231,
233, 236

Passing data to editor, 235–237

Paste for dictionaries, 424

.pch files, 65

Peak Graph style, 496–497

Performance

compiler, 48–49

speed, 272–275

tricks, 540–541

XCTest, 276–277

Performance bar charts, 31

Persistent State: Launch application without
state restoration, 517

Personal VPN system, 307

Phases, build, 460–461

PhoneGap framework, 576–577

pinComparables function, 129

pip package, 446

Pixels for icons, 223

Plain style, 232

Planning

apps, 107–110

constraints, 197–200

platform in lldb, 523

PLATFORM NAME, 551

Playback head in trace document window,
494

Player billboard, 186–188

Playgrounds, 17, 189–191

PLIST FILE OUTPUT FORMAT, 430

Plists. See Property lists

plutil tool, 428–430

po command, 526

Point Graph style, 496

Pointers in Cocoa programming, 54

Points for icons, 223

Popovers

Quick Help, 436–437

variable values, 37

Portals for iOS, 304

Porting from iOS, 326–330

POSIX working directory, 517

Precompilation, 64–65

Prefer Margin Relative, 173–174

Preferences window

Apple ID, 298

automatic features, 22

behaviors, 40–42

bindings, 148

code completion, 28, 180

code-folding ribbon, 535–536

controllers, 148

docsets, 444–445

downloads, 11, 15

604 Index

Preferences window (continued)

fonts, 32

indentation, 28

instruments, 501

Issue Navigator detail, 56

key equivalents, 533

navigational gestures, 537–538

remote repositories, 85, 88–89

source trees, 563

team membership, 300–301

version control, 80

warnings and errors, 53

Prefix files, 64–65

Prefix headers, 64–65

prepareForSegue function, 234–236,
283–284, 381

Prepares Content, 352

Preprocessing xcconfig files, 470–471

Preprocessors, 62–63

Prerelease distributions, 304–306

Prerelease versions, 13

Present As Popover connections, 239

Preview, 94–95

Preview assistant, 168, 172

Preview view, 165–166

Previous Run, 494

print ln function, 191

Private keys for certificates, 303

Private role, 74

Probes, 511

process in lldb, 524

Process instrument, 508

Processor requirements, 10

Product files in managed-object classes,
136–138

PRODUCT MODULE NAME, 557

PRODUCT NAME, 551

Product Name setting, 19, 322

PRODUCT TYPE, 551

Profile action, 490–491

Profiles

applications, 268
provisioning, 299–303

Program members, 302

PROJECT, 551

PROJECT DIR, 553

Project editor

library targets, 69–70
localizations, 375

PROJECT FILE PATH, 553

-project for xcodebuild, 472

PROJECT NAME, 551

Project navigator, 36

Project role, 74

ProjectBuilder, 1

Projects list for builds, 460

Projects overview

building, 22–23, 29–30
creating, 19–22, 25–29
debugging, 32–34
deleting, 24
Doxygen settings, 452–453
running, 22–23, 30–32
templates, 112–114

Projects panel

derived files, 554
snapshots, 95

Properties for entities, 117

Property List editor, 406

limitations, 427–429
working with, 422–426

Property lists, 417

binary, 430
data types, 417–419, 429–431
editing, 419–429

Index 605

limitations, 431

localizations, 392–394

specialized, 431–432

text, 429–430

Protecting assets, 303

Protocol methods, 208–209

Prototype cells, 211, 214

Provide Feedback link, 445

Provisioning, 297, 299

asset protection, 303

capabilities editor, 306–308

distribution builds, 314–318

Gatekeeper and Developer ID,
311–314

OS X Sandboxing, 308–311

prerelease distributions, 304–306

profiles, 299–303

registering apps, 300-303

PROVISIONING PROFILE, 314, 553

Public role, 74

Pull, 96

Push, 88–89, 96

Push segues, 162

Pushing to remote repositories, 88–89

pwrite function, 511

Q

Quick Help facility, 435

comment syntax, 447–449

generating, 446–447

inspector, 435–436

popovers, 436–437

Quick Help for Selected Item, 436, 439

QuickLook eye, 191

Quit

lldb, 523
OS X, 33

Quit Xcode, 24

R

Raises For Not Applicable Keys, 354–356

RAM, 49

rating components function, 256–257

RatingTest class, 256–260

Read Access, 309

Read/Write Access, 309

Reads/Writes instrument, 506, 511–512

Recent Executables, 493

Recent for builds, 476

Record button, 501

Record for instruments, 504

Record Options, 502–503

Record Settings tab, 496–497

Recording instruments, 500–503

Rectangles, layout, 171

Refactoring feature, 57

class names, 142–143
method names, 142

Reference Language column, 384–385

References

folders, 533
repositories, 87

Registered developers, 12–13, 302

Registering

app groups, 282–283
apps, 300–303
team membership, 300

Regular expressions

refactoring method names, 142
searches, 89
traps, 542

606 Index

Relationships, 117–118, 120–123

Relative to Group, 534

Release Notes section, 438

Remote repositories, 84–87

Remotes tab, 88

Removing

breakpoints, 36

Xcode, 11–12

Renamed file state, 83

Renaming

classes, 144

symbols, 141–143

Renaming service, 534

Render As Template Image, 221

Rentzsch, Jon “Wolf”, 126

Reopening instruments, 503–504

Replace All, 144

Replace All in File, 90–91

Report Navigator, 476–477

Repositories

cloning, 85

remote, 84–87

Xcode Server, 85–86

Required for libraries, 75

Requirements, 9–10

resizableImageWithCapInsets method, 221

Resolve Auto Layout Issues menu, 202–203,
229

Resource forks, 401

Resource Manager, 401

Resources

books, 565–567

Developer Technical Support, 568–569

face to face, 570

localizing, 392–394

net, 567–570

sites and blogs, 569–570

software, 570–576

Resources directory, 403

Respect language direction, 388

Responder chains, 331

reStructured Text (reST) language, 446,
456–458

restview package, 446

Retain cycles, 277

Retrieving data from editor, 237–239

@return keyword, 448

Return Value, 525

Reveal in Library, 440

Rich text file directory (RTFD) package,
401–402

Right-clicking, 5

Right-side group for labels, 169–170

Right to Left Pseudolanguage, 388, 391

Root view controller segues, 162, 239

Routing App Coverage File, 518

Row Height setting for table cells, 215

RTF editor for localizations, 385–386

RTFD (rich text file directory) package,
401–402

Rules, build, 474–475

Run-Edit-Print Loop (REPL), 189

Run scheme editor, 515

Run Script editor, 135

Running

Doxygen, 454–455

instruments, 490–491

projects, 22–23, 30–32

tests, 252–254

Running Application settings, 493

Index 607

S

sample code, 5

sample-data.csv file, 136–138, 252, 265, 333

Sampler instrument, 508

Sandboxing

benefits, 310

disadvantages, 310–311

OS X, 308–311

Save as Template, 503

Save-file dialog for targets, 73

Save for iOS App Store Deployment, 539

Save Screen Shot, 224

Saving instruments, 503–504

Scale for track area, 495

Scan recursively, 452

scanf function, 32, 47–48

Scenes

modal, 227–233

view controllers, 158–161

Schedules for instruments, 509

Scheme control, 74

Scheme editor, 76

instrument templates, 270

tests, 245

scheme for xcodebuild, 472

Schemes

builds, 317

options, 515–518

Scopes, defining, 535

SDKROOT, 553

SDKs (software development kits), 9

build settings, 469–470

iOS projects, 112

Search Documentation for Selected Text
section, 439

Search paths for settings, 561

Searches

Documentation window, 440–443
files, 535
help, 438
version control, 90–91

@see documentation comment, 448

Segues

passer list, 231
types, 239–240
unwind, 238
view controllers, 158–161
views, 162

Select Statistics to List settings, 497

Selection Indexes setting, 366

Selective commits, 91–93

sender method, 232, 235

Separate by Category, 497

Separate by Thread, 497

Services menu, 501, 542

Set Baseline, 276

setUp method
CSV testing, 248
performance testing, 276
unit testing, 257

setupPlayers function, 194

Shadow Offset, 170

Shadows for labels, 170

SHALLOW BUNDLE, 555

Share Breakpoint, 525

Shared libraries in frameworks, 285–290

Shared Memory instrument, 507

Shared User Defaults Controller, 354

sharedGameDB method, 287

Sharing

defaults, 283–284
files, 284–285

Shift key, 538

608 Index

Shortcuts

function keys, 39

instruments, 501

lldb, 524

Show All Results, 441

Show Bounds/Layout Rectangles, 188

Show Bounds Rectangles, 164

Show: Code folding ribbon, 22, 535

Show Definitions, 466, 550

Show Detail connections, 239

Show environment settings in build log, 549

Show Find Options, 542

Show Group Banners, 500

Show/Hide...debugger, 40

Show/Hide navigator, 40

Show HTML output, 454

Show In Finder, 24, 539

Show live issues, 22, 148

Show navigator, 42

Show non-localized strings, 392

Show Package Contents, 10, 402, 405, 445

Show Raw Values & Keys, 432

Show Setting Names, 466, 550

Show Setting Titles, 550

Show Slicing, 221

Show tab named, 42

Show this window when Xcode launches, 18

Show Values, 550

Signals from exceptions, 150

Signatures in iOS provisioning, 299

Signing identities, 299, 487

SimpleCSVFile, 246

Simulate Document, 350

Simulate Location, 39

Sites, 569–570

Size and Size Inspector, 168, 173

columns, 350
constraints, 186–188, 197–200
table cells, 215
views, 164–165

Size classes, 197

SKIP INSTALL, 555

Sleep/Wake instrument, 509

Snap Track to Fit, 271, 495

Snapshot Now, 507

Snapshots

projects, 95
VM Tracker, 507

Snippets, 181–183

Software development kits (SDKs), 9

build settings, 469–470
iOS projects, 112

Software resources, 570–571

AppCode, 576
assessment, 577–578
Cocoa alternatives, 576–577
helpers, 572–574
package managers, 574
text editors, 571–572
version control, 575–576

Sort Descriptors binding, 365–366

Sorting tables, 365

Source code

description, 45
Doxygen, 452
property lists, 427

Source control. See Version control systems

Source Control menu, 81–82, 86, 88–89

Source files with names matching, 475

Source Locations settings, 553

Source trees settings, 562–563

Sources & Binaries, 449

Index 609

SourceTree version control system, 575

Specialized property lists, 431–432

Speed, 265–266

Debug navigator, 266–268

instruments, 268–272

memory, 277–278

optimization, 272–275

Spin Monitor instrument, 508

Splash screens, 224

Split views, 357

Spotlight box, 120

SQLite, 117, 336

SRCROOT, 135, 472, 553

Stack Libraries style, 496

Stack Overflow forum, 568

Stack traces, 31

displaying, 151

filtering, 151–152

trace document window, 499

Stacked for instruments, 497

Staged file state, 83

Starting

iOS projects, 110–112

Xcode, 17–18

startMeasuring method, 276

States of files, 82–83

Static libraries (.a), 69, 539

Static table cells, 228, 232–233

Statistics to Graph settings, 512

Stats view, 291–292

StatView, 191–197

Step Into (F7), 39, 527–528

Step Out (F8), 39

Step Over (F6), 39, 527

Stepping through code, 37–39, 527–528

Stop

debugging, 33
instruments, 501
iOS, 155

stopMeasuring method, 276

Store in External Record File, 120

Storyboard editor, 240

.storyboardc files, 143

Storyboards, 224

segues, 240, 343–345
for view controllers, 158–161

Strategy control, 494

Strings and .strings files

localizations, 389–392, 394–399
property lists, 417–418, 429–430

STRINGS FILE OUTPUT ENCODING, 560

Structure

application bundles, 407, 410, 412–413
builds, 459–462

Structured directory trees, 403

Style settings

buttons, 229
instruments, 496
models, 118
table cells, 232

Sublime Text 2 text editor, 571–572

Subscripts, 129–130

Subviews from layouts, 188–197

Sudden Termination instrument, 504

Suggest completions while typing, 180

Supporting Files group, 113

Suppressing warnings, 155

SWIFT OPTIMIZATION LEVEL, 557–558

Swift programming language

assertions, 261–263
books about, 566–567
chained expressions, 139

610 Index

Swift programming language (continued)

choosing, 111

class names, 123

class qualifiers, 361

collections, 177

data types, 418

directives, 139

exceptions, 263

HeaderDoc comments, 446

managed-object classes, 127

mangled names, 150

memory management, 277

modules, 65–66, 114, 250, 289

namespaces, 382, 543

Objective-C comparisons, 57–62

optimization, 540

pinner functions, 131

playgrounds, 18, 189

renaming classes, 144

reStructured Text, 456–458

subscripts, 129

support limitations, 63, 126

system libraries, 66

Switch-Branch sheet, 103

Switch to Branch, 103

Symbol navigator, 57

Symbols, 49

modules, 250

renaming, 141–143

tokens, 53–54

SYMROOT, 554

Syntax-aware indenting settings, 22, 28

System Calls instrument, 509

System instruments, 507–509

System Language, 388

SYSTEM LIBRARY DIR, 561

System Preferences application

function keys, 39

gestures, 29–30, 440

instruments, 501, 506

localizations, 373, 387

System Processes, 493

T

Tab, 42

Table Cell View, 355

Table of contents sidebar, 440

Table View Cell, 355

Tables and table cells, 207

custom, 214–217

graphics. See Graphics

modal scenes, 228

OS X, 347–350

outlets, 207–208

prototype, 211

static, 228, 232–233

table views, 145–146, 174–175,
229–230

tableView function, 207, 209, 216

Tabs

creating, 159

Documentation window, 440

switching, 42

Tags

labels, 215

version control, 542

TARGET BUILD DIR, 554

Targets and Target editor

ad-hoc variants, 317

asset-catalog file, 221

build phases, 50, 460–461

build rules, 474

Index 611

build settings, 462–463

bundles, 543

capabilities, 309

code size, 531

components, 69–70

configuration files, 467–469

dependencies, 76

device families, 414

displaying, 244

icons, 221, 316

images, 221, 414

Info.plist file, 324, 405–406, 408

instruments, 501

iOS projects, 111–112

levels, 464–465

libraries. See Library targets

in lldb, 523–524

new projects, 26–27

packages, 405–406

product names, 322

property lists, 419–420

provisioning profiles, 300

Quick Help, 436, 447

registering apps, 300

storyboards, 224

trace document window, 492–493

widget, 280

wiring menus, 331–332

xcodebuild, 471–472

Team Admins in Apple developer programs,
298

Team Agents in Apple developer programs,
298

Team array controller, 352–353

Team class, 327

Team Members in Apple developer programs,
298, 300

Team Provisioning Profiles, 302

TeamDetailController, 358–363

teamGameHeader method, 394–395

teamWithName function, 328

tearDown method, 246, 248, 276

Templates

instruments, 270, 503, 512–513

iOS projects, 112–114

Temporary exceptions, 309

Terminal application, 24

test action for xcodebuild, 471

Test data for unit testing, 252

Test navigator, 244–246

Test suites, 243

testCalculation method, 257

testExample method, 246

testFileReadsCompletely method, 249

TestFlight beta distributions, 305–306

Testing

unit. See Unit testing

views, 183–184

testNoSuchFile method, 249

testPerformanceExample method, 246, 276

testTooManyFieldsError method, 253–254

Text Color control, 170

Text Editing panel, 22, 180, 536

Text editors, 571–572

Text for property lists, 417–418, 429–430

TextEdit application, 401–402

TextMate 2 text editor, 571

TextWrangler text editor, 571

3rd Party Mac Developer Application identity,
312

3rd Party Mac Developer Installer identity, 312

Third-party package managers, 575

612 Index

Thread

in debugging, 527

lldb, 524

Threads instruments, 509–510

Threads perspective, 494

Time Profile commands, 501–502

Time Profilers for instruments, 268–272, 496,
508

Timeline Assistant, 191

Titanium API, 577

Titles

buttons, 228–229

columns, 350

menu items, 331

Today widget, 290–294

TodayViewController, 291–293

@todo documentation comment, 448

Toggle Instruments Recording, 501

Tokens, 53–54

too-many-fields.csv file, 252

Toolbars

modal scenes, 228

trace document window, 492–494

Tools in Interface Builder, 159–161

Top Functions filter, 498

Top Layout Guide, 228

Trace document window, 492

Detail area, 495

Extended Detail area, 495–499

Library area, 499–500

toolbar, 492–494

Track area, 494–495

Trace documents, 268–269

Trace Highlights, 499

Trace instruments, 509

Track area in trace document window,
494–495

Track Display, 497

Trailing edges in views, 228

Transcripts for builds, 476–487

Transient attribute, 120

Trash, 24

Tricks

Assistant editor, 536–538
building, 539–541
code-folding ribbon, 535–536
general, 531–535
instruments and debugging, 538–539

Truncation, 367

Two developer-program memberships, 315

2010-data-calculated.csv file, 252

Type menu for instruments, 497

Typographic conventions, 5

U

UI automation instruments, 510

UI Hierarchy view, 521

UI-layout editors, 158

UI panel, 521

UIAppFonts key, 413

UIApplication class, 260

UIApplicationDelegate protocol, 112

UIApplicationExitsOnSuspend key, 414

UIBackgroundModes key, 414

@UIDesignable views, 292

UIFileSharingEnabled key, 414

UIImage class, 221

UIImageView class, 218

UIInterfaceOrientation key, 413

UILabel class, 171

UILaunchImageFile key, 414

UILaunchImages key, 414

UILaunchStoryboardName key, 412

Index 613

UIMainStoryboardFile key, 412

UINavigationController class, 161–162

UINewsstandApp key, 414–415

UIPrerenderedIcon key, 414

UIRequiredDeviceCapabilities key, 413

UIRequiresPersistentWiFi key, 413

UIScrollView class, 347

UIStatusBarHidden key, 413

UIStatusBarStyle key, 413

UISupportedExternalAccessoryProtocols key,
413

UISupportedInterfaceOrientations key, 413

UITableView class, 129–130, 145, 215, 229,
347

UITableViewCell class, 145, 211, 214, 217,
231

UITableViewController class, 113, 229–230

UITableViewDataSource class, 208

UITableViewDelegate class, 236

UIView class, 109–110, 166, 215

UIViewController class, 110, 141, 157–158,
175, 207, 229–230

UIViewEdgeAntialiasing key, 414

UIViewGroupOpacity key, 414

Umbrella headers, 66

Undefined attributes, 119

Unformatted field, 368

Uniform Type Identifiers (UTIs), 336–338

Unit testing

asynchronous tests, 260–261

CSV Reader, 246–251

overview, 243–244

test navigator, 244–246

testing and debugger, 254–260

XCTest assertions, 261–264

Universal (fat) binaries, 482

Unknown file state, 84

UNLOCALIZED RESOURCES FOLDER PATH,
556

Unmerged file state, 83

Unmodified file state, 83

Unresolved addresses, back-filling, 51

Untracked file state, 82

Unwind segues, 238

Update Frames, 171, 173, 203

Update Frames menu, 175

URLs for application bundles, 409

Use Base Internationalization, 375

Use Core Data

iOS projects, 111
OS X applications, 323

Use dot tool, 452

Use scalar properties for primitive data types,
124

Use Storyboards, 323

USER, 551

User and System Libraries style, 496

User Info settings for models, 120

User information for application bundles,
407–408

User interface instruments, 506, 510

User presentation in application bundles,
413–414

Uses Lazy Fetching, 352

Using popup for build rules, 475

/usr/bin directories, 11

UTExportedTypeDeclarations key, 409, 432

Utilities.swift file, 129–131

Utility area, 72, 159

UTImportedTypeDeclarations key, 409

V

Validates Immediately, 356

Validation field for attributes, 120

614 Index

Value Transformer field, 354, 364

Value With Pattern binding, 364

valueForKeyPath method, 134

Variables

build. See Build settings

Debug area, 32

Variables pane, 37–38, 526

verbal conventions, 5

Version control systems, 25, 79–80

branching, 102–104

commits, 84–85

file state, 82–83

managed-object classes, 136–138

merges and conflicts, 89–98

remote repositories, 84–87

software, 575–576

tags, 542

Version editor, 99–102

working with, 81–82

Xcode with Git, 83–84

Version Control with Subversion,
575

Version editor, 99–102

Versioned bundles, 403

Versioning, 120

Versions covered, 4

Versions version control system, 575–576

vi text editor, 572

View control, 31, 42, 119

View controllers, 141

adding, 157–158

building views. See Building views

editing, 144–147

embedded, 229–231

outlets. See Outlets

storyboards, scenes, and segues,
158–161

table views, 174–175

View Debugging, 517

View Details, 301

View menu, deleting, 330

View Processes by Queue, 521

View Processes by Thread, 521

View selector, 23

View UI Hierarchy, 521

viewDidLoad method, 231, 233–235, 292,
380, 393–394

Views

Auto Layout. See Auto Layout

building. See Building views

cleaning up, 171–174

constraints, 168, 186–188

debugging, 521–523

linking, 166–167

MVC model, 107–110

table, 145–146, 174–175, 229–230

testing, 183–184

viewWithTag function, 215

VM Operations instrument, 509

VM Tracker instrument, 507

W

waitForExpectationsWithTimeout method,
261

wAny bar, 200–202

@warning documentation comment, 448

Warnings

compiler, 29–30, 539

disclosure triangles, 208

displaying, 53, 55

suppressing, 155

Index 615

Watchdog timer, 265

watchpoint commands, 524, 526–527

Welcome to Xcode window, 17–18

What’s New in Xcode section, 439

Widget, 279

build dependencies, 294–295

data access, 282–285

designing, 281–282

extension, 290–294

result, 295–296

shared libraries, 285–290

target, 280

widgetPerformUpdateWithCompletionHandler
method, 293

Widths Equally, 203

WiFi instrument, 509

Wildcard patterns in searches, 89

windowDidLoad method, 346–347, 360

Wireless Accessory Configuration, 308

Wiring menus, 330–331

file types, 336–338

First Responders, 332–333

icons, 339–340

League Files, 338–339

LeagueDocument data, 333–334

managed documents, 334–335

targets and actions, 331–332

testing commands, 335–336

Wiring OS X applications. See Bindings

Wizard tab for Doxygen, 451, 453

WORA (write-once-run-anywhere) apps,
577

Workflows, 4

Working Directory: Use custom working
directory, 517

-workspace for xcodebuild, 471–472

Wow feature of Assistant editor, 536

WRAPPER EXTENSION, 555

WRAPPER SUFFIX, 555

Write-once-run-anywhere (WORA) apps,
577

X

x-code-users list, 568

X11 package, 454

.xcassets files, 220

images, 559

OS X applications, 324

overview, 113

xcconfig files, 468–471

.xcdatamodeld file, 324

XCNotificationExpectationHandler class, 261

Xcode icon, 17

Xcode Overview section, 438

xcode-select tool, 11, 472–473

Xcode Server

Accounts panel, 300

repositories, 80, 85–86

xcode-users list, 568

XCODE VERSION ACTUAL, 552

xcodebuild tool, 463–464, 468–469,
471–472

.xcodeproj package, 471

xcrun tool, 473

XCTAssert assertion, 250

XCTAssertEqual assertion, 250, 262

XCTAssertEqualObjects assertion, 263

XCTAssertEqualWithAccuracy assertion,
257, 262

XCTAssertFalse assertion, 262

XCTAssertGreaterThan assertion, 263

XCTAssertGreaterThanOrEqual assertion, 263

XCTAssertLessThan assertion, 263

616 Index

XCTAssertLessThanOrEqual assertion, 263

XCTAssertNil assertion, 262

XCTAssertNotEqual assertion, 261

XCTAssertNotEqualObjects assertion, 263

XCTAssertNotEqualWithAccuracy assertion,
262

XCTAssertNoThrow assertion, 263

XCTAssertNoThrowSpecific assertion, 263

XCTAssertNoThrowSpecificNamed assertion,
264

XCTAssertNotNil assertion, 250, 262

XCTAssertThrows assertion, 263

XCTAssertThrowsSpecific assertion, 263

XCTAssertThrowsSpecificNamed assertion,
264

XCTAssertTrue assertion, 262

XCTest assertion macro, 243

XCTest class, 250

assertions, 261–264
performance, 276–277

XCTestCase class, 243, 260–261

XCTestExpectation class, 261

XCTFail assertion, 262

XCUnitTest class, 244–245

Xemacs text editor, 572

XIB files, 143, 344

linking, 158
owners, 175
xliff files, 396–397

XML

property lists, 405, 421, 427–431

refactoring names, 143

stores, 336

XPC services, 517–518

Y

Yosemite Server, 80

Yosemite version, 9–10

command-line tools, 11

gestures, 380

modules, 338

state-restoration feature, 335

storyboards, 343

support, 13–14

Xcode Server, 80

Z

Zombie technique, 518

Zoom In, 228

Zoom Out, 227

zooming

instruments, 495

Interface Builder, 159

Zuckerberg, Mark, 578

LearnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seeking timely
and relevant information and tutorials. Looking for expert opinions, advice, and tips?
InformIT has a solution.

• Learn about new releases and special promotions by subscribing to a wide
variety of monthly newsletters. Visit informit.com/newsletters.

• FREE Podcasts from experts at informit.com/podcasts.

• Read the latest author ar ticles and sample chapters at
informit.com/articles.

• Access thousands of books and videos in the Safari Books Online
digital library. safari.informit.com.

• Get Advice and tips from expert blogs at informit.com/blogs.

Visit informit.com to find out all the ways you can access the hottest technology content.

Are you part of the IT crowd?

Connect with Pearson authors and editors via RSS feeds, Facebook, Twitter, YouTube
and more! Visit informit.com/socialconnect .

 InformIT is a brand of Pearson and the online presence for the world’s
leading technology publishers. It’s your source for reliable and qualified

content and knowledge, providing access to the leading brands, authors, and contributors
from the tech community.

THE TRUSTED TECHNOLOGY LEARNING SOURCE

Register the Addison-Wesley, Exam
Cram, Prentice Hall, Que, and
Sams products you own to unlock
great benefi ts.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.
You will then be prompted to enter
the 10- or 13-digit ISBN that appears
on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall

Professional, Que, and Sams. Here you will gain access to quality and trusted content and

resources from the authors, creators, innovators, and leaders of technology. Whether you’re

looking for a book on a new technology, a helpful article, timely newsletters, or access to

the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock
the following benefi ts:

• Access to supplemental content,
including bonus chapters,
source code, or project fi les.

• A coupon to be used on your
next purchase.

Registration benefi ts vary by product.
Benefi ts will be listed on your Account
page under Registered Products.

informit.com/register

THIS PRODUCT

	Contents
	Acknowledgments
	About the Author
	Introduction
	How This Book Is Organized
	About Versions
	About the Code
	Conventions

	I: First Steps
	1 Getting Xcode
	Before You Begin
	Installing Xcode
	Removing Xcode
	Apple Developer Programs
	Downloading Xcode
	Additional Downloads
	Summary

	2 Kicking the Tires
	Starting Xcode
	Hello World
	Getting Rid of It
	Summary

	3 Simple Workflow and Passive Debugging
	Creating the Project
	Building
	Running
	Simple Debugging
	Summary

	4 Active Debugging
	A Simple Test Case
	Going Active
	Fixing the Problem
	Summary

	5 Compilation
	Compiling
	Dynamic Loading
	Xcode and Clang
	Swift
	Compiler Products
	Summary

	6 Adding a Library Target
	Adding a Target
	Target Membership
	A Dependent Target
	Summary

	7 Version Control
	Taking Control
	The State of Your Files
	Your First Commit
	Working with Remote Repositories
	Merges and Conflicts
	The Version Editor
	Branching
	Summary

	II: The Life Cycle of an iOS Application
	8 Starting an iOS Application
	Planning the App
	Starting a New iOS Project
	What’s in the Project
	Summary

	9 An iOS Application: Model
	Implementing the Model
	Managed-Object Classes
	Preparation
	Specializing the Core Data Classes
	Making the Model Easier to Debug
	Summary

	10 An iOS Application: Controller
	Renaming Symbols in Objective-C
	Renaming a Class in Swift
	Editing the View Controller
	Live Issues and Fix-it
	The Real Passer Rating
	Summary

	11 Building a New View
	The Next View Controller
	Building a View
	The Table View
	Outlets
	Testing the Billboard View
	Summary

	12 Auto Layout in a New View
	Why Auto Layout?
	The Player Billboard, Revisited
	Factoring Layout into Subviews
	Planning Constraints
	Two Line Counts, Two Labels
	Constraints for Real
	Summary

	13 Adding Table Cells
	The Game Table
	The Game Table: First Run
	A Custom Table Cell
	Adding Some Graphics
	Summary

	14 Adding an Editor
	The Plan
	Adding a Modal Scene
	The Editor View Controllers
	Segues
	Summary

	15 Unit Testing
	The Test Navigator
	Testing the CSV Reader
	Testing and the Debugger
	Adding a Test Class
	Asynchronous Tests
	XCTest Assertions
	Summary

	16 Measurement and Analysis
	Speed
	XCTest and Performance
	Memory
	Summary

	17 An iOS Extension
	Adding the Today Target
	Designing the Widget
	A Shared Library in a Framework
	The Today Extension
	Build Dependencies
	The Result
	Summary

	18 Provisioning
	Apple Developer Programs
	Provisioning for iOS
	The Capabilities Editor
	OS X Sandboxing 308
	Gatekeeper and Developer ID
	Distribution Builds
	Summary

	III Xcode for Mac OS X
	19 Starting an OS X Application
	The Goal
	Getting Started
	Model
	Wiring a Menu
	Summary

	20 Bindings: Wiring an OS X Application
	Storyboard Segues in OS X
	Building the Document Window
	Filling the Table— Bindings
	The Arc of League Document Data
	Summary

	21 Localization
	How Localization Works
	Adding a Localization
	Something Worth Localizing
	Localizing for French
	Localizing System Strings
	Summary

	22 Bundles and Packages
	A Simple Package: RTFD
	Bundles
	Application Bundles
	The Info.plist File
	Info.plist Keys for Applications
	Summary

	23 Property Lists
	Property List Data Types
	Editing Property Lists
	Other Formats
	Specialized Property Lists
	Summary

	IV: Xcode Tasks
	24 Documentation in Xcode
	Quick Help
	Open Quickly
	Help
	The Documentation Window
	Keeping Current
	Your Own Quick Help
	Swift and reStructuredText
	Summary

	25 The Xcode Build System
	How Xcode Structures a Build
	Build Variables
	Settings Hierarchy
	Editing Build Variables
	Configurations
	Configuration Files
	Command-Line Tools
	Custom Build Rules
	Builds in the Report Navigator
	A Simple Build Transcript
	Summary

	26 Instruments
	What Instruments Is
	Running Instruments
	The Trace Document Window
	Tracing
	The Instruments
	Custom Instruments
	The Templates
	Summary

	27 Debugging
	Scheme Options
	Doing More with Breakpoints
	View Hierarchy
	The lldb Command Line
	Tips
	Summary

	28 Snippets
	Tricks
	Traps

	V: Appendixes
	A: Some Build Variables
	Useful Build Variables
	Source Trees

	B: Resources
	Books
	Books about Swift
	On the Net
	Face to Face
	Other Software

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

