
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

YARN	Essentials

www.allitebooks.com

http://www.allitebooks.org

Table	of	Contents

YARN	Essentials

Credits

About	the	Authors

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Need	for	YARN

The	redesign	idea

Limitations	of	the	classical	MapReduce	or	Hadoop	1.x

YARN	as	the	modern	operating	system	of	Hadoop

What	are	the	design	goals	for	YARN

Summary

2.	YARN	Architecture

Core	components	of	YARN	architecture

ResourceManager

ApplicationMaster	(AM)

www.allitebooks.com

http://www.allitebooks.org

NodeManager	(NM)

YARN	scheduler	policies

The	FIFO	(First	In	First	Out)	scheduler

The	fair	scheduler

The	capacity	scheduler

Recent	developments	in	YARN	architecture

Summary

3.	YARN	Installation

Single-node	installation

Prerequisites

Platform

Software

Starting	with	the	installation

The	standalone	mode	(local	mode)

The	pseudo-distributed	mode

The	fully-distributed	mode

HistoryServer

Slave	files

Operating	Hadoop	and	YARN	clusters

Starting	Hadoop	and	YARN	clusters

Stopping	Hadoop	and	YARN	clusters

Web	interfaces	of	the	Ecosystem

Summary

4.	YARN	and	Hadoop	Ecosystems

The	Hadoop	2	release

A	short	introduction	to	Hadoop	1.x	and	MRv1

MRv1	versus	MRv2

Understanding	where	YARN	fits	into	Hadoop

Old	and	new	MapReduce	APIs

Backward	compatibility	of	MRv2	APIs

Binary	compatibility	of	org.apache.hadoop.mapred	APIs

www.allitebooks.com

http://www.allitebooks.org

Source	compatibility	of	org.apache.hadoop.mapred	APIs

Practical	examples	of	MRv1	and	MRv2

Preparing	the	input	file(s)

Running	the	job

Result

Summary

5.	YARN	Administration

Container	allocation

Container	allocation	to	the	application

Container	configurations

YARN	scheduling	policies

The	FIFO	(First	In	First	Out)	scheduler

The	FIFO	(First	In	First	Out)	scheduler

The	capacity	scheduler

Capacity	scheduler	configurations

The	fair	scheduler

Fair	scheduler	configurations

YARN	multitenancy	application	support

Administration	of	YARN

Administrative	tools

Adding	and	removing	nodes	from	a	YARN	cluster

Administrating	YARN	jobs

MapReduce	job	configurations

YARN	log	management

YARN	web	user	interface

Summary

6.	Developing	and	Running	a	Simple	YARN	Application

Running	sample	examples	on	YARN

Running	a	sample	Pi	example

Monitoring	YARN	applications	with	web	GUI

YARN’s	MapReduce	support

www.allitebooks.com

http://www.allitebooks.org

The	MapReduce	ApplicationMaster

Example	YARN	MapReduce	settings

YARN’s	compatibility	with	MapReduce	applications

Developing	YARN	applications

The	YARN	application	workflow

Writing	the	YARN	client

Writing	the	YARN	ApplicationMaster

Responsibilities	of	the	ApplicationMaster

Summary

7.	YARN	Frameworks

Apache	Samza

Writing	a	Kafka	producer

Writing	the	hello-samza	project

Starting	a	grid

Storm-YARN

Prerequisites

Hadoop	YARN	should	be	installed

Apache	ZooKeeper	should	be	installed

Setting	up	Storm-YARN

Getting	the	storm.yaml	configuration	of	the	launched	Storm	cluster

Building	and	running	Storm-Starter	examples

Apache	Spark

Why	run	on	YARN?

Apache	Tez

Apache	Giraph

HOYA	(HBase	on	YARN)

KOYA	(Kafka	on	YARN)

Summary

8.	Failures	in	YARN

ResourceManager	failures

ApplicationMaster	failures

www.allitebooks.com

http://www.allitebooks.org

NodeManager	failures

Container	failures

Hardware	Failures

Summary

9.	YARN	–	Alternative	Solutions

Mesos

Omega

Corona

Summary

10.	YARN	–	Future	and	Support

What	YARN	means	to	the	big	data	industry

Journey	–	present	and	future

Present	on-going	features

Future	features

YARN-supported	frameworks

Summary

Index

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

YARN	Essentials

www.allitebooks.com

http://www.allitebooks.org

YARN	Essentials
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	authors,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	February	2015

Production	reference:	1190215

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78439-173-7

www.packtpub.com

http://www.packtpub.com

Credits
Authors

Amol	Fasale

Nirmal	Kumar

Reviewers

Lakshmi	Narasimhan

Swapnil	Salunkhe

Jenny	(Xiao)	Zhang

Commissioning	Editor

Taron	Pereira

Acquisition	Editor

James	Jones

Content	Development	Editor

Arwa	Manasawala

Technical	Editor

Indrajit	A.	Das

Copy	Editors

Karuna	Narayanan

Laxmi	Subramanian

Project	Coordinator

Purav	Motiwalla

Proofreaders

Safis	Editing

Maria	Gould

Indexer

Priya	Sane

Graphics

Sheetal	Aute

Valentina	D’silva

Abhinash	Sahu

Production	Coordinator

Shantanu	N.	Zagade

Cover	Work

Shantanu	N.	Zagade

About	the	Authors
Amol	Fasale	has	more	than	4	years	of	industry	experience	actively	working	in	the	fields
of	big	data	and	distributed	computing;	he	is	also	an	active	blogger	in	and	contributor	to	the
open	source	community.	Amol	works	as	a	senior	data	system	engineer	at
MakeMyTrip.com,	a	very	well-known	travel	and	hospitality	portal	in	India,	responsible
for	real-time	personalization	of	online	user	experience	with	Apache	Kafka,	Apache	Storm,
Apache	Hadoop,	and	many	more.	Also,	Amol	has	active	hands-on	experience	in
Java/J2EE,	Spring	Frameworks,	Python,	machine	learning,	Hadoop	framework
components,	SQL,	NoSQL,	and	graph	databases.

You	can	follow	Amol	on	Twitter	at	@amolfasale	or	on	LinkedIn.	Amol	is	very	active	on
social	media.	You	can	catch	him	online	for	any	technical	assistance;	he	would	be	happy	to
help.

Amol	has	completed	his	bachelor’s	in	engineering	(electronics	and	telecommunication)
from	Pune	University	and	postgraduate	diploma	in	computers	from	CDAC.

The	gift	of	love	is	one	of	the	greatest	blessings	from	parents,	and	I	am	heartily	thankful	to
my	mom,	dad,	friends,	and	colleagues	who	have	shown	and	continue	to	show	their	support
in	different	ways.	Finally,	I	owe	much	to	James	and	Arwa	without	whose	direction	and
understanding,	I	would	not	have	completed	this	work.

Nirmal	Kumar	is	a	lead	software	engineer	at	iLabs,	the	R&D	team	at	Impetus	Infotech
Pvt.	Ltd.	He	has	more	than	8	years	of	experience	in	open	source	technologies	such	as	Java,
JEE,	Spring,	Hibernate,	web	services,	Hadoop,	Hive,	Flume,	Sqoop,	Kafka,	Storm,
NoSQL	databases	such	as	HBase	and	Cassandra,	and	MPP	databases	such	as	Teradata.

You	can	follow	him	on	Twitter	at	@nirmal___kumar.	He	spends	most	of	his	time	reading
about	and	playing	with	different	technologies.	He	has	also	undertaken	many	tech	talks	and
training	sessions	on	big	data	technologies.

He	has	attained	his	master’s	degree	in	computer	applications	from	Harcourt	Butler
Technological	Institute	(HBTI),	Kanpur,	India	and	is	currently	part	of	the	big	data	R&D
team	in	iLabs	at	Impetus	Infotech	Pvt.	Ltd.

I	would	like	to	thank	my	organization,	especially	iLabs,	for	supporting	me	in	writing	this
book.	Also,	a	special	thanks	to	the	Packt	Publishing	team;	without	you	guys,	this	work
would	not	have	been	possible.

About	the	Reviewers
Lakshmi	Narasimhan	is	a	full	stack	developer	who	has	been	working	on	big	data	and
search	since	the	early	days	of	Lucene	and	was	a	part	of	the	search	team	at	Ask.com.	He	is
a	big	advocate	of	open	source	and	regularly	contributes	and	consults	on	various
technologies,	most	notably	Drupal	and	technologies	related	to	big	data.	Lakshmi	is
currently	working	as	the	curriculum	designer	for	his	own	training	company,
http://www.readybrains.com.	He	blogs	occasionally	about	his	technical	endeavors	at
http://www.lakshminp.com	and	can	be	contacted	via	his	Twitter	handle,	@lakshminp.

It’s	hard	find	a	ready	reference	or	documentation	for	a	subject	like	YARN.	I’d	like	to
thank	the	author	for	writing	a	book	on	YARN	and	hope	the	target	audience	finds	it	useful.

Swapnil	Salunkhe	is	a	passionate	software	developer	who	is	keenly	interested	in	learning
and	implementing	new	technologies.	He	has	a	passion	for	functional	programming,
machine	learning,	and	working	with	data.	He	has	experience	working	in	the	finance	and
telecom	domains.

I’d	like	to	thank	Packt	Publishing	and	its	staff	for	an	opportunity	to	contribute	to	this
book.

Jenny	(Xiao)	Zhang	is	a	technology	professional	in	business	analytics,	KPIs,	and	big
data.	She	helps	businesses	better	manage,	measure,	report,	and	analyze	data	to	answer
critical	business	questions	and	drive	business	growth.	She	is	an	expert	in	SaaS	business
and	had	experience	in	a	variety	of	industry	domains	such	as	telecom,	oil	and	gas,	and
finance.	She	has	written	a	number	of	blog	posts	at	http://jennyxiaozhang.com	on	big	data,
Hadoop,	and	YARN.	She	also	actively	uses	Twitter	at	@smallnaruto	to	share	insights	on
big	data	and	analytics.

I	want	to	thank	all	my	blog	readers.	It	is	the	encouragement	from	them	that	motivates	me
to	deep	dive	into	the	ocean	of	big	data.	I	also	want	to	thank	my	dad,	Michael	(Tiegang)
Zhang,	for	providing	technical	insights	in	the	process	of	reviewing	the	book.	A	special
thanks	to	the	Packt	Publishing	team	for	this	great	opportunity.

http://www.readybrains.com
http://www.lakshminp.com
http://jennyxiaozhang.com

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
In	a	short	span	of	time,	YARN	has	attained	a	great	deal	of	momentum	and	acceptance	in
the	big	data	world.

YARN	essentials	is	about	YARN—the	modern	operating	system	for	Hadoop.	This	book
contains	all	that	you	need	to	know	about	YARN,	right	from	its	inception	to	the	present	and
future.

In	the	first	part	of	the	book,	you	will	be	introduced	to	the	motivation	behind	the
development	of	YARN	and	learn	about	its	core	architecture,	installation,	and
administration.	This	part	also	talks	about	the	architectural	differences	that	YARN	brings	to
Hadoop	2	with	respect	to	Hadoop	1	and	why	this	redesign	was	needed.

In	the	second	part,	you	will	learn	how	to	write	a	YARN	application,	how	to	submit	an
application	to	YARN,	and	how	to	monitor	the	application.	Next,	you	will	learn	about	the
various	emerging	open	source	frameworks	that	are	developed	to	run	on	top	of	YARN.	You
will	learn	to	develop	and	deploy	some	use	case	examples	using	Apache	Samza	and	Storm
YARN.

Finally,	we	will	talk	about	the	failures	in	YARN,	some	alternative	solutions	available	on
the	market,	and	the	future	and	support	for	YARN	in	the	big	data	world.

What	this	book	covers
Chapter	1,	Need	for	YARN,	discusses	the	motivation	behind	the	development	of	YARN.
This	chapter	discusses	what	YARN	is	and	why	it	is	needed.

Chapter	2,	YARN	Architecture,	is	a	deep	dive	into	YARN’s	architecture.	All	the	major
components	and	their	inner	workings	are	explained	in	this	chapter.

Chapter	3,	YARN	Installation,	describes	the	steps	required	to	set	up	a	single-node	and
fully-distributed	YARN	cluster.	It	also	talks	about	the	important	configurations/properties
that	you	should	be	aware	of	while	installing	the	YARN	cluster.

Chapter	4,	YARN	and	Hadoop	Ecosystems,	talks	about	Hadoop	with	respect	to	YARN.	It
gives	a	short	introduction	to	the	Hadoop	1.x	version,	the	architectural	differences	between
Hadoop	1.x	and	Hadoop	2.x,	and	where	exactly	YARN	fits	into	Hadoop	2.x.

Chapter	5,	YARN	Administration,	covers	information	on	the	administration	of	YARN
clusters.	It	explains	the	administrative	tools	that	are	available	in	YARN,	what	they	mean,
and	how	to	use	them.	This	chapter	covers	various	topics	from	YARN	container	allocation
and	configuration	to	various	scheduling	policies/configurations	and	in-built	support	for
multitenancy.

Chapter	6,	Developing	and	Running	a	Simple	YARN	Application,	focuses	on	some	real
applications	with	YARN,	with	some	hands-on	examples.	It	explains	how	to	write	a	YARN
application,	how	to	submit	an	application	to	YARN,	and	finally,	how	to	monitor	the
application.

Chapter	7,	YARN	Frameworks,	discusses	the	various	emerging	open	source	frameworks
that	are	developed	to	run	on	top	of	YARN.	The	chapter	then	talks	in	detail	about	Apache
Samza	and	Storm	on	YARN,	where	we	will	develop	and	run	some	sample	applications
using	these	frameworks.

Chapter	8,	Failures	in	YARN,	discusses	the	fault-tolerance	aspect	of	YARN.	This	chapter
focuses	on	various	failures	that	can	occur	in	the	YARN	framework,	their	causes,	and	how
YARN	gracefully	handles	those	failures.

Chapter	9,	YARN	–	Alternative	Solutions,	discusses	other	alternative	solutions	that	are
available	on	the	market	today.	These	systems,	like	YARN,	share	common
inspiration/requirements	and	the	high-level	goal	of	improving	scalability,	latency,	fault-
tolerance,	and	programming	model	flexibility.	This	chapter	highlights	the	key	differences
in	the	way	these	alternative	solutions	address	the	same	features	provided	by	YARN.

Chapter	10,	YARN	Future	and	Support,	talks	about	YARN’s	journey	and	its	present	and
future	in	the	world	of	distributed	computing.

What	you	need	for	this	book
You	will	need	a	single	Linux-based	machine	with	JDK	1.6	or	later	installed.	Any	recent
version	of	the	Apache	Hadoop	2	distribution	will	be	sufficient	to	set	up	a	YARN	cluster
and	run	some	examples	on	top	of	YARN.

The	code	in	this	book	has	been	tested	on	CentOS	6.4	but	will	run	on	other	variants	of
Linux.

www.allitebooks.com

http://www.allitebooks.org

Who	this	book	is	for
This	book	is	for	the	big	data	enthusiasts	who	want	to	gain	in-depth	knowledge	of	YARN
and	know	what	really	makes	YARN	the	modern	operating	system	for	Hadoop.	You	will
develop	a	good	understanding	of	the	architectural	differences	that	YARN	brings	to
Hadoop	2	with	respect	to	Hadoop	1.

You	will	develop	in-depth	knowledge	about	the	architecture	and	inner	workings	of	the
YARN	framework.

After	finishing	this	book,	you	will	be	able	to	install,	administrate,	and	develop	YARN
applications.	This	book	tells	you	anything	you	need	to	know	about	YARN,	right	from	its
inception	to	its	present	and	future	in	the	big	data	industry.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	”	The
URL	for	NameNode	is	http://<namenode_host>:<port>/	and	the	default	HTTP	port	is
50070.”

A	block	of	code	is	set	as	follows:

				<property>		

					<name>io.file.buffer.size</name>	

					<value>4096</value>		

					<description>read	and	write	buffer	size	of	files</description>

				</property>

Any	command-line	input	or	output	is	written	as	follows:

${path_to_your_input_dir}

${path_to_your_output_dir_old}

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Under	the	Tools
section,	you	can	find	the	YARN	configuration	file	details,	scheduling	information,
container	configurations,	local	logs	of	the	jobs,	and	a	lot	of	other	information	on	the
cluster.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Need	for	YARN
YARN	stands	for	Yet	Another	Resource	Negotiator.	YARN	is	a	generic	resource
platform	to	manage	resources	in	a	typical	cluster.	YARN	was	introduced	with	Hadoop	2.0,
which	is	an	open	source	distributed	processing	framework	from	the	Apache	Software
Foundation.

In	2012,	YARN	became	one	of	the	subprojects	of	the	larger	Apache	Hadoop	project.
YARN	is	also	coined	by	the	name	of	MapReduce	2.0.	This	is	since	Apache	Hadoop
MapReduce	has	been	re-architectured	from	the	ground	up	to	Apache	Hadoop	YARN.

Think	of	YARN	as	a	generic	computing	fabric	to	support	MapReduce	and	other
application	paradigms	within	the	same	Hadoop	cluster;	earlier,	this	was	limited	to	batch
processing	using	MapReduce.	This	really	changed	the	game	to	recast	Apache	Hadoop	as	a
much	more	powerful	data	processing	system.	With	the	advent	of	YARN,	Hadoop	now
looks	very	different	compared	to	the	way	it	was	only	a	year	ago.

YARN	enables	multiple	applications	to	run	simultaneously	on	the	same	shared	cluster	and
allows	applications	to	negotiate	resources	based	on	need.	Therefore,	resource
allocation/management	is	central	to	YARN.

YARN	has	been	thoroughly	tested	at	Yahoo!	since	September	2012.	It	has	been	in
production	across	30,000	nodes	and	325	PB	of	data	since	January	2013.

Recently,	Apache	Hadoop	YARN	won	the	Best	Paper	Award	at	ACM	Symposium	on
Cloud	Computing	(SoCC)	in	2013!

The	redesign	idea
Initially,	Hadoop	was	written	solely	as	a	MapReduce	engine.	Since	it	runs	on	a	cluster,	its
cluster	management	components	were	also	tightly	coupled	with	the	MapReduce
programming	paradigm.

The	concepts	of	MapReduce	and	its	programming	paradigm	were	so	deeply	ingrained	in
Hadoop	that	one	could	not	use	it	for	anything	else	except	MapReduce.	MapReduce
therefore	became	the	base	for	Hadoop,	and	as	a	result,	the	only	thing	that	could	be	run	on
Hadoop	was	a	MapReduce	job,	batch	processing.	In	Hadoop	1.x,	there	was	a	single
JobTracker	service	that	was	overloaded	with	many	things	such	as	cluster	resource
management,	scheduling	jobs,	managing	computational	resources,	restarting	failed	tasks,
monitoring	TaskTrackers,	and	so	on.

There	was	definitely	a	need	to	separate	the	MapReduce	(specific	programming	model)
part	and	the	resource	management	infrastructure	in	Hadoop.	YARN	was	the	first	attempt
to	perform	this	separation.

Limitations	of	the	classical	MapReduce	or	Hadoop
1.x
The	main	limitations	of	Hadoop	1.x	can	be	categorized	into	the	following	areas:

Limited	scalability:

Large	Hadoop	clusters	reported	some	serious	limitations	on	scalability.	This	is
caused	mainly	by	a	single	JobTracker	service,	which	ultimately	results	in	a
serious	deterioration	of	the	overall	cluster	performance	because	of	attempts	to
re-replicate	data	and	overload	live	nodes,	thus	causing	a	network	flood.
According	to	Yahoo!,	the	practical	limits	of	such	a	design	are	reached	with	a
cluster	of	~5,000	nodes	and	40,000	tasks	running	concurrently.	Therefore,	it	is
recommended	that	you	create	smaller	and	less	powerful	clusters	for	such	a
design.

Low	cluster	resource	utilization:

The	resources	in	Hadoop	1.x	on	each	slave	node	(data	node),	are	divided	in
terms	of	a	fixed	number	of	map	and	reduce	slots.
Consider	the	scenario	where	a	MapReduce	job	has	already	taken	up	all	the
available	map	slots	and	now	wants	more	new	map	tasks	to	run.	In	this	case,	it
cannot	run	new	map	tasks,	even	though	all	the	reduce	slots	are	still	empty.	This
notion	of	a	fixed	number	of	slots	has	a	serious	drawback	and	results	in	poor
cluster	utilization.

Lack	of	support	for	alternative	frameworks/paradigms:

The	main	focus	of	Hadoop	right	from	the	beginning	was	to	perform	computation
on	large	datasets	using	parallel	processing.
Therefore,	the	only	programming	model	it	supported	was	MapReduce.
With	the	current	industry	needs	in	terms	of	new	use	cases	in	the	world	of	big
data,	many	new	and	alternative	programming	models	(such	Apache	Giraph,
Apache	Spark,	Storm,	Tez,	and	so	on)	are	coming	into	the	picture	each	day.
There	is	definitely	an	increasing	demand	to	support	multiple	programming
paradigms	besides	MapReduce,	to	support	the	varied	use	cases	that	the	big	data
world	is	facing.

YARN	as	the	modern	operating	system	of	Hadoop
The	MapReduce	programming	model	is,	no	doubt,	great	for	many	applications,	but	not	for
everything	in	the	world	of	computation.	There	are	use	cases	that	are	best	suited	for
MapReduce,	but	not	all.

MapReduce	is	essentially	batch-oriented,	but	support	for	real-time	and	near	real-time
processing	are	the	emerging	requirements	in	the	field	of	big	data.

YARN	took	cluster	resource	management	capabilities	from	the	MapReduce	system	so	that
new	engines	could	use	these	generic	cluster	resource	management	capabilities.	This
lightened	up	the	MapReduce	system	to	focus	on	the	data	processing	part,	which	it	is	good
at	and	will	ideally	continue	to	be	so.

YARN	therefore	turns	into	a	data	operating	system	for	Hadoop	2.0,	as	it	enables	multiple
applications	to	coexist	in	the	same	shared	cluster.	Refer	to	the	following	figure:

YARN	as	a	modern	OS	for	Hadoop

What	are	the	design	goals	for	YARN
This	section	talks	about	the	core	design	goals	of	YARN:

Scalability:

Scalability	is	a	key	requirement	for	big	data.	Hadoop	was	primarily	meant	to
work	on	a	cluster	of	thousands	of	nodes	with	commodity	hardware.	Also,	the
cost	of	hardware	is	reducing	year-on-year.
YARN	is	therefore	designed	to	perform	efficiently	on	this	network	of	a	myriad
of	nodes.

High	cluster	utilization:

In	Hadoop	1.x,	the	cluster	resources	were	divided	in	terms	of	fixed	size	slots	for
both	map	and	reduce	tasks.	This	means	that	there	could	be	a	scenario	where	map
slots	might	be	full	while	reduce	slots	are	empty,	or	vice	versa.	This	was
definitely	not	an	optimal	utilization	of	resources,	and	it	needed	further
optimization.
YARN	fine-grained	resources	in	terms	of	RAM,	CPU,	and	disk	(containers),
leading	to	an	optimal	utilization	of	the	available	resources.

Locality	awareness:

This	is	a	key	requirement	for	YARN	when	dealing	with	big	data;	moving
computation	is	cheaper	than	moving	data.
This	helps	to	minimize	network	congestion	and	increase	the	overall	throughput
of	the	system.

Multitenancy:

With	the	core	development	of	Hadoop	at	Yahoo,	primarily	to	support	large-scale
computation,	HDFS	also	acquired	a	permission	model,	quotas,	and	other
features	to	improve	its	multitenant	operation.
YARN	was	therefore	designed	to	support	multitenancy	in	its	core	architecture.
Since	cluster	resource	allocation/management	is	at	the	heart	of	YARN,	sharing
processing	and	storage	capacity	across	clusters	was	central	to	the	design.
YARN	has	the	notion	of	pluggable	schedulers	and	the	Capacity	Scheduler	with
YARN	has	been	enhanced	to	provide	a	flexible	resource	model,	elastic
computing,	application	limits,	and	other	necessary	features	that	enable	multiple
tenants	to	securely	share	the	cluster	in	an	optimized	way.

Support	for	programming	model:

The	MapReduce	programming	model	is	no	doubt	great	for	many	applications,
but	not	for	everything	in	the	world	of	computation.
As	the	world	of	big	data	is	still	in	its	inception	phase,	organizations	are	heavily
investing	in	R&D	to	develop	new	and	evolving	frameworks	to	solve	a	variety	of
problems	that	big	data	brings.

A	flexible	resource	model:

Besides	mismatch	with	the	emerging	frameworks’	requirements,	the	fixed
number	of	slots	for	resources	had	serious	problems.	It	was	straightforward	for
YARN	to	come	up	with	a	flexible	and	generic	resource	management	model.

A	secure	and	auditable	operation:

As	Hadoop	continued	to	grow	to	manage	more	tenants	with	a	myriad	of	use
cases	across	different	industries,	the	requirements	for	isolation	became	more
demanding.
Also,	the	authorization	model	lacked	strong	and	scalable	authentication.	This	is
because	Hadoop	was	designed	with	parallel	processing	in	mind,	with	no
comprehensive	security.	Security	was	an	afterthought.
YARN	understands	this	and	adds	security-related	requirements	into	its	design.

Reliability/availability:

Although	fault	tolerance	is	in	the	core	design,	in	reality	maintaining	a	large
Hadoop	cluster	is	a	tedious	task.
All	issues	related	to	high	availability,	failures,	failures	on	restart,	and	reliability
were	therefore	a	core	requirement	for	YARN.

Backward	compatibility:

Hadoop	1.x	has	been	in	the	picture	for	a	while,	with	many	successful	production
deployments	across	many	industries.	This	massive	installation	base	of
MapReduce	applications	and	the	ecosystem	of	related	projects,	such	as	Hive,
Pig,	and	so	on,	would	not	tolerate	a	radical	redesign.	Therefore,	the	new
architecture	reused	as	much	code	from	the	existing	framework	as	possible,	and
no	major	surgery	was	conducted	on	it.	This	made	MRv2	able	to	ensure
satisfactory	compatibility	with	MRv1	applications.

Summary
In	this	chapter,	you	learned	what	YARN	is	and	how	it	has	turned	out	to	be	the	modern
operating	system	for	Hadoop,	making	it	a	multiapplication	platform.

In	Chapter	2,	YARN	Architecture,	we	will	be	talking	about	the	architecture	details	of
YARN.

www.allitebooks.com

http://www.allitebooks.org

Chapter	2.	YARN	Architecture
This	chapter	dives	deep	into	YARN	architecture	its	core	components,	and	how	they
interact	to	deliver	optimal	resource	utilization,	better	performance,	and	manageability.	It
also	focuses	on	some	important	terminology	concerning	YARN.

In	this	chapter,	we	will	cover	the	following	topics:

Core	components	of	YARN	architecture
Interaction	and	flow	of	YARN	components
ResourceManager	scheduling	policies
Recent	developments	in	YARN

The	motivation	behind	the	YARN	architecture	is	to	support	more	data	processing	models,
such	as	Apache	Spark,	Apache	Storm,	Apache	Giraph,	Apache	HAMA,	and	so	on,	than
just	MapReduce.	YARN	provides	a	platform	to	develop	and	execute	distributed	processing
applications.	It	also	improves	efficiency	and	resource-sharing	capabilities.

The	design	decision	behind	YARN	architecture	is	to	separate	two	major	functionalities,
resource	management	and	job	scheduling	or	monitoring	of	JobTracker,	into	separate
daemons,	that	is,	a	cluster	level	ResourceManager	(RM)	and	an	application-specific
ApplicationMaster	(AM).	YARN	architecture	follows	a	master-slave	architectural	model
in	which	the	ResourceManager	is	the	master	and	node-specific	slave	NodeManager
(NM).	The	global	ResourceManager	and	per-node	NodeManager	builds	a	most	generic,
scalable,	and	simple	platform	for	distributed	application	management.	The
ResourceManager	is	the	supervisor	component	that	manages	the	resources	among	the
applications	in	the	whole	system.	The	per-application	ApplicationMaster	is	the
application-specific	daemon	that	negotiates	resources	from	ResourceManager	and	works
in	hand	with	NodeManagers	to	execute	and	monitor	the	application’s	tasks.

The	following	diagram	explains	how	JobTracker	is	replaced	by	a	global	level
ResourceManager	and	ApplicationManager	and	a	per-node	TaskTracker	is	replaced	by	an
application-level	ApplicationMaster	to	manage	its	functions	and	responsibilities.
JobTracker	and	TaskTracker	only	support	MapReduce	applications	with	less	scalability
and	poor	cluster	utilization.	Now,	YARN	supports	multiple	distributed	data	processing
models	with	improved	scalability	and	cluster	utilization.

The	ResourceManager	has	a	cluster-level	scheduler	that	has	responsibility	for	resource
allocation	to	all	the	running	tasks	as	per	the	ApplicationManager’s	requests.	The	primary
responsibility	of	the	ResourceManager	is	to	allocate	resources	to	the	application(s).	The
ResourceManager	is	not	responsible	for	tracking	the	status	of	an	application	or	monitoring
tasks.	Also,	it	doesn’t	guarantee	restarting/balancing	tasks	in	the	case	of	application	or
hardware	failure.

The	application-level	ApplicationMaster	is	responsible	for	negotiating	resources	from	the
ResourceManager	on	application	submission,	such	as	memory,	CPU,	disk,	and	so	on.	It	is
also	responsible	for	tracking	an	application’s	status	and	monitoring	application	processes
in	coordination	with	the	NodeManager.

Let’s	have	a	look	at	the	high-level	architecture	of	Hadoop	2.0.	As	you	can	see,	more
applications	can	be	supported	by	YARN	than	just	the	MapReduce	application.	The	key
component	of	Hadoop	2	is	YARN,	for	better	cluster	resource	management,	and	the
underlying	file	system	remains	the	same	as	Hadoop	Distributed	File	System	(HDFS)
and	is	shown	in	the	following	image:

Here	are	some	key	concepts	that	we	should	know	before	exploring	the	YARN	architecture
in	detail:

Application:	This	is	the	job	submitted	to	the	framework,	for	example	a	MapReduce
job.	It	could	also	be	a	shell	script.
Container:	This	is	the	basic	unit	of	hardware	allocation,	for	example	a	container	that
has	4	GB	of	RAM	and	one	CPU.	The	container	does	optimized	resource	allocation;
this	replaces	the	fixed	map	and	reduce	slots	in	the	previous	versions	of	Hadoop.

Core	components	of	YARN	architecture
Here	are	some	core	components	of	YARN	architecture	that	we	need	to	know:

ResourceManager
ApplicationMaster
NodeManager

ResourceManager
ResourceManager	acts	as	a	global	resource	scheduler	that	is	responsible	for	resource
management	and	scheduling	as	per	the	ApplicationMaster’s	requests	for	the	resource
requirements	of	the	application(s).	It	is	also	responsible	for	the	management	of
hierarchical	job	queues.	The	ResourceManager	can	be	seen	in	the	following	figure:

The	preceding	diagram	gives	more	details	about	the	components	of	the	ResourceManager.
The	Admin	and	Client	service	is	responsible	for	client	interactions,	such	as	a	job	request
submission,	start,	restart,	and	so	on.	The	ApplicationsManager	is	responsible	for	the
management	of	every	application.	The	ApplicationMasterService	interacts	with	every
application.	ApplicationMaster	regarding	resource	or	container	negotiation,	the
ResourceTrackerService	coordinates	with	the	NodeManager	and	ResourceManager.	The
ApplicationMaster	Launcher	service	is	responsible	for	launching	a	container	for	the
ApplicationMaster	on	job	submission	from	the	client.	The	Scheduler	and	Security	are	the
core	parts	of	the	ResourceManager.	As	already	explained,	the	Scheduler	is	responsible	for
resource	negotiation	and	allocation	to	the	applications	as	per	the	request	of	the
ApplicationMaster.	There	are	three	different	policies	of	scheduler,	FIFO,	Fair,	and
Capacity,	which	will	be	explained	in	detail	later	in	this	chapter.	The	security	component	is
responsible	for	generating	and	delegating	an/the	ApplicationToken	and	ContainerToken	to
access	the	application	and	container,	respectively.

ApplicationMaster	(AM)
The	ApplicationMaster	is	at	a	per-application	level.	It	is	responsible	for	the	application’s
life	cycle	management	and	for	negotiating	the	appropriate	resources	from	the	Scheduler,
tracking	their	status	and	progress	monitoring,	for	example,	MapReduce
ApplicationMaster.

NodeManager	(NM)
NodeManager	acts	as	a	per-machine	agent	and	is	responsible	for	managing	the	life	cycle
of	the	container	and	for	monitoring	their	resource	usage.	The	core	components	of	the
NodeManager	are	shown	in	the	following	diagram:

The	component	responsible	for	communication	between	the	NodeManager	and
ResourceManager	is	the	NodeStatusUpdater.	The	ContainerManager	is	the	core
component	of	the	NodeManager;	it	manages	all	the	containers	that	run	on	the	node.
NodeHealthCheckerService	is	the	service	that	monitors	the	node’s	health	and
communicates	the	node’s	heartbeat	to	the	ResourceManager	via	the	NodeStatusUpdater
service.	The	ContainerExecutor	is	the	process	responsible	for	interacting	with	native
hardware	or	software	to	start	or	stop	the	container	process.	Management	of	Access
Control	List	(ACL)	and	access	token	verification	is	performed	by	the	Security
component.

Let’s	take	a	look	at	one	scenario	to	understand	YARN	architecture	in	detail.	Refer	to	the
following	diagram:

Say	we	have	two	client	requests:	one	wants	to	execute	a	simple	shell	script,	while	another
one	wants	to	execute	a	complex	MapReduce	job.	The	Shell	Script	is	represented	in
maroon	color,	while	the	MapReduce	job	is	represented	in	light	green	color	in	the
preceding	diagram.

The	ResourceManager	has	two	main	components,	the	ApplicationManager	and	the
Scheduler.	The	ApplicationManager	is	responsible	for	accepting	the	client’s	job
submission	requests,	negotiating	the	containers	to	execute	the	applications	specific	to	the
ApplicationMaster,	and	providing	the	services	to	restart	the	ApplicationMaster	on	failure.
The	responsibility	of	the	Scheduler	is	to	allocate	resources	to	the	various	running
applications	with	respect	to	the	application	resource	requirements	and	available	resources.
The	Scheduler	is	a	pure	scheduler	in	the	sense	that	it	provides	no	monitoring	or	tracking
functions	for	the	application.	Also,	it	doesn’t	offer	any	guarantees	for	restarting	a	failed
task	either	due	to	failure	in	the	application	or	in	the	hardware.	The	Scheduler	performs	its
scheduling	tasks	based	on	the	resource	requirements	of	the	application(s);	it	does	so	based
on	the	abstract	notion	of	the	resource	container,	which	incorporates	elements	such	as	CPU,
memory,	disk,	and	so	on.

The	NodeManager	is	the	per-machine	framework	daemon	that	is	responsible	for	the
containers’	life	cycles.	It	is	also	responsible	for	monitoring	their	resource	usage,	for
example,	memory,	CPU,	disk,	network,	and	so	on,	and	for	reporting	this	to	the
ResourceManager	accordingly.	The	application-level	ApplicationMaster	is	responsible	for
negotiating	the	required	resource	containers	from	the	scheduler,	tracking	their	status,	and
monitoring	progress.	In	the	preceding	diagram,	you	can	see	that	both	jobs,	Shell	Script	and

MapReduce,	have	an	individual	ApplicationMaster	that	allocates	resources	for	job
execution	and	to	track/monitor	the	job	execution	status.

Now,	take	a	look	at	the	execution	sequence	of	the	application.	Refer	to	the	preceding
application	flow	diagram.

A	client	submits	the	application	to	the	ResourceManager.	In	the	preceding	diagram,	client
1	submits	a	Shell	Script	Request	(maroon	color),	and	client	2	submits	a	MapReduce
request	(green	color):

1.	 Then,	the	ResourceManager	allocates	a	container	to	start	up	the	ApplicationMaster	as
per	the	application	submitted	by	the	client:	one	ApplicationMaster	for	the	shell	script
and	one	for	the	MapReduce	application.

2.	 While	starting	the	ApplicationMaster,	the	ResourceManager	registers	the	application
with	the	ResourceManager.

3.	 After	the	startup	of	the	ApplicationMaster,	it	negotiates	with	the	ResourceManager
for	appropriate	resources	as	per	the	application	requirement.

4.	 Then,	after	resource	allocation	from	the	ResourceManager,	the	ApplicationMaster
requests	that	the	NodeManager	launches	the	containers	allocated	by	the
ResourceManager.

5.	 On	successful	launching	of	the	containers,	the	application	code	executes	within	the
container,	and	the	ApplicationManager	reports	back	to	the	ResourceManager	with	the
execution	status	of	the	application.

6.	 During	the	execution	of	the	application,	the	client	can	request	the	ApplicationMaster
or	the	ResourceManager	directly	for	the	application	status,	progress	updates,	and	so
on.

7.	 On	execution	of	the	application,	the	ApplicationMaster	requests	that	the
ResourceManager	unregisters	and	shut	downs	its	own	container	process.

YARN	scheduler	policies
As	explained	in	the	previous	section,	the	ResourceManager	acts	as	a	pluggable	global
scheduler	that	manages	and	controls	all	the	containers	(resources).	There	are	three
different	policies	that	can	be	applied	over	the	scheduler,	as	per	requirements	and	resource
availability.	They	are	as	follows:

The	FIFO	scheduler
The	Fair	scheduler
The	Capacity	scheduler

The	FIFO	(First	In	First	Out)	scheduler
FIFO	means	First	In	First	Out.	As	the	name	indicates,	the	job	submitted	first	will	get
priority	to	execute;	in	other	words,	the	job	runs	in	the	order	of	submission.	FIFO	is	a
queue-based	scheduler.	It	is	a	very	simple	approach	to	scheduling	and	it	does	not
guarantee	performance	efficiency,	as	each	job	would	use	a	whole	cluster	for	execution.	So
other	jobs	may	keep	waiting	to	finish	their	execution,	although	a	shared	cluster	has	a	great
capability	to	offer	more-than-enough	resources	to	many	users.

The	fair	scheduler
Fair	scheduling	is	the	policy	of	scheduling	that	assigns	resources	for	the	execution	of	the
application	so	that	all	applications	get	an	equal	share	of	cluster	recourses	over	a	period	of
time.	For	example,	if	a	single	job	is	running,	it	would	get	all	the	resources	available	in	the
cluster,	and	as	the	job	number	increases,	free	recourses	will	be	given	to	the	jobs	so	that
each	user	will	get	a	fair	share	of	the	cluster.	If	two	users	have	submitted	two	different	jobs,
a	short	job	that	belongs	to	a	user	would	complete	in	a	small	timespan	while	a	longer	job
submitted	by	the	other	user	keeps	running,	so	long	jobs	will	still	make	some	progress.

In	a	Fair	scheduling	policy,	all	jobs	are	placed	into	job	pools,	specific	to	users;
accordingly,	each	user	gets	their	own	job	pool.	The	user	who	submits	more	jobs	than	the
other	user	will	not	get	more	resources	than	the	first	user	on	average.	You	may	even	define
your	own	customized	job	pools	with	specified	configurations.	Fair	scheduling	is	a
preemptive	scheduling,	as	if	a	pool	has	not	received	fair	resources	to	run	a	particular	task
for	a	certain	period	of	time.	In	this	case,	the	scheduler	will	kill	the	tasks	in	pools	that	run
out	of	capacity,	to	release	resources	to	the	pools	that	run	under	capacity.

In	addition	to	fair	scheduling,	the	Fair	scheduler	allocates	a	guaranteed	minimum	share	of
resources	to	the	pools.	This	is	always	helpful	for	the	users,	groups,	or	applications,	as	they
always	get	sufficient	resources	for	execution.

The	capacity	scheduler
The	Capacity	scheduler	is	designed	to	allow	applications	to	share	cluster	resources	in	a
predictable	and	simple	fashion.	These	are	commonly	known	as	“job	queues”.	The	main
idea	behind	capacity	scheduling	is	to	allocate	available	resources	to	the	running
applications,	based	on	individual	needs	and	requirements.	There	are	additional	benefits
when	running	the	application	using	capacity	scheduling,	as	they	can	access	the	excess
capacity	resources	that	are	not	being	used	by	any	other	applications.

The	abstraction	provided	by	the	capacity	scheduler	is	the	queue.	It	provides	capacity
guarantees	for	support	for	multiple	queues	where	a	job	is	submitted	to	the	queue,	and
queues	are	allocated	a	capacity	in	the	sense	that	a	certain	capacity	of	resources	will	be	at
their	disposal.	All	the	jobs	submitted	to	the	queue	will	access	the	resources	allocated	to	the
job	queue.	Admins	can	control	the	capacity	of	each	queue.

Here	are	some	basic	features	of	the	capacity	scheduler:

Security:	Each	queue	has	strict	ACLs	that	take	control	of	the	authorization	and
authentication	of	users	who	can	submit	jobs	to	individual	queues.
Elasticity:	Free	resources	are	allocated	to	any	queue	beyond	its	capacity.	If	there	is
demand	for	these	resources	from	queues	that	run	below	capacity,	then	as	soon	as	the
task	scheduled	on	these	resources	has	completed,	they	will	be	assigned	to	jobs	on
queues	that	run	under	capacity.
Operability:	The	admin	can,	at	any	point	in	time,	change	queue	definitions	and
properties.
Multitenancy:	All	sets	of	limits	are	provided	to	prevent	a	single	job,	user,	and	queue
from	obtaining	the	resources	of	the	queue	or	cluster.	This	is	to	ensure	that	the	system,
specifically	a	previous	version	of	Hadoop,	is	not	suppressed	by	too	many	tasks.
Resource-based	scheduling:	Intensive	job	support,	as	jobs	can	specifically	demand
for	higher	resource	requirements	than	default.
Job	priorities:	These	job	queues	can	support	job	priorities.	Within	the	queue,	jobs
with	high	priority	have	access	to	resources	before	jobs	with	lower	priority.

Recent	developments	in	YARN
architecture
The	ResourceManager	is	a	single	point	of	failure	and	restart	because	of	various	reasons:
bugs,	hardware	failure,	deliberate	downtime	for	upgrading,	and	so	on.

We	already	saw	how	crucial	the	role	of	the	ResourceManager	in	YARN	architecture	is.
The	ResourceManager	has	become	a	single	point	of	failure;	if	the	ResourceManager	in	a
cluster	goes	down,	everything	on	that	cluster	will	be	lost.

So	in	a	recent	development	of	YARN,	ResourceManager	HA	became	a	high	priority.	This
recent	development	of	YARN	not	only	covers	ResourceManager	HA,	but	also	provides
transparency	to	users	and	does	not	require	them	to	monitor	such	events	explicitly	and
resubmit	the	jobs.

Overly	complex	in	MRv1	for	the	fact	that	JobTracker	has	to	save	too	much	of	meta-data:
both	cluster	state	and	per-application	running	state.	This	means	that	if	Job-Tracker	dies,
then	all	the	applications	in	a	running	state	will	be	lost.

The	development	of	ResourceManager	recovery	will	be	done	in	two	phases:

1.	 RM	Restart	Phase	I:	In	this	phase,	all	the	applications	will	be	killed	while	restarting
the	ResourceManager	on	failure.	No	state	of	the	application	can	be	stored.
Development	of	this	phase	is	almost	completed.

2.	 RM	Restart	Phase	II:	As	in	Phase	II,	the	application	will	store	the	state	on	RM
failure;	this	means	that	applications	are	not	killed,	and	they	report	the	running	state
back	to	the	RM	after	the	RM	comes	back	up.

The	ResourceManager	will	be	used	only	to	save	an	application’s	submission	metadata	and
cluster-level	information.	Application	state	persistence	and	the	recovery	of	specific
information	will	be	managed	by	the	application	itself.

As	shown	in	the	preceding	diagram,	in	the	next	version,	we	will	get	a	pluggable	state
store,	such	as	Zookeeper	and	HDFS,	that	can	store	the	state	of	the	running	applications.
ResourceManager	HA	would	contain	synchronized	active-passive	ResourceManager
architectural	models	managed	by	Zookeeper;	as	one	goes	down,	the	other	can	take	over
cluster	responsibility	without	halting	and	losing	information.

Summary
In	this	chapter,	we	covered	the	architectural	components	of	YARN,	their	responsibilities,
and	their	interoperations.	We	also	focused	on	some	major	development	work	going	on	in
the	community	to	overcome	the	drawbacks	of	the	current	release.	In	the	next	chapter,	we
will	cover	the	installation	steps	of	YARN.

Chapter	3.	YARN	Installation
In	this	section,	we’ll	cover	the	installation	of	Hadoop	and	YARN	and	their	configuration
for	a	single-node	and	single-cluster	setup.	Now,	we	will	consider	Hadoop	as	two	different
components:	one	is	Hadoop	Distributed	File	System	(HDFS),	the	other	is	YARN.	The
YARN	components	take	care	of	resource	allocation	and	the	scheduling	of	the	jobs	that	run
over	the	data	stored	in	HDFS.	We’ll	cover	most	of	the	configurations	to	make	YARN
distributed	computing	more	optimized	and	efficient.

In	this	chapter,	we	will	cover	the	following	topics:

Hadoop	and	YARN	single-node	installation
Hadoop	and	YARN	fully-distributed	mode	installation
Operating	Hadoop	and	YARN	clusters

Single-node	installation
Let’s	start	with	the	steps	for	Hadoop’s	single-node	installations,	as	it’s	easy	to	understand
and	set	up.	This	way,	we	can	quickly	perform	simple	operations	using	Hadoop
MapReduce	and	the	HDFS.

Prerequisites
Here	are	some	prerequisites	needed	for	Hadoop	installations;	make	sure	that	the
prerequisites	are	fulfilled	to	start	working	with	Hadoop	and	YARN.

Platform
GNU/Unix	is	supported	for	Hadoop	installation	as	a	development	as	well	as	a	production
platform.	The	Windows	platform	is	also	supported	for	Hadoop	installation,	with	some
extra	configurations.	Now,	we’ll	focus	more	on	Linux-based	platforms,	as	Hadoop	is	more
widely	used	with	these	platforms	and	works	more	efficiently	with	Linux	compared	to
Windows	systems.	Here	are	the	steps	for	single-node	Hadoop	installation	for	Linux
systems.	If	you	want	to	install	it	on	Windows,	refer	to	the	Hadoop	wiki	page	for	the
installation	steps.

Software
Here’s	some	software;	make	sure	that	they	are	installed	before	installing	Hadoop.

Java	must	be	installed.	Confirm	whether	the	Java	version	is	compatible	with	the	Hadoop
version	that	is	to	be	installed	by	checking	the	Hadoop	wiki	page
(http://wiki.apache.org/hadoop/HadoopJavaVersions).

SSH	and	SSHD	must	be	installed	and	running,	as	they	are	used	by	Hadoop	scripts	to
manage	remote	Hadoop	daemons.

Now,	download	the	recent	stable	release	of	the	Hadoop	distribution	from	Apache	mirrors
and	archives	using	the	following	command:

$$	wget	http://mirrors.ibiblio.org/apache/hadoop/common/hadoop-

2.6.0/hadoop-2.6.0.tar.gz

Note	that	at	the	time	of	writing	this	book,	Hadoop	2.6.0	is	the	most	recent	stable	release.
Now	use	the	following	commands:

$$	mkdir	–p	/opt/yarn

$$	cd	/opt/yarn

$$	tar	xvzf	/root/hadoop-2.6.0.tar.gz

http://wiki.apache.org/hadoop/HadoopJavaVersions

Starting	with	the	installation
Now,	unzip	the	download	distribution	under	the	/etc/	directory.	Change	the	Hadoop
environmental	parameters	as	per	the	following	configurations.

Set	the	JAVA_HOME	environmental	parameter	to	the	JAVA	root	installed	before:

$$	export	JAVA_HOME=etc/java/latest

Set	the	Hadoop	home	to	the	Hadoop	installation	directory:

$$	export	HADOOP_HOME=etc/hadoop

Try	running	the	Hadoop	command.	It	should	display	the	Hadoop	documentation;	this
indicates	a	successful	Hadoop	configuration.

Now,	our	Hadoop	single-node	setup	is	ready	to	run	in	the	following	modes.

The	standalone	mode	(local	mode)
By	default,	Hadoop	runs	in	standalone	mode	as	a	single	Java	process.	This	mode	is	useful
for	development	and	debugging.

The	pseudo-distributed	mode
Hadoop	can	run	on	a	single	node	in	pseudo-distributed	mode,	as	each	daemon	is	run	as	a
separate	Java	process.	To	run	Hadoop	in	pseudo-distributed	mode,	follow	these
configuration	instructions.	First,	navigate	to	the	/etc/hadoop/core-site.xml.

This	configuration	for	the	NameNode	setup	will	run	on	localhost	port	9000.	You	can	set
the	following	property	for	the	NameNode:

<configuration>

				<property>

								<name>fs.defaultFS</name>

								<value>hdfs://localhost:9000</value>

				</property>

</configuration>

Now	navigate	to	/etc/hadoop/hdfs-site.xml.

By	setting	the	following	property,	we	are	ensuring	that	the	replication	factor	of	each	data
block	is	3	(by	default,	the	replication	factor	is	3):

<configuration>

				<property>

								<name>dfs.replication</name>

								<value>3</value>

				</property>

</configuration>

Then,	format	the	Hadoop	filesystem	using	this	command:

$$	$HADOOP_HOME/bin/hdfs	namenode	–format

After	formatting	the	filesystem,	start	the	namenode	and	datanode	daemons	using	the	next

command.	You	can	see	logs	under	the	$HADOOP_HOME/logs	directory	by	default:

$$	$HADOOP_HOME/sbin/start-dfs.sh

Now,	we	can	see	the	namenode	UI	on	the	web	interface.	Hit	http://localhost:50070/	in
the	browser.

Create	the	HDFS	directories	that	are	required	to	run	MapReduce	jobs:

$$	$HADOOP_HOME/bin/hdfs	-mkdir	/user

$$	$HADOOP_HOME/bin/hdfs	-mkdir	/user/{username}

To	MapReduce	job	on	YARN	in	pseudo-distributed	mode,	you	need	to	start	the
ResourceManager	and	NodeManager	daemons.	Navigate	to	/etc/hadoop/mapred-
site.xml:

<configuration>

				<property>

								<name>mapreduce.framework.name</name>

								<value>yarn</value>

				</property>

</configuration>

Navigate	to	/etc/hadoop/yarn-site.xml:

<configuration>

				<property>

								<name>yarn.nodemanager.aux-services</name>

								<value>mapreduce_shuffle</value>

				</property>

</configuration>

Now,	start	the	ResourceManager	and	NodeManager	daemons	by	issuing	this	command:

$$	sbin/start-yarn.sh

By	simply	navigating	to	http://localhost:8088/	in	your	browser,	you	can	see	the	web
interface	for	the	ResourceManager.	From	here,	you	can	start,	restart,	or	stop	the	jobs.

To	stop	the	YARN	daemons,	you	need	to	run	the	following	command:

$$	$HADOOP_HOME/sbin/stop-yarn.sh

This	is	how	we	can	configure	Hadoop	and	YARN	in	a	single	node	in	standalone	and
pseudo-distributed	modes.	Moving	forward,	we	will	focus	on	fully-distributed	mode.	As
the	basic	configuration	remains	the	same,	we	only	need	to	do	some	extra	configuration	for
fully-distributed	mode.	Single-node	setup	is	mainly	used	for	development	and	debugging
of	distributed	applications,	while	fully-distributed	mode	is	used	for	the	production	setup.

The	fully-distributed	mode
In	the	previous	section,	we	highlighted	the	standalone	Hadoop	and	YARN	configurations,
and	in	this	section	we’ll	focus	on	the	fully-distributed	mode	setup.	This	section	describes
how	to	install,	configure,	and	manage	Hadoop	and	YARN	in	fully-distributed,	very	large
clusters	with	thousands	of	nodes	in	them.

In	order	to	start	with	fully-distributed	mode,	we	first	need	to	download	the	stable	version
of	Hadoop	from	Apache	mirrors.	Installing	Hadoop	in	distributed	mode	generally	means
unpacking	the	software	distribution	on	each	machine	in	the	cluster	or	installing	Red	Hat
Package	Managers	(RPMs).	As	Hadoop	follows	a	master-slave	architecture,	one
machine	in	the	cluster	is	designated	as	the	NameNode	(NN),	one	as	the
ResourceManager	(RM),	and	the	rest	of	the	machines,	DataNodes	(DN)	and
NodeManagers	(NM),	will	typically	acts	as	slaves.

After	the	successful	unpacking	of	software	distribution	on	each	cluster	machine	or	RPM
installation,	you	need	to	take	care	of	a	very	important	part	of	the	Hadoop	installation
phase,	Hadoop	configuration.

Hadoop	typically	has	two	types	of	configuration:	one	is	the	read-only	default
configuration	(core-default.xml,	hdfs-default.xml,	yarn-default.xml,	and	mapred-
default.xml),	while	the	other	is	the	site-specific	configuration	(core-site.xml,	hdfs-
site.xml,	yarn-site.xml,	and	mapred-site.xml).	All	these	file	are	found	under	the
$HADOOP_HOME/conf	directory.

In	addition	to	the	preceding	configuration	files,	the	Hadoop-environment	and	YARN-
environment	specific	file	is	found	in	conf/hadoop-env.sh	and	conf/yarn-env.sh.	As	for
the	Hadoop	and	YARN	cluster	configuration,	you	need	to	set	up	an	environment	in	which
Hadoop	daemons	can	execute.	The	Hadoop/YARN	daemons	are	the
NameNode/ResourceManager	(masters)	and	the	DataNode/NodeManager	(slaves).

First,	make	sure	that	JAVA_HOME	is	correctly	specified	on	each	node.

Here	are	some	important	configuration	parameters	with	respect	to	each	daemon:

NameNode:	HADOOP_NAMENODE_OPTS
DataNode:	HADOOP_DATANODE_OPTS
Secondary	NameNode:	HADOOP_SECONDARYNAMENODE_OPTS
ResourceManager:	YARN_RESOURCEMANAGER_OPTS
NodeManager:	YARN_NODEMANAGER_OPTS
WebAppProxy:	YARN_PROXYSERVER_OPTS
Map	Reduce	Job	History	Server:	HADOOP_JOB_HISTORYSERVER_OPTS

For	example,	to	run	the	NameNode	in	parallelGC	mode,	the	following	line	should	be
added	into	hadoop-env.sh:

$$	export	HADOOP_NAMENODE_OPTS="-XX:+UseParallelGC	${HADOOP_NAMENODE_OPTS}"

Here	are	some	important	configuration	parameters	with	respect	to	the	daemon	and	its
configuration	files.

Navigate	to	conf/core-site.xml	and	configure	it	as	follows:

fs.defaultFS:	NameNode	URI,	hdfs://<hdfshost>:<hdfsport>

		<property>		

					<name>fs.defaultFS</name>	

					<value>hdfs://$<hdfshostname>:<hdfsport></value>		

					<description>It	is	a	NameNode	hostname</description>

		</property>

The	io.file.buffer.size:	4096,	read	and	write	buffer	size	of	files.

The	buffer	size	for	I/O	(read/write)	operation	on	sequence	files	stored	in	disk	files,	that	is,
it	determines	how	much	data	is	buffered	in	I/O	pipes	before	transferring	it	to	other
operations	during	read/write	operations.	I	should	be	multiple	of	OS	filesystem	block	size.

				<property>		

					<name>io.file.buffer.size</name>	

					<value>4096</value>		

					<description>read	and	write	buffer	size	of	files</description>

				</property>

Now	navigate	to	conf/hdfs-site.xml.	Here	is	the	configuration	for	the	NameNode:

Parameter Description

dfs.namenode.name.dir
The	path	on	the	local	filesystem	where	the	NameNode	generates	the	namespace	and
application	transaction	logs.

dfs.namenode.hosts The	list	of	permitted	DataNodes.

dfs.namenode.hosts.exclude The	list	of	excluded	DataNodes.

dfs.blocksize The	default	value	is	268435456.	The	HDFS	block	size	is	256	MB	for	large	filesystems.

dfs.namenode.handler.count
The	default	value	is	100.	More	NameNode	server	threads	to	handle	RPCs	from	a	large
number	of	DataNodes.

The	configuration	for	the	DataNode	is	as	follows:

Parameter Description

dfs.datanode.data.dir Comma-delimited	list	of	paths	on	the	local	filesystems	where	the	DataNode	stores	the	blocks

Now	navigate	to	conf/yarn-site.xml.	We’ll	take	a	look	at	the	configurations	related	to
the	ResourceManager	and	NodeManager:

Parameter Description

yarn.acl.enable Values	are	true	or	false	to	enable	or	disable	ACLs.	The	default	value	is	false.

yarn.admin.acl
This	refers	to	the	admin	or	ACL.	The	default	is	*,	which	means	anyone	can	do	admin	tasks.	ACL
sets	admins	on	the	cluster.	This	could	be	a	comma-delimited	user	group	to	set	more	than	one	admin.

yarn.log-

aggregation-

enable
This	is	true	or	false	to	enable	or	disable	log	aggregation.

Now,	we	will	take	look	at	configurations	for	the	ResourceManager	in	the	conf/yarn-
site.xml	file:

Parameter Description

yarn.resourcemanager.address This	is	the	ResourceManager	host:port	for	clients	to	submit	jobs.

yarn.resourcemanager.scheduler.address
This	is	the	ResourceManager	host:port	for	ApplicationMasters	to
talk	to	the	Scheduler	to	obtain	resources.

yarn.resourcemanager.resource-

tracker.address
This	is	the	ResourceManager	host:port	for	NodeManagers.

yarn.resourcemanager.admin.address
This	is	the	ResourceManager	host:port	for	administrative
commands.

yarn.resourcemanager.webapp.address This	is	the	ResourceManager	web-ui	host:port.

yarn.resourcemanager.scheduler.class
This	is	the	ResourceManager	Scheduler	class.	The	values	are
CapacityScheduler,	FairScheduler,	and	FifoScheduler.

yarn.scheduler.minimum-allocation-mb
This	is	the	minimum	limit	of	memory	to	allocate	to	each	container
request	in	the	Resource	Manager.

yarn.scheduler.maximum-allocation-mb
This	is	the	maximum	limit	of	memory	to	allocate	to	each	container
request	in	the	Resource	Manager.

yarn.resourcemanager.nodes.include-path/

yarn.resourcemanager.nodes.exclude-path

This	is	the	list	of	permitted/excluded	NodeManagers.	If	necessary,
use	these	files	to	control	the	list	of	permitted	NodeManagers.

Now	take	look	at	configurations	for	the	NodeManager	in	conf/yarn-site.xml:

Parameter Description

yarn.nodemanager.resource.memory-

mb

This	refers	to	the	available	physical	memory	(MBs)	for	the	NodeManager.	It
defines	the	total	available	memory	resources	on	the	NodeManager	to	be	made
available	to	the	running	containers.

yarn.nodemanager.vmem-pmem-ratio
This	refers	to	the	maximum	ratio	by	which	virtual	memory	usage	of	tasks	may
exceed	physical	memory.

yarn.nodemanager.local-dirs
This	refers	to	the	list	of	directory	paths	on	the	local	filesystem	where
intermediate	data	is	written.	This	should	be	a	comma-separated	list.

yarn.nodemanager.log-dirs This	refers	to	the	path	on	the	local	filesystem	where	logs	are	written.

yarn.nodemanager.log.retain-

seconds

This	refers	to	the	time	(in	seconds)	to	persist	logfiles	on	the	NodeManager.
The	default	value	is	10800	seconds.	This	configuration	is	applicable	only	if
log	aggregation	is	enabled.

yarn.nodemanager.remote-app-log-

dir

This	is	the	HDFS	directory	path	to	which	logs	have	been	moved	after
application	completion.	The	default	path	is	/logs.	This	configuration	is

applicable	only	if	log	aggregation	is	enabled.

yarn.nodemanager.remote-app-log-

dir-suffix

This	refers	to	the	specified	suffix	appended	to	the	remote	log	directory.	This
configuration	is	applicable	only	if	log	aggregation	is	enabled.

yarn.nodemanager.aux-services
This	refers	to	the	shuffle	service	that	specifically	needs	to	be	set	for
MapReduce	applications.

HistoryServer
The	HistoryServer	allows	all	YARN	applications	with	a	central	location	to	aggregate	their
completed	jobs	for	historical	reference	and	debugging.	The	settings	for	the	MapReduce
JobHistoryServer	can	be	found	in	the	mapred-default.xml	file:

mapreduce.jobhistory.address:	MapReduce	JobHistory	Server	host:port.	The
default	port	is	10020.
mapreduce.jobhistory.webapp.address:	This	is	the	MapReduce	JobHistory	Server
Web	UI	host:port.	The	default	port	is	19888.
mapreduce.jobhistory.intermediate-done-dir:	This	is	the	directory	where
history	files	are	written	by	MapReduce	jobs	(in	HDFS).	The	default	is	/mr-
history/tmp.
mapreduce.jobhistory.done-dir:	This	is	the	directory	where	history	files	are
managed	by	the	MR	JobHistory	Server	(in	HDFS).	The	default	is	/mr-history/done.

Slave	files
With	respect	to	the	Hadoop	slave	and	YARN	slave	nodes,	generally	one	chooses	one	node
in	the	cluster	as	the	NameNode	(Hadoop	master),	another	node	as	the	ResourceManager
(YARN	master),	and	the	rest	of	the	machine	acts	as	both	Hadoop	slave	DataNodes	and
Yarn	slave	NodeManagers.	List	all	the	slaves,	one	per	line	hostname	or	IP	addresses	in
your	Hadoop	conf/slaves	file.

Operating	Hadoop	and	YARN	clusters
This	is	the	final	stage	of	Hadoop	and	YARN	cluster	setup	and	configuration.	Here	are	the
commands	that	need	to	be	used	to	start	and	stop	the	Hadoop	and	YARN	clusters.

Starting	Hadoop	and	YARN	clusters
To	start	Hadoop	and	the	YARN	cluster,	use	with	the	following	procedure:

1.	 Format	a	Hadoop	distributed	filesystem:

$HADOOP_HOME/bin/hdfs	namenode	-format	<cluster_name>

2.	 The	following	command	is	used	to	start	HDFS.	Run	it	on	the	NameNode:

$HADOOP_HOME/sbin/hadoop-daemon.sh	--config	$HADOOP_CONF_DIR	--script	

hdfs	start	namenode

3.	 Run	this	command	to	start	DataNodes	on	all	slaves	nodes:

$HADOOP_HOME/sbin/hadoop-daemon.sh	--config	$HADOOP_CONF_DIR	--script	

hdfs	start	datanode

4.	 Start	YARN	with	the	following	command	on	the	ResourceManager:

$HADOOP_YARN_HOME/sbin/yarn-daemon.sh	--config	$HADOOP_CONF_DIR	start	

resourcemanager

5.	 Execute	this	command	to	start	NodeManagers	on	all	slaves:

$HADOOP_YARN_HOME/sbin/yarn-daemon.sh	--config	$HADOOP_CONF_DIR	start	

nodemanager

6.	 Start	a	standalone	WebAppProxy	server.	This	is	used	for	load-balancing	purposes	on
a	multiserver	cluster:

$HADOOP_YARN_HOME/sbin/yarn-daemonart	proxyserver	--config	

$HADOOP_CONF_DIR

7.	 Execute	this	command	on	the	designated	HistoryServer:

$HADOOP_HOME/sbin/mr-jobhistory-daemon.sh	start	historyserver	--config	

$HADOOP_CONF_DIR

Stopping	Hadoop	and	YARN	clusters
To	stop	Hadoop	and	the	YARN	cluster,	use	with	the	following	procedure:

1.	 Use	the	following	command	on	the	NameNode	to	stop	it:

$HADOOP_HOME/sbin/hadoop-daemon.sh	--config	$HADOOP_CONF_DIR	--script	

hdfs	stop	namenode

2.	 Issue	this	command	on	all	the	slave	nodes	to	stop	DataNodes:

$HADOOP_HOME/sbin/hadoop-daemon.sh	--config	$HADOOP_CONF_DIR	--script	

hdfs	stop	datanode

3.	 To	stop	the	ResourceManager,	issue	the	following	command	on	the	specified
ResourceManager:

$HADOOP_YARN_HOME/sbin/yarn-daemon.sh	--config	$HADOOP_CONF_DIR	stop	

resourcemanager

4.	 The	following	command	is	used	to	stop	the	NodeManager	on	all	slave	nodes:

$HADOOP_YARN_HOME/sbin/yarn-daemon.sh	--config	$HADOOP_CONF_DIR	stop	

nodemanager

5.	 Stop	the	WebAppProxy	server:

$HADOOP_YARN_HOME/sbin/yarn-daemon.sh	stop	proxyserver	--config	

$HADOOP_CONF_DIR

6.	 Stop	the	MapReduce	JobHistory	Server	by	running	the	following	command	on	the
HistoryServer:

$HADOOP_HOME/sbin/mr-jobhistory-daemon.sh	stop	historyserver	--config	

$HADOOP_CONF_DIR

Web	interfaces	of	the	Ecosystem
It’s	all	about	the	Hadoop	and	YARN	setup	and	configurations	and	commanding	over
Hadoop	and	YARN.	Here	are	some	web	interfaces	used	by	Hadoop	and	YARN
administrators	for	admin	tasks:

The	URL	for	the	NameNode	is	http://<namenode_host>:<port>/	and	the	default	HTTP
port	is	50070.

The	URL	for	the	ResourceManager	is	http://<resourcermanager_host>:<port>/	and
the	default	HTTP	port	is	8088.	TheWeb	UI	for	the	NameNode	can	be	seen	as	follows:

The	URL	for	the	MapReduce	JobHistory	Server	is	http://<jobhistoryserver_host>:
<port>/	and	the	default	HTTP	port	is	19888.

Summary
In	this	section,	we	covered	Hadoop	and	YARN	single-node	and	fully-distributed	cluster
setup	and	important	configurations.	We	also	covered	the	basic	but	important	commands	to
administrate	Hadoop	and	YARN	clusters.	In	the	next	chapter,	we’ll	look	at	the	Hadoop
and	YARN	components	in	more	detail.

Chapter	4.	YARN	and	Hadoop
Ecosystems
This	chapter	discusses	YARN	with	respect	to	Hadoop,	since	it	is	very	important	to	know
where	exactly	YARN	fits	in	Hadoop	2	now.

Hadoop	2	has	undergone	a	complete	change	in	terms	of	architecture	and	components
compared	to	Hadoop	1.

In	this	chapter,	we	will	be	cover	the	following	topics:

A	short	introduction	to	Hadoop	1
The	difference	between	MRv1	and	MRv2
Where	YARN	fits	in	Hadoop	2
Old	and	new	MapReduce	APIs
Backward	compatibility	of	MRv2	APIs
Practical	examples	of	MRv1	and	MRv2

The	Hadoop	2	release
YARN	came	into	the	picture	with	the	release	of	Hadoop	0.23	on	November	11,	2011.	This
was	the	alpha	version	of	the	Hadoop	0.23	major	release.

The	major	difference	between	0.23	and	pre-0.23	releases	is	that	the	0.23	release	had
undergone	a	complete	revamp	in	terms	of	the	MapReduce	engine	and	resource
management.	This	0.23	release	separated	out	resource	management	and	application	life
cycle	management.

A	short	introduction	to	Hadoop	1.x	and
MRv1
We	will	briefly	look	at	the	basic	Apache	Hadoop	1.x	and	its	processing	framework,	MRv1
(Classic),	so	that	we	can	get	a	clear	picture	of	the	differences	in	Apache	Hadoop	2.x
MRv2	(YARN)	in	terms	of	architecture,	components,	and	processing	framework.

Apache	Hadoop	is	a	scalable,	fault-tolerant	distributed	system	for	data	storage	and
processing.	The	core	programming	model	in	Hadoop	is	MapReduce.

Since	2004,	Hadoop	has	emerged	as	the	de	facto	standard	to	store,	process,	and	analyze
hundreds	of	terabytes	and	even	petabytes	of	data.

The	major	components	in	Hadoop	1.x	are	as	follows:

NameNode:	This	keeps	the	metadata	in	the	main	memory.
DataNode:	This	is	where	the	data	resides	in	the	form	of	blocks.
JobTracker:	This	assigns/reassigns	MapReduce	tasks	to	TaskTrackers	in	the	cluster
and	tracks	the	status	of	each	TaskTracker.
TaskTracker:	This	executes	the	task	assigned	by	the	JobTracker	and	sends	the	status
of	the	task	to	the	JobTracker.

The	major	components	of	Hadoop	1.x	can	be	seen	as	follows:

A	typical	Hadoop	1.x	cluster	(shown	in	the	preceding	figure)	can	consist	of	thousands	of

nodes.	It	follows	the	Master\Slave	pattern,	where	the	NameNodes\JobTrackers	are	the
masters	and	the	DataNodes\TaskTrackers	are	the	slaves.

The	main	data	processing	is	distributed	across	the	cluster	in	the	DataNodes	to	increase
parallel	processing.

The	master	NameNode	process	(master	for	slave	DataNodes)	manages	the	filesystem,	and
the	master	JobTracker	process	(master	for	slave	TaskTrackers)	manages	the	tasks.	The
topology	is	seen	as	follows:

A	Hadoop	cluster	can	be	considered	to	be	mainly	made	up	of	two	distinguishable	parts:

HDFS:	This	is	the	underlying	storage	layer	that	acts	as	a	filesystem	for	distributed
data	storage.	You	can	put	data	of	any	format,	schema,	and	type	on	it,	such	as
structured,	semi-structured,	or	unstructured	data.	This	flexibility	makes	Hadoop	fit
for	the	data	lake,	which	is	sometimes	called	the	bit	bucket	or	the	landing	zone.
MapReduce:	This	is	the	execution	layer	which	is	the	only	distributed	data-
processing	framework.

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

MRv1	versus	MRv2
MRv1	(MapReduce	version	1)	is	part	of	Apache	Hadoop	1.x	and	is	an	implementation	of
the	MapReduce	programming	paradigm.

The	MapReduce	project	itself	can	be	broken	into	the	following	parts:

End-user	MapReduce	API:	This	is	the	API	needed	to	develop	the	MapReduce
application.
MapReduce	framework:	This	is	the	runtime	implementation	of	various	phases,	such
as	the	map	phase,	the	sort/shuffle/merge	aggregation	phase,	and	the	reduce	phase.
MapReduce	system:	This	is	the	backend	infrastructure	required	to	run	MapReduce
applications	and	includes	things	such	as	cluster	resource	management,	scheduling	of
jobs,	and	so	on.

Hadoop	1.x	was	written	solely	as	an	MR	engine.	Since	it	runs	on	a	cluster,	its	cluster
management	component	was	also	tightly	coupled	with	the	MR	programming	paradigm.
The	only	thing	that	could	be	run	on	Hadoop	1.x	was	an	MR	job.

In	MRv1,	the	cluster	was	managed	by	a	single	JobTracker	and	multiple	TaskTrackers
running	on	the	DataNodes.

In	Hadoop	2.x,	the	old	MRv1	framework	was	rewritten	to	run	on	top	of	YARN.	This
application	was	named	MRv2,	or	MapReduce	version	2.	It	is	the	familiar	MapReduce
execution	underneath,	except	that	each	job	now	runs	on	YARN.

The	core	difference	between	MRv1	and	MRv2	is	the	way	the	MapReduce	jobs	are
executed.

With	Hadoop	1.x,	it	was	the	JobTracker	and	TaskTrackers,	but	now	with	YARN	on
Hadoop	2.x,	it’s	the	ResourceManager,	ApplicationMaster,	and	NodeManagers.

However,	the	underlying	concept,	the	MapReduce	framework,	remains	the	same.

Hadoop	2	has	been	redefined	from	HDFS-plus-MapReduce	to	HDFS-plus-YARN.

Referring	to	the	following	figure,	YARN	took	control	of	the	resource	management	and
application	life	cycle	part	of	Hadoop	1.x.

YARN	therefore,	definitely	results	in	increased	ROI	for	Hadoop	investment,	in	the	sense
that	now	the	same	Hadoop	2.x	cluster	resources	can	be	used	to	do	multiple	things,	such	as
batch	processing,	real-time	processing,	SQL	applications,	and	so	on.

Earlier,	running	this	variety	of	applications	was	not	possible,	and	people	had	to	use	a
separate	Hadoop	cluster	for	MapReduce	and	a	separate	one	to	do	something	else.

www.allitebooks.com

http://www.allitebooks.org

Understanding	where	YARN	fits	into
Hadoop
If	we	refer	to	Hadoop	1.x	in	the	first	figure	of	this	chapter,	then	it	is	clear	that	the
responsibilities	of	the	JobTracker	mainly	included	the	following:

Managing	the	computational	resources	in	terms	of	map	and	reduce	slots
Scheduling	submitted	jobs
Monitoring	the	executions	of	the	TaskTrackers
Restarting	failed	tasks
Performing	a	speculative	execution	of	tasks
Calculating	the	Job	Counters

Clearly,	the	JobTracker	alone	does	a	lot	of	tasks	together	and	is	overloaded	with	lots	of
work.

This	overloading	of	the	JobTracker	led	to	the	redesign	of	the	JobTracker,	and	YARN
tried	to	reduce	the	responsibilities	of	the	JobTracker	in	the	following	ways:

Cluster	resource	management	and	Scheduling	responsibilities	were	moved	to	the
global	Resource	Manager	(RM)
The	application	life	cycle	management,	that	is,	job	execution	and	monitoring	was
moved	into	a	per-application	ApplicationMaster	(AM)

The	Global	Resource	Manager	is	seen	in	the	following	image:

If	you	look	at	the	preceding	figure,	you	will	clearly	see	the	disappearance	of	the	single
centralized	JobTracker;	its	place	is	taken	by	a	Global	Resource	Manager.

Also,	for	each	job	a	tiny,	dedicated	JobTracker	is	created,	which	monitors	the	tasks
specific	to	its	job.	This	tiny	JobTracker	is	run	on	the	slave	node.

This	tiny,	dedicated	JobTracker	is	termed	an	ApplicationMaster	in	the	new	framework
(refer	to	the	following	figure).

Also,	the	TaskTrackers	are	referred	to	as	NodeManagers	in	the	new	framework.

Finally,	looking	at	the	JobTracker	redesign	(in	the	following	figure),	we	can	clearly	see
that	the	JobTracker’s	responsibilities	are	broken	into	a	per-cluster	ResourceManager	and	a
per-application	ApplicationMaster:

The	ResourceManager	topology	can	be	seen	as	follows:

Old	and	new	MapReduce	APIs
The	new	API	(which	is	also	known	as	Context	Objects)	was	primarily	designed	to	make
the	API	easier	to	evolve	in	the	future	and	is	type	incompatible	with	the	old	one.

The	new	API	came	into	the	picture	from	the	1.x	release	series.	However,	it	was	partially
supported	in	this	series.	So,	the	old	API	is	recommended	for	1.x	series:

Feature\Release 1.x 0.23

Old	MapReduce	API Yes Deprecated

New	MapReduce	API Partial Yes

MRv1	runtime	(Classic) Yes No

MRv2	runtime	(YARN) No Yes

The	old	and	new	API	can	be	compared	as	follows:

Old	API New	API

The	old	API	is	in	the	org.apache.hadoop.mapred
package	and	is	still	present.

The	new	API	is	in	the	org.apache.hadoop.mapreduce
package.

The	old	API	used	interfaces	for	Mapper	and	Reducer. The	new	API	uses	Abstract	Classes	for	Mapper	and
Reducer.

The	old	API	used	the	JobConf,	OutputCollector,	and
Reporter	object	to	communicate	with	the	MapReduce
system.

The	new	API	uses	the	context	object	to	communicate	with
the	MapReduce	system.

In	the	old	API,	job	control	was	done	through	the
JobClient.

In	the	new	API,	job	control	is	performed	through	the	Job
class.

In	the	old	API,	job	configuration	was	done	with	a	JobConf
object.

In	the	new	APO,	job	configuration	is	done	through	the
Configuration	class	via	some	of	the	helper	methods	on
Job.

In	the	old	API,	both	the	map	and	reduce	outputs	are
named	part-nnnnn.

In	the	new	API,	the	map	outputs	are	named	part-m-nnnnn
and	the	reduce	outputs	are	named	part-r-nnnnn.

In	the	old	API,	the	reduce()	method	passes	values	as	a
java.lang.Iterator.

In	the	new	API,	the	.	method	passes	values	as	a
java.lang.Iterable.

The	old	API	controls	mappers	by	writing	a	MapRunnable,
but	no	equivalent	exists	for	reducers.

The	new	API	allows	both	mappers	and	reducers	to	control
the	execution	flow	by	overriding	the	run()	method.

Backward	compatibility	of	MRv2	APIs
This	section	discusses	the	scope	and	level	of	backward	compatibility	supported	in	Apache
Hadoop	MapReduce	2.x	(MRv2).

Binary	compatibility	of	org.apache.hadoop.mapred
APIs
Binary	compatibility	here	means	that	the	compiled	binaries	should	be	able	to	run	without
any	modification	on	the	new	framework.

For	those	Hadoop	1.x	users	who	use	the	org.apache.hadoop.mapred	APIs,	they	can
simply	run	their	MapReduce	jobs	on	YARN	just	by	pointing	them	to	their	Apache	Hadoop
2.x	cluster	via	the	configuration	settings.

They	will	not	need	any	recompilation.	All	they	will	need	to	do	is	point	their	application	to
the	YARN	installation	and	point	HADOOP_CONF_DIR	to	the	corresponding	configuration
directory.	The	yarn-site.xml	(configuration	for	YARN)	and	mapred-site.xml	files
(configuration	for	MapReduce	apps)	are	present	in	the	conf	directory.

Also,	mapred.job.tracker	in	mapred-site.xml	is	no	longer	necessary	in	Apache	Hadoop
2.x.	Instead,	the	following	property	needs	to	be	added	in	the	mapred-site.xml	file	to
make	MRv1	applications	run	on	top	of	YARN:

<property>

							<name>mapreduce.framework.name</name>

							<value>yarn</value>

</property>

Source	compatibility	of	org.apache.hadoop.mapred
APIs
Source	incompatibility	means	that	some	code	changes	are	required	for	compilation.
Source	incompatibility	is	orthogonal	to	binary	compatibility.

Binaries	for	an	application	that	is	binary	compatible	but	not	source	compatible	will
continue	to	run	fine	on	the	new	framework.	However,	code	changes	are	required	to
regenerate	these	binaries.

Apache	Hadoop	2.x	does	not	ensure	complete	binary	compatibility	with	the	applications
that	use	org.apache.hadoop.mapreduce	APIs,	as	these	APIs	have	evolved	a	lot	since
MRv1.	However,	it	ensures	source	compatibility	for	org.apache.hadoop.mapreduce	APIs
that	break	binary	compatibility.	In	other	words,	you	should	recompile	the	applications	that
use	MapReduce	APIs	against	MRv2	JARs.

Existing	applications	that	use	MapReduce	APIs	are	source	compatible	and	can	run	on
YARN	with	no	changes,	recompilation,	and/or	minor	updates.

If	an	MRv1	MapReduce-based	application	fails	to	run	on	YARN,	you	are	requested	to
investigate	its	source	code	and	check	whether	MapReduce	APIs	are	referred	to	or	not.	If
they	are	referred	to,	you	have	to	recompile	the	application	against	the	MRv2	JARs	that	are
shipped	with	Hadoop	2.

Practical	examples	of	MRv1	and	MRv2
We	will	now	present	a	MapReduce	example	using	both	the	old	and	new	MapReduce	APIs.

We	will	now	write	a	MapReduce	program	in	Java	that	finds	all	the	anagrams	(a	word,
phrase,	or	name	formed	by	rearranging	the	letters	of	another,	such	as	cinema,	formed	from
iceman)	presents	them	in	an	input	file,	and	finally	prints	all	the	anagrams	in	the	output
file.

Here	is	the	AnagramMapperOldAPI.java	class	that	uses	the	old	MapReduce	API:

import	java.io.IOException;

import	java.util.Arrays;

import	org.apache.hadoop.io.Text;

import	org.apache.hadoop.mapred.MapReduceBase;

import	org.apache.hadoop.mapred.Mapper;

import	org.apache.hadoop.mapred.OutputCollector;

import	org.apache.hadoop.mapred.Reporter;

import	java.util.StringTokenizer;

/**

	*	The	Anagram	mapper	class	gets	a	word	as	a	line	from	the	HDFS	input	and	

sorts	the

	*	letters	in	the	word	and	writes	its	back	to	the	output	collector	as	

	*	Key	:	sorted	word	(letters	in	the	word	sorted)

	*	Value:	the	word	itself	as	the	value.

	*	When	the	reducer	runs	then	we	can	group	anagrams	together	based	on	the	

sorted	key.

	*/

public	class	AnagramMapperOldAPI	extends	MapReduceBase	implements

				Mapper<Object,	Text,	Text,	Text>	{

		private	Text	sortedText	=	new	Text();

		private	Text	originalText	=	new	Text();

		@Override

		public	void	map(Object	keyNotUsed,	Text	value,

						OutputCollector<Text,	Text>	output,	Reporter	reporter)

						throws	IOException	{

				String	line	=	value.toString().trim().toLowerCase().replace(",",	"");

				System.out.println("LINE:"+line);

				StringTokenizer	st	=	new	StringTokenizer(line);

					

				System.out.println("----	Split	by	space	------");

				while	(st.hasMoreElements())	{

						String	word	=	(String)	st.nextElement();

						char[]	wordChars	=	word.toCharArray();

						Arrays.sort(wordChars);

						String	sortedWord	=	new	String(wordChars);

						sortedText.set(sortedWord);

						originalText.set(word);

						System.out.println("\torig:"	+	word	+	"\tsorted:"	+	sortedWord);

						output.collect(sortedText,	originalText);

				}

		}

}

Here	is	the	AnagramReducerOldAPI.java	class	that	uses	the	old	MapReduce	API:

import	java.io.IOException;

import	java.util.Iterator;

import	java.util.StringTokenizer;

import	org.apache.hadoop.io.Text;

import	org.apache.hadoop.mapred.MapReduceBase;

import	org.apache.hadoop.mapred.OutputCollector;

import	org.apache.hadoop.mapred.Reducer;

import	org.apache.hadoop.mapred.Reporter;

public	class	AnagramReducerOldAPI	extends	MapReduceBase	implements

				Reducer<Text,	Text,	Text,	Text>	{

		private	Text	outputKey	=	new	Text();

		private	Text	outputValue	=	new	Text();

		public	void	reduce(Text	anagramKey,	Iterator<Text>	anagramValues,

						OutputCollector<Text,	Text>	output,	Reporter	reporter)

						throws	IOException	{

				String	out	=	"";

				//	Considering	words	with	length	>	2

				if	(anagramKey.toString().length()	>	2)	{

						System.out.println("Reducer	Key:	"	+	anagramKey);

						while	(anagramValues.hasNext())	{

								out	=	out	+	anagramValues.next()	+	"~";

						}

						StringTokenizer	outputTokenizer	=	new	StringTokenizer(out,	"~");

						if	(outputTokenizer.countTokens()	>=	2)	{

								out	=	out.replace("~",	",");

								outputKey.set(anagramKey.toString()	+	"		-->				");

								outputValue.set(out);

								System.out.println("************	Writing	reducer	output:"	

+anagramKey.toString()	+	"		-->				"	+out);

								output.collect(outputKey,	outputValue);

						}

				}

		}

}

Finally,	to	run	the	MapReduce	program,	we	have	the	AnagramJobOldAPI.java	class
written	using	the	old	MapReduce	API:

import	org.apache.hadoop.fs.Path;

import	org.apache.hadoop.io.Text;

import	org.apache.hadoop.mapred.FileInputFormat;

import	org.apache.hadoop.mapred.FileOutputFormat;

import	org.apache.hadoop.mapred.JobClient;

import	org.apache.hadoop.mapred.JobConf;

public	class	AnagramJobOldAPI	{

		public	static	void	main(String[]	args)	throws	Exception	{

				if	(args.length	!=	2)	{

						System.err.println("Usage:	Anagram	<input	path>	<output	path>");

						System.exit(-1);

				}

				JobConf	conf	=	new	JobConf(AnagramJobOldAPI.class);

				conf.setJobName("Anagram	Job	Old	API");

				FileInputFormat.addInputPath(conf,	new	Path(args[0]));

				FileOutputFormat.setOutputPath(conf,	new	Path(args[1]));

				conf.setMapperClass(AnagramMapperOldAPI.class);

				conf.setReducerClass(AnagramReducerOldAPI.class);

				conf.setOutputKeyClass(Text.class);

				conf.setOutputValueClass(Text.class);

				JobClient.runJob(conf);

		}

}

Next,	we	will	write	the	same	Mapper,	Reducer,	and	Job	classes	using	the	new	MapReduce
API.

Here	is	the	AnagramMapper.java	class	that	uses	the	new	MapReduce	API:

import	java.io.IOException;

import	java.util.Arrays;

import	java.util.StringTokenizer;

import	org.apache.hadoop.io.Text;

import	org.apache.hadoop.mapreduce.Mapper;

public	class	AnagramMapper	extends	Mapper<Object,	Text,	Text,	Text>	{

		private	Text	sortedText	=	new	Text();

		private	Text	orginalText	=	new	Text();

		@Override

		public	void	map(Object	key,	Text	value,	Context	context)

						throws	IOException,	InterruptedException	{

				String	line	=	value.toString().trim().toLowerCase().replace(",",	"");

				System.out.println("LINE:"	+	line);

				StringTokenizer	st	=	new	StringTokenizer(line);

				System.out.println("----	Split	by	space	------");

				while	(st.hasMoreElements())	{

						String	word	=	(String)	st.nextElement();

						char[]	wordChars	=	word.toCharArray();

						Arrays.sort(wordChars);

						String	sortedWord	=	new	String(wordChars);

						sortedText.set(sortedWord);

						orginalText.set(word);

						System.out.println("\torig:"	+	word	+	"\tsorted:"	+	sortedWord);

						context.write(sortedText,	orginalText);

				}

		}

}

Here	is	the	AnagramReducer.java	class	that	uses	the	new	MapReduce	API:

import	java.io.IOException;

import	java.util.StringTokenizer;

import	org.apache.hadoop.io.Text;

import	org.apache.hadoop.mapreduce.Reducer;

public	class	AnagramReducer	extends	Reducer<Text,	Text,	Text,	Text>	{

		private	Text	outputKey	=	new	Text();

		private	Text	outputValue	=	new	Text();

		public	void	reduce(Text	anagramKey,	Iterable<Text>	anagramValues,

						Context	context)	throws	IOException,	InterruptedException	{

				String	out	=	"";

				

				if	(anagramKey.toString().length()	>	2)	{

						System.out.println("Reducer	Key:	"	+	anagramKey);

				

						for	(Text	anagram	:	anagramValues)	{

								out	=	out	+	anagram.toString()	+	"~";

						}

						StringTokenizer	outputTokenizer	=	new	StringTokenizer(out,	"~");

						if	(outputTokenizer.countTokens()	>=	2)	{

								out	=	out.replace("~",	",");

								outputKey.set(anagramKey.toString()+"		-->				");

								outputValue.set(out);

								System.out.println("******	Writing	reducer	output:"	

+anagramKey.toString()	+	"		-->				"	+out);

								context.write(outputKey,	outputValue);

						}

				}

		}

}

Finally,	here	is	the	AnagramJob.java	class	that	uses	the	new	MapReduce	API:

import	org.apache.hadoop.fs.Path;

import	org.apache.hadoop.io.Text;

import	org.apache.hadoop.mapreduce.Job;

import	org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import	org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public	class	AnagramJob	{

		public	static	void	main(String[]	args)	throws	Exception	{

				if	(args.length	!=	2)	{

					System.err.println("Usage:	Anagram	<input	path>	<output	path>");

					System.exit(-1);

				}

				

				Job	job	=	new	Job();				

				job.setJarByClass(AnagramJob.class);

				job.setJobName("Anagram	Job");

				FileInputFormat.addInputPath(job,	new	Path(args[0]));

				FileOutputFormat.setOutputPath(job,	new	Path(args[1]));

				

				job.setMapperClass(AnagramMapper.class);

				job.setReducerClass(AnagramReducer.class);

				job.setOutputKeyClass(Text.class);

				job.setOutputValueClass(Text.class);

				

				System.exit(job.waitForCompletion(true)	?	0	:	1);

			}		

}

Preparing	the	input	file(s)
1.	 Create	a	${Input	file_1}	file	with	the	following	contents:

The	Project	Gutenberg	Etext	of	Moby	Word	II	by	Grady	Ward

hello	there		draw	ehllo	lemons	melons	solemn

Also,	bluest	bluets	bustle	sublet	subtle

2.	 Create	another	file,	${Input	file_2},	with	the	following	contents:

Cinema	is	anagram	to	iceman

Second	is	stop,	tops,	opts,	pots,	and	spot

Stool	and	tools

Secure	and	rescue

3.	 Copy	these	files	into	${path_to_your_input_dir}.

Running	the	job
Run	the	AnagramJobOldAPI.java	class	and	pass	the	following	as	command-line	args:

${path_to_your_input_dir}

${path_to_your_output_dir_old}

Now,	run	the	AnagramJob.java	class	and	pass	the	following	as	command-line	args:

${path_to_your_input_dir}

${path_to_your_output_dir_new}

Result
The	final	output	written	to	is	${path_to_your_output_dir_old}	and
${path_to_your_output_dir_new}.

These	are	the	contents	that	we	will	see	in	the	output	file:

aceimn		-->						cinema,iceman,

adn		-->						and,and,and,

adrw		-->						ward,draw,

belstu		-->						subtle,bustle,bluets,bluest,sublet,

ceersu		-->						rescue,secure,

ehllo		-->						hello,ehllo,

elmnos		-->						lemons,melons,solemn,

loost		-->						stool,tools,

opst		-->						pots,tops,stop,spot,opts,

Summary
In	this	chapter,	we	started	with	a	brief	history	of	Hadoop	releases.	Next,	we	covered	the
basics	of	Hadoop	1.x	and	MRv1.	We	then	looked	at	the	core	differences	between	MRv1
and	MRv2	and	how	YARN	fits	into	a	Hadoop	environment.	We	also	saw	how	the
JobTracker’s	responsibilities	were	broken	down	in	Hadoop	2.x.

We	also	talked	about	the	old	and	new	MapReduce	APIs,	their	origin,	differences,	and
support	in	YARN.	Finally,	we	concluded	the	chapter	with	some	practical	examples	using
the	old	and	new	MapReduce	APIs.

In	the	next	chapter,	you	will	learn	about	the	administration	part	of	YARN.

Chapter	5.	YARN	Administration
In	this	section,	we	will	focus	on	YARN’s	administrative	part	and	on	the	administrator	roles
and	responsibilities	of	YARN.	We	will	also	gain	a	more	detailed	insight	into	the
administration	configuration	settings	and	parameters,	application	container	monitoring,
and	optimized	resource	allocations,	as	well	as	scheduling	and	multitenancy	application
support	in	YARN.	We’ll	also	cover	the	basic	administration	tools	and	configuration
options	of	YARN.

The	following	topics	will	be	covered	in	this	chapter:

YARN	container	allocation	and	configurations
Scheduling	policies
YARN	multitenancy	application	support
YARN	administration	and	tools

Container	allocation
At	a	very	fundamental	level,	the	container	is	the	group	of	physical	resources	such	as
memory,	disk,	network,	CPU,	and	so	on.	There	can	be	one	or	more	containers	on	a	single
machine;	for	example,	if	a	machine	has	16	GB	of	RAM	and	8	core	processors,	then	a
single	container	could	be	1	CPU	core	and	2	GB	of	RAM.	This	means	that	there	are	a	total
of	8	containers	on	a	single	machine,	or	there	could	be	a	single	large	container	with	all	the
occupied	resources.	So,	a	container	is	a	physical	notation	of	memory,	CPU,	network,	disk,
and	so	on	in	the	cluster.	The	container’s	life	cycle	is	managed	by	the	NodeManager,	and
the	scheduling	is	done	by	the	ResourceManager.	The	container	allocation	can	be	seen	as
follows:

YARN	is	designed	to	allocate	resource	containers	to	the	individual	applications	in	a
shared,	secure,	and	multitenant	manner.	When	any	job	or	task	is	submitted	to	the	YARN
framework,	the	ResourceManager	takes	care	of	the	resource	allocations	to	the	application,
depending	on	scheduling	configurations	and	the	application’s	needs	and	requirements	via
the	ApplicationMaster.	To	achieve	this	goal,	the	central	scheduler	maintains	the	metadata
about	all	the	application’s	resource	requirements;	this	leads	to	efficient	scheduling
decisions	for	all	the	applications	that	run	into	the	cluster.

Let’s	take	a	look	at	how	container	allocation	happens	in	a	traditional	Hadoop	setup.	In	the
traditional	Hadoop	approach,	on	each	node	there	is	a	predefined	and	fixed	number	of	map
slots	and	a	predefined	and	fixed	number	of	reduce	slots.	The	map	and	reduce	functions	are
unable	to	share	slots,	as	they	are	predefined	for	specific	operations	only.	This	static
allocation	is	not	efficient;	for	example,	one	cluster	has	a	fixed	total	of	32	map	slots	and	32
reduce	slots.	While	running	a	MapReduce	application,	it	took	only	16	map	slots	and
required	more	than	32	slots	for	reduce	operations.	The	reducer	operation	is	unable	to	use
the	16	free	mapper	slots,	as	they	are	predefined	for	mapper	functionalities	only,	so	the
reduce	function	has	to	wait	until	some	reduce	slots	become	free.

To	overcome	this	problem,	YARN	has	container	slots.	Irrespective	of	the	application,	all
containers	are	able	to	run	all	applications;	for	example,	if	YARN	has	64	available
containers	in	the	cluster	and	is	running	the	same	MapReduce	application,	if	the	mapper
function	takes	only	16	slots	and	the	reducer	requires	more	resource	slots,	then	all	other

free	resources	in	the	cluster	are	allocated	to	the	reducer	operation.	This	makes	the
operation	more	efficient	and	productive.

Essentially,	an	application	demands	the	required	resources	from	the	ResourceManager	to
satisfy	its	needs	via	the	ApplicationMaster.	Then,	by	allocating	the	requested	resources	to
an	application,	the	ResourceManager	responds	to	the	application’s	ResourceRequest.	The
ResourceRequest	contains	the	name	of	the	resource	that	has	been	requested;	priority	of	the
request	within	the	various	other	ResourceRequests	of	the	same	application;	resource
requirement	capabilities,	such	as	RAM,	disk,	CPU,	network,	and	so	on;	and	the	number	of
resources.	Container	allocation	from	the	ResourceManager	to	the	application	means	the
successful	fulfillment	of	the	specific	ResourceRequest.

Container	allocation	to	the	application
Now,	take	a	look	at	the	following	sequence	diagram:

The	diagram	shows	how	container	allocation	is	done	for	applications	via	the
ApplicationMaster.	It	can	be	explained	as	follows:

1.	 The	client	submits	the	application	request	to	the	ResourceManager.
2.	 The	ResourceManager	registers	the	application	with	the	ApplicationManager,

generates	the	ApplicationID,	and	responds	to	the	client	with	the	successfully
registered	ApplicationID.

3.	 Then,	the	ResourceManager	starts	the	client	ApplicationMaster	in	a	separate
available	container.	If	no	container	is	available,	this	request	has	to	wait	until	a
suitable	container	is	found	and	then	send	the	application	registration	request	for
application	registration.

4.	 The	ResourceManager	shares	all	the	minimum	and	maximum	resource	capabilities	of
the	cluster	with	the	ApplicationMaster.	Then,	the	ApplicationMaster	decides	how	to
efficiently	use	the	available	resources	to	fulfill	the	application’s	needs.

5.	 Depending	on	the	resource	capabilities	shared	by	the	ResourceManager,	the
ApplicationMaster	requests	that	the	ResourceManager	allocates	a	number	of
containers	on	behalf	of	the	application.

6.	 The	ResourceManager	responds	to	the	ResourceRequest	by	the	ApplicationMaster	as
per	the	scheduling	policies	and	resource	availability.	Container	allocation	by	the
ResourceManager	means	the	successful	fulfillment	of	the	ResourceRequest	by	the
ApplicationMaster.

While	running	the	job,	the	ApplicationMaster	sends	the	heartbeat	and	job	progress

information	of	the	application	to	the	ResourceManager.	During	the	runtime	of	the
application,	the	ApplicationMaster	requests	for	the	release	or	allocation	of	more
containers	from	the	ResourceManager.	When	the	job	finishes,	the	ApplicationMaster
sends	a	container	de-allocation	request	to	the	ResourceManager	and	exits	itself	from
running	the	container.

Container	configurations
Here	are	the	some	important	configurations	related	to	resource	containers	that	are	used	to
control	containers.

To	control	the	memory	allocation	to	a	container,	the	administrator	needs	to	set	the
following	three	parameters	in	the	yarn-site.xml	configuration	file:

Parameter Description

yarn.nodemanager.resource.memory-

mb

This	is	the	amount	of	memory	in	MBs	that	the	NodeManager	can	use	for	the
containers.

yarn.scheduler.minimum-

allocation-mb

This	is	the	smallest	amount	of	memory	in	MBs	allocated	to	the	container	by
the	ResourceManager.	The	default	value	is	1024	MB.

yarn.scheduler.maximum-

allocation-mb

This	is	the	largest	amount	of	memory	in	MBs	allocated	to	the	container	by	the
ResourceManager.	The	default	value	is	8192	MB.

The	CPU	core	allocations	to	the	container	are	controlled	by	setting	the	following
properties	in	the	yarn-site.xml	configuration	file:

Parameter Description

yarn.scheduler.minimum-allocation-

vcores

This	is	the	minimum	number	of	CPU	cores	that	are	allocated	to	the
container.

yarn.scheduler.maximum-allocation-

vcores

This	is	the	maximum	number	of	CPU	cores	that	are	allocated	to	the
container.

yarn.nodemanager.resource.cpu-vcores This	is	the	number	of	cores	that	the	container	can	request	for	the	node.

YARN	scheduling	policies
The	YARN	architecture	has	pluggable	scheduling	policies	that	depend	on	the	application’s
requirements	and	the	use	case	defined	for	the	running	application.	You	can	find	the	YARN
scheduling	configurations	in	the	yarn-site.xml	file.	Here,	you	can	specify	the	scheduling
system	as	either	FIFO,	capacity,	or	fair	scheduling	as	per	the	application’s	needs.	You	can
also	find	the	running	application	scheduling	information	in	the	ResourceManager	UI.
Many	components	of	the	scheduling	system	are	defined	briefly	there.

As	already	mentioned,	there	are	three	type	of	scheduling	policies	that	the	YARN	scheduler
follows:

FIFO	scheduler
Capacity	scheduler
Fair	scheduler

The	FIFO	(First	In	First	Out)	scheduler
This	is	the	scheduling	policy	introduced	into	the	system	from	Hadoop	1.0.	The	JobTracker
was	used	to	be	FIFO	scheduling	policies.	As	the	name	indicates,	FIFO	means	First	in	First
Out,	that	is,	the	job	submitted	first	will	execute	first.	The	FIFO	scheduler	policy	does	not
follow	any	application	priorities;	this	policy	might	efficiently	work	for	smaller	jobs,	but
while	executing	larger	jobs,	FIFO	works	very	inefficiently.	So	for	heavy-loaded	clusters,
this	policy	is	not	recommended.	The	FIFO	scheduler	can	be	seen	as	follows:

The	FIFO	(First	In	First	Out)	scheduler
Here	is	the	configuration	property	for	the	FIFO	scheduler.	By	specifying	this	in	yarn-
site.xml,	you	can	enable	the	FIFO	scheduling	policy	in	your	YARN	cluster:

<property>

<name>yarn.resourcemanager.scheduler.class</name>

<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fifo.FifoSch

eduler	</value>

</property>

The	capacity	scheduler
The	capacity	scheduling	policy	is	one	of	the	very	famous	pluggable	scheduler	policies	that
allows	multiple	applications	or	user	groups	to	share	the	Hadoop	cluster	resources	in	a
secure	way.	Nowadays,	this	scheduling	policy	runs	successfully	on	many	of	the	largest
Hadoop	production	clusters	in	an	efficient	way.

The	capacity	scheduling	policy	allows	a	user	or	user	groups	to	share	cluster	resources	in
such	a	way	that	each	user	or	group	of	users	would	get	assigned	a	certain	capacity	of	the
cluster	for	sure.	To	enable	this	policy,	the	cluster	administrator	configures	one	or	more
queues	with	some	precalculated	shares	of	the	total	cluster	resource	capacity;	this
assignment	guarantees	the	minimum	resource	capacity	allocation	to	each	queue.	The
administrator	can	also	configure	the	maximum	and	minimum	constraints	on	the	use	of
cluster	resources	(capacity)	on	each	queue.	Each	queue	has	its	own	Access	Control	List
(ACL)	policies	that	can	manage	which	user	has	permission	to	submit	the	applications	on
which	queues.	ACLs	also	manage	the	read	and	modify	permissions	at	the	queue	level	so
that	users	cannot	view	or	modify	the	applications	submitted	by	other	users.

Capacity	scheduler	configurations
Capacity	scheduler	configurations	come	with	Hadoop	YARN	by	default.	Sometimes,	it	is
necessary	to	configure	the	policy	in	YARN	configuration	files.	Here	are	the	configuration
properties	that	need	to	be	specified	in	yarn-site.xml	to	enable	the	capacity	scheduler
policy:

<property>

<name>yarn.resourcemanager.scheduler.class</name>

<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.Cap

acityScheduler	</value>

</property>

The	capacity	scheduler,	by	default,	comes	with	its	own	configuration	file	named
$HADOOP_CONF_DIR/capacity-scheduler.xml;	this	should	be	present	in	the	classpath	so
that	the	ResourceManager	is	able	to	locate	it	and	load	the	properties	for	this	accordingly.

The	fair	scheduler
The	fair	scheduler	is	one	of	the	most	famous	pluggable	schedulers	for	large	clusters.	It
enables	memory-intensive	applications	to	share	cluster	resources	in	a	very	efficient	way.
Fair	scheduling	is	a	policy	that	enables	the	allocation	of	resources	to	applications	in	a	way
that	all	applications	get,	on	average,	an	equal	share	of	the	cluster	resources	over	a	given
period.

In	a	fair	scheduling	policy,	if	one	application	is	running	on	the	cluster,	it	might	request	all
cluster	resources	for	its	execution,	if	needed.	If	other	applications	are	submitted,	the	policy
can	distribute	the	free	resources	among	the	applications	in	such	a	way	that	each
application	gets	a	fairly	equal	share	of	cluster	resources.	A	fair	scheduler	also	follows	a
preemption	where	the	ResourceManager	might	request	the	resource	containers	back	from
the	ApplicationMaster,	depending	on	the	job	configurations.	It	might	be	a	healthy	or	an
unhealthy	preemption.

In	this	scheduling	model,	every	application	is	part	of	a	queue,	so	resources	are	assigned	to
the	queue.	By	default,	each	user	shares	the	queue	called	‘Default	Queue’.	A	fair	scheduler
supports	many	features	at	the	queue	level,	such	as	assigning	weight	to	the	queue.	A
heavyweight	queue	would	get	a	higher	number	of	resources	than	lightweight	queues,
minimum	and	maximum	shares	that	queue	would	get	FIFO	policy	within	the	queue.

While	submitting	the	application,	users	might	specify	the	name	of	the	queue	the
application	wants	to	use	resources	from.	For	example,	if	the	application	requires	a	higher
number	of	resources,	it	can	specify	the	heavyweight	queue	so	that	it	can	get	all	the
required	resources	that	are	available	there.

The	advantage	of	using	the	fair	scheduling	policy	is	that	every	queue	would	get	a
minimum	share	of	the	cluster	resources.	It	is	very	important	to	note	that	when	a	queue
contains	applications	that	are	waiting	for	the	resources,	they	would	get	the	minimum
resource	share.	On	the	other	hand,	if	the	queues	resources	are	more	than	enough	for	the
application,	then	the	excess	amount	would	be	distributed	equally	among	the	running
applications.

Fair	scheduler	configurations
To	enable	the	fair	scheduling	policy	in	your	YARN	cluster,	you	need	to	specify	the
following	property	in	the	yarn-site.xml	file:

<property>

<name>yarn.resourcemanager.scheduler.class</name>

<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairSch

eduler	</value>

</property>

The	fair	scheduler	also	has	a	specific	configuration	file	for	a	more	detailed	configuration
setup;	you	will	find	it	at	$HADOOP_CONF_DIR/fair-scheduler.xml.

YARN	multitenancy	application	support
YARN	comes	with	built-in	multitenancy	support.	Now,	let’s	have	a	look	at	what
multitenancy	means.	Consider	a	society	that	has	multiple	apartments	in	it,	so	there	are
different	types	of	family	living	in	different	apartments	with	security	and	privacy,	but	they
all	share	the	society’s	common	areas,	such	as	the	society	gate,	garden,	play	area,	and	other
amenities.	Their	apartments	also	share	common	walls.	The	same	concept	is	followed	in
YARN:	the	that	run	running	into	the	cluster	share	the	cluster	resources	in	a	multitenant
way.	They	share	cluster	processing	capacity,	cluster	storage	capacity,	data	access
securities,	and	so	on.	Multitenancy	is	achieved	in	the	cluster	by	differentiating	applications
into	multiple	business	units,	for	example,	different	queues	and	users	for	different	types	of
applications.

Security	and	privacy	can	be	achieved	by	configuring	Linux	and	HDFS	permissions	to
separate	files	and	directories	to	create	tenant	boundaries.	This	can	be	achieved	by
integrating	with	LDAP	or	Active	Directory.	Security	is	used	to	enforce	the	tenant
application	boundaries,	and	this	can	be	integrated	with	the	Kerberos	security	model.

The	following	diagram	will	explain	how	an	application	runs	in	the	YARN	cluster	in	a
multitenant	way:

In	the	preceding	YARN	cluster,	you	can	see	that	two	jobs	are	running:	one	is	Storm,	and
the	other	is	the	MapReduce	job.	They	are	sharing	the	cluster	scheduler,	cluster	processing
capacity,	HDFS	storage,	and	cluster	security.	We	can	also	see	the	two	applications	are
running	on	a	single	YARN	cluster.	The	MapReduce	and	Storm	jobs	are	running	over
YARN	and	sharing	the	common	cluster	infrastructure,	CPU,	RAM,	and	so	on.	The	Storm

ApplicationMaster,	Storm	Supervisor,	MapRed	ApplicationMaster,	Mappers,	and
Reducers	are	running	over	the	YARN	cluster	in	a	multitenant	way	by	sharing	cluster
resources.

Administration	of	YARN
Now,	we	will	take	a	look	at	some	YARN	basic	administration	configurations,	basically
from	Hadoop	2.0.	YARN	was	introduced	and	made	changes	in	Hadoop	configuration	files.
Hadoop	and	YARN	have	the	following	basic	configuration	files:

core-default.xml:	This	file	contains	properties	related	to	the	system.
hdfs-default.xml:	This	file	contains	HDFS-related	configurations.
mapred-default.xml:	This	configuration	file	contains	properties	related	to	the
YARN	MapReduce	framework.
yarn-default.xml:	This	file	contains	YARN-related	properties.

You	will	find	all	these	properties	listed	on	the	Apache	website
(http://hadoop.apache.org/docs/current/)	in	the	configuration	section,	with	detailed
information	on	each	property	and	its	default	and	possible	values.

http://hadoop.apache.org/docs/current/

Administrative	tools
YARN	has	several	administrative	tools	by	default;	you	can	find	them	using	the	rmadmin
command.	Here	is	a	more	detailed	explanation	of	the	ResourceManager	admin	command:

$	yarn	rmadmin	-help

The	rmadmin	command	is	the	command	to	execute	MapReduce	administrative	commands.
The	full	syntax	is:

hadoop	rmadmin	[-refreshQueues]	[-refreshNodes]

[-refreshSuperUserGroupsConfiguration]	[-refreshUserToGroupsMappings]

[-refreshAdminAcls]	[-refreshServiceAcl]	[-getGroup	[username]]	[-help	

[cmd]]

The	preceding	command	contains	the	following	fields:

-refreshQueues:	Reloads	the	queues’	acls,	states,	and	scheduler-specific	properties.
The	ResourceManager	will	reload	the	mapred-queues	configuration	file.
-refreshNodes:	Refreshes	the	host’s	information	at	the	ResourceManager.
-refreshUserToGroupsMappings:	Refreshes	user-to-groups	mappings.
-refreshSuperUserGroupsConfiguration:	Refreshes	superuser	proxy	groups
mappings.
-refreshAdminAcls:	Refreshes	acls	for	the	administration	of	the	ResourceManager.
-refreshServiceAcl:	Reloads	the	service-level	authorization	policy	file.
ResourceManager	will	reload	the	authorization	policy	file.
-getGroups	[username]:	Get	the	groups	that	the	given	user	belongs	to.
-help	[cmd]:	Displays	help	for	the	given	command,	or	all	commands	if	none	is
specified.

The	generic	options	supported	are	as	follows:

-conf	<configuration	file>:	This	will	specify	an	application	configuration	file.
-D	<property=value>:	This	will	use	the	value	for	the	given	property.
-fs	<local|namenode:port>:	This	will	specify	a	NameNode.
-jt	<local|jobtracker:port>:	This	will	specify	a	JobTracker.
-files	<comma	separated	list	of	files>:	This	will	specify	comma-separated
files	to	be	copied	to	the	MapReduce	cluster.
-libjars	<comma	separated	list	of	jars>:	This	will	specify	comma-separated
JAR	files	to	include	in	the	class	path.
-archives	<comma	separated	list	of	archives>:	This	will	specify	comma-
separated	archives	to	be	unarchived	on	the	compute	machines.

The	general	command	line	syntax	is:

bin/hadoop	command	[genericOptions]	[commandOptions]

Adding	and	removing	nodes	from	a	YARN	cluster
A	YARN	cluster	is	horizontally	scalable;	you	can	add	or	remove	worker	nodes	in	or	from
the	cluster	without	stopping	it.	To	add	a	new	node,	all	the	software	and	configurations
must	be	done	over	the	new	node.

The	following	property	is	used	to	add	a	new	node	to	the	cluster:

yarn.resourcemanager.nodes.include-path	

For	removing	the	node	from	the	cluster,	the	following	property	is	used:

yarn.resourcemanager.exclude-path

The	preceding	two	properties	take	values	as	a	local	file	that	contains	the	list	of	nodes	that
need	to	be	added	or	removed	from	the	cluster.	This	file	contains	either	the	hostnames	or
the	IPs	of	the	worker	nodes	separated	by	a	new	line,	tab,	or	space.

After	adding	or	removing	the	node,	the	YARN	cluster	does	not	require	a	restart.	It	just
needs	to	refresh	the	list	of	worker	nodes	so	that	the	ResourceManager	gets	informed	about
the	newly	added	or	removed	nodes:

$	yarn	rmadmin	-refreshNodes

Administrating	YARN	jobs
The	most	important	YARN	admin	task	is	administrating	the	running	of	YARN	jobs.	You
can	manage	YARN	jobs	using	the	yarn	application	CLI	command.

Using	the	yarn	application	command,	the	administrator	can	kill	a	job,	list	all	jobs,	and
find	out	the	status	of	a	job.	MapReduce	jobs	can	be	controlled	by	the	mapred	job
command.

Here	is	the	usage	of	the	yarn	application	command:

usage:	application	

-appTypes	<Comma-separated	list	of	application	types>			Works	with--list	to	

filter	applications	based	on	their	type.	

-help	Displays	help	for	all	commands.	

-kill	<Application	ID>	Kills	the	application.	

-list	Lists	applications	from	the	RM.	Supports	optional	use	of	–appTypes	to	

filter								

							applications	based	on	application	type.	

-status	<Application	ID>	Prints	the	status	of	the	application.

MapReduce	job	configurations
As	MapReduce	jobs	are	now	running	on	YARN	containers	instead	of	traditional
MapReduce	slots,	it’s	necessary	to	configure	MapReduce	properties	into	mapred-
site.xml.	Here	are	some	properties	of	MapReduce	jobs	that	could	be	configured	to	run
MapReduce	jobs	on	YARN	containers:

Properties Description

mapred.child.java.opts
This	property	is	used	to	set	the	Java	heap	size	for	child	JVMs	of	maps,	for	example
Xmx4096m.

mapreduce.map.memory.mb
This	property	is	used	to	configure	the	resource	limit	for	map	functions	for	example,
1536	MB.

mapreduce.reduce.memory.mb
This	property	is	used	to	configure	the	resource	limit	for	reducer	functions,	for	example
3072	MB.

mapreduce.reduce.java.opts
This	property	is	used	to	set	the	Java	heap	size	for	child	JVMs	of	reducers,	for	example
Xmx4096m.

YARN	log	management
The	log	management	CLI	tool	is	very	useful	for	YARN	application	log	management.	The
administrator	can	use	the	logs	CLI	command	described	here:

$	yarn	logs	

Retrieve	logs	for	completed	YARN	applications.	

usage:	yarn	logs	-applicationId	<application	ID>	[OPTIONS]

general	options	are:	

-appOwner	<Application	Owner>			AppOwner	(assumed	to	be	current	user	if																																	

																																																							not	specified)	

-containerId	<Container	ID>										ContainerId	(must	be	specified	if	node																																	

																																																							address	is	

specified)	

-nodeAddress	<Node	Address>					NodeAddress	in	the	format	nodename:port					

(must	be	specified	if	container	ID	is	specified)

Let’s	take	an	example.	If	you	wanted	to	print	all	the	logs	of	a	specific	application,	use	the
following	command:

$	yarn	logs	-applicationId	<application	ID>

This	command	will	print	all	the	logs	related	to	the	application_ID	specified	in	the
console’s	interface.

YARN	web	user	interface
In	the	YARN	web	user	interface	(http://localhost:8088/cluster),	you	can	find
information	on	cluster	nodes,	containers	configured	on	each	node,	and	applications	and
their	status.	The	YARN	web	interface	is	as	follows:

Under	the	Scheduler	section,	you	can	see	the	scheduling	information	of	all	the	submitted,
accepted	by	the	scheduler,	running	applications,	with	the	total	cluster	capacity,	used	and
maximum	capacity,	and	resources	allocated	to	the	application	queue.	In	the	following
screenshot,	you	can	see	the	resources	allocated	to	the	default	queue:

Under	the	Tools	section,	you	can	find	the	YARN	configuration	file	details,	scheduling
information,	container	configurations,	local	logs	of	the	jobs,	and	a	lot	of	other	information

on	the	cluster.

Summary
In	this	chapter,	we	covered	YARN	container	allocations	and	configurations,	scheduling
policies,	and	configurations.	We	also	covered	multitenancy	application	support	in	YARN
and	some	basic	YARN	administrative	tools	and	settings.	In	the	next	chapter,	we	will	cover
some	useful	practical	examples	about	YARN	and	the	ecosystem.

Chapter	6.	Developing	and	Running	a
Simple	YARN	Application
In	the	previous	chapters,	we	discussed	the	concepts	of	the	YARN	architecture,	cluster
setup,	and	administration.	Now	in	this	chapter,	we	will	focus	more	on	MapReduce
applications	with	YARN	and	its	ecosystems,	with	some	hands-on	examples.	You
previously	learned	about	when	a	client	submits	an	application	request	to	the	YARN	cluster
and	how	YARN	registers	the	application,	allocates	the	required	containers	for	its
execution,	and	monitors	the	application	while	it’s	running.	Now,	we	will	see	some
practical	use	cases	of	YARN.

In	this	chapter,	we	will	discuss:

Running	sample	applications	on	YARN
Developing	YARN	examples
Application	monitoring	and	tracking

Now,	let’s	start	by	running	some	of	the	sample	applications	that	come	as	a	part	of	the
YARN	distribution	bundle.

Running	sample	examples	on	YARN
Running	the	available	sample	MapReduce	programs	is	a	simple	task	with	YARN.	The
Hadoop	version	ships	with	some	basic	MapReduce	examples.	You	can	find	them	inside
$HADOOP_HOME/share/Hadoop/mapreduce/Hadoop-mapreduce-examples-

<HADOOP_VERSION>.jar.	The	location	of	the	file	may	differ	depending	on	your	Hadoop
installation	folder	structure.

Let’s	include	this	in	the	YARN_EXAMPLES	path:

$exportYARN_EXAMPLES=$HADOOP_HOME/share/Hadoop/mapreduce

Now,	we	have	all	the	sample	examples	in	the	YARN_EXAMPLES	environmental
variable.	You	can	access	all	the	examples	using	this	variable;	to	list	all	the	available
examples,	try	typing	the	following	command	on	the	console:

$	yarn	jar	$YARN_EXAMPLES/hadoop-mapreduce-examples-2.4.0.2.1.1.0-385.jar

An	example	program	must	be	given	as	the	first	argument.

The	valid	program	names	are	as	follows:

aggregatewordcount:	This	is	an	aggregate-based	map/reduce	program	that	counts
the	words	in	the	input	files
aggregatewordhist:	This	is	an	aggregate-based	map/reduce	program	that	computes
the	histogram	of	the	words	in	the	input	files
bbp:	This	is	a	map/reduce	program	that	uses	Bailey-Borwein-Plouffe	to	compute	the
exact	digits	of	Pi
dbcount:	This	is	an	example	job	that	counts	the	page	view	counts	from	a	database
distbbp:	This	is	a	map/reduce	program	that	uses	a	BBP-type	formula	to	compute	the
exact	bits	of	Pi
grep:	This	is	a	map/reduce	program	that	counts	the	matches	of	a	regex	in	the	input
join:	This	is	a	job	that	affects	a	join	over	sorted,	equally-partitioned	datasets
multifilewc:	This	is	a	job	that	counts	words	from	several	files
pentomino:	This	is	a	map/reduce	tile	that	lays	a	program	to	find	solutions	to
pentomino	problems
pi:	This	is	a	map/reduce	program	that	estimates	Pi	using	a	quasi-Monte	Carlo
method
randomtextwriter:	This	is	a	map/reduce	program	that	writes	10	GB	of	random
textual	data	per	node
randomwriter:	This	is	a	map/reduce	program	that	writes	10	GB	of	random	data	per
node
secondarysort:	This	is	an	example	that	defines	a	secondary	sort	to	the	reduce
sort:	This	is	a	map/reduce	program	that	sorts	the	data	written	by	the	random	writer
sudoku:	This	is	a	sudoku	solver
teragen:	This	generates	data	for	the	terasort
terasort:	This	runs	the	terasort
teravalidate:	This	checks	the	results	of	terasort

wordcount:	This	is	a	map/reduce	program	that	counts	the	words	in	the	input	files
wordmean:	This	is	a	map/reduce	program	that	counts	the	average	length	of	the	words
in	the	input	files
wordmedian:	This	is	a	map/reduce	program	that	counts	the	median	length	of	the
words	in	the	input	files
wordstandarddeviation:	This	is	a	map/reduce	program	that	counts	the	standard
deviation	of	the	length	of	the	words	in	the	input	files

These	were	the	sample	examples	that	come	as	part	of	the	YARN	distribution	by	default.
Now,	let’s	try	running	some	of	the	examples	to	showcase	YARN	capabilities.

Running	a	sample	Pi	example
To	run	any	application	on	top	of	YARN,	you	need	to	follow	this	Java	command	syntax:

$	yarn	jar	<application_jar.jar><arg0><arg1>

To	run	a	sample	example	to	calculate	the	value	of	PI	with	16	maps	and	10,000	samples,
use	the	following	command:

$	yarn	jar	$YARN_EXAMPLES/hadoop-mapreduce-examples-2.4.0.2.1.1.0-385.jar	

PI	16	10000

Note	that	we	are	using	hadoop-mapreduce-examples-2.4.0.2.1.1.0-385.jar	here.	The
JAR	version	may	change	depending	on	your	installed	Hadoop	distribution.

Once	you	hit	the	preceding	command	on	the	console,	you	will	see	the	logs	generated	by
the	application	on	the	console,	as	shown	in	the	following	command.	The	default	logger
configuration	is	displayed	on	the	console.	The	default	mode	is	INFO,	and	you	may	change
it	by	overwriting	the	default	logger	settings	by	updating
hadoop.root.logger=WARN,console	in	conf/log4j.properties:

Number	of	Maps		=	16

Samples	per	Map	=	10000

Wrote	input	for	Map	#0

Wrote	input	for	Map	#1

Wrote	input	for	Map	#2

Wrote	input	for	Map	#3

Wrote	input	for	Map	#4

Wrote	input	for	Map	#5

Wrote	input	for	Map	#6

Wrote	input	for	Map	#7

Wrote	input	for	Map	#8

Wrote	input	for	Map	#9

Wrote	input	for	Map	#10

Wrote	input	for	Map	#11

Wrote	input	for	Map	#12

Wrote	input	for	Map	#13

Wrote	input	for	Map	#14

Wrote	input	for	Map	#15

Starting	Job

11/09/14	21:12:02	INFO	mapreduce.Job:	map	0%	reduce	0%	

11/09/14	21:12:09	INFO	mapreduce.Job:	map	25%	reduce	0%	

11/09/14	21:12:11	INFO	mapreduce.Job:	map	56%	reduce	0%	

11/09/14	21:12:12	INFO	mapreduce.Job:	map	100%	reduce	0%	

11/09/14	21:12:12	INFO	mapreduce.Job:	map	100%	reduce	100%	

11/09/14	21:12:12	INFO	mapreduce.Job:	Job	job_1381790835497_0003	completed	

successfully	

11/09/14	21:12:19	INFO	mapreduce.Job:	Counters:	44								

		File	System	Counters																

				FILE:	Number	of	bytes	read=358																

				FILE:	Number	of	bytes	written=1365080

																FILE:	Number	of	read	operations=0

																FILE:	Number	of	large	read	operations=0

																FILE:	Number	of	write	operations=0

																HDFS:	Number	of	bytes	read=4214

																HDFS:	Number	of	bytes	written=215

																HDFS:	Number	of	read	operations=67

																HDFS:	Number	of	large	read	operations=0

																HDFS:	Number	of	write	operations=3

								Job	Counters

																Launched	map	tasks=16

																Launched	reduce	tasks=1

																Data-local	map	tasks=14

																Rack-local	map	tasks=2

																Total	time	spent	by	all	maps	in	occupied	slots	

(ms)=184421

																Total	time	spent	by	all	reduces	in	occupied	slots

(ms)=8542

								Map-Reduce	Framework

																Map	input	records=16

																Map	output	records=32

																Map	output	bytes=288

																Map	output	materialized	bytes=448

																Input	split	bytes=2326

																Combine	input	records=0

																Combine	output	records=0

																Reduce	input	groups=2

																Reduce	shuffle	bytes=448

																Reduce	input	records=32

																Reduce	output	records=0

																Spilled	Records=64

																Shuffled	Maps	=16

																Failed	Shuffles=0

																Merged	Map	outputs=16

																GC	time	elapsed	(ms)=195	

																CPU	time	spent	(ms)=7740

																Physical	memory	(bytes)	snapshot=6143396896

																Virtual	memory	(bytes)	snapshot=23142254400

																Total	committed	heap	usage	(bytes)=43340769024

		Shuffle	Errors

																BAD_ID=0

																CONNECTION=0

																IO_ERROR=0

																WRONG_LENGTH=0

																WRONG_MAP=0	

																WRONG_REDUCE=0

								File	Input	Format	Counters

																Bytes	Read=1848

								File	Output	Format	Counters

																Bytes	Written=98

Job	Finished	in	23.144	seconds	

Estimated	value	of	Pi	is	3.14127500000000000000

You	can	compare	the	example	that	runs	over	Hadoop	1.x	and	the	one	that	runs	over
YARN.	You	can	hardly	differentiate	by	looking	at	the	logs,	but	you	can	clearly	identify	the
difference	in	performance.	YARN	has	backward-compatibility	support	with	MapReduce
1.x,	without	any	code	change.

Monitoring	YARN	applications	with	web
GUI
Now,	we	will	look	at	the	YARN	web	GUI	to	monitor	the	examples.	You	can	monitor	the
application	submission	ID,	the	user	who	submitted	the	application,	the	name	of	the
application,	the	queue	in	which	the	application	is	submitted,	the	start	time	and	finish	time
in	the	case	of	finished	applications,	and	the	final	status	of	the	application,	using	the
ResourceManager	UI.	The	ResourceManager	web	UI	differs	from	the	UI	of	the	Hadoop
1.x	versions.	The	following	screenshot	shows	the	information	we	could	get	from	the
YARN	web	UI	(http://localhost:8088).

Currently,	the	following	web	UI	is	showing	information	related	to	the	PI	example	we	ran
in	the	previous	section,	exploring	the	YARN	web	UI:

The	following	screenshot	shows	the	PI	example	running	over	the	YARN	framework	and
the	PI	example	submitted	by	the	root	user	into	the	default	queue.	An	ApplicationMaster	is
assigned	to	it,	which	is	currently	in	the	running	state.	Similarly,	you	can	also	monitor	all
the	submitted,	accepted	and	running,	finished,	and	failed	jobs’	statuses	from	the
ResourceManager	web	UI.

If	you	drill	down	further,	you	can	see	the	application	master-level	information	of	the
submitted	application,	such	as	the	total	containers	allocated	to	the	map	and	reduce
functions	and	their	running	status.	For	example,	the	following	screenshot	shows	that	we
already	submitted	a	PI	example	with	16	mappers.	So	in	the	following	screenshot,	you	can
see	that	the	total	number	of	containers	allocated	to	the	map	function	is	16,	out	of	which	8
are	completed	and	8	are	in	the	running	state.	You	can	also	track	the	containers	allocated	to
the	reduce	function	and	its	progress	from	UI:

You	can	see	all	the	information	displayed	over	the	console	while	running	the	job.	The
same	information	will	also	be	displayed	on	the	web	UI	in	a	tabular	form	and	in	a	more
sophisticated	way:

All	the	mapper	and	reducer	jobs	and	filesystem	counters	will	be	displayed	under	the
counter	section	of	the	YARN	application	web	GUI.	You	can	also	explore	the
configurations	of	the	application	in	the	configurations	section:

The	following	screenshot	shows	the	statistics	of	the	finished	job,	such	as	the	total	number
of	mappers,	reducers,	start	time,	finish	time,	and	so	on:

The	following	screenshot	of	the	YARN	web	UI	gives	scheduling	information	about	the
YARN	cluster,	such	as	the	cluster	resource	capacity	and	containers	allocated	to	the
application	or	queue:

At	the	end,	you	will	see	the	job	summary	page.	You	may	also	examine	the	logs	by	clicking
on	the	logs	link	provided	on	the	job	summary	page.

Once	a	user	returns	to	the	main	cluster	UI,	chooses	any	finished	applications,	and	then
selects	a	job	we	recently	ran,	the	user	will	able	to	see	the	summary	page,	as	shown	in
following	screenshot:

There	are	a	few	things	to	note	as	we	moved	through	the	windows	described	earlier.	First,
as	YARN	manages	applications,	all	input	from	YARN	refers	to	an	application.	YARN	has
no	data	on	the	actual	application.	Data	from	the	MapReduce	job	is	provided	by	the
MapReduce	framework.	Therefore,	there	are	two	clearly	different	data	streams	that	are
combined	in	the	web	GUI,	YARN	applications	and	MapReduce	framework	jobs.	If	the
framework	does	not	provide	job	information,	then	certain	parts	of	the	web	GUI	will	have
nothing	to	display.

A	very	important	fact	about	YARN	jobs	is	the	dynamic	nature	of	the	container	allocations
to	the	mapper	and	reducer	tasks.	These	are	executed	as	YARN	containers,	and	their
respective	number	also	changes	dynamically	as	per	the	application’s	needs	and
requirements.	This	feature	provides	much	better	cluster	utilization	due	to	the	dynamic

container	(“slots”	in	traditional	language)	allocations.

YARN’s	MapReduce	support
MapReduce	was	the	only	use	case	on	which	the	previous	versions	of	Hadoop	were
developed.	We	know	that	MapReduce	is	mainly	used	for	the	efficient	and	effective
processing	of	big	data.	It	is	used	to	process	a	graph	and	millions	of	its	nodes	and	edges.
Going	forward	with	technology,	to	cater	for	the	requirements	of	data	location	availability,
fault	tolerant	systems,	and	application	priorities,	YARN	built	support	for	everything	from
a	simple	shell	script	application	to	a	complex	MapReduce	application.

For	the	data	location	availability,	MapReducer’s	ApplicationMaster	has	to	find	out	the
data	block	locations	and	allocations	of	containers	to	process	these	blocks	accordingly.
Fault	tolerant	system	means	the	ability	to	handle	failed	tasks	and	act	on	them	accordingly,
such	as	to	handle	failed	map	and	reduce	tasks	and	rerun	them	with	other	containers	if
needed.	Priorities	are	assigned	to	each	application	in	the	queue;	the	logic	to	handle
complex	intra-application	priorities	for	map	and	reduce	tasks	has	to	be	built	into	the
ApplicationMaster.	There	is	no	need	to	start	idle	reducers	before	mappers	finish	enough
data	processing.	Reducers	are	now	under	the	control	of	the	YARN	ApplicationMaster	and
are	not	fixed	as	they	had	been	in	Hadoop	version	1.

The	MapReduce	ApplicationMaster
The	MapReduce	ApplicationMaster	service	is	made	up	of	multiple	loosely-coupled
services;	these	services	interact	with	each	other	via	events.	Every	service	gets	triggered	on
an	event	and	produces	an	output	as	the	event	triggers	another	service;	this	happens	highly
concurrently	and	without	synchronization.	All	service	components	are	registered	with	the
central	dispatcher	service,	and	service	information	is	shared	between	the	multiple
components	via	Application	Context	(AppContext).

In	Hadoop	version	1,	all	the	running	and	submitted	jobs	are	purely	dependent	on	the
JobTracker,	so	the	failure	of	JobTracker	results	in	a	loss	of	all	the	running	and	submitted
jobs.	However,	with	YARN,	the	ApplicationMaster	is	equivalent	to	the	JobTracker.	The
ApplicationMaster	runs	and	allocates	nodes	to	an	application.	It	may	fail,	but	YARN	has
the	capability	to	restart	the	ApplicationMaster	a	specified	number	of	times	and	the
capability	to	recover	completed	tasks.	More	like	JobTracker,	the	ApplicationMaster	keeps
the	metrics	of	the	jobs	currently	running.	The	following	settings	in	the	configuration	file
enable	MapReduce	recovery	in	YARN.

To	enable	the	restart	of	the	ApplicationMaster,	execute	the	following	steps:

1.	 Inside	yarn-site.xml,	you	can	tune	the	yarn.resourcemanager.am.max-retries
property.	The	default	is	2.

2.	 Inside	mapred-site.xml,	you	can	directly	tune	how	many	times	a	MapReduce
ApplicationMaster	should	restart	with	the	mapreduce.am.max-attempts	property.
The	default	is	2.

3.	 To	enable	recovery	of	completed	tasks,	look	inside	the	mapred-site.xml	file.	The
yarn.app.mapreduce.am.job.recovery.enable	property	enables	the	recovery	of
tasks.	By	default,	it	is	true.

Example	YARN	MapReduce	settings
YARN	has	replaced	the	fixed	slot	architecture	for	mappers	and	reducers	with	flexible
dynamic	container	allocation.	There	are	some	important	parameters	to	run	MapReduce
efficiently,	and	they	can	be	found	in	mapred-site.xml	and	yarn-site.xml.	As	an
example,	the	following	are	some	settings	that	have	been	used	to	run	the	MapReduce
application	on	YARN:

Property Propertyfile Value

mapreduce.map.memory.mb mapred-site.xml 1536

mapreduce.reduce.memory.mb mapred-site.xml 2560

mapreduce.map.java.opts mapred-site.xml -	Xmx1024m

mapreduce.reduce.java.opts mapred-site.xml -	Xmx2048m

yarn.scheduler.minimum-allocation-mb yarn-site.xml 512

yarn.scheduler.maximum-allocation-mb yarn-site.xml 4096

yarn.nodemanager.resource.memory-mb yarn-site.xml 36864

yarn.nodemanager.vmem-pmem-ratio yarn-site.xml 2.1

YARN	configuration	allows	a	container	size	between	512	MB	to	4	GB.	If	nodes	have	36
GB	of	RAM	with	a	virtual	memory	of	2.1,	each	map	can	have	max	3225.6	MB,	and	each
reducer	can	have	5376	MB	of	virtual	memory.	So,	the	compute	node	configured	for	36	GB
of	container	space	can	support	up	to	24	maps	and	14	reducers,	or	any	combination	of
mapper	and	reducers	allowed	by	the	available	resources	on	the	node.

YARN’s	compatibility	with	MapReduce
applications
For	a	smooth	transition	from	Hadoop	v1	to	YARN,	application	backward	compatibility
has	been	the	major	goal	of	the	YARN	implementation	team	to	ensure	that	existing
MapReduce	applications	that	were	programmed	using	Hadoop	v1	(MRv1)	APIs	and
complied	against	them	can	continue	to	run	over	YARN,	with	little	enhancement.

YARN	ensures	full	binary	compatibility	with	Hadoop	v1	(MRv1)	APIs;	users	who	used
the	org.apache.hadoop.mapred	APIs	provide	full	compatibility	with	the	YARN
framework,	without	recompilation.	You	can	use	your	MapReduce	JAR	file	and
bin/hadoop	to	submit	them	directly	to	YARN.

YARN	introduced	new	API	changes	for	MapReduce	applications	on	top	of	the	YARN
framework	into	org.apache.hadoop.mapreduce.

If	an	application	is	developed	by	org.apache.hadoop.mapreduce	and	complied	by	the
Hadoop	v1(MRv1)	APIs,	then	unfortunately	YARN	doesn’t	provide	compatibility	with	it,
as	org.apache.hadoop.mapreduce	APIs	have	gone	through	a	YARN	transition	and	should
be	recompiled	against	Hadoop	v2(MRv2)	to	run	over	YARN.

Developing	YARN	applications
To	develop	a	YARN	application,	you	need	to	keep	the	YARN	architecture	in	mind.	YARN
is	a	platform	that	allows	distributed	applications	to	take	full	advantage	of	the	resources
that	YARN	has	deployed.	Currently,	resources	can	be	things	such	as	CPU,	memory,	and
data.	Many	developers	who	come	from	a	server-side	application-development	background
or	from	a	MapReduce	developer	background	may	be	accustomed	to	a	certain	flow	in	the
development	and	deployment	cycle.

In	this	section,	we’ll	describe	the	development	life	cycle	of	YARN	applications.	Also,
we’ll	focus	on	the	key	areas	of	YARN	application	development,	such	as	how	YARN
applications	can	launch	containers,	how	resource	allocation	has	been	done	for	the
applications,	and	many	other	areas	in	detail.

The	general	workflow	of	the	YARN	application	submission	is	that	the	YARNClient
communicates	with	the	ResourceManager	through	the	ApplicationClientProtocol	to
generate	a	new	ApplicationID.	It	then	submits	the	application	to	the	ResourceManager	to
run	via	the	ApplicationClientProtocol.	As	a	part	of	the	protocol,	the	YARNClient	has	to
provide	all	the	required	information	to	the	ResourceManager	to	launch	the	application’s
first	container,	that	is,	the	ApplicationMaster.	The	YARNClient	also	needs	to	provide
information	details	of	the	dependency	JARs/files	for	the	application	via	command-line
arguments.	You	can	also	specify	the	dependency	JARs/files	in	the	environment	variables.

The	following	are	some	interface	protocols	that	the	YARN	framework	will	use	for
intercomponent	communication:

ApplicationClientProtocol:	This	protocol	is	used	by	YARN	for	communication
between	the	YARNClient	and	ResourceManager	to	launch	a	new	application,	check
its	status,	or	to	kill	the	application.
ApplicationMasterProtocol:	This	protocol	is	used	by	the	YARN	framework	to
communicate	between	the	ApplicationMaster	and	ResourceManager.	It	is	used	by	the
ApplicationMaster	to	register/unregister	itself	to/from	the	ResourceManager	and	also
for	the	resource	allocation/deallocation	request	to	the	ResourceManager.
ContainerManagerProtocol:	This	protocol	is	used	for	communication	between	the
ApplicationMaster	and	NodeManager	to	start	and	stop	containers	and	their	status
updates.

The	YARN	application	workflow
Now,	take	a	look	at	the	following	sequence	diagram	that	describes	the	YARN	application
workflow	and	also	explains	how	container	allocation	is	done	for	an	application	via	the
ApplicationMaster:

Refer	to	the	preceding	diagram	for	the	following	details:

The	client	submits	the	application	request	to	the	ResourceManager.
The	ResourceManager	registers	the	application	with	the	ApplicationManager,
generates	the	ApplicationID,	and	responds	to	the	client	with	the	successfully
registered	ApplicationID.
Then,	the	ResourceManager	starts	the	client’s	ApplicationMaster	in	a	separate
available	container.	If	no	container	is	available,	then	this	request	has	to	wait	till	a
suitable	container	is	found,	and	send	the	application	registration	request	for
application	registration.
The	ResourceManager	shares	all	the	minimum	and	maximum	resource	capabilities	of
the	cluster	with	the	ApplicationMaster.	Then,	the	ApplicationMaster	decides	how	to
efficiently	use	the	available	resources	to	fulfill	application	needs.
Depending	on	the	resource	capabilities	shared	by	the	ResourceManager,	the
ApplicationMaster	requests	the	ResourceManager	to	allocate	the	number	of

containers	on	behalf	of	the	application.
The	ResourceManager	responds	to	the	ResourceRequest	by	the	ApplicationMaster	as
per	the	scheduling	policies	and	resource	availabilities.	Container	allocation	by	the
ResourceManager	means	successful	fulfilling	of	the	ResourceRequest	by	the
ApplicationMaster.

While	running	the	job,	the	ApplicationMaster	sends	the	heartbeat	and	job	progress
information	of	the	application	to	the	ResourceManager.	During	the	running	time	of	the
application,	the	ApplicationMaster	requests	for	a	release	of,	or	allocates	more	containers
to,	the	ResourceManager.	When	the	time	job	finishes,	the	ApplicationMaster	sends	a
container	deallocation	request	to	the	ResourceManager,	thus	exiting	itself	from	the
running	container.

Writing	the	YARN	client
The	YARN	client	is	required	to	submit	the	job	to	the	YARN	framework.	It	is	a	plain	Java
class,	simply	having	main	as	entry	point	function	into.	The	main	function	of	the	YARN
client	is	to	submit	the	application	to	the	YARN	environment	by	instantiating	the
org.apache.hadoop.yarn.conf.YarnConfiguration	object.	The	YarnConfiguration
object	depends	on	finding	the	yarn-default.xml	and	yarn-site.xml	files	in	its	class
path.	All	these	requirements	need	to	be	satisfied	to	run	the	YARN	client	application.	The
YARN	client	process	is	shown	in	the	following	image:

Once	a	YarnConfiguration	object	is	instantiated	in	your	YARN	client,	we	have	to	create
an	object	of	org.apache.hadoop.client.api.YarnClient	using	the	YarnConfiguration
object	that	has	already	been	instantiated.	The	newly-instantiated	YarnClient	object	will
be	used	to	submit	the	applications	to	the	YARN	framework	using	the	following	steps:

1.	 Create	an	instance	of	a	YarnClient	object	using	YarnConfiguration.
2.	 Initialize	the	YarnClient	and	the	YarnConfiguration	object.
3.	 Start	a	YarnClient.
4.	 Get	the	YARN	cluster,	node,	and	queue	information.
5.	 Get	Access	Control	List	information	for	the	user	running	the	client.
6.	 Create	the	client	application.
7.	 Submit	the	application	to	the	YARN	ResourceManager.
8.	 Get	application	reports	after	submitting	the	application.

Also,	the	YarnClient	will	create	a	context	for	application	submission	and	for	the
ApplicationMaster’s	container	launch.	The	runnable	YarnClient	will	take	the	command-
line	arguments	from	the	user	who	is	required	to	run	the	job.	We’ll	see	the	simple	code
snippet	for	the	YARN	application	client	to	get	a	better	idea	about	it.

The	first	step	of	the	YARNClient	is	to	connect	with	the	ResourceManager.	The	following
is	the	code	snippet	for	it:

//Declare	Application	Client	Protocol

ApplicationClientProtocol	applicationsManager;	

//Instamtiate	YarnConfiguration	

				YarnConfiguration	yarnConf	=	new	YarnConfiguration(conf);

//Get	the	ResourceManager	IP	address,	if	not	provided	use	default

				InetSocketAddress	rmAddress	=	

								NetUtils.createSocketAddr(yarnConf.get(

												YarnConfiguration.RM_ADDRESS,

												YarnConfiguration.DEFAULT_RM_ADDRESS));													

				LOGGER.info("Connecting	to	ResourceManager	at	"	+	rmAddress);

				configuration	appsManagerServerConf	=	new	Configuration(conf);

				appsManagerServerConf.setClass(

								YarnConfiguration.YARN_SECURITY_INFO,

								ClientRMSecurityInfo.class,	SecurityInfo.class);

//Initialize	ApplicationManager	handle

				applicationsManager	=	((ApplicationClientProtocol)	rpc.getProxy(

								ApplicationClientProtocol.class,	rmAddress,	

appsManagerServerConf));				

Once	the	connection	between	the	YARNClient	and	ResourceManager	is	established,	the
YARNClient	needs	to	request	the	ApplicationID	from	theResourceManager:

				GetNewApplicationRequest	newRequest	=	

								Records.newRecord(GetNewApplicationRequest.class);														

				GetNewApplicationResponse	newResponse	=	

								applicationsManager.getNewApplication(newRequest);

The	response	from	the	ApplicationManager	is	the	newly-generated	ApplicationID	for	the
application	submitted	by	the	YARNClient.	You	can	also	get	the	information	related	to	the
minimum	and	maximum	resource	capabilities	of	the	cluster	(using	the
GetNewApplicationResponse	API).	Using	this	information,	developers	can	set	the
required	resources	for	the	ApplicationMaster	container	to	launch.

The	YARNClient	needs	to	set	up	the	following	information	for	the
ApplicationSubmissionContext	initialization;	this	information	includes	all	the	required
information	needed	by	the	ResourceManager	to	launch	the	ApplicationMaster,	as
mentioned	here:

Application	information,	such	as	ApplicationID	generated	by	the	previous	step
Name	of	the	application
Queue	and	priority	information,	such	as	in	which	queue	the	application	needs	to	be
submitted	and	the	priorities	assigned	to	the	application
User	information,	that	is,	by	whom	the	application	is	to	be	submitted
ContainerLaunchContext,	that	is,	the	information	needed	by	the	ApplicationMaster	to
launch	local	resources	(such	as	JARs,	binaries,	and	files)

It	also	contains	the	security-related	information	(security	tokens)	and	environmental
variables	(classpath	settings)	with	the	command	to	be	executed	via	the	ApplicationMaster:

	//	Create	a	new	launch	context	for	App	Master

				ApplicationSubmissionContext	appContext	=	

								Records.newRecord(ApplicationSubmissionContext.class);

				

	//	set	the	ApplicationId	

				appContext.setApplicationId(appId);

				//	set	the	application	name

				appContext.setApplicationName(appName);

				

				//	Create	a	new	container	launch	context	for	the	ApplicationMaster

				ContainerLaunchContext	amContainer	=	

								Records.newRecord(ContainerLaunchContext.class);

				//	set	the	local	resources	required	for	the	ApplicationMaster	

				//	local	files	or	archives	as	needed(for	examples	jar	files)

				Map<String,	LocalResource>	localResources	=	

								new	HashMap<String,	LocalResource>();

				//	Copy	ApplicationMaster	jar	to	the	file	system	and	create	

				//	local	resource	to	point	destination	jar	path	

				FileSystem	fs	=	FileSystem.get(conf);

				Path	src	=	new	Path(AppMaster.jar);

				String	pathSuffix	=	appName	+	"/"	+	appId.getId()	+	

				"/AppMaster.jar";

				Path	dst	=	new	Path(fs.getHomeDirectory(),	pathSuffix);

				//	Copy	file	from	src	to	destionation	on	HDFS

				fs.copyFromLocal(false,true,src,dst);

				//	get	HDFS	file	status	from	the	path	where	it	copied

				FileStatus	jarStatus	=	fs.getFileStatus(dst);

				LocalResource	amJarResorce	=	Records.newRecord(LocalResource.class);

				//	Set	the	type	of	resource	-	file	or	archive

				//	archives	are	untarred	at	the	destination	by	the	framework

				amJarResorce.setType(LocalResourceType.FILE);

				//	Set	visibility	of	the	resource	

				//	Setting	to	most	private	option

				amJarResorce.setVisibility(LocalResourceVisibility.APPLICATION);											

				//	Set	the	resource	to	be	copied	over	location

				amJarResorce.setResource(ConverterUtils.getYarnUrlFromPath(dst));	

				//	Set	timestamp	and	length	of	file	so	that	the	framework	

				//	can	do	basic	sanity	checks	for	the	local	resource	

				//	after	it	has	been	copied	over	to	ensure	it	is	the	same	

				//	resource	the	client	intended	to	use	with	the	application

				amJarResorce.setTimestamp(jarStatus.getModificationTime());

				amJarResorce.setSize(jarStatus.getLen());

				localResources.put("AppMaster.jar",		amJarResorce);				

				//	Set	the	local	resources	into	the	launch	context				

				amContainer.setLocalResources(localResources);

				//set	the	security	tokens	as	needed

				//amContainer.setContainerTokens(containerToken);

				//	Set	up	the	environment	needed	for	the	launch	context	where	the	

				//	ApplicationMaster	to	be	run

				Map<String,	String>	env	=	new	HashMap<String,	String>();				

				//	For	example,	we	could	setup	the	classpath	needed.

				//	incase	of	shell	script	example,	put	required	resources

				env.put(DSConstants.SCLOCATION,HdfsSCLocation);

				env.put(DSConstants.SCTIMESTAMP,Long.toString(HdfsSCTimeStamp));

				env.put(DSConstants.SCLENGTH,Long.toString(HdfsSCLength));

				//	Add	AppMaster.jar	location	to	the	Classpath.

				//	By	default,	all	the	hadoop	specific	classpaths	will	already	be	

				//	available	

				//	in	$CLASSPATH,	so	we	should	be	careful	not	to	overwrite	it.			

				StringBuilder	classPathEnv	=	new	StringBuilder("$CLASSPATH:./*:");

				for(String	str	:	

conf.get(YarnConfiguration.YARN_APPLICATION_CLASSPATH).split(",")){

							classPathEnv.append(':');

							classPathEnv.append(str.trim());

				}				

				//add	log4j	properties	into	the	env	variable	if	required

				classPathEnv.append(":./log4j.properties");

				env.put("CLASSPATH",	classPathEnv);

			

				//set	environmental	varibales	into	the	container

				amContainer.setEnvironment(env);

				

			//	set	necessary	command	to	be	execute	the	ApplicationMaster

			vector<CharSequence>	vargs	=	new	Vector<CharSequence>(30);

			//	set	java	executable	command

			vargs.add("${JAVA_HOME}"	+	"/bin/java");

				//	set	memory	Xmx	based	on	AM	memory	requirements

				vargs.add("-Xms"	+	amMemory	+	"m");	

				//	set	ClassName

				vargs.add(amMasterMainClass);

				//	Set	parameters	for	application	master

				vargs.add("--container_memory	"	+	String.valueOf(containerMemory));	

				vargs.add("--num_containers	"	+	String.valueOf(numContainers));

				vargs.add("--priority	"+String.valueOf(shellCmdPriority));

			

				if	(!shellCommand.isEmpty())	{

							vargs.add("--shell_command	"	+	shellCommand	+	"");

				}

			

			if	(!shellArgs.isEmpty())	{

							vargs.add("--shell_args	"	+	shellArgs	+	"");

			}

			for	(Map.Entry<String,	String>	entry	:	shellEnv.entrySet())	{

								vargs.add("--shell_env	"	+	entry.getKey()	+	"="	+	

entry.getValue());

				}

				if	(debugFlag)	{

								vargs.add("--debug");

				}

				vargs.add("1>"	+	ApplicationConstants.LOG_DIR_EXPANSION_VAR	+	

"/AppMaster.stdout");

				vargs.add("2>"	+	ApplicationConstants.LOG_DIR_EXPANSION_VAR	+	

"/AppMaster.stderr");

				

				//	Get	final	command

				StringBuilder	command	=	new	StringBuilder();

				for	(CharSequence	str	:	vargs)	{

								command.append(str).append("	");

				}

				List<String>	commands	=	new	ArrayList<String>();

				commands.add(command.toString());							

				//	Set	the	command	array	into	the	container	spec

				amContainer.setCommands(commands);

				

			//	For	launching	an	AM	container,	setting	user	here	is	not				

			//	needed

			//	amContainer.setUser(amUser);

	

			Resource	capability	=	Records.newRecord(Resource.class);

			//	For	now	only	memory	is	supported,	so	we	set	the	memory	

				capability.setMemory(amMemory);

				amContainer.setResource(capability);

				

				//	Set	the	container	launch	content	into	the	

ApplicationSubmissionContext

				appContext.setAMContainerSpec(amContainer);

Now	the	setup	process	is	complete,	and	our	YARNClient	is	ready	to	submit	the	application
to	the	ApplicationManager:

				//	Create	the	Applicationrequest	to	send	to	the	ApplicationsManager	

				SubmitApplicationRequest	appRequest	=	

								Records.newRecord(SubmitApplicationRequest.class);

				appRequest.setApplicationSubmissionContext(appContext);

				//	Submit	the	application	to	the	ApplicationsManager

				//	Ignore	the	response	as	either	a	valid	response	object	is		

				//	returned	on	

				//	success	or	an	exception	thrown	to	denote	the	failure

				applicationsManager.submitApplication(appRequest);

During	this	process,	the	ResourceManager	will	accept	all	the	requests	of	application
submission	and	allocate	containers	to	the	ApplicationMaster	to	run.	The	progress	of	the
task	submitted	by	the	client	can	be	tracked	by	communicating	with	the	ResourceManager
and	requesting	an	application	status	report	via	the	ApplicationClientProtocol:

GetApplicationReportRequest	reportRequest	=	

										Records.newRecord(GetApplicationReportRequest.class);

						reportRequest.setApplicationId(appId);

						GetApplicationReportResponse	reportResponse	=	

										applicationsManager.getApplicationReport(reportRequest);

						ApplicationReport	report	=	reportResponse.getApplicationReport();

The	response	to	the	report	request	received	from	the	ResourceManager	contains	general
application	information,	such	as	the	ApplicationID,	the	queue	information	in	which	the
application	is	running,	and	information	on	the	user	who	submitted	the	application.	It	also
contains	the	ApplicationMaster	details,	the	host	on	which	the	ApplicationMaster	is
running,	and	application-tracking	information	to	monitor	the	progress	of	the	application.

The	application	report	also	contains	the	application	status	information,	such	as
SUBMITTED,	RUNNING,	FINISHED,	and	so	on.

Also,	the	client	can	directly	query	the	ApplicationMaster	to	get	report	information	via
host:rpc_port	obtained	from	the	ApplicationReport.

Sometimes,	the	application	may	be	wrongly	submitted	in	another	queue	or	may	take
longer	than	usual.	In	such	cases,	the	client	may	want	to	kill	the	application.	The
ApplicationClientProtocol	supports	the	forcefully	kill	operation	that	can	send	a	kill	signal
to	the	ApplicationMaster	via	the	ResourceManager:

				KillApplicationRequest	killRequest	=	

								Records.newRecord(KillApplicationRequest.class);

				killRequest.setApplicationId(appId);

				applicationsManager.forceKillApplication(killRequest);	

Writing	the	YARN	ApplicationMaster
This	task	is	the	heart	of	the	whole	process.	This	would	be	launched	by	the
ResourceManager,	and	all	the	necessary	information	will	be	provided	by	the	client.	As	the
ApplicationMaster	is	launched	in	the	first	container	allocated	by	the	ResourceManager,
several	parameters	are	made	available	by	the	ResourceManager	via	environment.	These
parameters	include	containerID	for	the	ApplicationMaster	container,	application
submission	time	and	details	about	the	NodeManager	and	the	host	on	which	the
ApplicationMaster	is	running.	Interactions	between	the	ApplicationMaster	and	the
ResourceManager	would	require	the	ApplicationAttemptID.	This	will	be	obtained	from
the	ApplicationMaster’s	ContainerID:

	Map<String,	String>	envs	=	System.getenv();

				String	containerIdString	=	

								envs.get(ApplicationConstants.AM_CONTAINER_ID_ENV);

				if	(containerIdString	==	null)	{

						throw	new	IllegalArgumentException(

										"ContainerId	not	set	in	the	environment");

				}

				ContainerId	containerId	=	

ConverterUtils.toContainerId(containerIdString);

				ApplicationAttemptId	appAttemptID	=	

containerId.getApplicationAttemptId();

After	the	successful	initialization	of	the	ApplicationMaster,	it	needs	to	be	registered	with
the	ResourceManager	via	the	ApplicationMasterProtocol.	The	ApplicationMaster	and
ResourceManager	communicate	via	the	Scheduler	interface:

				//	Connect	to	the	ResourceManager	and	return	handle	with	RM

				YarnConfiguration	yarnConf	=	new	YarnConfiguration(conf);

				InetSocketAddress	rmAddress	=	

								NetUtils.createSocketAddr(yarnConf.get(

												YarnConfiguration.RM_SCHEDULER_ADDRESS,

												YarnConfiguration.DEFAULT_RM_SCHEDULER_ADDRESS));											

				LOG.info("Connecting	to	ResourceManager	at	"	+	rmAddress);

				ApplicationMasterProtocol	resourceManager	=	

								(ApplicationMasterProtocol)	

rpc.getProxy(ApplicationMasterProtocol.class,	rmAddress,	conf);

				//	Register	the	Application	Master	to	the	Resource	Manager

				//	Set	the	required	info	into	the	registration	request:	

				//	ApplicationAttemptId,	

				//	host	on	which	the	app	master	is	running

				//	rpc	port	on	which	the	app	master	accepts	requests	from	the	client	

				//	tracking	url	for	the	client	to	track	app	master	progress

				RegisterApplicationMasterRequest	appMasterRequest	=	

						Records.newRecord(RegisterApplicationMasterRequest.class);

				appMasterRequest.setApplicationAttemptId(appAttemptID);					

				appMasterRequest.setHost(appMasterHostname);

				appMasterRequest.setRpcPort(appMasterRpcPort);

				appMasterRequest.setTrackingUrl(appMasterTrackingUrl);

				RegisterApplicationMasterResponse	response	=	

						resourceManager.registerApplicationMaster(appMasterRequest);

The	ApplicationMaster	sends	status	to	the	ResourceManager	via	heartbeat	signals,	and	the
timeout	expiry	intervals	at	the	ResourceManager	are	defined	by	configuration	settings	in
the	YarnConfiguration.	The	ApplicationMasterProtocol	communicates	with	the
ResourceManager	to	send	heartbeats	and	application	progress	information.

Depending	on	application	requirements,	the	ApplicationMaster	can	request	from	the
ResourceManager	the	number	of	container	resources	to	be	allocated.	For	this	request,	the
ApplicationMaster	will	use	the	ResourceRequest	API	to	define	container	specifications.
The	ResourceRequest	will	contain	the	hostname	if	the	containers	need	to	be	hosted	on
specific	hosts,	or	the	*	wildcard	character	which	implies	that	any	host	can	fulfill	the
resource	capabilities,	such	as	the	memory	to	be	allocated	to	the	container.	It	will	also
contain	priorities,	to	set	containers	that	can	be	allocated	to	specific	tasks	on	higher
priority.	For	example,	in	map-reduce	tasks,	higher	priority	for	a	container	is	allocated	to
the	map	task	and	lower	priority	for	the	containers	is	allocated	to	the	reduce	task:

//	Resource	Request

				ResourceRequest	request	=	Records.newRecord(ResourceRequest.class);

				//	setup	requirements	for	hosts	

				//	whether	a	particular	rack/host	is	expected

				//	Refer	to	apis	under	org.apache.hadoop.net	for	more	details	on			

				//	using	*	as	any	host	will	do	

				request.setHostName("*");

				//	set	number	of	containers

				request.setNumContainers(numContainers);

				//	set	the	priority	for	the	request

				Priority	pri	=	Records.newRecord(Priority.class);

				pri.setPriority(requestPriority);

				request.setPriority(pri);											

				//	Set	up	resource	type	requirements

				//	For	now,	only	memory	is	supported	so	we	set	memory	requirements

				Resource	capability	=	Records.newRecord(Resource.class);

				capability.setMemory(containerMemory);

				request.setCapability(capability);

After	defining	the	container	requests,	the	ApplicationMaster	has	to	build	an	allocation
request	for	the	ResourceManager.	The	AllocationRequest	consists	of	the	requested
containers,	containers	to	be	released,	the	ResponseID	(the	ID	of	the	response	that	would
be	sent	back	from	the	allocate	call)	and	progress	update	information:

				List<ResourceRequest>	requestedContainers;

				List<ContainerId>	releasedContainers				

				AllocateRequest	req	=	Records.newRecord(AllocateRequest.class);

				//	The	response	id	set	in	the	request	will	be	sent	back	in	

				//	the	response	so	that	the	ApplicationMaster	can	

				//	match	it	to	its	original	ask	and	act	appropriately.

				req.setResponseId(rmRequestID);

				

				//	Set	ApplicationAttemptId	

				req.setApplicationAttemptId(appAttemptID);

				

				//	Add	the	list	of	containers	being	asked	by	the	AM

				req.addAllAsks(requestedContainers);

				

				//ApplicationMaster	can	request	ResourceManager	to	deallocation	

				//	of	the	container	if	no	longer	requires.							

					req.addAllReleases(releasedContainers);

				

				//	ApplicationMaster	can	track	its	progress	by	setting	progess

				req.setProgress(currentProgress);

				

				AllocateResponse	allocateResponse	=	resourceManager.allocate(req);

The	response	to	the	container	allocation	request	from	the	ApplicationMaster	to	the
ResourceManager	contains	the	information	on	the	containers	allocated	to	the
ApplicationMaster,	the	number	of	hosts	available	in	the	cluster,	and	many	more	such
details.

Containers	are	not	immediately	assigned	to	the	ApplicationMaster	by	the
ResourceManager.	However,	when	the	container	request	is	sent	to	the	ResourceManager,
the	ApplicationMaster	will	eventually	get	the	containers	based	on	cluster-capacity,
priorities	and	cluster-scheduling	policy:

			//	Retrieve	list	of	allocated	containers	from	the	response	

				List<Container>	allocatedContainers	=	

allocateResponse.getAllocatedContainers();

				for	(Container	allocatedContainer	:	allocatedContainers)	{

						LOG.info("Launching	shell	command	on	a	new	container."

										+	",	containerId="	+	allocatedContainer.getId()

										+	",	containerNode="	+	allocatedContainer.getNodeId().getHost()	

										+	":"	+	allocatedContainer.getNodeId().getPort()

										+	",	containerNodeURI="	+	allocatedContainer.getNodeHttpAddress()

										+	",	containerState"	+	allocatedContainer.getState()

										+	",	containerResourceMemory"		

										+	allocatedContainer.getResource().getMemory());

										

						LaunchContainerRunnable	runnableLaunchContainer	=	

										new	LaunchContainerRunnable(allocatedContainer);

						Thread	launchThread	=	new	Thread(runnableLaunchContainer);

						launchThreads.add(launchThread);

						launchThread.start();

				}

				//	Check	what	the	current	available	resources	in	the	cluster

				Resource	availableResources	=	allocateResponse.getAvailableResources();

					LOG.info("Current	available	resources	in	the	cluster	"	+	

availableResources);

				//	Based	on	this	information,	an	ApplicationMaster	can	make	

				//	appropriate	decisions

				//	Check	the	completed	containers

				List<ContainerStatus>	completedContainers	=	

								allocateResponse.getCompletedContainersStatuses();

				for	(ContainerStatus	containerStatus	:	completedContainers)	{

						LOG.info("Got	container	status	for	containerID=	"	

										+	containerStatus.getContainerId()

										+	",	state="	+	containerStatus.getState()					

										+	",	exitStatus="	+	containerStatus.getExitStatus()	

										+	",	diagnostics="	+	containerStatus.getDiagnostics());

						int	exitStatus	=	containerStatus.getExitStatus();

						if	(0	!=	exitStatus)	{

								//	container	failed	

								if	(-100	!=	exitStatus)	{

										//	application	job	on	container	returned	a	non-zero	exit	

											//	code	counts	as	completed	

										numCompletedContainers.incrementAndGet();

										numFailedContainers.incrementAndGet();

								}

								else	{	

										//	something	else	bad	happened	

										//	app	job	did	not	complete	for	some	reason	

										//	we	should	re-try	as	the	container	was	lost	for	some	

											//	reason

										numRequestedContainers.decrementAndGet();

										//	we	do	not	need	to	release	the	container	as	that	has	

											//	already	been	done	by	the	ResourceManager/NodeManager.	

								}

								}

								else	{	

										//	nothing	to	do	

										//	container	completed	successfully	

										numCompletedContainers.incrementAndGet();

											LOG.info("Container	completed	successfully."+	",		

																containerId="	+	containerStatus.getContainerId());

									}

						}

				}

After	container	allocation	is	successfully	performed	for	the	ApplicationMaster,	it	has	to	set
up	the	ContainerLaunchContext	for	the	tasks	on	which	it	will	run.	Once	the
ContainerLaunchContext	is	set,	the	ApplicationMaster	can	request	the	ContainerManager
to	start	the	allocated	container:

				//Assuming	an	allocated	Container	obtained	from	AllocateResponse	

				//	and	has	been	already	initialization	of	container	is	done

				Container	container;

				LOG.debug("Connecting	to	ContainerManager	for	containerid="	+	

container.getId());

				//	Connect	to	ContainerManager	on	the	allocated	container	

				String	cmIpPortStr	=	container.getNodeId().getHost()	+	":"	

								+	container.getNodeId().getPort();

				InetSocketAddress	cmAddress	=	NetUtils.createSocketAddr(cmIpPortStr);		

				LOG.info("Connecting	to	ContainerManager	at	"	+	cmIpPortStr);

				ContainerManager	cm	=	((ContainerManager)	

rpc.getProxy(ContainerManager.class,	cmAddress,	conf));

				//	Now	we	setup	a	ContainerLaunchContext		

	LOG.info("Setting	up	container	launch	container	for	containerid="	+	

container.getId());

				ContainerLaunchContext	ctx	=	

								Records.newRecord(ContainerLaunchContext.class);

				ctx.setContainerId(container.getId());

				ctx.setResource(container.getResource());

				try	{

						

ctx.setUser(UserGroupInformation.getCurrentUser().getShortUserName());

				}	catch	(IOException	e)	{

						LOG.info(

										"Getting	current	user	failed	when	trying	to	launch	the	

container",	+	e.getMessage());

				}

				//	Set	the	environment	

				Map<String,	String>	unixEnv;

				//	Setup	the	required	env.	

				//	Please	note	that	the	launched	container	does	not	inherit	

				//	the	environment	of	the	ApplicationMaster	so	all	the	

				//	necessary	environment	settings	will	need	to	be	re-setup	

				//	for	this	allocated	container.

				ctx.setEnvironment(unixEnv);

				//	Set	the	local	resources	

				Map<String,	LocalResource>	localResources	=	

								new	HashMap<String,	LocalResource>();

				//	Again,	the	local	resources	from	the	ApplicationMaster	is	not	copied	

over	

				//	by	default	to	the	allocated	container.	Thus,	it	is	the	

responsibility	

										//	of	the	ApplicationMaster	to	setup	all	the	necessary	local	

resources	

										//	needed	by	the	job	that	will	be	executed	on	the	allocated	

container.	

						

				//	Assume	that	we	are	executing	a	shell	script	on	the	allocated	

container	

				//	and	the	shell	script's	location	in	the	filesystem	is	known	to	us.	

				Path	shellScriptPath;	

				LocalResource	shellRsrc	=	Records.newRecord(LocalResource.class);

				shellRsrc.setType(LocalResourceType.FILE);

				shellRsrc.setVisibility(LocalResourceVisibility.APPLICATION);

				shellRsrc.setResource(

								ConverterUtils.getYarnUrlFromURI(new	URI(shellScriptPath)));

				shellRsrc.setTimestamp(shellScriptPathTimestamp);

				shellRsrc.setSize(shellScriptPathLen);

				localResources.put("MyExecShell.sh",	shellRsrc);

				ctx.setLocalResources(localResources);

				//	Set	the	necessary	command	to	execute	on	the	allocated	container	

				String	command	=	"/bin/sh	./MyExecShell.sh"

								+	"	1>"	+	ApplicationConstants.LOG_DIR_EXPANSION_VAR	+	"/stdout"

								+	"	2>"	+	ApplicationConstants.LOG_DIR_EXPANSION_VAR	+	"/stderr";

				List<String>	commands	=	new	ArrayList<String>();

				commands.add(command);

				ctx.setCommands(commands);

				//	Send	the	start	request	to	the	ContainerManager

				StartContainerRequest	startReq	=	

Records.newRecord(StartContainerRequest.class);

				startReq.setContainerLaunchContext(ctx);

				try{

							cm.startContainer(startReq);

				}catch(YarnRemoteException	e){

								LOG.info("Start	container	failed	for	:"	+	",	containerId="	+	

container.getId());

									e.printStackTrace();

				}

The	ApplicationMaster	will	get	the	application	status	information	via	the
ApplicationMasterProtocol.	Also,	it	may	monitor	by	querying	the	ContainerManager	for
the	application	status:

				GetContainerStatusRequest	statusReq	=	

								Records.newRecord(GetContainerStatusRequest.class);

				statusReq.setContainerId(container.getId());

				GetContainerStatusResponse	statusResp;

					try{	

									statucResp	=	cm.getContainerStatus(statusReq);

				LOG.info("Container	Status"

								+	",	id="	+	container.getId()

								+	",	status="	+	statusResp.getStatus());

			}catch(YarnRemoteException	e){

								e.printStackTrace();

			}

This	code	snippet	explains	how	to	write	the	YARNClient	and	ApplicationMaster	in
general.	Actually,	the	ApplicationMaster	is	the	application-specific	entity;	each
application	or	framework	that	wants	to	run	over	YARN	has	a	different	ApplicationMaster,
but	the	flow	is	the	same.	For	more	details	on	the	YARNClient	and	ApplicationMaster	for
different	frameworks,	visit	the	Apache	Foundation	website.

Responsibilities	of	the	ApplicationMaster
The	ApplicationMaster	is	the	application-specific	library	and	is	responsible	for	negotiating
resources	from	the	ResourceManager	as	per	the	client	application’s	requirements	and
needs.	The	ApplicationMaster	works	with	the	NodeManager	to	execute	and	monitor	the
container	and	track	the	application’s	progress.	The	ApplicationMaster	itself	runs	in	one	of
the	containers	allocated	by	the	ResourceManager,	and	the	ResourceManager	tracks	the
progress	of	the	ApplicationMaster.

The	ApplicationMaster	provides	scalability	to	the	YARN	framework,	as	the

ApplicationMaster	can	provide	a	functionality	that	is	much	similar	to	that	of	the	traditional
ResourceManager,	so	the	YARN	cluster	is	able	to	scale	with	many	hardware	changes.
Also,	by	moving	all	the	application-specific	code	into	the	ApplicationMaster,	YARN
generalizes	the	system	so	that	it	can	support	multiple	frameworks,	just	by	writing	the
ApplicationMaster.

Summary
In	this	chapter,	you	learned	how	to	use	bundled	applications	that	come	with	the	YARN
framework,	how	to	develop	the	YARNClient	and	ApplicationMaster,	the	core	parts	of	the
YARN	framework,	how	to	submit	an	application	to	YARN,	how	to	monitor	an	application,
and	the	responsibilities	of	the	ApplicationMaster.

In	the	next	chapter,	you	will	learn	to	write	some	real-time	practical	examples.

Chapter	7.	YARN	Frameworks
It’s	the	dawn	of	2015,	and	big	data	is	still	in	its	booming	stage.	Many	new	start-ups	and
giants	are	investing	a	huge	amount	into	developing	POCs	and	new	frameworks	to	cater	to
a	new	and	emerging	variety	of	problems.	These	frameworks	are	the	new	cutting-edge
technologies	or	programming	models	that	tend	to	solve	the	problems	across	industries	in
the	world	of	big	data.	As	the	corporations	are	trying	to	use	big	data,	they	are	facing	a	new
and	unique	set	of	problems	that	they	never	faced	before.	Hence,	to	solve	these	new
problems,	many	frameworks	and	programming	models	are	coming	onto	the	market.

YARN’s	support	for	multiple	programming	models	and	frameworks	makes	it	ideal	to	be
integrated	with	these	new	and	emerging	frameworks	or	programming	models.	With	YARN
taking	responsibility	for	resource	management	and	other	necessary	things	(scheduling
jobs,	fault	tolerance,	and	so	on),	it	allows	these	new	application	frameworks	to	focus	on
solving	the	problems	that	they	were	specifically	meant	for.

At	the	time	of	writing	this	book,	many	new	and	emerging	open	source	frameworks	are
already	integrated	with	YARN.

In	this	chapter,	we	will	cover	the	following	frameworks	that	run	on	YARN:

Apache	Samza
Storm	on	YARN
Apache	Spark
Apache	Tez
Apache	Giraph
Hoya	(HBase	on	YARN)
KOYA	(Kafka	on	YARN)

We	will	talk	in	detail	about	Apache	Samza	and	Storm	on	YARN,	where	we	will	develop
and	run	some	sample	applications.	For	other	frameworks,	we	will	have	a	brief	discussion.

Apache	Samza
Samza	is	an	open	source	project	from	LinkedIn	and	is	currently	an	incubation	project	at
the	Apache	Software	Foundation.	Samza	is	a	lightweight	distributed	stream-processing
framework	to	do	real-time	processing	of	data.	The	version	that	is	available	for	download
from	the	Apache	website	is	not	the	production	version	that	LinkedIn	uses.

Samza	is	made	up	of	the	following	three	layers:

A	streaming	layer
An	execution	layer
A	processing	layer

Samza	provides	out-of-the-box	support	for	all	the	preceding	three	layers:

Streaming:	This	layer	is	supported	by	Kafka	(another	open	source	project	from
LinkedIn)
Execution:	supported	by	YARN
Processing:	supported	by	Samza	API

The	following	three	pieces	fit	together	to	form	Samza:

The	following	architecture	should	be	familiar	to	anyone	who	has	used	Hadoop:

Before	going	into	each	of	these	three	layers	indepth,	it	should	be	noted	that	Samza’s
support	is	not	limited	to	these	systems.	Both	Samza’s	execution	and	streaming	layers	are
pluggable	and	allow	developers	to	implement	alternatives	as	required.

Samza	is	a	stream-processing	system	to	run	continuous	computation	on	infinite	streams	of
data.

Samza	provides	a	system	to	process	stream	data	from	publish-subscribe	systems	such	as
Apache	Kafka.	The	developer	writes	a	stream-processing	task	and	executes	it	as	a	Samza
job.	Samza	then	routes	messages	between	the	stream-processing	tasks	and	the	publish-

subscribe	systems	that	the	messages	are	addressed	to.

Samza	works	a	lot	like	Storm,	the	Twitter-developed	stream-processing	technology,	except
that	Samza	runs	on	Kafka,	LinkedIn’s	own	messaging	system.	Samza	was	developed	with
a	pluggable	architecture,	enabling	developers	to	use	the	software	with	other	messaging
systems.

Apache	Samza	is	basically	a	combination	of	the	following	technologies:

Kafka:	Samza	uses	Apache	Kafka	as	its	underlying	message	passing	system
Apache	YARN:	Samza	also	uses	Apache	YARN	for	task	scheduling
ZooKeeper:	Both	YARN	and	Kafka,	in	turn,	rely	on	Apache	ZooKeeper	for
coordination

More	information	is	available	on	the	official	site	at	http://samza.incubator.apache.org/.

We	will	use	the	hello-samza	project	to	develop	a	sample	example	to	process	some	real-
time	stream	processing.

We	will	write	a	Kafka	producer	using	the	Java	Kafka	APIs	to	publish	a	continuous	stream
of	messages	to	a	Kafka	topic.	Finally,	we	will	write	a	Samza	consumer	using	the	Samza
API	to	process	these	streams	from	the	Kafka	topic	in	real	time.	For	simplicity,	we	will	just
print	a	message	and	record	each	time	a	message	is	received	in	the	Kafka	topic.

http://samza.incubator.apache.org/

Writing	a	Kafka	producer
Let’s	first	write	a	Kafka	producer	to	publish	messages	to	a	Kafka	topic	(named	storm-
sentence):

import	java.io.BufferedReader;

import	java.io.File;

import	java.io.FileInputStream;

import	java.io.FileNotFoundException;

import	java.io.FileReader;

import	java.io.IOException;

import	java.io.PrintStream;

import	java.util.Properties;

import	kafka.javaapi.producer.Producer;

import	kafka.producer.KeyedMessage;

import	kafka.producer.ProducerConfig;

/**

	*	A	simple	Java	Class	to	publish	messages	into	KAFKA.

	*	

	*	

	*	@author	nirmal.kumar

	*	

	*/

public	class	KafkaStringProducerService	{

		public	Producer<String,	String>	producer;

		public	Producer<String,	String>	getProducer()	{

				return	this.producer;

		}

		public	void	setProducer(Producer<String,	String>	producer)	{

				this.producer	=	producer;

		}

		public	KafkaStringProducerService(Properties	prop)	{

				setProducer(new	Producer(new	ProducerConfig(prop)));

		}

		/**

			*	Change	the	location	of	producer.properties	accordingly	in	Line	No.	123

			*	

			*	Load	the	producer.properties	having	following	properties:

			*	kafka.zk.connect=192.xxx.xxx.xxx

			*	serializer.class=kafka.serializer.StringEncoder	

			*	producer.type=async

			*	queue.buffering.max.ms=5000000	

			*	queue.buffering.max.messages=1000000

			*	metadata.broker.list=192.xxx.xxx.xxx:9092

			*	

			*	@param	filepath

			*	@return

			*/

		private	static	Properties	getConfiguartionProperties(String	filepath)	{

				File	path	=	new	File(filepath);

				Properties	properties	=	new	Properties();

				try	{

						properties.load(new	FileInputStream(path));

				}	catch	(FileNotFoundException	e)	{

						e.printStackTrace();

				}	catch	(IOException	e)	{

						e.printStackTrace();

				}

				return	properties;

		}

		/**

			*	Publishes	each	message	to	KAFKA

			*	

			*	@param	input

			*	@param	ii

			*/

		public	void	execute(String	input,	int	ii)	{

				KeyedMessage	data	=	new	KeyedMessage("storm-sentence",	input);

				this.producer.send(data);

				//Logs	to	System	Console	the	no.	of	messages	published	(each	100000)

				if	((ii	!=	0)	&&	(ii	%	100000	==	0))

						System.out.println("$$$$$$$	PUBLISHED	"	+	ii	+	"	messages	@	"

										+	System.currentTimeMillis());

		}

		/**

			*	Reads	each	line	from	the	input	message	file

			*	

			*	@param	file

			*	@return

			*	@throws	IOException

			*/

		private	static	String	readFile(String	file)	throws	IOException	{

				BufferedReader	reader	=	new	BufferedReader(new	FileReader(file));

				String	line	=	null;

				StringBuilder	stringBuilder	=	new	StringBuilder();

				String	ls	=	System.getProperty("line.separator");

				while	((line	=	reader.readLine())	!=	null)	{

						stringBuilder.append(line);

						stringBuilder.append(ls);

				}

				return	stringBuilder.toString();

		}

		/**

			*	main	method	for	invoking	the	Java	application	

			*	Need	to	pass	command	line	argument:	the	absolute	file	path	containing	

String	messages.

			*	

			*	@param	args

			*/

		public	static	void	main(String[]	args)	{

				int	ii	=	0;

				int	noOfMessages	=	Integer.parseInt(args[1]);

				String	s	=	null;

				try	{

						s	=	readFile(args[2]);

				}	catch	(IOException	e)	{

						e.printStackTrace();

				}

				/**

					*	instantiate	the	Main	class.

					*	Change	the	location	of	producer.properties	accordingly

					*/

				KafkaStringProducerService	service	=	new	KafkaStringProducerService(

								getConfiguartionProperties("/home/cloud/producer.properties"));

				System.out.println("********	START:	Publishing	"	+	noOfMessages

								+	"	messages	@"	+	System.currentTimeMillis());

				while	(ii	<=	noOfMessages)	{

						//	invoke	the	execute	method	to	publish	messages	into	KAFKA

						service.execute(s,	ii);

						ii++;

				}

				System.out.println("#######	END:	Published	"	+	noOfMessages

								+	"	messages	@"	+	System.currentTimeMillis());

				try	{

						service.producer.close();

				}	catch	(Exception	e)	{

						e.printStackTrace();

				}

		}

}

Create	the	Producer.properties	file	somewhere	in	/home/cloud/producer.properties
and	specify	the	location	in	the	previous	Kafka	producer	Java	class.

The	Producer.properties	file	will	have	the	following	information:

Writing	the	hello-samza	project
Let’s	now	write	a	Samza	consumer	and	package	it	with	the	hello-samza	project:

1.	 Download	and	build	the	hello-samza	project.	Check	out	the	hello-samza	project:

git	clone	git://git.apache.org/incubator-samza-hello-samza.git	hello-

samza

cd	hello-samza

The	output	of	the	preceding	code	can	be	seen	here:

2.	 Next,	we	will	write	a	Samza	consumer	using	the	Samza	API	to	process	these	N
messages	from	a	Kafka	topic.	Got	to	hello-samza/samza-
wikipedia/src/main/java/samza/examples/wikipedia/task	and	write	the
YarnEssentialsSamzaConsumer.java	file	as	follows:

3.	 After	writing	the	Samza	consumer	class	in	the	hello-samza	project,	you	will	need	to
build	the	project:

mvn	clean	package

4.	 Create	a	samza	directory	inside	the	deploy	directory:

mkdir	-p	deploy/samza

5.	 Finally,	create	the	Samza	job	package:

tar	-xvf	./samza-job-package/target/samza-job-package-0.7.0-dist.tar.gz	

-C	deploy/samza

6.	 For	Samza	consumer	properties,	go	to	/home/cloud/hello-
samza/deploy/samza/config.

7.	 Write	a	samza-test-consumer.properties	file	as	follows:

This	properties	file	will	mainly	contain	the	following	information:

job.name:	This	is	the	name	of	the	Samza	job
yarn.package.path:	This	is	the	path	of	the	Samza	job	package
task.class:	This	is	the	class	of	the	actual	Samza	consume.
task.inputs:	This	is	the	Kafka	topic	name	where	the	published	will	be	read	from
systems.kafka.consumer.zookeeper.connect:	This	is	the	ZooKeeper-related
information

Starting	a	grid
A	Samza	grid	usually	comprises	three	different	systems:	YARN,	Kafka,	and	ZooKeeper.
The	hello-samza	project	comes	with	a	script	called	grid	to	help	you	set	up	these	systems.
Start	by	running	the	following	command:

bin/grid	bootstrap

This	command	will	download,	install,	and	start	ZooKeeper,	Kafka,	and	YARN.	It	will	also
check	out	the	latest	version	of	Samza	and	build	it.	All	the	package	files	will	be	put	in	a
subdirectory	called	deploy	inside	the	hello-samza	project’s	root	folder.	The	result	of	the
preceding	command	is	shown	here:

The	following	screenshot	shows	that	Zookeeper,	YARN,	and	Kafka	are	being	started:

Once	all	the	processes	are	up	and	running	you	can	check	the	processes,	as	shown	in	this
screenshot:

The	YARN	ResourceManager	web	UI	will	look	like	this:

The	YARN	NodeManager	web	UI	will	look	like	this:

Since	we	started	the	grid,	let’s	now	deploy	the	Samza	job	to	it:

deploy/samza/bin/run-job.sh	--config-

factory=org.apache.samza.config.factories.PropertiesConfigFactory	--config-

path=file:/home/cloud/hello-samza/deploy/samza/config/samza-test-

consumer.properties

Check	the	application	processes	and	RM	UI.	As	you	can	see	in	the	following	screenshot,
running	the	Samza	job	first	creates	a	SamzaAppMaster	and	then	a	SamzaContainer	to	run

the	consumer	that	we	wrote:

The	ResourceManager	web	UI	now	shows	the	Samza	application	up	and	running:

The	ApplicationMaster	UI	looks	as	follows:

The	following	screenshot	shows	the	ApplicationMaster	UI	interface:

Since	now	our	Samza	consumer	is	up	and	running	and	listening	for	any	messages	in	the
Kafka	topic	(named	storm-sentence),	let’s	publish	some	messages	to	the	Kafka	topic
using	the	Kafka	producer	we	wrote	initially.	The	following	Java	command	is	used	to
invoke	the	Kafka	producer	that	has	two	command-line	arguments:

N:	This	is	the	number	of	times	the	message	is	published	into	Kafka
{pathOfFileNameHavingMessage}:	This	is	the	actual	string	message

Create	any	file	having	a	string	message	(strmsg10K.txt)	and	pass	this	file	name	and	path
as	the	second	command-line	argument	to	the	Java	command,	as	shown	in	the	following
screenshot:

As	soon	as	these	messages	are	published	in	the	Kafka	topic,	the	Samza	consumer
consumes	it	and	prints	the	timestamp,	as	written	in	the	Samza	consumer	code.

The	result	after	checking	the	Samza	consumer	logs	is	as	follows:

Storm-YARN
Apache	Storm	is	an	open	source	distributed	real-time	computation	system	from	Twitter.

Storm	helps	in	processing	unbounded	streams	of	data	in	a	reliable	manner.	Storm	can	be
used	with	any	programming	language.	Some	of	the	most	common	use	cases	of	Storm	are
real-time	analytics,	real-time	machine	learning,	continuous	computation,	ETL,	and	many
more.

Storm-YARN	is	a	project	from	Yahoo	that	enables	the	Storm	cluster	to	be	deployed	and
managed	by	YARN.	Earlier,	a	separate	cluster	was	needed	for	Hadoop	and	Storm.

One	major	benefit	that	comes	with	this	integration	is	elasticity.	Batch	processing	(Hadoop
MapReduce)	is	usually	done	on	the	basis	of	need,	and	real-time	processing	(Storm)	is	an
ongoing	processing.	When	the	Hadoop	cluster	is	idle,	you	can	leverage	it	for	any	real-time
processing	work.

In	a	typical	real-time	processing	use	case,	constant	and	predictable	loads	are	very	rare.
Storm,	therefore,	will	need	more	resources	during	peak	time	when	the	load	is	greater.	At
peak	time,	Storm	can	steal	resources	from	the	batch	jobs	and	give	them	back	when	the
load	is	less.

This	way,	the	overall	resource	utilization	can	scale	up	and	down	depending	on	the	load
and	demand.	This	elasticity	is,	therefore,	useful	for	utilizing	the	available	resources	on	the
basis	of	demand	between	real-time	and	batch	processing.

Another	benefit	is	that	this	integration	reduces	the	physical	distance	of	data	transfers
between	Storm	and	Hadoop.	Many	applications	use	both	Storm	and	Hadoop	on	separate
clusters	while	sharing	data	between	them	(MapReduce).	For	such	a	scenario,	Storm-
YARN	reduces	network	transfers,	and	in	turn	the	total	cost	of	acquiring	the	data,	as	they
share	the	same	cluster,	as	shown	in	the	following	image:

Referring	to	the	preceding	diagram,	Storm-YARN	asks	YARN’s	ResourceManager	to
launch	a	Storm	ApplicationMaster.	The	Storm	ApplicationMaster	then	launches	a	Storm
Nimbus	server	and	a	Storm	UI	server	locally.	It	also	uses	YARN	to	allocate	resources	for
the	supervisors	and	finally	launch	them.

We	will	now	install	Storm-YARN	on	a	Hadoop	YARN	cluster	and	deploy	some	Storm
topologies	to	the	cluster.

Prerequisites
The	following	are	the	prerequisites	for	Storm-YARN.

Hadoop	YARN	should	be	installed
Refer	to	the	Hadoop	YARN	installation	at	http://hadoop.apache.org/docs/r2.4.1/hadoop-
project-dist/hadoop-common/SingleCluster.html.

The	Master	Thrift	service	of	Storm-on-YARN	uses	port	9000,	and	if	Storm-YARN	is
launched	from	the	NameNode,	there	will	be	a	port	crash.

In	this	case,	you	will	need	to	change	the	port	of	the	NameNode	in	your	Hadoop
installation.	Typically,	the	following	processes	should	be	up	and	running	in	Hadoop:

Apache	ZooKeeper	should	be	installed
At	the	time	of	writing	this	book,	the	Storm-on-YARN	ApplicationMaster	implementation
does	not	include	running	Zookeeper	on	YARN.	Therefore,	it	is	presumed	that	there	is	a
Zookeeper	cluster	already	running	to	enable	communication	between	Nimbus	and
workers.

There	is	an	open	issue	that	this	thought	at	https://github.com/yahoo/storm-yarn/issues/22.

Installing	Zookeeper	is	very	straightforward	and	easy.

Refer	to	http://zookeeper.apache.org/doc/r3.3.3/zookeeperAdmin.html.

http://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-common/SingleCluster.html
https://github.com/yahoo/storm-yarn/issues/22
http://zookeeper.apache.org/doc/r3.3.3/zookeeperAdmin.html

Setting	up	Storm-YARN
Storm-YARN	is	basically	an	implementation	of	the	YARN	client	and	ApplicationMaster
for	Storm.

The	client	gets	a	new	application	ID	for	Storm	and	submits	the	application,	and	the
ApplicationMaster	sets	up	the	Storm	components	(Nimbus,	Supervisor,	and	so	on)	on
YARN	using	the	containers	that	the	ApplicationMaster	requests	from	the
ResourceManager.

Note	that	Storm-on-YARN	is	not	a	new	implementation	of	Storm	that	works	on	YARN.
Frameworks	(that	is	Samza,	Storm,	Spark,	Tez,	and	so	on)	themselves	do	not	need	to	be
modified	to	be	able	to	run	on	YARN.	Only	the	ApplicationMaster	and	the	YARN	client
code	need	to	be	written	for	each	of	the	frameworks	so	that	they	run	on	YARN	as	an
application	just	like	any	other.	Now,	proceed	with	the	following	steps:

1.	 Clone	the	Storm-YARN	repository	from	Git:

cd	storm-on-yarn-poc/

git	clone	https://github.com/yahoo/storm-yarn.git

cd	storm-yarn

The	Storm	client	machine	refers	to	the	machine	that	will	submit	the	YARN	client	and
ApplicationMaster	to	the	ResourceManager.

As	of	now,	there	is	single	release	of	Storm-on-YARN	from	Yahoo	that	contains	both
Storm-YARN	and	Storm	versions	(0.9.0-wip21).	The	Storm	release	is	present	in	the
lib	directory	of	the	extracted	Storm-on-YARN	release.

2.	 Build	Storm-YARN	using	Maven:

mvn	package	or	mvn	package	-DskipTests

3.	 We	will	get	the	following	output:

[INFO]	Scanning	for	projects…

[INFO]	

[INFO]	Using	the	builder	

org.apache.maven.lifecycle.internal.builder.singlethreaded.SingleThread

edBuilder	with	a	thread	count	of	1

[INFO]																			

[INFO]	--

[INFO]	Building	storm-yarn	1.0-alpha

[INFO]	--

[INFO]	

[INFO]	Compiling	5	source	files	to	/home/nirmal/storm-on-yarn-

poc/storm-yarn-master/target/test-classes

[INFO]	

[INFO]	---	maven-jar-plugin:2.4:jar	(default)	@	storm-yarn	---

[INFO]	

[INFO]	---	maven-surefire-plugin:2.10:test	(default-test)	@	storm-yarn	

[INFO]	Tests	are	skipped.

[INFO]	

[INFO]	---	maven-jar-plugin:2.4:jar	(default-jar)	@	storm-yarn	---

[INFO]	--

[INFO]	BUILD	SUCCESS

[INFO]	--

[INFO]	Total	time:	10.153	s

[INFO]	Finished	at:	2014-11-12T15:57:49+05:30

[INFO]	Final	Memory:	10M/118M

[INFO]	--

	[INFO]	Final	Memory:	14M/152M

[INFO]	--

4.	 Next,	you	will	need	to	copy	the	storm.zip	file	from	storm-yarn/lib	to	HDFS.	This
is	since	Storm-on-YARN	will	deploy	a	copy	of	Storm	code	throughout	all	the	nodes
of	the	YARN	cluster	using	HDFS.	However,	the	location	of	where	to	fetch	this	copy
of	the	Storm	code	is	hardcoded	into	the	Storm-on-YARN	client.	Copy	the	storm.zip
file	to	HDFS	using	the	following	command:

hdfs	dfs	-mkdir	-p	/lib/storm/0.9.0-wip21

Alternatively,	you	can	also	use	the	following	command:

hadoop	fs	–	mkdir	-p	/lib/storm/0.9.0-wip21

hdfs	dfs	-put	/home/nirmal/storm-on-yarn-poc/storm-yarn-

master/lib/storm.zip	/lib/storm/0.9.0-wip21/storm.zip

You	can	also	use	the	following	command:

hadoop	fs	-put	/home/nirmal/storm-on-yarn-poc/storm-yarn-

master/lib/storm.zip	/lib/storm/0.9.0-wip21/storm.zip

The	exact	version	of	Storm	might	differ,	in	your	case,	from	0.9.0-wip21.

5.	 Create	a	directory	to	hold	our	Storm	configuration:

mkdir	-p	/home/nirmal/storm-on-yarn-poc/storm-data/

cp	/home/nirmal/storm-on-yarn-poc/storm-yarn-master/lib/storm.zip	

/home/nirmal/storm-on-yarn-poc/storm-data/

cd	/home/nirmal/storm-on-yarn-poc/storm-data

unzip	storm.zip

6.	 Add	the	following	configuration	in	the	storm.yaml	file	located	at
/home/nirmal/storm-on-yarn-poc/storm-data/storm-0.9.0-wip21/conf.	You
can	change	the	following	values	as	per	your	setup:

storm.zookeeper.servers:	localhost
nimbus.host:	localhost
master.initial-num-supervisors:	2
master.container.size-mb:	1024

7.	 Add	the	storm-yarn/bin	folder	to	your	path	variable:

export	PATH=$PATH:/home/nirmal/storm-on-yarn-poc/storm-data/storm-

0.9.0-wip21/bin:/home/nirmal/storm-on-yarn-poc/storm-yarn-master/bin

8.	 Finally,	launch	Storm-YARN	using	the	following	command:

storm-yarn	launch	/home/nirmal/storm-on-yarn-poc/storm-data/storm-

0.9.0-wip21/conf/storm.yaml

Launching	Storm-YARN	executes	the	Storm-YARN	client	that	gets	an	app	ID	from
YARN’s	ResourceManager	and	starts	running	the	Storm-YARN	ApplicationMaster.
The	ApplicationMaster	then	starts	the	Nimbus,	Workers,	and	Supervisor	services.
You	will	get	an	output	similar	to	the	one	shown	in	the	following	screenshot:

9.	 We	can	retrieve	the	status	of	our	application	using	the	following	YARN	command:

yarn	application	-list

We	will	get	the	status	of	our	application	as	follows:

10.	 You	can	also	see	Storm-YARN	running	on	the	following	ResourceManager	web	UI	at
http://localhost:8088/cluster/:

11.	 Nimbus	should	also	be	running	now,	and	you	should	be	able	to	see	it	through	the
Nimbus	web	UI	at	http://localhost:7070/.	This	looks	as	follows:

12.	 The	following	processes	should	be	up	and	running:

Getting	the	storm.yaml	configuration	of	the
launched	Storm	cluster
The	machine	that	will	use	the	Storm	client	command	to	submit	a	new	topology	to	Storm
needs	the	storm.yaml	configuration	file	of	the	launched	Storm	cluster	on	YARN	to	be
stored	in	/home/nirmal/.storm/storm.yaml.

Normally,	when	Storm	is	not	run	on	YARN,	this	configuration	file	is	manually	edited,	so
you	should	know	the	IP	addresses	of	the	Storm	components.	However,	since	the	location
of	where	the	Storm	components	will	be	run	on	YARN	depends	on	the	location	of	the
allocated	containers,	Storm-on-YARN	is	responsible	for	setting	storm.yaml	for	us.	You
can	fetch	this	storm.yaml	file	from	the	running	Storm-on-YARN:

$	cd

$	mkdir	.storm/

$	storm-yarn	getStormConfig	-appId	(check	the	appId	on	the	YARN	application	

UI	at	port	8088)	-output	/home/nirmal/.storm/storm.yaml

Building	and	running	Storm-Starter	examples
In	this	section,	we	will	see	how	to	get	the	example	code	from	GitHub,	build	it	using
Maven,	and	finally,	run	the	examples.	To	perform	these	tasks,	you’ll	have	to	execute	the
following	steps:

1.	 Get	the	code	from	GitHub.	We	will	use	the	storm-starter	from	GitHub:

git	clone	https://github.com/nathanmarz/storm-starter

Cloning	into	'storm-starter'...

remote:	Counting	objects:	756,	done.

remote:	Total	756	(delta	0),	reused	0	(delta	0)

Receiving	objects:	100%	(756/756),	171.81	KiB	|	56.00	KiB/s,	done.

Resolving	deltas:	100%	(274/274),	done.

Checking	connectivity…	done

2.	 Next,	go	to	the	downloaded	storm-starter	directory:

cd	storm-starter/

3.	 Check	the	content	using	the	following	commands:

ls	-ltr

-rw-r--r--	1	nirmal	nirmal	171	Nov	12	12:58	README.markdown

-rw-r--r--	1	nirmal	nirmal	5047	Nov	12	12:58	m2-pom.xml

drwxr-xr-x	3	nirmal	nirmal	4096	Nov	12	12:58	multilang

-rw-r--r--	1	nirmal	nirmal	580	Nov	12	12:58	LICENSE

drwxr-xr-x	4	nirmal	nirmal	4096	Nov	12	12:58	src

-rw-r--r--	1	nirmal	nirmal	929	Nov	12	12:58	project.clj

drwxr-xr-x	3	nirmal	nirmal	4096	Nov	12	12:58	test

-rw-r--r--	1	nirmal	nirmal	8042	Nov	12	12:58	storm-starter.iml

4.	 Build	the	storm-starter	project	using	Maven:

mvn	-f	m2-pom.xml	package	or	mvn	-f	m2-pom.xml	package	-DskipTests

5.	 You	will	see	an	output	similar	to	the	following	commands:

[INFO]	Scanning	for	projects…

[INFO]	Using	the	builder	

org.apache.maven.lifecycle.internal.builder.singlethreaded.SingleThread

edBuilder	with	a	thread	count	of	1

[INFO]																			

[INFO]	--

[INFO]	Building	storm-starter	0.0.1-SNAPSHOT

[INFO]	--

[INFO]	META-INF/MANIFEST.MF	already	added,	skipping

[INFO]	META-INF/	already	added,	skipping

[INFO]	META-INF/maven/	already	added,	skipping

[INFO]	Building	jar:	/home/nirmal/storm-on-yarn-poc/storm-

starter/target/storm-starter-0.0.1-SNAPSHOT-jar-with-dependencies.jar

[INFO]	META-INF/MANIFEST.MF	already	added,	skipping

[INFO]	META-INF/	already	added,	skipping

[INFO]	META-INF/maven/	already	added,	skipping

[INFO]	--

[INFO]	BUILD	SUCCESS

[INFO]	--

[INFO]	Total	time:	05:21	min

[INFO]	Finished	at:	2014-11-12T13:05:40+05:30

[INFO]	Final	Memory:	30M/191M

[INFO]	--

6.	 After	the	build	is	successful,	you	will	see	the	following	JAR	file	being	created	under
the	target	directory:

storm-starter-0.0.1-SNAPSHOT-jar-with-dependencies.jar

7.	 Run	the	Storm	topology	example	on	the	Storm-YARN	cluster:

storm	jar	storm-starter-0.0.1-SNAPSHOT-jar-with-dependencies.jar	

storm.starter.WordCountTopology	word-count-topology

The	output	can	be	seen	in	the	following	screenshot:

8.	 Click	on	the	topology,	as	shown	in	the	following	screenshot:

Apache	Spark
Apache	Spark	is	a	fast	and	general	engine	for	large-scale	data	processing.	It	was	originally
developed	in	2009	in	UC	Berkeley’s	AMPLab	and	open	sourced	in	2010.

The	main	features	of	Spark	are	as	follows:

Speed:	Spark	enables	applications	in	Hadoop	clusters	to	run	up	to	100x	faster	in
memory	and	10x	faster	even	when	running	on	disk.
Ease	of	use:	Spark	lets	you	quickly	write	applications	in	Java,	Scala,	or	Python.	You
can	use	it	interactively	to	query	big	datasets	from	the	Scala	and	Python	shells.
Runs	everywhere:	Spark	runs	on	Hadoop,	Mesos,	in	standalone	mode,	or	in	the
cloud.	It	can	access	diverse	data	sources,	including	HDFS,	Cassandra,	HBase,	and
S3.	You	can	run	Spark	readily	using	its	standalone	cluster	mode,	on	EC2,	or	run	it	on
Hadoop	YARN	or	Apache	Mesos.	It	can	read	from	HDFS,	HBase,	Cassandra,	and
any	Hadoop	data	source.
Generality:	Spark	powers	a	stack	of	high-level	tools,	including	Spark	SQL,	MLlib
for	machine	learning,	GraphX,	and	Spark	Streaming.	You	can	combine	these
frameworks	seamlessly	in	the	same	application.

Why	run	on	YARN?
YARN	enables	Spark	to	run	in	a	single	cluster	alongside	other	frameworks,	such	as	Tez,
Storm,	HBase,	and	others.	This	avoids	the	need	to	create	and	manage	separate	and
dedicated	Spark	clusters.

Typically,	customers	want	to	run	multiple	workloads	on	a	single	dataset	in	a	single	cluster.
YARN,	as	a	generic	resource	management	and	single	data	platform	for	all	different
frameworks/engines,	makes	it	happen.

YARN’s	built-in	multitenancy	support	allows	dynamic	and	optimal	sharing	of	the	same
shared	cluster	resources	between	different	frameworks	that	run	on	YARN.

YARN	has	pluggable	schedulers	to	categorize,	isolate,	and	prioritize	workloads.

Apache	Tez
Apache	Tez	is	part	of	the	Stinger	initiative	led	by	Hortonworks	to	make	the	Hive
enterprise	ready	and	suitable	for	interactive	SQL	queries.	The	Tez	design	is	based	on
research	done	by	Microsoft	on	parallel	and	distributed	computing.

Tez	entered	the	Apache	Incubator	in	February	2013	and	graduated	to	a	top-level	project	in
July	2014.

Tez	is	basically	an	embeddable	and	extensible	framework	to	build	high-performance	batch
and	interactive	data-processing	applications	that	need	to	integrate	easily	with	YARN.

Confusion	often	arises	when	Tez	is	thought	of	as	an	engine.	Tez	is	not	a	general-purpose
engine,	but	more	of	a	framework	for	tools	to	express	their	purpose-built	needs.	Tez,	for
example,	enables	Hive,	Pig,	and	others	to	build	their	own	purpose-built	engines	and
embed	them	in	those	technologies	to	express	their	purpose-built	needs.	Projects	such	as
Hive,	Pig,	and	Cascading	now	have	significant	improvements	in	response	times	when	they
use	Tez	instead	of	MapReduce.

Tez	generalizes	the	MapReduce	paradigm	to	a	more	powerful	framework	based	on
expressing	computations	as	a	dataflow	graph.	Tez	exists	to	address	some	of	the	limitations
of	MapReduce.	For	example,	in	a	typical	MapReduce,	a	lot	of	temporary	data	is	stored
(such	as	each	mapper’s	output,	which	is	a	disk	I/O),	which	is	an	overhead.	In	the	case	of
Tez,	this	disk	I/O	of	temporary	data	is	saved,	thereby	resulting	in	higher	performance
compared	to	the	MapReduce	model.

Also,	Tez	can	adjust	the	parallelism	of	reduce	tasks	at	runtime,	depending	on	the	actual
data	size	coming	out	of	the	previous	task.	On	the	other	hand,	in	MapReduce	the	number	of
reducers	is	static	and	has	to	be	decided	by	the	user	before	the	job	is	submitted	to	the
cluster.

The	processing	done	by	multiple	MapReduce	jobs	can	now	be	done	by	a	single	Tez	job,	as
follows:

Referring	to	the	preceding	diagram,	earlier	(with	PIG/HIVE),	we	used	to	need	multiple
M/R	jobs	to	do	some	processing.	However,	now,	in	Tez,	a	single	M/R	job	does	the	same,
that	is,	the	reducers	(the	green	boxes)	of	the	previous	step	feed	the	mappers	(the	blue
boxes)	of	the	next	step.

The	preceding	image	is	taken	from	http://www.infoq.com/articles/apache-tez-saha-murthy.

Tez	is	not	meant	directly	for	end	users;	in	fact,	it	enables	developers	to	build	end-user
applications	with	much	better	performance	and	flexibility.	Traditionally,	Hadoop	has	been
a	batch-processing	platform	to	process	large	amounts	of	data.	However,	there	are	a	lot	of
use	cases	for	near-real-time	performance	of	query	processing.	There	are	also	several
workloads,	such	as	machine	learning,	that	do	not	fit	into	the	MapReduce	paradigm.	Tez
helps	Hadoop	address	these	use	cases.

Tez	provides	an	expressive	dataflow-definition	API	that	lets	developers	create	their	own
unique	data-processing	graphs	(DAGs)	to	represent	their	applications’	data-processing
flows.	Once	the	developer	defines	a	flow,	Tez	then	provides	additional	APIs	to	inject
custom	business	logic	that	will	run	in	that	flow.	These	APIs	then	combine	inputs	(that	read
data),	outputs	(that	write	data),	and	processors	(that	process	data)	to	process	the	flow.

Tez	can	also	run	any	existing	MR	job	without	any	modification.	For	more	information	on
Tez,	refer	to	http://tez.apache.org/.

http://www.infoq.com/articles/apache-tez-saha-murthy
http://tez.apache.org/

Apache	Giraph
Apache	Giraph	is	a	graph-processing	system	that	uses	the	MapReduce	model	to	process
graphs.	Currently,	it	is	in	incubation	at	the	Apache	Software	Foundation.

It	is	based	on	Google’s	Pregel,	which	is	used	to	calculate	page	rank.

Currently,	Giraph	is	being	used	by	Facebook,	Twitter,	and	LinkedIn	to	create	social	graphs
of	their	users.	Both	Giraph	and	Pregel	are	based	on	the	Bulk	Synchronous	Parallel	(BSP)
model	of	distributed	computation,	which	was	introduced	by	Leslie	Valiant.

Support	for	YARN	is	from	release	1.1.0.	For	more	information,	refer	to	the	official	site	at
http://giraph.apache.org/.

http://giraph.apache.org/

HOYA	(HBase	on	YARN)
Hoya	is	basically	running	HBase	on	YARN.	It	is	currently	hosted	on	Github,	but	there	are
plans	to	move	it	to	the	Apache	Foundation.

Hoya	creates	HBase	clusters	on	top	of	YARN.	It	does	this	with	a	client	application	called
Hoya	client;	this	application	creates	the	persistent	configuration	files,	sets	up	the	HBase
cluster	XML	files,	and	then	asks	YARN	to	create	an	ApplicationMaster,	which	is	the	Hoya
AM	here.

For	more	information,	refer	to	https://github.com/hortonworks/hoya,
http://hortonworks.com/blog/introducing-hoya-hbase-on-yarn/	and
http://hortonworks.com/blog/hoya-hbase-on-yarn-application-architecture/.

https://github.com/hortonworks/hoya
http://hortonworks.com/blog/introducing-hoya-hbase-on-yarn/
http://hortonworks.com/blog/hoya-hbase-on-yarn-application-architecture/

KOYA	(Kafka	on	YARN)
On	November	5,	2014,	DataTorrent,	a	company	founded	by	ex-Yahoo!,	announced	a	new
project	to	bring	the	fault-tolerant,	high-performance,	scalable	Apache	Kafka	messaging
system	to	YARN.

The	so-called	Kafka	on	YARN	(KOYA)	project	plans	to	leverage	YARN	for	Kafka
broker	management,	automatic	broker	recovery,	and	more.	Planned	features	include	a
fully-HA	ApplicationMaster,	sticky	allocation	of	containers	(so	that	a	restart	can	access
local	data),	a	web	interface	for	Kafka,	and	more.

The	expected	release	to	the	open	source	community	is	somewhere	in	Q2	2015.

More	information	is	available	at	https://www.datatorrent.com/introducing-koya-apache-
kafka-on-apache-hadoop-2-0-yarn/.

https://www.datatorrent.com/introducing-koya-apache-kafka-on-apache-hadoop-2-0-yarn/

Summary
This	chapter	talked	about	the	different	frameworks	and	programming	models	that	can	be
run	on	YARN.	We	discussed	Apache	Samza	and	Storm	on	YARN	in	detail.

With	the	wide	acceptance	of	YARN	in	the	industry,	more	and	more	frameworks	will
support	YARN,	taking	complete	advantage	of	YARN’s	generic	features.

We	looked	at	the	existing	frameworks	that	are	integrated	with	YARN	at	the	moment.

There	is	a	lot	more	work	going	on	in	the	industry	to	make	existing	and	new	applications
run	on	YARN.

In	Chapter	8,	Failures	in	YARN,	we	will	discuss	how	faults,	failures	at	various	levels,	are
handled	in	YARN.

Chapter	8.	Failures	in	YARN
Dealing	with	failures	in	distributed	systems	is	comparatively	more	challenging	and	time
consuming.	Also,	the	Hadoop	and	YARN	frameworks	run	on	commodity	hardware	and
cluster	size	nowadays;	this	size	can	vary	from	several	nodes	to	several	thousand	nodes.	So
handling	failure	scenarios	and	dealing	with	ever-growing	scaling	issues	is	very	important.
In	this	section,	we	will	focus	on	failures	in	the	YARN	framework:	the	causes	of	failures
and	how	to	overcome	them.

In	this	chapter,	we	will	cover	the	following	topics:

ResourceManager	failures
ApplicationMaster	failures
NodeManager	failures
Container	failures
Hardware	failures

We	will	be	dealing	with	the	root	causes	of	these	failures	and	the	solutions	to	them.

ResourceManager	failures
In	the	initial	versions	of	the	YARN	framework,	ResourceManager	failures	meant	a	total
cluster	failure,	as	it	was	a	single	point	of	failure.	The	ResourceManager	stores	the	state	of
the	cluster,	such	as	the	metadata	of	the	submitted	application,	information	on	cluster
resource	containers,	information	on	the	cluster’s	general	configurations,	and	so	on.
Therefore,	if	the	ResourceManager	goes	down	because	of	some	hardware	failure,	then
there	is	no	way	to	avoid	manually	debugging	the	cluster	and	restarting	the
ResourceManager.	During	the	time	the	ResourceManager	is	down,	the	cluster	is
unavailable,	and	once	it	gets	restarted,	all	jobs	would	need	a	restart,	so	the	half-completed
jobs	lose	any	data	and	need	to	be	restarted	again.	In	short,	a	restart	of	the
ResourceManager	used	to	restart	all	the	running	ApplicationMasters.

The	latest	versions	of	YARN	address	this	problem	in	two	ways.	One	way	is	by	creating	an
active-passive	ResourceManager	architecture,	so	that	when	one	goes	down,	another
becomes	active	and	takes	responsibility	for	the	cluster.	The	ResourceManager	RM	state
can	be	seen	in	the	following	image:

Another	way	is	by	using	the	Zookeeper	ResourceManager	quorum,	so	that	the
ResourceManager	state	is	stored	externally	over	the	Zookeeper,	and	one
ResourceManager	is	in	an	active	state	and	one	or	more	ResourceManagers	are	in	passive
mode,	waiting	for	something	to	happen	that	brings	them	to	an	active	state.	The
ResourceManager’s	state	can	be	seen	in	the	following	image:

In	the	preceding	diagram,	you	can	see	that	the	ResourceManager’s	state	is	managed	by	the
Zookeeper.	Whenever	there	is	a	failure	condition,	the	ResourceManager’s	state	is	shared
with	the	passive	ResourceManager(s)	to	change	to	an	active	state	and	take	over
responsibility	for	the	cluster,	without	any	downtime.

ApplicationMaster	failures
To	recover	the	application’s	state	after	its	restart	because	of	an	ApplicationMaster	failure
is	the	responsibility	of	the	ApplicationMaster	itself.	When	the	ApplicationMaster	fails,	the
ResourceManager	simply	starts	another	container	with	a	new	ApplicationMaster	running
in	it	for	another	application	attempt.	It	is	the	responsibility	of	the	new	ApplicationMaster
to	recover	the	state	of	the	older	ApplicationMaster,	and	this	is	possible	only	when
ApplicationMasters	persist	their	states	in	the	external	location	so	that	it	can	be	used	for
future	reference.	Any	ApplicationMaster	can	run	any	application	from	scratch	instead	of
recovering	its	state	and	rerunning	again.

For	example,	an	ApplicationMaster	can	recover	its	completed	jobs.	However,	if	the	jobs
that	are	running	and	completed	during	the	ApplicationMaster’s	recovery	time	frame	get
halted	for	some	reason,	their	state	will	be	discarded	and	the	ApplicationMaster	will	simply
rerun	them	from	scratch.

The	YARN	framework	is	capable	of	rerunning	the	ApplicationMaster	a	specified	number
of	times	and	recovering	the	completed	tasks.

NodeManager	failures
Almost	all	nodes	in	the	cluster	runs	a	NodeManager	service	daemon.	The	NodeManager
takes	care	of	executing	a	certain	part	of	a	YARN	job	on	every	individual	machine,	while
other	parts	are	executed	on	other	nodes.	For	a	1000	node	YARN	cluster,	there	are	probably
around	999	node	managers	running.	So	node	managers	are	indeed	a	per-node	agent	and
takes	care	of	the	individual	nodes	distributed	in	the	cluster.

If	a	Node	Manager	fails,	the	ResourceManager	detects	this	failure	using	a	time-out	(that
is,	stops	receiving	the	heartbeats	from	the	NodeManager).	The	ResourceManager	then
removes	the	NodeManager	from	its	pool	of	available	NodeManagers.	It	also	kills	all	the
containers	running	on	that	node	&	reports	the	failure	to	all	running	AMs.	AMs	are	then
responsible	for	reacting	to	node	failures,	by	redoing	the	work	done	by	any	containers
running	on	that	node	during	the	fault.

If	the	fault	causing	the	time-out	is	transient	then	the	Node	Manager	will	resynchronizes
with	the	ResourceManager.	On	the	similar	lines	if	a	new	Node	Manager	joins	the	cluster,
the	ResourceManager	notifies	all	ApplicationMasters	about	the	availability	of	new
resources.

Container	failures
Whenever	a	container	finishes,	the	ApplicationMaster	is	informed	of	this	event	by	the
ResourceManager.	So	the	ApplicationMaster	interprets	that	the	container	status	received
through	the	ResourceManager	is	the	success	or	failure	from	container	exit	status.	The
ApplicationMaster	handles	the	failures	of	the	job	containers.

It	is	the	responsibility	of	the	application	frameworks	to	manage	the	container’s	failures,
and	the	responsibility	of	the	YARN	framework	is	to	provide	information	to	the	application
framework.	As	a	part	of	allocating	the	API’s	response,	the	ResourceManager	collects
information	on	the	finished	containers	from	the	ApplicationMaster,	as	the	containers
return	all	this	information	to	the	corresponding	ApplicationMaster.	It	is	the	responsibility
of	the	ApplicationMaster	to	validate	the	container’s	status,	exit	code,	and	diagnostic
information	and	appropriate	action	on	it,	for	example	when	the	MapReduce
ApplicationMaster	retries	the	map	and	reduce	tasks	by	requesting	new	containers,	until	the
configured	number	of	tasks	fail	for	a	single	job.

To	address	container	allocation	failure	scenarios,	the	ResourceManager	collects	container
information	by	executing	the	Allocate	call,	and	the	AllocateResponse	usually	does	not
return	any	containers.	However,	the	Allocate	call	should	be	made	periodically	to	ensure
that	all	containers	are	assigned.	When	the	container	arrives,	it	is	for	sure	that	the
framework	will	have	sufficient	resources,	and	the	ApplicationMaster	will	not	receive	more
containers	than	it	asked	for.	Also,	the	ApplicationMaster	can	make	separate	container
requests,	ResourceRequests,	typically	one	per	second.

Hardware	Failures
As	the	Hadoop	and	YARN	frameworks	use	commodity	hardware	for	the	cluster	setup	and
scaling	from	several	nodes	to	several	thousand	nodes,	all	the	components	of	Hadoop	or
YARN	are	designed	on	the	assumption	that	hardware	failures	are	very	common.
Therefore,	these	failures	would	be	automatically	handled	by	the	framework	so	that
important	data	is	not	lost	because	of	them.	For	this,	Hadoop	provides	data	replication
across	the	nodes/racks	so	that	even	if	the	whole	rack	fails,	data	would	be	recovered	from
another	node	on	another	rack,	and	jobs	would	be	restarted	over	another	replica	dataset	to
compute	the	results.

Summary
In	this	chapter,	we	discussed	YARN	failure	scenarios	and	how	these	are	addressed	in	the
YARN	framework.	In	the	next	chapter,	we	will	be	focusing	on	alternative	solutions	for	the
YARN	framework.	We	will	also	see	a	brief	overview	of	the	most	common	frameworks
that	are	closely	related	to	YARN.

Chapter	9.	YARN	–	Alternative	Solutions
During	the	development	of	YARN,	many	other	organizations	simultaneously	identified	the
limitations	of	Hadoop	1.x	and	were	actively	involved	in	developing	alternative	solutions.

This	chapter	will	briefly	talk	about	such	alternate	solutions	and	compare	them	to	YARN.
Among	the	most	common	frameworks	that	are	closely	related	to	YARN	are:

Mesos
Omega
Corona

Mesos
Mesos	was	originally	developed	at	the	University	of	California	at	Berkeley	and	later
became	open	source	under	the	Apache	Software	Foundation.

Mesos	can	be	thought	of	as	a	highly-available	and	fault-tolerant	operating	system	kernel
for	your	clusters.	It’s	a	cluster	resource	manager	that	provides	efficient	resource	isolation
and	sharing	across	multiple	diverse	cluster-computing	or	frameworks.

Mesos	can	be	compared	to	YARN	in	some	aspects	but	a	complete	quantitative	comparison
is	literally	not	possible.

We	will	talk	about	the	architecture	of	Mesos	and	compare	some	of	the	architectural
differences	with	respect	to	YARN.	This	way	we	will	have	a	high	level	understanding	of
the	main	difference	between	the	two	frameworks.

The	preceding	figure	shows	the	main	components	of	Mesos.	It	basically	consists	of	a
master	process	that	manages	slave	processes	running	on	each	cluster	node	and	mesos
applications	(also	called	frameworks)	that	run	tasks	on	these	slaves.

For	more	information	please	refer	to	the	official	site	at	http://mesos.apache.org/.

Here	are	the	high-level	differences	between	Mesos	and	YARN:

Mesos YARN

Mesos	uses	Linux	container	groups
(http://lxc.sourceforge.net).

Linux	container	groups	are	a	stronger	isolation	but	may
have	some	additional	overhead.

YARN	uses	simple	Unix	processes.

Mesos	is	primarily	written	in	C++. YARN	is	primarily	written	in	Java	with	bits	of	native	code.

http://mesos.apache.org/
http://lxc.sourceforge.net

Mesos	supports	both	memory	and	CPU	scheduling.

Currently,	YARN	only	supports	memory	scheduling	(for
example,	you	request	x	containers	of	y	MB	each),	but	there
are	plans	to	extend	it	to	other	resources	such	as	network	and
disk	I/O	resources.

Mesos	introduces	a	distributed	two-level	scheduling
mechanism	called	resource	offers.	Mesos	decides	how
many	resources	to	offer	each	framework,	while
frameworks	decide	which	resources	to	accept	and	which
computations	to	run	on	them.

YARN	has	a	request-based	approach.	It	allows	the
ApplicationMaster	to	ask	for	resources	based	on	various
criteria,	including	locations,	and	also	allows	the	requester	to
modify	future	requests	based	on	what	was	given	and	on	the
current	usage.

Mesos	leverages	a	pool	of	central	schedulers	(for
example,	classic	Hadoop	or	MPI).

YARN	on	the	other	hand	has	a	per	job	scheduler.	Although
YARN	enables	late	binding	of	containers	to	tasks,	where
each	individual	job	can	perform	local	optimizations,	the	per-
job	ApplicationMaster	might	result	in	greater	overhead	than
the	Mesos	approach.

Omega
Omega	is	Google’s	next	generation	cluster	management	system.

Omega	is	specifically	focused	on	a	cluster	scheduling	architecture	that	uses	parallelism,
shared	state,	and	optimistic	concurrency	control.

From	the	past	experience,	Google	noticed	that	as	the	clusters	and	their	workloads	increase,
the	scheduler	is	at	risk	of	becoming	a	scalability	bottleneck.

Google’s	production	job	scheduler	has	experienced	all	of	this.	Over	the	years,	it	has
evolved	into	a	complicated,	sophisticated	system	that	is	hard	to	change.

A	schematic	overview	of	the	scheduling	architectures	can	be	seen	in	the	following	figure:

contrib	project	to	Hadoop	0.20	branch	and	is	not	a	very	large	code	base.
Corona	is	integrated	with	the	fair-scheduler.
YARN	is	more	interested	in	the	capacity	scheduler.

Google	identified	the	following	two	prevalent	scheduler	architectures	shown	in	the
preceding	figure:

Monolithic	schedulers:	This	uses	a	single,	centralized	scheduling	algorithm	for	all
jobs	(our	existing	scheduler	is	one	of	these).	They	do	not	make	it	easy	to	add	new
policies	and	specialized	implementations,	and	may	not	scale	up	to	the	cluster	sizes
one	is	planning	for	in	the	future.
Two-level	schedulers:	This	will	have	a	single	active	resource	manager	that	offers
compute	resources	to	multiple	parallel,	independent	scheduler	frameworks,	as	in
Mesos	and	Hadoop	On	Demand	(HOD).	Their	architectures	do	appear	to	provide
flexibility	and	parallelism,	but	in	practice	their	conservative	resource	visibility	and
locking	algorithms	limit	both,	and	make	it	hard	to	place	difficult	to-schedule	“picky”

jobs	or	to	make	decisions	that	require	access	to	the	state	of	the	entire	cluster.

The	solution	is	Omega—a	new	parallel	scheduler	architecture	built	around	the	shared
state,	using	lock-free	optimistic	concurrency	control,	to	achieve	both	implementation
extensibility	and	performance	scalability.

Omega’s	approach	reflects	a	greater	focus	on	scalability,	but	makes	it	harder	to	enforce
global	properties,	such	as	capacity,	fairness,	and	deadlines.

For	more	information,	refer	to	http://research.google.com/pubs/pub41684.html.

http://research.google.com/pubs/pub41684.html

Corona
Corona	is	another	work	from	Facebook,	which	is	now	open-sourced	and	hosted	on	the
GitHub	repository	at	https://github.com/facebookarchive/hadoop-
20/tree/master/src/contrib/corona.

Facebook,	with	its	huge	peta-scale	quantity	of	data,	suffered	serious	performance-related
issues	with	the	classic	MapReduce	framework	because	of	the	single	JobTracker	taking
care	of	thousands	of	jobs	and	doing	a	lot	of	work	alone.

In	order	to	solve	these	issues,	Facebook	created	Corona,	which	separated	cluster	resource
management	from	job	coordination.

In	Hadoop	Corona,	the	cluster	resources	are	tracked	by	a	central	Cluster	Manager.	Each
job	gets	its	own	Corona	Job	Tracker	which	tracks	just	that	particular	job.

Corona	has	entirely	redesigned	MapReduce	architecture	to	bring	better	cluster	utilization
and	job	scheduling,	just	like	YARN	did.

Facebook’s	goals	in	re-writing	the	Hadoop	scheduling	framework	were	not	the	same	as
YARN’s.	Facebook	wanted	quick	improvements	in	MapReduce,	but	only	the	part	that	they
were	using.	They	had	no	interest	in	running	multiple	heterogeneous	frameworks	such	as
YARN	does	or	other	key	design	considerations	of	YARN.

For	Facebook,	doing	a	quick	rewrite	of	the	scheduler	seemed	feasible	and	low	risk,
compared	to	going	with	YARN,	getting	features	that	were	not	needed,	understanding	it,
fixing	its	problems	and	then	landing	up	with	something	that	didn’t	address	the	primary
goal	of	lowering	latency.

The	following	are	some	of	the	key	differences:

Corona	does	push-based	scheduling	and	has	an	event-driven,	callback-oriented
message	flow.	This	was	critical	to	achieving	fast,	low-latency	scheduling.	Polling	is	a
big	part	of	why	the	Hadoop	scheduler	is	slow	and	has	scalability	issues.	YARN	does
not	do	callback-based	message	flow.
In	Corona,	JobTracker	can	run	on	the	same	JVM	as	the	Job	Client	(that	is	Hive).
Facebook	had	fat	client	machines	with	tons	of	RAM	and	CPU.	To	reduce	latency,
maximum	processing	on	the	client	machine	is	preferred.	In	YARN,	Job	Tracker	has
to	be	scheduled	within	the	cluster.	This	means	that	there’s	one	extra	step	between
starting	a	query	and	getting	it	running.
Corona	is	structured	as	a	contrib	project	to	Hadoop	0.20	branch	and	is	not	a	very
large	code	base.
Corona	is	integrated	with	the	fair-scheduler.	YARN	is	more	interested	in	the	capacity
scheduler.

For	more	information	on	Corona,	refer	to	https://www.facebook.com/notes/facebook-
engineering/under-the-hood-scheduling-mapreduce-jobs-more-efficiently-with-
corona/10151142560538920.

https://github.com/facebookarchive/hadoop-20/tree/master/src/contrib/corona
https://www.facebook.com/notes/facebook-engineering/under-the-hood-scheduling-mapreduce-jobs-more-efficiently-with-corona/10151142560538920

Summary
We	talked	about	various	works	related	to	YARN	that	are	available	on	the	market	today.
These	systems	share	common	inspiration/requirements,	and	the	high-level	goal	of
improving	scalability,	latency,	fault-tolerance,	and	programming-model	flexibility.	The
varied	architectural	differences	are	due	to	the	diverse	and	varied	design	priorities.	In	the
next	chapter,	we	will	talk	about	YARN’s	future	and	support	in	the	industry.

Chapter	10.	YARN	–	Future	and	Support
YARN	is	the	new	modern	data	operating	system	for	Hadoop	2.	YARN	acts	as	a	central
orchestrator	to	support	mixed	workloads/programming	models,	running	multiple	engines,
and	multiple	access	patterns	such	as	batch	processing,	interactive,	streaming,	and	real-
time,	in	Hadoop	2.

In	this	chapter,	we	will	talk	about	YARN’s	journey	and	its	present	and	future	in	the	big
data	industry.

What	YARN	means	to	the	big	data
industry
It	can	be	said	that	YARN	is	a	boon	to	the	big	data	industry.	Without	YARN	the	entire	big
data	industry	would	have	been	at	serious	risk.	As	the	industry	started	playing	with	big
data,	new	and	emerging	varieties	of	problems	came	into	the	picture	and	hence	new
frameworks.

YARN’s	support	to	run	these	new	and	emerging	frameworks	allows	these	frameworks	to
focus	on	solving	the	problems	for	which	they	were	specifically	meant	for,	while	YARN
takes	care	of	resource	management	and	other	necessary	things	(resource	allocation,
scheduling	jobs,	fault	tolerance,	and	so	on).

Had	there	been	no	YARN,	these	frameworks	would	have	had	to	do	all	the	resource-
management	on	their	own.	There	are	many	big	data	projects	that	failed	in	the	past	due	to
unrealistic	expectations	on	immature	technologies.

YARN	is	the	enabler	for	porting	mature	and	enterprise-class	technologies	directly	onto
Hadoop.	Without	YARN,	the	only	thing	in	Hadoop	was	to	use	MapReduce.

Journey	–	present	and	future
Around	two	years	back,	YARN	was	introduced	with	the	Hadoop	0.23	release	on	11	Nov,
2011.

Since	then,	there	was	no	looking	back	and	there	were	a	number	of	releases.

Finally,	on	October	15,	2013	Apache	Hadoop	2.2.0	was	the	GA	(General	Availability)
release	of	Apache	Hadoop	2.x.

In	October	2013,	Apache	Hadoop	YARN	won	the	Best	Paper	award	at	ACM	SoCC
(Symposium	on	Cloud	Computing)	2013.

Apache	Hadoop	2.x,	powered	by	YARN,	is	no	doubt	the	best	platform	for	all	of	the
Hadoop	ecosystem	components	such	as	MapReduce,	Apache	Hive,	Apache	Pig,	and	so	on
that	use	HDFS	as	the	underlying	data	storage.

YARN	was	also	honored	by	other	open	source	communities	for	frameworks	such	as
Apache	Giraph,	Apache	Tez,	Apache	Spark,	Apache	Flink,	and	many	others.

Vendors	such	as	HP,	Microsoft,	SAS,	Teradata,	SAP,	Red	Hat,	and	the	list	goes	on,	are
moving	towards	YARN	to	run	their	existing	products	and	services	on	Hadoop.

People	willing	to	modify	applications	can	already	use	YARN	directly,	but	there	are	many
customers/vendors	who	don’t	want	to	modify	their	existing	application.	For	them,	there	is
Apache	Slider,	another	open	source	project	from	Hortonworks,	which	can	deploy	any
existing	distributed	applications	without	requiring	them	to	be	ported	to	YARN.

Apache	Slider	allows	you	to	bridge	existing	always-on	services	and	makes	sure	they	work
really	well	on	top	of	YARN,	without	having	to	modify	the	application	itself.

Slider	facilitates	many	long-running	services	and	applications	such	as	Apache	Storm,
Apache	HBase,	Apache	Accumulo,	and	so	on	running	on	YARN.

This	initiative	will	definitely	expand	the	spectrum	of	applications	and	use	cases	that	one
can	actually	use	with	Hadoop	and	YARN	in	future.

Present	on-going	features
Now,	let’s	discuss	the	present	on-going	works	in	YARN.

Long	Running	Applications	on	Secure	Clusters	(YARN-896)

Support	long-lived	applications	and	long-lived	containers.	Refer	to
https://issues.apache.org/jira/browse/YARN-896.

Application	Timeline	Server	(YARN-321,	YARN-1530)

Currently,	we	have	a	JobHistoryServer	for	MapReduce	history.	The	MapReduce	job
history	server	currently	needs	to	be	deployed	as	a	trusted	server	in	sync	with	the
MapReduce	runtime.	Every	new	application	would	need	a	similar	application	history
server.	Having	to	deploy	O	(T*V)	(where	T	is	the	number	of	type	of	application,	V	is	the
number	of	version	of	application)	trusted	servers	is	clearly	not	scalable.

This	JIRA	is	to	create	only	one	trusted	application	history	server,	which	can	have	a	generic
UI.	Refer	to	the	following	links	for	more	information:

https://issues.apache.org/jira/browse/YARN-321
https://issues.apache.org/jira/browse/YARN-1530

Disk	scheduling	(YARN-2139)

Support	for	disk	as	a	resource	in	YARN.	YARN	should	consider	disk	as	another	resource
for	scheduling	tasks	on	nodes,	isolation	at	runtime,	and	spindle	locality.	Refer	to
https://issues.apache.org/jira/browse/YARN-2139.

Reservation-based	scheduling	(YARN-1051)

To	extend	the	YARN	RM	to	handle	time	explicitly,	allowing	users	to	reserve	capacity	over
time.	This	is	an	important	step	towards	SLAs,	long-running	services,	workflows,	and
helps	in	gang	scheduling.

https://issues.apache.org/jira/browse/YARN-896
https://issues.apache.org/jira/browse/YARN-321
https://issues.apache.org/jira/browse/YARN-1530
https://issues.apache.org/jira/browse/YARN-2139

Future	features
Let’s	discuss	the	future	works	in	YARN.

Container	Resizing	(YARN-1197)

The	current	YARN	resource	management	logic	assumes	that	the	resources	allocated	to	a
container	are	fixed	during	its	lifetime.	When	users	want	to	change	the	resources	of	an
allocated	container,	the	only	way	is	releasing	it	and	allocating	a	new	container	with	the
expected	size.	Allowing	runtime	changes	to	the	resources	of	an	allocated	container	will
give	us	better	control	of	resource	usage	on	the	application	side.	Refer	to
https://issues.apache.org/jira/browse/YARN-1197.

Admin	labels	(YARN-796)

Support	for	admins	to	specify	labels	for	nodes.	The	examples	of	labels	are	OS,	processor
architecture,	and	so	on.	Refer	to	https://issues.apache.org/jira/browse/YARN-796.

Container	Delegation	(YARN-1488)

Allow	containers	to	delegate	resources	to	another	container.	This	would	allow	external
frameworks	to	share	not	just	YARN’s	resource-management	capabilities,	but	also	its
workload-management	capabilities.

This	also	shows	that	YARN	is	not	only	focused	on	the	Apache	Hadoop	ecosystem
components,	but	also	on	any	existing	external	non-Hadoop	products	and	services	that	want
to	use	Hadoop.

Also,	work	is	going	on	in	bringing	together	the	worlds	of	Data	and	PaaS	by	using	Docker,
Google	Kubernetes,	and	Red	Hat	OpenShift	on	YARN	so	that	a	common	resource
management	can	be	done	across	data	and	PaaS	workloads.

https://issues.apache.org/jira/browse/YARN-1197
https://issues.apache.org/jira/browse/YARN-796

YARN-supported	frameworks
The	following	is	the	current	list	of	frameworks	that	runs	on	top	of	YARN,	and	this	list	will
go	on	getting	longer	in	the	future:

Apache	Hadoop	MapReduce	and	its	ecosystem	components
Apache	HAMA
OpenMPI
Apache	S4
Apache	Spark
Apache	Tez
Impala
Storm
HOYA	(HBase	on	YARN)
Apache	Samza
Apache	Giraph
Apache	Accumulo
Apache	Flink
KOYA	(Kafka	on	YARN)
Solr

Summary
In	this	chapter,	we	briefly	talked	about	YARN’s	journey	since	its	inception.	YARN	has
completely	changed	Hadoop	from	the	way	it	was	earlier	in	the	Hadoop	1.x	version.	Now
YARN	is	a	first-class	resource	management	framework	for	supporting	mixed
workloads/processing	frameworks.

From	what	can	been	seen	and	predicted,	YARN	is	surely	a	hit	in	the	big	data	industry	and
has	many	more	new	and	promising	features	to	come	in	the	future.	Currently,	YARN
handles	memory	and	CPU	and	will	coordinate	additional	resources	such	as	disk	and
network	I/O	in	the	future.

Index
A

Access	Control	List	(ACL)
about	/	NodeManager	(NM),	The	capacity	scheduler

administrative	tools
about	/	Administrative	tools
commands	/	Administrative	tools
generic	options,	supporting	/	Administrative	tools

/	Administrative	tools
anagrams	/	Practical	examples	of	MRv1	and	MRv2
Apache	Giraph

about	/	Apache	Giraph
URL	/	Apache	Giraph

Apache	Hadoop	2.2.0
about	/	Journey	–	present	and	future

Apache	Samza
about	/	Apache	Samza
Kafka	/	Apache	Samza
Apache	YARN	/	Apache	Samza
ZooKeeper	/	Apache	Samza
Kafka	producer,	writing	/	Writing	a	Kafka	producer
hello-samza	project,	writing	/	Writing	the	hello-samza	project

Apache	Samza,	layers
processing	layer	/	Apache	Samza
streaming	layer	/	Apache	Samza
execution	layer	/	Apache	Samza

Apache	Slider
about	/	Journey	–	present	and	future

Apache	Software	Foundation
about	/	Mesos

Apache	Spark
about	/	Apache	Spark
features	/	Apache	Spark
running,	on	YARN	/	Why	run	on	YARN?

Apache	Tez
about	/	Apache	Tez
URL	/	Apache	Tez

Application	Context	(AppContext)	/	The	MapReduce	ApplicationMaster
ApplicationMaster

about	/	The	MapReduce	ApplicationMaster
ApplicationMaster	(AM)	/	ApplicationMaster	(AM)

restarting	/	The	MapReduce	ApplicationMaster

writing	/	Writing	the	YARN	ApplicationMaster
resposibilities	/	Responsibilities	of	the	ApplicationMaster
failures	/	ApplicationMaster	failures

ApplicationMaster	Launcher	service
about	/	ResourceManager

ApplicationMasterService
about	/	ResourceManager

ApplicationsManager
about	/	ResourceManager

B
backward	compatibility,	MRv2	APIs

about	/	Backward	compatibility	of	MRv2	APIs
binary	compatibility,	of	org.apache.hadoop.mapred	APIs	/	Binary	compatibility
of	org.apache.hadoop.mapred	APIs
source	compatibility,	of	org.apache.hadoop.mapred	APIs	/	Source	compatibility
of	org.apache.hadoop.mapred	APIs

Bulk	Synchronous	Parallel	(BSP)
about	/	Apache	Giraph

C
capacity	scheduler

about	/	The	capacity	scheduler,	The	capacity	scheduler
benefits	/	The	capacity	scheduler
features	/	The	capacity	scheduler
configurations	/	Capacity	scheduler	configurations

cluster	scheduling	architecture
about	/	Omega

configuration	parameters
about	/	The	fully-distributed	mode

container
failures	/	Container	failures

container	allocation
about	/	Container	allocation
to	application	/	Container	allocation	to	the	application

container	configurations
about	/	Container	configurations
parameters	/	Container	configurations

ContainerExecutor
about	/	NodeManager	(NM)

ContainerManager
about	/	NodeManager	(NM)

Context	Objects	/	Old	and	new	MapReduce	APIs
Corona

about	/	Corona
and	Facebook,	differences	/	Corona
URL	/	Corona

D
data-processing	graphs	(DAGs)

about	/	Apache	Tez
DataNodes	(DN)	/	The	fully-distributed	mode

configuring	/	The	fully-distributed	mode
Docker

about	/	Future	features

E
EcoSystem

web	interfaces	/	Web	interfaces	of	the	Ecosystem

F
Facebook

about	/	Corona
and	Corona,	differences	/	Corona

Fair	scheduler	/	The	fair	scheduler
about	/	The	fair	scheduler
configurations	/	Fair	scheduler	configurations

FIFO	scheduler	/	The	FIFO	(First	In	First	Out)	scheduler
about	/	The	FIFO	(First	In	First	Out)	scheduler
configurations	/	The	FIFO	(First	In	First	Out)	scheduler

fully-distributed	mode
about	/	The	fully-distributed	mode
HistoryServer	/	HistoryServer
slave	files	/	Slave	files

G
Google	Kubernetes

about	/	Future	features
grid

starting	/	Starting	a	grid

H
Hadoop

URL	/	Software
YARN,	using	in	/	Understanding	where	YARN	fits	into	Hadoop

Hadoop	0.23
about	/	Journey	–	present	and	future

Hadoop	1.x
about	/	A	short	introduction	to	Hadoop	1.x	and	MRv1
components	/	A	short	introduction	to	Hadoop	1.x	and	MRv1

Hadoop	2	release
about	/	The	Hadoop	2	release

Hadoop	and	YARN	cluster
operating	/	Operating	Hadoop	and	YARN	clusters
starting	/	Starting	Hadoop	and	YARN	clusters
stopping	/	Stopping	Hadoop	and	YARN	clusters

Hadoop	cluster
HDFS	/	A	short	introduction	to	Hadoop	1.x	and	MRv1
MapReduce	/	A	short	introduction	to	Hadoop	1.x	and	MRv1

Hadoop	On	Demand	(HOD)	/	Omega
hello-samza	project

writing	/	Writing	the	hello-samza	project
properties	/	Writing	the	hello-samza	project
grid,	starting	/	Starting	a	grid

HistoryServer	/	HistoryServer
HOYA	(HBase	on	YARN)

about	/	HOYA	(HBase	on	YARN)
URL	/	HOYA	(HBase	on	YARN)

K
Kafka	producer

writing	/	Writing	a	Kafka	producer
KOYA	(Kafka	on	YARN)

about	/	KOYA	(Kafka	on	YARN)
URL	/	KOYA	(Kafka	on	YARN)

M
MapReduce,	YARN

about	/	YARN’s	MapReduce	support
ApplicationMaster	/	The	MapReduce	ApplicationMaster
settings,	example	/	Example	YARN	MapReduce	settings
YARN	applications,	developing	/	Developing	YARN	applications

MapReduce	applications
YARN,	compatible	with	/	YARN’s	compatibility	with	MapReduce	applications

MapReduce	job
configurations	/	MapReduce	job	configurations
properties	/	MapReduce	job	configurations

MapReduce	JobHistoryServer
settings	/	HistoryServer

MapReduce	project
End-user	MapReduce	API	/	MRv1	versus	MRv2
MapReduce	framework	/	MRv1	versus	MRv2
MapReduce	system	/	MRv1	versus	MRv2

Mesos
about	/	Mesos
and	YARN,	difference	between	/	Mesos
URL	/	Mesos

modern	operating	system,	of	Hadoop
YARN,	used	as	/	YARN	as	the	modern	operating	system	of	Hadoop

monolithic	schedulers	/	Omega
MRv1

about	/	A	short	introduction	to	Hadoop	1.x	and	MRv1
versus	MRv2	/	MRv1	versus	MRv2
examples	/	Practical	examples	of	MRv1	and	MRv2,	Running	the	job

MRv2
versus	MRv1	/	MRv1	versus	MRv2
examples	/	Practical	examples	of	MRv1	and	MRv2,	Preparing	the	input	file(s)

N
NameNode	(NN)	/	The	fully-distributed	mode

configuring	/	The	fully-distributed	mode
new	MapReduce	API

about	/	Old	and	new	MapReduce	APIs
versus	old	MapReduce	API	/	Old	and	new	MapReduce	APIs

NodeHealthCheckerService
about	/	NodeManager	(NM)

NodeManager	(NM)	/	NodeManager	(NM)
configuring	/	The	fully-distributed	mode
parameters	/	The	fully-distributed	mode

NodeManagers	(NM)	/	The	fully-distributed	mode
NodeStatusUpdater

about	/	NodeManager	(NM)

O
old	MapReduce	API

about	/	Old	and	new	MapReduce	APIs
versus	new	MapReduce	API	/	Old	and	new	MapReduce	APIs

Omega
about	/	Omega

P
Pi	example

running	/	Running	a	sample	Pi	example
prerequisites,	single-node	installation

platform	/	Platform
softwares	/	Software

prerequisites,	Storm-YARN
Hadoop	YARN,	installing	/	Hadoop	YARN	should	be	installed
Apache	ZooKeeper,	installing	/	Apache	ZooKeeper	should	be	installed

program	names
aggregatewordcount	/	Running	sample	examples	on	YARN
aggregatewordhist	/	Running	sample	examples	on	YARN
bbp	/	Running	sample	examples	on	YARN
dbcount	/	Running	sample	examples	on	YARN
distbbp	/	Running	sample	examples	on	YARN
grep	/	Running	sample	examples	on	YARN
join	/	Running	sample	examples	on	YARN
multifilewc	/	Running	sample	examples	on	YARN
pentomino	/	Running	sample	examples	on	YARN
pi	/	Running	sample	examples	on	YARN
randomtextwriter	/	Running	sample	examples	on	YARN
randomwriter	/	Running	sample	examples	on	YARN
secondarysort	/	Running	sample	examples	on	YARN
sort	/	Running	sample	examples	on	YARN
sudoku	/	Running	sample	examples	on	YARN
teragen	/	Running	sample	examples	on	YARN
terasort	/	Running	sample	examples	on	YARN
teravalidate	/	Running	sample	examples	on	YARN
wordcount	/	Running	sample	examples	on	YARN
wordmean	/	Running	sample	examples	on	YARN
wordmedian	/	Running	sample	examples	on	YARN
wordstandarddeviation	/	Running	sample	examples	on	YARN

pseudo-distributed	mode	/	The	pseudo-distributed	mode
push-based	scheduling	/	Corona

R
redesign	idea

about	/	The	redesign	idea
MapReduce,	limitations	/	Limitations	of	the	classical	MapReduce	or	Hadoop	1.x
Hadoop	1.x,	limitations	/	Limitations	of	the	classical	MapReduce	or	Hadoop	1.x

Red	Hat	OpenShift
about	/	Future	features

Red	Hat	Package	Managers	(RPMs)	/	The	fully-distributed	mode
ResourceManager	/	ResourceManager
ResourceManager	(RM)

scheduler	/	ResourceManager
security	/	ResourceManager
RM	Restart	Phase	I	/	Recent	developments	in	YARN	architecture
RM	Restart	Phase	II	/	Recent	developments	in	YARN	architecture
about	/	The	fully-distributed	mode
configuring	/	The	fully-distributed	mode
parameters	/	The	fully-distributed	mode
failures	/	ResourceManager	failures

ResourceManager	(RM),	components
ApplicationManager	/	NodeManager	(NM)
Scheduler	/	NodeManager	(NM)

S
scheduler	architectures

monolithic	schedulers	/	Omega
two-level	schedulers	/	Omega

single-node	installation
about	/	Single-node	installation
prerequisites	/	Prerequisites
starting	/	Starting	with	the	installation
standalone	mode	(local	mode)	/	The	standalone	mode	(local	mode)
pseudo-distributed	mode	/	The	pseudo-distributed	mode

slave	files	/	Slave	files
standalone	mode	(local	mode)	/	The	standalone	mode	(local	mode)
Storm-Starter	examples

building	/	Building	and	running	Storm-Starter	examples
running	/	Building	and	running	Storm-Starter	examples

Storm-YARN
about	/	Storm-YARN
prerequisites	/	Prerequisites
setting	up	/	Setting	up	Storm-YARN
storm.yaml	configuration,	obtaining	/	Getting	the	storm.yaml	configuration	of
the	launched	Storm	cluster
Storm-Starter	examples,	building	/	Building	and	running	Storm-Starter	examples
Storm-Starter	examples,	running	/	Building	and	running	Storm-Starter	examples

storm.yaml	configuration
obtaining	/	Getting	the	storm.yaml	configuration	of	the	launched	Storm	cluster

T
two-level	schedulers	/	Omega

W
web	GUI

YARN	applications,	monitoring	with	/	Monitoring	YARN	applications	with	web
GUI

Y
YARN

used,	as	modern	operating	system	of	Hadoop	/	YARN	as	the	modern	operating
system	of	Hadoop
design	goals	/	What	are	the	design	goals	for	YARN
used,	in	Hadoop	/	Understanding	where	YARN	fits	into	Hadoop
multitenancy	application	support	/	YARN	multitenancy	application	support
sample	examples,	running	on	/	Running	sample	examples	on	YARN
sample	Pi	example,	running	/	Running	a	sample	Pi	example
compatibility,	with	MapReduce	applications	/	YARN’s	compatibility	with
MapReduce	applications
Apache	Spark,	running	on	/	Why	run	on	YARN?
and	,	Mesos	difference	between	/	Mesos
importance,	to	Big	Data	industry	/	What	YARN	means	to	the	big	data	industry
present	/	Journey	–	present	and	future
future	/	Journey	–	present	and	future
present	on-going	features	/	Present	on-going	features
future	features	/	Future	features

YARN,	features
Long	Running	Applications	on	Secure	Clusters	(YARN-896)	/	Present	on-going
features
Application	Timeline	Server	(YARN-321,	YARN-1530)	/	Present	on-going
features
Disk	scheduling	(YARN-2139)	/	Present	on-going	features
Reservation-based	scheduling	(YARN-1051)	/	Present	on-going	features
Container	Resizing	(YARN-1197)	/	Future	features
Admin	labels	(YARN-796)	/	Future	features
Container	Delegation	(YARN-1488)	/	Future	features

YARN-321
URL	/	Present	on-going	features

YARN-796
URL	/	Future	features

YARN-896
URL	/	Present	on-going	features

YARN-1197
URL	/	Future	features

YARN-1530
URL	/	Present	on-going	features

YARN-2139
URL	/	Present	on-going	features

YARN-supported	frameworks
about	/	YARN-supported	frameworks

YARN	administrations

about	/	Administration	of	YARN
configuration	files	/	Administration	of	YARN
administrative	tools	/	Administrative	tools
nodes,	adding	from	YARN	cluster	/	Adding	and	removing	nodes	from	a	YARN
cluster
nodes,	removing	from	YARN	cluster	/	Adding	and	removing	nodes	from	a
YARN	cluster
YARN	jobs,	administrating	/	Administrating	YARN	jobs
MapReduce	job,	configurations	/	MapReduce	job	configurations
YARN	log	management	/	YARN	log	management
YARN	web	user	interface	/	YARN	web	user	interface

YARN	applications
monitoring,	with	web	GUI	/	Monitoring	YARN	applications	with	web	GUI
developing	/	Developing	YARN	applications
ApplicationClientProtocol	/	Developing	YARN	applications
ApplicationMasterProtocol	/	Developing	YARN	applications
ContainerManagerProtocol	/	Developing	YARN	applications

YARN	application	workflow
about	/	The	YARN	application	workflow
YARN	client,	writing	/	Writing	the	YARN	client
ApplicationMaster,	writing	/	Writing	the	YARN	ApplicationMaster

YARN	architecture
components	/	Core	components	of	YARN	architecture
development	/	Recent	developments	in	YARN	architecture

YARN	architecture,	components
ResourceManager	/	ResourceManager
ApplicationMaster	(AM)	/	ApplicationMaster	(AM)
NodeManager	(NM)	/	NodeManager	(NM)

YARN	client
writing	/	Writing	the	YARN	client

YARN	cluster
nodes,	adding	from	/	Adding	and	removing	nodes	from	a	YARN	cluster
nodes,	removing	from	/	Adding	and	removing	nodes	from	a	YARN	cluster

YARN	jobs
administrating	/	Administrating	YARN	jobs

YARN	log	management	/	YARN	log	management
YARN	MapReduce	settings

example	/	Example	YARN	MapReduce	settings
properties	/	Example	YARN	MapReduce	settings

YARN	scheduler	policies
about	/	YARN	scheduler	policies
FIFO	scheduler	/	The	FIFO	(First	In	First	Out)	scheduler
Fair	scheduler	/	The	fair	scheduler
capacity	scheduler	/	The	capacity	scheduler

YARN	scheduling	polices
about	/	YARN	scheduling	policies
FIFO	scheduler	/	The	FIFO	(First	In	First	Out)	scheduler
capacity	scheduler	/	The	capacity	scheduler
Fair	scheduler	/	The	fair	scheduler

YARN	web	user	interface	/	YARN	web	user	interface

Z
Zookeeper

URL	/	Apache	ZooKeeper	should	be	installed

	YARN Essentials
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Need for YARN
	The redesign idea
	Limitations of the classical MapReduce or Hadoop 1.x
	YARN as the modern operating system of Hadoop
	What are the design goals for YARN
	Summary
	2. YARN Architecture
	Core components of YARN architecture
	ResourceManager
	ApplicationMaster (AM)
	NodeManager (NM)
	YARN scheduler policies
	The FIFO (First In First Out) scheduler
	The fair scheduler
	The capacity scheduler
	Recent developments in YARN architecture
	Summary
	3. YARN Installation
	Single-node installation
	Prerequisites
	Platform
	Software
	Starting with the installation
	The standalone mode (local mode)
	The pseudo-distributed mode
	The fully-distributed mode
	HistoryServer
	Slave files
	Operating Hadoop and YARN clusters
	Starting Hadoop and YARN clusters
	Stopping Hadoop and YARN clusters
	Web interfaces of the Ecosystem
	Summary
	4. YARN and Hadoop Ecosystems
	The Hadoop 2 release
	A short introduction to Hadoop 1.x and MRv1
	MRv1 versus MRv2
	Understanding where YARN fits into Hadoop
	Old and new MapReduce APIs
	Backward compatibility of MRv2 APIs
	Binary compatibility of org.apache.hadoop.mapred APIs
	Source compatibility of org.apache.hadoop.mapred APIs
	Practical examples of MRv1 and MRv2
	Preparing the input file(s)
	Running the job
	Result
	Summary
	5. YARN Administration
	Container allocation
	Container allocation to the application
	Container configurations
	YARN scheduling policies
	The FIFO (First In First Out) scheduler
	The FIFO (First In First Out) scheduler
	The capacity scheduler
	Capacity scheduler configurations
	The fair scheduler
	Fair scheduler configurations
	YARN multitenancy application support
	Administration of YARN
	Administrative tools
	Adding and removing nodes from a YARN cluster
	Administrating YARN jobs
	MapReduce job configurations
	YARN log management
	YARN web user interface
	Summary
	6. Developing and Running a Simple YARN Application
	Running sample examples on YARN
	Running a sample Pi example
	Monitoring YARN applications with web GUI
	YARN's MapReduce support
	The MapReduce ApplicationMaster
	Example YARN MapReduce settings
	YARN's compatibility with MapReduce applications
	Developing YARN applications
	The YARN application workflow
	Writing the YARN client
	Writing the YARN ApplicationMaster
	Responsibilities of the ApplicationMaster
	Summary
	7. YARN Frameworks
	Apache Samza
	Writing a Kafka producer
	Writing the hello-samza project
	Starting a grid
	Storm-YARN
	Prerequisites
	Hadoop YARN should be installed
	Apache ZooKeeper should be installed
	Setting up Storm-YARN
	Getting the storm.yaml configuration of the launched Storm cluster
	Building and running Storm-Starter examples
	Apache Spark
	Why run on YARN?
	Apache Tez
	Apache Giraph
	HOYA (HBase on YARN)
	KOYA (Kafka on YARN)
	Summary
	8. Failures in YARN
	ResourceManager failures
	ApplicationMaster failures
	NodeManager failures
	Container failures
	Hardware Failures
	Summary
	9. YARN – Alternative Solutions
	Mesos
	Omega
	Corona
	Summary
	10. YARN – Future and Support
	What YARN means to the big data industry
	Journey – present and future
	Present on-going features
	Future features
	YARN-supported frameworks
	Summary
	Index

