
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Kelly Goetsch

eCommerce in the Cloud

www.allitebooks.com

http://www.allitebooks.org

eCommerce in the Cloud
by Kelly Goetsch

Copyright © 2014 Kelly Goetsch. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Ann Spencer
Production Editor: Melanie Yarbrough
Copyeditor: Kiel Van Horn
Proofreader: Sharon Wilkey

Indexer: Ellen Troutman-Zaig
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Rebecca Demarest

April 2014: First Edition

Revision History for the First Edition:

2014-04-18: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781491946633 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. eCommerce in the Cloud, the cover image of a, and related trade dress are trademarks of O’Reilly
Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-491-94663-3

[LSI]

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781491946633
http://www.allitebooks.org

Table of Contents

Preface. ix
Introduction. xv

Part I. The Changing eCommerce Landscape

1. The Global Rise of eCommerce. 3
Increasing Use of Technology 4

Internet Connectivity 4
Internet-Enabled Devices 5

Inherent Advantages of eCommerce 5
Price Advantage 5
Convenience 6
Large Product Assortment 7

Technological Advances 8
Closer Tie-in with the Physical World 8
Increasing Maturity of eCommerce Offerings 10

Changing Face of Retail 19
Omnichannel Retailing 22
Business Impact of Omnichannel 25
Technical Impact of Omnichannel 26

Summary 29

2. How Is Enterprise eCommerce Deployed Today?. 31
Current Deployment Architecture 32

DNS 33
Intra Data Center Load Balancing 34
Web Servers 35
eCommerce Applications 39
Application Servers 41

iii

www.allitebooks.com

http://www.allitebooks.org

Databases 42
Hosting 44

Limitations of Current Deployment Architecture 46
Static Provisioning 46
Scaling for Peaks 47
Outages Due to Rapid Scaling 50

Summary 51

Part II. The Rise of Cloud Computing

3. What Is Cloud Computing?. 55
Generally Accepted Definition 55

Elastic 57
On Demand 58
Metered 59

Service Models 61
Software-as-a-Service 62
Platform-as-a-Service 64
Infrastructure-as-a-Service 65

Deployment Models 66
Public Cloud 67
Hybrid Cloud 67
Private Cloud 68

Hardware Used in Clouds 69
Hardware Sizing 70

Complementary Cloud Vendor Offerings 71
Challenges with Public Clouds 73

Availability 73
Performance 74
Oversubscription 77
Cost 78

Summary 79

4. Auto-Scaling in the Cloud. 81
What Is Auto-Scaling? 81
What Needs to Be Provisioned 82

What Can’t Be Provisioned 84
When to Provision 84

Proactive Provisioning 85
Reactive Provisioning 86

Auto-Scaling Solutions 87

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Requirements for a Solution 88
Building an Auto-scaling Solution 91
Building versus Buying an Auto-Scaling Solution 93

Summary 94

5. Installing Software on Newly Provisioned Hardware. 95
What Is a Deployment Unit? 95
Approaches to Building Deployment Units 97

Building from Snapshots 97
Building from Archives 99
Building from Source 101

Monitoring the Health of a Deployment Unit 103
Lifecycle Management 107
Summary 108

6. Virtualization in the Cloud. 109
What Is Virtualization? 110

Full Virtualization 110
Paravirtualization (Operating System–Assisted Virtualization) 112
Operating System Virtualization 113

Summary of Virtualization Approaches 115
Improving the Performance of Software Executed on a Hypervisor 116
Summary 119

7. Content Delivery Networks. 121
What Is a CDN? 123
Are CDNs Clouds? 124
Serving Static Content 125
Serving Dynamic Content 128

Caching Entire Pages 129
Pre-fetching Static Content 132
Security 133

Additional CDN Offerings 135
Frontend Optimization 135
DNS/GSLB 136
Throttling 138

Summary 139

Part III. To the Cloud!

8. Architecture Principles for the Cloud. 143

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

Why Is eCommerce Unique? 143
Revenue Generation 143
Visibility 144
Traffic Spikiness 144
Security 144
Statefulness 144

What Is Scalability? 146
Throughput 146
Scaling Up 147
Scaling Out 148

Rules for Scaling 149
Technical Rules 150
Nontechnical Rules 160

9. Security for the Cloud. 163
General Security Principles 165
Adopting an Information Security Management System 166

PCI DSS 167
ISO 27001 169
FedRAMP 170

Security Best Practices 171
Defense in Depth 172
Information Classification 173
Isolation 174
Identification, Authentication, and Authorization 175
Audit Logging 176

Security Principles for eCommerce 177
Security Principles for the Cloud 179

Reducing Attack Vectors 180
Protecting Data in Motion 183
Protecting Data at Rest 185

Summary 186

10. Deploying Across Multiple Data Centers (Multimaster). 187
The Central Problem of Operating from Multiple Data Centers 189
Architecture Principles 190

Principles Governing Distributed Computing 191
Selecting a Data Center 195
Initializing Each Data Center 196
Removing Singletons 196
Never Replicate Configuration 197

Assigning Customers to Data Centers 198

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

DNS 198
Global Server Load Balancing 201

Approaches to Operating from Multiple Data Centers 205
Active/Passive 205
Active/Active Application Tiers, Active/Passive Database Tiers 207
Active/Active Application Tiers, Mostly Active/Active Database Tiers 208
Full Active/Active 210
Stateless Frontends, Stateful Backends 211

Review of Approaches 212
Summary 213

11. Hybrid Cloud. 215
Hybrid Cloud as a By-product of Architecture for Omnichannel 217
Connecting to the Cloud 222

Public Internet 223
VPN 223
Direct Connections 223

Approaches to Hybrid Cloud 224
Caching Entire Pages 224
Overlaying HTML on Cached Pages 227
Using Content Delivery Networks to Insert HTML 229
Overlaying HTML on the Server Side 230
Fully Decoupled Frontends and Backends 231
Everything but the Database in the Cloud 233

Summary 234

12. Exclusively Using a Public Cloud. 237
Why Full Cloud? 237

Business Reasons 237
Technical Reasons 238

Why Not Full Cloud? 239
Path to the Cloud 241
Architecture for Full Cloud 243

Review of Key Principles 243
Architecture for Omnichannel 245
Larger Trends Influencing eCommerce Architecture 246

How to Select a Cloud Vendor 247
Summary 248

Index. 249

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

1. Data courtesy of Akamai Technologies, 2013.

Preface

Among all enterprise workloads, ecommerce is unique because of the extreme varia‐
bility in traffic. The chart in Figure P-1 shows the number of page views per second over
the course of the month of November for a leading US retailer.1

Figure P-1. November page views for a leading US retailer

The amount of hardware required varies substantially over the course of a month, day,
or even hour, yet provisioning a production environment to 500% of annual peak for
the entire year is common. A large US retailer recently sold $250 million online over a
seven-day period, yet their CPU utilization, which is their bottleneck, never topped 15%.

Having spent my career deploying large ($1 billion+/year in annual revenue) ecom‐
merce platforms and later building the technology under these platforms, I am always

ix

struck by the fear-driven inefficiencies and fashion-driven dogmatism that permeates
every aspect of our trade. Aside from being wasteful, the real problem is distraction
from your core business. We are at a juncture in history where a fundamental change
is required. We can do better than the status quo.

Cloud computing, having matured over the past decade, is now to the point where it
can finally be used for large-scale ecommerce. Cloud offers the promise to scale up and
down dynamically to match your real-time needs. You pay for only what you need and
you can use as much as you want. The cloud vendor deals with all of the work that goes
into building infrastructure, platforms, or services, allowing you to focus on your core
business. “It just makes so much sense,” is what most people say about the combination
of ecommerce and cloud, yet “Are you crazy?” is what most people say when you actually
propose its use.

In this book, I’ll show you how cloud computing, particularly public Infrastructure-as-
a-Service, is evolutionary from a technology standpoint and revolutionary from a busi‐
ness standpoint. Using what you already know, I’ll show you how you can quickly and
incrementally adopt cloud computing for any ecommerce platforms, whether packaged
or custom and new or legacy. Cloud computing is firmly on the “right” side of history,
and I hope you’ll join me in exploring how it can be applied to the most challenging of
use cases: ecommerce.

Software-as-a-Service ecommerce offerings are not in the scope of
this book.

Intended Audience
This book is for architects and aspiring architects who wish to learn more about cloud
computing and how the top ecommerce vendors can leverage the cloud. While the first
chapter focuses on the current state of ecommerce, the remainder of the book focuses
on the architecture required to use the cloud for ecommerce. The principles contained
within are also easily applied to other transactional web applications. If you can deploy
a large-scale ecommerce platform in a cloud, you can deploy anything.

Contents of This Book
This book is organized into three parts.

In Part I, we’ll look at the current trends in ecommerce in Chapter 1 and the prevailing
deployment architecture in Chapter 2.

x | Preface

In Part II, we’ll focus on cloud computing and its various incarnations. We’ll start out
in Chapter 3 by discussing what cloud actually is, followed by how to auto-scale in
Chapter 4, and how to automatically install and configure your software on the newly
provisioned hardware in Chapter 5. Virtualization will be discussed in Chapter 6 and
Content Delivery Networks in Chapter 7.

In Part III, we’ll discuss how to use cloud computing for ecommerce. We’ll start by
discussing key architecture principles in Chapter 8, followed by security in Chapter 9,
and then how to deploy to multiple geographically distant data centers in Chapter 10.
In Chapter 11, we’ll discuss how to use a hybrid cloud. Chapter 12 discusses how to
serve an entire platform from the cloud.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

Preface | xi

This element indicates a warning or caution.

Safari® Books Online
Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/ecommerce_in_the_cloud.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

xii | Preface

http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/ecommerce_in_the_cloud
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com

Find us on Facebook: http://www.facebook.com/oreilly

Follow us on Twitter: http://www.twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
This book is the direct result of people who have invested in me—from my family to
the hundreds of people who have helped me in some way throughout my career. I am
perpetually humbled by people’s capacity for selfless acts of kindness.

Specifically, I’d like to thank my uncle, David Kroening, for introducing me to tech‐
nology at an early age; my early mentor, Guy Morazain, for introducing me to ecom‐
merce and launching my career; and Mohamad Afshar, for encouraging me to write
this book and for mentoring me on the business side of technology.

I’d also like to thank my reviewers Mark Scarton, Devon Hillard, Vaskin Kissoyan, Scott
Van Ummersen, Andy Powers, Leo Dolan, Jags Krishnamurthy, and Glen Borkowski
for keeping me honest and for providing insights that have shaped this book.

Finally, I’d like to thank my amazing wife, Melissa. It’s only with her support that I was
able to write this book and am able to focus on my career. She’s the best.

Preface | xiii

http://www.facebook.com/oreilly
http://www.twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

1. Amy Dusto, “Global e-commerce Tops $1 Trillion in 2012,” http://bit.ly/MrUzqB (5 February 2013).

2. eCommerce Disruption: A Global Theme. Transforming Traditional Retail. Morgan Stanley, January 6 2013.

3. Rigby, Darrell, et al. “Omnichannel Retailing: Digital Disruption and Retailer Opportunities,” Bain Retail
Holiday Newsletter (9 November 2012), http://bit.ly/1k7ypJ5.

4. http://bit.ly/1fwVX2r

Introduction

We are in the midst of an ecommerce-driven revolution in retail. Prior to the mid-1990s,
ecommerce didn’t exist. Today, business-to-consumer (B2C) ecommerce is a $1 trillion
per year business worldwide,1 directly accounting for 6.5% of total global retail sales.2

Over 50%3 of retail sales in the US are now influenced by ecommerce. Emerging markets
like Brazil, Russia, India, and China offer nearly limitless growth potential.

For the purposes of this book, ecommerce is defined as any com‐
mercial transaction facilitated between two parties using the
Internet. This book will be most useful to those running $100
million/year businesses selling physical goods and services over
the Internet to end consumers, though the principles will be ap‐
plicable to all forms of ecommerce.

eCommerce Deployment Architecture: Frozen in Time
In addition to becoming increasingly important to business, ecommerce is a fairly
unique use case within information technology (IT). It’s perhaps the most visible plat‐
form a retailer has, either influencing or directly contributing around half of revenue.4

Failures lead to front-page news, disclosures in earnings calls, reduction in stock price,
and firings. Most applications are just not that important—if payroll is processed five
hours late, nobody cares. All customer touchpoints are increasingly likely to be facili‐
tated by ecommerce, as point-of-sale systems are being replaced with tablets that con‐

xv

http://bit.ly/MrUzqB
http://bit.ly/1k7ypJ5
http://bit.ly/1fwVX2r

5. Steve Lohr, “For Impatient Web Users, an Eye Blink Is Just Too Long to Wait,” New York Times (2012), http://
nyti.ms/1esukXm

6. Greg Linden, “Make Data Useful,” Amazon.com and Findory, http://bit.ly/1k7ypZw (PowerPoint file down‐
load).

nect to a single ecommerce platform. An outage now is the equivalent of barring cus‐
tomers from entering all physical stores.

Because of increasing competition and the maturity of offerings, customers are in‐
creasingly fickle about performance. They expect response times to be instant. The New
York Times recently said: “The old two-second guideline has long been surpassed on
the racetrack of Web expectations.”5 Going on further to say: “Two hundred fifty mil‐
liseconds, either slower or faster, is close to the magic number now for competitive
advantage on the Web.” Amazon.com saw a 1% increase in revenue for every 100 mil‐
liseconds of response-time improvement.6 In today’s world, milliseconds matter.

Availability and performance are becoming increasingly difficult to offer as traffic has
become more prone to rapid spikes due to an increasing reliance on promotions and
marketing-driven events. We’ll discuss this more later, but it’s not uncommon to see
spikes in traffic that are one or two orders of magnitude above steady state. Social media–
based marketing can lead to campaigns going viral. From an IT administrator’s stand‐
point, the traffic can come so quickly that it looks like a distributed denial-of-service
attack, when in reality it’s likely to be a few million kids hitting refresh on their pages
in anticipation of the release of the latest hot basketball shoe.

While ecommerce has been maturing over the past two decades, the prevailing deploy‐
ment architecture looks largely as it did in the beginning—mostly static environments
fronted by web servers deployed out of a single data center. Many simply guess at what
their peaks will be and then multiply that number by five for safety. Hardware is statically
deployed and idle for most of the year. It’s been done this way for four reasons:

• IT administrators fear losing their jobs because of outages. It’s simply less risky to
throw hardware at problems.

• For a while, ecommerce deployments were small enough that the hardware cost
was negligible.

• There hasn’t been a good alternative to the static approach—cloud in its present
form didn’t exist until very recently, and it’s matured only recently.

• The old models of hosting had more accountability. If there was an outage, you
could always escalate to your vendor.

The current approach to ecommerce deployment architecture is not scalable. The rise
in traffic has ballooned environments from dozens to hundreds or even thousands of
servers. Given today’s extremely competitive business climate, it’s not feasible to have

xvi | Introduction

http://nyti.ms/1esukXm
http://nyti.ms/1esukXm
http://bit.ly/1k7ypZw

hundreds or thousands of servers sit idle for all but a few hours out of the year. It’s also
increasingly difficult to predict traffic. Most important, and central to this book, is that
cloud computing has matured to the point where it can be used for ecommerce.

What Is Cloud?
Cloud is one of those ineffable terms that has been redefined to encompass everything,
yet means nothing. For the purposes of this book, the cloud is best characterized by
three adjectives: elastic, on demand, and metered. Let’s look at each in greater detail:
Elastic

To be considered cloud, you must be able to increase or decrease a given resource
either automatically or on demand by using self-service user interfaces or APIs. A
resource can include anything you have in your data center today—from commo‐
ditized hardware running Linux (Infrastructure-as-a-Service), to application
servers (Platform-as-a-Service), up to applications (Software-as-a-Service). The
“what” doesn’t matter all that much; it’s the fact that you can provision new
resources.

On Demand
Seeing as elastic is the first word used to describe the cloud, you must be able to
provision a resource precisely when you need it and release it when you don’t.

Metered
You should pay only for what you use. This has enormous implications, as the costs
directly reflect usage and can therefore be substantially lower.

When the term cloud is used in this book, it generally refers to public Infrastructure-
as-a-Service. We’ll spend Chapter 3 describing cloud in more detail.

Why Is the Cloud a Fit for eCommerce?
Cloud is a natural fit for ecommerce because you can provision and pay for resources
when you need them instead of building enormous static environments scaled for peaks.
The goal is to provision automatically, which we’ll discuss in Chapter 4. Without the
cloud, environments are statically built and scaled for peak load. It doesn’t make sense
when you can use a cloud. The problem of underutilization is even worse for prepro‐
duction environments, many of which are built to some scale of production yet sit even
more idle than production. Most deployments have approximately the following envi‐
ronments:

• Two production environments (each capable of handling 500% of the peak pro‐
duction traffic)

• Three staging environments (each being 50% of production)

Introduction | xvii

• Three QA environments (each being 25% of production)
• Three or more development environments (each being 10% of production)

The staging environments are likely to be used for some form of automated testing about
once a week or so. QA environments are likely to be used by a handful of QA testers.
But that’s it. If you look at the average CPU usage of all these preproduction environ‐
ments, it’s likely to be less than 1% for any given week, yet these environments consume
the equivalent of multiple production environments’ worth of hardware. The situation
is slightly better with production but not much.

In addition to being wasteful, building out and maintaining these environments is likely
not your core competency as an organization and is likely distracting you from what
you do best—whether that’s selling the latest iPhone or selling diapers. Let the few major
cloud vendors hire the right talent to build infrastructure. Cloud computing makes so
much sense for ecommerce that its proper use can provide you with serious competitive
differentiation while lowering costs. Let’s explore how ecommerce and retail are chang‐
ing.

xviii | Introduction

PART I

The Changing eCommerce Landscape

1. eCommerce Disruption: A Global Theme Transforming Retail, 6 January 2013.

CHAPTER 1

The Global Rise of eCommerce

The growth of ecommerce around the world is unstoppable, with double- or even triple-
digit growth seen annually since its emergence in the mid-1990s. This growth has enor‐
mous technical implications for both application and deployment architecture, with all
indications that this growth is likely to continue for the coming decades. According to
a 2013 report by Morgan Stanley, global ecommerce as a percentage of total retail sales
is expected to grow by 43%, between 2012 and 2016.1

The reasons for this growth are as follows:

• Increasing use of technology
— Internet use
— Internet-enabled devices

• Inherent advantages of ecommerce
— Price advantage
— Convenience
— Large product assortment

• Technological advances
— Closer tie-in with the physical world
— Increasing maturity of ecommerce offerings

Let’s explore each of these further.

3

2. http://bit.ly/1gELPFo, http://bit.ly/QYg8Cq.

3. eMarketer, “Millennial Men Keep Their Digital Lives Humming,” (23 September 2013), http://bit.ly/OqrRYw.

Increasing Use of Technology
Internet Connectivity
Ubiquitous internet connectivity has been a direct driver of ecommerce growth, as the
Internet is a prerequisite to the “e” in “ecommerce.” In developed countries, 77% of
individuals use the Internet, whereas in developing countries, that figure is a lower 31%.
2

Figure 1-1. Internet Users of Developed and Developing Countries (% of total poula‐
tion), 1997-2013

Internet users heavily skew young. In the US, 97% of 18–29 year olds are Internet users,
but that figure drops to 57% for those aged 65 and older. Over time, Internet use will
increase to nearly 100% across all age groups.

Forty percent of men aged 18–34 in the US agree with this
statement: “Ideally, I would buy everything online.”3

4 | Chapter 1: The Global Rise of eCommerce

http://bit.ly/1gELPFo
http://bit.ly/QYg8Cq
http://bit.ly/OqrRYw

4. Alamo, “Phone Home!” (March 2009), http://bit.ly/MrUC5Q.

5. Natasha Lomas, “Forrester: Tablet Installed Base Past 905M By 2017, Up From 327M In 2013,” TechCrunch
(6 August 2013), http://techcrunch.com/2013/08/06/forrester-tablets/.

6. Pymnts.com, “Online Versus In-Store Shopping Trends: What Drives Consumer Choice,” (18 December
2012), http://bit.ly/1k7ytsc.

7. Accenture Interactive, “Today’s Shopper Preferences: Channels, Social Media, Privacy and the Personalized
Experience,” (November 2012), http://bit.ly/MrUBPf.

As ISPs mature, the reliability and bandwidth of their offerings has increased, while the
cost has dropped. At the same time, there are an increasing number of devices that can
be used to access the Internet.

Internet-Enabled Devices
Internet-enabled devices of all types now make it easier to shop wherever and whenever.
It wasn’t too long ago that the only way to get online was through a stationary computer
connected to the Internet over a dial-up modem. Today, the primary means of Internet
access around the world is through mobile devices. They’re everywhere and always
connected. An incredible 84% of UK citizens won’t leave home without their cellphones.
4 Tablets have gone from being nonexistent to almost a billion in circulation projected
by 2017. In North America, 60% of Internet users are expected to own a tablet by
2017.5 These devices are ubiquitous and each one of them is capable of facilitating
ecommerce, with many ecommerce vendors offering custom applications specifically
built for each device.

Even when customers visit a physical retail store, they often research products and check
prices online while in the store. A recent survey found that 77% of all American cus‐
tomers have done this, while those in the millennial generation do this 85% of the time.
6 Customers want information about the products they’re buying and they want to make
sure they’re paying a fair price.

Today’s customers, especially younger ones, want to be able to make purchases on their
own terms. They want full control over when, where, and how they shop.

Inherent Advantages of eCommerce
Price Advantage
Many customers believe that pricing is better online. For example, an Accenture survey
showed that 52% of customers in the US and UK believed that prices online were cheaper
than in store.7 For the most part, this is true. Lower overhead, lower taxes, and disin‐
termediation have all played roles in driving down prices online.

Inherent Advantages of eCommerce | 5

http://bit.ly/MrUC5Q
http://techcrunch.com/2013/08/06/forrester-tablets/
http://bit.ly/1k7ytsc
http://bit.ly/MrUBPf

8. The Economist, “Retailers and the Internet: Clicks and Bricks,” (25 February 2012), http://econ.st/1k7yrRe.

9. Ernst and Young, “Worldwide VAT, GST, and Sales Tax Guide,” (May 2013), http://bit.ly/MrUAe3.

10. Steven Vaughan-Nichols, “Australian Retailer Charges Customers IE 7 Tax,” (14 June 2012), http://zd.net/
1k7ys7K.

Online-only vendors have much less overhead, and ecommerce around the world is led
by pure play vendors—online-only vendors whose business model is to not operate out
of physical stores. For example, Macy’s, a retailer with a physical and online presence,
is investing $400 million in the renovation of its flagship store in New York.8 With even
the largest ecommerce implementations costing less than $100 million, the return on
investment is much higher than $400 million spent on one physical store. The fixed
costs are so high in traditional retail that some retail chains are seen by investors as real
estate investment firms first and retailers second. The lower overhead of pure play
ecommerce vendors often translates to lower prices.

Taxes are another downward driver on prices. Taxes on goods purchased in a physical
retail store in most developed markets can exceed 20%.9 The regulations that apply to
physical retailers often don’t apply to ecommerce vendors, especially those across bor‐
ders. Many jurisdictions charge taxes only when the retailer physically has a presence
in that jurisdiction. For cross-border shipping, especially of expensive electronics and
luxury goods, this is often not the case. The cost savings can be substantial.

Disintermediation continues to play a big role in pushing down prices, as manufacturers
set up direct-to-consumer ecommerce platforms and sell on marketplace-like exchang‐
es. Prior to ecommerce, manufacturers had to sell to wholesalers who then sold to re‐
tailers. Now it’s fairly easy, at least technically, to set up a direct-to-consumer business
and keep those margins.

Online prices are not always lower, though. An advantage ecommerce offers is the ability
to price discriminate based on anything—from previous purchasing history, to geo‐
graphic location, to demographic information like gender and income. For example, an
Australian retailer was recently found to be imposing a 6.8% surcharge on all Internet
Explorer 7 users.10 Prices can be set however and whenever the vendor pleases. Outside
of not causing public relations headaches or running afoul of local laws, there are no
rules or restrictions online. In physical stores, it’s a logistical nightmare to change prices,
and it’s often impossible to charge people different prices for the same goods. Coupons
and targeted promotions can help, but the sticker prices are exceedingly hard to change.

Convenience
The costs to customers of shopping in a traditional retail store can be substantial.
Quantifiable costs include the following:

6 | Chapter 1: The Global Rise of eCommerce

http://econ.st/1k7yrRe
http://bit.ly/MrUAe3
http://zd.net/1k7ys7K
http://zd.net/1k7ys7K

11. Associated Press, “260,000-square-foot Wal-Mart in Upstate NY,” (20 March 2008), http://nbcnews.to/
MrUCCR.

12. Neal Karlinsky and Brandon Baur, “From Click to Delivery: Inside Amazon’s Cyber Monday Strategy,” ABC
News (26 November 2012), http://abcn.ws/1k7ysEQ.

• Time away from home or work
• Transportation costs, including fuel for your car or public transportation costs
• Often higher costs due to an inability to comparison shop

Unquantifiable costs include listening to your toddler scream for candy at checkout,
among others.

The costs of online shopping are virtually nothing. It takes seconds to purchase a product
from a vendor that you’ve done business with in the past and it can even be done from
the convenience of a smartphone. Even when shopping with new retailers, it takes no
longer than a few minutes to find and buy the product you’re looking for. Return-
friendly policies make it easy to return products that may not fit properly, like shoes or
clothing. And the maturity of ecommerce, as we’ll discuss shortly, makes it easy to
quickly find exactly what you’re looking for.

Large Product Assortment
Most physical retail stores are small—between 3,000–10,000 square feet, usually selling
a few hundred products in one category of merchandise. For example, it would be very
difficult to find this book and car parts in the same physical store. Even larger-format
hypermarkets, which can be as large as 260,000 square feet,11 sell only a few thousand
products. Their assortment tends to be wide but not very deep. It’s hard to sell a wide
range of products in physical stores because retailers have to procure and take physical
possession of products, get the products to each physical store, continually stock the
shelves, and so on. This is all very capital and labor-intensive, resulting in low margins.

Large ecommerce vendors sometimes don’t even take physical possession of the goods
they sell, using arrangements such as drop shipping, whereby the manufacturer or
wholesaler ships directly to the end customer. Many ecommerce vendors are using
marketplaces where the sellers are clearly identified as being a third party, usually the
manufacturer or a small wholesaler. Both drop shipping and marketplaces have elimi‐
nated a lot of inventory, risk, capital, and labor associated with carrying that inventory.

To further add to the benefits of ecommerce, products can be shipped from a few cen‐
trally located warehouses, with the vendors having to worry about keeping only a few
warehouses stocked, as opposed to thousands of physical stores. Amazon.com ships its
products out of over 80 physical warehouses around the world, with many over one
million square feet.12 It can still be profitable for an ecommerce vendor to sell 100 units

Inherent Advantages of eCommerce | 7

http://nbcnews.to/MrUCCR
http://nbcnews.to/MrUCCR
http://abcn.ws/1k7ysEQ

13. Reuters, “Online Grocery Sales to Double in Key European Markets by 2016—IGD,” (23 October 2013),
http://reut.rs/MrUCTm.

of a given product, whereas it would never be profitable for a physical retailer. This has
revolutionized entire industries, like book selling and auto parts distribution, as people
want to buy niche products that aren’t economically feasible to stock in physical retail
stores.

Technological Advances
Closer Tie-in with the Physical World
Because of its nature, ecommerce has some distinct advantages and disadvantages over
traditional retail. We discussed many of the advantages earlier, including price, conve‐
nience, and assortment. The main disadvantages, also discussed earlier, include the
inability to see and/or try on goods, and shipping. This is where ecommerce vendors
with physical stores can have an edge over pure play ecommerce vendors. They can
leverage their physical stores to bridge the gap between the virtual and physical worlds.

Let’s start with the inability to see and try on goods. Many retail stores, whether be‐
longing to the ecommerce vendor where the purchase is ultimately made or not, have
become virtual showrooms. Showrooming refers to the trend of customers viewing and
trying on the products in physical stores but then buying online. Traditional retailers
without a strong ecommerce offering abhor this behavior and have even hidden barc‐
odes in a feeble attempt to stop it. Retailers with a strong ecommerce offering have even
begun to encourage the practice by offering free in-store WiFi, advertising wider as‐
sortments that are available online, encouraging customers to view product reviews
online, and offering detailed content that’s featured only online. The thought behind
this is that it’s better to cannibalize revenue from your physical stores with your ecom‐
merce offering as opposed to someone else’s ecommerce offering. Having a strong
physical and ecommerce presence is what’s required to succeed in today’s increasingly
digital world.

Many ecommerce vendors with physical stores now offer in-store pickup and in-store
return of goods purchased online. A few offer fulfillment from physical stores, meaning
any item from any physical store can be picked off the shelves and delivered to cus‐
tomers. This makes all of the inventory from a retailer’s entire network available to
anybody in the world. Certain types of ecommerce vendors, like grocers, have always
featured in-store fulfillment as well as delivery from the local store. In the UK, this is a
$10 billion/year business, with physical retail stores both fulfilling and shipping (via
delivery vans) the goods to individuals.13 Other categories of goods that have tradition‐
ally been fulfilled from local retail stores include large electronics, furniture, and other
items that are too big to ship or require custom installation.

8 | Chapter 1: The Global Rise of eCommerce

http://reut.rs/MrUCTm

14. Mark Brohan, “Reducing the Rate of Returns,” Internet Retailer (29 May 2013), http://bit.ly/1k7ytIW.

To compensate for the advantage that retailers with physical stores have, leading-edge
online-only ecommerce vendors are experimenting with same-day delivery and offering
customers the ability to pick up goods from drop boxes, which are simply automated
kiosks containing your goods that you unlock with a code. Often these drop boxes are
scattered throughout metropolitan areas in places like convenience stores. This makes
it faster for customers to receive and return goods while lowering shipping costs.

Customer-friendly policies
By its nature, ecommerce is at a distinct disadvantage over traditional retailers because
of the physical distance between the products and the customers. In a purely physical
retail world, this isn’t an issue. You pay for the products at a point-of-sale terminal and
walk out the door with your products in hand. Specific problems with ecommerce and
shipping include the following:

• Cost of outbound shipping (sending goods from vendor to customer)
• Cost of inbound shipping (sending returned goods from customer back to vendor)
• Time it takes to receive goods
• Delays and taxes incurred at border crossings
• Cost/time to return

These problems are made worse by the fact that customers want to physically see and
try on goods. There’s a reason that many physical retail stores, especially those selling
higher-end noncommoditized merchandise, sometimes spend hundreds of thousands
of dollars for lighting and changing rooms in their stores. Customers often want to see
and try on those categories of goods including clothing, shoes, leather goods, jewelry,
watches, and so on. You can’t do that with ecommerce, so the return rates tend to be
higher. Return rates can be as high as 20%–30% for apparel.14

To compensate for these deficiencies, many vendors offer these incentives:

• Free inbound and outbound shipping to at least some customers—often those who
are the most loyal or those who need to be enticed to complete a purchase

• Reduced-price expedited shipping, sometimes offered as part of an annual mem‐
bership

• Free same-day delivery, especially in smaller countries or large metro areas
• In-store pickup and returns for vendors with physical stores

Technological Advances | 9

http://bit.ly/1k7ytIW

• Depot-based pickup, where you can have your goods delivered to a secure locker
in a local convenience store or gas station

Customer-friendly policies such as free shipping and free returns are cutting into mar‐
gins less as shipping costs are being reduced. The clear trend of the past decade has been
away from giant monolithic fulfillment centers to smaller, more regional centers that
are closer to customers. A package is going to cost less to ship and will show up faster
if it has to travel 500 miles instead of 2,000. These policies hurt margins in the short run
but ultimately lead to satisfied customers who buy more in the long run.

Increasing Maturity of eCommerce Offerings
We’ve come a long way since the beginning of modern ecommerce in the mid-1990s.
Back in the early days of the Internet, ecommerce suffered from a dearth of Internet-
enabled devices, slow connection speeds, little or no web browser standardization, and
little public awareness. The year 1994 was the turning point, when people in the US
began to buy personal computers for the first time and hook them up to the Internet.
Netscape, the original web browser for the masses, began in early 1994 and supported
Security Sockets Layer (SSL) later that year. Dial-up Internet, while slow, was better than
the nothingness that preceded it. Money follows eyeballs, as the old adage goes, and
ecommerce began to grow in tandem and then much faster than Internet use. As people
began to use ecommerce, established retailers and entrepreneurs of all stripes began to
invest. For example, Amazon.com was founded in 1994, and eBay was founded in
1995. This cycle of investment and growth has been repeated in countries all around
the world, beginning when Internet access is available to the masses.

The investments in ecommerce have led to both incremental improvements and major
innovations, including:

• Better functionality through new tools and features that make it easier to shop
• A more personalized shopping experience
• Use of social media to both directly transact and influence sales
• Rich interfaces offered across multiple device types
• Transfer of control from IT to business
• Improvements in underlying technology that improved performance and availa‐

bility
• Customer-friendly policies, like free shipping and no-hassle returns
• Closer tie-in with the physical world—from in-store returns to kiosks in public

places

While innovation is always good, it has come at the cost of complexity. It’s not uncom‐
mon for a large ecommerce platform to have over a million lines of actual source code.

10 | Chapter 1: The Global Rise of eCommerce

www.allitebooks.com

http://www.allitebooks.org

15. Stephanie Clifford, “Online Merchants Home In on Imbibing Consumers,” New York Times (27 December
2011), http://nyti.ms/MrUDXc.

You need to integrate or build solutions for management, monitoring, ratings and re‐
views, product recommendations, load balancing, static content serving, load testing,
and more. You need dozens of products or services, each having its own lifecycle and
service-level agreements. It’s a lot of work. But it’s precisely these technologies and
newfound ways of using them that have led to the widespread and rapid adoption of
ecommerce around the world.

Let’s explore each of these further.

Better functionality
Over the years, ecommerce has evolved from a collection of more or less static HTML
pages to a rich shopping experience, complete with tools and features to help you find
and purchase the goods or services you may or may not even know you want. Shopping
online is now so enjoyable that many prefer to do it under the influence of alcohol when
they’re in a good mood.15 Not many intoxicated customers feel inclined to walk into a
physical retail store in the middle of the night.

The better ecommerce vendors offer advanced tools to help you find exactly the product
you’re looking for. For example, Netshoes.com.br is the largest online apparel retailer in
the world. Netshoes.com.br has no physical stores and specializes in selling shoes online.
To better compete against physical retail stores, Netshoes.com.br invested in technology
to perform 3D scans of shoes. When you create your profile, you can enter in the model
number and size of the shoes that fit you best. When browsing for new shoes, you can
compare the fit of your old shoes versus new shoes and see how the fit actually differs,
as shown in Figure 1-2.

Technological Advances | 11

http://nyti.ms/MrUDXc

Figure 1-2. Netshoes.com.br’s shoe-fitting tool

Innovations like this highlight the advantage that ecommerce offers. In a physical retail
store, you’d have to try on many pairs of shoes until you found the ones that fit you
perfectly. Each physical store is unlikely to have as many shoes to choose from.

Another benefit of ecommerce is the ability to customize products and see accurate
visualizations of customizations. Customized products sell for a premium and keep
customers more engaged. NFLShop.com, for example, does this with custom jerseys.

Enhanced photography, including 360° videos, make it easier to see products. Innova‐
tions in static image serving and devices capable of connecting to the Internet have made
it easier than ever to deliver and render high-resolution images.

Enhanced search has made it trivial to search, browse, and refine your results to pinpoint
exactly what you’re looking for. Modern ecommerce preceded Google’s founding by
four years. For the first few years of ecommerce, search didn’t exist or wasn’t accurate.
For the most part, you had to manually browse through categories of products until you
found what you were looking for. In the 2000s, ecommerce search began to take off,
though it didn’t really mature until the mid-2000s. For many years, search results were
fairly inaccurate, as they simply did keyword matching against each SKU’s metadata.

12 | Chapter 1: The Global Rise of eCommerce

The goal of retail has always been to get the right products in front of the right customer
at the right time. Accurate search enables that.

Modern search is very mature, offering accurate search with the ability to refine by price,
manufacturer, and other product-specific metadata. For example, a search for “usb flash
drive” across any popular ecommerce website will offer customers the ability to refine
by the capacity and USB specification. The ability to quickly refine results has been a
substantial driver of conversions.

Maturing ecommerce search functionality has also helped ecommerce vendors by al‐
lowing business users to boost results, bury results, redirect to a special page for a given
term, and so on. This maturation of technology has allowed today’s business users to
help customers find exactly what they’re looking for while maximizing revenue and
margins.

Category-specific tools and guides have also made shopping easier for novices. For
example, buying memory has never been easier because of a proliferation of memory
finder tools, as depicted in Figure 1-3.

Figure 1-3. Memory finder tool

Technological Advances | 13

Empowered by these tools, novices can get what they need without having to chat or
call a customer service representative. Customer enablement is a key driver of ecom‐
merce’s success, and these tools exemplify that trend.

Over the years, ecommerce has moved from being more transactional to more solution-
oriented. Many customers now want bundles of products that work better together. For
example, viewing the product detail page of a TV now commonly triggers cross-sells,
as shown in Figure 1-4.

Figure 1-4. Example of a cross-sell

These cross-sells are often high-margin goods for vendors, and they help the customer
by completing the solution.

Personalized shopping
Personalization has proven to be a powerful driver of both customer satisfaction and
higher revenue. Broadly, personalization is the ability to customize a shopping experi‐
ence to individual customers or groups of customers based on an attribute or behav‐
ior. Effective personalization drives sales in the way that an attentive sales staff does,
except you don’t have to pay commission to algorithms.

Attribute-based personalization often uses demographic information captured during
registration, and sometimes browsing behavior. For example, as an apparel retailer, you
may want to show your Wisconsin customers winter gloves and your Florida customers
swimsuits in January. Customers in Wisconsin simply have little use for swimsuits in
January and may not advance past the home page when presented with such irrelevant
information. Or imagine a man being presented with the latest lipstick. Chances are,
these recommendations are going to be entirely ignored or even perceived as offensive.
Outside of a few stores in the world, sales people in traditional retail stores would be
fired if they presented a man with lipstick as they walked in the door.

14 | Chapter 1: The Global Rise of eCommerce

16. James Montague, “Corinthians: Craziest fans in the world?” CNN (14 December 2012), http://cnn.it/1k7yvAr.

Behavior-based personalization is triggered by specific events—often the viewing of
specific products. For example, based on my browsing history, this ecommerce website
has determined that I would be interested in the following, shown in Figure 1-5.

Figure 1-5. Example of behavior-based personalization

Behavior-based personalization is often preferred to attribute-based personalization
because it’s based on what customers actually do as opposed to stereotypes about what
they should do. For example, someone located in Wisconsin could be buying a swimsuit
for an upcoming trip to Florida. Displaying related swimsuits because a customer has
already viewed five others in the same session is perfectly normal.

From an ecommerce vendor’s standpoint, personalization serves simply to increase
sales. Going back to Netshoes.com.br, one of their specialties is selling team apparel for
soccer teams in Latin America. Soccer, as with many other sports and activities, can be
a very serious matter to many fans.16

“Corinthians is like a nation, a religion…people are borrowing money from banks, from
relatives to come here. They are quitting their jobs, selling their bikes, their cars, even
their fridges. It’s true.”

— A Corinthian’s fan (Sao Paulo’s hometown club)
 on the legions of fans that followed the team to Japan for

an important match

Now imagine this fan creating an account on Netshoes.com.br, identifying as a Corin‐
thians fan during registration, and then seeing apparel from their archrival, Pameiras,
on the home page. It would be an insult and it would show that Netshoes.com doesn’t
understand him. It’s highly unlikely that a Corinthians fan will ever buy a Pameiras–
branded item. In fact, being presented with a Pameiras item is likely to prevent the sale
of a Corinthians item to this fan. Presenting customers with a personalized shopping
experience has proven to be a substantial driver of sales for many ecommerce vendors.

Technological Advances | 15

http://cnn.it/1k7yvAr

17. Cooper Smith, “Pinterest Is Powering A Huge Amount of Social Commerce, and Twitter Isn’t Too Shabby
Either,” Business Insider, (4 September 2013), http://read.bi/MrUDXp.

18. Hayley Tsukayama, “Your Facebook Friends Have More Friends Than You,” Washington Post (3 February
2012), http://bit.ly/1k7yufM.

19. Twitter, Inc., “Amendment No. 1 to Form S-1 Registration Statement” (15 October 2013), http://1.usa.gov/
MrUGlZ.

Imagine the advantages this has over traditional retail, where there’s virtually no per‐
sonalization whatsoever. A sales associate on a store floor is likely to know nothing about
any given customer, whereas the Web has purchase history, browsing history, and a
complete demographic profile of each shopper available to build a personalized ecom‐
merce shopping experience.

Personalization can also be used to price discriminate. For example, men between the
ages of 30–45 who make greater than $150,000/year have a very inelastic demand for
the latest technology gadget and always could be shown the list price. Women aged 60+
are likely to have very elastic demand for the latest gadget and may be more willing to
make a purchase with a 30% off discount or free shipping. Price discrimination is a part
of our everyday lives, from the price of airfare to how much you pay for your bathroom
renovation. Traditional retailers would do it more if they could. It’s shockingly easy to
do it with ecommerce.

Social media
Social media, virtually nonexistent a few years ago, has come to be a substantial influ‐
encer and even driver of ecommerce sales. Today it’s estimated that 74% of customers
have a commercial interaction with social media prior to an ecommerce purchase.17

Customers interact with social media to learn about products, search for discounts, and
then tell others about their experience shopping and consuming the product. The reach
of social media today is extensive, with the average Facebook user having 245
friends18 and Twitter delivering more than 200 billion tweets per day.19 It’s ubiquitous
and becoming an increasing part of our daily lives.

Customers are increasingly taking to social media to research purchases and then tell
their friends about their shopping experiences—whether good or bad. Before social
media, an upset customer was likely to tell a few close friends about their experience.
Now, it’s easy to tell hundreds or even thousands of people in the few seconds it takes
to compose a Tweet or update your Facebook status.

Purchases are increasingly no longer made in isolation. Influences come far and wide,
especially from social media.

16 | Chapter 1: The Global Rise of eCommerce

http://read.bi/MrUDXp
http://bit.ly/1k7yufM
http://1.usa.gov/MrUGlZ
http://1.usa.gov/MrUGlZ

20. David Eads, “Mobile Web Is Only Half of Retail Mobile Commerce,” Mobile Manifesto (15 May 2011), http://
bit.ly/MrUEuq.

Rich interfaces across multiple devices
In the early days of ecommerce, ecommerce applications were fairly static. You went to
http://www.website.com from a web browser and received a single static HTML page as
your response, formatted for an 800×600 pixel display. It was probably built exclusively
for Internet Explorer.

Today, most ecommerce vendors have native applications for the wide range of devices
that are now used to browse or consume content on the Internet. Most browser-based
applications automatically resize themselves according to the device resolution. Many
modify the way they render based on the connection speed and the capabilities of a wide
range of web browsers. Most vendors offer a range of mobile ecommerce offerings, from
mobile-friendly HTML (e.g., m.website.com) to iOS and Android applications. Tablets
have a fairly wide range of native applications available. Building native user interfaces,
capable of leveraging each device’s functionality, pays off with conversion rates as much
as 30% higher than mobile-friendly HTML.20

Transfer of control from IT to business
Business users include merchandisers, marketers, and managers. In general, the more
control business users have over the platform, the better, as they’re closer to customers
and allow IT to focus on keeping the website up and delivering on differentiating func‐
tionality. For example, athletic apparel retailers need to be able to quickly push promo‐
tions live for the winning team of a big game. Similarly, many ecommerce vendors watch
social media for trends and frequently merchandise their site differently based on what
people are talking about. Waiting days for changes to take effect is no longer acceptable.

Business users today often control the following:

• Page layout—page templates and the content that fills each slot
• Customer segmentation rules
• Promotions
• Prices
• Product details—description, display name, parent category
• Categorization rules—static and dynamic rules
• Images
• Text
• Search rules—boost results, bury results, redirects
• A/B segments

Technological Advances | 17

http://bit.ly/MrUEuq
http://bit.ly/MrUEuq
http://www.website.com

• Campaigns (email, social, print)
• Payment methods and rules
• Shipping rules and costs

Tools used by business users range from simple spreadsheets to rich drag-and-drop user
interfaces.

It used to be that ecommerce applications were entirely code-driven, meaning, for ex‐
ample, that you had to change code in order to swap out the main image on the home
page. This was largely because the industry was just getting started. So long as the ap‐
plication was up in production, people were generally happy. Today, most ecommerce
applications are data-driven, meaning that pages are dynamically rendered based on
data in a persistent datastore, like a database, as opposed to hardcoded strings or vari‐
ables. With data in a database or some other persistent datastore, it’s fairly easy to build
a user interface that allows business users to modify it.

There’s an eternal conflict between business and IT, as the two are so intertwined but
often have opposing interests. The goal of business is to make money, often by driving
traffic through promotional events. In theory, the goal of IT is to see the business suc‐
ceed, but in reality IT is rewarded for platform availability over all else. The two sides
have to work together to succeed, and to do that, incentives must be fully aligned.

Improvements in underlying technology
Since the beginning, ecommerce has greatly benefited from a virtuous cycle of invest‐
ment and growth. That continues to this day, with daily advances made in the technology
that underlies ecommerce. We’ll discuss many of these advances throughout the rest of
the book, but broadly this technology includes the following:

• Cloud computing
• Content Delivery Networks
• Domain name system (DNS)
• Load balancers
• Web servers
• Application servers
• Applications themselves and the frameworks used to build them
• Virtual machines
• Operating systems
• Hardware
• Cache grids

18 | Chapter 1: The Global Rise of eCommerce

21. “How retailers can keep up with consumers”, October 2013, McKinsey & Company, http://www.mckin
sey.com/insights. Reprinted by permission.

• Network infrastructure
• Databases
• Increased bandwidth at all layers

Every single layer has substantially improved since the beginning of ecommerce. These
improvements have not been generally reflected in today’s ecommerce deployment ar‐
chitectures.

Changing Face of Retail
Retail around the world is quickly changing, with the Internet and globalization the two
driving forces behind these changes. Like globalization before it, the Internet has proven
to be an incredibly disruptive force. The consulting firm McKinsey & Company pub‐
lished a startling chart ranking the revenues of the top 10 retailers in the US in 1990
versus 2012, shown in Figure 1-6.21

Changing Face of Retail | 19

http://www.mckinsey.com/insights
http://www.mckinsey.com/insights

Figure 1-6. Top ten largest retailers in the US in 1990 versus 2012

Of the top 10 largest retailers in the US in 1990, only four remained on the list in 2012.
What’s notable is that Amazon.com is now on the list at number 10, with its revenues
quickly growing as traditional retail revenue declines.

The graphs in Figures 1-7 and 1-8 illustrate the problems facing traditional retailers.

20 | Chapter 1: The Global Rise of eCommerce

22. http://bit.ly/1g4tbGB

23. http://www.census.gov/retail/mrts/www/data/pdf/ec_current.pdf

Figure 1-7. US retail sales growth has declined since the 1970s22

Figure 1-8. US ecommerce sales have risen steadily23

Traditional retailers with physical stores that don’t also excel in ecommerce are doomed
to extinction. Very few of today’s top 10 retailers will continue to remain in their present

Changing Face of Retail | 21

http://bit.ly/1g4tbGB
http://www.census.gov/retail/mrts/www/data/pdf/ec_current.pdf

24. Mae Anderson, “Borders Closing Signals Change in Bookselling Industry,” Associated Press, (20 July 2011),
http://usat.ly/1k7yw7m.

25. Yuki Noguchi, “Why Borders Failed While Barnes & Noble Survived,” NPR (19 July 2011), http://n.pr/MrUG
Cy.

26. From the book by the same name, The Innovator’s Dilemma.

positions 10 or even 20 years from today. While this list is specific to the US, the prin‐
ciples are the same for other countries around the world.

Let’s take Borders as an example. At its peak in 2003, it had 1,249 physical retail stores.
24 By the time it filed for bankruptcy in 2011, it was down to 399 stores. When faced
with mounting pressure from pure play ecommerce vendors, Borders decided to out‐
source its entire ecommerce operation to Amazon.com in 2001.

“In our view, that was more like handing the keys over to a direct competitor.”
— Peter Wahlstrom

 Morningstar

Borders pulled out of that agreement in 2007, but it was too late. The last time it had
earned a profit was 2006.25 While Borders was investing in building out its physical
stores, its competitor, Barnes & Noble, was investing in ecommerce. Barnes & Noble
eventually released its own branded e-reader in 2009.

Unfortunately, many retailers suffer from what’s known as the innovator’s dilemma,26

focusing on business as usual instead of innovating. Innovation is disruptive, both in‐
ternally and externally, and it’s expensive. In a world that’s increasingly driven by quar‐
terly earnings, long-term research and development isn’t rewarded so much as punished
by Wall Street for not “making the number.” True innovation, including the adoption
of ecommerce and shifting to the cloud, requires strong leadership and a commitment
to investing for the future.

Omnichannel Retailing
For traditional retailers with physical stores, ecommerce represents a big challenge to
the status quo. For many decades, most retailers had just one channel: physical stores.
For both retailers and customers, this was a simple model, as shown in Figure 1-9.

22 | Chapter 1: The Global Rise of eCommerce

http://usat.ly/1k7yw7m
http://n.pr/MrUGCy
http://n.pr/MrUGCy
http://en.wikipedia.org/wiki/The_Innovator's_Dilemma

Figure 1-9. One channel

Most often, retailers didn’t know who each customer was, as loyalty programs were still
in their infancy. The customer would walk in and perhaps walk out with a product in
hand. The only real influences were advertising and word of mouth. From an operations
standpoint, each store was independently managed, with sales of each store easy to
tabulate. If capital improvements were made to a store, it would be fairly easy to see
later whether the investment was worth it. Salespeople could be paid commissions be‐
cause their influence alone was likely the deciding factor in closing the sale. It was a
simpler time. Today’s world is much more complicated.

Dozens of channels are used for both influencing and purchasing. Customers now de‐
mand that retailers have a presence and be able to seamlessly transact across multiple
channels:

• Web
• Social
• Mobile
• Physical store
• Kiosk
• Chat
• Call center

The ability to seamlessly transact across multiple channels is broadly defined as omni‐
channel retailing. This means reorienting from transaction and channel-focused inter‐

Changing Face of Retail | 23

actions to more experience and brand-focused interactions. It’s a big change. Figure 1-10
is a picture of what today’s customer journey may look like.

Figure 1-10. The journey today’s customers take before purchasing

Customers constantly jump back and forth between channels, or they may even use
multiple channels simultaneously—researching a product on a mobile device from a
physical store. Today, the purchase process is typically some form of the following:

1. Research extensively online, leveraging social media
2. Read ratings and reviews
3. Shop for best price
4. Purchase
5. Tell people about the purchase and whether they’re happy

As recently as two decades ago, only three of these seven customer touch points existed.
Only one of these seven channels has existed for the first 99.3% of modern retailing.
Figure 1-11 shows a breakdown of when each of these channels was first introduced.

24 | Chapter 1: The Global Rise of eCommerce

Figure 1-11. Timeline of the introduction of channels (not to scale)

This is only when these technologies were introduced. For example, the first modern
web browser on a mobile device wasn’t released until 2002, but it wasn’t until the middle
of 2007 that the first iPhone was released. It takes a while for these technologies to mature
and become adopted by a critical mass of customers.

These changes to retailing are entirely customer-driven and have their roots in our
modern consumer culture: technological advances, including the introduction of the
Internet and cheap electronic devices, democratization of data, and globalization. Cus‐
tomers are firmly in charge. Retailers have to adapt or they will perish.

Business Impact of Omnichannel
Many retailers with physical stores used to eye ecommerce with suspicion. Sales staff
working for and managing individual stores especially feel that ecommerce is a zero
sum game. They see customers coming in to look at and try on products, only to have
them pull out smartphones and purchase the same product online for less, often from
a different vendor.

For the first decade of ecommerce, retailers with physical stores and ecommerce just
treated ecommerce as its own physical store. The cost to build an ecommerce platform
was roughly the same as the cost of a physical store, and it was easier to manage ecom‐
merce that way, given the rigidity of the backend systems. This treatment of ecommerce
kept it relegated to a marginal role in most enterprises because everyone thought of it
as a separate physical store, with its own growth targets, staff, and inventory. Today,
ecommerce initiatives are strategic to all retailers, with the heads of ecommerce now
typically reporting to the chief executive officer, as opposed to reporting to the chief
marketing officer or chief information officer.

The growth of ecommerce was also constrained because of a misalignment of rewards.
Individual store-level sales staff and managers were paid for sales that occurred within
a physical store. As a result, many employees across an organization actively dissuaded
customers from purchasing online. From a compensation perspective, an online pur‐
chase was often the same as the customer purchasing from a different retailer altogether.
Now, some employees and store managers are beginning to be paid commission on
ecommerce sales that occur near to their store.

Changing Face of Retail | 25

Another problem is that the virtual boundaries of retailers are now wider than ever. It
used to be that retailers had to respond only to customers who physically walked into
a store. That’s no longer the case today, as customers expect to be able to transact across
multiple channels seamlessly. For example, retailers need to be able to monitor multiple
social networks and quickly respond to complaints directed at them in a public forum.

Retail now is all about providing a holistic experience, as opposed to being a mere
transaction. Interactions across all of these new channels count.

Now that ecommerce has been around for a while, retailers are beginning to figure things
out. It’ll take time, as ecommerce hasn’t existed as a channel for 99.7% of retail’s history.
It takes time to adapt.

Technical Impact of Omnichannel
As just discussed, omnichannel retailing has brought substantial changes to the business
of retailing. But the technology is affected even more, making cloud computing such
an attractive technology.

Originally, there were point-of-sale systems in stores. Then ecommerce started out as
a single web-based channel with its own database. Over the years, chat, call center,
mobile, and eventually social were added under the ecommerce umbrella, but these
channels were mostly added from different vendors, each having their own customer
profile, order database, and product catalog. Every stack was built with the assumption
that it would work independently of any other software. As a software vendor, it’s much
easier to sell a chat platform, for example, that works standalone as opposed to only
with specific ecommerce platforms. Figure 1-12 illustrates the fragmentation that arises
when you have each stack functioning independently.

Figure 1-12. Multichannel coupled with integration layer

There was (and still is) so much growth in ecommerce that the revenue generated from
these platforms exceeds the cost arising from suboptimal architecture and implemen‐
tation. To put it another way, it’s often just cheaper to throw some architects and de‐

26 | Chapter 1: The Global Rise of eCommerce

velopers at the fragmentation inherent in multichannel solutions. The problem of frag‐
mentation is especially visible to customers between the store-based point-of-sale sys‐
tems and ecommerce. The inability of these systems to speak to each other prevents
most customers from buying online and picking up in a store, or adding a product in
a store to an online shopping cart and then completing the order at home when the
customer feels ready to make the purchase. Nothing frustrates customers more than
having to re-enter data.

To combat this, retailers are beginning to build what amounts to a headless ecommerce
platform using a single logical database or data store, as shown in Figure 1-13.

Figure 1-13. New omnichannel-based architecture

With this architecture, user interfaces are basically disposable, as the business logic all
resides in a single layer, accessible through a services-based framework. For example, a
RESTful query of:

http://www.website.com/ProfileLookup?profileId=12345

should return:

{
 "firstName": "Kelly",
 "lastName": "Goetsch",
 "age": 28,
 "address": {
 "streetAddress": "1005 Gravenstein Highway North",
 "city": "Sebastopol",
 "state": "CA",
 "postalCode": "95472"
 },

Changing Face of Retail | 27

27. Brian Walker, “IBM Sells POS Business to Toshiba: What It Means,” Forrester (17 April 2012), http://bit.ly/
1k7yuMN.

28. David Segal, “Apple’s Retail Army, Long on Loyalty but Short on Pay,” New York Times (23 June 2012), http://
nyti.ms/MrUGT0.

 "phoneNumber": [
 {
 "type": "work",
 "number": "7078277000"
 }
]
 ...
}

and so on. Having a single system of record makes it easy for customers to transact with
you across many different channels. Multiple integrations, especially point-to-point, are
painful. The various stacks are always out-of-date. There are always conflicts to resolve
because a customer’s data could be updated simultaneously from two or more channels.
A single system of record is basically the same concept as enterprise resource planning
(ERP) platforms.

Forward-looking retailers have already removed in-store point-of-sale systems in favor
of tablets connecting to a single unified platform.27 With this type of setup, it’s easy for
store associates to pull up customer profiles, saved orders, browsing history, and other
data to help make sales.

Case Study: Apple
Apple is famously a leader in omnichannel retailing, with customers having a seamless
experience across multiple channels. Their leadership with omnichannel retailing has
led them to have the highest sales per physical square foot in retail, double the nearest
competitor.28

Apple’s success starts at the top, in the way they approach retailing. They appoint one
executive to oversee all retailing, regardless of where the sales are made. Many organi‐
zations have ecommerce roll up through the chief information officer or chief marketing
officer rather than to a business leader. Having a single leader, a single organization, and
a single platform makes it easy to offer a seamless experience whether in a physical retail
store or online.

A cornerstone of Apple’s strategy is to give its retail store employees iPads, iPods, and
iPhones loaded with an interface to their ecommerce platform. Employees can approach
prospective customers with the mobile device and pull up orders started online, review
a customer’s purchasing history, view all products offered online, schedule service ap‐

28 | Chapter 1: The Global Rise of eCommerce

http://bit.ly/1k7yuMN
http://bit.ly/1k7yuMN
http://nyti.ms/MrUGT0
http://nyti.ms/MrUGT0

pointments, and place orders. Normal point-of-sale systems simply allow customers to
pay for goods, with little ability to transact.

This unified omnichannel platform is creating challenges for IT, however. As these
platforms become larger and more important, scalability, availability, and performance
matter even more than ever. A failure in this world knocks every channel offline, in‐
cluding physical stores. Outages simply cannot occur.

Summary
In this chapter, we reviewed the substantial ways that ecommerce and retail itself are
changing, along with the change in architecture that’s required to support these changes.
Next, we’ll explore the current state of ecommerce deployment architecture to better
understand how it’s falling short.

Summary | 29

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2

How Is Enterprise eCommerce
Deployed Today?

Prior to ecommerce, the Web was mostly static. Web pages consisted of HTML and
images—no CSS, no JavaScript, and no AJAX. SSL wasn’t even supported by web
browsers until late 1994. Many leading ecommerce vendors, including Amazon, eBay,
Tesco, and Dell.com first came online in 1994 and 1995 with static websites. Naturally,
people coming online wanted to be able to transact. Adding transaction capabilities to
static HTML was a technical feat that required the following:

• Using code to handle user input and generate HTML pages dynamically
• Securing communication
• Storing data in a persistent database

Today’s software and the architecture used to build these systems has largely remained
the same since 1995. The innovations have been incremental at best.

With so much money generated by ecommerce, availability has trum‐
ped all else as a driving force behind architecture.

With the rise of omnichannel retailing and the increasing demands, the current ap‐
proach to architecture is not sustainable. Let’s review the status quo.

31

Current Deployment Architecture
Most ecommerce deployment architectures follow the legacy three-tier deployment
model consisting of web, application, and database tiers, as depicted in Figure 2-1.

Figure 2-1. Legacy three-tier eCommerce deployment architecture

The web servers make up the web tier and traditionally are responsible for serving static
content up to Content Delivery Networks (CDNs). The middle tier comprises applica‐
tion servers and is able to actually generate responses that various clients can con‐
sume. The data tier is used for storing data that’s required for an application (e.g., prod‐
uct catalog, metadata of various types) and data belonging to customers (e.g., orders,
profiles). We’ll discuss this throughout the chapter, but the technology that underlies
this architecture has substantially changed.

Each channel typically has its own version of this stack, with either an integration layer
or point-to-point integrations connecting everything together. All layers of the stack
are typically deployed out of a single data center. This architecture continues to domi‐
nate because it’s a natural extension of the original deployment patterns back from the
early days of ecommerce and it generally works.

Let’s explore each layer in greater detail.

32 | Chapter 2: How Is Enterprise eCommerce Deployed Today?

DNS
DNS is responsible for resolving friendly domain names (e.g., website.com) to an IP
address (e.g., 161.170.248.20). See Figure 2-2.

Figure 2-2. Purpose of DNS

DNS exists so you can remember “website.com” instead of 161.170.248.20.

When an ecommerce platform is served out of a single data center, typically only one
IP address is returned because the load balancers cluster to expose one IP address to
the world. But with multiple data centers or multiple IPs exposed per data center, DNS
becomes more complicated because one IP address has to be selected from a list of two
or more (typically one per data center). The IP addresses are returned to the client in
an ordered list, with the first IP address returned the one that the client connects to first.
If that IP isn’t responding, the client moves down the list sequentially until it finds one
that works.

Commonly used DNS servers, like BIND, work well with only one IP address per do‐
main name. But as ecommerce has grown, there’s been an increase in the use of de‐
ploying to multiple data centers in an active/active or active/passive configuration.
Generally, operating from more than one data center requires the DNS server to choose
between two or more IP addresses. Traditional DNS servers are capable of basic
load-balancing algorithms such as round-robin, but they’re not capable of digging
deeper than that to evaluate the real-time health of a data center, geographic location of
the client, round-trip latency between the client and each data center, or the real-time
capacity of each data center.

This more advanced form of load balancing is known as Global Server Load Balanc‐
ing, or GSLB for short. GSLB solutions are almost required now because there is more

Current Deployment Architecture | 33

than one IP address behind most domain names. GSLB solutions can take the following
forms:

• Hosted as a standalone service
• Hosted as part of a Content Delivery Network (CDN)
• Appliance based, residing in an on-premises data center

Many are beginning to move to hosted solutions. We’ll discuss DNS and GSLB in greater
detail in Chapter 10, but needless to say, appliance-based GSLB will no longer work
when moving to the cloud. Solutions must be software based and must be more intel‐
ligent.

Intra Data Center Load Balancing
Today’s ecommerce platforms are served from hundreds or even thousands of physical
servers, with only one IP address exposed to the world, as shown in Figure 2-3.

Load balancing takes place at every layer within a data center. Appliance-based hardware
load balancers tend to be used today as the entry point into a data center and for load
balancing within a data center. If a web server tier services traffic and sends it on to an
application server tier, the web server often has load-balancing capabilities built in.

Load balancers have evolved over time from performing simple load-balancing duties
to providing a full set of application control services. Even the term load balancer is now
often replaced by most vendors with application delivery controller, which more accu‐
rately captures their expanding role. A few of those advanced features are as follows:

• Static content serving
• Dynamic page caching
• SSL/TLS termination
• URL rewriting
• Redirection rules
• Cache header manipulation
• Dynamic page rewriting to improve performance
• Web application firewall
• Load balancing
• Content compression
• Rate limiting/throttling
• Fast, secure connections to clouds

34 | Chapter 2: How Is Enterprise eCommerce Deployed Today?

Figure 2-3. Load-balancing points within a data center

Load balancing in today’s ecommerce platforms will have to substantially change to
meet future requirements.

Web Servers
In the early days of ecommerce, web servers were exposed directly to the public Internet,
with each web server having its own IP address and own entry in the DNS record. To
satisfy customers’ demands for truly transactional ecommerce, Common Gateway In‐
terface (CGI) support was added to web servers. As needs outstripped the capabilities
of CGI, application servers were added behind web servers, with web servers still re‐
sponsible for serving static content and serving as the load balancer for a pool of ap‐
plication servers.

As ecommerce usage increased and the number of web servers grew, appliance-like
hardware load balancers were added in front of the web servers. Web servers can’t cluster

Current Deployment Architecture | 35

together and expose a single IP address to the world, as load balancers can. Load bal‐
ancers also began to offer much of the same functionality as web servers. The line be‐
tween web servers and load balancers blurred.

Web servers are absolutely not required. In fact, their use is declin‐
ing as the technology up and down stream of web servers has ma‐
tured.

If web servers are used, they technically can perform the following functions:

• Serving static content
• Caching dynamic pages
• Terminating SSL/TLS
• Rewriting URLs
• Redirecting rules
• Manipulating cache headers
• Dynamic page rewriting to improve performance
• Creating a web application firewall
• Load balancing
• Compressing content

However, web servers usually just perform the following functions:

• Serving static content to a Content Delivery Network
• URL rewriting
• Redirect rules
• Load balancing

As CDNs, load balancers, and application servers have matured, functionality typically
performed by web servers is increasingly being delegated to them. Table 2-1 shows what
modern application servers, web servers, load balancers, and Content Delivery Net‐
works are each capable of.

36 | Chapter 2: How Is Enterprise eCommerce Deployed Today?

Table 2-1. Capabilities of modern application servers, web servers, load balancers, and
Content Delivery Networks

Function Application servers Web servers Load balancers Content Delivery
Networks (when used
as reverse proxy)

Serving static content X X X X

Caching dynamic pages N/A X X X

Terminating SSL X X X X

URL rewriting X X X X

Redirect rules X X X X

Manipulating cache headers X X X X

Dynamic page rewriting to improve
performance

X X X X

Web application firewall X X X

Load balancing N/A X X X

Clustering to expose single Virtual IP
Address (VIP)

N/A X X N/A

Content compression X X X X

Rate limiting/throttling X X

Given that application servers, load balancers, and Content Delivery Networks are
required, web servers are becoming increasingly marginalized, with their use on the
decline among major ecommerce vendors. The real problem is that web servers greatly
complicate elasticity. Deployment architecture with web servers looks something like
Figure 2-4.

Current Deployment Architecture | 37

Figure 2-4. Deployment architecture with web servers

Adding a new application server requires the following:

1. Provisioning hardware for the new application server
2. Installing/configuring the new application server
3. Deploying the application to the application server
4. Registering the application server with the web server or load balancer

If you need to add more web server capacity because of the increased application server
capacity, you need to then do the following:

1. Provision hardware for the new web server.
2. Install/configure the new web server.
3. Register the new web server with the load balancer.

It can take a lot of work and coordination to add even a single application server. While
some web server and application server pairs allow you to scale each tier independently,
you still have to worry about dependencies. If you add many application servers without
first adding web servers, you could run out of web server capacity. The order matters.

It’s often easier to eliminate the web server tier and push the responsibilities performed
there to the CDN, load balancer, and application server. Many load balancers auto-

38 | Chapter 2: How Is Enterprise eCommerce Deployed Today?

detect new endpoints, making it even easier to add and remove new capacity quickly.
That architecture looks like Figure 2-5.

Figure 2-5. Deployment architecture without web servers

By flattening the hierarchy, you gain a lot of flexibility. Web servers can still add value
if they’re doing something another layer cannot.

eCommerce Applications
The “e” is quickly being dropped from “ecommerce” to reflect the fact that there is no
longer such a clear delineation between channels. Some retailers today are unable to
report sales by channel because their channels are so intertwined. As discussed in
Chapter 1, this one channel, called omnichannel, is serving as the foundation of all
channels. Examples of channels include the following:

• Web
• Social
• Mobile
• Physical store
• Kiosk
• Chat
• Call center

Current Deployment Architecture | 39

On one extreme, you’ll find that each channel has its own vertical stack, including a
database, as shown in Figure 2-6.

Figure 2-6. Multichannel architecture featuring an integration layer

With this model, each channel is wired together with each other channel through liberal
use of an integration layer. This is how ecommerce naturally evolved, but it suffers from
many pitfalls:

• A lot of code needs to be written to glue everything together.
• Channels are always out of sync.
• Differences in functionality leave customers upset (e.g., promotions online don’t

show up in in-store point-of-sale systems).
• Testing the entire stack is enormously complicated because of all of the resources

that must be coordinated.
• The same customer data could be updated concurrently from two or more channels,

leading to data conflicts and a poor experience.

Over the past few years, there’s been a trend toward buying or building complete plat‐
forms, with one logical database and no integrations between channels, as shown in
Figure 2-7.

40 | Chapter 2: How Is Enterprise eCommerce Deployed Today?

Figure 2-7. Omnichannel architecture

Obviously, this takes time to fully achieve but is clearly the direction that the market is
heading in. And it makes perfect sense, given the rise in omnichannel retailing and ever-
increasing expectations.

Support of true omnichannel retailing is now the competitive differ‐
entiator for commercial ecommerce platforms.

Application Servers
Application servers, also known as containers, form a critical role in today’s ecommerce
platforms. They provide the runtime environment for ecommerce applications and
provide services such as HTTP request handling, HTTP session management, connec‐
tions to the database, authentication, directory services, messaging, and other services
that are consumed by ecommerce applications.

Today’s application servers are very mature, offering dozens of features that simplify the
development, deployment, and runtime management of ecommerce applications. Over
the years, they’ve continued to mature in the following ways:

• More modular architecture, starting up only the services required by the application
being deployed

• Faster, lighter architectures
• Tighter integration with databases, with some vendors offering true bidirectional

communication with databases

Current Deployment Architecture | 41

1. Wikipedia, “ACID,” (2014), http://en.wikipedia.org/wiki/ACID.

• Full integrations with cache grids
• Improved diagnostics
• Easier management

Application servers continue to play a central role in today’s ecommerce platforms.

Databases
Databases continue to play an important role in modern ecommerce architecture.
Common examples of data in an ecommerce application that need to be stored include
orders, profiles, products, SKUs, inventory, prices, ratings and reviews, and browsing
history. Data can be stored using three high-level approaches.

Fully normalized
Normalized data has a defined, rigid structure, with constraints involving data types,
whether each column is required, and so on. Here’s how you would define a very simple
product table for a relational SQL database:

CREATE TABLE PRODUCT
(
 PRODUCT_ID VARCHAR(255) NOT NULL,
 NAME VARCHAR(255) NOT NULL,
 DESCRIPTION CLOB NOT NULL,
 PRIMARY KEY(PRODUCT_ID)
);

To retrieve the data, you would execute a query:

SELECT * FROM PRODUCT;

and get back these results:

PRODUCT_ID NAME DESCRIPTION

SK3000MBTRI4 Thermos Stainless King 16-
Ounce Food Jar

Constructed with double-wall stainless steel, this 16-ounce food jar is virtually
unbreakable, yet its sleek design is both eye-catching and functional…

This format very much mimics a spreadsheet. With data in a normalized format, you
can execute complex queries, ensure the integrity of the data, and selectively update bits
of data. Relational databases are built for the storage and retrieval of normalized data
and have been used extensively for ecommerce.

Traditional relational databases tend to be ACID compliant. ACID stands for:1

Atomicity
The whole transaction either succeeds or fails.

42 | Chapter 2: How Is Enterprise eCommerce Deployed Today?

http://en.wikipedia.org/wiki/ACID

Consistency
The transaction is committed without violating any integrity constraints (e.g., data
type, whether column is nullable, foreign key constraints).

Isolation
Each transaction is executed in its own private sandbox and not visible to any other
transaction until it is committed.

Durability
A committed transaction will not be lost.

Most ecommerce applications use both a vertically and horizontally scaled ACID-
compliant relational database for the core order and profile data. Relational databases
used to be a primary bottleneck for ecommerce applications, but as that technology has
matured, it is rarely the bottleneck it once was, provided appropriate code practices are
followed. Application-level caching (both in-memory and to data grids) has helped to
further scale relational databases.

NoSQL
An increasingly popular alternative to relational databases are key/value or document
stores. Rather than breaking up and storing the data in a fully normalized format, the
data is represented as XML, JSON, or even a binary format, with the data available only
if you know the record’s key. Implementations vary widely, but collectively these are
known as NoSQL solutions. Here’s an example of what might be stored for the same
product in the preceding section:

{
 "name": "Thermos Stainless King 16-Ounce Food Jar",
 "description": "Constructed with double-wall stainless steel, this 16-
 ounce food jar is virtually unbreakable, yet its sleek design is both
 eye-catching and functional...",
 ...
}

NoSQL is increasingly used for caching and storing nonrelational media, such as docu‐
ments and data that don’t need to be stored in an ACID-compliant database. NoSQL
solutions generally sacrifice consistency and availability in exchange for performance
and the ability to scale in a distributed nature. Product images, ratings and reviews,
browsing history, and other similar data is very well suited for NoSQL databases, where
ACID compliance isn’t an issue.

NoSQL is increasingly beginning to find its place in large-scale ecommerce. The tech‐
nology has real value, but it’s going to take some time for the technology and market to
mature to the level of relational databases. Relational databases have been around in
their modern form since the 1970s. NoSQL has been around for just a few years.

We’ll discuss ACID, BASE, and related principles in Chapter 10.

Current Deployment Architecture | 43

Fully denormalized
Historically, a lot of data was stored in plain HTML format. Merchandisers would use
WYSIWYG editors and save the HTML itself, either in a file or in a database. These
HTML fragments would then be inserted into the larger pages to form complete web
pages. Data looked like this:

<h2>Thermos Stainless King 16-Ounce Food Jar</h2>

<div id="product_description">
Constructed with double-wall stainless steel, this
16-ounce food jar is virtually unbreakable, yet its
sleek design is both eye-catching and functional...
</div>

One of the many disadvantages of this approach is that you can’t reuse this data across
channels. This will work for a web page, but how can you get an iPhone application to
use this? This approach is on the decline and shouldn’t be used anymore.

Hosting
A key consideration for ecommerce success is the hosting model. Hosting includes at a
minimum the physical data center, racks for hardware, power, and Internet connectiv‐
ity. This is also known as ping, power, and pipe. Additionally, vendors can offer com‐
puting hardware, supporting infrastructure such as networking and storage, and various
management services with service-level agreements.

From a hosting standpoint, the cloud is much more evolutionary than
revolutionary. It’s been common for years to not own the physical data
centers that you operate from. The hardware used to serve your plat‐
form and the networks over which your data travels are frequently
owned by the data center provider. The cloud is no different in this
regard.

Let’s look at today’s common hosting models, shown in Table 2-2.

Table 2-2. Today’s common hosting models
Attribute Self-hosted

on-premises
Self-hosted
off premises

Colocation Fully managed
hosting

Public Infrastructure-
as-a-Service

Who owns data center You You Colo vendor Hosting vendor IaaS vendor

Physical location of data
center

Your office Remote Remote Remote Remote

Who owns hardware You You You or colo vendor You or managed
hosting vendor

IaaS vendor

Dedicated hardware Yes Yes Yes Probably Maybe

44 | Chapter 2: How Is Enterprise eCommerce Deployed Today?

2. Forbes, “The 5 Largest Data Centers in the World,” http://onforb.es/1k7ywo2.

Attribute Self-hosted
on-premises

Self-hosted
off premises

Colocation Fully managed
hosting

Public Infrastructure-
as-a-Service

Who builds
infrastructure

You You You or colo vendor Hosting vendor IaaS vendor

Who provisions
infrastructure

You You You or colo vendor Hosting vendor IaaS vendor

Who patches software You You You or colo vendor Hosting vendor IaaS vendor

Accounting model CAPEX CAPEX CAPEX OPEX OPEX

It’s rare to find an enterprise-level ecommerce vendor that self-hosts on premises. That
used to be the model, but over the past two decades there has been a sharp movement
toward fully managed hosting and now public Infrastructure-as-a-Service. Large, dedi‐
cated vendors offer much better data centers and supporting infrastructure for ecom‐
merce. It doesn’t take much to outgrow an on-premises data center. These dedicated
vendors offer the following features:

• Highly available power through multiple suppliers and the use of backup generators
• Direct connections to multiple Internet backbones
• High security, including firewalls, guards with guns, physical biometric security
• Placement of data centers away from flood planes, away from areas prone to earth‐

quakes, and near cheap power
• Advanced fire suppression
• High-density cooling

Dedicated vendors offer far and above what you can build on premises in your own data
center, for substantially less cost. Some of these data centers are millions of square feet.
2 The marginal cost these vendors incur for one more tenant is minuscule, allowing
them to pass some of that savings along to you. Economies of scale is the guiding prin‐
ciple for these vendors.

Most of these vendors offer services to complement their hardware and infrastructure
offerings. These services include the following (in ascending order of complexity):

• Power cycling
• Management from the operating system on down (including patching)
• Shared services such as storage and load balancing
• Management from the application sever on down (including patching)
• Management from the application(s) on down

Current Deployment Architecture | 45

http://onforb.es/1k7ywo2

• Ongoing application-level development/maintenance

Platform-as-a-Service and Software-as-a-Service is what Infrastructure-as-a-Service
vendors have built on top of their infrastructure in an attempt to move up the value
chain and earn more revenue with higher margins.

Anything that you cannot differentiate on yourself should be out‐
sourced. This is now especially true of computing power.

Limitations of Current Deployment Architecture
Present-day ecommerce deployment architecture is guided by decades’ old architecture
patterns, with availability being the driver behind all decisions. People are often incen‐
tivized for platform availability and punished, often with firings, for outages. An outage
in today’s increasingly omnichannel world is akin to barring customers from entering
all of your physical retail stores. Since physical retail stores are increasingly using a single
omnichannel ecommerce platform for in-store point-of-sale systems, an outage will
actually prevent in-store sales, too. Keeping the lights on is the imperative that comes
at the cost of just about everything else.

Current deployment architecture suffers from numerous problems:

• Everything is statically provisioned and configured, making it difficult to scale up
or down.

• The platform is scaled for peaks, meaning most hardware is grossly underutilized.
• Outages occur with rapid spikes in traffic.
• Too much time is spent building infrastructure as opposed to higher value-added

activities.

Cloud computing can overcome these issues. Let’s explore each one of these a bit further.

Static Provisioning
Most ecommerce vendors statically build and configure environments. The problem
with this is that ecommerce traffic is inherently elastic. Traffic can easily increase by 100
times over baseline. All it takes is for the latest pop star to tweet about your brand to
his or her 50 million followers, and pretty quickly you’ll see exponential traffic as others
re-tweet the original tweet. The world is so much more connected than it used to be.
Either you have to scale for peak or you risk failing under heavy load. The cost of failing

46 | Chapter 2: How Is Enterprise eCommerce Deployed Today?

often outweighs the cost of buying a few more servers, so servers are
over-provisioned, often by many times more than is necessary.

Static provisioning is bad because it’s inefficient. You can’t scale up or down based on
real-time demand. This leads to ecommerce vendors scaling for peaks as opposed to
scaling for actual load. Because nobody wants to get fired, everybody just wildly over-
provisions in an attempt to maintain 100% uptime. Over-provisioning leads to serious
issues:

• Wasted data center space, which is increasingly expensive
• Unnecessary cost, due to data center and human cost
• Focus away from core competency—whether that’s selling the latest basketball shoe

or selling forklifts

Most ecommerce vendors have to statically provision because their ecommerce plat‐
forms don’t lend themselves to scaling dynamically. For example, many ecommerce
platforms require ports and IP addresses to be hardcoded in configuration files. The
whole industry was built around static provisioning. The cloud and the concept of
dynamic provisioning is a recent development.

Scaling for Peaks
Many ecommerce vendors simply guess at what their peaks will be and then multiply
that by five in order to size their production environments. Hardware is statically de‐
ployed, sitting idle except for the few hours of the year where it spikes up to 20% uti‐
lization. The guiding factor has been to have 100% uptime, as downtime leads to un‐
employment. Then hardware must be procured for development and test environments,
which are hardly ever used.

When you put together all of the typical environments needed, Table 2-3 shows the
result, where 100% represents the hardware needed to support actual peak production
traffic.

Table 2-3. Cumulative amount of traffic required across ecommerce environments
Environment % of production (actual peak traffic) Cumulative %

Production—Typical utilization 10% n/a

Production—Actual peak 100% 100%

Production—Actual peak + Padding/Safety factor 500% 500%

Production—Clone of primary environment 500% 1000%

Staging—Environment 1 50% 1050%

Staging—Environment 2 50% 1100%

Staging—Environment 3 50% 1150%

Limitations of Current Deployment Architecture | 47

Environment % of production (actual peak traffic) Cumulative %

QA—Environment 1 25% 1175%

QA—Environment 2 25% 1200%

QA—Environment 3 25% 1225%

Development—Environment 1 10% 1235%

Development—Environment 2 10% 1245%

Development—Environment 3 10% 1255%

This is truer for larger vendors than it is for smaller vendors, who tend to not have the
money to build out so many environments.

Because traffic can be so prone to rapid spikes, many ecommerce vendors multiply their
actual expected peak by five so that peak consumes only 20% of the CPU or whatever
the limiting factor is. Then most set up a mirror of production in a different physical
data center for disaster recovery purposes or as a fully active secondary data center. On
top of production, there are multiple preproduction environments, all being some frac‐
tion of production. Each branch of code typically requires its own environment. This
amounts to a lot of hardware!

Let’s apply this math to an example, shown in Table 2-4. An ecommerce vendor needs
50 physical servers to handle actual production load at peak.

Table 2-4. Example of how many servers there are
Environment % of production (actual peak traffic) Servers

Production—Actual peak 100% 50

Production—Actual peak + Padding/Safety factor 500% 250

Production—Clone of primary environment 500% 250

Staging—Environment 1 50% 25

Staging—Environment 2 50% 25

Staging—Environment 3 50% 25

QA—Environment 1 25% 13

QA—Environment 2 25% 13

QA—Environment 3 25% 13

Development—Environment 1 10% 5

Development—Environment 2 10% 5

Development—Environment 3 10% 5

Total 629

A total of 629 physical servers are required across all environments.

48 | Chapter 2: How Is Enterprise eCommerce Deployed Today?

With normal production traffic, only five servers are required (10% of actual peak of
50 servers = 5). Development and QA environments are rarely used, with the only
customers being internal QA testers. Staging environments are periodically used for
load tests and for executives to preview functionality, but that’s about it. Figure 2-8 shows
just how underutilized hardware often is.

Figure 2-8. Utilized versus unutilized hardware

A remarkable 1% of total servers (5 out of 629) are actually being utilized at steady state
in this example. Just moving preproduction environments would save an enormous
amount of money.

Limitations of Current Deployment Architecture | 49

3. Kevin Parrish, “Dell Ordered to Sell 19-inch LCD for $15,” Tom’s Guide (2 July 2009), http://bit.ly/MrUFhW.

Outages Due to Rapid Scaling
Because the stack is so underutilized, rapid spikes in traffic often bring down entire
platforms. Load tests use carefully crafted ramp-up times, which guide how quickly
virtual customers are added. After each ramp period, there’s always a period where the
platform is allowed to stabilize. Stabilizing, also known as leveling, is done to allow the
system time to recover from having a lot of load thrown at it. Load tests often look
something like Figure 2-9.

Figure 2-9. Traffic from load test

But in reality, traffic often looks like Figure 2-10.

Successful social media campaigns, mispriced products (e.g., $0.01 instead of $100),
email blasts, coupons/promotions, mentions in the press, and important product
launches can drive substantial traffic in a short period of time to the point where it can
look like a distributed denial-of-service attack. Platforms don’t get “leveling” periods in
real life.

Case Study: Dell’s Price Mishap
Dell’s Taiwanese subsidiary, www.dell.com.tw, accidentally set the price of one of its 19-
inch monitors to approximately $15 USD instead of the intended price of approximately
$148 USD. The incorrect price was posted at 11 PM locally. Within eight hours, 140,000
monitors were purchased at a rate of approximately five per second.3

50 | Chapter 2: How Is Enterprise eCommerce Deployed Today?

http://bit.ly/MrUFhW

Figure 2-10. Traffic in production

This rapid increase in traffic ends up creating connections throughout each layer, which
leads to spikes in traffic and memory consumption. Creating connections is expensive
—that’s why all layers use connection pooling of some sort. But it doesn’t make sense to
have enormous connection pools that are only a few percent utilized. Connections and
other heavier resources tend to be created on demand, which can lead to failures under
heavy load. Software in general doesn’t work well when slammed with a lot of load.

Summary
In this chapter, we discussed the shortcomings of today’s deployment architecture, along
with how the various components will need to change to support omnichannel retailing.
The shortcomings discussed make a strong case for cloud computing, which we’ll dis‐
cuss in the next chapter.

Summary | 51

PART II

The Rise of Cloud Computing

CHAPTER 3

What Is Cloud Computing?

Cloud computing is simply a new incarnation of a long-established business model: the
public utility. The vast majority of households and businesses no longer invest in gen‐
erating power on their own. It’s faster, better, and cheaper to allow a public utility to
generate it on behalf of large groups of consumers. Public utilities benefit from being
able to specialize on a very limited charter while benefitting from economies of scale.
Consumers have no knowledge of how to generate power, nor should they. Yet for a
nominal price, any business or individual can tap into the grid (on demand), pull as
much or as little as required (elastic), and pay for only the amount that’s actually used
(metered).

Power is very similar to cloud computing, both in the business model used by the ven‐
dors and the benefits it provides to individual consumers.

Generally Accepted Definition
The term cloud has come to encompass everything, to the point where it means nothing.
The cloud has been so broadly redefined by marketers that any service delivered over
the Internet is now considered part of the cloud. Services as mundane as online photo
sharing or web-based email are now counted as cloud computing, depending on who
you talk to.

Cloud computing is still maturing, both as a concept and in the technology that underlies
it. But for the purposes of this book, cloud computing is best described by three adjec‐
tives:
Elastic

For given resources to be considered part of the cloud, you must be able to increase
or decrease it either automatically or on demand using self-service user interfaces
or APIs. A resource can include anything you have in your data center today—from
commoditized hardware running Linux (Infrastructure-as-a-Service), to

55

application servers (Platform-as-a-Service), up to applications (Software-as-a-
Service). The “what” doesn’t matter all that much; it’s the fact that you can provision
new resources.

On demand
Seeing as elastic is the first word used to describe the cloud, you must be able to
provision a resource precisely when you need it and release it when you don’t.

Metered
You should pay for only what you use—like power. This has enormous implications
as the costs directly reflect usage and can therefore be substantially lower. Because
you’re renting computing power, you can also treat the costs as operational expen‐
ditures (OPEX), like power, as opposed to capital expenditures (CAPEX), like tra‐
ditional hardware.

Note these are the exact same adjectives used to define power from a public utility. If a
service meets all three criteria, it can generally be considered part of the cloud. Cloud
solutions can be further classified by two criteria.

The first refers to how the service is made available for consumption. This is called the
service model, and it comes down to how much value the vendor adds. Some vendors
simply offer hardware, with you having to do all of the upper-stack work on your own.
An example of this is a public Infrastructure-as-a-Service offering. In the opposite di‐
rection is Software-as-a-Service, which is where the vendor builds, deploys, and main‐
tains the entire stack for you. An example of this is a Content Delivery Network. While
there is a continuum from Infrastructure-as-a-Service to Platform-as-a-Service to
Software-as-a-Service, each model is distinct.

The second refers to the deployment model, which refers to the availability of the offer‐
ing. On one extreme is public, which is just as it sounds: anyone may provision its
resources. The other extreme is private, where only a select group may provision. Private
clouds are often built within enterprises, though their usefulness is often limited because
of lack of full elasticity. Public clouds are the focus of this book.

Any cloud solution can be evaluated and classified according to the cube shown in
Figure 3-1.

56 | Chapter 3: What Is Cloud Computing?

Figure 3-1. Cloud evaluation criteria

The focus of this book is largely public Infrastructure-as-a-Service. Let’s explore the
adjectives further, followed by service models and, finally, deployment models.

Elastic
Elasticity refers to the ability to increase or decrease resources arbitrarily. For example,
you should be able to provision more hardware for your application server tier in ad‐
vance of a social media campaign or even in real-time response to a social media cam‐
paign. As traffic from the campaign tails off, you should be able to decrease your hard‐
ware to match your lower baseline of traffic. Going back to the power analogy, stadiums
are able to pull as much as they please from the grid during a large event.

Generally Accepted Definition | 57

Elasticity is the defining characteristic of cloud.

Resources can be seen as any physical hardware or software. Any hardware or software
deployed in support of an ecommerce application is technically a resource. Resources
must generally be provisioned in the same ratio, though not necessarily in tandem. For
example, the proportion of application servers to cache grid servers should generally
remain the same, assuming the platform is scalable. More on scalability in Chapter 8.

Provisioning refers to the ability to acquire new hardware or software resources. Pro‐
visioning should be able to occur automatically or on demand using self-service user
interfaces or APIs. The best provisioning is done automatically, either in reaction to or
preferably in anticipation of increased demand. The next chapter is devoted exclusively
to auto-scaling.

On Demand
While elasticity refers to the ability to increase or decrease resources arbitrarily, on
demand refers to the ability to provision at any time. You shouldn’t have to order new
hardware, sign a purchase order, or call up a vendor to get more capacity.

While elasticity is the defining characteristic of cloud, it is predica‐
ted on the ability to provision at any time. Traditional noncloud de‐
ployments could technically be considered elastic because you can
add more capacity; it just takes weeks or even months. On-demand
refers to the ability to provision at any time.

Like power generation, cloud computing generally works because consumers of the
respective services have their peaks at different times. Individual consumers are around
the world in different time zones, in different verticals, running different workloads.
Resource utilization should remain fairly constant for the cloud vendor but may vary
greatly for individual consumers. For example, you will use a lot more resources on
Black Friday or Boxing Day than on a Sunday morning in January. Should all individual
consumers try to provision a large quantity of resources simultaneously, there wouldn’t
be enough resources available for everyone. This is formally defined as over-
subscription, meaning the same resources are promised to multiple tenants. The busi‐
ness models for cloud vendors (and public utilities) work because of this principle.

Many workloads in a public Infrastructure-as-a-Service cloud do not have to be exe‐
cuted at a given time. Among workloads, ecommerce is unique in that a customer is

58 | Chapter 3: What Is Cloud Computing?

waiting on the other end for an HTTP request to be executed. You can’t defer the exe‐
cution of an HTTP request. Many cloud workloads are batch and can be executed
whenever. To even out overall demands on a cloud, some vendors offer the ability to
bid on unused computing capacity in an auction format. On Black Friday, when ecom‐
merce applications require a lot of processing power, the demands for resources would
be very high and the bid price of spare capacity would also be very high. Workloads that
are not time sensitive can then run on, say, Christmas day, when demands on the entire
system and the prices are likely to be very low. This allows consumers of cloud resources
to get lower prices while allowing the vendors to even out their traffic and purchase less
overall hardware than would otherwise be necessary. A great analogy is congestion
pricing for freeways, where tolls increase as more people are on the roads.

In addition to being able to provision resources, resources should be provisioned in a
timely manner. It should take only a few minutes to provision.

Metered
Another central tenet of the cloud is the ability to pay for what you use. If you provision
a server for three hours, you should pay for only the three hours you actually use it.
Paying for resources you haven’t provisioned isn’t cloud computing. Going back to the
power analogy, you pay only for the power you use. The price per kilowatt-hour is
known, and you can look at your meter or online to see how much power you’ve con‐
sumed. It would be ludicrous to pay for your peak power utilization of the year for the
entire year, yet that’s how most ecommerce resources are paid for today. You scale for
peaks and pay for those resources the entire year.

A requirement to charging for the resources actually consumed is the ability to accu‐
rately measure. Table 3-1 lists the common usage metrics.

Table 3-1. Common usage metrics for metering/charge-back
Resource Usage metrics

Global Server Load Balancing (GSLB) DNS lookups

Content Delivery Network (CDN) HTTP requests, bandwidth

Load balancing HTTP requests, bandwidth, time

Software-as-a-Service HTTP requests, bandwidth, time, application-specific metrics like orders per day

Platform-as-a-Service HTTP requests, bandwidth, time

Infrastructure-as-a-Service Number of physical servers, capabilities of each server, time

Unit costs should be the same or less as you add each instance. In other words, you
should pay the same or less per unit as you consume more.

As disruptive as the cloud is from a technology standpoint, it’s even more disruptive
and potentially advantageous to the finance people. Traditional hardware that’s pur‐
chased up front is treated as a CAPEX, which is a fixed cost that must be paid for up

Generally Accepted Definition | 59

front and depreciated over a period of years. An OPEX, like power, is paid for incre‐
mentally, when value is actually realized.

Cost matched with value looks like Figure 3-2.

Figure 3-2. Hardware/software costs—CAPEX versus OPEX

Most other businesses require large sums of capital before they can start earning reve‐
nue. Think of retail, healthcare, manufacturing, software, and telecommunications—
which all require large sums of capital to be invested before they earn a dollar. While
this is partially true of ecommerce, at least the large static infrastructures of the past are
no longer necessary.

The cloud is much more than just technology. It’s a fundamental
change to the economics of IT.

60 | Chapter 3: What Is Cloud Computing?

Service Models
Service models come down to how much value the vendor adds. Each layer provided
allows the vendor to add more value. Figure 3-3 shows the three most common service
models.

Figure 3-3. Vendor value adds and their cost

Vendors are always trying to move up the value chain—that is, adding more value to
more layers of the stack so they can generate higher margins and increase their revenue
per customer. Vendors that move up the value chain toward Software-as-a-Service
offerings can charge higher margins while offering better service at a better price than
what you would be able to do yourself. The vendors generally save you money and make
some money themselves through labor specialization (it helps if you can hire the world’s
top experts in each specialization) and economies of scale (you can benefit from auto‐
mation and higher purchasing power). This desire to move up the value chain is why
most Infrastructure-as-a-Service vendors now have Platform-as-a-Service and
Software-as-a-Service offerings that complement their core Infrastructure-as-a-Service
offerings. Most vendors don’t fit neatly into one category, as often each vendor has
multiple offerings.

Case Study: Amazon Web Services
Amazon first started its foray into the cloud in 2006 with EC2, its public Infrastructure-
as-a-Service offering. It quickly added complementary services, from storage to load

Service Models | 61

1. Amazon Web Services, “AWS Elastic Beanstalk Pricing,” http://aws.amazon.com/elasticbeanstalk/pricing/.

balancing. Since 2010, Amazon.com’s flagship ecommerce platform has been hosted on
its own cloud offerings.

In 2011, Amazon announced its Platform-as-a-Service offering, named Beanstalk.
Beanstalk vertically integrates a host of offerings across Amazon’s portfolio:

• Amazon Elastic Cloud Compute (Amazon EC2)
• Amazon Simple Storage Service (Amazon S3)
• Amazon Simple Notification Service (Amazon SNS)
• Amazon CloudWatch
• Amazon Elastic Load Balancing

Customers pay for the underlying Amazon services they use, but there is no additional
fee for Beanstalk itself.1 Customers pay for an additional five or more Amazon services
with Beanstalk that they might otherwise not use. The alternative to Platform-as-a-
Service (five vertically integrated Amazon services) is often just Infrastructure-as-a-
Service (EC2). Customers get a fully vertically integrated platform, and Amazon is able
to earn more revenue. It works for everyone.

It’s best to determine all of the services you’ll need to deliver your ecommerce platform
and then decide which ones you can perform better than your competition. For example,
you could provision some bare Linux servers from an Infrastructure-as-a-Service ven‐
dor, install a web server, and serve static content from there. Or you could outsource
this to an actual Content Delivery Network. Content Delivery Networks can serve static
content better, faster, and cheaper than you can, in addition to providing other added
value that you could not.

Anything that you can’t do better than your competition
should be outsourced when possible, preferably to a vendor
that has the highest offerings up the value chain.

Let’s explore these models further, in order of value added by the vendor (highest value
listed first).

Software-as-a-Service
In Software-as-a-Service (SaaS), vendors offer a service as opposed to the raw platform
or hardware required to deliver a service. For example, DNS vendors and Content De‐

62 | Chapter 3: What Is Cloud Computing?

http://aws.amazon.com/elasticbeanstalk/pricing/

livery Network vendors often sell their software this way. The consumers of software
delivered this way don’t care how the vendor builds the service. The application server,
hardware, operating system, and database don’t matter so long as the service is compliant
with agreed-upon service-level agreements. Service-level agreements define terms like
expected availability and performance. Figure 3-4 shows what SaaS vendors offer.

Figure 3-4. What SaaS vendors offer

Vendors that offer SaaS have the luxury of specializing in doing one thing exceptionally
well. The platform underneath the service can be tuned and optimized specifically for
a single workload. They can, in a few circumstances, make the hardware work better
with the software to ensure a fully vertically integrated experience. This may be possible
with PaaS or IaaS but it would require more work.

SaaS is an easy-to-deploy, cost-effective, and technically superior way of deploying
standalone services such as the following:

• Global Server Load Balancing (GSLB) or DNS
• Proxying requests from the edge back to the data center running your code
• Static content serving
• Distributed denial-of-service (DDoS) attack mitigation (request scrubbing)
• Web application firewalls

SaaS doesn’t always meet all of the requirements of cloud computing:

• Elastic
• On demand
• Metered

Service Models | 63

SaaS usually meets the first two but it doesn’t always meet the last one. For example,
many vendors offer monthly subscriptions to their services, where you can consume all
you need. There are often multiyear contracts involved. While not technically cloud
computing, these services should still be considered. Pragmatism should rule your de‐
cision making.

Platform-as-a-Service
In Platform-as-a-Service (PaaS), vendors offer a platform you can use to deploy your
own application. With the vendor responsible for the application server, runtime envi‐
ronment, database, and hardware, you’re freed up to concentrate on your application.
Many vendors also offer complementary services like integrated testing, messaging,
monitoring, application modeling, and other services required to accelerate the devel‐
opment and deployment of applications and keep them up in production, as listed in
Figure 3-5.

Figure 3-5. What PaaS vendors offer

PaaS is an entire package that you buy and build your application for. If you buy in all
the way, you can save an enormous amount of time and money because the PaaS vendor
does everything for you. Many vendors even set up auto-scaling for you, allowing them
to monitor each tier of your application and scale up and down based on demand. But
this all comes at the expense of flexibility. The experience inside the vendor’s walled
garden is generally very good because of tight vertical integration. But if you venture
out and need something that your vendor doesn’t support, you’re often out of luck. For
example, some PaaS vendors don’t allow you to write from your application to a local
filesystem. If your application needs to write to a local filesystem, you won’t be able to
use that vendor. This inherently leads to relying on multiple PaaS vendors, which adds
complexity.

64 | Chapter 3: What Is Cloud Computing?

PaaS tends to work well for small applications, perhaps in support of a larger ecommerce
application. For example, PaaS would be great if you wanted to build a standalone pric‐
ing engine. PaaS generally does not work well for an entire enterprise-level ecommerce
application. Few ecommerce applications fit neatly inside the boundaries offered by
many PaaS vendors. There are always ancillary applications, middleware, and agents of
various types that must be deployed in support of an ecommerce application.

The most common challenge with PaaS is a lack of flexibility. Vendors are able to deliver
the most value by standardizing on a single stack and then vertically integrating that
stack. This standardization and vertical integration means, for example, you probably
can’t swap out the database that’s provided for one you like more. It also means you can’t
deploy applications that don’t fit neatly into their stack, like third-party monitoring
agents. Either you take what’s provided or you’re out of luck. Vertical integration can
also lead to vendor lock-in if you’re not careful. Vendors are responding to these short‐
comings, but you’ll never have as much flexibility as you do with IaaS.

Infrastructure-as-a-Service
In Infrastructure-as-a-Service (IaaS), vendors offer hardware and a hypervisor with a
connection to the Internet, and that’s it. You have to build out everything above the
operating system, though this is often preferable because it gives you nearly total flex‐
ibility. See Figure 3-6 for what IaaS vendors offer. We’ll spend Chapter 5 discussing how
to rapidly build up newly provisioned servers.

Figure 3-6. What IaaS vendors offer

IaaS is valuable because it gives you complete flexibility in what software you deploy
and how you configure it all to work together. You can install any version of any software
and configure it as you please. You’ll never be stuck because a vendor you use has stopped
supporting a layer of the stack used by your PaaS vendor. Because the vendor is just

Service Models | 65

offering commoditized hardware, it generally costs much less than comparable PaaS or
SaaS. But you have to spend more to make it work.

Look to IaaS for your core application and supporting software. Generally, only IaaS
offers the flexibility required to deploy and configure an enterprise-level ecommerce
platform. Specifically, consider using it for the following:

• Your core ecommerce application—the one you build or buy/customize
• Application server
• Runtime environment
• Database, like a relational or NoSQL database

Whereas IaaS is flexible and inexpensive relative to the other service models, it requires
that you have the ability to implement the recommendations contained in this book.
You’re given some tools from vendors but you’re basically on your own. For a small
organization or one that isn’t particularly adept at making big changes, this is a tall order.

Deployment Models
While service models are about the value that each vendor adds, deployment models
describe who can consume each offering. Any service model may technically be deliv‐
ered using any deployment model, but in practice certain service models lend them‐
selves better to certain deployment models. A public cloud is consumable by anybody.
A private cloud is consumable by only designated organizations or individuals, and it
can be deployed on or off premises. A hybrid cloud is the dynamic bursting to a public
cloud from either a private cloud or a traditional on- or off-premises deployment.

Table 3-2 shows the attributes that these deployment models can be evaluated on.

Table 3-2. Attributes of common deployment models
Criteria Public Hybrid Private

Most common service
models

SaaS, PaaS, IaaS PaaS, IaaS PaaS, IaaS

Who may consume Anybody Designated organizations/individuals Designated organizations/
individuals

Who owns data centers/
hardware

Public cloud vendor You + public cloud vendor You (owned by you or a colo)

Control Low Medium High

Who manages stack Public cloud vendor You + public cloud vendor You

Accounting model OPEX OPEX (for public cloud) +
CAPEX (for private cloud)

CAPEX

66 | Chapter 3: What Is Cloud Computing?

The definitions of each deployment model are fairly simple, but the implications can
be substantial. Let’s discuss further.

Public Cloud
A public cloud is exactly what it sounds like: it’s public. Anybody may consume its
services. By definition, a public cloud is owned and operated by a third party in data
centers belonging to or under contract by the vendor. In other words, the data centers
aren’t yours. Public cloud vendors typically operate out of many different data centers,
with consumers of the service able to choose where they want to provision their re‐
sources.

Vendors offering public clouds benefit greatly from economies of scale. They can buy
vast quantities of hardware, bandwidth, and power, and then build advanced automa‐
tion on top of their stack. This allows them to deliver their software, platform, or in‐
frastructure to you faster, better, and cheaper than you can. Public cloud vendors, es‐
pecially IaaS vendors, also benefit by signing up a wide range of customers and ending
up using the resources for different purposes at different times. This allows the resources
to be oversubscribed. Higher oversubscription means less cost to you.

A public cloud is often used when large amounts of resources must be marshaled. For
example, large-scale weather simulations may use thousands of servers but only for a
few hours. It doesn’t make sense for a university to buy a few thousand machines and
use them for only a few hours a year. Or in the case where you get hit with a distributed
denial-of-service attack and need to handle 1,000 times your traffic—that’s where public
clouds excel. It is for the exact same reason that public clouds excel for ecommerce.

Elasticity is a defining characteristic of public clouds. Cloud vendors provide easy-to-
use APIs to scale up or down the use of a platform or infrastructure. Or in the case of
SaaS, you can consume as much as you need and then pay for what you actually use.
That elasticity and the ability to consume vast amounts of resources is important for
workloads like ecommerce.

Public clouds offer their services to anyone, so security tends to be a concern. Depending
on the service model, your data may be colocated with other tenants. Your data may be
traversing countries that can intercept it. You can’t physically see and touch the servers
on which your sensitive data is traversing. Security can definitely be a concern, but as
we’ll discuss in Chapter 9, public clouds can make it easier to be secure.

Hybrid Cloud
A hybrid cloud is a combination of traditional on or off-premises deployment that bursts
to a public cloud. “Build the base, rent the peak” is the phrase most often used to describe
a hybrid cloud. What’s key about a hybrid is the bursting component—not whether the

Deployment Models | 67

part of your environment that you directly oversee and manage is a private cloud. Hybrid
clouds are often used in the following scenarios:

• Software or hardware is unable to be deployed in a cloud for technical reasons. For
example, you may need a physical appliance, or an application may not work well
in a virtualized environment. With this model, you could, for example, keep your
backend in-house and put your more variable frontend in a public cloud.

• You want to keep sensitive data under your control on hardware that’s yours, with
your own badged employees serving as administrators.

• Software is unable to be deployed in a cloud for commercial reasons. For example,
you may be using software whose licensing doesn’t work well with a cloud.

For the purposes of this book, the frontend is defined as a user inter‐
face and the backend is defined as server-side code that contains
business logic.

A hybrid cloud is great for ecommerce, where you have a steady baseline of traffic yet
want to scale dynamically for peaks. You save money, gain flexibility, yet retain full
control over your sensitive data. Not everybody will deploy a full ecommerce platform
out to a public cloud. A hybrid model is sometimes desired because the core of the
platform holding the sensitive data can remain under your firm control, while the non‐
sensitive parts of the application can be deployed out to a cloud.

While a step in the right direction and a good option for many, hybrid clouds aren’t
perfect. Hybrid clouds require that you break your application into two pieces: the piece
that’s managed in-house and the piece that’s deployed out to a public cloud. Splitting
an existing application in two pieces isn’t easy, but the benefits can easily outweigh the
costs. We’ll discuss this further in Chapter 11.

Private Cloud
A private cloud is basically a public cloud that is limited to your own organization. While
typically deployed on hardware that you own in your own data center, it can also be
deployed on hardware that you don’t own in a colo. To be a private cloud, it has to meet
the requirements of cloud computing: elastic, on demand, and metered. Traditional
static deployments of hardware and software don’t meet the definition of cloud com‐
puting. Likewise, the use of virtualization doesn’t make it a private cloud either, as we’ll
discuss in Chapter 6.

To build a private cloud and have the econommics work out, you need a large pool of
software that you can deploy to this private cloud. With only one application (say,

68 | Chapter 3: What Is Cloud Computing?

ecommerce) deployed to a private cloud, you have to buy enough hardware to handle
your peak, and by doing that, you’ve cancelled all of the benefits of cloud computing.
With varied workloads, a private cloud becomes more worthwhile, but only if each
workload has its peak at different times. If you’re a retailer and you use a private cloud
for all of your retail applications, you’re going to quickly run out of capacity on Black
Friday. To solve that, you have to buy a lot more hardware than you need at steady state
and let it sit idle for all but a few hours of the year, which defeats the purpose of cloud
computing.

A private cloud is often used for consolidation within large enterprises. If the different
workloads you have deployed to a private cloud each have their peaks at different times
throughout the day, week, month, or year, you could end up saving money. But, again,
if your workloads all have their peaks at the same time, you just incur unnecessary
overhead.

A private cloud is used primarily for three reasons:

• You have many workloads to consolidate.
• You’re especially security conscious and don’t yet trust public clouds to be secure

(see Chapter 9).
• You want to “try cloud computing at home” before going out to a public cloud.

Unless you have many workloads to consolidate, a private cloud doesn’t offer a strong
value proposition.

Hardware Used in Clouds
Clouds are often comprised of commoditized x86 hardware, with the commoditized
components assembled by off-brand manufacturers or even assembled in-house. Com‐
modity hardware is used because it’s cheap and general-purpose. The hardware is cheap
because it’s produced in enormous volumes and assembled by manufacturers who add
very little value (cost) to it. The hardware used in clouds is meant to be nearly disposable.
In the classic cost/quality/fit-for-purpose trade-off, cost is the deciding factor.

While commodity hardware is most often used in cloud computing, it need not be a
defining feature of cloud computing. Cloud computing is defined as elastic, on demand,
and metered. Commodity hardware is not among those three attributes.

The ecommerce use case is fairly unique among cloud workloads. If you’re sequencing
DNA in the cloud, for example, it doesn’t matter whether you sequence 300 bases a
second or 400. But in ecommerce, milliseconds matter because a real (potentially) pay‐
ing customer is waiting on the other end for that response. Many clouds offer different
types of hardware optimized for different workloads. Besides commodity, clouds now
offer hardware optimized for the following:

Hardware Used in Clouds | 69

• Memory
• Computing
• GPU
• Storage
• Networking

You may, for example, want to deploy your ecommerce application on hardware opti‐
mized for computing, and your database on hardware optimized for fast access to stor‐
age. The hardware you choose is a trade-off between performance and cost, with your
architecture sometimes mandating specialized hardware. Vendors also offer general-
purpose small, medium, and large instances, with cost, memory, and computing power
rising in tandem.

Hardware Sizing
The vertical scalability of software on any given hardware is always limited. It’s hard to
find software that will deliver the same throughput (e.g., HTTP requests per second)
for CPU core number 1 and for CPU core number 64. Software always performs opti‐
mally when deployed across a certain number of CPU cores. For example, the graph in
Figure 3-7 shows the marginal vertical scalability of a hypothetical single Java Virtual
Machine (JVM).

Figure 3-7. Marginal vertical scalability of a hypothetical single JVM

70 | Chapter 3: What Is Cloud Computing?

At the lower end of the x-axis, you’ll find that a JVM doesn’t deliver as much throughput
as it could because the limited CPU and memory is consumed by the overhead of starting
up each JVM and performing garbage collection. JVMs, like all software, have runtime
overhead. At the high end of the x-axis, you’ll suffer from thread contention as too many
threads are competing to lock on the same objects, or you’ll run out of CPU as your
garbage collection algorithm works exponentially harder.

So long as you’re meeting your necessary service-level agreements, pick the instance
type that offers the lowest price per the metric that makes the most sense for each
workload. For example, calculate the number of HTTP requests per second each in‐
stance type can generate and then divide that by the number of virtual CPUs, or vCPUs.
That should lead you to data similar to Table 3-3.

Table 3-3. Calculations required to find optimal server size
Server size Cost per hour vCPUs HTTP requests/second Cost/100 HTTP requests/second

Small $0.15 4 92 (4 vCPUs × 23 HTTP requests/sec) $0.163

Medium $0.25 8 192 (8 vCPUs × 24 HTTP requests/second) $0.130

Large $0.50 16 320 (16 vCPUs × 20 HTTP requests/second) $0.156

From this simple exercise, it’s clearly best to choose the medium instance type because
the cost per 100 HTTP requests per second is the least. It may also make sense to choose
a compute-intensive server. Perhaps the premium you’re paying could be offset by the
marginal capacity it offers. Do this for each of your workloads. Cloud vendors offer
many options—it’s up to you to pick the most cost-effective one for each of your
workloads.

Complementary Cloud Vendor Offerings
Cloud vendors have traditionally offered PaaS and/or IaaS, with pure play vendors of‐
fering the various SaaS components as well. Most IaaS vendors have an entire portfolio
of SaaS and PaaS offerings in order to appeal to different market segments and be able
to upsell to their customers. Once a vendor’s platform is in place, the marginal cost of
a new offering is very small, as shown in Figure 3-8.

Complementary Cloud Vendor Offerings | 71

Figure 3-8. Service models versus value/cost/margins

The most capital-intensive part is building out the IaaS layer. That involves building,
buying, or leasing data centers, as well as buying hardware. Once that’s in place, building
a PaaS layer is relatively easy. Once PaaS is built, SaaS is even easier because each layer
builds on the layer before it.

To make these additional services more appealing, vendors vertically integrate the sol‐
utions to work together. When taken together, the ancillary services offered by each
vendor create compelling solutions. Vertically integrated solutions are almost always
better than individual services offered by different vendors.

Here are some examples of ancillary services offered by many vendors:

• Global Server Load Balancing (GSLB)/DNS (Chapter 10)
• Proxying requests from the edge back to the data center running your code (Chap‐

ter 7)
• Static content serving (Chapter 7)
• DDoS attack mitigation (request scrubbing) (Chapter 9)
• Web application firewalls (Chapter 9)
• Storage
• Load balancing
• Virtual private clouds within a larger public cloud (Chapter 9)
• Auto-scaling (Chapter 4)
• Monitoring (Chapter 4)
• Backup
• Databases (Chapter 8)

72 | Chapter 3: What Is Cloud Computing?

2. Stephen Shankland, “Google Spotlights Data Center Inner Workings,” CNet (30 May 2008), http://cnet.co/
MrUH9A.

• Cache grids (Chapter 8)

Many of these services come with high service-level agreements and enterprise-level
24/7 support.

Challenges with Public Clouds
Public clouds, the focus of this book, provide strong advantages as well as disadvan‐
tages. The disadvantages of public clouds often stem from what’s known as the agency
dilemma in economics, whereby the two parties (you and your public cloud vendor)
have different interests and information. For example, you may lock down your envi‐
ronments and disallow any further changes (called a holiday freeze) beginning in Oc‐
tober and ending after Christmas because you earn much of your annual revenue in the
weeks before, during, and after Black Friday. With no changes to your environment,
you’re less likely to have outages. But a cloud vendor is unlikely to have the same in‐
centives to avoid downtime and may decide to do maintenance when you have your
annual peak. Of course, both parties have an interest in maintaining availability, but an
outage on Black Friday is going to cost you a lot more than it will cost your cloud vendor.
That agency problem is at the root of many of these challenges.

Let’s discuss some of these issues.

Availability
As we discussed in Chapter 2, availability is of utmost importance for ecommerce. While
rare, public clouds will always suffer from server-level failures, data center–wide failures,
and cloud-wide failures. Let’s look at these each individually.

Server-level failures are common. It is known expected that hardware will fail:2

In each cluster’s [of 10,000 servers] first year, it’s typical that 1,000 individual machine
failures will occur; thousands of hard drive failures will occur; one power distribution
unit will fail, bringing down 500 to 1,000 machines for about 6 hours; 20 racks will fail,
each time causing 40 to 80 machines to vanish from the network; 5 racks will “go wonky,”
with half their network packets missing in action; and the cluster will have to be rewired
once, affecting 5 percent of the machines at any given moment over a 2-day span, Dean
said. And there’s about a 50 percent chance that the cluster will overheat, taking down
most of the servers in less than 5 minutes and taking 1 to 2 days to recover.

— Jeff Dean
 Google Fellow

Challenges with Public Clouds | 73

http://cnet.co/MrUH9A
http://cnet.co/MrUH9A

3. Matthew Prince, “Today’s Outage Post Mortem,” CloudFlare (3 March 2013), http://bit.ly/1k7yxbx.

Cloud vendors have the same challenges that Google has. Hardware is cheap and un‐
reliable. To compensate for the unreliability, resiliency is (or should be) built in to soft‐
ware through the use of clustering and similar technology. Almost without exception,
you can deploy any software across two or more physical servers to minimize the impact
of any one server failing.

While rare, entire data centers do go offline. For example, Hurricane Sandy took out
data centers across the East Coast of the US in 2012. Natural disasters and human error
(including cable cuts) are often to blame. No data center should be seen as immune to
going entirely offline. This is why most ecommerce vendors have an off-site replica of
production, either in an active/passive or active/active configuration across two or even
more data centers (discussed in Chapter 10). To avoid these issues, most vendors group
together data centers into partitions that are (supposedly) entirely separated from each
other. By deploying your software across multiple partitions, you should be fairly safe.

While exceptionally unlikely, cloud-wide failures do occur. For example, a large cloud
vendor recently suffered a complete worldwide outage because they forgot to renew
their SSL certificate. Clouds are supposed to span multiple physical data centers and be
partitioned to avoid outages propagating from one data center to another, but you can
never be 100% certain that there are no dependencies between data centers. Cloud-wide
outages may be due to the following:

• A reliance on shared resources, coupled with the failure of a shared resource. That
resource may even be something as simple as an SSL certificate.

• Technical issues that propagate across data centers.3

• Operational missteps, like patching all data centers at the same time only to discover
there was a bug in one of the patches applied.

• Malicious behavior, like DDoS attacks or hacking.

The only way to completely protect your ecommerce platform against entire cloud-wide
outages is to deploy your software across multiple clouds, though most vendors do a
pretty good job of isolation. Deploying across multiple data centers and multiple clouds
is covered in Chapter 10.

Performance
Performance is always a concern for ecommerce because revenue depends so much on
it. In responding to customer feedback, Google increased the number of results on its
search engine result page from 10 to 50. Immediately after implementing that change,
the company saw a 20% decline in page views and corresponding ad revenue. What
Google didn’t control for was the extra 500 milliseconds of latency introduced by the

74 | Chapter 3: What Is Cloud Computing?

http://bit.ly/1k7yxbx

4. Greg Linden, “Marissa Mayer at Web 2.0,” Geeking with Greg (9 November 2006), http://bit.ly/QnOcHH.

5. Todd Hoff, “Latency Is Everywhere And It Costs You Sales—How To Crush It,” High Scalability (25 July 2009),
http://bit.ly/1hEgNOK.

larger response. When 500 milliseconds of response time was artificially added to the
standard page with 10 results, the same 20% decline in traffic (and therefore revenue)
was also seen.4 Amazon.com saw conversion rates drop 1% for every 100 milliseconds
of additional response time.5 Customers may say they want more functionality, but real-
world testing has repeatedly shown that they value performance as much, if not even
more than, additional functionality.

In your own data center, you can optimize performance of your hardware and software
stack. Need to make 1,000 synchronous calls back to your cache grid to build a page?
No problem, so long as you use specialized networking technology like InfiniBand,
bypass the kernel, and have submicrosecond round-trip latency. In a cloud environ‐
ment, you can’t change very much. You’re stuck with the stack you’re given, for better
or worse. Every time you have to communicate with another machine, as is increasingly
common, your data takes the journey shown in Figure 3-9.

Figure 3-9. Layers involved in making a call to a remote host

The hardware and software used in public clouds is designed to be general-purpose
because public clouds need to support so many workloads.

Now take that page with 1,000 synchronous calls to your cache grid and deploy it in a
cloud with four milliseconds of latency between your application server and cache grid
and you have a big problem, as shown in Figure 3-10.

Challenges with Public Clouds | 75

http://bit.ly/QnOcHH
http://bit.ly/1hEgNOK

6. Todd Hoff, “Reddit: Lessons Learned From Mistakes Made Scaling To 1 Billion Pageviews A Month,” High
Scalability (26 August 2013), http://bit.ly/1kmFZke.

7. Todd Hoff, “How Can Batching Requests Actually Reduce Latency?” High Scalability (4 December 2013),
http://bit.ly/MrUHq1.

Figure 3-10. Impact of latency with multiple calls

Applications written to deal with latency, usually through the use of batching, shouldn’t
have a problem. Most software now supports the equivalent of getAll() calls (as op‐
posed to simple get()). That all but eliminates this as a challenge, as Figure 3-11 shows.

Figure 3-11. Impact of using a getAll() equivalent

Case Study: Reddit
Reddit, an online discussion community with two billion page views per month,6 had
this issue when it moved to a public IaaS cloud.7 Reddit was calling its cache grid,
Memcached, up to 1,000 times per page view when hosted out of its own data center. In
a public IaaS cloud, Reddit’s latency between servers increased by 10 times, which made
that old approach unusable in a cloud. The company had to batch up requests to Memc‐
ached to avoid the overhead of synchronously going back and forth to Memcached.
Doing this completely eliminated the impact of the latency that its cloud vendor intro‐
duced.

76 | Chapter 3: What Is Cloud Computing?

http://bit.ly/1kmFZke
http://bit.ly/MrUHq1

8. Akamai Technologies, “Facts and Figures” (2014), http://www.akamai.com/html/about/facts_figures.html.

9. Andy Jordan, “The Day the Internet Almost Died,” The Wall Street Journal Online (26 June 2009), http://
on.wsj.com/P93I93.

Oversubscription
Public SaaS, PaaS, and IaaS work as business models because each consumer of the
respective service uses the service at roughly different times. Most shared utility-based
services work like this, from power to roads to physical retail stores. Problems arise for
service providers when everybody tries to use a shared resource at the same time—as
when everybody turns their air conditioning on during the hottest day of the year.

Some vendors have this problem because they’re used heavily by one industry. For ex‐
ample, Content Delivery Networks are used by nearly every major ecommerce vendor,
and most ecommerce vendors have their spikes on the same few days: Black Friday (US,
Brazil, China), Singles’ Day (China), Boxing Day (UK, Australia), and El Buen Fin
(Mexico).8 On these few days, traffic can spike hundreds of times over the average.

To make matters worse, cloud vendors tend to have a few endpoints in each country.
So El Buen Fin in Mexico, for example, taxes the few data centers each Content Delivery
Network has in Mexico. Fortunately, Content Delivery Networks, as with SaaS offerings,
have the benefit of you being able to hold the vendor to meeting predetermined service-
level agreements. Those vendors then have to scale and have a lot of hardware sit idle
throughout the year. Although you pay for it, it’s not as direct of a cost as if you had the
hardware sitting idle in your own data centers.

When looked at globally, large public IaaS vendors are relatively protected against these
spikes because their customers come from various industries and run a wide range of
workloads. Demand-based pricing, as discussed earlier, also helps to smooth out load.

While vendors claim you can always provision, and have a good track record of allowing
customers to provision at any time, it is theoretically possible that a vendor could run
out of capacity. For example, a cloud vendor could run out of capacity during a news
event as people look online for more information and websites auto-scale to handle the
increased demand. For example, web traffic more than doubled following Michael
Jackson’s death in 2009.9

To guard against this, various strategies may be employed, including:

• Pre-provisioning hours ahead of your big events. Traffic from special events is often
predictable.

• Buying dedicated capacity. Most vendors offer this.
• Being able to provision and run smoothly across multiple data centers within the

same cloud vendor’s network.

Challenges with Public Clouds | 77

http://www.akamai.com/html/about/facts_figures.html
http://on.wsj.com/P93I93
http://on.wsj.com/P93I93

• Being able to provision from multiple clouds.

You need to take proactive steps to ensure that your vendor(s) has enough capacity
available to handle your peaks.

Cost
While cloud computing is generally less expensive than traditional on-premises com‐
puting, it may be more expensive, depending on how you use it. Cloud computing excels
in handling elastic workloads. Highly static workloads may or may not make sense,
depending on whether your organization can cost-effectively deploy and manage hard‐
ware and software.

If you calculate the cost of a server on a public IaaS cloud over the expected useful life
of a server (say, three years) and compare that to the cost to acquire the same hardware/
software, the cost of a cloud-based solution is likely to be more. But you need to look
at costs holistically. That hourly price you’re being quoted includes the following:

• Data center space
• Power
• Bandwidth out to the Internet
• Software
• Supporting network infrastructure
• Patching (firmware and possibly operating system)
• All of the labor required to rack/stack/cable/maintain the hardware
• A baseline of support

These costs can be considerable. You’re generally renting capacity for hours at a time to
handle big spikes in traffic. The cost of building up all of that capacity in-house and
then letting it sit idle for most of the year is exponentially greater than the cost you
would pay to a cloud vendor. You also have to take into consideration that your orga‐
nization’s core competency is unlikely to be building out hardware and/or software
infrastructure. Your organization is likely to be a retailer of some variety. Straying too
far away from your organization’s core competency is never a good thing in the longrun.

Cloud vendors often offer better prices than what you could do in-house because their
core competency is delivering large quantities of resources like infrastructure. When
you can specialize and offer one service exceptionally well, you do it better than an
organization whose focus is elsewhere. Specifically, cloud vendors benefit from the fol‐
lowing:

78 | Chapter 3: What Is Cloud Computing?

• Economies of scale—you can purchase hardware, software, and data center space
at much better rates if you buy in bulk.

• Being able to hire the world’s experts in various topics.
• Heavy automation—it makes sense to automate patching if you have 100,000

servers but not if you have 10, for example.
• Organizational alignment around delivering your core competency.

While most of these principles are applicable to public IaaS vendors, they apply equally
to PaaS and SaaS vendors.

Cloud vendors are also able to offer flexible pricing by allowing you to rapidly scale up/
down, select your preferred server type, and purchase capacity by the hour or on a fixed
basis throughout the year.

For more information on the cloud, read Cloud Architecture Patterns by Bill Wilder
(O’Reilly).

Summary
In this chapter, we’ve defined cloud and its benefits, reviewed the concepts of service
and deployment models, discussed complementary offerings, and covered the chal‐
lenges of public clouds. In the next chapter, we’ll explore auto-scaling, the enabler of
cloud’s central promise: elasticity.

Summary | 79

http://shop.oreilly.com/product/0636920023777.do

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4

Auto-Scaling in the Cloud

What Is Auto-Scaling?
Auto-scaling, also called provisioning, is central to cloud. Without the elasticity provided
by auto-scaling, you’re back to provisioning year-round for annual peaks. Every ecom‐
merce platform deployed in a cloud should have a solution in place to scale up and down
each of the various layers based on real-time demand, as shown in Figure 4-1.

Figure 4-1. Benefits of an auto-scaling solution

81

An auto-scaling solution is not to be confused with initial provisioning. Initial provi‐
sioning is all about getting your environments set up properly, which includes setting
up load balancers, setting up firewalls, configuring initial server images, and a number
of additional one-time activities. Auto-scaling, on the other hand, is focused on taking
an existing environment and adding or reducing capacity based on real-time needs.
Provisioning and scaling may ultimately use the same provisioning mechanisms, but
the purpose and scope of the two are entirely different.

The goal with auto-scaling is to provision enough hardware to support your traffic,
while adhering to service-level agreements. If you provision too much, you waste money.
If you provision too little, you suffer outages. A good solution will help you provision
just enough, but not so much that you’re wasting money.

In this chapter, we’ll cover what needs to be provisioned, when to provision, followed
by how to provision.

What Needs to Be Provisioned
The focus of this chapter is provisioning hardware from an Infrastructure-as-a-Service
platform because that has the least amount of provisioning built in, as shown in
Figure 4-2.

Figure 4-2. What you and your vendor are each responsible for provisioning

When you’re using Infrastructure-as-a-Service, your lowest level of abstraction is phys‐
ical infrastructure—typically, a virtual server. You have to provision computing and
storage capacity and then install your software on top of it. We’ll discuss the software
installation in the next chapter. IaaS vendors handle the provisioning of lower-level

82 | Chapter 4: Auto-Scaling in the Cloud

resources, like network and firewalls. Infrastructure-as-a-Service vendors invest
substantial resources to ensure that provisioning is as easy as possible, but given that
you’re dealing with plain infrastructure, it’s hard to intelligently provision as you can
with Platform-as-a-Service.

Moving up the stack, Platform-as-a-Service offerings usually have tightly integrated
provisioning tools as a part of their core value proposition. Your lowest level of ab‐
straction is typically the application server, with the vendor managing the application
server and everything below it. You define when you want more application servers
provisioned, and your Platform-as-a-Service vendor will provision more application
servers and everything below it in tandem. Provisioning is inherently difficult, and by
doing much of it for you, these vendors offer value that you may be willing to pay extra
for.

Finally, there’s Software-as-a-Service. Most Software-as-a-Service vendors offer nearly
unlimited capacity. Think of common software offered as Software-as-a-Service: DNS,
Global Server Load Balancing, Content Delivery Networks, and ratings and reviews.
You just consume these services, and it’s up the vendor to scale up their entire backend
infrastructure to be able to handle your demands. That’s a big part of the value of
Software-as-a-Service and is conceptually similar to the public utility example from the
prior chapter. You just pull more power from the grid when you need it. This differs
from Platform-as-a-Service and Infrastructure-as-a-Service, where you need to tell your
vendor when you need more and they meter more out to you.

The downside of your vendors handling provisioning for you is that you inherently lose
some control. The vendor-provided provisioning tools are fairly flexible and getting
better, but your platform will always have unique requirements that may not be exactly
met by the vendor-provided provisioning tools. The larger and more complicated your
deployment, the more likely you’ll want to build something custom, as shown in
Table 4-1.

Table 4-1. Breakdown of criteria for Infrastructure-as-a-Service, Platform-as-a-Service,
and Software-as-a-Service

Criteria IaaS PaaS SaaS

Need to provision Yes Yes No

What you provision Computing, storage Platform (application) N/A

Who’s responsible You Mostly vendor Vendor

Flexibility of provisioning Complete to limited Limited None

Your goal in provisioning is to match the quantity of resources to the level of each
resource that is required, plus any safety factor you have in place. A safety factor is how
much extra capacity you provision in order to avoid outages. This value is typically
represented in the auto-scaling rules you define. If your application is CPU bound, you
could decide to provision more capacity at 25%, 50%, 75%, or 95% aggregate CPU

What Needs to Be Provisioned | 83

utilization. The longer you wait to provision, the higher the likelihood of suffering an
outage due to an unanticipated burst of traffic.

What Can’t Be Provisioned
It’s far easier to provision more resources for an existing environment than it is to build
out a new environment from scratch. Each environment you build out has fixed over‐
head—you need to configure a load balancer, DNS, a database, and various management
consoles for your applications. You then need to seed your database and any files that
your applications and middleware require. It is theoretically possible to script this all
out ahead of time, but it’s not very practical.

Then there are a few resources that must be fully provisioned and scaled for peak ahead
of time. For example, if you’re deploying your own relational database, it needs to be
built out ahead of time. It’s hard to add database nodes for relational databases in real
time, as entire database restarts and other configuration changes are often required. A
database node for a relational database isn’t like an application server or web server,
where you can just add another one and register it with the load balancer. Of course,
you can use your vendor’s elastic database solutions, but some may be uncomfortable
with sensitive data being in a multitenant database. Nonrelational databases, like NoSQL
databases, can typically be scaled out on the fly because they have a shared-nothing
architecture that doesn’t require whole database restarts.

Each environment should contain at least one of every server type. Think of each en‐
vironment as being the size of a development environment to start. Then you can define
auto-scaling policies for each tier. The fixed capacity for each environment can all be
on dedicated hardware, as opposed to the hourly fees normally charged. Dedicated
hardware is often substantially cheaper than per-hour pricing, but hardware requires
up-front payment for a fixed term, usually a year. Again, this should be a fairly small
footprint, consisting of only a handful of servers. The cost shouldn’t be much.

When to Provision
Ideally, you’d like to perfectly match the resources you’ve provisioned to the amount of
traffic the system needs to support. It’s never that simple.

The problem with provisioning is that it takes time for each resource to become func‐
tional. It can take at least several minutes for the vendor to give you a functioning server
with your image installed and the operating system booted. Then you have to install
your software, which takes even more time. The installation of your software on newly
provisioned hardware is covered in the next chapter.

Once you provision a resource, you can’t just make it live immediately. Some resources
have dependencies and must be provisioned in a predefined order, or you’ll end up with
an outage. For example, if you provision application servers before your messaging

84 | Chapter 4: Auto-Scaling in the Cloud

servers, you probably wouldn’t have enough messaging capacity and would suffer an
outage. In this example, you’d have to add your application servers to the load balancer
only after the messaging servers have been fully provisioned. The trick here is to pro‐
vision in parallel, and then install your software in parallel, but add your application
servers to the load balancer as a last step.

Provisioning takes two forms:
Proactive provisioning

Provisioning ahead of time when you expect there will be traffic

Reactive provisioning
Provisioning in reaction to traffic

Reactive provisioning is what you should strive for, though it comes with the risk of
outages if you can’t provision quickly enough to meet a rapid spike in traffic. The way
to guard against that is to overprovision (start provisioning at, say, 50% CPU utilization,
assuming your application is CPU bound) but that leads to waste. Likewise, you could
provision at 95% CPU utilization, but you’ll incur costs there, too, because you’ll suffer
periodic outages due to not being able to scale fast enough. It’s a balancing act that’s
largely a function of how quickly you can provision and how quickly you’re hit with
new traffic.

Proactive Provisioning
In proactive provisioning, you provision resources in anticipation of increased traffic.
You can estimate traffic based on the following:

• Cyclical trends
— Daily
— Monthly
— Seasonally

• Active marketing
— Promotions
— Promotional emails
— Social media campaigns
— Deep price discounts
— Flash sales

If you know traffic is coming and you know you’ll get hit with more traffic than you
can provision for reactively, it makes sense to proactively add more capacity. For

When to Provision | 85

example, you could make sure that you double your capacity an hour before any big
promotional emails are sent out.

To be able to proactively provision, you need preferably one system to look at both
incoming traffic and how that maps back to the utilization of each tier. Then you can
put together a table mapping out each tier you have and how many units of that resource
(typically uniformly sized servers) are required for various levels, as shown in Table 4-2.

Table 4-2. Example of resources that must be provisioned at each tier
Resource 10,000 concurrent customers 20,000 concurrent customers 30,000 concurrent customers

Application servers 5 10 15

Cache grid servers 3 6 9

Messaging servers 2 4 6

NoSQL database servers 2 4 6

Ideally, your system will scale linearly. So if your last email advertising a 30% off pro‐
motion resulted in 30,000 concurrent customers, you know you’ll need to provision 15
application servers, 9 cache grid servers, 6 messaging servers, and 6 NoSQL database
servers prior to that email going out again. A lot of this comes down to process. Unless
you can reliably and quickly reactively provision, you’ll need to put safeguards in place
to ensure that marketers aren’t driving an unexpectedly large amount of traffic without
the system being ready for it.

The costs of proactive provisioning are high because the whole goal is to add more
capacity than is actually needed. Traffic must be forecasted, and the system must be
scaled manually. All of this forecasting is time-consuming, but compared to the cost of
an outage and the waste before the cloud, the costs are miniscule.

Reactive Provisioning
Reactive provisioning has substantial benefits over proactive provisioning and is what
you should strive for. In today’s connected world, a link to your website can travel across
the world to millions of people in a matter of minutes. Celebrities and thought leaders
have 50 million or more followers on popular social networks. All it takes is for some‐
body with 50 million followers to broadcast a link to your website, and you’re in trouble.
You can forecast most traffic but not all of it. The trend of social media–driven spikes
in traffic will only accelerate as social media continues to proliferate.

In addition to avoiding outages, reactive provisioning has substantial cost savings. You
provision only exactly what you need, when you need it.

Reactive provisioning is built on the premise of being able to accurately interrogate the
health of each tier and then taking action if the reported data warrants it. For example,
you could define rules as shown in Table 4-3.

86 | Chapter 4: Auto-Scaling in the Cloud

Table 4-3. Sample rules for provisioning
Tier Metric Threshold for action Action to be taken

Application servers CPU utilization 50% Add 5 more

Cache grid servers Memory 50% Add 3 more

Messaging servers Messages per second 1,000 Add 3 more

NoSQL database servers CPU utilization 50% Add 2 more

By adding more capacity at 50%, you should always have 50% more capacity than you
need, which is a healthy safety factor. We’ll get into the how part of provisioning shortly.

Sometimes your software’s limits will be expressed best by a custom metric. For example,
a single messaging server may be able to handle only 1,000 messages per second. But
how can you represent that by using off-the-shelf metrics, like network utilization and
CPU utilization? Your monitoring tool will most likely allow you to define custom
metrics that plug in to hooks you define.

Auto-Scaling Solutions
There are many auto-scaling solutions available, ranging from custom-developed sol‐
utions to solutions baked into the core of cloud vendors’ offerings to third-party solu‐
tions. All of them need to do basically the same thing as Figure 4-3 shows.

Figure 4-3. How an auto-scaling solution works

Auto-Scaling Solutions | 87

While these solutions all do basically the same thing, their goals, approach, and imple‐
mentation all vary.

Any solution that’s used must be fully available and preferably deployed outside the
cloud(s) that you’re using for your platform. You must provide full high availability
within each data center this solution operates from, as well as high availability across
data centers. If auto-scaling fails for any reason, your platform could suffer an outage.
It’s important that all measures possible are employed to prevent outages.

Requirements for a Solution
The following sections show broadly what you need to do in order to auto-scale.

Define each tier that needs to be scaled
To begin with, you need to identify each tier that needs to be scaled out. Common tiers
include application servers, cache grid servers, messaging servers, and NoSQL database
servers. Within each tier exist numerous instance types, some of which can be scaled
and some of which cannot. For example, most tiers have a single admin server that
cannot and should not be scaled out. As mentioned earlier, some tiers are fixed and
cannot be dynamically scaled out. For example, your relational database tier is fairly
static and cannot be scaled out dynamically.

Define the dependencies between tiers
Once you identify each tier, you then have to define the dependencies between them.
Some tiers require that other tiers are provisioned first. An earlier example used in this
chapter was the addition of more application servers without first adding more mes‐
saging servers. There might be intricate dependencies between the tiers and between
the components within each tier. Dependencies can cascade. For example, adding an
application server may require the addition of a messaging server that may itself require
another NoSQL database node.

Define ratios between tiers
Once you’ve identified the dependencies between each tier, you’ll need to define the
ratios between each tier if you ever want to be able to proactively provision capacity.
For example, you may find that you need a cache grid server for every two application
servers. When you proactively provision capacity, you need to make sure you provision
each of the tiers in the right quantities. See “Proactive Provisioning” for more infor‐
mation.

88 | Chapter 4: Auto-Scaling in the Cloud

Define what to monitor
Next, for each tier you need to define the metrics that will trigger a scale up or scale
down. For application servers, it may be CPU (if your app is CPU bound) or memory
(if your app is memory bound). Other metrics include disk utilization, storage utiliza‐
tion, and network utilization. But, as discussed earlier, metrics may be entirely custom
for each bit of software. What matters is that you know the bottlenecks of each tier and
can accurately predict when that tier will begin to fail.

Monitor each server and aggregate data across each tier
Next, you need to monitor each server in that tier and report back to a centralized
controller that is capable of aggregating that data so you know what’s going on across
the whole tier, as opposed to what’s going on within each server. The utilization of any
given server may be very high, but the tier overall may be OK. Not every server will have
perfectly uniform utilization.

Define rules for scaling each tier
Now that all of the dependencies are in place, you need to define rules for scaling each
tier. Rules are defined for each tier and follow standard if/then logic. The if should be
tied back to tier-wide metrics, like CPU and memory utilization. Lower-utilization
triggers increase safety but come at the expense of overprovisioning. The then clause
could take any number and any combination of the following:

• Add capacity
• Reduce capacity
• Send an email notification
• Drop a message onto a queue
• Make an HTTP request

Usually, you’ll have a minimum of two rules for each tier:

1. Add more capacity
2. Reduce capacity

Figure 4-4 shows an example of how you define a scale-up rule.

Auto-Scaling Solutions | 89

Figure 4-4. Sample scale-up rule

And the corresponding scale-down rule is shown in Figure 4-5.

Figure 4-5. Sample scale-down rule

If there are any exceptions, you should be notified by email or text message, so you can
take corrective action.

Your solution should offer safeguards to ensure that you don’t provision indefinitely. If
the application you’ve deployed has a race condition that spikes CPU utilization im‐
mediately, you don’t want to provision indefinitely. Always make sure to set limits as to
how many servers can be deployed, as shown in Figure 4-6.

90 | Chapter 4: Auto-Scaling in the Cloud

Figure 4-6. Minimum and maximum server counts

Revisit this periodically to make sure you don’t run into this limit as you grow.

Building an Auto-scaling Solution
Whether you build or buy one of these solutions, you’ll be using the same APIs to do
things like provision new servers, de-provision underutilized servers, register servers
with load balancers, and apply security policies. Cloud vendors have made exposing
these APIs and making them easy to use a cornerstone of their offerings.

Means of interfacing with the APIs often include the following:

• Graphical user interface
• Command-line tools
• RESTful web services
• SOAP web services

These APIs are what everybody uses to interface with clouds in much the same way that
APIs are powering the move to omnichannel. An interface (whether it’s a graphical user
interface, command-line tool, or some flavor of web service) is a more or less disposable
means to interface with a core set of APIs, shown in Figure 4-7.

Auto-Scaling Solutions | 91

Figure 4-7. Interfacing with auto-scaling APIs

OpenStack is a popular open source cloud management stack that has a set of APIs at
its core. All cloud vendors offer APIs of this nature. Here are some examples of how
you would perform some common actions:

Create machine image (snapshot of filesystem)
// HTTP POST to /images
{
 "id":"production-ecommerce-application-page-server",
 "name":"Production eCommerce Application Page Server",
}

Write machine image
// HTTP PUT to /images/{image_id}/file
Content-Type must be 'application/octet-stream'

92 | Chapter 4: Auto-Scaling in the Cloud

List flavors of available images
// HTTP GET to /flavors
{
 "flavors": [
 {"id": "1", "name": "m1.tiny"},
 {"id": "2", "name": "m1.small"},
 {"id": "3", "name": "m1.medium"},
 {"id": "4", "name": "m1.large"},
 {"id": "5", "name": "m1.xlarge"}
]
}

Provision hardware
// HTTP POST to /{tenant_id}/servers
{
 "server": {
 "flavorRef": "/flavors/1",
 "imageRef": "/images/production-ecommerce-application-page-server",
 "metadata": {
 "JNDIName": "CORE"
 },
 "name": "eCommerce Server 221",
 }
}

De-provision hardware
// HTTP POST to /{tenant_id}/servers/{server_id}

You can string together these APIs and marry them with a monitoring tool to form a
fairly comprehensive auto-scaling solution. Provided your vendor exposes all of the
appropriate APIs, it’s not all that challenging to build a custom application to handle
provisioning. You can also just use the solution your cloud vendor offers.

Building versus Buying an Auto-Scaling Solution
Like most software, auto-scaling solutions can be built or bought. Like any software,
you have to decide which direction you want to go. Generally speaking, if you can’t
differentiate yourself by building something custom, you should choose a prebuilt sol‐
ution of some sort, whether that’s a commercial solution sold by a third-party vendor
or an integrated solution built into your cloud. What matters is that you have an ex‐
tremely reliable, robust solution that can grow to meet your future needs.

Table 4-4 shows some reasons you would want to build or buy an auto-scaling solution.

Auto-Scaling Solutions | 93

Table 4-4. Reasons to build or buy auto-scaling solution
Build Buy

Your IaaS vendor doesn’t offer an auto-scaling solution. You want to get to market quickly.

You want more functionality and control than what a pre-built
solution can offer.

Your IaaS vendor offers a solution that meets your needs.

You want to be able to provision across multiple clouds. A third-party vendor offers a solution that meets your
needs.

You have the resources (finances, people, time) to implement
something custom.

You don’t have the resources to implement something
custom.

Generally speaking, it’s best to buy one of these solutions rather than build one. Find
what works for you and adopt it. Anything is likely to be better than what you have today.

For more information on auto-scaling, read Cloud Architecture Patterns by Bill Wilder
(O’Reilly).

Summary
In this chapter we discussed the importance of auto-scaling solutions, how they work,
and whether you should build or buy one.

Once you’ve implemented an auto-scaling solution, the next step is to install software
on the hardware that you provision from an auto-scaling solution.

94 | Chapter 4: Auto-Scaling in the Cloud

http://shop.oreilly.com/product/0636920023777.do

CHAPTER 5

Installing Software on
Newly Provisioned Hardware

The adoption of Infrastructure-as-a-Service requires a fundamental change to how
software is installed and configured on newly provisioned servers. Most organizations
manually install and configure software on each server. This doesn’t work when you’re
quickly provisioning new servers in response to real-time traffic. Servers need to be
serving HTTP requests or doing other work within minutes of being provisioned. They
also need to be configured accurately, which is something humans have difficulty doing
reliably.

You can skip this chapter if you’re using only Platform-as-a-Service
or Software-as-a-Service because they do all this for you. This is what
you’re paying them a premium for over Infrastructure-as-a-Service.

In this chapter, we’ll discuss how to build, maintain, and monitor self-contained mod‐
ular stacks of software. These stacks are called deployment units.

What Is a Deployment Unit?
When you provision capacity with Infrastructure-as-a-Service, you get raw hardware
with your choice of an image. But before you can do anything with the hardware, you
need to install and configure software so it can handle HTTP requests or serve whatever
purpose it’s destined for, as shown in Figure 5-1.

95

Figure 5-1. Scope of a deployment unit

Specifically, this requires installing a base image and/or doing the following:

1. Installing software from binary distributions (virtual machine, application server,
caching server)

2. Configuring each of the pieces of software to work together (e.g., telling your ap‐
plication servers where the database is listening)

3. Setting environment variables (e.g., enabling huge pages, TCP/IP stack tuning)
4. Defining metadata (e.g., environment-specific search initialization variables)

Every environment has numerous server types. Common server types include these:
eCommerce server

ecommerce application + application server + virtual machine

Cache server
Cache grid + application server + virtual machine

Messaging server
Messaging system + application server + virtual machine

Service bus server
Service bus + application server + virtual machine

96 | Chapter 5: Installing Software on Newly Provisioned Hardware

Order management server
Order management system + application server + virtual machine

Search engine server
Search engine

Database server
Database node

Each of these servers is unique, requiring potentially different binaries, configuration,
and so on. What matters most is that you can build up a freshly provisioned bit of
hardware within minutes and without human interaction. A single stack that is able to
be deployed on a single operating system instance is considered a deployment unit for
the purposes of this book.

Approaches to Building Deployment Units
Individual units can be built numerous ways, ranging from snapshots of entire systems
(including the operating system) to scripts of various types that can be used to build
each system from source. There are broadly three ways of building out individual
servers. Let’s review each approach.

Building from Snapshots
Public Infrastructure-as-a-Service vendors all offer the ability to snapshot servers. These
snapshots (also called images) are basically byte-level disk copies along with some met‐
adata that can then be used as the basis for building a new server (Figure 5-2). That
snapshot is installed directly on top of a hypervisor, giving you the ability to quickly
build servers. You can also define bootstrap scripts that execute when the server is started
up. These scripts can change network settings, update hostnames, start processes, reg‐
ister with the load balancer, and perform other tasks required to make the server pro‐
ductive.

Approaches to Building Deployment Units | 97

Figure 5-2. Contents of a snapshot

Common snapshot formats used by Infrastructure-as-a-Service vendors include Open
Virtualization Format (OVF), RAW, ISO, and Amazon Machine Image (AMI). Again,
all of these are basically byte-level disk copies along with some metadata. Individual
vendors sometimes have their own proprietary formats, some of which can be used with
other vendors (as is the case with AMI).

You can build libraries of these snapshots and then specify which snapshot you want to
build your server from when you provision your new server. The snapshot-based ap‐
proach works well for the following:
Quickly building servers

The time from when you provision the hardware to when it’s useful is governed by
how quickly the bytes can be written to a filesystem. It typically takes no more than
a few minutes before a server is built with the machine image of your choice. This
is helpful when you need to scale up very quickly because of an unanticipated spike
in traffic.

Capturing intricate changes
Some software requires intricate installations. There may be lengthy configuration
files, changes to file permissions, and special operating system users. It’s rare that
you can simply install an applications server from binary and deploy a package of
code to it.

98 | Chapter 5: Installing Software on Newly Provisioned Hardware

Being able to test
Like code, snapshots can be tested for functionality, security, and performance.

Archiving audit trails
You can easily archive snapshots for auditing and compliance purposes. If there
was ever an incident, you could quickly go back and show the state of each server
in an environment.

A downside of this approach is that it has no ability to handle patching and routine
maintenance on its own. Without the introduction of software that handles this, you’ll
have to do the following:

1. Apply changes to live systems.
2. Snapshot each of the live servers that runs a unique image.
3. Swap out the images on each of the affected live servers.

Or you’ll have to apply the updates manually to each server, which probably isn’t even
feasible. More on this topic in “Lifecycle Management”.

Building from Archives
While a snapshot is a clone of an entire live operating system and its contents, an archive
(e.g., .tar, .zip, .rar) is a collection of directories and files. You provision new resources
from an Infrastructure-as-a-Service vendor and then extract the directories and files on
to your local filesystem. The archive can contain scripts or other means required to
change file permissions, configure the software to run in your environment, and so on.
Compression may also be included to reduce the amount of data that must be trans‐
ferred. The contents of an archive are depicted in Figure 5-3.

Approaches to Building Deployment Units | 99

Figure 5-3. What’s capable of being included in an archive

This approach works by being able to isolate the changes you make to a base filesystem
image. In other words, all of the changes you make to a base filesystem should be cap‐
tured either in the directories and files in your archive or through a manual script that
can be replayed after the files are written. If you install all of your software under a single
root directory (e.g., /opt/YourCompany), it’s pretty easy to archive that root directory.

Once you provision a new server, you’ll have to get the archive to that new server, extract
it to the local filesystem, and run any scripts you need to generally initialize the envi‐
ronment. Since you can’t do this manually, it’s a great idea to create a bootstrap script
to pull the latest archive and extract it. You can bake this bootstrap script into a snapshot,
which you can use as the baseline for new servers.

This approach works best for software shipped in zip distributions or software that can
be fully installed under a given root (e.g., /opt/YourCompany). Applications that sprawl
files across a filesystem, set environment variables, or change file permissions, do not
work well as you have to capture the changes made and then replay them manually in
a script. Most software today is shipped through a zip distribution or is able to be fully
installed under a given root, so it shouldn’t be an issue.

100 | Chapter 5: Installing Software on Newly Provisioned Hardware

This approach can be better than the snapshot-based approach because you’re dealing
with relatively small archives all self-contained under a root (e.g., /opt/YourCompany).
As with the snapshot-based approach, the downside is having no real ability to handle
patching and routine maintenance. We’ll discuss an alternative in “Lifecycle Manage‐
ment”.

Building from Source
Rather than installing software and then taking a snapshot of a whole server or a di‐
rectory, you can build an entire stack of software from source. Source in this case refers
to actual source code or precompiled binaries. This approach involves scripting out
your environments, including what must be installed, in what order, and with what
parameters. An agent installed on an operating system then runs the script, download‐
ing, installing, and configuring as required (see Figure 5-4).

Figure 5-4. Building from source

Numerous commercial and open source products on the market allow you to:

• Download binaries
• Execute installers
• Detect failures in installations
• Configure software (e.g., updating properties/XML files)
• Issue arbitrary commands to the operating system

Approaches to Building Deployment Units | 101

• Push arbitrary files
• Execute scripts and report the output
• Define hierarchal relationships between components with either declarative or

procedural dependency models
• Execute the same script across different platforms and operating systems

All of these activities are typically done through a lightweight agent installed on each
server, with the agent communicating with a central management server either within
or outside of an Infrastructure-as-a-Service cloud. Here’s how you would install JDK 8
using Chef, a popular configuration management tool:

install jdk8
java_ark "jdk" do
 url 'http://download.oracle.com/otn-pub/java/jdk/8-b132/jdk-8-linux-x64.bin'
 checksum 'a8603fa62045ce2164b26f7c04859cd548ffe0e33bfc979d9fa73df42e3b3365'
 app_home '/usr/local/java/default'
 bin_cmds ["java", "javac"]
 action :install
end

For more information, please read Learning Chef by Seth Vargo and Mischa Taylor
(O’Reilly).

Many software vendors have contributed to these projects to make it exceptionally easy
to install their products. Of course, shell scripting is always an option, but that is far
more challenging because it lacks so many of the capabilities of purpose-built solutions.

Many of these systems have full support for scripting, allowing you to customize the
installation of each product. For example, you can see how many vCPUs are available
and then change how many threads you allocate to a load balancer. You can fine-tune
your software to run well on its target server. When you snapshot a live system, it’s just
that: a static snapshot. Building from source is the most robust approach but it adds
substantial overhead to the development and deployment process. For this to work
properly, you need to build out fairly lengthy scripts, even for simple environments. It’s
a lot of work to maintain them, especially for software that’s complex to install.

If you have to SSH into a server to do anything manually, your auto‐
mation has failed.

102 | Chapter 5: Installing Software on Newly Provisioned Hardware

http://shop.oreilly.com/product/0636920032397.do

Monitoring the Health of a Deployment Unit
Regardless of whether your servers are in a public Infrastructure-as-a-Service cloud or
in your own data centers managed by your own administrators, the health of each de‐
ployment unit must be thoroughly interrogated. Individual deployment units should
be considered disposable. The health of a deployment unit is best evaluated by querying
the uppermost stack of software, as shown in Figure 5-5.

Figure 5-5. What needs to be monitored

Bad servers should be immediately pulled from the load balancer to prevent customers
from having a poor experience. This is especially important with cloud environments
where there may be interference from noisy neighbors.

Traditional health checking has been very superficial, with its scope limited to the health
of individual components (e.g., filesystem, memory, network, CPU) and whether the
specified HTTP port responds to a TCP ping (see Figure 5-6).

Monitoring the Health of a Deployment Unit | 103

Figure 5-6. Basic health check

This is of no use: an application server could respond to a TCP ping, with, for example,
an HTTP 500 error because the application server couldn’t establish a connection to the
database. Testing TCP pings tests only the lower levels of the stack, not whether anything
is actually working.

A better, and perhaps the most common approach is shown in Figure 5-7.

104 | Chapter 5: Installing Software on Newly Provisioned Hardware

Figure 5-7. Better health check

With this approach, you’re verifying that the home page or another functionally rich
page actually responds with an HTTP 200 response code. This is slightly better, but it
can’t evaluate the health of the entire application and the services (e.g., database, cache
grid, messaging) required to fully deliver the entire application. Home pages, for ex‐
ample, tend to be fairly static and heavily cached.

The most comprehensive way of health checking is to build a dynamic page that exer‐
cises the basic functionality of an application. If all tests are successful, it writes PASS.
If there was an error, it writes FAIL. Then, configure the load balancer to search for an
HTTP 200 response code and PASS. Figure 5-8 shows how you configure your load
balancer.

Monitoring the Health of a Deployment Unit | 105

Figure 5-8. Best health check

Tests performed on this page can include:

• Querying the cache grid for a product
• Adding a product to the shopping cart
• Writing a new order to a database and then deleting it
• Querying the service bus for inventory availability
• Executing a query against the search engine

These few tests are far more comprehensive than any arbitrary page or URL you select.
It’s very important that the load balancer you choose has the ability to look at both the
HTTP response header and the body of the response.

106 | Chapter 5: Installing Software on Newly Provisioned Hardware

This monitoring is not to take the place of more comprehensive
system-level monitoring—rather, it’s to tell the load balancer wheth‐
er a given unit is healthy enough to continue serving traffic. Stan‐
dard system-level monitoring is required and expected, though out‐
side the scope of this book.

Make sure you don’t overdo your health checking, as frequent monitoring can add work
to your system without providing a clear benefit.

Lifecycle Management
Every one of your servers has its own stack of software, patches, configuration, and
code. Once a server is provisioned and built, it must be updated as you make changes
to the baseline. Being able to quickly push updates to production helps to ensure that
servers stay up, making it easier to debug problems, all while reducing labor costs. In
addition, you will likely have to be able to push through emergency configuration and
security-related changes (Figure 5-9).

Figure 5-9. Lifecycle of each server

Often a single logical change (e.g., applying a patch or deploying new code) requires
executing many, if not all, of the following actions:

• Updating files on a filesystem
• Arbitrarily executing commands against a shell script and monitoring the results
• Making configuration changes (through updating configuration files or executing

commands through the shell)

Lifecycle Management | 107

All running servers, as well as your reference snapshot if you use a snapshot-based
approach, must be updated as you advance your baseline of software, patches, config‐
uration, and code. Again, you can’t do this by hand, so you have to automate the process.

The approach outlined in “Building from Source” is often used for both initial instal‐
lation and ongoing lifecycle management. Because an agent is always running on each
server, you can push any files or make any configuration changes you want. You can
even use it for deploying new builds. But the snapshot-based approaches (either full
images or archives) lack agents. They’re static snapshots and therefore need supple‐
mental software to handle a lifecycle.

Once you do pick a solution and start to use it, make sure you stage your changes and
test them with a limited set of customers before you roll the changes out across an entire
environment. You can just apply the changes to a handful of servers, monitor their
health, and then roll out the changes across the entire environment. Or if your changes
are more substantial, you can even build a separate parallel production environment
and instruct your load balancer to direct a small amount of traffic to the new environ‐
ment. When you’re satisfied with the results, you can have your load balancer cut all of
your traffic over to your new production environment and then decommission your
old servers. This can get very complicated, but the payoff can be substantial.

Summary
In this chapter we discussed three approaches for installing software on hardware, fol‐
lowed by how to monitor each stack of software. While building and monitoring de‐
ployment units is a fundamental prerequisite to adopting cloud, virtualization is perhaps
even more of a basic building block.

108 | Chapter 5: Installing Software on Newly Provisioned Hardware

CHAPTER 6

Virtualization in the Cloud

Virtualization is a key enabler of cloud computing but it is not part of the cloud itself.
As previously discussed, the cloud is defined by the following three attributes: elastic,
on demand, and metered. Virtualization itself isn’t one of those three attributes but it
does help to enable all three.

Virtualization is a key enabler of the cloud but it is not the cloud itself.

Virtualization in its various forms enables the following:
Partitioning

Vendors don’t make any money if they can’t pack a lot of their customers on each
physical server. Many vendors offer virtualized servers with as little as one physical
hardware thread. There are typically two hardware threads per physical CPU core,
12 cores per processor, and two processors per physical host. That means a single
commodity machine can be divided into 48 servers, each capable of being rented
out to an individual or organization. Density is how vendors make their money.

Isolation
Given that partitioning hardware is required to make business models work, iso‐
lation is required to keep individual partitions from interfering with each other.
You wouldn’t want a CPU-intensive workload like DNA sequencing to interfere
with your application server’s ability to respond to HTTP requests. You can provi‐
sion whole servers from many Infrastructure-as-a-Service vendors, just as you
would secure fractional slices of physical servers.

109

Portability
Virtualization has tooling that makes it easy to take snapshots of live running sys‐
tems. These snapshots, as we discussed in the last chapter, can be used as the starting
point when provisioning new hardware. Everything is fully encapsulated in these
snapshots, making them fully portable across other servers within a cloud or even
across clouds.

Workload shifting
With virtualization serving as an abstraction layer over the hardware, some cloud
vendors offer the ability to move live running virtual machines from one physical
host to another. Sometimes your cloud vendor even does this for you automatically
while performing maintenance or as the hardware is experiencing a fault of some
sort.

Isolation and portability benefit ecommerce most. Isolating workloads on shared hard‐
ware is a necessity, given the sensitive nature of the data involved with ecommerce.
Portability is a key enabler of building deployment units very quickly, as you can work
with predeveloped snapshots instead of having to build up each system from scratch.

While virtualization has benefits, it also has drawbacks that have wide-ranging impli‐
cations for your deployment architecture. Let’s review the different forms of virtuali‐
zation and the implications of each.

What Is Virtualization?
Virtualization is more of a concept than an actual implementation of any given tech‐
nology. Virtualization offers you the ability to partition a physical server into many
smaller servers, with each virtual server isolated from other virtual servers on the same
physical server. The technology behind virtualization has been around since the begin‐
ning of the mainframe days. At its core, there’s typically an abstraction layer called a
hypervisor that is responsible for splitting up a system’s resources and making them
available to guests.

There are three broad approaches to virtualization, which we’ll cover in the following
sections.

Full Virtualization
In full virtualization, the hypervisor is installed directly on bare metal. The hypervisor
allocates the server’s physical resources (CPU, memory, disk, NIC) to virtualized servers.
Operating systems are installed directly on the virtual servers, with the physical resour‐
ces allocated to each virtual server being the only resources each virtual server has access
to.

110 | Chapter 6: Virtualization in the Cloud

The advantage of this approach is that you don’t have to make any changes to the op‐
erating system. You can install any operating system the underlying hardware supports
and not have to make any changes. Each operating system is entirely oblivious to the
other operating systems on the same physical server. This type of hypervisor lends itself
well to public Infrastructure-as-a-Service clouds. Examples of full virtualization in‐
clude Xen Hardware Virtual Machine, Linux KVM, and Microsoft Hyper-V. Figure 6-1
shows how full virtualization carves up each physical machine.

Figure 6-1. Full virtualization

Full virtualization is best when you need to support many different operating systems,
especially those that do not support a limited form of virtualization known as paravir‐
tualization. Most clouds support both full virtualization and paravirtualization.

Full virtualization suffers from performance degradation because all physical resources
must be accessed through the hypervisor. The performance of full virtualization is
starting to be improved through the use of hardware virtual machine (HVM) extensions
to x86 processors that make it easier for the guest operating system to bypass the hy‐
pervisor and use the CPU directly. But paravirtualization takes things a step further and
allows more native access to many resources.

What Is Virtualization? | 111

Paravirtualization (Operating System–Assisted Virtualization)
Traditional full virtualization requires that every system call be trapped by the hyper‐
visor and passed back to the physical host. Depending on the workload, performance
can be dramatically worse than if the operating system was not running on top of a
hypervisor. In _paravirtualization, the kernel works cooperatively with the hypervisor
to pass through certain calls directly to the underlying hardware. Calls such as those for
memory management, time keeping, and interrupt handling are often passed right
through from the guest to the host.

While the term paravirtualization may be new to many readers, the
concepts and even much of the technology have been in use for dec‐
ades. Almost all operating systems bypass the hypervisor in some way.

Paravirtualization, shown in Figure 6-2, requires that the kernel be substantially modi‐
fied so it can work with the hypervisor. Most modern Linux kernels, along with some
Unix kernels, support paravirtualization, so you probably won’t ever have to do any of
this work on your own.

Figure 6-2. Paravirtualization

Paravirtualization is great because you get isolation offered by full hardware virtuali‐
zation, yet you get nearly the performance of operating system–level virtualization. So
long as your Infrastructure-as-a-Service and kernel vendors support it, paravirtualiza‐
tion is the best approach. They incur the costs of making the kernel and hypervisor work

112 | Chapter 6: Virtualization in the Cloud

together, and you reap the rewards of better performance than full virtualization with
nearly no overhead. Common implementations include Xen and VMware.

Paravirtualization is now the most prevalent virtualization option offered by public
Infrastructure-as-a-Service vendors.

Operating System Virtualization
In operating system virtualization, a very light hypervisor is installed on the operating
system itself (see Figure 6-3). With this approach, guest operating systems share the
kernel of the parent operating system. The kernel offers each guest operating system its
own caged sandbox so that processes cannot interfere with each other. Some forms of
operating system virtualization offer resource throttling so a given guest cannot con‐
sume more than a specified amount of system resources. This approach is entirely de‐
pendent on what the operating system you’re using supports.

This technology has been around since the days of mainframes and continues to be used
today. Today’s well-known incarnations include FreeBSD Jails, Solaris Containers/
Zones, and Linux Containers (LXC).

Figure 6-3. Operating system virtualization

What Is Virtualization? | 113

The following sidebar contains a humorous explanation of operating system virtuali‐
zation.

Linux Containers (LXC), Explained
Think of every process on the machine as being like a five-year-old. If you have a bunch
of them, they’re eventually going to start fighting. Ever seen five-year-olds fight? It’s
stupid:

“He’s standing near me, and I don’t like it!”

“I don’t want her to make that noise!”

In the context of a process on Linux, you can think of this as two server processes both
wanting to listen on the same port, or writing a config file to the same place. And here
you are, thinking, “Grow up and share. If you can’t handle this, wait till your first in‐
teraction with the DMV.”

But they will never share, because they’re five years old. They’ll just whine at each other
to the point where you have to physically separate them just to preserve your own sanity.

One way to physically separate a dozen five-year-olds is to build a dozen houses, and
give them each a house. This is like running a separate physical machine for each process.
Yes, it solves the problem, but it’s expensive and wastes resources.

So then you try a virtual machine within one physical host. If we’re talking about sep‐
arating five-year-olds, this is like turning one house into a bunch of apartments, one for
each five-year-old. This allows for maximum configurability. Each five-year-old can set
the thermostat at whatever temperature is comfortable. Sure, they don’t have as much
space as they would if they had the whole house, but at least they’re contained. They’re
not really aware of each other, but generally, they’re happy.

But if you’re Mom and Dad, this is just silly. Do you really need one separate kitchen for
each five-year-old? No, that’s overkill. One kitchen is enough. Do five-year-olds really
need to set the thermostat as they please? No, they’re five. Plus, I’m the parent, I pay the
heating bill, and the thermostat isn’t going over 57 degrees all winter.

So what’s the solution?

You give each kid a magic pair of glasses that let them see everything but each other.
They’re all walking around the house, aware only of their own existence. Ah, but what
if they both want to play with the same toy? Simple, buy the same toy for each kid. A lot
easier than building a house for each kid. In reality, they’re going to conflict over only
a very small number of things in the house, so you can replicate those things, and the
five-year-olds will be none the wiser.

This is what LXC is. It lets processes think they have complete run of the machine, but
a very lightweight hypervisor keeps them separate. They’re all still running in the same
kernel, but they don’t know it. An LXC container is a collection of files that represents

114 | Chapter 6: Virtualization in the Cloud

1. Ted Dziuba (2013), adapted from http://bit.ly/MrUJ13.

the minimum set of “toys” the processes might fight over. It’s a bit more advanced,
though. You can, for example, run a Red Hat LXC container inside an Ubuntu kernel.
As long as your processes don’t have explicit expectations about the kernel, you’re fine.
And most of the time, processes don’t have such expectations.1

This approach is becoming increasingly popular because of the performance it offers
relative to running an operating system natively on physical hardware, while still pro‐
viding enough isolation between tenants. With operating system virtualization, you
have full native access to the CPU, memory, disk, NIC, and so forth, because you’re
relying on a shared kernel that itself is natively accessing the physical resources. With
full virtualization, you have to go through your guest kernel and then through a hyper‐
visor before you can access any physical resources. There is potentially a lot of overhead
when every operation must pass through the hypervisor.

With operating system virtualization, depending on how you configure it, you could
allow the guests to cooperatively share resources, thus enabling higher density.

Platform-as-a-Service vendors have embraced operating system virtualization because
they have no need to support a wide range of operating systems. These vendors tend to
pick one operating system and standardize on it. You can pack many guests on a single
physical host, because the overhead of each guest is so small. The performance is also
much better than with some of the heavier virtualization techniques, while allowing for
varying levels of isolation between guests.

Summary of Virtualization Approaches
Virtualization of various forms will continue to be used by cloud vendors for the fore‐
seeable future. The vendors need to be able to pack multiple guests on a single physical
host to make their business model work. At the same time, cloud users need to have
isolation between their workloads and other workloads running on the same physical
host.

The trend has been away from full isolation, in which everything is virtualized to lighter-
weight solutions like paravirtualization, which is now the standard for most
Infrastructure-as-a-Service vendors. Paravirtualization is a great trade-off between full
hardware virtualization and operating system virtualization. It is also supported by most
Linux kernels, so it’s fairly easy to deploy now. Most vendors offer two or three virtu‐
alization solutions, so you get to pick which one works best for you.

Table 6-1 shows a quick review of the approaches to virtualization.

Summary of Virtualization Approaches | 115

http://bit.ly/MrUJ13

Table 6-1. Review of approaches to virtualization
Attribute Full virtualization Paravirtualization Operating system

virtualization

Used by IaaS, PaaS, SaaS IaaS, PaaS, SaaS PaaS, SaaS

Hypervisor installed On bare metal On bare metal On operating system

Isolation between guests Complete Complete Variable; complete to limited

Performance overhead High Low Virtually none

Kernels per physical server Multiple; each guest has its
own

Multiple; each guest has its own One; guests share

Kernel modifications required No Yes Yes

Support for multiple guest
operating systems

Yes Limited No

Common implementations Xen HVM, VMware Xen PV, VMware FreeBSD Jails, Solaris
Containers/Zones, and Linux
Containers

These approaches to virtualization are increasingly blending together. You have to re‐
search your vendor’s implementation of each of these approaches to find out exactly
what, for example, paravirtualization means to your vendor.

Improving the Performance of Software Executed on a
Hypervisor
The difference between the three high-level approaches come down to how many re‐
sources must be accessed through the hypervisor. With full virtualization, everything
must be accessed through the hypervisor. With operating system virtualization, nothing
passes through the hypervisor. Table 6-2 shows the three approaches to virtualization
and whether each resource must be accessed through the hypervisor.

Table 6-2. Must access physical resources through the hypervisor
Resource Full virtualization Paravirtualization Operating system

virtualization

CPU Yes (except if HVM extensions in x86 processors
are used)

Maybe No

NIC Yes Maybe No

Memory Yes No No

Disk Yes No No

BIOS/motherboard Yes No No

Interrupts/timers Yes No No

116 | Chapter 6: Virtualization in the Cloud

Full virtualization and paravirtualization are likely to suffer from some performance
degradation because access to some physical resources must pass through a hypervisor.
That will always take longer than natively accessing those resources.

As we discussed in Chapter 3, the single biggest hindrance to server-side performance
is the number of calls to remote systems. It’s increasingly common to call out to multiple
remote systems to assemble a single page. Figure 6-4 shows the systems most shopping
cart pages have to call out to before they can be rendered.

Figure 6-4. Services often required to render a cart page

There are likely to be a number of calls out to each one of these remote systems, with
each call being synchronous. As we discussed in Chapter 3, each call out to a third party
requires that the potentially dozens or hundreds of packets representing the HTTP
request and HTTP response travel over the path shown in Figure 6-5.

Improving the Performance of Software Executed on a Hypervisor | 117

Figure 6-5. Intermediary required for host-to-host communication

A single page may require 50 of these synchronous calls. The real performance problem
comes not from the time it takes for each system to respond to these calls but generally
from the overhead associated with going back and forth.

Performance problems in ecommerce are almost always due to mak‐
ing too many calls rather than the response time of any given call.

Overhead comes in two forms:

• Network latency
• Latency incurred on each physical server

Virtualization is in large part responsible for the latency incurred on each server. Tra‐
versing TCP/IP stacks on each guest operating system turns out to be much slower if
the guest operating system has to pass through a hypervisor to access the CPU, memory,
and NIC. It’s best to bypass the hypervisor as much as possible, provided there is ade‐
quate separation between virtual servers. If you have to use a full hypervisor for some
reason, try to bypass it for anything related to HTTP request handling through tech‐
niques like single-root I/O virtualization (SR-IOV). SR-IOV, which is now supported
by many cloud vendors, allows your NIC to be presented to your guest virtual servers
as if it was a physical device. Any calls from your virtual server to your NIC bypasses
the hypervisor entirely.

118 | Chapter 6: Virtualization in the Cloud

Summary
In this chapter, we reviewed how virtualization is an enabler of cloud computing, but
is not a defining attribute. We then reviewed the three basic approaches to virtualization
and covered techniques used to improve performance. Next, we’ll discuss Content De‐
livery Networks.

Summary | 119

1. Akamai Technologies, “Facts and Figures,” (2014) http://www.akamai.com/html/about/facts_figures.html

CHAPTER 7

Content Delivery Networks

Content Delivery Networks, known as CDNs, are large distributed networks of servers
that accelerate the delivery of your platform to your customers, provide security, assign
customers to a data center if you operate more than one, provide throttling, and a host
of other value adds. Their role in modern large-scale ecommerce is ubiquitous and often
a necessity.

The largest CDN in the world has 137,000 servers in 87 countries.1 Servers belonging
to CDNs are often colocated directly in ISP/backbone vendors’ data centers and plugged
directly into their high-speed networks. Chances are, a CDN has servers within a few
milliseconds of where you live. It’s because of this proximity to customers that CDNs
are often called edge computing. Often CDNs are entirely transparent to your customers.

An example of the value CDNs offer is in their acceleration of HTML-based web pages.
For most web pages, less than 10%–20% of the end-user response time is spent getting
the HTML document from the web server to the web browser. If you want to dramatically
reduce the response times of your web pages, you have to focus on the other 80%–90%
of the end-user experience.

— Steve Souders
 High Performance Websites

Figure 7-1 shows a breakdown of the time it takes to load the home page of a popular
US-based ecommerce website for an anonymous customer.

121

http://www.akamai.com/html/about/facts_figures.html
http://shop.oreilly.com/product/9780596529307.do

Figure 7-1. Frontend versus backend HTTP requests for SamsClub.com home page

122 | Chapter 7: Content Delivery Networks

Waiting for a server-side response accounts for just 2.4% of the total page view time.
This is very representative of most ecommerce web pages. CDNs are responsible for
delivering the remaining 97.6% in this example. CDNs can also accelerate the delivery
of the server-side response, as we’ll discuss later in the chapter. CDNs play an increas‐
ingly important role when transitioning to the cloud.

While CDNs have long been associated with delivering websites
(HTML, images, CSS, JavaScript), their role has greatly expanded to
the point where they’re now crucial to delivering entire platforms.

Let’s look at their multifaceted roles and how they can improve your customers’ expe‐
rience.

What Is a CDN?
CDNs first started to be used in the late 1990s to deliver static content at scale. At the
time, most eCommerce websites were delivered from in-house corporate data centers
belonging to eCommerce vendors. Serving large amounts of static content requires an
enormous amount of Internet bandwidth and specialized network infrastructure that
was prohibitively expensive and complicated. A side effect of delivering all of this con‐
tent was that performance improved. Improved performance leads to improved cus‐
tomer satisfaction, higher conversion rates, and increased brand loyalty. As perfor‐
mance became more important to the customers of CDNs and of eCommerce customers
in particular, CDN vendors shifted their attention to improving performance.

For a while, CDNs were basically web servers serving up static content. Their value
proposition was that they provided availability and scale by offloading static content
and delivering it from machines near the end user. Over time, CDN vendors have
evolved their offerings to:

• Proxy HTTP requests back to your data centers (called an origin), effectively taking
your platform off the Internet by forcing all HTTP requests through the CDN first.

• Optimize the delivery of content through advanced functionality like content pre-
fetching, network optimization, compression, image resizing, geolocation, and
modifying the HTML of pages to improve the rendering and browser performance.

• Cache entire responses (including HTML pages) at the edge, such as the home page
for anonymous customers.

• Cache API calls at the edge. Responses are typically XML or JSON.
• Offer value adds like a web application firewall, protection against distributed

denial-of-service attacks, and a full Global Server Load Balancing solution.

What Is a CDN? | 123

• Reduce the CPU usage by multiplexing HTTP connections and keeping the con‐
nections alive for longer periods of time.

An origin is a term used by Content Delivery Network vendors to
refer to the data center(s) that actually generate the content that the
Content Delivery Network serves. This typically means the data cen‐
ters where you have your application servers.

Are CDNs Clouds?
CDNs are clouds, albeit a lesser form of clouds. To be considered part of the cloud, an
offering must be described by the following three adjectives:

• Elastic
• On demand
• Metered

CDNs always meet the first and second requirement but not always the third. Some
vendors permit the use of their services only with contracts that last a year or longer.

Fixed long-term contracts are common ways of paying CDN ven‐
dors and therefore may technically not be considered cloud com‐
puting. Pragmatism should rule your decision making. Go for the
best vendor, regardless of how they bill you.

With their core business now being fairly mature, CDNs are moving down into the space
traditionally owned by cloud vendors. Cloud vendors are also moving up into the CDN
space as they seek to offer their customers full vertically integrated solutions and increase
their share of their customers’ technology spending. All technology vendors seek to
provide their customers with one-stop, full vertically integrated solutions, as opposed
to point products/services.

The real difference between CDNs and Infrastructure-as-a-Service vendors is that
CDNs still don’t originate the content they’re serving. They just accelerate the delivery
of content originated elsewhere. Infrastructure-as-a-Service vendors originate content
and can accelerate its delivery to some degree. While there’s a lot of overlap, both still
do fundamentally different things.

For more information on Content Delivery Networks and optimization, read Steve
Souders’ High Performance Websites and Even Faster Websites (O’Reilly).

124 | Chapter 7: Content Delivery Networks

http://shop.oreilly.com/product/9780596529307.do
http://shop.oreilly.com/product/9780596522315.do

2. AT&T, “Global Network Latency Averages,” (2014) http://www.akamai.com/html/technology/dataviz2.html.

Serving Static Content
The first and original value proposition of CDNs is that they almost entirely eliminate
latency. When you pull up your favorite ecommerce website, you make a single HTTP
request to http://www.walgreens.com. In response to your request, you’ll get an HTML
file that’s probably under 100 kilobytes in size. If that was it, you wouldn’t need a
CDN. The average latency between Tokyo and London is only 242 milliseconds.2 That
latency could be tolerated for one HTTP request.

Web browsers have to make hundreds of HTTP requests. When your web browser gets
the HTML back from the origin, it will parse it to find out what other content it needs
to fetch to make the page render:

<script type="text/javascript" src='/gomez-tag.js'></script>
<script type="text/javascript" src='http://img.website.com/scripts/mbox.js'>
</script>
<link rel="shortcut icon" type="image/x-icon" href="/favicon.ico"/>
<script type="text/javascript" src="http://www.website.com/scripts/common.js">
</script>
<script type="text/javascript" src="http://img.website.com/scripts/menu.js">
</script>

Each of these includes requires an HTTP request, at least until the object is cached locally
on the client’s web browser. The number of HTTP requests can range from dozens to
several hundred. Table 7-1 shows a random sampling of the page weight and number
of HTTP requests needed from the top 100 largest ecommerce websites in the US.

Table 7-1. Page weight and number of HTTP requests for a sample of large ecommerce
websites in the US

Website Page weight Number of HTTP requests

http://www.chicos.com 1.9 MB 79

http://www.1800flowers.com 2.6 MB 176

http://www.jcrew.com 1.2 MB 134

http://www.walgreens.com 1.1 MB 180

http://www.samsclub.com 1.6 MB 145

http://www.shutterfly.com 1.6 MB 172

http://www.lowes.com 1.2 MB 108

http://www.ebay.com 4.1 MB 286

http://www.hsn.com 2.2 MB 108

http://www.staples.com 1.1 MB 124

Mean 1.86 MB 151

Serving Static Content | 125

http://www.akamai.com/html/technology/dataviz2.html
http://www.walgreens.com
http://bit.ly/1g4biId
http://www.chicos.com
http://www.1800flowers.com
http://www.jcrew.com
http://www.walgreens.com
http://www.samsclub.com
http://www.shutterfly.com
http://www.lowes.com
http://www.ebay.com
http://www.hsn.com
http://www.staples.com

The problem with loading all of these objects in under a few seconds is that web browsers
load objects in serial batches of roughly 10 HTTP requests. Let’s look at an example.
Using the mean number of HTTP requests from the preceding sample, a customer in
Los Angeles accessing a website served from New York would incur roughly one addi‐
tional second of overhead due to the latency between the two data centers, as shown in
Figure 7-2.

Figure 7-2. Browsers making HTTP requests in batches

This gets even worse for websites that are served to audiences on high latency networks,
such as those not physically near to the origin, cellular networks, etc. This doesn’t include
the time it takes for the origin to actually generate the response. It can take one second
or more just to generate the HTTP response for a dynamic page.

Without a CDN, loading a page consists of what’s shown in Figure 7-3.

126 | Chapter 7: Content Delivery Networks

Figure 7-3. Page rendering without Content Delivery Network

Now, let’s see what happens when you use a CDN, as in Figure 7-4.

Serving Static Content | 127

Figure 7-4. Page rendering with Content Delivery Network

As you can see, only one HTTP request incurs the 67-millisecond overhead. The re‐
maining 150 HTTP requests are served directly from the customer’s local CDN data
center in Los Angeles. The latency is almost entirely eliminated. It is this principle that
allows websites to be served from one data center to a global audience. Assuming the
same 15 round-trips back to the origin data center to render a page, a website served
from London to Tokyo with 260 milliseconds of latency would incur 3.9 seconds of
overhead just due to latency. When you factor in the time it takes to render the HTML,
serve the static content, and so forth, response times of 6+ seconds are to be expected.
In addition to substantially reducing latency, the static content is downloaded faster
because the packets must travel a shorter distance across fewer network hops. With
average home pages approaching 2 MB, clients have to download a lot of data very
quickly.

The business advantages of this are clear: larger, more interactive pages can be delivered
with less latency than if you didn’t use a CDN.

Serving Dynamic Content
The technology behind serving static content is fairly straightforward. CDNs build
dozens or even hundreds of data centers and serve up static content from web servers
in their data centers under their own domain (e.g., http://www.website.com/images) or
a subdomain of yours (e.g., http://images.website.com). It used to be that images had to
be served from http://customer.cdn-vendor.com. Content is accelerated primarily be‐
cause it’s so close to customers.

128 | Chapter 7: Content Delivery Networks

To move beyond static content delivery, CDN’s can act as a proxy in front of your entire
website. This approach requires your DNS record to point to the CDN vendor and have
all traffic pass through the CDN (Figure 7-5).

Figure 7-5. Content Delivery Network as a reverse proxy

With this approach, your DNS record actually points to your CDN vendor. Requests
for http://www.website.com go through your CDN. The benefits of this are enormous
to performance and security. Let’s explore the different things this enables in the fol‐
lowing sections.

Caching Entire Pages
The vast majority of HTTP requests are for static content. Of the average 151 HTTP
requests involved to render a page for the first time, the first HTTP request is for the
HTML of the page. Until the web browser loads and parses that HTML, none of the
other 150 subsequent HTTP requests are made. In other words, it is on the critical path.
The requests for HTML need not always get passed back to the origin, because most of
the time the HTML is always the same for a given set of input parameters. For example,
HTTP requests made by anonymous customers for a home page (e.g., http://
www.website.com) are likely to return the exact same HTML unless you employ some
advanced targeting based on a user’s geography.

Serving Dynamic Content | 129

3. Leo Kelion, “Bots Now Account for 61% of Web Traffic,” BBC News (2013), http://bbc.in/1gAdpoV.

The vast majority of traffic to an ecommerce platform is cacheable because of what’s
known as the ecommerce traffic funnel, as shown in Figure 7-6.

Figure 7-6. ecommerce traffic funnel

This doesn’t even include traffic from nonhuman bots, which now accounts for 61% of
HTTP requests.3 All responses to bots can be served directly from a CDN. The remain‐
ing HTTP requests depicted in this funnel are from anonymous customers for the home
page, category pages, product pages, and so forth. Again, most of those pages can be
served from a CDN too. Only a relatively small fraction of total traffic is from real
customers who are actually logged in. An even smaller percentage of customers actually
buy anything.

Many customers visit websites with persistent login cookies. Websites welcome back
customers by saying, “Welcome Back, [First Name]!” or something similar. If the per‐
sonalization isn’t too substantial, you can simply cache the entire HTML page on the

130 | Chapter 7: Content Delivery Networks

http://bbc.in/1gAdpoV

CDN but make an AJAX callback to your origin to populate it with dynamic content,
like the customer’s name. Code-wise, it would look something like this:

<head>
 <script src="/app/jquery/jquery.min.js"></script>
 <script>
 $.ajax({url:"/app/RetrieveWelcomeMessage",success:function(result){
 // retrieves "Welcome Back, Kelly!"
 $("#WelcomeMessage").html(result);
 }});
 </script>
</head>
<body>
 <h2><div id="WelcomeMessage">Please Log In</div></h2>
 ... rest of web page
</body>

You can repeat this for other dynamic areas on your web page, like the “You Might Also
Like” section or the main image on the home page. You could also make just one callback
to your origin, with a single JSON or XML response containing all of the data required
to properly personalize the page.

The advantage of this approach is that it removes loading the first HTML page from the
critical path (as AJAX requests are asynchronous), yet you can still employ limited
personalization. Customers get fast performance, and your origin is barely touched. It’s
a great approach that’s discussed further in Chapter 11.

A slight variation is to cache different versions of each page in a CDN. CDNs are all
capable of looking more deeply into the HTTP request at fields such as your source IP
address, user agent, URL parameters, and cookies. This information can then be used
by CDNs to discover facts like these:

• Whether the customer is logged in
• Web browser/user agent
• Physical location (sometimes accurate to zip + 4 within the US or post code outside

the US)
• Internet connection speed
• Locale
• Operating system
• Screen dimensions
• Flash support
• Capabilities supported by each device

If you have variations of your pages based on these attributes, you can just store each
variation in a CDN and have it pull the right version of the page for each customer. For

Serving Dynamic Content | 131

example, a retailer selling online internationally could have country-specific versions
of each home page, with each locale having its own copy. That would save dozens, if not
hundreds, of milliseconds in just latency while allowing for the pages to be heavier and
more dynamic.

Even many search result pages can now be cached. For large eCommerce platforms,
20% of search terms account for 80% of the traffic. So long as you can pull out the search
parameters and put them in the URL, you can cache the pages. Search result pages
require URLs like search.jsp?query=shirt&size=xl&onsale=true. This trick can result in
even more of your platform being served directly from a CDN.

Pre-fetching Static Content
Some pages just cannot be statically cached. For example, checkout pages are inherently
dynamic and cannot be easily cached. When used as a reverse proxy, CDNs can speed
up the delivery of the static content for all pages. Around 150 of an average of 151 HTTP
requests to initially load a page are for static content.

Because the HTTP response passes back through the CDN on its return to your cus‐
tomers, the CDN can parse the HTML and proactively make concurrent HTTP requests
to the origin for the static content it doesn’t already have. CDNs have dozens or even
hundreds of data centers, and each data center generally maintains its own autonomous
cache. A CDN can make all of the HTTP requests concurrently over a lightning-fast
network, whereas your web browser has to make HTTP requests in batches of 10 over
a slow “last mile” network before it even hits the CDN’s optimized network, see
Figure 7-7.

132 | Chapter 7: Content Delivery Networks

Figure 7-7. Retrieving a web page through a CDN with pre-fetching

Pre-fetching is wise to use and can yield substantial benefits.

Security
CDNs are able to provide exceptional security by basically erasing your origin data
center(s) from the Internet. To get to your origin, everybody must first go through the
CDN. That alone provides enormous value by reducing your attack profile. Defense in
depth, or adding security in layers, is an excellent defense against attacks. CDNs have a
few tricks that they are able to employ to keep you secure.

Distributed denial-of-service attacks, whereby attackers flood your origin with traffic
in an attempt to knock you offline, are a big problem. In addition to special techniques
to prevent and stop distributed denial-of-service attacks, CDNs have many thousands
of physical servers across dozens or even hundreds of data centers that can soak up
traffic from an attack. For example, this can be helpful for US-based eCommerce ven‐
dors, as many attacks originate from Asia. The CDN’s servers in Asia soak up the traffic
from the attack, leaving the US servers and origin to continue serving traffic to the US
and other customers around the world as normal. Also, attacks tend to target one website

Serving Dynamic Content | 133

4. Matthew Prince, “The DDoS That Knocked Spamhaus Offline (And How We Mitigated It),” CloudFlare (20
March 2013), http://bit.ly/1gAdrNp.

5. US General Services Administration, “About FedRAMP,” http://www.gsa.gov/portal/category/102375.

6. PCI Security Standards Council, https://www.pcisecuritystandards.org.

7. US Department of Health & Human Services, “Health Information Privacy,” http://www.hhs.gov/ocr/privacy/.

8. ISO/IEC 27001—Information Security Management, http://bit.ly/1gAdt7W.

at a time, leaving the excess capacity in a CDN available to handle the onslaught of traffic
from an attack. CloudFlare famously handled 118 gigabits of data per second,4 despite
being a fairly small CDN relative to its competitors.

Most ecommerce platforms have some form of distributed denial-of-service attack mit‐
igation in place, whether from a dedicated Software-as-a-Service vendor or a CDN.

It is exceptionally rare these days that attackers are able to gain root access to your
operating system. Use of CDNs and other intermediaries, coupled with strong firewalls,
has largely prevented those attacks. Attacks like SQL injection (forcing the database to
execute your own arbitrary SQL), cross-site scripting (which allows sessions and the
permissions tied to them to be stolen), and code injection (executing your own arbitrary
code) are far more likely. For example, SQL injection is a common vulnerability:

<%
 String userId = request.getParameter("userId");
 String query = "SELECT * FROM user where userId=" + userId + "'";
 Statement st = conn.createStatement();
 ResultSet res = st.executeQuery(query);
%>

Setting userId to 12345 or 1=1 by executing the URL &productId=12345'%20or
%20’1%3D1 will lead to an application printing the details of every single user in the
database without explicitly compromising any systems.

Many CDNs have full web application firewalls in place to inspect the HTML and eval‐
uate it for vulnerabilities. For example, any parameter with a value of select%20*
%20from%20credit_card (select * from credit_card) should never be allowed to be
passed back to the application.

When you operate a large-scale ecommerce platform, you’ll find that certain bots can
wreak havoc by requesting too many pages too quickly. Since most bots don’t understand
HTTP sessions, they’ll end up creating a new HTTP session for each page view. Most
CDNs allow you to blacklist by IP, user agent, subnet, and so forth.

Many CDNs also offer full compliance with common security frameworks such as Fe‐
dRAMP,5 PCI DSS,6 HIPAA,7 and ISO.8 Compliance with these frameworks helps to
demonstrate that these vendors can be trusted with your most sensitive data.

134 | Chapter 7: Content Delivery Networks

http://bit.ly/1gAdrNp
http://www.gsa.gov/portal/category/102375
https://www.pcisecuritystandards.org
http://www.hhs.gov/ocr/privacy/
http://bit.ly/1gAdt7W

Security will be discussed in detail in Chapter 9.

Additional CDN Offerings
In addition to performance and security, CDNs offer many ancillary services such as
DNS and storage. CDNs are strategically placed by having a large footprint of servers
around the world plugged directly into backbone networks. From that vantage point,
it’s easy to push other add-ons to the edge, using the considerable infrastructure they
have in place.

Frontend Optimization
The frontend code of most ecommerce websites is very poorly written. Individual de‐
velopers are working on their own small page fragments, often with nobody looking at
the big picture. By the time anybody cares about performance, it’s usually too late to go
back and fix things. Many CDNs now offer HTML rewriting (see Figure 7-8), whereby
they will dynamically rewrite your HTML at the edge for each specific customer based
on factors such as device type, resolution, web browser, and connection speed.

Figure 7-8. HTML optimization performed by the CDN

Optimizations can include the following:

• Reducing the number of HTTP requests by clubbing together CSS and JavaScript,
and by inlining

• Pushing commonly referenced static items down to the web browser before the
HTTP request is even made to the CDN

• Making browser-specific optimizations

Additional CDN Offerings | 135

• Deferring the loading of third-party JavaScript beacons (e.g., analytics and ads)
until after the page has fully rendered

• Using just-in-time or on-demand image loading, which loads images as the cus‐
tomer scrolls

• Retrieving images from multiple subdomains to allow the web browser to download
more in parallel

• DNS pre-fetching
• Reducing whitespace
• Resizing images
• Using compression
• Rewriting HTML to leverage browser-specific features

If you’re unable to perform these optimizations on your own, it is highly recommended
that you use these services.

DNS/GSLB
DNS is an area that CDNs have invested heavily in, both in standard DNS hosting and
more-advanced Global Server Load Balancing (GSLB). We’ll discuss DNS and GSLB
extensively in Chapter 10. DNS is something no ecommerce vendor should host them‐
selves. Disadvantages of self hosting include the following:

• Cost to properly build and maintain DNS
• Challenge of deploying DNS across multiple data centers or multiple networks
• Security concerns

— DNS is often targeted for exploits.
— DNS can be brought down with distributed denial-of-service attacks.
— DNS can be tricked into flooding a distributed denial-of-service attack victim

with traffic.
• Latency involved, with customers querying DNS servers

Properly hosted DNS solutions, whether in a CDN or not, are able to overcome these
challenges primarily through their ability to focus. Vendors who sell this service are able
to hire the best experts in the world, use the best technology, and employ the best security
techniques. The marginal cost of a new consumer of their service is very low, allowing
them to make money while saving you money.

CDNs offer the ability to respond to DNS queries from the edge, likely just a few mil‐
liseconds away from each customer, as shown in Figure 7-9.

136 | Chapter 7: Content Delivery Networks

Figure 7-9. DNS resolution with a CDN

With traditional DNS, you may have to go cross-country or even transcontinental to
retrieve an IP address (see Figure 7-10).

Figure 7-10. DNS resolution without a CDN

DNS is much more complicated than this, but as you can see, serving DNS from the
edge has advantages.

In addition to mapping domain names back to IP addresses, DNS can also be used to
assign customers to data centers. Each data center you’re running an ecommerce plat‐
form out of generally presents one IP address to the world. If you’re running out of
multiple data centers, you need a way of deciding which data center each customer
should be assigned to. This is called Global Server Load Balancing (GSLB) and it’s ef‐
fectively enhanced DNS.

Additional CDN Offerings | 137

GSLB works by constantly redirecting customers to the right data center by a combi‐
nation of factors, including availability, data center capacity/utilization, arbitrary
weights, and real-time performance. Again, we’ll discuss GSLB and DNS in more detail
in Chapter 10.

CDNs have a fairly unique advantage over traditional DNS hosting vendors, as they are
able to accurately map the real-time performance of the Internet and because they have
so many servers connected to so many different networks around the world. It is often
the case that the fastest route between any two points is not the shortest distance-
wise. Network capacity, speed, congestion, hops, and interference by governments all
play a role in reducing network throughput and latency. Another advantage CDNs have
is they’re able to monitor the actual time it’s taking each data center to respond to HTTP
requests, because they’re often serving as proxies.

Throttling
Prior to cloud computing, each platform had a fixed amount of capacity it could handle
without breaking. For example, if you deployed 500 servers and each server got you
10,000 concurrent customers, you knew you couldn’t handle more than 5,000,000 con‐
current customers. There was no use in letting anybody access your origin if you know
that it won’t work. CDNs offer the ability to throttle so that the 5,000,001st customer
would get directed to a virtual waiting room. At a minimum, these waiting rooms offer
helpful messages about the situation, including estimates as to when the site will be
accessible again. Waiting rooms can also have games or even full catalogs so customers
can begin shopping and then finish after your website comes back online again. Em‐
ploying throttling protects your origin from overuse while keeping your customers
happier than if they simply received an error message.

Traditional hardware load balancers also offer throttling, but there are two disadvan‐
tages. The first is that load balancers themselves can be overwhelmed. Like any physical
system, they have their limits. It’s also connected to networks and other physical infra‐
structure that itself can be overwhelmed. The second disadvantage is that traditional
load balancers must direct overflow traffic to a waiting room page. If that page is within
the same data center that’s overwhelmed, there’s a good chance the waiting room itself
won’t work. CDNs themselves can serve content directly from the edge, regardless of
what’s happening in your data center(s).

There may be some software that cannot scale past a certain point or software that cannot
be deployed in a cloud and therefore has a fixed capacity of hardware behind it. No
platform scales infinitely. For these reasons, even with the elasticity that a cloud brings,
it is advised that you throttle.

138 | Chapter 7: Content Delivery Networks

Summary
In this chapter, we discussed the multifaceted role CDNs play in today’s Internet and
how they can be beneficial to eCommerce. In the next part of the book, we’ll focus on
how to actually adopt the cloud, beginning with its architecture.

Summary | 139

PART III

To the Cloud!

CHAPTER 8

Architecture Principles for the Cloud

Cloud computing shouldn’t be all that challenging to adopt, provided that your orga‐
nization is competent, willing to make changes, and has the resources to do it. If you’ve
already embraced the principles found in the first two parts of this book, it shows you’re
both competent and willing to make changes and should therefore have few problems
embracing cloud computing. More fully adopting cloud computing is an enormous
undertaking, but one that can be fairly painless when done properly.

The problem with more fully using cloud computing is that it greatly exacerbates both
organizational and technical deficiencies. If you’re already struggling with keeping your
platform up today, a cloud is almost certain to make your problems worse. On the other
hand, a cloud can be equally transformational in the right hands. Cloud computing is
powerful, and those who master it will have a competitive advantage for years to come.

In this chapter, we’ll discuss how ecommerce is unique from an architecture standpoint,
followed by how to architect ecommerce for the cloud. Extra attention will be focused
on what scalability is and how to achieve it. Subsequent chapters in this part of the book
will discuss how to actually adopt various forms of cloud computing.

Why Is eCommerce Unique?
Let’s explore a few of the ways ecommerce is so unique. These reasons are why eCom‐
merce platforms are architected and deployed different than most other systems.

Revenue Generation
With the rise in omnichannel retailing, most revenue now flows through an organiza‐
tion’s ecommerce platform. A platform-wide outage will prevent an entire organization
from taking in revenue. It’s the equivalent of barring customers from entering all phys‐
ical retail stores. Many organizations are now able to accurately calculate how much

143

each second of downtime costs them in lost revenue. However, the real long-term cost
of an outage is the damage caused to brand reputation. Many customers won’t come
back after an outage.

It is because of how important ecommerce is that most environments are wildly over-
provisioned.

Visibility
High visibility characterizes most ecommerce platforms, often serving as the public face
and increasingly the back office of an organization. Every HTTP request is a reflection
on that brand, just as much as the physical condition of a retail store is. Every millisecond
in delayed response time reflects more poorly on that brand. A 100-millisecond response
will delight customers and make a brand shine, whereas a 10-second response will upset
customers and tarnish a brand.

Traffic Spikiness
A defining feature of ecommerce is that it’s subject to often unpredictable spikes in traffic
that are one or two orders of magnitude larger than steady state. Most software simply
wasn’t built to handle enormous spikes in traffic. For example, database connection
pools in application servers often cannot double or triple the size of a given connection
pool instantaneously. Software was architected for a world in which it was statically
deployed, with workloads being fairly steady. In today’s world, capacity can be provi‐
sioned and immediately slammed with a full load of traffic. Software that is architected
well is often able to handle these spikes in traffic, but not always.

Security
Everybody is rightly concerned about security. Organizations are often liable for breach‐
es, with even small breaches costing tens of millions of dollars, not to mention the
negative publicity and loss in confidence by customers. Breaches tend to be far-reaching,
with all data under management exposed. It’s rare that only a subset of customer infor‐
mation is compromised. The introduction of cloud computing, depending on how it’s
used, can mean more data is more often transferred over untrusted networks and pro‐
cessed on shared hardware, further adding to the complexity of securing that data. We’ll
discuss this all further in Chapter 9.

Statefulness
HTTP requests can be separated into two classes: those that require state and those that
do not require state. State is typically represented as an HTTP session. It’s a temporary
storage area that’s unique to a given customer and durable across HTTP requests.
Shopping carts, for example, are typically stored in an HTTP session. Authentication

144 | Chapter 8: Architecture Principles for the Cloud

status is also persisted for the duration of a session. The HTTP protocol is stateless by
definition, but state is added on top by application servers and clients to make basic
ecommerce function.

HTTP requests from anonymous customers for static non-transactional pages (e.g.,
home page, product detail page) generally don’t require state. State generally begins
when you log in or add to a cart, as Figure 8-1 shows.

Figure 8-1. ecommerce traffic funnel

The challenge with ecommerce is that customers often browse anonymously for an
extended period of time before they identify themselves by logging in. Most large web‐
sites force you to log in immediately (e.g., social media, email, online banking) or not
at all (news, search engines, Wikipedia). When you log in to an ecommerce website,
you have to merge everything that happened throughout the session with the data that’s
been persisted about the customer. For example, personalization may be employed to
trigger a discount on all Nike shoes after viewing 10 Nike shoes and not purchasing
anything. An anonymous customer who has viewed eight pairs of Nike shoes would not
trigger the discount. But what happens when that anonymous user logs in to an account
that has already registered four Nike page views? The promotion would then be trig‐

Why Is eCommerce Unique? | 145

gered after the anonymous customer profile and logged-in customer profile have been
successfully merged.

We’ll discuss this more in Chapter 10, but another issue is the problem of multiple
concurrent logins for the same account. What happens if a husband and wife are both
logged in to the same account, making changes to the same order and customer profile
in the database at the same time? With one data center, this isn’t a problem, because
you’re sharing one logical database. But what happens when you’re using public
Infrastructure-as-a-Service for hosting, and you span your ecommerce platform across
two data centers with each data center having its own database?

Maintaining state across HTTP requests most often means that a given customer must
be redirected to the same data center, load balancer, web server (if used), and application
server instances. Maintaining this stickiness requires extra attention that many other
applications don’t have to deal with.

What Is Scalability?
Strictly speaking, scalability is the ability of a system to increase its output (for example,
concurrent users supported or HTTP requests per second) by adding more inputs (for
example, an additional server). To be perfectly scalable, your inputs must always equal
your outputs in the same proportion. For example, if your first server delivers you 200
page views per second, your 1,000th server should deliver you 200 page views per second
as well. If your first server delivers 200 page views per second and your 1,000th server
delivers 20 page views per second, your system has a scalability problem.

All layers of the stack must be equally scalable, from DNS down to storage. We will
discuss two forms of scalability: scaling up (vertical) and scaling out (horizontal).

Throughput
Throughput refers to the amount of work or capacity that a unit of input (e.g., server,
cache grid node, database node) or an entire system can support. Common examples
of metrics used to represent throughput include the following:

• Page views per second
• Transactions per second
• Concurrent customers

146 | Chapter 8: Architecture Principles for the Cloud

Don’t confuse throughput with overall system-wide scalability, as the
two are independent of each other. The throughput of an individual
unit of input (e.g., an application server) may be low, but so long as
you can continually get the same level of marginal output (e.g., page
views per second) as you increase the number of inputs, your sys‐
tem is scalable.

Scaling Up
Scaling up, otherwise known as vertical scalability, is increasing the output (e.g., page
views per second) of a fixed unit of input (e.g., an application server running on 8 cores).
When you have increased an application server’s output from 200 page views per second
to 250 page views per second, you have scaled up that resource. Scaling up (Figure 8-2)
can be performed by optimizing (caching more, making code more efficient, and so
forth) or adding more physical resources (e.g., going from 8 vCPUs to 12). This is in
contrast to scaling out, where the page views per second would be increased by adding
another application server instance.

Figure 8-2. Scaling up

No software is truly infinitely scalable. At some point, you start to get diminishing
returns. For example, Apache historically hasn’t scaled well beyond more than a handful
of physical cores. You would get more total throughput by running four instances of
Apache on a single 32 CPU core server than you would if you ran one instance of Apache
on that same server. Some software must be scaled up because of constraints in its
architecture. Often times, old backend systems don’t scale out very well because they
were designed for an era where CPUs had only one core. Multicore CPUs are a fairly
modern invention.

What Is Scalability? | 147

1. Dan Kegel, “The C10K Problem,” (5 February 2014), http://www.kegel.com/c10k.html.

2. Robert Graham, “C10M,” http://c10m.robertgraham.com

Case Study: The C10K Problem
In 2003, a developer named Dan Kegel published a web page stating that modern web
servers should be able to handle 10,000 concurrent clients.1 He termed the problem
C10K, where C means connections and 10K means 10,000. His astute observation was
that hardware had made great advances over the previous few years but that the ability
of a web server to scale up and use that hardware had not changed. At the time, many
web servers were able to support only 1,000. Dan and subsequent work proved that
10,000 concurrent connections could be sustained with changes to the operating system
and web server software.

A decade later, in 2013, Robert Graham showed that modern servers could support 10
million concurrent clients.2 Again, the solution was software.

These two initiatives showed that the bottleneck to vertical scalability was mostly soft‐
ware. Hardware matters, but not nearly as much as good software does.

Scaling Out
Scaling out, otherwise known as horizontal scalability, is increasing output (e.g., page
views per second) of a system by adding more inputs (e.g., more application servers
running on more hardware). An example of scaling out a resource is adding a server,
as opposed to increasing the memory or processing power of an existing server (see
Figure 8-3).

Figure 8-3. Scaling out

148 | Chapter 8: Architecture Principles for the Cloud

http://www.kegel.com/c10k.html
http://c10m.robertgraham.com

If the marginal input (e.g., an additional server) equals the marginal output (e.g., page
views per second), you have a perfectly scalable system. If additional units of input (e.g.,
physical servers) equal fewer and fewer units of output (e.g., page views per second),
the system isn’t scalable. Figure 8-4 applies equally to both individual units as well as
the entire system.

Figure 8-4. Linear versus nonlinear scaling

Rules for Scaling
While scaling out is an absolute necessity, scaling up is important too. The more you
scale up, the less you have to scale out and the lower your marginal costs. You can avoid
a whole class of problems by better architecting your system to drive more throughput
out of each server. Modern commodity x86 servers can handle 10 million concurrent
HTTP connections due to the lockless event loop-based architectures favored by newer
web servers/load balancers like nginx and Node.js. Apache is now able to support more
than a few thousand concurrent HTTP requests on a single commodity server, but that’s
largely due to hardware advancements and some tuning. The massive increase in
throughput of these newer web servers is purely a function of their better architecture.

Scaling software comes down to two principles. The first is to allow each system to do
the work it needs to do with as few impediments as possible. Calls to remote systems

Rules for Scaling | 149

are fine, provided they don’t block. Threads that are blocked kill both throughput and
performance. Avoiding threads where possible eliminates the problem of blocking
threads. A second and even more potent barrier to scalability is the human side of
technology. Hiring the right people will pay dividends for decades to come and could
make the difference between your company’s success or failure. Individual people are
only vertically scalable to a certain point. Scaling out and scaling up of your staff is
required for success.

The following section will discuss each of the following principles:

• Convert synchronous to asynchronous
• Reduce locking
• Simplify
• Remove state
• Cache intelligently
• Hire the right people
• Plan, plan, plan
• Size properly
• Use the right technology

For more information on this topic, read The Art of Scalability by Martin L. Abbott and
Michael T. Fisher (Addison-Wesley Professional).

Technical Rules

Convert synchronous to asynchronous
In synchronous processing, the execution of one task (e.g., an application server gen‐
erating an HTTP response) is dependent upon the execution of one or more other tasks
(e.g., querying a database). A common example of this is an email confirmation being
sent synchronously following an order submission. Assuming transactions are being
properly used, the successful placing of an order is entirely dependent upon something
as frivolous as an SMTP server’s availability and performance. With proper decoupling
of these two systems, an order would be placed as normal, but instead of synchronously
sending the message, it would be dumped in a queue and delivered asynchronously to
an available SMTP server.

Synchronous calls to any system put it in the critical path, making the entire system’s
scalability dependent upon the least scalable resource. For example, your order man‐
agement system may struggle to handle traffic from your busiest days of the year. If
you’re connecting synchronously to your order management system, the scalability of
your entire platform will be dependent upon the scalability of that one system. In an

150 | Chapter 8: Architecture Principles for the Cloud

omnichannel world, where all channels use the same backend systems, some of your
systems will not be able to scale. Any activity that’s not directly tied to generating revenue
or doesn’t require an instantaneous response should be performed asynchronously so
it doesn’t interfere with generating revenue.

Case Study: Node.js
Traditional web and application servers work on the concept of threads, whereby a single
HTTP request will tie up a single thread until the response is fully generated. Everything
is executed synchronously. With a traditional web and application server combination,
this means each web server thread waits for the application server’s response and each
application server’s thread waits for responses from various databases, cache grids,
third-party systems, and so forth. Threads spend a lot of time blocked, waiting to do
something. Threads are expensive, as each one requires dedicated memory. This model
was built for a world in which customers passively downloaded static web pages.

Node.js is a JavaScript-based framework that serves as both the web server and client-
side development framework. The two work together to offer full bidirectional com‐
munication between the web server and client, along with an asynchronous execution
model that eschews threads. By not using threads, each instance of Node.js can support
a million or more concurrent connections. The way it works is that HTTP requests come
in and, as backend systems each do their work (e.g., an inventory lookup, a request to
load product details via an HTTP request with a REST response), the response is in‐
crementally pushed to the client. This allows the web browser to begin rendering the
response in parallel while the response is actually being generated.

In any platform, but especially in a cloud, databases can serve as a bottleneck. Databases
tend to be heavily used in ecommerce because applications are so stateful. Outside the
cloud, databases are deployed to dedicated hardware backed by high-grade storage with
high-speed networking gear connecting the components of the system. In a public
Infrastructure-as-a-Service cloud, you have very little control over your environment.
You can’t optimally tune much outside the operating system and you’re dealing with
hardware and networks that are shared by many tenants. While cloud vendors do take
great precautions to isolate traffic, it’s never perfect. To prevent databases from being
the bottleneck, you can use a write-back cache for all or a subset of your writes. This
means that your application uses a cache as the system of record, with the cache reading
and writing back to the database asynchronously (see Figure 8-5).

Rules for Scaling | 151

Figure 8-5. Write-back cache to reduce database load

Figure 8-6 shows a sequence diagram.

Figure 8-6. Generating a response with a write-back cache

152 | Chapter 8: Architecture Principles for the Cloud

This can allow your system to scale up and out while improving the performance. To
customers, the write happens instantaneously to local cache, which allows the response
to be generated instantaneously. While this may not be suitable for something important
like inventory, it is perfectly suitable for things like product reviews, customer profile
updates, cart updates—anything where the source system being out-of-date by a few
milliseconds doesn’t matter. We’ll discuss some options for running your database in a
cloud in Chapter 11.

The most scalable platforms have completely decoupled their frontends from back‐
ends. All calls from the frontend to the backend are asynchronous, with queueing in‐
troduced to allow the backend to disappear for periods of time. With the backend down,
the frontend continues to accept revenue.

Reduce locking
By definition, work (e.g., HTTP requests) in an ecommerce platform are executed con‐
currently across multiple threads. These can be threads in a managed runtime envi‐
ronment, threads in a database, or threads in a cache grid. Web servers and load bal‐
ancers typically don’t lock very much and they are increasingly moving away from
threading, so there aren’t issues there.

There are objects that need to be updated by a large number of threads simultaneously.
A great example of this is when millions of people are trying to buy the latest smartphone
the minute it is available for sale. Inventory across an entire platform typically comes
down to updating one record in a centralized cache grid, in a database row, and so forth.
Without proper concurrency, your database and application server threads can end up
waiting too long to update, causing a cascading lockup across your entire platform. This
is a common cause of outages.

Blocking can also occur within a single process, inhibiting its ability to scale up. Your
application may have a few common hot objects that are locked by each request-
handling thread. When you have too many threads, each thread has to wait longer to
lock, and eventually it becomes too long, and you can’t scale up anymore. Blocking can
be a quick way to limit your ability to scale out and up. It should therefore be avoided
at all cost.

You can largely eliminate locking by using some common sense when architecting your
system. Let’s go back to the inventory example. With a traditional database-backed
cache, each update of the inventory requires what’s shown in Figure 8-7.

Rules for Scaling | 153

Figure 8-7. Steps required to update inventory

Rather than reading the inventory all the time, you can set low-inventory flags or allot
a batch of inventory to each instance if there’s a lot of inventory available. For updating
inventory, you can instead make simple increment and decrement calls to a cache grid
or similar in-memory system that uses a lockless data structure. The call could be as
simple as this:

http://www.website.com/InventoryUpdate?productId=X&value=-1&securityToken=ABC123

You could even execute the call asynchronously if you know you have enough inventory
to last for a while.

By simply telling your inventory management system to increment or decrement, you
avoid having to read the object, set its value, and wait for the database to commit it to
disk. It’s just much faster.

Every programming language has the concept of lockless data structures. Internally,
these data structures may use more-efficient nonblocking OS-level techniques, like
compare and swap. Using these data structures greatly reduces thread contention within
a single process and allows for much greater scaling up.

Simplify
Your architecture should be as simple as possible. Simplicity begets scalability. This
covers a wide range of topics, including these:
Removing tiers from your platform

Removing web servers.

154 | Chapter 8: Architecture Principles for the Cloud

Simplifying configuration
Changing IP addresses to hostnames, removing hostnames entirely, eliminating
singletons, and so forth.

Removing unnecessary wrappers/envelopes
Switching from SOAP to SOA, not using SSL/TLS when it is not truly necessary,
and so forth.

Building discrete interfaces between your systems
This allows you to decouple your systems better. Discrete interfaces can be written
to and from a service bus and similar technologies.

Simplification must be built in from the beginning. It’s very hard to go back to simplify
old code. Build it properly from the start by hiring the right people and making sim‐
plicity a top goal.

Remove state from individual servers
As mentioned earlier in this chapter, state is a temporary storage area that’s unique to a
given customer and durable across HTTP requests. Shopping carts, authentication sta‐
tus, promotions, and so on all depend on state. State is always going to be a fixture given
the nature of ecommerce.

Maintaining state across HTTP requests most often means that a given customer must
be redirected to the same data center, load balancer, web server (if used), and application
server instance. When you’re rapidly adding and removing servers in a cloud through
auto-scaling, you can’t always guarantee that a given server is going to be available.
Servers in a cloud are by nature ephemeral. Forcing a customer to log in again because
the state was lost after a server was de-provisioned is not acceptable.

Servers in a cloud are by nature ephemeral. Don’t store state in them.

State has substantial technical implications for a few reasons:

• State can be heavy, typically in terms of memory utilization. Nothing kills your
ability to scale up like having 1 MB sessions.

• Maintaining state for ecommerce requires that it be persisted on the server side and
made available to any application server that requests it. Again, servers can quickly
go up and down. If you de-provision a server, the customer shouldn’t know.

• States must be merged. As discussed earlier in the chapter, customers browse
anonymously, all the while accumulating state. When the customer logs in, that

Rules for Scaling | 155

session state must be merged with the persistent state that is durable across HTTP
sessions.

To minimize the harmful effects of state, keep the following rules in mind:

• State should be as light as possible—a few kilobytes at most. Anything not important
should be left out.

• State should be relegated to as few systems as possible. While it makes sense for
your application server to care about state, your application’s call to a standalone
inventory management service should probably be stateless. Go through every re‐
mote call you’re making and confirm whether state is truly required.

• State should be avoided unless it is necessary. For example, search engine bots
crawling your website have no concept of sessions and will create a brand new HTTP
session with every page view. Either prevent the HTTP session from being created
in the first place or consider invalidating HTTP sessions created by search engine
bots (which can be identified by user-agent string) after each HTTP request. Like‐
wise, anonymous customers pulling up the home page probably don’t need a session
either.

The big question is where state should be stored. Traditionally, application servers have
been responsible for HTTP session lifecycle management. Applications deployed to the
application servers add data to the session. Then you may choose to replicate the HTTP
session or not. Replication can be entirely in-memory, through a database, through a
cache grid, or by almost any other means of moving around data between processes.

To mitigate the overhead of maintaining state on the server side, it would be natural to
push it to the client (e.g., web browser, mobile application), as is common with many
other workloads. This is frequently accomplished with web browsers through the use
of cookies or HTML 5. But in an omnichannel world, that doesn’t work well because
you’re using so many different channels, each requiring client and version-specific
means to represent state. Because HTTP is stateless by definition, it’s up to each client
to implement state. For example, web browsers use cookies, whereas Android applica‐
tions use a Java-based API with a native persistence mechanism. Some clients don’t even
support the ability to persist data between HTTP requests. Because of the variety of
clients and their ever-changing APIs, it’s best to let the application server continue to
manage state. Don’t assume clients even support something as rudimentary as cookies.

Applications and application servers should be configured to persist state to a distribut‐
ed system, like a NoSQL database or cache grid. You can then serve an HTTP request
out of any server with access to the NoSQL database or cache grid.

156 | Chapter 8: Architecture Principles for the Cloud

Cache as much as possible, as close to the client as possible
Caching is exceptionally important for ecommerce because customers demand the ab‐
solute best available performance. At the same time, caching can save enormous com‐
puting resources by making it possible to scale up individual servers much further than
would otherwise be possible. The value offered by the multibillion-dollar Content De‐
livery Network (CDN) industry over the past decade has been almost exclusively their
ability to cache content.

The rule with caching is that it’s best to cache as much as possible, as close to the end-
customer as possible. The closer you cache, the less each intermediary system between
the customer and the source system actually generating the content has to work.
Figure 8-8 shows a list of what you can cache where.

Figure 8-8. Cache as much as possible, as close to the end customer as possible

If you have a proper architecture in place, your system’s bottleneck should be on the
CPUs running the application server. Memory, storage, networking, and other layers
formerly were the bottlenecks, but now it tends to be the CPUs running the application
server. Executing the code to generate pages is what consumes most of the CPU. Most
pages are constructed using fragments, as shown in Figure 8-9.

Rules for Scaling | 157

Figure 8-9. Cacheable static page fragments

While an entire page may have too much content to be cacheable in an intermediary
layer, individual page fragments themselves are dynamic. For example, this entire frag‐
ment shown in Figure 8-10 is unlikely to change.

Figure 8-10. Navigation bar

Rather than constantly executing code to generate a page fragment that you know will
never change, you can instead cache the execution of that fragment, passing in variables.
Most web frameworks have the ability to cache fragment includes, with input parame‐
ters being cache keys.

To cache a fragment, you would take the equivalent of:

<jsp:include page="/menu_bar.jsp" />

158 | Chapter 8: Architecture Principles for the Cloud

and convert it to:

<jsp:include page="/menu_bar.jsp">
 <jsp:param name="anonymous" value="false" />
 <jsp:param name="user_segment" value="bay_area_male_engineer" />
 <jsp:param name="locale" value="us_EN" />
</jsp:include>

With the anonymous, user_segment, and locale parameters forming a key, you can
simply create copies of each combination and cache the HTML. It is easier to include a
pre-cached block of HTML than execute the thousands of lines of code that go into
generating HTML from source. Fragments should be cached wherever possible.

Caching is one of the most fundamental principles in computer science and should be
used liberally.

Use the right technology
Technology is an incredibly fashion-driven industry, with decisions on which technol‐
ogy to use often driven by what’s fashionable instead of what’s pragmatic. People confuse
using new, unproven technology with innovation, when the two are almost entirely
unrelated. Innovation should come from how you use technologies to achieve business
objectives as opposed to the technologies themselves. While new technology has its
place, you should always balance the marginal benefits a new technology provides with
the following characteristics of more-established options:

• Maturity
• Availability of skills in the market
• Support
• Ongoing maintenance
• How well it can be monitored

For example, using a new programming language may allow you to write 10% less code,
but if you can’t find an IDE or developers, is the 10% really worth it? Probably not. Yet
decisions like this are made all the time, often due to the “it won’t scale” excuse. But
scalability is far more about how you use the technology than about the technology
itself.

It’s generally best to outsource or use well-established technology for any part of your
system that you don’t do faster/better/cheaper than your competitors. This principle is
exactly why ecommerce should be deployed to a cloud. Innovate on the implementation
and/or development of your ecommerce application. Build beautiful and functional user
interfaces. Tie in with physical stores by providing functionality such as real-time, store-
level inventory, and pricing. Support a wide range of clients. Make it fast and highly

Rules for Scaling | 159

3. Andy Oram and Greg Wilson, Making Software, (O’Reilly).

available. Leave the development of the building blocks (e.g., hardware, software, serv‐
ices) to technology vendors or the open source community.

Make sure you have a process in place to evaluate the technology that’s selected. Indi‐
viduals selecting technology may not have a view of the overall cost of using a given
technology. Spend time delivering on your core competency—not in building commo‐
ditized components.

Nontechnical Rules

Hire the right people
Broadly, you need architects and developers to deliver a high-quality platform. Of
course, there are many more supporting roles involved, but you need people to design
(architects) and you need people to implement (developers).

Architects are responsible for the design of your entire system, from how and where
the code is deployed, all the way down to method-level design. Architecture has changed
over the past two decades, from designing systems from scratch to leveraging building
blocks. Building blocks today are cloud services (Software-as-a-Service, Platform-as-a-
Service, Infrastructure-as-a-Service), web development frameworks, and software
products such as cache grids. Very few of these building blocks existed even a decade
ago. You had to build everything you wanted by hand. Architects now have many more
options available—which is good if you know what you’re doing, but bad if you don’t.
The job has shifted more from the how to the what. It’s a fundamental change—one that
requires hiring a few very high-skilled architects, as opposed to a large number of aver‐
age or below-average architects. You just don’t need that many people today.

The entire ecosystem that developers work within has substantially matured over the
past decade. Programming languages, web development frameworks, tooling, and run‐
times all have the effect of allowing developers to write less code, with higher quality,
in less time than ever before. One good developer now has the productivity of 10 or
more average developers.3 With modern tooling, a good developer may be even more
productive than that. Modern developers just don’t write all that much low-level code.
Those “reverse a linked list on a white board” interview questions are useless at best, as
a good developer should simply call a method to do the sorting. Most developers today
should be writing glue code, which amounts more to leveraging web development
frameworks and using prebuilt libraries than writing a lot of code from scratch. Code
that’s written must be commented, unit tested, QA tested, performance tested, and
maintained. All of that costs time and money. Good developers shouldn’t be writing
much code, and the code itself should be simple and clearly documented. It shouldn’t
take a computer science degree to understand what most code does. Good developers

160 | Chapter 8: Architecture Principles for the Cloud

http://shop.oreilly.com/product/9780596808303.do

also need to have a strong awareness of where and how their code is executed. That’s
not just the job of an architect.

While basic computer science skills are often required, it’s more important for architects
and developers to be able to communicate with stakeholders, collaborate with collea‐
gues, advocate for positions, figure things out independently, and generally employ soft
skills rather than hard skills to advance goals. Going back to the “reverse a linked list”
problem, a good developer should be able to use an IDE to find the method to call, do
a quick search on the Internet to find the method, or ask the developer sitting next to
him what the method is. A bad developer will implement the algorithm by hand rather
than using the available tools to find the method.

While soft skills are an important requirement for success, it is enthusiasm, competence,
and perseverance that are the three hallmarks of the best architects and developers.
Enthusiasm and perseverance are intrinsic characteristics that can’t be taught, while
competence comes from experience.

It’s best to build relatively small teams of highly skilled developers. A few good devel‐
opers colocated can accomplish an enormous amount of work. Many of the best startups
were built by a handful of people. Amazon famously uses “two-pizza teams,” which
means that any team should be small enough that it could be fed by two pizzas. A great
way of structuring a project is to break apart your project into small teams, with each
focused on delivering a service exposed by a clear interface. For example, you can assign
an architect and a handful of developers to go build an inventory management system.
Define the interfaces and let that team go off to build it, while coding the rest of the
platform to use those interfaces. Not only are there technical advantages to breaking
apart the platform, but it’s easier to assign accountability, and people like owning some‐
thing. When everybody owns everything, nobody ends up actually owning anything.

When hiring, it’s all about quality as opposed to quantity.

Hire the best, organize them into small teams, delineate responsibility clearly, and work
to remove impediments to people doing their jobs.

Collaboration with lines of business
All too often, important business decisions are made by IT in isolation, based on invalid
or outdated assumptions. Communication must be frequent, bidirectional, and without
intermediaries. It can take the form of in-person meetings, emails, instant messages,
and even text messages. Any medium is fine. Building a platform that doesn’t meet the
needs of business is an enormous waste of time and energy. It’s a collaborative effort.

Rules for Scaling | 161

Service-level agreements (SLAs) must be defined for every aspect of the system. This
includes server-side and client-side response times, how much the system must be
available, how long it should take to recover from an outage (recovery time objective),
and how much data loss is acceptable during an outage (recovery point objective).
Higher SLAs means higher cost. For example, if the requirement is to never have any
platform downtime, you’ll have to deploy your platform to multiple geographic zones
across multiple cloud vendors. That gets complicated and expensive. It’s always a
tradeoff. What matters is that these numbers are jointly agreed upon and there is ac‐
countability when objectives are not met.

Any event that could drive substantial traffic to your platform (e.g., flash sales, coupons,
exceptional discounts) needs to be planned ahead of time. With ecommerce platforms
available to the whole world, plus the speed at which messages can travel through social
media, you can quickly get besieged with traffic. While proper use of a cloud should
allow the system to automatically scale up to meet the increased demand, it’s good for
high-visibility events to scale up ahead of time for extra safety. Whenever possible, there
should be a robust approval system in place so that IT signs off on marketing campaigns.
For example, it’s easy to accidentally embed the cookie identifier from your current
session (e.g., ;jsessionid=0000000fec3dff553fc1532a937765d43fc42836ed3f8894)
in the URL of a link you send out to customers in an email campaign. You can scale out
your environment as much as you please, but if you embed your session identifier, all
customers will hit the same server if you have session stickiness.

To help IT understand how their decisions are affecting business, it’s great to quantify
how much effect various IT metrics have on revenue. For example, calculate how much
each minute of downtime costs in lost revenue or how much each additional millisecond
of page-loading time negatively impacts revenue. Quantifying these costs helps to put
the decisions people make into perspective. It changes the whole way of thinking. For
example, a 20-minute outage for maintenance doesn’t seem like much to most IT ad‐
ministrators, but knowing that outage costs $300,000 in lost revenue would make any‐
one think of ways to reduce the length of the outage or eliminate it entirely.

Increasingly, ecommerce platforms are so important that they’re being deployed to
multiple data centers and even different cloud vendors to ensure that the platform is as
available as possible. That’s what we’ll discuss in Chapter 10.

162 | Chapter 8: Architecture Principles for the Cloud

CHAPTER 9

Security for the Cloud

In today’s world, sensitive data used by ecommerce is strewn across dozens of systems,
many of which are controlled by third parties. For example, the most sensitive of ecom‐
merce data, including credit cards and other personally identifiable information (often
abbreviated PII) routinely passes through Content Delivery Networks before being sent
to third-party fraud-detection systems and then ultimately to third-party payment
gateways. That data travels securely across thousands of miles over multiple networks
to data centers owned and managed by third parties, as depicted in Figure 9-1.

What cloud computing lacks in direct physical ownership of assets, it
offers in more control—which is more important.

163

Figure 9-1. Use of SaaS within ecommerce platforms

It’s highly unlikely that you even own the data center or the hardware you serve your
platform from, as most use a managed hosting service or a colo. Your data is already
out of your physical possession but is firmly under your control. Control is far more
important than possession. The adoption of Infrastructure-as-a-Service or Platform-
as-a-Service for the core ecommerce platform is an incremental evolution over the cur‐
rent approach. Next to legacy backend systems, your ecommerce platform is the last to
be deployed out in a cloud. Eventually, those legacy systems will be replaced with cloud-
based solutions. It’s only a matter of time.

The unfounded perception is that clouds are inherently insecure, when in fact they can
be more secure than traditional hosting arrangements. Clouds are multitenant by na‐
ture, forcing security to be a forethought rather than an afterthought. Cloud vendors
can go out of business overnight because of a security issue. Cloud vendors go out of
their way to demonstrate compliance with rigorous certifications and accreditations,
such as the Payment Card Industry Data Security Standard (PCI DSS), ISO 27001, Fed‐
eral Risk and Authorization Management Program (FedRAMP), and a host of others.

Cloud vendors have the advantage of being able to specialize in making their offerings
secure. They employ the best experts in the world and have the luxury of building
security into their offerings from the beginning, in a uniform manner. Cloud vendors
have also invested heavily in building out tools that you can use to make your deploy‐
ments in their clouds more secure. For example, many vendors offer an identity and
access management suite that’s fully integrated with their offerings as a free value add.

164 | Chapter 9: Security for the Cloud

1. Intel IT Center, “What’s Holding Back the Cloud,” (May 2012), http://intel.ly/1gAdtVB.

2. Rackspace, “Reference Architecture: Enterprise Security for the Cloud,” (2013), http://bit.ly/1gAdwke.

The ability to limit access to resources in a cloud in a fine-grained manner is a defining
feature of cloud offerings.

The use of a cloud doesn’t absolve you of responsibility. If your cloud vendor suffers an
incident and it impacts your customers, you’re fully responsible. But cloud vendors
spend enormous resources staying secure, and breaches are many times more likely to
occur as a result of your code, your people, or your (lack of) process.

General Security Principles
Security issues are far more likely to be caused by a lack of process or to be a consequence
of a lack of process. Security encompasses hundreds or even thousands of individual
technical and non-technical items. Think of security as an ongoing system as opposed
to something you do.

You can’t ever be completely secure—you just have to be more se‐
cure than your peers so the attackers go after them instead of you.

According to a survey from Intel, respondents said 30% of threats come from within an
organization and 70% of threats come from the outside.1 Of the threats coming from
the outside, Rackspace quantified them in another study as follows:2

• 31% of all incidents involved SQL injection exploit attempts
• 21% involved SSH brute-force attacks
• 18% involved MySQL login brute-force attempts
• 9% involved XML-RPC exploit attempts
• 5% involved vulnerability scans

These issues are equally applicable to both traditional environments and clouds; there
isn’t a single vulnerability in this list that is more applicable to a cloud. The tools to
counter internal and external threats are well-known and apply equally (but sometimes
differently) to the cloud. What matters is that you have a comprehensive system in place
for identifying and mitigating risks. These systems are called information security man‐
agement systems (ISMS). We’ll quickly cover a few so you can have an understanding
of what the most popular frameworks call for.

General Security Principles | 165

http://intel.ly/1gAdtVB
http://bit.ly/1gAdwke

Adopting an Information Security Management System
An information security management system (ISMS) is a framework that brings struc‐
ture to security and can be used to demonstrate a baseline level of security. They can be
built, adapted, or adopted. Adherence to at least one well-defined framework is a firm
requirement for any ecommerce deployment, whether or not it’s in the cloud. Full
adoption of at least one of these frameworks will change the way you architect, imple‐
ment, and maintain your platform for the better.

All frameworks call for controls, which are discrete actions that can be taken to prevent
a breach from occurring, stop a breach that’s in progress, and take corrective actions
after a breach. Controls can take a form that’s physical (security guards, locks), proce‐
dural (planning, training), or technical (implementing a firewall, configuring a web
server setting).

ISO 27001 outlines a model framework, which most cloud vendors are already com‐
pliant with. Its central tenets are as follows:
Plan

Establish controls, classify data and determine which controls apply, assign re‐
sponsibilities to individuals

Do
Implement controls

Check
Assess whether controls are correctly applied and report results to stakeholders

Act
Perform preventative and corrective actions as appropriate

Other frameworks include PCI DSS and FedRAMP, which all call for roughly the same
plan/do/check/act cycle but with varying controls. Rely on these frameworks as a solid
baseline, but layer on your own controls as required. For example, PCI DSS doesn’t
technically require that you encrypt data in motion between systems within your trusted
network, but doing so would just be common sense.

The check part of the plan/do/check/act cycle should always be performed internally
and externally by a qualified assessor. An external vendor is likely to find more issues
than you could on your own. All of the major frameworks require third-party audits
because of the value they offer over self-assessment.

For cloud vendors, compliance with each of the frameworks is done for different rea‐
sons. Compliance helps to ensure security, and most important, helps to demonstrate
security to all constituents. Compliance with some frameworks, such as FedRAMP, is
required in order to do business with the US government. If there ever is a security issue,
cloud vendors can use compliance with frameworks to reduce legal culpability. Retailers

166 | Chapter 9: Security for the Cloud

3. Erika McCallister, et al., “Guide to Protecting the Confidentiality of Personally Identifiable Information,”
National Institute of Standards and Technology (April 2010), http://1.usa.gov/1gAdwAK.

who suffer breaches routinely hide behind compliance with PCI DSS. These frameworks
are much like seat belts. Being compliant doesn’t guarantee security any more than
wearing a seat belt will save your life in a car crash. But there’s a strong causal relationship
between wearing a seat belt and surviving a car crash.

Your reasons for adopting a security framework are largely the same as the reasons for
cloud vendors, except you have the added pressure of maintaining compliance with PCI
DSS. PCI DSS, which we’ll discuss shortly, is a commercial requirement imposed by the
credit card industry on those who touch credit cards.

Let’s review a few of the key frameworks.

PCI DSS
The Payment Card Industry Data Security Standard (PCI DSS) is a collaboration be‐
tween Visa, MasterCard, Discover, American Express, and JCB for the purpose of hold‐
ing merchants to a single standard. A merchant, for the purposes of PCI, is defined as
any organization that handles credit card information or personally identifiable infor‐
mation related to credit cards. Prior to the introduction of PCI DSS in 2004, each credit
card issuer had its own standard that each vendor had to comply with. By coming
together as a single group, credit card brands were able to put together one compre‐
hensive standard that all merchants could adhere to.

While protecting credit card data is obviously a priority, personally
identifiable information extends far beyond that. PII is often de‐
fined as “any information about an individual maintained by an
agency, including (1) any information that can be used to distin‐
guish or trace an individual’s identity, such as name, social security
number, date and place of birth, mother’s maiden name, or biomet‐
ric records; and (2) any other information that is linked or linkable
to an individual, such as medical, educational, financial, and employ‐
ment information.”3 Even IP addresses are commonly seen as PII
because they could be theoretically used to pinpoint a specific user.
The consequences of disclosing PII, whether or not related to credit
cards, is usually the same.

PCI DSS is not a law, but failure to comply with it brings consequences such as fines
from credit card issuers and issuing banks, and increased legal culpability in the event
of a breach.

Adopting an Information Security Management System | 167

http://1.usa.gov/1gAdwAK

4. PCI Security Council, “Requirements and Security Assessment Procedures,” (November 2013), https://
www.pcisecuritystandards.org/documents/PCI_DSS_v3.pdf.

The PCI DSS standard calls for adherence to 6 objectives and 12 controls, as Table 9-1
demonstrates.4

Table 9-1. PCI DSS control objectives and requirements
Control objectives Requirements

Build and maintain a secure
network and systems

1) Install and maintain a firewall configuration to protect cardholder data

2) Do not use vendor-supplied defaults for system passwords and other security parameters

Protect cardholder data 3) Protect stored cardholder data

4) Encrypt transmission of cardholder data across open public networks

Maintain a vulnerability
management program

5) Protect all systems against malware and regularly update antivirus software or programs

6) Develop and maintain secure systems and applications

Implement strong access control
measures

7) Restrict access to cardholder data by business need to know

8) Identify and authenticate access to system components

9) Restrict physical access to cardholder data

Regularly monitor and test
networks

10) Track and monitor all access to network resources and cardholder data

11) Regularly test security systems and processes

Maintain an Information Security
Policy

12) Maintain a policy that addresses information security for all personnel

Validation of compliance is performed annually by a third-party qualified security as‐
sessor (QSA). PCI DSS is not intended to be extremely prescriptive. Instead, it’s meant
to ensure that merchants are adhering to the preceding principles. So long as you can
demonstrate adherence to these principles, QSAs will generally sign off. If your QSA
won’t work with you to understand what you’re doing and how you’re adhering to the
stated objectives of PCI DSS, you should find another QSA. All of the major cloud
vendors have achieved the highest level of PCI DSS compliance and are regularly au‐
dited. Cloud computing in no way prohibits you from being PCI compliant.

Cardholder data is defined as the credit card number, but also data such as expiration
date, name, address, and all other personally identifiable information that’s stored with
the credit card. Any system (e.g., firewalls, routers, switches, servers, storage) that comes
in contact with cardholder data is considered part of your cardholder data environment.

Your goal with PCI DSS should be to limit the scope of your cardholder data environ‐
ment. One approach is to limit this scope by building or using a credit card processing

168 | Chapter 9: Security for the Cloud

https://www.pcisecuritystandards.org/documents/PCI_DSS_v3.pdf
https://www.pcisecuritystandards.org/documents/PCI_DSS_v3.pdf

service that is independent of the rest of your environment. If you build a service, you
can have a separate firewall, load balancer, application server tier, database, and VLAN,
with the application exposed through a subdomain such as https://pci.website.com, with
an IFrame submitting cardholder data directly to that service. Only the systems behind
that service would be considered in the scope of your cardholder data environment and
thus subject to PCI DSS. All references to cardholder data would then be through a
randomly generated token. We’ll discuss this in an edge-based approach shortly.

While PCI DSS is very specific to ecommerce, let’s explore a more generic framework.

ISO 27001
ISO 27001 describes a model information security management system, first published
in 2005 by the International Organization for Standardization (ISO). Whereas PCI is a
pragmatic guide focused on safeguarding credit card data, you’re free to choose where
ISO 27001 applies and what controls you want in place.

Compliance with ISO 27001 is sometimes required for commercial purposes. Your
business partners may require your compliance with the standard to help ensure that
their data is safe. While compliance does not imply security, it’s a tangible step to show
that you’ve taken steps to mitigate risk. Compliance with ISO 27001 is very similar to
the famed ISO 9000 series for quality control, but applied to the topic of information
security. As with ISO 9000, formal auditing is optional. You can adhere to the standard
internally. But to publicly claim that you’re compliant, you need to be audited by an
ISO-approved third party.

In addition to the plan/do/check/act cycle we discussed earlier, ISO 27001 allows you
to select and build controls that are uniquely applicable to your organization. It refer‐
ences a series of controls found in ISO 27002 as representative of those that should be
selected as a baseline:
Information security policies

Directives from management that define what security means for your organization
and their support for achieving those goals

Organization of information security
How you organize and incentivize your employees and vendors, who’s responsible
for what, mobile device/teleworking policies

Human resource security
Hiring people who value security, getting people to adhere to your policies, what
happens after someone leaves your organization

Asset management
Inventory of physical assets, defining the responsibilities individuals have for safe‐
guarding those assets, disposing of physical assets

Adopting an Information Security Management System | 169

Access control
How employees and vendors get access to both physical and virtual assets

Cryptography
Use of cryptography, including methods and applicability, as well as key manage‐
ment

Physical and environmental security
Physical security of assets, including protection against manmade and natural dis‐
asters

Operations management
Operational procedures and responsibilities including those related to backup, an‐
tivirus, logging/monitoring, and patching

Communications security
Logical and physical network controls to restrict the flow of data within networks,
nontechnical controls such as nondisclosure agreements

System acquisition, development, and maintenance
Security of packaged software, policies to increase the software development life‐
cycle, policies around test data

Supplier relationships
Policies to improve information security within your IT supply chain

Information security incident management
How you collect data and respond to security issues

Information security aspects of business continuity management
Redundancy for technical and nontechnical systems

Compliance
Continuous self-auditing, meeting all legal requirements

While not complete, this list should provide you with an idea of the scope of ISO 27001
and 27002.

FedRAMP
Whereas PCI DSS is focused on safeguarding credit card data and ISO 27001 is about
developing a process for information security, FedRAMP was specifically designed to
ensure the security of clouds for use by the US government. (G-Cloud is the UK’s
equivalent.) FedRAMP is a collaboration among government agencies to offer one se‐
curity standard to cloud vendors. Cloud vendors simply couldn’t demonstrate compli‐
ance with each federal agency’s standards. Since 2011, the US government has had a
formal cloud first policy. FedRAMP enables that policy by holding cloud vendors to a

170 | Chapter 9: Security for the Cloud

5. NIST, “Security and Privacy Controls for Federal Information Systems and Organizations,” (April 2013),
http://1.usa.gov/1j2786S.

uniform baseline. Once a cloud vendor is certified, any US federal agency may use that
vendor.

At its core, FedRAMP requires that vendors:

• Identify and protect the boundaries of their cloud
• Manage configuration across all systems
• Offer firm isolation between software and hardware assets
• Adhere to more than 290 security controls
• Submit to vulnerability scans, including code scans
• Document their approach to security
• Submit to audits by a third party

Most of the security controls come right from the National Institute of Standards and
Technology (NIST) Special Publication 800-53, with a few additional controls.5 Fe‐
dRAMP certification is a rigorous, time-consuming process, but one that yields sub‐
stantial benefits to all constituents. Most of the major cloud vendors have achieved
compliance.

FedRAMP differs substantially from PCI DSS in that it has a broader scope. PCI DSS is
focused strictly on safeguarding credit card data, because that’s what the credit card
issuers care about. FedRAMP was built for the purpose of securing government data,
which may range from credit card numbers to tax returns to personnel files. FedRAMP
is also built specifically for cloud computing, whereas PCI DSS is applicable to any
system that handles credit card data.

FedRAMP differs from ISO 27001 in that it’s more of a pragmatic checklist, as opposed
to an information security management system. To put it another way, ISO 27001 cares
more about the how, whereas FedRAMP cares more about the what.

FedRAMP, like all frameworks, doesn’t guarantee security. But cloud vendors that ach‐
ieve this certification are more likely to be secure.

Security Best Practices
While PCI DSS, ISO 27001, and FedRAMP differ in their purpose and scope, they all
require the development of a plan and call for adherence to a range of technical and
nontechnical controls. Again, cloud vendor compliance with these and similar certifi‐

Security Best Practices | 171

http://1.usa.gov/1j2786S

cations and accreditations maintains a good baseline of security, but compliance doesn’t
equal security by itself.

In addition to ensuring that your cloud vendor is meeting a baseline of security and
developing a plan, you must take proactive steps to secure your own information,
whether or not in a cloud. Let’s review a few key security principles.

Defense in Depth
Your approach to security must be layered, such that compromising one layer won’t lead
to your entire system being compromised. Layering on security is called defense in
depth and plays a key role in safeguarding sensitive information, as Figure 9-2 shows.

Figure 9-2. The defense-in-depth onion

One or more safeguards are employed at each layer, as explained in Table 9-2, requiring
an attacker to compromise multiple systems in order to cause harm.

Table 9-2. Protections in place for various layers
Layer Protections

Policies/planning Information security management systems

Physical Physical security offered by your cloud vendor

Tamper-resistant hardware security modules

Perimeter Distributed denial-of-service attack mitigation

Content Delivery Networks

Reverse proxies

Firewalls

Load balancers

Network VLANs

Firewalls

172 | Chapter 9: Security for the Cloud

Layer Protections

Nonroutable subnets

VPNs

Host Hypervisors

iptables or nftables

Operating system hardening

Application Application architecture

Runtime environment

Secure communication over SSL/TLS

Data Encryption

Defense in depth can be overused as a security technique. Each layer of security intro‐
duces complexity and latency, while requiring that someone manage it. The more people
are involved, even in administration, the more attack vectors you create, and the more
you distract your people from possibly more-important tasks. Employ multiple layers,
but avoid duplication and use common sense.

Information Classification
Security is all about protecting sensitive information like credit cards and other per‐
sonally identifiable information. Information security management systems like PCI
DSS, ISO 27001, and FedRAMP exist solely to safeguard sensitive information and call
for the development of an information classification system. An information classifi‐
cation system defines the levels of sensitivity, along with specific controls to ensure its
safekeeping. Table 9-3 describes an example of a very basic system.

Table 9-3. Information classification system
Level Description Examples Encrypted in

motion
Encrypted at
rest

Tokenize Hash

Public Information publicly
available

Product images,
product description,
and ratings and
reviews

No No No No

Protected Disclosure unlikely to
cause issues

A list of all active
promotions

No No No No

Restricted Disclosure could cause
issues but not
necessarily

Logfiles, source
code

Yes Yes No No

Confidential Disclosure could lead to
lawsuits and possible
legal sanctions

Name, address,
purchasing history

Yes (using
hardware
security
module)

Yes (using
hardware
security
module)

No No

Security Best Practices | 173

Level Description Examples Encrypted in
motion

Encrypted at
rest

Tokenize Hash

Extremely
confidential

Disclosure could lead to
lawsuits and possible
legal sanctions

Password, credit
card number

Yes (using
hardware
security
module)

Yes (using
hardware
security
module)

Yes (if
possible)

Yes (if
possible)

On top of this, you’ll want to assign policies determining information access, retention,
destruction, and the like. These controls may vary by country, because of variations in
laws.

Once you’ve developed an information classification system and assigned policies to
each level, you’ll want to do a complete inventory of your systems for the purpose of
identifying all data. Data can take the form of normalized data in a relational database,
denormalized data in a NoSQL database, files on a filesystem, source code, and anything
else that can be stored and transmitted. Each type of data must be assigned a classifi‐
cation.

A general best practice is to limit the amount of information that’s collected and retained.
Information that you don’t collect or retain can’t be stolen from you.

Isolation
Isolation can refer to carving up a single horizontal resource (e.g., a physical server, a
storage device, a network) or limiting communication between vertical tiers (e.g., web
server to application server, application server to database). The goal is to limit the
amount of communication between segments, whether horizontal or vertical, so that a
vulnerability in one segment cannot lead to the whole system being compromised. It’s
a containment approach, in much the same way that buildings are built with firewalls
to ensure that fires don’t engulf the entire building.

The isolation mechanisms vary based on what’s being isolated. Virtual servers are iso‐
lated from each other through the use of a hypervisor. Storage devices are split into
multiple volumes. Networks are segmented using technology like virtual LANs
(VLANs) and isolated using firewalls. All of these technologies are well established and
offer the ability to provide complete isolation. The key to employing these technologies
is to implement isolation at the lowest layer possible.

For example, the Open Systems Interconnection (OSI) model standardizes the various
levels involved with network communication so that products from different vendors
are interoperable. Switches, which operate at layer 2, are responsible for routing Ethernet
frames. To logically segment Ethernet networks, you can tag each frame with a VLAN
ID. If an Ethernet frame has a VLAN ID, the switch will route it only within the bound‐
aries of the defined VLAN, as shown in Figure 9-3.

174 | Chapter 9: Security for the Cloud

Figure 9-3. OSI model mapped back to HTTP stack

The advantage of this level of segmentation is that you’re entirely protected against
attacks in layer 3 and above. This technique can be applied to separate all traffic between
your application servers and databases. This principle reduces attack vectors while pro‐
viding strong isolation. The lower in any stack—whether network, storage, or a hyper‐
visor—the stronger the protection.

Isolation is a key component of a defense in depth strategy.

Identification, Authentication, and Authorization
Identification, authentication, and authorization are focused on controlling access to
systems and data. Users can be individual humans or other systems, but the rules are
mostly the same. Every user must properly identify itself (through a username, public
key, or alternate means), properly authenticate itself (through a password, private key,
or other means), and have designated access to the data. All three elements (identifica‐
tion, authentication, and authorization) must be validated before access may be granted
to a system or data.

Human users should always be mapped 1:1 with accounts, as it increases accountability.
With each human user having an account, you can hold individuals accountable for the
actions performed by them. Accounts that multiple people hold access to are notorious
enablers of malicious behavior, because actions performed by that account are hard to
trace back to individuals. There’s no accountability.

Users of a system, whether internal or external, should always start out with access to
nothing. This is the concept of least privileged access. Only after a user’s role is established
should a user be assigned roles and rights per your information classification system.
When an employee leaves the company or changes roles, the system should automati‐
cally update the user’s role in the system and revoke any granted rights.

Security Best Practices | 175

Some cloud vendors offer robust identity and access management (IAM) systems that
are fully integrated across their suite of services. These systems are typically delivered
as SaaS and offer a uniform approach to manage access to all systems and data. The
advantage these systems have is that they’re fully and deeply integrated with all of the
systems offered by a cloud. Without a central IAM system, you’d have to build one on
your own, likely host it, and integrate it with all of the systems you use. Third-party
systems invariably support different protocols, different versions of each protocol, and
offer limited ability to support fine-grained access. By using a cloud vendor’s Software-
as-a-Service solution, you get a robust solution that’s ready to be immediately used.

It’s important to use an IAM system that supports identity federation, which is delegating
authentication to a third party such as a corporate directory using a protocol like OAuth,
SAML, or OpenID. Your source system, like a human resources database, can serve as
the master and be referenced in real time to ensure that the user still exists. You wouldn’t
want to get into a situation where an employee was terminated, but their account in the
cloud vendor’s IAM system was still active. Identity federation solves this problem.

Finally, multifactor authentication is an absolute must for any human user who is trans‐
acting with your servers or your cloud vendor’s administration console. An attacker
could use a range of techniques to get an administrator’s password, including brute-
force attacks and social engineering. Once logged in, an attacker could do anything,
including deleting the entire production environment. Multifactor authentication
makes it impossible to log in by providing only a password. On top of a password, the
second factor can be an authentication code from a physical device, like a smartphone
or a standalone key fob. Two authentication factors, including what you know (pass‐
word) and what you have (your smartphone), substantially strengthen the security of
your account.

Audit Logging
Complementary to identification, authentication, and authorization is audit logging. All
of the common information security management systems require extensive logging of
every administrative action, including calls into a cloud vendor’s API, all actions per‐
formed by administrators, errors, login attempts, access to logs, and the results of various
health checks. Every logged event should be tagged with the following:

• The user who performed the event
• Data center where the event was performed
• ID, hostname, and/or IP of the server that performed the event
• A timestamp marking when the event was performed
• Process ID

176 | Chapter 9: Security for the Cloud

Logs should be stored encrypted in one or more locations that are accessible to only a
select few administrators. Consider writing them directly to your cloud vendor’s shared
storage. Servers are ephemeral. When a server is killed, you don’t want valuable logs to
disappear with it.

Logging not only acts as a deterrent to bad behavior but also ensures that there is trace‐
ability in the event of a breach. Provided that the logs aren’t tampered with, you should
be able to reconstruct exactly what happened in the event of a failure, in much the same
way that airplanes’ black box recorders record what happened during a crash. Being
able to reconstruct what happened is important for legal reasons but also as a way to
learn from failures to help ensure they don’t happen again.

Cloud vendors offer extensive built-in logging capabilities, coupled with secure, inex‐
pensive storage for logs.

Security Principles for eCommerce
Among all workloads, ecommerce is unique in that it’s both highly visible and handles
highly sensitive data. It’s that combination that leads it to have unique requirements for
security. Traditional cloud workloads tend to be neither. If a climate scientist isn’t tem‐
porarily able to run a weather simulation, it’s not going to make headlines or lead to a
lawsuit over a breach.

The visibility of ecommerce is increasing as it’s moving from a peripheral channel to
the core of entire organizations. As we’ve discussed, this shift is called omnichannel
retailing. An outage, regardless of its cause, is likely to knock all channels offline and
prevent an organization from generating any revenue. Outages like this are prominently
featured in the news and are almost always discussed on earnings calls. Executives are
routinely fired because of outages, but the odds of a firing increase if the outage can be
traced to a preventable security-related issue. Security-related incidents reflect poorly
on the organization suffering the incident because it shows a lack of competency. It
makes both senior management and investors question whether an organization is
competent in the rest of the business.

While outages are bad, lost data is often much worse because of consequences including
lost revenue, restitution to victims, fines from credit card issuers, loss of shareholder
equity, bad press, and legal action including civil lawsuits initiated by wronged con‐
sumers. An outage may get you fired, but a major security breach will definitely get you
fired. You may also be personally subject to criminal and civil penalties. Leaked data
that can get you in trouble includes all of the standard data like credit cards, names,
addresses, and the like, but it also extends to seemingly innocuous data, like purchase
histories, shipping tracking numbers, wish lists, and so on. Disclosure of any personally
identifiable information will get you in trouble.

Security Principles for eCommerce | 177

Disclosing personally identifiable information will lead to not only commercial penal‐
ties and civil action, but also possibly criminal actions by various legal jurisdictions.
Many countries impose both civil and criminal penalties on not only those who steal
personally identifiable information, but also those who allow it to be stolen, in the case
of gross negligence. For example, Mexico’s law states that ecommerce vendors can be
punished with up to six years’ imprisonment if data on Mexican citizens is stolen. Many
countries are even more punitive and may even confiscate profit earned while its citi‐
zens’ data was at risk. Many countries, such as Germany, severely restrict the movement
of data on their citizens outside their borders in order to limit the risk of disclosures.

Vulnerabilities that lead to the disclosure of personally identifiable information tend to
be application level. SQL injection (getting a database to execute arbitrary SQL), cross-
site scripting (getting a web browser to execute arbitrary script like JavaScript), and
cross-site request forgery (executing URLs from within the context of a customer’s
session) are preferred means for stealing sensitive data. Applications tend to be large,
having many pages and many possible attack vectors, while the barriers to entry for an
attacker are low. Attackers don’t have to install sophisticated malware or anything very
complicated—they simply have to view the source code for your HTML page and play
with HTTP GET and POST parameters. In following with the defense-in-depth prin‐
ciple, your best approach is to layer:
Education

Educate your developers to the dangers of these vulnerabilities.

Development of best practices
Set expectations for high security up front; have all code peer reviewed.

White-box testing
Scan your source code for vulnerabilities.

Black-box testing
Scan your running application, including both your frontends and your backends,
for vulnerabilities.

Web application firewall
Use a web application firewall to automatically guard against any of these vulner‐
abilities should your other defenses fail. Web application firewalls are capable of
inspecting the HTTP requests and responses.

If you’re especially cautious, you can even run a database firewall. Like a web application
firewall, a database firewall sits between your application servers and database and in‐
spects the SQL. A query such as select * from credit_card originating from your appli‐
cation server should always be blocked. These firewalls are capable of customizable
blacklist and whitelist rulesets.

178 | Chapter 9: Security for the Cloud

Security is a function of both your application and the platform on which it is deployed.
It’s a shared responsibility.

Security Principles for the Cloud
The cloud is a new way of delivering computing power, but it’s not that fundamentally
different. All of the traditional security principles still apply. Some are easier; some are
harder. What matters is that you have a good partnership with your cloud vendor. They
provide a solid foundation and tools that you can use, but you have to take responsibility
for the upper stack. Table 9-4 shows a breakdown of each party’s responsibility.

Table 9-4. Cloud vendor’s responsibilities versus your responsibilities
Cloud vendor responsibilities Your responsibilities

Facilities N/A

Power N/A

Physical security of hardware N/A

Network infrastructure N/A

Internet connectivity N/A

Patching hypervisor and below Patching operating system and above

Monitoring Monitoring

Firewalls Configuring customized firewall rules

Virtualization Building and installing your own image

API for provisioning/monitoring Using the APIs to provision

Identity and access management framework Using the provided identity and access management framework

Protection against cloud-wide distributed denial-of-
service attacks

Protecting against tenant-specific distributed denial-of-service attacks

N/A Building and deploying your application(s)

N/A Securing data in transit

N/A Securing data at rest

Security is a shared responsibility that requires extensive cooperation. An example of
the cooperation required is when you perform penetration testing. Unless you tell your
vendor ahead of time, a penetration test is indistinguishable from a real attack. You have
to tell your cloud vendor ahead of time that you’re going to be doing penetration testing
and that the activity seen between specific time periods is OK. If you don’t work with
your cloud vendor, they’ll just block everything and, best case, your penetration won’t
work because security is so tight by default.

Security Principles for the Cloud | 179

Reducing Attack Vectors
Key to reducing your risk is to minimize your attack surface. If every one of your servers
were on the Internet, obviously that would create a large surface for attacks. Ideally,
you’ll expose only a single IP address to the Internet, with all traffic forced through
multiple firewalls and at least one layer of load balancing.

Many cloud vendors offer what amounts to a private subnet within a public cloud,
whereby you can set up private networks that aren’t routable from the public Internet.
Hosts are assigned private IP addresses, with you having full control over IP address
ranges, routing tables, network gateways, and subnets. This is how large corporate net‐
works are securely sliced up today. Only the cloud vendor’s hardened load balancer
should be responding to requests from the Internet. To handle requests from your ap‐
plication to resources on the Internet, you can set up an intermediary server that’s rout‐
able from the Internet but doesn’t respond to requests originating from the Internet.
Network address translation (NAT) can be used to connect from your application server
instances in a secure subnet to get to the intermediary that’s exposed to the Internet.
The intermediary is often called a bastion host.

Keep your backend off the Internet. This is applicable outside the
technology domain as well.

In addition to private clouds within public clouds, firewalls are another great method
of securing environments. Cloud vendors make it easy to configure firewall rules that
prohibit traffic between tiers, except for specific protocols over specific ports. For ex‐
ample, you can have a firewall between your load balancer and application server tiers
that permits only HTTP traffic over port 80 from passing between the two ports. Ev‐
erything else will be denied by default (see Figure 9-4).

180 | Chapter 9: Security for the Cloud

Figure 9-4. Restricting traffic by port and type

By having a default deny policy and accepting only specific traffic over a specific port,
you greatly limit the number of attack vectors by keeping a low profile online. You can
even configure firewalls and load balancers to accept traffic from a specific IP range,
perhaps limiting certain traffic to and from the tier above/below and from your corpo‐
rate network. For example, you can require that any inbound SSH connections be es‐
tablished from an IP address belonging to your company. This is a key principle of
defense in depth, whereby an attacker would have to penetrate multiple layers in order
to access your sensitive data.

Once within your private subnet, you have to minimize the attack surface area of each
individual server. To do this, start by disabling all unnecessary services, packages, ap‐
plications, methods of user authentication, and anything else that you won’t be using.
Then, using a host-based firewall like iptables or nftables, block all inbound and
outbound access, opening ports on only an exception basis. You should have SSH (re‐
stricted to the IP range belonging to your corporate network) and HTTP (restricted to
the tier above it) open only on servers that host application servers. Use a configuration

Security Principles for the Cloud | 181

management approach per Chapter 5 in order to consistently apply your security pol‐
icies. Your default deny policy is no good if it’s not actually implemented when a new
server is built.

Going a layer lower, hypervisors themselves can serve as an attack vector. When virtu‐
alization first started becoming mainstream, there were security issues with hypervisors.
But today’s hypervisors are much more mature and secure than they used to be and are
now deemed OK to use by all of the major information security management systems.
Cloud vendors use highly customized hypervisors, offering additional security mech‐
anisms above the base hypervisor implementation, like Xen. For example, firewalls are
often built-in between the physical server’s interface and guest server’s virtual interface
to provide an extra layer of security on top of what the hypervisor itself offers. You can
even configure your guest server to be in promiscuous mode, whereby your NIC for‐
wards all packets routed through the NIC to one of the guests, and you won’t see any
other guest’s traffic. Multiple layers of protection are in place to ensure this never hap‐
pens. Separation of this sort occurs with all resources, including memory and storage.

Cloud vendors help to ensure that their hypervisors remain secure by frequently and
transparently patching them and doing frequent penetration testing. If a cloud vendor’s
hypervisor is found to have a security issue, that vendor’s entire business model is de‐
stroyed. They’re highly incentivized to get this right.

If you’re especially concerned about hypervisor security, you can always get dedicated
servers instead of shared servers. This feature, offered by some cloud vendors, allows
you to deploy one virtual server to an entire physical server.

Instead of Figure 9-5, you can have one physical server and one vServer, as shown in
Figure 9-6.

Figure 9-5. One physical server, four vServers

182 | Chapter 9: Security for the Cloud

Figure 9-6. One physical server, one vServer

The price difference between the two models is often nominal, and you can use the same
APIs you would normally use.

Protecting Data in Motion
Data can be in one of two states: in motion or at rest. Data that’s in motion is transient
by nature. Think of HTTP requests, queries to a database, and the TCP packets that
comprise those higher-order protocols. Data that’s at rest has been committed to a per‐
sistent storage medium, usually backed by a physical device of some sort. Any data in
motion may be intercepted. To safeguard the data, you can encrypt it or use a connection
that’s already secure.

Encryption is the most widely used method of protecting data in transit. Encryption
typically takes the form of Secure Sockets Layer (SSL) or its successor, Transport Layer
Security (TLS). SSL and TLS can be used to encrypt just about any data in motion, from
HTTP [HTTP + (SSL or TLS) = HTTPS], to VPN traffic. Both SSL and TLS are well
used and well supported by both clients and applications, making it the predominant
approach to securing data in motion.

Extensive use of SSL and TLS taxes CPU and reduces performance.
By moving encryption and decryption to hardware, you can entire‐
ly eliminate the CPU overhead and almost eliminate the perfor‐
mance overhead. You can transparently offload encryption and de‐
cryption to modern x86 processors or specialized hardware acceler‐
ators.

SSL and TLS work great for the following:

• Customers’ clients (web browsers, smartphones) <-> load-balancing tier
• Load-balancing tier <-> application tier
• Administrative console <-> cloud

Security Principles for the Cloud | 183

• Application tier <-> SaaS (like a payment gateway)
• Application tier <-> your legacy applications
• Any communication within a cloud
• Any communication between clouds

SSL and TLS work at the application layer, meaning that applications must be configured
to use it. This generally isn’t a problem for clients that work with HTTP, as is common
in today’s architectures. IPsec, on the other hand, will transparently work for all IP-based
traffic, as it works a few layers lower than SSL and TLS by encapsulating TCP packets.
You can use this for VPNs to connect to clients that don’t support SSL or TLS, such as
legacy retail applications and the like. IPsec is commonly used for VPNs back to cor‐
porate data centers because of its flexibility.

SSL, TLS, and IPsec all require that you terminate encryption. For example, you can
terminate SSL or TLS within a Content Delivery Network, load balancer, or application
server, as shown in Figure 9-7.

Figure 9-7. Possible SSL/TLS termination points

If you’re using a web server, you can terminate there, too. Each intermediary you pass
encrypted traffic through may have to decrypt and then re-encrypt the traffic in order
to view or modify the request. For example, if you terminate at your application tier and
you have a web application firewall, you’ll need to decrypt and then re-encrypt all HTTP
requests and responses so the web application firewall can actually see and potentially
block application-level vulnerabilities.

184 | Chapter 9: Security for the Cloud

Sometimes, it may be unnecessary or impossible to encrypt connections. We’ll talk about
this in Chapter 11, but many cloud vendors offer colo vendors the ability to run dedi‐
cated fiber lines into their data centers. These private WANs are frequently used to
connect databases hosted in a colo to application servers hosted in a cloud. These con‐
nections are dedicated and considered secure.

Once in a database, data transitions from being in motion to at rest.

Protecting Data at Rest
Data at rest is data that’s written to a persistent storage device, like a disk, whereas data
in motion is typically traveling over a network between two hosts. Data at rest includes
everything from the data managed by relational and NoSQL databases to logfiles to
product images. Like data in motion, some is worth safeguarding, and some is not. Let’s
explore.

To begin, you must first index and categorize all data that your system stores, applying
different levels of security to each. This is a standard part of all information security
management systems, as we discussed earlier in this chapter. If you can, reduce the
amount of sensitive data that’s stored. You can:

• Not store it
• Reduce the length of time it needs to be stored
• Tokenize it
• Hash it
• Anonymize it
• Stripe it across multiple places

The less data you have, the less risk you have of it being stolen. Tokenization, for example,
is substituting sensitive data in your system with a token. That way, even if your database
were to be compromised, an attacker wouldn’t gain access to the sensitive data. Toke‐
nization can be done at the edge by your CDN vendor or in your application. When
you tokenize at the edge, only your CDN vendor and your payment gateway have access
to the sensitive data.

Sensitive data that’s left over needs to be protected. Encryption is the typical means by
which data at rest is safeguarded. You can apply a secure off-the-shelf algorithm to
provide security, by encrypting files or entire filesystems. Encryption is a core feature
of any storage system, including those offered by cloud vendors. To provide an addi‐
tional level of security, you can encrypt your data twice—once before you store it and
then again as you store it. The filesystem it’s being written to itself may be encrypted.
Layering encryption is good, but just don’t overdo it. Encryption does add overhead,

Security Principles for the Cloud | 185

but it can be minimized by offloading encryption and decryption to modern x86 pro‐
cessors or specialized hardware accelerators.

Anytime you use encryption, you have to feed a key into your algorithm when you
encode and decode. Your key is like a password, which must be kept safe, as anyone
with access to an encryption key can decrypt data encrypted using that key. Hardware
security modules (HSMs) are the preferred means for generating and safeguarding
keys. HSMs contain hardware-based cryptoprocessors that excel at generating truly
random numbers, which are important for secure key generation. These standalone
physical devices can be directly attached to physical servers or attached over a network,
and contain advanced hardware and software security features to prevent tampering.
For example, HSMs can be configured to zero out all keys if the device detects tampering.

Some cloud vendors now offer dedicated HSMs that can be used within a cloud, though
only the cloud vendor is able to physically install them. You can administer your HSMs
remotely, with factors such as multifactor authentication providing additional security.
If you want to use or manage your own HSMs, you can set them up in a data center you
control, perhaps using a direct connection between your cloud vendor and a colo. This
will be discussed further in Chapter 11.

Databases, whether relational or NoSQL, are typically where sensitive data is stored and
retrieved. You have three options for hosting your databases:

• Use your cloud vendor’s Database-as-a-Service offering
• Set up a database in the cloud on infrastructure you provision
• Host your database on premises in a data center that you control, using a direct

connection between your cloud vendor and a colo (discussed further in Chapter 11)

All three approaches are perfectly capable of keeping your data secure, both in motion
to the database and for data at rest once in a database. You can even encrypt data before
you put it into the database, as an additional layer of security. Again, possession in no
way implies security. What matters is having a strong information security management
system, categorizing data appropriately, and employing appropriate controls.

Summary
The cloud isn’t inherently more or less secure than traditional on-premise solutions.
Physical possession in no way implies security and can in fact make it more difficult to
be secure by increasing the scope of your work. Control is what’s needed to be truly
secure. Cloud vendors do a great job of taking care of lower-level security and giving
you the tools you need to focus on making your own systems secure. Let your cloud
vendors focus on securing the platform or infrastructure and below.

186 | Chapter 9: Security for the Cloud

CHAPTER 10

Deploying Across Multiple Data Centers
(Multimaster)

The focus of this chapter is taking a single ecommerce platform and running it out of
two or more physical data centers that are geographically separated from each other.
While the assumption is that these data centers are within a cloud, most of the principles
discussed are applicable to traditional hosting arrangements. We’ll start by discussing
the fundamental problem of running eCommerce from multiple data centers, the ar‐
chitecture principles underpinning distributed computing, how to assign customers to
individual data centers, and finally the various approaches to operating from multiple
data centers.

Many ecommerce vendors already operate out of two data centers in some capacity to
ensure the highest possible availability. This trend will only accelerate over the coming
years as ecommerce platforms are becoming increasingly important to business. In
today’s omnichannel world, an outage increasingly has the effect of shutting down every
single channel you have for generating revenue. It used to be that a website failure would,
of course, be unpleasant but it was isolated to that channel. Now, many point-of-sale
systems, kiosks, and mobile applications, all use the same underlying platform. Outages
today tend to be platform-wide and thus affect all channels.

Next to a security breach, an extended outage or repeated outages are
the surest way to become unemployed.

Deploying the same platform across two or more data centers in an active/passive or
multimaster configuration helps to ensure availability by providing resiliency against
natural disasters (e.g., hurricanes, typhoons, fires, floods), human errors (e.g., cable cuts,

187

misconfigurations), upstream outages (e.g., loss of power, loss of Internet connectivity),
and software problems (e.g., bugs, upgrade challenges). It’s highly unlikely, for example,
that any two data centers in the world are likely to be affected by the same fire or cable
cut. There’s supposed to be redundancy within each data center, and generally it works
very well. But would you trust your job to your cloud vendor and the safeguards that
vendor has employed in each data center? As we’ve repeatedly seen, the only way to
ensure availability is to use multiple data centers, preferably as far apart as possible.

Historically, ecommerce platforms have been designed for the best possible availability,
usually just within a single data center. This focus on availability has precedence: retail
point-of-sale systems. Most point-of-sale systems have two or more unique methods of
connecting back to the home office to perform critical functions such as charging credit
cards and issuing returns. Dial-up is still commonly used as a backup. If the primary
and backup fail, many retailers will continue to accept orders under $25 or $50 and then
run the credit card authorizations through later, when the connection can be reestab‐
lished. While it’s possible a few charges aren’t successfully authorized, the loss is likely
to be lower than the cost of not being open for business.

Many ecommerce systems function the same way: if the payment gateway, inventory
management system, or some other system is down, the system can still collect orders
but wait to actually charge credit cards, decrement inventory, and so forth. An advantage
ecommerce transactions have is that any problems discovered can be corrected before
the goods are shipped. In a physical retail store, customers walk out with the products.
If you later discover that a credit card authorization was unsuccessful, you can’t get the
products back.

While the need for availability is increasing, cloud and its prerequisites make it even
easier and more affordable to operate from multiple data centers. Auto-scaling (Chap‐
ter 4), installing software on newly provisioned hardware (Chapter 5), solid architecture
(Chapter 8), and Global Server Load Balancing (this chapter) are all fundamental to
operating out of multiple data centers.

The cloud itself and the elasticity it brings make operating from multiple data centers
incredibly inexpensive. Prior to cloud computing, each data center you operated from
had to have enough hardware to be able to support 100% of production traffic in case
one of the data centers had an outage. All of this hardware typically sits idle for all but
a few minutes of the year. Building up an entire second (or third) replica is enormously
expensive—both in terms of up-front capital outlay and ongoing maintenance. The
introduction of the cloud completely changes this. You can have a shell infrastructure
in place and rapidly scale it up in the event of a failure. All of this depends on how well
you install software on newly provisioned hardware, how good your architecture is,
whether you’ve employed Global Server Load Balancing, and how well you can auto-
scale. Without meeting these prerequisites adequately, you shouldn’t even attempt this.

188 | Chapter 10: Deploying Across Multiple Data Centers (Multimaster)

Like the cloud itself, the adoption of a multimaster architecture only exacerbates tech‐
nical and nontechnical deficiencies.

The Central Problem of Operating from Multiple Data
Centers
The central problem with operating from multiple data centers that’s fairly unique to
ecommerce is that you can have multiple customers logging in, using the same account
(e.g., username/password combination) from different data centers. Each account has
its own customer profile, shopping cart, and other data. This data is stored in a database
of some sort, with all of that data needing to be replicated across the various data centers
a platform is being served from. None of the core data in ecommerce, such as customer
profiles and shopping carts, can be lost.

The problem that multiple concurrent logins creates is that if two customers update the
same data at the same time from two different locations, one customer’s action is going
to succeed and the other is going to fail, possibly corrupting data along the way. Because
of latency, a database in one data center doesn’t know in real time what’s going on in a
database in another data center. Unless you block concurrent logins, there will always
be the problem of multiple updates from different data centers (see Figure 10-1).

Figure 10-1. The central problem of multimaster

It’s surprisingly common to have multiple concurrent logins for the same account in
different data centers. It can happen when customers share their logins within families,
with friends, and increasingly, with social media. Loyal customers get special discounts,
so there’s a strong incentive to share login credentials to secure a better deal or simply
out of convenience. This issue can also happen when contact center agents are modifying
an order the same time a customer is. Imagine a scenario where a customer calls in to
a contact center to update an order but actively continues to try to fix the problem while

The Central Problem of Operating from Multiple Data Centers | 189

on the phone. These scenarios are common. The cost of a failure is generally corrupted
data.

This problem is only increasing as:

• Customers transact across more channels from more devices.
• ecommerce vendors target segments or specific customers for promotions, thus

increasing the incentive to share accounts.
• Social media continues to enable customers to share accounts.

The way to reduce (but not eliminate) the likelihood of this scenario happening is to
use accurate proximity-based Global Server Load Balancing, which ensures that cus‐
tomers in the same city, state, collection of states, country, or continent all hit the same
data center. So if a customer is in one room on an iPad shopping and his daughter is in
the other on a laptop, the two should at least hit the same data center and transact against
the same database. We will discuss this shortly.

Architecture Principles
While there are methods to reduce the likelihood of collisions from occurring, the
problem needs to be comprehensively addressed. You’ll corrupt your data and upset
customers if you do nothing or if you implement a poor solution.

The principle to adhere to is to ensure that all customers logged in to the same account
are updating the same database (or other system of record) within a single logical da‐
tabase.

You can have two or more active databases with full bidirectional
replication, but all writes for a given account must hit the same logi‐
cal database within the same data center.

Two factors will largely determine the approach you choose:
Recovery time objective (RTO)

How quickly must you recover from the failure of a data center? Values range from
zero to many hours, depending on the approach you choose. If you deploy out of
only one data center, this value could be weeks. Active/passive is typically at least
an hour. Forms of active/active usually offer zero downtime, even in the event of
an entire data center outage. The lower the RTO, the more work and the greater the
expense.

190 | Chapter 10: Deploying Across Multiple Data Centers (Multimaster)

1. Wikipedia, “Consistency Model,” (2014), http://en.wikipedia.org/wiki/Consistency_model.

2. Wikipedia, “ACID,” (2014), http://en.wikipedia.org/wiki/ACID.

Ability to execute
How good are you and your organization at doing difficult things? This is all very
complicated, especially with the cloud thrown in the mix. Implementation requires
considerable technical expertise, time, full organizational support, and plenty of
money. If you’re struggling with keeping the platform available from one data center
that you manage, deploying it across two or more data centers in a cloud isn’t
something you should even consider.

Recovery point objective (RPO) defines how much data can be lost and is usually a staple
of business continuity planning. However, nobody involved with ecommerce is OK with
anything less than zero for core data such as customer profiles and shopping carts. Data
loss is simply not acceptable for certain classes of data. The principles and approaches
in this chapter are all oriented around this assumption.

Principles Governing Distributed Computing
There’s an enormous amount of academic and industry literature on the computer sci‐
ence behind distributed computing. An in-depth discussion of these principles is not
in the scope of this book, but a brief overview of the principles and the trade-offs in‐
volved in distributed computing are in order before continuing.

Consistency models govern the conditions under which a write in a distributed database
will be visible to other readers.1 A distributed database could be a single database in‐
stance comprised of multiple nodes or multiple database instances in different data
centers. Databases tend to follow one consistency model, or a variation of that model.
Consistency models apply to all distributed computing problems in computer science,
from filesystems to memory.

Strong consistency, known as ACID, stands for the following:2

Atomicity
The whole transaction either succeeds or fails.

Consistency
A transaction is committed without violating any integrity constraints (e.g., data
type, whether column is nullable, foreign-key constraints).

Isolation
Each transaction is executed in its own private sandbox and not visible to any other
transaction until it is committed.

Architecture Principles | 191

http://en.wikipedia.org/wiki/Consistency_model
http://en.wikipedia.org/wiki/ACID

3. Wikipedia, “Eventual Consistency,” (2014), http://en.wikipedia.org/wiki/Eventual_consistency.

Durability
A committed transaction will not be lost.

The assumption would be that all transactions should be ACID compliant, but that’s
often unnecessary. For example, product-related data (e.g., description, attributes, and
search engine optimization–related metadata) can probably be written on one node in
one database and propagated across other nodes and databases asynchronously. If read‐
ers see inconsistent data for a few seconds, it’s probably not a big deal. Very little data
needs to be strongly consistent. Customers won’t tolerate not seeing customer profile
and order-related changes reflected immediately. Core customer data should always be
stored in an ACID-compliant database. By forcing all customers logged in to the same
account to use the same database, you ensure strong consistency for a specific customer’s
data across database instances.

Weak consistency, known as BASE, eschews the tight confines of ACID:3

Basic Availability
The system is generally available for updates.

Soft-state
Data is not durable—it may reside in memory and could be lost in the event of a
failure.

Eventual consistency
A reader may not see the most up-to-date copy of data, as replication happens
asynchronously.

BASE is becoming increasingly common as writes are much faster and systems are much
more scalable, with the trade-off in consistency that is good enough for many types of
data. All of the popular social media platforms are mostly BASE. Again, only a relatively
small subset needs full ACID compliance.

There’s a continuum between ACID and BASE. You have to pick what works best for
you and each type of data you need to store. Often databases themselves allow you to
specify the desired consistency model on a fairly granular basis. Clearly, BASE is prob‐
ably good enough for writing an audit log, whereas ACID is required for orders. But
what about things like inventory and prices? That’s a bit of a grey area. Careful consid‐
eration and then implementation is required. Table 10-1 provides a quick summary of
the two approaches to consistency.

192 | Chapter 10: Deploying Across Multiple Data Centers (Multimaster)

http://en.wikipedia.org/wiki/Eventual_consistency

4. Dr. Eric A. Brewer, “NoSQL: Past, Present, Future,” (8 November 2012), http://bit.ly/1gAdvwO.

Table 10-1. ACID/strong consistency vs. BASE/weak consistency
 ACID/strong consistency BASE/weak consistency

Defining adjectives Synchronous, smart, slow Asynchronous, dumb, fast

Design priorities Data validity Availability/Scalability/Performance

Examples ecommerce orders, online banking Caching, DNS

Database implementations Traditional relational databases Object-based key-value stores/NoSQL

Consistency Immediate Eventual

No discussion of consistency models is complete without a brief discussion of Eric
Brewer’s CAP theorem, which states any distributed system can guarantee two of the
following three:4

Consistency
No data conflicts

Availability
No single point of failure

Partition tolerance
System maintains availability and consistency if a network problem isolates part of
the system

Distributed systems, especially with cloud computing, cannot guarantee partition tol‐
erance because connections between databases are inherently unreliable. Therefore, you
have to make a trade-off between consistency (favors ACID) and availability (favors
BASE). You can’t have both.

For more information on this topic, read Cloud Architecture Patterns by Bill Wilder
(O’Reilly).

Avoiding conflicts
Bidirectional database replication tools all have the ability to detect and resolve con‐
flicts. Conflict detection and resolution is an integral part of these offerings. If two
customers are updating the same order at the same time from two data centers 100
milliseconds apart, and they both update the same record at the same time within that
100-millisecond window, there will be a collision. Likewise, if two customers are up‐
dating the same object (such as a customer profile or an order), there will also be a
collision. The following examples illustrate this potential issue.

Customer 1, account “kellygoetsch,” data center A:

update order set submitted = 1 where order_id='12345';

Architecture Principles | 193

http://bit.ly/1gAdvwO
http://shop.oreilly.com/product/0636920023777.do

(100 milliseconds of latency)

Customer 2, account “kellygoetsch,” data center B:

insert into order_lines (order_id, sku_id, quantity)
values ('12345', '54321', 1);

In this example, two customers are performing opposing actions: one is submitting an
order (executing final pricing, submitting it to a backend system), while the other is
adding another item to the order. This obviously will lead to problems. You can’t add
an item to the order if the order is submitted but the other customer doesn’t know it’s
been submitted yet because of that 100 milliseconds of latency. This example highlights
the central problem with conflict detection and resolution. Yes, it often can technically
work, but the results may not be as you expected. Would this customer’s order ship with
SKU 54321 included? Would her credit card be charged? Did this customer want that
item to be added to the cart, or was it her child who was playing on an iPad in the other
room? Who knows. That’s the problem.

A more technical issue is that most ecommerce platforms write to the database through
an object-relational mapping (ORM) system. These systems allow your code to interact
with actual objects represented in code, as opposed to SQL. For example, you can call
order.setProperty("submitted", true) as opposed to manually constructing the
update order set submitted = 1 where order_id=12345; SQL by hand. These
systems produce an enormous number of SQL statements, as they’re built for maximum
flexibility and portability, as opposed to SQL efficiency. With a single action (e.g., add
to cart) producing potentially dozens of individual SQL statements, you can run into
potential inconsistencies as some of the updates and inserts succeed, while others fail.
It’s hard, if not impossible, to demarcate actions based on database transaction. SQL
statements tend to flow from applications down to the database in messy, overlapping,
overly granular transactions, or with no transactions at all. It’s exceedingly difficult to
demarcate an action (e.g., adding an item to a cart) with clear database transaction
boundaries.

Even if you did manage to get conflict resolution and detection working, you would
deal with the issue of cache staleness. Platforms liberally cache data at all layers. How
do you refresh those higher-level, object-level caches when a change is applied through
database replication? Caches are usually set to update only if the change is made through
the ORM layer. But when the change is applied directly to the database, it’s tough to tell
the platform how to update its caches.

If you don’t use a traditional relational database, you still have many of these same
problems but just in a different form. When you’re dealing with objects or key-value
pairs, you end up overwriting more data because these systems aren’t as granular as a
proper relational database with normalized data. You’ll just overwrite the whole order
as opposed to a property of the order, but that’s just as bad because of all the inter-
dependencies between objects.

194 | Chapter 10: Deploying Across Multiple Data Centers (Multimaster)

The only way to ensure consistency is to make sure that all customers logged in to the
same account are updating the same database or other system of record. That still has
challenges, but it’s at least the status quo, and those issues can be dealt with.

Selecting a Data Center
Prior to cloud computing, the fixed cost to operate from a data center was very high.
You had to physically build the data center or lease some space in an existing data center.
Then you had to statically build out your environment, such that it could handle 100%
of the production load in the event it was the sole data center or that another data center
went offline. The cloud makes it exceedingly easy to run from multiple data centers by
eliminating the overhead of operating from a new data center and by allowing you to
elastically scale up. No longer do you have to scale up an environment only to have it
sit entirely idle. From an API standpoint, the data center is often just one more variable.

The optimal number of data centers to operate from is two or three. Anything more
than that is fairly wasteful. Anything less than that, and you don’t have enough redun‐
dancy to guard against outages. Many cite wanting to reduce latency as a reason for
building out so many data centers. As we discussed in Chapter 7, the server-side re‐
sponse time and latency are a small fraction of the total time it takes for a page to display.
Customers routinely access ecommerce platforms hosted on different continents. Just
because the cloud offers the ability to easily use many data centers doesn’t mean you
should.

Cloud vendors have many data centers around the world, but they can be segmented
by the concept of a fault domain. Each vendor has its own name for this concept, but
what it amounts to is that there are few to no dependencies or connections between data
centers in different fault domains. This isolation should stop issues from propagating
across different domains, thus ensuring the highest level of availability. For example,
software upgrades tend to happen based on fault domains. You should always pick data
centers that are geographically separated (to avoid the same natural disaster, power
outage, or fire) but that also are in different fault domains. Again, all you need are two
(or maybe three) data centers, but they must be properly chosen.

Cloud-wide outages are exceptionally rare but do occur, as discussed in Chapter 3. To
protect yourself against a cloud-wide outage, you can deploy to multiple cloud vendors.
It’s counterintuitive, but that may actually reduce your uptime, as two vendors creates
at least double the complexity. Complexity and misconfiguration arising from com‐
plexity is the number one cause of outages. When coupled with the extremely high
availability, running across two data centers may not give you the extra boost in avail‐
ability you’d expect.

Architecture Principles | 195

Initializing Each Data Center
The use of the cloud for ecommerce differs substantially from traditional static deploy‐
ments because of the elasticity that the cloud provides. You no longer need to scale up
each of your data centers to handle 100% of your production load. You can now scale
up and down freely to meet real-time demands. The problem with that approach is that
in the event of a sudden failure, the surviving environment(s) is unlikely to have enough
capacity pre-provisioned to handle the sudden rush of traffic. At this point, your auto-
scaling system should kick in (see Chapter 4) to start provisioning more hardware. Once
the hardware is provisioned, each server must have software installed on it per Chap‐
ter 5. Provisioning hardware and then building each server takes time—potentially tens
of minutes.

You must set up each cloud data center ahead of time with a skeletal structure that you
can then scale out. It’s not practical to build up a whole new data center on the fly in
response to an outage. But it is practical to take something that’s in a data center and
scale it out very quickly. Each data center should contain at least two instances (for
redundancy) of everything you need for your environment to function—from a cache
grid, to application servers, to a service bus. Think of this environment as being the size
of a development environment but configured for production. This can all be on dedi‐
cated hardware, as opposed to the hourly fees normally charged. Dedicated hardware
is often substantially cheaper than per-hour pricing, but using dedicated hardware re‐
quires up-front payment for a fixed term, usually a year. Again, this should be a fairly
small footprint, consisting of only a handful of servers. The cost shouldn’t be much.

If you’re deploying your own relational database, it needs to be built out ahead of time.
It’s hard to add database nodes for relational databases in real time, as entire database
restarts and other configuration changes are often required. A database node for a re‐
lational database isn’t like an application server or web server, where you can just add
another one and register it with the load balancer. Databases offered by cloud vendors
are more elastic, but of course there are downsides to using shared resources. Your
database utilization should be fairly light if you have the right architecture in place. The
vast majority of page views are from anonymous customers (or search engine bots) for
static cacheable pages, such as home pages and category detail pages. You can offload
most reads to slave databases. Full use of a cache grid helps. Your core database for
transactional data (e.g., orders, customer profiles) ends up being fairly small, usually
no more than a few nodes using no more than a few terabytes of storage.

Removing Singletons
Every platform, it seems, has software that may be deployed on exactly one server per
environment. Common examples include coordination servers, messaging servers, lock
brokers, administrative user interfaces, and servers that execute batch jobs. These

196 | Chapter 10: Deploying Across Multiple Data Centers (Multimaster)

instances, known as singletons, are a classic example of Pareto’s principle, whereby you
spend 80% of your time on 20% of your servers. The 20% tends to be singletons.

Problems with singletons include the following:

• They may be a single point of failure. You’ll have to spend extensive time and effort
to ensure the highest possible availability.

• Each server must generally point to the singleton, either with a unique name, URL,
IP address, or domain name. It takes a lot of work to update dozens, if not hundreds,
of individual servers every time the name or location of the singleton changes.

• Some singletons must be unique to an environment, while others must be unique
to a database. If a singleton must be unique to an environment, at least half of the
requests to that singleton must be made cross–data center. If a singleton is unique
to a database, you’ll potentially have to deal with database replication conflicts as
each singleton updates its own database and the data is unidirectionally replicated
between the two.

• With active/active, you’ll have to activate the singleton in the newly active data
center following a failover.

• As your environment grows, your singleton may run into limits as to how far it can
be vertically scaled. In a normal environment that you control, you can throw a lot
of hardware at problems like this. In a cloud, you’re limited to the maximum amount
of hardware the vendor offers you for a single server.

• You must create a deployment unit (Chapter 5) for that singleton.

It’s best to architect your solution to avoid singletons entirely, or if they must exist, allow
any instance to assume that responsibility. For example, rather than have a dedicated
server that is responsible for periodically rebuilding a search index, each server that
responds to queries could build a small part of the index on the side. Or, have your nodes
nominate one node to perform that task periodically. Architecture that doesn’t rely on
singletons tends to be better by almost every measure.

Never Replicate Configuration
Avoid the temptation to replicate configuration, whether it happens to be in a database
or a filesystem. It makes logical sense to replicate everything, but keep in mind that most
outages are caused by the introduction of bad configuration. If you replicate configu‐
ration, you just replicate the problem. This is exactly the reason you don’t deploy code
to two or more data centers simultaneously. Wait to see how it works out and then deploy
it elsewhere. The same applies for configuration.

Architecture Principles | 197

Assigning Customers to Data Centers
DNS

DNS primer
As we briefly discussed in Chapter 2, DNS exists so customers don’t have to remember
IP addresses. Instead, they can remember short names like website.com, which are paired
up with IP addresses. Each data center you operate from is typically exposed to the world
as a single IP address.

At the heart of the system is a record. A standard record looks something like
Figure 10-2.

Figure 10-2. Sample “A” record

Each domain name has an authoritative DNS server, which is the sole source of truth
for that domain name. Your client (e.g., web browser, mobile device) will probably have
its own cache of DNS records. Your client’s operating system likely has its own cache.
Your ISP most likely has DNS servers, which also cache records. DNS servers recursively
cascade the resolution request up to the authoritative DNS server, with each interme‐
diary caching the record along the way. Each record has a time to live (TTL), designating
how long a record can be cached by any intermediary between the client and authori‐
tative server. TTL values range anywhere from zero seconds to several days, with records
typically expiring after five minutes. DNS is an eventually consistent system, whereby
records may be stale for a period not to exceed the TTL.

DNS does support multiple A records, meaning you can have website.com resolve to
two or more unique IP addresses, with each IP address representing a data center. Results
are ordered, so that the first IP address returned is supposed to be the first IP address
the client connects to.

Every website on the Internet needs an authoritative DNS server. You can self-host DNS
or outsource to a DNS Software-as-a-Service vendor. Software-as-a-Service vendors

198 | Chapter 10: Deploying Across Multiple Data Centers (Multimaster)

include standalone vendors, your cloud vendor, or your CDN vendor. All typically offer
some form of DNS. Definitely use a third-party vendor for DNS. The risk of outages
are too high to self-host DNS.

DNS, while an incredibly resilient and innovative system, has shortcomings:

• Inability to load balance with any real intelligence. You’re limited to round-robin
or basic algorithms of that nature.

• Inability to determine whether the IP addresses you’ve put in your record actually
work. That determination is left to clients, which don’t do it at all or do it poorly.

• Intermediaries between the authoritative DNS server and client can change the
order of the IP addresses in an attempt to load balance. This is very bad for active/
passive.

• Intermediaries extending to the client itself can ignore the TTLs you specify in an
attempt to reduce DNS queries.

Global Server Load Balancing (GSLB), which we’ll discuss shortly, seeks to address many
of the deficiencies in plain DNS.

Assigning customers to a single data center
Until fairly recently, most large ecommerce platforms were served out of only one data
center, with a single virtual IP address (VIP) exposed for that one data center. With one
data center, you can just use plain DNS to tie your friendly domain name (website.com)
to the IP address (161.170.248.20). You could set TTL of a few hours and, provided you
had a reliable DNS vendor, never think about DNS again.

Your DNS record would look something like that shown in Figure 10-3.

Figure 10-3. Sample record with one IP address returned

Assigning Customers to Data Centers | 199

Active/passive data center assignment
With the addition of passive data centers in an active/passive configuration, you have
to lower your TTL so changes can take effect quickly. If you have a 12-hour TTL, it
could be up to 12 hours for any DNS changes to take effect. A TTL of a few minutes
works well. Anything shorter than that, and you force your clients to unnecessarily query
DNS servers, which harms performance. Following the proper TTL, you then have to
be able to publish updates to your DNS record quickly in the event you need to failover
from your primary data center to your standby data center.

Your DNS record would look something like Figure 10-4.

Figure 10-4. Sample record with one IP address returned

As previously mentioned, DNS does support multiple A records, meaning you can have
website.com resolve to two or more unique IP addresses, with each IP address repre‐
senting a data center. Results are ordered, so that the first IP address returned is supposed
to be the first IP address the client connects to. The three problems with that approach
for active/passive are as follows:

• You can’t guarantee that the order of IP addresses won’t be changed by an inter‐
mediary.

• You can’t guarantee that the clients will always connect to the first IP address listed.
• Short outages may occur, as there are hiccups in Internet connectivity and the like.

You don’t want clients connecting to your passive data center until you flip the
switch by publishing an updated A record.

Any IP address in your A record can be connected to at any time by
any client. There are no guarantees.

200 | Chapter 10: Deploying Across Multiple Data Centers (Multimaster)

Instead, it’s best to use proper GSLB with in-depth health checking, or use standard
DNS but have only one IP address listed in your A record. GSLB will be discussed shortly.

Active/active data center assignment
When two or more data centers are actually receiving traffic from customers, each
customer must be presented with an accurate ordered list of IP addresses that the client
should try connecting to. DNS does support having multiple A records, but this feature
should be used only when it is acceptable for a client to connect to any IP address
returned. Clients are supposed to connect in the order the IP addresses are returned,
but it’s entirely possible that an intermediary changed the order of the IP addresses or
that a client disregards the order of the addresses that are returned. TTLs tend to be
fairly low too, as you want to be able to quickly push changes in the event of a failure.

Your DNS record would look something like Figure 10-5.

Figure 10-5. Sample record with two IP addresses returned

Again, clients can connect to any IP address listed, so make sure you return IP addresses
that can actively handle traffic.

Global Server Load Balancing

Global Server Load Balancing primer
GSLB amounts to very intelligent DNS that can pick the optimal data center for a given
customer. Factors it uses can include the following:

• Availability of a data center (both whether IP responds to pings as well as more in-
depth health checking)

• Geographic location of the client
• Roundtrip latency between the client and each data center
• Real-time capacity of each data center

Assigning Customers to Data Centers | 201

• A number of load-balancing algorithms

The most substantial difference from standard DNS is that it allows you to do much
more advanced health checking of a data center, with the ability to automatically drop
a data center in real time if it becomes unhealthy. With standard DNS, the only health
checking involved is entirely performed on the client side. If a client cannot connect to
the IP address returned in the A record, it continues on to the next one in the list. Each
client performs this checking slightly differently or sometimes not at all. Worse yet, there
are numerous ways an IP address could respond to a ping but not be healthy. Clients
don’t know the difference between HTTP 200, 404, and 500 responses, for example.
GSLB assumes those health-checking responsibilities from the client and can perform
a much more thorough interrogation as to the health of a data center. We’ll talk about
that in “Global Server Load Balancing health checking”, but broadly you should apply
the health-checking approach from Chapter 5 to an entire data center and configure
your GSLB service to probe that page to test the health of a data center. If you’re running
your platform from two or more data centers, the benefit is that failover happens au‐
tomatically, without any interaction. Pushing DNS records manually takes time.

In addition to health checking, a GSLB’s ability to pinpoint the location of a customer
can be incredibly beneficial. Uses include the following:

• Directing customers to the closest data center best able to service their requests.
This improves performance and increases conversion rates.

• Making the concurrent login problem discussed earlier in this chapter much less
likely to occur. With two data centers and no geolocation, any two customers shar‐
ing the same account have a 50% chance of hitting the same data center. With proper
geolocation offered by GSLB, you reduce the problem substantially. People in the
same household, city, state, or region, are far more likely to be sharing logins, and
with proper geolocation are far more likely to hit the same data center.

• You can personalize the experience for customers. For example, you may want to
show your Wisconsin customers winter gloves and your Florida customers swim‐
ming suits in January.

• You may need to restrict certain functionality based on the physical location of a
customer. For example, a promotion may be legal in one state but illegal in another.
Rather than show customers a contest that they cannot participate in, it’s best to
simply remove it for those where it is illegal.

• You can roll out functionality slowly. Say you’re cutting over to a new platform. You
can do it on a city-by-city basis as you pilot it. This is how consumer packaged-
goods companies test out new products.

GSLB can be offered like DNS—self-hosted or as a service. When hosted in-house, it’s
often through the use of hardware appliances. These appliances likely cannot be used

202 | Chapter 10: Deploying Across Multiple Data Centers (Multimaster)

in a cloud. Like DNS, it’s best to choose a GSLB Software-as-a-Service vendor rather
than trying to do it in-house.

CDNs that offer GSLB are best because they can respond to customers’ requests from
the edge rather than from a centralized server. That leads to improved performance, as
every customer will be making a request to the authoritative DNS server at the beginning
of the session. With traditional DNS, there’s far more caching involved because the same
record can be used for every customer. GSLB returns a unique record for each customer.

CDNs that serve as a reverse proxy also have a substantial advantage over standard DNS
for the full active/active approach, whereby a small fraction of customers are forcibly
moved from one data center to another. Rather than try to force you to switch IP ad‐
dresses for a given domain name, you can instead instruct your CDN to proxy the
requests at the edge, as shown in Figure 10-6.

Figure 10-6. Edge-based proxying

Assigning Customers to Data Centers | 203

Even though a client may still map website.com back to the wrong IP address, your CDN
will simply ignore it and redirect the request to the right data center. The CDN can be
told of this change through an HTTP response header, cookie, or similar.

Traditional appliance-based GSLB solutions offer this through proxying. A request may
hit the wrong data center, but the appliances can cooperate to proxy the request over to
the right data center. The downside is you’ll always be proxied through an intermediary
data center, perhaps traveling thousands of miles out of the way with each request.

Global Server Load Balancing health checking
Just as we discussed health checks for individual deployment units (Chapter 5) within
a data center, you’ll need to health check an entire data center in a way that makes sense
for your platform.

For a single application server, representative tests include these:

• Querying the cache grid for a product
• Adding a product to the shopping cart
• Writing a new order to a database and then deleting it
• Querying the service bus for inventory availability
• Executing a query against the search engine

If all of the tests came back OK, the response would be the string PASS. Otherwise, the
response would come back FAIL. You can configure load balancers to poll for an HTTP
200 response code and PASS in the response. A simple TCP ping isn’t good enough.

The same concept holds true for assessing the health of an entire data center (see
Figure 10-7). Responding to a simple TCP ping tells you nothing about its health. It’s
best to build a small standalone web application to poll the dynamic health-check pages
of each stack and any other monitoring points. If, say, 75% of the tests come back as a
PASS, then report PASS. Have your GSLB query for this page and make it highly
available.

204 | Chapter 10: Deploying Across Multiple Data Centers (Multimaster)

Figure 10-7. Health checking a data center

Whereas in the past you had to check the capacity of each data center, you no longer
need to do that because you can scale each data center out as required. In other words,
the capacity of each data center will be dictated by the amount of traffic GSLB gives it
as opposed to how much capacity the data center reports back to GSLB.

Approaches to Operating from Multiple Data Centers
Pragmatism should be your guiding force as you operate from two or more data centers
and, more generally, as you adopt cloud computing. It’s important to do your research
and then do what works well for you. The approaches outlined here are simply starting
points, meant to be customized and extended to suit your exact needs. Broad approaches
are described in the following sections.

Active/Passive
This approach is fairly traditional, whereby only one application tier and database tier
in a data center are active at a time (see Figure 10-8). One data center is active, and the
other is passive. Replication is often limited to just the database and is unidirectional.
A data center failure is unlikely to result in any data being lost (called recovery point
objective) but is very likely to result in lengthy downtime (called recovery time objec‐
tive).

Approaches to Operating from Multiple Data Centers | 205

Figure 10-8. Active/passive deployment architecture

Lengthy downtime is expected because switching over to the passive data center entails
the following:

• Provisioning hardware (Chapter 4)
• Installing software on the newly provisioned hardware (Chapter 4)
• Initializing your database
• Reversing the database synchronization so you have a backup for your newly active

database
• Pointing your Global Server Load Balancer to your new data center

This all takes time, with the system down while these activities take place. Unless you
invest a lot of time in automating this, it will probably have to be done manually.

With a traditional hosting model, the passive data center would be fully built out with
dedicated hardware. This reduces your downtime but at the cost of having double the
hardware you would otherwise need sitting completely idle for the vast majority of the
year. It’s enormously wasteful, but the waste may be outweighed by the reduction in the
length of outages.

Active/passive is easiest to use when you want to make as few changes as possible to
your applications and your deployment architectures. Since replication happens at the
database only and tools exist to do that, you don’t have to change any of your other
software if you don’t want to. That saves a lot of time and money, especially if you’re

206 | Chapter 10: Deploying Across Multiple Data Centers (Multimaster)

working with software that is difficult to change. You may not even be able to change
some software, making this the only viable approach.

Active/Active Application Tiers, Active/Passive Database Tiers
With this approach, shown in Figure 10-9, you have two or more data centers fully
built up and operating independently, with only the database being active/passive. This
approach is a great middle ground that avoids most of the headaches of full multimaster
(where both your application and database tiers are fully active) but comes with the
limitation that your data centers can’t be too far apart.

Figure 10-9. Active/passive application tiers, active/passive database tiers deployment
architecture

Because half of your application tiers will be writing to a database residing in a different
data center, the success of this approach depends very much on how often you write to
your database, whether those writes are synchronous, and how much latency there is
between your application tiers and database. If you’re writing to the database five times
for every page view and you have 20 milliseconds of latency, you’re looking at overhead
of 100 milliseconds in pure latency on top of however long it takes for your database to
generate the response. The key is picking data centers that are close enough together to
minimize the impact of latency, but far enough apart to not be affected by the same
natural disasters, human errors, and upstream outages. For example, round-trip latency
between Chicago and Detroit is only 8 milliseconds. You could make 12 round-trips
between the two and add only 96 milliseconds of latency. By choosing data centers there,
you get some good physical separation yet incur very little latency.

If you have an issue with a data center or your software deployed in that data center,
you can just stop directing traffic to it and failover to the other data center. You can
switch your customers over to the surviving data center within seconds, either through

Approaches to Operating from Multiple Data Centers | 207

the automated health checking–based approach we discussed earlier in this chapter or
by manually making the change.

The real advantage is that you shouldn’t have to change your applications all that much.
The changes are mostly at the database level. You may have to optimize your code to
reduce the number of calls to your database, but that’s about it.

Active/Active Application Tiers, Mostly Active/Active Database Tiers
As discussed earlier in this chapter, the central problem with multimaster is having
multiple logins to the same account. When that happens, you can run into data conflicts
as the same data is updated from two different databases. The two approaches men‐
tioned don’t have this issue because there’s only one live database. Even though there
may be multiple physical data centers, all writes occur to the same ACID-compliant
database. This approach is the first in which each data center has its own active database.

Each data center in this approach, shown in Figure 10-10, has its own application and
database stack. By default, customers write to the local database in the data center they’ve
been assigned to. But when the application detects that a customer already has a con‐
current login in another data center, the customer will write cross-WAN to the data
center having the active session. By doing this, you have full active/active except for the
very small percentage of customers with multiple concurrent logins.

Figure 10-10. Active/passive application tiers, mostly active/active database tiers de‐
ployment architecture

To implement this approach, you need to change your login process to tag each account
with the data center the account is signed in from and the time that a login was last
performed. All logins then need to check those two values to see whether someone else
is already signed in using those credentials in a different data center. If during the login
process you find that somebody else is already logged in to that account from a different

208 | Chapter 10: Deploying Across Multiple Data Centers (Multimaster)

data center, you point that customer to the database in the data center where there’s
already an active login. All reads can still happen from the local database.

Since this is the first approach that uses two or more live databases, all primary keys (or
other persistent identifiers) must be prefixed with a unique identifier. For example, a
data center in New York could have all of the primary keys generated there prefixed
with ny. This allows primary keys to remain unique across all data centers.

A complicating factor is how you assign databases to individual customers. The key is
to configure your application server to have multiple connection pools, each repre‐
senting a unique database. If you have a data source for your orders, you would de‐
fine a data source with an identifier of Order_DS_Local and another one with an iden‐
tifier of Order_DS_Remote. Then in your application tier, you change data source reso‐
lution from a global scoped variable to a session scoped variable. Pseudocode would
look something like this:

public boolean handleLogin(HttpServletRequest request,
 HttpServletResponse response)
{
 if (!super.handleLogin(request, response)) // loads Account into session
 {
 return false;
 }

 Account account = (Account)request.getSession()
 .getAttribute("CurrentAccount"); // returns "Chicago"
 String thisDataCenterName = Constants.CURRENT_DATA_CENTER_NAME;

 // if account.getCurrentDataCenter() = "Chicago"
 if (account.getCurrentDataCenter().equals(thisDataCenter))
 {
 request.getSession().setAttribute("Order_Data_Source",
 Constants.LOCAL_ORDER_DATA_SOURCE);
 // sets to "Order_DS_Local"
 }
 else // if account.getCurrentDataCenter() = "Detroit"
 {
 request.getSession().setAttribute("Order_Data_Source",
 Constants.REMOTE_ORDER_DATA_SOURCE);
 // sets to "Order_DS_Remote"
 }

 return true;
}

Your implementation will be substantially different, but the logic should be fairly similar.

Approaches to Operating from Multiple Data Centers | 209

Full Active/Active
This approach (Figure 10-11), like the previous approach, has data centers that operate
autonomously, with each data center equipped with its own application and database
tiers. Rather than writing cross-WAN for the handful of customers with active logins
in another data center, this approach requires those customers be forcibly moved to the
data center having the active login. This allows all customers to always be served from
a local database, with no communication occurring cross-WAN.

Figure 10-11. Full active/active deployment architecture

The implementation of this approach starts out being the same as the prior one. You
need to tag each account with the data center the account signed in from and the time
that a login was last performed. You then need to write a bit of code to determine whether
the customer is signed in somewhere else. This is all the same as the prior approach.
The difference is that a customer found to be in the “wrong” data center is forcibly
moved to the data center that has an active session for the account. Following the redi‐
rection, all HTTP requests and HTTP sessions belonging to that account are served
from the same data center, application tier, and database. Anonymous customers never
need to be redirected because they don’t have a home data center.

The problem with this approach is that it’s very difficult to unstick a customer from a
data center. IP addresses (with data centers each represented by a single domain name
and each IP address mapping back to a single data center) are cached through various
intermediaries. For example, many web browsers cache IP address/domain name com‐
binations longer than called for by the DNS record (time to live). You can’t just force a
client to reliably re-resolve a domain name and have that change take effect immediately.
We’ll discuss this in greater detail shortly, but at a high level you have to intercept the
HTTP requests at the edge by using a Content Delivery Network and have proxying
done there. There may be some ways to force clients to re-resolve the IP address, but
that would be even more challenging to do than the CDN/proxying approach. With full

210 | Chapter 10: Deploying Across Multiple Data Centers (Multimaster)

active/active, this may not even be possible to do, but this approach offers substantial
benefits above the previous. Again, we’ll discuss this in more detail shortly.

Stateless Frontends, Stateful Backends
This approach will be discussed extensively in Chapter 11, but it amounts to separating
your frontend from your backend as part of an architecture for omnichannel (see
Figure 10-12).

Figure 10-12. Stateless frontends, stateful backends deployment architecture

In this scenario, your backend is used only for transactional actions, like placing an
order or finding out which products to pitch to a customer. You interact with it through
basic HTTP requests, like this:

http://backend.website.com/CommitOrder?orderId=12345

Your responses are JSON, XML, or some other generic format that your frontend can
parse and display back to the customer:

{
 "success": true,
 "message": "Your order has been successfully placed.",
 ...
}

Approaches to Operating from Multiple Data Centers | 211

Your backend is deployed to data centers that you control, leveraging the hardware and
software you want. This requires statically provisioning hardware and scaling for the
peak, but the difference is that your backend is now handling a much smaller amount
of traffic because your frontend is serving much of it. Refer to the traffic funnel: most
of your traffic is for anonymously browsed pages that don’t require any interaction with
your backend. Your frontend is deployed in a cloud, where it can be elastically scaled.

A key advantage of this approach is that you can throw many frontends on the platform
and maintain a consistent customer experience across all the channels and devices. The
frontends become dumb presentation layers. They’re more or less disposable. Almost
all native iPhone and Android applications work like this today, with the trend increas‐
ing as more channels and device types must continue to be supported. This architecture
is a significant departure from the past, where frontends were tangled up with the back‐
ends, to the point where you couldn’t separate the two. Many ecommerce platforms still
ship the backend (e.g., classes, libraries) in the same package (e.g., an EAR file) as the
frontend (e.g., JSP, ASP, HTML, CSS, or JavaScript). Rendering HTML is what consumes
most of the CPU cycles. If you skip the user interface, you can get far more throughput
than you otherwise would be able to if the two were combined.

The other advantage of this approach is that you can now deploy your backends active/
passive across two data centers. So long as your frontends all point back to the same
backend, you won’t run into any of the problems mentioned in this chapter because
every update to a given customer’s data ultimately terminates in the same database.

Again, we’ll discuss this approach further in Chapter 11.

Review of Approaches
As we’ve discussed, there are numerous approaches to operating from multiple data
centers. Table 10-2 quickly summarizes each approach.

Table 10-2. Approaches to operating from multiple data centers
Approach Number of

active
databases

Recovery
point
objective

Recovery
time
objective

Max
distance
between
data
centers

Changes to
application

Database
replication

Competency
required for
implementation

Active/passive 1 Zero 1 hour+ Unlimited None Unidirectional Low

Active/active
application
tiers, active/
passive
database tiers

1 Zero 5 minutes <25 ms Minor Unidirectional Low

212 | Chapter 10: Deploying Across Multiple Data Centers (Multimaster)

Approach Number of
active
databases

Recovery
point
objective

Recovery
time
objective

Max
distance
between
data
centers

Changes to
application

Database
replication

Competency
required for
implementation

Active/active
application
tiers, mostly
active/active
database tiers

2+ Zero Zero <25 ms Moderate Bidirectional Moderate

Full active/
active

2+ Zero Zero Unlimited High Bidirectional High

Stateless
frontends,
stateful
backends

1+ Zero Zero <100 ms High Unidirectional
or bidirectional

High

As discussed earlier, pragmatism should be your guiding force as you select the approach
that works for you and then customize it to meet your needs.

Summary
While all forms of operating from multiple data centers take work, it’s something that
the industry is rapidly adopting because of the increasing importance of ecommerce.
Outages simply cannot happen in today’s world.

Operating from multiple data centers is also a prerequisite for a hybrid model of cloud
computing, which we’ll discuss in the next chapter.

Summary | 213

CHAPTER 11

Hybrid Cloud

Though ecommerce applications have traditionally been viewed as monolithic with the
frontends (e.g., HTML, CSS, JavaScript) being inseparably combined with backends
(e.g., code containing business logic connected to a database), it doesn’t have to be this
way. In today’s omnichannel world, the approach of having the two inseparably com‐
bined no longer makes sense technically or strategically.

If you split your frontend from your backend, most page views can be served from your
frontend without the backend ever being touched. Only when you transact—add to cart,
check out, update profile, and so forth—do you actually have to touch your backend.
In this model, your backend substantially shrinks and remains under your firm control
while your frontend can elastically soak up most of the page views in a public cloud.
DNS ultimately resolves to your frontend, with your frontend then calling your backend
when necessary, as shown in Figure 11-1.

215

Figure 11-1. Nontransactional frontend served from a cloud, transactional backend
served from a traditional data center

This is exactly how most other channels work today, with the exception of the Web.
Thick client applications like those found on kiosks or smartphones already interact
with your backend in this way. It’s time for the Web to catch up to this model.

In addition to strategic reasons, there are practical reasons the two should be split. The
hosting needs for a frontend are different from what a backend needs. Your backend
needs the following:

• One or more highly available and fully backed-up databases
• Terabytes of highly available and fully backed-up storage
• High-quality, reliable hardware
• Multiple firewalls
• Integration with other backend systems
• Highest possible availability
• Highest possible security for data at rest

216 | Chapter 11: Hybrid Cloud

While clouds can offer this, many will find it easier and safer to keep this in-house. Your
frontend needs the following:

• Rapid elasticity
• A lot of bandwidth
• Highest possible security for data in motion
• To be inexpensive

These attributes make cloud a natural fit for frontends. Before we explore the various
flavors of how to split frontends from backends, let’s explore how this architecture is a
natural by-product of an architecture for omnichannel.

Hybrid Cloud as a By-product of Architecture for
Omnichannel
Traditionally, ecommerce applications have been written and deployed in a single pack‐
age containing the following:

• HTML/CSS/JavaScript
• Server-side scripting code like JSP and ASP
• Server-side code like Java or C#

This package was typically deployed to an application server as a single archive, like a
WAR or EAR file. To get to the compiled server-side code, you had to first go through
your server-side scripting code. Developers worked on both frontend and backend code.
When the Web was the only channel, this worked just fine (see Figure 11-2).

Hybrid Cloud as a By-product of Architecture for Omnichannel | 217

Figure 11-2. Code packaging for one channel

Then multichannel came of age in the mid-2000s as mobile began to take off. No sub‐
stantial architecture changes were made to support mobile and the new channels that
followed it. Additional channels were built alongside the existing stack supporting the
web browser–based HTML user interface, with integration gluing everything together.
Each channel operated in a silo, unaware of what was going on in another channel unless
there was full bidirectional integration between each channel, as shown in Figure 11-3.

218 | Chapter 11: Hybrid Cloud

Figure 11-3. What multichannel ecommerce evolved into

Even with full bidirectional integration, the customer experience was still poor because
integrating heterogeneous systems is inherently error prone and updates are always
asynchronous. As we’ve discussed in previous chapters, the solution to this problem is
to build a single omnichannel platform whereby core functionality (place order, add to
cart, register new account) is exposed as a service, with any user interface able to con‐
sume those services (see Figure 11-4).

Hybrid Cloud as a By-product of Architecture for Omnichannel | 219

Figure 11-4. Omnichannel-friendly architecture

This architecture entirely eliminates the need to perform any integration, because the
various channel-specific user interfaces now serve as conduits to the same backend
platform.

Both omnichannel retailing and hybrid clouds require the frontend
to be split from the backend. The split is a natural outcome of an
omnichannel-based architecture.

Once you break the frontend from the backend, you can deploy each tier separately,
with all interaction taking place through a clearly defined API, as depicted in
Figure 11-5.

220 | Chapter 11: Hybrid Cloud

Figure 11-5. Frontend in a cloud, backend in a traditional data center

This API can be reused across any channels and frontends, with all clients transacting
against the same backend. Customers love the seamless interaction across channels for
the following reasons:

• Pricing, promotions, inventory, product assortment, and all other data is the same
across all channels.

• Customers don’t have to create profiles unique to each channel.
• Customers can update the same shopping cart across multiple channels. For ex‐

ample, a customer can begin an order on a mobile device and finish it on a desktop
at work.

Hybrid Cloud as a By-product of Architecture for Omnichannel | 221

• Customers can have contact center agents or employees in a physical store help to
complete an order started online.

Multichannel inherently leads to fragmentation, which upsets customers. Omnichan‐
nel, on the other hand, allows for seamless customer engagements across channels.

Before we can discuss the different approaches to a hybrid cloud and how it intersects
with omnichannel retailing, we have to discuss how to best connect your backend to
your frontend in a cloud.

Connecting to the Cloud
When your frontend is physically distant from your backend, you need to bridge them
together with a connection. Every HTTP request to your frontend may result in between
zero and potentially dozens of requests to your backend. Requests are typically HTTP,
but they may even be calls to your database. The connection discussed in this chapter
is a vitally important link between the two halves of your platform, so it must at least be
highly available and offer enough bandwidth. Beyond that, the connection can option‐
ally offer security and low latency.

Despite this seeming like an important attribute, security doesn’t matter all that much.
The contents of each HTTP request or other communication protocol must be secured
(e.g., SSL/TLS in the case of HTTP), but the communication can flow over the Internet.
For example, VPNs secure the payload but operate over the Internet. Securing the pay‐
load should be your focus, as your assumption should be that your connection is always
compromised.

Latency is also a less important attribute, though it depends on your architecture. The
more calls you make from your frontends to your backends and the more those calls
are synchronous, the more you’ll need low latency. Some applications will require that
your frontend be almost colocated with your backend because of the number of lookups
that are made to backend systems. To improve performance, strongly consider using a
WAN accelerator.

If you serve your backend out of two or more data centers, strongly consider pointing
your frontends to your backends through a Global Server Load Balancer with latency-
based routing. This will ensure that each frontend is connecting to an available backend
that offers the lowest possible latency.

When selecting a vendor, the breadth and depth of connectivity options a prospective
cloud vendor offers should be heavily weighted. Let’s explore the three broad approaches
to connecting your backends to your frontends in a cloud.

222 | Chapter 11: Hybrid Cloud

Public Internet
The first approach is to use the public Internet. You can expose your backend to the
Internet through a domain like backend.website.com. This is exactly what’s done today
for every channel but the Web. Data can then be transferred between the frontend and
backend over HTTPS, exactly as it is between your customer and the cloud. In other
words, data in flight between your frontend and backend is no more unsecure than it
is between your customer and the cloud.

With this approach, HTTP GET (e.g., https://backend.website.com/AddToCart?order‐
Id=12345&skuId=67890&qty=1) is unsecure because even though the contents of the
HTTP request are secure, the URL is visible to the world. To avoid this issue, you’d have
to HTTP POST the data to https://backend.website.com/AddToCart:

{
 "orderId": "12345",
 "skuId": "67890",
 "qty": 1,
 ...
}

In addition to HTTPS, you’ll want to use an additional security mechanism to ensure
that nobody but your frontend is able to transact with your backend. Otherwise, any‐
body on the Internet would be able to arbitrarily execute commands against your back‐
end. Certificate-based mutual authentication is a great way of doing this, though there
are others. The requirement should be that only authenticated clients are able to issue
HTTP requests to your backend.

You could configure your backend load balancer to accept only traffic from a range of
IP addresses belonging to your cloud vendor, but with ecommerce so elastic, you’ll never
be able to configure your backend load balancer to whitelist every IP address. It also
wouldn’t take much for a hacker to provision a server from a public cloud and issue
HTTP requests from there to bypass your range filter.

VPN
In addition to HTTPS, you can add another layer of security over communication be‐
tween your frontend and backend by making use of an IPsec-based VPN. Traffic is still
going over the Internet, but now you have two layers of security: SSL/TLS for HTTPS,
and IPsec. Cloud vendors offer these VPNs as an integrated part of their offering.

As always, you should avoid using HTTP GET to move sensitive data back and forth.

Direct Connections
Many cloud vendors offer colo vendors the ability to run dedicated fiber lines into their
data centers. This allows colo vendors to build data centers in the same metro area as

Connecting to the Cloud | 223

the cloud vendors and offer what amounts to private LAN connections into a cloud.
With the data centers physically close, you get millisecond-level latency and multigigabit
per second throughput. These connections are dedicated and do not touch the Internet,
thus adding another layer of security.

Approaches to Hybrid Cloud
Caching Entire Pages
A great first step in adopting cloud computing is to move static pages out to a cloud in
much the same way that CDNs serve static pages and static content (e.g., images, Java‐
Script, and CSS; see Figure 11-6).

Figure 11-6. Serving static pages from your frontend in the cloud

Of course, anything dynamic or not yet cached must be served directly from the origin,
as Figure 11-7 shows.

224 | Chapter 11: Hybrid Cloud

Figure 11-7. Serving static pages from your frontend in the cloud, going back to back‐
end as required

HTTP responses, whether the response type is HTML, XML, JSON, or some other
format, work in much the same way, except that the content can vary based on several
factors:

• Whether the customer is logged in
• Web browser/user agent
• Physical location (often accurate to zip + 4 within the US or post code outside the

US)
• Internet connection speed
• Locale
• Operating system

Provided you can identify the variables that affect HTTP responses and vary the HTTP
responses accordingly, this approach works very well for offloading most of your HTTP
requests. Caching of this nature is commonly employed, especially in advance of large
bursts of traffic, like before a holiday or during a special event like the Superbowl.

Use this approach to optimize any existing ecommerce website, whether or not it’s ad‐
hering to the omnichannel architectural principles. It’s quick and easy to do and works
best for pages that don’t change all that much. Home pages, category landing pages, and
product detail pages work best for this.

To do this, you need software that does the following:

Approaches to Hybrid Cloud | 225

• Sits between the client and your endpoint (typically an application server). Proxies
and load balancers commonly meet this need.

• Can examine each HTTP request. In the OSI stack, this refers to layer 7. For ex‐
ample, the software should be able to look at the user agent HTTP request header.

• Can accept blacklist rules for what not to cache. For example, you should be able
to define a rule that says anything under /checkout should be immediately passed
back to the origin.

• Can understand the variables that affect the response. For example, you may vary
your response based on whether the customer is logged in, what the user agent is,
and physical location. Each of those attributes would come together to form a
unique key. If a cached copy of, say, XML corresponding to that key exists, it should
be returned. If not, the request should be passed back to the origin, with the response
the origin generates being cached.

• Can store and retrieve gigabytes worth of cached data quickly and effectively.
• Can quickly flush caches following updates to the underlying data.

The key is identifying the variables that cause the output of each URL to vary its re‐
sponse. Once you’ve identified those, you can cache the vast majority of HTTP requests.

Intermediaries of all types are capable of doing this. Load balancers and proxies are
common examples, but even many web servers are capable of this. This functionality is
built into CDNs that are capable of serving as reverse proxies, but you can also deploy
software of your choosing to public IaaS clouds.

It’s generally best to rely on CDNs to provide this functionality, as they have the advan‐
tage of pushing your cached pages out to each of their dozens or even hundreds of data
centers around the world. Customers are unlikely to be more than a few milliseconds
away from an endpoint, meaning most HTTP requests can be served with virtually no
latency and no waiting for the response to be generated. In addition to performance,
CDNs expose this functionality as SaaS, which frees you up to focus your energy higher
up the value chain.

The only case for doing this in a public Infrastructure-as-a-Service cloud is if this is
your first foray into more-substantive cloud computing and you want to do this as an
educational exercise. This is something that’s fairly easy to do yet provides substantial
benefits.

If you’re not yet sold on public clouds, you can also do this in your existing data center(s).
The load balancer you use today probably has this functionality. While this is an excellent
approach for a fraction of your traffic, to cache more you have to look at the next
approach.

226 | Chapter 11: Hybrid Cloud

Overlaying HTML on Cached Pages
While many HTTP requests can be served directly from cache, some cannot. For ex‐
ample, customers viewing a product detail page often see a list of products recom‐
mended based on their browsing history or purchase history. They look like Figure 11-8.

Figure 11-8. You Might Also Like products

These are called You Might Also Like products, abbreviated YMAL for short.

When most of a given page is the same but only a small part varies, you can cache the
entire page in an intermediary as per the prior approach, but then dynamically overlay
the few fragments of content that actually change on the client side, as in Figure 11-9.

Figure 11-9. Overlaying HTML on cached pages

You can easily apply this technique to the following:

Approaches to Hybrid Cloud | 227

• Ratings and reviews
• Shopping carts
• Breadcrumbs
• “Hello, <First Name>!” banners in the header

Here’s a very simple example of what the code would look like to do this:

<head>
 <script src="http://www.website.com/app/jquery/jquery.min.js">
 </script>
 <script>
 $.ajax({url:"http://backend.website.com/app/RetrieveYMALs?
 productId=12345&customerId=54321",
 success:function(result){
 $("#YMALs").html(result);
 }});
 </script>
</head>
<body>
 <!-- Product details... -->
 <div id="YMALs"></div>
 ... rest of web page
</body>

To make this work, your asynchronous HTTP request must be returned as quickly as
possible. If you wait too long to make the asynchronous request, the customer will see
a fully rendered page but without the overlay. In the YMAL example, the customer will
see screen repainting or, worse yet, whitespace where the products are supposed to be
listed. To do this, make the asynchronous call as early as you can when loading the main
page to parallelize as much of the loading as possible. Put the call at the top of the header.
Also, ensure the response time of the service delivering the content responds as quickly
as possible. It should take just a few milliseconds to get a response to avoid the page
“jumping around” as various parts of the page are painted.

You also have to design your user interface for failure. If the asynchronous request
doesn’t work, the customer should never know. In other words, there shouldn’t be a hole
where the content loaded asynchronously is supposed to be.

Finally, design your user interface for graceful fallback. If the client doesn’t support
JavaScript, either omit the dynamic content entirely or go back to the origin to render
a dynamic version of the page. For example, most search engine bots don’t support
JavaScript. You’ll want the entire page to be indexed.

When fully and properly implemented, this technique can substantially decrease the
amount of load that hits your backend. The more you serve out of your frontend in the
cloud, the less you have to serve out of your backend.

228 | Chapter 11: Hybrid Cloud

Using Content Delivery Networks to Insert HTML
Rather than overlay your dynamic fragments on the client side as with the previous
approach, you can overlay them in a CDN or an equivalent intermediary (see
Figure 11-10).

Figure 11-10. Using CDNs to insert HTML

By not doing anything on the client side, you don’t have to worry about gracefully falling
back if the client doesn’t support JavaScript or any of the other issues that arise when
you’re trying to build a page by asynchronously loading HTML from somewhere else.
The other advantage is that you don’t have to forcibly split your frontend from your
backend, as we’ll discuss in the next approach. If you’re looking to increase the number
of pages you can serve from cache and don’t want to rewrite your application, this is
your approach.

As with the client-side overlay, the technology to implement this doesn’t matter all that
much. What matters is that you’re able to clearly demarcate where you’d like to insert
dynamic content and from what source. The most common framework is Edge Side
Includes (ESI). ESI is a simple markup language that closely mimics the capabilities of
server-side includes, which we’ll discuss next.

Here’s an example of what the code would look like to do this:

<body>
 <!-- Product details... -->
 <div id="YMALs">
 <esi:include
 src="http://backend.website.com/app/
 RetrieveYMALs?productId=12345&customerId=54321" />
 </div>

Approaches to Hybrid Cloud | 229

 ... rest of web page
</body>

Most of the major CDNs support ESI, as do some load balancers and reverse proxies.
While it’s best to use this technique with CDNs because of their ability to cache content
and push it to the edge, you can certainly use load balancers and reverse proxies.

The code here is much easier to write because you don’t have to worry about doing
anything asynchronously or the problems arising from that. You just insert the dynamic
fragments of your page and return the entire HTML document to the client when it’s
ready. Some frameworks even allow you to load each of the includes asynchronously,
with the entire page not returned to the client until the last include is returned. This
improves performance, especially if you have many different includes.

Again, this approach is a great middle ground that will allow you to cache much more
than you otherwise would, but without having to rewrite your application.

Overlaying HTML on the Server Side
This next approach is where the frontend for your website is independently served out
of a cloud, with dynamic content from your backend woven into the page generated by
your frontend. This is a fundamentally different approach than using a CDN or client
to overlay fragments, because with this model you’re actually serving your frontend
independently of your backend, as shown in Figure 11-11.

Figure 11-11. Overlaying HTML on the server side

With the frontend split from the backend, you’re pulling in only small, dynamic frag‐
ments from your backend. Your frontend is then free to run wherever you want, as in
a public cloud. Your frontend, which handles most of the traffic, can then dynamically

230 | Chapter 11: Hybrid Cloud

scale up and down, pulling in dynamic fragments from your backend as required. Your
backend can then be much smaller and hosted traditionally.

The capabilities to insert dynamic content into an existing page have existed since the
early days of the Internet, beginning with server-side includes, which are still used today.
All scripting tag libraries also have support for this, through import or include tags.

Here’s an example of what the code would look like to do this:

<body>
 <!-- Product details... -->
 <div id="YMALs">
 <!--#include
 virtual="http://backend.website.com/app/
 RetrieveYMALs?productId=12345&customerId=54321" -->
 </div>
 ... rest of web page
</body>

While the technology is fairly simple, the architectural implementations are enormous.
Rather than simply serving a static HTML document and then overlaying the dynamic
bits, you’re actually generating a dynamic page for each customer in the cloud and simply
including the dynamic fragments that you need from your backend where appropriate.
This is a great way to move much of the workload out to a dynamic cloud. In this model,
the backend is solely responsible for delivering a small amount of content, and the
frontend is responsible for delivering much of the actual content. It’s a big difference,
though the technical underpinnings have existed for decades.

Fully Decoupled Frontends and Backends
All of the approaches documented thus far have assumed that the content that would
be overlaid is HTML. But as you recall from earlier in the book, the web channel where
HTML is used is rapidly being marginalized in favor of mobile and other channels. Only
web browsers use HTML. Every other channel consumes some form of XML or JSON
from your origin, making all of the approaches thus far irrelevant to nonweb channels.

With this approach, your frontend is out in a cloud, retrieving small fragments of dy‐
namic content from your backend as required. The difference between this and the
previous approach is that the response from the backend should be XML or JSON
instead of HTML, as Figure 11-12 shows.

Approaches to Hybrid Cloud | 231

Figure 11-12. Fully decoupled frontends and backends

It’s certainly easier to return responses in HTML, because you don’t have to change your
code all that much. But the problem with that is it prevents you from ever reusing your
backend services across channels because none of the other channels can consume
HTML. In this model, you construct your HTML pages by using data from your backend
but not the presentation. It’s a clean separation between presentation and business logic.

Here’s an example of what the code would look like to do this:

<body>
<!-- Product details... -->
<div id="YMALs">
 <c:import url="http://backend.website.com/app/
 RetrieveYMALs?productId=12345&customerId=54321"
 var="ymals" />
 <h2><c:out value="${ymals.displayText}"></h2>
 <c:forEach items="${ymals.products}" var="product">
 <jsp:include page="/app/productDetailYMAL.jsp">
 <jsp:param name="product" value="${product}" />
 </jsp:include>
 </c:forEach>
</div>
... rest of web page
</body>

Again, this is a fundamental departure from how many web pages are constructed today,
with the backend providing only structured data. What’s best about this approach is that
the services exposed by the backend (e.g., http://backend.website.com/app/RetrieveY‐
MALs) can be reused across all channels because all you’re exposing is raw data.

232 | Chapter 11: Hybrid Cloud

This is the future of ecommerce architecture, regardless of where you
deploy your front and backends. This approach requires substantial
changes to your code and architecture, but the long-term benefits are
transformational to the way you do business.

Everything but the Database in the Cloud
The most extreme form of hybrid computing is putting everything out in a public cloud
except the database. Your frontend is fully split from your backend to adhere to omni‐
channel architecture principles, but you deploy both tiers to a cloud, with your frontend-
to-backend communication occurring entirely within the cloud. Only your database is
outside the cloud, as Figure 11-13 shows.

Figure 11-13. Everything but the database in the cloud

Because latency is so important, this approach must be used in conjunction with the
direct-connection approach from “Connecting to the Cloud”, whereby you host your
database in a colo that has a direct physical connection to the cloud you’re operating
from. Pulling a single product from the database may result in dozens of SQL queries,
because data may be spread out across dozens of tables. When you have potentially
dozens of serial SQL statements executed per HTTP request, latency quickly kills per‐
formance. With a direct connection, you should have a millisecond or less of latency,
making this no longer an issue.

Databases can be deployed in a cloud, but you may find it easier to deploy them in a
colo connected to the cloud, as databases have stringent software, hardware, network‐
ing, storage, and security requirements that may not be fully offered by a database in a

Approaches to Hybrid Cloud | 233

cloud. Monolithic applications with inseparable frontends and backends can also ben‐
efit from this approach.

We’ll discuss this more in the next chapter.

Summary
As with everything, there are benefits and trade-offs to each of the approaches listed.
Clearly the trend is moving toward a design that supports full omnichannel retailing,
whereby the backend is serving snippets of XML and JSON to a frontend in a cloud that
builds the HTML responses. Until that goal can be fully realized, the approaches before
it are great steps that provide substantial benefits.

Here’s a quick summary of the approaches in Table 11-1.

Table 11-1. Summary of hybrid approaches
Approach Where

fragment is
included

Relative
level of
backend
offload

Format of
HTTP
response
from backend

Requires
clean front/
backend
separation

Channels
applicable to

Level of
changes to
application

Caching entire pages N/A Low N/A No All None

Overlaying HTML on
cached pages

Client Medium HTML No Web Low

Using Content Delivery
Networks to insert
HTML

Content
Delivery
Network

High HTML No Web Medium

Overlaying HTML on
the server side

Frontend
servers

High HTML No Web High

Fully decoupled
frontends and
backends

Frontend
servers

High XML or JSON Yes All High

Everything but
database in the cloud

N/A N/A N/A No All None

It’s best to start at the top of this table and work your way down as you build competence.

For more information on hybrid cloud-based architectures, read Bill Wilder’s Cloud
Architecture Patterns (O’Reilly).

As the move to smartphones, tablets, and other nonweb browser devices accelerates,
HTML-based frontends are going to be increasingly marginalized. The value of a hybrid
cloud is that your frontend, which is handling most of the traffic today, can leverage
what a cloud has to offer—elasticity, unlimited ability to scale up, and cost savings. But
over time, the traffic to your frontend will drop, eventually reaching a point where a
majority of traffic is from devices that have thick clients. A hybrid cloud is fundamentally

234 | Chapter 11: Hybrid Cloud

http://shop.oreilly.com/product/0636920023777.do
http://shop.oreilly.com/product/0636920023777.do

a transitional technology. It will be around for a while, but eventually many workloads,
like ecommerce, will shift entirely to the cloud.

Summary | 235

CHAPTER 12

Exclusively Using a Public Cloud

Deploying your entire ecommerce platform to a cloud, or as much as possible, is the
future of ecommerce. We’re rapidly moving away from an era where software is deployed
in-house on dedicated hardware that you or someone else manages. Cloud computing
is revolutionary to business because it commoditizes computing power in much the
same way that public utilities have commoditized power and water. Tapping computing
power allows you to focus on your core competency of, say, selling apparel, rather than
building and maintaining infrastructure. The overall lower costs and shift from capital
to operational expenditures is equally transformational.

In Chapter 3, we discussed the various service models (Infrastructure-as-a-Service,
Platform-as-a-Service, and Software-as-a-Service) and deployment models (public, hy‐
brid, and private). This chapter focuses on public deployment models, with either IaaS
or PaaS being the service model. Let’s review why you would want to deploy your entire
platform to a cloud.

Why Full Cloud?
Business Reasons
Full cloud, whereby your entire platform is deployed in a cloud, is more revolutionary
to your business than it is from a purely technology standpoint. The more you use a
cloud, the more benefits you realize. Even using it for just preproduction will yield
substantial benefits.

The first and most salient argument for a full cloud solution is that it frees you up to
focus on your core competency. Building and maintaining infrastructure is incredibly
distracting from your core business. You have to hire the right people, select software/
hardware/hosting vendors, set up the hardware and software, keep the systems patched,
deal with failures, and so on. The challenges only multiply when you build your own

237

Platform-as-a-Service and Software-as-a-Service offerings. You should focus your limi‐
ted resources on where you can add value—for example, by offering the most compre‐
hensive ratings and reviews system. You will never gain a competitive advantage by
applying a patch or tuning a Linux kernel. Let the cloud vendors handle this for you
and focus on where you can add value.

The second argument for a full cloud solution is that you can drive as much traffic to
the platform as you want, provided you have a full auto-scaling solution, as discussed
in Chapter 4. A valid concern with traditional and hybrid platforms has always been the
fear that an unanticipated spike in traffic will bring down the whole platform. If part of
your environment is statically provisioned, there will always be the possibility of it being
fully utilized. In the Internet age, a promotion can quickly travel around the Internet,
driving potentially millions of customers to your platform. With a fully cloud-based
solution, there is no such thing as not having enough capacity when you can spin up
thousands of servers in minutes. In addition to preventing outages, your technical ad‐
ministrators no longer need to monitor and curtail what business users are doing. When
outages due to overcapacity were a concern, business users were always handcuffed as
to what they could do. Now they’re free to do pretty much whatever they want on their
own.

The third argument for a full cloud is that you can save money and potentially use the
savings to fund initiatives that grow your revenue. The elasticity and metering offered
by cloud computing allows you to pay for what you use as you realize value. No longer
do you have to buy hundreds or even thousands of servers only to have them sit un‐
derutilized. Cloud vendors themselves add value by handling the routine setup and
ongoing maintenance for you. You just pay for infrastructure, platform, and/or software,
and the vendor does the rest.

While these three business-level arguments are compelling, the technical arguments for
a full cloud solution are even more compelling.

Technical Reasons
While the cloud is revolutionary to business, it is more evolutionary from a technology
standpoint. The concept of another vendor offering infrastructure, platform, or soft‐
ware as a service is not new. What is new is the packaging and mainstream adoption of
these principles. Again, the more cloud you use, the more value you see.

Cloud vendors offer superior availability, security, and functionality by being able to
specialize on their core competency, which in their case is offering infrastructure, plat‐
form, and/or software as a service. They can hire the best people in the world and pay
them exorbitantly to ensure their offerings are of the highest quality. Your business is
ecommerce. You can’t and shouldn’t focus on any of the lower-value activities that the
cloud vendors do so well. For example, some cloud vendors offer an advanced virtual‐
ization technique that’s known as single-root I/O virtualization (SR-IOV). This tech‐

238 | Chapter 12: Exclusively Using a Public Cloud

nology allows you to bypass the hypervisor for any network-related communication.
The business value is that it can substantially improve the performance of your platform.
The downside has always been the cost and complexity required to implement, as im‐
plementation involves changes to numerous layers from the operating system on down.
It would take weeks for you to implement this on your own, if you could even do it.

Why Not Full Cloud?
Deploying your entire platform to a public cloud may not be fully realizable or even
advisable, depending on your circumstances. A hybrid approach shouldn’t be seen as a
lesser solution, but as different while still providing many advantages. As with all deci‐
sions, don’t let idealism influence your decision making (too much).

Here are four technical reasons you wouldn’t be able to adopt a full cloud solution:

• Your software won’t operate from a cloud. For example, some software cannot sup‐
port virtualization or tolerate any network latency.

• You need custom hardware, and your cloud doesn’t support hosting custom hard‐
ware. For example, you may use hardware-based encryption for your database.

• Your software may not be formally certified on the exact software and hardware
stacks offered by your vendor. For example, some legacy software may require a
legacy version of Windows or an esoteric distribution of Unix.

• Some software, like databases, have unique requirements around storage that re‐
quires a more customized solution. For example, your database may require Fibre
Channel, which requires special-purpose cabling.

While there may be some valid technical reasons for not adopting a full cloud-based
solution, the issues you’re likely to encounter are probably of the nontechnical variety:

• Not enough organizational competence to make such a big change.
• An organization that has entrenched interests that oppose a cloud. For example,

you’re likely to face stiff opposition from a team that currently manages its envi‐
ronment. It’s only natural to be threatened by changes that could put you out of a
job.

• Concerns about security. While security should be better in a cloud, not everybody
will see it that way. Not everybody understands how secure a cloud can be. It’s often
easier to just say “no,” especially for those who don’t benefit from moving to a cloud.

• Licensing of commercial products may not support a cloud. Unless you have a
license that allows unlimited use of software, you’ll have to license for your peak
usage, which negates many of the benefits of a cloud. You’ll also have to be able to

Why Not Full Cloud? | 239

demonstrate exactly how many cores your software is running on, which may be
difficult when you’re rapidly scaling up and down.

• Not enough capital to fund the cutover. It costs a lot to reorient an organization
around a cloud. Costs include everything from re-architecture to training courses
offered by your cloud vendor. Cloud computing is an example of a disruptive tech‐
nology. Disruptive technologies are expensive to implement.

While these nontechnical challenges may be difficult to overcome,
complacency is harder.

Your legacy deployment model, as inefficient and costly as it may be, is fully understood
and likely to be trusted by executive management. Given the rapid growth of ecom‐
merce, throwing money at a problem may just be easier and perceived as safer. The
longer this move is postponed, the harder it’s going to be in the future.

While there are benefits to adopting a full cloud-based solution, a hybrid approach is
often the most pragmatic. There are just so many barriers to adopting a full cloud-based
solution that it’s often not practical yet. Hybrid works best when you have a direct
connection from your cloud to a colo facility that’s physically near your cloud. When
you have just a millisecond or two connecting your cloud to your colo, it’s as good as if
they’re colocated in the same data center. With a hybrid approach, you can deploy each
hardware and software component where it makes the most sense. Table 12-1 shows
the differences between public and private, with hybrid being somewhere in the middle.

Table 12-1. Public versus private cloud characteristics
Public cloud Private cloud

Full elasticity No elasticity

Virtually unlimited capacity Fixed capacity

Pay-as-you-grow metered pricing Fixed pricing

Must develop or adapt apps to run Any app will run without modification

Vendor sets up You set up

Vendor manages You manage

Limited ability to change underlying configuration Complete ability to change underlying configuration

Limited ability to use custom hardware Full ability to use custom hardware

In reality, you’ll probably deploy your database and other one-off bits of hardware and
software in a colo, with as much as possible in a full cloud. A hybrid cloud can still give
you many of the advantages of a full cloud, while negating some of the disadvantages.

240 | Chapter 12: Exclusively Using a Public Cloud

Path to the Cloud
When you decide to fully adopt the cloud for ecommerce, you’ll find it’s a mostly se‐
quential process that takes time and competency to implement fully. Before you can get
to the point where all of your software is running in a cloud, if you can ever get to that
point, you have to start from the bottom of the pyramid in Figure 12-1 and work your
way up to the top. This is where having a solid architecture and a high ability to execute
matters.

Figure 12-1. Cloud competency pyramid

Let’s discuss each of these further:
Security

Proper security must be established before any ecommerce may occur. That’s just
a prerequisite that neither vendors nor customers are willing to sacrifice. Proper
security entails the use of security-related technology (firewalls of different kinds,
distributed denial-of-service attack mitigation, reverse proxies) and the use of
process-related best practices (proper change control, auditing, strong information
protection policies). You can move on to availability only after security is properly
established.

Availability
In today’s omnichannel world, an outage increasingly has the effect of shutting
down every single channel you have for generating revenue. It used to be that a
website failure would be unpleasant, but it was isolated to that channel. Now, many

Path to the Cloud | 241

point-of-sale systems, kiosks, and mobile applications use the same underlying
platform. Outages today tend to be platform-wide and thus affect all channels.

Performance
Availability is important, but if your customers and store associates can’t transact
in a reasonable amount of time, it’s just as useless as the platform being down.
Performance is very important not only to successfully transact, but also to compete.
Milliseconds of response time matter.

Automation
Once you’ve mastered security, availability, and performance, you can move on to
automation. Automation, as we discussed in Chapter 4, is key to reducing config‐
uration errors while improving efficiency. Automation is required for cloud com‐
puting because you need to rapidly build up servers after you’ve provisioned them.

Elasticity
Being able to elastically scale up and down is the true defining characteristic of the
cloud. This is the end goal.

Elasticity, the primary focus of this book and the defining feature of cloud computing,
can be broken up further, as shown in Figure 12-2.

Figure 12-2. The elasticity part of the cloud competency pyramid

As in the previous hierarchy, you have to start at the bottom and work your way up:
Serving static pages directly from a CDN

When you use a CDN as a reverse proxy, you can serve entire static pages. As we
discussed in Chapters 7 and 11, it’s easy to offload the delivery of the majority of

242 | Chapter 12: Exclusively Using a Public Cloud

your page views and all of the HTTP requests you would normally receive for static
content. By offloading a majority of your traffic, you’ve substantially reduced the
scope of your platform while serving pages directly from the edge to individual
customers.

Deploying to multiple data centers
Unless you jump straight to the top of the pyramid, you will be operating from two
or more data centers concurrently for a period of time. Most systems are architected
to be served out of a single data center. This was discussed in Chapter 10.

Client-side dynamic overlay
This refers to being able to retrieve a static page from a CDN or other intermediary
and to overlay dynamic content on it on the client side. This is how most native
mobile applications work today, and it’s an easy way of dramatically increasing the
number of page views that can be offloaded. The requests to retrieve content are
typically some form of AJAX. This was discussed in Chapter 11.

Server-side dynamic overlay
Rather than deliver a static page to the client and then race back to the origin to
overlay dynamic content, you can stitch together the dynamic and static page frag‐
ments in an intermediary, like a CDN or reverse proxy that you manage. With this
approach, you can scale out your frontend delivery using a cloud while your less-
used backend can remain on dedicated systems. It’s a great option for many and the
highest in the pyramid that most will reach. This was discussed in Chapter 11.

Full serving from the cloud
This is the most beneficial form of cloud computing, whereby your entire platform
is hosted in a cloud. This is a fully elastic solution that offers the most benefits while
also being the most challenging to implement. We’ll discuss this shortly.

Again, it’s important to gradually work your way up these pyramids as you gain com‐
petency. The more of these prerequisites you have in place, the easier it’ll be to move
your entire platform to the cloud.

Architecture for Full Cloud
Review of Key Principles
To begin, we must define what cloud computing actually is (Chapter 3), since the def‐
inition tends to vary from person to person. The three characteristics that best define
the cloud are elasticity, on demand, and metered. Then there are service models (e.g.,
IaaS, PaaS, SaaS) and deployment models (public, hybrid, private). The characteristics
of elasticity, on demand, and metered are best facilitated by public IaaS or PaaS, followed
by hybrid IaaS or PaaS. By being able to specialize, cloud vendors almost always offer

Architecture for Full Cloud | 243

better availability, performance, security, and functionality at a lower cost than if you
built a comparable solution. Always choose the service and deployment models highest
up in the value chain for each function.

Next, once you’ve selected your flavor of cloud, you have to enable the elasticity, on
demand, and metered parts of the cloud by implementing an auto-scaling solution
(Chapter 4). An auto-scaling solution allows you to precisely match the amount of
hardware you’re using with the real-time traffic you’re seeing. This allows you to pay
for exactly the amount of hardware you need. The further down the value chain you
move (toward IaaS), the more of this work you have to do yourself. That’s why IaaS is
generally less expensive than PaaS. Avoid provisioning ahead of anticipated load and
instead provision in reaction to changing load. Purchase an auto-scaling solution if it
meets your needs but be prepared to build one on your own.

Auto-scaling requires the ability to quickly and automatically install software on newly
provisioned hardware (Chapter 5). If human intervention is required to add capacity,
it’s not cloud computing. You can install software by deploying a whole machine image,
an archive (e.g., .zip or .tar), or by building from source. The approach doesn’t matter,
so long as it is fast and doesn’t require human intervention.

Next, you have to select virtualization technology (Chapter 6). Cloud vendors often
offer more than one, ranging from full hardware-level virtualization to paravirtualiza‐
tion to OS-level virtualization. Virtualization is a key enabler of the cloud but it is not
the cloud itself. Depending on the flavor of virtualization you choose, you may be able
to simply install an OS-level image rather than install all of the software from source.
Choose lighter forms of virtualization where possible.

Once you have a solid foundation on which to deploy your platform, you then have to
turn your attention outside of your cloud, between your end customers and your plat‐
form served in a cloud. CDNs (Chapter 7) are the silent enabler of ecommerce, providing
reverse proxies, serving static content, hosting DNS, and optimizing performance,
among many other functions. CDNs improve performance and reduce the amount of
traffic hitting your platform by one or two orders of magnitude.

Next, we look inward to focus on building platforms natively for the cloud (Chapter 8).
We must start by understanding what scalability is and isn’t, followed by how to achieve
it. The goals of building platforms natively for the cloud and achieving high scalability
can be accomplished by adopting standard best practices—decoupling through the use
of service-oriented architecture, asynchronous execution, reducing state, and storing it
appropriately. Platforms that don’t run well in a cloud generally don’t run well outside
of a cloud and vice versa. Since application architecture stems from the people you hire,
you must hire a few top-quality architects as opposed to a large group. With hiring, it’s
quality over quantity.

244 | Chapter 12: Exclusively Using a Public Cloud

Before discussing various approaches for a hybrid and using the full cloud, the topic of
security (Chapter 9) must be addressed. While the cloud offers less-direct ownership,
it provides more control, which is the key to remaining secure. The first step to security
is defining an information security management system (ISMS) and then adhering to
it. An ISMS defines the policies and procedures required for security along with pro‐
visions for self or third-party audits. Having an ISMS and following it is the single surest
way to be secure, more than any specific technology or deployment architecture. Next
to adopting and using an ISMS, the best technical recommendation is to minimize your
attack profile by turning off unnecessary services, liberally using firewalls, and by using
an identity and access management system to reduce the number of systems and func‐
tions your employees have access to.

Next, you must determine if you will deploy your platform across multiple data centers
(Chapter 10). Availability has largely been the driving force of ecommerce architecture.
Deploying the same application out of two or more geographically distant data centers
helps to ensure even higher availability. The central problem with operating from mul‐
tiple data centers is that you can have multiple customers logging in using the same
account (e.g., username/password combination) from different data centers. If two
customers update the same data at the same time from two different locations, one
customer’s action is going to succeed and the other is going to fail, possibly corrupting
data along the way. You cannot resolve bidirectional replication conflicts. Instead, you
must entirely eliminate the possibility of them occurring by ensuring that all updates
terminate at the same database.

Short of adopting a full cloud-based architecture, you can adopt a hybrid cloud (Chap‐
ter 11) and get many of the benefits of a full cloud. To fully use a hybrid approach, you
have to break apart your frontend from your backend. This splitting is a natural outcome
of adopting an omnichannel-based architecture. Another approach is to use a colo fa‐
cility that is physically near your cloud data center and has a direct connection to your
cloud. Inserting HTML into a cached page does provide benefits, but more-
comprehensive benefits come from pulling raw, structured data in the form of XML or
JSON and then building a page in a cloud based on that data.

We covered a lot of ground in these chapters. If you haven’t read them, please go back
and review before proceeding.

Architecture for Omnichannel
As we’ve previously discussed, omnichannel has been the dominant force driving plat‐
form architecture over the past few years. Adopting an omnichannel-based architecture
allows your customers to transact with your backend across multiple frontends and
have a consistent customer experience. The improved customer experience increases
revenue.

Architecture for Full Cloud | 245

An omnichannel architecture is not technically required for cloud computing, but it
makes it a lot easier to adopt because of that natural split between your frontend and
backend. But if everything is in a cloud, you could technically leave your frontend and
backend merged, as many are today. You will eventually have to adopt a true
omnichannel-based architecture because of pressure from your customers, but at least
your deployment model won’t be forcing you to make that change.

When you deploy both your frontend and your backend to a cloud, you should deploy
them in pairs to the same data center, but with Global Server Load Balancing employed
in the event of a failover, as shown in Figure 12-3.

Figure 12-3. Frontends and backends both in the cloud

Most often, your frontend should be communicating with a backend that’s local.

Larger Trends Influencing eCommerce Architecture
Outside of ecommerce, the architecture principles behind all software architecture and
development has radically changed over the past decade. The technology of the early
Web and its guiding architecture principles no longer work in today’s world.

Table 12-2 shows the differences between the old and new approaches to software de‐
velopment and deployment.

246 | Chapter 12: Exclusively Using a Public Cloud

Table 12-2. New versus old approaches to software development and deployment
Old New

Sticky in-memory session Shared memory cache session

Monolithic application Service based

Monolithic software development Teams organized around services

One data center Multiple data centers

Statically scale for peaks Full elasticity

Stateful Stateless

ACID BASE

Rigid schema Flexible

CAPEX OPEX

Manually deployed Fully automated

Your existing platform, people, and processes can be reoriented to take advantage of
these new principles, but it takes time and a lot of effort. People become entrenched in
the ways of the past and are often compensated for maintaining the status quo. Designate
or hire and then empower a change agent to oversee the transformation. The shift to
the cloud is about far more than technology. Only after you’ve built a capable organi‐
zation, changed your processes, and updated your technology should you attempt cloud
computing. Adopting the cloud without making those lower-level changes is unlikely
to work.

How to Select a Cloud Vendor
A large-scale ecommerce platform requires dozens, if not hundreds, of vendors, from
a qualified security assessor for PCI audits to a database vendor. While all vendors must
be carefully selected, no vendor is more important than your cloud vendor that will be
providing you with Infrastructure-as-a-Service or Platform-as-a-Service. You’re trust‐
ing your entire business and your job to this vendor.

What you’re looking for in a primary cloud vendor is as follows:
Breadth and depth of offerings

What does it come with versus what will you have to build on top? For example, is
their auto-scaling solution (Chapter 4) good enough to use, or will you have to build
one?

Maturity of offerings
Is what the vendor offers stable? Does it actually work?

Connectivity options
What VPN connectivity options are offered? Does the vendor run lines to colos?

How to Select a Cloud Vendor | 247

Service-level agreements
What does the vendor offer in terms of uptime guarantees? Will you always be able
to provision hardware?

Ability to colocate custom hardware
Can you put your custom hardware-based VPNs, authentication devices, and other
appliances in a cloud’s data center?

Different vendors excel in different aspects, but you have to pick one vendor. It’s possible
to go with a multivendor solution, but that introduces an enormous amount of com‐
plexity without providing much benefit, given how rarely clouds suffer outages. Outages
across a single vendor’s fault domains is even more rare. Since outages are typically
caused by your own misconfiguration, you double the number of misconfigurations
you can make by deploying across two clouds.

Technology analysts such as Gartner and Forrester regularly produce reports on cloud
computing and can help you select a vendor.

While the move to adopt the cloud may be partially fueled by price, price by itself
shouldn’t be a deciding factor. The elasticity provided by any vendor will save you more
than enough money for you to care about the small differences in prices among cloud
vendors.

Clouds appear to be entirely self-service with preset prices and credit cards as the only
form of payment. But if you’re going to make a substantial investment in a vendor,
everything is up for negotiation. You can negotiate for better prices, price holds, addi‐
tional levels of support, consulting support, and anything else of value. You’re investing
in a vendor, and that vendor is investing in you. As with any major vendor, you’ll want
to establish good relationships throughout your organization. Those back channels can
mean the difference between your platform staying up or going down. Relationships
matter.

Summary
Both cloud and omnichannel retailing are fundamentally changing ecommerce for the
better. The application and deployment architectures that have helped to make ecom‐
merce mainstream over the past 20 years have outlived their usefulness. To succeed over
the next 20 years and beyond, substantial changes are required. Adopting cloud and
omnichannel principles is a multiyear journey that changes the way you do business.

The combination of cloud computing and ecommerce just makes so much sense, and
the contents of this book should give you enough confidence to proceed. Good luck!

248 | Chapter 12: Exclusively Using a Public Cloud

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

A
A records, 198

long TTL, 199
short TTL, 200
two A records for active/active data center

assignment, 201
ability to execute, 191
access control, 175
accounting model

advantages of cloud computing, 59
for cloud deployment models, 67

ACID, 191
ACID-compliant databases, 42
active/active application tiers and active/passive

database tiers, 207
active/active application tiers, mostly active/

passive database tiers, 208
active/active deployment architecture, 210

assigning customers to data centers, 201
active/passive deployment architecture, 205

assigning customers to data centers, 200
agency dilemma, problem with cloud comput‐

ing, 73
Amazon Machine Image (AMI), 98
Amazon Web Services, 61
Amazon.com, 10

on list of top ten largest U.S. retailers, 20
physical warehouses, 7

Apache server, scalability, 147

APIs
auto-scaling solutions, 91
omnichannel architecture, 156, 220

Apple Computers, omnichannel retailing case
study, 28

appliance-based hardware load balancers, 35
application delivery controllers, 34
application servers, 32, 35, 88

health checking, 204
managing state, 156
modern, capabilities of, 36
roles in current ecommerce platforms, 41
taking over web server responsibilities, 38

architects, hiring, 160
architecture

larger trends affecting ecommerce architec‐
ture, 246

omnichannel, 245
archives

building servers from, 99
use of, advantages and disadvantages, 100

asynchronous processing, 150
HTTP requests returning dynamic content,

228
attacks, 134

getting personally identifiable information
(PII), 178

reducing attack vectors in the cloud, 180
attribute-based personalization, 14

249

audit logging, 176
authentication, 175

multifactor, for human users, 176
authoritative DNS servers, 198
authorization, 175
auto-scaling in the cloud, 81–94, 238, 244

building auto-scaling solutions, 91
interfacing with auto-scaling APIs, 91
versus buying solutions, 93

defining dependencies between tiers, 88
defining each tier that needs to be scaled, 88
defining ratios between tiers, 88
defining rules for scaling each tier, 89
how auto-scaling solutions work, 87
monitoring servers and aggregating data

across each tier, 89
what can’t be provisioned, 84
what needs to be provisioned, 82
when to provision, 84

automation, 242
availability, 46, 241

ensuring by operating out of multiple data
centers, 187

in BASE consistency model, 192
in CAP Theorem, 193
public clouds, 73
superior, offered by cloud vendors, 238

B
backend, 68

combined with frontend, 215
decoupled from frontend, 153, 215
fully decoupled from frontend, 231
needs of, 216
served from traditional data center, 215
stateless frontend, stateful backend, 211

Barnes & Noble, 22
BASE, 192
bastion host, 180
behavior-based personalization, 15
BIND DNS server, 33
blacklisting, CDNs, 134
blocking, 153
bookselling industry, changes in, 22
bootstrap script, 100
Borders, 22
bots

requesting too many pages too quickly, 134
web traffic from, 130

bursting (hybrid cloud), 66, 67
business

business reasons to use full cloud deploy‐
ment, 237

collaboration with when building ecom‐
merce platform, 161

control over ecommerce, 17
impact of omnichannel retailing, 25

C
C10K problem, 148
C10M problem, 148
cache grid servers, 88
cache staleness, 194
caching

CDNs caching entire pages, 129
entire pages, with frontend in cloud and

backend in traditional data center, 224
for increased scalability, 157
of DNS records, 198
overlaying HTML on cached pages, 227
page framents, 158
write-back cache to reduce database load,

151
CAP Theorem, 193
capital expenditures (CAPEX), 56, 60
CDNs (Content Delivery Networks), 36, 121–

138
acceleration of HTML-based web pages, 121
additional offerings, 135

DNS, 136
frontend optimization, 135
throttling, 138

caching content, 157
cloud and, 124
defined, 123
edge side dynamic content overlay, 229
expansion of offerings, 123
offering global server load balancing, 203
outsourcing to, 62
serving as proxies, handling HTTP requests

and responses, 226
serving as reverse proxies, advantages for ac‐

tive/active approach, 203
serving dynamic content, 128

caching entire pages, 129
pre-fetching static content, 132
security, 133

250 | Index

serving static content, 125, 242
loading a page with and without CDN,

126
taking over web server responsibilities, 38

CGI (Common Gateway Interface), 35
channels, retail, 23, 39

channel creation timeline, 24
mobile and other nonweb channels, con‐

suming XML and JSON, 231
multichannel architecture with integration

layer, 40, 218
single omnichannel platform, 219

Chef (configuration management tool), 102
client side dynamic content overlay, 227, 243
clients, maintaining state, 156
cloud competency pyramid, 241
cloud computing, 55, 79

and active/passive deployment architecture,
206

architecting for, 143–162
scalability, 146–149
scaling, rules for, 149–162
uniqueness of ecommerce, 143

auto-scaling (see auto-scaling in the cloud)
case study, Amazon Web Services, 61
CDNs (Content Delivery Networks) and,

124
challenges with public clouds, 73

availability, 73
cost, 78
over-subscription, 77
performance, 74

complementary cloud vendor offerings, 71
deployment models, 66

hybrid cloud, 67
private cloud, 68
public cloud, 67

elasticity, 57
evaluation criteria, 56
exclusively using public cloud, 237–248
generally accepted definition, 55
hardware used in clouds, 69
hybrid cloud, 215–235
making operating from multiple data centers

possible, 188
metered, 59
on demand, 58
security, 164

(see also security)

study, enterprise security for the cloud,
165

security principles for, 179
protecting data at rest, 185
protecting data in motion, 183
reducing attack vectors, 180

service models, 61
Infrastructure-as-a-Service (IaaS), 65
Platform-as-a-Service (PaaS), 64
Software as a Service (SaaS), 62

virtualization, 109–118
CloudFlare CDN, 134
code injection attacks, 134
command-line tools, interfacing with auto-

scaling APIs, 91
commodity hardware, 69
compensation of employees for ecommerce

sales, 25
complexity and innovation in ecommerce, 10
configuration, never replicating, 197
conflicts, data replication, detection and resolu‐

tion, 193
consistency models, 191

CAP Theorem, 193
DNS as eventually consistent system, 198
summary of ACID and BASE, 192

containers (see application servers)
Content Delivery Networks (see CDNs)
controls

ISO 27001, 169
policies on information access, retention,

and destruction, 174
convenience of online shopping, 6
Corinthians soccer team, 15
costs

challenges with public clouds, 78
hardware/software costs, CAPEX versus

OPEX, 60
of traditions shopping versus online shop‐

ping, 6
savings using full cloud, 238

credit card information, 167
credit card processing service, 169
cross-sells, 14
cross-site request forgery, 178
cross-site scripting, 134, 178
customer-friendly policies in ecommerce, 9
customizations of products, 12

Index | 251

D
data centers

assigning customers to, using DNS, 137
deploying across multiple, 187

(see also deploying across multiple data
centers)

initializing each data center, 196
prerequisites for, 188
selecting a data center, 195
uniqueness of ecommerce, 188

direct connections offered by cloud vendors,
223

health checking using GSLB, 204
hosted, 45
intra data center load balancing, 34
multiple, use in ecommerce, 33

data source identifiers, 209
data tier, 32
data-driven ecommerce applications, 18
databases

as bottlenecks in the cloud, 151
database firewall, 178
database-backed inventory update, 153
deploying your own relational database, 196
distributed, consistency models, 191
document based, 43
everything but database in the cloud, 233
fully denormalized, 44
fully normalized, 42
hosting options, 186
multiple data centers with active databases,

208
protecting data in, 185
role in modern ecommerce architecture, 42
writing to, using ORM model, 194

defense in depth, 172
ecommerce security, 178
protections in place for various layers, 172

Dell Computers, case study (price mishap), 50
denormalized data, 44
dependencies

defining between tiers, 88
resources having, provisioning order for, 84

deploying across multiple data centers, 187–213,
245
approaches, 205

active/active application tiers, active/
passive database tiers, 207

active/active application tiers, mostly ac‐
tive/passive database tiers, 208

active/passive, 205
full active/active, 210
stateless frontends, stateful backends, 211
summary of, 212

architecture principles, 190
initializing each data center, 196
never replicating configuration, 197
principles governing distributed comput‐

ing, 191
removing singletons, 196
selecting a data center, 195

assigning customers to data centers
active/passive architecture, 200
assigning to single data center, 199
DNS, 198, 204
global server load balancing, 201

prerequisites for, 188
uniqueness of ecommerce, 188

deployment across multiple data centers, 243
deployment architecture, legacy, 31–51

application servers, 41
databases, 42
DNS, 33
ecommerce applications, 39
hosting, 44
intra data center load balancing, 34
limitations of current architecture, 46

outages due to rapid scaling, 50
scaling for peaks, 47
static provisioning, 46

three-tier architecture, 32
web servers, 35

deployment models, cloud, 56, 66, 237
hybrid cloud, 67
private cloud, 68
public cloud, 67

deployment units, 95
monitoring health of, 103

developers
hiring, 160
working in small teams, 161

disintermediation, 6
distributed computing, principles governing,

191
avoiding conflicts, 193

distributed denial of service attacks (DDoS), 133

252 | Index

DNS, 33
disadvantages of self hosting, 136
Global Server Load Balancing versus, 202
in active/passive data center assignment, 200
primer, 198
services offered by CDNs, 136
shortcomings, 199
use of multiple A records, 201
using to assign customers to single data cen‐

ter, 199
document stores, 43
drop boxes, 9
drop shipping, 7

E
eBay, 10
ecommerce

deploying entire platform to public cloud,
237–248

global rise of, 3–29
better functionality, 11
business control of ecommerce, 17
changing face of retail, 19–28
improvements in underlying technology,

18
increasing maturity of offerings, 10
increasing use of technology, 4
inherent adantages of ecommerce, 5
omnichannel retailing, Apple case study,

28
personalized shopping, 14
rich interfaces across multiple devices, 17
social media and ecommerce, 16

how enterprise ecommerce is deployed to‐
day, 31–51

security principles for, 177
traditional applications, written and de‐

ployed as a single package, 217
unique characteristics of, 143, 188

revenue generation, 143
security, 144
statefulness, 144
unpredictable traffic spikes, 144
visibility, 144

using hybrid cloud, 215–235
ecommerce traffic funnel, 130, 145
ecommerce vendors with physical stores, 8
edge computing, 121
edge side dynamic content overlay, 229

Edge Side Includes (ESI), 229
edge-based proxying, 203
elasticity, 57, 242, 243
encapsulating TCP packets, 184
encryption

hardware offload of encryption and decryp‐
tion, 183

protecting data at rest, 185
protecting data in motion, 183

enterprise resource planning (ERP) platforms,
28

ESI (Edge Side Includes), 229
Ethernet networks, segmenting, 174
eventually consistent systems, 198

F
Facebook, 16
fault domains, 195
FedRAMP (Federal Risk and Authorization

Management Program), 134, 164, 170
firewalls, 174

adding to hypervisor security, 182
database firewall, 178
operating system (iptables/nftables), 181
provided by CDNs, 134
restricting traffic by port and type, 180

flexibility, lack of, with PaaS, 65
FreeBSD Jails, 113
frontend, 68

combined with backend, 215
decoupled from backend, 153, 215
fully decoupled from backend, 231
HTML-based, marginalization of, 234
needs of, 217
optimization by CDNs, 135
served from cloud, 215
stateless frontend, stateful backend, 211

full serving from the cloud, 243
full virtualization, 115

performance and, 117
functionality, better, in ecommerce, 11

G
Global Server Load Balancing (GSLB), 63

health checking, 204
offerings by CDNs, 137
primer, 201
versus DNS, 33, 202

Index | 253

glue code, 160
graphical user interfaces (GUIs), interfacing

with auto-scaling APIs, 91
grocery sales, combining physical stores with

ecommerce, 8
growth of ecommerce, drivers of, 3
GSLB (see Global Server Load balancing)

H
hardware

scaling for peaks, 47
used in clouds, 69
utilized versus unutilized in scaling for

peaks, 49
hardware security modules (HSMs), 186
hardware/software costs, CAPEX versus OPEX,

60
health checking

of data centers, 202
of deployment units

comprehensive, 105
superficial, 103

using Global Server Load Balancing, 204
hiring the right people, 160
horizontal scalability, 147, 148
hosting for ecommerce, 44
hot objects, 153
HSMs (hardware security modules), 186
HTML

client side dynamic content overlay, 227
data stored in, 44
edge side dynamic content overlay by CDNs,

229
marginalization of HTML-based frontends,

234
mobile-friendly, 17
optimization by CDNs, 135
server side dynamic content overlay, 230
static, in early websites, 31
use in web channel, marginalization by mo‐

bile and other channels, 231
HTTP GET requests, 223
HTTP requests, 125

maintaining state across, 155
number needed to pull up large ecommerce

websites, 125
statefulness, 144

HTTP responses, 225

HTTPS, 183
using to post data from frontend to backend,

223
hybrid clouds, 67, 215–235, 240, 245

approaches
caching entire pages, 224
everything but the database in the cloud,

233
fully decoupled frontends and backends,

231
overlaying HTML on cached pages, 227
overlaying HTML on server side, 230
summary of, 234
using CDNs to insert HTML, 229

as by-product of architecture for omnichan‐
nel, 217

connecting to the cloud, 222
direct connections to data centers, 223
using public Internet, 223

hypervisor, 110
bypassing to improve performance, 118
in full virtualization, 110
in operating system virtualization, 113
in paravirtualization, 112
security, 182

I
IaaS (Infrastructure-as-a-Service), 45, 61, 164

auto-scaling solutions, 87–94
complementary cloud vendor offerings, 71,

71
content origination and delivery, 124
installing software on newly-provisioned

hardware, 95–108
provisioning hardware from, 82–87
vendor offerings, 65

IAM (identity and access management) systems,
176

identification (of users), 175
identity and access management (IAM) systems,

176
increasing use of technology, 4
information classification system, 173

developing policies for each level, 174
information security management systems

(ISMS), 165–171, 185, 245
FedRAMP, 170
ISO 27001, 169
PCI DSS, 167

254 | Index

Infrastructure-as-a-Service (see IaaS)
initial provisioning versus auto-scaling, 82
innovations in ecommerce, 10
Internet

access through mobile devices, 5
increase in use of, 4
using to connect separated backend and

frontend, 223
inventory, updating, eliminating locking, 153
IP addresses

as personally identifiable information (PII),
167

forcing clients to re-resolve, 210
resolving via DNS, 33
restricting traffic by, 181

IPsec, 184
IPsec-based VPN, 223
ISMS (see information security management

systems)
ISO 27001, 134, 169

central tenets for security framework, 166
controls, 169

ISO 27002, 169
ISO snapshot format, 98
isolation, 109, 174

fault domains, 195
IT

collaboration with line of business, 161
economics of, changes from cloud comput‐

ing, 59
transfer of control over ecommerce to busi‐

ness, 17

J
Java Virtual Machine (JVM), vertical scalability,

70
JavaScript-based franework, Node.js, 151
JDK 7, installing using Chef, 102
JSON, 231

K
kernels, in paravirtualization, 112
key/value stores, 43

L
latency

calls from separated frontends to backends,
222

causes of, 138
pulling up websites, 125

layering, security (see defense in depth)
least privileged access, 175
leveling, 50
lifecycle management, 107
Linux Containers (LXC), 113
Linux kernels, 112
Linux KVM, 111
load balancers, 226

appliance-like hardware load balancers, 35
application delivery controllers, 34
health checking, 103
modern, capabilities of, 36
taking over web server responsibilities, 38
throttling offered by, 138
web servers as, 35

load balancing, 33
(see also Global Server Load Balancing)
DNS, using for, 33, 199
intra data center, 34

load tests, 50
locking, reducing, 153

lockless data structures, 154
logging, 176
login cookies, persistent, 130
logins, concurrent, for same user account, 189

M
maturity of ecommerce offerings, 10
memory finder tools, 13
messaging servers, 88
metered (cloud computing), 59, 243
Microsoft Hyper-V, 111
mobile ecommerce offerings, 17
monitoring

of data center health, 204
of deployment unit health, 103

multifactor authentication, 176
multimaster architectute (see deploying across

multiple data centers)

Index | 255

N
Netshoes.com.br, 11

personalization of shopping, 15
networks

cloud security measures, 180
segmentation and isolation, 174

Node.js, 151
nontechnical challenges to adopting full cloud,

239
normalized data, 42
NoSQL solutions, 43

O
object relational mapping (ORM) systems, 194
omnichannel retailing, 22, 39

architecture for, 245
business impact of, 25
case study, Apple Computers, 28
hybrid cloud as by-product of architecture

for, 217
technical impact of, 26

on demand (cloud computing), 58, 243
Open Systems Interconnection (OSI) model,

174
Open Virtualization Format (OVF), 98
OpenStack, 92
operating systems

firewall, 181
in paravirtualization, 112
installing on fully virtualized servers, 110
operating system virtualization, 113, 115

operational expenditures (OPEX), 56, 60
optimizations offered by CDNs, 135
origin (data centers), 123
ORM (object relational mapping) systems, 194
outages, 46

caused by rapid scaling, 50
cloud-wide, 74, 195
costs of, 144
from security-related incidents, 177
preventing by deploying across multiple data

centers, 187
outsource, when to, 62, 159
over-subscription to public clouds, 77

P
PaaS (Platform-as-a-Service), 46, 61, 164

limitations of, 65
operting system virtualization, 115
provisioning and responsibilities for, 83
vendor offerings, 64
when to use, 65

page fragments, caching, 158
paravirtualization, 112, 115

performance and, 117
partition tolerance), 193
partitioning physical servers into virtual servers,

109
PCI DSS (Payment Card Industry Data Security

Standard), 134, 164, 167
limiting scope of cardholder data environ‐

ment, 168
objectives and controls, 168

peak demand
challenges for public clouds, 77
scaling for peaks, 47

people, hiring, 160
perfectly scalable, 146
performance, 242

biggest hindrance, calls to remote systems,
117

cause of problems in ecommerce, 118
extensive use of SSL and TLS, 183
full virtualization and, 111
improving for virtualized software, 116
paravirtualization and, 112
public clouds, 74
with everything but database in the cloud,

233
personalization in ecommerce, 14, 130
personally identifiable information (PII)

consequences of disclosure, 177
defined, 167

photography, enhanced, of ecommerce prod‐
ucts, 12

physical and ecommerce presence, combining, 8
ping, power, and pipe, 44
Pinterest, 16
plan/do/check/act cycle, ISMS, 166
Platform-as-a-Service (see PaaS)
point-of-sale systems, 188
portability, 110
price discrimination, 16

256 | Index

pricing
personalization used to price discriminate,

16
price advantage of ecommerce, 5

primary keys prefixed with unique identifier,
209

private clouds, 68
public cloud characteristics versus, 240

proactive provisioning, 85
product assortment, ecommerce vendors, 7
promiscuous mode, 182
provisioning, 81

(see also auto-scaling)
proactive, 85
reactive, 86
static, 46

proxying by appliance-based GSLB solutions,
204

public clouds, 67
challenges with, 73

availability, 73
cost, 78
over-subscription, 77
performance, 74

deploying entire ecommerce platform to,
237–248
architectue for full cloud, 243
business reasons, 237
path to cloud, 241
reasons not to adopt full cloud, 239
selecting a cloud vendor, 247
technical reasons, 238

public utilities, analogy to cloud, 55
pure play ecommerce vendors, 6

Q
qualified security assessor (QSA), 168

R
ramp-up times, 50
ratios between tiers, defining, 88
RAW snaphshot format, 98
reactive provisioning, 86
records (DNS), 198
recovery point objective (RPO), 191

in active/passive deployment, 205
recovery time objective (RTO), 190

in active/passive deployment, 205

Reddit, 76
relational databases, 42

building out before deployment, 196
NoSQL solutions versus, 43
object relational mapping (ORM), 194

resources, 58
RESTful web services, 91
retail

changing face of, 19
omnichannel retailing, 22
point-of-sale systems, 188
traditional, closer tie-in with physical world,

8
returns

customer-friendly policies in ecommerce, 10
return rates in ecommerce, 9

revenue generation by ecommerce, 143
reverse proxy, CDN as, 129

advantages over DNS for active/active ap‐
proach, 203

speeding up delivery of static content for all
pages, 132

rich interfaces across multiple devices, 17
RPO (recovery point objective), 191, 205
RTO (recovery time objective), 190, 205

S
SaaS (Software-as-a-Service), 46, 61

complementary cloud vendor offerings, 71
DNS, 198
provisioning, 83
use within ecommerce platforms, 163
vendor offerings, 62

safety factor, 83
scalability, 244

defined, 146
human factors, 150
linear versus non-linear scaling, 149
rules for scaling, 149

caching, 157
collaboration with line of business, 161
converting synchronous to asynchro‐

nous, 150
hiring the right people, 160
reducing locking, 153
removing state from individual servers,

155
simplifying your architecture, 154
using the right technology, 159

Index | 257

scaling out, 148
scaling up, 147

C10K problem, 148
versus throughput, 147

scale-down rule, defining, 90
scale-up rule, defining, 89
scaling, 244

(see also auto-scaling in the cloud)
elasticity in, 242
outages due to rapid scaling, 50
reasons to use full cloud, 238
services offered by PaaS vendors, 64

scaling for peaks, 47
search, ecommerce, enhancements in, 12
security, 163–186, 241

adopting an information security manage‐
ment system (ISMS), 166–171
FedRAMP, 170
ISO 27001, 169
PCI DSS, 167

best practices, 171–177
audit logging, 176
defense in depth, 172
identification, authentication, and au‐

thorization, 175
information classification, 173
isolation, 174

challenges in ecommerce and the cloud, 144
clouds and, 164
concerns with DNS self hosting, 136
connections between frontend in cloud and

backend in traditional data center, 223
general principles, 165
principles for cloud, 179

protecting data at rest, 185
protecting data in motion, 183
reducing attack vectors, 180

principles for ecommerce, 177
provided by CDNs, 133
superior, offered by cloud vendors, 238
threats from within and without, 165

server side dynamic content overlay, 230, 243
server-side includes, 231
servers

C10K problem, 148
dedicated instead of shared in the cloud, 182
lifecycle, 107
minimum and maximum server counts, 90
removing state from individual servers, 155

types of, 96
service level agreements (SLAs), 162
service models, cloud, 56, 61, 237

case study, Amazon Web Services, 61
complementary cloud vendor offerings, 71
facilitation of cloud characteristics, 243
IaaS (Infrastructure-as-a-Service), 65
PaaS (Platform-as-a-Service), 64
SaaS (Software-as-a-Service), 62
versus value/cost margins, 71

services
ancillary services offered by cloud vendors,

72
offered by ecommerce hosts, 45

session stickiness, 146, 162
shell infrastructure, 188
shell scripting, 102
shipping

drop shipping, 7
problems with, 9

Shoe Fit Tool, Netshoes.com.br, 11
showrooming, 8
simplification to increase scalability, 154
single root I/O virtualization (SR-IOV), 238
singletons, 196

avoiding, 197
problems with, 197

SLAs (service level agreements), 162
snapshots

building from, 97
lifecycle management and, 108
use of, advantages and disadvantages, 98

SOAP web services, 91
social media, effects on ecommerce, 16
software

development and deployment, new versus
old approaches, 246

installing on newly-provisioned hardware,
95–108
building from archives, 99
building from snapshots, 97
building from source, 101
deployment units, 95
lifecycle management, 107
monitoring health of deployment unit,

103
vertical scalability on a given hardware, 70
web server, as bottlenect to vertical scalabili‐

ty, 148

258 | Index

Software-as-a-Service (see SaaS)
Solaris Containers/Zones, 113
source, building from, 101
SQL injection attacks, 134, 178
SR-IOV (single root I/O virtualization), 238
SSL (Secure Sockets Layer), 183, 222, 223

not using when unnecessary, 155
support by web browsers, 31
termination, 184
when to use, 183

state
removing from individual servers, 155
rules for minimizing harmful effects of, 156
statefulness of ecommerce HTTP requests,

144
stateless frontends, stateful backends, 211

static provisioning, 46
static websites, 31
strong consistency (ACID), 191
synchronous processing, converting to asyn‐

chronous, 150

T
tablets, Internet access via, 5
taxes, ecommerce vendors and, 6
TCP pings, testing response to, 103
technology

impact of omnichannel retailing, 26
improvements in underlying technology, 18
increasing use of, 4
technical reasons for not adopting full cloud,

239
technical reasons for using full cloud, 238
using the right technology, 159

threads, 151
concurrency, 153
eschewing in favor of event loop architec‐

ture, 149
throttling, 138
throughput, 146

massive increases with modern web servers,
149

scalability versus, 147
TLS (Transport Layer Security), 183, 222, 223

not using when unnecessary, 155
termination, 184
when to use, 183

tokenization, 185

traffic
estimating, 85
from bots and humans, 130
unpredictable spikes in ecommerce, 144

transaction capabilities, adding to static HTML,
31

Transport Layer Security (see TLS))
Twitter, 16

U
unified omnichannel-based architecture, 27
unsticking a customer from a data center, 210
US

compliance with FedRAMP, 166
ecommerce retail sales, 20
latency in pulling up websites, 125
top 10 retailers in 1990 versus 2012, 19

usage metrics for metering/charge-back, 59
user interfaces, rich interfaces across multiple

devices, 17

V
vertical scalability, 147

C10K problem, 148
of software on a given hardware, 70

vertically integrated solutions, 72
virtual LANs (VLANs), 174
virtualization in the cloud, 109, 118, 244

definition of virtualization, 110
full virtualization, 110
improving performance of virtualized soft‐

ware, 116
operating system virtualization, 113
paravirtualization, 112
single root I/O virtualization (SR-IOV), 238
summary of approaches, 115

visibility of ecommerce platforms, 144
VPNs (virtual private networks), 223
vulnerabilities

leading to disclosure of PII, 178
traditional environments and clouds, 165

W
weak consistency (BASE), 192
web browsers

ecommerce and, 17
maintaining state, 156

Index | 259

web servers, 32
C10K problem, 148
deployment architecture without, 38
ecommerce deployment architecture with,

37
functions of, 36
in early days of ecommerce, 35
newer architectures, 149
Node.js, 151
replacement by load balancers, CDNs, and

application servers, 36

web tier, 32
websites, static, 31
workload shifting, 110
write-back cache, 151

X
Xen Hardware Virtual Machine, 111
XML, 231

260 | Index

About the Author
Kelly Goetsch is a product manager focusing on the technology that underpins large-
scale ecommerce. Previously, Kelly served in senior-level implementation roles at some
of the largest ecommerce properties in the world. He has published extensively on topics
including distributed computing, ecommerce application architecture, and perfor‐
mance tuning. He holds a master’s of information systems and a bachelor of science in
entrepreneurship from the University of Illinois.

Colophon
The animal on the cover of eCommerce in the Cloud is a Martial Eagle (Polemaetus
bellicosus). This large eagle is found in sub-Saharan Africa in open and semi-open hab‐
itats. As the largest eagle in Africa, the Martial Eagle is notable for its size: 31–38 in (78–
96 cm) in length, 6.6–13.7 lb (3–6.2 kg) in weight, and a wingspan of up to 6–8 ft (188–
260 cm). The Martial Eagle is also the fifth heaviest eagle in the world, on average.

Adult eagles have a dark grey-brown plumage on its head and upper chest. On its un‐
derparts, the feathers are white with blackish-brown spotting. Female eagles are larger
and more spotted than males, and more immature eagles are paler with less spotted
underparts. In its seventh year, martial eagles reach adult plumage.

Their eyesight is 3–3.6 times human acuity, and they can spot potential prey from a
great distance. The Martial Eagle is considered one of the world’s most powerful avian
predators. It is at the top of the avian food chain in its environment—an apex predator
—and, when healthy, has no natural predators. Their diet depends greatly on opportu‐
nity and availability, but can consist of up to 45% birds such as game birds and Egyptian
geese. They also feed on lizards, snakes, and other mammalian prey. Martial Eagles hunt
while in flight, circling and stooping sharply to catch its prey.

Populations are naturally scarce because of a need for large territories and low repro‐
duction rates, the Martial Eagle has experienced a major decline in numbers recently
due to being directly killed by humans. Despite the small percentage of the eagle’s diet
actually represented by domesticated animals, the Martial Eagle is considered a threat
to livestock, which is the main cause for persecution via shooting and poisoning by
humans. In 2009, they were listed as Near Threatened; in 2013, they were uplisted to
Vulnerable, and another uplisting is expected. Preservation depends on farmer educa‐
tion and an increase of protected nesting and hunting areas.

The cover image is from Meyers Kleines Lexicon. The cover font is URW Typewriter
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	Intended Audience
	Contents of This Book
	Conventions Used in This Book
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Introduction
	eCommerce Deployment Architecture: Frozen in Time
	What Is Cloud?
	Why Is the Cloud a Fit for eCommerce?

	Part I. The Changing eCommerce Landscape
	Chapter 1. The Global Rise of eCommerce
	Increasing Use of Technology
	Internet Connectivity
	Internet-Enabled Devices

	Inherent Advantages of eCommerce
	Price Advantage
	Convenience
	Large Product Assortment

	Technological Advances
	Closer Tie-in with the Physical World
	Increasing Maturity of eCommerce Offerings

	Changing Face of Retail
	Omnichannel Retailing
	Business Impact of Omnichannel
	Technical Impact of Omnichannel

	Summary

	Chapter 2. How Is Enterprise eCommerce Deployed Today?
	Current Deployment Architecture
	DNS
	Intra Data Center Load Balancing
	Web Servers
	eCommerce Applications
	Application Servers
	Databases
	Hosting

	Limitations of Current Deployment Architecture
	Static Provisioning
	Scaling for Peaks
	Outages Due to Rapid Scaling

	Summary

	Part II. The Rise of Cloud Computing
	Chapter 3. What Is Cloud Computing?
	Generally Accepted Definition
	Elastic
	On Demand
	Metered

	Service Models
	Software-as-a-Service
	Platform-as-a-Service
	Infrastructure-as-a-Service

	Deployment Models
	Public Cloud
	Hybrid Cloud
	Private Cloud

	Hardware Used in Clouds
	Hardware Sizing

	Complementary Cloud Vendor Offerings
	Challenges with Public Clouds
	Availability
	Performance
	Oversubscription
	Cost

	Summary

	Chapter 4. Auto-Scaling in the Cloud
	What Is Auto-Scaling?
	What Needs to Be Provisioned
	What Can’t Be Provisioned

	When to Provision
	Proactive Provisioning
	Reactive Provisioning

	Auto-Scaling Solutions
	Requirements for a Solution
	Building an Auto-scaling Solution
	Building versus Buying an Auto-Scaling Solution

	Summary

	Chapter 5. Installing Software on Newly Provisioned Hardware
	What Is a Deployment Unit?
	Approaches to Building Deployment Units
	Building from Snapshots
	Building from Archives
	Building from Source

	Monitoring the Health of a Deployment Unit
	Lifecycle Management
	Summary

	Chapter 6. Virtualization in the Cloud
	What Is Virtualization?
	Full Virtualization
	Paravirtualization (Operating System–Assisted Virtualization)
	Operating System Virtualization

	Summary of Virtualization Approaches
	Improving the Performance of Software Executed on a Hypervisor
	Summary

	Chapter 7. Content Delivery Networks
	What Is a CDN?
	Are CDNs Clouds?
	Serving Static Content
	Serving Dynamic Content
	Caching Entire Pages
	Pre-fetching Static Content
	Security

	Additional CDN Offerings
	Frontend Optimization
	DNS/GSLB
	Throttling

	Summary

	Part III. To the Cloud!
	Chapter 8. Architecture Principles for the Cloud
	Why Is eCommerce Unique?
	Revenue Generation
	Visibility
	Traffic Spikiness
	Security
	Statefulness

	What Is Scalability?
	Throughput
	Scaling Up
	Scaling Out

	Rules for Scaling
	Technical Rules
	Nontechnical Rules

	Chapter 9. Security for the Cloud
	General Security Principles
	Adopting an Information Security Management System
	PCI DSS
	ISO 27001
	FedRAMP

	Security Best Practices
	Defense in Depth
	Information Classification
	Isolation
	Identification, Authentication, and Authorization
	Audit Logging

	Security Principles for eCommerce
	Security Principles for the Cloud
	Reducing Attack Vectors
	Protecting Data in Motion
	Protecting Data at Rest

	Summary

	Chapter 10. Deploying Across Multiple Data Centers (Multimaster)
	The Central Problem of Operating from Multiple Data Centers
	Architecture Principles
	Principles Governing Distributed Computing
	Selecting a Data Center
	Initializing Each Data Center
	Removing Singletons
	Never Replicate Configuration

	Assigning Customers to Data Centers
	DNS
	Global Server Load Balancing

	Approaches to Operating from Multiple Data Centers
	Active/Passive
	Active/Active Application Tiers, Active/Passive Database Tiers
	Active/Active Application Tiers, Mostly Active/Active Database Tiers
	Full Active/Active
	Stateless Frontends, Stateful Backends

	Review of Approaches
	Summary

	Chapter 11. Hybrid Cloud
	Hybrid Cloud as a By-product of Architecture for Omnichannel
	Connecting to the Cloud
	Public Internet
	VPN
	Direct Connections

	Approaches to Hybrid Cloud
	Caching Entire Pages
	Overlaying HTML on Cached Pages
	Using Content Delivery Networks to Insert HTML
	Overlaying HTML on the Server Side
	Fully Decoupled Frontends and Backends
	Everything but the Database in the Cloud

	Summary

	Chapter 12. Exclusively Using a Public Cloud
	Why Full Cloud?
	Business Reasons
	Technical Reasons

	Why Not Full Cloud?
	Path to the Cloud
	Architecture for Full Cloud
	Review of Key Principles
	Architecture for Omnichannel
	Larger Trends Influencing eCommerce Architecture

	How to Select a Cloud Vendor
	Summary

	Index
	About the Author

