
Vandad Nahavandipoor

iOS 11 Swift
 Programming
 Cookbook
SOLUTIONS & EXAMPLES FOR IOS APPS

Covers Swift 4

and Xcode 9

www.allitebooks.com

http://www.allitebooks.org

Vandad Nahavandipoor

iOS 11 Swift Programming
Cookbook

Solutions and Examples for iOS Apps

www.allitebooks.com

http://www.allitebooks.org

978-1-491-99247-0

[LSI]

iOS 11 Swift Programming Cookbook
by Vandad Nahavandipoor

Copyright © 2018 Vandad Nahavandipoor. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Rachel Roumeliotis
Production Editor: Nicholas Adams
Copyeditor: Kim Cofer
Proofreader: Rachel Head

Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

December 2017: First Edition

Revision History for the First Edition
2017-12-04: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491992470 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. iOS 11 Swift Programming Cookbook,
the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491992470

Table of Contents

Preface. ix

1. Continuous Integration and Delivery. 1
1.1 Setting Up Xcode Server 2
1.2 Connecting Local Xcode to Xcode Server 3
1.3 Archiving Your Apps with Xcode Bots 6
1.4 Running Your Tests Automatically with Xcode Bots 12
1.5 Performing Analysis of Your Code Using Xcode Bots 17
1.6 Integrating GitHub Projects with Travis 20
1.7 Installing the Travis CLI 23
1.8 Running Your Unit Tests with Travis 25
1.9 Building and Archiving Your Project with Travis 27
1.10 Installing and Setting Up fastlane 33
1.11 Building Your Apps with fastlane 35
1.12 Testing Your Apps with fastlane 38
1.13 Enabling Slack Notifications in fastlane 40
1.14 Archiving Your Apps with fastlane 44
1.15 Uploading Your Apps to iTunes Connect with fastlane 46

2. Snapshot Testing. 49
2.1 Setting Up Snapshot Testing 50
2.2 Recording Snapshots 54
2.3 Specifying Tolerance in Snapshot Tests 58
2.4 Analyzing Snapshot Test Case Failures 60
2.5 Testing Table View Cell Snapshots 62

3. SiriKit. 65
3.1 Setting Up Your Project for Siri 65

iii

www.allitebooks.com

http://www.allitebooks.org

3.2 Defining an Intent Handler 71
3.3 Resolving Ambiguity in an Intent 78
3.4 Reporting Progress for Resolving an Intent 86
3.5 Handling an Intent 88

4. Measurements and Units. 91
4.1 Converting Between and Working with Length Units 91
4.2 Working with and Switching Between Angle Units 93
4.3 Representing and Converting Between Durations of Time 94
4.4 Using and Working with Frequency Units 96
4.5 Working with and Using Power Units 98
4.6 Representing and Comparing Temperature Units 99
4.7 Working with and Converting Volume Units 100

5. Core Data. 103
5.1 Designing Your Database Scheme 104
5.2 Writing Data to the Database 109
5.3 Reading Data from the Database 111
5.4 Searching for Data in the Database 114
5.5 Performing Background Tasks with Core Data 117

6. Swift and Cocoa Touch. 121
6.1 Extending Typed Arrays 121
6.2 Taking Advantage of Open Collection Ranges 123
6.3 Organizing Private Functions and Properties with Extensions 124
6.4 Defining Key Paths in Swift 127
6.5 Parsing from and to JSON with Swift 129
6.6 Handling Corner Cases in JSON Parsing with Swift 130
6.7 Partitioning Arrays into Segments 134
6.8 Setting Constraints on Extensions 136
6.9 Defining Object Requirements Through Protocols 138
6.10 Creating New Data Types by Combination 141
6.11 Adding Logic Through Protocols 143
6.12 Defining Constraints on Protocols 146
6.13 Handling Errors in Swift 148
6.14 Specifying Preconditions for Methods 149
6.15 Ensuring the Execution of Code Blocks Before Exiting Methods 151
6.16 Checking for API Availability 152
6.17 Creating Your Own Set Types 154
6.18 Conditionally Extending a Type 155
6.19 Optimizing Your Swift Code 157
6.20 Building Equality Functionality into Your Own Types 160

iv | Table of Contents

6.21 Grouping switch Statement Cases Together 162
6.22 Looping Conditionally Through a Collection 163
6.23 Bundling and Reading Data in Your Apps 164

7. Xcode 9 and Interface Builder. 169
7.1 Changing Variable Names in the Current Scope 169
7.2 Utilizing Regular Expressions in Your Xcode Searches 171
7.3 Debugging Apps on an iOS Device Wirelessly 174
7.4 Making Sure UI Methods Run on the Main Thread 177
7.5 Creating a GitHub Repository for Your Project in Xcode 179
7.6 Synchronizing Your Code with GitHub Inside Xcode 181
7.7 Categorizing and Downloading Assets to Get Smaller Binaries 184
7.8 Exporting Device-Specific Binaries 187
7.9 Linking Separate Storyboards Together 188
7.10 Adding Multiple Buttons to the Navigation Bar 189
7.11 Showing the Header View of Your Swift Classes 190
7.12 Designing Interactive Interface Objects in Playgrounds 191

8. The User Interface. 195
8.1 Animating Details with Peek and Pop 195
8.2 Providing Dynamic 3D Touch Menus on Home Screen 202
8.3 Asking Your Users for App Store Reviews in Your App 205
8.4 Providing Vibrational Feedback to Users 206
8.5 Supporting Drag and Drop in Your Apps 210
8.6 Scaling Fonts in Order to Support Dynamic Types 219
8.7 Adjusting Labels While Supporting Dynamic Types 223
8.8 Extracting Named Colors from Asset Catalogs 229
8.9 Animating Views 230
8.10 Attaching Live Views to Playgrounds 234
8.11 Running Playgrounds as Interactive and Continuous Apps 237
8.12 Arranging Your Components Horizontally or Vertically 239
8.13 Customizing Stack Views for Different Screen Sizes 241
8.14 Creating Anchored Constraints in Code 245
8.15 Allowing Users to Enter Text in Response to Local and Remote

Notifications 250
8.16 Dealing with Stacked Views in Code 256
8.17 Showing Web Content in Safari View Controller 258
8.18 Laying Out Text-Based Content on Your Views 260
8.19 Improving Touch Rates for Smoother UI Interactions 261
8.20 Supporting Right-to-Left Languages 264
8.21 Associating Keyboard Shortcuts with View Controllers 269
8.22 Recording the Screen and Sharing the Video 270

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

9. Document-Based Apps. 277
9.1 Supporting File Browsing in Your App 277
9.2 Associating File Types with Your App 281
9.3 Creating New Documents 287
9.4 Saving Your Documents 297
9.5 Loading Existing Documents 312
9.6 Customizing Your Document Browser 315

10. Apple Watch. 319
10.1 Downloading Files onto the Apple Watch 320
10.2 Noticing Changes in Pairing State Between the iOS and Watch Apps 325
10.3 Transferring Small Pieces of Data to and from the Watch 328
10.4 Transferring Dictionaries in Queues to and from the Watch 338
10.5 Transferring Files to and from the Watch 342
10.6 Communicating Interactively Between iOS and watchOS 347
10.7 Setting Up the Apple Watch for Custom Complications 357
10.8 Constructing Small Complications with Text and Images 364
10.9 Displaying Time Offsets in Complications 374
10.10 Displaying Dates in Complications 381
10.11 Displaying Times in Complications 388
10.12 Displaying Time Intervals in Complications 393
10.13 Recording Audio in Your Watch App 400
10.14 Playing Local and Remote Audio and Video in Your Watch App 403

11. Contacts. 407
11.1 Creating Contacts 408
11.2 Searching for Contacts 414
11.3 Updating Contacts 418
11.4 Deleting Contacts 422
11.5 Formatting Contact Data 424
11.6 Picking Contacts with a Prebuilt System UI 428
11.7 Creating Contacts with a Prebuilt System UI 434
11.8 Displaying Contacts with a Prebuilt System UI 436

12. Extensions. 439
12.1 Creating Safari Content Blockers 439
12.2 Creating Shared Links for Safari 444
12.3 Maintaining Your App’s Indexed Content 447

13. Web and Search. 451
13.1 Continuing a Spotlight Search Within Your App 451
13.2 Making Your App’s Content Searchable 455

vi | Table of Contents

13.3 Making User Activities Searchable 460
13.4 Deleting Your App’s Searchable Content 463

14. Multitasking. 465
14.1 Supporting Split Views 465
14.2 Adding Picture in Picture Playback Functionality 468
14.3 Handling Low Power Mode and Providing Alternatives 474

15. Maps and Location. 477
15.1 Customizing the Map View with System Buttons 477
15.2 Displaying System Annotations on the Map 480
15.3 Clustering Annotations for a Clutter-Free Map 483
15.4 Displaying a Specific Location on the Map 490
15.5 Requesting the User’s Location a Single Time 493
15.6 Requesting the User’s Location in the Background 494
15.7 Customizing the Tint Color of Pins on the Map 496
15.8 Providing Detailed Pin Information with Custom Views 499
15.9 Displaying Traffic, Scale, and Compass Indicators on the Map 500
15.10 Providing an ETA for Transit Transport Type 502
15.11 Launching the iOS Maps App in Transit Mode 505
15.12 Showing Maps in Flyover Mode 506

16. UI Testing. 509
16.1 Preparing Your Project for UI Testing 509
16.2 Automating UI Test Scripts 512
16.3 Testing Text Fields, Buttons, and Labels 514
16.4 Finding UI Components 516
16.5 Long-Pressing on UI Elements 519
16.6 Typing Inside Text Fields 521
16.7 Swiping on UI Elements 523
16.8 Tapping UI Elements 524

17. Core Motion. 527
17.1 Querying Pace and Cadence Information 528
17.2 Recording and Reading Accelerometer Data 529

18. Security. 531
18.1 Supporting Password Autofill with iCloud Keychain 531
18.2 Protecting Your Network Connections with ATS 534
18.3 Binding Keychain Items to Passcode and Touch ID 536
18.4 Opening URLs Safely 538
18.5 Authenticating the User with Touch ID and Timeout 539

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

19. Multimedia. 543
19.1 Reading Out Text with the Default Siri Alex Voice 543
19.2 Downloading and Preparing Remote Media for Playback 545
19.3 Enabling Spoken Audio Sessions 547

20. UI Dynamics. 549
20.1 Adding a Radial Gravity Field to Your UI 549
20.2 Creating a Linear Gravity Field on Your UI 554
20.3 Creating Turbulence Effects with Animations 557
20.4 Adding Animated Noise Effects to Your UI 559
20.5 Creating a Magnetic Effect Between UI Components 561
20.6 Designing a Velocity Field on Your UI 564
20.7 Handling Collisions Between Nonrectangular Views 566

21. iMessage Stickers and Apps. 573
21.1 Setting Up a Sticker Pack Application 574
21.2 Adjusting Sticker Sizes 576
21.3 Building a Full-Fledged iMessage Application 577
21.4 Adding an iMessage App Extension to an Existing App 586
21.5 Utilizing an Expanded View in a Sticker Pack App 588
21.6 Appending Rich Information to Stickers 595
21.7 Creating Interactive Conversations with iMessage Apps 598

Index. 609

viii | Table of Contents

Preface

Swift 4 is an incremental release of Swift: a tock in Apple’s usual tick-tock release
cycle, where the tick is a major release and the tock is a follow-up release with bug
fixes and some additions and improvements. Two of the biggest additions to Swift 4
are the Decodable and Encodable protocols, which together form the Codable proto‐
col. These protocols allow you, with just a bit of configuration, to define, encode, and
decode JSON objects, a task that you either previously did on your own or used a
library to accomplish.

Another welcome addition to Swift is the ability to extend typed arrays. For instance,
you can now add a function to arrays that contain Int instances, but not to any other
arrays. This way you could, for instance, define a sum() function that returns the sum
of all integers in the array. Such a function wouldn’t make sense for an array of
String objects, and therefore it’s best placed inside an extension to arrays that con‐
tain numeric data, such as an array of Int.

We all have had moments when we wished Xcode’s source editor would be rewritten
in order to properly function, and that’s exactly what Apple has done with Xcode 9.
We have a whole new state-of-the-art source editor with built-in GitHub integration.
Xcode Server is also now built into Xcode itself, and you don’t have to install macOS
server in order to take advantage of it. We have a whole chapter dedicated to Xcode
Server, so you will get to know it better soon.

The previous edition of this book focused primarily on what’s new in iOS 10, but this
version takes a more holistic look at iOS 11 and what can make a great iOS developer,
including knowledge of continuous integration, snapshot testing, Swift 4, and Xcode
9.

ix

www.allitebooks.com

http://www.allitebooks.org

Audience
I assume that you are comfortable writing iOS apps, at least know your way around
Xcode, and can work with the simulator. This book is not for beginners. If you have
never programmed in Xcode before for iOS, it will be tough to learn iOS program‐
ming only from this book, so I suggest that you complement your skills with other
online resources. The intended audience for this book is intermediate and advanced
users.

I also assume that you have written a little bit of Swift code. In this book, I use Swift 4
and will teach you some of the concepts, but if you don’t know Swift, this is not the
right place to start. If you’re just starting out, pick up Apple’s book on Swift program‐
ming first; once you’ve read through it and are a bit more comfortable with Swift,
come back to this book and I’m sure you’ll learn a lot of new things, even about Swift
4.

Organization of This Book
Here I’ll explain what each chapter is about so that you’ll get a feeling for what this
book is going to teach you:

Chapter 1, Continuous Integration and Delivery
Continuous integration (CI) and continuous delivery (CD) are both popular and
the subject of some very deep discussions at the organizational level of develop‐
ment teams, sometimes with some developers being entirely against them and
others enthusiastically for them. If you are lucky, you will work in an organiza‐
tion where everyone in the team has some knowledge of CI and CD, but if you
are unlucky, you might be the only person in your team who is responsible for
your CI servers. In this chapter, we will dive deep into Travis and Xcode Server as
our CI servers, and also have a look at fastlane as our CD tool.

Chapter 2, Snapshot Testing
Snapshot testing is a modern way of testing your user interface in order to detect
sudden and unwanted changes, such as unwanted changes to a font that can
affect certain UI components. With snapshot testing, we will capture the state of
our UI when we are sure of it being correct, and use this captured state as a refer‐
ence to compare future states with. Should anything have changed compared to
the original and correct state, the snapshot test will fail, triggering the develop‐
ment team to look for the bug. In this chapter, we will focus on Facebook’s snap‐
shot testing iOS library and how we can leverage its power to make UI testing
easier than ever before.

x | Preface

Chapter 3, SiriKit
Since its introduction, Siri has been an integral part of iOS and how people inter‐
act with the operating system. However, because it was a closed technology, we
developers couldn’t integrate our apps into Siri. That’s not the case anymore. Now
you can write your own app extensions that integrate into Siri and allow you to
interpret various “intents” that come from Siri into your applications. For
instance, you can create a financial application that allows the user to send and
receive money from various sources, all driven through Siri. In this chapter, you
will see how to create one of these extensions and learn the different entry points
from Siri into your application.

Chapter 4, Measurements and Units
This chapter is dedicated to the new series of classes and structures that Apple
has provided to developers to convert between various measurements and units.

Chapter 5, Core Data
Core Data is without a doubt the standard and best way to store large amounts of
data and structure your data object models in an iOS application. In this chapter
we will focus on the fundamentals of Core Data and how you can leverage its
power to not only store your data, but also search for it using queries and retrieve
it as managed objects.

Chapter 6, Swift and Cocoa Touch
Swift 4 brought with it a lot of great new features, such as built-in JSON parsing
and typed array extensions. In this chapter we will have a look at what’s new in
Swift 4 and some functionalities introduced in Cocoa Touch.

Chapter 7, Xcode 9 and Interface Builder
In this chapter, we take a look at a lot of new stuff in Xcode and Interface Builder
(IB). Apple has brought us refactoring features for Swift in Xcode 9. We can also
debug our iOS applications wirelessly on iOS devices, so you can finally build
that iOS test farm that you have been dreaming about for years. We will look at
some of these cool new features, plus GitHub integration right inside Xcode.

Chapter 8, The User Interface
Apple tends not to release a piece of technology until it knows that the imple‐
mentation is really well thought out. One of the features lacking from iOS since
the beginning was a built-in drag-and-drop functionality that would have
allowed intra-app drag and drop on iPads, or even inter-app drag-and-drop func‐
tionality on iPhone devices. As of this year, we can now implement drag and
drop in our iOS apps, thanks to the new SDK. In this chapter, you will learn
about 3D Touch, drag-and-drop features, font scaling, named colors, and much
more.

Preface | xi

www.allitebooks.com

http://www.allitebooks.org

Chapter 9, Document-Based Apps
We’ve had the ability to develop apps that take advantage of iCloud data storage
for a while now, but never have developers been able to present an iCloud docu‐
ment browser to their users, allowing them to create documents right in iCloud
from within this system UI. We now have a view controller that functions as a
built-in document browser that is easy to use in and integrate with our applica‐
tion. User can now open and create iCloud documents without ever leaving your
applications. In this chapter you will learn all about the document browser view
controller and how you can harness its power to create document-based applica‐
tions.

Chapter 10, Apple Watch
This year Apple didn’t focus as much on watchOS. However, there are exciting
new ways of interacting with watchOS, which we will discuss in this chapter.

Chapter 11, Contacts
The contacts APIs will be discussed in this chapter. You’ll learn how to use the
Contacts framework to add new contacts to the user’s device, remove contacts,
edit them, or even allow the user to pick a contact from the list so that you can
perform your tasks on it—all without having to fiddle with low-level C APIs.

Chapter 12, Extensions
The Safari Content Blocker extension allows developers to create apps that get
installed as extensions in the user’s Safari browser and allow us to block various
elements of web pages that the user views. For instance, you can now block pic‐
tures or other unwanted elements in the websites that you specify in your app,
and you can share these content blockers with those who use your app. This
chapter is all about these extension points that you can add to your apps.

Chapter 13, Web and Search
Apps can provide content to iOS for indexing in the device’s search engine. iOS
will then index this content and allow the users to search for it right within Spot‐
light on their devices. Your content can also be indexed globally on Apple’s
servers so even those who don’t have your app can see your content on their devi‐
ces. Intrigued? Read this chapter, then!

Chapter 14, Multitasking
In iOS, we have the ability to provide Picture in Picture (PiP) to our users. Your
app can provide a video player to iOS and allow the user to minimize your whole
app into that video player while she works with other apps. It’s really cool, in my
opinion!

Chapter 15, Maps and Location
With new additions to the Core Location and MapKit frameworks, you can, for
example, display an ETA for transit between two locations or display your cus‐

xii | Preface

tom view inside the annotation of a pin on the map. You will also learn how to
cluster similar pins into a group to avoid cluttering your map view. Another wel‐
come addition to the map view is the ability to remove system buttons from it
and instead display those system buttons somewhere else on your user interface,
where it fits your UI best. You will learn all about that and more in this chapter.

Chapter 16, UI Testing
We will discuss Apple’s UI Testing framework in this chapter. I’ll show you how
to write native Swift code to do UI testing.

Chapter 17, Core Motion
Core Motion is also available on watchOS. In this chapter, you’ll learn some of
the things that you can do with this framework, including reading cadence infor‐
mation from sensors on the device.

Chapter 18, Security
When a user registers for your service on your website on their iOS device and
saves the password with which she registered her account, this password ends up
in the user’s iCloud Keychain, if she has enabled it. In your iOS app, you now
have the ability to ask iOS for these credentials should the user be able to authen‐
ticate herself in your app with Touch ID. Application Transport Security in iOS
forces all requests to go through HTTPS. If you build your project with the latest
Xcode and iOS SDK, all your network requests will go through HTTPS by
default, protecting your content—but possibly breaking a few things if you don’t
support HTTPS in your web services. Read this chapter to learn more.

Chapter 19, Multimedia
iOS includes great ways for apps to interact with Siri’s voice, and you can read
about them in this chapter.

Chapter 20, UI Dynamics
There are some amazing effects that you can achieve in your user interface with
UI dynamics, including the ability to create turbulence or magnetic fields. In this
chapter, we’ll review some examples that show these effects in action.

Chapter 21, iMessage Stickers and Apps
Sticker packs are extensions that you can distribute either as part of your iOS
applications or as standalone applications. They allow you to add interactions to
messages being sent and received in iMessage conversations. In this chapter, we
will discuss different types of these extensions and how you can create interactive
sticker pack applications for iMessage.

Preface | xiii

www.allitebooks.com

http://www.allitebooks.org

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a note, tip, or suggestion.

This element indicates a warning or caution.

Additional Resources
This book is not for beginners, so I assume you have already gotten a grip on Swift
and can do basic things with it. You can find Apple’s documentation on Swift by
doing a quick web search. You can read it in your browser, as a PDF, or via iBooks.

Also check this book’s GitHub repository in order to get the most up-to-date code, as
I update the code to ensure it works with the latest Swift and Xcode versions.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/vandadnp/iOS-11-Swift-Programming-Cookbook.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not

xiv | Preface

https://github.com/vandadnp/iOS-11-Swift-Programming-Cookbook

need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “iOS 11 Swift Programming Cookbook
by Vandad Nahavandipoor (O’Reilly). Copyright 2018 Vandad Nahavandipoor,
978-1-491-99247-0.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

Preface | xv

www.allitebooks.com

mailto:permissions@oreilly.com
http://oreilly.com/safari
http://www.oreilly.com/safari
http://www.allitebooks.org

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/ios-11-swift-prog-cookbook.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

You can also check the author’s blog and YouTube channel.

Acknowledgments
Thank you to:

Rachel Roumeliotis
For always having trust in me and knowing that I stick to my words when I
promise to write a whole new book in a short period of time with quality mate‐
rial. Your trust means a lot to me and I hope this book will make you proud, as
much as it makes me.

Andy Oram
The editor that anybody would dream about, Andy has been by my side editing
this book nonstop since I started. His relentless efforts have allowed me to relax
while he craftily worked his way through the book, making it even more under‐
standable for readers. I would not have been able to write this book without
Andy’s help.

xvi | Preface

http://bit.ly/ios-11-swift-prog-cookbook
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
https://vandadnp.wordpress.com
https://www.youtube.com/c/iosdevcafe

CHAPTER 1

Continuous Integration and Delivery

Continuous integration, or CI as it will be referred to from here on, is an ecosystem of
software, usually more than one package, that allows you to test and deploy your iOS
apps with minimal manual involvement, sometimes even none. Once you commit
your code to a source control repository, such as Git, your code will automatically be
built and run by a CI server and then perhaps deployed to TestFlight, eventually
reaching the point where you can send it to Apple for review.

Every iOS developer needs to know about CI to some extent. You might not need to
be very involved with CI on a day-to-day basis, but should you wish to find work in a
company where you have to work with other iOS engineers, chances are that you will
have to work with a CI system of some sort, whether that be Xcode Bots or Travis
mixed with fastlane.

In this chapter we will talk about two CI systems:

• Xcode Bots running on macOS
• Travis plus fastlane

Xcode Bots, Travis, and fastlane are not the only CI and CD sys‐
tems out there. You have a choice from many service providers,
some easier than others to implement, and each with its own
advantages and disadvantages. The three systems I have chosen to
cover in this chapter are very popular, and are the ones you are
most likely to encounter if you decide to work in a larger team of
developers.

Xcode Bots are tiny integration points that are installed on macOS running Xcode.
They use Xcode’s capabilities on that server to check out your code from Git (or

1

www.allitebooks.com

http://www.allitebooks.org

SVN), build that code for you, and test it on your behalf. They may even create an
Xcode archive for you, ready to be sent to the App Store.

Travis is a distributed public service that easily integrates with GitHub and can access
your source code (should you grant access to it) and build and distribute your prod‐
ucts on your behalf, without you having to press a single button.

These are the systems most often used for iOS CI. Granted, you might sometimes
stumble on a company using another popular CI, such as Jenkins, and there are many
references online where you can learn about those systems. Should you go through
this chapter to learn about Xcode Bots and Travis, you will already have learned how
CI works and will be able to work with Jenkins without a problem. The purpose of all
CI systems is the same, although their interfaces and functionalities differ. As we’ll
see, Xcode Bots and Travis/fastlane show several differences.

1.1 Setting Up Xcode Server
Problem
You want to be able to run Xcode Bots, which require an Xcode Server.

Solution
Follow these steps:

1. Designate a computer that runs macOS in your network to become the server
that runs your Xcode Bots. This machine has to have quite a lot of disk space to
dedicate to builds, and also quite good processing power to run concurrent
builds.

2. Open Xcode on this server machine.
3. On the server machine, in Xcode, press Cmd-, on your keyboard to open Xcode’s

preferences screen.
4. In the Server & Bots tab, enable Xcode Server.
5. You will then be asked to provide a username on the server machine under which

Xcode builds run, using that user’s credentials. It’s best to use an administrator
account, as recommended by Xcode.

6. Follow the steps on screen to enable Xcode Server.

Discussion
Xcode Bots run on a server that you will connect your local Xcode to (as you will later
see). On that server machine, which needs to run macOS, you will need to install
Xcode and enable Xcode Server. There is no special Xcode Server application! Xcode
Server merely means an instance of Xcode that you designate as your server.

2 | Chapter 1: Continuous Integration and Delivery

You should also register some development devices with Xcode Server in case you
want to run some UI tests on it. You can do that by simply connecting an iOS device
with a cable to the computer that is your designated server machine running macOS.
(That could be your current computer, if you are just testing things out!)

You might be wondering whether you even need a server machine to host your Xcode
Bots. The answer depends on the scale of your development. If you are working alone
as the sole iOS developer, and have no QA members dedicated to testing your apps,
you can simply live with setting up and running the Bots locally on your own com‐
puter. More complex development environments need a dedicated server to run the
Bots: a server that is accessible by all your designated team members. This could
occur in a company where you would like Bots to be distributed across the team and
run remotely and on a schedule, perhaps every night, typically running your unit and
UI tests, building your app, and submitting it to TestFlight.

See Also
Recipes 1.2, 1.3, and 1.4

1.2 Connecting Local Xcode to Xcode Server
Problem
You have set up your Xcode Server on a server machine and now want to ensure that
all those in your development team that need CI access are connected to your Xcode
Server.

This recipe assumes that both the development machine and the
Xcode Server are on the same network.

Solution
Follow these steps in order to connect each development machine to your Xcode
Server:

1. On the server, ensure that the Xcode service is turned on.
2. Open Xcode on the developer machine, ensuring that the machine is on the same

network as the server hosting your Xcode Server.
3. Press Cmd-, on your keyboard when Xcode opens to go to Xcode’s preferences.
4. Click the Accounts tab.

1.2 Connecting Local Xcode to Xcode Server | 3

www.allitebooks.com

http://www.allitebooks.org

5. Press the + button on the bottom of the screen and in the little menu that
appears, choose Add Server....

6. In the Choose Server dialog that appears, choose the server that hosts your Xcode
Server and press the Next button (see Figure 1-1).

Figure 1-1. Choosing your server

If you don’t see your server in the list, it might not have the
Xcode Server service enabled, or it might not be accessible to
your local development machine. If you are setting all this up
at work, contact your network administrator.

7. On the next screen, you will be asked for the account to use to log in to the
server. You know this account information better than I do, so provide that infor‐
mation here and continue to the next step.

If everything went as expected, you should now see your Xcode Server in the list of
accounts on your local development machine (see Figure 1-2).

4 | Chapter 1: Continuous Integration and Delivery

Figure 1-2. The Xcode Server successfully added to the development machine

Discussion
Every development machine that wants to run Xcode Bots on your Xcode Server
needs to have direct access, through Xcode, to your Xcode Server. This brings you
many advantages, including direct integration of Xcode Bots into your local Xcode
IDE.

If you have followed the steps in the Solution section of this recipe, you should have
now created the bridge between your local machine and the remote server hosting
your Xcode Server. The next step is to start creating and running (integrating) Xcode
Bots to do your work on your behalf.

See Also
Recipe 1.1

1.2 Connecting Local Xcode to Xcode Server | 5

www.allitebooks.com

http://www.allitebooks.org

1.3 Archiving Your Apps with Xcode Bots
Problem
You want to create an Xcode Bot that can create an Xcode archive of your application.
This can be done periodically, manually (triggered by you), or automatically at spe‐
cific times.

Solution
Follow these steps:

1. Ensure that your Xcode project is hosted in a version control system such as Git,
perhaps on GitHub.

2. Make sure that your Xcode Server has credentials to also check out (clone) the
application’s repository. (This requires setting up your SSH keys and related
administrative tasks on a server, a topic that is outside the scope of this book. If
you are on GitHub for version control, you can read about the tasks using the
GitHub website.)

3. While you have your project open in Xcode, from the Product menu, choose
Create Bot.

4. A new dialog appears on the screen asking you to specify a name for your Bot
(Figure 1-3). Call it archive-my-app. When you are done, press the Next button.

Figure 1-3. Provide a name for the Xcode Bot that will be responsible for archiving
your application

6 | Chapter 1: Continuous Integration and Delivery

5. If this is the first Xcode Bot you are setting up, you will have to provide a way for
your Xcode Server to connect to GitHub on your behalf, either using your own
account (if you are developing privately at home) or using Xcode Server’s own
dedicated account that has access to clone your repository (perhaps an Active
Directory account, if you are in an organization).

6. At this stage, you will see a screen similar to Figure 1-4. On this screen, press the
Sign In... button.

Figure 1-4. Xcode Server reports that it has problems cloning the repository and
communicating with GitHub in general

7. In the dialog that appears (Figure 1-5), choose the way that suits you best for
your Xcode Server to connect to GitHub on your behalf and clone your reposi‐
tory in order to be able to build the app. I have Xcode Server locally, so I can sim‐
ply share my SSH keys with this local installation of the server. If you are setting
up macOS and Xcode Server in an organization, you probably have a separate
account through which your server can connect to GitHub. In this dialog, there‐
fore, choose an appropriate method of connection to GitHub based on your sit‐
uation. Once you are done, press the OK button.

1.3 Archiving Your Apps with Xcode Bots | 7

www.allitebooks.com

http://www.allitebooks.org

Figure 1-5. Specify a way for Xcode Server to connect to GitHub on your behalf and
clone your repository

8. If your Xcode Server now succeeds in connecting to GitHub, you should be able
to press the Next button on the dialog where you had previously landed (see
Figure 1-6).

Figure 1-6. Configure the Xcode Bot to archive your application

8 | Chapter 1: Continuous Integration and Delivery

9. In this dialog shown in Figure 1-6, you will see the main settings related to your
Xcode Bot. Here you can specify that your Xcode Bot has to build, analyze, or
even test and archive your application. For now, choose only to archive the appli‐
cation. Once you are done in this dialog, press the Next button.

10. In the next step (see Figure 1-7), you can choose to integrate (run) your Xcode
Bot when specific events happen, such as at a specific time of the day or when
new commits are available. For now, choose to manually integrate the Bot when‐
ever it is requested, so that I can show you how to integrate an Xcode Bot when‐
ever you need it instead of having to wait for a certain event to occur. Then, in
the Clean drop-down, choose Always. This ensures that the project artifacts from
the previous archiving action get deleted before the new build is created. Once
you are done, press the Next button.

Figure 1-7. Configure the Xcode Bot so that you can integrate (run) it whenever you
need to

11. In the next dialog, you will be able to pass environment variables to your Xcode
build if you want. Leave this page empty for now and press the Next button.

12. On the next page, you can create triggers for your build. Triggers occur when an
event happens during the Bot’s life, such as success in creating an archive or a
failure to run all UI or unit tests. You can also add pre- and post-integration
scripts to your Xcode Bot so that the Bot runs your scripts before and after every
integration. Leave this page empty as well for now, and press the Create button.

1.3 Archiving Your Apps with Xcode Bots | 9

www.allitebooks.com

http://www.allitebooks.org

Discussion
Once you are back in Xcode, after the creation of your first Xcode Bot, press the
Cmd-8 keys on your keyboard to go to the Report Navigator. On this page, you can
see the events that your Xcode Bots have triggered. You have one Xcode Bot right
now that is supposed to archive your application whenever you integrate the Bot, so
let’s go to that page and see what has happened (Figure 1-8).

Figure 1-8. The first Xcode Bot failed to integrate due to code-signing issues

This is a typical error that you might get when starting to work with Xcode Bots, and
that’s why I wanted to show you this particular error. The way to solve this problem is
to go to your project settings in the General tab and ensure that Xcode is set up to
automatically handle your signing certificates, by choosing a development team for it.

After you have solved your code-signing issues, ensure that you
have checked in your fixes and pushed them to GitHub (or any
other service that you might use for version control). Otherwise,
your Xcode Bot will not be able to access the fresh changes that you
have just made to the project.

Once you have fixed your code-signing issues in Xcode for your project, go back to
the Report Navigator by pressing the Cmd-8 keys on your keyboard. On the lefthand
side, choose the archive-my-app Xcode Bot, and press the Integrate button in the top-
right corner of the screen to run the Bot again (see Figure 1-9).

10 | Chapter 1: Continuous Integration and Delivery

Figure 1-9. The second integration of the Bot, after fixing the code-signing issues, appears
to be running as expected

If everything went according to plan (see Figure 1-10), you should have your second
integration of the Xcode Bot returning successfully with your archived application.

Figure 1-10. The Xcode Bot successfully archived the application!

1.3 Archiving Your Apps with Xcode Bots | 11

www.allitebooks.com

http://www.allitebooks.org

See Also
Recipe 1.5

1.4 Running Your Tests Automatically with Xcode Bots
Problem
You have some unit tests that you’ve written for your application and you want to run
them whenever there are new commits on your master branch.

I’m taking the master branch as an example. You can set up Xcode
Bots on any branch of your choice in your repository.

Solution
Follow these steps:

1. While you have your project (with unit tests previously written for it) open in
your own Xcode instance, select the Product menu and under that choose Create
Bot.

2. In the dialog that appears, for the name of the Bot, provide the name of running-
tests. Ensure you are connected to the right server, and press the Next button.

3. On the next screen (see Figure 1-11), ensure that your Xcode Server can log in to
your application by following the same steps that we talked about in the previous
recipe (Recipe 1.3). When you are done, press the Next button.

12 | Chapter 1: Continuous Integration and Delivery

Figure 1-11. Now your Xcode Server can connect to your repository

4. In the next dialog (see Figure 1-12), ensure that your Xcode Bot tests only your
target, and does nothing else. After you are done, press the Next button.

Figure 1-12. Set up this new Xcode Bot so that it only tests your project, nothing else

1.4 Running Your Tests Automatically with Xcode Bots | 13

www.allitebooks.com

http://www.allitebooks.org

5. On the next screen (see Figure 1-13), in the Integrate field, choose Manually so
that you can trigger this Bot manually whenever you need to. For the Clean field,
choose “Once a day.” This makes sure that Xcode performs a clean build (by
cleaning up its build artifacts cache) once a day. This is good general practice
because cached project resources can sometimes cause issues where old resource
files creep into the new binary and cause undesirable effects. Once you are done,
press the Next button. You can leave in place the default option that automati‐
cally integrates this Bot as soon as it is created, in order to ensure that it works as
expected.

Figure 1-13. You will run your testing Xcode Bot manually and ensure that it cleans
up build artifacts once a day

6. On the next screen (see Figure 1-14), you can choose to test your project on all
available simulators and devices, on all devices (but no simulators), on all simula‐
tors (but no actual devices), or on a specific mixture of devices and simulators
that you configure. For the sake of being able to run the tests fast, I am choosing
to run the tests on only one simulator. Once you are done, press the Next button.

14 | Chapter 1: Continuous Integration and Delivery

Figure 1-14. Set up the new Xcode Bot so that it runs the tests on a specific iOS sim‐
ulator

7. Leave the next screen, where you can enter new environment variables, empty
and press the Next button.

8. On the Triggers screen, leave the screen empty and press the Create button to
create your Bot.

Discussion
If you went through the steps provided in the Solution section of this recipe, you
should now be able to navigate to the Report Navigator panel of Xcode by pressing
Cmd-8, scroll down in the left panel to the running-tests Xcode Bot, and expand it so
that you can see the integrations (runs) of this Bot that have taken place since you
created it. So far, we have only one run (Figure 1-15).

1.4 Running Your Tests Automatically with Xcode Bots | 15

www.allitebooks.com

http://www.allitebooks.org

Figure 1-15. The new Xcode Bot has run our unit and UI tests together and reported the
results back

You can connect physical devices to the machine that runs your Xcode Server if you
can reach that machine physically. These physical devices can then be used by Xcode
Server to run and test your applications on. Gaining physical access to the server may
be difficult if you are in an organization with many people sharing a server.

Starting from Xcode 9, you can wirelessly debug your applications on iOS devices as
well. So if you are in the mood, physically connect your iOS 11 device to your server
machine, pull up the device information panel in Xcode, and choose to enable net‐
work debugging (wireless). Once you have done that, you can disconnect the device
from your server machine, but ensure that it stays on the same network as your
server machine. You will now have access to this remote iOS device to run your tests
on it, as long as you choose to execute your tests with the help of your server.

See Also
Recipe 1.5

16 | Chapter 1: Continuous Integration and Delivery

1.5 Performing Analysis of Your Code Using Xcode Bots
Problem
You want to perform periodic analysis of your code (for unused methods, unused
function return values, etc.) using Xcode Bots and see the results right in your
machine’s instance of Xcode.

Solution
Follow these steps to set up an Xcode Bot that analyzes your code:

1. While in Xcode on your own machine, go to the Product menu and from there
choose Create Bot.

2. In the Name field, enter code-analysis-bot and press the Next button.
3. On the next screen, ensure that your Xcode Bot can access your repository. Every

Bot needs its own SSH keys. If you are setting up your Xcode Bot on a server that
is inside your organization but not on your own machine, you will need to create
a new pair of SSH keys for your new Bot. The public key can then be copied to
the server. (For instance, if you are using GitHub to host your projects, it pro‐
vides a field where you can paste in the key.) If you are setting up this Bot on
your machine, you can use your existing SSH keys on your machine. Once you
are done, press the Next button.
Figure 1-16 demonstrates creating a new public key for the Bot. The Bot will use
it to connect to your repository and clone it. When the public key is provided to
you in this dialog, you need to copy it and paste it into your SSH keys section of
GitHub or whatever service you are using. This public key is linked to the private
key that is already on the server instance.

1.5 Performing Analysis of Your Code Using Xcode Bots | 17

www.allitebooks.com

http://www.allitebooks.org

Figure 1-16. Creating a new public key for the Bot

4. On the next screen (see Figure 1-17), choose only the “Perform analyze action”
option from the list and then press the Next button.

Figure 1-17. The only thing this Xcode Bot is going to have to do is to analyze your
code for warnings and problems

18 | Chapter 1: Continuous Integration and Delivery

5. On the next screen, choose to integrate your Xcode Bot manually. In the Clean
field, choose to always clean the project before every analysis. Once you are done,
press the Next button.

6. On the Environment Variables screen, do not add any variables, but simply press
the Next button.

7. Leave the Triggers screen empty again and simply press the Create button.

Discussion
For the sake of discussion, I’ve created a function in my AppDelegate.swift file where I
return a simple integer object like this:

func returnSomeInteger() -> Int{
 return 10
}

And then, when the application starts, I just call this function without using its return
value, like so:

func application(
 _ application: UIApplication,
 didFinishLaunchingWithOptions launchOptions:
 [UIApplicationLaunchOptionsKey: Any]?) -> Bool {

 returnSomeInteger()

 return true
}

Calling a function and not using its return value (if the function is not marked as
@discardableResult) causes Xcode’s analyzer to trigger a warning about unused
function results.

Go to your own Xcode and press Cmd-8 in order to go to the Report Navigator and
then integrate your code-analysis-bot. The Xcode Bot should run, analyze the project,
and report its results (see Figure 1-18). You can see the warning reported by the
Xcode Bot.

1.5 Performing Analysis of Your Code Using Xcode Bots | 19

www.allitebooks.com

http://www.allitebooks.org

Figure 1-18. The unused function results are reported as a warning that you can read in
your Xcode instance

See Also
Recipes 1.4 and 1.7

1.6 Integrating GitHub Projects with Travis
Problem
You have an iOS project hosted on GitHub (either on GitHub.com or enterprise Git‐
Hub) and you would like to integrate it with Travis so that you can build your
projects there.

Solution
Follow these steps:

1. Go to the Travis CI website.
2. Sign in to Travis CI with your GitHub credentials.
3. You will be asked for permission (see Figure 1-19) to allow Travis to access your

repositories. Press the “Authorize application” button to proceed.

20 | Chapter 1: Continuous Integration and Delivery

https://travis-ci.org

Figure 1-19. Authorizing Travis CI to access your repositories in GitHub for integra‐
tion purposes

4. You will now be sent to Travis CI’s landing page. On this page, click your name
on the top righthand side in order to integrate Travis with your projects.

5. On the page that comes up now, you should be able to see all your public reposi‐
tories. If you don’t see them, click the Sync button so that Travis CI reconnects to
GitHub to find all your public repositories.

6. Find your iOS project’s repository name in the list of fetched repositories and
then flick the little switch (see Figure 1-20) to the on state (all switches are turned
off by default).

7. Right next to the switch that you just turned on, you should be able to see a gear
button that sends you to the Travis settings for your project. Click that button.

1.6 Integrating GitHub Projects with Travis | 21

www.allitebooks.com

http://www.allitebooks.org

Figure 1-20. Turn Travis on for your repository

8. In Travis’s settings page for your project, turn on the switch that says “Build only
if .travis.yml is present.”

Discussion
After you successfully perform the steps in the Solution section, you can test that
things are working as expected by going to GitHub (either the public site or your
enterprise GitHub), navigating to your project’s GitHub page, and clicking Settings.
Then, in the Integration & Services section (see Figure 1-21), make sure that Travis
CI is present under the Services heading on the right.

22 | Chapter 1: Continuous Integration and Delivery

Figure 1-21. Confirming that Travis CI is successfully integrated into your GitHub
project

See Also
Recipe 1.1

1.7 Installing the Travis CLI
Problem
You want to be able to control your Travis builds from your own command line.

Solution
Follow the instructions provided at GitHub’s site for installing the Travis CI Client.

Discussion
Usually the status of your builds can be controlled by going to Travis’s website. How‐
ever, you can also use the Travis CLI to control and manipulate the status of your
builds.

After installing the Travis CLI, you need to complete the installation process using
your command line, so issue the following command at your command-line prompt:

travis version

The command will then prompt you with the following question:

Shell completion not installed. Would you like to install it now? |y|

Answer Y (for yes) and then press the Enter key.

1.7 Installing the Travis CLI | 23

www.allitebooks.com

https://github.com/travis-ci/travis.rb#installation
http://www.allitebooks.org

Now if you issue the same command as before (travis version), you should get a
reply from the Travis CLI as expected. A few more settings have to be in place before
you can fully use the Travis CLI, however. Assuming that you are currently inside a
repository directory that is integrated with Travis (see Recipe 1.6), you can issue the
following command to see your build history on Travis:

travis history

If this is the first time you are doing this, you will get a reply similar to that shown
here:

Detected repository as vandadnp/testing-travis, is this correct? |yes|

The name of the repository here is vandadnp/testing-travis. For you
it may be something different but similar.

In answer to this prompt, just press the Enter key on your keyboard to continue.

Now you need to add the .travis.yml file to your project so that your builds can trigger
a Travis build when they are pushed over to GitHub. This file will contain your build
script and configurations. To create this file, issue the following command to the
Travis CLI:

travis init

Travis will then ask you about the language you’ve chosen for your project. To this,
you can reply obj-c (for Objective-C, even though your project is in Swift) and then
press the Enter key. Travis will then reply to you as shown here:

travis init
Main programming language used: |Ruby| obj-c
.travis.yml file created!
not logged in, please run travis login --org

You can see that you need to give Travis the right to access your GitHub repository on
your behalf in order to see your build and integration status. Travis.org is directly
connected to free and public GitHub repositories, and it needs your permission to get
into your repository. To do that, provide a personal access token to Travis by follow‐
ing these instructions:

1. In your browser, navigate to your Personal access tokens page (logging in to Git‐
Hub if you are not already logged in).

2. Press the “Generate new token” button.
3. In the “Select scopes” section, check the repo box, which in turn checks the entire

repo section for you.

24 | Chapter 1: Continuous Integration and Delivery

https://github.com/settings/tokens

4. In the “Token description” field, type “Travis” or similar text that describes to you
who this token belongs to.

5. Once you are done, press the “Generate token” button.

You should land on a page that shows the token that was generated for you. Copy this
token to your clipboard, go back to your terminal, and issue the following command:

travis login --org --github-token XXX

where XXX is the token that you just copied to your clipboard (in other words, in place
of XXX just press Cmd-V on your keyboard to paste in the copied token). Once you’re
done, press the Enter key. If everything goes fine, you should see a message similar to
this:

Successfully logged in as ABC!

where ABC is your username on GitHub. Now to ensure that everything is working as
expected, issue the following command in your terminal:

travis settings

This should go to the Travis servers, fetch your repository’s settings for you, and print
the results out to the console:

[+] builds_only_with_travis_yml Only run builds with a .travis.yml
[+] build_pushes Build pushes
[+] build_pull_requests Build pull requests
 0 maximum_number_of_builds Maximum number of concurrent builds

See Also
Recipe 1.1

1.8 Running Your Unit Tests with Travis
Problem
You have your unit tests all ready to go and you want to run them with Travis.

Solution
Follow these steps:

1. Make sure that your unit tests are all written, saved inside your project, and
pushed to GitHub.

2. Hold the Alt key down on your keyboard and then click the Run button in
Xcode.

3. On the screen that pops up, press the Manage Schemes... button.

1.8 Running Your Unit Tests with Travis | 25

www.allitebooks.com

http://www.allitebooks.org

4. Next to the scheme that you want Travis to run your tests on, ensure that the
Shared checkbox is ticked and then press the Close button.

5. In your .travis.yml file, ensure that you have specified your project name (or your
workspace name if you have one), plus your scheme to run the tests on. Addi‐
tionally, you will need a script to run xcodebuild with xcrun to run your tests, as
shown here:

language: objective-c
osx_image: xcode9

xcode_project: TestingTravis.xcodeproj
xcode_scheme: TestingTravis

script: xcrun xcodebuild test -project TestingTravis.xcodeproj \
 -scheme TestingTravis -sdk iphonesimulator -destination \
 'platform=iOS Simulator,name=iPhone 7,OS=10.3'

As highlighted by Apple in its Technical Note TN2339, the xcrun
tool allows you to run any tool that is executable within your
Xcode’s installation folder, without you having to find the path to
that tool. Shortcuts for some tools are already created for you in
your /user/bin folder, but other tools are hidden deep within
Xcode’s installation folder. The Xcode tools that have a shortcut in
the aforementioned folder are called shims, and all you need to
know to run these tools is their names, not their paths. xcrun is one
of these shims. This makes command-line execution of Xcode tools
a pleasant experience indeed.

I am using the \ line break here to ensure that the text fits inside
the page width of this book. When you are writing your scripts to
run on Travis, make sure you remove these line breaks, as they are
known to cause issues on Travis images.

Discussion
If you have already issued the travis init command in Terminal in your project
directory (see Recipe 1.7), you should have a file called .travis.yml in your project’s
root folder.

In order for Travis to run your tests, you need to satisfy three requirements:

• Specify your Xcode project’s name in your .travis.yml file using the
xcode_project key.

• Specify the scheme that you want to be used to test your project, with the
xcode_scheme key.

26 | Chapter 1: Continuous Integration and Delivery

http://apple.co/2jaNOfk

• Write a script in your .travis.yml file to actually run your tests.

Once you have made all these changes and committed them to your repository,
ensure that you push your changes to GitHub. Also make sure to install the Travis
CLI (see Recipe 1.7) on your computer. After that, you can simply monitor your
build’s status on Travis with the travis history command in your terminal. The
result of this command will be similar to that shown here:

#4 created: master Updated the travis file
#3 failed: master Added the travis file
#2 passed: master testing still
#1 errored: master testing still

See Also
Recipes 1.1 and 1.2

1.9 Building and Archiving Your Project with Travis
Problem
You want to build your project and create an .ipa archive of your project with Travis.

Solution
Follow these steps:

1. Create a distribution profile, certificate, and private key for your project and
export them to disk.

2. Write a script that creates a keychain and saves your private key and certificate
into it.

3. Compile and sign your project with xcodebuild inside a script.
4. Using your .travis.yml file, execute that script while your build is being executed

on a Travis node.

Discussion
There are many steps involved in creating an .ipa archive. They should be done in
order:

1. Compile the source code and all resources.
2. Produce the .app folder with the compiled source code and resources.
3. Sign the .app folder with the correct profile and certificate.
4. Zip up the signed .app folder plus a plist file into the .ipa archive.

1.9 Building and Archiving Your Project with Travis | 27

www.allitebooks.com

http://www.allitebooks.org

Follow these steps to build and archive your project with Travis.
Uploading to TestFlight will be discussed in another recipe.

Xcode has an automatic code-signing setting that creates certificates and profiles for
you. But because this process hides all the details of creating a certificate from you,
you will not know where your private and public keys are, how certificates are cre‐
ated, or where profiles come into play. In this section I will focus on doing this work
together with you manually so that you can see how certificates and private keys are
created, in the hope of making your life easier later on when you have to export your
private keys and certificates to be used on a Travis machine:

1. TestFlight needs a distribution certificate, which you’ll create in your developer
portal. So, head over to your Apple developer account and follow the guides that
Apple provides to create your new production certificate (or distribution certifi‐
cate, as it’s also called).

2. The previous step created a certificate for you. The private key for this certificate
was also created for you when you created the certificate request (as outlined in
the instructions by Apple). Import this certificate into your keychain to link it to
its private key by double-clicking it and importing it into the login keychain (see
Figure 1-22).

Figure 1-22. Import the certificate that you downloaded from Apple into the login
keychain on your computer

3. Right-click the certificate and choose to export the certificate.
4. In the dialog that appears (Figure 1-23), in the File Format drop-down, choose

“Certificate (.cer).” Then set the name of the file to cert.cer and save the file in the
root folder of your project. Once you are done, press the Save button.

28 | Chapter 1: Continuous Integration and Delivery

http://apple.co/2zV7s9M

Figure 1-23. Save your distribution certificate into a file and place it in the root
folder of your project

5. Now expand the certificate in Keychain Access to see the private key associated
with it, right-click the key, and choose the export option to export it.

6. In the dialog that appears (see Figure 1-24), navigate to the root folder of your
project, choose “Personal Information Exchange (.p12)” in the File Format drop‐
down, and enter key.p12 as the name of the file. Once you are done, press the
Save button. You are now prompted to assign a password to this private key.
Enter travis as the password and then press the OK button to export the private
key.

1.9 Building and Archiving Your Project with Travis | 29

www.allitebooks.com

http://www.allitebooks.org

Figure 1-24. Save the private key for your certificate into a separate file in the root
folder of your project

7. You still need one more certificate to sign an iOS application into an .ipa file: the
Worldwide Developer Relations Certificate Authority. When you are signed into
your developer account, you can download this certificate from the website at the
bottom of the certificate page.

8. Once you have downloaded this certificate, save it into your project’s root folder
as apple.cer (see Figure 1-25).

30 | Chapter 1: Continuous Integration and Delivery

http://apple.co/2i0ZQrt

Figure 1-25. You should now have the three highlighted files in the root folder of
your project under the exact same names as shown here

9. Head over to the developer portal and create an application ID for your app.
10. Then head over to the provisioning profiles section of the developer portal and

create a new distribution profile for App Store distribution that is linked to your
newly created certificate and application ID. Save the profile in the root folder of
your project under the name profile.mobileprovision.

11. You then need to create a script in the root folder of your project that creates a
keychain on the Travis machine on which your project is built. The script must
also import your certificates into that keychain for code signing. So, create a file
in the root folder of your project called create-keychain.sh with the following con‐
tents:
#!/bin/bash

KEY_PASSWORD=travis

Create the keychain with a password
security create-keychain -p travis ios-build.keychain

Make the custom keychain default, so xcodebuild will use it for signing

1.9 Building and Archiving Your Project with Travis | 31

www.allitebooks.com

http://www.allitebooks.org

security default-keychain -s ios-build.keychain

Unlock the keychain
security unlock-keychain -p travis ios-build.keychain

Add certificates to keychain and allow codesign to access them
security import ./apple.cer -k ~/Library/Keychains/ios-build.keychain -A
security import ./cert.cer -k ~/Library/Keychains/ios-build.keychain -A
security import ./key.p12 -k ~/Library/Keychains/ios-build.keychain -P \
 $KEY_PASSWORD -A

security set-key-partition-list -S apple-tool:,apple:,codesign: -s \
 -k travis ~/Library/Keychains/ios-build.keychain

12. In Terminal, give execute rights to this file with the chmod u+x create-

keychain.sh command.
13. When you create a keychain like this on the fly, it’s in your best interest to delete

it once you are done, since your distribution certificate and private key are saved
inside it. So, create a file called delete-keychain.sh in the root folder of your
project, with the following contents:
#!/bin/bash

security delete-keychain ios-build.keychain
security default-keychain -s login.keychain

14. Give this file execution rights as well, with the chmod u+x delete-keychain.sh
command.

15. Now you need a script that can actually build your project. Create a file called
build.sh in the root folder of your project with the following contents:
#!/bin/bash

security list-keychains -s ios-build.keychain

rm ~/Library/MobileDevice/Provisioning\ Profiles/profile.mobileprovision
mkdir -p ~/Library/MobileDevice/Provisioning\ Profiles/
cp profile.mobileprovision ~/Library/MobileDevice/Provisioning\ Profiles/

xcrun xcodebuild -project TestingTravis.xcodeproj -scheme TestingTravis \
 -archivePath TestingTravis.xcarchive archive

xcrun xcodebuild -exportArchive -archivePath TestingTravis.xcarchive \
 -exportPath . -exportOptionsPlist ExportOptions.plist

16. Give this file execution rights as well with the chmod u+x build.sh command.
17. As required by xcodebuild, your build script uses a file called ExportOptions.plist

that tells Xcode whether the project should be built as an ad hoc build, an App
Store build, or a development build. We are building an App Store application

32 | Chapter 1: Continuous Integration and Delivery

now. So in the root folder of your project, create a file called ExportOptions.plist
(you can use Xcode to create a plist file if you want), with the following contents:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>method</key>
 <string>app-store</string>
</dict>
</plist>

18. Now you need to change the contents of your .travis.yml file so that it executes
your scripts properly:
language: objective-c
osx_image: xcode9

xcode_project: TestingTravis.xcodeproj
xcode_scheme: TestingTravis

before_script: ./create-keychain.sh

script: ./build.sh

after_script: ./delete-keychain.sh

Once you are done with all of this, commit and push your changes to GitHub in
order to see how Travis does with your build. Remember that you can monitor the
status of your builds using the travis history command if you have installed the
Travis CLI on your computer (see Recipe 1.7).

See Also
Recipe 1.5

1.10 Installing and Setting Up fastlane
Problem
You want to start using fastlane to streamline your building, testing, and distribution
process.

1.10 Installing and Setting Up fastlane | 33

www.allitebooks.com

http://www.allitebooks.org

If you are looking for a reason as to why you would even want to
use fastlane, the answer is simple: to save time and energy and let
the dedicated team of developers who work on fastlane fix any
issues related to continuous delivery and integration. For instance,
if you use the gym command in fastlane, you will be building your
application and producing some form of a binary application that
is submittable to Apple. This command is really as simple as that;
just run fastlane gym and fastlane will figure out itself how to
build your project. If you want to do the same thing manually, you
will need a deeper knowledge of how the xcrun and xcodebuild
commands work and their nightmare-like lists of parameters.

Solution
To use fastlane, you need to have a Ruby environment set up on your computer (with
the Ruby installation utility gem), and you need to install fastlane. fastlane is a set of
Ruby scripts maintained as an open source project on GitHub and backed by Google.
In order to install fastlane, execute the following command in your Terminal:

sudo gem install fastlane -NV

You will be asked for your local computer account’s password. After providing that
password, if everything goes according to plan, you should see a message similar to
49 gems installed in your Terminal. Obviously the number there depends on how
many Ruby gems were installed in the process of installing fastlane.

After fastlane is installed on your computer, you will need to set it up for your
project. fastlane needs to have some information about your project, such as its bun‐
dle identifier and profiles that it uses to build the project, in order to integrate with
your project.

Follow these steps to set up fastlane for your project:

1. Open Terminal and navigate to where your project is saved.
2. Run fastlane in Terminal.
3. You will be asked if you want to integrate your project with fastlane. Answer y to

this question.
4. You will then be asked to enter your Apple ID. Enter your Apple ID and then

press the Enter key on your keyboard.
5. You should now be asked to enter your Apple ID password. This is so that

fastlane can log in to iTunes Connect on your behalf and access your profiles.
This password will be saved to your keychain locally on your computer.

34 | Chapter 1: Continuous Integration and Delivery

When you integrate fastlane with Travis, you can pass your
iTunes Connect password to fastlane using the FASTLANE_PASS
WORD environment variable and encrypt this password in
your .travis.yml file using Travis’s own CLI. More about this
later.

6. fastlane then presents the detected information about your project to you. If this
information is correct, enter y to continue.

If everything went according to plan, you should now have a folder in your project
called fastlane with the following contents (issue the ls fastlane command in Ter‐
minal to see this folder’s contents):

ls fastlane
Appfile Deliverfile Fastfile metadata screenshots

Discussion
While Travis is a tool for continuous integration, fastlane is used for continuous
delivery. In other words, Travis builds your projects, while fastlane is the tool with
which it builds them. fastlane can also help you upload your builds to iTunes Connect
and generally makes the process of building, testing, and distributing your iOS apps
easier than using shell scripts. However, it is a dependency nonetheless, which can be
its weak point in that it lags behind official Xcode releases by sometimes days, if not
more, and has its own set of bugs that are managed online in GitHub.

fastlane is a set of open source tools maintained by Google. This project started as a
hobby project for one developer many years ago, then was bought by Twitter and
then bought by Google, where it currently lives. You can read more about it at https://
github.com/fastlane/.

You need to set up fastlane once for every project and then configure it as you go
using the different files that get saved in the fastlane/ folder inside your project’s root
folder, as you will see soon!

See Also
Recipe 1.11

1.11 Building Your Apps with fastlane
Problem
You want to use fastlane to build your iOS applications from the command line,
instead of having to use your own custom shell script.

1.11 Building Your Apps with fastlane | 35

www.allitebooks.com

https://github.com/fastlane/fastlane
https://github.com/fastlane/fastlane
http://www.allitebooks.org

Solution
Assuming that you have already followed the instructions in Recipe 1.10 to set up
fastlane for your project, all you have to do to build your project with fastlane is:

1. Open the fastlane/Fastfile file in your favorite editor.

Because this file doesn’t have an extension, most editors won’t
be able to color code it for you. If your editor allows you to
manually specify a language for the input document, choose
Ruby. I personally use Visual Studio Code, a free downloada‐
ble tool, for this type of editing.

2. Find the beta lane that was created for you by default, by searching the file for its
method definition:
desc "Submit a new Beta Build to Apple TestFlight"
desc "This will also make sure the profile is up to date"
lane :beta do
 gym(scheme: "TestingTravis")
 pilot
end

3. Duplicate all this code and create a new lane called build that calls only the gym
action, and not pilot:
lane :build do
 gym(scheme: "TestingTravis")
end

The application for which I am demonstrating fastlane’s capa‐
bilities is called TestingTravis, the same app used in previous
recipes in this chapter. Remember to change this name in your
gym action to reflect the name of the project that you are
building with fastlane.

4. From Terminal, run the fastlane build command.

If you have set up your profiles and certificates correctly in your project and key‐
chain, the result of the fastlane build command should be similar to the following:

+------+-------------------------------------+-------------+
| fastlane summary |
+------+-------------------------------------+-------------+
| Step | Action | Time (in s) |
+------+-------------------------------------+-------------+
| 1 | Verifying required fastlane version | 0 |
| 2 | default_platform | 0 |

36 | Chapter 1: Continuous Integration and Delivery

| 3 | gym | 29 |
+------+-------------------------------------+-------------+

[22:04:25]: fastlane.tools finished successfully

Discussion
fastlane employs the idea of a lane, a set of instructions to fastlane that indicate how it
should react. For instance, when you set up fastlane for the first time for your project,
you will be given a lane that is called beta. That means that if you run the fastlane
beta action from Terminal while in your project’s folder, fastlane will go to the fas‐
tlane/Fastfile file, find the lane called beta, and run its instructions.

Every lane in your Fastfile is constructed of one or more actions, or instructions, that
fastlane understands. These actions are well documented on the GitHub page for
fastlane. One of the most important of these actions is gym, which builds your appli‐
cation. You can pass many parameters to the action in order to specify how your
application has to be built. In order to get a better understanding of which parame‐
ters you can pass to the gym action, run the fastlane gym help action from Termi‐
nal. Here is a short list of some of the most important parameters you can pass to the
gym action:

workspace

The name of the workspace that the gym action has to use to build your project.

project

The name of the project file itself inside the root folder of your application. If you
are specifying a workspace, you should not use this parameter; use the scheme
parameter instead.

scheme

The name of the Xcode scheme that will be used to build your application.

clean

A Boolean value that indicates whether your project has to be cleaned before
building.

configuration

The name of the configuration that will be used to build your application.

codesigning_identity

The name of the code-signing identity that has to be used to build your scheme.
This will take precedence over the code-signing identity that you have specified
in Xcode for the scheme you want to use for the build. If you don’t specify a
code-signing identity in gym, the code-signing identity that is specified in your
project file will be used for the given scheme.

1.11 Building Your Apps with fastlane | 37

www.allitebooks.com

http://www.allitebooks.org

Here is our build lane again, extended to take in a few more parameters:

lane :build do
 gym(
 scheme: "TestingTravis",
 clean: true,
 configuration: "Release"
)
end

See Also
Recipe 1.10

1.12 Testing Your Apps with fastlane
Problem
You want to perform UI or unit tests with fastlane.

Solution
Execute the scan action in your Fastfile. By default, when you set up fastlane for your
project (see Recipe 1.10), you will get a lane called test in your Fastfile, which you can
execute with the following command in Terminal:

fastlane test

If everything goes as expected, you should see the command’s output in Terminal as
shown here:

+------+-------------------------------------+-------------+
| fastlane summary |
+------+-------------------------------------+-------------+
| Step | Action | Time (in s) |
+------+-------------------------------------+-------------+
1	Verifying required fastlane version	0
2	default_platform	0
3	scan	35
+------+-------------------------------------+-------------+

[20:49:50]: fastlane.tools finished successfully

The default implementation of the test lane in your Fastfile will probably look like
this:

desc "Runs all the tests"
lane :test do
 scan
end

38 | Chapter 1: Continuous Integration and Delivery

Discussion
We saw a couple of fastlane’s actions in Recipe 1.11; the action we use for testing is
scan. As its name indicates, it allows you to scan your code for bugs, which it does by
running your unit or UI tests, based on which test target you ask it to run.

The scan action makes a few assumptions about your project if it is run without any
parameters (which is the default setup). It will:

1. Find the first test target in the project and run it.
2. Use the default simulator to run the tests.

If you want to specify a new target for scan, use the scheme parame‐
ter. A scheme is bound to a target, so by specifying a scheme, you
are implicitly choosing a target.

Some of the most important parameters you can pass to scan are:

workspace

The name of the workspace in which your test target exists, if any.

project

The name of the project under which your test target exists. You need to specify
either a workspace or a project, but not both.

device

The name of the device to run your tests on, such as 'iPhone 7'.

devices

A comma-separated array of test devices to run your tests on, such as ['iPhone
7', 'iPad Pro'].

scheme

The name of the scheme under which to run your tests. Remember that your
scheme has to be marked as a Shared scheme in order for fastlane to be able to
use it from the command line (see Recipe 1.8).

clean

A Boolean value indicating if all existing and old build artifacts have to be
cleaned and the project rebuilt before the tests are run.

1.12 Testing Your Apps with fastlane | 39

www.allitebooks.com

http://www.allitebooks.org

configuration

The name of the configuration that will be used to build and test your project.
The default value is Debug for the scan action, while the same parameter is
Release for gym.

Here is an example of how you can extend the default test lane in your Fastfile with
some of the aforementioned parameters to the scan action:

desc "Runs all the tests"
lane :test do
 scan(
 project: 'TestingTravis.xcodeproj',
 scheme: 'TestingTravis',
 clean: true,
 configuration: 'Debug',
 devices: ['iPhone 6', 'iPhone 7']
)
end

See Also
Recipe 1.4

1.13 Enabling Slack Notifications in fastlane
Problem
You want to post notifications from fastlane to your Slack channel, regarding:

• Errors found by gym when building your project
• Issues found by scan while testing your project

You can ask fastlane to report any errors that might occur during
the execution of your lanes, using channels such as Slack or email.
You do this by defining a function in your Fastfile called error do
|lane, exception|.

Solution
Use the various custom Slack parameters that you can pass to the gym and scan
actions, namely:

slack_url

The URL to a private webhook into your Slack team. You will learn how to
retrieve such a URL later in this recipe.

40 | Chapter 1: Continuous Integration and Delivery

slack_channel

The name of the Slack channel where notifications will be posted.

slack_message

A custom message that will be posted alongside the standard message that fas‐
tlane posts to Slack.

slack_only_on_failure

A Boolean value indicating whether you want Slack messages to be posted only
when the build/testing fails.

Here is an example of a test lane that uses scan to run your unit tests and post the
results to Slack:

desc "Runs all the tests"
lane :test do
 scan(
 project: 'TestingTravis.xcodeproj',
 scheme: 'TestingTravis',
 clean: true,
 configuration: 'Debug',
 devices: ['iPhone 6', 'iPhone 7'],
 slack_url: 'https://hooks.slack.com/services/id',
 slack_channel: 'fastlane',
 slack_message: 'A custom message from Fastlane',
 slack_only_on_failure: false
)
end

Your webhook URL will look similar to that provided here; the
only difference will be your id, a unique string of digits.

And the results, if everything goes fine, will look like Figure 1-26 in Slack.

1.13 Enabling Slack Notifications in fastlane | 41

www.allitebooks.com

http://www.allitebooks.org

Figure 1-26. Results of the fastlane test command

Discussion
Slack provides webhook URLs that you can use to post JSON payloads. Slack will ren‐
der the JSON as a nicely formatted message. To create a webhook into your Slack
team, you have to have administrator privileges in your team. If you don’t have those
privileges, you can ask the current administrator for temporary privileges so that you
can set up incoming webhooks on Slack, then go back to your regular privileges.

To retrieve a webhook URL in your Slack team, follow these instructions:

1. From the Channel Settings menu in Slack, choose the “Add an app or integration”
option.

2. In the search bar that gives you access to the different apps and integrations that
you can add to your Slack channel, search for incoming webhooks and once it is
found, click it.

3. Press the Add Configuration button shown in Figure 1-27.

42 | Chapter 1: Continuous Integration and Delivery

Figure 1-27. Locating the incoming webhooks plug-in for Slack

4. On the next page, choose the Slack channel in which to create the webhook (see
Figure 1-28). You can also create a Slack channel right there and then choose it.
In the figure, I have chosen for all fastlane messages to be posted to a Slack chan‐
nel that is also called fastlane. You might want to choose another name or an
existing Slack channel in your team.

Figure 1-28. Choosing a Slack channel to which fastlane will post messages

1.13 Enabling Slack Notifications in fastlane | 43

www.allitebooks.com

http://www.allitebooks.org

5. When you are done, press the “Add Incoming WebHooks integration” button
shown in Figure 1-28.

6. On the next page, you will now see your new webhook URL. Copy this value and
keep it safe in your computer, because you are going to need it to configure
fastlane.

7. In your Fastfile, set the slack_url parameter of the action generating the notifi‐
cations (gym or scan) to the webhook URL that you retrieved in the previous
step.

8. In the same file, set the value of the slack_channel parameter to the name of the
Slack channel for which you created the webhook.

9. Optionally, set the value of the slack_message parameter to a message that will
be posted alongside every notification from fastlane onto this hook.

10. And last but not least, in the same file, if you want to receive notifications even
for successful builds or tests, set the slack_only_on_failure parameter to
false.

Now you can run your tests or make a build with fastlane and test the results in Slack.

If you want to test these things out without polluting your compa‐
ny’s Slack channels, you can always create your own Slack team and
personal channels.

1.14 Archiving Your Apps with fastlane
Problem
You want to create an .ipa file with dSYMs and an .xcarchive folder containing the
original .app folder for your iOS app, signed for the App Store, both to submit the
application to the App Store and to archive it.

Solution
Use the gym fastlane action with the following parameters:

scheme

Provide here the name of the shared scheme that will be used to build your app.

clean

Provide the value of true to this parameter to ensure no residual derived data
from a previous build will contaminate your App Store archive.

44 | Chapter 1: Continuous Integration and Delivery

https://slack.com/create
https://slack.com/create

configuration

Provide the value of Release to this parameter. If you have created a custom
release configuration, provide its name here.

output_directory

Provide the value of ./build/ to this parameter, because it’s the most common
directory to place build artifacts inside your current project folder.

output_name

Provide the value of build.ipa to this parameter so that your output .ipa file will
be saved as build.ipa under your build folder.

export_method

Provide the value of app-store to this parameter to ensure that your project gets
built for the App Store.

archive_path

Provide the value of ./build/build.xcarchive to this parameter so that gym, in
addition to creating a signed App Store .ipa file, creates an .xcarchive folder that
contains your dSYM files and .app folder for archiving purposes.

The gym action uses your target’s settings for the code-signing cer‐
tificate and profile, so ensure that you have set those up properly
before running gym.

Discussion
Edit your fastlane/Fastfile file with your favorite editor and create a new lane named
archive. Inside this lane, place your gym action with the previously mentioned param‐
eters and their corresponding values:

lane :archive do

 gym(
 scheme: "TestingTravis",
 clean: true,
 configuration: "Release",
 output_directory: "./build/",
 output_name: "build.ipa",
 export_method: "app-store",
 archive_path: "./build/build.xcarchive"
)

end

Now from Terminal, issue the following command:

1.14 Archiving Your Apps with fastlane | 45

www.allitebooks.com

http://www.allitebooks.org

fastlane archive

If everything goes as expected, you should now see the following results printed to
Terminal:

[20:20:01]: Successfully exported and compressed dSYM file
[20:20:01]: Successfully exported and signed the ipa file:

+------+-------------------------------------+-------------+
| fastlane summary |
+------+-------------------------------------+-------------+
| Step | Action | Time (in s) |
+------+-------------------------------------+-------------+
1	Verifying required fastlane version	0
2	default_platform	0
3	gym	23
+------+-------------------------------------+-------------+

[20:20:01]: fastlane.tools finished successfully

And if you navigate to the build folder, you should see:

• dSYM files zipped up together nicely
• An Xcode Archive folder
• A signed .ipa file

➜ testing-travis git:(master) ✗ cd build
➜ build git:(master) ✗ ls
archive build.app.dSYM.zip build.ipa build.xcarchive

See Also
Recipe 1.3

1.15 Uploading Your Apps to iTunes Connect with fastlane
Problem
You want to upload your application to iTunes Connect, from Terminal, using
fastlane.

Solution
Follow these steps:

1. Log in to iTunes Connect and create your application template there. You don’t
have to upload any screenshots or any other information.

46 | Chapter 1: Continuous Integration and Delivery

2. Ensure that your iOS app has all its necessary icons. To do so, open the asset cata‐
logue file that hosts your icons and ensure that all the icons are present. If any
icon is missing, iTunes Connect will reject your binary file.

3. Open your fastlane/Fastfile and find the archive lane that has already been created
for you.

4. In that lane, call the gym action that will build your application (see Recipe 1.14)
followed by the deliver action that will actually deliver your app to iTunes Con‐
nect. A typical action is:
desc "Deploy a new version to the App Store"
lane :release do
 gym(
 scheme: "TestingTravis",
 clean: true,
 configuration: "Release",
 output_directory: "./build/",
 output_name: "build.ipa",
 export_method: "app-store",
 archive_path: "./build/build.xcarchive"
)
 deliver(force: true)
end

5. From Terminal, run the fastlane release command.

If everything goes as expected, you should see the following results printed to the
console:

[21:23:13]: Finished the upload to iTunes Connect

+------+-------------------------------------+-------------+
| fastlane summary |
+------+-------------------------------------+-------------+
| Step | Action | Time (in s) |
+------+-------------------------------------+-------------+
1	Verifying required fastlane version	0
2	default_platform	0
3	gym	22
4	deliver	175
+------+-------------------------------------+-------------+

[21:23:13]: fastlane.tools finished successfully

Discussion
fastlane has many actions, including deliver. As its name indicates, it is used to deliver
your application to the user, through TestFlight and iTunes Connect.

The deliver action takes a few parameters, the most important of which are:

1.15 Uploading Your Apps to iTunes Connect with fastlane | 47

www.allitebooks.com

http://www.allitebooks.org

force

If the value of this parameter is true, fastlane will return immediately after
uploading your binary to iTunes Connect, without waiting for your binary to fin‐
ish processing on iTunes Connect. Every binary that gets uploaded to iTunes
Connect goes through a processing stage where iTunes determines whether it fol‐
lows most of the guidelines set out by Apple, such as including the necessary
icons and avoiding the use of private APIs. This process can take a long time,
sometimes up to a few hours! You probably don’t want your build system to wait
until iTunes Connect has finished processing your build; in that case, provide the
value of true to this parameter.

submit_for_review

By default, deliver submits your app to iTunes Connect for TestFlight testing only.
Submit the value of true to this parameter if you want deliver to also send your
app to the App Review team at Apple for approval.

automatic_release

Set the value of this parameter to true if you want your app to be automatically
released to users when it has successfully gone through the App Review team at
Apple.

primary_category

This parameter determines the primary category of your application, such as
Entertainment.

secondary_category

This parameter determines the second category of apps to which your app
belongs.

description

This parameter provides information regarding the description of your applica‐
tion in iTunes Connect.

keywords

The value of this parameter is an array of strings that provide the keywords in
iTunes with which users can search for your app.

release_notes

You can provide your release notes for this build by providing a value to this
parameter.

See Also
Recipe 1.7

48 | Chapter 1: Continuous Integration and Delivery

CHAPTER 2

Snapshot Testing

Snapshot testing helps you uncover errors that cause unwanted changes to your app’s
user interface. In this process, you take one view at a time, capture snapshots of that
view in different simulators and different resolutions, and record those snapshots as
reference images. After you are done recording the “correct” state of your application
views, you can then run your snapshot tests in “test” mode instead of “record” mode,
in order to compare the output of the new code with the state that you recorded ear‐
lier. If the images match (allowing for a certain percentage of mismatch that you set),
the snapshot test passes. Otherwise, you get a failure. If any differences are found, you
can go through the generated report to find out what has changed in the UI and why.

Snapshot testing allows you to trap unwanted changes to your user interface very
effectively. It’s important to use if you or your colleagues touch UI code constantly
and you risk getting regression bugs on it. That could happen if you are working on a
new code base and building it from the ground up, or even if you are working on a
well-established code base that has few or no UI tests and a little change to the code
could cause unwanted changes to the UI.

Xcode has very powerful built-in UI testing tools, but lacks the ability to do snapshot
testing. An example of UI testing is to ask Xcode to press a button, wait x number of
seconds, then compare the label of a button that might appear on the screen with a
certain value. Xcode’s UI testing requires you to anticipate what might change (a label
on a button, for example) and explicitly create a test for each change you anticipate.
Snapshot testing, on the other hand, finds unanticipated changes.

In this chapter, we will look at Facebook’s open source library, iOS Snapshot Test
Case, which is available on GitHub and is being actively developed by developers
around the world as well as at Facebook itself. The library ships as a CocoaPod (or
simply said, Pod) that you can easily integrate into your project. You will learn all
about that, and a lot more, in this chapter.

49

www.allitebooks.com

https://github.com/facebook/ios-snapshot-test-case
http://www.allitebooks.org

2.1 Setting Up Snapshot Testing
Problem
You want to start using iOS snapshot test cases but don’t know where to begin.

Solution

I’m going to assume that you are creating a new application from
scratch during these steps. If you have an existing application, you
just need to ensure that you use the instructions provided here to
integrate the Pod for this library and set up your UI tests as men‐
tioned here.

When you believe that the state of your UI is what you want, you will need to ask the
Facebook snapshot test library case to generate screenshots of your user interface
(recording mode). The next time that you run the tests (not in recording mode), new
screenshots will be generated but not saved to disk, and these new screenshots will be
compared to the original screenshots. If there are any differences found, these differ‐
ences will be saved to disk for your future reference.

Follow these steps:

1. If you have not already installed CocoaPods on your computer, do so by follow‐
ing the instructions provided at the CocoaPods website.

2. Create a single view application in Xcode for your iOS project.
3. Enter SnapshotTesting as the name of the project (see Figure 2-1) and make sure

to check the box that includes unit tests (as opposed to UI tests) in the project.

50 | Chapter 2: Snapshot Testing

http://cocoapods.org

Figure 2-1. Creating a new project with a UI test target

4. Open Terminal in the root directory of your newly generated project and issue
the following command: pod init.

5. Also in Terminal, issue the command vim Podfile (or whatever editor you use
on plain text files) to start editing your Podfile.

6. Add the FBSnapshotTestCase Pod to your Podfile under the UI test target, as
shown in the following excerpt, and then save the Podfile and exit Vim:
platform :ios, '10.0'

target 'SnapshotTesting' do
 use_frameworks!

 target 'SnapshotTestingTests' do
 inherit! :search_paths
 use_frameworks!
 pod 'FBSnapshotTestCase'
 end

end

7. Run the pod update command in Terminal to update your repository with all the
pods offered on GitHub, and then install the latest snapshot pod in your project.

2.1 Setting Up Snapshot Testing | 51

www.allitebooks.com

http://www.allitebooks.org

8. You will now be prompted by CocoaPods to close your Xcode project and open
the newly created Xcode Workspace that contains both your Xcode project and
the CocoaPods project that was injected into your existing project. Open the
workspace file now in Xcode.

9. Press Cmd-B in Xcode to build your project and ensure that it builds successfully.
10. Press Cmd-Shift-U to build your test target and ensure that it goes through as

expected.
11. Define where in your scheme CocoaPods will save your snapshot images and the

differences between the original and current views by holding down the Alt key
on your keyboard and clicking the Play button in Xcode.

12. In the Edit Schemes screen (see Figure 2-2) that opens up now, make sure the
Run scheme is selected and then click the Arguments tab. You are going to add
two new environment variables to that scheme to help your snapshot SDK deter‐
mine where to save the snapshots.

Figure 2-2. Arguments and environment variables for a run

13. Add two keys and values to your environment variables, as shown in Figure 2-3:
IMAGE_DIFF_DIR, with a value of $(SOURCE_ROOT)/$(PROJECT_NAME)Tests/Fail
ureDiffs, and FB_REFERENCE_IMAGE_DIR, with a value of $(SOURCE_ROOT)/$
(PROJECT_NAME)Tests/ReferenceImages.

52 | Chapter 2: Snapshot Testing

Figure 2-3. Place the two new arguments for snapshot testing in the Run scheme

Discussion
Snapshot testing can be very important if you are working on a modular UI, such as a
newspaper application where your article is made out of components such as images,
paragraphs, links, and more. A single change in the font, say from 17 points to 18
points, might not be noticeable to a colleague of yours who is a tester, but will be
immediately detected by snapshot tests.

Facebook’s snapshot test case Pod allows you to run your application in recording
mode on any simulator of your choice, or a combination of simulators. In this mode,
the snapshot test case Pod will generate screenshots of the parts of your application
UI that you specify, and will save those screenshots to disk. Once it’s done generating
the screenshots in recording mode, you can disable the recording mode by modifying
a flag in your test code, as you will see Recipe 2.2). At this point, when you run your
snapshot test cases again, new and temporary screenshots will be created for your UI
and then compared to the permanently stored screenshots on disk. If there are any
differences, they will be saved to disk as images for your future reference.

See Also
Recipe 2.2

2.1 Setting Up Snapshot Testing | 53

www.allitebooks.com

http://www.allitebooks.org

2.2 Recording Snapshots
Problem
You want to record a snapshot of a view inside your application while you know it is
the right reference image, so that later you can compare the snapshot to any changes
that might be made during development, thus catching possible errors.

Solution
Follow these steps:

1. For the sake of this demonstration, create a new class in your application and call
it MyView, of type UIView.

2. Write the following code in the app. This code essentially fills the entire view with
black and then draws a red ellipse in the middle:
import UIKit

class MyView: UIView {

 override func draw(_ rect: CGRect) {

 guard let context = UIGraphicsGetCurrentContext() else {return}

 let backgroundColor = UIColor.black.cgColor

 context.setFillColor(backgroundColor)
 context.fill(rect)

 let middleRect = rect
 .applying(CGAffineTransform(scaleX: 0.5, y: 0.5))
 .applying(CGAffineTransform(translationX: rect.width / 4.0,
 y: rect.height / 4.0))

 context.addEllipse(in: middleRect)
 let circleColor = UIColor.red.cgColor
 context.setFillColor(circleColor)
 context.fillPath()

 }

}

3. Add a new unit test case class to your unit test target and name your test class
MyViewSnapshotTest, of type FBSnapshotTestCase.

4. In your unit test’s file, ensure that you have imported FBSnapshotTestCase as a
dependency.

54 | Chapter 2: Snapshot Testing

5. Ensure also that you have imported your host target as a dependency in your unit
test file, using @testable import SnapshotTesting.

6. In the setUp() method of your unit test, enable recording mode:
override func setUp() {
 super.setUp()

 recordMode = true

}

7. Create a function in your unit test suite and then use the FBSnapshotVerifyView
function that is built into FBSnapshotTestCase to create your reference images:
import XCTest
import FBSnapshotTestCase
@testable import SnapshotTesting

class MyViewSnapshotTest: FBSnapshotTestCase {

 override func setUp() {
 super.setUp()

 recordMode = true

 }

 func testMyView(){

 let rect = CGRect(x: 0, y: 0, width: 200, height: 200)
 let view = MyView(frame: rect)
 FBSnapshotVerifyView(view)

 }

}

8. Press the Cmd-Shift-U keys on your keyboard to build your test project and
ensure that it builds fine.

9. Press the Cmd-U keys on your keyboard to run your test suite.

Discussion
After running your test suite, you should receive an error that says you are running in
recording mode and that after you have done your recordings, you should disable
recording mode (Figure 2-4).

2.2 Recording Snapshots | 55

www.allitebooks.com

http://www.allitebooks.org

Figure 2-4. Now that you have recorded your reference image, you need to turn off
recording mode

So, go into your setUp() function and replace recordMode = true with recordMode
= false (see Figure 2-5). Now press the Cmd-Shift-U keys on your keyboard fol‐
lowed by Cmd-U to run your test suite. You should observe that everything goes
smoothly and that your tests pass.

56 | Chapter 2: Snapshot Testing

Figure 2-5. After disabling recording mode in the test suite, the tests should pass

To ensure that your test suite is working as expected, go to the MyView.swift file
and change the background color from black to blue by changing the line
let backgroundColor = UIColor.black.cgColor to let backgroundColor =

UIColor.blue.cgColor. After you’ve done this, press the Cmd-Shift-U keys on your
keyboard followed by Cmd-U to run your test suite again. You should now receive an
error from the snapshot test (see Figure 2-6) telling you that the current state of
MyView differs from its correct state, which was captured while in recording mode
previously.

2.2 Recording Snapshots | 57

www.allitebooks.com

http://www.allitebooks.org

Figure 2-6. The snapshot test is failing

See Also
Recipes 2.1 and 2.3

2.3 Specifying Tolerance in Snapshot Tests
Problem
You have two almost identical versions of your view, where a property of your view
might change every now and then, but you don’t want this slight change to fail your
snapshot tests.

Solution
Use the tolerance property of the snapshot view to specify a percentage of pixels that
can differ while still allowing tests to consider the original and current snapshots as
the same. The default tolerance percentage of snapshot testing is 0, meaning that
there should be absolutely no difference in pixels in the original (reference) snapshot
and the current snapshot.

58 | Chapter 2: Snapshot Testing

Discussion
Imagine that you’re using the same MyView class that we implemented previously (see
Recipe 2.2), but that the red color that fills the screen can every now and then have a
different alpha from pure red, and you don’t want this change in the alpha of the red
color to affect your snapshot tests.

Start by going into recording mode, by setting the recordMode property of your test
case to true, and running your tests:

import XCTest
import FBSnapshotTestCase
@testable import SnapshotTesting

class MyViewSnapshotTest: FBSnapshotTestCase {

 override func setUp() {
 super.setUp()

 recordMode = true

 }

 func testMyView(){

 let rect = CGRect(x: 0, y: 0, width: 200, height: 200)
 let view = MyView(frame: rect)
 FBSnapshotVerifyView(view)

 }

}

Then get out of recording mode and use the tolerance property of the FBSnapshot
VerifyView(_:) function to specify a rough estimate of the percentage of changes
you expect to be occurring in your reference view before you fire a test failure:

import XCTest
import FBSnapshotTestCase
@testable import SnapshotTesting

class MyViewSnapshotTest: FBSnapshotTestCase {

 override func setUp() {
 super.setUp()

 recordMode = false

 }

 func testMyView(){

2.3 Specifying Tolerance in Snapshot Tests | 59

www.allitebooks.com

http://www.allitebooks.org

 let rect = CGRect(x: 0, y: 0, width: 200, height: 200)
 let view = MyView(frame: rect)

 FBSnapshotVerifyView(view, tolerance: 0.2)

 }

}

Now, in MyView, go and change the alpha channel of your red circle background color
to 0.9, instead of the default 1.0 alpha:

let circleColor = UIColor.red.withAlphaComponent(0.9).cgColor

Now if you build and run your tests with Cmd-Shift-U followed by Cmd-U, you will
notice that your tests pass as expected. If you left the tolerance at the default of 0 your
tests would fail, as expected, since you recorded the snapshot when the background
color of the circle in the middle of MyView was pure red but ran the tests when the
same color’s alpha channel was changed from 1.0 to 0.9.

See Also
Recipes 2.1 and 2.2

2.4 Analyzing Snapshot Test Case Failures
Problem
You just got a test failure in one of your snapshot tests and you want to know what
the problem is and why the test failed.

Solution
Follow these steps:

1. Open Finder to the root folder of your project.
2. Open the folder associated with your snapshot test case target. My main project is

called SnapshotTesting and the test target is called SnapshotTestingTests, so I will
open the SnapshotTestingTests folder.

3. You should now find a subfolder called FailureDiffs. Open that folder.
4. Open the folder associated with your test case. My test case is called MyView

SnapshotTest and the folder associated with it is called SnapshotTesting
Tests.MyViewSnapshotTest, which is the name of the test target followed by the
name of the test case.

5. Under this folder, you should then be able to locate three images associated with
every failure (see Figure 2-7): one image for the reference (original), the second

60 | Chapter 2: Snapshot Testing

for the new (incorrect) image, and the last one depicting the difference between
the two images.

Figure 2-7. The three images that are saved on disk, associated with one test case that
failed

Discussion
Snapshot tests are performed at the raw pixel level for your views. Using the diff
images, you should be able to tell what the problem is and how the images are
different.

The iOS Snapshot Test Case library that we are using can record images for various
simulators. If you run your test cases in recording mode on multiple simulators, dif‐
ferent reference images will be recorded for each simulator depending on that simula‐
tor’s properties, such as pixel density and resolution (see Figure 2-7). Therefore,
depending on where you received your failures, you might need to look through the
FailureDiffs folder a bit more deeply, first to find the folder associated with your test
case, and then to find the three images that are associated with that particular simula‐
tor. Every image saved under this folder is suffixed with the scale property of the
screen on that simulator. For instance, if your test cases failed on an iPhone 7 Plus
simulator, where the scale of the screen is 3x, your images will be suffixed with @3x.

If you search online, you can also find some Xcode plug-ins that allow you to see the
snapshot differences right within Xcode. But their availability depends heavily on the
Xcode version that you are running, so I will avoid recommending any particular
plug-ins.

See Also
Recipe 2.5

2.4 Analyzing Snapshot Test Case Failures | 61

www.allitebooks.com

http://www.allitebooks.org

2.5 Testing Table View Cell Snapshots
Problem
You want to perform snapshot tests to check whether particular cells have changed in
a table view.

Solution
Follow these steps:

1. In your project’s storyboard, ensure that you have assigned a storyboard identi‐
fier to the view controller that hosts your table view cells. We will use this identi‐
fier to load the cells using the table view controller, inside the snapshot test suite.

2. Ensure that every cell has its own reusable identifier that you can use to dequeue
them from the test suite.

3. In your snapshot test suite, find an instance of your main app’s bundle using the
Bundle(for:) initializer of the Bundle class.

4. Use the UIStoryboard(name:bundle:) initializer of the UIStoryboard class to
load your storyboard file into the test suite.

5. Use the instantiateViewController(withIdentifier:) method of the loaded
storyboard to create an instance of your view controller inside the test suite, and
pass your view controller’s storyboard identifier to this call.

6. Instantiate your cells using the tableView property’s dequeueReusableCell(with
Identifier:) method in the table view controller, and provide your cell’s identi‐
fier to this method.

7. Once you have the cell instance, you can get your cell’s view using the content
View property of the cell.

8. Pass the contentView property of your cell to the FBSnapshotVerifyView(_:)
function, while your test suite is in recording mode (see Recipe 2.2), and then
run your test suite.

9. Disable recording mode to go back to test mode, and then run your test suite to
compare the current state of your cells with the original images.

Discussion
In this recipe, I’ve already designed, in my main project, a table view controller (see
Figure 2-8), giving it a storyboard identifier of TableViewController so that we can
refer to it easily from the test suite. The TableViewController is of type UITableView
Controller, and its interface is prepared inside a storyboard file. Additionally, I’ve
created two prototype cells inside the table view controller, and I’ve assigned the value
of pinkFloyd to the first cell’s identifier and the value of symphonyX to the second

62 | Chapter 2: Snapshot Testing

cell’s identifier. We are going to use these names to dequeue these cells from our test
target and take snapshots of them.

Figure 2-8. Table in a table view

I’ve also created a unit test case inside Xcode in my test target and named it Table
ViewCellSnapshotTests. We will use this test case to test the two different cells that
our table view controller can display. Then, in the setUp() function of our test case,
we can get a reference to our table view controller so that the test functions inside this
test case can easily refer to it:

import XCTest
import FBSnapshotTestCase
@testable import SnapshotTesting

class TableViewCellSnapshotTests: FBSnapshotTestCase {

 var tableViewController: TableViewController!

 override func setUp() {
 super.setUp()

 let appBundle = Bundle(for: TableViewController.self)

 guard let tableViewController =
 UIStoryboard(name: "Main", bundle: appBundle)
 .instantiateViewController(withIdentifier: "TableViewController")
 as? TableViewController else{

 XCTFail()
 return

 }

 self.tableViewController = tableViewController

2.5 Testing Table View Cell Snapshots | 63

www.allitebooks.com

http://www.allitebooks.org

 recordMode = true
 }

The code sets the recordMode property of the test case to true,
meaning that when you run this test case, the snapshots will be cre‐
ated. Once that is done, you should change the value of this prop‐
erty to false in order to actually run your snapshot tests against
the original images.

Because the mechanism for loading both cells is the same, we can write a function
that can load any table view cell from our TableViewController as long as we pro‐
vide it with the cell’s identifier. In addition to loading these cells, this function can
perform the snapshot test:

func testCell(withIdentifier identifier: String){

 guard let cell = tableViewController
 .tableView.dequeueReusableCell(withIdentifier: identifier) else {

 XCTFail()
 return

 }

 let view = cell.contentView

 FBSnapshotVerifyView(view)

}

Last but not least, we will call our testCell(withIdentifier:) function from two
different test functions, to capture a snapshot from the cells’ content views and com‐
pare them with the originals:

func testPinkFloydCell() {

 testCell(withIdentifier: "pinkFloyd")

}

func testSymphonyXCell(){

 testCell(withIdentifier: "symphonyX")

}

See Also
Recipes 2.1 and 2.4

64 | Chapter 2: Snapshot Testing

CHAPTER 3

SiriKit

Siri has been an integral part of iOS since Apple bought this technology and integra‐
ted it with the iPhone in 2011. However, Siri has been a closed technology up to now,
and developers like you and me were not able to provide our own extensions.

iOS 11 has changed this situation. Now you can add your own extensions to Siri and
allow users to interact with your apps and the services inside your apps through Siri.

Imagine that you have a financial app that allows users to send up to $20 to family
and friends using their telephone numbers. The user can say, for instance, “Send 15
dollars to Max.” Then your app looks in the user’s address book to determine whether
there is a contact called “Max” listed. If there is, you allow the financial transaction to
go through. There are a few steps that you have to take in order to make your app Siri
compatible, and we will have a look at those first.

3.1 Setting Up Your Project for Siri
Problem
You want to enable interactions with Siri in your app.

Solution
Follow these steps, the details of which can be found in this recipe’s Discussion:

1. Create your app, if you don’t already have one.
2. Enable Siri capabilities in your target’s preferences in Xcode.
3. Add an Intents extension to your app as a new target.
4. Define your intents in the extension’s Info.plist file.

65

www.allitebooks.com

http://www.allitebooks.org

5. In your app’s Info.plist file, define the NSSiriUsageDescription key, along with a
message explaining why you are intending to use Siri in your application. This
message will be shown to the user when you attempt to ask for permission to
integrate into Siri.

6. Import the Intents framework into your app.
7. Call the requestSiriAuthorization(_:) class method of the INPreferences

class and ask the user for authorization to use Siri.
8. If the status is authorized, then you might need to wait a few minutes before Siri

indexes your app’s intents and understands that your app is going to need to
interact with Siri.

Discussion
Let’s consider the example of the user who interacts with Siri by saying something
like, “Send 15 dollars to Max.” Siri understands a few things from this message:

1. “Send” is the verb. From “dollars,” Siri understands that this is a financial intent.
2. From the phrase “15 dollars,” Siri understands that the quantity of this command

is 15.
3. From “Max,” Siri realizes that “Max” is the recipient of this financial transaction.

So now Siri knows what to do, but by default she doesn’t know how to do it. How
does she send the money? Siri therefore goes through the various apps and their
exposed intents to find out which ones allow financial transactions and then negoti‐
ates the rest with the found app, if any.

An intent says what your app can do with the help of Siri. Every intent is represented
by a class in the Intents framework. Some examples of these classes include:

INBookRestaurantReservationIntent

To reserve a place at a restaurant.

INCancelWorkoutIntent

To cancel an ongoing workout session.

INSendPaymentIntent

To send a payment to someone.

We are going to look at INSendPaymentIntent in detail in this chapter. This recipe’s
Solution outlined how you can integrate your app with Siri, but now let’s look at the
steps in more detail:

1. Create your app if you haven’t already created one. For the purposes of this
example, I created a single view app, as shown in Figure 3-1.

66 | Chapter 3: SiriKit

Figure 3-1. Create your app first

2. Give your app a product name (Figure 3-2), click Next, and save your project to
disk.

Figure 3-2. Give your app a name

3.1 Setting Up Your Project for Siri | 67

www.allitebooks.com

http://www.allitebooks.org

3. Select your project’s icon in the explorer pane on the lefthand side of Xcode, then
select your target from the list that says TARGETS. Under the Capabilities sec‐
tion on top, enable Siri (Figure 3-3).

Figure 3-3. Enable the Siri capability for your app

4. Open the Info.plist file of your app. Create a new key-value pair in it, setting the
key to NSSiriUsageDescription. For the value, enter a brief text message that
tells the user why you are attempting to integrate your app with Siri (Figure 3-4).

Figure 3-4. Tell the user why you are integrating with Siri

5. Import the Intents framework into your source code and then call the reques
tSiriAuthorization(_:) class method of the INPreferences class to request
access to Siri:

68 | Chapter 3: SiriKit

typealias SiriAccessCompletionHandler = (Bool) -> Void
func requestSiriAccess(
 completionHandler: @escaping SiriAccessCompletionHandler){

 INPreferences.requestSiriAuthorization {status in
 switch status{
 case .authorized:
 completionHandler(true)
 default:
 completionHandler(false)
 }
 }

}

6. Go to the Files menu and select New and then Target. On the screen that appears,
under the Application Extension section, choose Intents Extension (Figure 3-5)
and click Next.

Figure 3-5. Create an Intents extension for Siri

7. Give the Intents extension a name (Figure 3-6), then press Finish to save and add
it to the project. An Intents extension is your delegate through to Siri’s capabili‐
ties, and this extension is your window to your users, through Siri!

3.1 Setting Up Your Project for Siri | 69

www.allitebooks.com

http://www.allitebooks.org

Figure 3-6. Give your Intents extension a name

8. In your newly created Intents extension’s Info.plist file, go to the NSExtension key,
expand it down to NSExtensionAttributes, and further expand that down to
IntentsSupported and IntentsRestrictedWhileLocked. Under these two arrays
of strings, you can list the names of the classes (such as INSendPaymentIntent)
that your extension supports. Intents listed under the IntentsSupported key will
be supported by your app. Intents listed under IntentsRestrictedWhileLocked
will require the user’s device to be locked before those intents can be resolved.
You can use this latter functionality to create more secure intents, such as when
you want the user to be able to send money to a friend or a family member.

The INSendPaymentIntent that we want to use requires the device to be locked for
the sake of security, so you have to list it under IntentsSupported to indicate that
your app supports this intent and under IntentsRestrictedWhileLocked to tell iOS
that this intent requires the user’s device to be locked before the user can use it.

If you forget to place your intent under IntentsSupported, it will
not be recognized at all by iOS. And even worse, if your Intents
Supported is empty, you won’t even be able to compile and run
your app on an iOS device.

70 | Chapter 3: SiriKit

The following section from an Info.plist file shows the Intents target that we have just
set up:

<plist version="1.0">
 <dict>
 <key>NSExtension</key>
 <dict>
 <key>NSExtensionAttributes</key>
 <dict>
 <key>IntentsRestrictedWhileLocked</key>
 <array>
 <string>INSendPaymentIntent</string>
 </array>
 <key>IntentsSupported</key>
 <array/>
 </dict>
 <key>NSExtensionPointIdentifier</key>
 <string>com.apple.intents-service</string>
 <key>NSExtensionPrincipalClass</key>
 <string>$(PRODUCT_MODULE_NAME).IntentHandler</string>
 </dict>
 </dict>
</plist>

You can now run your app on a device. It will take a while before Siri can recognize
that your app supports Siri intents, so give it a few minutes before asking Siri any
questions that can be handled with INSendPaymentIntent.

3.2 Defining an Intent Handler
Problem
You want to handle a specific Siri intent, and you want to be able to handle all its
related delegate messages to and from Siri.

Solution
Follow these steps, assuming that you have created your Intents extension target as
discussed in Recipe 3.1:

1. Create a new Cocoa Touch class under your Intents extension target (Figure 3-7).

3.2 Defining an Intent Handler | 71

www.allitebooks.com

http://www.allitebooks.org

Figure 3-7. Create a new handler class for the intent

2. In the Subclass field, enter the class name of the intent that you wish to handle,
such as INSendPaymentIntent. Then enter the name of the class that you wish to
create in your own project, such as SendPaymentHandler (Figure 3-8). Proceed to
the next screen to add it to your Intents extension target and save the file on disk.

Figure 3-8. Give your intent class a name

72 | Chapter 3: SiriKit

3. The newly created file will be opened for you. Xcode will complain that this file
isn’t compilable, because Xcode doesn’t import the Intents framework by
default, so help Xcode by importing it:
import UIKit
import Intents

class SendPaymentHandler: INSendPaymentIntent {

}

4. Every intent handler has to conform to a protocol named XHandling, where X
is the name of the intent class. For instance, if your intent handler is called
INSendPaymentIntent, your intent handler class must conform to the
INSendPaymentIntentHandling protocol:
import UIKit
import Intents

class SendPaymentHandler: INSendPaymentIntent, INSendPaymentIntentHandling {

 func confirm(intent: INSendPaymentIntent,
 completion: @escaping (INSendPaymentIntentResponse) -> Void) {

 }

 func handle(intent: INSendPaymentIntent,
 completion: @escaping (INSendPaymentIntentResponse) -> Void) {

 }

 //optional
 func resolvePayee(for intent: INSendPaymentIntent,
 with completion: @escaping (INPersonResolutionResult)
 -> Void) {

 }

 //optional
 func resolveCurrencyAmount(
 for intent: INSendPaymentIntent,
 with completion: @escaping (INCurrencyAmountResolutionResult) -> Void) {

 }

 func resolveNote(for intent: INSendPaymentIntent,
 with completion: @escaping (INStringResolutionResult)
 -> Void) {

3.2 Defining an Intent Handler | 73

www.allitebooks.com

http://www.allitebooks.org

 }

}

5. Open the IntentHandler.swift file that was created for you when you created your
Intents extension target. In the handle(for:) method of INExtension, return an
instance of your newly created SendPaymentHandler class whenever an intent of
type INSendPaymentIntent is about to be resolved:
import Intents

class IntentHandler: INExtension{

 override func handler(for intent: INIntent) -> Any {

 if intent is INSendPaymentIntent{
 return SendPaymentHandler()
 } else {
 return self
 }

 }

}

Discussion
If you have followed all the steps in this recipe’s Solution, you can now choose the
Intents extension target that Xcode created for you when you created the target in
Recipe 3.1 and then press the Run button in Xcode. A dialog will appear asking you
to choose the app to which you want to attach your intent. In this dialog, choose Siri
(Figure 3-9) and then press the Run button.

74 | Chapter 3: SiriKit

Figure 3-9. You have to attach your Intents extension to Siri to be able to test it

This will run Siri with your extension attached to it. Once Siri is up and running, say
“Send 15 dollars to Anthony.” This will cause Siri to ask you to confirm that you want
to make this payment using the app that we have been working on (Figure 3-10).

3.2 Defining an Intent Handler | 75

www.allitebooks.com

http://www.allitebooks.org

Figure 3-10. Siri is asking us if we want the payment to be handled by our app

If this is the first time you are giving this permission, Siri will ask to access your app’s
data with a dialog similar to Figure 3-11.

76 | Chapter 3: SiriKit

Figure 3-11. Siri needs access to your app’s data before it can integrate with the app for
the first time

Press the Siri Settings button that is provided to you and allow access (Figure 3-12).

3.2 Defining an Intent Handler | 77

www.allitebooks.com

http://www.allitebooks.org

Figure 3-12. Allow Siri to access the app and integrate itself into it

Now if you go back to Siri and repeat this request, your extension will be run. How‐
ever, it will time out after a while, because we didn’t really implement any of the
required callbacks in our shiny new SendPaymentHandler class. You will learn how to
do that in the upcoming recipes.

See Also
Recipe 3.1

3.3 Resolving Ambiguity in an Intent
Problem
Your intent delegate finds multiple entities that match what Siri asked you to operate
on. For example, multiple people might match the name to which the user wants to
send a payment, multiple activities might match the one the user asked to be paused,
and so on.

This recipe builds on what we discussed in Recipe 3.2, so it is
essential that you read and run that recipe first before proceeding
with this one.

78 | Chapter 3: SiriKit

Solution
Use the ambiguity APIs that are provided in every XHandling protocol, where X is the
intent that you are working with. If you are working with sending payments from
within your intents, you have to create a subclass of INSendPaymentIntent and then
implement the delegate methods in INSendPaymentIntentHandling. One of these
methods is resolvePayee(for:with:), which gives you the payee who Siri believes to
be the user specified along with a completion handler that you can call. The comple‐
tion handler contains a value of type INPersonResolutionResult that specifies
whether:

• The given payee resolves unambiguously to a payee that your app recognizes.
This is a success.

• The given payee doesn’t resolve to any payees that your app can recognize. This is
a failure.

• The given payee resolves to more than one recognized payee in your app. This is
an ambiguity.

Discussion
Let’s examine a case where the user says, “Send 15 dollars to Anthony” but has two
contacts named Anthony:

• Anthony Foo
• Anthony Bar

People that the user can pay should be of type INPerson, so let’s define these two peo‐
ple in our app by creating a function that can create an instance of this class, accept‐
ing a first name, last name, and other pertinent information, including the telephone
number (which is necessary for payment processing purposes):

import UIKit
import Intents

class SendPaymentHandler: INSendPaymentIntent, INSendPaymentIntentHandling {

 private func person(givenName: String,
 lastName: String,
 imageName: String,
 telephone: String) -> INPerson{

 let personHandle = INPersonHandle(value: telephone, type: .phoneNumber)
 var nameComponents = PersonNameComponents()
 nameComponents.givenName = givenName
 nameComponents.familyName = lastName
 let displayName = "\(givenName) (\(lastName))"
 let image = INImage(named: imageName)

3.3 Resolving Ambiguity in an Intent | 79

www.allitebooks.com

http://www.allitebooks.org

 return INPerson(personHandle: personHandle,
 nameComponents: nameComponents,
 displayName: displayName,
 image: image,
 contactIdentifier: nil, customIdentifier: nil)

 }

 ...

We can then proceed to create these two person instances and designate one of them
as the default person to whom all payments are made:

private var anthonyFoo: INPerson{
 return person(givenName: "Anthony",
 lastName: "Foo",
 imageName: "Alert",
 telephone: "111-222-333")
}

private var anthonyBar: INPerson{
 return person(givenName: "Anthony",
 lastName: "Bar",
 imageName: "Burning",
 telephone: "444-555-666")
}

var persons: [INPerson]{
 return [anthonyFoo, anthonyBar]
}

var defaultPerson: INPerson{
 return anthonyFoo
}

Then we need to start implementing the resolvePayee(for:with:) function of our
payment delegate. In here, we first look at the payee that Siri has interpreted as the
intended recipient of the payment, and then attempt to find this payee in the list of
people that our app supports sending money to. If we find such a person, we proceed.
If we find more than one person with the given name, we ask Siri to resolve the prob‐
lem. Siri does this by running a procedure called a disambiguation. Siri shows the user
a dialog containing all the possible payees, prompts the user to choose the intended
recipient of the payment, and then calls a completion handler to carry out the opera‐
tion.

Finally, if we don’t find any person with the given name, we provide the default per‐
son that we defined just a few seconds ago and ask the user to confirm whether she
wants to send the payment to this user:

func resolvePayee(
 for intent: INSendPaymentIntent,

80 | Chapter 3: SiriKit

 with completion: @escaping (INPersonResolutionResult) -> Void) {

 guard let payee = intent.payee else {

 let result = INPersonResolutionResult
 .confirmationRequired(with: defaultPerson)

 completion(result)

 return
 }

 //do we have a person with the given display name already?
 if let foundPerson =
 persons.filter({$0.displayName == payee.displayName}).first{
 //we found a person, we can confirm that this person exists and can
 //be used
 let result = INPersonResolutionResult.success(with: foundPerson)
 completion(result)
 return
 }

 var foundPersons = [INPerson]()
 for person in persons{
 if person.nameComponents?.givenName?.lowercased() ==
 payee.nameComponents?.givenName?.lowercased(){
 foundPersons.append(person)
 }
 }

 let result: INPersonResolutionResult
 switch foundPersons.count{
 case 0:
 //we found nobody that matches the required user
 result = .confirmationRequired(with: defaultPerson)
 case 1:
 //we did find the user
 result = INPersonResolutionResult.success(with: foundPersons[0])
 default:
 //we found more than 1 user
 result = INPersonResolutionResult.disambiguation(with: foundPersons)
 }

 completion(result)

}

When we have more than one match, we trigger Siri’s disambiguation, passing as an
argument the list of matches we created.

When sending payments we have to also code the resolveCurrencyAmount

(for:with:) function of INSendPaymentIntentHandling. In there we will be given

3.3 Resolving Ambiguity in an Intent | 81

www.allitebooks.com

http://www.allitebooks.org

the amount of money that the person is trying to send and the currency in which
she is sending it. Then we can provide a resolution of type INCurrency

AmountResolutionResult, where we can either:

• Confirm that the amount and the currency are supported.
• Say that the amount and/or currency has multiple matches and requires a disam‐

biguation.
• Ask the user to confirm whether a change that we made to the given amount or

currency is acceptable. This option is helpful in cases where the user specifies a
currency that is not supported by our app or requests sending an amount above
the maximum allowed. For example, if the user asks to send a friend $500 (which
is above our app’s $20 limit), the app would change the amount to $20 and ask
the user to confirm that this is acceptable.

So, let’s define the list of currencies that we support:

enum SupportedCurrencies : String{
 case USD
 case SEK
 case GBP

 static func allValues() -> [String]{
 let allValues: [SupportedCurrencies] = [.USD, .SEK, .GBP]
 return allValues.map{$0.rawValue}
 }

 static var defaultCurrency = SupportedCurrencies.USD

}

And then define our minimum and maximum payment values:

func resolveCurrencyAmount(
 for intent: INSendPaymentIntent,
 with completion: @escaping (INCurrencyAmountResolutionResult) -> Void) {

 let minimumPayment = 5.0
 let maximumPayment = 20.0
 let defaultCurrencyAmount = INCurrencyAmount(amount: 15,
 currencyCode: "USD")

 ...

When the user makes a request to send money, we can then check whether she has
specified a valid currency value and amount. If not, we will provide our default cur‐
rency and amount and ask the user to confirm them:

guard let givenCurrency = intent.currencyAmount,
 let currencyCode = givenCurrency.currencyCode,
 let currencyAmount = givenCurrency.amount else {
 let result = INCurrencyAmountResolutionResult

82 | Chapter 3: SiriKit

 .confirmationRequired(with: defaultCurrencyAmount)
 completion(result)
 return
}

We then look for the given currency code in the array of our supported currencies:

let currencyAmountDoubleValue = currencyAmount.doubleValue

// do we support this currency code?
let foundCurrencies = SupportedCurrencies.allValues()
 .filter{$0 == currencyCode}
let foundCurrencyCount = foundCurrencies.count

Depending on whether we could find this currency code, we decide how to call the
completion handler:

let result: INCurrencyAmountResolutionResult

switch foundCurrencyCount{

case 0:
 result = INCurrencyAmountResolutionResult
 .confirmationRequired(with: defaultCurrencyAmount)

case 1 where currencyAmountDoubleValue >= minimumPayment &&
 currencyAmountDoubleValue <= maximumPayment:
 result = .success(with: givenCurrency)

case 1:
 // the amount is not acceptable, ask for confirmation
 let amount: NSDecimalNumber = 20
 let newAmount = INCurrencyAmount(amount: amount,
 currencyCode: currencyCode)
 result = .confirmationRequired(with: newAmount)

default:
 // the currency code gave more than one result

 var amounts = [INCurrencyAmount]()
 for foundCurrency in foundCurrencies{
 let amount = INCurrencyAmount(amount: currencyAmount,
 currencyCode: foundCurrency)
 amounts.append(amount)
 }

 result = .disambiguation(with: amounts)
}

completion(result)

We also have to handle the resolveNote(for:with) method of INSendPayment
IntentHandling. This lets the user who is making the payment attach a note of type

3.3 Resolving Ambiguity in an Intent | 83

www.allitebooks.com

http://www.allitebooks.org

String to be sent alongside the payment to the recipient. Here we also have the
chance to either accept that note or resolve any ambiguity in it. In this example, we
simply override any given note with a constant string for the sake of simplicity, but
you get the idea!

func resolveNote(
 for intent: INSendPaymentIntent,
 with completion: @escaping (INStringResolutionResult) -> Void) {

 completion(.success(with: "This is your payment"))

}

So now if the user asks Siri to “Send 15 dollars to Anthony,” she will first see the dia‐
log shown in Figure 3-13, asking for confirmation of whether she would like to use
SiriApp.

Figure 3-13. Siri confirming which app should be used to make the payment

84 | Chapter 3: SiriKit

After the user confirms that she would like to use SiriApp, Siri will ask the user to
clarify the intended recipient, since there are two instances of Anthony in our app
(Figure 3-14).

Figure 3-14. Resolving ambiguity in the recipient of the payment

Then we will resolve the payment amount. Because $15 is in our acceptable range,
Siri will proceed to call our delegate’s confirm(sendPayment:completion:) method,
which we have not yet implemented.

See Also
Recipe 3.1

3.3 Resolving Ambiguity in an Intent | 85

www.allitebooks.com

http://www.allitebooks.org

3.4 Reporting Progress for Resolving an Intent
Problem
You need some time to handle a Siri intent and you want to be able to report progress
to the user.

This recipe builds on what you learned in Recipe 3.3, so I strongly
suggest reading that recipe before continuing further.

Solution
Implement the confirm(_:completion:) method of your XHandling protocol, where
X is the name of the intent you are handling, such as INSendPaymentIntentHandling.

Discussion
In this recipe, we will implement confirmation in INSendPaymentIntentHandling.
The confirm(intent:completion:) method requires you to call the given comple‐
tion handler with a parameter of type INSendPaymentIntentResponse. The initializer
for this response is:

init(code: INSendPaymentIntentResponseCode, userActivity: NSUserActivity?)

The response code of INSendPaymentIntentResponseCode is the most important
thing to note here, because this is the response code that you can change and send
back every now and then, as you progress through the payment, to the user. Some of
the values in INSendPaymentIntentResponseCode are:

ready

We are ready to begin making the payment. No other transfers are in progress
right now.

inProgress

We are confirming that the payment can in fact be made.

success

We successfully made the payment.

failure

We could not confirm that making the payment was possible.

Keep in mind that we will not do the actual work of processing the payment in this
method. Instead, we will determine whether the payment is possible—for instance, by

86 | Chapter 3: SiriKit

checking that the user has sufficient funds in her bank account. Once this is con‐
firmed, we will have to do the actual work of processing the payment (you will see
how this is done in Recipe 3.5).

Let’s have a look at an example. In our confirm(intent:completion:) method, the
completion parameter accepts a block object that has one parameter of type INSend
PaymentIntentResponse, which we need to call when we confirm whether the pay‐
ment can be made. The INSendPaymentIntentResponse class instance can be instan‐
tiated with a parameter of type INSendPaymentIntentResponseCode, so in our
method we can create a local function that can easily report these codes directly to the
completion handler without us having to create an instance of INSendPayment
IntentResponse every time:

func confirm(intent: INSendPaymentIntent,
 completion: @escaping (INSendPaymentIntentResponse) -> Void) {

 func report(code: INSendPaymentIntentResponseCode){
 completion(INSendPaymentIntentResponse(code: code, userActivity: nil))
 }

 ...

When we begin to confirm whether the payment is possible, we report the
code .ready so that Siri knows we have begun. Then we confirm that the given pay‐
ment information is bundled within the intent—otherwise, we report .failure:

report(code: .ready)

guard let amount = intent.currencyAmount?.amount?.doubleValue else {
 report(code: .failure)
 return
}

Right after that, we confirm whether the payment value is within the allowed range. If
it’s less than the minimum we report .failurePaymentsAmountBelowMinimum, and if
it’s more than the maximum we report .failurePaymentsAmountAboveMaximum:

let minimumPayment = 5.0
let maximumPayment = 20.0

if amount < minimumPayment{
 report(code: .failurePaymentsAmountBelowMinimum)
 return
}

if amount > maximumPayment{
 report(code: .failurePaymentsAmountAboveMaximum)
 return
}

3.4 Reporting Progress for Resolving an Intent | 87

www.allitebooks.com

http://www.allitebooks.org

After we have confirmed the amount, we can signal that we have started the work of
checking the user’s bank account for sufficient funds (and any other checks that we
want to do) by reporting the .inProgress code. Once all the checks are completed,
we report either .failure or .success:

// do the actual work here
report(code: .inProgress)

// when done, signal that you have either successfully finished
// or failed
report(code: .success) // or .failure

See Also
Recipes 3.1 and 3.2

3.5 Handling an Intent
Problem
You have resolved all ambiguities regarding a Siri intent that you are handling and
have also confirmed that the intent can in fact go through successfully. Now you have
to actually see the process through and handle the intent.

Solution
Implement the handle(_:completion:) method of your XHandling protocol, where
X is the name of the intent you are handling, such as INSendPaymentIntentHandling.

Discussion
In the case of INSendPaymentIntentHandling, the method that you need to program
is called handle(intent:completion:) and the completion block requires you to
send a parameter of type INSendPaymentIntentResponse, which we already dis‐
cussed in Recipe 3.4.

To ensure that Siri can show the user a consistent flow of progress updates while the
intent is being handled by your extension, Apple recommends that the methods
handle(intent:completion:) and confirm(intent:completion:) report almost
identical, if not exactly identical, INSendPaymentIntentResponseCode codes, so that
Siri can show the user a consistent flow of progress updates while the intent is being
handled by your extension. For instance, if during the confirmation stage you go
through the codes of .ready, .inProgress, and then .success or .failure, you
should do the same in the handling stage. The only difference is that when you han‐
dle the payment, you won’t have to look again at the conditions, such as the amount

88 | Chapter 3: SiriKit

of money being transferred, that you have already checked during the confirmation
stage. So, your handling stage will hopefully be less complicated.

Let’s now have a look at an example based on what we learned in Recipe 3.4. We
define have a local function that can report our codes to the completion handler:

func handle(intent: INSendPaymentIntent,
 completion: @escaping (INSendPaymentIntentResponse) -> Void) {

 func report(code: INSendPaymentIntentResponseCode){
 completion(INSendPaymentIntentResponse(code: code, userActivity: nil))
 }

 ...

Then we extract the amount that has to be transferred and ensure that it is present:

report(code: .ready)

guard let amount = intent.currencyAmount?.amount?.doubleValue else {
 report(code: .failure)
 return
}

Last but not least, we make the payment and then report either .success or .failure
to the user:

// here you don't have to check the amount again, as we have done that
// already in confirm(sendPayment:completion:)

// send the payment and then report success or failure
report(code: .success)

See Also
Recipe 3.4

3.5 Handling an Intent | 89

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4

Measurements and Units

We’ve all been there! You need to convert one unit to another, and you begin your
journey, most of the time, by Googling what the conversion should be. You can now
use some built-in structures to represent and convert your units.

The following classes and structures appear throughout this chapter:

Unit

The base class for all the units that are in the SDK itself. This class defines a symbol
for the unit, such as m for meters.

Dimension

The class that inherits from Unit and defines the converter to be used between vari‐
ous units.

UnitLength, UnitMass, and the like
Basic units that inherit from Dimension. Each unit offers alternative ways of repre‐
senting a particular measure, such as length or mass. Each unit also standardizes the
various symbols for its measure, such as m for meters, km for kilometers, and smi for
Scandinavian miles (with each Scandinavian mile being equal to 10 kilometers).

Measurement
The base structure for defining a value with a unit. Every measurement has a value of
type Double and a unit of type Unit.

4.1 Converting Between and Working with Length Units
Problem
You want to be able to represent values with the unit of length, such as kilometers and
miles, and would like to be able to perform some basic tasks on them, such as

91

www.allitebooks.com

http://www.allitebooks.org

converting one unit to another, or adding and subtracting values represented in dif‐
ferent units.

Solution
Follow these steps:

1. Represent your values first by constructing instances of Measurement with your
given value. Use one of the units defined in UnitLength as the unit for your
measurement, such as UnitLength.meters.

2. After you have your Measurement instances, you can use the various operators
such as + and - between them as long as they are from the same base unit.

3. You can also use the converted(to:) function of your Measurement structure
instances to convert your values to another unit type of the same base unit. For
instance, converting meters to miles is fine, as they are both from the UnitLength
base unit, but converting kilometers to hours is not going to work because hours
are represented by the UnitDuration unit.

Discussion
Your values are representable by instances of the Measurement structure with a given
unit. Let’s create two values, one for 5 meters and the other for 1 kilometer:

let meters = Measurement(value: 5, unit: UnitLength.meters) // 5.0 m
let kilometers = Measurement(value: 1, unit: UnitLength.kilometers) // 1.0 km

You can then check out the return value of type(of:) on these values to see what
data type they have:

type(of: meters) // Measurement<UnitLength>
type(of: kilometers) // Measurement<UnitLength>

Their data type is Measurement, which itself is generic, and its generic parameter is set
to UnitLength since both values are lengths.

You can then simply add these values together if you want:

let result = meters + kilometers // 1005.0 m
type(of: result) // Measurement<UnitLength>

This + operator is defined in the Foundation framework as follows:

public func +<UnitType : Dimension>(lhs: Measurement<UnitType>,
 rhs: Measurement<UnitType>) -> Measurement<UnitType>

Eventually, you can convert the result into various other units of length, such as
miles:

92 | Chapter 4: Measurements and Units

let finalKilometers = result.converted(to: .kilometers) // 1.005 km
let finalMeters = result.converted(to: .meters) // 1005.0 m
let finalMiles = result.converted(to: .miles) // 0.6224 mi
let finalScandinavianMiles = result.converted(to: .scandinavianMiles)
 // 0.1005 smi

If you wish to present these values to the user, which are of type Measurement<Unit>,
read the value and the unit.symbol properties from them. The value will be of type
Double and the unit.symbol of type String. This gives you the information you need
to display values on UI components, such as a UILabel instance.

See Also
Recipe 4.2

4.2 Working with and Switching Between Angle Units
Problem
You want to use, convert, represent, and display angles in your applications without
having to convert them manually.

Solution
Just like length units (see Recipe 4.1), values that represent an angle can also be
encapsulated inside an instance of the Measurement structure. The unit is UnitAngle.

Discussion
Let’s have a look at how you can represent 100 gradians in your application:

let gradians = Measurement(value: 100, unit: UnitAngle.gradians) // 100.0 grad

You can then convert this value to degrees using the convert(to:) function of the
Measurement structure:

gradians.converted(to: UnitAngle.degrees) // 90 degrees

And if you read the return value of type(of:) on this value, you will get the value of
Measurement<UnitAngle>:

type(of: gradians) // Measurement<UnitAngle>

Similarly, you can represent degrees with the Measurement structure:

let degrees = Measurement(value: 180, unit: UnitAngle.degrees) // 180.0

And just like the + operator we saw used before with Measurement types, you also
have a - operator that is defined like so:

4.2 Working with and Switching Between Angle Units | 93

www.allitebooks.com

http://www.allitebooks.org

public func -<UnitType : Dimension>(lhs: Measurement<UnitType>,
rhs: Measurement<UnitType>) -> Measurement<UnitType>

You can use this operator between any two instances of the Measurement structure as
long as their base units are the same:

let total = gradians - degrees // -90 degrees

Once you have your angle measurements, you can convert them to each other:

let finalGradians = total.converted(to: .gradians) // -100 grad
let finalDegrees = total.converted(to: UnitAngle.degrees) // -90 degrees

Additionally, you can show this value to your users with the value: Double and
unit.symbol: String properties of your Measurement instance:

let string = "\(finalDegrees.value) \(finalDegrees.unit.symbol)"
 // "-90 degrees"

See Also
Recipe 4.1

4.3 Representing and Converting Between Durations of
Time
Problem
You want to represent units of time with their values and the type of unit they repre‐
sent, such as hours or seconds, but you don’t want to fuss with counting in bunches of
60 to calculate conversions between units.

Solution
To solve this problem, instantiate the Measurement structure with your time values
and use the UnitDuration for your base unit. You can then use +, -, and other basic
operators between your units without worrying about what unit they are represented
with, as long as they come from the UnitDuration base unit.

Discussion
Let’s have a look at an example of how we can convert hours, minutes, and seconds to
one another, but let’s spice it up a little bit. It’s clear that we can use Measurement to
represent all three values with UnitDuration, but we can instead extend Double so
that any number can then be turned into an hour, minute, or second value repre‐
sented by Measurement:

94 | Chapter 4: Measurements and Units

extension Double{
 var hours: Measurement<UnitDuration>{
 return Measurement(value: self, unit: UnitDuration.hours)
 }
 var minutes: Measurement<UnitDuration>{
 return Measurement(value: self, unit: UnitDuration.minutes)
 }
 var seconds: Measurement<UnitDuration>{
 return Measurement(value: self, unit: UnitDuration.seconds)
 }
}

Now that this is done, we can put together a few values using these properties:

let trainJourneyDuration = (1.25).hours
trainJourneyDuration.converted(to: .minutes) // 75.0 min

let planeJourneyDuration = (320.0).minutes
planeJourneyDuration.converted(to: .hours) // 5.333 hr

let boatJourneyDuration = (1500.0).seconds
boatJourneyDuration.converted(to: .minutes) // 25.0 min

These values each represent a sub-journey of a bigger journey from one destination
to another and they are in minutes, hours, and seconds. We can put them all together
inside an array and calculate their total value in minutes, using each Measurement
instance’s convert(to:) method:

let journeys = [
 trainJourneyDuration,
 planeJourneyDuration,
]

let finalJourneyDurationInMinutes = journeys.reduce(0.0){
 return $0 + $1.converted(to: UnitDuration.minutes).value
}

finalJourneyDurationInMinutes // 395

Representing time with Measurement makes it much easier to work with existing
classes such as Timer. For instance, if you want a timer that runs for n seconds, all you
have to do is create a Measurement instance of type UnitDuration.seconds and then,
once the measurement’s value property is less than or equal to 0, you can invalidate
the timer:

import UIKit
import PlaygroundSupport

PlaygroundPage.current.needsIndefiniteExecution = true

extension Double{
 var seconds: Measurement<UnitDuration>{

4.3 Representing and Converting Between Durations of Time | 95

www.allitebooks.com

http://www.allitebooks.org

 return Measurement(value: self, unit: UnitDuration.seconds)
 }
}

var remainingTime = Measurement(value: 10, unit: UnitDuration.seconds)
Timer.scheduledTimer(withTimeInterval: 1.0, repeats: true) {timer in
 let minutesRemaining = remainingTime.converted(to: UnitDuration.minutes)
 print("\(minutesRemaining.value) minutes remaining before the timer stops")
 remainingTime = remainingTime - (1.0).seconds
 if remainingTime.value <= 0.0{
 timer.invalidate()
 }
}

The PlaygroundSupport framework is used alongside the Play
ground Page.current.needsIndefiniteExecution: Bool prop‐
erty, which you can set to true if you need an infinite loop in your
playground so that your playground doesn’t just start at one point
and end at another. In contrast with the default behavior of play‐
grounds, starting at the top and ending after the execution of the
last line of code in the playground, yours becomes a fully fledged
application that lives until you ask it to stop.

See Also
Recipes 4.1 and 4.4

4.4 Using and Working with Frequency Units
Problem
You want to use and convert between frequency units, such as megahertz and giga‐
hertz.

Solution
Represent your values with the Measurement structure and use UnitFrequency as the
base unit. The UnitFrequency class has various class variables such as:

• terahertz

• gigahertz

• megahertz

• kilohertz

96 | Chapter 4: Measurements and Units

Discussion
If you build computers in your spare time (as I used to do more frequently, before I
had three children!), you’ll see keywords such as megahertz and gigahertz all over the
place. It’s a great idea to represent all these values with some structure in Swift, and
with Measurement now you can do that by choosing UnitFrequency as your base
unit.

Here is an example of representing two CPU clock speeds in Swift, using gigahertz
and then megahertz:

var myCpuClock = Measurement(value: 3.5, unit: UnitFrequency.gigahertz)
var yourCpuClock = Measurement(value: 3400, unit: UnitFrequency.megahertz)

You can then use the built-in > and < operators to see which values are bigger or
smaller:

if myCpuClock > yourCpuClock{
 "My CPU is faster than yours."
} else if yourCpuClock > myCpuClock{
 "Your CPU is faster than mine. Good for you!"
} else {
 "It seems our CPU clocks are the same!"
}

These two operators are defined for you already in the Foundation framework so that
you don’t have to write them yourself:

public func ><UnitType : Dimension>(lhs: Measurement<UnitType>,
 rhs: Measurement<UnitType>) -> Bool

public func <<UnitType : Dimension>(lhs: Measurement<UnitType>,
 rhs: Measurement<UnitType>) -> Bool

Now that you have two CPUs whose clock speeds are represented in various forms of
the frequency unit, you can put them inside an array and iterate through this array to
get their clock speeds shown in gigahertz:

let baseUnit = UnitFrequency.gigahertz
[myCpuClock, yourCpuClock].enumerated().forEach{offset, cpuClock in
 let converted = cpuClock.converted(to: baseUnit)
 print("CPU #\(offset + 1) is \(converted.value) \(converted.unit.symbol)")
}

And the output will be as shown here:

CPU #1 is 3.5 GHz
CPU #2 is 3.4 GHz

4.4 Using and Working with Frequency Units | 97

www.allitebooks.com

http://www.allitebooks.org

See Also
Recipe 4.1

4.5 Working with and Using Power Units
Problem
You want to be able to convert between and use power units, but you don’t want to lift
a finger and do any of the work manually yourself.

Solution
Simply use Measurement to represent your power units with the unit equal to Unit
Power and then use the convert(to:) function of the Measurement structure to con‐
vert your values to other power units, some of which are listed here:

• terawatts

• gigawatts

• megawatts

• kilowatts

• watts

• horsepower

Discussion
Let’s check out an example. Let’s say that you are riding a bicycle and moving forward
by putting 160 watts of energy into the pedals. Now, a super-duper cyclist that has
won three Tour de France tournaments has a pedaling power of 0.40 horsepower. Are
you putting more power into the pedals than this super cyclist, or the other way
around? How can you find the answer without having to convert one of these values
to the other or both values to another base unit?

Well, the answer is quite easy. Simply represent these values with Measurement:

let myCyclingPower = Measurement(value: 160, unit: UnitPower.watts)
let superCyclistPower = Measurement(value: 0.40, unit: UnitPower.horsepower)

And then use the > and < operators that are already defined for you to find out which
value is larger:

if myCyclingPower > superCyclistPower{
 "Wow, I am really strong."
} else if myCyclingPower < superCyclistPower{
 "The super cyclist is of course stronger than I am."
} else {

98 | Chapter 4: Measurements and Units

 "It seems I am as strong as the super cyclist!"
}

But how does iOS do this, and how does it know how to compare these values? The
answer is simple: base units. If you Command-click UnitPower in Xcode, you will see
some code like this:

@available(iOS 10.0, *)
public class UnitPower : Dimension, NSSecureCoding {

 /*
 Base unit - watts
 */

There you can see that the base unit is watts. iOS converts all your power units to
watts and then compares their value properties to find which one is higher.

See Also
Recipes 4.6 and 4.7

4.6 Representing and Comparing Temperature Units
Problem
You want to convert between and work with temperature units, such as Celsius and
Fahrenheit, without having to do any manual work.

Solution
To avoid having to convert different temperature units, encapsulate your temperature
values inside an instance of the Measurement structure with the UnitTemperature
unit type. Then you can use the convert(to:) method of the Measurement structure
to convert different types to each other and also use the existing greater-than, less-
than, and other operators to manipulate or compare these measurements.

Discussion
Let’s have a look at an example. Say that we have three temperatures of types Celsius,
Fahrenheit, and Kelvin and our goal is to convert them all to Celsius and then sort
them in ascending order. Let’s first represent our temperatures:

let cakeTemperature = Measurement(value: 180, unit: UnitTemperature.celsius)
let potatoesTemperature = Measurement(value: 200, unit:
 UnitTemperature.fahrenheit)
let beefTemperature = Measurement(value: 459, unit: UnitTemperature.kelvin)

Next we can sort them by their Celsius values in an ascending order:

4.6 Representing and Comparing Temperature Units | 99

www.allitebooks.com

http://www.allitebooks.org

let sorted = [cakeTemperature, potatoesTemperature, beefTemperature]
 .sorted { (first, second) -> Bool in
 return first.converted(to: .celsius) < second.converted(to: .celsius)
}

When we have a sorted array, we can convert all the values to Celsius to get our final
sorted array of Celsius temperatures:

let allCelsiusTemperatures = sorted.map{
 $0.converted(to: .celsius)
}

allCelsiusTemperatures // 93.33, 180, 185.8

See Also
Recipe 4.5

4.7 Working with and Converting Volume Units
Problem
You need to work with values represented as volumes such as liters and pints, but you
don’t want to manually do the work of comparing and converting them.

Solution
Encapsulate your values inside instances of the Measurement structure with the unit
type UnitVolume.

Discussion
Imagine that you are baking a cake and three of the ingredients that you need are rep‐
resented in different units, namely liters, deciliters, and pints:

let milk = Measurement(value: 2, unit: UnitVolume.liters)
let cream = Measurement(value: 3, unit: UnitVolume.deciliters)
let water = Measurement(value: 1, unit: UnitVolume.pints)

You can add all these values together with the + operator and convert the total to vari‐
ous other volumes, such as cups:

let total = milk + cream + water
let totalDeciliters = total.converted(to: .teaspoons)
let totalLiters = total.converted(to: .tablespoons)
let totalPints = total.converted(to: .cups)

You can also go through all the values and print their details, such as their raw values
and the symbols that represent their units:

100 | Chapter 4: Measurements and Units

func showInfo(for measurement: Measurement<UnitVolume>){
 let value = measurement.value
 let symbol = measurement.unit.symbol
 print("\(value) \(symbol)")
}

[totalDeciliters, totalLiters, totalPints].forEach{showInfo(for: $0)}

The output printed to the console will be similar to this:

562.633599246894 tsp
187.544025752698 tbsp
11.5549 cup

See Also
Recipe 4.2

4.7 Working with and Converting Volume Units | 101

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 5

Core Data

Every application needs to store information, whether during the course of a single
session or permanently. To aid in the difficult task of managing and searching stored
data, Apple has developed a whole framework called Core Data, which you might
already be familiar with. In iOS 11 SDK, Core Data, especially in Swift, has been
changed a little bit, so in this chapter we will have a look at these changes as well as
some basics of accessing Core Data.

Before we go further, ensure that you have added the necessary Core Data code to
your application. When you create your project file, make sure to tell Xcode to
import Core Data into your application. You do this when you enter your product’s
name in Xcode’s new project dialog, as shown in Figure 5-1. Core Data is one of the
three features you can choose at the bottom of the dialog.

103

www.allitebooks.com

http://www.allitebooks.org

Figure 5-1. At the bottom of this dialog, you can ask Xcode to add Core Data to your
project

5.1 Designing Your Database Scheme
Problem
You want to begin storing data in Core Data.

Solution
The idea behind Core Data is that your data is organized and stored in the database
through what are known as schemes. Schemes tell Core Data how your data is struc‐
tured, and can be designed through a visual editor that’s part of Xcode.

Ensure that you have added Core Data to your project by following
the instructions given in this chapter’s introduction.

104 | Chapter 5: Core Data

Discussion
When you create a project with Core Data enabled, you should be see a file with
the .xcdatamodel extension in your project. If you cannot find this file, press Cmd-
Shift-O in Xcode and then type in xcdatamodel. Once you find the file, press the
Enter key on your keyboard to open it (Figure 5-2).

Figure 5-2. Locating the Core Data model file

Figure 5-2 shows the visual editor for your Core Data scheme file, where you can cre‐
ate entities. An entity is similar to a table in a database, where you can define the col‐
umns and their data types. Let’s create a Car entity that has a maker and a model
name of type String:

1. In the visual editor of your scheme, press the Add Entity button at the bottom of
the screen. This will create a new entity for you called Entity. From the Data
Model inspector on the righthand side of Xcode, change this name from Entity
to Car (Figure 5-3). The Data Model inspector allows you to change many aspects
of your entities and their columns.

5.1 Designing Your Database Scheme | 105

www.allitebooks.com

http://www.allitebooks.org

Figure 5-3. Setting the name of your entity on the right side of the screen

2. Under the Attributes section of the editor (at the top), press the little + button to
create a new attribute. Name this new attribute maker, and change its type to
String. Also, in the Data Model inspector on the right side, uncheck the
Optional box so that the maker of the car becomes a mandatory attribute
(Figure 5-4).

Figure 5-4. The car has a new mandatory attribute called maker of type String

3. Do the same thing that you did with the maker attribute and create another
mandatory attribute of type String, called model (Figure 5-5).

106 | Chapter 5: Core Data

Figure 5-5. Now the car has a maker and a model

4. Create another entity now. Call it Person, and add two new mandatory attributes
of type String called firstName and lastName (Figure 5-6).

Figure 5-6. The Person entity has two mandatory fields

5. In real life, a person can have multiple cars, although a car generally has one
owner. This ownership status can be defined as a relationship between the two
entities. Start by opening the Car entity. Under the Relationships section of the
editor, press the + button and name the new relationship owner, with the destina‐
tion of Person (Figure 5-7). Make the relationship mandatory by unchecking the
Optional checkbox in the data model editor. Leave the Inverse section empty for
now.

5.1 Designing Your Database Scheme | 107

www.allitebooks.com

http://www.allitebooks.org

Figure 5-7. The Car entity now has an owner!

6. Open the Person entity and create a new optional relationship there. Name it
cars and set the destination as the Car entity. Also set the Inverse field to the
owner field of the Car entity. Then, in the data model editor, under the Relation‐
ship section, choose “To Many” in the Type drop-down to set the type of this
relationship (see Figure 5-8). Because this relationship is optional, a person does
not necessarily have to have cars. Because the relationship is “To Many,” every
person can have more than one car. On the other hand, because a car’s owner
relationship is mandatory, each car always has to have an owner, and only one
owner at a time.

Figure 5-8. Every person can have more than one car

7. Last but not least, for the Car and Person entities, go to the Data Model inspector
and enter Car and Person, respectively, into the Name text field under the Class
section. Core Data creates a class in your project’s automatically generated code
to represent each entity in your scheme, assigning the class the name you pro‐

108 | Chapter 5: Core Data

vide. Each class also has one property for each attribute in the entity. For
instance, the Car class has a maker property and a model property, each set to the
value you store for it in the database.

After designing your entities and their relationships and attributes, you can go to
your Swift code and import the Core Data module if it’s not already imported. Then
you can start instantiating your entities, as I’ll explain in the next recipe.

5.2 Writing Data to the Database
Problem
You have created your model objects and would now like to insert instances of those
models into your database for later retrieval.

This recipe is based on the data scheme that we designed in Recipe
5.1.

Solution
Follow these steps:

1. Your app delegate has your Core Data stack, so if you are in another class and
would like to save your objects from there, you need to get a reference to your
app delegate’s context using the persistentContainer.viewContext:

NSManagedObjectContext property like so:
var context: NSManagedObjectContext?{
 return (UIApplication.shared().delegate as? AppDelegate)?
 .persistentContainer.viewContext
}

2. You can insert an object into your database using the (context:) initializer that
is coded for you automatically by Xcode. Pass a managed object context to this
initializer to create your object on that context. Let’s create an instance of our
Person object now and set the person’s firstName and lastName mandatory
properties. If you attempt to save your data into the database without setting a
value for all the object’s mandatory properties, your app will crash by default:
let person = Person(context: context)
person.firstName = "Foo"
person.lastName = "Bar"

5.2 Writing Data to the Database | 109

www.allitebooks.com

http://www.allitebooks.org

3. Now let’s extend our Car class so that we can configure an instance of it with a
simple method instead of having to set all the properties one by one:
extension Car{
 func configured(maker _maker: String,
 model _model: String,
 owner _owner: Person) -> Self {
 maker = _maker
 model = _model
 owner = _owner
 return self
 }
}

4. Then we can create two cars for the current person:
person.cars = NSSet(array: [
 Car(context: context).configured(maker: "VW",
 model: "Sharan",
 owner: person),
 Car(context: context).configured(maker: "VW",
 model: "Tiguan",
 owner: person)
])

5. Once you are done with that, you can save your data into the database by calling
your app delegate’s saveContext() function.

Discussion
By default, the saveContext() function crashes your application if something goes
wrong. I prefer not to do that and instead to make this function throw an exception
that I can catch later. So let’s change this function’s definition:

func saveContext() throws{
 let context = persistentContainer.viewContext
 if context.hasChanges {
 try context.save()
 }
}

Then, every time you call this function to save your data, ensure that you catch the
possible exceptions that might occur:

do{
 try saveContext()
} catch {
 // something bad happened, handle this situation appropriately
}

110 | Chapter 5: Core Data

See Also
Recipe 5.1

5.3 Reading Data from the Database
Problem
You have saved some data to your Core Data database and would like to read it back.

This recipe’s database scheme is based on what was described in
Recipe 5.1.

Solution
Follow these steps:

1. Call the fetchRequest() class method of your managed object (such as the Car
object) to get an object of type NSFetchRequest<T>, where T is your class name
(such as Car).

2. Once the fetch request is returned to you, configure it using some of the proper‐
ties described here:

fetchLimit: Int

The maximum number of instances of the current class to fetch as the result
of the search.

relationshipKeyPathsForPrefetching: [String]?

An array of strings that denote the relationships of the current object whose
results must also be fetched. For instance, our Person object has an optional
one-to-many cars relationship; if you want to find what cars this person
owns (if any), as well as the identity of the person, insert the name of the
cars relationship into this array.

propertiesToFetch: [AnyObject]?

An array of the attribute names of the managed object whose values you
want to prefetch. For instance, the firstName and the lastName properties of
the Person object can be passed to this array to ensure that their values are
prefetched for you.

3. Once your fetch request is ready, execute it on your managed object context
using its fetch(_:) function.

5.3 Reading Data from the Database | 111

www.allitebooks.com

http://www.allitebooks.org

Discussion
1. Let’s have a look at an example. First ensure that you have completed the steps

described in Recipe 5.2. Now you should be able to read the data you wrote to
your database. Imagine that you want to read the instances of the Person entity,
represented by a class of the same name. Let’s put the code that writes these
instances to the database into a function so that we can easily call it from another
place:
func writeData() throws{

 let context = persistentContainer.viewContext

 let person = Person(context: context)
 person.firstName = "Foo"
 person.lastName = "Bar"

 person.cars = NSSet(array: [
 Car(context: context).configured(maker: "VW",
 model: "Sharan",
 owner: person),
 Car(context: context).configured(maker: "VW",
 model: "Tiguan",
 owner: person)
])

 try saveContext()

}

2. And then start by writing a function that can read only one Person object back
from the database if one exists:
func readData() throws -> Person{
 // we are going to code this function now
}

3. In this function, assuming it is being written in your app delegate’s class where
you have access to your managed object context, construct a fetch request on
your Person object like so:
let context = persistentContainer.viewContext
let personFetchRequest: NSFetchRequest<Person> = Person.fetchRequest()

4. Tell Core Data that you want to prefetch the cars relationship of the Person
entity and that you want to fetch only one instance of the Person object:
personFetchRequest.fetchLimit = 1
personFetchRequest.relationshipKeyPathsForPrefetching = ["cars"]

112 | Chapter 5: Core Data

5. Then call the fetch(_:) function of your managed object context to retrieve the
results:
let persons = try context.fetch(personFetchRequest)

6. We are also going to check that we fetched only one Person instance from the
database. Otherwise, we will throw a new exception, since our function is marked
with throws:
guard let person = persons.first,
 persons.count == personFetchRequest.fetchLimit else {
 throw ReadDataExceptions.moreThanOnePersonCameBack
}

ReadDataExceptions is an enumeration that we have defined
ourselves like so:

enum ReadDataExceptions : Error{
 case moreThanOnePersonCameBack
}

7. Once you are done, return this new person object:

return person

Now that we have both the writeData() and readData() functions ready, we can call
them in one place as shown here:

func writeData() throws{

 let context = persistentContainer.viewContext

 let person = Person(context: context)
 person.firstName = "Foo"
 person.lastName = "Bar"

 person.cars = NSSet(array: [
 Car(context: context).configured(maker: "VW",
 model: "Sharan",
 owner: person),
 Car(context: context).configured(maker: "VW",
 model: "Tiguan",
 owner: person)
])

 try saveContext()

}

And the results will be printed to the console like so:

5.3 Reading Data from the Database | 113

www.allitebooks.com

http://www.allitebooks.org

Successfully read the person
Optional("Foo")
Optional("Bar")
Car #1
Optional("VW")
Optional("Tiguan")
Car #2
Optional("VW")
Optional("Sharan")

See Also
Recipes 5.1 and 5.2

5.4 Searching for Data in the Database
Problem
You want to search in your database for various entities or attributes and relation‐
ships.

Solution
Follow these steps:

1. Call the fetchRequest() function of your entity to create a fetch request.
2. Instantiate the Predicate class and create your search format.
3. Set this predicate as the predicate property of your fetch request.
4. Execute your fetch request using the fetch(_:) function of your managed object

context.

Discussion
The Predicate class’s format initializer parameter is very important. It defines your
search and what you want to find in the database. Without overwhelming you with
too much information, I will introduce the various searches that you can perform on
your database by providing you with different examples.

I assume that you have already gone through the earlier recipes in
this chapter, especially Recipe 5.3, which covers how to read your
data back from the database.

114 | Chapter 5: Core Data

As the first example, let’s write a function that can find any Person instance in the
database with a given first and last name:

func personsWith(firstName fName: String,
 lastName lName: String) throws -> [Person]?{

 let context = persistentContainer.viewContext
 let request: NSFetchRequest<Person> = Person.fetchRequest()

 request.predicate = NSPredicate(format: "firstName == %@ && lastName == %@",
 argumentArray: [fName, lName])

 return try context.fetch(request)

}

Here we are constructing a Predicate instance using its (format:argumentArray:)
initializer. The format is a String and the argument array is of type [AnyObject]?.
The format of the predicate is quite interesting, though, if you have a closer look. The
== operator is being used to compare strings and %@ is used as a placeholder for the
given first and last name, which are placed in the arguments array. In addition, && is
used to ensure both the first and last name conditions have been satisfied by this
search.

For our next example, let’s write a function that can find all instances of the Person
object in the database whose first name starts with a specific character:

func personsWith(firstNameFirstCharacter char: Character) throws -> [Person]?{

 let context = persistentContainer.viewContext
 let request: NSFetchRequest<Person> = Person.fetchRequest()

 request.predicate = NSPredicate(format: "firstName LIKE[c] %@",
 argumentArray: ["\(char)*"])

 return try context.fetch(request)

}

There are a few things to explain about this predicate:

The LIKE syntax
This is a pattern matching syntax. If you want to look for any string whose first
character is M followed by anything else, you can use LIKE with the value of M*.

The [c] syntax
This tells Core Data to search case-insensitively in the database.

5.4 Searching for Data in the Database | 115

www.allitebooks.com

http://www.allitebooks.org

"\(char)*"

This takes the given character and makes it a pattern by appending an asterisk to
its end.

In the next example, we want to find all instances of the Person object who have at
least one car from a specific maker:

func personsWith(atLeastOneCarWithMaker maker: String) throws -> [Person]?{

let context = persistentContainer.viewContext
let request: NSFetchRequest<Person> = Person.fetchRequest()
request.relationshipKeyPathsForPrefetching = ["cars"]

request.predicate = NSPredicate(format: "ANY cars.maker ==[c] %@",
 argumentArray: [maker])

 return try context.fetch(request)

}

These are the interesting statements in this predicate:

ANY

This is an aggregate operation that operates on collections. Other operations exist
as well, such as ALL, NONE, and IN, whose names indicate what they do. In the case
of ANY, it indicates that we are looking for a person who has at least one car with a
given maker (maker: String).

cars.maker

This is a key path operation that allows us to perform our search on the Person
entity but dig into its cars relationship and read the maker attribute’s value.

==[c]

This makes sure the maker of the car is a given value, searched case-insensitively.

The preceding examples should give you a feel for the rich interface Core Data offers
for search, and should help you find your way through the documentation for other
options.

See Also
Recipe 5.1

116 | Chapter 5: Core Data

5.5 Performing Background Tasks with Core Data
Problem
You want to perform some heavy operations on your Core Data stack, such as saving
thousands of records at one go, and you don’t want to slow down the UI thread by
doing this.

Solution
Follow these steps:

1. First, get a reference to your app’s persistent container, which should be of type
NSPersistentContainer.

2. Call the newBackgroundContext() function on your container to get a new back‐
ground context where you can do your background Core Data work. This should
be of type NSManagedObjectContext.

3. Set the automaticallyMergesChangesFromParent property of your new context
to true, so that the new objects from the view context will be automatically
brought into yours. This lets you get the latest objects if any changes are made to
the view context.

4. Call the perform(_:) function on your new background context and do your
background work in the block that you pass to this function.

5. Once you are done, call the save() function on your background context.

I’m basing this recipe’s code on what you learned in Recipe 5.4.

Discussion
Background tasks are very important in Core Data programming. Without a doubt,
they are one of those weapons that you must have in your arsenal before going wild
with Core Data.

Let’s write a function that allows us to save many Person instances in our database
and, when done, call a completion handler on the main thread so the thread can pick
up work on the new data. Here is the function’s definition:

func writeManyPersonObjectsToDatabase(completion: @escaping () -> Void) throws{

 // we are going to code this function now

5.5 Performing Background Tasks with Core Data | 117

www.allitebooks.com

http://www.allitebooks.org

}

We are then going to create a new background context and make sure it merges
changes automatically from the view context:

let context = persistentContainer.newBackgroundContext()
context.automaticallyMergesChangesFromParent = true

After this, we will write our Person instances into this new background context and
then save it. Once that is done, we call the completion handler:

context.perform {
 let howMany = 999
 for index in 1...howMany{
 let person = Person(context: context)
 person.firstName = "First name \(index)"
 person.lastName = "First name \(index)"
 }
 do{
 try context.save()
 DispatchQueue.main.async{completion()}
 } catch {
 // catch the errors here
 }

}

To confirm that these objects were successfully saved to the coordinator and that they
are present on the view context as well, we will write a function that can count the
total number of Person object instances in the database, with the following definition:

func countOfPersonObjectsWritten() throws -> Int{

 // we will code this function now

}

In this function, we will create a new fetch request of type NSFetchRequest<Person>.
But since we are interested in counting only the Person instances, we will not fetch
the instances themselves, but instead set the resultType: NSFetchRequestResult
Type property of the fetch request to .countResultType:

let request: NSFetchRequest<Person> = Person.fetchRequest()
request.resultType = .countResultType
let context = persistentContainer.viewContext

Because we set the resultType: NSFetchRequestResultType property of the fetch
request to .countResultType, the result of the execute(_:) function of our context
will be of type NSAsynchronousFetchResult<NSNumber>. One of the properties of NSA
synchronousFetchResult<NSNumber> is finalResult: [ResultType]?. We’ll read

118 | Chapter 5: Core Data

the first item in this optional array and ensure that it is an instance of Int. This Int
instance will be the count of the items that were found in the database:

guard let result = (try context.execute(request)
 as? NSAsynchronousFetchResult<NSNumber>)?
 .finalResult?
 .first as? Int else {return 0}

return result

We can then put all of this together, write all our objects to the database, and get the
count of those objects back and print it to the console:

do{
 try writeManyPersonObjectsToDatabase(completion: {[weak self] in
 guard let strongSelf = self else {return}
 do{
 let count = try strongSelf.countOfPersonObjectsWritten()
 print(count)
 } catch {
 print("Could not count the objects in the database")
 }

 })
} catch {
 print("Could not write the data")
}

See Also
Recipe 5.1

5.5 Performing Background Tasks with Core Data | 119

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 6

Swift and Cocoa Touch

In this chapter we will have a look at what’s new in Swift 4 and Cocoa Touch, such as
the addition of built-in JSON parsing mechanisms. You’ll see how you can utilize
these new features to make your code even more robust and easier to read.

6.1 Extending Typed Arrays
Problem
You have some homogeneous arrays (containing objects of the same type) and you
want to add a property or a function to arrays of that particular type, without affect‐
ing other arrays.

Solution
Create an extension on Array that applies only when the Element of that array is
equal to your specific type. For instance, if you want to add a property to all arrays
that contain Int instances, and you want the return value of this property to be the
largest integer in the array, you can extend an array of integers as follows:

extension Array where Element == Int{

 var largestInteger: Element?{
 return sorted().last
 }

}

Now you can use this property on arrays of integers, as shown here:

let numbers = [10, 20, 1, 4, 9]
print(numbers.largestInteger ?? 0)

121

www.allitebooks.com

http://www.allitebooks.org

Discussion
Swift now has the ability to extend collections of specific element types. For instance,
imagine that you have the following structure:

struct Person{
 let name: String
 let age: Int
}

You can then create an array of Person as shown here:

let persons = [
 Person(name: "Foo", age: 22),
 Person(name: "Bar", age: 30),
 Person(name: "Baz", age: 19)
]

If you wanted to find the youngest Person instance this array traditionally, you would
create a loop like this:

var youngestPerson = persons[0]

for person in persons{
 if person.age < youngestPerson.age{
 youngestPerson = person
 }
}

print("Youngest person = \(youngestPerson)")

You can make this code shorter by doing it in a functional way, of course:

if let youngestPerson = persons.sorted(by: {$0.age < $1.age}).first{
 print("Youngest person = \(youngestPerson)")
}

This looks good! But if you have to do this sorting and finding a few times inside
your code in different places, you encounter the problem of duplicated code. To avoid
that, you can extend an array of Person instances with a property called youngest of
type Person as shown here:

extension Array where Element == Person{
 var youngest: Element?{
 return sorted(by: {$0.age < $1.age}).first
 }
}

And you can call that property as shown here:

if let youngestPerson = persons.youngest{
 print("Youngest person = \(youngestPerson)")
}

122 | Chapter 6: Swift and Cocoa Touch

6.2 Taking Advantage of Open Collection Ranges
Problem
You regularly work with collections, such as arrays and dictionaries, and are tired of
having to always specify a start or an end index to your ranges.

Solution
Use open ranges, as shown here:

Fully open-ended range
This has the syntax X... where X is an integer indicating the first index of the
collection to include in the range. The compiler infers the end of the range auto‐
matically, based on the collection this range is applied on.

Fully open-starting range
This has the syntax ...X where X is an integer indicating the last index of the col‐
lection to include in the range. The compiler starts at the beginning of the collec‐
tion, going up to and including index X.

Half open-starting range
This has the syntax ..<X where X is an integer indicating the index that follows
the end of the collection. The compiler starts at the beginning of the collection,
stopping just before index X.

Arrays, as always, are counted with the index of 0 on the first element.

Discussion
Let’s have a look at the open-ended range, where the ending of the range is not speci‐
fied. Imagine that you have an array of strings as shown here:

let names = ["foo", "bar", "baz"]

You want to retrieve all items in this array except for the first item. One way of doing
this is to use the array’s dropFirst() function:

let allNamesExceptForFirstName = names.dropFirst()
//allNamesExceptForFirstName = ["bar", "baz"]

Another, perhaps more explicit way of reaching your goal is to create an open-ended
range that skips the first item and directly goes to the second item, reading everything
after that until the end of the array:

let exceptForFirstName = names[1...]
//exceptForFirstName = ["bar", "baz"]

6.2 Taking Advantage of Open Collection Ranges | 123

www.allitebooks.com

http://www.allitebooks.org

The other syntaxes denote open-starting ranges, where the start of the range is not
specified and is inferred to be the first item in the collection. You can use open-ended
and open-starting ranges to do pattern matching as well. Imagine that you are given a
constant called age and you have to decide whether this person is allowed to drive a
vehicle, assuming that the legal age of obtaining a license is 16:

func decideIfAppropriateAgeForDriving(_ age: Int){

 switch age{
 case ..<0:
 print("Unborn child?!")
 case 16...:
 print("Allowed to drive")
 default:
 print("Not allowed to drive")
 }

}

In this function we use an open-starting range to define a pattern for our pattern
matching where the given age cannot be any negative number, in which case we just
print out “Unborn child?!” Then we use the open-ended range where anyone starting
at the age of 16, up to the maximum range of Int, will cause the program to say
“Allowed to drive” (not accounting for the edge cases where the age is ridiculously
large!). Then we use the default case of the switch statement to mark everything
else as an invalid age to drive, such as the age of 14. We can use our function as
shown here:

//open-starting range
decideIfAppropriateAgeForDriving(-10) //prints "Unborn child?!"

//default case
decideIfAppropriateAgeForDriving(0) //prints "Not allowed to drive"
decideIfAppropriateAgeForDriving(14) //prints "Not allowed to drive"
decideIfAppropriateAgeForDriving(10) //prints "Not allowed to drive"

//open-ended range
decideIfAppropriateAgeForDriving(16) //prints "Allowed to drive"
decideIfAppropriateAgeForDriving(52) //prints "Allowed to drive"

6.3 Organizing Private Functions and Properties with
Extensions
Problem
You use extensions to organize your code and you want a sophisticated mix of private
and public functions to restrict access to functions and properties in your classes and
structures.

124 | Chapter 6: Swift and Cocoa Touch

Solution
You already know that you can keep properties and functions in one file from being
available to code in other files by marking the properties and functions with the
private keyword. By placing them inside extensions, you can open up some access to
them.

Discussion
There are a few rules that you need to know when you use private and public access
controls in Swift:

• Private properties and functions can be reached from public properties and func‐
tions as long as both the private and the public properties and functions are
defined in the same Swift file, and are inside extensions. This last bit is very
important. That is to say, private properties and functions of a struct or class are
not visible to other structures and classes that are defined in the same Swift file,
or even other Swift files for that matter.

• Private properties and functions can be reached from other private properties
and functions as long as both are defined in the same Swift file, and are inside
extensions.

• Public properties and functions can be reached from both public and private
properties and functions regardless of which files they are defined in.

Imagine that you have a file in your project called Person.swift and you define a
Person structure inside it as shown here:

import Foundation

struct Person{
 let name: String
 let age: Int
}

Now switch to another Swift file inside your project and create an extension to the
Person structure. By labeling it private, you make sure it is visible only inside this
new Swift file. This extension’s job is to extract the first name of the person from the
name property:

private extension Person{
 //private var can access public "name" property
 private var firstName: String?{
 return name.components(separatedBy: " ").first
 }
}

Notice how this new private variable called firstName can access the public name
property of the person even though they are implemented in different Swift files.

6.3 Organizing Private Functions and Properties with Extensions | 125

www.allitebooks.com

http://www.allitebooks.org

That’s because you didn’t include the private keyword when you defined Person, so
that structure is by default internal.

You can also extend the Person structure with another file-private extension to
expose the last name of the person, again making it private:

private extension Person{
 //private var can access public "name" property
 private var lastName: String?{
 let components = name.components(separatedBy: " ")
 guard components.count >= 2 else {return nil}
 return components.last
 }
}

In the same Swift file where you’ve implemented the firstName and lastName private
properties, define another extension on Person where you can validate the firstName
property:

private extension Person{
 //private var can access private "firstName" property
 //as long as both are defined in the same file
 private var hasValidFirstName: Bool{
 return (firstName ?? "").characters.count >= 2
 }
}

Notice how this private property has access to the firstName private property
because they are implemented in the same file. This works only in extensions though,
which means if you have another class that is defined inside the same Swift file as one
of these private extensions to the Person structure, it won’t be able to access the
private properties of Person. Only extensions can do this.

Now implement another private property inside a file-private extension to Person,
just like you did for the hasValidFirstName property, but this time validate the last
name:

private extension Person{
 //private var can access private "lastName" property
 //since both are defined in the same file
 private var hasValidLastName: Bool{
 return (lastName ?? "").characters.count >= 3
 }
}

To put this all to use, you can define a public property on your Person structure
inside a public extension in the same Swift file where you defined your private vari‐
ables in private extensions on the Person structure. This new computed property
will check whether the name of the person (first name and last name) is valid:

126 | Chapter 6: Swift and Cocoa Touch

extension Person{
 //public var can access private "hasValidFirstName" and
 //"hasValidLastName" properties since it is defined in the same file
 var hasValidName: Bool{
 return hasValidFirstName && hasValidLastName
 }
}

This demonstrates that a public property defined inside an extension to Person has
access to the private properties hasValidFirstName and hasValidLastName of Person
since they are all defined in the same Swift file. Now you can call the hasValidName
property from any file in your project, as shown here:

let fooBar = Person(name: "Foo Bar", age: 22)
print("Foo bar valid name? = \(fooBar.hasValidName)")

See Also
Recipes 6.7 and 6.8

6.4 Defining Key Paths in Swift
Problem
When a function returns an object, which may be the caller is interested in one or
more properties of the object, sometimes hidden deep in the object hierarchy. You
want to return not the entire object, but a shortcut that points to a nested property of
special interest.

Solution
Use key paths in Swift, of type KeyPath, by writing your object structure relationship
prefixed with a backslash character (\).

Discussion
Imagine that you have a Car structure and a Person structure that has a car: Car
property, as shown here:

struct Car{
 let name: String
}

struct Person{

 let name: String
 let age: Int
 let car: Car

6.4 Defining Key Paths in Swift | 127

www.allitebooks.com

http://www.allitebooks.org

}

We’ll go ahead and define a few instances of the Person and Car structures:

let foo = Person(name: "Foo", age: 22, car: Car(name: "VW up!"))
let bar = Person(name: "Bar", age: 25, car: Car(name: "VW Tiguan"))
let baz = Person(name: "Baz", age: 30, car: Car(name: "VW Sharan"))

Now imagine that you want to define a constant that points to any Person instance’s
car property and then goes further into the name property of the car. You can do that
by writing the relationship exactly as it is, Person.car.name, but prefixing it with a
backslash, as shown here:

let carNameKeyPath = \Person.car.name

The constant of carNameKeyPath is of type KeyPath<Person, String>, where the
first qualifier (Person) is the root or starting point of the relationship, and the second
(String) is the data type of the field being retrieved. The name property of Car is
String, so the data that this key path will return is of type String.

Every object has a subscript called [keyPath:] that takes in a KeyPath instance and
returns the data associated with that KeyPath object:

let carNames = [foo, bar, baz].map{$0[keyPath: carNameKeyPath]}
carNames // ["VW up!", "VW Tiguan", "VW Sharan"]

Key path objects are of type KeyPath, and this type is a class that has its own functions
and properties. One of the functions provided by this type is called append
ing(path:). It allows you to append another KeyPath object to the end of the current
KeyPath to form a longer KeyPath. Imagine the same object hierarchy as before,
where the Person instance owns a car of type Car and each Car instance has a name
property. Now we can define two separate key paths as shown here:

let personCarKeyPath = \Person.car
let nameOfCarKeyPath = \Car.name

The first key path points to the car property of the Person structure and the second
one points to the name property of the Car structure. You can join these two key paths
to create a KeyPath property that points to the name property of the car property of
the Person structure:

let fullKeyPath = personCarKeyPath.appending(path: nameOfCarKeyPath)

And you can continue using this new key path like you did with the other ones:

let carNames = [foo, bar, baz].map{$0[keyPath: fullKeyPath]}
carNames // ["VW up!", "VW Tiguan", "VW Sharan"]

128 | Chapter 6: Swift and Cocoa Touch

See Also
Recipe 6.1

6.5 Parsing from and to JSON with Swift
Problem
You want to be able to convert your custom data types to JSON and also be able to
convert JSON data into your custom types.

Solution
Follow these steps:

1. Make your custom types conform to the Codable protocol.
2. Instantiate JSONEncoder and use its encode(_:) function to convert your

Codable-conforming custom types into an instance of Data. This is how you
convert your custom data types into JSON.

3. Use the decode(_:from:) function of an instance of JSONDecoder to convert
JSON-formatted strings into a given custom data type.

Discussion
Let’s imagine that we have the same Person and Car structures as before (see Recipe
6.4), but this time we will make them conform to the Codable protocol:

struct Car: Codable{
 let name: String
}

struct Person: Codable{

 let name: String
 let age: Int
 let car: Car

}

As you can see, the effort is practically zero to get your types ready to be encoded and
decoded into and from JSON. All you have to do is ensure they conform to the
Codable protocol. Now we are going to make an instance of the Person structure so
that we can convert it to JSON:

let foo = Person(name: "Foo", age: 22, car: Car(name: "VW up!"))

6.5 Parsing from and to JSON with Swift | 129

www.allitebooks.com

http://www.allitebooks.org

We are going to convert this instance to JSON and then back from JSON into another
instance of Person. Then we’ll compare the new instance with the instance named
foo created just now to see whether they are the same and confirm that JSON seriali‐
zation and deserialization work as expected. The following functions ensure that our
Person and Car structures are equatable:

func == (lhs: Car, rhs: Car) -> Bool{
 return lhs.name == rhs.name
}

func == (lhs: Person, rhs: Person) -> Bool{
 return
 lhs.name == rhs.name &&
 lhs.age == rhs.age &&
 lhs.car == rhs.car
}

We now dive in and convert the foo instance to JSON data and then back again into
an instance of Person, and then compare the two instances to ensure everything went
as expected:

if let data = try? JSONEncoder().encode(foo){
 if let newFoo = try? JSONDecoder().decode(Person.self, from: data){
 if newFoo == foo{
 print("They are the same")
 } else {
 print("They are not the same")
 }
 }
}

See Also
Recipe 6.6

6.6 Handling Corner Cases in JSON Parsing with Swift
Problem
You have a JSON file that you want to parse but are facing one of the following issues:

• The keys in the JSON don’t turn into good constant names in Swift. For instance,
the key person_age, which contains an underscore, doesn’t read very well in
Swift; you could say that it’s not very Swifty!

• You want to insert data into your Swift model for key-value pairs that might be
missing from your JSON. In other words, the data is required in your application
but it might not be sent by your server, and you need to create the data with a
default value.

130 | Chapter 6: Swift and Cocoa Touch

• While encoding your Swift model into JSON, you want to insert extra logic for
sophisticated operations, such as transforming a value that is not JSON encoda‐
ble into one that is.

Solution
Here are the solutions to the problems listed in the Problem section:

For JSON keys that aren’t “Swifty” constant or variable names:
1. Define the resulting Swift object for your model, making it conform to the

Decodable protocol, Encodable protocol, or Codable protocol (which is both
decodable and encodable).

2. Define a private enum in your model named CodingKeys. The enum object, in
addition to being private, must be of type String and must conform to the
CodingKey protocol.

3. In the object, define a case whose name is the Swift variable or constant
name you want produced and whose corresponding value is the JSON key
that turns into that name.

To insert defaults for missing data:
1. Make sure that your Swift object model conforms to Decodable, and

implement the init(from decoder: Decoder) throws initializer from
Decodable.

2. In this initializer, use the container(keyedBy:) function of the decoder
parameter to get a container of type KeyedDecodingContainer.

3. Use this container to read the values inside the JSON object. If you cannot
find the value you are looking for, use the function to assign a default value
to your constant or variable.

To add extra logic to an encoding from Swift to JSON:
1. Ensure that your model object in Swift conforms to the Encodable protocol,

or Codable if you want to do both encoding and decoding, and implement
the protocol’s func encode(to encoder: Encoder) throws function.

2. Inside this function, run the encoder parameter’s container(keyedBy:)
function. Then encode constants and variables from the model. You can
make changes to each constant or variable, such as implementing error
checking or providing a default value.

In the Discussion section we will examine these solutions in more detail.

6.6 Handling Corner Cases in JSON Parsing with Swift | 131

www.allitebooks.com

http://www.allitebooks.org

Discussion
Let’s have a look at an example of the first problem. Imagine you have the following
JSON:

let personJson = """
 {
 "first_name" : "Foo",
 "last_name" : "Bar",
 "age" : 29
 }
 """

You’ll notice how the first_name and last_name keys in this JSON don’t make good
constant names in Swift. What we want is firstName and lastName. So how can we
define a JSON object in Swift that represents this JSON but with proper Swifty con‐
stant names? We will use the private enum called CodingKeys, as explained in the
Solution section:

struct Person: Codable{
 let firstName: String
 let lastName: String
 let age: Int

 private enum CodingKeys: String, CodingKey{
 case firstName = "first_name"
 case lastName = "last_name"
 case age
 }

}

Now for the second problem, where your Swift constants are mandatory but the
responding keys in JSON might or might not be present. You will need to implement
the init(from decoder: Decoder) throws function and place your specific logic
there. Suppose you added an address field to your Swift model object:

struct Person: Codable{
 let firstName: String
 let lastName: String
 let age: Int
 let address: String

 private enum CodingKeys: String, CodingKey{
 case firstName = "first_name"
 case lastName = "last_name"
 case age
 case address
 }

}

132 | Chapter 6: Swift and Cocoa Touch

If you provided the same JSON as before and tried to decode it into an instance of
Person with the newly added address field, JSONDecoder would throw an error
because this field is missing from the JSON and is not defined as optional in the
model. To solve this problem, implement the init(from decoder: Decoder) throws
function from Decodable and place logic there that fills in the default value for the
address field:

struct Person: Codable{
 let firstName: String
 let lastName: String
 let age: Int
 let address: String

 private enum CodingKeys: String, CodingKey{
 case firstName = "first_name"
 case lastName = "last_name"
 case age
 case address
 }

 init(from decoder: Decoder) throws{
 let container = try decoder.container(keyedBy: CodingKeys.self)
 firstName = try container.decode(String.self, forKey: .firstName)
 lastName = try container.decode(String.self, forKey: .lastName)
 age = try container.decode(Int.self, forKey: .age)

 address =
 (try container.decodeIfPresent(String.self, forKey: .address))
 ?? "Unknown Address"

 }

}

To address the last problem, placing some extra logic into the encoding process
between a Swift model object and its JSON representation, implement the func
encode(to encoder: Encoder) throws function from Encodable. For instance, go
back to the Person structure with firstName, lastName, and age fields. Suppose that,
when encoding an instance of Person into JSON, you would like to change the age of
the person to the maximum of 130 if it exceeds that value:

struct Person: Codable{
 let firstName: String
 let lastName: String
 let age: Int

 func encode(to encoder: Encoder) throws{
 var container = encoder.container(keyedBy: CodingKeys.self)
 try container.encode(firstName, forKey: .firstName)
 try container.encode(lastName, forKey: .lastName)

6.6 Handling Corner Cases in JSON Parsing with Swift | 133

www.allitebooks.com

http://www.allitebooks.org

 try container.encode(min(age, 130), forKey: .age)
 }

}

Now go ahead and create an instance of Person and intentionally set the age property
to 140. Then encode this Person instance to Data and read the Data back again into
an instance of Person, to see whether the desired change was made:

let person = Person(firstName: "Foo", lastName: "Bar", age: 140)

guard let personJsonData = try? JSONEncoder().encode(person) else {return}

guard let samePerson = try? JSONDecoder().decode(
 Person.self, from: personJsonData) else {return}

print(person)
print(samePerson)

If everything worked as expected in the JSON encoding, the age saved to the JSON
data should be 130, not 140. Let’s have a look:

Person #1(firstName: "Foo", lastName: "Bar", age: 140)
Person #1(firstName: "Foo", lastName: "Bar", age: 130)

See Also
Recipe 6.5

6.7 Partitioning Arrays into Segments
Problem
You have an array of homogenous objects that you want to separate according to
some criterion of your choice.

Solution
Follow these steps:

1. Create your array.
2. Instantiate a Dictionary using its init(grouping:by:) initializer.
3. For the grouping parameter, pass your array.
4. For the by parameter, pass a closure that takes in one item of your array at a time,

and returns a Hashable object.

134 | Chapter 6: Swift and Cocoa Touch

Discussion
If you specify the property of X in the by parameter of the dictionary initializer, all the
objects inside your array with the same value for the X parameter will form a new
array and will be placed inside the returning dictionary. The array will be the value of
a key equal to X.

This can be very difficult to digest, or even explain, for that matter, so I think it is best
shown by an example. Imagine that you have the following array:

let names = [
 "Joey",
 "Andrew",
 "Suzanne",
 "Jonathan",
 "Sara",
 "Adriana",
]

You want to group all names that start with the same letter into their own array, so
Joey and Jonathan will be in an array of their own, Andrew and Adriana in their own,
and Suzanne and Sara in their own. The process in this recipe will place these arrays
inside a dictionary where the keys are these first letters (that is to say, J, A, and S) and
the values to these keys are the arrays of names whose first letter is J, A, and S:

let dict = Dictionary(grouping: names) {(items: String) -> Character in
 return items.first ?? "?"
}

The first method extracts the first letter of each name. The final question mark in
quotation marks indicates that any name whose first letter cannot be extracted should
be placed into a default dictionary whose key is the question mark. We don’t expect to
have any problems extracting the first letter, but include this default to prevent any
errors.

If you try to read the value of the dict constant, you will see the following:

["J": ["Joey", "Jonathan"],
 "A": ["Andrew", "Adriana"],
 "S": ["Suzanne", "Sara"]]

You can take advantage of this feature in Swift to group array items that are somehow
related to each other. How they are connected is something for you to decide. As
another example, you can place all the names inside the names array into groups that
are separated by their length:

let dict = Dictionary(grouping: names) {(items: String) -> Int in
 return items.characters.count
}

6.7 Partitioning Arrays into Segments | 135

www.allitebooks.com

http://www.allitebooks.org

And if you print out the value of dict now you will see the following results:

[6: ["Andrew"],
 7: ["Suzanne", "Adriana"],
 4: ["Joey", "Sara"],
 8: ["Jonathan"]]

The way this initializer works is by going through the initial array one item at a time,
calling the by closure for every item and returning a Hashable value, such as the
length of the string. All the array objects for which the same Hashable object is
returned inside the by parameter will be placed inside the same array, which will then
be placed inside the dictionary. The key will be the exact Hashable returned from
your by parameter.

See Also
Recipe 6.9

6.8 Setting Constraints on Extensions
Problem
You want to extend a data type while constraining your extension by certain criteria,
as allowed by the data type. For example, suppose that you have a data type that rep‐
resents a JSON object:

struct JsonObject<Key: Hashable, Value>{
 let key: Key
 let value: Value
}

And you want to extend this data type whenever the Value generic parameter is of
type String.

Solution
Use the where clause in your extension as shown here:

extension JsonObject where Value == String{

 //your code

}

Discussion
In the code in the Solution section of this recipe, we are writing an extension that
applies to the data type JsonObject as long as the Value generic type of this structure

136 | Chapter 6: Swift and Cocoa Touch

is a String. This is a direct comparison of the data types. However, you may some‐
times need to check whether a specific generic type of a structure or class conforms to
a certain protocol. In that case, instead of using the == syntax in the extension’s defi‐
nition, you’d have to use the : syntax as shown here:

 extension JsonObject where Value: ExpressibleByStringLiteral{

 //your code

}

Let’s take another example that is a little bit more advanced. Suppose that you want to
write a protocol that defines the basics of an object that is initializable with a JSON
object. JSON objects are collections, either arrays or dictionaries. If they are arrays,
they have to contain other objects, each of which is a dictionary, and each dictionary
in a JSON object has to have keys of type String with values commonly of type
String, Int, Array, or Double. Here is a typical definition of such a protocol:

protocol JsonRepresentable{
 associatedtype JsonType: Collection
 var json: JsonType {get}
 init(json: JsonType)
}

Suppose that you want to implement a Person structure that can get initialized by a
JSON dictionary. The initializer must look inside this dictionary for name and age
keys and assign default values to them if they cannot be found. Here is the implemen‐
tation:

struct Person: JsonRepresentable{

 typealias JsonType = [String : Any]

 let name: String
 let age: Int
 let json: JsonType

 init(json: JsonType) {
 name = json["name"] as? String ?? "Foo Bar"
 age = json["age"] as? Int ?? 18
 self.json = json
 }

}

Notice how the JsonRepresentable protocol has an associated type called JsonType
that is constrained to be of type Collection? This means that this protocol requires
you to define, in your types that implement this protocol, a typealias that defines
what type of JSON object you are dealing with, and that type must be a Collection
(array or dictionary).

6.8 Setting Constraints on Extensions | 137

www.allitebooks.com

http://www.allitebooks.org

Now that you have these types in place, you can start writing extensions even on the
base protocol, JsonInitializable. Suppose that for every JsonInitializable that
has a JsonObject of type Dictionary with keys of type String and values of type Any,
you want to add a new property to this type called hasAge. That property will look
inside the JSON object for a key called age. If it finds the key with a value of type Int,
it returns true, and otherwise it returns false:

extension JsonRepresentable where JsonType == Dictionary<String, Any>{
 var hasAge: Bool{
 if let _ = json["age"] as? Int{
 return true
 } else {
 return false
 }
 }
}

We are using the == syntax in our where constraint on the JsonRepresentable proto‐
col to limit the scope of this extension to situations where the JSON representable
object is a Dictionary whose keys are String objects and whose values are any type.
Now that we have this extension, we can proceed to use it for appropriate types that
conform to these criteria:

let json = ["name" : "Foo Bar", "age": 22] as [String : Any]
let foo = Person(json: json)
if foo.hasAge{
 //do something here
}

See Also
Recipe 6.12

6.9 Defining Object Requirements Through Protocols
Problem
You want to create a reusable piece of code using protocol extensions and you require
the data type that implements your protocol to conform to a certain interface.

Solution
In the definition of your protocol, define your contract and conformance obligations.
In the implementation of your protocol, implement the reusable code through an
extension.

138 | Chapter 6: Swift and Cocoa Touch

Discussion
Suppose that you want all instances of URL and String to all of a sudden have the
ability to fetch their own data, should they contain a valid URL. Let’s have a look at a
typical fetch function’s definition. We can start by defining an enumeration that
describes either success or failure, but not both:

enum Either<V, E: Error>{
 case value(V)
 case error(E)
}

Then we can define a few typical errors that might happen during a fetch operation:

enum FetchError: Error{
 case nilUrl
 case connectionError(Error)
 case emptyData
}

Now that we have defined some possible errors, we can start writing the implementa‐
tion of the fetch function:

func fetch(url: URL?,
 completion: @escaping (Either<Data, FetchError>) -> Void){

 guard let url = url else {
 completion(.error(.nilUrl))
 return
 }

 //code the function here

}

A URL instance can be constructed from a String instance, and it would be lovely if
every instance of URL and String could all of a sudden have a fetch(...) function.
That is the power of protocols that expect to receive data from you but in turn give
you some functionality. Suppose that we wrote a protocol called Fetchable that is
able to fetch any URL. What is the data that is expected from conforming types of
Fetchable? A URL, of course. If we could return a URL to this protocol, we could get a
fetch(...) function in return.

This would be the default declaration (as opposed to implementation) of our Fetch
able protocol:

protocol Fetchable{
 var fetchUrl: URL? {get}
}

6.9 Defining Object Requirements Through Protocols | 139

www.allitebooks.com

http://www.allitebooks.org

The required, read-only fetchUrl variable inside Fetchable asks
any conforming type for an optional URL from which to download
the data. The URL data type is optional because the conforming type
cannot guarantee that it can return a URL. It’s the job of Fetchable
to make sure fetchUrl is nonnil. In our case, if it is nil, the proto‐
col will throw a FetchError.nilUrl error.

After declaring our Fetchable protocol, it’s time to implement the default
fetch(...) function as part of an extension on this protocol:

extension Fetchable{

 func fetch(completion: @escaping (Either<Data, FetchError>) -> Void){

 guard let url = fetchUrl else {
 completion(.error(.nilUrl))
 return
 }

 //code the function here

 }

}

After the protocol is ready, we can conform both String and URL directly to it:

extension String: Fetchable{
 var fetchUrl: URL?{
 return URL(string: self)
 }
}

extension URL: Fetchable{
 var fetchUrl: URL?{
 return self
 }
}

Through this code, both URL and String all of a sudden get a fetch(completion:)
function. Here is String with the aforementioned function:

"https://apple.com".fetch {either in
 switch either{
 case .error(let err):
 print(err)
 case .value(let data):
 print(data)
 }
}

And here is URL with the same function:

140 | Chapter 6: Swift and Cocoa Touch

URL(string: "https://apple.com")?.fetch{either in
 switch either{
 case .error(let err):
 print(err)
 case .value(let data):
 print(data)
 }
}

See Also
Recipe 6.8

6.10 Creating New Data Types by Combination
Problem
You want to combine existing data types into a new one.

Solution
Data types can be combined using the ampersand (&) in several circumstances:

• To create a new data type in a typealias statement
• To apply a protocol to the combined data types, using associatedtype
• On the fly, inline, such as to find out whether an object conforms to a set of pro‐

tocols and object types

Discussion
Imagine that you have two protocols:

protocol Foo{}
protocol Bar{}

Here is an example of the third, on-the-fly use of & mentioned in the Solution section.
Swift provides the is syntax to check the data type of an object. As the following
example shows, you can use & in this statement. The example tests objects of type Any
to see whether they conform to both Foo and Bar protocols:

func isFooBar(_ obj: Any){
 if obj is Foo & Bar{
 print("Foo & Bar") // The code will finish here
 } else {
 print("Not Foo & Bar") // This line will not be executed
 }
}

6.10 Creating New Data Types by Combination | 141

www.allitebooks.com

http://www.allitebooks.org

Now you can pass any object to this function to test for conformance to the Foo and
Bar protocols:

let someObject = "Foo Bar"
isFooBar(someObject)

What we did was define a new data type that conforms to both the Foo and Bar pro‐
tocols.

In protocols, to enforce conformance to two or more types at once, we use the
associatedtype syntax. Imagine that we’ve defined three protocols that define which
properties a typical vehicle has—wheels, gears, and an engine:

protocol HasWheels{
 var wheelCount: Int {get}
}

protocol HasGears{
 var gearCount: Int {get}
}

protocol HasEngine{
 var hoursePower: Int {get}
}

Any data type that wants to have a vehicle has to define a data type that conforms to
the three aforementioned properties of a vehicle. Here we define a protocol to enforce
that rule:

protocol HasVehicle{
 associatedtype Vehicle = HasWheels & HasGears & HasEngine
 var vehicle: Vehicle {get}
}

Then we can define a Volvo V90 vehicle structure that conforms to the HasWheels,
HasGears, and HasEngine protocols. We won’t conform to the HasVehicle protocol
here, because a car cannot have a vehicle, but in fact is a vehicle. The Volvo defines a
variable it needs to conform to each of the three protocols from which it inherits:

struct Volvo: HasWheels, HasGears, HasEngine{
 let wheelCount: Int
 let gearCount: Int
 let hoursePower: Int

 static var v90: Volvo{
 return Volvo(wheelCount: 4, gearCount: 6, hoursePower: 185)
 }

}

142 | Chapter 6: Swift and Cocoa Touch

Take note of the v90 static computed property of the Volvo struc‐
ture, which defines a Volvo V90 vehicle.

Now we can define a Person structure that conforms to the HasVehicle protocol. As
her vehicle, she can have the Volvo V90:

struct Person: HasVehicle{
 typealias Vehicle = Volvo
 let vehicle: Vehicle
}

let fooBar = Person(vehicle: .v90)
print(fooBar)

See Also
Recipe 6.11

6.11 Adding Logic Through Protocols
Problem
You want to inherit logic from a protocol, and not just method and variable names.

Solution
In your protocol, add an extension where you write the code to be shared by those
who implement the protocol. For instance, in the following HasFullName protocol, an
extension called HasFullName defines a variable using some simple coding:

protocol HasFullName{
 var firstName: String {get}
 var lastName: String {get}
}

extension HasFullName{
 var fullName: String{
 return "\(firstName) \(lastName)"
 }
}

The extension can calculate the full name of any type, as long as that type has first
Name and lastName properties. Now you can define a structure called Person that
conforms to this protocol:

6.11 Adding Logic Through Protocols | 143

www.allitebooks.com

http://www.allitebooks.org

struct Person: HasFullName{
 let firstName: String
 let lastName: String
}

And then you can read the fullName property of the Person structure, even though
Person doesn’t define the property. You have inherited fullName from the HasFull
Name protocol, but as programming logic rather than a static definition:

let fooBar = Person(firstName: "Foo", lastName: "Bar")
print(fooBar.fullName) // "Foo Bar"

Discussion
Extensions can do much more than provide a new property, as the previous example
did. Let’s have a look at another example. Imagine that you want to be able to down‐
load content specified through a URL object. Let’s begin by defining our protocol:

protocol Fetchable{
 var fetchableUrl: URL? {get}
}

This protocol checks the conforming type’s fetchableUrl property for a URL from
which the protocol will try to download data. If a conforming type doesn’t have a
fetchableUrl property, we will not attempt to download its contents. Now let’s
extend our Fetchable type to define a fetch(...) function that downloads the
content:

extension Fetchable{
 typealias FetchCompletion = (Either<Data, FetchError>) -> Void
 func fetch(completion: @escaping FetchCompletion){
 //provide your implementation here
 }
}

We have to be prepared for errors whenever dealing with downloads, so we allow the
result to be either data or an error. We do this using an enum called Either that we are
going to define now. Additionally, the completion handler raises errors of type Fetch
Error that we also need to define:

enum Either<V, E>{
 case value(V)
 case error(E)
}

enum FetchError: Error{
 case noUrlGiven
 case connectionError
}

144 | Chapter 6: Swift and Cocoa Touch

This makes it possible for us to extend existing data types so they can run the code in
the Fetchable extension and automatically retrieve a web page from a URL. Error
handling is built in as well, and happens consistently across different objects. A data
type that conforms to the Fetchable protocol inherits the fetch(completion:) func‐
tion, as shown here:

extension URL: Fetchable{
 var fetchableUrl: URL?{
 return self
 }
}

extension String: Fetchable{
 var fetchableUrl: URL?{
 return URL(string: self)
 }
}

And all of a sudden these types get the aforementioned function. Here is the URL that
uses this function:

URL(string: "https://www.apple.com")?.fetch{either in
 switch either{
 case .value(let data):
 print(data)
 case .error(let error):
 print(error)
 }
}

And here is a string that uses the same function to fetch the data that might be associ‐
ated with the URL that the String holds:

"https://www.apple.com".fetch {either in
 switch either{
 case .value(let data):
 print(data)
 case .error(let error):
 print(error)
 }
}

See Also
Recipe 6.9

6.11 Adding Logic Through Protocols | 145

www.allitebooks.com

http://www.allitebooks.org

6.12 Defining Constraints on Protocols
Problem
You want to write an extension on a protocol, but have it apply only if a certain con‐
dition is met.

Solution
Use protocol extensions with the where clause followed by an associatedtype check
on the extension.

Discussion
Imagine that you define a base protocol for any vehicle and then you define two sepa‐
rate protocols for heavy and light vehicles:

protocol Vehicle{
 var wheelCount: Int {get}
}

protocol HeavyVehicle: Vehicle{
 func tankWithDiesel(liters: Int)
}

protocol LightVehicle: Vehicle{
 func tankWithPetrol(liters: Int)
}

The light vehicle type requires conforming types to implement a function called tank
WithPetrol(liters:) and the heavy vehicle type requires conforming types to
implement a function called tankWithDiesel(liters:).

Then you can go ahead and define a protocol that defines any data type that can own
a vehicle. Any data type that conforms to this protocol will have to define a property
called vehicle of type Vehicle:

protocol OwnsVehicle{
 associatedtype VehicleType: Vehicle
 var vehicle: VehicleType {get}
}

Imagine that you now want to extend the OwnsVehicle protocol with a function
called fillVehicleTankWithDiesel() for diesel cars. Because this function can han‐
dle only diesel and not petrol, it should be available only to data types whose
associatedtype of VehicleType is HeavyVehicle. You can do that using the where
clause on your extension:

146 | Chapter 6: Swift and Cocoa Touch

extension OwnsVehicle where VehicleType: HeavyVehicle{
 func fillVehicleTankWithDiesel(){
 //we don't have to implement this now!
 }
}

Next, go ahead and define one light and one heavy vehicle:

struct VolvoV90: LightVehicle{
 let wheelCount = 4
 func tankWithPetrol(liters: Int) {
 //we don't have to implement this now!
 }
}

struct Van: HeavyVehicle{
 let wheelCount = 4
 func tankWithDiesel(liters: Int) {
 //we don't have to implement this now!
 }
}

Then define two person types, one that owns a light vehicle and the other that owns a
heavy vehicle, both conforming to the OwnsVehicle protocol:

struct PersonWithLightVehicle: OwnsVehicle{
 typealias VehicleType = VolvoV90
 let vehicle = VolvoV90()
}

struct PersonWithHeavyVehicle: OwnsVehicle{
 typealias VehicleType = Van
 let vehicle = Van()
}

The VehicleType of vehicles owned by PersonWithLightVehicle is VolvoV90, which
itself is of type LightVehicle. Therefore, these people don’t have access to the
fillVehicleTankWithDiesel() function from our OwnsVehicle constrained exten‐
sion:

let foo = PersonWithLightVehicle()
//foo doesn't have the fillVehicleTankWithDiesel() function

However, if you create an instance of PersonWithHeavyVehicle that conforms to
OwnsVehicle, it will own a VehicleType equal to Van, which conforms to Heavy
Vehicle. So, that person will have access to the fillVehicleTankWithDiesel() func‐
tion:

let bar = PersonWithHeavyVehicle()
bar.fillVehicleTankWithDiesel()

6.12 Defining Constraints on Protocols | 147

www.allitebooks.com

http://www.allitebooks.org

See Also
Recipe 6.11

6.13 Handling Errors in Swift
Problem
You want to know how to throw and handle exceptions in Swift.

The terms error and exception are used interchangeably throughout
this book. When an error occurs in our apps, we usually catch it, as
you will soon see, and handle it in a way that is pleasant and under‐
standable to the user.

Solution
To throw an exception, use the throw syntax. To catch exceptions, use the do, try,
catch syntax.

Discussion
Let’s say that we want to create a method that takes in a first name and last name as
two arguments and returns a full name. The first name and the last name have to
each be at least one character long for this method to work. If one or both have 0
lengths, we are going to want to throw an exception.

The first thing that we have to do is define our errors, of type Error:

enum Errors : Error{
 case emptyFirstName
 case emptyLastName
}

And then we are going to define our method to take in a first and last name and join
them together with a space in between:

func fullNameFromFirstName(_ firstName: String,
 lastName: String) throws -> String{

 if firstName.characters.count == 0{
 throw Errors.emptyFirstName
 }

 if lastName.characters.count == 0{
 throw Errors.emptyLastName
 }

148 | Chapter 6: Swift and Cocoa Touch

 return firstName + " " + lastName

}

The interesting part is really how to call this method. We use the do statement like so:

do{
 let fullName = try fullNameFromFirstName("Foo", lastName: "Bar")
 print(fullName)
} catch {
 print("An error occurred")
}

The catch clause of the do statement allows us to trap errors in a fine-grained man‐
ner. Let’s say that you want to trap errors in the Errors enum differently from instan‐
ces of NSException. Separate your catch clauses like this:

 do{
 let fullName = try fullNameFromFirstName("Foo", lastName: "Bar")
 print(fullName)
 }
 catch let err as Errors{
 // handle this specific type of error here
 print(err)
 }
 catch let ex as NSException{
 // handle exceptions here
 print(ex)
 }
 catch {
 // otherwise, do this
 }

See Also
Recipe 6.6

6.14 Specifying Preconditions for Methods
Problem
You want to make sure a set of conditions are met before continuing with the flow of
your method.

Solution
Use the guard syntax.

6.14 Specifying Preconditions for Methods | 149

www.allitebooks.com

http://www.allitebooks.org

Discussion
The guard syntax allows you to:

• Specify a set of conditions for your methods.
• Bind variables to optionals and use those variables in the rest of your method’s

body.

Let’s have a look at a method that takes an optional piece of data as the NSData type
and turns it into a String only if the string has some characters in it and is not
empty:

func stringFromData(_ data: Data?) -> String?{

 guard let data = data,
 let str = NSString(data: data, encoding: String.Encoding.utf8.rawValue)
 , data.count > 0 else{
 return nil
 }

 return String(str)

}

We are going to use it like so:

if let _ = stringFromData(nil){
 print("Got the string")
} else {
 print("No string came back")
}

We pass nil to this method for now and trigger the failure block (“No string came
back”). What if we passed valid data? And to have more fun with this, let’s create our
NSData instance this time with a guard. Because the NSString constructor we are
about to use returns an optional value, we put a guard statement before it to ensure
that the value that goes into the data variable is in fact a value, and not nil:

guard let data = NSString(string: "Foo")
 .data(using: String.Encoding.utf8.rawValue), data.count > 0 else{
 return
}

if let str = stringFromData(data){
 print("Got the string \(str)")
} else {
 print("No string came back")
}

So, we can mix a guard and conditions in the same statement. How about multiple
let statements inside a guard? Can we do that? You betcha:

150 | Chapter 6: Swift and Cocoa Touch

func example3(firstName: String?, lastName: String?, age: UInt8?){

 guard let firstName = firstName, let lastName = lastName , let _ = age
 , firstName.characters.count > 0 && lastName.characters.count > 0 else{
 return
 }

 print(firstName, " ", lastName)

}

6.15 Ensuring the Execution of Code Blocks Before Exiting
Methods
Problem
You have various conditions in your method that can cause the method to exit early.
But you want to ensure that certain code blocks, such as cleanup code, always get exe‐
cuted before that happens.

Solution
Use the defer syntax.

Discussion
Anything that you put inside a defer block inside a method is guaranteed to get exe‐
cuted before your method returns to the caller. However, this block of code will get
executed after the return call in your method. The code is also called when your
method throws an exception.

Let’s say that we want to define a method that takes in a string and renders it inside a
new image context with a given size. Now if the string is empty, we want to throw an
exception. However, before we do that, we want to make sure that we have ended our
image context. Let’s define our error first:

enum Errors : Error{
 case emptyString
 }

Then we move on to our actual method that uses the defer syntax:

func imageForString(_ str: String, size: CGSize) throws -> UIImage{

 defer{
 UIGraphicsEndImageContext()
 }

6.15 Ensuring the Execution of Code Blocks Before Exiting Methods | 151

www.allitebooks.com

http://www.allitebooks.org

 UIGraphicsBeginImageContextWithOptions(size, true, 0)

 if str.characters.count == 0{
 throw Errors.emptyString
 }

 // draw the string here...

 return UIGraphicsGetImageFromCurrentImageContext()!

}

I don’t want to put print() statements everywhere in the code because it makes the
code really ugly. So to see whether this really works, I suggest typing this code into
Xcode—or even better, grab the source code for this book’s examples from GitHub,
where I have already placed breakpoints in the defer and the return statements so
that you can see that they are working properly.

We can, of course, then call this method like so:

func imageForString(_ str: String, size: CGSize) throws -> UIImage{

 defer{
 UIGraphicsEndImageContext()
 }

 UIGraphicsBeginImageContextWithOptions(size, true, 0)

 if str.characters.count == 0{
 throw Errors.emptyString
 }

 // draw the string here...

 return UIGraphicsGetImageFromCurrentImageContext()!

}

6.16 Checking for API Availability
Problem
You want to check whether a specific API is available on the host device running your
code.

Solution
Use the #available syntax.

152 | Chapter 6: Swift and Cocoa Touch

Discussion
We’ve all been waiting for this for a very long time. The days of having to call the
respondsToSelector: method are over (hopefully). Now we can just use #available
to make sure a specific iOS version is available before making a call to a method.

Let’s say that we want to write a method that can read an array of bytes from an
NSDataobject. NSData offers a handy getBytes: method to do this, but Apple decided
to deprecate it in iOS 8.1 and replace it with getBytes:length:, an improved version
that minimizes the risk of buffer overflows. So, assuming that one of our deployment
targets is iOS 8 or older, we want to ensure that we call this new method if we are on
iOS 8.1 or higher and the older method if we are on iOS 8.0 or older:

enum Errors : Error{
 case emptyData
}

func bytesFromData(_ data: Data) throws -> [UInt8]{

 if (data.count == 0){
 throw Errors.emptyData
 }

 var buffer = [UInt8](repeating: 0, count: data.count)

 if #available(iOS 8.1, *){
 (data as NSData).getBytes(&buffer, length: data.count)
 } else {
 (data as NSData).getBytes(&buffer)
 }

 return buffer

}

And then we go ahead and call this method:

guard let data = "Foo".data(using: String.Encoding.utf8) else {
 return
}

do{
 let bytes = try bytesFromData(data)
 print("Data = \(bytes)")
} catch {
 print("Failed to get bytes")
}

6.16 Checking for API Availability | 153

www.allitebooks.com

http://www.allitebooks.org

6.17 Creating Your Own Set Types
Problem
You want to create a type in Swift that can allow all operators that normal sets allow,
such as the contain function.

Solution
Conform to the OptionSet protocol. As a bonus, you can also conform to the Custom
DebugStringConvertible protocol, as shown in this recipe, in order to set custom
debug descriptions that the print() function can use during debugging of your sets.

Discussion
Let’s say that you have a structure that keeps track of iPhone models. You want to be
able to create a set of this structure’s values so that you can say that you have an
iPhone 6, iPhone 6+, and iPhone 5s (fancy you!). Here is the way you would do that:

 struct IphoneModels : OptionSet, CustomDebugStringConvertible{

 let rawValue: Int
 init(rawValue: Int){
 self.rawValue = rawValue
 }

 static let Six = IphoneModels(rawValue: 0)
 static let SixPlus = IphoneModels(rawValue: 1)
 static let Five = IphoneModels(rawValue: 2)
 static let FiveS = IphoneModels(rawValue: 3)

 var debugDescription: String{
 switch self{
 case IphoneModels.Six:
 return "iPhone 6"
 case IphoneModels.SixPlus:
 return "iPhone 6+"
 case IphoneModels.Five:
 return "iPhone 5"
 case IphoneModels.FiveS:
 return "iPhone 5s"
 default:
 return "Unknown iPhone"
 }
 }

 }

154 | Chapter 6: Swift and Cocoa Touch

And then you can use it like so:

 func example1(){

 let myIphones: [IphoneModels] = [.Six, .SixPlus]

 if myIphones.contains(.FiveS){
 print("You own an iPhone 5s")
 } else {
 print("You don't seem to have an iPhone 5s but you have these:")
 for i in myIphones{
 print(i)
 }
 }

 }

Note how you could create a set of you new type and then use the contains function
on it just as you would on a normal set. Use your imagination—this is some really
cool stuff.

See Also
Recipe 6.18

6.18 Conditionally Extending a Type
Problem
You want to be able to extend existing data types that pass a certain test.

Solution
Use protocol extensions. Swift allows protocol extensions to contain code.

Discussion
Let’s say that you want to add a method on any array in Swift where the items are
integers. In your extension, you want to provide a method called canFind() that can
find a specific item in the array and return yes if it could be found—I know that we
can do this with other system methods, but I am offering this simple example to
demonstrate how protocol extensions work:

extension Sequence where Iterator.Element == Int{
 public func canFind(_ value: Iterator.Element) -> Bool{
 return contains(value)
 }
}

6.18 Conditionally Extending a Type | 155

www.allitebooks.com

http://www.allitebooks.org

Then you can go ahead and use this method like so:

func example1(){

 if [1, 3, 5, 7].canFind(5){
 print("Found it")
 } else {
 print("Could not find it")
 }

}

As another example, let’s imagine that you want to extend all array types in Swift
(Sequence) that have items that are either doubles or floating points. It doesn’t matter
which method you add to this extension. We’ll add an empty method for now:

extension Sequence where Iterator.Element : FloatingPoint{
 // write your code here
 func doSomething(){
 // TODO: code this
 }
}

And you can, of course, use it like so:

 func example2(){

 [1.1, 2.2, 3.3].doSomething()

 }

However, if you try to call this method on an array that contains non–floating point
data, you will get a compilation error.

Let me show you another example. Let’s say that you want to extend all arrays that
contain only strings, and you want to add a method to this array that can find the
longest string. This is how you would do that:

extension Sequence where Iterator.Element == String{
 var longestString: String{
 var result = ""
 for value in self{
 if value.characters.count > result.characters.count{
 result = value
 }
 }
 return result
 }
}

156 | Chapter 6: Swift and Cocoa Touch

Calling it is as simple as:

func example3(){

 print(["Foo", "Bar", "Vandad"].longestString

 }

See Also
Recipe 6.17

6.19 Optimizing Your Swift Code
Problem
You want to adopt some simple practices that can make your Swift code run much
faster than before.

Solution
Use the following techniques:

1. Enable whole module optimization on your code.
2. Use value types (such as structs) instead of reference types where possible.
3. Consider using final for classes, methods, and variables that aren’t going to be

overridden.
4. Use the CFAbsoluteTimeGetCurrent() function to profile your app inside your

code.
5. Always use Instruments to profile your code and find bottlenecks.

Discussion
Let’s have a look at an example. Let’s say that we have a Person class like so:

class Person{
 let name: String
 let age: Int
 init(name: String, age: Int){
 self.name = name
 self.age = age
 }
}

Now we will write a method that will generate 100,000 instances of this class, place
them inside a mutable array, and then enumerate the array. We will time this opera‐

6.19 Optimizing Your Swift Code | 157

www.allitebooks.com

http://www.allitebooks.org

tion using the CFAbsoluteTimeGetCurrent() function. We’ll then be able to tell how
many milliseconds this took:

func example1(){

 var x = CFAbsoluteTimeGetCurrent()

 var array = [Person]()

 for _ in 0..<100000{
 array.append(Person(name: "Foo", age: 30))
 }

 // go through the items as well
 for n in 0..<array.count{
 let _ = array[n]
 }

 x = (CFAbsoluteTimeGetCurrent() - x) * 1000.0

 print("Took \(x) milliseconds")

}

When I ran this code, it took 41.28 milliseconds to complete; it will probably be dif‐
ferent on your computer. Now let’s create a struct similar to the class we created
before but without an initializer, because we get that for free. Then do the same that
we did before and time it:

struct PersonStruct{
 let name: String
 let age: Int
}

func example2(){

 var x = CFAbsoluteTimeGetCurrent()

 var array = [PersonStruct]()

 for _ in 0..<100000{
 array.append(PersonStruct(name: "Foo", age: 30))
 }

 // go through the items as well
 for n in 0..<array.count{
 let _ = array[n]
 }

 x = (CFAbsoluteTimeGetCurrent() - x) * 1000.0

 print("Took \(x) milliseconds")

158 | Chapter 6: Swift and Cocoa Touch

}

Don’t suffix your struct names with “Struct” like I did. This is for
demo purposes only, to differentiate between the class and the
struct.

When I ran this code, it took only 35.53 milliseconds. A simple optimization brought
some good savings. Also notice that in the release version these times will be mas‐
sively improved, because your binary will have no debug information. I have tested
the same code without the debugging, and the times were around 4 milliseconds.
Also note that I am testing these on the simulator, not on a real device. The profiling
will definitely report different times on a device, but the ratio should be about the
same.

You will also need to determine which parts of your code are final and mark them
with the final keyword. This will tell the compiler that you are not intending to
override those properties, classes, or methods and will help Swift optimize the dis‐
patch process. For instance, let’s say we have this class hierarchy:

class Animal{
 func move(){
 if "Foo".characters.count > 0{
 // some code
 }
 }
}

class Dog : Animal{

}

And we create instances of the Dog class and then call the move() function on them:

func example3(){
 var x = CFAbsoluteTimeGetCurrent()
 var array = [Dog]()
 for n in 0..<100000{
 array.append(Dog())
 array[n].move()
 }
 x = (CFAbsoluteTimeGetCurrent() - x) * 1000.0
 print("Took \(x) milliseconds")
}

When we run this, the runtime will first have to detect whether the move() function is
on the superclass or the subclass and then call the appropriate class based on this

6.19 Optimizing Your Swift Code | 159

www.allitebooks.com

http://www.allitebooks.org

decision. This checking takes time. However, if you know that the move() function
won’t be overridden in the subclasses, you can mark it as final:

class AnimalOptimized{
 final func move(){
 if "Foo".characters.count > 0{
 // some code
 }
 }
}

class DogOptimized : AnimalOptimized{

}

func example4(){
 var x = CFAbsoluteTimeGetCurrent()
 var array = [DogOptimized]()
 for n in 0..<100000{
 array.append(DogOptimized())
 array[n].move()
 }
 x = (CFAbsoluteTimeGetCurrent() - x) * 1000.0
 print("Took \(x) milliseconds")
}

When I ran these on the simulator, I got 90.26 milliseconds for the nonoptimized ver‐
sion and 88.95 milliseconds for the optimized version. Not that bad.

I also recommend turning on whole module optimization for your release code. Go
to your Build Settings and under the optimization for your release builds (App Store
scheme), simply choose “Fast” with Whole Module Optimization, and you are good
to go.

6.20 Building Equality Functionality into Your Own Types
Problem
You have your own structs and classes and you want to build equality-checking func‐
tionality into them.

Solution
Build your equality functionality into the protocols to which your types conform.
This is the way to go!

Discussion
Let me give you an example. Let’s say that we have a protocol called Named:

160 | Chapter 6: Swift and Cocoa Touch

protocol Named{
 var name: String {get}
}

We can build the equality functionality into this protocol. We can check the name
property and if the name is the same on both sides, then we are equal:

func ==(lhs : Named, rhs: Named) -> Bool{
 return lhs.name == rhs.name
}

Now let’s define two types, a car and a motorcycle, and make them conform to this
protocol:

struct Car{}
struct Motorcycle{}

extension Car : Named{
 var name: String{
 return "Car"
 }
}

extension Motorcycle : Named{
 var name: String{
 return "Motorcycle"
 }
}

That’s it, really. You can see that I didn’t have to build the equality functionality into
Car and Motorcycle separately. I built it into the protocol to which both types con‐
form. And then we can use it like so:

func example1(){

 let v1: Named = Car()
 let v2: Named = Motorcycle()

 if v1 == v2{
 print("They are equal")
 } else {
 print("They are not equal")
 }

 }

This example will say that the two constants are not equal because one is a car and the
other is a motorcycle, but what if we compared two cars?

func example2(){

 let v1: Named = Car()
 let v2: Named = Car()

6.20 Building Equality Functionality into Your Own Types | 161

www.allitebooks.com

http://www.allitebooks.org

 if v1 == v2{
 print("They are equal")
 } else {
 print("They are not equal")
 }

 }

Bingo. Now they are equal. So instead of building the equality functionality into your
types, build them into the protocols that your types conform to and you are good to
go.

6.21 Grouping switch Statement Cases Together
Problem
You want to design your cases in a switch statement so that some of them fall
through to the others.

Solution
Use the fallthrough syntax. Here is an example:

let age = 30

switch age{
case 1...10:
 fallthrough
case 20...30:
 print("Either 1 to 10 or 20 to 30")
default:
 print(age)
}

This is just an example. There are better ways of writing this code
than to use fallthrough. You can indeed batch these two cases
together into one case statement.

Discussion
In Swift, if you want one case statement to fall through to the next, you have to
explicitly state the fallthrough command. This is more for the programmers to look
at than the compiler, because in many languages the compiler is able to fall through to
the next case statement if you just leave out the break statement. However, this is a
bit tricky because the developer might have just forgotten to place the break state‐

162 | Chapter 6: Swift and Cocoa Touch

ment at the end of the case and all of a sudden her app will start behaving really
strangely. Swift now makes you request fall-through behavior explicitly, which is
safer.

6.22 Looping Conditionally Through a Collection
Problem
You want to go through the objects inside a collection conditionally and state your
conditions right inside the loop’s statement.

Solution
Use the new for x in y where syntax, specifying a where clause right in your for
loop. For instance, here we will go through all the keys and values inside a dictionary
and only get the values that are integers:

let dic = [
 "name" : "Foo",
 "lastName" : "Bar",
 "age" : 30,
 "sex" : 1,
] as [String : Any]

for (k, v) in dic where v is Int{
 print("The key \(k) contains an integer value of \(v)")
}

Discussion
In older versions of Swift, you’d have to create your conditions before you got to the
loop statement—or even worse, if that wasn’t possible and your conditions depended
on the items inside the array, you’d have to write the conditions inside the loop. Well,
no more.

Here is another example. Let’s say that you want to find all the numbers that are divis‐
ible by 8, inside the range of 0 to 1,000, inclusive. You can do that as follows:

let nums = 0..<1000
let divisibleBy8 = {$0 % 8 == 0}
for n in nums where divisibleBy8(n){
 print("\(n) is divisible by 8")
}

And of course, you can have multiple conditions for a single loop:

let dic = [
 "name" : "Foo",
 "lastName" : "Bar",

6.22 Looping Conditionally Through a Collection | 163

www.allitebooks.com

http://www.allitebooks.org

 "age" : 30,
 "sex" : 1,
] as [String : Any]

for (k, v) in dic where v is Int && v as! Int > 10{
 print("The key \(k) contains the value of \(v) that is larger than 10")
}

6.23 Bundling and Reading Data in Your Apps
Problem
You want to bundle device-specific data into your app. At runtime, you want to easily
load the relevant device’s data and use it without having to manually distinguish
between devices.

Solution
Follow these steps:

1. In your asset catalog, tap the + button and create a new data set (see Figure 6-1).
Data sets contain our raw device-specific data.

Figure 6-1. Data sets contain our raw device-specific data

2. In the Attributes inspector of your data set, specify for which devices you want to
provide data (see Figure 6-2).

164 | Chapter 6: Swift and Cocoa Touch

Figure 6-2. I have chosen to provide data for the iPad and iPhone in this example

3. Drag and drop your actual raw data file into place in IB.
4. In your asset list, rename your asset to something that you wish to refer to it by

later (see Figure 6-3).

Figure 6-3. I have placed two RTF files into this data asset: one for iPhone and another
for iPad

6.23 Bundling and Reading Data in Your Apps | 165

www.allitebooks.com

http://www.allitebooks.org

In the iPhone RTF I’ve written “iPhone Says Hello,” and the iPad
one says “iPad Says Hello”; the words iPhone and iPad are bold
(attributed texts). I am then going to load these as attributed strings
and show them on the user interface (see Figure 6-5).

5. In your code, load the asset with the NSDataAsset class’s initializer.
6. Once that’s done, use the data property of your asset to access the data.

Discussion
Place a label on your UI and hook it up to your code under the name lbl (see
Figure 6-4).

Figure 6-4. Place a label on your user interface and add all the constraints to it (Xcode
can do this for you); hook it up to your code as well

Then create an intermediate property that can set your label’s text for you:

import UIKit

class ViewController: UIViewController {

 @IBOutlet var lbl: UILabel!

 var status = ""{
 didSet{lbl.text = status}
 }

 ...

When the view is loaded, attempt to load the custom data set:

 guard let asset = NSDataAsset(name: "rtf") else {
 status = "Could not find the data"
 return
 }

166 | Chapter 6: Swift and Cocoa Touch

The name of the data asset is specified in the asset catalog (see
Figure 6-3).

Because data assets can be of any type (raw data, game levels, etc.), when loading an
attributed string we need to specify what type of data we are loading in. We do that
using an options dictionary that we pass to NSAttributedString’s constructor. The
important key in this dictionary is documentType, whose value in this case should be
NSAttributedString.DocumentType.rtf. We can also specify the encoding of our
data with the characterEncoding key:

let options = [
 .documentType : NSAttributedString.DocumentType.rtf,
 .characterEncoding : String.Encoding.utf8
] as [NSAttributedString.DocumentReadingOptionKey : Any]

Last but not least, load the data into the string and show it (see Figure 6-5):

do{
 let str = try NSAttributedString(data: asset.data, options: options,
 documentAttributes: nil)
 lbl.attributedText = str
} catch let err{
 status = "Error = \(err)"
}

Figure 6-5. This is how my string looked when I saved it in RTF format—it is now
loaded into the user interface of my app

6.23 Bundling and Reading Data in Your Apps | 167

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 7

Xcode 9 and Interface Builder

In this chapter, we are going to have a look at some of the updates to Xcode and
Interface Builder. We will start with Xcode and some of the really exciting features
that have been added to it since the previous version.

7.1 Changing Variable Names in the Current Scope
Problem
You want to quickly change the name of a variable in the local scope, for instance,
inside the current function that you are in.

Solution
Follow these steps:

1. In the function where you have defined your variable or constant, move the key‐
board cursor over to the variable or constant name. Where in the name doesn’t
matter.

2. Simultaneously press the Cmd-Ctrl-E keys on your keyboard.
3. The Xcode editor will then highlight the selected variable name in the entire

scope of your function. If this variable or constant is defined outside the current
function or scope, all instances where it is being used will now be highlighted.

4. Start altering the variable or constant name by typing a new name or just editing
the existing one.

5. Once you are done, press the Enter key on your keyboard to finish the editing
process.

169

www.allitebooks.com

http://www.allitebooks.org

Discussion
If you selected a variable name that is defined in the current function, changes that
you make will not affect a variable of the same name that is outside this function’s
scope. You can see the scope where editing takes place in Figure 7-1. Here I am edit‐
ing the name of a locally defined constant inside a function called example().
Another constant with the same name is defined globally outside this function’s
scope, but Xcode is intelligent enough to know that my intention is to change the
name of the locally defined constant, and not the constant with the same name
defined outside the scope of the current function.

Figure 7-1. Pressing Cmd-Ctrl-E affects only the constant in the local scope

If the variable or constant you choose is defined outside the current scope, Xcode will
change the name of the constant or variable everywhere inside your code where you
use it. In Figure 7-2, I have moved the keyboard cursor to the example2() function,
where it refers to the global constant name in a print() statement. Now, when I press
the Cmd-Ctrl-E keys on the keyboard, Xcode highlights every instance of this con‐
stant’s name in the code and allows me to change this name by simply typing a new
name or editing the existing one. The local constant Figure 7-1 is not affected.

170 | Chapter 7: Xcode 9 and Interface Builder

It doesn’t matter which instance of the constant or variable you
move your keyboard cursor to in order to edit the name in a partic‐
ular scope.

Figure 7-2. Pressing Cmd-Ctrl-E affects only the constant in the global scope

7.2 Utilizing Regular Expressions in Your Xcode Searches
Problem
You want to search your code using patterns (regular expressions).

Solution
Follow these steps:

1. Press the Cmd-Shift-F keys on your keyboard.
2. In the search field, press the Ctrl-Alt-Cmd-P keys in order to bring up the pat‐

tern matching dialog (see Figure 7-3).
3. Use the regular expressions provided in the form of predefined patterns and a

combination of your own search terms to create the complete search text.
4. Once you are done, press the Enter key to perform your search.

7.2 Utilizing Regular Expressions in Your Xcode Searches | 171

www.allitebooks.com

http://www.allitebooks.org

Figure 7-3. Opening the pattern matching dialog in Xcode’s search field

Discussion
Here is an explanation of the different options available in the patterns dialog:

Tab
A tab character. This option is used often if you are using tabs instead of spaces
in your code for indentation.

Line Break
A character that separates two lines of code or text from each other. In macOS
this character is usually placed in documents when the user presses the Enter key
on her keyboard.

172 | Chapter 7: Xcode 9 and Interface Builder

Any Word Characters
Characters that normally make up a word. This does not include digits, white‐
space, most punctuation, etc.

White Space
A space, a tab, line break, and such.

Digits
Simple numerals, such as 1, 2, 3....

The value of a pattern or regular expression is that sometimes you might need to look
for text that is too complicated to represent as plain characters. For instance, suppose
you want to find any of the following instances of text in your application, with the
focus being on the words core and data:

• Core Data
• CoreData
• Core performance in data
• Core data example

If you wanted to specify this search term in English, you would just look for any text
that starts with the word “core” and ends with the word “data,” allowing any other
characters in between. To specify this search pattern, follow these steps:

1. Press Cmd-Shift-F to go to Xcode’s global search.
2. In the search field, type in the word “core.”
3. Then press the Ctrl-Alt-Cmd-P keys on your keyboard to open the available pat‐

terns (see Figure 7-3).
4. Choose the Any Characters item from the list.
5. Immediately after that, in the search field, type the word “data.”
6. Press the Enter key on your keyboard to begin the search.

Here is another example. Imagine that you want to look for any method calls on
UIApplication.shared. Note that you don’t want to find any code that uses or
changes a property on UIApplication.shared, but you want to find method calls. In
that case, you can do the following:

1. Press Cmd-Shift-F in Xcode to open Xcode’s global search.
2. Type “UIApplication.shared.” in the search field, making sure to end the text with

a dot as shown here.
3. Press Ctrl-Alt-Cmd-P to open the dialog for available patterns.
4. Select the Any Word Characters option to indicate that after UIApplica‐

tion.shared. the user is allowed to write any word, without spaces, because those
are the criteria for a function name. Spaces are not allowed in function names.

7.2 Utilizing Regular Expressions in Your Xcode Searches | 173

www.allitebooks.com

http://www.allitebooks.org

5. Then type in an opening parenthesis, because that’s how a function call is
invoked in Swift.

6. Press Ctrl-Alt-Cmd-P again. From the menu, choose Any Characters to denote
that the user can type anything after the opening parenthesis.

7. Type in a closing parenthesis now to denote that the function call ends here.
8. Press the Enter key on your keyboard to perform the search. Sample results are

shown in Figure 7-4.

Figure 7-4. Finding all method calls to the UIApplication class in a project

If your method call has a trailing closure argument, it can be short‐
handed by skipping the parentheses in Swift. That’s an edge case
that we are not covering in this example, but you can certainly
specify a search pattern to find those method calls as well.

7.3 Debugging Apps on an iOS Device Wirelessly
Problem
You want to get rid of the cables that connect your iOS devices to your Mac while
debugging your iOS apps, and instead wirelessly debug your applications on your
various iOS devices.

174 | Chapter 7: Xcode 9 and Interface Builder

Solution
Follow these steps:

1. For one last time, connect your device to your computer with a USB cable.
2. Open up Xcode if it’s not already open.
3. From the Window menu, choose Devices and Simulators or simply press the

Cmd-Shift-2 keys on your keyboard.
4. From the lefthand-side panel, select your connected device.
5. On the righthand side, ensure that the “Connect via network” option is selected

(see Figure 7-5).
6. Once that is done, unplug your device from your computer.

Figure 7-5. Enabling wireless debugging on an iOS device

Now in Xcode, you should be able to see your device in the list of available devices
that can run your app (see Figure 7-6), with a little icon next to it indicating that
wireless debugging is enabled on this particular device.

7.3 Debugging Apps on an iOS Device Wirelessly | 175

www.allitebooks.com

http://www.allitebooks.org

Figure 7-6. The iOS device appears in the list of available run destinations in Xcode

Discussion
Once you have enabled wireless debugging on an iOS device, as long as your local
macOS instance is on the same network as that iOS device, you should be able to see
the device in your list of debug destinations in Xcode.

Prior to Xcode 9, we developers had to always leave our devices connected to our
Macintosh computers in order to be able to debug our applications on them. And
since there are a limited number of USB ports on a Mac, we could connect only a few
devices. There are, of course, USB hubs that you can purchase on the internet that
allow you to expand a single USB 3.0 port to four to eight USB 2.0 ports, but that only
clutters your desk with USB hubs and cables.

With the introduction of Xcode 9, you can hypothetically connect an unlimited num‐
ber of iOS devices through the wireless network to your Macintosh, as long as your
macOS and the iOS device are on the same network. This makes it a lot easier to
share test devices. A team of iOS developers can maintain a pool of iOS devices that
they share among themselves and debug their apps on, without having to move the
devices around and constantly unplug them and plug them in again.

176 | Chapter 7: Xcode 9 and Interface Builder

7.4 Making Sure UI Methods Run on the Main Thread
Problem
Your application sometimes crashes unexpectedly in production and you are not sure
why. Alternatively, you get mysterious crashes every now and then with inscrutable
crash logs, and don’t know how to debug the problem.

Solution
Follow these steps:

1. Open your project in Xcode.
2. Hold down the Alt key on your keyboard and then click the Play button in

Xcode.
3. In the lefthand panel, ensure that the Run section is selected (see Figure 7-7).
4. In the righthand panel, ensure that Diagnostics is selected at the top.
5. In the Runtime API Checking section, ensure that the Main Thread Checker is

enabled.
6. Run your application and then go through different sections in your app where

you believe the mysterious crashes might be occurring.

Figure 7-7. Enable the Main Thread Checker option for the project

7.4 Making Sure UI Methods Run on the Main Thread | 177

www.allitebooks.com

http://www.allitebooks.org

If Xcode finds any UI method calls running on threads that are not the main thread,
it will highlight those for you (see Figure 7-8).

Figure 7-8. A UIKit method is running on a non-UI thread, and Xcode’s Main Thread
Checker has been able to detect and highlight the issue

Discussion
Only rarely can a UI method be called on a non-UI thread, and those exceptions are
almost always documented explicitly by Apple. Otherwise, it is safe to assume that all
UI-related methods must be called on the main (UI) thread. However, sometimes
programmers make assumptions about which thread they are on, and end up calling
a UI method and on a non-UI thread. This ends in one of the following circumstan‐
ces:

• The code won’t work, but it won’t crash the app.
• The code will immediately crash the app.
• The code works, but the app ends up behaving unexpectedly.
• The code works and doesn’t crash, but works only after a very long pause.

178 | Chapter 7: Xcode 9 and Interface Builder

In all these circumstances, your application won’t behave as expected and you will
want to immediately fix those issues. Programmers who have used Fabric.io and
Crashlytics know that Crashlytics can detect whether a crash is caused by a UI
method running on a non-UI thread and can report those crashes to you and high‐
light those methods on its website. However, if you are not using Fabric.io, or if you
simply want to avoid your application crashing or acting unexpectedly, the Main
Thread Checker is a really good alternative. In fact, it is in many ways better than
tools such as Fabric.io, because with the Main Thread Checker you can find these
issues and correct them before your app is even in production. With Fabric.io, pro‐
grammers usually wait until the app is in production and suffers from a high number
of crashes before they fix the problem.

As a matter of fact, the Main Thread Checker is enabled by default for all projects
created by the latest version of Xcode. If you have an old project, opening it with the
new Xcode won’t suffice; you will need to follow the instructions provided in this
recipe to enable the Main Thread Checker.

Right below where you enabled the Main Thread Checker (see Figure 7-7), you
should also see the “Pause on issues” option, which is not selected by default. If you
enable this option, whenever a UI method is called on a non-UI thread not only will
Xcode highlight it for you in the source code editor, but it will also break the debug‐
ger at that particular point so that you can issue debugging commands such as bt for
backtrace.

7.5 Creating a GitHub Repository for Your Project in Xcode
Problem
You want to create a GitHub repository for your project right inside Xcode.

Solution
Follow these steps:

1. While in Xcode, press Cmd-2 in order to open the source control navigator.
2. From the Source Control menu, choose the Create Git Repositories... menu item.
3. In the dialog that appears, press the Create button. Xcode will now create a local

Git repository for your project.

I am assuming that your project has neither a local nor a remote
Git repository already associated with it.

7.5 Creating a GitHub Repository for Your Project in Xcode | 179

www.allitebooks.com

http://www.allitebooks.org

4. Now that you are back in Xcode, press the Cmd-2 keys on your keyboard to
bring up the source control navigator panel.

5. At the bottom-left corner of this panel, press the little gear button that will bring
up a menu.

6. In this menu (see Figure 7-9), choose the item that begins with “Create,” shows
the name of your project, and ends with “Remote on GitHub....”

Figure 7-9. Creating a new remote for a project on GitHub

7. In the new dialog that appears (see Figure 7-10), either choose a previously
logged-into GitHub account or log in to an account.

Figure 7-10. Enter the relevant information for your project and then press the Cre‐
ate button to create the new remote repository

180 | Chapter 7: Xcode 9 and Interface Builder

8. Fill out the rest of the fields, such as Description. Once you are done, press the
Create button to create your repository on GitHub.

Discussion
Xcode has built-in functionality for working with Git, and that’s nothing new. How‐
ever, in the new version of Xcode you can now interact with GitHub, which is one of
the—if not the—most well-known Git remote servers.

Once you have created a remote for your project in GitHub, every git push com‐
mand will send your code to the remote, which will then be in GitHub.

You can control all aspects of your Git commands through the Source Control menu
in Xcode. That includes commands such as push, pull, commit, and clone. This
might not be your preferred way of working. Some developers would rather work
with Terminal instead of Xcode, so that they can have control over all commands and
the parameters they pass to them. But Xcode is a very easy alternative that shouldn’t
simply be dismissed.

See Also
Recipe 7.6

7.6 Synchronizing Your Code with GitHub Inside Xcode
Problem
You want to ensure not only that you have the latest code that is on origin (GitHub in
this case) but also that your coworkers have your latest code.

In this recipe I am assuming that you have a good basic knowledge
of how Git works. I won’t go into details about Git or its com‐
mands; this recipe will try to teach you how to apply your Git
knowledge to Xcode’s built-in ability to work with Git and GitHub.

Solution
In order to ensure that you have the latest code that is placed on origin, you will need
to issue a pull command. Follow these steps:

1. From the Source Control menu, choose the Pull menu item.
2. In the dialog that appears, choose the correct remote. The path is origin/XXX,

where XXX is the name of the branch that you want to pull.

7.6 Synchronizing Your Code with GitHub Inside Xcode | 181

www.allitebooks.com

http://www.allitebooks.org

3. Once you are done, press the Pull button in this dialog.

Xcode will tell you whether your local repository is up to date, and will launch a pull
request to update the repository if it is not.

In order to ensure that your local changes are pushed to the remote server—that is to
say, that your changes are also sent to GitHub—follow these steps:

1. In the Source Control menu, click the Commit menu item.
2. In the dialog that appears (see Figure 7-11), choose the changes that you want to

commit and then enter a message in the giant text box at the bottom of the
screen. This message is known as the commit message and will be visible inside
your Git repository’s history for all other developers to see if your push succeeds.
By “all other developers” I mean those with whom you have chosen to share your
project. If you have created a free repository on GitHub, the entire world has
access to your code, because free repositories on GitHub are public by default. To
create private repositories on GitHub, you have to pay for them.

Figure 7-11. Choose the file to be committed and enter a commit message

3. Once you are done entering your commit message, press the Commit button.
4. Now, from the Source Control menu, choose the Push menu item.
5. In the dialog that appears (see Figure 7-12), choose the correct origin (usually

origin/XXX, where XXX is your branch name) and then press the Push button.

182 | Chapter 7: Xcode 9 and Interface Builder

Figure 7-12. Choose the remote to push your code to

If everything goes fine, the dialog disappears automatically. But it is possible that
before you made and pushed your commits, some changes occurred on the remote
server, such as another developer pushing her changes to the remote. In that case, you
will get to know about the synchronization problem later and you will need to do a
Git pull before being able to push.

Discussion
GitHub is a very well-known host for Git repositories, and some programmers don’t
even know the difference between Git and GitHub—so let’s make sure you under‐
stand the distinction. Xcode can work with any Git host. As long as it supports Git
over SSH, Xcode can work with it. There are other Git hosts besides GitHub, but we
don’t have the time or the space to talk about all the different hosts, since new hosts
are created frequently.

As for issuing the commands that interact with a Git host, some programmers choose
to use Terminal, some choose to use SourceTree, and some choose to use Xcode.
Xcode has a really easy way of working with Git repositories, but once you choose to
use Xcode to synchronize your code with a remote, you will need to ensure that your
coworkers also have your latest changes. As a rule of thumb, most observers recom‐
mend sending all your code changes to a remote before you leave your desk and go
home. This ensures that no code is lost if you cannot make it to work the next day,
and that your code is safely hosted in case your computer encounters a physical disas‐
ter overnight.

See Also
Recipe 7.5

7.6 Synchronizing Your Code with GitHub Inside Xcode | 183

www.allitebooks.com

http://www.allitebooks.org

7.7 Categorizing and Downloading Assets to Get
Smaller Binaries
Problem
You have many assets in your app for various circumstances, and want to save storage
space and network usage on each user’s device by shipping the app without the
optional assets. Instead, you want to dynamically download them and use them
whenever needed.

Solution
Use Xcode to tag your assets and then use the NSBundleResourceRequest class to
download them.

Discussion
For this recipe, I will create three packs of assets, each with three images in them. One
pack may run for x3 screen scales, another for iPhone 6, and the last for iPhone 6+,
for instance. I am taking very tiny clips of screenshots of my desktop to create these
images—nothing special. The first pack will be called “level1,” the second “level2,” and
the third “level3.”

Use the GitHub repo of this book for a quick download of these
resources. Also, for the sake of simplicity, I am assuming that you
are going to run this only on x3 scale screens such as iPhone 6+.

Place all nine images (three packs of three images) inside your Assets.xcassets file and
name them as shown in Figure 7-13. Then select all the images in your first asset pack
and open the Attributes inspector. In the On Demand Resource Tags section of the
inspector, enter level1. Do the same thing for the other levels—but of course bump
the number up for each pack.

184 | Chapter 7: Xcode 9 and Interface Builder

Figure 7-13. Name your assets as shown

Now, in your UI, place three buttons and three image views, hook the buttons’
actions to the code, and hook the image view references to the code:

@IBOutlet var img1: UIImageView!
@IBOutlet var img2: UIImageView!
@IBOutlet var img3: UIImageView!

var imageViews: [UIImageView]{
 return [self.img1, self.img2, self.img3]
}

To find out whether the resource pack that you need has already been downloaded,
call the conditionallyBeginAccessingResourcesWithCompletionHandler() func‐
tion on your resource request. Don’t blame me! I didn’t name this function. This will
return a Boolean of true or false to tell you whether you have access to the resource.
If you don’t have access, you can simply download the resources with a call to the
beginAccessingResourcesWithCompletionHandler() function. This will return an
error if one happens, or nil if everything goes well:

var currentResourcePack: NSBundleResourceRequest?

func displayImagesForResourceTag(_ tag: String){
 OperationQueue.main.addOperation{
 for n in 0..<self.imageViews.count{
 self.imageViews[n].image = UIImage(named: tag + "-\(n+1)")
 }
 }
}

func useLevel(_ lvl: UInt32){

7.7 Categorizing and Downloading Assets to Get Smaller Binaries | 185

www.allitebooks.com

http://www.allitebooks.org

 let imageViews = [img1, img2, img3]

 for img in imageViews{
 img?.image = nil
 }

 let tag = "level\(lvl)"

 if let req = currentResourcePack{
 req.endAccessingResources()
 }

 currentResourcePack = NSBundleResourceRequest(tags: [tag])

 guard let req = currentResourcePack else {
 return
 }

 req.conditionallyBeginAccessingResources{available in
 if available{
 self.displayImagesForResourceTag(tag)
 } else {
 req.beginAccessingResources{error in
 guard error == nil else{
 // TODO: you can handle the error here
 return
 }
 self.displayImagesForResourceTag(tag)
 }
 }

 }

}

@IBAction func useLevel3(_ sender: AnyObject) {
 useLevel(3)
}

@IBAction func useLevel2(_ sender: AnyObject) {
 useLevel(2)
}

@IBAction func useLevel1(_ sender: AnyObject) {
 useLevel(1)
}

We keep a reference to the request that we send for our asset pack
so that the next time our buttons are tapped, we don’t have to check
their availability again, but release the previously downloaded
resources using the endAccessingResources() function.

186 | Chapter 7: Xcode 9 and Interface Builder

Run the code now in your simulator. When Xcode opens, go to the Debug Navigator
(press the Cmd-6 keys) and then click the Disk section. You will see results similar to
those shown in Figure 7-14.

Figure 7-14. Xcode displaying On Demand Resources and the status of whether or not
they are downloaded locally

Note how none of the asset packs are in use. Now in your UI, click the first button to
get the first asset pack and watch how the first asset pack’s status changes to “In Use.”
Once you switch from that pack to another, the previously chosen pack will be set to
“Downloaded” and be ready to be purged.

See Also
Recipe 7.8

7.8 Exporting Device-Specific Binaries
Problem
You want to extract your app’s binary for a specific device architecture to determine
how big your binary will be on that device when the user downloads your app.

Solution
Follow these steps:

1. Archive your app in Xcode.
2. In the Archives screen, click the Export button.
3. Choose the “Save for Ad Hoc Deployment” option in the new screen and click

Next.

7.8 Exporting Device-Specific Binaries | 187

www.allitebooks.com

http://www.allitebooks.org

4. In the new window, choose “Export for specific device” and then choose your
device from the list.

5. Once you are done, click the Next button and save your file to disk.

Discussion
Bitcode is Apple’s way of specifying how the binary that you submit to the App Store
will be downloaded on target devices. For instance, if you have an asset catalog with
some images for iPad and iPhone and a second set of images for iPhone 6 and 6+
specifically, iPhone 5 users should not get the second set of assets. This is the default
functionality in Xcode, so you don’t have to do anything special to enable it. If you are
working on an old project, you can enable bitcode from Build Settings in Xcode.

If you are writing an app that has a lot of device-specific images and assets, I suggest
that you use this method before submitting your app to the store to ensure that the
required images and assets are indeed included in your final build. Remember, if bit‐
code is enabled in your project, Apple will detect the host device that is downloading
your app from the store and will serve the right binary to that device. It’s not neces‐
sary to separate your binaries when submitting to Apple—simply submit a big, fat,
juicy binary and Apple will take care of the rest.

See Also
Recipe 7.7

7.9 Linking Separate Storyboards Together
Problem
You have a messy storyboard, and you would like to place some view controllers in
their own storyboard and still be able to cross-reference them in your other story‐
boards.

Solution
Use IB’s new “Refactor to Storyboard” feature under the Editor menu.

Discussion
I remember working on a project where we had a really messy storyboard and we had
to separate the view controllers. What we ended up doing was putting the controllers
on separate storyboards manually, after which we had to write code to link our but‐
tons and other actions to the view controllers, instantiate them manually, and then
show them. Well, none of that anymore. Apple has taken care of that for us!

188 | Chapter 7: Xcode 9 and Interface Builder

As an exercise, create a single view controller project in Xcode and then open your
main storyboard. Then open the Editor menu, and navigate to Embed In → Naviga‐
tion Controller. Now your view controller has a navigation controller. Place a button
on your view controller and then place another view controller on your storyboard.
Select the button on the first view controller, hold down the Control key on your key‐
board, and drag the line over to the second view controller. Then choose the “show”
option in the menu that appears (Figure 7-15). This will ensure that when the user
taps your button, the system will push the second view controller onto the screen.

Figure 7-15. Adding a show segue to ensure that tapping our button will show the second
view controller

Now select your second view controller and then, from the Editor menu, choose the
“Refactor to Storyboard” item. In the dialog, enter Second.storyboard as the filename
and save. That’s really it. Now run your app and see the results if you want.

If you prefer to do some of this stuff manually instead of embedding things like this,
you can always drag the new item called Storyboard Reference from the Object
Library onto your storyboard and set up the name of the storyboard manually. Xcode
will give you a drop-down box so that you don’t have to write the name of the story‐
board all by yourself. You will also be able to specify an identifier for your storyboard.
This identifier will be useful when you are working with the segue (of course, you
have to set up the ID for your view controller in advance).

7.10 Adding Multiple Buttons to the Navigation Bar
Problem
You want to add multiple instances of UIBarButtonItem to your navigation bar.

7.10 Adding Multiple Buttons to the Navigation Bar | 189

www.allitebooks.com

http://www.allitebooks.org

Solution
In Xcode, you can now add multiple bar button items to your navigation bar. Simply
open the Object Library and search for “bar button.” Once you find the buttons, drag
and drop them onto your navigation bar and then simply reference them in your
code if you have to. For instance, Figure 7-16 shows two bar buttons on the righthand
side of the navigation bar. In previous versions of Xcode, we could add only one but‐
ton to each side. If we wanted more buttons, we had to write code to add them.

Figure 7-16. Two buttons on the same side of the navigation bar

Discussion
Prior to the latest Xcode, you could not place multiple bar button items next to each
other on your navigation bar. Well, now you can. You can also access these buttons
just as you would expect, by creating a reference to them in your code. And you can
always find them using the barButtonItems property of your navigation bar.

7.11 Showing the Header View of Your Swift Classes
Problem
You want to get an overview of what your Swift class’s interface looks like.

Solution
Use Xcode’s new Generated Interface assistant editor functionality. Open your Swift
file first and then, in Xcode, use Show Assistant Editor, which you can find in the
Help menu if you just type that name. After you open the assistant, you will get a split
screen of your current view. In the second editor pane that opened, choose Generated
Interface at the top instead of Counterparts (which is the default selection). You’ll see
your code as shown in Figure 7-17.

190 | Chapter 7: Xcode 9 and Interface Builder

Figure 7-17. Code shown in Xcode’s assistant editor

Discussion
The Generated Interface functionality of the assistant editor is quite handy if you
want to get an overview of how clean your code is. It probably won’t be day-to-day
functionality that you use all the time, but I cannot be sure—maybe you will love it so
much that you will dedicate a whole new monitor just to displaying your generated
interface all the time. By the way, there is a shortcut to the assistant editor in Xcode:
Cmd-Alt-Enter. To get rid of the editor, press Cmd-Enter.

7.12 Designing Interactive Interface Objects in
Playgrounds
Problem
You want to design a view the way you want, but don’t want to compile your app
every time you make a change.

Solution
Use storyboards while designing your UI, and after you are done, put your code
inside an actual class. In IB, you can detach a view so that it is always visible in your
playground while you are working on it, and any changes you make will immediately
be shown.

7.12 Designing Interactive Interface Objects in Playgrounds | 191

www.allitebooks.com

http://www.allitebooks.org

Discussion
Create a single view app and add a new playground to your project, as shown in
Figure 7-18.

Figure 7-18. Add a new playground to your project

Write code similar to this to create your view:

import UIKit

var view = UIView(frame: CGRect(x: 0, y: 0, width: 300, height: 300))
view.backgroundColor = UIColor.green

view.layer.borderColor = UIColor.blue.cgColor
view.layer.borderWidth = 10
view.layer.cornerRadius = 20

view

Now on the righthand side of the last line of code that you wrote, you should see a +
button. Click that (see Figure 7-19).

Figure 7-19. Click the little + button to get your view right onto your playground

192 | Chapter 7: Xcode 9 and Interface Builder

By clicking that button, you will get a live preview of your view inside your play‐
ground. Now you can continue changing your view’s properties and, once you are
done, add a new preview of your view, so that you can compare the previous and the
new states (see Figure 7-20). The first view shown has only the properties you had
assigned to it up to the point that the view was drawn. The second view has more
properties, such as the border width and color, even though it is the same view
instance in memory—because it is drawn at a different time inside IB, it shows differ‐
ent results. This helps you compare how your views look before and after modifica‐
tions.

Figure 7-20. Two versions of a view

See Also
Recipe 7.10

7.12 Designing Interactive Interface Objects in Playgrounds | 193

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 8

The User Interface

UIKit is the main framework for working with various UI components on iOS. You
can use other frameworks, such as OpenGL, to build your own UI the way you want
without being constrained by UIKit, but almost all developers use UIKit at some
stage in their applications to bring intuitive user interfaces to their apps. One of the
main reasons for this is that UIKit by default takes advantage of all the latest technol‐
ogies in iOS and is kept up to date. For instance, many years back when Apple started
producing Retina displays for iOS devices, all apps that were using UIKit could take
advantage of the much sharper resolution afforded by Retina displays without requir‐
ing an update to their UIKit components. Applications that were using other technol‐
ogies for rendering text had to update their apps to conform with Retina displays.

In this chapter, we will have a look at some of the most interesting features of UIKit
and playgrounds.

8.1 Animating Details with Peek and Pop
Problem
You want to provide your users the ability to see details of content that you have
placed on the screen, through the use of 3D Touch on their iOS devices.

Solution
Follow these steps:

1. Ask your view controller’s traitCollection.forceTouchCapability property
whether 3D Touch capabilities are available on the host device by comparing its
value to available.

195

www.allitebooks.com

http://www.allitebooks.org

2. If 3D Touch is available, call the registerForPreviewing(with:sourceView:)
method of your view controller to register your view controller’s view for 3D
Touch.

3. Make your view controller conform to the UIViewControllerPreviewingDele
gate protocol.

4. Implement the previewingContext(_:viewControllerForLocation:) method
of the aforementioned protocol in your view controller and in it, return the view
controller which the iOS device will use to display the peek state of its animation.

5. Once your peek animation is finished, you can show the pop state of the anima‐
tion by configuring a view controller that we will talk about shortly.

Discussion
3D Touch is a technology that adds another dimension (hence the name) to the tap‐
ping mechanism that you find in every iOS device. Traditionally, a user could per‐
form the following actions on an iOS device’s screen using her fingers:

• Tap
• Long tap
• Swipe
• Double tap

With the availability of 3D Touch on a device, a new vector that registers the strength
of a touch on the screen is added to the formula, allowing the user to keep her finger
on the screen and apply more pressure until an action (application specified) is per‐
formed. 3D Touch simply allows the iOS device to have access to how hard the user is
pressing her finger on the screen, and this opens the door for a whole new set of
applications.

There are two ways to take advantage of 3D Touch:

• Using storyboards and segue objects
• Custom peek and pop delegation

Let’s have a quick look at the storyboard and segues method of dealing with 3D
Touch. Follow these steps in order to implement peek and pop (3D Touch) function‐
ality in your application using storyboards:

The point of this exercise is to have a look at how 3D Touch works.
In the process of doing so, I’m going to run you through setting up
your project so that it can be integrated with 3D Touch.

196 | Chapter 8: The User Interface

1. Create a single view application in Xcode.
2. Open your Main.storyboard file in Interface Builder by simply clicking it.
3. Place a UIButton instance on your view controller.
4. From the object library, drag and drop a new instance of UIViewController onto

your scene and then place an image view that covers the whole view controller.
5. Drag and drop a favorite image of yours onto your Xcode project and then assign

that image to your image view.
6. Select your button on the first view controller, then press and hold down the

Control key on your keyboard and drop the indicator onto the new view control‐
ler that contains the image view. Then release your mouse button (see
Figure 8-1).

7. A pop-up will appear asking you which action you want this button to perform
in relation to the image view controller. From the menu, choose Show.

8. Select your first view controller and then, from the Editor menu, choose Embed
In followed by Navigation Controller.

Figure 8-1. Creating the basic structure of an application that can take advantage of
3D Touch in Interface Builder

9. Select the segue object that you created between your view controller and the
image view controller. Then, from the Attributes inspector in Interface Builder, in
the Peek & Pop section, select the Preview & Commit Segues checkbox (see
Figure 8-2). A few new options will now appear on your list. Don’t touch them

8.1 Animating Details with Peek and Pop | 197

www.allitebooks.com

http://www.allitebooks.org

for now as you won’t be needing them in order to see the basic functionality of
3D Touch.

Figure 8-2. Creating a peek & pop animation between the root and the image view con‐
trollers with the help of Interface Builder

If you have a trackpad that supports 3D Touch, feel free to run your application now
on an iOS simulator and see the results for yourself. If you don’t have such a trackpad,
you need to run your app on an iOS device that does support 3D Touch, such as the
latest iPhone. When you run the app, hold your finger on the button and gently press
it more and more until you see the image view controller animate automatically onto
the screen, while blurring the background view controller. The harder you press, the
closer this image view gets to you until it “pops” and fully covers the screen. You will
then have the option to go back to the previous screen using the standard back button
on the navigation bar.

This demonstrates the built-in support for 3D Touch in Xcode. However, if you have
more complicated UI scenarios that require custom actions to be performed when the
user presses down on an item on your view controller, you need to dig deeper into the
3D Touch APIs. Let’s have a look at an example by creating a table view controller
application that shows some images on the screen. I am going to assume that you
already know how to do that, since creating a table view controller with images is not
the objective of this recipe. I will skim through the required setup steps and hope you
can follow:

198 | Chapter 8: The User Interface

1. Create a single view application in Xcode.
2. Open your Main.storyboard file and delete the default view controller. Also delete

the ViewController.swift file that is already in your project.
3. Create a new class in your application called TableViewController of type

UITableViewController. Now you should have a file in your application called
TableViewController.swift.

4. Go to your Main.storyboard. From the object library, drop a table view controller
onto the screen and change its class name to TableViewController so that now
it points to your own subclass of UITableViewController.

5. Ensure that in Interface Builder you choose your table view controller as the ini‐
tial view controller of the scene from the Attributes inspector by checking the Is
Initial View Controller checkbox.

6. Choose your table view controller and in the Document Outline panel, choose
your table view (see Figure 8-3).

Figure 8-3. Choose a constant height for all your table view cells

8.1 Animating Details with Peek and Pop | 199

www.allitebooks.com

http://www.allitebooks.org

7. Go to the Size Inspector panel and for row height, choose 100 instead of the
default value that is already there. This ensures that all your table view cells are
100 points in height.

8. In the document outline, choose your table view. In the Attributes inspector, in
the Content section, choose the value Static Cells instead of the default value of
Dynamic Prototypes. This allows you to create cells right in Interface Builder.

9. Now go ahead and design a few cells with images and text in them. Ensure that
your cells are of type Basic and that you use their Image property in Interface
Builder to set their images. For the purpose of playing around, you can download
some random images from the internet to display in the image views, and save
them inside your project.

10. In the Document Outline panel, choose your table view controller. Then, from
the Editor menu, choose Embed In followed by Navigation Controller.

11. In your Xcode project, create a new Cocoa Touch class of type UIViewController
and call it ImageViewController.

12. Back in your storyboard, create a new view controller on your scene and asso‐
ciate its class name to ImageViewController.

13. Place an image view on this view controller, with scaling of type Aspect Fit, that
covers the entire view controller. Hook this image view to your class under an
outlet that is called imageView of type UIImageView. The code for your Image
ViewController should look as simple as this right now:
import UIKit

class ImageViewController: UIViewController {

 @IBOutlet weak private var imageView: UIImageView!

 public var image: UIImage? = nil

 override func viewWillAppear(_ animated: Bool) {
 super.viewWillAppear(animated)
 imageView.image = image
 }

}

14. Back in your storyboard, choose your image view controller. Then, in the Identity
Inspector panel, enter the value of ImageViewController in the Storyboard ID
field. This will allow you to instantiate this view controller from your code using
this identifier.

15. Now go to your TableViewController.swift file. When your view is loaded, regis‐
ter your table view for 3D Touch events if 3D Touch is enabled on the device, like
so:

200 | Chapter 8: The User Interface

import UIKit

class TableViewController: UITableViewController,
UIViewControllerPreviewingDelegate {

 func previewingContext(_ previewingContext: UIViewControllerPreviewing,
 commit viewControllerToCommit: UIViewController) {

 }

 func previewingContext(
 _ previewingContext: UIViewControllerPreviewing,
 viewControllerForLocation location: CGPoint) -> UIViewController? {
 return nil
 }

 override func viewDidLoad() {
 super.viewDidLoad()

 if traitCollection.forceTouchCapability == .available{
 registerForPreviewing(with: self, sourceView: tableView)
 }

 }

}

16. Now you need to implement the previewingContext(_:viewControllerFor
Location:) function. In this function you get a point of type CGPoint where the
user is holding her finger down on our target view (the table view). Using the
table view’s existing APIs, you can find which cell is under that point and then
find the image for that cell. With this information, you can construct an instance
of the ImageViewController and tell 3D Touch to show it to the user:
func previewingContext(
 _ previewingContext: UIViewControllerPreviewing,
 viewControllerForLocation location: CGPoint) -> UIViewController? {

 //construct a new image view controller
 guard let imageVc = UIStoryboard(name: "Main", bundle: nil)
 .instantiateViewController(withIdentifier: "ImageViewController")
 as? ImageViewController else {return nil}

 //get the image for the cell the user is 3D Touching
 guard let indexPath = tableView.indexPathForRow(at: location),
 let cell = tableView.cellForRow(at: indexPath),
 let image = cell.imageView?.image else {return nil}

 //tell iOS where to show the animation from
 previewingContext.sourceRect = tableView.rectForRow(at: indexPath)

8.1 Animating Details with Peek and Pop | 201

www.allitebooks.com

http://www.allitebooks.org

 //set the image and return the vc
 imageVc.image = image
 imageVc.preferredContentSize = CGSize(width: 200.0, height: 200.0)

 return imageVc
}

17. Last but not least, you need to implement the previewingContext(_:commit:)
function, where you to commit to your animation. In this method, you get a ref‐
erence to the view controller that you showed in the previewing context (the pre‐
vious step), and you can now decide whether you want to present it fully or not.
You can even choose to display a whole new view controller. For the sake of sim‐
plicity, display the same view controller in full screen:
func previewingContext(_ previewingContext: UIViewControllerPreviewing,
 commit viewControllerToCommit: UIViewController) {
 navigationController?.pushViewController(viewControllerToCommit,
 animated: false)
}

You need an iOS device with 3D Touch to test this code on. You
can also test it on the iOS simulator as long as you have a trackpad
that supports 3D Touch.

See Also
Recipe 8.2

8.2 Providing Dynamic 3D Touch Menus on Home Screen
Problem
You want to provide customized menus on the home screen that serve as shortcuts
into different sections of your application. You also want to alter these shortcut items
over time as the user uses your app, based, for instance, on the user’s preferences.
This recipe requires users to have 3D Touch on their devices.

Solution
Assign a new array of UIApplicationShortcutItem objects to the shortcutItems
property of your application instance. Every UIApplicationShortcutItem instance
can have a title and an image. When the user opens your application through one of

202 | Chapter 8: The User Interface

the shortcut items that you’ve defined, iOS calls the application(_:performAction
For:completionHandler:) method of your app delegate. In this method, you get
access to the instance of the UIApplicationShortcutItem object, and you can use
information in that object to call functions or otherwise control the flow of the app.

Discussion
Let’s have a look at an example where we assign an array of UIApplicationShortcut
Item objects to the shortcutItems property of our app. In this example, I am not
going to customize the menu; I’m simply going to show you that you can in fact
change the value of this array to customize the menu of items that the user sees. One
use for this customization would be to look at the user’s behavior in your app over
time and place the sections of your app that your user uses most often in the short‐
cuts menu.

Figure 8-4 shows what we will strive to create in our example.

Figure 8-4. Dynamically created shortcut menu items

8.2 Providing Dynamic 3D Touch Menus on Home Screen | 203

www.allitebooks.com

http://www.allitebooks.org

Every object of type UIApplicationShortcutItem has two very important properties:

type: String

An application-specified string that defines the type of action this item will take.

localizedTitle: String

The title of the item, which can be localized if you have already localized your appli‐
cation. We won’t do that in this recipe because localization is not what we are focus‐
ing on right now.

So, let’s go and define our custom actions:

extension UIApplicationShortcutItem{
 static var books: UIApplicationShortcutItem{
 return UIApplicationShortcutItem(type: "book", localizedTitle: "Books")
 }
 static var magazines: UIApplicationShortcutItem{
 return UIApplicationShortcutItem(type: "mag", localizedTitle: "Magazines")
 }
 static var comics: UIApplicationShortcutItem{
 return UIApplicationShortcutItem(type: "com", localizedTitle: "Comics")
 }
}

We also need to override the conformance of UIApplicationShortcutItem to the
Equatable protocol so that later we can intercept the shortcut item that the user has
tapped on, and compare it to one of the shortcuts that we just defined. The default
implementation of Equatable on UIApplicationShortcutItem comes from the
NSObject class that converts the memory pointers. We want any two UIApplication
ShortcutItem objects to be considered the same as long as their types and titles are
the same, so we write:

func == (lhs: UIApplicationShortcutItem,
 rhs: UIApplicationShortcutItem) -> Bool{
 return lhs.hashValue == rhs.hashValue
}

Then in our app delegate, we assign our shortcut items to our app instance:

func application(_ application: UIApplication,
 didFinishLaunchingWithOptions
 launchOptions: [UIApplicationLaunchOptionsKey: Any]?) -> Bool {

 application.shortcutItems = [.books, .magazines, .comics]

 return true
}

This way, when a shortcut item is tapped, we will get to know when the app delegate’s
application(_:performActionFor:completionHandler:) function is called. Here

204 | Chapter 8: The User Interface

we can use our Equatable implementation so we compare the incoming shortcut to
our existing shortcuts and know which shortcut was chosen:

func application(_ application: UIApplication,
 performActionFor shortcutItem: UIApplicationShortcutItem,
 completionHandler: @escaping (Bool) -> Void) {

 if shortcutItem == .books{
 print("Books is selected")
 completionHandler(true)
 } else if shortcutItem == .magazines{
 print("Magazines is selected")
 completionHandler(true)
 } else if shortcutItem == .comics{
 print("Comics is selected")
 completionHandler(true)
 } else {
 //unhandled
 completionHandler(false)
 }

}

See Also
Recipe 8.1

8.3 Asking Your Users for App Store Reviews in Your App
Problem
You want to ask your users to place a review of your app on the App Store, without
having to leave your app at all.

Solution
Utilize the SKStoreReviewController class.

Discussion
Prior to iOS 10.3, there was no way for developers to request reviews from their users,
right in the apps, and post them to the App Store. This has caused a lot of headaches,
and continues to do so, for developers whose frustrated users leave pointless or coun‐
terproductive one-word reviews in the App Store.

Now, using the SKStoreReviewController class, you can ask the user, wherever in
your app that makes sense to your user’s journey, to leave an honest review for your
app right inside the app itself.

8.3 Asking Your Users for App Store Reviews in Your App | 205

www.allitebooks.com

http://www.allitebooks.org

In order to achieve this, all you have to do is to call the requestReview() class func‐
tion of the aforementioned class. In this example, I’ve placed a button on my user
interface and linked that button to a function inside the app. In this function, I simply
called the requestReview() class function of the SKStoreReviewController class as
shown here:

@IBAction func leaveAReview(_ sender: Any) {
 SKStoreReviewController.requestReview()
}

There are internal limitations on how many times you can pester
the user about leaving App Store reviews. These limitations might
change from day to day, so it makes no sense to write about them
here. It’s important to note, however, that just because you call the
requestReview() class function of the SKStoreReviewController
class does not mean that the user will be asked to leave a review for
your app immediately!

8.4 Providing Vibrational Feedback to Users
Problem
You want to make your user interface more lively by making the device vibrate when
a user performs certain actions.

Solution
Use the Haptic engine that is built into some iOS devices, such as the iPhone 7, in
order to generate various vibrational feedbacks that complement a user-initiated
action inside your user interface.

Discussion
Apple has implemented a Haptic engine in some high-end iOS devices, and may pos‐
sibly roll the same technology out in almost all iOS devices in the near future. The
Haptic engine is a very small kinesthetic communications device, inside the iOS devi‐
ce’s physical body, that is able to create small but real vibrational feedback to respond
to a user-initiated action in an application.

For instance, when working with 3D Touch (see Recipe 8.1), by default, iOS uses the
Haptic engine to generate some default vibrational feedbacks for you. For example,
you can feel these effects when you hold your finger down on an image in the Mes‐
sages application and keep pressing harder (3D Touch) until you get a nice “peek”
effect, where iOS zooms into the build and displays the build in the center of the
screen. Furthermore, you can continue to press harder on the screen in order to

206 | Chapter 8: The User Interface

“pop” the image, displaying it on the full screen. These peek and pop effects have their
own distinct haptic feedback, and in this recipe you will learn how to generate your
own feedbacks with the built-in Haptic engine classes inside the iOS SDK.

There are three main categories of Haptic engine feedback:

Selection
This can be triggered when the user is choosing something from a list and decides to
change the selection from one item to another, such as when choosing a birthdate
from a wheel picker. For feedback of this type, use the UISelectionFeedbackGenera
tor class.

Notification
This can be triggered when you want to produce a success, failure, or warning feed‐
back for an action, such as making a payment. Use the UINotificationFeedbackGen
erator class to produce feedback of this type.

Impact
This can be triggered when you want to produce an effect that complements your UI,
such as when the user drags down on an image to dismiss it. Use the UIImpactFeed
backGenerator class to produce feedbacks of this type.

Using the UISelectionFeedbackGenerator class is very easy, so we can start with
that. In order to create selection-changed feedback, all you have to do is to invoke this
class’s selectionChanged() function. For this example, we are going to develop a
simple one-page application where a picker view at the bottom of the screen allows
the user to pick her date of birth. As she rolls this picker view up and down to choose
different values, we will call the selectionChanged() function on UISelectionFeed
backGenerator (see Figure 8-5).

8.4 Providing Vibrational Feedback to Users | 207

www.allitebooks.com

http://www.allitebooks.org

Figure 8-5. User interface of the birthday picker app

All we have to do now in order to implement this view controller is to conform to the
UIPickerViewDelegate and the UIPickerViewDataSource protocols in our view con‐
troller, and return an appropriate value to the picker view:

import UIKit

class ViewController: UIViewController,
UIPickerViewDelegate, UIPickerViewDataSource {

 lazy var selectionFeedbackGenerator: UISelectionFeedbackGenerator = {

208 | Chapter 8: The User Interface

 return UISelectionFeedbackGenerator()
 }()

 let years = Array(1935...2020)

 func numberOfComponents(in pickerView: UIPickerView) -> Int {
 return 1
 }

 func pickerView(_ pickerView: UIPickerView,
 numberOfRowsInComponent component: Int) -> Int {
 return years.count

 }

 func pickerView(_ pickerView: UIPickerView,
 didSelectRow row: Int, inComponent component: Int) {
 selectionFeedbackGenerator.selectionChanged()
 }

 func pickerView(_ pickerView: UIPickerView, titleForRow row: Int,
 forComponent component: Int) -> String? {

 return "\(years[row])"
 }

}

As you can see, using the UISelectionFeedbackGenerator class is straightforward,
requiring only one function with no parameters.

For notifications, the UINotificationFeedbackGenerator class similarly provides
one function, but this function takes one parameter of type UINotificationFeedback
Type. The parameter’s type is an enumeration that can have the value success, warn
ing, or error. So, in order to generate a feedback for a payment that has successfully
gone through, you can do as follows:

UINotificationFeedbackGenerator().notificationOccurred(.success)

Or if you want to indicate that the payment has gone through but is pending the
banks’ approval, you might want to generate a warning notification feedback:

UINotificationFeedbackGenerator().notificationOccurred(.warning)

Using the UIImpactFeedbackGenerator class is similar to using the UINotification
FeedbackGenerator class, because it allows you to pick an impact style before you fire
the haptic feedback. However, while the UINotificationFeedbackGenerator class
allows you to choose the type of feedback when you want to fire it, with the UIImpact
FeedbackGenerator class you need to initialize the class with the type of feedback
you want to fire, and then fire it. That means that you need to initialize UIImpactFeed

8.4 Providing Vibrational Feedback to Users | 209

www.allitebooks.com

http://www.allitebooks.org

backGenerator instances for every impact style of type UIImpactFeedbackStyle.
Here is an example that shows how you can issue a heavy-impact haptic feedback
with UIImpactFeedbackGenerator:

UIImpactFeedbackGenerator(style: .heavy).impactOccurred()

Similarly, a medium-impact feedback can be issued as shown here:

UIImpactFeedbackGenerator(style: .medium).impactOccurred()

8.5 Supporting Drag and Drop in Your Apps
Problem
You want to let the user drag an item from one application to another on an iPad.

Solution
The most popular items that users drag and drop are images. Therefore, this recipe
implements drag and drop for images, covering not only the mechanics of the opera‐
tion but other useful tasks such as positioning the image and letting the user know
through visual cues that it is being dragged.

Follow these steps:

1. Conform your view controller to the UIDropInteractionDelegate and UIDrag
InteractionDelegate protocols. These are responsible for controlling drag and
drop, whether inside your app or between apps.

2. Set your view controller’s view’s pasteConfiguration to a valid instance of
UIPasteConfiguration.

3. Instantiate UIDropInteraction and add the drop interaction to your view con‐
troller’s view using its addInteraction(_:) function.

4. Similar to the previous step, instantiate UIDragInteraction and add the drag
interaction to your view controller’s view using its addInteraction(_:) function.

5. Implement the UIDropInteractionDelegate functions.
6. Similarly, implement the UIDragInteractionDelegate functions.

Discussion
Drag and drop is a useful feature implemented quite smoothly in iOS. On the iPhone,
drag and drop works only inside the same app, not across applications. On the iPad,
however, drag and drop works across applications, so that a user can drag an item
such as an image from one application and drop it into another application. Multiple
items can also be selected and moved. The application from which the item is coming
must implement drag operations, and the application receiving the item must imple‐

210 | Chapter 8: The User Interface

ment drop operations. Most apps that want to support drag and drop implement both
sets of operations, which we will do in this recipe.

The drag-and-drop mechanism is embodied in UIDropInteractionDelegate and
UIDragInteractionDelegate functions. You can implement one without the other if
you want, so that for instance you can be the source of the drag and drop without
allowing other apps to send you items. However, it’s probably more intuitive for your
users if your app allows them to drag items both into it and out of it.

Let’s have a look at an example. When the user drags an image into our app, we’ll cre‐
ate a new image view and place it on top of our view. The user can of course drag and
drop the images around in our app as well. So, let’s start by defining the necessary
class and variables for our view controller. We’ll create a single view application, mak‐
ing sure that the view controller conforms to the UIDropInteractionDelegate and
UIDragInteractionDelegate protocols:

import UIKit

class ViewController: UIViewController,
UIDropInteractionDelegate, UIDragInteractionDelegate{

 var dropPoint = CGPoint.zero

 var imageViews = [UIImageView]()

 var images: [UIImage]{
 return imageViews.flatMap{$0.image}
 }

 //the rest of our implementation will follow soon...

The dropPoint variable will hold the CGPoint instance that we retrieve from the drop
session when the user drops an image into our view. We will use this point to later
create an image view where the user dropped the image, and place the image view
inside the imageViews variable array.

We need to now accept dragging and dropping on our view. As mentioned in the Sol‐
ution section, this is done through the addInteraction(_:) function of our view:

override func viewDidLoad() {
 super.viewDidLoad()

 view.pasteConfiguration = UIPasteConfiguration(forAccepting: UIImage.self)
 view.addInteraction(UIDropInteraction(delegate: self))
 view.addInteraction(UIDragInteraction(delegate: self))

}

The first method of UIDragInteractionDelegate that we are going to implement is
dropInteraction(_:canHandle:). This function will be called by the system before

8.5 Supporting Drag and Drop in Your Apps | 211

www.allitebooks.com

http://www.allitebooks.org

handing us the item the user wants to drop. We have to return a Boolean value that
indicates whether we can handle the item that is being dropped onto our app. In
order to check the item we’re being asked to receive and make sure it’s a data type we
can handle here (an image), the function accepts an object of type UIDropSession
as one of its parameters. We can query this session object using its canLoad
Objects(ofClass:) function to see whether it contains objects of a specific type,
such as UIImage, and then return this value back to the dropInteraction(_:canHan
dle:) function:

func dropInteraction(_ interaction: UIDropInteraction,
 canHandle session: UIDropSession) -> Bool {
 return session.canLoadObjects(ofClass: UIImage.self)
}

The next UIDragInteractionDelegate delegate function to implement is dropInter
action(_:sessionDidUpdate:). When the system calls this method, it expects us to
return a value of type UIDropProposal. What we return from this function deter‐
mines whether our application wants to:

• Make a copy of the dropped item.
• Move the item from its source into the destination.
• Indicate that dropping this particular item into our application is forbidden.
• Indicate that dropping items into our application is not allowed (cancelled).

What is the difference between not allowing an item into our app
and forbidding the content from being dropped? Imagine that your
application has accepted so many images onto its canvas that it
determines the user can’t manage any more images. In that case,
when the next image is being dropped into your app, you can say
that dropping the image at this point in time is forbidden, even
though it’s an operation that is otherwise allowed. But if you cancel
an operation, you effectively restrict drag-and-drop operations to
those within your app, not from outside your app.

The common way to handle this choice is to check whether an item is coming from
your own app, which is true when session.localDragSession is set. If it’s set, you
generally choose to move the item so you maintain a single copy. If the property is
nil, you copy the item so that the app it came from doesn’t lose its copy:

func dropInteraction(
 _ interaction: UIDropInteraction,
 sessionDidUpdate session: UIDropSession) -> UIDropProposal {

 let operation: UIDropOperation
 if session.localDragSession == nil{
 operation = .copy

212 | Chapter 8: The User Interface

 } else {
 operation = .move
 }

 return UIDropProposal(operation: operation)

}

The next function of the UIDropInteractionDelegate protocol that we have to
implement is the dropInteraction(_:performDrop:) function. In this function, we
effectively ask the source of the drag-and-drop session to provide us the content of
what is being dropped into our app, because what the user is dragging around the
screen before dropping it is a preview of the content, and not the entire content. As a
parameter to this function, we get an object of type UIDropInteraction. It has a
view property that is the view onto which the object is being dropped. As another
parameter, we get an object of type UIDropSession. We can call its location(in:)
function and pass our view to this function to get the location, of type CGPoint, where
the user wants to drop the content. We also need to read the localDragSession prop‐
erty of our session object. As we have seen, this property is set to nil if the dragging
is initiated from outside our application. If the drag-and-drop session is initiated
inside our app, we don’t have to load the image, because we already have that image.
Otherwise, we have to ask the source application for the image’s contents:

func dropInteraction(_ interaction: UIDropInteraction,
 performDrop session: UIDropSession) {

 if let view = interaction.view{

 dropPoint = session.location(in: view)

 if session.localDragSession == nil{
 for item in session.items{
 extractImage(from: item.itemProvider, center: dropPoint)
 }
 }

 }

}

We are using the extractImage(from:center:) function in our
implementation. This is a function that we are going to write
shortly.

Next up, we need to implement the dropInteraction(_:previewForDropping:with
Default:) function of the UIDropInteractionDelegate protocol. In this function,

8.5 Supporting Drag and Drop in Your Apps | 213

www.allitebooks.com

http://www.allitebooks.org

we need to return an object of type UITargetedDragPreview that tells the system how
the preview of the dragged item will look as it gets dropped on the screen. The system
by default creates a preview object of type UITargetedDragPreview and passes it to us
through the defaultPreview parameter. We can take this default preview and just
change its center point so that its center is precisely where the user dropped the item:

func dropInteraction(
 _ interaction: UIDropInteraction,
 previewForDropping item: UIDragItem,
 withDefault defaultPreview: UITargetedDragPreview)
 -> UITargetedDragPreview? {

 guard item.localObject != nil else {return nil}

 let target = UIDragPreviewTarget(container: view, center: dropPoint)
 return defaultPreview.retargetedPreview(with: target)

}

The next stop is the dropInteraction(_:item:willAnimateDropWith:) function of
the UIDropInteractionDelegate protocol. In this function we can animate the drag‐
ged items. For this example, we choose first to fade the item to half its opacity and
then, when the drop operation is completed, take the opacity value back to its normal
value of 1. We do these animations with an object of type UIDragAnimating that is
passed to us in this function through the animator parameter, using its addAnima
tions(_:) and addCompletion(_:) functions:

func dropInteraction(
 _ interaction: UIDropInteraction,
 item: UIDragItem,
 willAnimateDropWith animator: UIDragAnimating) {

 animator.addAnimations {
 self.fade(items: [item], alpha: 0.5)
 }

 let center = dropPoint
 animator.addCompletion {_ in
 guard let index = item.localObject as? Int else {return}
 self.imageViews[index].center = center
 self.imageViews[index].alpha = 1.0
 }

}

In the dropInteraction(_:performDrop:) function that we have implemented
already, we used a function called extractImage(from:center:), which I promised
we would implement shortly. Let’s do that now. In the from parameter of this function

214 | Chapter 8: The User Interface

we passed an object of type NSItemProvider, and for the center parameter we passed
a value of type CGPoint that was the dropping point of the object.

Using the NSItemProvider object we can load the session’s associated object using the
provider’s loadObject(ofClass:completionHandler:), and for the ofClass parame‐
ter we can pass UIImage.self to indicate that we are interested in the image that the
user is dragging and dropping on our app:

func extractImage(from itemProvider: NSItemProvider, center: CGPoint) {

 itemProvider.loadObject(ofClass: UIImage.self) {[weak self] object, _ in
 guard let `self` = self else {return}
 DispatchQueue.main.async {[weak self] in
 guard let `self` = self, let image = object as? UIImage else {return}
 let imageView = image.imageView
 imageView.center = center
 self.imageViews.append(imageView)
 self.view.addSubview(imageView)
 }
 }

}

In the previous code, when we extract the image from the item provider, we are call‐
ing the imageView property on the image to retrieve a new image view that contains
the image. Let’s implement this property on UIImage now:

extension CGSize{
 var rounded: CGSize{
 return CGSize(width: round(width), height: round(height))
 }
}

fileprivate extension UIImage{
 var imageView: UIImageView{
 let result = UIImageView(image: self)
 result.isUserInteractionEnabled = true
 result.contentMode = .scaleAspectFit

 let longestSide = max(size.width, size.height)
 let maxSize = CGFloat(300)

 //if the image's largest size is larger than 'maxSize', then we
 //shrink it down with a transformation
 if longestSide > maxSize {
 let scale = maxSize / longestSide
 let transform = CGAffineTransform(scaleX: scale, y: scale)
 result.frame.size = size.applying(transform).rounded
 }

 return result

8.5 Supporting Drag and Drop in Your Apps | 215

www.allitebooks.com

http://www.allitebooks.org

 }
}

We also used a function called fade(items:alpha:) to animate our dropped items
into the screen. Let’s implement that function now:

func fade(items: [UIDragItem], alpha: CGFloat) {
 for item in items where item.localObject is Int {
 imageViews[item.localObject as! Int].alpha = alpha
 }
}

With all the preceding code, we have taken care of the drop-related functions inside
the UIDropInteractionDelegate protocol. It’s time to start implementing the drag-
related functions inside the UIDragInteractionDelegate protocol.

The first function to implement is dragInteraction(_:itemsForBeginning:), which
gets called whenever the user begins a drag operation on our view. This function
expects a value of type [UIDragItem], an array of wrappers around the items that
have to be dragged around the screen. Usually the array contains only one object, but
if you have multiple objects at a specific drag point, such as stacked images, you
might want to return them all to this function as an array so that they can be dragged
around the screen simultaneously.

The session parameter of this function is of type UIDragSession. This session object
has a function called location(in:) that you can call to get a CGPoint inside your
view indicating where the user is initiating the drag. You can then find the image
views that are at that point, extract the images from the image views, and place the
images inside an object of type NSItemProvider. Once you have the NSItemProvider
instance, you can create an instance of UIDragItem from it, as shown here:

func dragInteraction(
 _ interaction: UIDragInteraction,
 itemsForBeginning session: UIDragSession) -> [UIDragItem] {

 guard let interactionView = interaction.view else {return []}

 let point = session.location(in: interactionView)

 guard let hitTestView = view?.hitTest(point, with: nil) as? UIImageView,
 let index = imageViews.index(of: hitTestView) else {
 return []
 }

 let image = images[index]
 let itemProvider = NSItemProvider(object: image)
 let dragItem = UIDragItem(itemProvider: itemProvider)
 dragItem.localObject = index

 return [dragItem]

216 | Chapter 8: The User Interface

}

The next function in the UIDragInteractionDelegate protocol that we have to
implement is dragInteraction(_:previewForLifting:). This function gets called
to let you customize the preview that iOS prepares when an object is being lifted into
the “air” to later be dragged around the screen. This function has to return a value of
type UITargetedDragPreview, which you can initialize with variety of values. In our
app, we’ll add in the most common value, a UIView instance, which we have because
our image view of type UIImageView inherits from UIView (there are other choices:
for instance, you could return a URL if the content to be dragged to the screen has to
be loaded from a remote source by iOS):

func dragInteraction(
 _ interaction: UIDragInteraction,
 previewForLifting item: UIDragItem, session: UIDragSession)
 -> UITargetedDragPreview? {

 guard let index = item.localObject as? Int else {return nil}

 return UITargetedDragPreview(view: imageViews[index])

}

Up next is the dragInteraction(_:willAnimateLiftWith:session:) function. This
function gets called when the item that is the target of the drag session is lifted off the
screen to be dragged around. You can use this function to animate the source of the
drag session. In our example, this function indicates visually to the user that the con‐
tent is going to be copied instead of moved, by graying out the original object. If the
item is actually moved, we remove it from the canvas altogether. We get an animator
of type UIDragAnimating in this function’s animator parameter and we can use this
animator’s addCompletion(_:) function to set an animation on the source object
when the lift operation is finished:

func dragInteraction(
 _ interaction: UIDragInteraction,
 willAnimateLiftWith animator: UIDragAnimating,
 session: UIDragSession) {

 animator.addCompletion { position in
 if position == .end {
 self.fade(items: session.items, alpha: 0.5)
 }
 }

}

Similar to the dragInteraction(_:willAnimateLiftWith:session:) function, we
also need to implement the dragInteraction(_:item:willAnimateCancelWith:)

8.5 Supporting Drag and Drop in Your Apps | 217

www.allitebooks.com

http://www.allitebooks.org

function of the UIDragInteractionDelegate protocol. That function gets called
when the drag session is cancelled. In this case, we can indicate to the user, by chang‐
ing the alpha channel of the source object back to its default value of 1, that the
source object is not being dragged around any longer:

func dragInteraction(
 _ interaction: UIDragInteraction,
 item: UIDragItem,
 willAnimateCancelWith animator: UIDragAnimating) {

 animator.addAnimations {
 self.fade(items: [item], alpha: 1)
 }

}

Just as we have to return the source object back to its alpha channel if the drag session
is cancelled, we need to do the same thing if the drag session has successfully ended,
meaning that the source object has been dropped to its destination. So we implement
the dragInteraction(_:session:willEndWith:) function from the UIDragInterac
tionDelegate protocol, which gets called when the drag operation has successfully
resulted in a drop operation:

func dragInteraction(
 _ interaction: UIDragInteraction,
 session: UIDragSession,
 willEndWith operation: UIDropOperation) {

 if operation == .copy {
 fade(items: session.items, alpha: 1)
 }

 }

Last but not least, we need to implement the paste(itemProviders:) function,
which gets called if the user pastes some images into our application using keyboard
shortcuts (such as a Bluetooth external keyboard’s Ctrl-V key combination). In this
function, we get an array of NSItemProvider instances. We can just pass them to our
extractImage(from:center:) function to paste them on the last drop point that the
user had chosen. If the user had not previously pasted anything on the screen, we
paste them at CGPoint.zero:

override func paste(itemProviders: [NSItemProvider]) {
 for item in itemProviders {
 extractImage(from: item, center: dropPoint)
 }
}

Quite a lot of code, but now it’s over. That was all you had to implement to enable
drag and drop in your app. Try it out on an iPad to get the full experience.

218 | Chapter 8: The User Interface

8.6 Scaling Fonts in Order to Support Dynamic Types
Problem
You want your application to reflect the user’s preferred font sizes, taken from the Set‐
tings application on the iOS device.

Solution
Follow these steps:

1. Choose a default font and a default size for your label. (I will assume in this
recipe that we are talking about a single label, but the technique can be applied to
applications with any number of labels.)

2. Listen to the UIContentSizeCategoryDidChange notification that gets sent by the
system when the user changes her settings with regard to font sizes in the Acces‐
sibility section in the Settings application.

3. When you get this notification, recalculate the size of the font for your label using
UIFontMetrics.default.scaledFont(for:compatibleWith:) from the UIFont
Metrics class. As the for parameter, pass your default font, and as the
compatibleWith parameter, pass your view controller’s traitCollection prop‐
erty.

Discussion
Users on an iOS device can navigate to the Settings application, then the General tab
and the Accessibility tab, and from there choose Larger Text. In this section they can
enable larger text sizes in iOS and adjust the font size to their liking (Figure 8-6).

8.6 Scaling Fonts in Order to Support Dynamic Types | 219

www.allitebooks.com

http://www.allitebooks.org

Figure 8-6. Users can adjust the font size for the system through this screen

Let’s have a look at an example. For this example, I’ve gone online, looking for free
TrueType fonts, and found a font called Champignon. You can either choose to do the
same thing or use a system font. I have placed the new font in the application’s
Info.plist file as well so that it can be loaded by iOS when our app starts up:

<key>UIAppFonts</key>
<array>
 <string>Champignon.ttf</string>
 <string>champignonaltswash.ttf</string>
</array>

220 | Chapter 8: The User Interface

If you choose to load a custom font into your app, you will also need to find the name
of the font by running this code in your app:

UIFont.familyNames.forEach{familyName in
 UIFont.fontNames(forFamilyName: familyName).forEach{fontName in
 print(fontName)
 }
}

So, let’s have a look at our view controller. In this view controller, on the storyboard,
I’ve placed a label that takes up the entire screen and is connected to an outlet in the
view controller called label. Figure 8-7 shows the label on our view controller, with a
custom font, connected to an outlet in our view controller so that we can later
dynamically change its font when the user changes her font size preferences.

Figure 8-7. Preparing the view controller for a font change

We start by implementing a computed property on our view controller that returns
our default font:

import UIKit

class ViewController: UIViewController {

 @IBOutlet weak var label: UILabel!

 var originalFont: UIFont{
 let defaultSize = CGFloat(40.0)
 return UIFont(name: "Champignon", size: defaultSize) ??
 UIFont.systemFont(ofSize: defaultSize)
 }

 //the rest of our code will be placed here...

8.6 Scaling Fonts in Order to Support Dynamic Types | 221

www.allitebooks.com

http://www.allitebooks.org

Next we are going to write a function that uses the scaledFont(for:compatible
With:) function of UIFontMetrics.default in order to scale our font according to
the user’s preferences:

func readjustLabelFontSize(){
 label.font = UIFontMetrics.default.scaledFont(
 for: originalFont, compatibleWith: traitCollection)

}

After our view controller is loaded, we will listen there to the UIContentSize
CategoryDidChange notification. Once it gets sent, we will readjust the font of our
label:

override func viewDidLoad() {
 super.viewDidLoad()

 readjustLabelFontSize()

 NotificationCenter.default.addObserver(
 self,
 selector: #selector(respondToSizeCategoryChangedNotification(_:)),
 name: .UIContentSizeCategoryDidChange,
 object: nil)

}

@objc func respondToSizeCategoryChangedNotification(
 _ notification: NSNotification){

 readjustLabelFontSize()

}

Suppose the user changes her font preferences to the largest size offered in the Set‐
tings application. Figure 8-8 shows that our app has responded by changing the font
size for our label.

222 | Chapter 8: The User Interface

Figure 8-8. View controller reflecting the larger font size

See Also
Recipe 8.7

8.7 Adjusting Labels While Supporting Dynamic Types
Problem
You have a view controller with labels, such as that shown in Figure 8-9. Both labels
are long and can wrap. You want to ensure that you can support dynamic sizing while
maintaining a good distance between the labels.

8.7 Adjusting Labels While Supporting Dynamic Types | 223

www.allitebooks.com

http://www.allitebooks.org

Figure 8-9. Two labels with distance between them: a title and a description

Solution
Follow these steps:

1. Ensure that your top label does not have a bottom constraint that locks it to a
specific y position.

224 | Chapter 8: The User Interface

2. Ensure that your bottom label has a constraint that locks its first base line to the
top label’s last base line. This will ensure that, as the top label grows vertically, the
bottom label readjusts its own top position.

3. Ensure that you don’t have constant heights for your labels. This is to allow them
to grow vertically in size as they support dynamic types.

4. Ensure that your labels have line counts of 0. As strange as this might seem, line
counts of 1 allow labels to display an unlimited number of lines.

5. Place all your labels inside a scroll view, and ensure that the scroll view scrolls
correctly as the labels grow in vertical size. In other words, the height of the con‐
tent size of your scroll view has to be equal to the height of all your labels plus
their top margins and the bottom margin of the last label.

6. As you learned earlier (see Recipe 8.6), in your app’s code, listen for changes to
the default font size by the user, and react accordingly.

Discussion
The goal in this recipe is to make sure that two pieces of text stay separated if they
grow and wrap, responding to changes in font size requested by the user. We do this
through some sleight-of-hand with base lines and constraints.

Let’s have a look at an example. As you saw in Figure 8-9, we need to create our con‐
straints for both the title and the description labels. The title label’s constraints are:

• Trailing space to superview, with a constant value of 16.
• Leading space to superview, with a constant value of 16.
• Top space to superview, with a constant value of 20.
• Height that is greater than or equal to 21. The default size of a label in iOS is 21,

so this constraint ensures that our label can contain at least one line of text and
has the ability to grow larger, vertically, to contain an unlimited number of lines
of text.

For the description label, we will create the following constraints:

• Trailing space to superview, with a constant value of 16.
• Leading space to superview, with a constant value of 16.
• Bottom space to superview equal to 20.

8.7 Adjusting Labels While Supporting Dynamic Types | 225

www.allitebooks.com

http://www.allitebooks.org

I have created this constraint with the knowledge that it will
pin the label’s bottom to the superview’s bottom with a margin
of 20 points. I’ve done this to make this recipe shorter and eas‐
ier to understand without blending scroll view logic into it. As
pointed out in the Solution section of this recipe, if you are
working on a real application, you need to ensure that you
have placed your labels inside a scroll view so that, should the
user choose a very large default font size, your labels will still
be able to display their entire contents, albeit by making the
user scroll through them. If you don’t use a scrolling view, the
labels might not have enough space on the screen to display all
their information at once.

• First base line equal to the title label’s last base line. This constraint is super
important and ensures that your top label’s last base line pushes your bottom
label’s top base line down so that they still have the correct vertical spacing after
an increase in font size.

Now let’s look at our code. First we are going to have to connect our two labels to our
code through outlets, so that we can control them programmatically:

import UIKit

class ViewController: UIViewController {

 @IBOutlet weak private var titleLabel: UILabel!
 @IBOutlet weak private var descriptionLabel: UILabel!

 //the rest of our code will be placed here...

Then, as we saw earlier in this chapter (see Recipe 8.6), we need a function that takes
into account the user’s preferences with regard to font sizes and then makes the nec‐
essary adjustments to our labels’ fonts. In this example I’ve chosen to use the title1
text style (of type UIFontTextStyle) for the top title label and the body text style for
the bottom description label. This ensures that the top label by default appears larger
(since it’s a title) than the description label. To get font metrics of type UIFontMetrics
by taking into account the text styles of title and body, we need to instantiate
UIFontMetrics with the UIFontMetrics(forTextStyle:) initializer:

226 | Chapter 8: The User Interface

func readjustFonts(){

 let defaultTitleFont = UIFont.systemFont(ofSize: 20)

 titleLabel.font = UIFontMetrics(forTextStyle: .title1)
 .scaledFont(for: defaultTitleFont, compatibleWith: traitCollection)

 let defaultDescriptionFont = UIFont.systemFont(ofSize: 17)
 descriptionLabel.font = UIFontMetrics(forTextStyle: .body)
 .scaledFont(for: defaultDescriptionFont, compatibleWith: traitCollection)

}

When our view loads on the screen, we set the fonts according to the user’s current
settings, and then listen for the UIContentSizeCategoryDidChange notification as we
saw before (see Recipe 8.6) to readjust the fonts whenever the user changes her font
preferences in the Settings application:

override func viewDidLoad() {
 super.viewDidLoad()

 readjustFonts()

 NotificationCenter.default.addObserver(
 self,
 selector: #selector(respondToSizeCategoryChangedNotification(_:)),
 name: .UIContentSizeCategoryDidChange,
 object: nil)

}

@objc func respondToSizeCategoryChangedNotification(
 _ notification: NSNotification){

 readjustFonts()

}

After the user increases the font size, our labels look like Figure 8-10.

8.7 Adjusting Labels While Supporting Dynamic Types | 227

www.allitebooks.com

http://www.allitebooks.org

Figure 8-10. Same labels as before, but with much larger font sizes

See Also
Recipe 8.6

228 | Chapter 8: The User Interface

8.8 Extracting Named Colors from Asset Catalogs
Problem
You want to create colors in your asset catalog and then refer to them by name in
your code.

Solution
Follow these steps:

1. Open your asset catalog.
2. From the Editor menu at the top of the screen, choose Add Assets, then New

Color Set.
3. Provide a name for your new color set. You will use this name later in code to

load the color as an instance of UIColor.
4. From the Attributes inspector, choose the color of your choice for this particular

color set and then choose whether it applies to all iOS devices, iPads only,
iPhones only, or any other combination that matches your needs.

5. In your code, use the UIColor(named:) initializer for UIColor to load the color
into your code.

If your current device requests a color set with a name and
that color set doesn’t support the current device, the
UIColor(named:) initializer will get the value of nil in return.

Discussion
All colors have RGB values that you can refer to in code, but a small set of standard
colors have names such as Red or Taupe. If you create a custom color, it’s convenient
to assign a catchy name of your own. This recipe allows you to use such names in
your code.

As an example, you can see in Figure 8-11 that I’ve created a color named WaterBlue
and set its color using the Attributes inspector. I also ensured that it is a universal
color, meaning that it can be loaded into any iOS device, because my application is a
universal application.

8.8 Extracting Named Colors from Asset Catalogs | 229

www.allitebooks.com

http://www.allitebooks.org

Figure 8-11. A color set that I’ve created, called WaterBlue

Inside my code, I can attempt to load the color and assign it, for instance, to the back‐
ground of my view controller’s view:

override func viewDidLoad() {
 super.viewDidLoad()

 view.backgroundColor = UIColor(named: "WaterBlue")

}

Aside from the UIColor(named:) initializer, you can also use the
UIColor(named:in:compatibleWith:) initializer to load a named color set from
another bundle.

8.9 Animating Views
Problem
You have an instance of UIView and you would like to apply various animations to it,
such as changing its background color inside an animation block.

Solution
Use the UIViewPropertyAnimator class and specify the properties of your views that
you would like to animate, including their new values. For instance, you can instanti‐
ate UIViewPropertyAnimator and set a delay and an animation length, and then
change the background color of your view instances inside the animation block of

230 | Chapter 8: The User Interface

your UIViewPropertyAnimator instance. You can then simply call the
startAnimation() function on this instance to start the animation(s).

Discussion
Let’s have a look at an example. Create a single view application in Xcode (see
Figure 8-12). In your Main.storyboard file, place a UIView instance in the middle of
the screen and then connect it to your view controller, under the name animating
View. So now the top part of your view controller should look like this:

import UIKit

class ViewController: UIViewController {

 @IBOutlet var animatingView: UIView!

 ...

Figure 8-12. Create an application using this template

Our goal in this recipe is to change the background color of this new view to a ran‐
dom color every time the user taps on the view; in addition, we would like this color
change to be animated. So, go to Interface Builder and in the Object Library, find Tap
Gesture Recognizer (see Figure 8-13) and drag and drop it into your newly created

8.9 Animating Views | 231

www.allitebooks.com

http://www.allitebooks.org

view. Then connect the tap gesture recognizer’s Sent Actions outlet to your view con‐
troller under a new method called animatingViewTapped(_:) (see Figure 8-13). The
tap gesture recognizer placed on our view controller associates the gesture recognizer
with that view.

Figure 8-13. New view

In our view controller we will define an array of colors of type UIColor. Later we will
pick a random one and assign it to this view whenever the user taps on it:

let colors: [UIColor] = [
 .red,
 .blue,
 .yellow,
 .orange,
 .green,
 .brown
]

Imagine picking a random color from this array of colors. What if that random color
is the same color as the one currently assigned to the view? We need an algorithm

232 | Chapter 8: The User Interface

that can pick a color that is not equal to the view’s current color. So let’s write that
function:

func randomColor(notEqualTo currentColor: UIColor) -> UIColor{

 var foundColor = currentColor

 repeat{
 let index = Int(arc4random_uniform(UInt32(colors.count)))
 foundColor = colors[index]
 } while foundColor.isEqual(currentColor)

 return foundColor

}

In this function we use the repeat...while syntax in order to find a random value.
We then compare it with the current color and if they are the same, repeat this pro‐
cess until we find a color that is not the same as the old one.

Last but not least, we need to program our animatingViewTapped(_:) function and
use an instance of UIViewPropertyAnimator to animate the change of background
color of our view. For that we can use the init(duration:curve:animations:) ini‐
tializer of UIViewPropertyAnimator. duration is a value of type TimeInterval,
which is the duration of the animation in seconds. curve is of type UIViewAnimation
Curve, and that is where our animations will take place. This block has neither any
parameters nor a return value. Once done, we call the startAnimation() method of
our property animator:

@IBAction func animatingViewTapped(_ sender: AnyObject) {

 let animator = UIViewPropertyAnimator(duration: 1.0, curve: .easeIn){
 [weak animatingView, weak self] in

 guard
 let view = animatingView,
 let strongSelf = self,
 let viewBackgroundColor = view.backgroundColor
 else {return}

 view.backgroundColor = strongSelf.randomColor(
 notEqualTo: viewBackgroundColor)

 }

 animator.startAnimation()

}

8.9 Animating Views | 233

www.allitebooks.com

http://www.allitebooks.org

Have a look at the code now in the simulator. When you see the view in the center of
the screen, tap on it and watch how the background color changes!

8.10 Attaching Live Views to Playgrounds
Problem
You are working on a UIView instance (or one of its subclasses, such as UITableView
Cell), are constantly making changes to it in order to get it right, and would like to
see your changes continuously without having to recompile and rerun your app on
the simulator.

Solution
Xcode now allows you to simulate screens the way the user sees them in special envi‐
ronments known as playgrounds. Follow these steps to add a live view to your play‐
ground:

1. Import the PlaygroundSupport framework into your playground with the
import statement.

2. Set an instance of UIView or UIViewController to the PlaygroundPage.
current.liveView property, which is of type PlaygroundLiveViewable?.

3. Press Cmd-Alt-Enter on your keyboard while in Xcode to show the assistant edi‐
tor. After attaching a live view to your playground, you can see the view at all
times as you make changes to it, in the assistant editor (Figure 8-14).

234 | Chapter 8: The User Interface

Figure 8-14. A live view displayed in the assistant editor

Discussion
Live views are great for seeing what you’re doing while making rapid changes to a
view or a view controller. The traditional way of monitoring the effects of such
changes was to write the code first, then compile and run the application, which takes
a lot more time than seeing your changes live in the playground.

The liveView property of the current playground is of type PlaygroundLive
Viewable?, which itself is a protocol that is defined as shown here:

public protocol PlaygroundLiveViewable {

 /// A custom `PlaygroundLiveViewRepresentation` for this instance.
 ///
 /// The value of this property can but does not need to be the same every time;
 /// PlaygroundLiveViewables may choose to create a new view or view controller
 /// every time.
 /// - see also: `PlaygroundLiveViewRepresentation`
 public var playgroundLiveViewRepresentation:
 PlaygroundSupport.PlaygroundLiveViewRepresentation { get }
}

8.10 Attaching Live Views to Playgrounds | 235

www.allitebooks.com

http://www.allitebooks.org

It expects conforming objects to implement a playgroundLiveViewRepresentation
property of type PlaygroundSupport.PlaygroundLiveViewRepresentation. That’s
an enumeration defined in this way:

public enum PlaygroundLiveViewRepresentation {

 /// A view which will be displayed as the live view.
 ///
 /// - note: This view must be the root of a view hierarchy
 /// (i.e., it must not have a superview), and it must *not* be
 /// owned by a view controller.
 case view(UIView)

 /// A view controller whose view will be displayed as the live
 /// view.
 /// - note: This view controller must be the root of a view
 /// controller hierarchy (i.e., it has no parent view controller),
 /// and its view must *not* have a superview.
 case viewController(UIViewController)
}

In other words, every UIView or UIViewController instance can be placed inside the
liveView property:

import UIKit
import PlaygroundSupport

extension Double{
 var toSize: CGSize{
 return .init(width: self, height: self)
 }
}

extension CGSize{
 var toRectWithZeroOrigin: CGRect{
 return CGRect(origin: .zero, size: self)
 }
}

let view = UIView(frame: 300.toSize.toRectWithZeroOrigin)
view.backgroundColor = .blue
PlaygroundPage.current.liveView = view

This means that custom objects that can be represented and drawn in a UIView
instance, such as a Person structure, can conform to the PlaygroundLiveViewable
protocol and then be assigned to the liveView property of your playground. This
procedure allows you to modify the view representation of the object rapidly and see
the changes immediately in the playground.

236 | Chapter 8: The User Interface

See Also
Recipe 7.12

8.11 Running Playgrounds as Interactive and Continuous
Apps
Problem
You want your playground code to have a main loop to emulate a real iOS app that
doesn’t just run from start to finish, but rather lives for as long as the user presses the
stop (or home) button. This will allow you to create interactive applications even in
your playgrounds, when mixed with what you learned in Recipe 8.10.

Solution
Set the needsIndefiniteExecution: Bool property of your current playground to
true when you need it to run indefinitely. Once you are done with your work, you
can set this property back to false (its default value).

You access this property by first importing the PlaygroundSup
port framework. Then you can access this property through Play
groundPage.current.needsIndefiniteExecution.

Discussion
Let’s have a look at an example. Say that you are designing a view similar to the one in
Recipe 8.10 and you are testing the addition of a new tap gesture recognizer. You
want to make sure you get a callback when the user taps on the view. Follow these
steps:

1. Make sure to ask for infinite execution time for your playground so that your app
can run until you tap on the view, at which point your code can take action, such
as to terminate execution:
import UIKit
import PlaygroundSupport

PlaygroundPage.current.needsIndefiniteExecution = true

2. Subclass UIView and add your own tap gesture recognizer to it upon initializa‐
tion. When the tap has come in, finish the execution of the playground with Play
groundPage.current.finishExecution():

8.11 Running Playgrounds as Interactive and Continuous Apps | 237

www.allitebooks.com

http://www.allitebooks.org

class TappableView : UIView{

 @objc func handleTaps(_ sender: UITapGestureRecognizer){
 PlaygroundPage.current.finishExecution()
 }

 override init(frame: CGRect) {
 super.init(frame: frame)
 let recognizer = UITapGestureRecognizer(target: self, action:
 #selector(TappableView.handleTaps(_:)))
 addGestureRecognizer(recognizer)
 }

 required init?(coder aDecoder: NSCoder) {
 fatalError("init(coder:) has not been implemented")
 }

}

3. The rest is easy! Simply instantiate this view and set it as the liveView of your
playground:
extension Double{
 var toSize: CGSize{
 return .init(width: self, height: self)
 }
}

extension CGSize{
 var toRectWithZeroOrigin: CGRect{
 return CGRect(origin: .zero, size: self)
 }
}

let view = TappableView(frame: 300.toSize.toRectWithZeroOrigin)
view.backgroundColor = .blue
PlaygroundPage.current.liveView = view

See Also
Recipes 7.12 and 8.10

238 | Chapter 8: The User Interface

8.12 Arranging Your Components Horizontally or
Vertically
Problem
You have vertical or horizontal view hierarchies that you find cumbersome to manage
with constraints.

Solution
Stacked views are the solution.

Discussion
Imagine that you want to create a view that looks like Figure 8-15.

Figure 8-15. Vertical and horizontal views

Prior to the latest Xcode version with support for stacked views, we had to set up
massive amounts of constraints just to achieve a simple layout like Figure 8-15. Well,
no more. Let’s head to IB and drop an image view, three labels arranged vertically,
and three arranged horizontally, like in the previous figure. Our image and labels look
initially like Figure 8-16.

8.12 Arranging Your Components Horizontally or Vertically | 239

www.allitebooks.com

http://www.allitebooks.org

Figure 8-16. Stacked images

Grab the top three labels and press the little Stack button at the bottom of IB, shown
in Figure 8-17.

Figure 8-17. The Stack button is the leftmost button

You will notice that your components are now aligned as you wanted them. Now
select the top stack (your vertical components). Then, in the Attributes inspector, set
the Spacing to 20. Then select your horizontal group and do the same. Bring your
horizontal group up and align it to the bottom of the image view to end up with
something like Figure 8-15.

See Also
Recipe 8.13

240 | Chapter 8: The User Interface

8.13 Customizing Stack Views for Different Screen Sizes
Problem
You want to customize the way your stack views appear on the screen, based on the
screen size they are running on.

Solution
Use the size class customization features of Xcode, right in the Attributes inspector.

Discussion
You might have noticed tiny + buttons in various places inside IB. But what are they?
Have you used them before? If not, you are missing out on a lot and I’m going to
show you how to take advantage of them.

Size classes are encapsulated information about the dimensions of the current screen:
possible values are “regular,” “compact,” and “any.” These sizes have been defined to
stop us from thinking in terms of pixels; you either have a regular size or a compact
size.

Imagine your iPhone 6+ in portrait mode. The screen width is compact, and the
screen height is regular. Once you go to landscape mode, your screen width is regular
and your height is compact. Now imagine an iPad in portrait mode. Your screen
width is regular and so is your height. Landscape, ditto.

Let’s work on a project so that you can see more clearly how this works. I want you to
achieve the effect shown in Figure 8-18 when running the app on an iPhone in por‐
trait mode.

Figure 8-18. In portrait mode, our views have no spacing between them

8.13 Customizing Stack Views for Different Screen Sizes | 241

www.allitebooks.com

http://www.allitebooks.org

And when you go to landscape, I want there to be 10-point spacing between the
items, but only when the height of the screen is compact (Figure 8-19).

Figure 8-19. With compact screen height, we want spacing to be applied between our
views

Get started by creating three colorful views on your main storyboard. I’ll leave the
colors to you to decide. Select all your views and then click the little Stack button
(shown on the left Figure 8-17) in IB to group your views horizontally. Then place
your stacked view at the top left of the view with proper top and left margin spacing
(see Figure 8-20).

Figure 8-20. The IB guidelines appear when the view is at the top left of the super view

Once done, make sure your stacked view is the selected view and then click the
Resolve Auto Layout Issues button (the rightmost button in Figure 8-17). Under
Selected Views, choose “Reset to Suggested Constraints.”

Now choose your stack view. In the Attributes inspector, under the Spacing section,
find the little + button and click it. In the pop-up, choose Any Width, and then under

242 | Chapter 8: The User Interface

that choose Compact Height. This will give you an additional text field to write the
desired spacing value for any screen width while the height of the screen is compact.
In this box, set the value to 10 (see Figure 8-21).

Figure 8-21. Set the value to 10 in the new text box

If you run your app on an iPhone 6+ and then switch to landscape, you won’t see any
spacing between the items—so what happened? The problem is that in landscape
mode we are not increasing the width of our stack view. It doesn’t currently have extra
width to show the spaces between the views. To account for this, let’s first add a nor‐
mal width constraint to our stack view. You can do that by selecting the stack view in
the list of views that you have, holding down the Control key on your keyboard, and
dragging from the stack view to the stack view itself. From the pop-up that appears,
choose Width (see Figure 8-22).

8.13 Customizing Stack Views for Different Screen Sizes | 243

www.allitebooks.com

http://www.allitebooks.org

Figure 8-22. Choose the Width option in the pop-up to add a width constraint to the
stack view

While your stack view is selected, go to the Size inspector and double-click the Width
constraint that you just created. This will allow you to edit this constraint with size
classes. How awesome is that? Next to the Constant text box, I can see the value of
300. You might see a different value based on the width of the views you placed in
your stack view. My views were each 100 points wide, for a total of 300 points. I can
also see a little + button next to the Constant box. Click that button and add a new
constant for “Any Width and Compact Height.” Set the value to N+20, where N is the
value of your current constant. For me N is 300, so I’ll enter the value of 320 in the
new box (see Figure 8-23).

244 | Chapter 8: The User Interface

Figure 8-23. Add a new width constant class to the stack view

There is one more thing that you need to tell the stack view in order for it to stack
your views correctly when its width changes. Select the stack view and, in the
Attributes inspector, under the Distribution section, change the default value to Equal
Spacing. Now run your app and enjoy the awesomeness that you just created. Rotate
from portrait to landscape in any iPhone simulator (not iPad).

See Also
Recipes 8.12 and 8.16

8.14 Creating Anchored Constraints in Code
Problem
You want your code to use the same layout anchors that IB uses.

Solution
Use the new anchor properties on UIView (for example, leadingAnchor and trail
ingAnchor).

8.14 Creating Anchored Constraints in Code | 245

www.allitebooks.com

http://www.allitebooks.org

Discussion
Layout anchors are very useful for arranging your components on the screen. Let’s
say that you have two buttons on your view, arranged horizontally, and you want the
second button to be placed 10 points to the right of the first button.

First create two buttons on your view using IB and then place them next to each
other, horizontally. The horizontal space between them does not matter so much right
now. Then select both of them and click the Resolve Auto Layout Issues button (the
rightmost button in Figure 8-17). In the pop-up, under Selected Views, choose the
Add Missing Constraints option (see Figure 8-24).

Figure 8-24. Adding the missing constraints to your buttons

Select the second button (on the right). In the Size Inspector panel, find the “Leading
Space to” constraint, double-click it, and choose the “Remove at build time” option
(see Figure 8-25). This will make sure that the leading constraint, which you are
going to create in code, will be present in IB while you’re checking things out, but that
during the project run the constraint will be removed, giving you the ability to
replace it.

246 | Chapter 8: The User Interface

Figure 8-25. Removing the leading constraint at build time will give you a window to
replace it at runtime

Now link your buttons into your code with names such as btn1 and btn2. In the view
DidLoad() method of your view controller, write the following code:

override func viewDidLoad() {
 super.viewDidLoad()

 btn2.leadingAnchor.constraint(equalTo: btn1.trailingAnchor,
 constant: 10).isActive = true

}

Now run your app and see how your second button is trailing your first button hori‐
zontally with a 10-point space between them. You can use the following anchors in
your views:

• bottomAnchor

• centerXAnchor

• centerYAnchor

• firstBaselineAnchor

• heightAnchor

• lastBaselineAnchor

8.14 Creating Anchored Constraints in Code | 247

www.allitebooks.com

http://www.allitebooks.org

• leadingAnchor

• leftAnchor

• rightAnchor

• topAnchor

• trailingAnchor

• widthAnchor

All of these anchors are direct or indirect subclasses of the NSLay
outAnchor class. The horizontal anchors specifically are subclasses
of the NSLayoutXAxisAnchor class and the vertical ones are sub‐
classes of NSLayoutYAxisAnchor.

Now, just to play with some more anchors, create a view hierarchy like the one in
Figure 8-26. You are going to place a red view under the first button and set the width
of this view to the width of the button in your code.

Figure 8-26. Two buttons and a view

In IB, drag and drop a view onto your main view and set the background color of it to
red so that you can see it better. Drag and drop it so that it is aligned under the two
buttons with proper left and top margins (see Figure 8-27).

248 | Chapter 8: The User Interface

Figure 8-27. Align the red view like so

Anchor the views as follows:

1. Select the red view.
2. In IB, choose the Resolve Auto Layout Issues button.
3. Under the Selected View section in the pop-up, choose Add Missing Constraints.
4. Go to the Size inspector. For the red view, find the “Trailing Space to” constraint

and delete it by selecting it and pressing the Delete button.
5. Select the red button in the view hierarchy, hold down the Control key on your

keyboard, and drag and drop the button into itself.
6. A menu will appear. In the menu, choose Width to create a width constraint.

Then find the new width constraint in the Size inspector, double-click it, and
choose the “Remove at build time” option (see Figure 8-28).

8.14 Creating Anchored Constraints in Code | 249

www.allitebooks.com

http://www.allitebooks.org

Figure 8-28. Remove the automatically built width constraint at build time so that you
can replace it in code

Now create an outlet for this red view in your code (I’ve named mine v) and add the
following code to your viewDidLoad() method:

v.widthAnchor.constraint(equalTo: btn2.widthAnchor,
 constant:0).isActive = true

8.15 Allowing Users to Enter Text in Response to Local and
Remote Notifications
Problem
You want to allow your users to enter some text in response to local or push notifica‐
tions that you display. And you would additionally like to be able to read this text in
your app and take action on it.

Solution
Follow these steps:

1. Import the UserNotifications and Intents frameworks.

250 | Chapter 8: The User Interface

2. Get an instance of the user notification center using the UNUserNotification
Center class and its current() class function.

3. Call the requestAuthorization(options:completionHandler:) method on
your notification center and ensure that you are authorized to provide notifica‐
tions to the user.

4. Create an instance of UNTextInputNotificationAction for your enter text
action.

5. Create an instance of UNNotificationAction for your cancel action.
6. Create an instance of UNNotificationCategory to hold the category information

for your notification.
7. Invoke the setNotificationCategories(_:) method of your notification center

and pass your category in.
8. To schedule the notification, create an instance of UNTimeIntervalNotification

Trigger in order to trigger the notification after a specific number of seconds.
For instance, you may want to trigger a notifications 3 seconds after your app
goes to the background.

9. Instantiate UNMutableNotificationContent and set this instance’s body property
to the text of your notification.

10. Set this instance’s categoryIdentifier to the identifier of the category object of
type UNNotificationCategory that you created earlier.

11. Create a notification request of type UNNotificationRequest with a unique
identifier, your content object, and the trigger object.

12. Invoke the add(request:completionHandler:) function of your notification
center to schedule the notification.

Discussion
Let’s say that we want our app to register for local notifications and then ask the user
for her name once the app has been sent to the background. The user enters her name
and then we come to the foreground and take action on that name.

In the app delegate, we will start by ensuring our delegate conforms to the UNUser
NotificationCenterDelegate protocol and getting a reference to the notification
center:

import UIKit
import UserNotifications
import Intents

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate,
UNUserNotificationCenterDelegate {

 var window: UIWindow?

8.15 Allowing Users to Enter Text in Response to Local and Remote Notifications | 251

www.allitebooks.com

http://www.allitebooks.org

 private var notificationCenter: UNUserNotificationCenter{
 return UNUserNotificationCenter.current()
 }

 //the rest of our code will follow here shortly...

Then we will write a function that first asks the user whether it’s okay for us to
schedule notifications, and then, if she agrees, invokes the setNotification
Categories(_:) function of our notification center to register what types of notifica‐
tion categories we would like to provide to the user. Every category of type UNNotifi
cationCategory has a few properties:

An identifier of type String
When you later want to create a request for a notification, you have will have to
instantiate UNNotification Request, and that request will require a content
object of type UNMutableNotificationContent. The content object has a prop‐
erty called categoryIdentifier that you will then have to link to this category
through its identifier.

Actions, an array of type [UNNotificationAction]
You can pass instances of UNTextInputNotificationAction and UNNotifica
tionAction to this array, because UNTextInputNotificationAction is a subclass
of UNNotificationAction.

Options of type UNNotificationCategoryOptions
These can have values such as allowInCarPlay or customDismissAction.

So, let’s create a function that can ask the user for permission to create local notifica‐
tions. If the user agrees to that, we will also create a category object of type UNNotifi
cationCategory and register the category with our notification center:

func registerForNotifications(){

 notificationCenter.delegate = self

 notificationCenter.requestAuthorization(options: [.alert]){[weak self]
 (succeeded, error) in

 guard let `self` = self else {return}

 if let error = error, succeeded == false{
 print("Failed, error = \(error)")
 return
 }

 let enterInfo = UNTextInputNotificationAction(identifier: "enter",
 title: "Enter your name",
 options: [.foreground])

252 | Chapter 8: The User Interface

 let cancel = UNNotificationAction(identifier: "cancel",
 title: "Cancel",
 options: [])

 let category = UNNotificationCategory(
 identifier: "texted",
 actions: [enterInfo, cancel],
 intentIdentifiers: [INSendMessageIntentIdentifier],
 hiddenPreviewsBodyPlaceholder: "Placeholder",
 options: [.hiddenPreviewsShowTitle])

 self.notificationCenter.setNotificationCategories([category])

 }

When our application has launched, we will immediately ask the user whether the
authorization can schedule local notifications:

func application(
 _ application: UIApplication,
 didFinishLaunchingWithOptions
 launchOptions: [UIApplicationLaunchOptionsKey : Any]? = nil) -> Bool {

 registerForNotifications()

 return true
}

Now, when the user opens the application for the first time, she will see a system alert
pop up (see Figure 8-29), asking her whether it’s okay for our app to schedule local
notifications.

Figure 8-29. This system dialog is the result of us invoking the requestAuthoriza‐
tion(options:completionHandler:) function of our notification center of type UNUserNo‐
tificationCenter

8.15 Allowing Users to Enter Text in Response to Local and Remote Notifications | 253

www.allitebooks.com

http://www.allitebooks.org

We now need to write a function that schedules the notification. We will instantiate a
trigger object of type UNTimeIntervalNotificationTrigger so that we can display
our notification 3 seconds after our application has been sent to the background.
Trigger objects of type UNNotificationTrigger are required for our notification
request object (of type UNNotificationRequest), and the UNTimeIntervalNotifica
tionTrigger class subclasses UNNotificationTrigger. The curious minds among
you are probably asking what other trigger classes are out there. Here is a list:

UNPushNotificationTrigger

Push notifications, as the name suggests.

UNCalendarNotificationTrigger

Notifications that are bound to date objects, so that you can show a notification
to the user at a specific time and date.

UNLocationNotificationTrigger

Notifications bound to a region defined by CLRegion. For instance, a news appli‐
cation can use this type of notification to display local news.

Once we have our trigger object, we will also need to create a content object of type
UNMutableNotificationContent, in which we can set the body of our notification
message. We will also bind this content object to our category object, which we cre‐
ated earlier, using the content object’s categoryIdentifier property:

func scheduleNotification(){

 let trigger = UNTimeIntervalNotificationTrigger(
 timeInterval: 3.0, repeats: false)

 let content = UNMutableNotificationContent()
 content.body = "Please enter your name now"
 content.categoryIdentifier = "texted"

 let request = UNNotificationRequest(
 identifier: UUID().uuidString, content: content, trigger: trigger)

 notificationCenter.add(request) {error in
 if let error = error {
 print("Could not schedule notification. Error = \(error)")
 } else {
 print("Successfully scheduled the notification")
 }
 }

}

As soon as the user sends our application to the background, we will invoke this func‐
tion in order to schedule a notification. For this, we can use the applicationDid
EnterBackground(_:) function of our app delegate:

254 | Chapter 8: The User Interface

func applicationDidEnterBackground(_ application: UIApplication) {
 scheduleNotification()
}

You can go ahead and run the application now. Once you allow the app (through the
system dialog shown in Figure 8-29) to schedule local notifications, send the app to
the background and wait 3 seconds. You should now see a notification appear on the
screen asking for your name. Drag your finger down on this notification to reveal the
actions that we associated with it (a button that allows you to enter your name, and a
cancel button). Press the “Enter your name” button to see the text entry interface of
the message (Figure 8-30).

Figure 8-30. The user can enter her name directly into this notification

But what happens when the user enters her name in the text field? This is why we set
our app delegate as the delegate property of our notification center earlier. If you
do that, you will be able to implement the userNotificationCenter(_:didRe

8.15 Allowing Users to Enter Text in Response to Local and Remote Notifications | 255

www.allitebooks.com

http://www.allitebooks.org

ceive:withCompletionHandler:) function, which gets called when the user has pro‐
vided a response to your notifications. The didReceive argument of this function is
of type UNNotificationResponse, and in our example, since we scheduled a text
notification action of type UNTextInputNotificationAction, we’ll be looking for a
response of type UNTextInputNotificationResponse. If that’s the response object, we
can read its userText property, which holds the text that the user has entered on the
screen:

func userNotificationCenter(
 _ center: UNUserNotificationCenter,
 didReceive response: UNNotificationResponse,
 withCompletionHandler completionHandler: @escaping () -> Void) {

 guard let response = response as? UNTextInputNotificationResponse,
 response.actionIdentifier == "enter" else {
 completionHandler()
 return
 }

 print(response.userText)
 completionHandler()

}

8.16 Dealing with Stacked Views in Code
Problem
You want to programmatically manipulate the contents of stack views.

Solution
Use an instance of the UIStackView.

Discussion
For whatever reason, you might want to construct your stack views programmatically.
I do not recommend this way of working with stack views because IB already can
handle most of the situations where you would want to use stack views, and then
some. But if you absolutely have to use stack views in your app, simply instantiate
UIStackView and pass it your arranged views.

You can also then set the axis property to either vertical or horizontal. Remember
to set the distribution property as well, of type UIStackViewDistribution. Some of
the values of this type are fill, fillEqually, and equalSpacing. I also like to set the

256 | Chapter 8: The User Interface

spacing property of the stack view manually so that I know how much space there is
between my items.

Let’s say that we want to create a stack view like Figure 8-31. The stack view is tucked
to the right side of the screen and every time we press the button, a new label will be
appended to the stack view.

Figure 8-31. This is the stack view that we want to create

First we define a stack view in our view controller:

var rightStack: UIStackView!

Then a few handy methods for creating labels and a button:

func lblWithIndex(_ idx: Int) -> UILabel{
 let label = UILabel()
 label.text = "Item \(idx)"
 label.sizeToFit()
 return label
}

func newButton() -> UIButton{
 let btn = UIButton(type: .system)
 btn.setTitle("Add new items...", for: UIControlState())
 btn.addTarget(self, action: #selector(addNewItem),
 for: .touchUpInside)
 return btn
}

@objc func addNewItem(){
 let n = rightStack.arrangedSubviews.count
 let v = lblWithIndex(n)
 rightStack.insertArrangedSubview(v, at: n - 1)
}

8.16 Dealing with Stacked Views in Code | 257

www.allitebooks.com

http://www.allitebooks.org

The addNewItem() function will be called when the button is
pressed.

When our view is loaded on the screen, we will create the stack view and fill it with
the three initial labels and the button. Then we will set up its axis, spacing, and distri‐
bution. Once done, we’ll create its constraints:

override func viewDidLoad() {
 super.viewDidLoad()

 rightStack = UIStackView(arrangedSubviews:
 [lblWithIndex(1), lblWithIndex(2), lblWithIndex(3), newButton()])

 view.addSubview(rightStack)

 rightStack.translatesAutoresizingMaskIntoConstraints = false

 rightStack.axis = .vertical
 rightStack.distribution = .equalSpacing
 rightStack.spacing = 5

 rightStack.trailingAnchor.constraint(equalTo: view.trailingAnchor,
 constant: -20).isActive = true

 rightStack.topAnchor.constraint(
 equalTo: view.safeAreaLayoutGuide.topAnchor).isActive = true

}

See Also
Recipe 8.13

8.17 Showing Web Content in Safari View Controller
Problem
You want to take advantage of such awesome Safari functionalities as Reader mode in
your own apps.

Solution
Use the SFSafariViewController class in the SafariServices framework. This view
controller can easily be initialized with a URL and then displayed on the screen.

258 | Chapter 8: The User Interface

Discussion
Let’s go ahead and build the UI. For this recipe, we are aiming for a UI like
Figure 8-32.

Figure 8-32. Create a UI that looks similar to this in your own storyboard

Place a text field and a button on your UI, then hook them up to your code. Once the
button is tapped, the code that runs is:

@IBAction func openInSafari() {

 guard let text = textField.text, text.characters.count > 0,
 let url = URL(string: text) else{
 //the URL is missing, you can further code this method if you want
 return
 }

 let configuration = SFSafariViewController.Configuration()
 configuration.entersReaderIfAvailable = true

 let controller = SFSafariViewController(
 url: url, configuration: configuration)

 controller.delegate = self
 present(controller, animated: true, completion: nil)

}

Now make your view controller conform to the SFSafariViewControllerDelegate
protocol. Program the safariViewControllerDidFinish(_:) method to ensure that,
when the user closes the Safari view controller, the view disappears:

func safariViewControllerDidFinish(_ controller: SFSafariViewController) {
 dismiss(animated: true, completion: nil)
}

Note that in the initializer of the Safari controller, I also specified that I would like to
take advantage of Reader mode if it is available.

8.17 Showing Web Content in Safari View Controller | 259

www.allitebooks.com

http://www.allitebooks.org

8.18 Laying Out Text-Based Content on Your Views
Problem
You would like to show text-based content to your users and want to lay it out on the
screen in the optimal position.

Solution
Use the readableContentGuide property of UIView.

Discussion
The readableContentGuide property of UIView gives you the margins that you need
to place your text content on the screen properly. On a typical iPhone 6 screen, this
margin is around 20 points on both the left and the right. The top and bottom mar‐
gins on the same device are usually set near 0. But don’t take these numbers at face
value—they might change, and you should never think about them as hardcoded val‐
ues. That is why you should use the readableContentGuide property to place your
components correctly on the screen.

There isn’t really much more to it than that, so let’s jump right into an example. In
this code, I will create a label and stretch it horizontally and vertically to fill the reada‐
ble section of my view. I will also make sure the top and left positioning of the label is
according to the readable section’s guides:

let label = UILabel()
label.translatesAutoresizingMaskIntoConstraints = false
label.backgroundColor = UIColor.green
label.text = "Hello, World"
label.sizeToFit()
view.addSubview(label)

label.leadingAnchor.constraint(
 equalTo: view.readableContentGuide.leadingAnchor).isActive = true

label.topAnchor.constraint(
 equalTo: view.readableContentGuide.topAnchor).isActive = true

label.trailingAnchor.constraint(
 equalTo: view.readableContentGuide.trailingAnchor).isActive = true

label.bottomAnchor.constraint(
 equalTo: view.readableContentGuide.bottomAnchor).isActive = true

260 | Chapter 8: The User Interface

8.19 Improving Touch Rates for Smoother UI Interactions
Problem
You want to be able to improve the interaction of the user with your app by decreas‐
ing the interval required between touch events.

Solution
Use the coalescedTouchesForTouch(_:) and predictedTouchesForTouch(_:)

methods of the UIEvent class. The former method allows you to receive coalesced
touches inside an event, while the latter allows you to receive predicted touch events
based on iOS’s internal algorithms.

Discussion
On selected devices such as the iPad Air 2, the display refresh rate is 60 Hz like on
other iOS devices, but the touch scan rate is 120 Hz. This means that iOS on the iPad
Air 2 scans the screen for updated touch events twice as fast as the display’s refresh
rate. These events obviously cannot be delivered to your app faster than the display
refresh rate (60 times per second), so they are coalesced. At every touch event, you
can ask for these coalesced touches and base your app’s reactions on them.

In this recipe, imagine that we are just going to draw a line based on where the user’s
finger has been touching the screen. The user can move her finger over our view any
way she wants, and we just draw a line on that path.

Create a single view app. In the same file as your view controller’s Swift source file,
define a new class of type UIView and name it MyView:

class MyView : UIView{

}

In your storyboard, set your view controller’s view class to MyView (see Figure 8-33).

8.19 Improving Touch Rates for Smoother UI Interactions | 261

www.allitebooks.com

http://www.allitebooks.org

Figure 8-33. Your view is inside the view controller now

Make sure that you are running this code on a device at least as
advanced as an iPad Air 2. The iPhone 6 and 6+ do not have a 120
Hz touch scan rate.

Then, in your view, define an array of points and a method that can take a set of
touches and an event object, read the coalesced touch points inside the event, and
place them inside your array:

var points = [CGPoint]()

func drawForFirstTouchInSet(_ s: Set<UITouch>, event: UIEvent?){

 guard let touch = s.first, let event = event,
 let allTouches = event.coalescedTouches(for: touch),
 allTouches.count > 0 else{
 return
 }

 points += allTouches.map{$0.location(in: self)}

 setNeedsDisplay()

}

Now when the user starts touching your view, you start recording the touch points:

262 | Chapter 8: The User Interface

override func touchesBegan(_ touches: Set<UITouch>,
 with event: UIEvent?) {

 points.removeAll()
 drawForFirstTouchInSet(touches, event: event)

}

Should you be told that the touch events sent to your app were sent by accident, and
that the user really meant to touch another UI component on the screen, such as the
notification center, you have to clear the display:

override func touchesCancelled(_ touches: Set<UITouch>,
 with event: UIEvent?) {

 points.removeAll()
 setNeedsDisplay(bounds)

}

Every time the touch location moves, move with it and record the location:

override func touchesMoved(_ touches: Set<UITouch>,
 with event: UIEvent?) {

 drawForFirstTouchInSet(touches, event: event)

}

Once the touches end, ask iOS for any predicted touch events that might have been
calculated and draw them too:

override func touchesEnded(_ touches: Set<UITouch>,
 with event: UIEvent?) {

 guard let touch = touches.first, let event = event,
 let predictedTouches = event.predictedTouches(for: touch),
 predictedTouches.count > 0 else{
 return
 }

 points += predictedTouches.map{$0.location(in: self)}
 setNeedsDisplay()

}

The drawing code is simple. It goes through all the points and draws lines between
them:

override func draw(_ rect: CGRect) {

 let con = UIGraphicsGetCurrentContext()

 // set background color

8.19 Improving Touch Rates for Smoother UI Interactions | 263

www.allitebooks.com

http://www.allitebooks.org

 con?.setFillColor(UIColor.black.cgColor)
 con?.fill(rect)

 con?.setFillColor(UIColor.red.cgColor)
 con?.setStrokeColor(UIColor.red.cgColor)

 for point in points{

 con?.move(to: point)

 if let last = points.last, point != last{
 let next = points[points.index(of: point)! + 1]
 con?.addLine(to: next)
 }

 }

 con?.strokePath()

}

Now run this on an iPad Air 2 and compare the smoothness of the lines that you
draw with those on an iPhone 6 or 6+, for instance.

8.20 Supporting Right-to-Left Languages
Problem
You are internationalizing your app and, as part of this process, need to support lan‐
guages that are written from right to left, such as Persian or Arabic.

Solution
Use a combination of the following tips:

• Use IB’s view properties to arrange your items with proper semantic properties.
• Ensure that you create your constraints correctly, preferably using IB.
• Use the userInterfaceLayoutDirectionForSemanticContentAttribute(_:)

class method of the UIView class to find the direction of the user interface based
on the semantic attributes that are part of the UISemanticContentAttribute
enum.

• If arranging your items in code, use the semanticContentAttribute property of
your views to set their semantics correctly.

264 | Chapter 8: The User Interface

Discussion
Let’s create an app that has a text view on top and four buttons arranged like the
arrow keys on the keyboard: up, left, down, right. When each one of these buttons is
pressed, we will display the corresponding word in the text field. The text field will be
read-only, and when displaying right-to-left languages, it will of course show the text
on the righthand side. Make sure that your UI looks (for now) something like
Figure 8-34. There is one text field and four buttons.

Figure 8-34. Initial layout

Now select the left, down, and right buttons on the UI (exclude the up button for
now) and stack them up together. In the new stack that was created, set the spacing to
20 (see Figure 8-35). Set the horizontal stack view’s spacing so that the buttons will be
horizontally stacked with the proper distance from each other.

Figure 8-35. Horizontal spacing between buttons

Then select the newly created stack and the up button on IB and stack those up
together. This will create a vertical stack view for you. Set the spacing for this new

8.20 Supporting Right-to-Left Languages | 265

www.allitebooks.com

http://www.allitebooks.org

stack view to 10. Place the main stack view at the center of the screen. Use IB’s
Resolve Auto Layout Issues feature to add all missing constraints for all the compo‐
nents. Also make sure that you disable editing of the text field. Then hook up the text
field to your code as an outlet and hook up the four buttons’ touch events to your
view controller as well. Now your UI should look like Figure 8-36 on IB.

Figure 8-36. Your UI should look like this at the moment

Now choose the main stack view in your UI. In IB, in the Semantic section of the
Attributes Inspector panel, choose Playback (see Figure 8-37). This will ensure that
the views inside this stack view will not be mirrored right to left when the language
changes to a right-to-left language.

266 | Chapter 8: The User Interface

Figure 8-37. Choose the Playback view semantic

Now from Xcode, create a new strings file, name it Localizable.strings, and place your
string keys in there:

"up" = "Up";
"down" = "Down";
"right" = "Right";
"left" = "Left";

Under your main project’s info page in Xcode, choose Localizations and add Arabic
as a localization. Then move over to your newly created strings file and enable the
Arabic language on it (see Figure 8-38).

Figure 8-38. Localize the strings file so that you have both English and Arabic in the list

You will now have two strings files. Go into the Arabic one and localize the file:

"up" = "Up in Arabic";
"down" = "Down in Arabic";
"right" = "Right in Arabic";
"left" = "Left in Arabic";

8.20 Supporting Right-to-Left Languages | 267

www.allitebooks.com

http://www.allitebooks.org

In your code now, you have to set the text field’s text direction based on the orienta‐
tion that you get from UIView. That orientation itself depends on the semantics that
you set on your text field before:

import UIKit

class ViewController: UIViewController {

 @IBOutlet var txtField: UITextField!

 @IBAction func up() {
 txtField.text = NSLocalizedString("up", comment: "")
 }

 @IBAction func left() {
 txtField.text = NSLocalizedString("left", comment: "")
 }

 @IBAction func down() {
 txtField.text = NSLocalizedString("down", comment: "")
 }

 @IBAction func right() {
 txtField.text = NSLocalizedString("right", comment: "")
 }

 override func viewDidAppear(_ animated: Bool) {

 let direction = UIView
 .userInterfaceLayoutDirection(
 for: txtField.semanticContentAttribute)

 switch direction{
 case .leftToRight:
 txtField.textAlignment = .left
 case .rightToLeft:
 txtField.textAlignment = .right
 }

 }

}

Now run the app on an English device and you will see English content in the text
field aligned from left to right. Run it on an Arabic-localized device and you’ll see the
text aligned on the righthand side.

268 | Chapter 8: The User Interface

8.21 Associating Keyboard Shortcuts with View
Controllers
Problem
You want to allow your application to respond to complex key combinations that a
user can press on an external keyboard, to give the user more ways to interact with
your app.

Solution
Construct an instance of the UIKeyCommand class and add it to your view controllers
using the addKeyCommand(_:) method. You can remove key commands with the
removeKeyCommand(_:) method.

Discussion
Keyboard shortcuts are very useful for users with external keyboards. In a word pro‐
cessing program, the user might expect to press Cmd-N to create a new document,
whereas on an iOS device this may be achieved by the user pressing a button such as
“New.”

Let’s say that we want to write a single view app that allows users with an external
keyboard to press Cmd-Alt-Ctrl-N to see an alert controller. When our view is
loaded, we will create the command and add it to our view controller:

override func viewDidLoad() {
 super.viewDidLoad()

 let command = UIKeyCommand(
 input: "N",
 modifierFlags: [.command, .alternate, .control],
 action: #selector(handleCommand(_:)))

 addKeyCommand(command)

}

When the command is issued, iOS will attempt to call the method that we have speci‐
fied. In there, let’s show the alert:

@objc func handleCommand(_ cmd: UIKeyCommand){

 let controller = UIAlertController(
 title: "Shortcut pressed",
 message: "You pressed the shortcut key",
 preferredStyle: .alert)

8.21 Associating Keyboard Shortcuts with View Controllers | 269

www.allitebooks.com

http://www.allitebooks.org

 controller.addAction(
 UIAlertAction(title: "Ok!", style: .destructive, handler: nil))

 present(controller, animated: true, completion: nil)

}

Open this in the simulator. From the Hardware menu, select Keyboard, and then
select the Connect Hardware Keyboard menu item (see Figure 8-39). While the focus
is on the simulator, press the aforementioned key combinations and see the results for
yourself.

Figure 8-39. You can enable a hardware keyboard even in the simulator; this is necessary
to test the output of this recipe

8.22 Recording the Screen and Sharing the Video
Problem
You want users to be able to record their screen while in your app and then edit and
save the results. This is really important for games providing replay functionality to
gamers.

Solution
Follow these steps:

1. Import ReplayKit.
2. After you have imported ReplayKit, get a recorder of type RPScreenRecorder

using RPScreenRecorder.sharedRecorder().
3. Call the available property of the recorder to see whether recording is available.
4. Set the delegate property of the recorder to your code and conform to the

RPScreenRecorderDelegate protocol.
5. Call the startRecordingWithMicrophoneEnabled(_:handler:) method of the

recorder.
6. Wait until your handler method is called and then check for errors.
7. If no error occurred, once you are done with recording, call the stopRecording

WithHandler(_:) method on the same recorder object.

270 | Chapter 8: The User Interface

8. Wait for your handler to be called. In your handler, you’ll get an instance of the
RPPreviewViewController class.

9. Set the previewControllerDelegate property of the preview controller to your
code and conform to the RPPreviewViewControllerDelegate protocol.

10. Preset your preview controller.

Discussion
The ability to record what’s happening on the screen often comes in handy for users,
particularly gamers who might want to share a particularly cool sequence of game
play with their friends. To enable this, you first need to define your view controller:

import UIKit
import ReplayKit

class ViewController: UIViewController, RPScreenRecorderDelegate,
RPPreviewViewControllerDelegate {
 ...

Set up your UI as shown in Figure 8-40. The start and stop buttons are self-
explanatory. The segmented control is there just so you can play with it while record‐
ing and then see the results after you’ve stopped the playback.

Figure 8-40. Initial layout

Hook up the buttons to your code:

8.22 Recording the Screen and Sharing the Video | 271

www.allitebooks.com

http://www.allitebooks.org

 @IBOutlet var startBtn: UIButton!
 @IBOutlet var stopBtn: UIButton!

And define your delegate methods:

func previewControllerDidFinish(_ previewController: RPPreviewViewController) {
 print("Finished the preview")
 dismiss(animated: true, completion: nil)
 startBtn.isEnabled = true
 stopBtn.isEnabled = false
}

func previewController(_ previewController: RPPreviewViewController,
 didFinishWithActivityTypes activityTypes: Set<String>) {
 print("Preview finished activities \(activityTypes)")
}

func screenRecorderDidChangeAvailability(_ screenRecorder: RPScreenRecorder) {
 print("Screen recording availability changed")
}

func screenRecorder(_ screenRecorder: RPScreenRecorder,
 didStopRecordingWithError error: Error,
 previewViewController: RPPreviewViewController?) {
 print("Screen recording finished")
}

The previewControllerDidFinish(_:) method is important, because it gets called
when the user is finished with the preview controller. Here you’ll need to dismiss the
preview controller.

Then define the recorder object:

let recorder = RPScreenRecorder.shared()

When the record button is pressed, see whether recording is possible:

startBtn.isEnabled = true
stopBtn.isEnabled = false

guard recorder.isAvailable else{
 print("Cannot record the screen")
 return
}

If it is, start recording:

recorder.delegate = self

recorder.startRecording {[weak self]err in

 guard let strongSelf = self else {return}

 if let error = err as NSError?{

272 | Chapter 8: The User Interface

 if error.code == RPRecordingErrorCode.userDeclined.rawValue{
 print("User declined app recording")
 }
 else if error.code == RPRecordingErrorCode.insufficientStorage.rawValue{
 print("Not enough storage to start recording")
 }
 else {
 print("Error happened = \(err!)")
 }
 return
 } else {
 print("Successfully started recording")
 strongSelf.startBtn.isEnabled = false
 strongSelf.stopBtn.isEnabled = true
 }

}

Here, we are checking the error codes for specific ReplayKit errors
such as RPRecordingErrorCode.UserDeclined and RPRecordingEr
rorCode.InsufficientStorage.

The first time you attempt to record the user’s screen in any app, the user will be
prompted to allow or disallow this with a dialog that looks similar to that shown in
Figure 8-41.

8.22 Recording the Screen and Sharing the Video | 273

www.allitebooks.com

http://www.allitebooks.org

Figure 8-41. Permission to record the screen is requested from the user

When the user is finished recording and presses the stop button, stop the recording
and present the preview controller:

recorder.stopRecording{controller, err in

 guard let previewController = controller, err == nil else {
 self.startBtn.isEnabled = true
 self.stopBtn.isEnabled = false
 print("Failed to stop recording")
 return
 }

 previewController.previewControllerDelegate = self

 self.present(previewController, animated: true,
 completion: nil)

274 | Chapter 8: The User Interface

}

The preview controller looks like that shown in Figure 8-42.

Figure 8-42. The user can preview what was recorded on the screen earlier and can save
and share the results

Throughout this whole process, your app doesn’t get direct access
to the recorded content. This protects the user’s privacy.

8.22 Recording the Screen and Sharing the Video | 275

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 9

Document-Based Apps

An application can allow the user to browse and edit iCloud-backed documents using
various objects and view controllers that are provided in the iOS SDK, such as UIDocu
mentBrowserViewController. In the iOS SDK, you can find every class and technol‐
ogy that your app might require in order to create professional document-based
applications for all kinds of documents.

iOS takes care of presenting and exporting a document’s data to your application
from iCloud. Another complex operation that iOS can take care of is syncing multiple
simultaneous edit operations on the same file. What your application is responsible
for is presenting the data to the user, allowing the user to edit that data (if possible),
and then saving the data back to iOS, which in turn is responsible for saving that data
back to iCloud.

9.1 Supporting File Browsing in Your App
Problem
You want to create a document-based application and would like to start by allowing
the user to browse their existing documents.

Solution
Follow these steps:

1. Ensure your application’s root view controller is of type UIDocumentBrowserView
Controller.

277

www.allitebooks.com

http://www.allitebooks.org

2. Make sure that this root view controller is not embedded inside a navigation con‐
troller. The document browser has its own navigation controller and should not
be wrapped inside an extra navigation controller.

3. In your app delegate, read your window property’s rootViewController, now of
type UIDocumentBrowserViewController, and set its delegate property to your
app delegate.

4. Ensure that your app delegate conforms to the UIDocumentBrowserViewControl
lerDelegate protocol.

5. Open your Info.plist file in Xcode.
6. Right-click anywhere on this file and click the Show Raw Keys/Values menu

opton.
7. Add a new key named UISupportsDocumentBrowser, of type Boolean, to the

Info.plist file and assign the value of YES to it.

All this action happens in your app delegate, because it is your app
delegate that owns your window object, which in turn owns your
root view controller. Therefore, the app delegate is a good place to
start in order to begin creating a document-based application.

Discussion
Let’s have a look at creating a root view controller in IB. First create a single view
application in Xcode. Open your Main.storyboard file and select the view controller
that has been created for you. From the Utilities panel, select the Identity inspector.
Under Custom Class change the default class to UIDocumentBrowserViewController.

278 | Chapter 9: Document-Based Apps

Figure 9-1. Set the root view controller’s class to UIDocumentBrowserViewController

Now go to your app delegate’s Swift file (usually called AppDelegate.swift) and ensure
that your root view controller, of type UIDocumentBrowserViewController, has its
delegate set to your app delegate, so that the view controller can react to various
events that the document browser view controller sends it:

import UIKit

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate,
UIDocumentBrowserViewControllerDelegate {

 var window: UIWindow?

 func application(
 _ application: UIApplication,
 didFinishLaunchingWithOptions launchOptions:
 [UIApplicationLaunchOptionsKey: Any]?) -> Bool {

 (window?.rootViewController as? UIDocumentBrowserViewController)?
 .delegate = self

 return true

9.1 Supporting File Browsing in Your App | 279

www.allitebooks.com

http://www.allitebooks.org

 }

}

Last but not least, click your Info.plist file, right-click within the file, and from the
menu that appears, choose the Show Raw Keys/Values menu item (Figure 9-2).

Figure 9-2. We are going to add a new key to our Info.plist file, using the key’s raw name

Bring up the same menu, and click the Add Row menu item (also shown in
Figure 9-2). For the name of the new key, choose UISupportsDocumentBrowser (see
Figure 9-3); ensure that it is of type Boolean, and assign the value of YES to it. This
lets iOS know that you want to partake of iCloud document browsing and creation.

280 | Chapter 9: Document-Based Apps

Figure 9-3. We’ve added the UISupportsDocumentBrowser key to our Info.plist file

See Also
Recipe 9.2

9.2 Associating File Types with Your App
Problem
You want your app to be able to open certain file types in document browsers (of type
UIDocumentBrowserViewController).

In this recipe, and the rest of this chapter for that matter, we are
going to focus on an image browser application and therefore work
solely with image file types.

Solution
In the following steps, we will add support to let an app open JPEG and PNG images:

1. In your Info.plist file, add the CFBundleDocumentTypes key, of type Array. Xcode
will automatically create an object of type Dictionary under this array for you.

2. Under this dictionary, for the CFBundleTypeName key, set the value of Images,
which is of type String. The value of this key describes the type of files that your
application allows the user to open.

3. Under the same dictionary, add the LSHandlerRank key, of type String, and set
its value to Default. The value of the LSHandlerRank key determines how this
particular file type should be handled. Provide one of the following values: Owner

9.2 Associating File Types with Your App | 281

www.allitebooks.com

http://www.allitebooks.org

(your application is the creator and owner of this type), Default (your app is a
viewer and editor of this file type), Alternate (your app is a viewer of this file
type), or None (your app is unable to open files of this type).

4. Under the same dictionary again, add a key named LSItemContentTypes of type
Array. Under it, add two String values: public.jpeg and public.png.

5. Ensure that the instance of UIDocumentBrowserViewController is initialized in
your app delegate, instead of through the storyboard. This change is necessary
because you will now need to provide a list of supported data types to the docu‐
ment browser view controller, and you do this through its UIDocumentBrowser
ViewController(forOpeningFilesWithContentTypes:) initializer. For the sup‐
ported data types, this recipe will use the public.png and public.jpeg choices
you just entered in the previous step.

At this point, the CFBundleDocumentTypes key of your Info.plist file should look like
this:

<key>CFBundleDocumentTypes</key>
<array>
 <dict>
 <key>CFBundleTypeName</key>
 <string>Images</string>
 <key>LSHandlerRank</key>
 <string>Default</string>
 <key>LSItemContentTypes</key>
 <array>
 <string>public.jpeg</string>
 <string>public.png</string>
 </array>
 </dict>
</array>

For a list of supported data types, see System-Declared Uniform Type Identifiers.

When a user browses for files to open, and icons to represent these files are available
on the system, iOS displays them along with the filenames. By default, when the user
browses for default file types such as PNG and JPEG, iOS has thumbnail images for
them. If your application works with private and custom file types, such as file types
owned by you or your company, you can add icons for them and iOS will display the
icons. To do this, add the CFBundleTypeIconFiles, key of type Array, to the CFBund
leDocumentTypes dictionary. Under this array, provide the filenames of icons that
iOS can use to represent your custom file types.

Discussion
If you are doing some testing on the iOS simulator, it will have to contain some files
of the types you support in your app. You are more likely to have some JPEG or PNG
images in your iCloud Drive than in the Files app in the simulator. (The simulator has

282 | Chapter 9: Document-Based Apps

http://apple.co/2Ba3yrd

a Files app just as other iOS systems do.) So, here I will show how to download files
from iCloud and import them into the simulator’s Files app:

1. On the simulator, log in to iCloud Drive.
2. Open the Photos app on the simulator and click an image.
3. Tap the Share button in the Photos app.
4. From the bottom of the share sheet (Figure 9-4), tap the “Save to Files” button.

Figure 9-4. Saving an image from the Photos app on the simulator to the Files appli‐
cation

5. Now you will see a dialog asking where you want to save that file. Choose the
iCloud Drive folder and then tap the Add button on the navigation bar (see

9.2 Associating File Types with Your App | 283

www.allitebooks.com

http://www.allitebooks.org

Figure 9-5). This will save the selected photo in the root folder of iCloud Drive so
that you can later easily import it into your app.

Figure 9-5. Saving an image from your photo library into your iCloud Drive

6. Do the same thing for a few more images (see Figure 9-6), so that you have about
three or four images saved to the root folder of your iCloud Drive.

284 | Chapter 9: Document-Based Apps

Figure 9-6. Save a selection of images from the Photos app into iCloud Drive

Next, initialize an instance of UIDocumentBrowserViewController in your app dele‐
gate, as described in the Solution section. You’ll set the app delegate itself as the dele‐
gate of the document browser, so that later you can receive relevant delegate messages
from it:

import UIKit

fileprivate extension Array where Element == String{
 static var fileTypes: [Element]{
 return [kUTTypePNG as Element]

9.2 Associating File Types with Your App | 285

www.allitebooks.com

http://www.allitebooks.org

 }
}

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate,
UIDocumentBrowserViewControllerDelegate {

 var window: UIWindow?

 func application(
 _ application: UIApplication,
 didFinishLaunchingWithOptions launchOptions:
 [UIApplicationLaunchOptionsKey: Any]?) -> Bool {

 let browser = UIDocumentBrowserViewController(
 forOpeningFilesWithContentTypes: .fileTypes)

 browser.delegate = self
 window?.rootViewController = browser

 return true

 }

}

In your Info.plist file, the hierarchy of the CFBundleDocumentTypes key should look
similar to that shown in Figure 9-7. You can see there what the CFBundleDocument
Types key and all its subkeys and values look like when viewing the Info.plist file of
your app without raw keys. The CFBundleDocumentTypes key is shown as “Document
types.”

Figure 9-7. Document types supported by your app’s Info.plist file

286 | Chapter 9: Document-Based Apps

Now, if you run your app in the simulator, assuming that you have already logged in
to iCloud, you will see that the document browser view controller immediately dis‐
plays a view of your iCloud files and the rest of folders that are available on your
drive.

See Also
Recipes 9.1 and 9.3

9.3 Creating New Documents
Problem
You want to allow your users to create new documents from the document browser.

Solution
When a document browser of type UIDocumentBrowserViewController is displayed
to the user, while it has its allowsDocumentCreation property set to true (its default
value), the user can tap the + button to request that application create a new docu‐
ment in the current folder (see Figure 9-8).

9.3 Creating New Documents | 287

www.allitebooks.com

http://www.allitebooks.org

Figure 9-8. The user can tap the + button to request that your application create a new
document

To enable this, follow these steps:

1. Create a new view controller that is responsible for creating a new document
(with empty data) at a given URL inside your app’s sandbox and for reporting
back that URL to your app delegate.

2. Ensure that a view controller is prepared to present the empty document to the
user, ready for manipulation.

288 | Chapter 9: Document-Based Apps

3. In your app delegate that conforms to UIDocumentBrowserViewController
Delegate, implement the documentBrowser(_:didRequestDocumentCreation
WithHandler:) function.

4. In the aforementioned function, receive the URL where your view controller
saved the new file, and pass it along to the importHandler argument.

Discussion
This process is quite straightforward after you’ve gone through it once, but it might
sound quite complicated if you’ve just gotten started with document creation and
document browsers. So I’ll try to break it down a little bit.

When the user taps the + button in the document browser view controller, the con‐
troller calls its delegate’s documentBrowser(_:didRequestDocumentCreationWith
Handler:) function, asking that a new document be created at a temporary location
and for that URL to be passed back to the document browser so that iOS can sync
that URL to iCloud.

When you have prepared a view controller that can present an empty document to
the user, you will also need to designate a URL, in the documents folder of your appli‐
cation, that will represent your file. In the beginning, depending on your file type, you
can save an empty Data instance into that URL and then pass the URL to iOS in the
aforementioned function.

If you only designate a URL to your file but don’t save its contents
to disk and return the URL to iOS, you will receive an error in the
console in Xcode telling you that iOS could not access the given
URL. That message appears because iOS could not find any files
saved at the given URL. So, if you are unsure what your file will
contain in its empty state, simply create an instance of Data and call
its write(to:options:) function to save the empty data to the
URL.

Now let’s have a look at an example. We will build this example based on the past rec‐
ipes in this chapter, where we have successfully created a document browser as the
root view controller of your app. We’ll begin by creating a view controller that will be
responsible for allowing our user to edit an image document. We will use this view
controller to create a new document as well as allowing the user to edit an existing
image that the user can pick from her iCloud library. So, create a new Swift file called
ImageEditorViewController.swift of type UIViewController.

After that, create a storyboard file called ImageEditorViewController.storyboard and
add a view controller to your scene. Change the class file of this view controller to
ImageEditorViewController from the Identity inspector. Then, while your view

9.3 Creating New Documents | 289

www.allitebooks.com

http://www.allitebooks.org

controller is selected in the storyboard scene, go to the Editor menu, choose Embed
In, and then choose Navigation Controller. This will wrap your view controller inside
a navigation controller. Choose your navigation controller by clicking it. Then, in the
Attributes Inspector panel, ensure that Is Initial View Controller is selected.

At this point, as Figure 9-9 shows, we have created our image editor view controller
and wrapped it inside a navigation controller. We have ensured that we have backed
our view controller with a class called ImageEditorViewController of type UIView
Controller and that this class is associated with our view controller in the story‐
board.

Figure 9-9. Creating an image editor view controller

We are going to allow the user to drag her finger around the screen, just for the sake
of this example, on our image editor view controller, in order to draw any shapes that
she wishes. We’ll choose a color in the app, for the sake of simplicity in this example.
Therefore, we will need our own view of type UIView associated with our image edi‐
tor view controller. This view will also, periodically, capture its own state as an
instance of Data that represents the drawn image as a PNG image, and will report it
back to our view controller so that the view controller can save that data to disk.

So, go ahead and create a new Cocoa Touch class in Xcode and call it ImageEditor‐
View.swift. Ensure that the new class is of type UIView. We will add a very simple
delegate property to this class so that our image editor view controller can conform
to it later on and also ensure that we have an initializer that takes in a delegate:

import UIKit

protocol ImageEditorViewDelegate: class{
 //empty for now
}

290 | Chapter 9: Document-Based Apps

class ImageEditorView: UIView {

 private var delegate: ImageEditorViewDelegate?

 init(delegate: ImageEditorViewDelegate) {
 super.init(frame: .zero)
 self.delegate = delegate
 }

 required init?(coder aDecoder: NSCoder) {
 super.init(coder: aDecoder)
 }

}

Now let’s go over to our image editor view controller, which right now is empty. We’ll
ensure not only that it is a view controller, but also that it conforms to the ImageEdi
torViewDelegate protocol:

import UIKit

class ImageEditorViewController: UIViewController, ImageEditorViewDelegate {

 //rest of our code will be placed here...

If you remember from our description before, the app delegate is going to ask us,
through the documentBrowser(_:didRequestDocumentCreationWithHandler:)

function, to create a new document for the user, and we are going to make our image
editor view controller responsible for this. We therefore need a new class function in
our view controller that creates a new instance of our image editor view controller
wrapped inside its navigation controller, loaded from the storyboard. We also need
this view controller to create an empty document for the user and report that URL
back to us. So let’s write a function that can first return a URL to a new (nonexistent)
file in the documents folder of our app:

private class var newFileUrl: URL?{

 let fileManager = FileManager()

 guard let documentsFolder = try? fileManager.url(
 for: .documentDirectory,
 in: .userDomainMask,
 appropriateFor: nil,
 create: true) else {
 return nil
 }

 let randomNumber = arc4random_uniform(10)
 let fileName = "Untitled \(randomNumber).png"
 let fileUrl = documentsFolder.appendingPathComponent(fileName)

9.3 Creating New Documents | 291

www.allitebooks.com

http://www.allitebooks.org

 guard !fileManager.fileExists(atPath: fileUrl.path) else{
 //the file exists already, we won't override it
 return nil
 }

 return fileUrl

}

Our view controller is going to hold a reference to this file URL so that we can con‐
tinually save the contents of our document into it, so let’s create a constant for this
URL:

private var fileUrl: URL!

After this, we need to write the class function that creates the document for us. We
are going to get a new file URL from our newFileUrl computed class variable and
then save an empty instance of Data into it. Once we have the URL, we load our view
controller’s storyboard, read the navigation controller alongside the image editor view
controller from this storyboard, and return it, alongside our file URL, to the caller
(our app delegate):

typealias NewDocumentHandler = (URL?, UIViewController?) -> Void
class func createNewDocumentViewController(
 withHandler handler: @escaping NewDocumentHandler){

 //get a file URL
 guard let fileUrl = newFileUrl else {
 handler(nil, nil)
 return
 }

 //we will create an empty file at the given path now
 do{
 try Data().write(to: fileUrl, options: .atomicWrite)
 } catch {
 handler(nil, nil)
 return
 }

 //load our view controller from the storyboard file
 guard let navController =
 UIStoryboard(
 name: "ImageEditorViewController",
 bundle: nil).instantiateInitialViewController()
 as? UINavigationController,
 let viewController = navController.viewControllers.first
 as? ImageEditorViewController else {
 handler(nil, nil)
 return
 }

292 | Chapter 9: Document-Based Apps

 //set the file URL and then call the handler
 viewController.fileUrl = fileUrl

 handler(fileUrl, navController)

}

Let’s also display a Done button in our navigation bar when our view is loaded so that
the user can press it and dismiss our view controller when she is done with the docu‐
ment. We do this by creating an instance of UIBarButtonItem and then adding it to
the navigation bar through the setLeftBarButton(_:animated:) function of our
view controller’s navigationItem property. The only thing that this button will do is
call our view controller’s dismiss(animated:completion:) function:

override func viewDidLoad() {
 super.viewDidLoad()
 self.title = fileUrl.lastPathComponent

 let close = UIBarButtonItem(
 title: "Done", style: .done, target: self,
 action: #selector(ImageEditorViewController.done))
 navigationItem.setLeftBarButton(close, animated: false)

}

@objc func done(){
 dismiss(animated: true, completion: nil)
}

When the user creates a new document, we are going to present an instance of our
ImageEditorView to her with a white background by default. Users might be con‐
fused about what we expect of them, so we are going to display a message to our users
when they create a new document informing them of how they can start drawing
shapes on the screen using their fingers. For this, we will create an instance of
UIAlertController and present the alert controller just like we do any other view
controller:

private func displayIntroMessage(){

 let alert = UIAlertController(
 title: nil,
 message: "Drag your finger across the screen to start drawing!",
 preferredStyle: .alert)

 alert.addAction(UIAlertAction(title: "OK", style: .default, handler: nil))
 present(alert, animated: true, completion: nil)
}

override func viewDidAppear(_ animated: Bool) {
 super.viewDidAppear(animated)

9.3 Creating New Documents | 293

www.allitebooks.com

http://www.allitebooks.org

 displayIntroMessage()
}

By default, our view controller will get an instance of UIView as its view, but we want
this to be an instance of ImageEditorView. So let’s override our view controller’s load
View() function and instantiate our image editor view in there, using its ImageEditor
View(delegate:) initializer:

override func loadView() {
 view = ImageEditorView(delegate: self)
 view.backgroundColor = .white
}

We are now done with our image editor view and view controller, so let’s move to the
app delegate and implement the documentBrowser(_:didRequestDocumentCreation
WithHandler:) delegate function of the UIDocumentBrowserViewController

Delegate protocol. The didRequestDocumentCreationWithHandler argument of this
function is of type @escaping (URL?, UIDocumentBrowserViewController.Import
Mode) -> Void, which means that it expects us to call it with an optional URL. It’s
optional because the function can set it to nil if something goes wrong (in creating
the document, for instance). The function’s other argument is an import mode of type
UIDocumentBrowserViewController.ImportMode, which can be one of the following:

none

Used if the URL could not be created.

copy

Used when creating a new document, or if you are supporting drag-and-drop
and you want to tell the originator of the drag-and-drop operation that you have
successfully made a copy of the file.

move

Used when an original document was provided to the app and the app, instead of
making a copy of it, decides to move the original over into its sandbox. This is
used in the of drags and drops from one app into another. In this case, the desti‐
nation app requests the origin of the drag and drop to delete the file, flagging that
the destination app has made a new copy of the file. The impact is to move the
file from the source of the drag into the destination of the drop. This does not
apply to our current example because we are not supporting drag and drop for
the sake of simplicity.

So, in the documentBrowser(_:didRequestDocumentCreationWithHandler:) dele‐
gate function we will invoke our image editor view controller’s createNewDocument
ViewController(withHandler:) class function. Then, based on whether or not the
URL could be created, we will call our function’s import handler argument:

294 | Chapter 9: Document-Based Apps

func documentBrowser(
 _ controller: UIDocumentBrowserViewController,
 didRequestDocumentCreationWithHandler importHandler:
 @escaping (URL?, UIDocumentBrowserViewController.ImportMode) -> Void) {

 ImageEditorViewController.createNewDocumentViewController {
 [weak self] url, viewController in

 guard let `self` = self else {
 importHandler(nil, .none)
 return
 }

 guard url != nil, let viewController = viewController else {
 importHandler(nil, .none)
 return
 }

 importHandler(url, .copy)
 self.present(viewController: viewController)

 }

}

private func present(viewController: UIViewController){
 window?.rootViewController?.present(viewController,
 animated: true, completion: nil)
}

You can now run our app in the simulator and see the results for yourself. Once the
user taps the + button to create a new document, our app will present our image edi‐
tor view controller that creates a new empty file for the user and displays an introduc‐
tory alert (Figure 9-10).

9.3 Creating New Documents | 295

www.allitebooks.com

http://www.allitebooks.org

Figure 9-10. Introductory alert, letting the user know how she can draw shapes on the
screen

Right now nothing else really works in our app; that’s to say that the user cannot
actually draw anything on the screen and we have no way to save anything to the disk.
We will discuss these subjects in the rest of this chapter.

See Also
Recipes 9.1 and 9.4

296 | Chapter 9: Document-Based Apps

9.4 Saving Your Documents
Problem
You want to allow your user to create and edit a document, and then save its content
to iCloud.

Solution
Follow these steps:

1. Create a subclass of UIDocument.
2. In your subclass, override the load(fromContents:ofType:) function and load

the given data as your document. This function is called when the data for the
document is loaded and you need to associate that data with your document
object.

3. In the same subclass, override the contents(forType:) function and return the
data for your document. This function is called when the document is asked to
save its contents.

4. In the documentBrowser(_:didRequestDocumentCreationWithHandler:) dele‐
gate function of your document picker, create a new filename (perhaps a random
name), such as untitled1.png.

5. In the same function, use an instance of NSMetadataQuery to find out whether
this file already exists in the user’s iCloud Drive inside your application’s con‐
tainer and handle the issue if the file already exists. You might want to display an
alert to the user suggesting that they attempt to create the file again with a new
name.

6. Assuming that the file does not exist, create a temporary URL for it (for instance,
in your app bundle’s documents folder).

7. Instantiate a subclass of UIDocument with this URL, then call its save(to:for:)
function, and set its for argument to .forCreating. This will ensure that your
document saves an empty state of itself (in our case, a Data instance that repre‐
sents a white screen) at the given URL.

You might want to save some data in the temporary folder, as
otherwise your document browser will complain that it cannot
reach the file while moving it to the cloud. My approach in
this recipe is to create a new image context as large as the cur‐
rent screen bounds, fill it with a white color, and then extract
that context’s PNG data and save that data to the disk.

9.4 Saving Your Documents | 297

www.allitebooks.com

http://www.allitebooks.org

8. In your document browser’s delegate (typically your app delegate), listen to
the documentBrowser(_:didImportDocumentAt:toDestinationURL:) function,
which gets called when the document browser has moved your temporary file to
the cloud. The value of the toDestinationURL argument contains the new docu‐
ment URL in the cloud.

9. Use the value of the toDestinationURL argument to instantiate a subclass of
UIDocument.

10. Use the present(_:animated:completion:) function to present a new editor
view controller to your user, with the new document instance.

11. In your document browser’s delegate, import the documentBrowser(_:failed
ToImportDocumentAt:) function and ensure that you can handle the errors that
might occur when moving your document to the cloud, perhaps by informing
the user through an alert controller that something has gone wrong and giving
her the option to create a new document.

12. Enable the iCloud capabilities in your Xcode project so that your application will
have the right entitlements to create documents in the cloud.

This recipe is based on what you learned in Recipe 9.3, and I highly
recommend that you read that recipe before continuing with this
one.

Discussion
Let’s dive right into implementing our application. This recipe is based on an earlier
recipe in this chapter, with some changes to the code. Instead of just mentioning the
changes, I will make sure that you have the entirety of the code base explained in this
recipe for the sake of clarity.

We will begin by going to our Info.plist to ensure that our application can handle PNG
file types in the cloud and that iOS can associate our application with PNG files as a
browser:

<key>CFBundleDocumentTypes</key>
<array>
 <dict>
 <key>CFBundleTypeName</key>
 <string>PNG Images</string>
 <key>LSHandlerRank</key>
 <string>Owner</string>
 <key>LSItemContentTypes</key>
 <array>
 <string>public.png</string>
 </array>

298 | Chapter 9: Document-Based Apps

 </dict>
</array>

We should also create a class that can take in a filename, such as untitled0.png, and
then find out whether this file exists in the iCloud container of our application. We
will use this new class in our app delegate while creating a new file for the user. So,
create a new Swift file in Xcode, called DocumentFinder.swift. This class will have to
have two properties:

documentName, of type String
Holds the file (document) name that our app delegate wants to suggest to the
user for creation.

completion, of type (Bool) -> Void
A completion handler that will be called with a Bool value of true or false,
indicating whether or not the given filename already exists in our app’s cloud
container:

import Foundation

class DocumentFinder{

 //Bool = isFound
 typealias Completion = (Bool) -> Void

 private let documentName: String
 private let completion: Completion

 init(documentName name: String, completion handler: @escaping Completion){
 documentName = name
 completion = handler
 }

 //the rest of our code will be placed here shortly...

After we have stored the name of the file that we need to look for in our app’s iCloud
container, plus a completion handler, we need to construct our query of type
NSMetadataQuery. We will set the searchScopes property of our query to NSMetada
taQueryUbiquitousDocumentsScope so that the metadata query object can search in
the documents folder in our app’s iCloud container, where we store our files. We’ll
also set the query’s predicate property to look for objects with an NSMetadataItemFS
NameKey equal to the document name:

private lazy var query: NSMetadataQuery = {
 let query = NSMetadataQuery()
 query.searchScopes = [NSMetadataQueryUbiquitousDocumentsScope]

 query.predicate = NSPredicate(
 format: "%K ==[cd] '\(documentName)'",
 NSMetadataItemFSNameKey)

9.4 Saving Your Documents | 299

www.allitebooks.com

http://www.allitebooks.org

 return query
}()

We will also need a start() function on our document finder class. In this function,
we will call the start() function of our query object of type NSMetadataQuery. We’ll
also listen to notifications of type NSMetadataQueryDidFinishGathering, which get
sent when our query object has finished gathering data from the cloud:

@discardableResult func start() -> Bool{
 guard !query.isStarted else {return false}

 NotificationCenter.default.addObserver(
 self,
 selector: #selector(didFinishGathering(notification:)),
 name: .NSMetadataQueryDidFinishGathering,
 object: nil)

 return query.start()
}

When the NSMetadataQueryDidFinishGathering notification is posted, we are lis‐
tening to it on the didFinishGathering(notification:) selector. In here, we will
look at the resultCount property of our query object. If it’s more than 0, it means
that the query object found the filename in the cloud, meaning that a file of the name
we chose already exists there. Once we know this, we can call our completion handler
with the results:

@objc func didFinishGathering(notification: Notification){
 NotificationCenter.default.removeObserver(self)
 query.stop()
 completion(query.resultCount > 0)
}

After our implementation of the DocumentFinder class is done, we need to create a
new Swift class of type UIDocument, named ImageDocument, that will be responsible
for holding our image instances and their associated data. So, go ahead and create a
new Cocoa Touch file in Xcode of type UIDocument, called ImageDocument.swift.
 The first thing that we will do in this file is define an == operator between String?
and CFString. The reason for this is that when we override UIDocument functions
such as load(fromContents:ofType:), the ofType argument is of type String?. But
it will be set to values such as kUTTypePNG, and kUTTypePNG is of type CFString. So
we need way to tell whether the given type is the type that we accept, and unfortu‐
nately there are no default operators that can check for equality between String? and
CFString. We do this as follows:

func == (lhs: String?, rhs: CFString) -> Bool{
 guard let lhs = lhs else {return false}

300 | Chapter 9: Document-Based Apps

 return lhs == rhs as String
}

The only property that our ImageDocument class has is imageData, of type Data?,
which gets set to the data for the image that is being worked on by the user. So let’s
define this property first:

class ImageDocument: UIDocument {

 var imageData: Data?

 //the rest of our code will be placed here shortly...

We should now override the load(fromContents:ofType:) function of UIDocument,
ensuring there that the type of the document is kUTTypePNG and that the data is of
type Data. If everything goes as expected, we will store the incoming data into our
instance’s imageData property:

override func load(
 fromContents contents: Any, ofType typeName: String?) throws {

 guard typeName == kUTTypePNG else {
 throw ImageDocumentErrors.invalidTypeName(typeName)
 }

 guard let data = contents as? Data else {
 throw ImageDocumentErrors.invalidContentType
 }

 imageData = data

}

As you can see, the load(fromContents:ofType:) function is marked as throws,
meaning that it can throw exceptions if something is not as expected. We might
throw exceptions of type ImageDocumentErrors, so let’s define this enum as well:

enum ImageDocumentErrors: Error{
 case invalidTypeName(String?)
 case invalidContentType
}

Last but not least, we will have to override the contents(forType:) function of
UIDocument. In this function, our responsibility is to return the image data in our
imageData property, if it exists (meaning that it is not nil). On the other hand, if it is
nil, we will return the data associated with a white image that covers the entire
screen. This is very important! If you return nil from this function or, even worse,
throw an exception while you don’t have any data for your document, iOS won’t be
able to save your document to the cloud, so importing it from your app bundle into
iCloud will fail:

9.4 Saving Your Documents | 301

www.allitebooks.com

http://www.allitebooks.org

override func contents(forType typeName: String) throws -> Any {

 guard typeName == kUTTypePNG else {
 throw ImageDocumentErrors.invalidTypeName(typeName)
 }

 let emptyImageData = self.dataForWhiteScreen
 return imageData ?? emptyImageData

}

You must have noticed that we are returning the value of the imageData property if it
exists, and otherwise the return value of the emptyImageData computed property that
we have to now program. In the emptyImageData property of type Data, all we have
to do is create a new image context with the UIGraphicsBeginImageContextWithOp
tions(_:_:_:) function as large as our UIScreen. Then we will get the current image
context with the UIGraphicsGetCurrentContext() function and fill it with white
color. Finally, we will use the UIGraphicsGetImageFromCurrentImageContext()
function to get a UIImage instance out of our context, and turn that image into Data
using the UIImagePNGRepresentation() function:

private var dataForWhiteScreen: Data{

 defer{
 UIGraphicsEndImageContext()
 }

 let size = UIScreen.main.bounds.size
 UIGraphicsBeginImageContextWithOptions(size, true, 0.0)
 guard let context = UIGraphicsGetCurrentContext() else {
 return Data()
 }
 UIColor.white.setFill()
 context.fill(CGRect(origin: .zero, size: size))
 guard let image = UIGraphicsGetImageFromCurrentImageContext() else {
 return Data()
 }
 return UIImagePNGRepresentation(image) ?? Data()
}

That was the entire implementation of our ImageDocument class. In Recipe 9.3 we
implemented a very basic view of type UIView, called ImageEditorView, with an
empty delegate definition. In this recipe, since we are going to allow the user to drag
her fingers on the view in order to draw shapes, we need to implement this view class
properly. Then, every time the user has lifted her finger off the screen, we will grab an
image representation of our view and everything that is drawn on it, and report that
image’s data to our delegate. So let’s define our delegate protocol to account for this
behavior:

302 | Chapter 9: Document-Based Apps

import UIKit

protocol ImageEditorViewDelegate: class{
 func imageEditorView(view: ImageEditorView, hasDataForImage data: Data)
}

We will capture the point where the user is dragging her finger and use that as the
center of an ellipse with a certain radius, because we need an instance of CGRect to
draw our ellipse later. It would be good for CGRect to be able to initialize itself with a
center point and a radius, so let’s extend CGRect to add that initializer to it:

fileprivate extension CGRect{
 init(center: CGPoint, radius: CGFloat){
 self = CGRect(origin: CGPoint(x: center.x - radius, y: center.y - radius),
 size: CGSize(width: radius * 2, height: radius * 2))
 }
}

As the user moves her finger on the screen, we will have to save all the touch points in
an array, and every time we redraw our view on the screen, we will draw those points
as well. So we need a property that can hold an array of CGPoint instances, with every
point representing a point on the screen the user has touched:

class ImageEditorView: UIView {

 private var weak delegate: ImageEditorViewDelegate?
 private var touchPoints = [CGPoint]()

 init(delegate: ImageEditorViewDelegate) {
 super.init(frame: .zero)
 self.delegate = delegate
 }

 required init?(coder aDecoder: NSCoder) {
 super.init(coder: aDecoder)
 }

 //the rest of our code will be written here shortly...

In the touchesBegan(_:with:) function of our view, we will extract the touch point,
append it to the touchPoints array, and then ask the view to draw its contents by call‐
ing the view’s setNeedsDisplay() function. We will do the exact same thing in the
touchesMoved(_:with:) function:

func draw(touches: Set<UITouch>){
 guard let touchPoint = touches.first?.location(in: self) else {return}
 touchPoints.append(touchPoint)
 setNeedsDisplay()
}

override func touchesBegan(_ touches: Set<UITouch>, with event: UIEvent?) {
 super.touchesBegan(touches, with: event)

9.4 Saving Your Documents | 303

www.allitebooks.com

http://www.allitebooks.org

 draw(touches: touches)
}

override func touchesMoved(_ touches: Set<UITouch>, with event: UIEvent?) {
 super.touchesMoved(touches, with: event)
 draw(touches: touches)
}

So, let’s implement the draw(_:) function of our view. In this function, after having
filled the entire background of our view with its default color of white, we will read all
the touch points in our touchPoints property of type [CGPoint], and for every point
in this array, we will draw an ellipse on our view with a black color:

override func draw(_ rect: CGRect) {
 guard let context = UIGraphicsGetCurrentContext() else {return}

 //background color
 UIColor.white.setFill()
 context.fill(rect)

 touchPoints.forEach{point in
 UIColor.black.setFill()
 let ellipseRect = CGRect(center: point, radius: 10.0)
 context.fillEllipse(in: ellipseRect)
 }

}

When the touchesEnded(_:with:) function of our view gets called, we will take a
dump of our view’s context into an image of type PNG, extract the PNG’s data into an
instance of Data, and report it to our delegate:

var imageData: Data?{

 UIGraphicsBeginImageContext(bounds.size)

 defer{UIGraphicsEndImageContext()}

 guard drawHierarchy(in: bounds, afterScreenUpdates: true) else {return nil}

 guard let image = UIGraphicsGetImageFromCurrentImageContext()
 else {return nil}

 return UIImagePNGRepresentation(image)

}

override func touchesEnded(_ touches: Set<UITouch>, with event: UIEvent?) {
 super.touchesEnded(touches, with: event)
 guard let data = imageData else {return}

304 | Chapter 9: Document-Based Apps

 delegate?.imageEditorView(view: self, hasDataForImage: data)
}

Now it’s time to program our ImageEditorViewController class. We started the
implementation of this class in Recipe 9.3, but in this recipe, we are going to almost
completely rewrite the class to meet our requirements. The first thing that we are
going to do in this view controller is create a reference to our image document of type
ImageDocument. When the delegate function of our view gets called, we will set the
data of our image document to the incoming data of the view and then call the
save(to:for:completionHandler:) function of our UIDocument subclass with the
for argument carrying the value of forOverwriting. This overwrites the entire docu‐
ment with the new data:

import UIKit

class ImageEditorViewController: UIViewController, ImageEditorViewDelegate {

 //will get set in our custom initializer
 private var fileUrl: URL!

 private var imageDocument: ImageDocument!

 func imageEditorView(view: ImageEditorView, hasDataForImage data: Data) {
 imageDocument.imageData = data

 imageDocument.save(
 to: imageDocument.fileURL,
 for: .forOverwriting) {succeeded in

 if succeeded{
 print("Successfully saved the data")
 } else {
 print("Failed to save the document")
 }

 }
 }

 //the rest of the code will be written here shortly...

Because our app delegate is going to be responsible for retrieving a URL for our
document, our view controller has to be concerned only with getting initialized with
a new document URL. So let’s create a class function for our view controller where it
can read the ImageEditorViewController.storyboard file (see Recipe 9.3) and return the
navigation controller that holds an instance of the image editor view controller. When
defining the function, we’ll set each instance’s fileUrl property to the incoming file
URL:

class func newInstance(withFileUrl fileUrl: URL) -> UIViewController{

9.4 Saving Your Documents | 305

www.allitebooks.com

http://www.allitebooks.org

 //load our view controller from the storyboard file
 guard let navController =
 UIStoryboard(
 name: "ImageEditorViewController",
 bundle: nil).instantiateInitialViewController()
 as? UINavigationController,
 let viewController = navController.viewControllers.first
 as? ImageEditorViewController else {
 return UIViewController()
 }

 //set the file URL and then call the handler
 viewController.fileUrl = fileUrl

 return navController

}

When our view is loaded, we will set the title of our view controller to the name of the
file that we are displaying on the screen. We will also place a Done button on the
navigation bar that will call the close(completionHandler:) function of our
UIDocument subclass. This will close the document, at which time we will dismiss our
view controller:

override func viewDidLoad() {
 super.viewDidLoad()
 self.title = fileUrl.lastPathComponent

 let close = UIBarButtonItem(
 title: "Done", style: .done, target: self,
 action: #selector(ImageEditorViewController.done))
 navigationItem.setLeftBarButton(close, animated: false)

}

@objc func done(){
 imageDocument.close {[weak self] succeeded in
 guard let `self` = self else {return}

 if succeeded{
 print("Successfully closed the document")
 } else {
 print("Failed to close the document")
 }

 self.dismiss(animated: true, completion: nil)
 }

}

When the viewWillAppear(_:) function of our view controller is called, we will
instantiate our document of type ImageDocument with its ImageDocument(fileUrl:)

306 | Chapter 9: Document-Based Apps

initializer (inherited from UIDocument) and then call its open(completionHandler:)
method. That method asks iOS to read the file’s contents from the cloud and then get
back to us through our completion handler. This completion handler contains only a
Boolean value that indicates whether the opening of the document went well. If it
didn’t go as planned, we will display an alert to the user. We will store the instance of
ImageDocument in our view controller’s imageDocument property:

override func viewWillAppear(_ animated: Bool) {
 super.viewWillAppear(animated)

 imageDocument = ImageDocument(fileURL: fileUrl)

 imageDocument.open {[weak self] succeeded in
 guard let `self` = self else {return}
 guard succeeded else {
 self.displayFailedToOpenDocumentAlert()
 return
 }
 }

}

private func displayFailedToOpenDocumentAlert(){

 let alert = UIAlertController(
 title: nil,
 message: "Failed to open the document!",
 preferredStyle: .alert)

 alert.addAction(UIAlertAction(title: "OK", style: .default, handler: nil))
 present(alert, animated: true, completion: nil)

}

And as we saw in Recipe 9.3, we will display an introductory message to the user once
our view controller appears on the screen, telling them how they can draw shapes
with their fingers:

private func displayIntroMessage(){

 let alert = UIAlertController(
 title: nil,
 message: "Drag your finger across the screen to start drawing!",
 preferredStyle: .alert)

 alert.addAction(UIAlertAction(title: "OK", style: .default, handler: nil))
 present(alert, animated: true, completion: nil)
}

override func viewDidAppear(_ animated: Bool) {
 super.viewDidAppear(animated)

9.4 Saving Your Documents | 307

www.allitebooks.com

http://www.allitebooks.org

 displayIntroMessage()
}

Last but not least, this view controller overrides the loadView() function so that we
can replace the default UIView instance with our custom UIView of type ImageEditor
View:

override func loadView() {
 view = ImageEditorView(delegate: self)
 view.backgroundColor = .white
}

That was everything that we needed to do to implement our image editor view con‐
troller, so let’s focus our attention on our app delegate. That’s an integral part of any
app, but in our app it’s even more important than usual because it takes care of the
interactions with our document browser view controller and its delegate functions.
Let’s first create an instance of our document browser view controller:

import UIKit
import MobileCoreServices

fileprivate extension Array where Element == String{
 static var fileTypes: [Element]{
 return [kUTTypePNG as Element]
 }
}

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate,
UIDocumentBrowserViewControllerDelegate {

 var window: UIWindow?

 func application(
 _ application: UIApplication,
 didFinishLaunchingWithOptions launchOptions:
 [UIApplicationLaunchOptionsKey: Any]?) -> Bool {

 let browser = UIDocumentBrowserViewController(
 forOpeningFilesWithContentTypes: .fileTypes)

 browser.delegate = self
 window?.rootViewController = browser

 return true

 }

 //the rest of our implementation will be written here shortly...

This was the same implementation that we looked at in Recipe 9.3, so I won’t explain
it again. Let’s now focus our attention on writing a function that uses our Document

308 | Chapter 9: Document-Based Apps

Finder class to provide a suggestion for a filename that does not already exist in the
app’s documents folder. We’ll write a function with a completion handler that returns
a value of type URL? that is either a valid URL for a file that is inside our app bundle’s
documents folder or just nil if something goes wrong, such as an attempt to create a
duplicate file:

private var documentFinder: DocumentFinder?
private func newFileUrl(completion: @escaping (URL?) -> Void){

 let fileManager = FileManager()

 //get the URL to the app's documents folder
 guard let documentsFolder = try?
 fileManager.url(for: .documentDirectory,
 in: .userDomainMask,
 appropriateFor: nil, create: true) else {
 completion(nil)
 return
 }

 //create a random filename
 let randomNumber = arc4random_uniform(100)
 let fileName = "untitled\(randomNumber).png"
 let fileUrl = documentsFolder.appendingPathComponent(fileName)

 //find out if the file exists already in the cloud or not
 documentFinder = DocumentFinder(
 documentName: fileName){[weak self] found in

 guard let `self` = self else {
 completion(nil)
 return
 }

 self.documentFinder = nil

 if found{
 completion(nil)
 } else {
 completion(fileUrl)
 }
 }

 documentFinder?.start()

}

Inside the documentBrowser(_:didRequestDocumentCreationWithHandler:) func‐
tion of our app delegate we will call our new function, named newFileUrl(comple
tion:), to get the URL where we need to save our file temporarily in our app dele‐
gate. If that URL is nil, we will display an alert informing the user that we could not

9.4 Saving Your Documents | 309

www.allitebooks.com

http://www.allitebooks.org

find an appropriate URL for the file. If the URL is not nil, we will instantiate our
ImageDocument with its ImageDocument(fileUrl:), provide the suggested file URL
to it, and then call the save(to:for:completionHandler:) function on it with the
for argument equal to forCreating so that we create the file in the suggested loca‐
tion, ready for it to be imported to the cloud. Last but not least, we need to call the
close(completionHandler:) function of our document before it can be moved over
to the cloud:

func documentBrowser(
 _ controller: UIDocumentBrowserViewController,
 didRequestDocumentCreationWithHandler importHandler:
 @escaping (URL?, UIDocumentBrowserViewController.ImportMode) -> Void) {

 newFileUrl{[weak self] newFileUrl in

 guard let `self` = self else {return}

 //get a file URL
 guard let fileUrl = newFileUrl else {
 importHandler(nil, .none)
 controller.present(self.existingFileAlert,
 animated: true, completion: nil)
 return
 }

 let document = ImageDocument(fileURL: fileUrl)
 document.save(to: fileUrl, for: .forCreating) {succeeded in
 guard succeeded else {
 importHandler(nil, .none)
 return
 }

 document.close{closed in
 importHandler(fileUrl, .move)
 }

 }

 }

}

private var existingFileAlert: UIAlertController{

 let message = """
I came up with a new name for this document but it
appears to already exist in your iCloud Drive.
Create a new document with a new name!
"""

 let controller = UIAlertController(

310 | Chapter 9: Document-Based Apps

 title: "Existing Document",
 message: message, preferredStyle: .alert)

 let action = UIAlertAction(title: "OK", style: .default, handler: nil)
 controller.addAction(action)

 return controller
}

After we have created and then closed this document, iOS will move it over to the
cloud and then get back to us, calling our app delegate’s documentBrowser(_:did
ImportDocumentAt:toDestinationURL:) delegate function, and pass us the new
cloud URL for this file using the toDestinationURL parameter. We then take this
URL and open our image editor view controller with the given cloud URL:

func documentBrowser(_ controller: UIDocumentBrowserViewController,
 didImportDocumentAt sourceURL: URL,
 toDestinationURL destinationURL: URL) {

 let imageEditorViewController =
 ImageEditorViewController.newInstance(withFileUrl: destinationURL)

 controller.present(
 imageEditorViewController, animated: true, completion: nil)

}

We also need to handle any errors that might occur while importing documents to
the cloud. For the sake of simplicity, I’ve implemented the documentBrowser(_:fail
edToImportDocumentAt:) function with a simple log in it, but feel free to implement
this function in a way that works for your application:

func documentBrowser(_ controller: UIDocumentBrowserViewController,
 failedToImportDocumentAt documentURL: URL, error: Error?) {
 print("Failed to import the document")
}

One last detail that we need to take care of is enabling iCloud entitlements. Click your
project’s icon in Xcode and choose your target. Then click the Capabilities tab. In the
iCloud section, turn on the switch and ensure that iCloud Documents is turned on as
shown in Figure 9-11.

9.4 Saving Your Documents | 311

www.allitebooks.com

http://www.allitebooks.org

Figure 9-11. Select iCloud Documents to enable iCloud entitlements and let your app
create documents in the cloud

Run your app either in the simulator or on a device and watch the results. When the
document browser shows up, go to the container folder for your application and
press the + button, which will then create a new document that will immediately be
moved to the cloud. You can then work with the document and press the Done but‐
ton in order to save and close the document.

See Also
Recipes 9.1 and 9.3

9.5 Loading Existing Documents
Problem
You want to allow your application to open existing documents that are available
through the document browser of type UIDocumentBrowserViewController.

Solution
Follow these steps:

1. Implement the documentBrowser(_:didPickDocumentURLs:) delegate function
of your document browser (usually in the app delegate).

312 | Chapter 9: Document-Based Apps

2. For every picked URL, create an instance of your custom UIDocument and
present the document to the user.

This recipe relies heavily on what you learned in Recipe 9.4. If you
haven’t read the aforementioned recipe, I highly recommend that
you do that now, because the duplicated code will not be explained
in this recipe.

Discussion
Let’s take the exact same code that we wrote in Recipe 9.4 and jump to the app dele‐
gate’s code. There, we are going to implement the documentBrowser(_:didPick
DocumentURLs:) delegate function of the document browser and then present an
instance of our ImageEditorViewController to the user, using its ImageEditorView
Controller(withFileUrl:) initializer:

func documentBrowser(_ controller: UIDocumentBrowserViewController,
 didPickDocumentURLs documentURLs: [URL]) {

 guard let url = documentURLs.first else {return}

 let imageEditorViewController =
 ImageEditorViewController.newInstance(withFileUrl: url)

 controller.present(
 imageEditorViewController, animated: true, completion: nil)

}

We also need to ensure that when we call the open(completionHandler:) function
on the document in our view controller, if everything goes as planned and the docu‐
ment is opened successfully, we read the ImageDocument instance’s imageData prop‐
erty (see Recipe 9.4) and then provide that data to our view of type ImageEditorView.
This will allow the image data to be drawn as the background image on the view.
Then the user can carry on dragging her finger on the screen to draw shapes on top
of the background image:

override func viewWillAppear(_ animated: Bool) {
 super.viewWillAppear(animated)

 imageDocument = ImageDocument(fileURL: fileUrl)

 imageDocument.open {[weak self] succeeded in
 guard let `self` = self else {return}
 guard succeeded else {
 self.displayFailedToOpenDocumentAlert()
 return

9.5 Loading Existing Documents | 313

www.allitebooks.com

http://www.allitebooks.org

 }

 (self.view as? ImageEditorView)?.backgroundData =
 self.imageDocument.imageData

 }

}

We are reading the data from the document object and setting it as the background
Data property of our view of type ImageEditorView. We haven’t created that property
yet, because we didn’t need it in the previous recipe on which this one is based. So let’s
implement the property by going to the implementation of our ImageEditorView
class and adding the property to it:

public var backgroundData: Data?{
 didSet{
 guard backgroundData != nil else {return}
 setNeedsDisplay()
 }
}

Setting this property to valid data will now cause our view to redraw. So, in the
draw(_:) function of the view we will read the value of this property, try to create a
valid instance of UIImage out of it, and then draw that image in the center of our
view, before we draw the touch points that the user has dragged her finger on as she
attempts to draw shapes on the screen:

override func draw(_ rect: CGRect) {
 guard let context = UIGraphicsGetCurrentContext() else {return}

 //background color
 UIColor.white.setFill()
 context.fill(rect)

 //then we draw the background if there is some
 if let backgroundData = backgroundData,
 let image = UIImage(data: backgroundData){

 let imageWidth = bounds.width
 let imageHeight = (image.size.height * imageWidth) / image.size.width
 let x = center.x - (imageWidth / 2.0)
 let y = center.y - (imageHeight / 2.0)
 let rect = CGRect(x: x, y: y, width: imageWidth, height: imageHeight)
 image.draw(in: rect)
 }

 //draw the touch points
 touchPoints.forEach{point in
 UIColor.black.setFill()
 let ellipseRect = CGRect(center: point, radius: 10.0)

314 | Chapter 9: Document-Based Apps

 context.fillEllipse(in: ellipseRect)
 }

}

Now you can run the app. Find a PNG image in your iCloud library through the
document browser and just open it with the app! The image will be opened, you will
be able to draw shapes on it using your finger, and pressing the Done button in the
navigation bar will save your changes back to the original file in the cloud.

See Also
Recipe 9.1

9.6 Customizing Your Document Browser
Problem
You want to adjust the look and feel of the document browser of type UIDocument
BrowserViewController so that it matches your application’s UI better.

Solution
Document browsers of type UIDocumentBrowserViewController have a few proper‐
ties that you can use in order to adjust their look and feel. Here they are:

browserUserInterfaceStyle: UIDocumentBrowserUserInterfaceStyle

This property defines the type of colors that the interface for the document
browser chooses for its components. The value can be white, light, or dark.

additionalLeadingNavigationBarButtonItems: [UIBarButtonItem]

An array of bar button items of type UIBarButtonItem that you can place on the
lefthand side of the navigation item of the document browser, in addition to the
existing system buttons.

additionalTrailingNavigationBarButtonItems: [UIBarButtonItem]

An array of bar button items that you can place, in addition to the system but‐
tons, to the righthand side of the navigation item of the document browser.

Discussion
Let’s have a look at an example. Assuming that our application’s main interface is
quite dark, we are going to set the browserUserInterfaceStyle property of our
document browser view controller to dark. We’ll also add one bar button to the
additionalLeadingNavigationBarButtonItems property and another to the
additionalTrailingNavigationBarButtonItems property:

9.6 Customizing Your Document Browser | 315

www.allitebooks.com

http://www.allitebooks.org

func application(
 _ application: UIApplication,
 didFinishLaunchingWithOptions launchOptions:
 [UIApplicationLaunchOptionsKey: Any]?) -> Bool {

 let browser = UIDocumentBrowserViewController(
 forOpeningFilesWithContentTypes: .fileTypes)

 browser.browserUserInterfaceStyle = .dark

 browser.additionalLeadingNavigationBarButtonItems = [
 UIBarButtonItem(title: "Left", style: .plain, target: self,
 action: #selector(leftButtonPressed(_:)))
]

 browser.additionalTrailingNavigationBarButtonItems = [
 UIBarButtonItem(title: "Right", style: .plain, target: self,
 action: #selector(rightButtonPressed(_:)))
]

 browser.delegate = self
 window?.rootViewController = browser

 return true

}

@objc func leftButtonPressed(_ sender: UIBarButtonItem){
 print("Left")
}

@objc func rightButtonPressed(_ sender: UIBarButtonItem){
 print("Right")
}

Let’s run our application in the simulator and have a look at the new interface of the
document browser (see Figure 9-12).

316 | Chapter 9: Document-Based Apps

Figure 9-12. Our document browser now has a dark interface with additional buttons in
the navigation bar

See Also
Recipes 9.1 and 9.5

9.6 Customizing Your Document Browser | 317

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 10

Apple Watch

The latest version of watchOS gives us developers a lot more control and brings cool
features to the users as well. Now that we can download files directly and get access to
sensors directly on the watch, the users will benefit.

In this chapter, I am going to assume that you have a simple iOS application in Xcode
already created and you want to add a watchOS 3 target to your app. So, go to Xcode
and create a new target. In the new window, choose Watch OS on the lefthand side
and select WatchKit App on the right (see Figure 10-1). Then click Next.

Figure 10-1. Adding a WatchKit App target to your main application

319

www.allitebooks.com

http://www.allitebooks.org

On the next screen, make sure that you have enabled complications (we’ll talk about
this later) and the glance scene (see Figure 10-2).

Figure 10-2. Add a complication and a glance scene to your watch app

After you have created your watch extension, you want to be able to run it on the
simulator. To do this, simply choose your app from the targets in Xcode and click the
Run button.

10.1 Downloading Files onto the Apple Watch
Problem
You want to be able to download files from your watch app directly without needing
to communicate your intentions to the paired iOS device.

Solution
Use URLSession as you would on a phone, but with more consideration toward
resources and the size of the file you are downloading.

Always consider whether or not you need the file immediately. If you need the file
and the size is quite manageable, download it on the watch itself. If the file is big, try

320 | Chapter 10: Apple Watch

to download it on the companion app on the iOS device first and then send the file
over to the watch, which itself takes some time.

Discussion
Let’s create an interface similar to Figure 10-3 in our watch extension.

Figure 10-3. Place a label and a button on your interface

Make sure the label can contain at least four lines of text (see Figure 10-4).

Figure 10-4. The Lines property must be set to at least 4

Hook up your button’s action to a method in your code named download(). Also
hook up your label to code under the name statusLbl:

10.1 Downloading Files onto the Apple Watch | 321

www.allitebooks.com

http://www.allitebooks.org

import WatchKit
import Foundation

class InterfaceController: WKInterfaceController, URLSessionDelegate,
 URLSessionDownloadDelegate {

 @IBOutlet var statusLbl: WKInterfaceLabel!

 var status: String = ""{
 didSet{
 DispatchQueue.main.async{[unowned self] in
 self.statusLbl.setText(self.status)
 }
 }
 }

 ...

URLSession delegate methods get called on private queues (not the
main thread), so I’ve coded a property on our class called status.
This is a string property that allows us to set the value of our label
—always on the main thread—regardless of where this property
gets set from, since UI work (including changing a label’s text) can
only be performed on the main thread.

The most important method of the URLSessionDownloadDelegate protocol that we
are going to have to implement is the URLSession(_:downloadTask:didFinishDown
loadingToURL:) method. It gets called when our file has been downloaded into a
URL onto the disk, accessible to the watch. The file there is temporary; when this
method returns, the file will be deleted by watchOS. In this method, you can do two
things:

• Read the file directly from the given URL. If you do so, you have to do the read‐
ing on a separate thread so that you won’t block URLSession’s private queue.

• Move the file using FileManager to another location that is accessible to your
extension and then read it later.

We are going to move this file to a location that will later be accessible to our app:

func urlSession(_ session: URLSession,
 downloadTask: URLSessionDownloadTask,
 didFinishDownloadingTo location: URL) {

 let fm = FileManager()

 let url = try! fm.url(
 for: .downloadsDirectory,
 in: .userDomainMask,

322 | Chapter 10: Apple Watch

 appropriateFor: location, create: true)
 .appendingPathComponent("file.txt")

 do{
 try fm.removeItem(at: url)
 try fm.moveItem(at: location, to: url)
 self.status = "Download finished"
 } catch let err{
 self.status = "Error = \(err)"
 }

 session.invalidateAndCancel()

}

The task that we are going to start in order to download the file (you’ll see that soon)
will have an identifier. This identifier is quite important for controlling the task after
we have started it.

You can see that we also have to call the invalidateAndCancel() method on our task
so that we can reuse the same task identifier later. If you don’t do this, the next time
you tap the button to redownload the item you won’t be able to.

We will then implement a few more useful methods from URLSessionDelegate and
URLSessionDownloadDelegate just so we can show relevant status messages to the
user as we are downloading the file:

func urlSession(
 _ session: URLSession,
 downloadTask: URLSessionDownloadTask, didWriteData bytesWritten: Int64,
 totalBytesWritten: Int64, totalBytesExpectedToWrite: Int64) {
 status = "Downloaded \(bytesWritten) bytes"
}

func urlSession(
 _ session: URLSession,
 downloadTask: URLSessionDownloadTask,
 didResumeAtOffset fileOffset: Int64, expectedTotalBytes: Int64) {
 status = "Resuming the download"
}

func urlSession(_ session: URLSession, task: URLSessionTask,
 didCompleteWithError error: Error?) {
 if let e = error{
 status = "Completed with error = \(e)"
 } else {
 status = "Finished"
 }
}

func urlSession(_ session: URLSession,
 didBecomeInvalidWithError error: Error?) {

10.1 Downloading Files onto the Apple Watch | 323

www.allitebooks.com

http://www.allitebooks.org

 if let e = error{
 status = "Invalidated \(e)"
 } else {
 // no errors occurred, so that's all right
 }
}

When the user taps the download button, we first define our URL:

let url = URL(string: "http://localhost:8888/file.txt")!

I am running MAMP and hosting my own file called file.txt. This
URL won’t get downloaded successfully on your machine if you are
not hosting the exact same file with the same name on your local
machine on the same port, so I suggest that you change this URL to
something that makes more sense for your app.

Then we use the backgroundSessionConfigurationWithIdentifier(_:) class
method of URLSessionConfiguration to create a background URL configuration that
we can use with URLSession:

let id = "se.pixolity.app.backgroundtask"
let conf = URLSessionConfiguration
 .background(withIdentifier: id)

Once all of that is done, you can go ahead and create a download task and start it (see
Figure 10-5):

let session = URLSession(configuration: conf, delegate: self,
 delegateQueue: OperationQueue())

let request = URLRequest(url: url)

session.downloadTask(with: request).resume()

Figure 10-5. Our file is successfully downloaded

324 | Chapter 10: Apple Watch

10.2 Noticing Changes in Pairing State Between the iOS
and Watch Apps
Problem
You want to know, both on the watch and in your companion iOS app, whether there
is connectivity between them and whether you can send messages between them.
Specifically, you want to find out whether one device can receive a signal sent from
the other.

Solution
To begin working through this problem, you first need to import the WatchConnectiv
ity framework in both projects. Then, after you’ve imported the framework, you can
use the WCSession’s delegate of type WCSessionDelegate to implement the session
WatchStateDidChange(_:) method on the iOS side and the sessionReachability
DidChange(_:) method on the watchOS side. These methods get called by Watch
Connectivity whenever the state of the companion app is changed (whether that is
on the iOS side or on the watchOS side).

Discussion
Both devices contain a flag called reachability that indicates whether the device can
connect to the other. This is represented by a property on WCSession called reacha
ble, of type Bool. On the iOS side, if you check this flag it tells you whether your
companion watch app is reachable, and if you check it on the watchOS side, it tells
you whether your companion iOS app is reachable.

The idea here is to use the WCSession object to listen for state changes. Before doing
that, you need to find out whether the session is actually supported. You do that using
the isSupported() class function of WCSession. Once you know that sessions are
supported, you have to do the following on the iOS app side:

1. Obtain your session with WCSession.default.
2. Set the delegate property of your session.
3. Become the delegate of your session, of type WCSessionDelegate.
4. Implement the sessionWatchStateDidChange(_:) function of your session dele‐

gate and in there, check the reachable flag of the session.
5. Call the activateSession() method of your session.

Make sure that you do this in a function that can be called even if your app is
launched in the background.

10.2 Noticing Changes in Pairing State Between the iOS and Watch Apps | 325

www.allitebooks.com

http://www.allitebooks.org

On the watch side, you’ll follow the exact same steps you completed on the iOS side,
but instead of implementing the sessionWatchStateDidChange(_:) method you’ll
implement the sessionReachabilityDidChange(_:) method.

The sessionWatchStateDidChange(_:) delegate method is called
on the iOS side when at least one of the properties of the session
changes. These properties include paired, watchAppInstalled,
complicationEnabled, and watchDirectoryURL, all of type Bool.
In contrast, the sessionReachabilityDidChange(_:) method is
called on the watch side only when the reachable flag of the com‐
panion iOS app is changed, as the name of the delegate method
suggests.

So, on the iOS side, implement an extension on WCSession that can print all its rele‐
vant states, so that when the sessionWatchStateDidChange(_:) method is called you
can print the session’s information:

extension WCSession{
 public func printInfo(){

 //paired
 print("Paired: ", terminator: "")
 print(self.isPaired ? "Yes" : "No")

 //watch app installed
 print("Watch app installed: ", terminator: "")
 print(self.isWatchAppInstalled ? "Yes" : "No")

 //complication enabled
 print("Complication enabled: ", terminator: "")
 print(self.isComplicationEnabled ? "Yes" : "No")

 if let watchDirectoryURL = self.watchDirectoryURL{
 //watch directory
 print("Watch directory url", terminator: "")
 print(watchDirectoryURL)
 }

 }
}

Make your app delegate the delegate of the session as well:

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate, WCSessionDelegate {

 var window: UIWindow?

326 | Chapter 10: Apple Watch

 ...

Now start listening for state and reachability changes:

func sessionReachabilityDidChange(_ session: WCSession) {
 print("Reachable: ", terminator: "")
 print(session.isReachable ? "Yes" : "No")
}

func sessionWatchStateDidChange(_ session: WCSession) {
 print("Watch state is changed")
 session.printInfo()
}

func session(
 _ session: WCSession,
 activationDidCompleteWith activationState: WCSessionActivationState,
 error: Error?) {
 // empty for now
}

func sessionDidBecomeInactive(_ session: WCSession) {
 // empty for now
}

func sessionDidDeactivate(_ session: WCSession) {
 // empty for now
}

Last but not least, on the iOS side, set up the session and start listening to its events:

guard WCSession.isSupported() else {
 print("Session is not supported")
 return
}

let session = WCSession.default
session.delegate = self
session.activate()

Now on the watch side, in the ExtensionDelegate class, import WatchConnectivity
and become the session delegate as well:

import WatchKit
import WatchConnectivity

class ExtensionDelegate: NSObject, WKExtensionDelegate, WCSessionDelegate {

 ...

And listen for reachability changes:

10.2 Noticing Changes in Pairing State Between the iOS and Watch Apps | 327

www.allitebooks.com

http://www.allitebooks.org

func session(
 _ session: WCSession,
 activationDidCompleteWith activationState: WCSessionActivationState,
 error: Error?) {
 // empty for now
}

func sessionReachabilityDidChange(_ session: WCSession) {
 print("Reachability changed. Reachable?", terminator: "")
 print(session.isReachable ? "Yes" : "No")
}

Then, in the applicationDidFinishLaunching() function of your extension dele‐
gate, set up the session:

guard WCSession.isSupported() else {
 print("Session is not supported")
 return
}

let session = WCSession.default
session.delegate = self
session.activate()

10.3 Transferring Small Pieces of Data to and
from the Watch
Problem
You want to transfer some plist-serializable content between your apps (iOS and
watchOS). This content can be anything—for instance, information about where a
user is inside a game on an iOS device, or more random information that you can
serialize into a plist (strings, integers, Booleans, dictionaries, and arrays). Information
can be sent in either direction.

Solution
Follow these steps:

1. Use what you learned in Recipe 10.2 to find out whether both devices are
reachable.

2. In the sending app, use the updateApplicationContext(_:) method of your ses‐
sion to send the content over to the other app.

3. In the receiving app, wait for the session(_:didReceiveApplicationContext:)
delegate method of WCSessionDelegate, where you will be given access to the
transmitted content.

328 | Chapter 10: Apple Watch

It’s important to note that the content that you transmit must be of
type [String : AnyObject].

Discussion
Various types of content can be sent between iOS and watchOS. One is plist-
serializable content, also called an application context. Let’s say that the user is playing
a game on watchOS and you want to send the game status to iOS. You can use the
application context for this.

Let’s begin by creating a sample application. Create a single view iOS app and add a
watchOS target to it as well (see Figure 10-1). Design your main interface like
Figure 10-6. We’ll use the top label to show the download status. The buttons are self-
explanatory. The bottom label will show the pairing status between our watchOS and
iOS apps.

Figure 10-6. Labels and button for sample app

Hook up the top label to your view controller as statusLbl, the
first button as sendBtn, the second button as downloadBtn, and the
bottom label as reachabilityStatusLbl. Hook up the action of
the download button to a method called download() and the send
button to a method called send().

Download and install MAMP (it’s free) and host the following contents as a file called
people.json in your local web server’s root folder:

{
 "people" : [
 {

10.3 Transferring Small Pieces of Data to and from the Watch | 329

www.allitebooks.com

https://www.mamp.info/en/
http://www.allitebooks.org

 "name" : "Foo",
 "age" : 30
 },
 {
 "name" : "Bar",
 "age" : 50
 }
]
}

Now the top part of your iOS app’s view controller should look like this:

import UIKit
import WatchConnectivity

class ViewController: UIViewController, WCSessionDelegate,
 URLSessionDownloadDelegate {

 @IBOutlet var statusLbl: UILabel!
 @IBOutlet var sendBtn: UIButton!
 @IBOutlet var downloadBtn: UIButton!
 @IBOutlet var reachabilityStatusLbl: UILabel!

 ...

When you download that JSON file, it will become a dictionary of type [String :
AnyObject], so define that as a variable in your view controller:

var people: [String : AnyObject]?{
 didSet{
 DispatchQueue.main.async{
 self.updateSendButton()
 }
 }
}

func updateSendButton(){
 sendBtn.isEnabled = isReachable && isDownloadFinished && people != nil
}

Setting the value of the people variable will call the updateSend
Button() function, which in turn enables the send button only if
all the following conditions are met:

• The watch app is reachable.

• The file is downloaded.

• The file was correctly parsed into the people variable.

330 | Chapter 10: Apple Watch

Also define a variable that can write into your status label whenever the reachability
flag is changed:

var isReachable = false{
 didSet{
 DispatchQueue.main.async{
 self.updateSendButton()
 if self.isReachable{
 self.reachabilityStatusLbl.text = "Watch is reachable"
 } else {
 self.reachabilityStatusLbl.text = "Watch is not reachable"
 }
 }
 }
}

You need two more properties—one that sets the status label and another that keeps
track of when your file is downloaded successfully:

var isDownloadFinished = false{
 didSet{
 DispatchQueue.main.async{
 self.updateSendButton()
 }
 }
}

var status: String?{
 get{return self.statusLbl.text}
 set{
 DispatchQueue.main.async{
 self.statusLbl.text = newValue
 }
 }
}

All three variables that defined here—people, isReachable, and
isDownloadFinished—call the updateSendButton() function, so
the send button will be disabled if any conditions are not met and
enabled otherwise.

Now when the download button is pressed, start a download task:

@IBAction func download() {

 // if loading HTTP content, make sure you have disabled ATS
 // for that domain
 let url = URL(string: "http://localhost:8888/people.json")!
 let req = URLRequest(url: url)
 let id = "se.pixolity.app.backgroundtask"

10.3 Transferring Small Pieces of Data to and from the Watch | 331

www.allitebooks.com

http://www.allitebooks.org

 let conf = URLSessionConfiguration
 .background(withIdentifier: id)

 let sess = URLSession(configuration: conf, delegate: self,
 delegateQueue: OperationQueue())

 sess.downloadTask(with: req).resume()
}

After that, check if you got any errors while trying to download the file:

func urlSession(_ session: URLSession,
 task: URLSessionTask,
 didCompleteWithError error: Error?) {

 if error != nil{
 status = "Error happened"
 isDownloadFinished = false
 }

 session.finishTasksAndInvalidate()

}

Now implement the URLSession(_:downloadTask:didFinishDownloadingToURL:)
method of URLSessionDownloadDelegate. Inside there, tell your view controller that
you have downloaded the file by setting isDownloadFinished to true. Then con‐
struct a more permanent URL for the temporary URL to which your JSON file was
downloaded by iOS:

func urlSession(_ session: URLSession,
 downloadTask: URLSessionDownloadTask,
 didFinishDownloadingTo location: URL){

 isDownloadFinished = true

 // got the data, parse as JSON
 let fm = FileManager()
 let url = try! fm.url(for: .downloadsDirectory,
 in: .userDomainMask,
 appropriateFor: location,
 create: true).appendingPathComponent("file.json")

 ...

Then move the file over:

do {try fm.removeItem(at: url)} catch {}

do{
 try fm.moveItem(at: location, to: url)
} catch {
 status = "Could not save the file"

332 | Chapter 10: Apple Watch

 return
}

After that, simply read the file as a JSON file with JSONSerialization:

// now read the file from URL
guard let data = try? Data(contentsOf: url) else{
 status = "Could not read the file"
 return
}

do{
 let json = try JSONSerialization.jsonObject(
 with: data,
 options: .allowFragments) as! [String : AnyObject]

 self.people = json
 status = "Successfully downloaded and parsed the file"
} catch{
 status = "Could not read the file as json"
}

Great—now go to your watch interface, place a label there, and hook it up to your
code under the name statusLabel (see Figure 10-7).

In the interface controller file, place a variable that can set the status:

import WatchKit
import Foundation

class InterfaceController: WKInterfaceController {

 @IBOutlet var statusLabel: WKInterfaceLabel!

 var status = "Waiting"{
 didSet{
 statusLabel.setText(status)
 }
 }

}

10.3 Transferring Small Pieces of Data to and from the Watch | 333

www.allitebooks.com

http://www.allitebooks.org

Figure 10-7. Our watch interface has a simple label only

Go to your ExtensionDelegate file on the watch side and follow these steps:

1. Define a structure that can hold the instances of Person you will get in your
application context.

2. Define a property called status that, when written to, will set the status prop‐
erty of the interface controller:

import WatchKit
import WatchConnectivity

struct Person{
 let name: String
 let age: Int
}

class ExtensionDelegate: NSObject, WKExtensionDelegate, WCSessionDelegate{

 var status = ""{
 didSet{
 DispatchQueue.main.async{
 guard let interface =
 WKExtension.shared().rootInterfaceController as?
 InterfaceController else{
 return
 }
 interface.status = self.status
 }

334 | Chapter 10: Apple Watch

 }
 }

 ...

Now activate the session using what you learned in Recipe 10.2. The session will wait
for the session(_:didReceiveApplicationContext:) method of the WCSessionDele
gate protocol to come in. When that happens, just read the application context and
convert it into Person instances:

func session(
 _ session: WCSession,
 activationDidCompleteWith activationState: WCSessionActivationState,
 error: Error?) {
 // empty for now
}

func session(
 _ session: WCSession,
 didReceiveApplicationContext applicationContext: [String : Any]) {

 guard let people = applicationContext["people"] as?
 Array<[String : AnyObject]>, people.count > 0 else{
 status = "Did not find the people array"
 return
 }

 var persons = [Person]()
 for p in people where p["name"] is String && p["age"] is Int{
 let person = Person(name: p["name"] as! String, age: p["age"] as! Int)
 persons.append(person)
 }

 status = "Received \(persons.count) people from the iOS app"

}

Now run both your watch app and your iOS app. At first glance, your watch app will
look like Figure 10-8.

10.3 Transferring Small Pieces of Data to and from the Watch | 335

www.allitebooks.com

http://www.allitebooks.org

Figure 10-8. Your watch app is waiting for the context to come through from the iOS app

Your iOS app in its initial state will look like Figure 10-9.

Figure 10-9. Your iOS app has detected that its companion watch app is reachable

When you press the download button, your iOS app’s interface will change to
Figure 10-10.

336 | Chapter 10: Apple Watch

Figure 10-10. The iOS app is now ready to send the data over to the watch app

After you press the send button, the watch app’s interface will change to something
like Figure 10-11.

Figure 10-11. The watch app received the data

See Also
Recipes 10.1, 10.4, and 10.5

10.3 Transferring Small Pieces of Data to and from the Watch | 337

www.allitebooks.com

http://www.allitebooks.org

10.4 Transferring Dictionaries in Queues to and from
the Watch
Problem
You want to send dictionaries of information to and from the watch in a queuing
(FIFO) fashion.

Solution
Call the transferUserInfo(_:) method on your WCSession on the sending side. On
the receiving side, implement the session(_:didReceiveUserInfo:) method of the
WCSessionDelegate protocol.

A lot of the things that I’ll refer to in this recipe have been dis‐
cussed already in Recipe 10.3, so have a look at that if you feel a bit
confused.

Discussion
Create a single view app in iOS and put your root view controller in a nav controller.
Then add a watch target to your app (see this chapter’s introduction for an explana‐
tion). Make sure that your root view controller in IB looks like Figure 10-12.

Figure 10-12. Place a label and a button on your UI

Hook up the label to a variable in your code named statusLbl and hook up the but‐
ton to a variable named sendBtn. Hook up your button’s action to a method in your
code called send(). The top of your view controller should now look like this:

import UIKit
import WatchConnectivity

338 | Chapter 10: Apple Watch

class ViewController: UIViewController, WCSessionDelegate {

 @IBOutlet var statusLbl: UILabel!
 @IBOutlet var sendBtn: UIButton!

 ...

You also need a property that can set the status for you on your label. The property
must be on the main thread, because WCSession methods (where you may want to set
your status property) usually are not called on the main thread:

var status: String?{
 get{return self.statusLbl.text}
 set{
 DispatchQueue.main.async{
 self.statusLbl.text = newValue
 }
 }
}

When the user presses the send button, you will use the WCSession.default.trans
ferUserInfo(_:) method to send a simple dictionary whose only key is
kCFBundleIdentifierKey and a value that will be our Info.plist’s bundle identifier:

@IBAction func send() {

 guard let infoPlist = Bundle.main.infoDictionary else{
 status = "Could not get the Info.plist"
 return
 }

 let key = kCFBundleIdentifierKey as String

 let plist = [
 key : infoPlist[key] as! String
]

 let transfer = WCSession.default.transferUserInfo(plist)
 status = transfer.isTransferring ? "Sent" : "Could not send yet"

}

func updateUiForSession(_ session: WCSession){
 status = session.isReachable ? "Ready to send" : "Not reachable"
 sendBtn.isEnabled = session.isReachable
}

func session(
 _ session: WCSession,
 activationDidCompleteWith activationState: WCSessionActivationState,
 error: Error?) {
 // empty for now

10.4 Transferring Dictionaries in Queues to and from the Watch | 339

www.allitebooks.com

http://www.allitebooks.org

}

func sessionDidBecomeInactive(_ session: WCSession) {
 // empty for now
}

func sessionDidDeactivate(_ session: WCSession) {
 // empty for now
}

func sessionReachabilityDidChange(_ session: WCSession) {
 updateUiForSession(session)
}

The transferUserInfo(_:) method returns an object of type WCSessionUserInfo
Transfer that has properties such as userInfo and transferring and a method
called cancel(). If necessary, you can always use the cancel() method of an instance
of WCSessionUserInfoTransfer to cancel the transfer of this item if it is not already
transferring. You can also find all the user info transfers that are ongoing by using
the outstandingUserInfoTransfers property of your session object.

The app also contains code to disable the button if the watch app is
not reachable, but I won’t discuss that code here because we have
already reviewed it in Recipes 10.2 and 10.3.

On the watch side, in InterfaceController, write the exact same code that you
wrote in Recipe 10.3. In the ExtensionDelegate class the code will be a bit different,
but its status property is exactly how you wrote it in Recipe 10.3.

When the applicationDidFinishLaunching() method of your delegate is called,
you’ll set up the session just as you did previously in Recipe 10.2. You will wait for the
session(_:didReceiveUserInfo:) method of the WCSessionDelegate protocol to be
called. There, you will simply read the bundle identifier from the user info and dis‐
play it in your view controller:

func session(
 _ session: WCSession,
 activationDidCompleteWith activationState: WCSessionActivationState,
 error: Error?) {
 // empty for now
}

func session(_ session: WCSession,
 didReceiveUserInfo userInfo: [String : Any] = [:]) {

 guard let bundleVersion = userInfo[kCFBundleIdentifierKey as String]
 as? String else{

340 | Chapter 10: Apple Watch

 status = "Could not read the bundle version"
 return
 }

 status = bundleVersion

}

If you run the iOS app, your UI should look like Figure 10-13.

Figure 10-13. The app has detected that the watch app is reachable so the button is
enabled

And your watch app should look like Figure 10-14.

Figure 10-14. The watch app is waiting for incoming user info data

When you press the send button, the user interface will change to Figure 10-15.

10.4 Transferring Dictionaries in Queues to and from the Watch | 341

www.allitebooks.com

http://www.allitebooks.org

Figure 10-15. The data is sent to the watch

And the watch app will look like Figure 10-16.

Figure 10-16. The watch app successfully received your user info

See Also
Recipe 10.3

10.5 Transferring Files to and from the Watch
Problem
You want to transfer a file between your iOS app and the watch app. The technique
should work in both directions.

342 | Chapter 10: Apple Watch

Solution
Follow these steps:

1. Use the transferFile(_:metadata:) method of your WCSession object on the
sending device.

2. Then implement the WCSessionDelegate protocol on the sender and wait for the
session(_:didFinishFileTransfer:error:) delegate method to be called. If
the optional error parameter is nil, it indicates that the file was transferred
successfully.

3. On the receiving side, become the delegate of WCSession and then wait for the
session(_:didReceiveFile:) delegate method to be called.

4. The incoming file on the receiving side is of type WCSessionFile and has proper‐
ties such as fileURL and metadata. The metadata is the same metadata of type
[String : AnyObject] that the sender sent with the transferFile(_:meta
data:) method.

Discussion
Let’s have a look at a simple UI on the sending device (the iOS side in this example). It
contains a label that shows the status and a button that sends the file. When the but‐
ton is pressed, we create a file in the iOS app’s caches folder and then send that file
through to the watch app if it is reachable (see Recipe 10.2).

Make your UI on the iOS (sender) side look like Figure 10-17. The button will be dis‐
abled if the watch app is not reachable (see Recipe 10.2).

Figure 10-17. Status label and button on sender

Hook up your button’s action code to a method in your view controller called send()
and make sure your view controller conforms to WCSessionDelegate:

import UIKit
import WatchConnectivity

10.5 Transferring Files to and from the Watch | 343

www.allitebooks.com

http://www.allitebooks.org

class ViewController: UIViewController, WCSessionDelegate {

 @IBOutlet var statusLbl: UILabel!
 @IBOutlet var sendBtn: UIButton!

 var status: String?{
 get{return self.statusLbl.text}
 set{
 DispatchQueue.main.async{
 self.statusLbl.text = newValue
 }
 }
 }

 func sessionDidBecomeInactive(_ session: WCSession) {
 // empty for now
 }

 func sessionDidDeactivate(_ session: WCSession) {
 // empty for now
 }

 func session(
 _ session: WCSession,
 activationDidCompleteWith activationState: WCSessionActivationState,
 error: Error?) {
 // empty for now
 }

 ...

We implemented and talked about the status property of our view
controller in Recipe 10.3, so I won’t explain it here.

Then, when the send button is pressed, construct a URL that will point to your file. It
doesn’t exist yet, but you will write it to disk soon:

let fileName = "file.txt"

let fm = FileManager()

let url = try! fm.url(for: .cachesDirectory,
 in: .userDomainMask, appropriateFor: nil,
 create: true).appendingPathComponent(fileName)

Now write some text to disk, reachable through the URL:

let text = "Foo Bar"

344 | Chapter 10: Apple Watch

do{
 try text.write(to: url, atomically: true,
 encoding: String.Encoding.utf8)
} catch {
 status = "Could not write the file"
 return
}

Once that is done, send the file over:

let metadata = ["fileName" : fileName]
WCSession.default.transferFile(url, metadata: metadata)

Also, when your session’s reachability state changes, enable or disable your button:

func updateUiForSession(_ session: WCSession){
 status = session.isReachable ? "Ready to send" : "Not reachable"
 sendBtn.isEnabled = session.isReachable
}

func sessionReachabilityDidChange(_ session: WCSession) {
 updateUiForSession(session)
}

On the watch side, make your UI look like that shown in Figure 10-7. Then, in your
ExtensionDelegate class, implement the exact same status property that you imple‐
mented in Recipe 10.3.

Now implement the session(_:didReceiveFile:) method of WCSessionDelegate.
Start by double-checking that the metadata is as you expected it:

func session(_ session: WCSession, didReceive file: WCSessionFile) {

 guard let metadata = file.metadata, metadata["fileName"]
 is String else{
 status = "No metadata came through"
 return
 }

 ...

If it is, read the file and show it in the user interface:

do{
 let str = try String(NSString(contentsOf: file.fileURL,
 encoding: String.Encoding.utf8.rawValue))
 guard str.characters.count > 0 else{
 status = "No file came through"
 return
 }
 status = str
} catch {
 status = "Could not read the file"

10.5 Transferring Files to and from the Watch | 345

www.allitebooks.com

http://www.allitebooks.org

 return
}

When you run the watch app, it will look like Figure 10-14. When you run the iOS
app, it will look like Figure 10-18.

Figure 10-18. The file is ready to be sent from iOS to watchOS

When the file is sent, your user interface on iOS will look like Figure 10-19.

Figure 10-19. iOS sent the file to watchOS

And the UI on your receiver (watchOS) will look like Figure 10-20.

346 | Chapter 10: Apple Watch

Figure 10-20. watchOS successfully received the file, read its content, and is displaying it
in the label

See Also
Recipes 10.3 and 10.4

10.6 Communicating Interactively Between iOS and
watchOS
Problem
You want to interactively send messages from iOS to watchOS (or vice versa) and
receive a reply immediately.

Solution
On the sender side, use the sendMessage(_:replyHandler:errorHandler:) method
of WCSession. On the receiving side, implement the session(_:didReceive

Message:replyHandler:) method to handle the incoming message if your sender
expected a reply, or implement session(_:didReceiveMessage:) if no reply was
expected from you. Messages and replies are of type [String : AnyObject].

Discussion
Let’s implement a chat program where the iOS app and the watch app can send mes‐
sages to each other. On the iOS app, we will allow the user to type text and then send

10.6 Communicating Interactively Between iOS and watchOS | 347

www.allitebooks.com

http://www.allitebooks.org

it over to the watch. On the watch, since the user cannot type anything, we will have
four predefined messages that the user can send. In order to decrease the amount of
data the watch sends, we’ll define these messages as Int and send the integers instead.
The iOS app will read the integers and then print the correct message onto the screen.
So let’s first define these messages. Create a file called PredefinedMessages and write
the following Swift code there:

import Foundation

enum PredefinedMessage : Int{
 case hello
 case thankYou
 case howAreYou
 case iHearYou
}

Add this file to both your watch extension and your iOS app so that they both can use
it (see Figure 10-21).

Figure 10-21. Include the messages file in the iOS app and the watch extension

Now move to your main iOS app’s storyboard and design a UI that looks like
Figure 10-22. There are two labels that say “...” at the moment. They will be populated
dynamically in our code.

Figure 10-22. Initial iOS app UI

Hook up your UI to your code as follows:

348 | Chapter 10: Apple Watch

1. Hook up your send button to an outlet called sendBtn. Hook up its action
method to a function called send(_:) in your view controller.

2. Hook up the text field to your code under the name textField.
3. Hook up the label that says “...” in front of “Watch Status:” to an outlet called

watchStatusLbl.
4. Hook up the label that says “...” in front of “Watch Said:” to an outlet called watch

ReplyLbl.

So now the top part of your view controller on the iOS side should look like this:

import UIKit
import WatchConnectivity
import SharedCode

class ViewController: UIViewController, WCSessionDelegate {

 @IBOutlet var sendBtn: UIBarButtonItem!
 @IBOutlet var textField: UITextField!
 @IBOutlet var watchStatusLbl: UILabel!
 @IBOutlet var watchReplyLbl: UILabel!

 ...

As we have done before, we need two variables that can populate the text inside the
watchStatusLbl and watchReplyLbl labels, always on the main thread:

var watchStatus: String{
 get{return self.watchStatusLbl.text ?? ""}
 set{onMainThread{self.watchStatusLbl.text = newValue}}
}

var watchReply: String{
 get{return self.watchReplyLbl.text ?? ""}
 set{onMainThread{self.watchReplyLbl.text = newValue}}
}

The definition of onMainThread is very simple. It’s a custom func‐
tion I’ve written in a library to make life easier:

import Foundation

public func onMainThread(_ f: @escaping () -> Void){
 DispatchQueue.main.async(execute: f)
}

When the send button is pressed, we first have to make sure that the user has entered
some text into the text field:

@IBAction func send(_ sender: AnyObject) {

10.6 Communicating Interactively Between iOS and watchOS | 349

www.allitebooks.com

http://www.allitebooks.org

 guard let txt = textField.text, txt.characters.count > 0 else{
 textField.placeholder = "Enter some text here first"
 return
 }

 ...

Then we will use the sendMessage(_:replyHandler:errorHandler:) method of our
session to send the text over:

WCSession.default.sendMessage(["msg" : txt],
 replyHandler: {dict in

 guard dict["msg"] is String &&
 dict["msg"] as! String == "delivered" else{
 self.watchReply = "Could not deliver the message"
 return
 }

 self.watchReply = dict["msg"] as! String

}){err in
 self.watchReply = "An error happened in sending the message"
}

Later, when we implement the watch side, we will also be sending messages from the
watch over to the iOS app. Those messages will be inside a dictionary whose only key
is msg and the value of this key will be an integer. The integers are already defined in
the PredefinedMessage enum that we saw earlier. So in our iOS app, we will wait for
messages from the watch app, translate the integer we get to its string counterpart,
and show it on our iOS UI. Remember, we send integers (instead of strings) from the
watch to make the transfer snappier. So let’s implement the session(_:didReceive
Message:) delegate method in our iOS app:

func session(
 _ session: WCSession,
 activationDidCompleteWith activationState: WCSessionActivationState,
 error: Error?) {
 // empty for now
}

func sessionDidBecomeInactive(_ session: WCSession) {
 // empty for now
}

func sessionDidDeactivate(_ session: WCSession) {
 // empty for now
}

func session(_ session: WCSession,
 didReceiveMessage message: [String : Any],

350 | Chapter 10: Apple Watch

 replyHandler: @escaping ([String : Any]) -> Void) {

 guard let msg = message["msg"] as? Int,
 let value = PredefinedMessage(rawValue: msg) else{
 watchReply = "Received invalid message"
 return
 }

 switch value{
 case .hello:
 watchReply = "Hello"
 case .howAreYou:
 watchReply = "How are you?"
 case .iHearYou:
 watchReply = "I hear you"
 case .thankYou:
 watchReply = "Thank you"
 }

}

Let’s use what we learned in Recipe 10.2 to enable or disable our send button when
the watch’s reachability changes:

func updateUiForSession(_ session: WCSession){
 watchStatus = session.isReachable ? "Reachable" : "Not reachable"
 sendBtn.isEnabled = session.isReachable
}

func sessionReachabilityDidChange(_ session: WCSession) {
 updateUiForSession(session)
}

On the watch side, design your UI like Figure 10-23. Although users cannot type on
the watch, they can press a predefined message in order to send it (remember
PredefinedMessage?). That little line between “Waiting...” and “Send a reply” is a
separator.

10.6 Communicating Interactively Between iOS and watchOS | 351

www.allitebooks.com

http://www.allitebooks.org

Figure 10-23. Strings that a user can send from a watch

Hook up your watch UI to your code by following these steps:

1. Hook up the “Waiting...” label to an outlet named iosAppReplyLbl. We will show
the text that our iOS app has sent to us in this label.

2. Place all the buttons at the bottom of the page inside a group and hook that
group up to an outlet called repliesGroup. We will hide this whole group if the
iOS app is not reachable to our watch app.

3. Hook the action of the “Hello” button to a method in your code called send
Hello().

4. Hook the action of the “Thank you” button to a method in your code called send
ThankYou().

5. Hook the action of the “How are you?” button to a method in your code called
sendHowAreYou().

6. Hook the action of the “I hear you” button to a method in your code called sendI
HearYou().

352 | Chapter 10: Apple Watch

In our InterfaceController on the watch side, we need a generic method that takes
in an Int (our predefined message) and sends it over to the iOS side with the send
Message(_:replyHandler:errorHandler:) method of the session:

import WatchKit
import Foundation
import WatchConnectivity

class InterfaceController: WKInterfaceController {

 @IBOutlet var iosAppReplyLbl: WKInterfaceLabel!
 @IBOutlet var repliesGroup: WKInterfaceGroup!

 func send(_ int: Int){

 WCSession.default.sendMessage(["msg" : int],
 replyHandler: nil, errorHandler: nil)

 }

 ...

And whenever any of the buttons is pressed, we call the send(_:) method with the
right predefined message:

@IBAction func sendHello() {
 send(PredefinedMessage.hello.hashValue)
}

@IBAction func sendThankYou() {
 send(PredefinedMessage.thankYou.hashValue)
}

@IBAction func sendHowAreYou() {
 send(PredefinedMessage.howAreYou.hashValue)
}

@IBAction func sendIHearYou() {
 send(PredefinedMessage.iHearYou.hashValue)
}

In the ExtensionDelegate class on the watch side, we want to hide all the reply but‐
tons if the iOS app is not reachable. To do that, write a property called isReachable
of type Bool. Whenever this property is set, the code sets the hidden property of our
replies group:

import WatchKit
import WatchConnectivity

class ExtensionDelegate: NSObject, WKExtensionDelegate, WCSessionDelegate{

10.6 Communicating Interactively Between iOS and watchOS | 353

www.allitebooks.com

http://www.allitebooks.org

 var isReachable = false{
 willSet{
 self.rootController?.repliesGroup.setHidden(!newValue)
 }
 }

 var rootController: InterfaceController?{
 get{
 guard let interface =
 WKExtension.shared().rootInterfaceController as?
 InterfaceController else{
 return nil
 }
 return interface
 }
 }

 func session(
 _ session: WCSession,
 activationDidCompleteWith activationState: WCSessionActivationState,
 error: Error?) {
 // empty for now
 }

 ...

You also are going to need a String property that will be your iOS app’s reply. When‐
ever you get a reply from the iOS app, place it inside this property. As soon as this
property is set, the watch extension will write this text on the UI:

var iosAppReply = ""{
 didSet{
 DispatchQueue.main.async{
 self.rootController?.iosAppReplyLbl.setText(self.iosAppReply)
 }
 }
}

Now let’s wait for messages from the iOS app and display those messages on our UI:

func session(_ session: WCSession,
 didReceiveMessage message: [String : Any],
 replyHandler: @escaping ([String : Any]) -> Void) {

 guard message["msg"] is String else{
 replyHandler(["msg" : "failed"])
 return
 }

 iosAppReply = message["msg"] as! String
 replyHandler(["msg" : "delivered"])

}

354 | Chapter 10: Apple Watch

Also, when our iOS app’s reachability changes, we want to update our UI and disable
the reply buttons:

func sessionReachabilityDidChange(_ session: WCSession) {
 isReachable = session.isReachable
}

func applicationDidFinishLaunching() {

 guard WCSession.isSupported() else{
 iosAppReply = "Sessions are not supported"
 return
 }

 let session = WCSession.default
 session.delegate = self
 session.activate()
 isReachable = session.isReachable

}

Running our app on the watch first, we will see an interface similar to Figure 10-24.
The user can scroll to see the rest of the buttons.

Figure 10-24. Available messages on watch

And when we run our app on iOS while the watch app is reachable, the UI will look
like Figure 10-25.

10.6 Communicating Interactively Between iOS and watchOS | 355

www.allitebooks.com

http://www.allitebooks.org

Figure 10-25. The send button on our app is enabled and we can send messages

Type “Hello from iOS” in the iOS UI and press the send button. The watch app will
receive the message (see Figure 10-26).

Figure 10-26. The watch app received the message sent from the iOS app

Now press the “How are you?” button on the watch UI and see the results in the iOS
app (Figure 10-27).

356 | Chapter 10: Apple Watch

Figure 10-27. The iOS app received the message from the watch app

See Also
Recipe 10.2

10.7 Setting Up the Apple Watch for Custom
Complications
Problem
You want to create a bare-bones watch project with support for complications and
you would like to see a complication on the screen.

Solution
Follow these steps:

1. Add a watch target to your project (see Figure 10-1). Make sure that it includes
complications upon setting it up (see Figure 10-2).

2. In Xcode, in your targets, select your watch extension. Under the General tab,
ensure that the Modular Small family of complications is the only one that is
enabled. Disable all the others (see Figure 10-28).

3. Write your complication code in your ComplicationController class. We’ll dis‐
cuss this code soon.

4. Run your app on the watch simulator.
5. Once your app is opened in the simulator, press Cmd-Shift-H to go to the clock

face.

10.7 Setting Up the Apple Watch for Custom Complications | 357

www.allitebooks.com

http://www.allitebooks.org

6. Press Cmd-Shift-2 to simulate Deep Press on the watch simulator and then tap
and hold on the watch face (see Figure 10-29).

Figure 10-28. We are going to support only modular small complications

Figure 10-29. Deep Press to customize the watch face

7. Press Cmd-Shift-1 to simulate Shallow Press and then scroll to the modular
watch face (see Figure 10-30).

358 | Chapter 10: Apple Watch

Figure 10-30. Select the modular watch face

8. Press the Customize button (see Figure 10-31).

Figure 10-31. Now you can customize your modular watch face

9. Scroll to the next page to the right, and then tap the small modular complication
at the bottom left of the screen until it becomes selected (see Figure 10-32). You
will replace this with your own complication.

10.7 Setting Up the Apple Watch for Custom Complications | 359

www.allitebooks.com

http://www.allitebooks.org

Figure 10-32. Select the small modular complication at the bottom left

10. Now use the up and down arrow keys on your keyboard (or, if on the device, use
the digital crown) to select your complication (see Figure 10-33). What you see
on the screen is the preview template that you have provided to the system. We
will implement this template soon, but in the figure I have already done that,
hence the number 22.

Figure 10-33. Your own small modular complication is shown

360 | Chapter 10: Apple Watch

11. Press Cmd-Shift-2 to simulate Deep Press and then tap the screen (see
Figure 10-34).

Figure 10-34. You have now configured your complication on the selected watch face

12. Press Cmd-Shift-H to go to the clock app on the screen (see Figure 10-35).
Notice that your complication shows no data. That is because what was displayed
on the screen while you were configuring your watch face was just a preview
template. What the clock app displays is real data, and you are not providing any
of it.

Figure 10-35. Your complication is on the bottom left but is empty

10.7 Setting Up the Apple Watch for Custom Complications | 361

www.allitebooks.com

http://www.allitebooks.org

Discussion
Complications are pieces of information that apps can display on a watch face. They
are divided into a few main categories:

Modular small
A very small amount of space with minimal text and/or a very small image (see
Figure 10-36; the date at the top left is a modular small complication).

Modular large
An image, title, and up to two lines of text (see Figure 10-36; the calendar event
in the center of the screen is a modular large complication).

Utilitarian small
A small image with optional text (see Figure 10-36; the activity icon at the bot‐
tom center is of this type).

Utilitarian large
A date/text mixed with an image, rendered on one line. This is similar to modu‐
lar large but on just one line.

Circular small
A circular image with optional text (see Figure 10-36; the sunrise/sunset compli‐
cation at the bottom right is an example of a circular small complication).

Figure 10-36. Everything except the time is a complication

Assuming that you have already created a watch target with a complication attached
to it, go into your ComplicationController class and find the getPlaceholder
TemplateForComplication(_:withHandler:) method. This method gets called by

362 | Chapter 10: Apple Watch

iOS when your complication is being added to a watch face. This gives you the chance
to provide a placeholder for what the user will see while adjusting her watch face. It
won’t usually be real data.

After this method is called, you will need to create a complication template of type
CLKComplicationTemplate (or one of its many subclasses) and return that into the
replyHandler block that you are given. For now, implement the template like this:

func getPlaceholderTemplate(
 for complication: CLKComplication,
 withHandler handler: @escaping (CLKComplicationTemplate?) -> Void) {

 let temp = CLKComplicationTemplateModularSmallSimpleText()
 temp.textProvider = CLKSimpleTextProvider(text: "22")
 handler(temp)

}

I am not going to discuss the details of this code right now. You’ll
learn them in other recipes in this chapter.

One more thing that you have to know is that once you have provided watchOS with
your placeholder template, you won’t be asked to do it again unless the user uninstalls
your watchOS app and installs it again from her iPhone (see Figure 10-37).

Figure 10-37. If the user uninstalls and reinstalls your app, it can provide a new place‐
holder template

If you would like to test out different templates while you are working on the get
PlaceholderTemplateForComplication(_:withHandler:) method, you can simply
reset the watch simulator and then run your app again. This will retrigger the getPla

10.7 Setting Up the Apple Watch for Custom Complications | 363

www.allitebooks.com

http://www.allitebooks.org

ceholderTemplateForComplication(_:withHandler:) method on your complica‐
tion controller.

See Also
Recipe 10.8

10.8 Constructing Small Complications with Text and
Images
Problem
You want to construct a small modular complication and provide the user with past,
present, and future data.

Solution
In this example, a small modular complication (Figure 10-38, bottom left) shows the
current hour with a ring swallowing it. The ring is divided into 24 sections and incre‐
ments for every 1 hour in the day. At the end of the day, the ring will be completely
filled and the number inside the ring will show 24.

Figure 10-38. Small modular complication (bottom left) showing the current hour sur‐
rounded by a ring

To implement this, follow these steps:

364 | Chapter 10: Apple Watch

1. Create your main iOS project with a watch target and make sure your watch tar‐
get has a complication.

2. In your complication, implement the getSupportedTimeTravelDirectionsFor
Complication(_:withHandler:) method of the CLKComplicationDataSource
protocol. In this method, return your supported time travel directions (more on
this later). The directions are of type CLKComplicationTimeTravelDirections.

3. Implement the getTimelineStartDateForComplication(_:withHandler:)

method inside your complication class and call the given handler with a Date
object that indicates the start date of your available data.

4. Implement the getTimelineEndDateForComplication(_:withHandler:)

method of your complication and call the handler with the last date for which
your data is valid.

5. Implement the getTimelineEntriesForComplication(_:beforeDate:limit:

withHandler:) method of your complication, create an array of type CLKCompli
cationTimelineEntry, and send that array into the given handler object. These
will be the timeline entries before the given date that you would want to return to
the watch (more on this later).

6. Implement the getTimelineEntriesForComplication(_:afterDate:limit:

withHandler:) method of your complication and return all the events that your
complication supports after the given date.

7. Implement the getNextRequestedUpdateDateWithHandler(_:) method of your
complication and let watchOS know when it has to ask you next for more con‐
tent.

Discussion
When providing complications, you are expected to provide data to watchOS as the
time changes. In our example, for every hour in the day, we want to change our com‐
plication. So each day we’ll return 24 events to the runtime.

With the digital crown on the watch, the user can scroll up and down while on the
watch face to engage in a feature called “time travel.” This allows the user to change
the time known to the watch just so she can see how various components on the
screen change with the new time. For instance, if you provide a complication to the
user that shows all football match results of the day, the user can then go back in time
a few hours to see the results of a match she has just missed. Similarly, in the context
of a complication that shows the next fast train time to the city where the user lives,
she can scroll forward, with the digital crown on the watch face, to see the future
times that the train leaves from the current station.

The time is an absolute value on any watch, so let’s say that you want to provide the
time of the next football match in your complication. Let’s say it’s 14:00 right now and

10.8 Constructing Small Complications with Text and Images | 365

www.allitebooks.com

http://www.allitebooks.org

the football match starts at 15:00. If you give 15:00 as the start of that event to your
complication, watchOS will show the football match (or the data that you provide for
that match to your user through your complication) to the user at 15:00, not before.
That is a bit useless, if you ask me. You want to provide that information to the user
before the match starts so she knows what to look forward to, and when. So, keep that
in mind when providing a starting date for your events.

watchOS complications conform to the CLKComplicationDataSource protocol. They
get a lot of delegate messages from this protocol calling methods that you have to
implement even if you don’t want to return any data. For instance, in the getNext
RequestedUpdateDateWithHandler(_:) method, you get a handler as a parameter
that you must call with a Date object, specifying when you want to be asked for more
data next time. If you don’t want to be asked for any more data, you still have to call
this handler object, but with a nil date. You’ll find out soon that most of these han‐
dlers ask for optional values, so you can call them with nil if you want to.

While working with complications, you can tell watchOS which directions of time
travel you support, or if you support time travel at all. If you don’t support it, your
complication returns only data for the current time, and if the user scrolls the watch
face with the digital crown your complication won’t update its information. I don’t
suggest you opt out of time travel unless your complication really cannot provide rel‐
evant data to the user. Certainly, if your complication shows match results, it cannot
show results for matches that have not happened. But even then, you can still support
forward and backward time travel. If the user chooses forward time travel, just hide
the scores, show a question mark, or do something similar.

As you work with complications, it’s important to construct a data model to return to
the watch. What you usually return to the watch for your complication is either of
type CLKComplicationTemplate or of type CLKComplicationTimelineEntry. The
template defines how your data is viewed on the screen. The timeline entry only
binds your template (your visible data) to a date of type Date that dictates to the
watch when it has to show your data. It’s as simple as that. In the case of small modu‐
lar complications, you can provide the following templates to the watch:

CLKComplicationTemplateModularSmallSimpleText

Has just text.

CLKComplicationTemplateModularSmallSimpleImage

Has just an image.

CLKComplicationTemplateModularSmallRingText

Has text inside a ring that you can fill from 0 to 100%.

CLKComplicationTemplateModularSmallRingImage

Has an image inside a ring that you can fill.

366 | Chapter 10: Apple Watch

CLKComplicationTemplateModularSmallStackText

Has two lines of code, the second of which can be highlighted.

CLKComplicationTemplateModularSmallStackImage

Has an image and text, with the text able to be highlighted.

CLKComplicationTemplateModularSmallColumnsText

Has a 2×2 text display where you can provide four pieces of textual data. The sec‐
ond column can be highlighted and have its text alignment adjusted.

As you saw earlier, in Figure 10-32, this example bases our small modular template on
CLKComplicationTemplateModularSmallRingText. So, we provide only text (the cur‐
rent hour) and a value between 0 and 1 that will tell watchOS how much of the ring
around our number it has to fill (0...100%).

Let’s now begin defining our data for this example. For every hour, we want our tem‐
plate to show the current hour. Just before midnight, we provide another 24 new
complication data points for that day to the watch. So let’s define a data structure that
can contain a date, the hour value, and the fraction (between 0 and 1) to set for our
complication. Start off by creating a file called DataProvider.swift and write all this
code in that:

protocol WithDate{
 var hour: Int {get}
 var date: Date {get}
 var fraction: Float {get}
}

Now we can define our actual structure that conforms to this protocol:

struct Data : WithDate{
 let hour: Int
 let date: Date
 let fraction: Float
 var hourAsStr: String{
 return "\(hour)"
 }
}

Later, when we work on our complication, we will be asked to provide inside
the getCurrentTimelineEntryForComplication(_:withHandler:) method of
CLKComplicationDataSource a template to show to the user for the current time. We
are also going to create an array of 24 Data structures. So it would be great if we could
always, inside this array, easily find the Data object for the current date:

extension Date{
 func hour() -> Int{
 let cal = Calendar.current
 let unitsArray: [Calendar.Component] = [.hour]
 let units = Set(unitsArray)

10.8 Constructing Small Complications with Text and Images | 367

www.allitebooks.com

http://www.allitebooks.org

 return cal.dateComponents(units, from: self).hour!
 }
}

extension Collection where Iterator.Element : WithDate {

 func dataForNow() -> Iterator.Element?{
 let thisHour = Date().hour()
 for d in self{
 if d.hour == thisHour{
 return d
 }
 }
 return nil
 }

}

The dataForNow() function goes through any collection that has
objects that conform to the WithDate protocol that we specified
earlier, and finds the object whose current hour is the same as that
returned for the current moment by Date().

Let’s now create our array of 24 Data objects. We do this by iterating from 1 to 24,
creating Date objects using DateComponents and Calendar. Then, using those objects,
we construct instances of the Data structure that we just wrote:

struct DataProvider{

 func allDataForToday() -> [Data]{

 var all = [Data]()

 let now = Date()
 let cal = Calendar.current

 let unitsArray: [Calendar.Component] = [.month, .day]
 let units = Set(unitsArray)

 var comps = cal.dateComponents(units, from: now)
 comps.minute = 0
 comps.second = 0

 for i in 1...24{
 comps.hour = i
 let date = cal.date(from: comps)!
 let fraction = Float(comps.hour!) / 24.0
 let data = Data(hour: comps.hour!, date: date, fraction: fraction)
 all.append(data)
 }

368 | Chapter 10: Apple Watch

 return all

 }

}

That was our entire data model. Now let’s move on to the complication class of our
watch app. In the getNextRequestedUpdateDateWithHandler(_:) method of the
CLKComplicationDataSource protocol to which our complication conforms, we are
going to be asked when watchOS should next call our complication and ask for new
data. Because we are going to provide data for the whole day, today, we would want to
be asked for new data for tomorrow. So we need to ask to be updated a few seconds
before the start of the next day. For that, we need a Date object that tells watchOS
when the next day is. So let’s extend Date:

extension Date{

 static func endOfToday() -> Date{
 let cal = Calendar.current

 let unitsArray: [Calendar.Component] = [.year, .month, .day]
 let units = Set(unitsArray)

 var comps = cal.dateComponents(units, from: Date())
 comps.hour = 23
 comps.minute = 59
 comps.second = 59
 return cal.date(from: comps)!
 }

}

Moving to our complication, let’s define our data provider first:

class ComplicationController: NSObject, CLKComplicationDataSource {

 let dataProvider = DataProvider()

 ...

We know that our data provider can give us an array of Data objects, so we need a
way of turning those objects into our templates so they that can be displayed on the
screen:

func templateForData(_ data: Data) -> CLKComplicationTemplate{
 let template = CLKComplicationTemplateModularSmallRingText()
 template.textProvider = CLKSimpleTextProvider(text: data.hourAsStr)
 template.fillFraction = data.fraction
 template.ringStyle = .closed
 return template
}

10.8 Constructing Small Complications with Text and Images | 369

www.allitebooks.com

http://www.allitebooks.org

Our template of type CLKComplicationTemplateModularSmallRingText has a few
important properties:

textProvider of type CLKTextProvider
Tells watchOS how our text has to appear. We never instantiate CLKTextProvider
directly, though. We use one of its subclasses, such as the CLKSimpleTextPro
vider class. There are other text providers that we will talk about later.

fillFraction of type Float
A number between 0.0 and 1.0 that tells watchOS how much of the ring around
our template it has to fill.

ringStyle of type CLKComplicationRingStyle
The style of the ring we want around our text. It can be Open or Closed.

Later we are also going to be asked for timeline entries of type CLKComplicationTime
lineEntry for the data that we provide to watchOS. So, for every Data object, we
need to be able to create a timeline entry:

func timelineEntryForData(_ data: Data) -> CLKComplicationTimelineEntry{
 let template = templateForData(data)
 return CLKComplicationTimelineEntry(date: data.date as Date,
 complicationTemplate: template)
}

In the example shown here, we support forward and backward time travel (of type
CLKComplicationTimeTravelDirections), so let’s tell watchOS that:

func getSupportedTimeTravelDirections(
 for complication: CLKComplication,
 withHandler handler: @escaping (CLKComplicationTimeTravelDirections) -> Void) {
 handler([.forward, .backward])
}

If you don’t want to support time travel, call the handler argument
with the value of CLKComplicationTimeTravelDirections.None.

At this point, the next thing we have to do is implement the getTimelineStartDate
ForComplication(_:withHandler:) method of CLKComplicationDataSource. This
method gets called on our delegate whenever watchOS wants to find out the begin‐
ning of the date/time range of our time travel. For our example, since we want to pro‐
vide 24 templates, one for each hour in the day, we tell watchOS the date of the first
template:

func getTimelineStartDate(for complication: CLKComplication,
 withHandler handler: @escaping (Date?) -> Void) {

370 | Chapter 10: Apple Watch

 handler(dataProvider.allDataForToday().first!.date as Date)
}

Similarly, for the getTimelineEndDateForComplication(_:withHandler:) method,
we provide the date of the last event:

func getTimelineEndDate(for complication: CLKComplication,
 withHandler handler: @escaping (Date?) -> Void) {
 handler(dataProvider.allDataForToday().last!.date)
}

Complications can be displayed on the watch’s lock screen. Some complications might
contain sensitive data, so they might want to opt out of appearing on the lock screen.
For this, we have to implement the getPrivacyBehaviorForComplication(_:with
Handler:) method as well. We call the handler with an object of type CLKComplica
tionPrivacyBehavior, such as ShowOnLockScreen or HideOnLockScreen. Because we
don’t have any sensitive data, we show our complication on the lock screen:

func getPrivacyBehavior(for complication: CLKComplication,
 withHandler handler: @escaping (CLKComplicationPrivacyBehavior) -> Void) {
 handler(.showOnLockScreen)
}

Now to the stuff that I like. The getCurrentTimelineEntryForComplication(_:with
Handler:) method will get called on our delegate whenever the runtime needs to get
the complication timeline (the template plus the date to display) for the complication
to display on. Do you remember the dataForNow()method that we wrote a while ago
as an extension on Collection? Well, we are going to use that now:

func getCurrentTimelineEntry(for complication: CLKComplication,
 withHandler handler: @escaping ((CLKComplicationTimelineEntry?) -> Void)) {

 if let data = dataProvider.allDataForToday().dataForNow(){
 handler(timelineEntryForData(data))
 } else {
 handler(nil)
 }

}

Always implement the handlers that the class gives you. If they
accept optional values and you don’t have any data to pass, just pass
nil.

Now we have to implement the getTimelineEntriesForComplication(_:before
Date:limit:beforeDate:) method of our complication delegate. This method gets
called whenever watchOS needs timeline entries for data before a certain date, with a

10.8 Constructing Small Complications with Text and Images | 371

www.allitebooks.com

http://www.allitebooks.org

maximum of limit entries. So let’s say that you have 1,000 templates to return but the
limit is 100. Do not return more than 100 in that case. In our example, I will go
through all the data items that we have, filter them by their dates, find the ones com‐
ing before the given date (the beforeDate parameter), and create a timeline entry for
all of those with the timelineEntryForData(_:) method that we wrote:

func getTimelineEntries(for complication: CLKComplication,
 before date: Date, limit: Int,
 withHandler handler: @escaping (([CLKComplicationTimelineEntry]?) -> Void)) {

 let entries = dataProvider.allDataForToday().filter{
 date.compare($0.date as Date) == .orderedDescending
 }.map{
 self.timelineEntryForData($0)
 }

 handler(entries)
}

Similarly, we have to implement the getTimelineEntriesForComplication(_:after
Date:limit:withHandler:) method to return the timeline entries after a certain date
(the afterDate parameter):

func getTimelineEntries(for complication: CLKComplication,
 after date: Date, limit: Int,
 withHandler handler: @escaping (([CLKComplicationTimelineEntry]?) -> Void)) {

 let entries = dataProvider.allDataForToday().filter{
 date.compare($0.date as Date) == .orderedAscending
 }.map{
 self.timelineEntryForData($0)
 }

 handler(entries)

}

The getNextRequestedUpdateDateWithHandler(_:) method is the next method we
need to implement. This method gets called to ask us when we would like to be asked
for more data later. For our app we specify the next day, because we have already pro‐
vided all the data for today:

func getNextRequestedUpdateDate(handler: @escaping (Date?) -> Void) {
 handler(Date.endOfToday());
}

Last but not least, we have to implement the getPlaceholderTemplateForComplica
tion(_:withHandler:) method that we talked about before. This is where we pro‐
vide our placeholder template:

372 | Chapter 10: Apple Watch

func getPlaceholderTemplate(for complication: CLKComplication,
 withHandler handler: @escaping (CLKComplicationTemplate?) -> Void) {
 if let data = dataProvider.allDataForToday().dataForNow(){
 handler(templateForData(data))
 } else {
 handler(nil)
 }
}

Now when I run the app on my watch, if the time is 10:24 and the hour is 10, our
complication will show 10 and fill the circle around it to show how much of the day
has passed by 10:00 (see Figure 10-39).

Figure 10-39. Our complication on the bottom left is showing the hour and how much of
the day has passed

And if I engage time travel and move forward to 18:23 (6:23 on a 12-hour clock), our
complication updates itself as well, showing 18 as the hour (see Figure 10-40).

10.8 Constructing Small Complications with Text and Images | 373

www.allitebooks.com

http://www.allitebooks.org

Figure 10-40. The user moves the time to the future and our complication updates itself
as well

See Also
Recipes 10.7 and 10.9

10.9 Displaying Time Offsets in Complications
Problem
The data that you want to present has to be shown as an offset to a specific time. For
instance, you want to show the remaining minutes until the next train the user can
take to get home.

Solution
Use the CLKRelativeDateTextProvider to provide your information inside a tem‐
plate. In this example, we are going to use CLKComplicationTemplateModular
LargeStandardBody, which is a large modular template.

Discussion
In this recipe, we’ll create a watch app that shows the next available train that the user
can take to get home. Trains can have different properties:

• Date and time of departure

374 | Chapter 10: Apple Watch

• Train operator
• Type of train (high speed, commuter, etc.)
• Service name (as shown on the timetable)

In our example, I want the complication to look like Figure 10-41. The complication
shows the next train (a Coastal service) and how many minutes away that train’s
departure is.

Figure 10-41. Our complication shows that the next train leaves in 25 minutes

When you create your watchOS project, enable only the Modular Large complication
family in the target settings (see Figure 10-42).

Figure 10-42. Enable only modular large complications for this example

10.9 Displaying Time Offsets in Complications | 375

www.allitebooks.com

http://www.allitebooks.org

Now let’s create the data model. It will be similar to what we did in Recipe 10.8, but
this time we want to provide train times. For the train type and the train company,
we’ll create enumerations:

enum TrainType : String{
 case HighSpeed = "High Speed"
 case Commuter = "Commuter"
 case Coastal = "Coastal"
}

enum TrainCompany : String{
 case SJ = "SJ"
 case Southern = "Souther"
 case OldRail = "Old Rail"
}

These enumerations are of type String, so you can display them on
your UI easily without having to write a switch statement.

Then we’ll define a protocol to which our train object will conform. Protocol-
oriented programming offers many possibilities (see Recipe 6.18), so let’s do that
now:

protocol OnRailable{
 var type: TrainType {get}
 var company: TrainCompany {get}
 var service: String {get}
 var departureTime: Date {get}
}

struct Train : OnRailable{
 let type: TrainType
 let company: TrainCompany
 let service: String
 let departureTime: Date
}

As we did in Recipe 10.8, we are going to define a data provider. In this example, we
create a few trains that depart at specific times with different types of services and
from different operators:

struct DataProvider{

 func allTrainsForToday() -> [Train]{

 var all = [Train]()

 let now = Date()

376 | Chapter 10: Apple Watch

 let cal = Calendar.current
 let unitsArray: [Calendar.Component] = [.year, .month, .day]
 let units = Set(unitsArray)
 var comps = cal.dateComponents(units, from: now)

 // first train
 comps.hour = 6
 comps.minute = 30
 comps.second = 0
 let date1 = cal.date(from: comps)!
 all.append(Train(type: .Commuter, company: .SJ,
 service: "3296", departureTime: date1))

 // second train
 comps.hour = 9
 comps.minute = 57
 let date2 = cal.date(from: comps)!
 all.append(Train(type: .HighSpeed, company: .Southern,
 service: "2307", departureTime: date2))

 // third train
 comps.hour = 12
 comps.minute = 22
 let date3 = cal.date(from: comps)!
 all.append(Train(type: .Coastal, company: .OldRail,
 service: "3206", departureTime: date3))

 // fourth train
 comps.hour = 15
 comps.minute = 45
 let date4 = cal.date(from: comps)!
 all.append(Train(type: .HighSpeed, company: .SJ,
 service: "3703", departureTime: date4))

 // fifth train
 comps.hour = 18
 comps.minute = 19
 let date5 = cal.date(from: comps)!
 all.append(Train(type: .Coastal, company: .Southern,
 service: "8307", departureTime: date5))

 // sixth train
 comps.hour = 22
 comps.minute = 11
 let date6 = cal.date(from: comps)!
 all.append(Train(type: .Commuter, company: .OldRail,
 service: "6802", departureTime: date6))

 return all

 }

10.9 Displaying Time Offsets in Complications | 377

www.allitebooks.com

http://www.allitebooks.org

}

Now let’s move to the ComplicationController class of our watch extension. Here
we will provide watchOS with the data it needs to display our complication. The first
task is to extend Collection so that we can find the next train in the array that the
allTrainsForToday() function of DataProvider returns:

extension Collection where Iterator.Element : OnRailable {

 func nextTrain() -> Iterator.Element?{
 let now = Date()
 for d in self{
 if now.compare(d.departureTime as Date) == .orderedAscending{
 return d
 }
 }
 return nil
 }

}

And we need a data provider in our complication:

class ComplicationController: NSObject, CLKComplicationDataSource {

 let dataProvider = DataProvider()

 ...

For every train, we need to create a template that watchOS can display on the screen.
All templates are of type CLKComplicationTemplate, but don’t initialize that class
directly. Instead, create a template of type CLKComplicationTemplateModular

LargeStandardBody that has a header, two lines of text with the second line being
optional, and an optional image. The header will show constant text (see
Figure 10-41), so instantiate it with type CLKSimpleTextProvider. For the first line of
text, you want to show how many minutes away the next train is, so that will require a
text provider of type CLKRelativeDateTextProvider as we talked about before.

The initializer for CLKRelativeDateTextProvider takes in a parameter of type CLK
RelativeDateStyle that defines the way the given date has to be shown. In our
example, we use CLKRelativeDateStyle.offset:

func templateForTrain(_ train: Train) -> CLKComplicationTemplate{
 let template = CLKComplicationTemplateModularLargeStandardBody()
 template.headerTextProvider = CLKSimpleTextProvider(text: "Next train")

 template.body1TextProvider =
 CLKRelativeDateTextProvider(date: train.departureTime as Date,
 style: .offset,
 units: NSCalendar.Unit.hour.union(.minute))

378 | Chapter 10: Apple Watch

 let secondLine = "\(train.service) - \(train.type)"

 template.body2TextProvider = CLKSimpleTextProvider(text: secondLine,
 shortText: train.type.rawValue)

 return template
}

The second line of text we are providing has a shortText alterna‐
tive. If the watch UI has no space to show our secondLine text, it
will show the shortText alternative.

We are going to need to provide timeline entries (date plus template) for every train
as well, so let’s create a helper method for that:

func timelineEntryForTrain(_ train: Train) -> CLKComplicationTimelineEntry{
 let template = templateForTrain(train)
 return CLKComplicationTimelineEntry(date: train.departureTime as Date,
 complicationTemplate: template)
}

When we are asked for the first and the last date of the data we provide, we read our
data provider’s array of trains and return the first and the last train’s dates,
respectively:

func getTimelineStartDate(for complication: CLKComplication,
 withHandler handler: @escaping (Date?) -> Void) {
 handler(dataProvider.allTrainsForToday().first!.departureTime as Date)
}

func getTimelineEndDate(for complication: CLKComplication,
 withHandler handler: @escaping (Date?) -> Void) {
 handler(dataProvider.allTrainsForToday().last!.departureTime)
}

We want to allow the user to be able to time travel so that she can see the next train as
she changes the time with the digital crown. Also, as our data is not particularly sensi‐
tive, we’ll allow viewing this data on the lock screen:

func getSupportedTimeTravelDirections(
 for complication: CLKComplication,
 withHandler handler: @escaping (CLKComplicationTimeTravelDirections) -> Void) {
 handler([.forward, .backward])
}

func getPrivacyBehavior(for complication: CLKComplication,
 withHandler handler: @escaping (CLKComplicationPrivacyBehavior) -> Void) {
 handler(.showOnLockScreen)
}

10.9 Displaying Time Offsets in Complications | 379

www.allitebooks.com

http://www.allitebooks.org

Regarding time travel, when asked for trains after and before a certain time, our code
should go through all the trains and filter out the times we don’t want displayed, as
we did in Recipe 10.8:

func getTimelineEntries(for complication: CLKComplication,
 before date: Date, limit: Int,
 withHandler handler: @escaping (([CLKComplicationTimelineEntry]?) -> Void)) {

 let entries = dataProvider.allTrainsForToday().filter{
 date.compare($0.departureTime as Date) == .orderedDescending
 }.map{
 self.timelineEntryForTrain($0)
 }

 handler(entries)
}

func getTimelineEntries(for complication: CLKComplication,
 after date: Date, limit: Int,
 withHandler handler: @escaping (([CLKComplicationTimelineEntry]?) -> Void)) {

 let entries = dataProvider.allTrainsForToday().filter{
 date.compare($0.departureTime as Date) == .orderedAscending
 }.map{
 self.timelineEntryForTrain($0)
 }

 handler(entries)

}

When the getCurrentTimelineEntryForComplication(_:withHandler:) method is
called on our delegate, we get the next train’s timeline entry and return it:

func getCurrentTimelineEntry(for complication: CLKComplication,
 withHandler handler: @escaping ((CLKComplicationTimelineEntry?) -> Void)) {

 if let train = dataProvider.allTrainsForToday().nextTrain(){
 handler(timelineEntryForTrain(train))
 } else {
 handler(nil)
 }

}

Because we provide data until the end of today, we ask watchOS to ask us for new
data tomorrow:

func getNextRequestedUpdateDate(handler: @escaping (Date?) -> Void) {
 handler(Date.endOfToday());
}

Last but not least, we provide our placeholder template:

380 | Chapter 10: Apple Watch

func getPlaceholderTemplate(for complication: CLKComplication,
 withHandler handler: @escaping (CLKComplicationTemplate?) -> Void) {
 if let data = dataProvider.allTrainsForToday().nextTrain(){
 handler(templateForTrain(data))
 } else {
 handler(nil)
 }
}

We already saw an example of our app showing the next train (see Figure 10-41), but
our app can also participate in time travel (see Figure 10-43). The user can use the
digital crown on the watch to move forward or backward and see the next available
train at the new time.

Figure 10-43. Moving our complication backward in time

10.10 Displaying Dates in Complications
Problem
You want to display Date instances in your complications.

Solution
To solve this problem, use an instance of the CLKDateTextProvider class, which is a
subclass of CLKTextProvider, as your text provider.

We will use CLKComplicationTemplateModularLargeColumns (a
modular large template) for this recipe, so configure your watch
target to provide only large modular templates (see Figure 10-42).

10.10 Displaying Dates in Complications | 381

www.allitebooks.com

http://www.allitebooks.org

Discussion
Let’s develop a modular large complication that provides us with the name and the
date of the next three public holidays (see Figure 10-44). We are not formatting the
date ourselves. We leave it to watchOS to decide how to display the date by using an
instance of CLKDateTextProvider.

Figure 10-44. The next three public holidays, with their names and dates

Just as in Recipes 10.8 and 10.9, we are going to add a new class to our watch app
called DataProvider. In there, we are going to program all the holidays this year. Let’s
start off by defining what a Holiday object looks like:

protocol Holidayable{
 var date: Date {get}
 var name: String {get}
}

struct Holiday : Holidayable{
 let date: Date
 let name: String
}

In our data provider class, we start off by defining some holiday names:

struct DataProvider{

 private let holidayNames = [
 "Father's Day",
 "Mother's Day",
 "Bank Holiday",
 "Nobel Day",
 "Man Day",
 "Woman Day",

382 | Chapter 10: Apple Watch

 "Boyfriend Day",
 "Girlfriend Day",
 "Dog Day",
 "Cat Day",
 "Mouse Day",
 "Cow Day",
]

 private func randomDay() -> Int{
 return Int(arc4random_uniform(20) + 1)
 }

 ...

Then we move on to providing our instances of Holiday:

func allHolidays() -> [Holiday]{

 var all = [Holiday]()

 let now = Date()
 let cal = Calendar.current
 let unitsArray: [Calendar.Component] = [.year, .month, .day]
 let units = Set(unitsArray)
 var comps = cal.dateComponents(units, from: now)

 var dates = [Date]()

 for month in 1...12{
 comps.day = randomDay()
 comps.month = month
 dates.append(cal.date(from: comps)!)
 }

 var i = 0
 for date in dates{
 all.append(Holiday(date: date, name: holidayNames[i]))
 i += 1
 }

 return all

}

It’s worth noting that the allHolidays() function we just wrote simply goes through
all months inside this calendar year and sets the day of the month to a random day.
So we will get 12 holidays, one in each month, at a random day inside that month.

Over to our ComplicationController. When we get asked later when we would like
to provide more data or updated data to watchOS, we are going to ask for 10 minutes
in the future. So if our data changes, watchOS will have a chance to ask us for updated
information:

10.10 Displaying Dates in Complications | 383

www.allitebooks.com

http://www.allitebooks.org

extension Date{
 func plus10Minutes() -> Date{
 return addingTimeInterval(10 * 60)
 }
}

Because the template we are going to provide allows a maximum of three items, we
would like to have methods on Array to return the second and the third items inside
the array, just like the prebuilt first property that the class offers:

extension Array{
 var second : Iterator.Element?{
 return count >= 1 ? self[1] : nil
 }
 var third : Iterator.Element?{
 return count >= 2 ? self[2] : nil
 }
}

DataProvider’s allHolidays() method returns 12 holidays. How about extending
the built-in array type to always give us the next three holidays? It would have to read
today’s date, go through the items in our array, compare the dates, and give us just the
upcoming three holidays:

func minimum<T : Comparable>(_ items: T...) -> T{
 var result = items[0]
 for value in items{
 if value < result{
 result = value
 }
 }
 return result
}

extension Collection where Iterator.Element : Holidayable {

 // may contain less than three holidays
 func nextThreeHolidays() -> Array<Self.Iterator.Element>{

 let now = Date()

 let orderedArray = Array(self.filter{
 now.compare($0.date as Date) == .orderedAscending
 })

 let result = Array(orderedArray[0..<minimum(orderedArray.count, 3)])

 return result
 }

}

384 | Chapter 10: Apple Watch

Now we start defining our complication:

class ComplicationController: NSObject, CLKComplicationDataSource {

 let dataProvider = DataProvider()

 ...

We need a method that can take in a Holiday object and give us a template of type
CLKComplicationTemplate for that. Our specific template for this recipe is of type
CLKComplicationTemplateModularLargeColumns. This template is like a 3×3 table. It
has three rows and three columns (see Figure 10-44). If we are at the end of the year
and we have no more holidays, we return a template that is of type CLKComplication
TemplateModularLargeStandardBody and tell the user that there are no more
upcoming holidays. Note that both templates have the words “ModularLarge” in their
name. Because we have specified in our target setting that we support only modular
large templates (see Figure 10-42), this example can return only templates that have
those words in their name:

func templateForHoliday(_ holiday: Holiday) -> CLKComplicationTemplate{

 let next3Holidays = dataProvider.allHolidays().nextThreeHolidays()

 let headerTitle = "Next 3 Holidays"

 guard next3Holidays.count > 0 else{
 let template = CLKComplicationTemplateModularLargeStandardBody()
 template.headerTextProvider = CLKSimpleTextProvider(text: headerTitle)
 template.body1TextProvider = CLKSimpleTextProvider(text: "Sorry!")
 return template
 }

 let dateUnits = NSCalendar.Unit.month.union(.day)
 let template = CLKComplicationTemplateModularLargeColumns()

 // first holiday
 if let firstHoliday = next3Holidays.first{
 template.row1Column1TextProvider =
 CLKSimpleTextProvider(text: firstHoliday.name)
 template.row1Column2TextProvider =
 CLKDateTextProvider(date: firstHoliday.date, units: dateUnits)
 }

 // second holiday
 if let secondHoliday = next3Holidays.second{
 template.row2Column1TextProvider =
 CLKSimpleTextProvider(text: secondHoliday.name)
 template.row2Column2TextProvider =
 CLKDateTextProvider(date: secondHoliday.date, units: dateUnits)
 }

10.10 Displaying Dates in Complications | 385

www.allitebooks.com

http://www.allitebooks.org

 // third holiday
 if let thirdHoliday = next3Holidays.third{
 template.row3Column1TextProvider =
 CLKSimpleTextProvider(text: thirdHoliday.name)
 template.row3Column2TextProvider =
 CLKDateTextProvider(date: thirdHoliday.date, units: dateUnits)
 }

 return template
}

We need to provide a timeline entry (date plus template) for our holidays as well:

func timelineEntryForHoliday(_ holiday: Holiday) ->
 CLKComplicationTimelineEntry{
 let template = templateForHoliday(holiday)
 return CLKComplicationTimelineEntry(date: holiday.date as Date,
 complicationTemplate: template)
}

And provide the first and last holidays:

func getTimelineStartDate(for complication: CLKComplication,
 withHandler handler: @escaping (Date?) -> Void) {
 handler(dataProvider.allHolidays().first!.date as Date)
}

func getTimelineEndDate(for complication: CLKComplication,
 withHandler handler: @escaping (Date?) -> Void) {
 handler(dataProvider.allHolidays().last!.date)
}

We’ll also support time travel and provide our content on the lock screen, because it is
not private:

func getSupportedTimeTravelDirections(
 for complication: CLKComplication,
 withHandler handler: @escaping (CLKComplicationTimeTravelDirections) -> Void) {
 handler([.forward, .backward])
}

func getPrivacyBehavior(
 for complication: CLKComplication,
 withHandler handler: @escaping (CLKComplicationPrivacyBehavior) -> Void) {
 handler(.showOnLockScreen)
}

Now let’s give watchOS information about previous and upcoming holidays:

func getTimelineEntries(
 for complication: CLKComplication,
 before date: Date, limit: Int,
 withHandler handler: @escaping (([CLKComplicationTimelineEntry]?) -> Void)) {

386 | Chapter 10: Apple Watch

 let entries = dataProvider.allHolidays().filter{
 date.compare($0.date as Date) == .orderedDescending
 }.map{
 self.timelineEntryForHoliday($0)
 }

 handler(entries)
}

func getTimelineEntries(
 for complication: CLKComplication,
 after date: Date, limit: Int,
 withHandler handler: @escaping (([CLKComplicationTimelineEntry]?) -> Void)) {

 let entries = dataProvider.allHolidays().filter{
 date.compare($0.date as Date) == .orderedAscending
 }.map{
 self.timelineEntryForHoliday($0)
 }

 handler(entries)

}

Last but not least, we’ll ensure that our app provides the upcoming three holidays
when asked to provide them now:

func getCurrentTimelineEntry(
 for complication: CLKComplication,
 withHandler handler: @escaping ((CLKComplicationTimelineEntry?) -> Void)) {

 if let first = dataProvider.allHolidays().nextThreeHolidays().first{
 handler(timelineEntryForHoliday(first))
 } else {
 handler(nil)
 }

}

func getNextRequestedUpdateDate(handler: @escaping (Date?) -> Void) {
 handler(Date().plus10Minutes());
}

func getPlaceholderTemplate(
 for complication: CLKComplication,
 withHandler handler: @escaping (CLKComplicationTemplate?) -> Void) {
 if let holiday = dataProvider.allHolidays().nextThreeHolidays().first{
 handler(templateForHoliday(holiday))
 } else {
 handler(nil)
 }
}

10.10 Displaying Dates in Complications | 387

www.allitebooks.com

http://www.allitebooks.org

See Also
Recipe 10.11

10.11 Displaying Times in Complications
Problem
You want to display a time on your watch UI and want it to look good regardless of
available space on the watch.

Solution
Provide your time (in the form of a Date) to an instance of CLKTimeTextProvider
and use it inside a template (see Figure 10-45). Here, our large modular complication
in the center of the screen is showing the next pause that we can take at work, which
happens to be a coffee pause.

Figure 10-45. The time is displayed on the screen using an instance of CLKTime‐
TextProvider

In this recipe, we are going to rely a lot on what we covered in
Recipe 10.8 and other complication recipes in this chapter. I sug‐
gest reading Recipe 10.8 at least to get an idea of how our data pro‐
vider works. Otherwise, you will still be able to read this recipe;
however, I will skip over some details that I’ve already explained in
Recipe 10.8.

388 | Chapter 10: Apple Watch

Discussion
This recipe uses a large modular template, so make sure that your project is set up for
that (see Figure 10-42). Here, we want to build an app that shows the different breaks
or pauses that the user can take at work, and when they occur—for instance, when
the first pause is after they get to work, when lunch happens, when the next pause
between lunch and dinner is, and when it’s time to stop for dinner.

So, we have breaks at work and we need to define them. Create a Swift file in your
watch extension and call it DataProvider. In there, define your break:

import Foundation

protocol Pausable{
 var name: String {get}
 var date: Date {get}
}

struct PauseAtWork : Pausable{
 let name: String
 let date: Date
}

Now in your DataProvider structure, create four pauses that the user can take at
work at different times and provide them as an array:

struct DataProvider{

 func allPausesToday() -> [PauseAtWork]{

 var all = [PauseAtWork]()

 let now = Date()
 let cal = Calendar.current

 let unitsArray: [Calendar.Component] = [.year, .month, .day]
 let units = Set(unitsArray)

 var comps = cal.dateComponents(units, from: now)
 comps.calendar = cal
 comps.minute = 30

 comps.hour = 11
 all.append(
 PauseAtWork(name: "Coffee", date: comps.date!))

 comps.minute = 30
 comps.hour = 14
 all.append(
 PauseAtWork(name: "Lunch", date: comps.date!))

 comps.minute = 0

10.11 Displaying Times in Complications | 389

www.allitebooks.com

http://www.allitebooks.org

 comps.hour = 16
 all.append(
 PauseAtWork(name: "Tea", date: comps.date!))

 comps.hour = 17
 all.append(
 PauseAtWork(name: "Dinner", date: comps.date!))

 return all

 }

}

Here we obtain the current date and time and then go from coffee break in the morn‐
ing to dinner in the evening, adding each pause to the array. The method is called
allPausesToday(), and we are going to invoke it from our watch complication.

Before, we created a protocol called Pausable and now we have all our pauses in an
array. When we are asked to provide a template for the next pause to show in the
complication, we have to get the current time and find the pause whose time is after
the current time. So let’s bundle that up by extending Collection like we have done
in other recipes in this chapter:

extension Collection where Iterator.Element : Pausable {

 func nextPause() -> Self.Iterator.Element?{
 let now = Date()

 for pause in self{
 if now.compare(pause.date as Date) == .orderedAscending{
 return pause
 }
 }

 return nil
 }

}

In our complication now, we instantiate our data provider:

class ComplicationController: NSObject, CLKComplicationDataSource {

 let dataProvider = DataProvider()

 ...

For every pause that we want to display to the user (see Figure 10-45), we need to
provide a template of type CLKComplicationTemplate to the runtime. We never
instantiate that class directly. Instead, we return an instance of a subclass of that class.

390 | Chapter 10: Apple Watch

In this particular example, we display an instance of CLKComplicationTemplateModu
larLargeTallBody. However, if there are no more pauses to take at work (e.g., if the
time is 21:00 and the user is no longer at work), we display a placeholder to tell the
user there are no more pauses. The template for that is of type CLKComplication
TemplateModularLargeStandardBody. The difference between the two templates is
visible if you read their names. We set the time on our template by setting the body
TextProvider property of our CLKComplicationTemplateModularLargeTallBody
instance:

func templateForPause(_ pause: PauseAtWork) -> CLKComplicationTemplate{

 guard let nextPause = dataProvider.allPausesToday().nextPause() else{
 let template = CLKComplicationTemplateModularLargeStandardBody()
 template.headerTextProvider = CLKSimpleTextProvider(text: "Next Break")
 template.body1TextProvider = CLKSimpleTextProvider(text: "None")
 return template
 }

 let template = CLKComplicationTemplateModularLargeTallBody()
 template.headerTextProvider = CLKSimpleTextProvider(text: nextPause.name)
 template.bodyTextProvider =
 CLKTimeTextProvider(date: nextPause.date as Date)

 return template
}

We also have to provide some of the other delegate methods of CLKComplicationData
Source, such as the timeline entry (date plus template) for every pause that the user
can take at work, and we need to support time travel for this example. On top of that,
our information is not sensitive, so when asked whether we want to display our com‐
plication on the lock screen, we happily say yes:

func timelineEntryForPause(_ pause: PauseAtWork) ->
 CLKComplicationTimelineEntry{
 let template = templateForPause(pause)
 return CLKComplicationTimelineEntry(date: pause.date as Date,
 complicationTemplate: template)
}

func getSupportedTimeTravelDirections(
 for complication: CLKComplication,
 withHandler handler: @escaping (CLKComplicationTimeTravelDirections) -> Void) {
 handler([.forward, .backward])
}

func getPrivacyBehavior(
 for complication: CLKComplication,
 withHandler handler: @escaping (CLKComplicationPrivacyBehavior) -> Void) {
 handler(.showOnLockScreen)
}

10.11 Displaying Times in Complications | 391

www.allitebooks.com

http://www.allitebooks.org

When asked the beginning and end range of dates for our complications, we will
return the dates for the first and the last pause that the user can take at work today.
Remember, in this complication, we will return all the pauses for the current. When
the time comes to display the pauses to take at work tomorrow, we will provide a
whole set of new pauses:

func getTimelineStartDate(for complication: CLKComplication,
 withHandler handler: @escaping (Date?) -> Void) {
 handler(dataProvider.allPausesToday().first!.date as Date)
}

func getTimelineEndDate(for complication: CLKComplication,
 withHandler handler: @escaping (Date?) -> Void) {
 handler(dataProvider.allPausesToday().last!.date)
}

When the runtime calls the getTimelineEntries(for:before:limit:with

Handler:) method, provide all the pauses that are available before the given date:

func getTimelineEntries(
 for complication: CLKComplication,
 before date: Date, limit: Int,
 withHandler handler: @escaping (([CLKComplicationTimelineEntry]?) -> Void)) {

 let entries = dataProvider.allPausesToday().filter{
 date.compare($0.date as Date) == .orderedDescending
 }.map{
 self.timelineEntryForPause($0)
 }

 handler(entries)
}

Similarly, when the getTimelineEntries(for:after:limit:withHandler:) method
is called, return all the available pauses after the given date:

func getTimelineEntries(
 for complication: CLKComplication,
 after date: Date, limit: Int,
 withHandler handler: @escaping (([CLKComplicationTimelineEntry]?) -> Void)) {

 let entries = dataProvider.allPausesToday().filter{
 date.compare($0.date as Date) == .orderedAscending
 }.map{
 self.timelineEntryForPause($0)
 }

 handler(entries)

}

392 | Chapter 10: Apple Watch

In the getCurrentTimelineEntry(for:withHandler:) method, we will be asked to
provide the template for the current data (the next pause) to show on the screen. We
already have a method on Collection called nextPause(), so let’s use that to provide
a template to watchOS:

func getCurrentTimelineEntry(
 for complication: CLKComplication,
 withHandler handler: @escaping ((CLKComplicationTimelineEntry?) -> Void)) {

 if let pause = dataProvider.allPausesToday().nextPause(){
 handler(timelineEntryForPause(pause))
 } else {
 handler(nil)
 }

}

Because in a typical watch app our data would probably come from a backend, we
would like the runtime to ask us for up-to-date information as soon as possible, but
not too soon. So let’s do that after 10 minutes:

func getNextRequestedUpdateDate(handler: @escaping (Date?) -> Void) {
 handler(Date().plus10Minutes());
}

Last but not least, we also need to provide a placeholder template when the user is
adding our complication to her watch face:

func getPlaceholderTemplate(
 for complication: CLKComplication,
 withHandler handler: @escaping (CLKComplicationTemplate?) -> Void) {
 if let pause = dataProvider.allPausesToday().nextPause(){
 handler(templateForPause(pause))
 } else {
 handler(nil)
 }
}

See Also
Recipe 10.10

10.12 Displaying Time Intervals in Complications
Problem
You want to display today’s meetings on your watchOS UI, together with a time inter‐
val (start date–end date). For example, if it’s brunch time, the screen should show the
description and location of where you are going to have brunch, along with the time
interval of the brunch (see Figure 10-46).

10.12 Displaying Time Intervals in Complications | 393

www.allitebooks.com

http://www.allitebooks.org

Figure 10-46. Meeting with start and end times

Solution
Use an instance of CLKTimeIntervalTextProvider as your text provider (see
Figure 10-46).

This recipe is an extension of others we’ve already looked at, partic‐
ularly Recipes 10.10 and 10.11.

Discussion
Let’s say that we want to have an app that shows us all our meetings today. Every
meeting has the following properties:

• Start and end times (the time interval)
• Name (e.g., “Brunch with Sarah”)
• Location

Because text providers of type CLKSimpleTextProvider accept a short text in addi‐
tion to the full text, we also have a short version of the location and the name. For
instance, the location can be “Stockholm Central Train Station,” whereas the short
version of this could be “Central Station” or even “Centralen” in Swedish, which
means “the center.” So let’s define this meeting object:

394 | Chapter 10: Apple Watch

protocol Timable{
 var name: String {get}
 var shortName: String {get}
 var location: String {get}
 var shortLocation: String {get}
 var startDate: Date {get}
 var endDate: Date {get}
 var previous: Timable? {get}
}

struct Meeting : Timable{
 let name: String
 let shortName: String
 let location: String
 let shortLocation: String
 let startDate: Date
 let endDate: Date
 let previous: Timable?
}

Create a Swift file in your project called DataProvider. Put all the meetings for today
in there and return an array:

struct DataProvider{

 func allMeetingsToday() -> [Meeting]{

 var all = [Meeting]()

 let oneHour: TimeInterval = 1 * 60.0 * 60

 let now = Date()
 let cal = Calendar.current
 let unitsArray: [Calendar.Component] = [.year, .month, .day]
 let units = Set(unitsArray)
 var comps = cal.dateComponents(units, from: now)
 comps.calendar = cal
 comps.minute = 30

 comps.hour = 11
 let meeting1 = Meeting(
 name: "Brunch with Sarah", shortName: "Brunch",
 location: "Stockholm Central", shortLocation: "Central",
 startDate: comps.date!,
 endDate: comps.date!.addingTimeInterval(oneHour), previous: nil)
 all.append(meeting1)

 comps.minute = 30
 comps.hour = 14
 let meeting2 = Meeting(
 name: "Lunch with Gabriella", shortName: "Lunch",
 location: "At home", shortLocation: "Home",
 startDate: comps.date!,

10.12 Displaying Time Intervals in Complications | 395

www.allitebooks.com

http://www.allitebooks.org

 endDate: comps.date!.addingTimeInterval(oneHour),
 previous: meeting1)
 all.append(meeting2)

 comps.minute = 0
 comps.hour = 16
 let meeting3 = Meeting(
 name: "Snack with Leif", shortName: "Snack",
 location: "Flags Cafe", shortLocation: "Flags",
 startDate: comps.date!,
 endDate: comps.date!.addingTimeInterval(oneHour),
 previous: meeting2)
 all.append(meeting3)

 comps.hour = 17
 let meeting4 = Meeting(
 name: "Dinner with Family", shortName: "Dinner",
 location: "At home", shortLocation: "Home",
 startDate: comps.date!,
 endDate: comps.date!.addingTimeInterval(oneHour),
 previous: meeting3)
 all.append(meeting4)

 return all

 }

}

In your complication class, extend Collection so that it can return the upcoming
meeting:

extension Collection where Iterator.Element : Timable {

 func nextMeeting() -> Self.Iterator.Element?{
 let now = Date()

 for meeting in self{
 if now.compare(meeting.startDate as Date) == .orderedAscending{
 return meeting
 }
 }

 return nil
 }

}

396 | Chapter 10: Apple Watch

I have extended Collection, but only if the items are Timable. I
explained this technique in Recipe 6.18.

In your complication handler, create an instance of the data provider:

class ComplicationController: NSObject, CLKComplicationDataSource {

 let dataProvider = DataProvider()

 ...

Our template is of type CLKComplicationTemplateModularLargeStandardBody,
which has a few important properties that we set as follows:

headerTextProvider

Shows the time range for the meeting.

body1TextProvider

Shows the name of the meeting.

body2TextProvider

Shows the location of the meeting.

To display the time range of the meeting, instantiate CLKTimeIntervalTextProvider:

func templateForMeeting(_ meeting: Meeting) -> CLKComplicationTemplate{

 let template = CLKComplicationTemplateModularLargeStandardBody()

 guard let nextMeeting = dataProvider.allMeetingsToday().nextMeeting() else{
 template.headerTextProvider = CLKSimpleTextProvider(text: "Next Break")
 template.body1TextProvider = CLKSimpleTextProvider(text: "None")
 return template
 }

 template.headerTextProvider =
 CLKTimeIntervalTextProvider(start: nextMeeting.startDate as Date,
 end: nextMeeting.endDate as Date)

 template.body1TextProvider =
 CLKSimpleTextProvider(text: nextMeeting.name,
 shortText: nextMeeting.shortName)

 template.body2TextProvider =
 CLKSimpleTextProvider(text: nextMeeting.location,
 shortText: nextMeeting.shortLocation)

 return template
}

10.12 Displaying Time Intervals in Complications | 397

www.allitebooks.com

http://www.allitebooks.org

Using this method, you can also create timeline entries (date plus template). In this
example, we set every new event’s start date to the end date of the previous event (if it
is available). That way, as soon as the current ongoing meeting ends, the next meeting
shows up on the list:

func timelineEntryForMeeting(
 _ meeting: Meeting) -> CLKComplicationTimelineEntry{
 let template = templateForMeeting(meeting)

 let date = meeting.previous?.endDate ?? meeting.startDate
 return CLKComplicationTimelineEntry(date: date as Date,
 complicationTemplate: template)
}

If the event has no previous events, its timeline entry date will be its
start date, instead of the end date of the previous event.

Let’s also participate in time travel and show our content on the lock screen as well:

func getSupportedTimeTravelDirections(
 for complication: CLKComplication,
 withHandler handler: @escaping (CLKComplicationTimeTravelDirections) -> Void) {
 handler([.forward, .backward])
}

func getPrivacyBehavior(
 for complication: CLKComplication,
 withHandler handler: @escaping (CLKComplicationPrivacyBehavior) -> Void) {
 handler(.showOnLockScreen)
}

Then we have to provide the date range for which we have available meetings. The
start of the range is the start date of the first meeting, and the end date is the end date
of the last meeting:

func getTimelineStartDate(for complication: CLKComplication,
 withHandler handler: @escaping (Date?) -> Void) {
 handler(dataProvider.allMeetingsToday().first!.startDate as Date)
}

func getTimelineEndDate(for complication: CLKComplication,
 withHandler handler: @escaping (Date?) -> Void) {
 handler(dataProvider.allMeetingsToday().last!.endDate)
}

We’ll also be asked to provide all the available meetings before a certain date, so let’s
do that:

398 | Chapter 10: Apple Watch

func getTimelineEntries(
 for complication: CLKComplication,
 before date: Date, limit: Int,
 withHandler handler: @escaping (([CLKComplicationTimelineEntry]?) -> Void)) {

 let entries = dataProvider.allMeetingsToday().filter{
 date.compare($0.startDate as Date) == .orderedDescending
 }.map{
 self.timelineEntryForMeeting($0)
 }

 handler(entries)
}

Similarly, we have to provide all our available meetings after a given date:

func getTimelineEntries(
 for complication: CLKComplication,
 after date: Date, limit: Int,
 withHandler handler: @escaping (([CLKComplicationTimelineEntry]?) -> Void)) {

 let entries = dataProvider.allMeetingsToday().filter{
 date.compare($0.startDate as Date) == .orderedAscending
 }.map{
 self.timelineEntryForMeeting($0)
 }

 handler(entries)

}

Last but not least, we’ll provide our placeholder template, the template for now, and
the next time we would like watchOS to ask us for updated information:

func getCurrentTimelineEntry(
 for complication: CLKComplication,
 withHandler handler: @escaping ((CLKComplicationTimelineEntry?) -> Void)) {

 if let meeting = dataProvider.allMeetingsToday().nextMeeting(){
 handler(timelineEntryForMeeting(meeting))
 } else {
 handler(nil)
 }

}

func getNextRequestedUpdateDate(handler: @escaping (Date?) -> Void) {
 handler(Date().plus10Minutes());
}

func getPlaceholderTemplate(
 for complication: CLKComplication,
 withHandler handler: @escaping (CLKComplicationTemplate?) -> Void) {

10.12 Displaying Time Intervals in Complications | 399

www.allitebooks.com

http://www.allitebooks.org

 if let pause = dataProvider.allMeetingsToday().nextMeeting(){
 handler(templateForMeeting(pause))
 } else {
 handler(nil)
 }
}

We coded the plus10Minutes() method on Date in Recipe 10.10.

10.13 Recording Audio in Your Watch App
Problem
You want to allow your users to record audio while inside your watch app, and you
want to get access to the recorded audio.

Solution
To enable users to record audio in your watch app, use the presentAudioRecorder
Controller(withOutputURL:preset:options:completion:) method of your
WKInterfaceController class to present a system dialog that can take care of audio
recording. To dismiss the dialog, use the dismissAudioRecordingController()
method of your controller.

The options parameter of presentAudioRecorderControllerWithOutputURL(_:pre
set:options:completion:) accepts a dictionary that can contain the following keys:

WKAudioRecorderControllerOptionsActionTitleKey

This key, of type String, will be the title of our recorder.

WKAudioRecorderControllerOptionsAlwaysShowActionTitleKey

This key, of type NSNumber, contains a Bool value that dictates whether the title
should always be shown on the recorder.

WKAudioRecorderControllerOptionsAutorecordKey

This key, of type NSNumber, contains a Bool value to indicate whether recording
should begin automatically when the dialog is presented.

WKAudioRecorderControllerOptionsMaximumDurationKey

This key, of type NSNumber, contains a TimeInterval value to dictate the maxi‐
mum duration of the audio content.

400 | Chapter 10: Apple Watch

Discussion
For this recipe, we are going to create a watch app whose UI looks like that shown in
Figure 10-47. It holds a label to show the current status (started recording, failed
recording, etc.) and a button that, when pressed, will show the recording dialog.

Figure 10-47. Label for status and button to record

Hook the label up to your code with the name statusLbl. Then hook your record
button to your interface under a method named record(). Your interface code
should look like this now:

class InterfaceController: WKInterfaceController {

 @IBOutlet var statusLbl: WKInterfaceLabel!

 ...

Define the URL where your recording will be saved:

var url: URL{
 let fm = FileManager()
 let url = try! fm.url(for: .musicDirectory,
 in: FileManager.SearchPathDomainMask.userDomainMask,
 appropriateFor: nil, create: true)
 .appendingPathComponent("recording")
 return url
}

10.13 Recording Audio in Your Watch App | 401

www.allitebooks.com

http://www.allitebooks.org

Also, because the completion block of your recording screen might not get called on
the main thread, create a variable that can set the text inside the status label on the
main thread:

var status = ""{
 willSet{
 DispatchQueue.main.async{
 self.statusLbl.setText(newValue)
 }
 }
}

Next, construct your options for when the record button is pressed:

let oneMinute: TimeInterval = 1 * 60

let yes = NSNumber(value: true)
let no = NSNumber(value: false)

let options = [
 WKAudioRecorderControllerOptionsActionTitleKey : "Audio Recorder",
 WKAudioRecorderControllerOptionsAlwaysShowActionTitleKey : yes,
 WKAudioRecorderControllerOptionsAutorecordKey : no,
 WKAudioRecorderControllerOptionsMaximumDurationKey : oneMinute
] as [AnyHashable : Any]

Last but not least, present your audio recorder to the user and then set the status
accordingly:

presentAudioRecorderController(
 withOutputURL: url,
 preset: WKAudioRecorderPreset.wideBandSpeech,
 options: options){
 success, error in

 defer{
 self.dismissAudioRecorderController()
 }

 guard success && error == nil else{
 self.status = "Failed to record"
 return
 }

 self.status = "Successfully recorded"

}

402 | Chapter 10: Apple Watch

10.14 Playing Local and Remote Audio and Video in Your
Watch App
Problem
You want to play audio or video files, whether they are saved locally or online.

Solution
Use the presentMediaPlayerControllerWithURL(_:options:completion:)

instance method of your interface controller (WKInterfaceController). Close the
media player with the dismissMediaPlayerController() method.

Discussion
The first parameter to this method is just the URL from which the media must be
loaded. The options parameter is a dictionary that can have the following keys:

WKMediaPlayerControllerOptionsAutoplayKey

A Boolean value (wrapped inside an NSNumber instance) that dictates whether the
media should autoplay when it is opened. This is set to false by default.

WKMediaPlayerControllerOptionsStartTimeKey

The number of seconds (of type TimeInterval) into the media where you want
to start it.

WKMediaPlayerControllerOptionsVideoGravityKey

A value of type WKVideoGravity (place its raw integer value in your dictionary)
that dictates the scaling of the video. You can, for instance, specify WKVideoGrav
ity.ResizeAspectFill.

WKMediaPlayerControllerOptionsLoopsKey

A Boolean value (wrapped inside NSNumber) that specifies whether the media
should loop automatically. The default is false.

For this recipe, you are going to create a UI similar to that in Recipe 10.13 (see
Figure 10-47). The UI looks like Figure 10-48.

10.14 Playing Local and Remote Audio and Video in Your Watch App | 403

www.allitebooks.com

http://www.allitebooks.org

Figure 10-48. Label to show the current status, and a button to start the playback

Hook up the label to an outlet called statusLbl and the action of the button to a
method called play(). Then create a variable in your code called status of type
String, just as you did in Recipe 10.13. In the play() method, first construct your
URL:

guard let url = URL(string: "http://localhost:8888/video.mp4") else{
 status = "Could not create url"
 return
}

I am running MAMP (the free version) on my computer and I’m
hosting a video called video.mp4. You can download lots of public
domain files by just searching online.

You want the media player to do the following:

• Autoplay the video.
• Loop the video.
• Resize the video so that it fills the entire screen.
• Start at 4 seconds into the video.

So, construct the options dictionary as follows:

let gravity = WKVideoGravity.resizeAspectFill.rawValue

let options = [
 WKMediaPlayerControllerOptionsAutoplayKey : NSNumber(value: true),
 WKMediaPlayerControllerOptionsStartTimeKey : 4.0 as TimeInterval,

404 | Chapter 10: Apple Watch

 WKMediaPlayerControllerOptionsVideoGravityKey : gravity,
 WKMediaPlayerControllerOptionsLoopsKey : NSNumber(value: true),
] as [AnyHashable : Any]

Now start the media player and handle any possible errors:

presentMediaPlayerController(with: url, options: options) {
 didPlayToEnd, endTime, error in

 self.dismissMediaPlayerController()

 if let error = error{
 self.status = "Error occurred \(error)"
 return
 }

 if didPlayToEnd{
 self.status = "Played to end of the file"
 } else {
 self.status = "Did not play to end of file. End time = \(endTime)"
 }

}

10.14 Playing Local and Remote Audio and Video in Your Watch App | 405

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 11

Contacts

The Contacts framework is for those who want to import, show, select, modify, and
save contacts on a user’s iOS device. This framework is fully compatible with Swift’s
lingo and is very easy to work with. At the heart of the Contacts framework is the
CNContact object, which represents a contact. You get access to the Contacts database
using the CNContactStore class.

Every time you want to access the address book, whether you are trying to create a
new contact or fetch an existing one, you need to ensure that you have sufficient
access to the address book. You can check your access privileges using the authoriza
tionStatus(for:) class method of your contact store. This method takes in one
parameter of type CNEntityType. You can pass the value of Contacts to this method,
for instance, to ask for access to the user’s contacts. If you do not have access, you can
use the requestAccess(for:completionHandler:) method of your contact store to
request access.

The concept of a partial contact is important enough to cover now as well. A partial
contact is a contact whose properties have not all been fetched from the store yet. For
instance, perhaps you can fetch only a contact’s first and last name, not her profile
photo or email addresses. This is a partial contact. A partial contact’s other informa‐
tion—such as email addresses—that has not been fetched yet can later be fetched
from the store using her identifier (part of the CNContact object).

Some of the classes that are part of the Contacts framework have immutable and
mutable flavors. An example is the CNContact and CNMutableContact classes. The
former is a contact that you have fetched from the store and just use in your app,
while the latter is a contact that you have created in your app and want to save into
the store.

407

www.allitebooks.com

http://www.allitebooks.org

Contact objects on iOS are thread-safe. I suggest that you do all your fetch operations
on a background thread. Fetch the contacts in the background and safely display your
contacts on your UI by accessing the same contact objects on the main thread.

In this chapter, it’s best to always reset the contents of your address
book on the simulator by resetting the simulator before testing the
code in each recipe, unless I’ve explicitly specified not to. This is
just to make sure that every recipe is working with a clear state of
the address book database. You can find the Contacts app on your
simulator. It should look like Figure 11-1 in a clear state.

Figure 11-1. Clean state of the Contacts app on the simulator

11.1 Creating Contacts
Problem
You want to insert a new contact into the Contacts database.

408 | Chapter 11: Contacts

Solution
Follow these steps:

1. Request access to the database if you don’t already have it.
2. Create an instance of the CNMutableContact class.
3. Set its various properties, such as givenName, middleName, and familyName.
4. Instantiate CNSaveRequest, call the addContact(_:toContainerWithIdenti

fier:) method on it, and pass your contact to it. Set the container ID to nil.
5. Once you have the request, execute it on your store instance using execute(_:).

Discussion
Create a single view app and first ask for permission to access contacts on the user’s
device:

// this is a separate helper class
public final class ContactAuthorizer{

 public class func authorizeContacts(completionHandler
 : @escaping (_ succeeded: Bool) -> Void){

 switch CNContactStore.authorizationStatus(for: .contacts){
 case .authorized:
 completionHandler(true)
 case .notDetermined:
 CNContactStore().requestAccess(for: .contacts){succeeded, err in
 completionHandler(err == nil && succeeded)
 }
 default:
 completionHandler(false)
 }

 }

}

// put this in your app delegate
func application(
 _ application: UIApplication,
 didFinishLaunchingWithOptions
 launchOptions: [UIApplicationLaunchOptionsKey : Any]? = nil) -> Bool {

 ContactAuthorizer.authorizeContacts {succeeded in
 if succeeded{
 self.createContact()
 } else{
 print("Not handled")
 }

11.1 Creating Contacts | 409

www.allitebooks.com

http://www.allitebooks.org

 }

 return true
}

After we get the permission here, we’re calling the createContact() method that we
are just about to code. Also, we’re using a property on the class that is our instance of
the contact store:

var store = CNContactStore()

In the createContact() method, first let’s create the basics of the contact object with
the name and such:

let fooBar = CNMutableContact()
fooBar.givenName = "Foo"
fooBar.middleName = "A."
fooBar.familyName = "Bar"
fooBar.nickname = "Fooboo"

Then we set the profile photo:

// profile photo
if let img = UIImage(named: "apple"),
 let data = UIImagePNGRepresentation(img){
 fooBar.imageData = data
}

I’ve included a profile photo that I can use in the app. You don’t
have to do that if you don’t want to. This code will work even if you
don’t have a profile photo by jumping over this section if the image
cannot be found.

Now we’re going to set the user’s phone numbers by setting an array of CNLabeled
Value on the phoneNumbers property of the contact object. Labeled values are instan‐
ces of the aforementioned class and can have a label and a value. The label is a string
such as CNLabelHome or CNLabelWork, and the value, in the case of a phone number, is
an instance of the CNPhoneNumber class:

// set the phone numbers
let homePhone = CNLabeledValue(label: CNLabelHome,
 value: CNPhoneNumber(stringValue: "123"))
let workPhone = CNLabeledValue(label: CNLabelWork,
 value: CNPhoneNumber(stringValue: "567"))
fooBar.phoneNumbers = [homePhone, workPhone]

We’ll then set the email addresses for this person by manipulating the emailAd
dresses property of the contact. This property also accepts an array of CNLabeled
Value. The values of this labeled object are the email addresses, as string objects:

410 | Chapter 11: Contacts

// set the email addresses
let homeEmail = CNLabeledValue(label: CNLabelHome,
 value: "foo@home" as NSString)
let workEmail = CNLabeledValue(label: CNLabelWork,
 value: "bar@home" as NSString)
fooBar.emailAddresses = [homeEmail, workEmail]

Next up, let’s write some information in this contact about her job using the job
Title, organizationName, and departmentName properties:

// job info
fooBar.jobTitle = "Chief Awesomeness Manager (CAM)"
fooBar.organizationName = "Pixolity"
fooBar.departmentName = "IT"

After that, we’ll set the Facebook and Twitter profiles of this user. We do that by set‐
ting the value of the socialProfiles array on the contact. This array takes items of
type CNLabeledValue, and the value of each one of these labeled objects should be of
type CNSocialProfile. We can set the service for each of the profiles using constants
such as the following:

• CNSocialProfileServiceFacebook

• CNSocialProfileServiceTwitter

• CNSocialProfileServiceLinkedIn

• CNSocialProfileServiceFlickr

// social media
let facebookProfile = CNLabeledValue(label: "Facebook", value:
 CNSocialProfile(
 urlString: nil, username: "foobar",
 userIdentifier: nil, service: CNSocialProfileServiceFacebook))

let twitterProfile = CNLabeledValue(label: "Twitter", value:
 CNSocialProfile(
 urlString: nil, username: "foobar",
 userIdentifier: nil, service: CNSocialProfileServiceTwitter))

fooBar.socialProfiles = [facebookProfile, twitterProfile]

We’re also going to set some instant messaging information for our contact, such as
her Skype and AIM information. To do this, we need to set the value of the
instantMessageAddresses property, which takes in an array of, you guessed it,
CNLabeledValue. Each of these values should be of type CNInstantMessageAddress,
and the service inside each message address object can be a string such as:

• CNInstantMessageServiceSkype

• CNInstantMessageServiceAIM

• CNInstantMessageServiceMSN

11.1 Creating Contacts | 411

www.allitebooks.com

http://www.allitebooks.org

• CNInstantMessageServiceYahoo

// instant messaging
let skypeAddress = CNLabeledValue(label: "Skype", value:
 CNInstantMessageAddress(username: "foobar",
 service: CNInstantMessageServiceSkype))
let aimAddress = CNLabeledValue(label: "AIM", value:
 CNInstantMessageAddress(username: "foobar",
 service: CNInstantMessageServiceAIM))
fooBar.instantMessageAddresses = [skypeAddress, aimAddress]

We can also set some notes on our contact using the note property, which is just a
string:

// some additional notes
fooBar.note = "Some additional notes"

Next, we need to set the birthday property. This is a property of type DateCompo
nents:

// birthday
var birthday = DateComponents()
birthday.year = 1980
birthday.month = 9
birthday.day = 27
fooBar.birthday = birthday

Every contact also has a property named dates that can contain dates such as the
user’s anniversary. This is an array of CNLabeledValue objects. We can set the anni‐
versary for this user as follows:

// anniversary
let anniversaryDate = NSDateComponents()
anniversaryDate.month = 6
anniversaryDate.day = 13

let anniversary = CNLabeledValue(label: "Anniversary",
 value: anniversaryDate)

fooBar.dates = [anniversary]

We don’t set a year for the anniversary because an anniversary is a
repeating event.

We’re finally done with our contact and can save her into the contact store:

// saving the contact to the contact store
let request = CNSaveRequest()
request.add(fooBar, toContainerWithIdentifier: nil)

412 | Chapter 11: Contacts

do{
 try store.execute(request)
 print("Successfully stored the contact")
} catch let err{
 print("Failed to save the contact. \(err)")
}

If you run this code n times on the same device, you will get n of
the same contacts. The Contacts database does not prevent multi‐
ple saves on the same contact. They become different contacts
eventually. It is our responsibility to avoid this.

And now our contact appears in the list (Figure 11-2).

Figure 11-2. The new contact in all its glory

11.1 Creating Contacts | 413

www.allitebooks.com

http://www.allitebooks.org

11.2 Searching for Contacts
Problem
You want to search the contacts available on a device.

Solution
There are various ways of fetching contacts from a store. Here are some of them, in
no particular order:

unifiedContacts(matching:keysToFetch:) method of CNContactStore
This allows you to fetch all contacts that match a certain predicate.

enumerateContacts(with:usingBlock:) method of CNContactStore
This allows you to enumerate through all contacts that match a fetch request. The
fetch request can have a predicate if you want it to. Otherwise, you can use this
method with a request object that does not have a predicate, in order to fetch all
contacts.

unifiedContact(withIdentifier:keysToFetch:) method of CNContactStore
This fetches only a single contact with a given identifier, if it can find one. Use
this method to fetch properties for a partially fetched contact.

The term “unified contacts” is iOS’s way of showing that the contact
objects that we get are intelligently merged from different sources,
if available. If you have “Foo Bar” in your contacts and then you
sign into Facebook with its iOS app and bring your Facebook con‐
tacts into your phone, and you have “Foo Bar” on Facebook as well,
iOS will merge that contact for you into one contact. Foo Bar is
now a unified contact.

Discussion
Let’s have a look at a few examples. First, let’s write some code that will find anybody
in your address book whose name matches “John”. Start by creating a predicate using
the predicateForContactsMatchingName(_:) class method of the CNContact class:

let predicate = CNContact.predicateForContacts(matchingName: "john")

Then you are going to specify that you need the first and last names of the contacts
that match that name:

let toFetch = [CNContactGivenNameKey as NSString, CNContactFamilyNameKey
 as NSString]

414 | Chapter 11: Contacts

Once that is done, use the unifiedContacts(matching:keysToFetch:) method of
the contact store to fetch the contacts matching your predicate. Go through all the
matching contacts and print the first and last name of each alongside its identifier
property:

do{
 let contacts = try store.unifiedContacts(
 matching: predicate, keysToFetch: toFetch)

 for contact in contacts{
 print(contact.givenName)
 print(contact.familyName)
 print(contact.identifier)
 }

} catch let err{
 print(err)
}

To ensure that I am doing the search on a background thread, I’ve
wrapped this code inside OperationQueue().addOperation(_:). I
suggest that you do the same.

Every contact object has a handy property called identifier. This identifier usually
looks like a UUID. If you keep an identifier to a contact, you can always refetch that
contact using the unifiedContact(withIdentifier:keysToFetch:) method of
CNContactStore. You do not have to explicitly fetch the identifier property of a
contact. This identifier is fetched whether you want it or not, for every contact that
you get from a store. So you can omit that in your keysToFetch.

Let’s look at another example. This time you are going to do the same thing that you
did in the previous example, but instead use the CNContactFetchRequest class mixed
with the enumerateContacts(with:usingBlock:) method of CNContactStore to
achieve the same results.

First, specify what properties in the contacts you are interested in reading:

let toFetch = [CNContactGivenNameKey as NSString, CNContactFamilyNameKey
 as NSString]

Next, construct your fetch request using these properties:

let request = CNContactFetchRequest(keysToFetch: toFetch)
request.predicate = CNContact.predicateForContacts(matchingName: "john")

Then fetch the contacts with the aforementioned method:

11.2 Searching for Contacts | 415

www.allitebooks.com

http://www.allitebooks.org

do{
 try store.enumerateContacts(with: request) {
 contact, stop in
 print(contact.givenName)
 print(contact.familyName)
 print(contact.identifier)
 }
} catch let err{
 print(err)
}

The block that you pass to this method has two parameters. The first is the contact.
The second is a Boolean pointer that you can set to true whenever you want to exit
this enumeration. You can do that like this:

stop.memory = true

How about looking at another example. Let’s say that you want to fetch all contacts
whose name is similar to “Foo.” You then want to find out whether they have a profile
photo. If they do, you will refetch those contacts and get their profile photos. The
purpose of this exercise is to show you that if you are interested in contacts with pho‐
tos, it is best to first see whether they have photos, and only if they do fetch their pro‐
file photos. Start by defining the keys that you want to fetch and asking for a key that
tells you whether a contact has a photo:

var toFetch = [CNContactImageDataAvailableKey as NSString]

Then define your predicate:

let predicate = CNContact.predicateForContacts(matchingName: "foo")

Next, find all contacts that match your predicate:

let contacts = try store.unifiedContacts(matching: predicate,
 keysToFetch: toFetch)

The previous statement must be wrapped inside a do{}catch{}
block; otherwise, it won’t compile. I am not writing that statement
here in the book because I want to explain the code step by step. If I
paste the do{}catch{}, I’ll have to paste the whole code in a gigan‐
tic block and that’s not very good.

Now that you have your contacts, go through them and find only the ones that do
have an image:

for contact in contacts{
 guard contact.imageDataAvailable else{
 continue
 }

 ...

416 | Chapter 11: Contacts

The CNContact class offers an isKeyAvailable(_:) method that returns true or
false depending on whether or not a given key is available for access on a contact. So
here you are going to ask whether your contacts have images (the CNContactImageDa
taKey key), and if they do, you are going to read the image:

//have we fetched image data?
if contact.isKeyAvailable(CNContactImageDataKey){
 print(contact.givenName)
 print(contact.identifier)
 if let imageData = contact.imageData,
 let image = UIImage(data: imageData){
 print(image)
 }
}
else {

 ...

This example is for demonstration purposes—none of your con‐
tacts at this point will have images because you have not fetched the
images yet in your original fetch request. The primary goal here is
to teach you how to use the isKeyAvailable(_:) method.

If the contacts don’t have their image data available at this point (which they won’t!),
you will use the identifier of each one of them and refetch them, but this time specify‐
ing that you need the image data as well:

else {
 toFetch += [CNContactImageDataKey as NSString,
 CNContactGivenNameKey as NSString]
 do{
 let contact = try store.unifiedContact(
 withIdentifier: contact.identifier, keysToFetch: toFetch)
 print(contact.givenName)

 if contact.isKeyAvailable(CNContactImageDataKey),
 let imageData = contact.imageData,
 let image = UIImage(data: imageData){
 print(image)
 }
 print(contact.identifier)
 } catch let err{
 print(err)
 }
}

And that’s it, really. If you have the identifier of a contact, you can fetch that contact
quite easily, as we saw. Now let’s say that you do have this identifier saved somewhere

11.2 Searching for Contacts | 417

www.allitebooks.com

http://www.allitebooks.org

inside your app and you want to directly fetch that contact. You do that using the
unifiedContact(withIdentifier:keysToFetch:) method of the contact store:

OperationQueue().addOperation{[unowned store] in
 let id = "AECF6A0E-6BCB-4A46-834F-1D8374E6FE0A:ABPerson"
 let toFetch = [CNContactGivenNameKey as NSString,
 CNContactFamilyNameKey as NSString]

 do{

 let contact = try store.unifiedContact(withIdentifier: id,
 keysToFetch: toFetch)

 print(contact.givenName)
 print(contact.familyName)
 print(contact.identifier)

 } catch let err{
 print(err)
 }
}

See Also
Recipe 11.1

11.3 Updating Contacts
Problem
You have an existing contact whose properties you want to update.

Solution
Call the mutableCopy() method of your CNContact class. This will give you an
instance of CNMutableContact. Once you have a mutable contact, you can change her
properties as you would with a contact of type CNContact. Once done editing, instan‐
tiate CNSaveRequest, issue the updateContact(_:) method on it, and pass your
mutable contact to that method. Now that you have the request object, pass it to the
execute(_:) method of your store to update the contact.

Discussion
Let’s check out an example. Let’s say that we want to find a contact named “John”
(using the steps outlined in Recipe 11.2) and then add a new email address to his con‐
tact information, in case it’s not already set. Figure 11-3 shows the contact we will

418 | Chapter 11: Contacts

change. The contact comes prefilled in your iOS simulator, with only one work email
address. We are going to add another work email to this list:

OperationQueue().addOperation{[unowned store] in
 let predicate = CNContact.predicateForContacts(matchingName: "john")
 let toFetch = [CNContactEmailAddressesKey as NSString]

 do{
 let contacts = try store.unifiedContacts(matching: predicate,
 keysToFetch: toFetch)

 guard contacts.count > 0 else{
 print("No contacts found")
 return
 }

 // only do this to the first contact matching our criteria
 guard let contact = contacts.first else{
 return
 }

 ...

Figure 11-3. Current state of the contact

We are only adding this new email to the first contact that matches
our criteria.

11.3 Updating Contacts | 419

www.allitebooks.com

http://www.allitebooks.org

Now we have a contact object that matches our criteria. Let’s see whether he already
has this email address, and bail out if he does:

let newEmail = "newemail@work.com"

for email in contact.emailAddresses{
 if email.value as String == newEmail{
 print("This contact already has this email")
 return
 }
}

Now that we are sure he didn’t have this email address already in the list, we will
add it:

let john = contact.mutableCopy() as! CNMutableContact

let emailAddress = CNLabeledValue(label: CNLabelWork,
 value: "newemail@work.com" as NSString)

john.emailAddresses.append(emailAddress)

let req = CNSaveRequest()
req.update(john)

try store.execute(req)

print("Successfully added an email")

Now if we look at our contact in the list, we can see the new email address added (see
Figure 11-4).

Figure 11-4. The new email address is added to our contact

420 | Chapter 11: Contacts

Another example would be to go through all our contacts and fetch all their notes. If
there is no note set for a contact, we’ll set up a dummy note and save that contact
back into the database. We can therefore use the CNContactNoteKey key in our fetch
request as shown here:

OperationQueue().addOperation{[unowned store] in
 let keys = [CNContactNoteKey as NSString]
 let req = CNContactFetchRequest(keysToFetch: keys)
 do{
 try store.enumerateContacts(with: req){contact, stop in
 if contact.note.characters.count == 0{

 let updated = contact.mutableCopy() as! CNMutableContact
 updated.note = "Some note"
 let req = CNSaveRequest()
 req.update(updated)
 do{
 try store.execute(req)
 print("Successfully added a note")
 } catch let err{
 print(err)
 }
 }
 }
 } catch let err{
 print(err)
 }
}

As another example, we can go through all the contacts on the device by fetching
their given name (CNContactGivenNameKey) and last name (CNContactFamilyName
Key). Then we can look at these names and find any characters in them that are not
letters (numbers, punctuation), and remove those illegal characters. First let’s read the
contacts and their first names and last names, and also define what we consider illegal
characters:

OperationQueue().addOperation{[unowned store] in
 let keys = [CNContactGivenNameKey as NSString,
 CNContactFamilyNameKey as NSString]
 let req = CNContactFetchRequest(keysToFetch: keys)
 do{
 try store.enumerateContacts(with: req){contact, stop in

 let illegalCharacters = CharacterSet.letters
 .inverted

 let first = NSString(string: contact.givenName)
 let last = NSString(string: contact.familyName)

 ...

11.3 Updating Contacts | 421

www.allitebooks.com

http://www.allitebooks.org

Then we find out whether the first or the last names have any illegal characters:

let foundIllegalCharactersInFirstName =
 first.rangeOfCharacter(from: illegalCharacters).location
 != NSNotFound

let foundIllegalCharactersInLastName =
 last.rangeOfCharacter(from: illegalCharacters).location
 != NSNotFound

If any illegal characters were found in either the first or the last name, we remove
them and then save the contact back into the database:

if foundIllegalCharactersInFirstName ||
 foundIllegalCharactersInLastName{

 let cleanFirstName =
 (first.components(separatedBy: illegalCharacters)
 as NSArray).componentsJoined(by: "")

 let cleanLastName =
 (last.components(separatedBy: illegalCharacters)
 as NSArray).componentsJoined(by: "")

 let newContact = contact.mutableCopy() as! CNMutableContact
 let req = CNSaveRequest()
 newContact.givenName = cleanFirstName
 newContact.familyName = cleanLastName
 req.update(newContact)

 do{
 try store.execute(req)
 print("Successfully removed illegal characters from contact")
 } catch let err{
 print(err)
 }

}

See Also
Recipe 11.1

11.4 Deleting Contacts
Problem
You want to delete a contact on a device.

422 | Chapter 11: Contacts

Solution
Follow these steps:

1. Find your contact using what you learned in Recipe 11.2.
2. Instantiate an object of type CNSaveRequest.
3. Issue the deleteContact(_:) function on the request and pass your mutable

contact to it.
4. Execute your request using the execute(_:) method of your contact store.

Deleting a contact from a store is irreversible. I suggest that you
test your code on the simulator first and, if possible, ask the users
first whether they allow a contact to be deleted.

Discussion
Let’s have a look at an example. We want to find all contacts named John and then
delete the first one that we find (I am not showing an alert asking the user whether
this is OK or not, because that’s not the focus of this recipe—I suggest that you do so,
though):

OperationQueue().addOperation{[unowned store] in
 let predicate = CNContact.predicateForContacts(matchingName: "john")
 let toFetch = [CNContactEmailAddressesKey as NSString]

 do{

 let contacts = try store.unifiedContacts(matching: predicate,
 keysToFetch: toFetch)

 guard contacts.count > 0 else{
 print("No contacts found")
 return
 }

 // only do this to the first contact matching our criteria
 guard let contact = contacts.first else{
 return
 }

 let req = CNSaveRequest()
 let mutableContact = contact.mutableCopy() as! CNMutableContact
 req.delete(mutableContact)

 do{
 try store.execute(req)
 print("Successfully deleted the user")

11.4 Deleting Contacts | 423

www.allitebooks.com

http://www.allitebooks.org

 } catch let e{
 print("Error = \(e)")
 }

 } catch let err{
 print(err)
 }
}

See Also
Recipe 11.7

11.5 Formatting Contact Data
Problem
You want to present a local contact’s name and postal address in a localized and read‐
able way, regardless of the current language on the user’s device.

Solution
Use an instance of the CNContactFormatter or the CNPostalAddressFormatter class.
The former one can easily be used to format the contact’s name, and the latter is self-
explanatory.

Discussion
The CNContactFormatter class allows you to format the name of any contact,
according to the localization settings of the current device. For instance, in some
languages, the last name of a person may be mentioned first. You can use the
string(from:style:) function of this method to get the full name.

You must fetch the full name of a contact from the store for this
class to work at all. Otherwise, you might get an exception.

We can build on Recipe 11.2 by writing a simple extension on CNContactStore that
allows us to fetch the first contact that it finds with a given name. I’ve named this
method firstUnifiedContactMatching(name:toFetch:output:), and it calls my
output block when it finds the contact or if an error occurs. You don’t have to know
the full implementation of this method because you already know how you can fetch
a contact with a given name.

424 | Chapter 11: Contacts

So, let’s look at an example where we fetch a contact from the store and print his full
name to the console:

let toFetch =
 CNContactFormatter.descriptorForRequiredKeys(for: .fullName)

store.firstUnifiedContactMatching(name: "john", toFetch: [toFetch]){
 guard let contact = $0 else{
 return
 }

 guard let name = CNContactFormatter().string(from: contact) else{
 return
 }

 print("The name of the contact is \(name)")

}

Note that I am using the descriptorForRequiredKeys(for:) class method of the
CNContactFormatter class to get an object of type CNKeyDescriptor and then pass
the results to firstUnifiedContactMatching(name:toFetch:output:) when fetch‐
ing the contact. The aforementioned method of CNContactFormatter tells the system
what properties of the contact to fetch—in this case, all the properties that are
required for the full name, including the first, middle, and last names.

Now imagine that we want to find a contact’s localized phonetic name. A phonetic
name is the name of a person written as it is pronounced, rather than how the name
is spelled. For instance, a person’s name might be Julian, but in Swedish, because the J
is pronounced as “you,” this name would be pronounced as “you-lian.” So “you-lian”
is the phonetic equivalent of the name “Julian” in Swedish. These phonetic names are
very useful for Siri. A Swedish speaker will ask Siri to phone up “you-lian” and Siri
will have no idea who that is unless the phonetic name has been set for that user.

Create a contact in your list. Set his first name to “Julian” and last name to “Julian‐
son.” Then tap the “add field” button at the bottom of the contact creation screen and
add the phonetic first and last name fields to the contact (see Figure 11-5).

11.5 Formatting Contact Data | 425

www.allitebooks.com

http://www.allitebooks.org

Figure 11-5. Add the phonetic first name and last name fields to your new contact

Set the phonetic first name to “Youlian” and the phonetic last name to “Youlianson,”
so your contact looks like Figure 11-6.

426 | Chapter 11: Contacts

Figure 11-6. Your contact’s phonetic name is also displayed, if set

Let’s now look at an example where we fetch the phonetic name of a contact and then
format it according to the localization on the current device. First, we need to find the
fields in the contact store for phonetic name. We do that using the descriptor
ForRequiredKeys(for:) class method of CNContactFormatter, this time passing the
value of phoneticFullName to it. Because the string(from:style:) class method of
the CNContactFormatter class by default reads the full name, and not the phonetic
full name, we will have to start using the string(from:style:) instance method of
this class instead. The last parameter to this function allows us to pass a style of type
CNContactFormatterStyle that can be set to FullName or phoneticFullName:

let style = CNContactFormatterStyle.phoneticFullName

let toFetch =
 CNContactFormatter.descriptorForRequiredKeys(for: style)

store.firstUnifiedContactMatching(name: "julian", toFetch: [toFetch]){

 guard let contact = $0 else{
 return
 }

 guard let name = CNContactFormatter
 .string(from: contact, style: style) else{
 return
 }

 print("The phonetic name of the contact is \(name)")

}

Aside from getting the localized full name of a contact, you can also get her address
information, again properly localized, using the CNPostalAddressFormatter class.
Follow these steps:

11.5 Formatting Contact Data | 427

www.allitebooks.com

http://www.allitebooks.org

1. Fetch your contact, making sure to include the CNContactPostalAddressesKey
key.

2. Get the address from the contact using the postalAddresses property of
CNContact. This will give you a value of type CNLabeledValue. Get the value of
this labeled value and cast it to CNPostalAddress.

3. Instantiate CNPostalAddressFormatter.
4. Pass the postal address to the string(from:) method of your postal address for‐

matter to get the formatted address:
let toFetch = [CNContactPostalAddressesKey as NSString]

store.firstUnifiedContactMatching(name: "john", toFetch: toFetch){
 guard let contact = $0 else{
 return
 }

 guard let firstAddress = contact.postalAddresses.first else{
 print("no postal address could be found")
 return
 }

 let formatter = CNPostalAddressFormatter()
 let formattedAddress = formatter.string(from: firstAddress.value)

 print("The address is \(formattedAddress)")

}

11.6 Picking Contacts with a Prebuilt System UI
Problem
You want to use a built-in system dialog to allow your users to pick contacts from
their contact store.

Solution
Use an instance of the CNContactPickerViewController class inside the ContactsUI
framework.

Instances of the CNContactPickerViewController class cannot be
pushed to the stack. They need to be presented modally. Use the
present(_:animated:completion:) method of your view or navi‐
gation controller to display the contact picker modally.

428 | Chapter 11: Contacts

Discussion
Let’s say that you want to allow the user to pick a contact. You will then attempt to
read the phone numbers from that contact. Instances of the CNContactPickerView
Controller class have a property called delegate of type CNContactPickerDelegate.

Some of the interesting methods in this delegate are:

contactPickerDidCancel(_:)

This gets called when the user cancels their request to pick a contact.

contactPicker(_:didSelectContact:)

This gets called when the user picks a contact from the list.

In this example, we want to allow the user to pick a contact, whereupon we will read
all the phone numbers from that contact. Place a button in your storyboard and hook
that button to a method in your code called pickaContact(). In that code, we present
a simple contact picker:

let controller = CNContactPickerViewController()

controller.delegate = self

navigationController?.present(controller,
 animated: true, completion: nil)

All this should be done inside a view controller that conforms to
CNContactPickerDelegate.

Then, when the user picks a contact, just print out all the phone numbers from that
contact, if any, to the console:

func contactPickerDidCancel(_ picker: CNContactPickerViewController) {
 print("Cancelled picking a contact")
}

func contactPicker(_ picker: CNContactPickerViewController,
 didSelectContact contact: CNContact) {

 print("Selected a contact")

 if contact.isKeyAvailable(CNContactPhoneNumbersKey){
 // this is an extension I've written on CNContact
 contact.printPhoneNumbers()
 } else {
 /*
 TOOD: partially fetched, use what you've learned in this chapter to

11.6 Picking Contacts with a Prebuilt System UI | 429

www.allitebooks.com

http://www.allitebooks.org

 fetch the rest of this contact
 */
 print("No phone numbers are available")
 }

}

The printPhoneNumbers() function is a custom extension on
CNContact that I’ve written. You don’t have to know the implemen‐
tation of that function, as it’s not relevant to this recipe. You already
know how to do this using what you learned in Recipe 11.2.

In this example, we are looking for contacts with phone numbers, but the user is
allowed to pick any contact, even if that contact has no phone numbers. How do we
remedy this? A property called predicateForEnablingContact of type NSPredicate,
on instances of CNContactPickerViewController, allows us to specify which con‐
tacts should be enabled and which ones should be disabled. Here we can create a
predicate that checks the @count of the phoneNumbers property. Also, for fun, let’s say
that we only want to allow contacts whose names start with “John” to be selectable
(see Figure 11-7):

let controller = CNContactPickerViewController()

controller.delegate = self

controller.predicateForEnablingContact =
 NSPredicate(format:
 "phoneNumbers.@count > 0 && givenName BEGINSWITH 'John'",
 argumentArray: nil)

navigationController?.present(controller,
 animated: true, completion: nil)

430 | Chapter 11: Contacts

Figure 11-7. Only people whose names start with “John” and who have at least one
phone number are retrieved

The predicateForEnablingContact property disables all contacts who do not pass
the predicate, so that the user won’t even be able to select those contacts. There is
another property on CNContactPickerViewController that does something more
interesting: predicateForSelectionOfContact. The contacts that pass this predicate
will be selectable by the user so that when the user taps such a contact, the controller
is dismissed and we get access to the contact object. The contacts that do not pass this
predicate will still be selectable, but upon selection, their details will be shown to the
user using the system UI. They won’t be returned to our app:

let controller = CNContactPickerViewController()

controller.delegate = self

controller.predicateForSelectionOfContact =

11.6 Picking Contacts with a Prebuilt System UI | 431

www.allitebooks.com

http://www.allitebooks.org

 NSPredicate(format:
 "phoneNumbers.@count > 0",
 argumentArray: nil)

navigationController?.present(controller,
 animated: true, completion: nil)

CNContactPickerViewController has another funky property—predicateForSelec

tionOfProperty—that dictates which property for any contact the user should be
able to pick. If you want to allow the user to pick a specific property—say the first
phone number—of any contact to be passed to your app, you also have to implement
the contactPicker(_:didSelectContactProperty:) method of the CNContactPick
erDelegate protocol. Let’s write sample code that allows the user to pick any contact
as long as that contact has at least one phone number, and then to pick the first phone
number of that contact to be returned to our app:

let controller = CNContactPickerViewController()

controller.delegate = self

controller.predicateForEnablingContact =
 NSPredicate(format:
 "phoneNumbers.@count > 0",
 argumentArray: nil)

controller.predicateForSelectionOfProperty =
 NSPredicate(format: "key == 'phoneNumbers'", argumentArray: nil)

navigationController?.present(controller,
 animated: true, completion: nil)

Then we’ll provide an implementation of the contactPicker(_:didSelectContact
Property:) method:

func contactPicker(_ picker: CNContactPickerViewController,
 didSelect contactProperty: CNContactProperty) {

 print("Selected a property")

}

In addition to all of this, you can also allow the user to pick multiple contacts. Do
that by implementing the contactPicker(_:didSelectContacts:) method of the
CNContactPickerDelegate protocol (see Figure 11-8):

func contactPicker(_ picker: CNContactPickerViewController,
 didSelect contacts: [CNContact]) {
 print("Selected \(contacts.count) contacts")
}

// allows multiple selection mixed with contactPicker:didSelectContacts:

432 | Chapter 11: Contacts

func example5(){
 let controller = CNContactPickerViewController()

 controller.delegate = self

 navigationController?.present(controller,
 animated: true, completion: nil)
}

Figure 11-8. The user is able to select multiple contacts at the same time and return to
our app at the end

See Also
Recipe 11.8

11.6 Picking Contacts with a Prebuilt System UI | 433

www.allitebooks.com

http://www.allitebooks.org

11.7 Creating Contacts with a Prebuilt System UI
Problem
You want to specify some basic information for a new contact and let a system UI and
the user take care of the creation of this contact.

Solution
Follow these steps:

1. Create an instance of CNContactStore and ask for permission to use the store
(see Recipe 11.1).

2. Create a contact of type CNMutableContact and put your default values in it. This
is an optional step. You might want the user to create a whole new contact on her
own, with no predefined values from your side.

3. Instantiate an object of type CNContactViewController using the forNewContact
initializer and pass your contact to it.

4. Set the contactStore property of this view controller to a valid contact store
instance.

5. Optionally, set the delegate property of this view controller to a valid delegate
object that conforms to the CNContactViewControllerDelegate protocol.

Discussion
Recipe 11.1 covers how to create a contact programmatically. What if you have some
basic information about a contact, or no information at all, and you want your user to
supply the rest of the information? Of course, you could create a UI to allow the user
to do that, but why do so if the SDK already comes with a prebuilt UI called
CNContactViewController?

You can simply push an instance of the CNContactViewController class on to your
navigation controller. When you become the delegate of this view controller, a dele‐
gate method named contactViewController(_:didCompleteWith:) will get called if
the user cancels or accepts the contact creation. Use this method to dismiss (pop) the
contact view controller:

func contactViewController(_ viewController: CNContactViewController,
 didCompleteWith contact: CNContact?) {

 guard let nc = navigationController else {return}

 // whatever happens, pop back to our view controller
 defer{nc.popViewController(animated: true)}

434 | Chapter 11: Contacts

 guard let contact = contact else{
 print("The contact creation was cancelled")
 return
 }

 print("Contact was created successfully \(contact)")
}

Let’s look at a simple example now. Create a simple contact with some basic informa‐
tion and then ask the user to complete the creation process:

let contact = CNContact().mutableCopy() as! CNMutableContact
contact.givenName = "Anthony"
contact.familyName = "Appleseed"

let controller = CNContactViewController(forNewContact: contact)
controller.contactStore = store
controller.delegate = self

navigationController?
 .pushViewController(controller, animated: true)

The user will see a UI similar to Figure 11-9.

Figure 11-9. The New Contact system UI is displayed, asking the user to finish off or
cancel the contact creation

The contact that you pass to the aforementioned initializer of
CNContactViewController is optional. If you pass nil, the New
Contact dialog that the user sees will be empty and the user will
have to fill out every field in the UI.

11.7 Creating Contacts with a Prebuilt System UI | 435

www.allitebooks.com

http://www.allitebooks.org

See Also
Recipe 11.4

11.8 Displaying Contacts with a Prebuilt System UI
Problem
You want to use a built-in system UI to display an existing contact’s information.

Solution
Use the forContact initializer of the CNContactViewController class and pass this
method an instance of the CNContact that you want to display.

Discussion
Sometimes you might want to display information for a particular contact but don’t
want to write the whole UI yourself. Why would you? It’s a lot of work to display all
the information. That’s where you can use the CNContactViewController class again.

This example uses my custom firstUnifiedContactMatch

ing(name:toFetch:output:) method to fetch an existing contact.
You learned about the implementation of this method in Recipe
11.2.

So this is what you are going to do: fetch a contact whose name matches “John” and
display his information on the screen. Make sure that you fetch all the required keys
for your contact. Otherwise, the controller won’t be able to display the contact’s infor‐
mation. You can get the list of required keys by calling the descriptorForRequired
Keys() class function of the CNContactViewController class:

let toFetch = [CNContactViewController.descriptorForRequiredKeys()]
store.firstUnifiedContactMatching(name: "john", toFetch: toFetch){

 guard let contact = $0 else{
 print("No contact was found")
 return
 }

 let controller = CNContactViewController(for: contact)
 controller.contactStore = self.store
 controller.allowsEditing = false

 controller.displayedPropertyKeys =
 [CNContactEmailAddressesKey, CNContactPostalAddressesKey]

436 | Chapter 11: Contacts

 self.navigationController?
 .pushViewController(controller, animated: true)

}

By default, when a contact is displayed, the contact controller allows the user to edit
that contact. You can disable that behavior by setting the allowsEditing property of
the controller to false. Also bear in mind that you have to set the contactStore
property of the controller to the same store from where you fetched your contact.

There is another interesting property on the controller: displayedPropertyKeys. As
its name implies, it allows you to pass a series of contact property keys that have to be
displayed. Other properties will be hidden. I have, in our code, enabled only email
and postal addresses. The results are shown in Figure 11-10. Some other information,
such as full name, is shown by default.

Figure 11-10. Displaying a contact

See Also
Recipe 11.6

11.8 Displaying Contacts with a Prebuilt System UI | 437

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 12

Extensions

Apple increased the number of extensions that we developers can write in the new
iOS. One of the hot extensions that everybody seems to be talking about is the Safari
Content Blocker, which allows developers to specify which URLs or resources should
get blocked in Safari tabs.

Extensions are separate binaries that sit inside your app’s bundle. They usually have
their own naming convention and are contained in reserved folders inside your app
bundle. It’s best not to mention what they are called on disk, because Apple can
change that at any time without us knowing. Because extensions sit in their own fold‐
ers and have their own bundles, they do not share the same physical space as their
container app. But, through some work, they can access the container app’s resources,
such as images and text.

12.1 Creating Safari Content Blockers
Problem
You want to create a content blocker that the user can add to her Safari browser for
blocking specific web content.

Solution
Use the Safari Content Blocker extension.

Discussion
This is something I am very excited about. You can ignore the long list of content
blockers popping up on the App Store every day from now on.

439

www.allitebooks.com

http://www.allitebooks.org

This is how the Apple blocker works. When you create an app, you can add a Safari
Content Blocker extension to it. In that extension, you define the rules for your con‐
tent blocking (whether you want to block images, stylesheets, etc.). The user can then,
after opening your app at least once, go into the settings on her device and enable
your content blocker. From now on, if she visits a web page that your content blocker
applies to, she will see only the content that passes your filters.

Let’s create a simple single view controller app and then add a new target to the app.
On the target selection screen, under the iOS main section, choose Application
Extension and then choose the Content Blocker Extension (see Figure 12-1).

Figure 12-1. Adding a new Content Blocker extension to an existing app

Give any name that you want to your extension. It doesn’t really
matter so much for this exercise.

440 | Chapter 12: Extensions

Now go to the new extension’s new file called blockerList.json and place the following
content in it:

[
 {
 "action": {
 "type": "block"
 },
 "trigger": {
 "url-filter": ".*",
 "resource-type" : ["image"],
 "if-domain" : ["edition.cnn.com"]
 }
 }
]

Even though there is a specific type of formatting to this file, I think you can just read
this as I’ve written it and understand what it is doing. It is blocking all images that are
under the edition.cnn.com domain name. Now head to your app delegate and import
the SafariServices framework. Every time you change your content blocker, you
will have to go to the Settings application on the simulator and turn it off and on
again so that the simulator understands that the extension is updated. We are now
going to write a piece of code that automates that for us:

func applicationDidBecomeActive(_ application: UIApplication) {

 // TODO: replace this with your own content blocker's identifier
 let id = "se.pixolity.Creating-Safari-Content-Blockers.Image-Blocker"
 SFContentBlockerManager.reloadContentBlocker(withIdentifier: id) {error in
 guard error == nil else {
 // an error happened, handle it
 print("Failed to reload the blocker")
 return
 }
 print("Reloaded the blocker")
 }
}

Then reset your simulator and run your app. Send your app to the background, open
Safari on the simulator, and type in cnn.com. This will redirect you to http://
edition.cnn.com/ (at the time of this writing). Safari will hit the filter we wrote and
discard all the images. The results will be lovely. (Well, I don’t know whether a web‐
site without images is lovely or not, but it’s what we set out to do.)

A user can always enable or disable a content blocker. To do that, you can go to the
Settings app on your device and in the search field type in blocker. Then tap the
Content Blockers item that pops up (see Figure 12-2).

12.1 Creating Safari Content Blockers | 441

www.allitebooks.com

http://www.allitebooks.org

Figure 12-2. Searching for “blocker” will allow you to go directly to the Content Blockers
settings section of Safari

From there, you can enable or disable available Safari content blockers (see
Figure 12-3).

Figure 12-3. Our app is shown in the list of content blockers as the only available appli‐
cation as of now

Now that you have seen an example, let me bug you with some more details on that
JSON file. That file contains an array of dictionaries with various configurations that
you can enter. This book would grow very large if I thoroughly described everything
there, so I will simply explain the options for each field through some pseudo-JSON
code:

[
 {
 "action": {
 "type": "block" | "block-cookies" | "css-display-none",
 "selector" : This is a CSS selector that the action will be applied to
 },
 "trigger": {
 "url-filter": "this is a filter that will be applied on the WHOLE url",
 "url-filter-is-case-sensitive" : same as url-filter but case sensitive,
 "resource-type" : ["image" | "style-sheet" | "script" | "font" | etc],

442 | Chapter 12: Extensions

 "if-domain" : [an array of actual domain names to apply filter on],
 "unless-domain" : [an array of domain names to exclude from filter],
 "load-type" : "first-party" | "third-party"
 }
 }
]

Armed with this knowledge, let’s do some more experiments. Let’s now block all a
tags in macrumors.com:

{
 "action": {
 "type": "css-display-none",
 "selector" : "a"
 },
 "trigger": {
 "url-filter": ".*",
 "if-domain" : ["macrumors.com"]
 }
}

I have no affiliation with nor any hate toward MacRumors—I find
that website quite informative, actually. Check it out for yourself. I
am using this website as an example only, and I am not suggesting
that content on the website is worthy of blocking.

Or how about removing the a tag at the top of the macrumors.com homepage that has
an id attribute equal to logo?

{
 "action": {
 "type": "css-display-none",
 "selector" : "a[id='logo']"
 },
 "trigger": {
 "url-filter": ".*",
 "if-domain" : ["macrumors.com"]
 }
}

Now let’s have a look at another example. Let’s start blocking all images on all web‐
sites except for reddit.com:

{
 "action": {
 "type": "block"
 },
 "trigger": {
 "url-filter": ".*",
 "resource-type" : ["image"],
 "unless-domain" : ["reddit.com"]

12.1 Creating Safari Content Blockers | 443

www.allitebooks.com

http://www.allitebooks.org

 }
}

Or how about blocking all elements of type a that have an href attribute on Apple’s
website?

{
 "action": {
 "type": "css-display-none",
 "selector" : "a[href]"
 },
 "trigger": {
 "url-filter": ".*",
 "if-domain" : ["apple.com"]
 }
}

See Also
Recipe 12.2

12.2 Creating Shared Links for Safari
Problem
You want to display your own links inside Safari’s shared links on users’ devices.

Solution
Add the new Shared Links Extension target to your existing app and code the exten‐
sion. It is prepopulated, so you don’t really have to do much.

Discussion
Shared links are like bookmarks, but lead to content defined in your app or a website.
The links are visible inside Safari on iOS when the user taps the Bookmarks button
and then the Shared Links icon. To get started, create a single view controller project
and then add a new target to your project. On the target selection screen, under the
iOS main section, choose Application Extension and then choose the Shared Links
Extension (see Figure 12-4).

444 | Chapter 12: Extensions

Figure 12-4. Creating a new Shared Links extension in Xcode

I suggest that you also add some proper icons to your app’s bundle, because your app’s
icon will also appear in the list of shared links when iOS shows your shared link. You
can just do a Google search for “public domain icon” and find some really awesome
icons that you can use in your app. Also make sure to add a simple icon to your
Shared Links extension, because our code will show this icon in the list. Your exten‐
sion’s icon will appear on the left side of the link and your app icon at the top right
(see Figure 12-5).

Figure 12-5. The shared link’s icon appears on the left and the app’s icon in the upper-
right corner

12.2 Creating Shared Links for Safari | 445

www.allitebooks.com

http://www.allitebooks.org

Then head to the new file called RequestHandler.swift that has been created in your
extension. Xcode has already populated this file with all the code that you need to dis‐
play your shared link. All you need to do is uncomment the line that starts with exten
sionItem.attachments, load your extension’s icon, and attach it to the extension
item like so:

import Foundation

class RequestHandler: NSObject, NSExtensionRequestHandling {

 func beginRequest(with context: NSExtensionContext) {
 let extensionItem = NSExtensionItem()

 extensionItem.userInfo = [
 "uniqueIdentifier": "uniqueIdentifierForSampleItem",
 "urlString": "http://reddit.com/r/askreddit",
 "date": Date()
]

 extensionItem.attributedTitle = NSAttributedString(string: "Reddit")

 extensionItem.attributedContentText = NSAttributedString(
 string: "AskReddit, one of the best subreddits there is")

 guard let img = Bundle.main.url(forResource: "ExtIcon",
 withExtension: "png") else {
 context.completeRequest(returningItems: nil, completionHandler: nil)
 return
 }

 extensionItem.attachments = [NSItemProvider(contentsOf: img)!]

 context.completeRequest(returningItems: [extensionItem],
 completionHandler: nil)
 }

}

Run your code and then open Safari on the device. Navigate to the Bookmarks button
and then Shared Links to see your link displayed (Figure 12-6).

446 | Chapter 12: Extensions

Figure 12-6. Your shared link is displayed in the list

The user can also subscribe to or unsubscribe from various shared link providers by
tapping the Subscriptions button (see Figure 12-7).

Figure 12-7. The user can subscribe to or unsubscribe from shared links providers right
in Safari

See Also
Recipe 12.1

12.3 Maintaining Your App’s Indexed Content
Problem
You want to know when iOS is about to delete your indexed items and you would like
to be able to provide new content to the search index.

This is an extension to the search capability explained in Recipe
13.2.

12.3 Maintaining Your App’s Indexed Content | 447

www.allitebooks.com

http://www.allitebooks.org

Solution
Add a Spotlight Index extension to your app and update the index right in your
extension (see Figure 12-8).

Figure 12-8. Adding a Spotlight Index extension will allow you to reindex your app’s
searchable content

Discussion
Every now and then, iOS has to clean up the search index on a device. When this
happens, apps that have provided searchable content will be given a chance to reindex
their items. To get started, create a Spotlight Index extension as shown in Figure 12-8.
I’ve given mine the name of Reindex. It’s up to you what you want to name your
extension. Now you will get a class called IndexRequestHandler in your extension. It
offers two methods:

• searchableIndex(_:reindexAllSearchableItemsWithAcknowledgementHan

dler:)

• searchableIndex(_:reindexSearchableItemsWithIdentifiers:acknowledge

mentHandler:)

448 | Chapter 12: Extensions

The first method gets called when you are asked to reindex all your previously
indexed items. This can happen if the index is corrupted on the device and you are
asked to reindex all of your content. The second method will be called on your exten‐
sion if you have to index specific items with the given identifiers. You will be given a
function called an acknowledgment handler to call when you are done indexing again.

In both of these methods, the first parameter that you are given is
an index into which you have to index your items. Use that index
instead of the default index.

Here is an example. Let’s define a protocol that dictates what indexable items have to
look like:

protocol Indexable{
 var id: String {get set}
 var title: String {get set}
 var description: String {get set}
 var url: URL? {get set}
 var thumbnail: UIImage? {get set}
}

And then a structure that conforms to our protocol:

struct Indexed : Indexable{
 // Indexable conformance
 var id: String
 var title: String
 var description: String
 var url: URL?
 var thumbnail: UIImage?
}

Later on we are going to go through an array of Indexed instances, grab all the IDs,
and put those in an array. Then, when we are asked by iOS to index certain items
with given IDs, we can just find the IDs in our array and then find the associated
indexed items using the IDs. For this, we can use protocol extensions on sequence
types (I wrote about this in Recipe 6.18):

extension Sequence where Iterator.Element : Indexable{
 func allIds() -> [String]{
 var ids = [String]()
 for (_, v) in self.enumerated(){
 ids.append(v.id)
 }
 return ids
 }
}

And now the juicy part—our extension. We construct an array of indexed items:

12.3 Maintaining Your App’s Indexed Content | 449

www.allitebooks.com

http://www.allitebooks.org

lazy var indexedItems: [Indexed] = {

 var items = [Indexed]()
 for n in 1...10{
 items.append(
 Indexed(id: "id \(n)", title: "Item \(n)",
 description: "Description \(n)", url: nil, thumbnail: nil))
 }
 return items

}()

When we are asked to reindex all our items, we just go through this array and reindex
them (see Recipe 13.2):

override func searchableIndex(_ searchableIndex: CSSearchableIndex,
 reindexAllSearchableItemsWithAcknowledgementHandler
 acknowledgementHandler: @escaping () -> Void) {

 for _ in indexedItems{
 // TODO: you can index the item here
 }

 // call this handler once you are done
 acknowledgementHandler()
}

When we are asked to reindex only specific items with given identifiers, we use our
sequence type extension to find all the IDs of our indexed items. Then we search
through these IDs for the IDs that iOS gave us. Should we find a match, we will rein‐
dex that item. Code for reindexing is not shown here, but Recipe 13.2 shows you how
to do it:

override func searchableIndex(_ searchableIndex: CSSearchableIndex,
 reindexSearchableItemsWithIdentifiers identifiers: [String],
 acknowledgementHandler: @escaping () -> Void) {

 // get all the identifiers strings that we have
 let ourIds = indexedItems.allIds()

 // go through the items that we have and look for the given ID
 var n = 0
 for i in identifiers{
 if let index = ourIds.index(of: i){
 let _ = indexedItems[index]
 // TODO: reindex this item
 }
 n += 1
 }

 acknowledgementHandler()
}

450 | Chapter 12: Extensions

CHAPTER 13

Web and Search

iOS brings with it some really exciting functionality, such as indexing content inside
your app as searchable content on an iOS device. Even better, you can contribute to
iOS’s public search index so that your searchable content appears on devices that
don’t even have your app installed. That’s pretty cool, don’t you agree? In this chapter,
we’ll have a look at all these great features.

13.1 Continuing a Spotlight Search Within Your App
Problem
You are already indexing your app content in Spotlight (more recipes on that in this
chapter), but you also want to allow the user to continue the search from Spotlight
directly in your app (see Figure 13-1).

451

www.allitebooks.com

http://www.allitebooks.org

Figure 13-1. The “Search in App” button at the upper right lets you search within the
host application

Solution
Follow these steps:

1. Add the CoreSpotlightContinuation key to your Info.plist file with a Boolean
value of YES. This will allow your app to take part in Spotlight search continua‐
tion.

2. Index your searchable items, as you will learn in Recipe 13.2.

452 | Chapter 13: Web and Search

3. Implement the application(_:willContinueUserActivityWithType:) method
of your app delegate.

4. In this method, see whether the given activity type is CSQueryContinuation
ActionType. If yes, return true; otherwise, return false (or, if you have other
activity types to process, look at those as well before returning false).

5. Implement the application(_:continue:restorationHandler:) method in
your app delegate.

6. In this method, look at the incoming activity (of type NSUserActivity) and see
whether you can find the kCSSearchQueryString key inside the userInfo prop‐
erty of the user activity. The value of this key should be of type String and be
nonempty for search continuation. If this value is a nonempty String object,
your user has chosen to continue her search inside your app and you have access
to her search query in Spotlight through the value of the kCSSearchQueryString
key.

Discussion
Let’s implement a sample application. First, add the CoreSpotlightContinuation key
to your Info.plist file with a Boolean value of YES. After you’ve done that, create a
method within your app delegate that will index an item in Spotlight. This is
explained in detail in a separate recipe in this chapter (Recipe 13.2), so I won’t explain
it here:

func indexItems(){

 CSSearchableIndex.default().deleteAllSearchableItems {error in

 guard error == nil else {
 print("Error happened while deleting the index")
 return
 }

 let attributes =
 CSSearchableItemAttributeSet(itemContentType: kUTTypeImage as String)
 attributes.title = "Foo Bar"
 attributes.contentDescription = "Just some description"
 attributes.keywords = ["foo", "bar"]

 let item = CSSearchableItem(uniqueIdentifier: "foobar",
 domainIdentifier: "se.pixolity",
 attributeSet: attributes)

 CSSearchableIndex.default().indexSearchableItems([item]){error in
 if let error = error {
 print("Failed to index the item \(error)")
 } else {
 print("Indexed the item successefully")

13.1 Continuing a Spotlight Search Within Your App | 453

www.allitebooks.com

http://www.allitebooks.org

 }
 }

 }

}

We’ll invoke this method when the application has finished running, so that we have
an item indexed in Spotlight:

func application(
 _ application: UIApplication,
 didFinishLaunchingWithOptions
 launchOptions: [UIApplicationLaunchOptionsKey: Any]?) -> Bool {

 indexItems()

 return true
}

We should then tell iOS when our application can and cannot handle an activity. The
activity of type String will be handed to us in the application(_:willContinueUser
ActivityWithType:) method of our app delegate, and the return value of this func‐
tion, of type Bool, determines whether we can or cannot handle the activity:

func application(
 _ application: UIApplication,
 willContinueUserActivityWithType userActivityType: String) -> Bool {

 if userActivityType == .CSQueryContinuationActionType{
 return true
 } else {
 return false
 }

}

Last but not least, we need to implement the application(_:continue:restoration
Handler:) method in our app delegate and look at the incoming user activity’s user
Info property:

func application(_ application: UIApplication,
 continue userActivity: NSUserActivity,
 restorationHandler: @escaping ([Any]?) -> Void) -> Bool {

 guard let query =
 userActivity.userInfo?[String.CSSearchQueryString] as? String,
 query.characters.count > 0 else {
 return false
 }

 print("The query is \(query)")

454 | Chapter 13: Web and Search

 return true

}

If you want to give your users a smooth entry point into your app as a result of
search, you will need to ensure that the page inside your app that relates to the user’s
searched item appears almost immediately in front of the user. That is to say, you will
need to remove all activities that are irrelevant to the user’s search and keep initial
processing to a minimum to ensure a smooth transition from Spotlight into your app.

For instance, imagine that you have written an application where users can search
through a database of hotels and find information, photos, and many other details
about a hotel. Now, if the user goes through Spotlight to find a hotel that your appli‐
cation has information about and taps on that hotel, they should land directly on the
hotel’s information page. So in this case, you wouldn’t want to download your whole
database or even its index and photos and other unnecessary information. Instead,
you would directly display the hotel’s information page, ensuring that your applica‐
tion processes and opens as fast as possible for the user.

See Also
Recipe 13.2

13.2 Making Your App’s Content Searchable
Problem
You want the user to be able to search within the contents inside your app, from iOS’s
search functionality (see Figure 13-2).

Solution
First, you will need to construct an object of type CSSearchableItemAttributeSet.
This will represent the metadata for any one item that you want to index in the
search. Then you’ll construct an instance of the CSSearchableItem class with your
metadata and expiration date, plus some other properties that you will see soon. You
index an item using the CSSearchableIndex class. You’ll get a completion block that
will let you know whether or not things went well.

13.2 Making Your App’s Content Searchable | 455

www.allitebooks.com

http://www.allitebooks.org

Figure 13-2. iOS has improved search functionality

Discussion
You have to keep quite a few things in mind when indexing items in the local device
search functionality. I’ll walk you through them one by one. Always keep this index in
a useful state. Don’t index stuff that you don’t need, and make sure you delete the old
items. You can specify an expiration date for your content, so I suggest that you
always do that.

Let’s look at an example. Start by including the two required frameworks that you are
going to use:

import CoreSpotlight
import MobileCoreServices

Then delete all existing indexed items using the deleteAllSearchableItems(comple
tionHandler:) method of the CSSearchableIndex class. This method takes in a clo‐
sure that gives you an optional error. Check this error if you want to find out whether
something went wrong:

// delete the existing indexed items
CSSearchableIndex.default()
 .deleteAllSearchableItems {err in
 if let err = err{

456 | Chapter 13: Web and Search

 print("Error in deleting \(err)")
 }
}

Now instantiate your metadata of type CSSearchableItemAttributeSet and give it a
title, description, path and URL, keywords, and a thumbnail:

let attr = CSSearchableItemAttributeSet(
 itemContentType: kUTTypeText as String)

attr.title = "My item"
attr.contentDescription = "My description"
attr.path = "http://reddit.com"
attr.contentURL = URL(string: attr.path!)!
attr.keywords = ["reddit", "subreddit", "today", "i", "learned"]

if let url = Bundle(for: type(of: self))
 .url(forResource: "Icon", withExtension: "png"){
 attr.thumbnailData = try? Data(contentsOf: url)
}

Then create the actual searchable item of type CSSearchableItem and set its expira‐
tion date 20 seconds into the future:

// searchable item
let item = CSSearchableItem(
 uniqueIdentifier: attr.contentURL!.absoluteString,
 domainIdentifier: nil, attributeSet: attr)

let cal = Calendar.current

// our content expires in 20 seconds
item.expirationDate = cal.date(from: cal
 .dateComponents(in: cal.timeZone, from:
 Date().addingTimeInterval(20)))

Finally, use the indexSearchableItems(_:) method of the CSSearchableIndex class
to index the item that you just created. You can index an array of items, but you have
just one item, so index that for now:

// now index the item
CSSearchableIndex.default()
 .indexSearchableItems([item]) {err in
 guard err == nil else{
 print("Error occurred \(err!)")
 return
 }

 print("We successfully indexed the item. Will expire in 20 seconds")

}

13.2 Making Your App’s Content Searchable | 457

www.allitebooks.com

http://www.allitebooks.org

When the user taps your item in the results list, your app will be opened and iOS will
call the application(_:continue:restorationHandler:) method on your app dele‐
gate. In this method, you have to do a few things:

1. Check the activity type that is given to you and make sure it is CSSearchableItem
ActionType. The aforementioned method gets called under various circumstan‐
ces—for example, with Handoff—so you have to make sure you are responding
only to activities that concern indexed items.

2. Check the userInfo property of the activity and read the value of the CSSearch
ableItemActivityIdentifier key from it. This should be the identifier for your
indexed item:

func application(_ application: UIApplication,
 continue userActivity: NSUserActivity,
 restorationHandler: @escaping ([Any]?) -> Void) -> Bool {

 guard userActivity.activityType == CSSearchableItemActionType,
 let id = userActivity
 .userInfo?[CSSearchableItemActivityIdentifier] as? String
 else{
 return false
 }

 // now we have access to the ID of the activity, and that is the URL
 print(id)

 return true

}

Run your code and then send your app to the background. Open a search in your
iPhone, search for the item that you just indexed (see Figure 13-3).

458 | Chapter 13: Web and Search

Figure 13-3. Your item is listed in the search results

See Also
Recipe 13.1

13.2 Making Your App’s Content Searchable | 459

www.allitebooks.com

http://www.allitebooks.org

13.3 Making User Activities Searchable
Problem
You want to allow user activities inside your app to be searchable. User activities are
of type NSUserActivity.

Solution
Use the isEligibleForSearch and eligibleForPublicIndexing properties of the
NSUserActivity class to mark your activities as searchable.

Discussion
Let’s say that the user is inside your app and is editing the text inside a text field. You
start a user activity and want the user to be able to search for this activity in her home
screen, then continue with that activity later. Start with the UI. Drop a text field and a
text view on your view controller to make it look like Figure 13-4.

Figure 13-4. Put a text field and a text view on your UI

The text field will allow the user to enter whatever text she wants, and you will use the
text view to write log messages so that you (and the user) know what is going on
under the hood of your app. Hook these up to your code. I’ve named the text field
textField and the text view status. Also set the delegate of your text field to your
view controller, because you are going to want to know when the text field becomes
active and inactive. That lets you update the user activity accordingly.

Make your view controller conform to the UITextFieldDelegate and
NSUserActivityDelegate protocols and implement the user activity delegate meth‐
ods:

func userActivityWasContinued(_ userActivity: NSUserActivity) {
 log("Activity was continued")
}

460 | Chapter 13: Web and Search

func userActivityWillSave(_ userActivity: NSUserActivity) {
 log("Activity will save")
}

This handy method allows you to log messages into your text view:

func log(_ t: String){
 DispatchQueue.main.async {
 self.status.text = t + "\n" + self.status.text
 }
}

You also need another method that can read the content of your text field and, if it’s
nil, give you an empty string:

func textFieldText() -> String{
 if let txt = self.textField.text{
 return txt
 } else {
 return ""
 }
}

Then create your user activity as a lazy variable and mark it as searchable:

// TODO: change this ID to something relevant to your app
let activityType = "se.pixolity.Making-User-Activities-Searchable.editText"
let activityTxtKey = "se.pixolity.Making-User-Activities-Searchable.txt"

lazy var activity: NSUserActivity = {
 let a = NSUserActivity(activityType: self.activityType)
 a.title = "Text Editing"
 a.isEligibleForHandoff = true
 a.isEligibleForSearch = true
 // do this only if it makes sense
 // a.isEligibleForPublicIndexing = true
 a.delegate = self
 a.keywords = ["txt", "text", "edit", "update"]

 let att = CSSearchableItemAttributeSet(
 itemContentType: kUTTypeText as String)
 att.title = a.title
 att.contentDescription = "Editing text right in the app"
 att.keywords = Array(a.keywords)

 if let u = Bundle.main.url(forResource: "Icon", withExtension: "png"){
 att.thumbnailData = try? Data(contentsOf: u)
 }
 a.contentAttributeSet = att

 return a
}()

13.3 Making User Activities Searchable | 461

www.allitebooks.com

http://www.allitebooks.org

Make sure that you import the CoreSpotlight and MobileCore
Services frameworks.

Once your text field becomes active, mark the activity as the current one:

func textFieldDidBeginEditing(_ textField: UITextField) {
 log("Activity is current")
 userActivity = activity
 activity.becomeCurrent()
}

func textFieldDidEndEditing(_ textField: UITextField) {
 log("Activity resigns being current")
 activity.resignCurrent()
 userActivity = nil
}

When the text field’s content changes, mark that the user activity needs to be updated:

func textField(_ textField: UITextField,
 shouldChangeCharactersIn range: NSRange,
 replacementString string: String) -> Bool {

 activity.needsSave = true

 return true

}

A method in your view controller named updateUserActivityState(_:) gets called
periodically when the current activity needs to be updated. Here you get the chance
to update the user info dictionary of the activity:

override func updateUserActivityState(_ a: NSUserActivity) {

 log("We are asked to update the activity state")

 a.addUserInfoEntries(
 from: [self.activityTxtKey : self.textFieldText()])

 super.updateUserActivityState(a)

}

That’s it, really. Now when the user starts writing text in the text field and then sends
the app to the background, she will be able to search for the activity that she had
started right on her home screen and then continue where she left off. I will not cover
the details of handling the request to continue the user activity, because they are not
new APIs.

462 | Chapter 13: Web and Search

See Also
Recipes 13.1, 13.2, and 13.4

13.4 Deleting Your App’s Searchable Content
Problem
You have indexed some items in Spotlight and you would like to get rid of that now.

Solution
Use a combination of the following methods on CSSearchableIndex:

• deleteAllSearchableItems(completionHandler:)

• deleteSearchableItems(withDomainIdentifiers:completionHandler:)

• deleteSearchableItems(withIdentifiers:completionHandler:)

Discussion
Let’s have a look at an example. Say that you have already indexed some items (see
Recipe 13.2) and you want to delete that content. The first step is to get a handle to
the CSSearchableIndex class:

let identifiers = [
 "com.yourcompany.etc1",
 "com.yourcompany.etc2",
 "com.yourcompany.etc3"
]

let i = CSSearchableIndex(name: Bundle.main.bundleIdentifier!)

Then use the fetchLastClientState(_:completionHandler:) method on the index
to get the latest application state that you submitted to the index. After that, you can
begin deleting the items inside the identifiers array by using the beginIndex
Batch() function on the index. Then use the deleteSearchableItems(withIdentifi
ers:completionHandler:) function, which returns a completion handler. This han‐
dler will return an optional error that dictates whether the deletion went OK or not.
Once you are done, end the batch updates on the index with the endBatch(with
ClientState:completionHandler:) method:

i.fetchLastClientState {clientState, err in
 guard err == nil else{
 print("Could not fetch last client state")
 return
 }

13.4 Deleting Your App’s Searchable Content | 463

www.allitebooks.com

http://www.allitebooks.org

 let state: Data
 if let s = clientState{
 state = s
 } else {
 state = Data()
 }

 i.beginBatch()

 i.deleteSearchableItems(withIdentifiers: identifiers) {err in
 if let e = err{
 print("Error happened \(e)")
 } else {
 print("Successfully deleted the given identifiers")
 }
 }
 i.endBatch(withClientState: state, completionHandler: {err in
 guard err == nil else{
 print("Error happened in ending batch updates = \(err!)")
 return
 }
 print("Successfully batch updated the index")
 })

}

The content identifiers that I’ve put in the identifiers array are
just an example. I don’t know what identifiers you’ll want to use,
but make sure that you update this array before attempting to
delete the existing indexed items.

See Also
Recipe 13.3

464 | Chapter 13: Web and Search

CHAPTER 14

Multitasking

iOS has some really cool multitasking functionalities on select devices, such as the lat‐
est iPads. One of these functionalities is PiP, or Picture in Picture. In this chapter,
we’ll have a look at some of these exciting features.

14.1 Supporting Split Views
Problem
You would like your universal app on an iPad to allow a side-by-side view. That is to
say that you would like the user to be able to drag another completely different app
onto the right side of the screen while your app is running, consuming a portion of
the screen and forcing your application to resize its contents to fit the smaller screen.

Solution
The easiest solution to supporting side-by-side views is to create your project with the
latest version of Xcode, which by default ensures that your app will have split view
enabled on larger displays (such as the iPad).

Split view occurs when the user who is running your app slides the right edge of the
display toward the left, at which point a drawer of available apps that support split
view appears on the screen in a vertically scrollable list (see Figure 14-1). Then the
user can choose one of the available apps and tap it, at which point the chosen app is
opened and starts consuming the right side of the screen’s real estate. There will then
be a bar visible between the app running on the right side and your app on the left
side. This bar can be dragged further to the left to give more space to the app on the
right or further to the right to give more space to the app on the left.

465

www.allitebooks.com

http://www.allitebooks.org

Figure 14-1. The split view is now enabled in your app, which is on the lefthand side
(empty for now), and the available apps that support split view are shown in the list on
the righthand side; when the user chooses one, that app will be opened

Split views are available only on devices that have enough screen
real estate and device resources, such as memory, for this function‐
ality. The iPad Pro is an example of such a device that allows split
views.

If you, however, have an old project that you would like to support split screen for,
follow these steps:

1. Add a file to your project called LaunchScreen.storyboard (see Figure 14-2). This
will replace your launch screen static images. You will then have to set it as your
launch screen storyboard in your project settings (General tab), under the App
Icons and Launch Images section.

466 | Chapter 14: Multitasking

Figure 14-2. Adding LaunchScreen.storyboard as your app’s dynamic launch screen

2. Set the base SDK for your project to the latest SDK available in the latest Xcode
version.

3. In your Info.plist file, under the UISupportedInterfaceOrientations~ipad key,
declare that you support all orientations. You can also do this on the General tab
of your target in Xcode, under the Deployment Info section.

4. Ensure that the UIRequiresFullScreen key in your plist is either removed or, if it
exists and you want to keep it, has the value of NO.

Discussion
Split view is a great feature, and as a developer you of course would like to support it
in your apps. However, you need to ensure that your UI components work correctly
with different size classes and screen orientations.

For instance, let’s say that you want to add a view of type UIView to your app’s main
view and you would like it to be resizable so that when split view is fired up, your
view gets resized correctly. You then have to think about the width, height, and hori‐
zontal and vertical positioning of this view. Assuming that it will fill up the whole
screen, you can add the proper constraints to this view in either IB, or in code. Let’s
look at the code:

import UIKit

class ViewController: UIViewController {

 override func viewDidLoad() {
 super.viewDidLoad()

 let newView = UIView()
 newView.backgroundColor = .orange

14.1 Supporting Split Views | 467

www.allitebooks.com

http://www.allitebooks.org

 newView.translatesAutoresizingMaskIntoConstraints = false

 view.addSubview(newView)

 newView.leadingAnchor.constraint(equalTo:
 view.leadingAnchor).isActive = true

 newView.trailingAnchor.constraint(equalTo:
 view.trailingAnchor).isActive = true

 newView.topAnchor.constraint(equalTo: view.topAnchor).isActive = true
 newView.bottomAnchor.constraint(equalTo: view.bottomAnchor).isActive = true

 }

}

You can create the same constraints in IB by simply dragging a new view instance on
top of your view controller and then, from the Resolve Auto Layout Issues section in
IB, choosing “Reset to Suggested Constraints” while you have selected your newly
created view.

14.2 Adding Picture in Picture Playback Functionality
Problem
You want to let a user shrink a video to occupy a portion of the screen, so that she can
view and interact with other content in other apps.

Solution
I’ll break the process down into small and digestible steps:

1. You need a view that has a layer of type AVPlayerLayer. This layer will be used by
a view controller to display the video.

2. Instantiate an item of type VPlayerItem that represents the video.
3. Take the player item and place it inside an instance of AVPlayer.
4. Assign this player to your view’s layer player object. (Don’t worry if this sounds

confusing. I’ll explain it soon.)
5. Assign this view to your view controller’s main view and issue the play() func‐

tion on the player to start normal playback.
6. Using key-value observing (KVO), listen to changes to the currentItem.status

property of your player and wait until the status becomes ReadyToPlay, at which
point you will create an instance of the AVPictureInPictureController class.

468 | Chapter 14: Multitasking

7. Start a KVO listener on the pictureInPicturePossible property of your con‐
troller. Once this value becomes true, let the user know that she can now go into
Picture in Picture mode.

8. Now, when the user presses a button to start Picture in Picture, read the value of
pictureInPicturePossible from your controller for safety’s sake, and if it
checks out, call the startPictureInPicture() function on the controller to start
the Picture in Picture eventually.

Discussion
Picture in Picture is finally here. Let’s get started! Armed with what you learned in
this recipe’s Solution, begin by defining your view. Create a view class and call it Pip
View. Go into the PipView.swift file and start by importing the right frameworks:

import Foundation
import UIKit
import AVFoundation

Then define what a “pippable” item is. It is any type that has a PiP layer and a PiP
player:

protocol Pippable{
 var pipLayer: AVPlayerLayer{get}
 var pipLayerPlayer: AVPlayer? {get set}
}

Extend UIView to make it pippable:

extension UIView : Pippable{

 var pipLayer: AVPlayerLayer{
 get{return layer as! AVPlayerLayer}
 }

 // shortcut into pipLayer.player
 var pipLayerPlayer: AVPlayer?{
 get{return pipLayer.player}
 set{pipLayer.player = newValue}
 }

 open public func awakeFromNib() {
 super.awakeFromNib()
 backgroundColor = .black

 }

}

14.2 Adding Picture in Picture Playback Functionality | 469

www.allitebooks.com

http://www.allitebooks.org

Last but not least for this view, change the view’s layer class to AVPlayerLayer:

class PipView : UIView{

 override class var layerClass: AnyClass{
 return AVPlayerLayer.self
 }

}

Go to your view controller’s storyboard and change the main view’s class to PipView.
Also embed your view controller in a navigation controller and put two bar button
items on the nav bar, namely:

• Play (give it a play button style)
• PiP (by pressing this the user will enable PiP; disable this button by default and

hook it to an outlet in your code)

You’ll end up with something like Figure 14-3.

Figure 14-3. Your view controller should look like this

Hook up the two buttons to your view controller’s code. The play button will be
hooked to a method called play() and the PiP button to beginPip(). Now head to
your view controller and import some frameworks you’ll need:

import UIKit
import AVKit

470 | Chapter 14: Multitasking

import AVFoundation
import SharedCode

Define the KVO context for watching the properties of your player:

private var kvoContext = 0
let pipPossible = "pictureInPicturePossible"
let currentItemStatus = "currentItem.status"

Then your view controller becomes pippable:

protocol PippableViewController{
 var pipView: PipView {get}
}
extension ViewController : PippableViewController{
 var pipView: PipView{
 return view as! PipView
 }
}

If you want to, you can define your view controller as conformant
to AVPictureInPictureControllerDelegate to get delegate mes‐
sages from the PiP view controller.

Next, define a property for the PiP button on your view controller so that you can
enable this button when PiP is available:

 @IBOutlet var beginPipBtn: UIBarButtonItem!

You also need a player of type AVPlayer. Don’t worry about its URL; you will set it
later:

lazy var player: AVPlayer = {
 let p = AVPlayer()
 p.addObserver(self, forKeyPath: currentItemStatus,
 options: .new, context: &kvoContext)
 return p
}()

Now define the PiP controller and the video URL. As soon as the URL is set, con‐
struct an asset to hold the URL, place it inside the player, and set the player on your
view’s layer:

var pipController: AVPictureInPictureController?

var videoUrl: URL? = nil{
 didSet{
 if let u = videoUrl{
 let asset = AVAsset(url: u)
 let item = AVPlayerItem(asset: asset,
 automaticallyLoadedAssetKeys: ["playable"])

14.2 Adding Picture in Picture Playback Functionality | 471

www.allitebooks.com

http://www.allitebooks.org

 player.replaceCurrentItem(with: item)
 pipView.pipLayerPlayer = player
 }
 }
}

You also need a method that returns the URL of the video you are going to play. I’ve
embedded a public domain video into my app and it resides in my app bundle. Check
out this book’s GitHub repo for sample code:

var embeddedVideo: URL?{
 return Bundle.main.url(forResource: "video", withExtension: "mp4")
}

You need to determine whether PiP is supported by calling the isPictureInPicture
Supported() class method of the AVPictureInPictureController class:

func isPipSupported() -> Bool{
 guard AVPictureInPictureController.isPictureInPictureSupported() else{
 // no PiP
 return false
 }

 return true
}

When you start the PiP controller, you also need to make sure that the audio plays
well even though the player is detached from your app. For that, you have to set your
app’s audio playback category:

func setAudioCategory() -> Bool{
 // set the audio category
 do{
 try AVAudioSession.sharedInstance().setCategory(
 AVAudioSessionCategoryPlayback)
 return true
 } catch {
 return false
 }
}

When PiP playback is available, you can finally construct your PiP controller with
your player’s layer. Remember, if the layer is not ready yet to play PiP, constructing
the PiP view controller will fail:

func startPipController(){
 pipController = AVPictureInPictureController(playerLayer: pipView.pipLayer)
 guard let controller = pipController else{
 return
 }

 controller.addObserver(self, forKeyPath: pipPossible,

472 | Chapter 14: Multitasking

 options: .new, context: &kvoContext)
}

Write the code for play() now. You don’t have to check for availability of PiP just
because you want to play a video:

@IBAction func play() {
 guard setAudioCategory() else{
 alert("Could not set the audio category")
 return
 }

 guard let u = embeddedVideo else{
 alert("Cannot find the embedded video")
 return
 }

 videoUrl = u
 player.play()

}

As soon as the user presses the PiP button, if the pictureInPicturePossible()
method of your PiP controller returns true, start PiP:

@IBAction func beginPip() {

 guard isPipSupported() else{
 alert("PiP is not supported on your machine")
 return
 }

 guard let controller = pipController else{
 alert("Could not instantiate the pip controller")
 return
 }

 controller.addObserver(self, forKeyPath: pipPossible,
 options: .new, context: &kvoContext)

 if controller.isPictureInPicturePossible{
 controller.startPictureInPicture()
 } else {
 alert("Pip is not possible")
 }

}

Last but not least, listen for KVO messages:

override func observeValue(
 forKeyPath keyPath: String?,
 of object: Any?, change: [NSKeyValueChangeKey : Any]?,

14.2 Adding Picture in Picture Playback Functionality | 473

www.allitebooks.com

http://www.allitebooks.org

 context: UnsafeMutableRawPointer?) {

 guard context == &kvoContext else{
 return
 }

 if keyPath == pipPossible{
 guard let possibleInt = change?[NSKeyValueChangeKey.newKey]
 as? NSNumber else{
 beginPipBtn.isEnabled = false
 return
 }

 beginPipBtn.isEnabled = possibleInt.boolValue

 }

 else if keyPath == currentItemStatus{

 guard let statusInt = change?[NSKeyValueChangeKey.newKey] as? NSNumber,
 let status = AVPlayerItemStatus(rawValue: statusInt.intValue),
 status == .readyToPlay else{
 return
 }

 startPipController()

 }

}

Give this a go on an iPad Air 2 or a similar device that has PiP
support.

14.3 Handling Low Power Mode and Providing
Alternatives
Problem
You want to know whether the device is in low power mode and want to be updated
on the status of this mode as the user changes it.

474 | Chapter 14: Multitasking

Solution
To determine if the device is in low power mode, read the value of the low
PowerModeEnabled property of your process (of type NSProcessInfo), and listen to
NSProcessInfoPowerStateDidChangeNotification notifications to find out when
this state changes.

Discussion
Low power mode is a feature that Apple has placed inside iOS so that users can pre‐
serve battery whenever they wish to. For instance, if you have 10% battery while some
background apps are running, you can save power by:

• Disabling background apps
• Reducing network activity
• Disabling automatic mail pulls
• Disabling animated backgrounds
• Disabling visual effects

And that’s what low power mode does. In Figure 14-4, low power mode is disabled
because there is a good amount of battery left on this device. Should the battery reach
about 10%, the user will automatically be asked to enable low power mode.

Figure 14-4. Low power mode in the Settings app

Let’s create an app that wants to download a URL but won’t do so when low power
mode is enabled. Instead, the app will defer the download until this mode is disabled.
We’ll start by listening to NSProcessInfoPowerStateDidChangeNotification notifi‐
cations:

14.3 Handling Low Power Mode and Providing Alternatives | 475

www.allitebooks.com

http://www.allitebooks.org

override func viewDidLoad() {
 super.viewDidLoad()

 NotificationCenter.default.addObserver(
 self,
 selector: #selector(powerModeChanged(_:)),
 name: NSNotification.Name.NSProcessInfoPowerStateDidChange, object: nil)

 downloadNow()

}

Our custom downloadNow() method has to avoid downloading the file if the device is
in low power mode:

func downloadNow(){

 guard let url = URL(string: "http://localhost:8888/video.mp4"),
 !processInfo.isLowPowerModeEnabled else{
 return
 }

 // do the download here
 print(url)

 mustDownloadVideo = false

}

Last but not least, we write the powerModeChanged(_:) method that we have hooked
to our notification:

import UIKit

class ViewController: UIViewController {

 var mustDownloadVideo = true
 let processInfo = ProcessInfo.processInfo

 @objc func powerModeChanged(_ notif: Notification){

 guard mustDownloadVideo else{
 return
 }

 downloadNow()

 }

 ...

476 | Chapter 14: Multitasking

CHAPTER 15

Maps and Location

In this chapter, we will have a look at some awesome updates to the MapKit and Core
Location frameworks.

15.1 Customizing the Map View with System Buttons
Problem
Instead of letting your map view display the compass or user tracking buttons (as it
does by default), you want to place these buttons somewhere else in your application’s
UI.

Solution
Follow these steps:

1. For the user tracking button, create an instance of MKUserTrackingButton that
inherits from UIView. You can then add this view to another view in your view
hierarchy. Alternatively you can create an instance of UIBarButtonItem using its
UIBarButtonItem(customView:) method, which lets you place the bar button on
a navigation item. In the Discussion, we’ll show an example that uses a UIBar
ButtonItem.

2. For the compass button, create an instance of the MKCompassButton class that
also inherits from the UIView class. To display it, you have the same options as for
the user tracking button.

3. Set the mapType property of your map view to mutedStandard, of type MKMapType,
so that the map view itself does not show the standard buttons and views.

477

www.allitebooks.com

http://www.allitebooks.org

4. Set the value of the showsCompass property of your map view to false, so that
the map view does not show its own compass button.

The resulting map view and navigation bar are shown in Figure 15-1.

Figure 15-1. Map with compass and user tracking buttons in navigation bar

Discussion
Let’s have a look at an example. Here we:

1. Place a map view on our view controller.

478 | Chapter 15: Maps and Location

2. Ensure that the map view covers the entire view controller.
3. Embed our view controller inside a navigation controller.
4. Connect our map view to an outlet called mapView inside the view controller’s

code.

Don’t forget to import the MapKit framework. Our first lines follow:

import UIKit
import MapKit

class ViewController: UIViewController {

 @IBOutlet weak var mapView: MKMapView!

 //the rest of our code will be placed here...

Now we are going to write a computed property for our view controller that returns
an instance of MKUserTrackingButton wrapped inside an instance of UIBarButton
Item:

var trackingButton: UIBarButtonItem{
 let button = MKUserTrackingButton(mapView: self.mapView)
 return UIBarButtonItem(customView: button)
}

Similarly, for the tracking button, we write a computed property for our view control‐
ler that returns an instance of MKCompassButton wrapped inside an instance of UIBar
ButtonItem:

var compassButton: UIBarButtonItem{
 let button = MKCompassButton(mapView: self.mapView)
 button.compassVisibility = .visible
 return UIBarButtonItem(customView: button)
}

As our view controller’s view loads up, we will then place these bar button items on
our navigation bar:

override func viewDidLoad() {
 super.viewDidLoad()

 mapView.mapType = .mutedStandard
 mapView.showsCompass = false
 navigationItem.rightBarButtonItem = trackingButton
 navigationItem.leftBarButtonItem = compassButton

}

Keep in mind that both MKCompassButton and MKUserTrackingButton are views of
type UIView, and not instances of UIBarButtonItem. We wrapped them inside instan‐
ces of UIBarButtonItem in this recipe so that we could place them inside our naviga‐

15.1 Customizing the Map View with System Buttons | 479

www.allitebooks.com

http://www.allitebooks.org

tion bar. If you want to put the buttons in another view instead of the navigation bar,
you can use the view’s addSubview(_:) function.

15.2 Displaying System Annotations on the Map
Problem
You want to display customizable annotations on the map view.

Solution
Follow these steps:

1. Import MapKit in your code.
2. Write an annotation class that conforms to NSObject and MKAnnotation.
3. Hold a reference to your coordinates in an object of type CLLocationCoordi

nate2D, which has a latitude and longitude.
4. Instantiate your annotation class from the CLLocationCoordinate2D object.
5. Invoke the register(_:forAnnotationViewWithReuseIdentifier:) function of

your map view with an identifier of type MKMapViewDefaultAnnotationView
ReuseIdentifier and an annotation view class of type MKMarkerAnnotation
View.self.

6. Invoke the addAnnotation(_:) function of your map view to add your annota‐
tion object to the map view.

7. Ensure that you are the delegate of your map view by setting the delegate prop‐
erty of your map view either in IB or in code.

8. Implement the mapView(_:viewFor:) delegate function of MKMapViewDelegate.
From there, return an instance of the MKMarkerAnnotationView class for your
annotations.

A sample annotated map is shown in Figure 15-2.

480 | Chapter 15: Maps and Location

Figure 15-2. A map with an annotation view we added from our application

Discussion
We’ll start with Xcode. Place a map view on your view controller and ensure that it
covers the entire screen. Set the delegate property of the map view to your view con‐
troller and then connect the map view to an outlet in your view controller called map
View.

We will now write a class that conforms to NSObject and MKAnnotation, so it can rep‐
resent our annotation objects:

15.2 Displaying System Annotations on the Map | 481

www.allitebooks.com

http://www.allitebooks.org

class Annotation: NSObject, MKAnnotation{

 var coordinate: CLLocationCoordinate2D
 var title: String?
 var subtitle: String?

 init (coordinate: CLLocationCoordinate2D,
 title: String?,
 subtitle: String?){

 self.coordinate = coordinate
 self.title = title
 self.subtitle = subtitle

 super.init()

 }

}

Now we are going to define a location, of type CLLocationCoordinate2D, with a lati‐
tude and longitude. I have chosen to show a locality called Löttorp, which is in the
south of Sweden on a little island called Öland, but you can change this latitude and
longitude to any other valid value that you desire:

extension CLLocationCoordinate2D{

 static var southOfSweden: CLLocationCoordinate2D{
 return CLLocationCoordinate2D(latitude: 57.166096, longitude: 16.993009)
 }

}

Now that we have the coordinates, we can turn it into an instance of Annotation
using a title and subtitle of our choice:

extension CLLocationCoordinate2D{

 func annotation(withTitle title: String?, subTitle: String?) -> Annotation{
 return Annotation(coordinate: self, title: title, subtitle: subTitle)
 }

}

We start in our view controller by ensuring that we are conforming to the MKMapView
Delegate protocol and that we have a reference to our map view that is placed on the
storyboard:

class ViewController: UIViewController, MKMapViewDelegate {

 @IBOutlet weak var mapView: MKMapView!

482 | Chapter 15: Maps and Location

 // the rest of our code will be placed here soon...

The next step is to ensure that we are registering MKMarkerAnnotationView as
the default annotation view in our map view. Then we create an annotation of type
Annotation (our own class) and add that annotation to our map view:

override func viewDidLoad() {
 super.viewDidLoad()

 mapView.register(
 MKMarkerAnnotationView.self,
 forAnnotationViewWithReuseIdentifier:
 MKMapViewDefaultAnnotationViewReuseIdentifier)

 let southOfSweden =
 CLLocationCoordinate2D.southOfSweden.annotation(
 withTitle: "Löttorp", subTitle: "Centrum")

 mapView.addAnnotation(southOfSweden)

}

Last but not least, we will instantiate MKMarkerAnnotationView in the map

View(_:viewFor:) delegate function:

func mapView(_ mapView: MKMapView,
 viewFor annotation: MKAnnotation) -> MKAnnotationView? {

 guard let view = mapView.dequeueReusableAnnotationView(
 withIdentifier: MKMapViewDefaultAnnotationViewReuseIdentifier) as?
 MKMarkerAnnotationView else {return nil}

 view.animatesWhenAdded = true
 view.titleVisibility = .adaptive
 view.subtitleVisibility = .adaptive

 return nil
}

See Also
Recipe 15.3

15.3 Clustering Annotations for a Clutter-Free Map
Problem
You have too many annotations to display on the map and you would like to cut
down on the superfluous icons, which do not contribute to the user’s understanding.

15.3 Clustering Annotations for a Clutter-Free Map | 483

www.allitebooks.com

http://www.allitebooks.org

Solution
Follow these steps:

1. Subclass MKAnnotation. In your subclass, store a property of type String? that
will be the identifier by which you can group your annotations on the map.

2. When you display annotation views on the map, such as annotation views of type
MKMarkerAnnotationView, set their clusteringIdentifier property to the
aforementioned String? property.

This recipe is based on what you learned in Recipe 15.2. I suggest
that you read that recipe before digging deeper into this one.

Discussion
Annotation views of type MKAnnotationView, including the MKMarkerAnnotation
View class, have a property called clusteringIdentifier of type String?. When you
provide this property to your annotation views, if the user zooms out of the map view
so that they can see more content, iOS will attempt to group your annotation views
with the same clustering identifier so that a single annotation view represents all the
views that are close together.

For instance, if you have 100 annotations to place in New York, all very close to each
other, and the user has zoomed out of the map to see New York, Philadelphia, and
Washington DC, in the same map view, it’s not very attractive to display 100 pins just
on New York, which by this time is probably the size of a peanut. For this reason, you
can provide a clustering identifier to your annotation views, which iOS will use to
attempt to cluster your annotation views into groups based on the amount of zoom‐
ing that the user has done. Instead of, for example, 100 annotation views, the user
sees only one. As the user then zooms into the map, more and more of the annotation
views pop up.

Let’s extend what we learned in Recipe 15.2 and add a new property called cluster
ingIdentifier, of type String?, to our annotation object:

import UIKit
import MapKit

class Annotation: NSObject, MKAnnotation{

 var coordinate: CLLocationCoordinate2D
 var title: String?
 var subtitle: String?

484 | Chapter 15: Maps and Location

 let clusteringIdentifier: String?

 //more of our implementation will follow here shortly

Since we have added this new property to our class, we need to change our initializer
to account for this new property:

init (coordinate: CLLocationCoordinate2D,
 title: String? = nil,
 subtitle: String? = nil,
 clusteringIdentifier: String? = nil){

 self.coordinate = coordinate
 self.title = title
 self.subtitle = subtitle
 self.clusteringIdentifier = clusteringIdentifier

 super.init()

}

For the sake of simplicity, in this recipe we are not going to use the title and
subtitle properties, but we need the coordinate and the clusteringIdentifier
properties. So let’s create a convenience initializer that takes in a latitude and longi‐
tude, which it can use to construct the coordinate property, along with taking in the
clustering identifier:

convenience init (lat: CLLocationDegrees,
 long: CLLocationDegrees,
 clusteringIdentifier: String){
 self.init(
 coordinate:CLLocationCoordinate2D(latitude: lat, longitude: long),
 title: nil,
 subtitle: nil,
 clusteringIdentifier: clusteringIdentifier
)

}

In our view controller, we are going to define three groups of annotations, each group
having eight annotation objects and each annotation in the same group being very
close to the others.

I have chosen the south of Sweden as a destination for these annotations: specifically,
a place called Borgholm, which is a very small town on an island belonging to Swe‐
den called Öland. So let’s first define eight annotation objects in our map view, all
having the same clustering identifier:

class ViewController: UIViewController, MKMapViewDelegate {

 @IBOutlet weak var mapView: MKMapView!

15.3 Clustering Annotations for a Clutter-Free Map | 485

www.allitebooks.com

http://www.allitebooks.org

 private var firstGroupOfAnnotations: [Annotation]{
 let id = "Borgholm Center"
 return [
 Annotation(lat: 56.878785, long: 16.648149, clusteringIdentifier: id),
 Annotation(lat: 56.882349, long: 16.651926, clusteringIdentifier: id),
 Annotation(lat: 56.883193, long: 16.654673, clusteringIdentifier: id),
 Annotation(lat: 56.879536, long: 16.653299, clusteringIdentifier: id),
 Annotation(lat: 56.879254, long: 16.657419, clusteringIdentifier: id),
 Annotation(lat: 56.877472, long: 16.655359, clusteringIdentifier: id),
 Annotation(lat: 56.879348, long: 16.660852, clusteringIdentifier: id),
 Annotation(lat: 56.878316, long: 16.653643, clusteringIdentifier: id)
]
 }

 //the rest of our view controller code will follow here shortly...

These annotations are all in the center of this little town, with an identifier equal to
Borgholm Center as you can see. Now we are going to group eight more annotations
with another identifier, in the same town, but not in the center:

private var secondGroupOfAnnotations: [Annotation]{
 let id = "Borgholm"
 return [
 Annotation(lat: 56.879629, long: 16.662569, clusteringIdentifier: id),
 Annotation(lat: 56.880286, long: 16.664629, clusteringIdentifier: id),
 Annotation(lat: 56.879348, long: 16.662569, clusteringIdentifier: id),
 Annotation(lat: 16.662569, long: 16.661024, clusteringIdentifier: id),
 Annotation(lat: 56.883100, long: 16.669950, clusteringIdentifier: id),
 Annotation(lat: 56.879067, long: 16.666002, clusteringIdentifier: id),
 Annotation(lat: 56.878222, long: 16.664114, clusteringIdentifier: id),
 Annotation(lat: 56.877847, long: 16.663599, clusteringIdentifier: id),
]
}

Last but not least, we’ll create a third group of annotations that are in the suburbs of
this little town:

private var thirdGroupOfAnnotations: [Annotation]{
 let id = "Borgholm Suburbs"
 return [
 Annotation(lat: 56.874564, long: 16.661196, clusteringIdentifier: id),
 Annotation(lat: 56.875408, long: 16.662741, clusteringIdentifier: id),
 Annotation(lat: 56.878504, long: 16.667204, clusteringIdentifier: id),
 Annotation(lat: 56.877191, long: 16.666346, clusteringIdentifier: id),
 Annotation(lat: 56.876534, long: 16.667547, clusteringIdentifier: id),
 Annotation(lat: 56.876253, long: 16.666002, clusteringIdentifier: id),
 Annotation(lat: 56.878129, long: 16.671152, clusteringIdentifier: id),
 Annotation(lat: 56.877284, long: 16.667376, clusteringIdentifier: id),
]
}

Now we have three groups of annotations, and every annotation in a group shares an
identifier with the rest of the annotations in the same group. So if we add these anno‐

486 | Chapter 15: Maps and Location

tations to our map and then zoom out far enough, we should only see 3 annotations
on the map instead of 24. But let’s add these annotations to the map first:

override func viewDidLoad() {
 super.viewDidLoad()

 mapView.register(
 MKMarkerAnnotationView.self,
 forAnnotationViewWithReuseIdentifier:
 MKMapViewDefaultAnnotationViewReuseIdentifier)

 mapView.addAnnotations(firstGroupOfAnnotations)
 mapView.addAnnotations(secondGroupOfAnnotations)
 mapView.addAnnotations(thirdGroupOfAnnotations)

}

Next we’ll provide annotation views for these annotations, and then set the annota‐
tion view’s clusteringIdentifier to the clusteringIdentifier property of our
Annotation class, instances of which we created in our firstGroupOfAnnotations,
secondGroupOfAnnotations, and thirdGroupOfAnnotations private properties:

func mapView(_ mapView: MKMapView,
 viewFor annotation: MKAnnotation) -> MKAnnotationView? {

 guard let annotation = annotation as? Annotation else {return nil}

 guard let view = mapView.dequeueReusableAnnotationView(
 withIdentifier: MKMapViewDefaultAnnotationViewReuseIdentifier) as?
 MKMarkerAnnotationView else {return nil}

 view.animatesWhenAdded = true
 view.titleVisibility = .adaptive
 view.subtitleVisibility = .adaptive
 view.clusteringIdentifier = annotation.clusteringIdentifier

 return nil
}

Let’s run the application and then zoom a little bit into Öland, just far enough to be
able to see Borgholm (see Figure 15-3). Here we can see three clusters of annotations.

15.3 Clustering Annotations for a Clutter-Free Map | 487

www.allitebooks.com

http://www.allitebooks.org

Figure 15-3. Three circular red annotations, each holding eight annotations

As we zoom into the map, more and more annotations pop up here and there, under
the clusters (see Figure 15-4).

488 | Chapter 15: Maps and Location

Figure 15-4. More annotations pop up as we zoom further into the map

See Also
Recipe 15.2

15.3 Clustering Annotations for a Clutter-Free Map | 489

www.allitebooks.com

http://www.allitebooks.org

15.4 Displaying a Specific Location on the Map
Problem
You have a latitude and a longitude of a location on Earth that you would like to dis‐
play as a pin on the map.

Solution
Follow these steps:

1. Import MapKit as a framework into your project.
2. Create a class that conforms to both NSObject and MKAnnotation. Conforming to

the MKAnnotation protocol requires defining its variables—particularly coordi
nate, title, and subtitle—and methods. Instances of classes that conform to
MKAnnotation can be added to the map view via its addAnnotation(_:) method.

3. For the map to know where to set the visible region that the user actually sees,
instead of seeing the entire map of the Earth, instantiate MKCoordinateSpan with
a latitude delta and longitude delta of type double. The smaller the deltas, the
closer the camera is to the Earth.

4. Instantiate MKCoordinateRegion with the location you want to be the center of
the map, and pass the coordinate span instance that you created in the previous
step to the coordinate region.

5. Call the addAnnotation(_:) method of your map view to set the annotation at
the right spot.

6. Call the setRegion(_:animated:) method of your map view to set the visible
region of your map.

Discussion
Let’s have a look at an example. Create a single view application in Xcode and open
the Main.storyboard file in Interface Builder. From the Object Library, drag and drop
a map view onto your view controller and make sure it covers the entire screen
(Figure 15-5). Also connect the reference outlet of the map view to a variable in your
view controller called mapView.

490 | Chapter 15: Maps and Location

Figure 15-5. The map view is placed on the view controller and covers the entire screen

Following this recipe’s Solution, now create an Annotation instance that conforms to
both NSObject and MKAnnotation:

import UIKit
import MapKit

class Annotation : NSObject, MKAnnotation{
 let coordinate: CLLocationCoordinate2D
 let title: String?
 let subtitle: String?

 init(latitude: CLLocationDegrees, longitude: CLLocationDegrees,
 title: String?, subtitle: String?){
 self.coordinate = CLLocationCoordinate2D(latitude: latitude,
 longitude: longitude)
 self.title = title
 self.subtitle = subtitle
 }

}

15.4 Displaying a Specific Location on the Map | 491

www.allitebooks.com

http://www.allitebooks.org

Since the Annotation class now has references to the coordinates, and coordinates are
required to find the region that has to be displayed, you can extend this class to
return the region of type MKCoordinateRegion:

extension Annotation{
 var region: MKCoordinateRegion{
 let span = MKCoordinateSpan(latitudeDelta: 0.05, longitudeDelta: 0.05)
 return MKCoordinateRegion(center: coordinate, span: span)
 }
}

Now start with the definition of the view controller:

class ViewController: UIViewController {

 @IBOutlet var mapView: MKMapView!

 ...

You can then code a method that takes in a latitude, longitude, title, and subtitle for a
pin to be displayed on the screen, instantiates the annotation, and adds that annota‐
tion to the map:

func display(latitude: CLLocationDegrees,
 longitude: CLLocationDegrees,
 title: String? = nil,
 subtitle: String? = nil){

 let annotation = Annotation(latitude: latitude,
 longitude: longitude,
 title: title,
 subtitle: subtitle)

 mapView.addAnnotation(annotation)

 mapView.setRegion(annotation.region, animated: false)

}

Now you can simply call this function and display, for instance, a pin where Stock‐
holm’s Central Station is:

override func viewDidLoad() {
 super.viewDidLoad()

 let stockholmCentralStation = (lat: 59.330139, long: 18.058155)

 display(latitude: stockholmCentralStation.lat,
 longitude: stockholmCentralStation.long,
 title: "Central Station",
 subtitle: "Stockholm")

}

492 | Chapter 15: Maps and Location

Experiment a little bit with the latitude and longitude delta values of the region
instance of type MKCoordinateRegion, and see how decreasing this value zooms the
map more into the center. Also, change the latitude and the longitude and see how
that affects where the point is displayed.

See Also
Recipe 15.2

15.5 Requesting the User’s Location a Single Time
Problem
You want an optimized and energy-efficient way of requesting the current location of
the user only once.

Solution
You will need to use the requestLocation() method of the CLLocationManager class.
The new location will be sent to your location manager’s locationManager(_:did
UpdateLocations:) delegate method. Errors will be reported by location

Manager(_:didFailWithError:). You can make only one request to this method at
any given time. A new request will cancel the previous one.

Discussion
Place a button on your interface inside IB and hook it up to a method in your code
called requestLocation(). Then go into your Info.plist file and set the value of the
NSLocationWhenInUseUsageDescription key to a valid string that explains to the
user why you want to get her location. You will also have to import the CoreLocation
framework and make your view controller conform to CLLocationManagerDelegate.

Implement a variable in your view controller to represent the location manager:

lazy var locationManager: CLLocationManager = {
 let manager = CLLocationManager()
 manager.delegate = self
 manager.desiredAccuracy = kCLLocationAccuracyNearestTenMeters
 return manager
}()

When your button is pressed, request access to the user’s location. This request sends
the user’s location to your app only when it is in the foreground. As soon as your app
is sent to the background, iOS stops delivering location updates to you:

15.5 Requesting the User’s Location a Single Time | 493

www.allitebooks.com

http://www.allitebooks.org

@IBAction func requestLocation() {

 locationManager.requestWhenInUseAuthorization()

}

Then wait for the user to accept or reject the request. If everything is going smoothly,
request the user’s location:

func locationManager(_ manager: CLLocationManager,
 didChangeAuthorization status: CLAuthorizationStatus) {

 if case .authorizedWhenInUse = status{
 manager.requestLocation()
 } else {
 // TODO: we didn't get access, handle this
 }

}

Last but not least, wait for the location-gathering mechanism to fail or succeed:

func locationManager(_ manager: CLLocationManager,
 didUpdateLocations locations: [CLLocation]) {
 // TODO: now you have access to the location--do your work
}

func locationManager(_ manager: CLLocationManager,
 didFailWithError error: Error) {
 // TODO: handle the error
}

See Also
Recipe 15.6

15.6 Requesting the User’s Location in the Background
Problem
You want to receive updates on the user’s location while your app is in the back‐
ground. Being a good iOS citizen, you won’t ask for this unless you really need it for
the main functionality of your app.

Solution
Set the allowsBackgroundLocationUpdates property of your location manager to
true and ask for location updates using the requestAlwaysAuthorization()

function.

494 | Chapter 15: Maps and Location

Discussion
When linked against the latest iOS SDK, apps that want to ask for a user’s location
when they’re in the background have to set the allowsBackgroundLocationUpdates
property of their location manager to true. Let’s have a look at an example. Start a
single view controller app, place a button on your UI in IB, and give it a title similar
to “Request background location updates.” Then hook it to a method in your view
controller and name the method requestBackgroundLocationUpdates(). In your
Info.plist file, set the string value of the NSLocationAlwaysUsageDescription key and
make sure that it explains exactly why you want to access the user’s location even in
the background. Then go into the Capabilities section of your target, and under Back‐
ground Modes, enable “Location updates” (see Figure 15-6).

Figure 15-6. Enabling location updates in Background Modes in your project

Now import CoreLocation in your code and make your view controller conformant
to CLLocationManagerDelegate. Create your location manager and make sure that
the allowsBackgroundLocationUpdates property is set to true:

lazy var locationManager: CLLocationManager = {
 let m = CLLocationManager()
 m.delegate = self
 m.desiredAccuracy = kCLLocationAccuracyNearestTenMeters
 m.allowsBackgroundLocationUpdates = true
 return m
}()

When the user presses the button, ask for location updates:

@IBAction func requestBackgroundLocationUpdates() {
 locationManager.requestAlwaysAuthorization()
}

Wait until the user accepts the request and then start looking for location updates:

func locationManager(
 _ manager: CLLocationManager,

15.6 Requesting the User’s Location in the Background | 495

www.allitebooks.com

http://www.allitebooks.org

 didChangeAuthorization status: CLAuthorizationStatus) {

 if case CLAuthorizationStatus.authorizedAlways = status{
 manager.startUpdatingLocation()
 }

}

Last but not least, implement the usual location manager methods to get to know
when the user’s location has changed:

func locationManager(_ manager: CLLocationManager,
 didUpdateLocations locations: [CLLocation]) {
 // TODO: now you have access to the location--do your work

}

func locationManager(_ manager: CLLocationManager,
 didFailWithError error: Error) {
 // TODO: handle the error
}

See Also
Recipe 15.5

15.7 Customizing the Tint Color of Pins on the Map
Problem
You want to set the tint color of pin annotations on your map manually.

Solution
Use the pinTintColor property of the MKPinAnnotationView class.

Discussion
Let’s check out an example. Create a single view controller project and dump a map
view on top of your view. Make sure that you set the delegate of this map view to your
view controller. Also link it to a variable named map in your view controller.

In the view controller, we are going to create annotations with reusable identifiers, so
let’s use the color as the ID:

import Foundation
import UIKit

public extension UIColor{
 final func toString() -> String{

496 | Chapter 15: Maps and Location

 var red = 0.0 as CGFloat
 var green = 0.0 as CGFloat
 var blue = 0.0 as CGFloat
 var alpha = 0.0 as CGFloat
 getRed(&red, green: &green, blue: &blue, alpha: &alpha)

 return "\(Int(red))\(Int(green))\(Int(blue))\(Int(alpha))"
 }
}

Now create the annotation:

import Foundation
import MapKit

public class Annotation : NSObject, MKAnnotation{
 public var coordinate: CLLocationCoordinate2D
 public var title: String?
 public var subtitle: String?

 public init(coordinate: CLLocationCoordinate2D,
 title: String, subtitle: String){
 self.coordinate = coordinate
 self.title = title
 self.subtitle = subtitle
 }

}

Ensure that your view controller conforms to the MKMapViewDelegate protocol,
define the location that you want to display on the map, and create an annotation for
it:

let color = UIColor(red: 0.4, green: 0.8, blue: 0.6, alpha: 1.0)
let location = CLLocationCoordinate2D(latitude: 59.33, longitude: 18.056)

lazy var annotations: [MKAnnotation] = {
 return [Annotation(coordinate: self.location,
 title: "Stockholm Central Station",
 subtitle: "Stockholm, Sweden")]
}()

When your view appears on the screen, add the annotation to the map:

 override func viewDidAppear(_ animated: Bool) {
 super.viewDidAppear(animated)

 map.removeAnnotations(annotations)
 map.addAnnotations(annotations)

}

15.7 Customizing the Tint Color of Pins on the Map | 497

www.allitebooks.com

http://www.allitebooks.org

And when the map view asks for an annotation view for your annotation, return an
annotation view with the custom color (see Figure 15-7):

func mapView(_ mapView: MKMapView,
 viewFor annotation: MKAnnotation) -> MKAnnotationView? {

 let view: MKPinAnnotationView
 if let v = mapView.dequeueReusableAnnotationView(
 withIdentifier: color.toString()), v is MKPinAnnotationView{
 view = v as! MKPinAnnotationView
 } else {
 view = MKPinAnnotationView(annotation: annotation,
 reuseIdentifier: color.toString())
 }

 view.pinTintColor = color

 return view

}

Figure 15-7. Our custom-color pin is displayed on the map

See Also
Recipe 15.2

498 | Chapter 15: Maps and Location

15.8 Providing Detailed Pin Information with Custom
Views
Problem
When the user taps an annotation in a map, you want to display details for that anno‐
tation in a view.

Solution
Set the detailCalloutAccessoryView property of your MKAnnotationView instances
to a valid UIView instance.

Discussion
Create your project following the steps outlined in Recipe 15.7. In this recipe, we’re
going to reuse a lot of code from the aforementioned recipe, except for the implemen‐
tation of the mapView(_:viewForAnnotation:) delegate method of our view control‐
ler. Instead, we are going to construct instances here of MKAnnotationView and then
set the detail callout accessory view:

func mapView(
 _ mapView: MKMapView,
 viewForAnnotation annotation: MKAnnotation) -> MKAnnotationView? {

 let view: MKAnnotationView
 if let v = mapView
 .dequeueReusableAnnotationView(withIdentifier: identifier){
 // reuse
 view = v
 } else {
 // create a new one
 view = MKAnnotationView(annotation: annotation,
 reuseIdentifier: identifier)

 view.canShowCallout = true

 if let img = UIImage(named: "Icon"){
 view.detailCalloutAccessoryView = UIImageView(image: img)
 }

 if let extIcon = UIImage(named: "ExtIcon"){
 view.image = extIcon
 }
 }

 return view

15.8 Providing Detailed Pin Information with Custom Views | 499

www.allitebooks.com

http://www.allitebooks.org

}

Figure 15-8 shows the image of an annotation on a map. The image inside the callout
is the detail callout accessory view.

Figure 15-8. Annotation with detail callout accessory

I am using two public domain images in this recipe. You also can
find public domain images on Google.

See Also
Recipes 15.2 and 15.7

15.9 Displaying Traffic, Scale, and Compass Indicators on
the Map
Problem
You want to display traffic as well as the little compass and scale indicators on the
map view.

Solution
Set the following properties of your map view to true:

• showsCompass

• showsTraffic

• showsScale

500 | Chapter 15: Maps and Location

Discussion
Place a map view on your view and set the appropriate constraints on it so that it
stretches across the width and height of your view controller’s view. This is really
optional, but useful so the user can see the map view properly on all devices. Then
follow the steps outlined in Recipe 15.7 to place an annotation on the map. Write
code similar to the following in a method such as viewDidLoad():

map.showsCompass = true
map.showsTraffic = true
map.showsScale = true

The results will be similar to those shown in Figure 15-9. The scale is shown on the
top left and the compass on the top right. You have to rotate the map for the compass
to appear.

Figure 15-9. Map with scale, compass, and traffic indicators

15.9 Displaying Traffic, Scale, and Compass Indicators on the Map | 501

www.allitebooks.com

http://www.allitebooks.org

See Also
Recipe 15.10

15.10 Providing an ETA for Transit Transport Type
Problem
You want your app to provide routing options to users when they are in the iOS Maps
app.

Solution
You will need to mark your app as a routing app and construct an instance of the
MKDirectionsRequest class. Set the transportType property of that request to
Transit and send your request to Apple to calculate an estimated time of arrival
(ETA), using the calculateETA(completionHandler:) method of the MKDirections
class.

We use GeoJSON files here, so be sure to read the spec for that for‐
mat before proceeding with this recipe.

Discussion
Create a single view application. Then head to the Capabilities tab in Xcode, enable
the Maps section, and mark the routing options that you believe your app will be able
to provide (see Figure 15-10). I’ve enabled everything for demonstration purposes,
but you probably wouldn’t want to enable all of these in your app.

502 | Chapter 15: Maps and Location

https://tools.ietf.org/html/rfc7946

Figure 15-10. Transportation routing options

Create a new Directions.geoJson file in your app and then head over to GeoJson.io to
create the polygon that defines your routing coverage area. Then copy and paste the
generated content and place it in the aforementioned file in your project. Now go and
edit your target’s scheme. Under Run and then Options, find the Routing App Cover‐
age File section and select your file (see Figure 15-11).

Figure 15-11. Select the routing coverage file for your project

15.10 Providing an ETA for Transit Transport Type | 503

www.allitebooks.com

http://geojson.io/
http://www.allitebooks.org

You can always go to GeoJSONLint to validate your GeoJSON files.

This will allow the Maps app to open your app whenever the user asks for transit
information in the iOS Maps app. Now code the application(_:openURL:options:)
method of your app delegate and handle the routing request there:

func application(_ app: UIApplication,
 open url: URL,
 options:
 [UIApplicationOpenURLOptionsKey : Any] = [:]) -> Bool {

 guard MKDirectionsRequest.isDirectionsRequest(url) else{
 return false
 }

 // now we have the URL
 let req = MKDirectionsRequest(contentsOf: url)

 guard req.source != nil && req.destination != nil else{
 return false
 }

 req.transportType = .transit
 req.requestsAlternateRoutes = true

 let dir = MKDirections(request: req)

 dir.calculateETA {response, error in
 guard let resp = response, error == nil else{
 // handle the error
 print(error!)
 return
 }

 print("ETA response = \(resp)")

 }

 return true

}

Now open the Maps app and ask for directions from one location to another. If the
Maps app can’t handle the request, it will show a little View Routing Apps button.
Even if the Maps app isn’t able to show the routing options, the user can always press
the little navigation button to open alternative routing apps (see Figure 15-12). Your
app will be displayed in the list of routing apps if the user asks for a routing option

504 | Chapter 15: Maps and Location

http://geojsonlint.com/

you support, and if the starting and stopping points are within the shape you defined
in your GeoJSON file. When the user opens your app, your app delegate will be
informed and will calculate an ETA.

Figure 15-12. Our app, displayed in the list of routing apps

See Also
Recipe 15.9

15.11 Launching the iOS Maps App in Transit Mode
Problem
You want to launch iOS’s Maps app in transit mode.

Solution
When calling the openMaps(with:launchOptions:) class method of MKMapItem, in
the options collection, set the value of the MKLaunchOptionsDirectionsModeKey key
to MKLaunchOptionsDirectionsModeTransit.

Discussion
Let’s create a single view controller app and place a button on the view controller to
open a map. Set the title of this button to something like “Open Maps app in transit
mode.” Then hook it up to your view controller. For every coordinate of type CLLoca
tionCoordinate2D, you have to create an instance of MKPlacemark and then, from the
placemark, create an instance of MKMapItem.

Here is the source map item:

15.11 Launching the iOS Maps App in Transit Mode | 505

www.allitebooks.com

http://www.allitebooks.org

let srcLoc = CLLocationCoordinate2D(latitude: 59.328564,
 longitude: 18.061448)
let srcPlc = MKPlacemark(coordinate: srcLoc, addressDictionary: nil)
let src = MKMapItem(placemark: srcPlc)

Followed by the destination map item:

let desLoc = CLLocationCoordinate2D(latitude: 59.746148,
 longitude: 18.683281)
let desPlc = MKPlacemark(coordinate: desLoc, addressDictionary: nil)
let des = MKMapItem(placemark: desPlc)

You can use the Get Latitude and Longitude website to find the lati‐
tude and longitude of any point on the map.

Now you can launch the app, in transit mode, with the source and the destination
points:

let options = [
 MKLaunchOptionsDirectionsModeKey : MKLaunchOptionsDirectionsModeTransit
]

MKMapItem.openMaps(with: [src, des], launchOptions: options)

See Also
Recipes 15.9 and 15.10

15.12 Showing Maps in Flyover Mode
Problem
You want to display your maps in a flyover state, where the regions on the map are
translated onto a 3D globe, rather than a 2D flattened map.

Solution
Set the mapType property of your MKMapView to either hybridFlyover or satellite
Flyover.

Discussion
The flyover mode of a map view represents the map as if it were on a globe, rather
than flat. Keep that in mind when placing a camera on the map to show to the user.

506 | Chapter 15: Maps and Location

http://www.latlong.net/

Start off with a single view controller app. Place a map view on your view and hook it
up to your code. I’ve named mine map. When your view gets loaded, make sure that
your map type is one of the aforementioned flyover modes:

map.mapType = .satelliteFlyover
map.showsBuildings = true

Then, when your view appears on the screen, set the camera on your map:

let loc = CLLocationCoordinate2D(latitude: 59.328564,
 longitude: 18.061448)

let altitude: CLLocationDistance = 500
let pitch: CGFloat = 45
let heading: CLLocationDirection = 90

let c = MKMapCamera(
 lookingAtCenter: loc,
 fromDistance: altitude, pitch: pitch, heading: heading)

map.setCamera(c, animated: true)

Run this code on a real device (this doesn’t work very well on the simulator) and
you’ll get a display along the lines of Figure 15-13.

Figure 15-13. The Stockholm Central Station is shown here under satellite flyover mode

15.12 Showing Maps in Flyover Mode | 507

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 16

UI Testing

Apple added quite a good framework for UI testing in the latest Xcode. This is so
much fun, I am sure you are going to enjoy writing UI tests. UI tests go hand in hand
with accessibility, so knowing a bit about that is very useful, if not necessary.

When you are debugging accessibility-enabled apps on the simulator, you may want
to use a really handy dev tool that comes with Xcode: the Accessibility inspector
(Figure 16-1). You can find it by right-clicking Xcode’s icon in the Dock and choosing
Open Developer Tool, then Accessibility Inspector. The Accessibility inspector allows
you to move your mouse over items on the screen and get information about their
accessibility properties, such as their values, identifiers, and so on. I suggest that you
use this program whenever you want to figure out the identifiers, labels, and values of
UI components on your views.

In this chapter, we will have a look at how to write UI tests and evaluate the results.
We will use Xcode’s automated UI tests and also write some tests by hand.

16.1 Preparing Your Project for UI Testing
Problem
You have an existing app or want to create a new app, and you want to ensure that
you have some UI testing capabilities built into your app so that you can get started
writing UI tests.

509

www.allitebooks.com

http://www.allitebooks.org

Figure 16-1. The Accessibility inspector showing information for a button on the screen,
in the simulator

Solution
If you have an existing project, simply add a new UI Test target to your project. If you
are creating a new project from scratch, you can add a UI Test target during the cre‐
ation process.

Discussion
If you are starting a new app from scratch, upon setting your project’s properties, you
will be given a chance to create a UI testing target (see Figure 16-2). Enable the
“Include UI Tests” option.

510 | Chapter 16: UI Testing

Figure 16-2. Enabling the Include UI Tests option in Xcode’s new project sheet

If you have an existing project and want to add a new UI testing target to it, create a
new target. On the templates screen, under iOS, choose Test; then choose Cocoa
Touch UI Testing Bundle (see Figure 16-3).

Figure 16-3. Adding a new UI testing bundle to your existing app

16.1 Preparing Your Project for UI Testing | 511

www.allitebooks.com

http://www.allitebooks.org

On the next screen, you will be asked which target inside your project you want to
create the UI testing target. Make sure that you choose the right target on. You can
change this later if you want from the properties of your UI Test target (see
Figure 16-4).

Figure 16-4. You can change the target to which your UI tests are attached even after the
creation of your UI Test target

16.2 Automating UI Test Scripts
Problem
You want Xcode to generate most, if not all, of your UI testing code. You can write
more UI testing code in Swift, but it would be useful to take advantage of what Xcode
gives you for free.

Solution
Use the new Record button in Xcode when you are in your UI testing target’s code
(the red circle near the upper-left corner of Figure 16-5). This will really be handy if
you want to automatically get all your UI test code written for you (but sometimes
you’ll still have to write some yourself).

Figure 16-5. The little circular Record button in the debugger section of Xcode’s window
automatically gets UI test code

512 | Chapter 16: UI Testing

You can write all your UI tests in pure Swift code. No more muck‐
ing around with JavaScript. Jeez, isn’t that a relief?!

Discussion
Let’s say that you have a UI that looks similar to that shown in Figure 16-6. In this UI,
the user is allowed to enter some text in the text field at the top of the screen. Once
she is done, she can just press the Capitalize button and the code will translate her
input into its equivalent capitalized string and place it in the label at the bottom.

Figure 16-6. Sample UI with text fields and button

I assume that you have arranged these UI components inside a storyboard. In the
Identity inspector in IB, set the accessibility labels of your text field to “Full Name,”
your button to “Capitalize,” and your label to “Capitalized String.” Now hook up your
text field and your label to your code under the names of lbl and txtField as I’ve
done (this just makes understanding the code easier; you can name them what you
want). Then hook the action of your button to your code. I’ve named this action
method capitalize(). Now when the user presses the button, we read the text and
capitalize it:

 @IBAction func capitalize() {
 guard let txt = txtField.text, txt.characters.count > 0 else{
 return
 }
 lbl.text = txt.uppercased()
 lbl.accessibilityValue = lbl.text
 }

Now head over to the main Swift file for your UI tests and you should see a simple
empty method, usually named testExample(). Put your cursor inside that method
and then press the Record button. Xcode will open your app and you will be able to
interact with your app as you would normally. Acting as a user would be expected to
act, select the text field by tapping it and then type some text in it, like “Hello,
World!” Finally, press the Capitalize button. Xcode will generate a test that looks
more or less like:

16.2 Automating UI Test Scripts | 513

www.allitebooks.com

http://www.allitebooks.org

let app = XCUIApplication()
let fullNameTextField = app.textFields["Full Name"]
fullNameTextField.tap()
fullNameTextField.typeText(enteredString)
app.buttons["Capitalize"].tap()

We have a problem, Watson! We now need to make sure that the capitalized text
inside our label is correctly capitalized. How can we do that in Xcode and get Xcode
to generate the code for us? Well, the answer is: we can’t! This is a logical task that you
cannot automate with Xcode, so let’s do it ourselves. In the app object, there is a prop‐
erty called staticTexts. We can get our label from there:

let lbl = app.staticTexts["Capitalized String"]

This will give us an item of type XCUIElement. Just so you know, the app object is of
type XCUIApplication. Every element has a value property that is an optional value
of type AnyObject. For our label, this is going to contain a string. So let’s read its value
as a string and then compare it with the string that we expect it to be:

let app = XCUIApplication()
let fullNameTextField = app.textFields["Full Name"]
fullNameTextField.tap()
fullNameTextField.typeText(enteredString)
app.buttons["Capitalize"].tap()

I took the opportunity to put the entered and expected strings
inside string objects so that we don’t have to write them multiple
times.

Now press the little Play button next to your test method and let Xcode do its thing.
You should now see that the text has succeeded if everything went well.

See Also
Recipes 16.1 and 16.3

16.3 Testing Text Fields, Buttons, and Labels
Problem
You want to create UI tests to work with instances of UITextField, UIButton, and
UILabel.

514 | Chapter 16: UI Testing

Solution
All the aforementioned items are instances of type XCUIElement. That means that you
can work with some really cool properties of them in UI testing, such as the
following:

• exists

• title

• label

• enabled

• frame

• debugDescription

• descendantsMatchingType(_:)

• childrenMatchingType(_:)

The last two in the list are a bit more advanced, so we won’t work with them until
later in this chapter when we discuss queries.

Discussion
Let’s say that you have a label and a button. When the button is pressed, you want to
hide the label (by setting its hidden property to true). You now want to write a UI
test to see whether the desired effect actually happens. I assume that you’ve already
set up your UI and you’ve given accessibility labels of “Button” to the button and
“Label” to the label.

I recommend working as much as possible in Xcode’s automated
recording system, where you can just interact with your UI as nor‐
mal and then let Xcode write your UI test code for you. This is the
approach I take, not only in this recipe but in all other recipes in
this book where appropriate.

From within your UI testing target code, press the Record UI Test button (see
Figure 16-5). The code that you’ll get will be similar to this:

let app = XCUIApplication()
app.buttons["Button"].tap()

You can see that the app object has a property called buttons that returns an array of
all buttons that are on the screen. That itself is awesome, in my opinion. Then the
tap() method is called on your button. You want to find the label now:

let lbl = app.staticTexts["Label"]

As you can see, the app object has a property called staticTexts that is an array of
labels. Any label, anywhere. That’s really cool and powerful too. Regardless of where

16.3 Testing Text Fields, Buttons, and Labels | 515

www.allitebooks.com

http://www.allitebooks.org

your label is and who its parent is, this property will return that label. Now you want
to find whether that label is on the screen:

XCTAssert(lbl.exists == false)

You can, of course, also read the value of a text field. You can also use the debugger to
inspect the value property of a text field element using the po command. You can
find all text fields that are currently on the screen using the textFields property of
the app that you instantiated with XCUIApplication().

Here is an example where I try to find a text field on the screen with a specific acces‐
sibility label that I have set in my storyboard:

let app = XCUIApplication()

let txtField = app.textFields["MyTextField"]
XCTAssert(txtField.exists)
XCTAssert(txtField.value != nil)

let txt = txtField.value as! String

XCTAssert(txt.characters.count > 0)

See Also
Recipe 16.1

16.4 Finding UI Components
Problem
You want to be able to find your UI components, wherever they are, using simple to
complex queries.

Solution
Construct queries of type XCUIElementQuery. Link these queries together to create
even more complicated queries and find your UI elements.

The XCUIElement class conforms to the XCUIElementTypeQueryProvider protocol. I
am not going to waste space here and copy/paste Apple’s code in that protocol, but if
you have a look at it yourself, you’ll see that it is made out of a massive list of proper‐
ties (groups, windows, dialogs, buttons, etc.).

Here is how I recommend going about finding your UI elements using this
knowledge:

1. Instantiate your app with XCUIApplication().

516 | Chapter 16: UI Testing

2. Refer to the windows property of the app object to get all the windows in the app
as a query object of type XCUIElementQuery.

3. Now that you have a query object, use the childrenMatchingType(_:) method
to find children inside this query.

Let’s say that you have a simple view controller. Inside that view controller’s view, you
dump another view, and inside that view you dump a button so that your view hierar‐
chy looks something like Figure 16-7.

Figure 16-7. Hierarchy of views in this sample app

You created this hierarchy by placing a view inside the view controller’s view, and
placing a button inside that view. We are now going to try to find that button and
tap it:

let app = XCUIApplication()
let view = app.windows.children(matching: .other)
let innerView = view.children(matching: .other)
let btn = innerView.children(matching: .button).element(boundBy: 0)
XCTAssert(btn.exists)
btn.tap()

Discussion
We can rewrite the code that we wrote just now in a more direct and compact way
using the descendantsMatchingType(_:) method:

16.4 Finding UI Components | 517

www.allitebooks.com

http://www.allitebooks.org

let app = XCUIApplication()

let btn = app.windows.children(matching: .other)
 .descendants(matching: .button).element(boundBy: 0)

XCTAssert(btn.exists)
btn.tap()

Here we are looking at the children of all our windows that are of type Unknown (view)
and then finding a button inside them, wherever that button may be and in
whichever subview it may have been bundled up. Can this be written in a simpler
way? You betcha:

let app = XCUIApplication()

let btn = app.windows.children(matching: .other)
 .descendants(matching: .button).element(boundBy: 0)

XCTAssert(btn.exists)
btn.tap()

The buttons property of our app object is a query that returns all
the buttons that are descendants of any window inside the app. Isn’t
that awesome?

Those of you with a curious mind are probably thinking, “Can this be written in a
more complex way?” Well, yes, I am glad you asked:

let app = XCUIApplication()

let btn = app.windows.children(matching: .other)
 .descendants(matching: .button).element(boundBy: 0)

XCTAssert(btn.exists)
btn.tap()

Here we first find the main view inside the view controller that is on the screen. Then
we find all views that have a button inside them as a first child using the awesome
containingType(_:identifier:) method. Once we have all the views that have but‐
tons in them, we find the first button inside the first view and then tap it.

Now let’s take the same view hierarchy, but this time we will use predicates of type
NSPredicate to find our button. There are two handy methods on XCUIElementQuery
that we can use to find elements with predicates:

• element(matching predicate: NSPredicate) -> XCUIElement

• matching(_ predicate: NSPredicate) -> XCUIElementQuery

518 | Chapter 16: UI Testing

The first method will find an element that matches a given predicate (so your result
has to be unique), and the second method finds all elements that match a given predi‐
cate. Now we can find a button inside our UI with a specific title:

let app = XCUIApplication()

let btns = app.buttons.matching(
 NSPredicate(format: "title like[c] 'Button'"))

XCTAssert(btns.count >= 1)

let btn = btns.element(boundBy: 0)

XCTAssert(btn.exists)

We can also write a test script that goes through all the disabled buttons on our UI:

let app = XCUIApplication()

let btns = app.buttons.matching(
 NSPredicate(format: "title like[c] 'Button'"))

XCTAssert(btns.count >= 1)

let btn = btns.element(boundBy: 0)

XCTAssert(btn.exists)

See Also
Recipe 16.1

16.5 Long-Pressing on UI Elements
Problem
You want to be able to simulate long-pressing on a UI element using UI tests.

Solution
Use the pressForDuration(_:) method of XCUIElement.

Discussion
Create a single view app and, when your view gets loaded, add a long gesture recog‐
nizer to the view. The following code waits until the user long-presses the view for 5
seconds:

override func viewDidLoad() {
 super.viewDidLoad()

16.5 Long-Pressing on UI Elements | 519

www.allitebooks.com

http://www.allitebooks.org

 view.isAccessibilityElement = true

 let gr = UILongPressGestureRecognizer(target: self,
 action: #selector(handleLongPress))

 gr.minimumPressDuration = 5

 view.addGestureRecognizer(gr)

}

The gesture recognizer is hooked to a method. In this method, we will show an alert
controller and ask the user for her name. Once she has answered the question and
pressed the save button on the alert, we will set the entered value as the accessibility
value of our view so that we can read it in our UI tests:

@objc func handleLongPress(){
 let c = UIAlertController(title: "Name", message: "What is your name?",
 preferredStyle: .alert)

 c.addAction(UIAlertAction(title: "Cancel", style: .destructive,
 handler: nil))

 c.addAction(UIAlertAction(title: "Save", style: .destructive){
 action in

 guard let fields = c.textFields, fields.count == 1 else{
 return
 }

 let txtField = fields[0]
 guard let txt = txtField.text, txt.characters.count > 0 else{
 return
 }

 self.view.accessibilityValue = txt

 })

 c.addTextField {txt in
 txt.placeholder = "Foo Bar"
 }

 present(c, animated: true, completion: nil)

}

Now let’s go to our UI test code and do the following:

1. Get an instance of our app.
2. Find our view object with the childrenMatchingType(_:) method of our app.

520 | Chapter 16: UI Testing

3. Call the pressForDuration(_:) method on it.
4. Call the typeText(_:) method of our app object and find the save button on the

dialog.
5. Programmatically press the save button using the tap() method.
6. Check the value of our view against the value that we entered earlier. They should

match.

Here’s the code:

let app = XCUIApplication()
let view = app.windows.children(matching: .other).element(boundBy: 0)
view.press(forDuration: 5)

XCTAssert(app.alerts.count > 0)

let text = "Foo Bar"
app.typeText(text)

let alert = app.alerts.element(boundBy: 0)
let saveBtn = alert.descendants(matching: .button).matching(
 NSPredicate(format: "title like[c] 'Save'")).element(boundBy: 0)

saveBtn.tap()

XCTAssert(view.value as! String == text)

I highly recommend that you always start by using the automati‐
cally recorded and written UI tests that Xcode can create for you.
This will give you insight into how you can find your UI elements
better on the screen. Having said that, Xcode isn’t always so intelli‐
gent about finding the UI elements.

See Also
Recipes 16.1 and 16.2

16.6 Typing Inside Text Fields
Problem
You would like to write UI tests for an app that contains text fields. You want to be
able to activate a text field, type some text in it, deactivate it, and then run some tests
on the results, or a combination of the aforementioned scenarios.

Solution
Follow these steps:

16.6 Typing Inside Text Fields | 521

www.allitebooks.com

http://www.allitebooks.org

1. Find your text field with the textFields property of your app or one of the other
methods mentioned in Recipe 16.4.

2. Call the tap() method on your text field to activate it.
3. Call the typeText(_:) method on the text field to type whatever text you want.
4. Call the typeText(_:) method of your app with the value of XCUIKeyboard

Key.return as the parameter. This will simulate pressing the Enter key on the
keyboard. (You may want to check out other XCUIKeyboardKey constant values,
such as XCUIKeyboardKey.space or XCUIKeyboardKey.command.)

5. Once you are done, read the value property of your text field element as a
String and do your tests on that.

Discussion
Create a single view app and place a text field on the UI. Set the accessibility label of
that text field to “myText.” Set your text field’s delegate as your view controller and
make your view controller conform to UITextFieldDelegate. Then implement the
notoriously redundant delegate method named textFieldShouldReturn(_:) so that
pressing the Return key on the keyboard will dismiss the keyboard from the screen:

import UIKit

class ViewController: UIViewController, UITextFieldDelegate {

 func textFieldShouldReturn(_ textField: UITextField) -> Bool {
 textField.resignFirstResponder()
 return true
 }

}

Then, inside your UI tests, write code similar to what I suggested in this recipe’s Solu‐
tion section:

let app = XCUIApplication()
let myText = app.textFields["myText"]
myText.tap()

let text1 = "Hello, World!"

myText.typeText(text1)
myText.typeText(XCUIKeyboardKey.delete.rawValue)
app.typeText(XCUIKeyboardKey.return.rawValue)

XCTAssertEqual((myText.value as! String).characters.count,
 text1.characters.count - 1)

522 | Chapter 16: UI Testing

16.7 Swiping on UI Elements
Problem
You want to simulate swiping on various UI components in your app.

Solution
Use the various swipe methods on XCUIElement, such as the following:

• swipeUp()

• swipeDown()

• swipeRight()

• swipeleft()

Discussion
Let’s set our root view controller to a table view controller and program the table view
controller so that it shows 10 hardcoded cells inside it:

import UIKit

class ViewController: UITableViewController {

 let id = "c"

 lazy var items: [String] = {
 return (0..<10).map{"Item \($0)"}
 }()

 override func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return items.count
 }

 override func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {

 let c = tableView.dequeueReusableCell(withIdentifier: id,
 for: indexPath)

 c.textLabel!.text = items[(indexPath as NSIndexPath).row]

 return c

 }

 override func tableView(_ tableView: UITableView,
 commit editingStyle: UITableViewCellEditingStyle,

16.7 Swiping on UI Elements | 523

www.allitebooks.com

http://www.allitebooks.org

 forRowAt indexPath: IndexPath) {

 items.remove(at: (indexPath as NSIndexPath).row)
 tableView.deleteRows(at: [indexPath],
 with: .automatic)

 }

}

With this code, the user can swipe left on any cell and then press the Delete button to
delete that cell. Let’s test this in our UI test. This is what you’ll need to do:

1. Get the handle to the app.
2. Using the cells property of the app object, first count to make sure there are ini‐

tially 10 items in the table view.
3. Then find the fifth item and swipe left on it with the swipeLeft() method.
4. After that, find the Delete button using the buttons property of the app object

and tap on it with the tap() method.
5. Finally, assert that the cell was deleted for sure by making sure the cell’s count is

now 9 instead of 10:

let app = XCUIApplication()
let cells = app.cells
XCTAssertEqual(cells.count, 10)
app.cells.element(boundBy: 4).swipeLeft()
app.buttons["Delete"].tap()
XCTAssertEqual(cells.count, 9)

16.8 Tapping UI Elements
Problem
You want to be able to simulate various ways of tapping UI elements when writing
your UI tests.

Solution
Use one or a combination of the following methods of the XCUIElement class:

• tap()

• doubleTap()

• twoFingerTap()

524 | Chapter 16: UI Testing

Double-tapping is two taps, with one finger. The two-finger tap is
one tap, but with two fingers.

Discussion
Create a single view app and then add a gesture recognizer to the view that sets the
accessibility of the view whenever two fingers have been tapped on the view:

import UIKit

class ViewController: UIViewController {

 @objc func handleTap(){
 view.accessibilityValue = "tapped"
 }

 override func viewDidLoad() {
 super.viewDidLoad()

 view.isAccessibilityElement = true
 view.accessibilityValue = "untapped"
 view.accessibilityLabel = "myView"

 let tgr = UITapGestureRecognizer(
 target: self, action: #selector(handleTap))

 tgr.numberOfTapsRequired = 1
 tgr.numberOfTouchesRequired = 2
 view.addGestureRecognizer(tgr)

 }

}

Now our UI tests will do a two-finger tap on the view and check its value before and
after to make sure it checks out:

let app = XCUIApplication()
let view = app.descendants(matching: .other)["myView"]

XCTAssert(view.exists)
XCTAssert(view.value as! String == "untapped")

view.twoFingerTap()

XCTAssert(view.value as! String == "tapped")

16.8 Tapping UI Elements | 525

www.allitebooks.com

http://www.allitebooks.org

See Also
Recipes 16.1 and 16.4

526 | Chapter 16: UI Testing

CHAPTER 17

Core Motion

Apple has finally brought some long-awaited features into the Core Motion frame‐
work. It’s especially exciting that the same capabilities, or some version of them, are
also available on the Apple Watch. This is great news for us developers because we
can program for the watch in a more native way, rather than reading this data from
the user’s iPhone and sending it to the watch with Bluetooth.

There are a couple of key terms I’ll be using throughout this chapter that you need to
know about:

Cadence
I use a cadence sensor on my bicycle. It helps me figure out how many times I
spin my pedals, which can be crucial knowledge. Think about riding downhill on
a bicycle, at a 45-degree angle, for 20 minutes out of a total 40-minute bike ride.
Without accounting for cadence your total calories burned and effort will be mis‐
calculated because you might not even have pedaled when going downhill. The
watch actually includes a cadence sensor for running.

Pace
This is a ratio, dividing the time you have been moving by the distance. If you’re
counting in meters, for instance, your pace might be 0.5 seconds per meter,
meaning that you travelled 1 meter in half a second.

iOS devices can provide pace and cadence information when it’s available from the
pedometer. Some pedometers might not have this information available. You can call
the isPaceAvailable() class function of CMPedometer to check whether pace infor‐
mation is available. Similarly, you can call the isCadenceAvailable() class method of
CMPedometer to determine whether cadence information is available.

527

www.allitebooks.com

http://www.allitebooks.org

Import the Core Motion framework into your project before
attempting to run the code we write in this chapter.

17.1 Querying Pace and Cadence Information
Problem
You want to get cadence and pace information from the pedometer on an iOS device.

Solution
Follow these steps:

1. Find out whether cadence and pace are available.
2. Call the startUpdates(from:withHandler:) function of CMPedometer.
3. In your handler block, read the currentPace and currentCadence properties of

the incoming optional CMPedometerData object.

Discussion
Let’s check out an example:

guard CMPedometer.isCadenceAvailable() &&
 CMPedometer.isPaceAvailable() else{
 print("Pace and cadence data are not available")
 return
}

let oneWeekAgo = Date(timeIntervalSinceNow: -(7 * 24 * 60 * 60))
pedometer.startUpdates(from: oneWeekAgo) {data, error in

 guard let pData = data, error == nil else{
 return
 }

 if let pace = pData.currentPace{
 print("Pace = \(pace)")
 }

 if let cadence = pData.currentCadence{
 print("Cadence = \(cadence)")
 }

}

528 | Chapter 17: Core Motion

// remember to stop the pedometer updates with stopPedometerUpdates()
// at some point

When you finish querying pedometer data, always remember to
call the stopPedometerUpdates()function on your instance of
CMPedometer.

17.2 Recording and Reading Accelerometer Data
Problem
You want iOS to accumulate some accelerometer data for a specific number of sec‐
onds and then batch-update your app with all the accelerometer data in one go.

Solution
Follow these steps:

1. Call the isAccelerometerRecordingAvailable() class function on the CMSensor
Recorder class and abort if it returns false, because that means that accelerome‐
ter recording is not available.

2. Instantiate CMSensorRecorder.
3. Call the recordAccelerometer(forDuration:) function on your sensor recorder

and pass the number of seconds for which you want to record accelerometer
data.

4. Go into a background thread and wait for your data if you want.
5. Call the accelerometerData(from:to:) function on your sensor recorder to get

the accelerometer data from a given date to another date. The return value of this
function is a CMSensorDataList object, which is enumerable. Each item in this
enumeration is of type CMRecordedAccelerometerData.

6. Read the value of each CMRecordedAccelerometerData. You’ll have properties
like startDate, timestamp, and acceleration, which is of type CMAcceleration.

Discussion
I mentioned that CMSensorDataList is enumerable. That means it conforms to the
NSFastEnumeration protocol, but you cannot use the for x in ... syntax on this
type of enumerable object. You’ll have to make it conform to the Sequence protocol
and implement the makeIterator() function like so:

extension CMSensorDataList : Sequence{
 public func makeIterator() -> NSFastEnumerationIterator {

17.2 Recording and Reading Accelerometer Data | 529

www.allitebooks.com

http://www.allitebooks.org

 return NSFastEnumerationIterator(self)
 }
}

First, define a lazily allocated sensor recorder. If sensor information is not available,
your object won’t hang around in the memory:

lazy var recorder = CMSensorRecorder()

Then check whether sensor information is available:

guard CMSensorRecorder.isAccelerometerRecordingAvailable() else {
 print("Accelerometer data recording is not available")
 return
}

Next, record the sensor data for a period:

let duration = 3.0
recorder.recordAccelerometer(forDuration: duration)

Then go to the background and read the data:

OperationQueue().addOperation{[unowned recorder] in

 Thread.sleep(forTimeInterval: duration)
 let now = Date()
 let past = now.addingTimeInterval(-(duration))
 guard let data = recorder.accelerometerData(from: past, to: now) else{
 return
 }

 print(data)

}

It is important to enumerate the result of accelerometer

Data(from:to:) on a non-UI thread, because there may be thou‐
sands of data points in the results.

530 | Chapter 17: Core Motion

CHAPTER 18

Security

iOS 11 didn’t change much with regard to the Security framework. A few things were
added, mainly about the keychain. There are also some additions that are about
Application Transport Security, or ATS. ATS is now incorporated into iOS, so all apps
compiled with the new Xcode, and running under the latest iOS version, will by
default use HTTPS for all their network traffic. There are some pros and cons to this:
it is good because it strongly encourages the use of secure connections for everything,
but sometimes it can be annoying to force using a secure connection for everything!

There are also some changes that affect the way we can store values in the keychain,
but overall, not much to worry about.

18.1 Supporting Password Autofill with iCloud Keychain
Problem
You have a companion website to your iOS app through which users can register for
your service, using their username (or email address) and a password. You would like
the users who have registered through the website to be able to log in to your app
without having to enter their username and password each time. The app can find
these credentials in iCloud, where the user has placed them using Touch ID.

Solution
Follow these steps:

1. Create a file called apple-app-site-association and place the following content in it:
{
 "webcredentials" : {
 "apps" : ["TEAMID.X.Y.Z"]

531

www.allitebooks.com

http://www.allitebooks.org

 }
}

Where the italicized items are:

TEAMID
Your iOS app developer team identifier. You can find this identifier on
Apple’s developer website.

X
The first part of the reverse domain associated with your company.

Y
Usually the name of your company.

Z
Usually the identifier for your app.

An example of this complete formula would be SO3269D.com.company.myapp,
for instance.

2. Place this file inside the .well-known folder located in the root folder of your web‐
site. If your website is called https://website.com/, for instance, this file will need
to be accessible at https://website.com/.well-known/apple-app-site-association.
Note that your website has to support HTTPS, as this file cannot be reached on
HTTP by iOS.

3. While your app’s source code is open in Xcode, go to your project’s Capabilities
section in Xcode and enable the Associated Domains switch.

4. In the Associated Domains section in Xcode, press the + button and add your
website’s address to the list of domains, as shown in Figure 18-1.

532 | Chapter 18: Security

Figure 18-1. We have associated our website address, webcredentials.website.com,
with our application

5. In your code, in the username text field of your login screen, set the textContent
Type property’s value to username. The textContentType property is of type
UITextContentType.

6. For your password field, set the textContentType to password, which is again of
type UITextContentType.

Discussion
When you place the apple-app-site-association file in your website’s .well-known folder
inside the root folder of your website, and then enable Associated Domains in your
application, iOS attempts to connect to your associated website when running your
application and reads the apple-app-site-association file. If the app identifier inside
this file is equal to the identifier for your application, the security chain is complete.
Your app points to your website and your website points to your app! In this way, iOS
allows the user to use the same iCloud Keychain credentials that she has saved into
iCloud while signing up in your website inside your application, using Touch ID.

You can also set the text content type of your login screen in IB’s Attributes Inspector
Panel, as shown in Figure 18-2. On the left side of the panel, I have selected the User‐
name text field in the login screen of my app. On the right side, at the top, I have
changed the content type to Username. I would then do the same thing with the Pass‐
word field in the login screen in your app, setting the content type to Password.

18.1 Supporting Password Autofill with iCloud Keychain | 533

www.allitebooks.com

http://www.allitebooks.org

Figure 18-2. Setting the content type for the username in the app’s login screen

See Also
Recipe 18.3

18.2 Protecting Your Network Connections with ATS
Problem
You want to control the details about the HTTPS channels through which your net‐
work connections go, or use a nonsecure channel (HTTP).

I do not personally suggest using nonsecure connections. However, in some cases, if
you are using a backend that does not provide an HTTPS variant, you will eventually
be forced to go through HTTP. In this chapter, I’ll help you figure out how to do that
as well.

Solution
By default, all domain names that you use in your URLs will be going through secure
channels. But you can indicate specific exceptions. ATS has a dictionary key in your
Info.plist file called NSAppTransportSecurity. Under that, you have another dictio‐
nary key called NSExceptionDomains. Under this key you can list specific domain
names that don’t use ATS.

Discussion
If you want to disable ATS entirely so that all your network connections go through
channels specified in your code, simply insert the NSAllowsArbitraryLoads key

534 | Chapter 18: Security

under the NSExceptionDomains key. The NSAllowsArbitraryLoads key accepts a
Boolean value. If set to true, your HTTP connections will be HTTP and HTTPS will
be HTTPS.

Alternatively, under the NSExceptionDomains key, you can specify the name of your
domain and set its data type to be a dictionary. Under this dictionary, you can have
the following keys:

NSExceptionAllowsInsecureHTTPLoads

If set to true, allows HTTP loads on the given domain.

NSIncludesSubdomains

If set to true, includes all the subdomains of the given domain as an exception
from ATS.

NSRequiresCertificateTransparency

Dictates that the SSL certificate of the given URL has to include certificate-
transparency information. Check certificate transparency out on the web for
more information.

NSExceptionMinimumTLSVersion

This is a key to which you assign a string value to specify the minimum TLS ver‐
sion for the connection. Values can be TLSv1.0, TLSv1.1, or TLSv1.2.

So if you want to disable ATS completely, your plist will look like this:

<plist version="1.0">
<dict>
 <key>NSExceptionDomains</key>
 <dict>
 <key>NSAllowsArbitraryLoads</key>
 <true/>
 </dict>
</dict>
</plist>

How about if you want to have ATS enabled, but not for mydomain.com and its sub‐
domains? You can do that as follows, in addition to requesting certificate transpar‐
ency:

<plist version="1.0">
<dict>
<key>NSExceptionDomains</key>
<dict>
 <key>NSAllowsArbitraryLoads</key>
 <false/>
 <key>mydomain.com</key>
 <dict>
 <key>NSExceptionAllowsInsecureHTTPLoads</key>
 <true/>

18.2 Protecting Your Network Connections with ATS | 535

www.allitebooks.com

http://www.allitebooks.org

 <key>NSIncludesSubdomains</key>
 <true/>
 <key>NSRequiresCertificateTransparency</key>
 <true/>
 </dict>
</dict>
</dict>
</plist>

Finally, you can enable ATS only for mydomain.com as follows:

<plist version="1.0">
<dict>
<key>NSExceptionDomains</key>
<dict>
 <key>NSAllowsArbitraryLoads</key>
 <true/>
 <key>mydomain.com</key>
 <dict>
 <key>NSExceptionAllowsInsecureHTTPLoads</key>
 <false/>
 <key>NSIncludesSubdomains</key>
 <true/>
 </dict>
</dict>
</dict>
</plist>

18.3 Binding Keychain Items to Passcode and Touch ID
Problem
You want to create a secure item in the keychain that is accessible only if the user has
set a passcode on her device and has opted in to using the device with Touch ID. So,
at least one finger has to have been registered.

Solution
Follow these steps:

1. Create your access control flags with the SecAccessControlCreateWithFlags()
function.
Pass the value of kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly as the
protection parameter and the value of SecAccessControlCreateFlags.
touchIDAny as the flags parameter.

2. In your secure dictionary, add a key named kSecUseAuthenticationUI and set
its value to kSecUseAuthenticationUIAllow. This allows the user to unlock the
secure key with her device passcode or Touch ID.

536 | Chapter 18: Security

3. In your secure dictionary, add a key named kSecAttrAccessControl and set its
value to the return value of the SecAccessControlCreateWithFlags() function
that you called earlier.

Discussion
For extra security, you might want to sometimes bind secure items in the keychain to
Touch ID and a passcode on a device. As explained in the Solution section, you’ll
have to first create your access control flags with the SecAccessControlCreateWith
Flags() function and then proceed to use the SecItemAdd() function as you nor‐
mally would, to add a secure item to the keychain.

The following example saves a password (as a string) into the keychain and binds it to
the user’s passcode and Touch ID. Start off by creating the access control flags:

guard let flags =
 SecAccessControlCreateWithFlags(
 kCFAllocatorDefault,
 kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly,
 SecAccessControlCreateFlags.touchIDAny, nil) else{
 print("Could not create the access control flags")
 return
}

Then define the data that you want to store in the keychain:

let password = "some string"

guard let data = password.data(using: String.Encoding.utf8) else{
 print("Could not get data from string")
 return
}

The next step is to create the dictionary that you need to pass to the SecItemAdd()
function later with all your flags:

let service = "onlinePasswords"

let attrs = [
 kSecClass.str() : kSecClassGenericPassword.str(),
 kSecAttrService.str() : service,
 kSecValueData.str() : data,
 kSecUseAuthenticationUI.str() : kSecUseAuthenticationUIAllow.str(),
 kSecAttrAccessControl.str() : flags,
]

Last but not least, asynchronously add the item to the keychain:

OperationQueue().addOperation{
 guard SecItemAdd(attrs, nil) == errSecSuccess else{
 print("Could not add the item to the keychain")

18.3 Binding Keychain Items to Passcode and Touch ID | 537

www.allitebooks.com

http://www.allitebooks.org

 return
 }

 print("Successfully added the item to keychain")
}

Earlier, we used the value of SecAccessControlCreateFlags.touchIDAny in the
flags parameter of the SecAccessControlCreateWithFlags() function to specify
that we need Touch ID to be enabled on the current device before our secure item can
be read. There is another value in SecAccessControlCreateFlags that you might
find useful: touchIDCurrentSet. If you use this value, your secure item will still
require Touch ID, but it will be invalidated by a change to the current set of enrolled
Touch ID fingers. If the user adds a new finger to Touch ID or removes an existing
one, your item will be invalidated and won’t be readable.

See Also
Recipe 18.1

18.4 Opening URLs Safely
Problem
You want to find out whether an app on the user’s device can open a specific URL.

Solution
Follow these steps:

1. Define the key of LSApplicationQueriesSchemes in your plist file as an array.
2. Under that array, define your URL schemes as strings. These are the URL

schemes that you want your app to be able to open.
3. In your app, issue the canOpenUrl(_:) method on your shared app.
4. If you can open the URL, do so it using the open(_:options:completionHan

dler:) method of the shared app.
5. If you cannot open the URL, offer an alternative to your user if possible.

Discussion
In iOS, previously, apps could issue a canOpenUrl(_:) call to find out whether there
was another application on the device that could open a particular URL. For instance,
you could call this method to find out whether it was possible to open
instagram://app (see “iPhone Hooks” in the Instagram Developer Documentation). If

538 | Chapter 18: Security

https://instagram.com/developer/mobile-sharing/iphone-hooks/

so, you would know that Instagram is installed on the user’s device. The information
gathered using this technique was then used for marketing, among other things.

In the latest iOS, you need to use the plist file to define the URLs that you want to be
able to open or to check whether URLs can be opened. If you define too many APIs
or unrelated APIs, your app might get rejected. If you try to open a URL that you
have not defined in the plist, you will get a failure. You can use canOpenUrl(_:) to
check whether you can access a URL before trying to open it: the method returns
true if you have indicated that you can open that kind of URL, and false otherwise.

Let’s check out an example. First, try to find out whether you can open the Instagram
app on the user’s device:

guard let url = URL(string: "instagram://app"),
 UIApplication.shared.canOpenURL(url) else{
 return
}

Now that you know you can open the URL proceed to do so:

UIApplication.shared.open(url){succeeded in
 if succeeded{
 print("Successfully opened Instagram")
 } else {
 print("Could not open Instagram")
 }
}

Then go into the plist file and tell iOS that you want to open URL schemes starting
with “instagram”:

<plist version="1.0">
<array>
 <string>instagram</string>
</array>
</plist>

18.5 Authenticating the User with Touch ID and Timeout
Problem
You want to ask the user for permission to read secure content in the keychain. This
includes setting a timeout after which you will no longer have access.

Solution
Follow these steps:

18.5 Authenticating the User with Touch ID and Timeout | 539

www.allitebooks.com

http://www.allitebooks.org

1. Create your access control flags with SecAccessControlCreateWithFlags(), as
you saw in Recipe 18.3.

2. Instantiate a context object of type LAContext.
3. Set the touchIDAuthenticationAllowableReuseDuration property of your con‐

text to LATouchIDAuthenticationMaximumAllowableReuseDuration, so your
context will lock out only after the maximum allowed number of seconds.

4. Call the evaluateAccessControl(_:operation:localizedReason:) method on
your context to get access to the access control.

5. If you gain access, create your keychain request dictionary and include the
kSecUseAuthenticationContext key. The value of this key will be your context
object.

6. Use the SecItemCopyMatching() function with your dictionary to read a secure
object with the given access controls.

Discussion
Whenever you write an item to the keychain, you can do so with access controls as
we saw in Recipe 18.3. So, assume that your item requires Touch ID. If you want to
read that item now, you need to request permission to do so. First, define your con‐
text and the reason why you want to read the item:

let context = LAContext()
let reason = "To unlock previously stored security phrase"

Then define your access controls as before:

guard let flags =
 SecAccessControlCreateWithFlags(
 kCFAllocatorDefault,
 kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly,
 SecAccessControlCreateFlags.touchIDAny, nil) else{
 print("Could not create the access control flags")
 return
}

Also specify how long you can get access for. After this time passes, the user will be
forced to use Touch ID again to unlock the context:

context.touchIDAuthenticationAllowableReuseDuration =
LATouchIDAuthenticationMaximumAllowableReuseDuration

Last but not least, gain access to the given access controls and read the item if
possible:

context.evaluateAccessControl(
 flags,
 operation: LAAccessControlOperation.useItem,
 localizedReason: reason) {[unowned context] succ, err in

540 | Chapter 18: Security

 guard succ && err == nil else {
 print("Could not evaluate the access control")
 if let e = err {
 print("Error = \(e)")
 }
 return
 }

 print("Successfully evaluated the access control")

 let service = "onlinePasswords"

 let attrs = [
 kSecClass.str() : kSecClassGenericPassword.str(),
 kSecAttrService.str() : service,
 kSecUseAuthenticationUI.str() : kSecUseAuthenticationUIAllow.str(),
 kSecAttrAccessControl.str() : flags,
 kSecReturnData.str() : kCFBooleanTrue,
 kSecUseAuthenticationContext.str() : context,
] as NSDictionary

 // now attempt to use the attrs with SecItemCopyMatching

 print(attrs)

}

The operation argument of the evaluateAccessControl(_:operation:localized
Reason:) method takes in a value of type LAAccessControlOperation that indicates
the type of operation you want to perform. Some of the values that you can use are
useItem, createItem, createKey, and useKeySign.

See Also
Recipe 18.3

18.5 Authenticating the User with Touch ID and Timeout | 541

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 19

Multimedia

The current version of iOS brings some changes to multimedia playback and func‐
tionality, especially the AVFoundation framework. In this chapter, we will have a look
at those additions and some of the changes.

Make sure that you have imported the AVFoundation framework
in your app before running the code in this chapter.

19.1 Reading Out Text with the Default Siri Alex Voice
Problem
You want to use the default Siri Alex voice on a device to speak some text.

Solution
Instantiate AVSpeechSynthesisVoice with the identifier initializer and pass the
value of AVSpeechSynthesisVoiceIdentifierAlex to it.

Discussion
Let’s look at an example. Create your UI so that it looks like Figure 19-1. Place a text
view on the screen and a bar button item in your navigation bar. When the button is
pressed, you will ask Siri to speak out the text inside the text view.

543

www.allitebooks.com

http://www.allitebooks.org

Figure 19-1. Text view and button in the UI

Link the text view to a property in your view controller called textView:

@IBOutlet var textView: UITextView!

When the Read button is pressed, check first whether Alex is available:

guard let voice = AVSpeechSynthesisVoice(identifier:
 AVSpeechSynthesisVoiceIdentifierAlex) else{
 print("Alex is not available")
 return
}

Instances of AVSpeechSynthesisVoice have properties such as identifier, quality,
and name. The identifier can be used later to reconstruct another speech object. If all
you know is the identifier, then you can recreate the speech object using that. The
quality property is of type AVSpeechSynthesisVoiceQuality and can be equal to
values such as default or enhanced. Print these values to the console:

print("id = \(voice.identifier)")
print("quality = \(voice.quality)")
print("name = \(voice.name)")

Then create the voice object (of type AVSpeechUtterance) with your text view’s text:

let toSay = AVSpeechUtterance(string: textView.text)
toSay.voice = voice

544 | Chapter 19: Multimedia

Last but not least, instantiate the voice synthesizer, of type AVSpeechSynthesizer,
and ask it to speak out the voice object:

let alex = AVSpeechSynthesizer()
alex.delegate = self
alex.speak(toSay)

19.2 Downloading and Preparing Remote Media for
Playback
Problem
You have some remote assets, such as sound files, and would like to download them,
even if in the background. Along the way, you want to provide real-time feedback on
the download process.

Solution
Follow these steps:

1. Create an instance of AVURLAsset with the URL to your asset.
2. Use the background(withIdentifier:) class method on URLSessionConfigura

tion to create a background session configuration.
3. Create a session of type AVAssetDownloadURLSession and pass your configura‐

tion to it.
4. Construct the URL where your asset has to be downloaded onto the disk.
5. Use the makeAssetDownloadTask(asset:destinationURL:options) method of

your session to create a download task of type AVAssetDownloadTask.
6. Call the resume() method on your task to start the task.
7. Conform to the AVAssetDownloadDelegate protocol to get events from your

task.

All the classes discussed here whose names start with “AV” are in
the AVFoundation framework, so make sure to import it.

Discussion
Let’s imagine that you have an .mp4 file that you want to download and play back in
your app. First set up your view controller:

19.2 Downloading and Preparing Remote Media for Playback | 545

www.allitebooks.com

http://www.allitebooks.org

import UIKit
import AVFoundation

class ViewController: UIViewController, AVAssetDownloadDelegate {

 let url = URL(string: "http://localhost:8888/video.mp4")!
 let sessionId = "com.mycompany.background"
 let queue = OperationQueue()
 var task: AVAssetDownloadTask?
 var session: AVAssetDownloadURLSession?

 ...

I have used MAMP to start a local server on my machine and am
hosting the file video.mp4 on my own computer, hence the URL
that you are seeing. You can and probably should change this URL
to a point to valid media file that AVFoundation can handle,
like .mov or .mp4.

Now define some of the delegate methods defined in AVAssetDownloadDelegate and
URLSessionTaskDelegate:

func urlSession(_ session: URLSession, task: URLSessionTask,
 didCompleteWithError error: Error?) {
 // code this
}

func urlSession(_ session: URLSession,
 assetDownloadTask: AVAssetDownloadTask,
 didLoad timeRange: CMTimeRange,
 totalTimeRangesLoaded loadedTimeRanges: [NSValue],
 timeRangeExpectedToLoad: CMTimeRange) {
 // code this
}

func urlSession(_ session: URLSession,
 assetDownloadTask: AVAssetDownloadTask,
 didResolve resolvedMediaSelection: AVMediaSelection) {

}

Next, create an asset by its URL. At the same time, tell the system that you don’t want
cross-site references to be resolved using a dictionary with a key equal to AVURL
AssetReferenceRestrictionsKey and value of AVAssetReferenceRestrictions.
forbidCrossSiteReference:

let options = [AVURLAssetReferenceRestrictionsKey :
 AVAssetReferenceRestrictions.forbidCrossSiteReference.rawValue]

let asset = AVURLAsset(url: url, options: options)

546 | Chapter 19: Multimedia

Now it’s time to create the configuration object, of type URLSessionConfiguration:

let config = URLSessionConfiguration
 .background(withIdentifier: sessionId)

Then create the session, of type AVAssetDownloadURLSession:

let session = AVAssetDownloadURLSession(
 configuration: config,
 assetDownloadDelegate: self, delegateQueue: queue)

self.session = session

Be sure to keep a reference to the session, and to the task that you
are going to create next. This is so you can refer to them later and
cancel or reuse them if necessary.

And last but not least, construct the task and start it:

guard let task = session.makeAssetDownloadTask(
 asset: asset,
 assetTitle: "Asset title",
 assetArtworkData: nil,
 options: nil) else {
 print("Could not create the task")
 return
}

self.task = task

task.resume()

19.3 Enabling Spoken Audio Sessions
Problem
You have an ebook reading app (or similar app) and would like to enable a specific
audio session that allows your app’s audio to be paused—but another app is playing
back voice on top of yours (such as an app that provides navigation information with
voice).

Solution
Follow these steps:

19.3 Enabling Spoken Audio Sessions | 547

www.allitebooks.com

http://www.allitebooks.org

1. First, you will need to go through the available audio session categories inside the
availableCategories property of your audio session and find AVAudioSession
CategoryPlayback.

2. Then go through the values inside the availableModes property of your audio
session (of type AVAudioSession). If you cannot find AVAudioSessionMode
SpokenAudio, exit gracefully.

3. If you find the AVAudioSessionModeSpokenAudio mode, set your audio category
to AVAudioSessionCategoryPlayback using the setCategory(_:with:) method
of the audio session.

4. Activate your session with the setActive(_:with:) method of your audio ses‐
sion.

Discussion
Suppose you are developing an ebook app and have a Read button in the UI that the
user presses to ask the app to read the contents of the book out loud. For this you can
use the AVAudioSessionModeSpokenAudio audio session mode, but you have to check
first whether that mode exists. To find out, use the availableModes property of your
audio session.

Let’s look at an example. First, look for the AVAudioSessionCategoryPlayback cate‐
gory and the AVAudioSessionModeSpokenAudio mode:

guard session.availableCategories.filter(
 {$0 == AVAudioSessionCategoryPlayback}).count == 1 &&
 session.availableModes.filter(
 {$0 == AVAudioSessionModeSpokenAudio}).count == 1 else{
 print("Could not find the category or the mode")
 return
}

After you confirm that the category and mode are available, set the category and
mode and then activate your audio session:

do{
 try session.setCategory(AVAudioSessionCategoryPlayback,
 with:
 AVAudioSessionCategoryOptions.interruptSpokenAudioAndMixWithOthers)

 try session.setMode(AVAudioSessionModeSpokenAudio)

 try session.setActive(true, with:
 AVAudioSessionSetActiveOptions.notifyOthersOnDeactivation)

} catch let err{
 print("Error = \(err)")
}

548 | Chapter 19: Multimedia

CHAPTER 20

UI Dynamics

UI Dynamics allow you to create very nice effects on your UI components, such as
gravity and collision detection. Let’s say that you have two buttons on the screen that
the user can move around. You could create opposing gravity fields on them so that
they repel each other and cannot be dragged into each other. Or, for instance, you
could provide a more dynamic UI by creating a turbulence field under all your UI
components so that they move around automatically ever so slightly (or through a
noise field, as described in Recipe 20.4) even when the user is not interacting with
them. All of this is possible with the tools that Apple has given you in UIKit. You
don’t have to use any other framework to dig into UI Dynamics.

One of the basic concepts in UI Dynamics is an animator. Animator objects, which
are of type UIDynamicAnimator, hold together and orchestrate all the effects. For
instance, if you have collision detection and gravity effects, the animator decides how
the pull on an object through gravity will work hand in hand with the collision detec‐
tion around the edges of your reference view.

Reference views are like canvases where all your animations happen. Effects are added
to views and then added to an animator, which itself is placed on a reference view. In
other words, the reference view is the canvas and the views on your UI (buttons, lab‐
les, etc.) will have effects.

20.1 Adding a Radial Gravity Field to Your UI
Problem
You want to add a radial gravity field to your UI, with animations.

549

www.allitebooks.com

http://www.allitebooks.org

Solution
Use the radialGravityFieldWithPosition(_:) class method of UIFieldBehavior
and add this behavior to a dynamic animator of type UIDynamicAnimator.

Discussion
A typical gravity behavior pulls items in a given direction. A radial gravity field has a
center and a region in which everything is drawn to the center, just like gravity on
Earth, whereby everything is pulled toward the core of this sphere.

For this recipe, we’ll design a UI like Figure 20-1. The gravity is at the center of the
main view and the orange view is affected by it.

Figure 20-1. A main view and another view that is an orange square

550 | Chapter 20: UI Dynamics

Note that the gravity field here is not linear. We would like this gravity field to repel
the orange view, instead of pulling it toward the core, and we would like the user to
be able to pan this orange view around the screen and release it to see how the gravity
affects the view at that point in time (think about pan gesture recognizers).

To begin, create a single view app that has no navigation bar and then go into IB and
add a simple colorful view to your main view. Color it orange(ish), and link it to your
view controller under the name orangeView (see Figure 20-2).

Figure 20-2. Add the orange view on top of the view controller’s view and hook it to the
view controller’s code

Then, from the Object Library, find a pan gesture recognizer (see Figure 20-3) and
drop it onto your orange view so that it gets associated with that view. You can find
the pan gesture recognizer by typing its name into the Object Library’s search field.

Figure 20-3. Getting the pan gesture recognizer

You should then associate the pan gesture recognizer’s code to a method in your code
called panning(_:). So now your view controller’s header should look like this:

20.1 Adding a Radial Gravity Field to Your UI | 551

www.allitebooks.com

http://www.allitebooks.org

import UIKit
import SharedCode

class ViewController: UIViewController {

 @IBOutlet var orangeView: UIView!

 ...

Whenever I write a piece of code that I want to share between vari‐
ous projects, I put it inside a framework that I’ve written called
SharedCode. You can find this framework in the GitHub repo of
this book. In this example, I’ve extended CGSize so that I can find
the CGPoint at the center of CGSize like so:

import Foundation

extension CGSize{

 public var center: CGPoint{
 return CGPoint(x: width / 2.0, y: height / 2.0)
 }

}

Then, in the view controller, create your animator, specifying this view as the refer‐
ence view:

lazy var animator: UIDynamicAnimator = {
 let animator = UIDynamicAnimator(referenceView: self.view)
 animator.isDebugEnabled = true
 return animator
 }()

If you are writing this code, you’ll notice that you’ll get a compiler error saying that
the debugEnabled property is not available on an object of type UIDynamicAnimator.
That is absolutely right. This is a debug only method that Apple has provided to us
and which we should only use when debugging our apps. Because this property isn’t
actually available in the header file of UIDynamicAnimator, we need to create a bridg‐
ing header (with a bit of Objective-C code) to enable this property. Create your bridg‐
ing header and then extend UIDynamicAnimator:

@import UIKit;

#if DEBUG

@interface UIDynamicAnimator (DebuggingOnly)
@property (nonatomic, getter=isDebugEnabled) BOOL debugEnabled;
@end

552 | Chapter 20: UI Dynamics

#endif

When the orange view is repelled by the reversed radial gravity field, it should collide
with the edges of your view controller’s view and stay within the bounds of the view:

lazy var collision: UICollisionBehavior = {
 let collision = UICollisionBehavior(items: [self.orangeView])
 collision.translatesReferenceBoundsIntoBoundary = true
 return collision
 }()

Then create the radial gravity of type UIFieldBehavior. Two properties in this class
are quite important:

region

This is of type UIRegion and specifies the region covered by this gravity field.

strength

This is a floating-point value that indicates (if positive) the force by which items
get pulled into the gravity field. If you assign a negative value to this property,
items get repelled by this gravity field.

Configure the gravity field to consume an area with a radius of 200 points and to
repel items:

lazy var centerGravity: UIFieldBehavior = {
 let centerGravity =
 UIFieldBehavior.radialGravityField(position: self.view.center)
 centerGravity.addItem(self.orangeView)
 centerGravity.region = UIRegion(radius: 200)
 centerGravity.strength = -1 // repel items
 return centerGravity
 }()

When the user rotates the device, recenter the gravity:

override func viewWillTransition(to size: CGSize,
 with
 coordinator: UIViewControllerTransitionCoordinator) {

 super.viewWillTransition(to: size,
 with: coordinator)

 centerGravity.position = size.center

}

20.1 Adding a Radial Gravity Field to Your UI | 553

www.allitebooks.com

http://www.allitebooks.org

Remember the center property that we added earlier on top of
CGSize?

When your view is loaded, add your behaviors to the animator:

 override func viewDidLoad() {
 super.viewDidLoad()

 animator.addBehavior(collision)
 animator.addBehavior(centerGravity)

 }

To handle the panning, consider a few things:

• When panning begins, you have to disable your animators so that none of the
behaviors have an effect on the orange view.

• When the panning is in progress, you have to move the orange view where the
user’s finger is pointing.

• When the panning ends, you have to re-enable your behaviors.

All this is accomplished in the following code:

@IBAction func panning(_ sender: UIPanGestureRecognizer) {

 switch sender.state{
 case .began:
 collision.removeItem(orangeView)
 centerGravity.removeItem(orangeView)
 case .changed:
 orangeView.center = sender.location(in: view)
 case .ended, .cancelled:
 collision.addItem(orangeView)
 centerGravity.addItem(orangeView)
 default: ()
 }

}

20.2 Creating a Linear Gravity Field on Your UI
Problem
You want to create a gravity field that follows a vector on your UI.

554 | Chapter 20: UI Dynamics

Solution
Use the linearGravityFieldWithVector(_:) class method of UIFieldBehavior to
create your gravity field. The parameter to this method is of type CGVector. You can
provide your own x and y values for this vector when you construct it. This is now
your gravity field, and you can add it to an animator of type UIDynamicAnimator.

I am basing this recipe on Recipe 20.1. There are some things, such
as the bridging header to enable debugging, that I mentioned in
Recipe 20.1 and won’t mention again in this recipe. I might skim
over them but won’t go into details.

Discussion
Whereas the example we looked at in Recipe 20.1 had a center and a radius, a linear
gravity field has a direction only (up, down, right, left, etc.). In this example, we are
going to use the exact same UI that we created in Recipe 20.1. So, create the little
orange view on your storyboard and link it to an orangeView outlet in your code.
Add a pan gesture recognizer to it as well and add it to a method called panning(_:).

Right now, your view controller’s code should look like this:

import UIKit
import SharedCode

class ViewController: UIViewController {

@IBOutlet var orangeView: UIView!

 lazy var animator: UIDynamicAnimator = {
 let animator = UIDynamicAnimator(referenceView: self.view)
 animator.isDebugEnabled = true
 return animator
 }()

 lazy var collision: UICollisionBehavior = {
 let collision = UICollisionBehavior(items: [self.orangeView])
 collision.translatesReferenceBoundsIntoBoundary = true
 return collision
 }()

 ...

The next step is to create your linear gravity field:

lazy var gravity: UIFieldBehavior = {
 let vector = CGVector(dx: 0.4, dy: 1.0)
 let gravity =
 UIFieldBehavior.linearGravityField(direction: vector)

20.2 Creating a Linear Gravity Field on Your UI | 555

www.allitebooks.com

http://www.allitebooks.org

 gravity.addItem(self.orangeView)
 return gravity
 }()

Last but not least, handle the panning and add the effects to the animator (see Recipe
20.1):

override func viewDidLoad() {
 super.viewDidLoad()

 animator.addBehavior(collision)
 animator.addBehavior(gravity)

}

@IBAction func panning(_ sender: UIPanGestureRecognizer) {

 switch sender.state{
 case .began:
 collision.removeItem(orangeView)
 gravity.removeItem(orangeView)
 case .changed:
 orangeView.center = sender.location(in: view)
 case .ended, .cancelled:
 collision.addItem(orangeView)
 gravity.addItem(orangeView)
 default: ()
 }

}

If you run your app now, you should see an interface similar to Figure 20-4. The lin‐
ear gravity field pulls all objects down and to the right. This is because in the vector
you specified a positive y-delta that pulls everything down and a positive x-delta that
pulls everything to the right. I suggest that you play around with the delta values (of
type CGVector) to get a feel for how they affect gravity.

556 | Chapter 20: UI Dynamics

Figure 20-4. Linear gravity acting on an object

You can also go ahead and change some other aspects of your gravity field. For
instance, set the strength property of the gravity field to 20 and see how much more
gravity is applied to your objects. Similarly, play with the animationSpeed property of
your gravity field to set the animation speed.

20.3 Creating Turbulence Effects with Animations
Problem
You want to simulate turbulence in your animator and have your UI components flail
about when they hit the turbulent region.

20.3 Creating Turbulence Effects with Animations | 557

www.allitebooks.com

http://www.allitebooks.org

Solution
Instantiate your turbulence with the turbulenceFieldWithSmoothness(_:animation
Speed:) class method of UIFieldBehavior. Then do the following:

1. Set the UIFieldBehavior class’s strength property according to your needs.
2. Set its region property to an instance of UIRegion. This defines in which region

of the screen your turbulence behavior is effective.
3. Set its position property to a CGPoint instance in your reference view.

After you are done setting up the turbulence behavior, add it to your animator of type
UIDynamicAnimator.

Discussion
In this recipe, we’ll create an effect very similar to what we got in Recipe 20.2, but also
add a turbulence field in the center of the screen. So, when we take our little orange
view (see Figure 20-1) and drop it from the top-left corner of the screen, it will fall
down (and to the right; see Figure 20-4). But on its way down, it will hit our turbu‐
lence field and its movements will be affected.

Set up your gravity field exactly as you did in Recipe 20.2. I won’t go through that
here again. Then create a turbulence field in the center of the screen with a radius of
200 points:

lazy var turbulence: UIFieldBehavior = {
 let turbulence = UIFieldBehavior.turbulenceField(smoothness: 0.5,
 animationSpeed: 60.0)
 turbulence.strength = 12.0
 turbulence.region = UIRegion(radius: 200.0)
 turbulence.position = self.orangeView.bounds.size.center
 turbulence.addItem(self.orangeView)
 return turbulence
}()

Make sure to add this field to your animator. When the user is panning with the ges‐
ture recognizer (see Recipe 20.1), disable all your behaviors, and re-enable them
when the panning is finished:

override func viewDidLoad() {
 super.viewDidLoad()

 animator.addBehavior(collision)
 animator.addBehavior(gravity)
 animator.addBehavior(turbulence)

}

@IBAction func panning(_ sender: UIPanGestureRecognizer) {

558 | Chapter 20: UI Dynamics

 switch sender.state{
 case .began:
 collision.removeItem(orangeView)
 gravity.removeItem(orangeView)
 turbulence.removeItem(orangeView)
 case .changed:
 orangeView.center = sender.location(in: view)
 case .ended, .cancelled:
 collision.addItem(orangeView)
 gravity.addItem(orangeView)
 turbulence.addItem(orangeView)
 default: ()
 }

}

Give it a go and see the results for yourself. Drag the orange view to the top-left cor‐
ner of the screen and drop it. It will be dragged down and to the right, and when it
hits the center of the screen (inside a radius of 200 points), it will wiggle around a bit
because of turbulence.

20.4 Adding Animated Noise Effects to Your UI
Problem
You want to add a noise field on your UI and have your UI components surf in all
directions on this field.

Solution
1. Create a noise field using the noiseFieldWithSmoothness(_:animationSpeed:)

class method of UIFieldBehavior.
2. Add the views you want affected by this noise to the field using its addItem(_:)

method.
3. Add your noise field to an animator of type UIDynamicAnimator (see Recipe

20.1).

This recipe is based on what you learned in Recipe 20.1—refer back
to that recipe if you need a refresher.

20.4 Adding Animated Noise Effects to Your UI | 559

www.allitebooks.com

http://www.allitebooks.org

Discussion
Noise is great for having an item constantly move around on your reference view in
random directions. Have a look at the noise field in Figure 20-5. This noise field is
shown graphically on the UI using a UI Dynamics debugging trick.

Figure 20-5. Noise field affecting a square view

The direction of the noise that you see on the field dictates in which direction the
field repels the items attached to it. In this case, I’ve used negative gravity (think of it
that way). If you want to limit the effective region of your noise field on your refer‐
ence view, simply set the region property of your field. This is of type UIRegion.

560 | Chapter 20: UI Dynamics

Now create your UI exactly as you did in Recipe 20.1. You should have an orange
view that is accessible through the orangeView property of your view controller. Cre‐
ate a collision detector and an animator using what you learned in the aforemen‐
tioned recipe. Then go ahead and create your noise field:

lazy var noise: UIFieldBehavior = {
 let noise = UIFieldBehavior.noiseField(smoothness: 0.9,
 animationSpeed: 1)
 noise.addItem(self.orangeView)
 return noise
}()

Add the noise field to your animator:

 override func viewDidLoad() {
 super.viewDidLoad()
 animator.addBehavior(collision)
 animator.addBehavior(noise)
 }

Last but not least, handle your pan gesture recognizer’s event, so that when the user
starts dragging the orange view across the screen your dynamic behaviors will shut
down, and as soon as the user is done with dragging, they will come back up:

@IBAction func panning(_ sender: UIPanGestureRecognizer) {

 switch sender.state{
 case .began:
 collision.removeItem(orangeView)
 noise.removeItem(orangeView)
 case .changed:
 orangeView.center = sender.location(in: view)
 case .ended, .cancelled:
 collision.addItem(orangeView)
 noise.addItem(orangeView)
 default: ()
 }

}

20.5 Creating a Magnetic Effect Between UI Components
Problem
You want to create a magnetic field between two or more UI elements.

Solution
Follow these steps:

20.5 Creating a Magnetic Effect Between UI Components | 561

www.allitebooks.com

http://www.allitebooks.org

1. Create your animator (see Recipe 20.1).
2. Create a collision detector of type UICollisionBehavior.
3. Create a magnetic field of type UIFieldBehavior using the magneticField()

class method of UIFieldBehavior.
4. Add your magnetic field and collision detector to your animator.

I am basing this recipe on what you learned in Recipes 20.1 and
20.4.

Discussion
Create a UI that looks similar to Figure 20-6.

Figure 20-6. Place three colorful views on your UI

Then link all the views to an outlet collection called views in your code:

class ViewController: UIViewController {

 @IBOutlet var views: [UIView]!

 ...

Now that you have an array of views to which you want to apply a noise field and a
magnetic field, it’s best to extend UIFieldBehavior so that you can pass it an array of
UI elements instead of one element at a time:

extension UIFieldBehavior{
 public func addItems(_ items: [UIDynamicItem]){
 for item in items{
 addItem(item)

562 | Chapter 20: UI Dynamics

 }
 }
}

Also, it’s best to extend UIDynamicAnimator so that you can add all your behaviors to
your animator at once:

extension UIDynamicAnimator{
 public func addBehaviors(_ behaviors: [UIDynamicBehavior]){
 for behavior in behaviors{
 addBehavior(behavior)
 }
 }
}

Now add a noise and a collision behavior, plus your animator, using what you learned
in Recipe 20.4. I won’t repeat that code here.

Create a magnetic field and enable it on all your views:

lazy var magnet: UIFieldBehavior = {
 let magnet = UIFieldBehavior.magneticField()
 magnet.addItems(self.views)
 return magnet
}()

Last but not least, add your behaviors to the animator:

var behaviors: [UIDynamicBehavior]{
 return [collision, noise, magnet]
}

override func viewDidLoad() {
 super.viewDidLoad()
 animator.addBehaviors(behaviors)
}

Run the app and see the results for yourself (see Figure 20-7).

20.5 Creating a Magnetic Effect Between UI Components | 563

www.allitebooks.com

http://www.allitebooks.org

Figure 20-7. The magnetic field causes all the views to attract one another

20.6 Designing a Velocity Field on Your UI
Problem
You want to apply force, following a vector, onto your UI components.

Solution
Follow these steps:

1. Create an animator of type UIDynamicAnimator (see Recipe 20.1).
2. Create a collision detector of type UICollisionBehavior.
3. It’s best to also have gravity or other forces applied to your field (see Recipes 17.1

and 17.2).
4. Create a velocity field using the UIFieldBehavior class’s velocityFieldWithVec

tor(_:) method and supply a vector of type CGVector.
5. Set the position property of your velocity field to an appropriate point on your

reference view.
6. Then set the region property of your velocity field to an appropriate region (of

type UIRegion) of your reference view.
7. Once done, add your behaviors to your animator.

564 | Chapter 20: UI Dynamics

If you haven’t yet, I recommend having a look at Recipe 20.1, where
I described most of the basics of setting up a scene with gravity and
an animator. I won’t go into those in detail again.
In this recipe, I am also going to use a few extensions that we coded
in Recipe 20.5.

Discussion
A velocity field applies a force toward a given direction to dynamic items, such as
UIView instances. In this recipe, we are going to design a field that looks like the field
in Recipe 20.5. On top of that, we are going to apply a slight upward and leftbound
force that is positioned smack dab in the center of the screen. We’ll position an
orange view on the main storyboard and have all the forces applied to this poor little
guy. We will then place the orange view on top of the reference view so that when we
run the app, a few things will happen:

1. The southeast-bound gravity will pull the orange view to the bottom right of the
screen.

2. The orange view will keep falling down until it hits the northwest-bound velocity
field, at which point the orange view will get uncomfortable and move up and left
a bit a few times, and keep falling until it gets out of the velocity field.

3. The orange view will then eventually settle at the bottom right of the view.

Set up your gravity, animator, and collision detector just as you did in Recipe 20.2 (I
won’t repeat that code). Then set up the velocity field:

lazy var velocity: UIFieldBehavior = {
 let vector = CGVector(dx: -0.4, dy: -0.5)
 let velocity = UIFieldBehavior.velocityField(direction: vector)
 velocity.position = self.view.center
 velocity.region = UIRegion(radius: 100.0)
 velocity.addItem(self.orangeView)
 return velocity
}()

Then batch up all your forces into one variable that you can give to your animator,
using the extension we wrote in Recipe 20.5:

var behaviors: [UIDynamicBehavior]{
 return [self.collision, self.gravity, self.velocity]
}

override func viewDidLoad() {
 super.viewDidLoad()
 animator.addBehaviors(behaviors)
}

20.6 Designing a Velocity Field on Your UI | 565

www.allitebooks.com

http://www.allitebooks.org

When the user starts panning your orange view around, stop all the forces, then
restart them when she is done dragging:

@IBAction func panning(_ sender: UIPanGestureRecognizer) {

 switch sender.state{
 case .began:
 collision.removeItem(orangeView)
 gravity.removeItem(orangeView)
 velocity.removeItem(orangeView)
 case .changed:
 orangeView.center = sender.location(in: view)
 case .ended, .cancelled:
 collision.addItem(orangeView)
 gravity.addItem(orangeView)
 velocity.addItem(orangeView)
 default: ()
 }

}

20.7 Handling Collisions Between Nonrectangular Views
Problem
You want to create nonrectangular-shaped views in your app, and you want your col‐
lision detection to work properly with these views.

Solution
Follow these steps:

1. First, you’ll need to subclass UIView and override the collisionBoundsType vari‐
able of type UIDynamic ItemCollisionBoundsType. In there, return UIDynamic
ItemCollisionBoundsType.Path. This makes sure that you have your own Béz‐
ier path of type UIBezierPath, and you want that to define the edges of your
view, which are essentially the edges that your collision detector has to detect.

2. Override the collisionBoundingPath variable of type UIBezierPath in your
view and in there, return the path that defines your view’s edges.

3. In your UIBezierPath, create the shape you want for your view. The first point in
this shape needs to be the center of your shape. You must draw your shape in a
convex and counterclockwise manner.

4. Override the drawRect(_:) method of your view and draw your path there.
5. Add your behaviors to your new and awesome view and then create an animator

of type UIDynamicAnimator (see Recipe 20.1).

566 | Chapter 20: UI Dynamics

6. Optionally, throw in a noise field as well to create some random movements
between your dynamic items (see Recipe 20.4).

I am going to draw a pentagon view in this recipe. I won’t teach
how that is drawn because you can find the basic rules of drawing a
pentagon online, and that is entirely outside the scope of this book.

Discussion
Here, we are aiming to create a dynamic field that looks like Figure 20-8. The views
we’ll create are a square and a pentagon. We will have proper collision detection
between the two views.

Figure 20-8. Square and pentagon with collision detection

Let’s start off by creating a little extension on the StrideThrough structure. You’ll see
soon, when we code our pentagon view, that we are going to go through five points of
the pentagon that are drawn on the circumference of the bounding circle, plot them
on the path, and draw lines between them. We will use stride(from:through:by:)

20.7 Handling Collisions Between Nonrectangular Views | 567

www.allitebooks.com

http://www.allitebooks.org

to create the loop. We would like to perform a function over every item in this array
of numbers, hence the following extension:

extension StrideThrough{
 func forEach(_ f: (Iterator.Element) -> Void){
 for item in self{
 f(item)
 }
 }
}

Let’s move on to creating a class named PentagonView that subclasses UIView. We
want this view to be constructed only by a diameter. This will be the diameter of the
bounding circle within which the pentagon will reside. Therefore, we need a diame
ter variable, along with our constructor and perhaps a nice class method constructor
for good measure:

class PentagonView : UIView{

 private var diameter: CGFloat = 0.0

 class func pentagonViewWithDiameter(_ diameter: CGFloat) -> PentagonView{
 return PentagonView(diameter: diameter)
 }

 init(diameter: CGFloat){
 self.diameter = diameter
 super.init(frame: CGRect(x: 0, y: 0, width: diameter, height: diameter))
 }

 required init?(coder aDecoder: NSCoder) {
 super.init(coder: aDecoder)
 }

 var radius: CGFloat{
 return diameter / 2.0
 }

 ...

We need next to create our UIBezierPath. There are five slices inside a pentagon and
the angle between each slice, from the center of the pentagon, is 360/5, or 72 degrees.
Using this knowledge, we need to be able to, given the center of our pentagon, plot
the five points onto the circumference of the bounding circle:

func pointFromAngle(_ angle: Double) -> CGPoint{

 let x = radius + (radius * cos(CGFloat(angle)))
 let y = radius + (radius * sin(CGFloat(angle)))
 return CGPoint(x: x, y: y)

}

568 | Chapter 20: UI Dynamics

lazy var path: UIBezierPath = {
 let path = UIBezierPath()
 path.move(to: self.pointFromAngle(0))

 let oneSlice = (M_PI * 2.0) / 5.0
 let lessOneSlice = (M_PI * 2.0) - oneSlice

 stride(from: oneSlice, through: lessOneSlice, by: oneSlice).forEach{
 path.addLine(to: self.pointFromAngle($0))
 }

 path.close()
 return path
 }()

That was the most important part of this recipe, if you are curious. Once we have the
path, we can draw our view using it:

override func draw(_ rect: CGRect) {
 guard let context = UIGraphicsGetCurrentContext() else{
 return
 }
 UIColor.clear.setFill()
 context.fill(rect)
 UIColor.yellow.setFill()
 path.fill()
}

The next and last step in creating our pentagon view is to override the collision
BoundsType and collisionBoundingPath variables:

override var collisionBoundsType: UIDynamicItemCollisionBoundsType{
 return .path
}

override var collisionBoundingPath: UIBezierPath{
 let path = self.path.copy() as! UIBezierPath
 path.apply(CGAffineTransform(translationX: -radius, y: -radius))
 return path
}

We are applying a translation transform on our Bézier path before
giving it to the collision detector. The reason behind this is that the
first point of our path is in the center of our shape, so we need to
subtract the x and y position of the center from the path to trans‐
late our path to its actual value for the collision detector to use.
Otherwise, the path will be outside the actual pentagon shape.
Because the x and y position of the center of our pentagon are in
fact the radius of the pentagon and the radius is half the diameter,
we provide the radius here to the translation.

20.7 Handling Collisions Between Nonrectangular Views | 569

www.allitebooks.com

http://www.allitebooks.org

Now let’s extend UIView so that we can add a pan gesture recognizer to it with one
line of code. Both the square and our pentagon view will easily get a pan gesture
recognizer:

extension UIView{
 func createPanGestureRecognizerOn(_ obj: AnyObject){
 let pgr = UIPanGestureRecognizer(
 target: obj, action: #selector(ViewController.panning(_:)))
 addGestureRecognizer(pgr)
 }
}

Let’s move on to the view controller. Add the following components to the view con‐
troller, just as we did in Recipe 20.4:

• An animator of type UIDynamicAnimator
• A collision detector of type UICollisionBehavior
• A noise field of type UIFieldBehavior

Next, we’ll bundle the collision detector and the noise field into an array. This lets us
add them to our animator faster with the extensions that we created in Recipe 20.5:

var behaviors: [UIDynamicBehavior]{
 return [self.collision, self.noise]
}

The next step is to create our square view. This one is easy. It is just a simple view
with a pan gesture recognizer:

lazy var squareView: UIView = {
 let view = UIView(frame: CGRect(x: 0, y: 0, width: 100, height: 100))
 view.createPanGestureRecognizerOn(self)
 view.backgroundColor = UIColor.brown
 return view
 }()

Now for the juicy part—the pentagon view! We create it with the constructor of
PentagonView and then place it in the center of our view:

lazy var pentagonView: PentagonView = {
 let view = PentagonView.pentagonViewWithDiameter(100)
 view.createPanGestureRecognizerOn(self)
 view.backgroundColor = UIColor.clear
 view.center = self.view.center
 return view
 }()

Then we group the views and add them to our reference view:

var views: [UIView]{
 return [self.squareView, self.pentagonView]
}

570 | Chapter 20: UI Dynamics

override func viewDidLoad() {
 super.viewDidLoad()
 view.addSubview(squareView)
 view.addSubview(pentagonView)
 animator.addBehaviors(behaviors)
}

Finally, we handle panning. As soon as the user starts to pan one of our views around,
we pause all the behaviors. Once the panning is finished, we re-enable the behaviors:

@IBAction func panning(_ sender: UIPanGestureRecognizer) {

 switch sender.state{
 case .began:
 collision.removeItems()
 noise.removeItems()
 case .changed:
 sender.view?.center = sender.location(in: view)
 case .ended, .cancelled:
 collision.addItems(views)
 noise.addItems(views)
 default: ()
 }

}

Wrapping up, I want to clarify a few things. We extended UIDynamicAnimator and
added the addBehaviors(_:) method to it in Recipe 20.5. In the same recipe, we
added the addItems(_:) method to UIFieldBehavior. But in our current recipe, we
also need removeItems(), so I think it’s best to show that extension again with the
new code:

extension UIFieldBehavior{
 public func addItems(_ items: [UIDynamicItem]){
 for item in items{
 addItem(item)
 }
 }
 public func removeItems(){
 for item in items{
 removeItem(item)
 }
 }
}

You should extend UICollisionBehavior in the exact same way and add the
addItems(_:) and removeItems() methods to that class as well.

20.7 Handling Collisions Between Nonrectangular Views | 571

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 21

iMessage Stickers and Apps

We all use messaging capabilities on our iOS devices. This is a bold statement and I
have no proof for it, but it’s difficult to imagine a person owning an iOS device
without having sent or received messages. The main messaging application on iOS is
iMessage, but it’s not the only messaging option for iOS. You can download and
choose among a huge selection of various messaging applications.

iMessage used to be fully closed. That is to say, it lived in its own sandbox (and still
does), and did not allow any extensions to be attached to it. But now that has
changed, and we developers can finally write our own iMessage extensions that allow
even more interactivity to be added to our conversations.

iMessage apps can be of two different types:

Sticker packs
These are a special, unusual kind of app that contain only images, with absolutely
no code. You can create this kind of app so users can send the images to one
another in iMessage. For instance, if you offer a sticker pack full of heart shapes,
users can then download the app and attach those hearts to messages that they or
others send. In other words, as the name implies, images can stick to messages!

Full-fledged apps
With this type of iMessage app, you have full control over how your app works.
You can do some really fun stuff, which we will review soon. For instance, you
can change an existing sticker that was sent previously by one of your contacts, so
that you and the person you’re chatting with can collaboratively send and receive
messages.

573

www.allitebooks.com

http://www.allitebooks.org

21.1 Setting Up a Sticker Pack Application
Problem
You want to create a simple iMessage application that allows your users to send stick‐
ers to each other, without writing any code.

Solution
Follow these steps:

1. Open Xcode if it’s not already open.
2. Create a new project. In the new project dialog, choose Sticker Pack Application

and then click Next (Figure 21-1).

Figure 21-1. Creating a new sticker pack application for iMessage

3. Enter a product name for your project and then click Next (Figure 21-2).

574 | Chapter 21: iMessage Stickers and Apps

Figure 21-2. Enter your sticker pack application’s product name here

4. You will then be asked to save the project somewhere. Choose an appropriate
location to save the project to finish this process.

5. You should now see your project opened in Xcode. Click the file named Stick‐
ers.xcstickers and place your sticker images inside it.

6. After you’ve completed these steps, test your application on the simulator and
then on devices as thoroughly as possible. Once you are happy, you need to code
sign and then release your app to the iMessage App Store.

Discussion
With the opening up of iMessage as a platform where developers can build stand-
alone apps, Apple has created a new type of store called iMessage App Store, where
applications that are compatible with iMessage will show up in the list and users can
purchase or download them without cost.

If you create a sticker pack app with no accompanying iOS app, your app shows up
only in the iMessage App Store. If you create an iOS app with an accompanying iMes‐
sage extension (stickers), your app shows up both in the iOS App Store (for the main
iOS app) and in the iMessage App Store (for your iMessage extension).

21.1 Setting Up a Sticker Pack Application | 575

www.allitebooks.com

http://www.allitebooks.org

Your stickers can be PDF, PNG, APNG (PNG with an alpha layer),
JPEG, or even (animated) GIF files, but Apple recommends using
PNG files for the sake of quality. If you are desperate to create a
sticker app but have no images to test with, simply open Finder
at /System/Library/CoreServices/CoreTypes.bundle/Contents/Resour‐
ces/, then open the ICNS files in that folder with Preview.app,
export those ICNS files into PNG files, and drag and drop them
into your Stickers.xcstickers file in Xcode. Then build and run your
project on the simulator.

21.2 Adjusting Sticker Sizes
Problem
You have created a sticker pack application and you want to adjust the size of your
stickers in relation to how they appear on the screen.

Solution
Follow these steps in order to change the sticker sizes:

1. While in Xcode, click the Stickers.xcstickers file that Xcode created and placed in
your project.

2. Open the Attributes inspector in Xcode using Cmd-Alt-4.
3. Locate the Sticker Pack section and then, from the Sticker Size drop-down list in

the Attributes inspector and choose between 2 Column, 3 Column, and 4 Col‐
umn (Figure 21-3).

576 | Chapter 21: iMessage Stickers and Apps

Figure 21-3. Changing the sticker size in the Attributes inspector in Xcode

Discussion
After you ship your sticker applications to the iMessage store and a user downloads
them to her device, your stickers appear at a specific size both on the user’s device and
when sent to the recipient. This size is adjustable—not per sticker, but for the whole
sticker pack. All stickers must have the same size.

After you have changed this size, test your app thoroughly on the simulator and on
one or more devices before shipping it to the iMessage app store. Ensure that there
are no fuzzy edges on your images and that curves look smooth.

See Also
Recipe 21.1

21.3 Building a Full-Fledged iMessage Application
Problem
You want to build a custom iMessage application where you have full control over the
presentation of your stickers and how the user interacts with them.

21.3 Building a Full-Fledged iMessage Application | 577

www.allitebooks.com

http://www.allitebooks.org

Solution
Create an iMessage application in Xcode by following these steps:

1. Open Xcode if it’s not already open.
2. Create a new project. In the template window choose iMessage Application and

then click Next (Figure 21-4).

Figure 21-4. Creating a full-fledged iMessage app

3. Enter the product name for your project and then click Next (Figure 21-5).
Choose Swift as the language, of course!

578 | Chapter 21: iMessage Stickers and Apps

Figure 21-5. Enter your product name on this screen

4. You will be asked to save your project somewhere. Do so, and then you should
see Xcode open up your project.

Discussion
Now that you have created your iMessage app, it’s time to learn a bit about what’s new
in the Messages framework. This framework contains many classes, the most impor‐
tant of which are:

MSMessagesAppViewController

This is the main view controller of your extension. It gets displayed to users when
they open your iMessage application.

MSStickerBrowserViewController

This is a view controller that gets added to the app view controller and is respon‐
sible for displaying your stickers to the user.

MSSticker

This class encapsulates a single sticker. There is one MSSticker for each sticker in
your pack.

21.3 Building a Full-Fledged iMessage Application | 579

www.allitebooks.com

http://www.allitebooks.org

MSStickerView

Every sticker instance in MSSticker has to be placed inside a view to be displayed
to the user in the browser view controller. MSStickerView is the class for that
view.

For the sake of simplicity, for this recipe, hover over /System/Library/CoreServices/
CoreTypes.bundle/Contents/Resources/, grab the first three ICNS files out of there, and
export them, using the Preview app, to your desktop as PNG files with alpha. Later,
you will drag and drop them into the Assets.xcassets file in your Xcode project under
the MessagesExtension section—not the main app’s Assets.xcassets file.

When you build an iMessage application as we have just done, your app is separated
into two entry points:

• The iOS app entry point with your app delegate and the whole shebang
• The iMessage app extension entry point

This is unlike the sticker pack app that we talked about earlier in this chapter. Sticker
pack apps are iMessage apps but have no iOS apps attached to them. Therefore, there
is no code to be written. In full-fledged iMessage apps, your app is divided into an
iOS app and an iMessage app, so you have two of some files, such as the Assets.xcas‐
sets file.

Even with custom sticker pack applications, you can build the apps in two different
ways:

• Using the existing Messages classes, such as MSStickerBrowserViewController,
which do the heavy lifting for you

• Using custom collection view controllers that will be attached to your main
MSMessagesAppViewController instance

This recipe explores the first method, because it is much easier to explain and carry
out. Once you have created the main structure of your application as described in this
recipe’s Solution section, follow these steps to program the actual logic of the app:

1. Drag and drop your PNG stickers into your project’s structure, on their own and
not in an asset catalog. The reason is that you’ll need to find them using their
URLs, so you need them to sit on the disk directly.

2. Create a new Cocoa Touch class in your project (Figure 21-6) that will be your
MSStickerBrowserViewController instance.

580 | Chapter 21: iMessage Stickers and Apps

Figure 21-6. Creating a new Cocoa Touch class

3. Give your class the name of BrowserViewController (Figure 21-7), ensure it is
of type MSStickerBrowserViewController, and then click Next.

Figure 21-7. Creating your browser view controller

21.3 Building a Full-Fledged iMessage Application | 581

www.allitebooks.com

http://www.allitebooks.org

4. Save your file inside your project in the new dialog that appears.
5. Earlier, you added three icons to your project, which you grabbed from /System/

Library/CoreServices/CoreTypes.bundle/Contents/Resources/. It would be nice if
the MSSticker class had an initializer where you could just give it the name of the
sticker, instead of the path of the image to which it relates. You can accomplish
this by doing a search at runtime in the resources for your app. Create an
MSStickerItem enumeration, whose three items match the names of the images
you dropped into your project (in my case, Burning, Alert, and Accounts). The
extended initializer for MSSticker now accepts an instance of MSStickerItem
and uses its name to find the path of the image to apply to the sticker:
extension MSSticker{

 enum MSStickerItem : String{
 case Burning, Alert, Accounts
 }

 convenience init(item: MSStickerItem) throws{
 try self.init(contentsOfFileURL:
 Bundle.main.url(forResource: item.rawValue, withExtension: "png")!,
 localizedDescription: "")
 }
}

6. In the newly created BrowserViewController, create an array of your stickers:
class BrowserViewController: MSStickerBrowserViewController {

 let stickers = [
 try! MSSticker(item: .Burning),
 try! MSSticker(item: .Alert),
 try! MSSticker(item: .Accounts),
]

 ...

7. Your instance of MSStickerBrowserViewController has a property called
stickerBrowserView of type MSStickerBrowserView, which in turn has a prop‐
erty named dataSource of type MSStickerBrowserViewDataSource?. Your
browser view controller by default will become this data source, which means
that you need to implement all the nonoptional methods of this protocol, such as
numberOfStickers(in:). So let’s do that now:
override func numberOfStickers(in
 stickerBrowserView: MSStickerBrowserView) -> Int {
 return stickers.count
}

override func stickerBrowserView(_ stickerBrowserView: MSStickerBrowserView,

582 | Chapter 21: iMessage Stickers and Apps

 stickerAt index: Int) -> MSSticker {
 return stickers[index]
}

I’m explicitly unwrapping the optional value of the MSSticker
instance here because I know that those instances exist in my code.
If you are careful with optionals, like I am, in production code, try
to read the values first and then unwrap them only if they exist.

Our browser view controller is done, but how do we display it to the user? Remember
our MSMessagesAppViewController? Well, the answer is through that view controller.
In the viewDidLoad() function of the aforementioned view controller, load your
browser view controller and add it as a child view controller:

override func viewDidLoad() {
 super.viewDidLoad()

 let controller = BrowserViewController(stickerSize: .regular)

 controller.willMove(toParentViewController: self)
 addChildViewController(controller)

 if let vcView = controller.view{
 view.addSubview(controller.view)
 vcView.frame = view.bounds
 vcView.translatesAutoresizingMaskIntoConstraints = false
 vcView.leftAnchor.constraint(equalTo: view.leftAnchor).isActive = true
 vcView.rightAnchor.constraint(equalTo: view.rightAnchor).isActive = true
 vcView.topAnchor.constraint(equalTo: view.topAnchor).isActive = true

 vcView.bottomAnchor.constraint(equalTo:
 view.bottomAnchor).isActive = true
 }

 controller.didMove(toParentViewController: self)

}

Now press the Run button in Xcode to run your application on the simulator. You
will see a screen similar to Figure 21-8.

21.3 Building a Full-Fledged iMessage Application | 583

www.allitebooks.com

http://www.allitebooks.org

Figure 21-8. Xcode asking you which app on the simulator to attach your app to

In this list, simply choose the Messages app and continue. Once the simulator is run‐
ning, you can manually open the Messages app, go to an existing conversation that
has been placed for you there by the simulator, and press the Apps button on the key‐
board. Then choose your app from the list and see your stickers inside the simulator
(Figure 21-9).

584 | Chapter 21: iMessage Stickers and Apps

Figure 21-9. Your stickers should be displayed correctly in the iMessage app and can be
clicked to be sent to the recipient

See Also
Recipes 21.1 and 21.4

21.3 Building a Full-Fledged iMessage Application | 585

www.allitebooks.com

http://www.allitebooks.org

21.4 Adding an iMessage App Extension to an Existing
App
Problem
Full-fledged iMessage apps can either stand on their own, without a host iOS app, or
be attached to a host iOS app. This recipe shows how to add a new iMessage app
extension to an existing app. This in turn allows you to add an iMessage app exten‐
sion to one of your existing iOS apps so that you can send custom stickers and pro‐
vide extra functionality to the existing iMessage app.

Solution
Create an iMessage extension and provide the required app icons to it. Follow these
steps:

1. Open your project in Xcode.
2. Add a new target of type iMessage extension to your project (Figure 21-10).

Figure 21-10. Adding an iMessage extension to your app

586 | Chapter 21: iMessage Stickers and Apps

3. On the next screen, enter your extension’s product name and other information
(Figure 21-11).

Figure 21-11. Provide a name for the new extension

4. Then save your new extension to disk and add it to your project.

Discussion
One of the important steps in creating an extension is to add the required icons, so
that they appear correctly in the iMessage apps list. Extensions work fine and can be
tested without icons, but they will not be accepted to the iMessage App Store without
appropriate icons.

See Also
Recipe 21.3

21.4 Adding an iMessage App Extension to an Existing App | 587

www.allitebooks.com

http://www.allitebooks.org

21.5 Utilizing an Expanded View in a Sticker Pack App
Problem
The space that your app gets by default to render itself in an iMessage window is not
quite large enough for your purposes and you would like to ask for more space.

Solution
To solve this problem, use the requestPresentationStyle(_:) function of the
MSMessagesAppViewController class to request an expanded view. The parameter
that you pass to this function is of type MSMessagesAppPresentationStyle and can
take the value of either compact (the default) or expanded.

Discussion
Let’s have a look at an example where we put all of this information together to create
a functioning application that allows the user to control the size of your rendered app.
The user presses a plus button on the interface to expand the extension’s view, and
can then change the interface back to the compact mode. By default, all extensions
launch in the compact mode and can then be changed by the user herself.

Follow these steps to create an iMessage app extension that allows the user to expand
its view:

1. Open Xcode and ensure that you have an application with an iMessage extension,
as explained in Recipe 21.4.

2. Open your extension’s MainInterface.storyboard file and then drag a collection
view controller and a normal view controller into the scene. Set the collection
view controller’s class to StickersViewController and the normal view control‐
ler’s class to ExpandedStickersViewController. We are going to create these two
classes now.

3. Create a new Cocoa Touch class of type UICollectionViewController and set its
name to StickersViewController. Ensure that you don’t create an XIB file for it,
since its interface is already on your storyboard. Set StickersViewController as
the storyboard ID of this view controller in the Identity inspector of IB.

4. Next, create another Cocoa Touch class of type UIViewController and name it
ExpandedStickersViewController. Set ExpandedStickersViewController as
the storyboard ID of this view controller in the Identity inspector of IB.

5. Select your storyboard collection view controller. In the cell that is already cre‐
ated for you in IB, drag and drop an instance of UIButton. Set its text to a simple
+ (plus sign), and then enlarge the font so that it is visible enough for a typical
user (Figure 21-12). Also set the reuse identifier of this cell to Cell in IB.

588 | Chapter 21: iMessage Stickers and Apps

Figure 21-12. Our collection view Storyboard ID is set along with the creation of the
button on our cell

6. Ensure that the button that you placed on your cell has no user interactions
enabled—otherwise, it will trap all touch events, and we want to trap the touch
events through the parent collection view controller. With the button selected, go
to the Attributes inspector of IB and deselect the User Interaction Enabled check‐
box.

7. Open your StickersViewController.swift file and define a protocol for your collec‐
tion view controller so that any other class can become its delegate. Later, when
the user presses the + button on the collection view, you can report this to your
delegate object:
import UIKit

protocol StickersViewControllerDelegate : class{
 func plusButtonTappedOn(controller: UIViewController)
}

protocol HasStickersDelegate : class{
 weak var delegate: StickersViewControllerDelegate? {get set}
}

class StickersViewController: UICollectionViewController,
 HasStickersDelegate {

 weak var delegate: StickersViewControllerDelegate?

 ...

8. Now, provide enough information for the collection view to display your single
cell:
// we set this to Cell in IB as well, remember?
private let reuseIdentifier = "Cell"

override func numberOfSections(in collectionView: UICollectionView) ->

21.5 Utilizing an Expanded View in a Sticker Pack App | 589

www.allitebooks.com

http://www.allitebooks.org

 Int {
 return 1
}

override func collectionView(_ collectionView: UICollectionView,
 numberOfItemsInSection section: Int) -> Int {
 return 1
}

override func collectionView(
 _ collectionView: UICollectionView,
 cellForItemAt indexPath: IndexPath) -> UICollectionViewCell {

 let cell = collectionView.dequeueReusableCell(
 withReuseIdentifier: reuseIdentifier, for: indexPath)

 return cell
}

9. And ensure that when the + cell is tapped, you will report it to your delegate:
override func collectionView(_ collectionView: UICollectionView,
 didSelectItemAt indexPath: IndexPath) {
 guard indexPath.row == 0 && indexPath.section == 0 else {return}
 delegate?.plusButtonTappedOn(controller: self)
}

10. Now go to the MessagesViewController.swift file and define the storyboard identi‐
fiers of the two view controllers that you just created:
import UIKit
import Messages

struct Identifiers{
static let StickersViewController = "StickersViewController"
static let ExpandedStickersViewController = "ExpandedStickersViewController"
}

11. Let’s also extend UIViewController with a function that allows you to add any
view controller to your Messages app view controller:
extension UIViewController{
 func addTo(appViewController host: MSMessagesAppViewController){

 // see if this view controller has a delagete and then set it to
 // the host view controller if yes
 if
 let delegate = host as? StickersViewControllerDelegate,
 let vc = self as? HasStickersDelegate{
 vc.delegate = delegate
 }

590 | Chapter 21: iMessage Stickers and Apps

willMove(toParentViewController: host)
host.addChildViewController(self)
view.frame = host.view.bounds
view.translatesAutoresizingMaskIntoConstraints = false
host.view.addSubview(view)
view.leftAnchor.constraint(equalTo: host.view.leftAnchor).isActive = true
 view.rightAnchor.constraint(equalTo: host.view.rightAnchor).isActive
 = true
 view.topAnchor.constraint(equalTo: host.view.topAnchor).isActive
 = true
 view.bottomAnchor.constraint(equalTo:
 host.view.bottomAnchor).isActive = true
 didMove(toParentViewController: host)

 }
}

12. Then add a function called loadViewController(forPresentationStyle:) to
your MessagesViewController class. In this function, you’ll take the incoming
presentation style of type MSMessagesAppPresentationStyle and then load
either the collection view controller (for compact mode) or the normal view con‐
troller (for expanded mode):
class MessagesViewController : MSMessagesAppViewController,
StickersViewControllerDelegate {

func loadViewController
 (forPresentationStyle: MSMessagesAppPresentationStyle) -> Bool{

 childViewControllers.forEach{
 $0.willMove(toParentViewController: nil)
 $0.view.removeFromSuperview()
 $0.removeFromParentViewController()
 ($0 as? HasStickersDelegate)?.delegate = nil
 }

 let vcId: String

 switch presentationStyle{
 case .compact:
 vcId = Identifiers.StickersViewController
 case .expanded:
 vcId = Identifiers.ExpandedStickersViewController
 case .transcript:
 return false
 }

 guard let vc = storyboard?
 .instantiateViewController(withIdentifier: vcId) else {return false}

21.5 Utilizing an Expanded View in a Sticker Pack App | 591

www.allitebooks.com

http://www.allitebooks.org

 vc.addTo(appViewController: self)

 return true

}

...

13. Because you have become the delegate of the collection view controller, you also
need to implement its delegate method:
func plusButtonTappedOn(controller: UIViewController) {
 let _ = loadViewController(forPresentationStyle: .expanded)
 requestPresentationStyle(.expanded)
}

14. You can also load the appropriate view controller based on the reported presenta‐
tion styles, via methods already defined on MSMessagesAppViewController:
override func willBecomeActive(with conversation: MSConversation) {
 // Called when the extension is about to move from the
 // inactive to active state.
 // This will happen when the extension is about to present UI.

 // Use this method to configure the extension and restore previously
 // stored state.

 let _ = loadViewController(forPresentationStyle: .compact)

}

override func willTransition(to presentationStyle:
 MSMessagesAppPresentationStyle) {
 // Called before the extension transitions to a new presentation style.

 // Use this method to prepare for the change in presentation style.
 let _ = loadViewController(forPresentationStyle: presentationStyle)
}

override func didTransition(to presentationStyle:
 MSMessagesAppPresentationStyle) {
 // Called after the extension transitions to a new presentation style.

 // Use this method to finalize any behaviors associated with the
 // change in presentation style.
 let _ = loadViewController(forPresentationStyle: presentationStyle)
}

Run your project now on the simulator. You will now see a plus button in the list, as
shown in Figure 21-13.

592 | Chapter 21: iMessage Stickers and Apps

Figure 21-13. The plus button is shown properly in the compact mode of the extension

Once the user taps this button, your extension will request the expanded presentation
style (Figure 21-14).

21.5 Utilizing an Expanded View in a Sticker Pack App | 593

www.allitebooks.com

http://www.allitebooks.org

Figure 21-14. The expanded iMessage extension

You can see that the system provides a bar button item on the navigation bar, which,
when tapped, will send the extension back to the compact mode.

See Also
Recipe 21.3

594 | Chapter 21: iMessage Stickers and Apps

21.6 Appending Rich Information to Stickers
Problem
You want to attach extra information, such as a caption, title, and subtitle, to your
stickers and messages in an iMessage app.

Solution
Follow these steps:

1. Create an instance of MSMessage.
2. Create a layout object of type MSMessageTemplateLayout and set its properties,

such as image and caption.
3. Once the template is ready, set it as the template property of the message object.
4. Send the message to the current conversation using the insert(_:completion

Handler:) function of the active conversation object of type MSConversation.

Your MSMessagesAppViewController instance has a property
called activeConversation of type MSConversation?. You can use
this optional property to get a reference to your active conversa‐
tion. Ideally, this property should always be present, but officially
it’s optional so you can’t assume its presence. Always check its value
against nil and then handle the situation properly if it is not
present.

Discussion
In this recipe we are going to build a new application based on what we discussed in
Recipe 21.5. The difference in this recipe is that, when the user presses the + button
on our iMessage extension, we will send a prebuilt sticker to the recipient. I have
already placed an image called Accounts.png inside the image asset catalog of my
iMessage extension so that I can open it using an instance of UIImage. You can also
do the same thing. I grabbed this image out of the Accounts.icns file at /System/
Library/CoreServices/CoreTypes.bundle/Contents/Resources/.

If you recall from Recipe 21.5, when the + button gets tapped, we call the plusButton
TappedOn(controller:) function of our delegate object, which in this case is our
instance of MSMessagesAppViewController. In our current recipe, we will rewrite the
code in this function so that we create an instance of MSMessage and send it to the
recipient. Follow these steps to rewrite this code:

1. Retrieve the current conversation object:

21.6 Appending Rich Information to Stickers | 595

www.allitebooks.com

http://www.allitebooks.org

func plusButtonTappedOn(controller: UIViewController) {

 guard let conversation = activeConversation else {fatalError()}

 ...

2. Retrieve the existing session. If one doesn’t exist, create one:
let session = conversation.selectedMessage?.session ?? MSSession()

3. Instantiate your message object:
let message = MSMessage(session: session)

4. Create your layout object and assign all its properties to your chosen values:
let layout = MSMessageTemplateLayout()
layout.image = messageImage
layout.caption = "Caption"
layout.imageTitle = "Image title"
layout.imageSubtitle = "Image subtitle"
layout.trailingCaption = "Trailing caption"
layout.subcaption = "Subcaption"
layout.trailingSubcaption = "Trailing subcaption"

5. Once the layout is ready, insert the message into the conversation:
message.layout = layout

conversation.insert(message) {error in
 // empty for now
}

When preparing the layout object, we set its image property to messageImage. This is
a custom property I have defined on our instance of MSMessagesAppViewController.
All it does is call UIGraphicsImageRenderer to create an image context, set the back‐
ground color of the context to black, and then draw the Accounts.png file on top of
the black background so that the white text that our layout object renders will eventu‐
ally be visible on the black background:

var messageImage: UIImage? {
 guard let image = UIImage(named: "Accounts") else {return nil}
 let rect = image.size.rectWithZeroOrigin

 let renderer = UIGraphicsImageRenderer(bounds: rect)
 return renderer.image {context in
 let bgColor: UIColor = .black
 bgColor.setFill()
 context.fill(rect)
 image.draw(at: .zero)
 }
}

596 | Chapter 21: iMessage Stickers and Apps

Run your code now on the simulator and see the results for yourself (Figure 21-15).

Figure 21-15. Our message, with rich information, is ready to be sent to the recipient

The MSMessageTemplateLayout class has many useful properties, as you have just
seen. Let’s explore some of them so you understand what they are and what they do:

image: UIImage?

This is the actual image that will be sent as the message. This is an optional prop‐
erty.

21.6 Appending Rich Information to Stickers | 597

www.allitebooks.com

http://www.allitebooks.org

caption: String?

If you look closely at Figure 21-15, you will notice that iMessage inserts a little
colorful bar at the bottom of your images on which it will render the caption.
This is extra information that you can add to your image, of type String?.

subcaption: String?

This gets rendered underneath the caption, in the additional bar that gets dis‐
played by default by iMessage below the image.

imageTitle: String?

The title and the subtitle get rendered at the bottom of the image itself, and they
are in a white color, so ensure that your image’s background is a color other than
white.

imageSubtitle: String?

The subtitle that gets rendered underneath the title but still at the bottom-left
corner of the image itself.

trailingCaption: String?

The trailing caption is displayed on the bottom-right corner.

trailingSubcaption: String?

The subcaption gets displayed on the bottom-right corner, underneath the trail‐
ing caption.

See Also
Recipe 21.5

21.7 Creating Interactive Conversations with iMessage
Apps
Problem
Your iMessage app allows users to send data, such as images or texts, to one another.
Inside the active conversation, you would like to allow the recipient of this data to be
able to change the data, and send it back, replacing the existing data instead of send‐
ing a new message.

Solution
Inside the MSMessagesAppViewController instance of your extension, look at the
activeConversation.selectedMessage property to see whether it’s set. If it is, there
is a selected message that was previously sent by your iMessage app. Once you find

598 | Chapter 21: iMessage Stickers and Apps

this selected message, use its url property to create a mutable instance of the same
message.

Discussion
The first message sent by user A to user B with your app will have the selected
Message property set to nil because no previous messages were sent by your app,
hence none could be selected. In this case, you can send a new message and set the
url property of the message to http://app.com/. Then, when the recipient receives
this message and taps on it, your extension will go into the expanded mode, and there
you can find this selectedMessage and read its url property. You can then compose
a new message with new data, images, etc., and set its url property to http://
app.com/withnewdata. Once you send this message, iMessage realizes that you took
the selected message and just changed it a little bit. Hence, iMessage will not send a
new message, but instead will change the selected message to the new one for both
the sender and the receiver.

Let’s take what we learned in Recipe 21.6 and change the solution a little bit so that we
can create such interactive conversations.

In Recipe 21.6 we have both a compact and an expanded view controller. As
explained just now, when the user taps on a message that was previously sent by your
app, two things will happen:

• The willTransition(to:) function of your MSMessagesAppViewController will
be called and will change your app to the expanded mode.

• The activeConversation.selectedMessage property of your MSMessagesApp
ViewController will be set to an instance of MSMessage that represents the
selected message.

Knowing that the app is in expanded mode at this point, we are going to take the
same view controller as we did in Recipe 21.6 and change its interface so that there is
a button on the screen that looks like Figure 21-16.

21.7 Creating Interactive Conversations with iMessage Apps | 599

www.allitebooks.com

http://www.allitebooks.org

Figure 21-16. Adding an append button to the view controller

We’ll hook this button to a new function in our code:

import UIKit

class ExpandedStickersViewController: UIViewController, HasStickersDelegate {

 weak var delegate: StickersViewControllerDelegate?

 @IBAction func appendButtonTapped(_ sender: AnyObject) {
 delegate?.plusButtonTappedOn(self)
 }

}

I am utilizing the existing HasStickersDelegate and Stickers
ViewControllerDelegate protocols for this view controller
because our instance of MSMessagesAppViewController is con‐
cerned only with the press of the + button. When MSMessagesApp
ViewController traps this pressing of a button, it can read the
active conversation’s selected message and either send a new one or
change the existing one if a selected message is already there.

When the button is tapped on either the compact or the expanded view controller,
the plusButtonTappedOn(_:) delegate method will be called in MSMessagesAppView
Controller. Here, we are going to look at the selected message to see if it exists and,
if it does, determine how many url components it has. So we need a property on the
URL class that can count the url components for us:

600 | Chapter 21: iMessage Stickers and Apps

extension URL{
 // counts the number of path components in the URL
 var pathCount: Int{
 let components = NSURLComponents(url: self, resolvingAgainstBaseURL: false)
 return components?.path?
 .components(separatedBy: "/")
 .filter{$0.characters.count > 0}
 .count ?? 0
 }
}

For instance, if the URL is http://app.com/, this property will return 0 because there is
no path component after the domain name. If the URL is http://app.com/foo, the
property will return 1 because foo is the single path component.

What we want to do in the plusButtonTappedOn(controller:) delegate method is
send the URL of https://developer.apple.com to the conversation should there be no
previously selected message in the active session. Once the first message is sent in the
current session, the recipient can tap it and then append a new path to the URL. The
final path that we are going to construct is library/prerelease/ios/releasenotes/General/
WhatsNewIniOS/ appended to https://developer.apple.com, so we have a total of six
path components to play with. This means six bouncebacks of the same message back
and forth between the sender and the recipient.

When https://developer.apple.com is sent as the first message, we would like an image
to be inside the MSMessage instance with the caption “developer.apple.com/,” as
shown in Figure 21-17.

21.7 Creating Interactive Conversations with iMessage Apps | 601

www.allitebooks.com

http://www.allitebooks.org

Figure 21-17. The first message in the conversation refers to developer.apple.com/

Once the recipient gets this message and taps it, the expanded view of our app will be
displayed (Figure 21-18).

602 | Chapter 21: iMessage Stickers and Apps

Figure 21-18. The expanded view of our app is shown after the user taps the selected
message, composed by the same app on the sender’s side

Upon tapping the button on our expanded view, we will append the next path com‐
ponent, “library/”, to the URL and send it over (Figure 21-19).

21.7 Creating Interactive Conversations with iMessage Apps | 603

www.allitebooks.com

http://www.allitebooks.org

Figure 21-19. The selected message is changed to the new message with a new caption,
indicating the current final path component

Once this new message is sent, the receiver will be able to select it and press the but‐
ton again on the expanded view to change the message to a new one, with the next
path component attached to it (Figure 21-20).

604 | Chapter 21: iMessage Stickers and Apps

Figure 21-20. The next path component is now attached to the message

So, let’s go to the plusButtonTappedOn(controller:) delegate method and define
our path components:

func plusButtonTappedOn(controller: UIViewController) {

 let paths = [
 "library/", "prerelease/", "ios/",
 "releasenotes/", "General/", "WhatsNewIniOS/"
]

 ...

21.7 Creating Interactive Conversations with iMessage Apps | 605

www.allitebooks.com

http://www.allitebooks.org

We will also define the base URL:

let base = "developer.apple.com/"

We should then find the existing session (or create a new one) and find the active
conversation to which we can send or append our messages:

guard let conversation = activeConversation else {fatalError()}
let session = conversation.selectedMessage?.session ?? MSSession()

We will now construct our URL instance and build a caption for our image:

let url: URL
let caption: String?
if let selectedMessageUrl = conversation.selectedMessage?.url{
 let pathCount = selectedMessageUrl.pathCount
 if pathCount < paths.count{
 let lastPath = paths[pathCount]
 url = selectedMessageUrl.appendingPathComponent(lastPath)
 caption = "\(base) (\(lastPath))"
 } else if let lastPath = paths.last {
 url = selectedMessageUrl
 caption = "\(base) (\(lastPath))"
 } else {
 return
 }
} else {
 url = URL(string: "https://\(base)")!
 caption = base
}

After this is done, we will create an instance of our MSMessage with the session that
we previously found and set its layout:

let message = MSMessage(session: session)

let layout = MSMessageTemplateLayout()
layout.image = messageImage
layout.caption = caption

message.layout = layout
message.url = url

I explained how messageImage is implemented in Recipe 21.6.

Last but not least, we will insert this message into the conversation and, once every‐
thing is settled, call the dismiss() function of our MSMessagesAppViewController

606 | Chapter 21: iMessage Stickers and Apps

instance so that if we are in the expanded mode and the user taps the button on the
UI, we can close our expanded view so that the user can send the message:

conversation.insert(message) {[weak self]error in
 guard let strongSelf = self else {return}
 strongSelf.dismiss()
}

21.7 Creating Interactive Conversations with iMessage Apps | 607

www.allitebooks.com

http://www.allitebooks.org

Index

Numbers & Symbols
#available syntax, 152
& (ampersand), using to combine data types,

141
+ operator, 92
- operator, 93
3D Touch, 196-202

providing dynamic 3D Touch menus on
home screen, 202-205

vibrational feedback to users, 206
< (less than) operator, 97
== operator, 115, 300
> (greater than) operator, 97
@discardableResult, functions marked with, 19

A
accelerometer data, recording and reading, 529
accelerometerData(from:to:), 529-530
access control flags, creating, 537, 540
Accessibility Inspector, 509
acknowledgement handler, 449
activateSession() method, 325
activeConversation.selectedMessage property,

598
addAnimations(_:) function, 214
addAnnotation(_:) function, 480, 490
addBehaviors(_:) function, 563, 571
addCompletion(_:) function, 214, 217
addInteraction(_:) function, 210
addItem(_:) method, 559
addItems(_:) method, 571
additionalLeadingNavigationBarButtonItems:

[UIBarButtonItem] property, 315

additionalTrailingNavigationBarButtonItems:
[UIBarButtonItem] property, 315

addKeyCommand(_:) method, 269
address book

access to, 407
resetting contents on the simulator, 408

addSubview(_:) function, 480
allHolidays() function, 383
allowsBackgroundLocationUpdates, 494-495
allowsEditing property, 437
allPausesToday() method, 390
ambiguity, resolving in an intent, 78-85

reporting progress, 86-88
anchored constraints, creating in code, 245-250
anchors, 247
angle units, working with and switching

between, 93
animatingViewTapped(_:) method, 232
animation

drag session, 217
drag session cancellation, 218
dragged items, 214
dropped items, 216

animationSpeed property, 557
animator objects, 549

adding behaviors for radial gravity field, 554
creating for radial gravity field in UI, 552
for collisions between nonrectangular views,

566
for linear gravity field, 556
for magnetic field effect, 562-563
for noise field effects, 559, 561
for turbulence behavior, 558
for velocity field, 564-565, 570

609

www.allitebooks.com

http://www.allitebooks.org

Annotation object, 482, 487, 491
annotations

clustering to declutter the map, 483-490
customizing tint color of pins on the map,

496-499
providing detailed pin information with

custom views, 499
ANY operator, 116
Any type, checking for conformance to proto‐

cols, 141
AnyObject type, 514
API availability, checking for, 152
App Store, reviews of your app on, 205
AppDelegate.swift file, 279
Apple Watch, 319-405

communicating interactively between iOS
and watchOS, 347-357

constructing small complications with text
and images, 364-374

Core Motion framework capabilities, 527
displaying dates in complications, 381-388
displaying time intervals in complications,

393-400
displaying time offsets in complications,

374-381
displaying times in complications, 388-393
downloading files to, 320-325
noticing changes in pairing state between

iOS and Watch apps, 325-328
playing local and remote audio and video in

your app, 403-405
recording audio in your Watch app, 400-403
setting up for custom complications,

357-364
transferring dictionaries in queues to and

from, 338-342
transferring files to and from, 342-347
transferring small pieces to data to and

from, 328-338
application context, 329
Application Transport Security (see ATS)
application(_:continue:restorationHandler:),

453-454, 458
application(_:openURL:options:), 504
application(_:performActionFor:completion‐

Handler:), 203-204
application(_:willContinueUserActivityWith‐

Type:), 453-454
applicationDidEnterBackground(_:), 254

applicationDidFinishLaunching(), 328, 340
arrays

Array methods returning second and third
items, 384

extending typed arrays, 121-123
partitioning into segments, 134-136

assets
categorizing and downloading to get smaller

binaries, 184-187
creating by URL, 546
extracting named colors from asset catalogs,

229-230
assistant editor (Xcode), 190
Associated Domains (Xcode), 532
associatedtype syntax, 142

checking on protocol extensions, 146
ATS (Application Transport Security), 531

protecting network connections with,
534-536
disabling ATS, 535
enabling ATS only for your domain, 536
enabling ATS, but not for your domain,

535
audio

enabling spoken audio sessions, 547
playing local and remote audio in Watch

app, 403-405
recording in your Watch app, 400-403

authentication of user with Touch ID and time‐
out, 539-541

authorizationStatus(for:) method, 407
automating UI test scripts, 512-514
#available syntax, 152
availableCategories property, 548
availableModes property, 548
AVAssetDownloadDelegate, 545-546
AVAssetDownloadTask, 545
AVAssetDownloadURLSession, 545, 547
AVAssetReferenceRestrictions.forbidCrossSi‐

teReference, 546
AVAudioSession, 548
AVAudioSessionCategoryPlayback, 548
AVAudioSessionModeSpokenAudio, 548
AVFoundation framework, 470, 543, 545
AVKit framework, 470
AVPictureInPictureController, 468
AVPictureInPictureControllerDelegate, 471
AVPlayer, 468, 471
AVPlayerLayer, 468, 470

610 | Index

AVSpeechSynthesisVoice, 543
AVSpeechSynthesisVoiceIdentifierAlex, 543
AVSpeechSynthesisVoiceQuality, 544
AVSpeechSynthesizer, 545
AVSpeechUtterance, 544
AVURLAsset, 545
axis property, UIStackView, 256

B
background location updates, 494-496
background tasks, performing with Core Data,

117-119
background thread, searching on, 415
background(withIdentifier:), 545
backgroundData property, 314
backgroundSessionConfigurationWithIdenti‐

fier(_:), 324
barButtonItems property, 190
beginAccessingResourcesWithCompletionHan‐

dler function, 185
beginIndexBatch(), 463
beginPip() method, 470
beta lane, 37
Bézier paths, 566, 568

translation transform on, 569
binaries, device-specific, exporting, 187
birthday property (contacts), 412
bitcode, 188
bodyTextProvider property, 391
break statement, 162
browserUserInterfaceStyle: UIDocument‐

BrowserUserInterfaceStyle property, 315
build.sh script (for Travis builds), 32
buttons property, 515, 518, 524
buttons, testing, 514

C
cadence, 527

querying cadence information, 528
calculateETA(completionHandler:), 502
Calendar, 368
cancel() method, 340
canLoadObjects(ofClass:) function, 212
canOpenUrl(_:), 538
caption: String? property, 598
case statement, grouping switch statement cases

together, 162
case-insensitive searches (Core Data), 115
catch clauses (do statement), 149

cells property, 524
Celsius, Fahrenheit, and Kelvin temperatures,

working with, 99
center property, 554
certificates, creating, 28
CFAbsoluteTimeGetCurrent function, 158
CFBundleDocumentTypes key, adding to

Info.plist file, 281
document types supported, 286

CFBundleTypeIconFiles key, 282
CFString and String, == operator for compar‐

ing, 300
CGPoint, 201, 211, 215, 303, 552, 558
CGRect, 303
CGSize, 552, 554
CGVector, 555, 564
characterEncoding key, 167
childrenMatchingType(_:), 517, 520
circular small complications, 362
CLKComplicationDataSource, 365-367, 369,

391
CLKComplicationPrivacyBehavior, 371
CLKComplicationTemplate, 363, 366, 378, 385
CLKComplicationTemplateModularLargeCol‐

umns, 381, 385
CLKComplicationTemplateModularLargeStan‐

dardBody, 374, 378, 385, 391
important properties, 397

CLKComplicationTemplateModularLargeTall‐
Body, 390

CLKComplicationTemplateModularSmallRing‐
Text, 367
important properties, 370

CLKComplicationTimelineEntry, 365-366, 370
CLKComplicationTimeTravelDirections, 365,

370
CLKDateTextProvider, 381
CLKRelativeDateStyle, 378
CLKRelativeDateTextProvider, 374, 378
CLKSimpleTextProvider, 378, 394
CLKTimeIntervalTextProvider, 394, 397
CLKTimeTextProvider, 388
CLLocationCoordinate2D, 480, 482, 505
CLLocationManager, 493
CLLocationManagerDelegate, 493, 495
close(completionHandler:) function, 306, 310
clusteringIdentifier property, 484, 487
CMAcceleration, 529
CMPedometer, 527

Index | 611

www.allitebooks.com

http://www.allitebooks.org

CMPedometerData, 528
CMRecordedAccelerometerData, 529
CMSensorDataList, 529
CMSensorRecorder, 529
CNContact object, 407, 414, 417-418, 428
CNContactFamilyNameKey, 421
CNContactFetchRequest, 415
CNContactFormatter, 424
CNContactFormatterStyle, 427
CNContactGivenNameKey, 421
CNContactImageDataKey, 417
CNContactNoteKey, 421
CNContactPickerDelegate, 429, 432
CNContactPickerViewController, 428
CNContactPostalAddressesKey, 428
CNContactStore, 407, 424, 434

methods to search for contacts, 414
CNContactViewController, 434, 436
CNContactViewControllerDelegate, 434
CNEntityType, 407
CNInstantMessageAddress, 411
CNKeyDescriptor, 425
CNLabeledValue, 427
CNMutableContact, 407, 418, 434
CNPostalAddressFormatter, 424, 427-428
CNSaveRequest, 418, 423
coalescedTouchesForTouch(_:), 261
Cocoa Touch, 121

(see also Swift and Cocoa Touch, new fea‐
tures)

UI Testing Bundle, 511
CocoaPods

installing and setting up, 50
iOS Snapshot Test Case, 49

Codable protocol, 129, 131
code blocks, ensuring execution before exiting,

151-152
code signing, fixing for Xcode Bots, 10
Collection object, 371, 378, 390, 396
collections

looping through conditionally, 163
using open collection ranges, 123-124

collision detectors, 561-562, 564-565
handling collisions between nonrectangular

views, 566-571
collisionBoundingPath, 566, 569
collisionBoundsType, 566, 569
colors

animating background color of a view, 231

customizing tint color of pins on the map,
496-499

extracting named colors from asset catalogs,
229-230

compass button, 478-479
compass indicators, displaying on the map, 500
completion property, 299
ComplicationController, 362, 378, 383
complications

constructing small complications with text
and images, 364-374

custom, setting up Apple Watch for,
357-364
categories of complications, 362

displaying dates in, 381-388
displaying time intervals in, 393-400
displaying time offsets in, 374-381
displaying times in, 388-393

conditionallyBeginAccessingResourcesWith‐
CompletionHandler function, 185

confirm(_:completion:), 86
contactPicker(_:didSelectContact:), 429
contactPicker(_:didSelectContactProperty:),

432
contactPicker(_:didSelectContacts:), 432
contactPickerDidCancel(_:), 429
Contacts framework, 407-437

classes with immutable and mutable ver‐
sions, 407

creating contacts with prebuilt system UI,
434-435

deleting contacts, 422
displaying contacts with prebuilt system UI,

436-437
formatting contact data, 424-428
inserting new contact in Contacts database,

408-414
picking contacts with prebuilt system UI,

428-434
searching for contacts, 414-418
updating contacts, 418-422

contactStore property, 434, 437
ContactsUI framework, 428
contactViewController(_:didCompleteWith:),

434
container(keyedBy:) function, 131
containingType(_:identifier:), 518
contains function, 155
contents(forType:) function, 297, 301

612 | Index

(context:) initializer, 109
continuous apps, running playgrounds as, 237
continuous integration and delivery, 1-48

archiving apps with fastlane, 44-46
archiving apps with Xcode Bots, 6-12
building and archiving projects with Travis,

27-33
building apps with fastlane, 35-38
connecting local Xcode to Xcode Server, 3-5
enabling Slack notifications in fastlane,

40-44
installing and setting up fastlane, 33-35
installing the Travis CLI, 23-25
integrating GitHub projects with Travis,

20-23
performing code analysis with Xcode Bots,

17-20
running unit tests automatically with Xcode

Bots, 12-16
running unit tests with Travis, 25-27
setting up Xcode Server, 2
testing apps with fastlane, 38-40
uploading apps to iTunes Connect with fas‐

tlane, 46-48
convert(to:), 93
converted(to:), 92
coordinate property, 485
Core Data framework, 103-119

designing your database scheme, 104-109
performing background tasks with, 117-119
reading data from the database, 111-114
searching for data in the database, 114-116
writing data to the database, 109-111

Core Motion framework, 527-530
querying pace and cadence information,

528
recording and reading accelerometer data,

529
CoreLocation framework, 477, 493
CoreSpotlight framework, 456
CoreSpotlightContinuation, 452
CPU clock speeds, representing in Swift, 97
Crashlytics, 179
createNewDocumentViewController(withHan‐

dler:), 294
cross-site references, forbidding, 546
CSQueryContinuationActionType, 453
CSSearchableIndex, 455, 457, 463
CSSearchableItem, 455, 457

CSSearchableItemActionType, 458
CSSearchableItemActivityIdentifier, 458
CSSearchableItemAttributeSet, 455, 457
cups, converting volume units to, 100
currentCadence property, 528
currentItem.status property, 468
currentPace property, 528
CustomDebugStringConvertible protocol, 154

D
Data object, 289, 292, 369

creating array of 24 Data structures, 367
extracting PNG's data into instance of, 304
turning UIImage instance into, 302

data storage (see Core Data framework)
data types

conditionally extending, 155-157
creating new types by combination, 141-143
creating your own set types, 154

data, bundling and reading in your apps,
164-167

dataForNow() function, 368, 371
DataProvider, 378, 382, 389, 395
Date object, 365-366, 369, 400
Date(), 368
DateComponents, 368, 412
dates and time

displaying dates in complications, 381-388
displaying time intervals in complications,

393-400
displaying time offsets in complications,

374-381
displaying times in complications, 388-393

debugEnabled property, 552
debugging apps on iOS devices wirelessly,

174-177
deciliters, liters, and pints, working with, 100
decode(_:from:) function, 129
defer syntax, 151-152
degrees, working with and converting, 93
deleteAllSearchableItems(completionHandler:),

456
deleteContact(_:) function, 423
deleteSearchableItems(withIdentifiers:comple‐

tionHandler:), 463
deliver action (fastlane), 47

important parameters used with, 47
descendantsMatchingType(_:), 517
descriptorForRequiredKeys(), 436

Index | 613

www.allitebooks.com

http://www.allitebooks.org

descriptorForRequiredKeys(for:), 425, 427
detailCalloutAccessoryView property, 499
Dictionary object, init(grouping:by:) initializer,

134
didFinishGathering(notification:), 300
Dimension class, 91
disambiguation, 80
dismiss(animated:completion:) function, 293
dismissAudioRecordingController(), 400
dismissMediaPlayerController(), 403
displayedPropertyKeys property, 437
distribution certificate, creating, 28
distribution property, UIStackView, 256
do, try, catch statement, 149
document-based apps, 277-317

associating file types with an app, 281-287
creating new documents, 287-297
customizing your document browser,

315-317
loading existing documents, 312-315
saving documents, 297-312
supporting file browsing, 277-281

documentBrowser(_:didImportDocumen‐
tAt:toDestinationURL:), 298, 311

documentBrowser(_:didRequestDocument‐
CreationWithHandler:), 289, 291, 294, 297,
309

documentBrowser(_:failedToImportDocumen‐
tAt:), 298, 311

DocumentFinder class, creating, 299, 309
documentType key, 167
documentType property, 299
domain names using/not using ATS, 534
Double class, 91

extending to representing time durations,
94

double tapping, 525
doubleTap(), 524
downloadBtn, 329
downloadNow() custom method, 476
do{}catch{} block, 416
drag and drop, supporting in apps, 210-219
dragInteraction(_:item:willAnimateCancel‐

With:), 218
dragInteraction(_:itemsForBeginning:), 216
dragInteraction(_:previewForLifting:), 217
dragInteraction(_:session:willEndWith:), 218
dragInteraction(_:willAnimateLiftWith:ses‐

sion:), 217

draw(_:) function, 304, 314
drawRect(_:) method, 566
dropInteraction(_:canHandle:) function, 212
dropInteraction(_:item:willAnimateDrop‐

With:), 214
dropInteraction(_:performDrop:) function, 213
dropInteraction(_:previewForDropping:with‐

Default:), 213
dropInteraction(_:sessionDidUpdate:), 212
dropPoint variable, 211
durations of time, representing and converting

between, 94-96

E
element(matching predicate: NSPredicate) ->

XCUIElement, 519
email addresses, checking and adding for con‐

tacts, 420
emptyImageData computed property, 302
Encodable protocol, 131
encode(_:) function, 129
endAccessingResources function, 186
endBatch(withClientState:completionHan‐

dler:), 463
entities, 105

classes representing, 108
enumerateContacts(with:usingBlock:), 414-415
equality-checking functionality, building into

your types, 160-162
Equatable protocol, overriding for UIApplica‐

tionShortcutItem, 204
errors

handling in Swift, 148-149
in file transfers to/from Apple Watch, 343
moving documents to the cloud, 298
ReplayKit errors, 273

ETA (estimated time of arrival), providing for
transit transport type, 502-505

evaluateAccessControl(_:operation:localize‐
dReason:), 540

exceptions, 148
(see also errors)

execute(_:) method, 418, 423
ExportOptions.plist file, 32
ExtensionDelegate class, 327, 334, 340, 345, 353
extensions, 439-450

creating Safari Content Blockers, 439-444
for protocols, logic inheritance through,

143-146

614 | Index

maintaining your app's indexed content,
447-450

private functions and properties in, 124-127
setting constraints on, 136-138

extractImage(from:center:) function, 213-214

F
Fabric.io, 179
fade(items:alpha:) function, 216
Fahrenheit, Celsius, and Kelvin temperatures,

working with, 99
fallthrough syntax, 162
fastlane, 1

archiving apps with, 44-46
building apps with, 35-38
enabling Slack notifications in, 40-44
installing and setting up, 33-35
testing apps with, 38-40
uploading apps to iTunes Conect with,

46-48
fequency units, using and working with, 96
fetch(_:) function, 111
Fetchable protocol, defining, 139-141
fetchLastClientState(_:completionHandler:),

463
fetchLimit: Int property, 111
fetchRequest(), 111
FileManager, 322
files

associating file types with your app, 281-287
downloading onto Apple Watch, 320-325
supporting file browsing in your app,

277-281
transferring to and from Apple Watch,

342-347
fileUrl property, 305, 343
final keyword, 157, 160
finalResult: [ResultType]? property, 118
first property, 384
firstUnifiedContactMatch‐

ing(name:toFetch:output:) custom method,
424, 436

flyover mode, showing maps in, 506-507
fonts

adjusting labels while supporting dynamic
types, 226

scaling to support dynamic types, 219-223
for x in y where statement, 163
forContact initializer, 436

format initializer paramater (Predicate), 114
forNewContact initializer, 434
full-fledged apps (iMessage), 573
fully open-ended ranges, 123
fully open-starting range, 123
func encode(to encoder: Encoder) throws, 131,

133
function results, unused, warning about, 19

G
Generated Interface Assistant Editor (Xcode),

190
Geo JSON files, 502
GeoJsonLint, 504
getBytes:length: method, 153
getCurrentTimelineEntry(for:withHandler:),

393
getCurrentTimelineEntryForComplica‐

tion(_:withHandler:), 367, 371, 380
getNextRequestedUpdateDateWithHandler(_:),

365, 369, 372
getPlaceholderTemplateForComplica‐

tion(_:withHandler:), 362-363, 372
getPrivacyBehaviorForComplication(_:with‐

Handler:), 371
getSupportedTimeTravelDirectionsForCompli‐

cation(_:withHandler:), 365
getTimelineEndDateForComplication(_:with‐

Handler:), 365, 371
getTimelineEntries(for:after:limit:withHan‐

dler:), 392
getTimelineEntries(for:before:limit:withHan‐

dler:), 392
getTimelineEntriesForComplication(_:after‐

Date:limit:withHandler:), 365, 372
getTimelineEntriesForComplication(_:before‐

Date:limit:beforeDate:), 371
getTimelineEntriesForComplication(_:before‐

Date:limit:withHandler:), 365
getTimelineStartDateForComplication(_:with‐

Handler:), 365, 370
gigahertz, 97
Git

control of all aspects of command through
Source Control menu, 181

differences between GitHub and, 183
GitHub

connecting to with Xcode Server and
archiving apps, 7

Index | 615

www.allitebooks.com

http://www.allitebooks.org

creating repository for projects in Xcode,
179-181

integrating projects with Travis, 20-23
permission for Travis to access your reposi‐

tory, 24
site for installing Travis CI Client, 23
synchronizing code with GitHub inside

Xcode, 181-184
gradians, working with and converting, 93
gravity fields

adding radial gravity field to the UI,
549-554

creating linear gravity field with vector on
the UI, 554-557

for velocity field, 565
guard syntax, 149
gym action (fastlane)

calling with deliver action, 47
important parameters used with, 37
using with parameters to archive apps, 44

H
half-open starting range, 123
handle(for:) method, 74
handle(_:completion:), 88
handler argument, 370
Haptic engine, 206

categories of feedback, 207
Hashable object, 134
hidden property, 353, 515
Holiday object, 383, 385
hours, minutes, and seconds, working with, 94
HTTP connections, 535
HTTPS, 531-532, 534
hybridFlyover mode, 506

I
iCloud

document browsing and creation, 280
downloading files from and importing into

simulator Files app, 283
enabling capabilities in Xcode project, 298
enabling entitlements in Xcode projects, 311

iCloud Keychain, supporting password autofill
with, 531-534

identifier property, 415
identifiers array, 464
illegal characters, finding and removing from

contacts' names, 422

image: UIImage? property, 597
imageData property, 301
ImageDocument class, 300, 305
imageDocument property, 307
ImageDocument(fileUrl:) initializer, 307
ImageDocumentErrors, 301
ImageEditorView, 293, 302, 314
ImageEditorView(delegate:) initializer, 294
ImageEditorViewController, 289, 305
ImageEditorViewDelegate protocol, 291
imageSubtitle: String? property, 598
imageTitle: String? property, 598
imageView property, 215
ImageViewController, 200
iMessage, 573-607

apps, types of, 573
full-fledged applications

adding app extension to existing app,
586-587

building, 577-586
creating interactive conversations,

598-607
sticker packs

adding captions and titles, 595-598
adjusting sticker sizes, 576-577
setting up an application, 574-576
utilizing an expanded view, 588-594

iMessage App Store, 575
immutable and mutable Contact framework

classes, 407
impact feedback, 207
impactOccurred() function, 210
import mode, setting, 294
INCurrencyAmountResolutionResult, 82
indexed content, maintaining for your app,

447-450
Indexed object, 449
IndexRequestHandler, 448
indexSearchableItems(_:), 457
init(duration:curve:animations:) initializer, 233
init(from decoder: Decoder) throws function,

132-133
init(grouping:by:) initializer, 134
INPersonResolutionResult, 79
INPreferences class, 66, 68
INSendPaymentIntentResponseCode, 86, 88
instant messaging information for contacts, 411
Intents framework, 250

creating extension for Siri, 69

616 | Index

defining an intent handler, 71-78
handling an intent, 88-89
importing and defining extension for, 65
intents, classes representing, 66
reporting progress for resolving an intent,

86-88
resolving ambiguity in an intent, 78-85

IntentsRestrictedWhileLocked, 70
IntentsSupported, 70
interactive apps, running playgrounds as, 237
Interface Builder

creating constraints for views, 468
new features in

adding multiple buttons to navigation
bar, 189

designing interactive interface objects in
playgrounds, 191-193

linking separate storyboards together,
188

Tap Gesture Recognizer, 231
InterfaceController, 340, 353
invalidateAndCancel() method, 323
iOS

communicating interactively between
watchOS and, 347-357

noticing changes in pairing state between
Watch and iOS apps, 325-328

iOS Snapshot Test Case, 49
iosAppReplyLbl, 352
.ipa archives, creating, 27
is syntax, checking data type, 141
isAccelerometerRecordingAvailable(), 529
isCadenceAvailable(), 527
isDownloadFinished variable, 331-332
isKeyAvailable(_:), 417
isPaceAvailable(), 527
isPictureInPictureSupported(), 472
isReachable property, 353
isReachable variable, 331
isSupported() function, 325
iTunes Connect

fastlane logging into, 34
uploading apps to, using fastlane, 46-48

J
JSON

Geo JSON files, 502
JsonObject data type, extension with con‐

straints, 136

parsing from and to JSON with Swift,
129-130

parsing with Swift, handling corner cases,
130-134

JSONDecoder, decode(_:from:) function, 129
JSONEncoder, encode(_:) function, 129
JsonRepresentable protocol, 137
JSONSerialization, 333
JsonType, 137

K
kCFBundleIdentifierKey, 339
kCSSearchQueryString key, 453
Kelvin, Celsius, and Fahrenheit temperatures,

working with, 99
key paths, defining in Swift, 127-129
keyboard shortcuts, 218

associating with view controllers, 269-270
keychain items, binding to passcode and Touch

ID, 536-538
keychains

script creating keychain on Travis machine
for project, 31

script to delete, 32
kSecAttrAccessControl, 537
kSecAttrAccessibleWhenPasscodeSetThisDevi‐

ceOnly, 536
kSecUseAuthenticationContext, 540
kSecUseAuthenticationUI, 536
kSecUseAuthenticationUIAllow, 536
KVO (key-value observing)

defining KVO context for PiP player, 471
listening for KVO messages, 473

L
LAAccessControlOperation, 541
labels

adjusting while supporting dynamic types,
223-229

placing on UI and hooking up to code, 166
testing in the UI, 514

LAContext, 540
lanes (fastlane), 37
languages written right-to-left, supporting,

264-268
latitude and longitude, 482, 492, 506
LATouchIDAuthenticationMaximumAllowa‐

bleReuseDuration, 540
leading constraint, removing at build time, 246

Index | 617

www.allitebooks.com

http://www.allitebooks.org

length units, converting and working with,
91-93

LIKE syntax (predicates), 115
linear gravity field with vector, creating on the

UI, 554-557
linearGravityFieldWithVector(_:), 555
liters, deciliters, and pints, working with, 100
live views, attaching to playgrounds, 234-236
liveView property, 235, 238
load(fromContents:ofType:) function, 297,

300-301
loadObject(ofClass:completionHandler:), 215
loadView() function, 294, 308
location (see maps and location)
location(in:) function, 213, 216
locationManager(_:didFailWithError:), 493
locationManager(_:didUpdateLocations:), 493
logic, inheriting from a protocol, 143-146
long-pressing on UI elements, testing, 519-521
low power mode, handling and providing alter‐

natives, 474-476
lowPowerModeEnabled property, 475
LSApplicationQueriesSchemes, 538
LSHandlerRank key, 281
LSItemContentTypes key, 282

M
macOS, Xcode Bots runningn on, 1
magnetic field effect between UI components,

561-564
magneticField() method, 562
Main Thread Checker (Xcode), 177
makeAssetDownloadTask(asset:destinatio‐

nURL:options), 545
makeIterator(), 529
MAMP, 324, 546
MapKit framework, 477, 479, 490
maps and location, 477-507

clustering annotations to declutter the map,
483-490

customizing map view with system buttons,
477-480

customizing tint color of pins on the map,
496-499

displaying a specific location on the map,
490-493

displaying system annotations on map view,
480-483

displaying traffic, scale, and compass indica‐
tors on the map, 500

launching iOS Maps app in transit mode,
505

providing detailed pin information with
custom views, 499-500

providing ETA for transit transport type,
502-505

requesting user's location a single time, 493
requesting user's location in the back‐

ground, 494-496
showing maps in flyover mode, 506-507

mapType property, 477, 506
mapView outlet, 479, 481, 490
mapView(_:viewFor:), 480, 483
mapView(_:viewForAnnotation:), 499
matching(_ predicate: NSPredicate) -> XCUIE‐

lementQuery, 519
Measurement class, 91

converted(to:) function, 92
measurements and units, 91-101

representing and comparing temperature
units, 99

representing and converting between dura‐
tions of time, 94-96

using and working with frequency units, 96
using and working with power units, 98-99
working with and converting volume units,

100
working with and switching between angle

units, 93
megahertz, 97
Messages framework, 579-583

important classes in, 579
messaging applications, 573

(see also iMessage)
metadata property, 343
methods

ensuring execution of code blocks before
exiting methods, 151-152

specifying preconditions for, 149-151
UI, ensuring that they run on main thread,

177-179
MKAnnotation, 480, 484, 490
MKAnnotationView, 499
MKCompassButton, 477, 479
MKCoordinateRegion, 490, 492
MKCoordinateSpan, 490
MKDirectionsRequest, 502

618 | Index

MKLaunchOptionsDirectionsModeKey, 505
MKLaunchOptionsDirectionsModeTransit, 505
MKMapItem, 505
MKMapType, 477
MKMapView, 506
MKMapViewDefaultAnnotationViewReuseI‐

dentifier, 480
MKMapViewDelegate, 480, 482, 497
MKMarkerAnnotationView, 483-484
MKMarkerAnnotationView.self, 480
MKPinAnnotationView, 496
MKPlacemark, 505
MKUserTrackingButton, 477, 479
MobileCoreServices framework, 456
modal display of contact picker, 428
modular large complications, 362, 375, 381, 388
modular small complications, 362
MSMessagesAppPresentationStyle, 588
MSMessagesAppViewController, 579, 583

activeConversation property, 595
messages to load view controller based on

presentation styles, 592
MSMessageTemplateLayout, 596

useful properties, 597
MSSticker, 579
MSStickerBrowserViewController, 579-580,

582
MSStickerItem, 582
MSStickerView, 580
multimedia, 543-548

downloading and preparing remote media
for playback, 545-547

enabling spoken audio sessions, 547
reading text with default Siri Alex voice,

543-545
multitasking, 465-476

adding Picture in Picture playback function‐
ality, 468-474

handling low power mode and providing
alternatives, 474-476

supporting split views, 465-468
mutableCopy(), 418
mutedStandard, 477

N
names of contacts

formatting, 424
given and last names, fetching, 421
searching for, 414

navigation bar, adding multiple buttons to, 189
navigationItem property, 293
needsIndefiniteExecution: Bool property, 237
newFileUrl variable, 292
newFileUrl(completion:) function, 309
nextPause() method, 393
noise field

adding animated noise effects to the UI,
559-561

adding to velocity field, 570
noiseFieldWithSmoothness(_:animation‐

Speed:), 559
notes on contacts, 412, 421
notification feedback, 207
notificationOccurred() function, 209
notifications, users entering text in response to,

250-256
NSAllowsArbitraryLoads, 534
NSAppTransportSecurity, 534
NSAsynchronousFetchResult<NSNumber>,

118
NSAttributedString.DocumentType.rtf, 167
NSBundleResourceRequest, 184
NSExceptionDomains, 534
NSExtension key, 70
NSExtensionAttributes, 70
NSFetchRequest<T>, 111, 118
NSItemProvider, 215-216
NSLayoutAnchor, 248
NSLayoutXAxisAnchor, 248
NSLayoutYAxisAnchor, 248
NSLocationAlwaysUsageDescription, 495
NSLocationWhenInUseUsageDescription, 493
NSMetadataItemFSNameKey, 299
NSMetadataQuery, 297, 299
NSMetadataQueryDidFinishGathering, 300
NSMetadataQueryUbiquitousDocuments‐

Scope, 299
NSPredicate, 430, 518
NSProcessInfo, 475
NSProcessInfoPowerStateDidChangeNotifica‐

tion, 475
NSSiriUsageDescription key-value pair, 68
NSUserActivity, 453, 460
NSUserActivityDelegate, 460

O
Object Library, 551
onMainThread() custom function, 349

Index | 619

www.allitebooks.com

http://www.allitebooks.org

open(completionHandler:) function, 307
open(_:options:completionHandler:), 538
openMaps(with:launchOptions:), 505
OperationQueue().addOperation(_:), 415
operators

+ and -, using with Measurement instances,
92

+ and -, using with time durations, 94
+ operator, using with volume units, 100
== operator, defining to compare String?

and CFString, 300
== operator, using to compare strings, 115
> and <, using with frequency units, 97
> and <, using with power units, 98
ANY, ALL, NONE and IN, 116
using && operator to get first and last

names, 115
optimizing Swift code, 157-160
options dictionary, 167
OptionSet protocol, 154
outstandingUserInfoTransfers property, 340

P
pace, 527

querying pace infomation, 528
pan gesture recognizer, 551, 555, 561, 566,

570-571
panning(_:) method, 551, 555
panning, handling for radial gravity field, 554
partial contacts, 407
passcode, binding keychain items to, 536-538
password autofill, supporting with iCloud Key‐

chain, 531-534
paste(itemProviders:) function, 218
pasteConfiguration, 210
pattern matching dialog (Xcode 9), 171

options available in, 172
pattern matching in predicates, 115
Pausable protocol, 390
pedometer, 527

(see also CMPedometer classes)
peek and pop, animating details with, 195-202
PentagonView class, creating, 568, 570
people variable, 331
persistentContainer.viewContext: NSManage‐

dObjectContext property, 109
phoneNumbers property, 430
pickaContact() method, 429

Picture in Picture (PiP) playback functionality,
468-474

pictureInPicturePossible property, 469
pictureInPicturePossible(), 473
pinTintColor poperty, 496
pints, liters, and deciliters, working with, 100
PippableViewController, 471
play() method, 404, 470, 473
PlaygroundLiveViewable?, 235
playgroundLiveViewRepresentation property,

236
PlaygroundPage.current.finishExecution(), 237
PlaygroundPage.current.liveView property, 234
PlaygroundPage.current.needsIndefiniteExecu‐

tion, 237
playgrounds

attaching live views to, 234-236
designing interactive interface objects in,

191-193
running as interactive and continuous apps,

237
PlaygroundSupport framework, 234
PlaygroundSupport.PlaygroundLiveViewRe‐

presentation, 236
plist-serializable content, sending between iOS

and Watch apps, 329
plus10Minutes() method, 400
PNG files for stickers, 576
Podfile, editing, 51
position property, 558, 564
postal addreses, localized, getting for contacts,

427
postalAddresses property, 428
power units, working with and using, 98-99
powerModeChanged(_:), 476
PredefinedMessage, 350
Predicate class, 114

instantiating and creating search format,
114

predicate property, 114, 299
predicateForContactsMatchingName(_:), 414
predicateForEnablingContact property, 430
predicateForSelectionOfContact property, 431
predicateForSelectionOfProperty property, 432
predicates

defining for contacts search, 416
fetching contacts that match, 414
using to find UI elements, 518

predictedTouchesForTouch(_:), 261

620 | Index

present(_:animated:completion:) function, 298,
428

presentAudioRecorderController(withOutpu‐
tURL:preset:options:completion:), 400

presentAudioRecorderControllerWithOutpu‐
tURL(_:preset:options:completion:)
options parameter, dictionary keys, 400

presentMediaPlayerControllerWi‐
thURL(_:options:completion:), 403
options parameter, dictionary keys, 403

pressForDuration(_:), 519, 521
previewControllerDelegate property, 271
previewControllerDidFinish(_:) method, 272
previewingContext(_:commit:) function, 202
previewingContext(_:viewControllerForLoca‐

tion:), 196, 201
private and public access controls in Swift, rules

for, 125
private functions and properties, organizing

with extensions, 124-127
private key (for certificates), 28
production certificate, creating, 28
propertiesToFetch: [AnyObject]? property, 111
protocols

adding logic through, 143-146
building equality-checking functionality

into, 160
defining constraints on, 146-148
defining object requirements through,

138-141
using protocol extensions to conditionally

extend types, 155

R
radial gravity field, adding to the UI, 549-554
radialGravityFieldWithPosition(_:), 550
ranges, open collection ranges, 123-124
reachability flag, changes in, 331, 351
reachabilityStatusLbl, 329
reachable property, 325
readableContentGuide property, UIView, 260
ReadyToPlay status, 468
record() method, 401
recordAccelerometer(forDuration:), 529
recordMode property, 55, 59, 64
Refactor to Storyboard feature (IB), 188
reference views, 549, 570
region property, 553, 558, 560, 564

register(_:forAnnotationViewWithReuseIdenti‐
fier:), 480

registerForPreviewing(with:sourceView:), 196
regular expressions, using in Xcode 9 searches,

171-174
relationshipKeyPathsForPrefetching: [String]?

property, 111
removeItems(), 571
removeKeyCommand(_:) method, 269
ReplayKit, 270

errors, 273
repliesGroup, 352
replyHandler block, 363
requestAccess(for:completionHandler:), 407
requestAlwaysAuthorization(), 494
requestLocation() method, 493
requestPresentationStyle(_:) function, 588
requestReview() function, 206
requestSiriAuthorization(_:) method, 66, 68
resolveCurrencyAmount(for:with:), 81
resolveNote(for:with), 83
resolvePayee(for:with:) method, 79-80
resultCount property, 300
resultType: NSFetchRequestResultType prop‐

erty, 118
resume() method, 545
right-to-left languages, supporting, 264-268
routing coverage file, 503
RPPreviewViewController, 271
RPPreviewViewControllerDelegate protocol,

271
RPScreenRecorder.shared(), 272
Ruby environment for fastlane, 34

S
Safari Content Blocker, 439-444
Safari view controller, showing web content in,

258
Safari, creating shared links for, 444-447
SafariServices framework, 441
safariViewControllerDidFinish(_:) method, 259
satelliteFlyover mode, 506
save(to:for:) function, 297
save(to:for:completionHandler:), 305, 310
saveContext(), 110
scale indicators, displaying on the map, 500
scale property, 61
scaledFont(for:compatibleWith:) function, 222
scan action (fastlane), 38

Index | 621

www.allitebooks.com

http://www.allitebooks.org

important parameters for, 39
Scandinavian miles (smi), 91
schemes, designing your database scheme,

104-109
screen, recording, and sharing the video,

271-275
screens, split (see split views, supporting)
SDK for your project, 467
search

deleting your app's searchable content,
463-464

maintaining your app's indexed content,
447-450

making app content searchable, 455-460
making user activities searchable, 460-462
Spotlight search continuation, 451-455

searchableIndex(_:reindexAllSearchableItems‐
WithAcknowledgementHandler:), 449

searchableIndex(_:reindexSearchableItemsWi‐
thIdentifiers:acknowledgementHandler:),
449

searchScopes property, 299
SecAccessControlCreateFlags.touchIDAny, 536
SecAccessControlCreateFlags.touchIDCurrent‐

Set, 538
SecAccessControlCreateWithFlags function,

536, 540
SecItemAdd function, 537
SecItemCopyMatching function, 540
secondLine text, 379
Security framework, 531-541

authenticating users with Touch ID and
timeout, 539-541

binding keychain items to passcode and
Touch ID, 536-538

opening URLs safely, 538
protecting network connections with ATS,

534-536
supporting password autofill with iCloud

Keychain, 531-534
selectedMessage property, 599
selection feedback, 207
selectionChanged() function, 207
semanticContentAttribute property, 264
send() function, 338, 343
send(_:) function, 349, 353
sendBtn, 329, 338, 349
sendHello(), 352
sendHowAreYou(), 352

sendIHearYou(), 352
sendMessage(_:replyHandler:errorHandler:),

347, 350, 353
sendThankYou(), 352
Sequence protocol, 529
session(_:didFinishFileTransfer:error:), 343
session(_:didReceiveApplicationContext:), 328,

335
session(_:didReceiveFile:) method, 343, 345
session(_:didReceiveMessage:), 347, 350
session(_:didReceiveMessage:replyHandler:),

347
session(_:didReceiveUserInfo:), 338, 340
session.localDragSession, 213
sessionReachabilityDidChange(_:), 325-326
sessionWatchStateDidChange(_:), 325
setActive(_:with:), 548
setCategory(_:with:), 548
setLeftBarButton(_:animated:), 293
setNeedsDisplay() function, 303
setNotificationCategories(_:) function, 252
setRegion(_:animated:), 490
sets, creating your own set types, 154
SFSafariViewController, 258
SFSafariViewControllerDelegate protocol, 259
Shared Links extension, 444-447
SharedCode framework, 470, 552
shortcutItems property, 203
shortText, 379
Show Assistant Editor (Xcode), 190
ShowOnLockScreen, 371
showsCompass property, 478, 500
showsScale property, 500
showsTraffic property, 500
Siri Alex voice, reading out text with, 543-545
SiriKit, 65-89

defining an intent handler, 71-78
handling an intent, 88-89
reporting progress for resolving an intent,

86-88
resolving ambiguity in an intent, 78-85
setting up your project for Siri, 65-71

SKStoreReviewController, 205
Slack notifications, enabling in fastlane, 40-44
snapshot testing, 49-64

analyzing test case failures, 60-62
for table view cell snapshots, 62-64
recording snapshots, 54-58
setting up, 50-54

622 | Index

specifying tolerance, 58-60
split views, supporting, 465-468
spoken audio sessions, enabling, 547-548
Spotlight Index extension, 448-450
Spotlight search continuation within your app,

451-455
stacked views

creating, 239
customizing for different screen sizes,

241-245
manipulating programmatically, 256-258

start() function, 300
startAnimation() function, 231
startPictureInPicture(), 469
startRecordingWithMicrophoneEna‐

bled(_:handler:), 270
startUpdates(from:withHandler:), 528
staticTexts property, 514-515
status (text view), 460
status property, 322, 334, 344
statusLabel, 333
statusLbl, 329, 338, 401, 404
sticker packs, 573

adding captions and titles to stickers,
595-598

adjusting sticker sizes, 576-577
file types for stickers, 576
setting up a new application, 574-576
utilizing an expanded view, 588-594

stopPedometerUpdates(), 529
stopRecordingWithHandler(_:) method, 270
storyboards

linking separate storyboards together, 188
strength property, 553, 557, 558
stride(from:through:by:), 567
StrideThrough structure, 567
[String : AnyObject] type, 329-330, 343, 347
String and CFString, == operator for compar‐

ing, 300
string(from:) method, 428
string(from:style:) function, 424, 427
subcaption: String? property, 598
Swift and Cocoa Touch, new features, 121-167

adding logic through protocols, 143-146
building equality-checking functionality

into your types, 160-162
bundling and reading data in your apps,

164-167
checking for API availability, 152

conditionally extending a type, 155-157
creating new data types by combination,

141-143
creating your own set types, 154
defining constraints on protocols, 146-148
defining key paths in Swift, 127-129
defining object requirements through pro‐

tocols, 138-141
ensuring execution of code blocks before

exiting methods, 151-152
extending typed arrays, 121-123
handling errors in Swift, 148-149
looping through collections conditionally,

163
open collection ranges, 123-124
optimizing Swift code, 157-160
organizing private functions and properties

with extensions, 124-127
parsing from and to JSON with Swift,

129-130
parsing JSON with Swift, handling corner

cases, 130-134
partitioning arrays into segments, 134-136
setting constraints on extensions, 136-138
specifying preconditions for methods,

149-151
Swift classes, showing header view of, 190
swiping on UI elements, testing, 523-524
switch statement

default case, 124
grouping cases together, 162

T
table view cell snapshots, testing, 62-64
TableViewController, 199

registering for 3D Touch events, 200
Tap Gesture Recognizer, 231
tap() method, 521-522, 524
tapping UI elements, testing, 524
team identifier, 532
temperature units, representing and compar‐

ing, 99
templates (complication), 363, 372, 374

for small-modular complications, 366
test lane, 38

extending with parameters to scan action,
40

testExample() method, 513
testing

Index | 623

www.allitebooks.com

http://www.allitebooks.org

performing UI or unit tests with fastlane,
38-40

running tests automatically with Xcode
Bots, 12-16

running unit tests with Travis, 25-27
snapshot testing, 49-64

analyzing test case failures, 60-62
recording snapshots, 54-58
setting up, 50-54
specifying tolerance, 58-60
table view cell snapshots, 62-64

text fields
testing, 514
typing inside and testing, 521

text styles, title and body, 226
text-based view content, laying out, 260
textContentType property, 533
textField, 349, 460
textFields property, 522
textFieldShouldReturn(_:), 522
textView property, 544
throw syntax, 148
throws, functions marked with, 113
Timable object, 397
time (see dates and time)
time durations, representing and converting

between, 94-96
timelineEntryForData(_:), 372
timeout, setting for user authentication with

Touch ID, 539
Timer class, 95
toDestinationURL argument, 298, 311
tolerance property (snapshot view), 58
Touch ID, 531

binding keychain items to, 536-538
user authentication with, 539-541

touch rates, improving for smoother UI inter‐
actions, 261-264

touchesBegan(_:with:) function, 303
touchesEnded(_:with:) function, 304
touchesMoved(_:with:) function, 303
touchIDAuthenticationAllowableReuseDura‐

tion property, 540
touchPoints property, 303
traffic indicators, displaying on the map, 500
trailingCaption: String? property, 598
trailingSubcaption: String? property, 598
traitCollection property, 219

traitCollection.forceTouchCapability property,
195

transferFile(_:metadata:) method, 343
transferring property, 340
transferUserInfo(_:) method, 338
transit mode, launching iOS Maps app in, 505
Transit object, 502
transportation routing options, 502
transportType property, 502
Travis and fastlane, 2

archiving apps with fastlane, 44-46
building and archiving projects with Travis,

27-33
building apps with fastlane, 35-38
enabling Slack notifications in fastlane,

40-44
installing and setting up fastlane, 33-35
installing the Travis CLI, 23-25
integrating GitHub projects with Travis,

20-23
running unit tests with Travis, 25-27
testing apps with fastlane, 38-40
uploading apps to iTunes Connect with fas‐

tlane, 46-48
turbulence effects, creating, 557
turbulenceFieldWithSmoothness(_:animation‐

Speed:), 558
twoFingerTap(), 524
type(of:), 92-93
typealias, 137
typed arrays, extending, 121-123
typeText(_:), 521-522

U
UI Dynamics, 549-571

adding animated noise effects to the UI,
559-561

adding radial gravity field to the UI,
549-554

creating linear gravity field with vector on
the UI, 554-557

creating magnetic effect between UI compo‐
nents, 561-564

creating turbulence effects with animation,
557

designing a velocity field on the UI, 564-566
handling collisions between nonrectangular

views, 566-571

624 | Index

UI methods, ensuring that they run on main
thread, 177-179

UI testing, 509-525
automating UI test scripts, 512-514
finding UI components, 516-519
long-pressing on UI elements, 519-521
preparing your project for, 509-512
swiping on UI elements, 523
tapping UI elements, 524
testing text fields, buttons, and labels, 514
typing inside text fields, 521

UIAlertController, 293
UIApplicationShortcutItem, 202

type: String and localizedTitle: String prop‐
erties, 204

UIBarButtonItem, 189, 293, 315, 477, 479
UIBarButtonItem(customView:), 477
UIBezierPath, 566, 568
UIButton, 514
UICollectionViewController, 588
UICollisionBehavior, 553, 562, 564, 570-571
UIColor, 229
UIColor(named:) initializer, 229
UIColor(named:in:compatibleWith:), 230
UIContentSizeCategoryDidChange, 219, 227
UIDocument, 297, 300-301, 306
UIDocumentBrowserViewController, 277, 315
UIDocumentBrowserViewController(forOpe‐

ningFilesWithContentTypes:), 282
UIDocumentBrowserViewController.Import‐

Mode, 294
UIDocumentBrowserViewControllerDelegate

protocol, 279, 294
UIDragAnimating, 214, 217
UIDragInteraction, 210
UIDragInteractionDelegate protocol, 210, 216
UIDragItem, 216
UIDragSession, 216
UIDropInteraction, 210, 213
UIDropInteractionDelegate protocol, 210
UIDropProposal, 212
UIDropSession, 212-213
UIDynamicAnimator, 549, 552, 555, 558-559,

563, 566, 570-571
UIDynamicItemCollisionBoundsType, 566
UIEvent, 261
UIFieldBehavior, 550, 555, 558-559, 562, 564,

570-571
important properties, 553

UIFontMetrics, 226
UIFontMetrics(forTextStyle:) initializer, 226
UIFontMetrics.default.scaledFont(for:compati‐

bleWith:), 219, 222
UIFontTextStyle, 226
UIGraphicsBeginImageContextWithOp‐

tions(_:_:_:), 302
UIGraphicsGetCurrentContext(), 302
UIGraphicsImageRenderer, 596
UIImage, 302, 314
UIImage.self, 215
UIImagePNGRepresentation(), 302
UIImageView, 217
UIImpactFeedbackGenerator, 207, 209
UIImpactFeedbackStyle, 210
UIKeyCommand, 269
UIKit, 195-275, 470, 549

adjusting labels while supporting dynamic
types, 223-229

allowing users to enter text in response to
local and remote notifications, 250-256

animating details with Peek and Pop,
195-202

animating views, 230-234
arranging components horizontally or verti‐

cally, 239-240
asking users for App Store reviews in your

app, 205
associating keyboard shortcuts with view

controllers, 269-270
creating anchored constraints in code,

245-250
customizing stack views for different screen

sizes, 241-245
drag and drop support in your apps,

210-219
extracting named colors from asset catalogs,

229-230
improving touch rates for smoother UI

interactions, 261-264
laying out text-based content on views, 260
manipulating stacked views programmati‐

cally, 256-258
providing dynamic 3D Touch menus on

home screen, 202-205
providing vibrational feedback to users,

206-210
recording the screen and sharing the video,

270-275

Index | 625

www.allitebooks.com

http://www.allitebooks.org

running playgrounds as interactive and con‐
tinuous apps, 237

scaling fonts to support dynamic types,
219-223

showing web content in Safari view control‐
ler, 258

supporting right-to-left languages , 264-268
UILabel, 514
UINotificationFeedbackGenerator, 207
UINotificationFeedbackType, 209
UIPanGestureRecognizer, 554
UIPasteConfiguration, 210
UIPickerViewDataSource protocol, 208
UIPickerViewDelegate protocol, 208
UIRegion, 553, 558, 560, 564
UIRequiresFullScreen key, 467
UIScreen, 302
UISelectionFeedbackGenerator, 207
UISemanticContentAttribute, 264
UIStackView, 256
UISupportedInterfaceOrientations~ipad key,

467
UISupportsDocumentBrowser key, adding to

Info.plist file, 280
UITableViewController, 199
UITargetedDragPreview, 214, 217
UITextContentType, 533
UITextField, 514
UITextFieldDelegate, 460, 522
UIView, 217, 231, 290, 294, 467, 477, 499, 566

extending to make it pippable, 469
UIViewAnimationCurve, 233
UIViewController, 200, 290, 588
UIViewControllerPreviewingDelegate protocol,

196
UIViewPropertyAnimator, 230
UIViewPropertyAnimator. duration, 233
unified contacts, 414
unifiedContact(withIdentifier:keysToFetch:),

414-415, 418
unifiedContacts(matching:keysToFetch:), 414
Unit class, 91
UnitAngle, 93
UnitDuration, 92, 94
UnitFrequency, 97
UnitLength class, 91

meters and kilometers, 92
UnitMass class, 91
UnitPower, 99

units (see measurements and units)
UnitTemperature, 99
UnitVolume, 100
UNNotificationCategory, category properties,

252
UNUserNotificationCenterDelegate protocol,

251
updateApplicationContext(_:), 328
updateContact(_:), 418
updateSendButton() function, 330
updateUserActivityState(_:), 462
URLs, opening safely, 538
URLSession, 320
URLSession(_:downloadTask:didFinishDown‐

loadingToURL:), 322, 332
URLSessionConfiguration, 324, 545, 547
URLSessionDelegate protocol, 323
URLSessionDownloadDelegate protocol, 322,

332
URLSessionTaskDelegate, 546
user activities, making searchable, 460-462
userInfo property, 340, 453, 458
userInterfaceLayoutDirectionForSemanticCon‐

tentAttribute(_:), 264
username, 533
userNotificationCenter(_:didReceive:withCom‐

pletionHandler:), 255
UserNotifications framework, 250
userText property, 256
utilitarian large complications, 362
utilitarian small complications, 362

V
value property, 522
variables, changing names in current scope,

169-171
vectors

linear gravity field with, 555-557
velocity field with, 564

velocity field, designing on the UI, 564-566
velocityFieldWithVector(_:), 564
vibrational feedback to users, 206-210
video

Picture in Picture playback functionality,
468-474

playing local and remote video in Watch
app, 403-405

view controllers

626 | Index

animating details with Peek and Pop,
195-202

associating keyboard shortcuts with,
269-270

viewDidLoad() method, 247, 250
views

animating, 230-234
attaching live views to playgrounds, 234-236
laying out text-based content on, 260
nonrectangular, handling collisions

between, 566-571
stacked, 239

customizing for different screen sizes,
241-245

manipulating programmatically,
256-258

viewWillAppear(_:) function, 306
volume units, working with and converting,

100
VPlayerItem, 468

W
WatchConnectivity framework, 325, 327
WatchKit, 319
watchOS, 319

(see also Apple Watch)
watchReplyLbl, 349
watchStatusLbl, 349
watts, 99
WCSession, 325-326, 338, 343, 347
WCSession.default.transferUserInfo(_:), 339
WCSessionDelegate, 325, 328, 335, 338, 340,

343, 345
WCSessionFile, 343
WCSessionUserInfoTransfer, 340
web hook URLs (Slack), 42
where clause, specifying in for loop, 163
whole module optimization, 160
windows property, 517
wireless debugging on iOS devices, 174-177
WithDate protocol, 368
WKInterfaceController, 400, 403
Worldwide Developer Relations Certificate

Authority, 30
write(to:options:) function, 289

X
.xcdatamodel file, 105
Xcode

Accessibility inspector, 509
adding Core Data to projects, 103
Associated Domains, 532
automated recording system for UI testing,

512, 515
automatic codesigning setting creating cer‐

tificates and profiles, 28
importing Intents framework, 73
Include UI Tests option, enabling, 510
new features in Xcode 9, 169

adding multiple buttons to navigation
bar, 189

categorizing and downloading assets to
get smaller binaries, 184-187

changing variable names in current
scope, 169-171

creating GitHub repository for projects
in Xcode, 179-181

ensuring UI methods run on main
thread, 177-179

exporting device-specific binaries, 187
showing header view of Swift classes,

190
synchronizing code with GitHub inside

Xcode, 181-184
utilizing regular expressions in searches,

171-174
wirelessly debugging apps on iOS devi‐

ces, 174-177
plug-ins to view snapshot differences, 61
split views support, 465
3D Touch support, 198
UI testing, 49

Xcode Bots, 1
archiving apps with, 6-12
running tests automatically with, 12-16
using to analyze code, 17-20

Xcode Server
connecting local Xcode to, 3-5
connecting to, for app debugging, 16
setting up, 2

xcrun tool, 26
XCUIApplication, 514-515
XCUIElement, 514-516, 519

swipe methods, 523
tap methods, 524

XCUIElementQuery, 516, 518
XCUIElementTypeQueryProvider, 516
XCUIKeyboardKey.return, 522

Index | 627

www.allitebooks.com

http://www.allitebooks.org

XHandling protocol, 73
ambiguity APIs, 79

confirm(_:completion:) method, 86
handle(_:completion:) method, 88

628 | Index

About the Author
Vandad Nahavandipoor is currently an iOS developer for TV4 Play in Stockholm.
Previously he worked for Lloyds Banking Group in England to deliver their iOS apps
to millions of users in the UK. He has led an international team of more than 30 iOS
developers, and some of the projects he has overseen include the NatWest and RBS
iOS apps running on millions of iPhones and iPads in the UK. Vandad received his
BSc and MSc in Information Technology for E-Commerce from the University of
Sussex in England.

Vandad’s programming experience started when he first learned BASIC on his father’s
Commodore 64. He then took this experience and applied it on his uncle’s computer,
running BASIC on DOS. At this point, he found programming for personal comput‐
ers exciting indeed and moved on to learn Object Pascal. This allowed him to learn
Borland Delphi quite easily. He wrote a 400-page book on Borland Delphi and dedi‐
cated the book to Borland. From then, he picked up x86 Assembly programming and
wrote a hobby 32-bit operating system named Vandior. It wasn’t until late 2007 when
iOS programming became his main focus.

Colophon
The red-billed tropicbird (Phaethon aethereus) is also called the boatswain bird. Tro‐
picbirds look like terns but are not genetically related to them; in fact, tropicbirds
have no close living relative species, making them a bit of an evolutionary mystery.
The red-billed tropicbird was featured on the Bermudan $50 bill starting in 2009, but
it was subsequently replaced by the native white-tailed tropicbird, which has a higher
population in Bermuda.

Red-billed tropicbirds are large, with long tails, white bodies, and the eponymous red
bill that curves downward. With the tail feathers included, they are almost 40 inches
long; a wingspan of one meter balances out their bodies and makes them graceful fly‐
ers. They have black markings on their flight feathers and in their eyes. Male and
female birds look similar, but males can have longer tails. Red-billed tropicbirds’ feet
are located very far back on their bodies, so their movements on land are almost
comically awkward and occur mostly on their bellies. They are not nimble swimmers
either, but they move comfortably through the air over the ocean, where they hover
in hopes of catching flying fish. Flying fish appear to be a favorite prey, but tropic‐
birds will eat other fish and even cephalopods as well.

Red-billed tropicbirds live in places like the Galápagos islands, the Cape Verde
islands, the West Indies, and even the Persian Gulf. Despite their preference for
warm, tropical waters, a particular single red-billed tropicbird keeps returning to Seal
Island in coastal Maine every year. There is a large seabird population in that part of

www.allitebooks.com

http://www.allitebooks.org

the state, but this individual is the only one of his kind to be found that far north.
Some years ago, locals placed a wood decoy carving of a tropicbird out and the inex‐
plicable visitor tried to court and mate with it. The chance of seeing this bird has
meant good business for the boat charters that take birdwatchers out to see the puf‐
fins and black guillemots that otherwise dominate the local bird scene.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from the Riverside Natural History. The cover fonts are URW
Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font
is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	Audience
	Organization of This Book
	Conventions Used in This Book
	Additional Resources
	Using Code Examples
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	Chapter 1. Continuous Integration and Delivery
	1.1 Setting Up Xcode Server
	Problem
	Solution
	Discussion
	See Also

	1.2 Connecting Local Xcode to Xcode Server
	Problem
	Solution
	Discussion
	See Also

	1.3 Archiving Your Apps with Xcode Bots
	Problem
	Solution
	Discussion
	See Also

	1.4 Running Your Tests Automatically with Xcode Bots
	Problem
	Solution
	Discussion
	See Also

	1.5 Performing Analysis of Your Code Using Xcode Bots
	Problem
	Solution
	Discussion
	See Also

	1.6 Integrating GitHub Projects with Travis
	Problem
	Solution
	Discussion
	See Also

	1.7 Installing the Travis CLI
	Problem
	Solution
	Discussion
	See Also

	1.8 Running Your Unit Tests with Travis
	Problem
	Solution
	Discussion
	See Also

	1.9 Building and Archiving Your Project with Travis
	Problem
	Solution
	Discussion
	See Also

	1.10 Installing and Setting Up fastlane
	Problem
	Solution
	Discussion
	See Also

	1.11 Building Your Apps with fastlane
	Problem
	Solution
	Discussion
	See Also

	1.12 Testing Your Apps with fastlane
	Problem
	Solution
	Discussion
	See Also

	1.13 Enabling Slack Notifications in fastlane
	Problem
	Solution
	Discussion

	1.14 Archiving Your Apps with fastlane
	Problem
	Solution
	Discussion
	See Also

	1.15 Uploading Your Apps to iTunes Connect with fastlane
	Problem
	Solution
	Discussion
	See Also

	Chapter 2. Snapshot Testing
	2.1 Setting Up Snapshot Testing
	Problem
	Solution
	Discussion
	See Also

	2.2 Recording Snapshots
	Problem
	Solution
	Discussion
	See Also

	2.3 Specifying Tolerance in Snapshot Tests
	Problem
	Solution
	Discussion
	See Also

	2.4 Analyzing Snapshot Test Case Failures
	Problem
	Solution
	Discussion
	See Also

	2.5 Testing Table View Cell Snapshots
	Problem
	Solution
	Discussion
	See Also

	Chapter 3. SiriKit
	3.1 Setting Up Your Project for Siri
	Problem
	Solution
	Discussion

	3.2 Defining an Intent Handler
	Problem
	Solution
	Discussion
	See Also

	3.3 Resolving Ambiguity in an Intent
	Problem
	Solution
	Discussion
	See Also

	3.4 Reporting Progress for Resolving an Intent
	Problem
	Solution
	Discussion
	See Also

	3.5 Handling an Intent
	Problem
	Solution
	Discussion
	See Also

	Chapter 4. Measurements and Units
	4.1 Converting Between and Working with Length Units
	Problem
	Solution
	Discussion
	See Also

	4.2 Working with and Switching Between Angle Units
	Problem
	Solution
	Discussion
	See Also

	4.3 Representing and Converting Between Durations of Time
	Problem
	Solution
	Discussion
	See Also

	4.4 Using and Working with Frequency Units
	Problem
	Solution
	Discussion
	See Also

	4.5 Working with and Using Power Units
	Problem
	Solution
	Discussion
	See Also

	4.6 Representing and Comparing Temperature Units
	Problem
	Solution
	Discussion
	See Also

	4.7 Working with and Converting Volume Units
	Problem
	Solution
	Discussion
	See Also

	Chapter 5. Core Data
	5.1 Designing Your Database Scheme
	Problem
	Solution
	Discussion

	5.2 Writing Data to the Database
	Problem
	Solution
	Discussion
	See Also

	5.3 Reading Data from the Database
	Problem
	Solution
	Discussion
	See Also

	5.4 Searching for Data in the Database
	Problem
	Solution
	Discussion
	See Also

	5.5 Performing Background Tasks with Core Data
	Problem
	Solution
	Discussion
	See Also

	Chapter 6. Swift and Cocoa Touch
	6.1 Extending Typed Arrays
	Problem
	Solution
	Discussion

	6.2 Taking Advantage of Open Collection Ranges
	Problem
	Solution
	Discussion

	6.3 Organizing Private Functions and Properties with Extensions
	Problem
	Solution
	Discussion
	See Also

	6.4 Defining Key Paths in Swift
	Problem
	Solution
	Discussion
	See Also

	6.5 Parsing from and to JSON with Swift
	Problem
	Solution
	Discussion
	See Also

	6.6 Handling Corner Cases in JSON Parsing with Swift
	Problem
	Solution
	Discussion
	See Also

	6.7 Partitioning Arrays into Segments
	Problem
	Solution
	Discussion
	See Also

	6.8 Setting Constraints on Extensions
	Problem
	Solution
	Discussion
	See Also

	6.9 Defining Object Requirements Through Protocols
	Problem
	Solution
	Discussion
	See Also

	6.10 Creating New Data Types by Combination
	Problem
	Solution
	Discussion
	See Also

	6.11 Adding Logic Through Protocols
	Problem
	Solution
	Discussion
	See Also

	6.12 Defining Constraints on Protocols
	Problem
	Solution
	Discussion
	See Also

	6.13 Handling Errors in Swift
	Problem
	Solution
	Discussion
	See Also

	6.14 Specifying Preconditions for Methods
	Problem
	Solution
	Discussion

	6.15 Ensuring the Execution of Code Blocks Before Exiting Methods
	Problem
	Solution
	Discussion

	6.16 Checking for API Availability
	Problem
	Solution
	Discussion

	6.17 Creating Your Own Set Types
	Problem
	Solution
	Discussion
	See Also

	6.18 Conditionally Extending a Type
	Problem
	Solution
	Discussion
	See Also

	6.19 Optimizing Your Swift Code
	Problem
	Solution
	Discussion

	6.20 Building Equality Functionality into Your Own Types
	Problem
	Solution
	Discussion

	6.21 Grouping switch Statement Cases Together
	Problem
	Solution
	Discussion

	6.22 Looping Conditionally Through a Collection
	Problem
	Solution
	Discussion

	6.23 Bundling and Reading Data in Your Apps
	Problem
	Solution
	Discussion

	Chapter 7. Xcode 9 and Interface Builder
	7.1 Changing Variable Names in the Current Scope
	Problem
	Solution
	Discussion

	7.2 Utilizing Regular Expressions in Your Xcode Searches
	Problem
	Solution
	Discussion

	7.3 Debugging Apps on an iOS Device Wirelessly
	Problem
	Solution
	Discussion

	7.4 Making Sure UI Methods Run on the Main Thread
	Problem
	Solution
	Discussion

	7.5 Creating a GitHub Repository for Your Project in Xcode
	Problem
	Solution
	Discussion
	See Also

	7.6 Synchronizing Your Code with GitHub Inside Xcode
	Problem
	Solution
	Discussion
	See Also

	7.7 Categorizing and Downloading Assets to Get Smaller Binaries
	Problem
	Solution
	Discussion
	See Also

	7.8 Exporting Device-Specific Binaries
	Problem
	Solution
	Discussion
	See Also

	7.9 Linking Separate Storyboards Together
	Problem
	Solution
	Discussion

	7.10 Adding Multiple Buttons to the Navigation Bar
	Problem
	Solution
	Discussion

	7.11 Showing the Header View of Your Swift Classes
	Problem
	Solution
	Discussion

	7.12 Designing Interactive Interface Objects in Playgrounds
	Problem
	Solution
	Discussion
	See Also

	Chapter 8. The User Interface
	8.1 Animating Details with Peek and Pop
	Problem
	Solution
	Discussion
	See Also

	8.2 Providing Dynamic 3D Touch Menus on Home Screen
	Problem
	Solution
	Discussion
	See Also

	8.3 Asking Your Users for App Store Reviews in Your App
	Problem
	Solution
	Discussion

	8.4 Providing Vibrational Feedback to Users
	Problem
	Solution
	Discussion

	8.5 Supporting Drag and Drop in Your Apps
	Problem
	Solution
	Discussion

	8.6 Scaling Fonts in Order to Support Dynamic Types
	Problem
	Solution
	Discussion
	See Also

	8.7 Adjusting Labels While Supporting Dynamic Types
	Problem
	Solution
	Discussion
	See Also

	8.8 Extracting Named Colors from Asset Catalogs
	Problem
	Solution
	Discussion

	8.9 Animating Views
	Problem
	Solution
	Discussion

	8.10 Attaching Live Views to Playgrounds
	Problem
	Solution
	Discussion
	See Also

	8.11 Running Playgrounds as Interactive and Continuous Apps
	Problem
	Solution
	Discussion
	See Also

	8.12 Arranging Your Components Horizontally or Vertically
	Problem
	Solution
	Discussion
	See Also

	8.13 Customizing Stack Views for Different Screen Sizes
	Problem
	Solution
	Discussion
	See Also

	8.14 Creating Anchored Constraints in Code
	Problem
	Solution
	Discussion

	8.15 Allowing Users to Enter Text in Response to Local and Remote Notifications
	Problem
	Solution
	Discussion

	8.16 Dealing with Stacked Views in Code
	Problem
	Solution
	Discussion
	See Also

	8.17 Showing Web Content in Safari View Controller
	Problem
	Solution
	Discussion

	8.18 Laying Out Text-Based Content on Your Views
	Problem
	Solution
	Discussion

	8.19 Improving Touch Rates for Smoother UI Interactions
	Problem
	Solution
	Discussion

	8.20 Supporting Right-to-Left Languages
	Problem
	Solution
	Discussion

	8.21 Associating Keyboard Shortcuts with View Controllers
	Problem
	Solution
	Discussion

	8.22 Recording the Screen and Sharing the Video
	Problem
	Solution
	Discussion

	Chapter 9. Document-Based Apps
	9.1 Supporting File Browsing in Your App
	Problem
	Solution
	Discussion
	See Also

	9.2 Associating File Types with Your App
	Problem
	Solution
	Discussion
	See Also

	9.3 Creating New Documents
	Problem
	Solution
	Discussion
	See Also

	9.4 Saving Your Documents
	Problem
	Solution
	Discussion
	See Also

	9.5 Loading Existing Documents
	Problem
	Solution
	Discussion
	See Also

	9.6 Customizing Your Document Browser
	Problem
	Solution
	Discussion
	See Also

	Chapter 10. Apple Watch
	10.1 Downloading Files onto the Apple Watch
	Problem
	Solution
	Discussion

	10.2 Noticing Changes in Pairing State Between the iOS and Watch Apps
	Problem
	Solution
	Discussion

	10.3 Transferring Small Pieces of Data to and from the Watch
	Problem
	Solution
	Discussion
	See Also

	10.4 Transferring Dictionaries in Queues to and from the Watch
	Problem
	Solution
	Discussion
	See Also

	10.5 Transferring Files to and from the Watch
	Problem
	Solution
	Discussion
	See Also

	10.6 Communicating Interactively Between iOS and watchOS
	Problem
	Solution
	Discussion
	See Also

	10.7 Setting Up the Apple Watch for Custom Complications
	Problem
	Solution
	Discussion
	See Also

	10.8 Constructing Small Complications with Text and Images
	Problem
	Solution
	Discussion
	See Also

	10.9 Displaying Time Offsets in Complications
	Problem
	Solution
	Discussion

	10.10 Displaying Dates in Complications
	Problem
	Solution
	Discussion
	See Also

	10.11 Displaying Times in Complications
	Problem
	Solution
	Discussion
	See Also

	10.12 Displaying Time Intervals in Complications
	Problem
	Solution
	Discussion

	10.13 Recording Audio in Your Watch App
	Problem
	Solution
	Discussion

	10.14 Playing Local and Remote Audio and Video in Your Watch App
	Problem
	Solution
	Discussion

	Chapter 11. Contacts
	11.1 Creating Contacts
	Problem
	Solution
	Discussion

	11.2 Searching for Contacts
	Problem
	Solution
	Discussion
	See Also

	11.3 Updating Contacts
	Problem
	Solution
	Discussion
	See Also

	11.4 Deleting Contacts
	Problem
	Solution
	Discussion
	See Also

	11.5 Formatting Contact Data
	Problem
	Solution
	Discussion

	11.6 Picking Contacts with a Prebuilt System UI
	Problem
	Solution
	Discussion
	See Also

	11.7 Creating Contacts with a Prebuilt System UI
	Problem
	Solution
	Discussion
	See Also

	11.8 Displaying Contacts with a Prebuilt System UI
	Problem
	Solution
	Discussion
	See Also

	Chapter 12. Extensions
	12.1 Creating Safari Content Blockers
	Problem
	Solution
	Discussion
	See Also

	12.2 Creating Shared Links for Safari
	Problem
	Solution
	Discussion
	See Also

	12.3 Maintaining Your App’s Indexed Content
	Problem
	Solution
	Discussion

	Chapter 13. Web and Search
	13.1 Continuing a Spotlight Search Within Your App
	Problem
	Solution
	Discussion
	See Also

	13.2 Making Your App’s Content Searchable
	Problem
	Solution
	Discussion
	See Also

	13.3 Making User Activities Searchable
	Problem
	Solution
	Discussion
	See Also

	13.4 Deleting Your App’s Searchable Content
	Problem
	Solution
	Discussion
	See Also

	Chapter 14. Multitasking
	14.1 Supporting Split Views
	Problem
	Solution
	Discussion

	14.2 Adding Picture in Picture Playback Functionality
	Problem
	Solution
	Discussion

	14.3 Handling Low Power Mode and Providing Alternatives
	Problem
	Solution
	Discussion

	Chapter 15. Maps and Location
	15.1 Customizing the Map View with System Buttons
	Problem
	Solution
	Discussion

	15.2 Displaying System Annotations on the Map
	Problem
	Solution
	Discussion
	See Also

	15.3 Clustering Annotations for a Clutter-Free Map
	Problem
	Solution
	Discussion
	See Also

	15.4 Displaying a Specific Location on the Map
	Problem
	Solution
	Discussion
	See Also

	15.5 Requesting the User’s Location a Single Time
	Problem
	Solution
	Discussion
	See Also

	15.6 Requesting the User’s Location in the Background
	Problem
	Solution
	Discussion
	See Also

	15.7 Customizing the Tint Color of Pins on the Map
	Problem
	Solution
	Discussion
	See Also

	15.8 Providing Detailed Pin Information with Custom Views
	Problem
	Solution
	Discussion
	See Also

	15.9 Displaying Traffic, Scale, and Compass Indicators on the Map
	Problem
	Solution
	Discussion
	See Also

	15.10 Providing an ETA for Transit Transport Type
	Problem
	Solution
	Discussion
	See Also

	15.11 Launching the iOS Maps App in Transit Mode
	Problem
	Solution
	Discussion
	See Also

	15.12 Showing Maps in Flyover Mode
	Problem
	Solution
	Discussion

	Chapter 16. UI Testing
	16.1 Preparing Your Project for UI Testing
	Problem
	Solution
	Discussion

	16.2 Automating UI Test Scripts
	Problem
	Solution
	Discussion
	See Also

	16.3 Testing Text Fields, Buttons, and Labels
	Problem
	Solution
	Discussion
	See Also

	16.4 Finding UI Components
	Problem
	Solution
	Discussion
	See Also

	16.5 Long-Pressing on UI Elements
	Problem
	Solution
	Discussion
	See Also

	16.6 Typing Inside Text Fields
	Problem
	Solution
	Discussion

	16.7 Swiping on UI Elements
	Problem
	Solution
	Discussion

	16.8 Tapping UI Elements
	Problem
	Solution
	Discussion
	See Also

	Chapter 17. Core Motion
	17.1 Querying Pace and Cadence Information
	Problem
	Solution
	Discussion

	17.2 Recording and Reading Accelerometer Data
	Problem
	Solution
	Discussion

	Chapter 18. Security
	18.1 Supporting Password Autofill with iCloud Keychain
	Problem
	Solution
	Discussion
	See Also

	18.2 Protecting Your Network Connections with ATS
	Problem
	Solution
	Discussion

	18.3 Binding Keychain Items to Passcode and Touch ID
	Problem
	Solution
	Discussion
	See Also

	18.4 Opening URLs Safely
	Problem
	Solution
	Discussion

	18.5 Authenticating the User with Touch ID and Timeout
	Problem
	Solution
	Discussion
	See Also

	Chapter 19. Multimedia
	19.1 Reading Out Text with the Default Siri Alex Voice
	Problem
	Solution
	Discussion

	19.2 Downloading and Preparing Remote Media for Playback
	Problem
	Solution
	Discussion

	19.3 Enabling Spoken Audio Sessions
	Problem
	Solution
	Discussion

	Chapter 20. UI Dynamics
	20.1 Adding a Radial Gravity Field to Your UI
	Problem
	Solution
	Discussion

	20.2 Creating a Linear Gravity Field on Your UI
	Problem
	Solution
	Discussion

	20.3 Creating Turbulence Effects with Animations
	Problem
	Solution
	Discussion

	20.4 Adding Animated Noise Effects to Your UI
	Problem
	Solution
	Discussion

	20.5 Creating a Magnetic Effect Between UI Components
	Problem
	Solution
	Discussion

	20.6 Designing a Velocity Field on Your UI
	Problem
	Solution
	Discussion

	20.7 Handling Collisions Between Nonrectangular Views
	Problem
	Solution
	Discussion

	Chapter 21. iMessage Stickers and Apps
	21.1 Setting Up a Sticker Pack Application
	Problem
	Solution
	Discussion

	21.2 Adjusting Sticker Sizes
	Problem
	Solution
	Discussion
	See Also

	21.3 Building a Full-Fledged iMessage Application
	Problem
	Solution
	Discussion
	See Also

	21.4 Adding an iMessage App Extension to an Existing App
	Problem
	Solution
	Discussion
	See Also

	21.5 Utilizing an Expanded View in a Sticker Pack App
	Problem
	Solution
	Discussion
	See Also

	21.6 Appending Rich Information to Stickers
	Problem
	Solution
	Discussion
	See Also

	21.7 Creating Interactive Conversations with iMessage Apps
	Problem
	Solution
	Discussion

	Index
	About the Author

