10S Code
Testing

Test-Driven Development and
Behavior-Driven Development
with Swift

Abhishek Mishra

Apress’

ww.ebook3000.co

http://www.ebook3000.org

I0OS Code Testing

Abhishek Mishra

Apress®

i0S Code Testing: Test-Driven Development and Behavior-Driven Development with Swift

Abhishek Mishra
Milton Keynes, United Kingdom

ISBN-13 (pbk): 978-1-4842-2688-9 ISBN-13 (electronic): 978-1-4842-2689-6
DOI10.1007/978-1-4842-2689-6

Library of Congress Control Number: 2017945747
Copyright © 2017 by Abhishek Mishra

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the

date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Technical Reviewer: Chaim Krause
Coordinating Editor: Jessica Vakili
Copy Editor: Karen Jameson
Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit ww. springeronline.com. Apress Media, LLCis a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visithttp://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this
book is available to readers on GitHub via the book’s product page, located at
www.apress.com/978-1-4842-2688-9. For more detailed information, please visit
http://www.apress.com/source-code.

Printed on acid-free paper

vww.ebook3000.con)

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/978-1-4842-2688-9
http://www.apress.com/source-code/
http://www.ebook3000.org

To my wife Sonam, for her love and support through
all the years we've been together.

To my daughter Elana, for bringing joy and happiness into our lives.

Contents at a Glance

About the AUthor ... —————— XV
About the Technical ReVIEWErcvcsssessmsmsmsssmsassssssssnsssassssnsnnns xvii
Acknowledgmentsccccuuseemmmmsssssnmmssssssnnmsssssssnessssssnsesssssnsssssssnnnnes Xix
Chapter 1: Introduction to Test-Driven Developmentccuueee 1
Chapter 2: Writing Your First Set of Unit Tests with Xcode 13
Chapter 3: The MVVM Architectural Pattern.........cccccvvnsssnnnnnnnnnns 43
Chapter 4: Applying TDD to the Model.........c.occcnmmmssnmnnmnssssnnnsnssnns 61
Chapter 5: Applying TDD to View Controllersccuseerresssnnnnnnns 101
Chapter 6: Applying TDD to Collection View Controllers 161
Chapter 7: Testing URLSE@SSIONccurrmsssnmanssssssnnnsssssssansssssnsnnnnss 211
Chapter 8: Working with Legacy Code.........ccussuemrmmssssnnnssssssnnnnnns 257
Chapter 9: Continuous Integration...........ccuccmsssenmsssenmsssesssssansnsns 283
Chapter 10: Introduction to Behavior-Driven Development 317
Chapter 11: Installing QUICK.......cocccemrmmisnemnmmmsssessnssssssssssssssassnnns 329
Chapter 12: Applying TDD and BDD Techniquescccuussssennnnns 351
Chapter 13: Testing the User Interface........ccccccnnsemrnssnnnnssansnssnns 407
INdeX..eiiiriimmmimrns s ——————————— 433
v

vww.ebook3000.con)

http://www.ebook3000.org

Contents

About the AULNOKcoireeeiiirrenrir s e nnmnns Xv
Ahout the Technical REVIEWETceeeeerermmmmesssmsmnsssmmsnsssssssssssssssnnnnns Xvii

Acknowledgments.......cccuemnmmmsssnsnmmmsssssssmssssssssessssssssesssssssssssssnnnnes XiX

Chapter 1: Introduction to Test-Driven Developmentccuueee 1
What Is Test-Driven Development?cccvvvcrcrcnvsses s 1
TDD TErmMiNOIOQYcceeeerserresersessssersessssessssessessssessssssssssssessssssssssssssssssssens 2
SUDJECT UNAET TEST ...t ae e ae e sa e e e sae e naen 2
UNIETESE ... ———— 2
State Verification TeSt........c.cnnmin s ———— 3
INEraction TSt ... ——————— 3
NEQALIVE TEST....eeeeereeeererer et re s e ae e sae e re e s e s eae e sae e sae e naens 4
TESE SUIL ...t —————— 6
ASSEITIONScvrrcirr e ———————————— 7
Instantiating Classes for TEStING.......cccvcevererererererererreree s s rereres e seesesaesesaesesaens 9
Principles of Test-Driven Developmentccccvvvvrvrvnvnnensessensensennns 10
TESE FIrSt ... 10
Red — Green — REfACTOF ..o 10
Write the Minimum Amount of Code..........oeerererererererererereresesesesesesesesesesesesesesesenes 11
Remove DUPCALION..........ccccvererererer e sr e sr e sn e nnens 1
SUMMANY ..ottt snssn s e s sn s nssn e nn e sn e snesn e nnnsnnnan 11
0 11

vii

CONTENTS

Chapter 2: Writing Your First Set of Unit Tests with Xcode 13
Downloading and Installing Xcode...........cceeevrrrrersensensessessessessessesenns 14
Creating a New Project with Unit Test Supportcccvvrercrcrcncenene 15
Adding Support for Unit Tests to an Existing Project..........cccccoevvvrieriennne 16
A TOUr Of XCOUEccererrrririeiie e 18
The Project Navigatorccccevverrrernneresesenesseressessssessssesesessessssssssssssessssensssenaes 18
TeSt CaSe ClaSSES.....uuivurirrmscniirissisissss s 20
The TSt NAVIGALOXcccceveeerererererreres e ree s se s e res e sse e sae e sae e s e sas e sassesaessssensnseas 23
Viewing TESt REPOISccvveeererererereressersesessesesesessessesesassessesssessssesssssssssssensssesaes 25
Code COVErage REPOITSccvccveeereererererseressersesessessssessssessssessesesssssssessssesssssssssanns 25
Building the Cookie Factory Appcccceeeeeerressesssssessessessessessessessessesennes 26
Building the COoKie Class.........cccocererrierererrieseri et 28
Building the CookieController Classccocererrnencrernsenenessece s 32
Updating the View Controller CIasscouocirrrnenenesnneneneseseee e seesenns 39
Viewing Code Coverage Data............cccooceceeeerenencneneniencene e sesnsenens 40
1T 1110 41
Chapter 3: The MVVM Architectural Pattern..........ccccuscmrnsnnnsssannas 43
The MVC Architectural Patternc.ccoeervnennnennsesisssse s 43
The Model-ViewController Architectural Pattern.............cooeverererennnnnns 44
Model-ViewController Testability ISSUES.......ccccverrererrererrererersererseressersssessssessesessenes 45
The Model-View-ViewModel Architectural Pattern............ccocevereennne 46
Advantages of MVVM.........coocinece e s 47
ViewModel Instantiation ... 48
Isolated View CONTrolIer ... s 48
Table View CONtrollers ..o ssseessssssssesenes 49
Navigation Controller-Based APPScccccvecrienniennsennssnesisse s sessssesssssssenes 50
1T 1110 60
viii

vww.ebook3000.con)

http://www.ebook3000.org

CONTENTS

Chapter 4: Applying TDD to the Model...........cccerrrisnnnnrnsssannnnsssanns 61
Creating the Xcode Project..........cooeeeeerereeseesere e sns e 62
Building the Model Layer.........c.ccocvvrververnennennerses s e e sesssssennes 64
The ACCOUNTOWNET ClASS.....c.ccerreereerereerereresereesersesersesesessssessesesssssssessssessssesssssaes 64
Creating the First Name Validator Classcceeverrrererreressereereresereesesesesessssens 70
Creating the Last Name Validator Class...........cceerererrererserensereerersesersesesesessersssees 76
Creating the Email Address Validator Class..........cccceveererrererrereereresereesereressessesens 82
Integrating the Validator Classes into the AccountOwner Class............ 85
The TransSaction Class..........cccueererrnernnmiiesnsesesesse s ssssssnens 94
The BankAccount ClaSS.........c.coverererenerereesesesesesssse s sessesesenns 95
Testing Core Datacccccveeerveveninicnnse s se e sne s 98
11T 11] 11 P2 SRS 99
Chapter 5: Applying TDD to View Controllersccccurrnsssnnnssnsns 101
Application ArchiteClUre........ccceeeeeereee e 102
Creating the Xcode Project.........ccoceverererrrernssessee e sse e e sessessennns 103
Building the User Interface Layerccccvevvreersessessesssssessessessessennnns 104
Building the Login View Controller SCENE.........cccvveveevereererererereseressersssessssessesenaes 106
Building the Signup View Controller SCENEccoceeeveevererererereresseressereesessesenes 110
Creating a Segue Between the Login Scene and the Signup Scene 113
Building the Model Layer...........cccvcrrrrernensensersesses s ses e 115
The LOGINMOTEl ClaSS........ccceururmererererreeesesseesesessssesesesss e sessssssssesssssssssnns 115
The SignUPMOAE] ClaSScoceurueerererreererereese e se e 116
Building the ViewModel Layercccvvrvrrerrernensensessessessessessessessenens 118
The LoginVieWMOEl ClaSS........cccvuerereerererererersersssersesessesesesssessssessesessessssenasaens 118
View Model — View Controller Binding...........couvnmrmnnmnnnnnssnsnesssssesssssen: 123
The SignupVieWMOdel ClaSScccoevereererererierereressersesessesessessssessssessesessesessenassens 143

ix

CONTENTS

Connecting the View Controller to the View Modelcccvcerernenee. 147
Binding the Login View Controller Class to the View Modelcccocvverrvererenen. 147
Binding the Signup View Controller Class to the View Model.........ccccoeerrvererenen. 157
Transitioning from the Login View Controller to the Signup View Controller 160

SUMMANY ...t s nrenis 160

Chapter 6: Applying TDD to Collection View Controllers 161

Application ArchiteCtUre.........cccceeeeesereereesee e 162

Creating the Xcode Project..........cooernmnmncnnnnsnssse s 162

Adding Resources t0 the Project..........ccocvvvvervrrrsenvessessessessessessenenns 164

Building the User Interface Layercccceeeeeeersessessessessessessessessennens 165
Creating NEew ClaSSeS.......cccurrnnninirns s sssssss et s sessssssesessssssssesssenns 166
Building the Collection View Controller SCene.........c.ccccevnrverennnvescnesnsssesesennnnes 167
Adding a Section Header ACCESSOrY VIEWcccovuverererrnseseresessssesesessssesesesseenens 169
Building the Collection View Cell...........cccccvrriennnnnscsinns e sesesessess 172

Building the Model Layer...........cccoeereereerrrsessssesses e e e 177
The PROTO ClASS ... 178
THE City ClaSScoveerereerereneeseresesesesessesesesessssesssessssesessssssssssesssssssssssssssssssssssnsanns 180
THe AIDUM ClaSScceeerereeeeeeeee s 181

Building the ViewModel Layerccuvrverrerrerrersersersessessessessessessensens 182
The CollectionViewModel Class..........uevrmrrmnnssnsmmsssmsssssnssssss s 183
The CollectionViewCellViewModel Classc.coumrmnnnrrmnennnnnsssscssssenns 200
The CollectionViewSectionHeaderViewModel Class...........oucomrmenesisssnesescsssnssenns 202

Binding the View Layer to the View Model...........cooorvrercrcrcercerenene 203
Binding the Collection View Controller Class to the View Modelc.cccccurunn.e. 204
Binding the CollectionViewGCell Class to the View Model.........cccccerrrniercrerennnnes 207
Binding the CollectionViewSectionHeader Class to the View Model 208

1141] 4P S 209

vww.ebook3000.con)

http://www.ebook3000.org

CONTENTS

Chapter 7: Testing URLSeSSIONccuvrsssemnmmsssssnnsssssssnnsssssssnsnsssss 211
Strategies for Testing the Networking Layercccocvevereercersencnne 213
Preparing the PhotoBOOK Projectccocvverververvensensensenses e e 214
Remote Content Specification...........cccccerverienninnesnccnnsnesnesesenaens 216
Configuring Application Transport SECUritYccccvververrerierreriensaenne 216
Building the Networking Layerccccvvrverrenrensessessesssssessessessessesens 217
Creating the ServiceController Class..........oovvevrvererereerererererereressersesessssesseseraes 222
Creating the MOCKURLSESSION ClaSS........ccoerererererrereererseserseserseressessssersssesseseraes 224
Creating the MockURLSessionDataTask Classccceevererererererserensereesersenenas 226
Updating the Model Layercccceeererreressessessessesssssssssssssssssssssssnsnns 227
Updating the AIDUM ClaSS........ccevrerererererereneressersssessesessesessesssssssssessssessssessssssaes 228
Updating the PRoto Class.........ccovrerererererererereseressessssessesessesessesessessssessssessssenaes 239
Updating the View Model Layer..........cccooeeeeeeereeneeseeseesessee s sessessennens 249
Updates to the Collection View Model ... 249
Updates to the Collection View Cell View Model...........cccooverenerrcicnennccerererenenes 251
Updating the VIeW Layer.........ccvceverererernnee s ses s e e sesens 252
Updates to the Collection View Controllerccoceeeverereerererereressereesereeseraenenas 252
Updates to the Collection View Cell...........covevrvererererererere s s e reereveesesseenees 253
SUMMAIY ...t ae e n s e nn e 256
Chapter 8: Working with Legacy Code........cccussesmmssansssssnssssanssssns 257
Splitting @ Large Classcccccveenrerernsesssesessssessssesessssessesessessssesnes 257
Adding Functionality to an Existing Classcccccerererenereesensensnnnnnns 265
Encapsulate Using Classes and Methods ... 265
Rename and ReplaCe..........cccorureercreneecrireese e 270
DECOTALOIS ...t e e 271
Decoupling Classes Using Protocolsccccocvververrersensessensensessensenens 277

xi

CONTENTS

Using Dependency Injection to Create More Testable Code................. 279
SUMMAIY ...t sa e s p e e nn e enan 282
NOTES ..o nn s ne e nnn 282
Chapter 9: Continuous Integration...........ccccusseeernrsssnnnnnsssnssnenans 283
Installing MacOS SErVer.........ccvererrceerr e 284
Launching MAacOS SEIVETccvvuererrrereereressesesesessssesesessssesesesssssssssssssssssssessens 285
Setting Up Access for Team MemDErS..........ccovverererrnnnesenrsnsesesesese s sesesenns 289
Starting XCOA@ SEIVE ...t 290
Configuring XCOUE SEIVETcccoceereeieerrreresesesesseesese s e sese s sss s seessssssssssenes 293
XCOUE VEISIONcveeecerirecesise e e e sns e senssssnnns 294
Apple DEVElOPEr TEAMScccouverrerererereseseressssesesessssesesessssesesessssssssssssssssssssensanns 294
DevelopmeNnt DEVICEScccccrerrrerererrrsesesesssseseesesss e sesssseesesss e sesesssssssssessens 295
REPOSITOMIES.....cvceceereseere s e nn s 295
Creating a New Git Repository on Xcode SErverccovvrnvernnernsenesessesensenns 296
Configuring XCOUEccvverrerrerrererrer s 298
Adding Xcode Server Credentials to XCOUEccoervererrererrereererererseresserenserssseraens 298
Create a New Xcode Project and Host Its Repository on Xcode Server................ 301
Clone an Existing Local Repository to Xcode Servercoovvrrvrererererenersens 302
Clone a Git Repository from XCode SErVer.........ccovvrerererervererveressersssersesersenessenes 304
Cloning a Git Repository from GitHUDccoveerrvererere et 305
Creating and Integrating Botsccccccecevrvrsnricnnnc s 306
Create @ BOot.......ooeeererrrrnrrr e 306
Integrate @ Bot........coer e ——————— 315
1141] 4P S 316
Chapter 10: Introduction to Behavior-Driven Development 317
What Is Behavior Driven Development...........cccocrcrvrvrcercncenccncenens 317
The Difference between BDD and TDD.........cccccorrrerernncnerencnernecnens 318
Business Requirements and USEr SCENArI0S.........ccvceververerrererrereesereneseresseresserens 318
xii

vww.ebook3000.con)

http://www.ebook3000.org

CONTENTS

From User Scenarios t0 BDD TeStS ... 319
Anatomy of @ QUICK TSt CASEccoururererirrecrirrec e 321
Advantages and Disadvantages of BDDccoerricnnnicnenencscnnns 326
1111 P2 327
Chapter 11: Installing QUICKccuussesmsssesmsssnsssssnsssssanssssanssssnnssssns 329
Adding Quick to an Xcode Projectccoovereenvcrnnesesnnscsesesesenens 329
Adding Quick to an Xcode Project Using COC0aPOUS..........ccccrerererrereerersesererenens 329
Adding Quick to an Xcode Project Using Carthage.........ccecvvererverrrereenerenersenenens 335
Adding Quick to an Xcode Project Using Git SUDMOAUIESccevrereererererierenens 342
SUMMANY ...t sn s sn e n s sn e sn e n e nr e sn s nnnn s 349
Chapter 12: Applying TDD and BDD Techniquescccsusssanessnans 351
Reviewing the Business Requirements...........cccovnnenernesesssesesssnnens 351
High-Level Application Architecture..........ccocvevvrvrcrvrcncs s, 355
Creating the Xcode Project..........covvmmnnnnnnsnsessnsssssssssesesssenens 357
Adding Resources to the Project...........ccooeeeeeeeeecessssceeceeseeseeseenens 359
Building the User Interface Layer...........cocovvernseresnssesnsesessnsessesensens 360
Writing BDD Tests With QUICK...........ccoovvereemrieresine s sessens 368
Examining the BDD Test for Scenario NUMDEr 3ccccvevveverrererveresrereenereenenens 374
Examining the BDD Test for Scenario NUMDEr 4cccoevveververenveresrereesersenenes 375
Examining the BDD Test for Scenario NUMDEr 5cccveevevererenreressereesereesenens 376
Examining the BDD Test for Scenario NUMDEr 6ccceeeeveverererveresrereesersnnenens 377
Examining the BDD Test for Scenario NUMDEr 7ccccveeeveverrererveressereeseraenenens 377
Examining the BDD Test for Scenario NUMDEr 8ccccoeeveverererrerenrereesereenenens 378
Examining the BDD Test for Scenario NUMDEr 9cccccvevvevercerenveresrereeserennenens 379
Creating StUD ODJECLS......cvceverererrerre s rereres e s rse e sse e se e sesassesae e sae e saeenaes 380
Adding The Restaurant Data File to the Project..........ccccevvvvrvrvnvncnsensencencennnn, 382
Examining the Remaining Compilation EITors..........ccocevvererererverenseressereesessnsenas 383

xiii

CONTENTS

Building the Model Layer..........ccoevverrerrerrersensessesses s sesses e sessessessessens 384
Building the ViewModel Layerccceeeeeeersersessessessessessessessessesennens 387
The SearchVieWMOdel CIAssccocvererereresesesesesssmsesmsesesesesesesssesesssssesssssssssssenes 387
The RestaurantTableViewModel Class..........coceerererereseseseseseseseseseseseseseseseseseseseenes 393
The RestaurantTableViewCellViewModel CIasscoceerererereseseseseseseseseseseseseenes 395
View Controller to View Model Bindings.........cccvevvrvernrsessersessessennenns 400
RS U] 11] 4P 405
Chapter 13: Testing the User Interface........cccccemmnrssssssssnnnnnnnnnnns 407
Adding Support for Ul Testing to Your Project...........ccceevvervrverserserinnne 408
LT o (0] =] 408
EXiSting Projects.......cccevevevene st 410
UL TESE CIASSES ...cveueeererueerereesssseereseesessesasssesessssessssssesessssesasssnens 411
Creating New Test CIassSesS......cccuverrrererenienssensesenseseses s sessesessesnes 415
Changes to XCTest to Support Ul Testing.........cccccvvrrersercercercercensenenne 416
b (0 4 o0 o7 Lo 416
XCUIDBVICEveueruerernernsessesssessesese s e s s sss e sas e sss s snsssssssassssns s 418
XCUIEIement, XCUIEIeMENTARIDULEScoceveeeeeeeeeeeseeseseeseeeseeeseeeesenes 418
XCUIEIemMentARDULESccceverercreereres s 420
XCUIElementQuery and XCUIElementTypeQueryProviderc......... 421
ASSEITIONScovieiieri e s 424
UL RECOrdiNg.....ccceeeeeeerrerrsierir e ss s sn e e 426
Waiting Before ASSErting........cccvverververservensersessessessessessessessessessessessenns 426
Putting It All TOGEther ...t 427
SUMMAIY ... s ne s nnas 432
11 - 433
Xiv

vww.ebook3000.con)

http://www.ebook3000.org

About the Author

Abhishek Mishra has been active in the IT industry for over 19 years and has extensive
experience with a wide range of programming languages and platforms.

He is the author of iPhone and iPad App - 24 Hour Trainer, Swift iOS - 24 Hour
Trainer, and the technical reviewer of Professional iOS Programming.

He holds a Masters degree in Computer Science from the University of London and
currently provides consultancy services to Barclays Bank PLC in London as a Solutions
Architect.

His previous clients have included British Sky Broadcasting, Centrica, Expedia.,
Kantar Media, and Havas Media. He lives with his wife and daughter in London.

XV

About the Technical
Reviewer

Chaim Krause is first, and foremost, a #Geek. Other hashtags used to define him are

(in no particular order) #autodidact, #maker, #gamer, #raver, #teacher, #adhd, #edm,
#wargamer, #privacy, #liberty, #civilrights, #computers, #developer, #software, #dogs,
#cats, #opensource, #techicaleditor, #author, #polymath, #polyglot, #american, #unity3d,
#javascript, #smartwatch, #linux, #energydrinks, #midwesterner, #webmaster, #robots,
#sciencefiction, #sciencefact, #universityofchicago, #politicalscience, and #bipolar. He
can always be contacted at chaim@chaim.com and goes by the Nom de Net of Tinjaw.

xvii

vww.ebook3000.con)

chaim@chaim.com
http://www.ebook3000.org

Acknowledgments

This book would not have been possible without the support of the team at Apress
including Aaron Black and Jessica Vakili. I would also like to thank Chaim Krause for
taking the time to read the entire manuscript and his keen eye for detail. It has been my
privilege to work with you. Thank you.

Xix

CHAPTER 1

Introduction to Test-Driven
Development

Well over a billion apps have been developed for the iOS platform since its inception.
Most of the early apps were rather simple and often developed by a single developer.
Over the years, i0S apps have become increasingly complex pieces of software that
often involve large, distributed teams of developers working in Agile environments with
complex build and release pipelines.

Modern apps often perform several complex operations including (but not limited to)
presenting a complex user interface, multithreading, storing data in local databases,
interfacing with multiple sensors, media recording and playback, and consuming
RESTful web API’s.

With such a complex interplay between components of an app and several thousand
lines of source code spread across several hundred classes, how do we know for certain
that the code we have written does what we think it does? How do we know that our
code can handle edge scenarios? And finally, how do we know that we have built the
right software that meets business requirements? The answer to the first two questions
is addressed by the practice of unit testing, and Behavior-Driven Development (BDD)
addresses the answer to the question of building the right software in the first place. BDD
is covered in Chapter 10. In this chapter and the next one you will learn about unit testing,
and the related discipline of Test-Driven Development (TDD).

What Is Test-Driven Development?

Test Driven Development (TDD) has its roots in a programming paradigm called Extreme
Programming' (XP), created by Kent Beck in 1996. The use of the word “extreme” signifies
aradical departure from standard programming practices of that time.

TDD is designed to provide developers with a tangible way to prove that the code
they have written does what they think it does, and to provide some confidence that the
new code that has been written does not cause any potential side effects with existing
code.

© Abhishek Mishra 2017 1
A. Mishra, iOS Code Testing, DOI 10.1007/978-1-4842-2689-6_1

vww.ebook3000.con)

http://dx.doi.org/10.1007/978-1-4842-2689-6_10
http://www.ebook3000.org

CHAPTER 1 " INTRODUCTION TO TEST-DRIVEN DEVELOPMENT

Central to the TDD approach is the concept that a developer not only writes actual
code to carry out the app’s functionality but also tests code that ensures his application’s
code does what it is supposed to do. The test code is not shipped with the product.

While writing test code in addition to code that carries out the app’s intended
functionality is indeed extra work, it should be seen as an up-front investment toward
improving the quality of the product that ships to customers. A team that practices TDD
techniques will, over time, observe a reduction in the number of regression defects.

Note TDD is often used interchangeably with the term Unit Test; however, these two
terms are not the same thing. TDD is an approach to software development where the test
code is written first: in essence, the tests drive development.

A unit test is just a piece of test code viewed in isolation. A unit test is one of the by-
products of adopting a TDD approach.

However, the mere existence of one or more unit tests does not necessarily imply
that the developer followed a TDD approach. The unit tests could, for instance, have been
fitted retrospectively to existing code.

If you find working on large problems overwhelming, you may find TDD to be a
useful technique to break down a problem into smaller ones, use tests to solve the smaller
problems, and in the process end up solving the larger problem. You will soon realize that
large problems are not as overwhelming once you approach them with a TDD mindset.

TDD Terminology

This section examines some of the common terminology associated with Test-Driven
Development.

Subject under Test

This is usually a piece of code, or unit of functionality you wish to test. In most situations
the subject under test is usually a single method of a Swift class. However, you may
encounter scenarios where a small group of methods or classes are being tested together.
In such cases, the subject under test usually represents a complete functionality or user
journey. The subject under test is sometimes also known as the system under test.

Unit Test

This is the piece of code that tests the subject under test. A unit test is also known as a
“test case.” Unit tests work by calling the subject under test under controlled conditions,
and verifying some kind of expected behavior. It is common for an application to have
hundreds of unit tests with each test testing a very small piece of the functionality.
Individual unit tests are implemented as independent methods of a Swift class that
derives from an XCTestCase. This Swift class is also commonly referred to as a test class.

CHAPTER 1 © INTRODUCTION TO TEST-DRIVEN DEVELOPMENT

In most cases you will create one test class for each class you wish to test. The XCTestCase
class is part of the XCTest framework, and the framework must be imported with an import
statement. The following code listing contains a simple test class with one unit test:

import XCTest
@testable import LoginService

class LoginServiceTests: XCTestCase {
func testExample() {

// insert test code here.

Note The code that forms these unit tests is not part of the code base that will ship
to the clients. Unit tests are typically executed every time a developer attempts to create a
build, with the build being created only if all tests pass.

The method signature of a unit test is similar to that of a method that takes no
arguments and does not return a value. However, the name of a unit test method always
begins with the keyword “test” There are usually strict naming conventions followed for
unit test methods; these will be discussed in the next lesson.

State Verification Test

A state verification test is a type of unit test that calls methods on an object (subject under
test) and verifies the state of the object after calling the method. Such tests do not care
about implementation detail and will continue to pass even if the internal workings of
the methods being tested are changed in the future. State verification tests usually rely on
assertions to carry out the actual verification. Assertions are covered later in this lesson.

Interaction Test

An interaction test is a type of unit test that attempts to verify a specific sequence of
interactions between objects when a method is called. Such tests are also known as
behavior verification tests. Interaction tests do not necessarily have to involve multiple
objects. You could also use an interaction test to verify the sequence of calls to methods of
the same object.

In a complex object-oriented system, a single object may need to interact with several
other objects when a method is called. When it comes to interaction tests, the subject under

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 1 " INTRODUCTION TO TEST-DRIVEN DEVELOPMENT

test is still a single class, and not the entire group of classes. One typically instantiates the
subject under test and uses special mock or stub versions of all the other objects involved in
the scope of the interaction test. Mock and stub objects are covered later in this lesson.

Note Since interaction tests verify the behavior of a group of classes, they are inherently
more fragile than state verification tests. For instance, a change in the order in which
methods are called could easily break an interaction test. One way to make interaction tests
less brittle is by reducing the number of classes covered by the scope of the test.

Negative Test

A negative unit test is one that verifies something did not happen. This can be useful in
some cases. However, one must never solely rely on negative tests. This is because while
a negative test can verify that something did not happen, it is immune to any number of
things that did happen. The code base could change considerably without have a single
negative test fail. If all your unit tests were negative tests, then your tests collectively are
providing limited value.

Negative unit tests in Swift are almost always state verification tests. Although it is
possible to create negative unit tests that are interaction tests, the relevant setup required
is quite complicated and often outweighs the value of writing the negative test.

As an example of a negative unit test in action, consider the following Swift class that
could be used to represent a bank account:

enum AccountType {
case currentAccount
case savingsAccount

}

class BankAccount {

var accountName:String

var accountNumber:String

var accountType:AccountType

private var transactions:[Transaction]

init(accountName:String,
accountNumber:String,
accountType:AccountType) {

self.accountName = accountName
self.accountNumber = accountNumber
self.accountType = accountType
self.transactions = [Transaction]()

CHAPTER 1 © INTRODUCTION TO TEST-DRIVEN DEVELOPMENT

func addTransaction(_ transaction:Transaction) {
transactions.append(transaction)
}

func accountBalance() -> Float {
var balance:Float = 0
for transaction in self.transactions {
if transaction.isCredit {
balance = balance + transaction.amount
} else {
balance = balance + transaction.amount
}

}

return balance

Individual transactions within a BankAccount object are represented using
Transaction objects. The definition of a simple Transaction class is presented next:

class Transaction {

var description:String
var amount:Float
var isCredit:Bool

init(description:String,
amount:Float,
isCredit:Bool) {

self.description = description
self.amount = amount
self.isCredit = isCredit

With these two classes in mind, a negative unit test could be used to verify that a call
to the addTransaction() method of the BankAccount class does not change the account
name. This test could be written as follows:

func testAddTransaction_DoesNotChangeAccountName() {
let bankAccount = BankAccount(accountName: "John Smith",

accountNumber: "14918",
accountType: .savingsAccount)

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 1 " INTRODUCTION TO TEST-DRIVEN DEVELOPMENT

let transaction = Transaction(description: "Salary",
amount: 100.0,
isCredit: true)

bankAccount.addTransaction(transaction)

XCTAssertTrue(bankAccount.accountName.compare("John Smith") ==
.orderedSame,
"Call to addTransaction should have no effect on
account name.")

Assertions haven’t been covered yet, but they will be shortly. This test ensures that
the value of the accountName variable of the BankAccount instance does not change
when addTransaction is called.

Test Suite

A test suite is simply a collection of test case files. Test suites usually have their own group
in the Xcode project explorer and are included in a separate build target from the rest of
the application’s code (Figure 1-1).

ace » S LogiaService | W IPaone 7Pl Logiedervice | Dl LogSerics: Succesded | 02/10/30°0 o Y630 SN = |

® ¢ [Logingonscs | 1 LoginSenisaTeets | = LugnBanvosTosts st | ko Selsotion D e

k Mishra on 30/89/2816,
t ® 2018 ASM Technology Ltd. ALL rights reserved.

faport XCTest
s import LoginService .
i LeginBarvicaTusts rwit ©
LoginServiceTests: WoTestCase (e
fune TestMuRsorileCraaTerThanHUPDrd() { D0 e Hessires Thie

1ot nusberl = 971638

Lot nuaber? = 673656
MCTAssertTruelnuaberl > nusber, “nusberl should be greater tham nuabes2®)
¥

TestGnsatng Darast - unicoce rve-u [
Urwisergs Oatwon - maccs | v 1LFI B
et Uairy Spaces B8

s 2 -

Figure 1-1. Separate Folder Groups for Test Suites in Xcode

A single Xcode project can have multiple test suites, for example, one test suite may
contain unit tests, and another may contain interaction tests. In the next lesson, you will learn
to configure Xcode build schemes to include specific test suites as part of the build process.

Assertions

CHAPTER 1 © INTRODUCTION TO TEST-DRIVEN DEVELOPMENT

Assertions are the bread and butter of both state verification and interaction tests. An
assertion represents a failure of a unit test. Typically, your unit test will call a method on
an object, and this method may perform a number of activities such as returning a value,
changing some values in the object, or calling out to other methods.

If you know the expected result of the method you are calling, you can build a unit
test that calls the method with known inputs and expects a specific result. If the result
of calling the method does not match the expected value, the test will indicate failure by

firing an assertion.

The standard unit-testing framework that ships with Xcode is called XCTest and
contains several macros to help create assertions within a unit test. Table 1-1 lists some of

these macros.

Table 1-1. XCTest Assertion Macros

Macro

Description

XCTAssert(expression, message)

XCTAssertEqualObjects(expressionl,
expression2, message)

XCTAssertNotEqualObjects(expressi
onl, expression2, message)

XCTAssertEqual(expressionl,
expression2, message)

XCTAssertNotEqual(expressionl,
expression2, message)

XCTAssertNil (expression, message)

Generates a failure if the expression evaluates
to false. An optional string message may be
provided to indicate the reason for failure.

Generates a failure when expressionl is not
equal to expression 2, where both expression 1
and expression 2 are objects. Both objects
involved must implement Equatable. An
optional string message may be provided to
indicate the reason for failure.

Generates a failure when expressionl1 is equal
to expression 2, where both expression 1 and
expression 2 are objects. Both objects involved
must implement Equatable. An optional string
message may be provided to indicate the reason
for failure.

Generates a failure when expressionl is not
equal to expression 2. This test is for primitive
data types. An optional string message may be
provided to indicate the reason for failure.

Generates a failure when expressionl is equal to
expression 2. Both expressionl and expression 2
are primitive data types. An optional string
message may be provided to indicate the reason
for failure.

Generates a failure when the expression is not
nil. An optional string message may be provided
to indicate the reason for failure.

(continued)

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 1 " INTRODUCTION TO TEST-DRIVEN DEVELOPMENT

Table 1-1. (continued)

Macro Description
XCTAssertNotNil(expression, Generates a failure when the expression is nil.
message) An optional string message may be provided to

indicate the reason for failure.

XCTAssertTrue (expression, message) Generates a failure when the expression
evaluates to false. Identical to XCTAssert(),
provided to create more readable tests. An
optional string message may be provided to
indicate the reason for failure.

XCTAssertFalse (expression, message) Generates a failure when the expression
evaluates to true. An optional string message
may be provided to indicate the reason for
failure.

The following code snippet lists a unit test that will fail using the XCTAssertTrue
macro. Figure 1-2 is a snapshot of the Xcode test navigator showing a failed test.

func testNumberiIsGreaterThanNumber2() {
let number1i = 9218
let number2 = 673666
XCTAssertTrue(numberl > number2,
"number1l should be greater than number2")

& Mishra on 30/89/1018.
al6 ASM Technology Ltd. AlL righte reserved.

import XCTest
Btestanl

t e import LoginService

@11 class LoginServiceTests: XCTestCase {

o1 func testMunberllsGroaterThaniumbar2i) {
let rwsberl = 5218

lot PuTheTZ = &rbeE
- T ¥ETAssertTruelousberl » nusber?, “rusberl should be greater than nisbai2®]

Figure 1-2. Failed Unit Test

CHAPTER 1 © INTRODUCTION TO TEST-DRIVEN DEVELOPMENT

This test fails because the test expects numberl to be greater than number2. Fixing it
is a simple matter of editing the value of numberl to be greater than number2:

func testNumberiIsGreaterThanNumber2() {
let number1 = 921800
let number2 = 673666
XCTAssertTrue(numberl > number2,
"numberl should be greater than number2")

This particular test obviously does not have much utility; it does not call any
methods on other objects, or change the state of an object. It is only presented to serve as
an example of how assertions work.

Instantiating Classes for Testing

Instantiating classes in isolation can sometimes get very tricky. A class’s initializer may
require several parameters, each of which may be objects themselves. The problem is
compounded if one of the dependent classes you are instantiating requires access to a
system resource such as a network connection, file, or database.

To be able to write meaningful and succinct unit tests, you need to be able to
instantiate your subject under test without having to worry too much about building its
dependencies.

The most common solution to the problem of instantiating an object’s dependencies
is to create fake “stunt double” versions of the dependencies. For this approach
to work, these fake objects should look like the real object, and be much easier to
instantiate. These fake objects could, for instance, implement the same protocols as the
objects they are trying to emulate and perform harmless functionality within method
implementations.

Such objects could easily be used as dependencies for the class under test, and allow
you to create meaningful tests. Two types of fake objects are commonly found with unit
tests:

e Stub object. A stub object (also known as a stub), is a fake
object that can be used in place of a real dependency, is
significantly easier to instantiate, and provides harmless method
implementations of the object it is trying to emulate.

e Mock object. A mock object (also known as a mock), is similar to
a stub. However, the key difference is that a mock is used in a test
assertion, or asserted against.

For example, if you were writing a test that calls a method on object A and expects
a different method on object B to be called by object A, then object B is a mock object
because your test method expects a method to be called on object B. Any other objects
C, D, E that may have been instantiated to assist writing the test, but are not the target of
your test’s expectations will be called stubs.

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 1 " INTRODUCTION TO TEST-DRIVEN DEVELOPMENT

Principles of Test-Driven Development

In this section you will learn about some of the key principles of TDD. These principles
are applicable regardless of the programming language, target platform, or IDE choice.

Test First

For unit tests to truly drive development, they need to be written before the code that they
will test. In fact, one of the key principles of TDD is that the tests are written first, and the
developer then focuses on writing the minimum amount of code needed to make all tests
pass. When tests are written first, the resulting software tends to be more modularized
because developers are forced to think of the software in terms of small components that
are built independently and interact with each other.

The tests collectively define the acceptance criteria of the project. If you have a
comprehensive suite of tests, the code is considered ready as soon as all tests pass and no
further changes to the code base are required. In practice, a developer writes a single test,
and then runs it to check if it fails. The developer then proceeds to write the code to make
this one test pass. This is an iterative process, and over time a comprehensive set of tests
is created by the developer, which serves as both the acceptance criteria as well as living
documentation for the code base.

Once all tests pass, the feature in question is deemed to be complete. This process is
iterative, with each iteration creating new tests and code to make these tests pass.

It is not necessary for the same developer to write both the subject under test as
well as the unit tests. In fact, it is quite common for a senior developer to use unit tests
to specify the behavior of a class for a junior developer. Given these tests, the junior
developer can implement the class and knows his work is done when all the unit tests
pass.

Red - Green - Refactor

The test first principle requires you to write tests up front. If you were to follow this
principle and write a test for code that does not yet exist, chances are that the test will not
compile, or it will compile and it will fail.

This stage of development that involves creating a failing test that encapsulates the
expected outcome of the system under test is called the Red stage. The color red has to
do with the use of the red color by popular IDE’s like Xcode and Visual Studio to indicate
failed tests in a summary view.

No one likes a failing test. Once you have created a failing test, then the next step is
to fix the failing test by writing the minimum amount of code to make the test pass. This
second stage is called the Green stage. The color green has to do with its use by popular
IDE’s to indicate passing tests in a summary view.

Reaching the green stage may involve both creating new code as well as modifying
existing code. The coding effort focuses on making the bare minimum change to fix the
test. To put it another way, something that is “good enough” will be fine.

10

CHAPTER 1 © INTRODUCTION TO TEST-DRIVEN DEVELOPMENT

It is quite common to find that in order to fix one failing test, you need to create a
new class, or method, and begin a test first approach to this sub problem, thus creating a
series of failing tests. This is perfectly normal and will all be resolved once you have fixed
the innermost layer of tests.

After having successfully fixed a set of failing tests, you may look at the code you
have written and decide that it needs refactoring. The final stage of the red-green-refactor
approach is about optionally refactoring the code that was written in the second stage
while ensuring that you do not break any existing tests.

Write the Minimum Amount of Code

This practice requires that you do not write any code that is not needed. When you are
in the process of building a method to satisfy a failing test, it is tempting to add extra
parameters to the method, or create an additional method anticipating future needs.
This practice must be avoided, and you really must then always make sure you have tests
covering the momentarily superfluous functionality that you have built.

Remove Duplication

This is an activity that you will find yourself undertaking as part of a refactoring exercise.
The idea is to remove duplicate functionality from your classes. Always remember to have
a set of unit tests in place before you begin refactoring so that you can be sure that you are
not changing the behavior of the class.

Itis also common to apply this principle to the tests themselves. Over time as the
number of unit tests in your project increases, you will find yourself refactoring the tests
themselves, removing common functionality between tests into its own independent test.

Summary

In this chapter you have been introduced to the idea of Test-Driven Development, the
difference between TDD and Unit Tests, different types of unit tests, assertions, and
general principles of TDD. In the next chapter you will explore some of these topics in
more detail.

Note

1. Extreme Programming Explained, Kent Beck, 1999. Addison Wesley.
ISBN: 0201616416.

11

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 2

Writing Your First Set of Unit
Tests with Xcode

In this chapter you will download Xcode and learn to use it to create a simple app using
test-driven development techniques. The app you will build will use the Single View
Application template and allow the user to create different types of cookies by tapping
on buttons in the user interface. The app will present a running total of each type of
cookie created as well as the total number of cookies created. Figure 2-1 depicts the user
interface of the finished application.

Carrier = 282 PM o
Shortbread cookies: 3

Chocolate chip cookies: 1

Gingerbread cookies: 6

Total cookies: 10

Generate shortbread cookie
Generate chocolate chip cookie
Generale gingerbread cookie

Clear all cookies

Figure 2-1. The CookieFactory App in the iOS Simulator

© Abhishek Mishra 2017 13
A. Mishra, iOS Code Testing, DOI 10.1007/978-1-4842-2689-6_2

CHAPTER 2 " WRITING YOUR FIRST SET OF UNIT TESTS WITH XCODE

The aim of this chapter is to get you familiar with the process of creating unit tests,
running them, and viewing results. Therefore, the tests that you create in this chapter
will not be exhaustive, and some portions of code will be left untested at the end of
the chapter. Chapters 3, 4, and 5 of this book discuss specific topics such as the MVVM
application architecture, testing model objects, and testing view controllers.

The complete source code for the app can be downloaded anonymously from github
using the following URL:

https://github.com/asmtechnology/Lesson02.i0STesting.2017.Apress.git

If you are an experienced developer you may wish to skip reading the contents of this
chapter and examine the final project directly.

Downloading and Installing Xcode

If you have not done so already, use the Mac App Store to download and install the latest
version of Xcode for your Mac (see Figure 2-2).

Xcode

Figure 2-2. Xcode page in the Mac App Store Application

As of writing this chapter, Xcode 8 is the latest version of Mac OS X Sierra. The Xcode
app is over 10Gb in size and the download process can take anywhere from 15 - 45 minutes
depending on your Internet connection speed.

14

vww.ebook3000.con)

http://dx.doi.org/10.1007/978-1-4842-2689-6_3
http://dx.doi.org/10.1007/978-1-4842-2689-6_4
http://dx.doi.org/10.1007/978-1-4842-2689-6_5
https://github.com/asmtechnology/Lesson02.iOSTesting.2017.Apress.git
http://www.ebook3000.org

CHAPTER 2 © WRITING YOUR FIRST SET OF UNIT TESTS WITH XCODE

Creating a New Project with Unit Test Support

When creating new iOS application projects, you have the option to create projects with
builit-in support for unit testing. Start the process of creating a new Xcode project by
launching Xcode and selecting the File » New » Project menu item.

You will be asked to choose a template for your new project. Xcode 8 allows you to
build projects for the i0S, macOS, tvOS, and watchOS platforms and provides a selection
of templates for each platform (see Figure 2-3).

Choose a template for your new project:

:lchCS w05 mac0S Cross-platform

AppNcation

1# -

i) sco XD

Game Master-Detail Page-Based Tabbed
Application icati Applicati

oo
oo

Sticker Pack

Framework & Library

L &
NS Njp
=T
Cocoa Touch Cocoa Touch Metal Library
Framework Static Library

Cancel

Figure 2-3. iOS Project Template Dialog Box

Select a suitable iOS template and click on Next. In this section, I am going to use
the iOS Single View Application Template, which is one of the most commonly used iOS
application templates.

After selecting the project template, you will be presented with an options dialog
where you can select some options to customize certain aspects of the template (Figure 2-4).

15

CHAPTER 2 * WRITING YOUR FIRST SET OF UNIT TESTS WITH XCODE

Choose options for your new project:

Product Name: = CookieFactory

Team: None | <]
Organization Name: ASM Technology Ltd.
Organization ldentifier: com.asmtechnology
Bundle Identifier: com.asmtechnology.CockieFactory
Language: Swift | <]
Devices: iPhone | %]

Use Core Data
Include Unit Tests
InClU@e T Tests

Cancel Previous | Next |

Figure 2-4. Project Options Dialog Box

Some fields are mandatory, so the Next button will not be enabled until you fill them.
The projects in this book are built using Swift and will target iPhones. This is the default
setup for new iOS projects in Xcode.

In the “Choose options for your new project:” screen, ensure the Include Unit Tests
option is selected if you want to create a project that has support for unit testing. A related
option called Include UI Tests will add support for user interface testing.

Click the Next button and save the project in a suitable folder on your Mac'’s
hard disk. The project that you have created will have an additional build target setup
specifically for unit testing as well as a sample unit test file with boilerplate code.

After creating a new project Xcode by default, Xcode opens the project for you. Close
the Xcode project for now. The next section discusses the process involved in adding
support for unit testing to an existing project.

Adding Support for Unit Tests to an Existing Project

To add support for unit tests to an existing iOS application project, open the project in
Xcode and select the File » New » Target menu item. Select the iOS Unit Testing Bundle
option in the target template dialog box (Figure 2-5).

16

vww.ebook3000.con)

http://www.ebook3000.org

Choose a template for your new target:

CHAPTER 2 © WRITING YOUR FIRST SET OF UNIT TESTS WITH XCODE

watch0S tvOS macOS Cross-platform ®
Application Extension
Intents Ul Notification Natification Photo Editing
Extension Content Service Extension Extension
(77) O) oo 17
g N (u]u] H—
Shared Links Spotlight Index Sticker Pack Today Extension
Extension Extension Extension
Test
i0S Ul Testing i0S Unit Testing
Bundle Bundle
Application
1 S =
Cancel

Figure 2-5. Target Template Dialog Box

Share Extension

Next

After selecting the target template, you will be presented with an options dialog where

you can select some options to customize certain aspects of the template (see Figure 2-6).

Choose options for your new target:

Product Name:
Team:
Organization Name:

o Identifier:

SingleViewApplicaticnTests

None B
ASM Technology Ltd.

com. hnology

Bundle Identifier:
Language:
Project:

Target to be Tested:

Cancel

com.asmtechnology.SingleViewApplicationTests
Swift

& singleviewApplication

R ON O

#% SingleViewApplication

Previous

Figure 2-6. Target Options Dialog Box

17

CHAPTER 2 * WRITING YOUR FIRST SET OF UNIT TESTS WITH XCODE

In most cases you can simply accept the default values for the options and
click Finish. A special build target (called a test target) will be added to your project
preconfigured to support unit tests. In addition to the test target, a sample unit test file
with boilerplate code will be added to your project.

A Tour of Xcode

Before you can begin to write unit tests in Xcode, you need to become familiar with some
of the areas of the Xcode user interface that deal with unit tests. As you write more tests,
you are likely to use one or more sections of the user interface discussed here. To start
with, open the CookieFactory project in Xcode.

The Project Navigator

The project navigator is located on the left-hand side of the Xcode user interface
(see Figure 2-7). If the project navigator is not visible, use the View » Navigators » Show
Project Navigator menu item.

Main storyboard a
AppDeiegute. st =

Full Peth. [ADby! M3 ProjectsiARress!
TOG A BOT_Witn_Swifs)
Manuscrip From Author!
chO2(Chapter 02 codef

e M

soe » S Cookictory | Wl Phone 7 Pus Cocidefactory: Ready | Todey at 10:40 @ R0 0.0
B & 3 < B cooeroctory Cookicfactory | = AppDelegate.swift | No Selection O &
v B Cookislactory M T, Identity and Type
- MdeFuch 1 sgate. swift
CookieFactory b tory Mame ApoUologato.swift
ol a i F12/2816. H
1 Ltd. ALl rights reserved. Loeation Aelative ta Group ki
"

LanerSeraen. st
Info.piist

® [CockisFoctoryToats A ponder, UIApplicationDelegate { [
» B Products)) ConkisFacton
var window: UIWindow? AppDeiegate swift o

2 il ek £ On Demind Resewrce Togs
splicatien(application: LlAs -
nishLounchingwithdption: L Do0e
cation

¥

Figure 2-7. The Xcode Application with the Project Navigator Open

The project navigator lists the files that make up your project. The files in the
project navigator are organized hierarchically in a tree-like structure with the root node
representing the project itself. Beneath the project node sits a number of folders called
groups. Figure 2-8 shows the contents of the project navigator for the CookieFactory
project. You can see three folder groups in the project navigator:

e CookieFactory: This group contains the files that make up the
app that will ship to customers.

18

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 2 © WRITING YOUR FIRST SET OF UNIT TESTS WITH XCODE

e CookieFactoryTests: This group contains the files that contain the
test code, and any resources needed by the test code. The files in
this group are not included in the app that will ship to customers.

e Products: This group contains the final build products.

B2 Q A © 2 o B
V. ‘.u CookieFactory M
v CookieFactory
+ ViewController.swift
Main.storyboard
Assets.xcassets

LaunchScreen.storyboard

> » = > >

Info.plist

v CookieFactoryTests

>

s CookieFactoryTests.swift
Info.plist
v Products
;.:'._- CookieFactory.app

CookieFactoryTests.xctest

+ |® ®
Figure 2-8. The CookieFactory Project in the Project Navigator

Files can be moved around in the project navigator using drag-and-drop operations.
You my be tempted to think that the act of creating/moving a file under the test group
will automatically imply that the file will not be part of the product that is shipped to the
customer.

This is not the case; groups just serve as an aid to unclutter and organize a list of
files in the project. Whether or not the file will be included with the app that is shipped
to customers depends on the build target(s) that the file is included in. A new iOS project
with unit test support will have two build targets; a file can be a member of either, neither,
or both targets.

19

CHAPTER 2 " WRITING YOUR FIRST SET OF UNIT TESTS WITH XCODE

You can select a file in the project navigator and use the file inspector to view/change
the build targets to which the file belongs (see Figure 2-9). To show the file inspector, use
the View » Utilities » Show File Inspector menu item.

LI A, CockieFectory |) Phone T Pl Cookiafaciony | Bubd Cookiefaciony Succaeded | Toosy & 1738 @« L =l

(=] £+ [CovceRastory |) Cocklafactery | ¢ ViwControter.swht | Mo Seisction

Figure 2-9. Using the File Inspector to Set Up File Targets

Test Case Classes

Under the test folder group of the project navigator, you will create your unit test case
classes. A unit test case class is a Swift class that derives from XCTestCase and has a
number of methods. When you create a new project with support for unit testing, a
default test case class is created for you with boilerplate code (see Figure 2-10).

20

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 2 © WRITING YOUR FIRST SET OF UNIT TESTS WITH XCODE

t MCTest
ble rt CookinFactory

CookieFactoryTests: XOTestCase {

erenyTesta st -D
. — verride func setpl)
T woer.setual)

tearbowni] {

ne testPerfermancolzamplel) {

f.measure {

Figure 2-10. Default Test Case File and Target Membership

Test case classes contain test code, that is, code that will test your main application’s
code. Test case classes may contain five types of methods:

e Setup method: This method is called setUp() and is called
once before each test method is executed in the test class. It is
commonly used to put any common setup code used across
multiple unit tests.

e Teardown method: This method is called tearDown() and is
called after each test method is executed in the test class.

o Test methods: These methods encapsulate individual unit tests
and their names all begin with the word “test.”

e Performance testing methods: These methods encapsulate
individual performance tests and their names all begin with
“testPerformance.”

e Swift methods: A test case class, like any other Swift class, can
have its own methods. In a test case class, methods that do not
encapsulate unit tests are usually written to contain support logic
and will be called from a unit test.

Besides the default test case file that was created with the project, you can create
additional test case files using the File » New » File menu item and choosing the iOS
Unit Test Case File template (see Figure 2-11).

21

CHAPTER 2 " WRITING YOUR FIRST SET OF UNIT TESTS WITH XCODE

Choose a template for your new file:

B3 vowchos wos macos

Source
(7] @ = 3
Cocoa Touch Ul Test Case Unit Test Case Playground Swift File
Class Class Class
m h & Crr TN
Objective-C File Header File C File C++ File Metal File
User Interface
Storyboard View Empty Launch Screen
Cancel [(*Hext]

Figure 2-11. File Template Dialog Box

When a new test case file is created, Xcode provides a boilerplate setup and
teardown methods and a couple of empty unit test methods to help you get started.
Listing 2-1 lists a new unit test case class created by Xcode.

Listing 2-1. CookieFactoryTests.swift

import XCTest
class CookieFactoryTests: XCTestCase {

override func setUp() {
super.setUp()
// Put setup code here. This method is called before the invocation
of each test method in the class.

}

override func tearDown() {
// Put teardown code here. This method is called after the
invocation of each test method in the class.
super.tearDown()

}

func testExample() {
// This is an example of a functional test case.
// Use XCTAssert and related functions to verify your tests produce
the correct results.

22

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 2 © WRITING YOUR FIRST SET OF UNIT TESTS WITH XCODE

func testPerformanceExample() {
// This is an example of a performance test case.
self.measure {
// Put the code you want to measure the time of here.

The Test Navigator

The test navigator is an area of the Xcode user interface that displays a hierarchical view
of all the test case files in the test target and all the unit tests within these test case files
(see Figure 2-12).

¥ Abhishek Migh
B 1A ASM Tec

imgort NCTest
Brostable irport CockieFsctory

eloas CookieFactoryTeata: XCTestCase {

ne setlpl) {
()

p code here. This method is called before the inwocation of each test
method in the class.

Targer wenbasstia
5 Cootefacony
6 [CosebuetonTesm

¥

func testExamplol) { Fent Cettings
£ This wle of

Dir@o

Figure 2-12. Xcode Test Navigator

To show the test navigator, use the View » Navigators » Show Test Navigator menu
item. If you hover your mouse pointer over a unit test you will see a button appear toward
the right of the test name; clicking on that button will run the selected test (see Figure 2-13).

23

CHAPTER 2 " WRITING YOUR FIRST SET OF UNIT TESTS WITH XCODE

lrport CockieFactory

CoskioFactoryTasts: XCTestCaso {

Figure 2-13. Unit Tests within the Xcode Test Navigator

You will also see the same button appear when you hover your mouse pointer over
the name of a test case file and the test target. In the former situation, clicking on the
button will run all unit tests in the test case file sequentially, and in the latter situation, it
will run all unit tests in the target.

Another way to run all tests in the project is to use the Product » Test menu item.
Once you have run a test, the test navigator will display a green tick or red cross beside the
test name to indicate success or failure (see Figure 2-14).

sty) [Cootiefacion Vi -3 (b

spart NETest
table iepart Cook

CoskisFactoryTe

testThatAlmaysFails() {
Fadli)

Figure 2-14. Passed and Failed Unit Tests

Clicking on the name of the test in the test navigator will open up the code for the
test in the source editor. It is important to note that the test code is also code and must
be able to compile before the tests can be executed. If your project has compilation
errors in either the test code or the code being tested, you will need to fix these before
the tests can run.

24

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 2 © WRITING YOUR FIRST SET OF UNIT TESTS WITH XCODE

Viewing Test Reports

You can use the report navigator to access a report of all tests in the project (see Figure 2-15).
To show the report navigator use the View » Navigators » Show Report Navigator.

eve » \, CookisFacsory | (g iPhens 7 Pus Costimbactory | B Cockiebsciorny: Succeaded | Todsy #1401 O -
W Codiefactony - Test CochlsFaciory | 4T84 L -

* ConkimFatsonyTaets + CookiFscioryTemts

e

b [Pt N T——— o

Figure 2-15. Xcode Test Report Navigator

The report navigator can be used to access project logs and build reports as well as test
reports. Click on the latest test activity node in the list of reports to view the test report.

Code Coverage Reports

A code coverage report can be used to get a measure of the number of lines of source code
that are executed after a group of tests have run. Code coverage reports are not enabled
by default in Xcode 8. To enable code coverage reports, access the scheme settings dialog
box by using the Product » Scheme » Edit Scheme menu item (see Figure 2-16).

25

CHAPTER 2 * WRITING YOUR FIRST SET OF UNIT TESTS WITH XCODE

A CookieFactory) i} iPhone 7 Plus
») Bi.lild ’ Arguments Diagnostics
Run
rp Build Configuration Debug <]
‘ v F Test ode Coverage [Gather coverage data
Debug
e Debugger) Debug executable
-

» g Aoz

Debug Process As «

> p Archive

* || CookieFactoryTests None $ None t+

Duplicate Scheme Manage Schemes... Shared | Close |
Figure 2-16. Xcode Scheme Settings

Click on the Test action, enable the Gather Coverage Data option, and click on Close.
Code coverage reports can also be accessed via the report navigator. To generate code
coverage reports, Xcode will have to collect data as your tests are being executed. Each
subsequent run of your test code will update the coverage report although you may need
to run your tests a couple of times before initial coverage reports are available.

Building the Cookie Factory App

In the previous section you were introduced to the different aspects of the Xcode user
interface that pertain to unit testing. In this section you add features to the CookieFactory
project that you have created earlier. The user interface for the finished app has been
presented in Figure 2-1.

Each time the user taps on one of the buttons, a cookie of a specific type is created
and appropriate labels are updated on the user interface.

To get started, ensure the CookieFactory project is opened in Xcode and the
application’s main storyboard file is open for editing. Add four buttons and four labels
to the default scene of the application’s storyboard and position them to resemble
Figure 2-17.

26

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 2 © WRITING YOUR FIRST SET OF UNIT TESTS WITH XCODE

b, CotinPactary | [Pore 7 Fis Comiafaciony

B8R Q # € 0 [Costetscury

» [Ve Carmroitar Szane

¥ L e Combraier

Ster finserd Erury odat

K] View 35: IPhona 7 (€ K}

Busd Coskiabactony. Seccesded

Cockiafactory | [l Maiusterybeans | [l ein st s ase)

Shortbread cockies: 0
Chocolate chip cookies: 0
Gingerbread cookies: 0
Total cookies: 0

Gonerate gingerbread cookie

Tadr st 01 L e (=l =l="

] view Cerwater fenne | () View Certeates @) O ¢ =

0Os = =

-}
1~}
o insaered B
B

o e
B Uner Beson Bary

B8
a8

Prevkdon. Contast
en Liva Pontorred Daphsd Size

W o e o] o

Figure 2-17. View Controller Scene from the Main Storyboard File

Create outlets and actions in the ViewController.swift file and connect them to their

respective user interface elements as described in Table 2-1.

Table 2-1. View Controller Outlets and Actions

Name Type User Interface Element

@IBOutlet weak var IBOutlet Shortbread cookie label.
shortbreadCookies: UILabel!

@IBOutlet weak var IBOutlet Chocolate chip cookie label.
chocolateChipCookies: UILabel!

@IBOutlet weak var IBOutlet Gingerbread cookie label.
gingerbreadCookies: UILabel!

@IBOutlet weak var totalCookies: IBOutlet Total cookie label.

UILabel!

@IBAction func onGenerate IBAction Touch Up Inside event of the
ShortbreadCookies(_ sender: Any) Generate Shortbread Cookie button.
@IBAction func onGenerate IBAction Touch Up Inside event of the Generate
ChocolateChipCookies(_ sender: Any) Chocolate chip Cookie button.
@IBAction func onGenerate IBAction Touch Up Inside event of the Generate
GingerbreadCookies(_ sender: Any) Gingerbread Cookie button.
@IBAction func onClearAllCookies IBAction Touch Up Inside event of the Clear

(_ sender: Any)

All Cookies button.

27

CHAPTER 2 " WRITING YOUR FIRST SET OF UNIT TESTS WITH XCODE

The model layer for this project will contain a single class called Cookie, which will
have a member variable type that can be used to differentiate between different types of
cookies (see Figure 2-18). A dedicated controller class called CookieController will be
used to manage the creation and storage of cookies.

ViewController CookieContraller Cookie

cookiejar : CookieController - shorthreadCookies : [Cookie]? 1 n type : cookieType
e S |

gingerbreadCockies : [Cookie]?

chocolateChipCockies : [Cookie]?

viewDidLoad() init(y init(_ type:cookieType)
reset()
addShertbreadCookie()
addGingerbreadCookie()
addChocolateChipCookie()

Figure 2-18. Model Layer

In a more complex application, you may want to move the responsibility of creating
cookies out of the CookieController class and into its own factory class.

The view controller will make calls to relevant methods of CookieController class
and update the text in the labels.

Building the Cookie Class

Delete the CookieFactoryTests.swift file under the CookieFactoryTests group that was
created by Xcode when you created the project.

Create a new Unit Test Case file called CookieTests.swift under the
CookieFactoryTestsGroup, and ensure that the file is a member of the CookieFactory test
target (see Figure 2-19).

28

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 2 © WRITING YOUR FIRST SET OF UNIT TESTS WITH XCODE

ort NCTest
345 CookisTests: ¥CTestCase {

Frige fuse sRpl) ¢
~setUpl)

testExamplel) |
This

testPerformanceExamplel) {
11 measure {

H

Figure 2-19. The default CookieTests.Swift File

Replace the contents of the CookieTests.swift file with the code in Listing 2-2.

Listing 2-2. CookieTests.swift

import XCTest
class CookieTests: XCTestCase {

override func setUp() {
super.setUp()
}

override func tearDown() {
super.tearDown()
}

func testInit GingerbreadCookieType DoesNotReturnNil() {
let cookie = Cookie(.gingerbread)
XCTAssertNotNil(cookie)

}

func testInit ShortbreadCookieType DoesNotReturnNil() {
let cookie = Cookie(.shortbread)
XCTAssertNotNil(cookie)

29

CHAPTER 2 * WRITING YOUR FIRST SET OF UNIT TESTS WITH XCODE

func testInit_ChocolateChipCookieType DoesNotReturnNil() {
let cookie = Cookie(.chocolateChip)
XCTAssertNotNil(cookie)

}

func testInit GingerbreadCookieType SetsCookieTypeIvarCorrectly() {
let cookie = Cookie(.gingerbread)
XCTAssertEqual(cookie.type, .gingerbread)

}

func testInit_ShortbreadCookieType SetsCookieTypeIvarCorrectly() {
let cookie = Cookie(.shortbread)
XCTAssertEqual(cookie.type, .shortbread)

}

func testInit ChocolateChipCookieType SetsCookieTypeIvarCorrectly() {
let cookie = Cookie(.chocolateChip)
XCTAssertEqual(cookie.type, .chocolateChip)

You will receive several compiler errors at this point because the Cookie class does
not exist yet. Observe how the tests have defined the desired interface of the Cookie class.
In this particular case, the tests mandate the following:

e The Cookie class must have an initializer that accepts a type
identifier.

e The Cookie class must have an instance variable called type.

e The Type identifier can have one of three possible values:
.chocolateChip, .gingerbread, and .shortbread.

Create a new Swift class called Cookie under the CookieFactory group and update its
contents to match Listing 2-3.
Listing 2-3. Cookie.swift

import Foundation
enum cookieType {
case shortbread

case gingerbread
case chocolateChip

30

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 2 © WRITING YOUR FIRST SET OF UNIT TESTS WITH XCODE

class Cookie : NSObject {
var type:cookieType

init(_ type:cookieType) {
self.type = type
super.init()

Ensure that Cookie.swift is a member of both the main and test targets. This is
because you intend to use CookieClass.swift in both the app that you are building as well
as the unit tests (see Figure 2-20).

ort Foundatien

= cookinType { —
sse shortbresd -
sie gingareress —
s1e chocolateCnin —

& Cookie 1 N
typeice

{_ typezcookieType)
EOLT.TyDE = Type
er. init()

Figure 2-20. Inspecting the Target Membership of the Cookie.swift file

Save the file and use the Product » Test menu item to run all tests. You should see all
tests pass (see Figure 2-21).

31

CHAPTER 2 " WRITING YOUR FIRST SET OF UNIT TESTS WITH XCODE

2000090

o func testinit ¥ee_ SR
lez c

t.gingerores
KCTAS. Milleeskie)
o teatlnit_ShortbresdCookieType DossNotReturadil() {
C shorthresd)

let cookie = .
NETAsaertMatNil(coskin)

° " timit Chi ateChioCookieTyoe DosalotReturnNill) {
let eoekie = Coowiel.chocolatednia)
 METAsserthowilcoskie)
> func testinit_GingercresotookieType_SetsCookieTypelvarCorrectiyl) {
1ot toskis = Cooeiel.gingarbress)
1 ingerbread)
& teatlnit_ShortbreadCookieType_SetsCookieTypelvarCorrectlyl) {
b
“

Figure 2-21. Test Inspector Showing All Tests Passing

Building the CookieController Class

Create a new Unit Test Case file called CookieControllerTests.swift under the
CookieFactoryTests group, and ensure that the file is a member of the test target. Replace
the contents of the CookieControllerTests.swift file with the code in Listing 2-4.

Listing 2-4. CookieControllerTests.swift
import XCTest

class CookieControllerTests: XCTestCase {

override func setUp() {

super.setUp()
}
override func tearDown() {
super.tearDown()
}
}
32

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 2 © WRITING YOUR FIRST SET OF UNIT TESTS WITH XCODE

// MARK: Initializer tests
extension CookieControllerTests {

func testInit GingerbreadCookieArray IsNotNil() {
let cookielar = CookieController()
XCTAssertNotNil(cookieJar.gingerbreadCookies)

}

func testInit ShortbreadCookieArray IsNotNil() {
let cookielar = CookieController()
XCTAssertNotNil(cookieJar.shortbreadCookies)

}

func testInit ChocolateChipCookieArray IsNotNil() {
let cookielJar = CookieController()
XCTAssertNotNil(cookieJar.shortbreadCookies)

}

func testInit_GingerbreadCookieCount IsZero() {
let cookielar = CookieController()
XCTAssertEqual(cookieJar.gingerbreadCookies!.count, 0)

}

func testInit ShortbreadCookieCount IsZero() {
let cookielar = CookieController()
XCTAssertEqual(cookieJar.shortbreadCookies!.count, 0)

}

func testInit ChocolateChipCookieCount IsZero() {
let cookieJar = CookieController()
XCTAssertEqual(cookieJar.chocolateChipCookies!.count, 0)

}

// MARK: addGingerbreadCookie tests
extension CookieControllerTests {

func testAddGingerbreadCookie Increments NumberOfGingerbreadCookies ByOne() {
let cookielar = CookieController()

let numberOfCookies = cookieJar.gingerbreadCookies!.count
cookieJar.addGingerbreadCookie()

let expectedNumberOfCookies = numberOfCookies + 1

XCTAssertEqual(cookieJar.gingerbreadCookies!.count,
expectedNumberOfCookies)

33

CHAPTER 2 * WRITING YOUR FIRST SET OF UNIT TESTS WITH XCODE

func testAddGingerbreadCookie DoesNotIncrement NumberOfShortbreadCookies() {

}

let cookielar = CookieController()

let numberOfCookies = cookielar.shortbreadCookies!.count
cookieJar.addGingerbreadCookie()

XCTAssertEqual(cookieJar.shortbreadCookies!.count, numberOfCookies)

func testAddGingerbreadCookie DoesNotIncrement NumberOfChocolateChipCookies() {

}

let cookielar = CookieController()

let numberOfCookies = cookieJar.chocolateChipCookies!.count
cookieJar.addGingerbreadCookie()

XCTAssertEqual(cookieJar.chocolateChipCookies!.count, numberOfCookies)

// MARK: addShortbreadCookie tests
extension CookieControllerTests {

func testAddShortbreadCookie Increments NumberOfShortbreadCookies ByOne() {

}

let cookielar = CookieController()

let numberOfCookies = cookielar.shortbreadCookies!.count
cookieJar.addShortbreadCookie()

let expectedNumberOfCookies = numberOfCookies + 1
XCTAssertEqual(cookieJar.shortbreadCookies!.count, expectedNumberOfCookies)

func testAddShortbreadCookie DoesNotIncrement NumberOfGingerbreadCookies() {

}

let cookielar = CookieController()

let numberOfCookies = cookieJar.gingerbreadCookies!.count
cookieJar.addShortbreadCookie()

XCTAssertEqual(cookieJar.gingerbreadCookies!.count, numberOfCookies)

func testAddShortbreadCookie DoesNotIncrement NumberOfChocolateChipCookies() {

34

let cookielar = CookieController()

let numberOfCookies = cookieJar.chocolateChipCookies!.count
cookieJar.addShortbreadCookie()

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 2 © WRITING YOUR FIRST SET OF UNIT TESTS WITH XCODE

XCTAssertEqual(cookieJar.chocolateChipCookies!.count, numberOfCookies)

}

// MARK: addChocolateChipCookie tests
extension CookieControllerTests {

func testAddChocolateChipCookie Increments NumberOfChocolateChipCookies ByOne() {
let cookielar = CookieController()

let numberOfCookies = cookieJar.chocolateChipCookies!.count
cookieJar.addChocolateChipCookie()

let expectedNumberOfCookies = numberOfCookies + 1
XCTAssertEqual(cookieJar.chocolateChipCookies!.count, expectedNumberOfCookies)

}

func testAddChocolateChipCookie DoesNotIncrement NumberOfShortbreadCookies() {
let cookielar = CookieController()

let numberOfCookies = cookielar.shortbreadCookies!.count
cookieJar.addChocolateChipCookie()

XCTAssertEqual(cookieJar.shortbreadCookies!.count, numberOfCookies)

}

func testAddChocolateChipCookie DoesNotIncrement NumberOfGingerbreadCookies() {
let cookielar = CookieController()

let numberOfCookies = cookielar.gingerbreadCookies!.count
cookieJar.addChocolateChipCookie()

XCTAssertEqual (cookieJar.gingerbreadCookies!.count, numberOfCookies)

}

// MARK: Reset tests
extension CookieControllerTests {

func testReset GingerbreadCookieArray WithZeroElements RemainsEmpty() {
let cookielar = CookieController()
cookielar.reset()
XCTAssertEqual(cookieJar.gingerbreadCookies!.count, 0)

35

CHAPTER 2 * WRITING YOUR FIRST SET OF UNIT TESTS WITH XCODE

func testReset ShortbreadCookieArray WithZeroElements RemainsEmpty() {
let cookielar = CookieController()
cookielar.reset()
XCTAssertEqual(cookieJar.shortbreadCookies!.count, 0)

}

func testReset ChocolateChipCookieArray WithZeroElements RemainsEmpty() {
let cookielar = CookieController()
cookielar.reset()
XCTAssertEqual(cookieJar.chocolateChipCookies!.count, 0)

}

func testReset GingerbreadCookieArray WithElements BecomesEmpty() {
let cookielar = CookieController()

cookieJar.addGingerbreadCookie()
cookielar.reset()

XCTAssertEqual(cookieJar.gingerbreadCookies!.count, 0)

}

func testReset ShortbreadCookieArray WithElements BecomesEmpty() {
let cookielar = CookieController()

cookieJar.addShortbreadCookie()
cookielar.reset()

XCTAssertEqual(cookieJar.shortbreadCookies!.count, 0)

}

func testReset ChocolateChipCookieArray WithElements BecomesEmpty() {
let cookielar = CookieController()

cookieJar.addChocolateChipCookie()
cookielar.reset()

XCTAssertEqual(cookieJar.chocolateChipCookies!.count, 0)

You will receive several compiler errors at this point because the CookieController

class does not exist yet. These tests define the following desired characteristics for the
CookieController class:

36

e The CookieController class must have an initializer that does not
accept any parameters.

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 2 © WRITING YOUR FIRST SET OF UNIT TESTS WITH XCODE

e The CookieController class must have three arrays, one for each
type of cookie.

e The CookieController class must have a method called
addGingerbreadCookie(), which when called will add one
gingerbread cookie to the relevant array.

e The CookieController class must have a method called
addShortbreadCookie(), which when called will add one
shortbread cookie to the relevant array.

e The CookieController class must have a method called
addChocolateChipCookie(), which when called will add one
chocolate chip cookie to the relevant array.

e The CookieController class must have a method called reset(),
which when called will clear all the arrays.

I have used class extensions to group tests for each method. The only advantage
this provides is readability; feel free to move all the tests from extensions to the main
class if you prefer. You may also have noticed that I have used long descriptive names for
test methods. You should try to create descriptive names that describe the name of the
method being tested, the initial conditions, and expected output.

Create a new Swift class called CookieController under the CookieFactory group and
update its contents to match Listing 2-5.

Listing 2-5. CookieController.swift

import Foundation
class CookieController : NSObject {

var shortbreadCookies:[Cookie]?
var gingerbreadCookies:[Cookie]?
var chocolateChipCookies:[Cookie]?

override init() {
self.shortbreadCookies = [Cookie]()
self.gingerbreadCookies = [Cookie]()
self.chocolateChipCookies = [Cookie]()
super.init()

func reset() {
self.shortbreadCookies?.removeAll()
self.gingerbreadCookies?.removeAll()
self.chocolateChipCookies?.removeAll()

37

CHAPTER 2 " WRITING YOUR FIRST SET OF UNIT TESTS WITH XCODE

func addShortbreadCookie() -> Void {
let cookie = Cookie(.shortbread)
shortbreadCookies?.append(cookie)

}

func addGingerbreadCookie() -> Void {
let cookie = Cookie(.gingerbread)
gingerbreadCookies?.append(cookie)

func addChocolateChipCookie() -> Void {
let cookie = Cookie(.chocolateChip)
chocolateChipCookies?.append(cookie)

Save the file and use the Product » Test menu item to run all tests. You should see all
tests pass (see Figure 2-22).

ace b A, Coskinfuctory | B Prare 7 Pun Contiefactory | Buld Coskisfectony: Suocesded | Todey st %507 > <0003

H € o [Cosuelacasry | [Cokiefactarylents | » CosueContratertestsvwtt | (] teattease | y why

AsComerollerTesty: XCTestCase {

potue() {
]

te fumz tearCosn() {
rDownd §

nitializer tests_

€

& func testinit_GingarbresdCookisArray_Iskothilt) ¢
let :wm-:n - ()

NotHil (ceakiodar Les)

&:WDGI{!{GWHI@QG DEEDEEREERap §
9009020009200 90900000009

L uﬂ[n! ShortbressCookicArray nmmm L
ook -

=2

o CrocolatechipCook iearray Tenotnil() {
1
#1
® fun leltln)l 61 wrbumﬁo mt_IsZerol) {
1s £1)
TETAs et tounl (eontiage ; L]
»
o func_testinit snnnnmacwuec tigzaral) ¢
lat cookis
CTaatertigusllesentedar. 1.count Al
¥
L unc testInit_ChocolateChipCook leCount_TsZerol} {
let & rollert)

Figure 2-22. Test Inspector Showing All Tests Passing

38

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 2 © WRITING YOUR FIRST SET OF UNIT TESTS WITH XCODE

Updating the View Controller Class

You have now built both the Cookie and the CookieFactory classes using test-driven
development techniques. It is now time to integrate the CookieFactory class into the
view controller.

While you can use test-driven techniques to perform the integration, to keep things
simple in this lesson, I have opted to not use TDD techniques on the view controller class.
Applying TDD techniques to view controllers is described at length in Chapter 5.

Update the contents of the ViewController.swift file to match Listing 2-6.

Listing 2-6. ViewController.swift

import UIKit
class ViewController: UIViewController {
var cookiejar:CookieController?

@IBOutlet weak var totalCookies: UILabel!
@IBOutlet weak var gingerbreadCookies: UILabel!
@IBOutlet weak var shortbreadCookies: UILabel!
@IBOutlet weak var chocolateChipCookies: UILabel!

override func viewDidLoad() {
super.viewDidLoad()
cookiejar = CookieController()
refreshUI()

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
}

@IBAction func onGenerateGingerbreadCookies(_ sender: Any) {
cookiejar?.addGingerbreadCookie()
refreshUI()

}

@IBAction func onGenerateChocolateChipCookies(_ sender: Any) {
cookiejar?.addChocolateChipCookie()
refreshUI()

}

@IBAction func onGenerateShortbreadCookies(sender: Any) {
cookiejar?.addShortbreadCookie()
refreshUI()

39

http://dx.doi.org/10.1007/978-1-4842-2689-6_5

CHAPTER 2 * WRITING YOUR FIRST SET OF UNIT TESTS WITH XCODE

@IBAction func onClearAllCookies(_ sender: Any) {
cookiejar?.reset()
refreshUI()

}

private func refreshUI() -» Void {
let totalGinger = cookiejar!.gingerbreadCookies!.count
let totalShort = cookiejar!.shortbreadCookies!.count
let totalChocolate = cookiejar!.chocolateChipCookies!.count
let total = totalGinger + totalShort + totalChocolate

gingerbreadCookies.text = "Gingerbread cookies: \(totalGinger)"
shortbreadCookies.text = "Shortbread cookies: \(totalShort)"
chocolateChipCookies.text = "Chocolate chip cookies: \(totalChocolate)"
totalCookies.text = "Total cookies: \(total)"

Save the project and run it on the simulator using the Product » Run menu item.
After you have had a chance to try out the application and verify that it is working, you
may want to dig a little deeper to find out how effective the unit tests have been.

One way to gauge the effectiveness of unit tests is to use a code coverage report. This
report will give you information on the number of lines of application code that were
executed by test code.

The next section looks at Xcode’s code coverage reporting tools. Before you can view
code coverage reports, you must ensure that you have executed your unit tests at least once.

Code coverage data is deleted when you close Xcode. If you reopen a project in
Xcode, you will need to run all unit tests using the Prodct » Test menu item so that Xcode
can generate code coverage data.

Viewing Code Coverage Data

If you have enabled code coverage reports in the scheme settings dialog box, you will see
the code coverage ribbon appear to the right side of the source code editor. Click on the
CookieFactory.swift file in the project navigator and observe the numbers in the code
coverage ribbon (see Figure 2-23).

40

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 2 © WRITING YOUR FIRST SET OF UNIT TESTS WITH XCODE

ne sddshortbresdCookiel) -
eakie = oo

ead
#.append{cocki

adaCnecalateChipCackiel} => vadd {
t cookie = Coseiel.chocolatelhin)

Figure 2-23. Xcode Code Coverage Information

You will notice that the code coverage ribbon lists a number beside each of the
methods of the CookieFactory class. The number indicates the number of times the
method was called when you ran your test suite.

Hovering your mouse pointer over a number in the code coverage ribbon will
highlight the associated method in red or green. A green highlight means that the method
has been called at least once by your tests, and a red highlight means that the method is
not currently being covered by your test suite.

Code coverage is a useful tool to get an idea of the parts of your production code
that are covered by your tests, but must be used with caution. Many development teams
try to achieve high code coverage by writing meaningless tests, or tests that cover i0OS
framework code. It is better to have fewer and more meaningful tests than a large number
of tests that are difficult to maintain or understand by new members of the team.

Summary

This chapter has introduced you to sections of the Xcode user interface that deal with unit
testing. You have also built a simple single view application using basic TDD techniques
and have learned to examine code coverage reports.

The next chapter will discuss the MVVM architectural pattern and how applications
that are built using this pattern are easier to test.

41

CHAPTER 3

The MVVM Architectural
Pattern

This chapter will examine a commonly used architectural pattern called Model-
View-Controller (MVC), its iOS equivalent Model-ViewController (M-VC), and

the testability issues that arise when using this common pattern. You will then be
introduced to a new architectural pattern called Model, View, ViewModel (MVVM)
and the advantages of this pattern from a code reusability and testability perspective.

To avoid confusion in the chapter, | spell out “Model-ViewController” when discussing the
i0S version and the abbreviation “MVC” when referring to a common pattern.

The MVC Architectural Pattern

The Model-View-Controller is one of the most common application architectural patterns
in use today, across a variety of programming languages (Java, .NET, Objective-C, Swift).
It was designed to help developers implement user interfaces on computers and aims to
separate the representation of data from the manner in which it is presented to the user.
Figure 3-1 depicts the standard MVC pattern.

Reads
View |« 1 Model

r

Updates Updates

Controller

Figure 3-1. Standard Model-View-Controller Pattern

© Abhishek Mishra 2017 43
A. Mishra, iOS Code Testing, DOI 10.1007/978-1-4842-2689-6_3

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 3 " THE MVVM ARCHITECTURAL PATTERN

This pattern has three key components (sometimes called layers):

e Model: The model component handles the storage of data used
by the application and accepts commands to read or update the
data from the controller. It could be a single class or a group of
related classes.

e View: The view component reads data from the model and
handles the rendering/presentation of the model. The view can
be thought to be the visual representation of the model, and it can
selectively present certain parts of the model.

e Controller: The controller component sits in between the model
and the view, handles user input, updates the model, and updates
the view as necessary. Business logic and networking code resides
in one or more controllers, and controllers can communicate with
other controllers. In other words, controllers make the brain of
the application.

The Model-ViewController Architectural Pattern

Cocoa Touch, UIKit, and other Apple frameworks provide all the necessary infrastructure
to implement the Model-ViewController architecture in iOS Apps:

e Model: Can be any NSObject subclass, or even an
NSManagedObjectModel subclass.

e View: Can be any UIView subclass, for example, UILabel,
UlIButton, and UIScrollView.

e Controller: Can be any NSObject subclass.

However, Apple has also created the concept of a “View Controller” that combines
both the view and controller into a single class. In fact, view controllers are so common
that many developers new to iOS development don’t realize that it is possible to create
controllers independently.

Figure 3-2 shows what the Model-ViewController architectural pattern looks like in a
typical i0OS application, with the view controller owning both the model and the view. The
roles of the three components are summarized below:

e View: Responsible for rendering the model, requests data from
the view controller, passes user interaction events to the view
controller.

e Model: Responsible for storing data.

e View controller: Reads from the model and provides data to the
view, updates the model, handles user interaction events.

44

CHAPTER 3 © THE MVVM ARCHITECTURAL PATTERN

View =
]

.
1
I 1
| Provides Reads :
]
User X data ‘;
Interaction > | , Updates
- View Controller
Updates

Figure 3-2. The Model-View-Controller Pattern

However, since the view and the view controller are tightly coupled, with the view
controller owning the view, the architectural pattern begins to resemble Figure 3-3. In
fact, it is extremely rare for a view to be paired with different view controllers.

Updates

‘ View ‘View(ontroller ;___| Model ‘

Reads

Figure 3-3. Interaction between View, View Controller, and Model objects

If you have been developing iOS applications for a few months, you will soon realize
that in terms of lines of code, view controllers are often the largest files in the project.
This is due to the fact that view controllers commonly act as delegates, data sources,
contain networking code, contain view management logic, and make network calls,
etc. View controllers also commonly implement multiple protocols, which results in
controller logic being mixed up with the code that supports protocols. These bloated view
controllers are often called “Massive View Controllers.”

Some of the logic in massive view controllers belongs in the view controller, but a lot
of it is presentation, model transformation, and networking logic, which should ideally go
in a separate helper objects/controllers.

Model-ViewController Testability Issues

While testing the model layer of the model-view controller, pattern does not present any
significant challenge; testing the view controller, on the other hand, presents a few issues:

o Difficult to instantiate: Instantiating a view controller under
a test may not be trivial; all IBOutlets will need to be stubbed
using appropriate subclasses. You will need to include the XIB or
storyboard in the test target, and potentially end up instantiating
a complex stack of UI layer objects like navigation controllers, and
table views. Adding storyboards to the test target, just to be able to
instantiate a view controller, will make your tests very fragile and
you may end up questioning the value of the tests themselves.

45

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 3 " THE MVVM ARCHITECTURAL PATTERN

e Difficult to mock: Due to the tightly coupled nature of the code
in a view controller, it is often difficult to test a single method in
isolation.

e Testing the Ul layer in a unit test: Unit tests should not test
the Ul layer; a view controller blurs the lines between code that
performs Ul logic and code that performs business logic.

The Model-View-ViewModel Architectural Pattern

The Model-View-ViewModel (MVVM) architectural pattern was developed by Microsoft
to help developers build XAML-based WPF applications, but as you will soon learn,
MVVM can be easily adapted to be used within i0S/Swift applications. MVVM is an
expansion of MVC where we formally couple the view and the controller, but move all the
presentation logic out of the controller into a new object called the view model.

Within an iOS/Swift context, the role of the view is fulfilled by the view+view
controller combination (see Figure 3-4).

Business Logic

View Model

Updates T
—

User Interaction

Figure 3-4. Model-View View-Model pattern on iOS

The roles of the three components are summarized below:

e Model: Responsible for storing data, maintains two-way
communication with the view model.

e View/View controller: Represents the view part of the pattern,
and handles user interaction events. Maintains two-way
communication with the view model.

e View model: Handles presentation logic, maintains two-
communication with both the model and the view/view
controller. Handles communication with other controllers that
may provide specific functionality like complex business logic,
and network requests.

46

CHAPTER 3 © THE MVVM ARCHITECTURAL PATTERN

Microsoft’s original MVVM pattern makes extensive use of XAML bindings to link
the three principle components of this pattern. On iOS/Swift applications, there are two
options available to link the principal components of this pattern:

Using Swift protocols: The principal components of the pattern
interact with each other through a well-defined set of protocols.
Each component implements the relevant set of protocols.

Using ReactiveCocoa/RxSwift: Third-party libraries have

now emerged that allow Swift developers to apply reactive-
programming principles to create bindings between the principal
components of the pattern.

Note

Reactive programming is outside the scope of this book. All examples in this book

use the protocol-based approach.

Advantages of MVVM

This section lists some of the key advantages of the MVVM pattern over the M-VC pattern:

The MVVM pattern moves code out of a single view controller
class and distributes this code over a more granular set of
classes; this reduces the size of any individual class and therefore
addresses the massive view controller problem.

The view/view controller component is loosely coupled with the
model; and with the view model, developers in a team can build
these components independently and concurrently. It is also
significantly easier to accommodate UI changes without having
any significant impact on either the model, or the view model
layers.

When implemented properly, there should be no direct reference
to UIKit in the view model. The view and the view model are
loosely coupled. This makes it easy to instantiate view models in
test cases. A suitable mock or stub view needs only to implement
the relevant protocols required by the view.

Decoupling the view layer from the view-model layer gives the
advantage that the view layer can be implemented using different
UI technologies. The view model and model code can, for
instance, be reused in a MacOS application by simply substituting
the view layer.

47

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 3 " THE MVVM ARCHITECTURAL PATTERN

MVVM being based on loosely coupled classes increases
testability. A class in one layer can be instantiated independently
of the other layers. Using protocols to define the contracts
between participating classes makes the task of stubbing/
mocking dependences significantly easier.

MVVM promotes separation of concerns between objects. When
objects are not tightly coupled, the resulting code is more change
resistant and easier to maintain over the long term.

ViewModel Instantiation

There are various strategies that you can use to instantiate view models. This section
examines a few common scenarios that you will encounter while creating iOS apps with
the MVVM pattern.

Isolated View Controller

In case you are dealing with an isolated view controller, a common strategy is to
instantiate the view model inside the viewDidLoad() method of the view controller class.
The following code snippet demonstrates this strategy:

class CountriesViewController: UIViewController {

private var viewModel:CountriesViewModel?

override func viewDidLoad() {

super.viewDidLoad()

self.viewModel = CountriesViewModel(view: self,

title:"Select a country")

A few noteworthy points about this strategy:

The view controller owns the view model via a strong private var.

The view model is injected with a reference to the view/view
controller in the initializer. The view model will hold a weak
reference to the view/view controller.

The view model’s initializer can also be used to inject other
parameters that are required to set it up.

Chapter 5 will examine techniques to create isolated view controller-based
applications using TDD techniques and the MVVM pattern.

48

http://dx.doi.org/10.1007/978-1-4842-2689-6_5

CHAPTER 3 © THE MVVM ARCHITECTURAL PATTERN

Table View Controllers

When you are dealing with a table view controller, the view model for the table view
controller will provide information on the number of rows and sections. The view model
can also be used to maintain the index of the currently selected cell. But where does the
data within each cell come from?

Each table view cell is also a view in its own right, and the MVVM pattern must be
applied to the individual table view cells as well as the enclosing table view. You could
potentially use the same view model for both the table view as well as individual cells, but
this approach overloads the view model with multiple responsibilities.

A better approach is to use different view models for the table view and the individual
table view cells. This approach keeps the size of each view model small, as each view model
is only going to be response responsible for a single view, and not child views.

Instantiating the view model for the table view controller is a simple matter of
putting a few lines of code in the viewDidLoad() method of the table view controller. How
and when does one instantiate view models for the individual cells?

A good approach is to build a factory method within the view model of the table view
controller, and use this factory method to get view models for the individual cells.

The factory method can encapsulate the nitty gritty of creating a view model for a
cell, and giving the cell view model a relevant model object. The factory method could
also be moved out of the table view controller’s view model into its own class, in which
case you are using a dedicated object for a view model construction.

An ideal place to call the view model factory (either method or object), would
be within the tableView(_ tableView:, cellForRowAt:)method of the table view
controller. This approach is demonstrated in the following snippet:

override func tableView(_tableView: UITableView, cellForRowAt indexPath:
IndexPath) -> UITableViewCell {
let cell = tableView.dequeueReusableCell(withIdentifier:
"CountryCell", for: indexPath) as? CountriesTableViewCell

guard let viewModel = tableViewModel,
let countriesTableViewCell = cell else {
return UITableViewCell()
}

let cellViewModel =
viewModel.cellViewModel(forIndexPath: indexPath)
countriesTableViewCell.viewModel = cellViewModel
return countriesTableViewCell
In this snippet a custom UlTableViewCell instance is obtained by using the dequeRe
usableCell(withldentifier:, for) method of the table view:
let cell = tableView.dequeueReusableCell(withIdentifier: "CountryCell"”,

for: indexPath) as? CountriesTableViewCell

49

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 3 " THE MVVM ARCHITECTURAL PATTERN

A factory method called cellViewModel(forIndexPath:) is called on the table view
controller’s view model:

let cellViewModel = viewModel.cellViewModel(forIndexPath: indexPath)

This method returns a view model for the table view cell, which is then assigned to a
property of the table view cell, before returning the cell:

countriesTableViewCell.viewModel = cellViewModel
return countriesTableViewCell

This snippet assumes that the table view cell will own the cell view model.

Navigation Controller-Based Apps

Master-detail apps are quite common on iOS. These applications are usually
implemented using a table view controller within a navigation controller. When a user
taps on a cell in the table view, a push segue is triggered to slide the detail view from the
right. The detail view controller that appears usually displays information that is related
to the cell that was tapped in the table view.

When building such an application using the MVVM pattern, it should be quite
obvious by now that the table view controller (master view) will have its own view model,
and the detail view controller that is subsequently pushed onto the navigation stack will
also have its own view model.

The challenge in this case is building the detail view model with the correct model
object so that the detail view will contain the correct information.

As in the previous section, you can use the factory method approach to instantiate
either, or both view models. The factory method will need to be called from the
prepare(for segue: UlStoryboardSegue, sender: Any?) method of the master table view
controller class.

You will also need to ensure that the master view model is capable of tracking the
selected cell index. This is so that the appropriate detail model can be linked to the detail
view model.

This approach can also be applied to collection view controllers as collection view
controllers are similar in many respects to table view controllers. Chapter 6 covers the
topic of building MVVM-based collection view controllers using TDD techniques.

Listings 3-1 - 3-5 demonstrate how the MVVM pattern can be applied to a table view
controller. The listings collectively form parts of an application that displays a list with the
names of a few common colors. When a user selects a color from this list, a detail view,
painted with the selected color is presented (see Figure 3-5).

50

http://dx.doi.org/10.1007/978-1-4842-2689-6_6

CHAPTER 3 © THE MVVM ARCHITECTURAL PATTERN

Carrier ¥ 1:21 AM - Carrier ¥ 11:23 AM -
Select a color { Select a color Red
Red
Blue
Green

Figure 3-5. The ColorList App

The complete source code for the project, along with unit tests, can be downloaded
anonymously from github using the following URL:

https://github.com/asmtechnology/Lesson03.10STesting.2017.Apress.git
There are five key classes involved in this snippet:

e ColorListTableViewController: This is a subclass of
UlTableViewController and presents the user with a list of colors.

¢ ColorDetailViewController: This is a subclass of
UlIViewController and is displayed when the user selects a color
from the list of colors.

e ColorTableViewModel: This is the view model for the color list
table view controller class.

e ColorDetailViewModel: This is the view model for the color
detail view controller class.

e Color: Represents the model for this project.

For the purpose of brevity, protocols are not listed in this snippet. You can, however,
download the project and examine the protocols in detail.

51

vww.ebook3000.con)

https://github.com/asmtechnology/Lesson03.iOSTesting.2017.Apress.git
http://www.ebook3000.org

CHAPTER 3 " THE MVVM ARCHITECTURAL PATTERN

Let us begin by examining the code or the ColorListTableViewController class:

Listing 3-1. ColorListTableViewController

class ColorListTableViewController: UITableViewController {

52

private var viewModel:TableViewModel?

override func viewDidLoad() {
super.viewDidLoad()
self.clearsSelectionOnViewWillAppear = false
self.viewModel = ColorTableViewModel(view: self, title:"Select a color")

}

// MARK: - Table view data source

override func tableView(_ tableView: UITableView, numberOfRowsInSection
section: Int) -> Int {
guard let viewModel = viewModel else {
return 0

}

return viewModel.numberOfRows ()

}

override func tableView(_ tableView: UITableView, cellForRowAt
indexPath: IndexPath) -> UITableViewCell {
let cell = tableView.dequeueReusableCell(withIdentifier:
"ColorListtCell", for: indexPath) as? ColorListTableViewCell

guard let viewModel = viewModel,
let colorListTableViewCell = cell else {
return UITableViewCell()
}

let detailViewModel = viewModel.cellViewModel(forIndexPath:
indexPath)

colorListTableViewCell.viewModel = detailViewModel

return colorListTableViewCell

}

override func tableView(_ tableView: UITableView, didSelectRowAt
indexPath: IndexPath) {
guard let viewModel = viewModel else {
return

}

viewModel.selectRow(atIndexPath:indexPath)
self.performSegue(withIdentifier: "colorDetailSegue", sender: nil)

CHAPTER 3 © THE MVVM ARCHITECTURAL PATTERN

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
guard let identifier = segue.identifier, let viewModel = viewModel
else {
return
}

if identifier.compare("colorDetailSegue") != .orderedSame {
return
}

if let colorDetailViewController = segue.destination as?
ColorDetailViewController,
let destinationViewModel = viewModel.viewModelForSelectedRow() {

destinationViewModel.setView(delegate: colorDetailViewController)
colorDetailViewController.viewModel = destinationViewModel

In Listing 3-1, the table view controller owns the table view model. The view model is
an instance of ColorTableViewModel and is instantiated within the viewDidLoad method
of the table view controller:

override func viewDidLoad() {
super.viewDidLoad()
self.clearsSelectionOnViewWillAppear = false
self.viewModel = ColorTableViewModel(view: self, title:"Select a color")

The tableView(_ tableView:, cellForRowAt:) -> UITableViewCell method
creates table view cells, and passes a view model into each table view cell. The view model
for each cell is created using a factory method called cellViewModel (forIndexPath) ->
CellviewModel? provided by ColorTableViewModel

override func tableView(tableView: UITableView, cellForRowAt indexPath:
IndexPath) -> UITableViewCell {
let cell = tableView.dequeueReusableCell(withIdentifier:
"ColorListtCell", for: indexPath) as? ColorListTableViewCell

guard let viewModel = viewModel,

let colorlListTableViewCell = cell else {
return UITableViewCell()

53

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 3 " THE MVVM ARCHITECTURAL PATTERN

let detailViewModel = viewModel.cellViewModel(forIndexPath: indexPath)
colorListTableViewCell.viewModel = detailViewModel
return colorListTableViewCell

}

Tapping on a cell in the table view records the index position of the selected cell in the
view model, and performs a segue to animate the detail view controller onto the screen:

override func tableView(tableView: UITableView, didSelectRowAt indexPath:
IndexPath) {
guard let viewModel = viewModel else {
return
}

viewModel.selectRow(atIndexPath:indexPath)
self.performSegue(withIdentifier: "colorDetailSegue", sender: nil)

Note You do not need to call performSegue(withIdentifier:, sender:) if you have
created a segue from the table view cell to the detail view controller in the story board. If,
however, the segue has been created from the table view controller to the detail view controller,
then you will need to call performSegue(withIdentifier:, sender:) to trigger the seque

The code to generate a view model for the detail view controller, as well as assign the
view model to a property of the detail view controller, can be found in the prepare(for,
sender:) method:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
guard let identifier = segue.identifier, let viewModel = viewModel
else {
return
}

if identifier.compare("colorDetailSegue") != .orderedSame {
return
}

if let colorDetailViewController = segue.destination as?
ColorDetailViewController,
let destinationViewModel = viewModel.viewModelForSelectedRow() {

destinationViewModel.setView(delegate: colorDetailViewController)
colorDetailViewController.viewModel = destinationViewModel

54

CHAPTER 3 ' THE MVVM ARCHITECTURAL PATTERN
Let us now examine the ColorDetailViewController class:

Listing 3-2. ColorDetailViewController

class ColorDetailViewController: UIViewController {
var viewModel:ColorDetailViewModel?

override func viewDidAppear(_ animated: Bool) {
if let viewModel = viewModel {
viewModel.viewDidAppear (animated)
}

}

extension ColorDetailViewController : ColorDetailViewControllerDelegate {
func setNavigationTitle(title:String) -> Void {
self.title = title
}

func setBackgroundColor(red:Float, blue:Float, green:Float, alpha:Float) ->
Void {
self.view.backgroundColor = UIColor(red: CGFloat(red), green:
CGFloat(green), blue: CGFloat(blue), alpha: CGFloat(alpha))

This is a very small and straightforward class. It holds a strong reference to a
view model, and gives the view model a chance to handle presentation logic in the
viewDidAppear() method:

override func viewDidAppear(_ animated: Bool) {
if let viewModel = viewModel {
viewModel.viewDidAppear (animated)
}

In response to this event, the view model will change the background color and title
of the view via a set of delegate methods implemented by the view controller.
Let us now examine the code for the ColorTableViewModel class:

func setNavigationTitle(title:String) -> Void {
self.title = title
}

func setBackgroundColor(red:Float, blue:Float, green:Float, alpha:Float) -> Void {
self.view.backgroundColor = UIColor(red: CGFloat(red), green:
CGFloat(green), blue: CGFloat(blue), alpha: CGFloat(alpha))

55

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 3 " THE MVVM ARCHITECTURAL PATTERN

Listing 3-3. ColorListTableViewModel

class ColorTableViewModel: NSObject {

}

var tableTitle:String

fileprivate var coulorData:[Color]
fileprivate var selectedIndexPath:IndexPath?
fileprivate weak var view:ColorListTableViewControllerDelegate?

init (view:ColorListTableViewControllerDelegate?, title:String) {
self.view = view
self.tableTitle = title

self.coulorData = []

if let redModel
0.0, alpha: 1.0),
let blueModel = Color(name: "Blue", red: 0.0, green: 0.0, blue:
1.0, alpha: 1.0),
let greenModel = Color(name: "Green", red: 0.0, green: 1.0,
blue: 0.0, alpha: 1.0) {
self.coulorData.append(redModel)
self.coulorData.append(blueModel)
self.coulorData.append(greenModel)

Color(name: "Red", red: 1.0, green: 0.0, blue:

extension ColorTableViewModel : TableViewModel {

56

func setView(delegate:AnyObject?) -> Void {
self.view = delegate as? ColorListTableViewControllerDelegate
}

func numberOfRows() -> Int {
return coulorData.count
}

func cellViewModel(forIndexPath indexPath:IndexPath) -> CellViewModel? {
let row = indexPath.row
if row < 0 || row >= self.coulorData.count {
return nil
}

let cellText = coulorData[row].name
return TableViewCellViewModel(view:nil, cellText: cellText)

CHAPTER 3 © THE MVVM ARCHITECTURAL PATTERN

func selectRow(atIndexPath indexPath:IndexPath) {
self.selectedIndexPath = indexPath
}

func viewModelForSelectedRow() -> ColorDetailViewModel? {
guard let selectedIndexPath = selectedIndexPath else {
return nil
}

if selectedIndexPath.row < 0 || selectedIndexPath.row >= coulorData.
count {

return nil
}

return ColorDetailViewModel(view:nil, model:coulorData[selectedIndex
Path.row])
}

func viewDidAppear(_ animated: Bool) {
guard let view = view else {
return
}

view.setNavigationTitle(tableTitle)

}

func model(forIndexPath indexPath:IndexPath) -> AnyObject? {
let row = indexPath.row
if row < 0 || row >= self.coulorData.count {
return nil
}

return coulorData[row] as AnyObject

The code in Listing 3-3 handles the presentational aspects of the table
view, as well as building view models for cells and the detail view controller. The
ColorListTableViewModel instance holds a weak reference to the view layer as well as a
strong reference to an array of model objects. This array represents the model layer for
this application:

fileprivate weak var view:ColorlListTableViewControllerDelegate?

fileprivate var coulorData:[Color]

57

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 3 " THE MVVM ARCHITECTURAL PATTERN

Let us now examine the code for the ColorDetailViewModel class:

Listing 3-4. ColorDetailViewMoel

import Foundation

class ColorDetailViewModel : NSObject {
weak var view:ColorDetailViewControllerDelegate?
var model:Color?

init(view:ColorDetailViewControllerDelegate?, model:Color?) {
self.view = view
self.model = model
super.init()

}

extension ColorDetailViewModel : ViewModel {
func viewDidAppear(_ animated: Bool) {
if let view = self.view, let model = self.model {
view.setBackgroundColor(red: model.red, blue: model.blue, green:
model.green, alpha: model.alpha)

view.setNavigationTitle(model.name)

}

func setView(delegate:AnyObject?) -> Void {
self.view = delegate as? ColorDetailViewControllerDelegate
}

The code in Listing 3-4 represents the view model for the detail view controller. The
view model holds a weak reference to the view layer, as well as a strong reference to a
model object. The model object is an instance of a Color class.

weak var view:ColorDetailViewControllerDelegate?
var model:Color?

The view model’s viewDidAppear event is wired to be called by the matching event
of the view controller call. The view model uses this event to set the background color and
title of the view:

func viewDidAppear(_ animated: Bool) {
if let view = self.view, let model = self.model {
view.setBackgroundColor(red: model.red, blue: model.blue, green:
model.green, alpha: model.alpha)

view.setNavigationTitle(model.name)

58

CHAPTER 3 © THE MVVM ARCHITECTURAL PATTERN

Let us examine the code for the Color class next:

Listing 3-5. Color.swift

import Foundation

class Color {
private static let zero = Float(floatLiteral: 0.0)
private static let one = Float(floatLiteral: 1.0)

var name:String
var red:Float
var green:Float
var blue:Float
var alpha:Float

init?(name:String, red:Float, green:Float, blue:Float, alpha:Float) {
if (red < Color.zero || red > Color.one) {

return nil

}

if (green < Color.zero || green > Color.one) {
return nil

}

if (blue < Color.zero || blue > Color.one) {
return nil

}

if (alpha < Color.zero || alpha > Color.one) {
return nil

}

self.name = name
self.red = red
self.green = green
self.blue = blue
self.alpha = alpha

The code in Listing 3-5 represents a single model object. The model object
contains attributes to describe the name of the color as well as individual R, G, B, and A
component values:

var name:String
var red:Float
var green:Float
var blue:Float
var alpha:Float

59

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 3 " THE MVVM ARCHITECTURAL PATTERN

Summary

In this chapter you have learned about the ubiquitous Model-View-Controller (MVC)
pattern and its iOS equivalent Model-ViewController (M-VC) pattern. Applications built
using the M-VC pattern tend to have massive view controller classes that are very difficult
to test.

You have also been introduced to Microsoft’s alternative to the MVC pattern, known
as the Model-View-ViewModel (MVVM) pattern. This pattern has its roots in WPF/XAML
applications but can be easily adapted and used in iOS applications.

Applications built with the MVVM pattern are significantly easier to test than
applications built using the MVC or M-VC patterns.

60

CHAPTER 4

Applying TDD to the Model/

This chapter will examine the process of building the model layer of an app using TDD
techniques. Since this chapter focuses on the model layer, you will not be building a user
interface or any presentation logic.

Testing the components of the model layer of an application is just as important as
testing other components in the app. In a very simple app, the model layer may consist of
a single class that has a few instance variables. Even in this simplified scenario, unit tests
can be used to establish that the model class has the member variables that other parts of
the application expect it to have.

In more complex apps, the model layer may consist of several classes with complex
relationships and responsibilities. Individual classes within the model layer may perform
data transformation, persistence, and validation. In such scenarios, unit tests help establish
(and maintain) the relationships between the classes, and provide a measure of confidence
that the transformation, persistence, and validation logic are working as expected.

The model layer that is presented in this chapter is designed to represent a bank
account along with a set of transactions in that account. We will create classes to
represent bank accounts, individuals who own the account, and transactions within the
account. Figure 4-1 depicts the class diagram of the model layer.

AccountOwner BankAccount Transaction
firstName:String accountName:String txDescription:String
lastMame:String 1,2 1| accountNumber:String 1 | date:NSDate
emailAddress:String [sortingCode:String 1 islncoming:Bool

accountType:AccountType amount:String
transactions:[Transaction]
owners:[AccountOwner]

init() init() init()

Figure 4-1. Model Layer Classes

A brief description of the classes that make up the model layer follows:

e BankAccount: Represents a single bank account. A bank account
object can represent either a savings account or a current account.

© Abhishek Mishra 2017 61
A. Mishra, iOS Code Testing, DOI 10.1007/978-1-4842-2689-6_4

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 4 " APPLYING TDD TO THE MODEL

e Transaction: Represents a single transaction. A transaction
object can represent either money coming into the account or
money leaving the account.

e AccountOwner: Represents an individual (or entity) that owns
the bank account. An account may have up to two owners.

The complete source code for the app can be downloaded anonymously from github
using the following URL:

https://github.com/asmtechnology/Lesson04.i0STesting.2017.Apress.git

Creating the Xcode Project

Launch Xcode and create a new iOS project based on the Single View Application template
(see Figure 4-2).

Choose a template for your new project:

m watchOS w05 macOS Cross-platform |

Application
[1)
1 ; -
r. e00 & eoe
Single View Game Master-Detail Page-Based Tabbed
Application Applicaticn Application Application
oo Y
oo v
Sticker Pack iMessage
Application Application
Framework & Library
F " a, o,
L ¥\l e INjp
.- e Wy
Cocoa Touch Cocoa Touch Metal Library
Framework Static Library
Cancel [Next]

Figure 4-2. Xcode Project Template Dialog Box

Use the following options while creating the new project (see Figure 4-3):
e Product Name: BankAccount
e Team:None

e Organization Name: Provide a suitable name

62

https://github.com/asmtechnology/Lesson04.iOSTesting.2017.Apress.git

CHAPTER 4 © APPLYING TDD TO THE MODEL

e Organization Identifier: Provide a suitable identifier
e Language: Swift

e Devices: iPhone

e Use Core Data: Unchecked

¢ Include Unit Tests: Checked

e Include UI Tests: Unchecked

Choose options for your new project:

Product Mame: = BankAccount

Team: None | <]

Organization Name: ASM Technology Ltd.

Organization ifier: com hnology
Bundle identifier: com.asmtechnology.BankAccount
Language: Swift | <]
Devices: iPhone | %]

Use Core Data
Include Unit Tests
Include Ul Tests

Cancel Previous | Next]

Figure 4-3. Xcode Project Options Dialog Box

Note Even though we have used the Single View Application Template while creating
this project, there will be no user interface/presentation code added into the project. In
Chapter 6, you will build an app to display bank account details, and a list of transactions in
a collection view. The project in Chapter 6 will build on the files created in this chapter.

Save the project to a suitable location on your computer and click Create. Since this
project will contain several new classes, it will be a good idea to place class files under
appropriate groups within the project navigator.

Create a group called Model in the Xcode project navigator. You will create model
layer specific classes within this group.

63

vww.ebook3000.con)

http://dx.doi.org/10.1007/978-1-4842-2689-6_6
http://dx.doi.org/10.1007/978-1-4842-2689-6_6
http://www.ebook3000.org

CHAPTER 4 " APPLYING TDD TO THE MODEL

Building the Model Layer

There are three model classes that we need to build:

e AccountOwner

e Transaction

e BankAccount

Each of these will be built using TDD techniques in subsequent sections of this chapter.

The AccountOwner Class

An instance of the AccountOwner class represents an individual or entity that owns an
account. Table 4-1 lists the desired member variables and methods of the AccountOwner

class.

Table 4-1. AccountOwner variables and methods.

Item Type Description

var firstName:String Variable Should be between 2 and 10 characters in
length, with no numbers or white space.

var lastName:String Variable Should be between 2 and 10 characters
in length, with no numbers or white
space.

var emailAddress:String Variable Must be a valid email address.

init?(firstName:String, Method Allows other code to create

lastName:String,
emailAddress:String)

AccountOwner instances.

Create a new iOS Unit Test Case class called AccountOwnerTests under the
BankAccountTests group of the project explorer (see Figure 4-4).

64

CHAPTER 4 © APPLYING TDD TO THE MODEL

Choose a template for your new file:

m watch0S tvOS macOS @

Source

@ | N O

Cocoa Touch Ul Test Case Unit Test Case Playground Swift File
Class Class Class

m h Ce N

Objective-C File Header File C File C++ File Metal File

User Interface

Storyboard View Empty Launch Screen

Cancel [Next |

Figure 4-4. Xcode File Template Dialog Box

Select the AccountOwnerTests.swift file in the project explorer and use the file
inspector to ensure that the file is included in the BankAccountTests target and not the
BankAccount target (see Figure 4-5). If the file inspector is not visible, View » Utilities »
Show File Inspector menu item.

65

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 4 " APPLYING TDD TO THE MODEL

BaskAcooust Bmady | Tocey o 154 n % e i

BarkRzosenTants | = AsurtOumerTowsswift | Na Selection La2 0O @

¥CTest

ceountlwnerTests: XoTe

leid

£fTnd: of a performance Test case.

self.messure { W 4z a
#i Pt he SU WERT To SEAEUTY TRE Tive oF PeEo, e rewre

1 0 wrasiee

Figure 4-5. Target Membership for AccountOwnerTests.swift

A test case file contains a couple of empty stub methods called testExample and
testPerformanceExample. These methods are there to help you get started writing your
tests. We will not be using these stub methods in this chapter, so feel free to delete them.

Create a new unit test method called testAccountOwner_ValidFirstName_
ValidLastName ValidEmail CanBelnstantiated() and add the following code to the
method body:

func testAccountOwner ValidFirstName ValidLastName ValidEmail
CanBeInstantiated() {
let accountOwner = AccountOwner(firstName: validFirstName,
lastName: validLastName,
emailAddress: validEmailAddress)
XCTAssertNotNil(accountOwner)

}

Add the following private constant declarations to the top of the
AccountOwnerTests.swift file:

private let validFirstName = "Andrew"
private let validlLastName = "Hill"
private let validEmailAddress = "a.hill@abcfinancial.com"

private let invalidFirstName = "A"
private let invalidlLastName = "h"
private let invalidEmailAddress = "abcfinancial.com"

private let emptyString =
66

CHAPTER 4 © APPLYING TDD TO THE MODEL

These constants represent a set of valid and invalid first names, last names, and
email addresses, and will be used within the test cases in this class. It is a good practice to
declare all the constants used in test cases at the top of the file that contains the test cases,
and not create ad hoc constants within test cases.

You will notice that this code fails to compile; that is because the AccountOwner class has
not been created yet. Failure to compile test code is in this case being treated as a test failure.

To fix this failure, create a new class called AccountOwner under the Model group in
the project navigator, and update its implementation to match the following code snippet:

import Foundation
class AccountOwner: NSObject {

init?(firstName:String, lastName:String, emailAddress:String) {
super.init()
}

Save the file and run all unit tests using the Product » Test menu item. You will see
that all unit tests have passed (see Figure 4-6).

invelidLasthase
© invalidEnailasdress = “ssefinancisl.cow

engtyString =

s func tearbown() {
ut teardown code here. Th

testheceuntOaner
Lot aceowntOwner

XETAssertuatiil{accountOaner)

Figure 4-6. Xcode Test Navigator

We need a few more test cases for the AccountOwner class. You can choose to build
up the features of the AccountOwner class one test at a time, or write a few tests up front
and then write features in the AccountOwner class to make a small group of tests pass,
and repeat as necessary.

Add the code from Listing 4-1 to the AccountOwnerTests class to create a few
additional tests.

67

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 4 " APPLYING TDD TO THE MODEL

Listing 4-1. AccountOwnerTests.swift

func testAccountOwner_InvalidFirstName ValidlLastName_ValidEmail _
CanNotBeInstantiated() {
let accountOwner = AccountOwner(firstName: invalidFirstName,
lastName: validLastName,
emailAddress: validEmailAddress)
XCTAssertNil(accountOwner)

}

func testAccountOwner InvalidFirstName InvalidlLastName ValidEmail
CanNotBeInstantiated() {
let accountOwner = AccountOwner(firstName: invalidFirstName,
lastName: invalidlLastName,
emailAddress: validEmailAddress)
XCTAssertNil(accountOwner)

func testAccountOwner InvalidFirstName InvalidlLastName InvalidEmail _
CanNotBeInstantiated() {
let accountOwner = AccountOwner(firstName: invalidFirstName,
lastName: invalidlLastName,
emailAddress: invalidEmailAddress)
XCTAssertNil (accountOwner)

}

func testAccountOwner ValidFirstName_InvalidlLastName_ValidEmail_
CanNotBeInstantiated() {
let accountOwner = AccountOwner(firstName: validFirstName,
lastName: invalidlLastName,
emailAddress: validEmailAddress)
XCTAssertNil (accountOwner)

}

func testAccountOwner ValidFirstName ValidlLastName InvalidEmail
CanNotBeInstantiated() {
let accountOwner = AccountOwner(firstName: validFirstName,
lastName: validlLastName,
emailAddress: invalidEmailAddress)
XCTAssertNil (accountOwner)
}

func testAccountOwner ValidFirstName InvalidLastName InvalidEmail
CanNotBeInstantiated() {
let accountOwner = AccountOwner(firstName: validFirstName,
lastName: invalidlLastName,
emailAddress: invalidEmailAddress)
XCTAssertNil(accountOwner)

68

CHAPTER 4 © APPLYING TDD TO THE MODEL

func testAccountOwner_EmptyFirstName_ValidlLastName ValidEmail_
CanNotBeInstantiated() {
let accountOwner = AccountOwner(firstName: emptyString,
lastName: validlLastName,
emailAddress: validEmailAddress)
XCTAssertNil(accountOwner)

}

func testAccountOwner ValidFirstName EmptylLastName ValidEmail
CanNotBeInstantiated() {
let accountOwner = AccountOwner(firstName: validFirstName,
lastName: emptyString,
emailAddress: validEmailAddress)
XCTAssertNil(accountOwner)

}

func testAccountOwner_ValidFirstName_ValidlLastName EmptyEmail_
CanNotBeInstantiated() {
let accountOwner = AccountOwner(firstName: validFirstName,
lastName: validlLastName,
emailAddress: emptyString)
XCTAssertNil(accountOwner)

The code in Listing 4-1 adds nine new test cases, each of which relate to instantiating
AccountOwner objects. These nine test cases collectively ensure that an AccountOwner
object can not be instantiated if the first name, last name, or e-mail address is invalid.

This time you will notice that there are no compiler warnings after you have added
these nine new test cases. However, when you run all tests by using the Product » Test
menu item, you will notice that all these new test cases fail (see Figure 4-7).

69

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 4 " APPLYING TDD TO THE MODEL

L] a Ay Berkicooat |l Phore 7 Pl BaskAccourt | Beid Rarkaccount Succeeded | Todey of 1923 X1
IR Q& 9= o H € B Sanienccount | [0 BarkaceowTants | [B AscoustOunorTostismitt | (3] Accourstwnerfeats

o func, testAecountOmor. a1 idFiratham
let accowntOwner = Acco

sEmail CanBelnstantiateai) {

NCTASEertMatHil{accountOnnar)

“ 9
-Beinvustiates) @ . Lo

testhccountOnner. | ;rr,]mnmn.‘e Valid
Lot seesuntOwner ountDwner(FiFaTHam
“lasthane

enailAddress:

-

XCTAGS#rINI]{ecountOuner |

funs ceathccountimer. TavolidFLrstiums. TnivlidLasthoms. Yolidkmil 1t
i = 1ot accowntOwne:
[Msccounieais ke

0 tastbamping wmaiingaress:
Buarahrmasai) @9 NETAssertNil{accountOner]
° rune SestAGseuntomar_Invalict{retnase 0l
1ot sceountOwner

o ACTATS#CTNLL{ecountOwnez |

¥
o func_tostAccountOnnar_ .rumn-u thane. Lnva LidLastha

t accowntiwer

@ XCTAsaertuilloccountOnnng |

]
] Fune testAesountOaner_ValidFissthame Validlastiime Trval idfaail_CasNotenstant iated(h |

let acecuntOwner = Accounti Har

emailAcdresa: 1 43}
L ACTAsEertMi1{accountOwnor]
“ ¥
L] func_testAccountOwner e 1mr'umm Invalidiests
T acecuntOwner = ot

*n XCTAssertNilloccountOnner |
¥
u
< func -nuue-e.nlwnav mn:,-nnmn- Validtastilne Stmail_Canmotsalnetantisteal) {
16t acecwntOwne {Firatha .

Figure 4-7. Failing Unit Tests

Fixing these tests require us to define a set of rules that will be used to validate user

names, passwords, and email addresses. We will then create classes that encapsulate

these rules, and integrate calls to instances of these validation classes into an initializer

method in the AccountOwner class.

We'll create the following validation classes using TDD techniques next:

. First name
. Last name

e Email address

Creating the First Name Validator Class

For the purposes of the project being developed in this chapter, let us assume the

following validation criteria are to be applied to the first name:
e Should be between 2 and 10 characters in length.
e Should not include numbers.

e Should not include white space.

Let us first create a set of tests for a class called FirstNameValidator. The

FirstNameValidator class does not exist yet, hence these tests will not compile. However,
the tests we are about to write ensure that the FirstNameValidator class will encapsulate

all the validation criteria listed above in a method called validate().

70

CHAPTER 4 © APPLYING TDD TO THE MODEL

Create a new iOS Unit Test Case class called FirstNameValidatorTests under the
BankAccountTests group of the project explorer and ensure the FirstNameValidatorTests.
swift file is included in the BankAccountTests target and not the BankAccount target.

Replace the contents of the FirstNameValidatorTests.swift file with Listing 4-2.

Listing 4-2. FirstNameValidatorTests.swift

import XCTest

class FirstNameValidatorTests: XCTestCase {

fileprivate let emptyString =
fileprivate let singleCharachterName = "a"
fileprivate let twoCharachterName = "ab"

fileprivate let tenCharachterName = "abcdefghij"
fileprivate let elevenCharachterName = "abcdefghijk"

fileprivate let nameWithWhitespace = "abc def"

fileprivate let nameWithDigito = "abco0"
fileprivate let nameWithDigiti = "abc11"
fileprivate let nameWithDigit2 = "abc22"
fileprivate let nameWithDigit3 = "abc33"
fileprivate let nameWithDigit4 = "abc44"
fileprivate let nameWithDigit5 = "abc55"
fileprivate let nameWithDigit6 = "abc66"
fileprivate let nameWithDigit7 = "abc77"
fileprivate let nameWithDigit8 = "abc88"
fileprivate let nameWithDigit9 = "abc99"

override func setUp() {
super.setUp()
// Put setup code here. This method is called before the invocation
of each test method in the class.

}

override func tearDown() {
// Put teardown code here. This method is called after the
invocation of each test method in the class.
super . tearDown()

}

// MARK: Empty string validation
extension FirstNameValidatorTests {

71

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 4 " APPLYING TDD TO THE MODEL

func testValidate EmptyString ReturnsFalse() {
let validator = FirstNameValidator()
XCTAssertFalse(validator.validate(emptyString), "string can not be

empty.")

}

// MARK: String length validation
extension FirstNameValidatorTests {

func testValidate InputlLessThanTwoCharachtersInLength ReturnsFalse() {
let validator = FirstNameValidator()
XCTAssertFalse(validator.validate(singleCharachterName), "string can
not have less than 2 characters.")

}

func testValidate InputGreaterThanTenCharachtersInLength ReturnsFalse() {
let validator = FirstNameValidator()
XCTAssertFalse(validator.validate(elevenCharachterName), "string can
not have more than 11 characters.")

}

func testValidate InputTwoCharachtersInlLength ReturnsTrue() {
let validator = FirstNameValidator()
XCTAssertTrue(validator.validate(twoCharachterName), "string with 2
charachters should have been valid.")

}

func testValidate InputTenCharachtersInLength ReturnsTrue() {
let validator = FirstNameValidator()
XCTAssertTrue(validator.validate(tenCharachterName), "string with 10
charachters should have been valid.")

}

// MARK: white space validation
extension FirstNameValidatorTests {

func testValidate InputWithWhitespace ReturnsFalse() {
let validator = FirstNameValidator()
XCTAssertFalse(validator.validate(nameWithWhitespace), "string can
not have white space.")

72

CHAPTER 4 © APPLYING TDD TO THE MODEL

// MARK: Numeric digit validation
extension FirstNameValidatorTests {

func testValidate InputWithDigito ReturnsFalse() {
let validator = FirstNameValidator()
XCTAssertFalse(validator.validate(nameWithDigito), "string can not
have digit o in it.")

}

func testValidate InputWithDigiti ReturnsFalse() {
let validator = FirstNameValidator()
XCTAssertFalse(validator.validate(nameWithDigit1), "string can not
have digit 1 in it.")

}

func testValidate InputWithDigit2 ReturnsFalse() {
let validator = FirstNameValidator()
XCTAssertFalse(validator.validate(nameWithDigit2), "string can not
have digit 2 in it.")

}

func testValidate InputWithDigit3 ReturnsFalse() {
let validator = FirstNameValidator()
XCTAssertFalse(validator.validate(nameWithDigit3), "string can not
have digit 3 in it.")

}

func testValidate InputWithDigit4 ReturnsFalse() {
let validator = FirstNameValidator()
XCTAssertFalse(validator.validate(nameWithDigit4), "string can not
have digit 4 in it.")

}

func testValidate InputWithDigit5 ReturnsFalse() {
let validator = FirstNameValidator()
XCTAssertFalse(validator.validate(nameWithDigit5), "string can not
have digit 5 in it.")

}

func testValidate InputWithDigit6 ReturnsFalse() {
let validator = FirstNameValidator()
XCTAssertFalse(validator.validate(nameWithDigit6), "string can not
have digit 6 in it.")

73

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 4 " APPLYING TDD TO THE MODEL

func testValidate InputWithDigit7 ReturnsFalse() {
let validator = FirstNameValidator()
XCTAssertFalse(validator.validate(nameWithDigit7), "string can not
have digit 7 in it.")

}

func testValidate InputWithDigit8 ReturnsFalse() {
let validator = FirstNameValidator()
XCTAssertFalse(validator.validate(nameWithDigit8), "string can not
have digit 8 in it.")

}

func testValidate InputWithDigit9 ReturnsFalse() {
let validator = FirstNameValidator()
XCTAssertFalse(validator.validate(nameWithDigit9), "string can not
have digit 9 in it.")

The tests in Listing 4-2 assume that the validator class will implement a method called
validate() that will return true or false. When you approach a problem with TDD techniques,
your tests will define the interface of the class that will be built to make the tests pass.

You may also have noticed that class extensions have been used to group similar tests.
This is a commonly used approach to segregate a large number of tests in a single class.

You will once again notice that the tests we have just written do not compile. This is
because the FirstNameValidator class has not been created yet.

To make the test code compile, create a new class called FirstNameValidator under the
Model group in the project navigator, and update its implementation to match Listing 4-3.

Listing 4-3. FirstNameValidator.swift

import Foundation
class FirstNameValidator: NSObject {

func validate(_ value:String) -> Bool {
if ((value.characters.count < 2) || (value.characters.count > 10)) {
return false
}

let whitespace = Set(" ".characters)

if (value.characters.filter {whitespace.contains($0)}).count > 0 {
return false

}

let numbers = Set("0123456789".characters)

if (value.characters.filter {numbers.contains($0)}).count > 0 {
return false

}

74

CHAPTER 4 © APPLYING TDD TO THE MODEL

guard let regexValidator = try? NSRegularExpression(pattern:
"([A-Za-z'])", options: .caseInsensitive) else {
return false

if regexValidator.numberOfMatches(in: value,
options: NSRegularExpression.
MatchingOptions.reportCompletion,
range: NSMakeRange(0, value.

characters.count)) > 0 {
return true

return false

This code in Listing 4-3 declares the FirstNameValidator class as a subclass
of NSObject, with a single method called validate that returns a Boolean. Save the
file and run all unit tests using the Product » Test menu item. All the tests around

FirstNameValidator should pass; however you should still see test failures around the
AccountOwner class (see Figure 4-8).

ace » Ay Barkhcooat |) iPhore 7 Pl BaskAccoust | Buid BerkAccout. Succeeded | Todey ot 1337 Ex-11

R B Bavencccunt || Berkiccswlosts | - FrstiamevybdatoTavtasmint | (1] testistiasts EvpnySiring Astucesfuisel) (o>

(K

i
elesptyStringl, "strimg can not be evpty.")

th_RetuensFalsel) {

1ot validator = F
¥CTAssertFalselve

arl)
elsingleCharechterhsne), "string cen not have less then 2 charecters.”)

"
- ungr_ 1
5 datelalavencrarschteriane], “etring cen not have more than 11 charactors.®)
s
) & func idste_ ength_ 1
o 1ot valigater = Fireinameval
o ¥CTAssertTrue{validator.valid chterName), "string with 7 charachters showld have bess valid.®)
°
o func testvalidate InputTenChorachtersInLength_ReturnsTree() {
let validator = FirstNaseValids
g ssertTeuelvalidenor. validatel chtorkens), *etring with 10 charschters should have Deen valic.*)
< ¥
Y ¥
L] // WARK: white spsce validation
© ™ extersion FirstusmevalldatarTe
bl i idate_ i X Ve
* e 1ot validutor = Firsthemel sl
I vestvabdane . wvarraFalsel) @ XCTAssertFalselvaligator. validated nanawitrinitespace], “string can not hawe white space.*}
]

0 saivabdae b Reuinabelset; @

o fun seid {

let wi & Firstias ar{

XCTAsserthalenlvalicato: datelnanawitrQigited, “etring can mot have digit @ in it.")
- L T SO Y A e

Figure 4-8. Xcode Test Navigator with Passing and Failing Tests

75

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 4 " APPLYING TDD TO THE MODEL

These failing tests are fine for now and will be made to pass once we build the other
validator objects and integrate these validator objects with the AccountOwner class.

Creating the Last Name Validator Class

The last name validator class will be very similar to the first name validator class created
in the previous section. For the purposes of the project being developed in this chapter,
let us assume the following validation criteria are to be applied to the last name:

e Should be between 2 and 10 characters in length.
e Should not include numbers.
e Should not include white space.

e Should not include any punctuation or special characters except
for the ’ character (as in O’Hara). Special characters in this
context include arithmetic symbols, underscores, logical symbols,
and parentheses.

Create a new iOS Unit Test Case class called LastNameValidatorTests under the
BankAccountTests group of the project explorer and ensure the new file is included in the
test target.

Replace the contents of the LastNameValidatorTests.swift file with Listing 4-4.

Listing 4-4. LastNameValidatorTests.swift

import XCTest

class LastNameValidatorTests: XCTestCase {

fileprivate let emptyString =
fileprivate let singleCharachterName = "a"
fileprivate let twoCharachterName = "ab"
fileprivate let tenCharachterName = "abcdefghij"
fileprivate let elevenCharachterName = "abcdefghijk"

fileprivate let nameWithWhitespace = "abc def"
fileprivate let nameWithSingleQuote = "abc'def"

fileprivate let nameWithUnsupportedSpecialCharacters =
"be, 1@HSBAEE () \\V/ <o\

fileprivate let nameWithDigito = "abc00"
fileprivate let nameWithDigiti = "abci1"
fileprivate let nameWithDigit2 = "abc22"
fileprivate let nameWithDigit3 = "abc33"
fileprivate let nameWithDigit4 = "abc44"
fileprivate let nameWithDigit5 = "abc55"

76

CHAPTER 4 © APPLYING TDD TO THE MODEL

fileprivate let nameWithDigit6 = "abc66"
fileprivate let nameWithDigit7 = "abc77"
fileprivate let nameWithDigit8 = "abc88"

fileprivate let nameWithDigit9 = "abc99"

override func setUp() {
super.setUp()
// Put setup code here. This method is called before the invocation
of each test method in the class.

}

override func tearDown() {
// Put teardown code here. This method is called after the
invocation of each test method in the class.
super.tearDown()

}

// MARK: Empty string validation
extension LastNameValidatorTests {

func testValidate EmptyString ReturnsFalse() {
let validator = LastNameValidator()
XCTAssertFalse(validator.validate(emptyString), "string can not be

empty.")

}

// MARK: String length validation
extension LastNameValidatorTests {

func testValidate InputLessThanTwoCharachtersInLength ReturnsFalse() {
let validator = LastNameValidator()
XCTAssertFalse(validator.validate(singleCharachterName), "string can
not have less than 2 characters.")

}

func testValidate InputGreaterThanTenCharachtersInLength ReturnsFalse() {
let validator = LastNameValidator()
XCTAssertFalse(validator.validate(elevenCharachterName), "string can
not have more than 11 characters.")

}

func testValidate InputTwoCharachtersInLength ReturnsTrue() {
let validator = LastNameValidator()

77

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 4 " APPLYING TDD TO THE MODEL

XCTAssertTrue(validator.validate(twoCharachterName), "string with 2
charachters should have been valid.")

}

func testValidate InputTenCharachtersInlLength ReturnsTrue() {
let validator = LastNameValidator()
XCTAssertTrue(validator.validate(tenCharachterName), "string with 10
charachters should have been valid.")

}

// MARK: white space validation
extension LastNameValidatorTests {

func testValidate InputWithWhitespace ReturnsFalse() {
let validator = LastNameValidator()
XCTAssertFalse(validator.validate(nameWithWhitespace), "string can
not have white space.")

}

// MARK: special charachter validation
extension LastNameValidatorTests {

func testValidate InputWithSingleQuote ReturnsTrue() {
let validator = LastNameValidator()
XCTAssertTrue(validator.validate(nameWithSingleQuote), "string with
single quote should have been valid.")

}

func testValidate InputWithSpecialCharacters ReturnsFalse() {
let validator = LastNameValidator()
XCTAssertFalse(validator.validate(nameWithUnsupportedSpecialCharacters),
"string can not have special characters.")

}
}

// MARK: Numeric digit validation
extension LastNameValidatorTests {

func testValidate InputWithDigito ReturnsFalse() {
let validator = LastNameValidator()
XCTAssertFalse(validator.validate(nameWithDigito), "string can not
have digit 0 in it.")

78

CHAPTER 4 © APPLYING TDD TO THE MODEL

func testValidate InputWithDigiti ReturnsFalse() {
let validator = LastNameValidator()
XCTAssertFalse(validator.validate(nameWithDigit1), "string can not
have digit 1 in it.")

}

func testValidate InputWithDigit2 ReturnsFalse() {
let validator = LastNameValidator()
XCTAssertFalse(validator.validate(nameWithDigit2), "string can not
have digit 2 in it.")

}

func testValidate InputWithDigit3 ReturnsFalse() {
let validator = LastNameValidator()
XCTAssertFalse(validator.validate(nameWithDigit3), "string can not
have digit 3 in it.")

}

func testValidate InputWithDigit4 ReturnsFalse() {
let validator = LastNameValidator()
XCTAssertFalse(validator.validate(nameWithDigit4), "string can not
have digit 4 in it.")

}

func testValidate InputWithDigit5 ReturnsFalse() {
let validator = LastNameValidator()
XCTAssertFalse(validator.validate(nameWithDigit5), "string can not
have digit 5 in it.")

}

func testValidate InputWithDigit6 ReturnsFalse() {
let validator = LastNameValidator()
XCTAssertFalse(validator.validate(nameWithDigit6), "string can not
have digit 6 in it.")

}

func testValidate InputWithDigit7 ReturnsFalse() {
let validator = LastNameValidator()
XCTAssertFalse(validator.validate(nameWithDigit7), "string can not
have digit 7 in it.")

}

func testValidate InputWithDigit8 ReturnsFalse() {
let validator = LastNameValidator()
XCTAssertFalse(validator.validate(nameWithDigit8), "string can not
have digit 8 in it.")

79

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 4 " APPLYING TDD TO THE MODEL

func testValidate InputWithDigit9 ReturnsFalse() {
let validator = LastNameValidator()
XCTAssertFalse(validator.validate(nameWithDigit9), "string can not
have digit 9 in it.")

It is worth noting that the code in Listing 4-4 uses a single test case to handle all
special characters:

func testValidate InputWithSpecialCharacters ReturnsFalse() {
let validator = LastNameValidator()
XCTAssertFalse(validator.validate(namelWithUnsupportedSpecialCharacters),
"string can not have special characters.")

}

You can, if you wish, create one test case per special character. If you are using your
test cases as documentation for the LastNameValidator class, then having one test case
per special character will create more explicit documentation at the cost of increasing the
number of test cases.

These new test cases will not compile because the LastNameValidator class has not
been created yet. Create a new class called LastNameValidator under the Model group in
the project navigator, and update its implementation to match Listing 4-5.

Listing 4-5. LastNameValidator.swift

import Foundation
class LastNameValidator: NSObject {

func validate(_ value:String) -> Bool {
if ((value.characters.count < 2) || (value.characters.count > 10)) {
return false
}

let whitespace = Set(" ".characters)

if (value.characters.filter {whitespace.contains($0)}).count > 0 {
return false

}

let numbers = Set("0123456789".characters)

if (value.characters.filter {numbers.contains($0)}).count > 0 {
return false

}

let specialCharacters = Set(" +-.,!@#$%"&*();\\/|<>\"".characters)

if (value.characters.filter {specialCharacters.contains($0)}).count > 0 {
return false

}

80

CHAPTER 4 © APPLYING TDD TO THE MODEL

guard let regexValidator = try? NSRegularExpression(pattern:
"([A-Za-z'])", options: .caseInsensitive) else {
return false

if regexValidator.numberOfMatches(in: value,
options: NSRegularExpression.
MatchingOptions.reportCompletion,
range: NSMakeRange(0, value.

characters.count)) > 0 {
return true

return false

The code in Listing 4-5 declares the LastNameValidator class as a subclass of
NSObject, with a single class method called validate that returns a Boolean. Save the
file and run all unit tests using the Product » Test menu item. All the tests around
LastNameValidator should pass (see Figure 4-9).

ecs » A DerkAccourt | B Preae 77k [T — T TP > <00 00
CEE D sesevsidate s <o
v B Beniusccouen L]
Eysp—
e : @ r Ligate_Engtystrisg Retumnsfalsel] {
AccountDwne it A let volidetor = Lasthamevelidator()
; Fremiameveldpiscown A % NETavsertFalenivalicater validatelesprySteing), “string cie et be erpry.*)
o Lastharavaldan st A
Fr e ——————
= BopOaleguie vwi
R e0gth validatien
)'Mn’) idavorTests {
R —
AERETREIES L ns Lidate_Inputlese’| ‘\IMM"JH,‘ erelniangth Heturrebalee(} {
e let validater = Lasthamevalidator(
= Y validatal ' tring can rot have less than 2 characters.”)
oo g -- b

™ Sarktccoumitesta
ey SR & func testvalidate_InputfresterThanTenCharschtersinlength Returrsalsel)

et validater = Lesthamevelidater()
2 McchFirui sicstorrett A 4t

+ “string can ret have more than 11 characters.®)

+ BarkAccouTesis st 1

e s i

. o funz InLength_| [N
AccournOnneTons.oult o Tat valigater = Lavthasevsiidator()
+ Frtumeielcat Tt sl & NCTAssertTruelvalidator. velidatel twoChorachteriame), "strirg with 2 charecnters should have been valid.')

Ltarecsta e A ¥

nalicioremistoFevia el A iy funz _InputTant gth_ReturmsTrualh {
® 0 Boducs let velidator = Lasthasevalidator()

TR datel

strirg with 10 charachiers snould hawe been valid.)

! Enizgsoace Estucnifalie() {
v ihameva tdetorT)
o *string can not have white space.”)
¥
}
/4 WARK: special charachter validetion
ox anevalidatorieste {
* ate_lnputwithSingleGuote_ReturnsTrue() {
lidater = Lasthamevsl idator (1
WoTaszertTr leGuote), "string with sisgle quote should hawe been valid.')
¥
o func testvalidate_InputwithSsecialCharacters_ReturmsFalseld {

Figure 4-9. All Tests in LastNameValidator.swift Pass

81

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 4 " APPLYING TDD TO THE MODEL

Creating the Email Address Validator Class

Create a new iOS Unit Test Case class called EmailAddressValidatorTests under the
BankAccountTests group of the project explorer, and ensure the new file is included in the
test target.

Replace the contents of the EmailAddressValidatorTests.swift file with Listing 4-6.

Listing 4-6. EmailAddressValidatorTests.swift

import XCTest

class EmailAddressValidatorTests: XCTestCase {

fileprivate let emptyString =

fileprivate let validEmailAddressi = "a@b.com"

fileprivate let validEmailAddress2 = "a@b.co.uk"

fileprivate let validEmailAddress3 = "a@b.io"

fileprivate let validEmailAddress4 = "andrew.shaw@byteowl.io"

fileprivate let invalidEmailAddress1 = "ab.com"
fileprivate let invalidEmailAddress2 = "abcom"
fileprivate let invalidEmailAddress3 = "a@b@com"

override func setUp() {
super.setUp()
// Put setup code here. This method is called before the invocation
of each test method in the class.

}

override func tearDown() {
// Put teardown code here. This method is called after the
invocation of each test method in the class.
super.tearDown()

}

// MARK: Empty string validation
extension EmailAddressValidatorTests {

func testValidate EmptyString ReturnsFalse() {
let validator = EmailAddressValidator()
XCTAssertFalse(validator.validate(emptyString), "string can not be

empty.")

82

CHAPTER 4 © APPLYING TDD TO THE MODEL

// MARK: invalid email-addresses
extension EmailAddressValidatorTests {

func testValidate InvalidEmailAddressi ReturnsFalse() {
let validator = EmailAddressValidator()
XCTAssertFalse(validator.validate(invalidEmailAddress1),
"/(invalidEmailAddress1) is not a valid e-mail address.")

}

func testValidate InvalidEmailAddress2 ReturnsFalse() {
let validator = EmailAddressValidator()
XCTAssertFalse(validator.validate(invalidEmailAddress2),
"/(invalidEmailAddress2) is not a valid e-mail address.")

}

func testValidate InvalidEmailAddress3 ReturnsFalse() {
let validator = EmailAddressValidator()
XCTAssertFalse(validator.validate(invalidEmailAddress3),
"/(invalidEmailAddress3) is not a valid e-mail address.")

}

// MARK: valid email-addresses
extension EmailAddressValidatorTests {

func testValidate ValidEmailAddressi ReturnsTrue() {
let validator = EmailAddressValidator()
XCTAssertTrue(validator.validate(validEmailAddress1),
"/(validEmailAddress1) is a valid e-mail address.")

}

func testValidate ValidEmailAddress2 ReturnsTrue() {
let validator = EmailAddressValidator()
XCTAssertTrue(validator.validate(validEmailAddress2),
"/(validEmailAddress2) is a valid e-mail address.")

}

func testValidate ValidEmailAddress3 ReturnsTrue() {
let validator = EmailAddressValidator()
XCTAssertTrue(validator.validate(validEmailAddress3),
"/(validEmailAddress3) is a valid e-mail address.")

}

func testValidate ValidEmailAddress4 ReturnsTrue() {
let validator = EmailAddressValidator()
XCTAssertTrue(validator.validate(validEmailAddress4),
"/(validEmailAddress4) is a valid e-mail address.")

83

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 4 " APPLYING TDD TO THE MODEL

These new test cases will not compile because the EmailAddressValidator class has
not been created yet. Create a new class called EmailAddressValidator under the Model
group in the project navigator, and update its implementation to match Listing 4-7.

Listing 4-7. EmailaddressValidator.swift

import Foundation
class EmailAddressValidator: NSObject {

func validate(_ value:String) -> Bool {
if (value.characters.count < 6) {
return false
}

let whitespace = Set(" ".characters)

if (value.characters.filter {whitespace.contains($0)}).count > 0 {
return false

}

let numbers = Set("0123456789".characters)

if (value.characters.filter {numbers.contains($0)}).count > 0 {
return false

}

let specialCharacters = Set("+, !#$%"&*();\\/|<>\"".characters)
if (value.characters.filter {specialCharacters.contains($0)}).count
> 0 {
return false
}

guard let regexValidator = try? NSRegularExpression(pattern: "([A-Zo-

9. %+-]+@[A-Z0-9.-1+\\.[A-Z]{2,4})", options: .caseInsensitive) else {
return false

}

if regexValidator.numberOfMatches(in: value,
options: NSRegularExpression.
MatchingOptions.reportCompletion,
range: NSMakeRange(0, value.
characters.count)) > 0 {
return true

}

return false

84

CHAPTER 4 © APPLYING TDD TO THE MODEL

This snippet declares the EmailAddressValidator class as a subclass of NSObject,
with a single class method called validate that returns a Boolean. Save the file and run all
unit tests using the Product » Test menu item.

All test cases for the FirstNameValidator, LastNameValidator, and
EmailAddressValidator class should now pass. In the next section, you will integrate these
components into the AccountOwner class.

Integrating the Validator Classes into the
AccountOwner Class

The AccountOwner class has a failable initializer that takes three parameters: a first
name, last name, and email address. This initializer should return nil if any of its three
parameters are invalid.

init?(firstName:String, lastName:String, emailAddress:String) {
super.init()
}

We have already built classes to validate first names, last names, and email addresses.
We need to now integrate these classes into the initializer of AccountOwner. Integrating
these validator classes into AccountOwner’s init? method implies three things:

1. Validator objects for the first name, last name, and email
address need to be injected into the AccountOwner class.

2. The validate method on the individual validator objects will
be called when the AccountOwner’s init? method is called.

3. The validate method on the validator object will be called with
the correct value that was provided into AccountOwner’s init?
method.

There are various techniques we can use to inject dependencies into a class, and
these techniques have been covered in Chapter 2. In this case, I will inject the validator
classes as parameters into AccountOwner’s initializer.

Modify the init? method in AccountOwner.swift to match the following snippet:

init?(firstName:String, lastName:String, emailAddress:String,
firstNameValidator:FirstNameValidator?=nil,
lastNameValidator:LastNameValidator? = nil,
emailAddressValidator:EmailAddressValidator? = nil) {

super.init()

I have added three optional parameters to the initializer, each with a default value
of nil. The reason I have done this is so that I can inject mock objects into the initializer
when called from a test case, and use real objects when called otherwise.

85

vww.ebook3000.con)

http://dx.doi.org/10.1007/978-1-4842-2689-6_2
http://www.ebook3000.org

CHAPTER 4 " APPLYING TDD TO THE MODEL

You need to make sure this small refactoring effort has not broken any tests that were
previously passing. Save the file and run all unit tests using the Product » Test menu
item. You will observe that no new tests are broken as a result of this refactoring.

Now that we have the means to inject our validators into AccountOwner, let us inject
a mock first name validator object and write a test that ensures that the validate method
on the mock object is called when an AccountOwner object is instantiated.

Add the following test case to the AccountOwnerTest.swift file:

func testAccountOwner ValidFirstName ValidlLastName ValidEmailAddress_
ValidFirstNameValidator CallsValidateOnValidator() {

let expectation = self.expectation(description: "Expected validate to be
called on validator.")

let mockFirstNameValidator = MockFirstNameValidator(expectation,
expectedValue:validFirstName)

let = AccountOwner(firstName: validFirstName,
lastName: validlLastName,
emailAddress: validEmailAddress,

firstNameValidator:mockFirstNameValidator)

self.waitForExpectations(timeout: 1.0, handler: nil)

This test case first creates an XCTestExpectation instance

let expectation = self.expectation(description: "Expected validate to be
called on validator.")

The test case then instantiates a mock first name validator object. This mock validator
is an instance of a class called MockFirstNameValidator (which will be built shortly).

let mockFirstNameValidator = MockFirstNameValidator(expectation,
expectedValue:validFirstName)

Recall that the validator objects that have been created previously all have a single
validate method:

class func validate(_ value:String) -> Bool

The mock validator is given a reference to the expectation object as well as the string
we expect will be injected into the validate method by AccountOwner’s init? method. The
mock validator object will fulfill the expectation when its validate method is called with
the expected value.

The test case then instantiates an AccountOwner with a valid first name, last name,
email address, and first name validator.

86

CHAPTER 4 © APPLYING TDD TO THE MODEL

let _ = AccountOwner(firstName: validFirstName,
lastName: validLastName,
emailAddress: validEmailAddress,
firstNameValidator:mockFirstNameValidator)

Finally, the test case waits for up to one second for the test expectation to be fulfilled.
self.waitForExpectations(timeout: 1.0, handler: nil)

Create a new group in the project explorer under the BankAccountTests group, called
Mocks. Create a new class called MockFirstNameValidator under the Mocks group in the

project navigator (see Figure 4-10). This new class does not need to be a member of the
BankAccount target, as it is only used in the unit test target.

MAccount. Jucoseded | Todey # 1857 I “Yrod =l =M=

WockFirsblaraValduiscanitt | bo Selsction - [+

11 rights reserved.

win
isport UIKit e T s
clsss MackFizeTMamevalidator: nedmjoet { FL0.And 200 Witk 3wt

Figure 4-10. MockFirstNameValidator.swift Target Membership

Update the implementation of the MockFirstNameValidator class to match Listing 4-8.

Listing 4-8. MockFirstNameValidator.swift

import Foundation
import XCTest

class MockFirstNameValidator: FirstNameValidator {

private var expectation:XCTestExpectation?
private var expectedValue:String?

87

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 4 " APPLYING TDD TO THE MODEL

init(_ expectation:XCTestExpectation, expectedValue:String) {
self.expectation = expectation
self.expectedValue = expectedValue
super.init()

}

override func validate(_ value:String) -> Bool {

if let expectation = self.expectation,
let expectedValue = self.expectedValue {
if value.compare(expectedValue) == .orderedSame {
expectation.fulfill()
}

}

return super.validate(value)

Save the file and run all unit tests using the Product » Test menu item. Your new
test case should compile, but will not pass. This is because the validator has not been
integrated into the init? method of the AccountOwner object.

Modify the implementation of the init? method of the AccountOwner class to match:

init?(firstName:String, lastName:String, emailAddress:String,
firstNameValidator:FirstNameValidator? = nil,
lastNameValidator:LastNameValidator? = nil,
emailAddressValidator:EmailAddressValidator? = nil) {

let validatori = firstNameValidator ?? FirstNameValidator()
if validatori.validate(firstName) == false {

return nil
}

super.init()

Save the file and run all unit tests using the Product » Test menu item. Your new test
case will now pass (see Figure 4-11).

88

CHAPTER 4 © APPLYING TDD TO THE MODEL

ane » A Derkhssourt | B Prore 79 Basihczzuet | Duid BarkAscot Socosednd | Tidey ot 1918 o e L

y & B D g o < B Bascrcoourt | [Baness | - coswit) 3 X L {97
- TR Y TG T - -

¥

s ® func testhccountOsner_ValidFirsthase_ValidLasth idEwail_CantotBelnstantiatedi) {
5 1e AtDwnes [Firstiamn
I Lasthave:
a 4 eaailadds]
BEus o ® NCTAsSRCtET (account Dener]
] ° :
B ° o funz testhccountOsner_VolidFirstHase_lmvalidlosthame_InvalidEmeil CankotBelnstantiated() {
a & Tt se et = AccraOanes (7 . :
o - Lasthese:
- eaailAsdre dressh
o © 0w HeTAssarthillsccountOmner] L
1] -] ¥
= Lhg funs TOSTACCOUATORNGE_ESpyFiTstNate_ValidLusthase validEnatl_CansotBelnstantiated() {
» [Barien ¢ = let accountOwner = Acccuntl
*@de
a8 ° ACTAsEartnil]acoountoaner)
B &
¥
£ @
- e ot accountiwner
g : e SETAssrtRE] [accountiener]
] |
o 0 &
. e OV fun = test Vel _ValidLasths (X
> 10t accountOwner = AccceiDanar| FATEtMame
lasthave:
am2i 1Addr:
- NETASsEr N [acoountOuner] o

Geyplideter()
let mMpactation =
Tet mucaPirac

= cce

rirsiy
laatNere:
amailhddrn

i paitForExpectationsitiveouts 1.8, handlers i

Figure 4-11. Xcode Test Navigator with Passing and Failing Tests

This new test case that you have just completed verifies that the first name validator
object integrates correctly with the AccountOwner object.

Now, let us create a couple of additional test cases to verify the integration of the
last name and email address validator objects with the AccountOwner object. Add the
following two additional test cases to the AccountOwnerTests.swift file:

func testAccountOwner_ValidFirstName ValidlLastName_ValidEmailAddress_
ValidLastNameValidator CallsValidateOnValidator() {

let expectation = self.expectation(description: "Expected validate to be
called on validator.")

let mockLastNameValidator = MockLastNameValidator (expectation,
expectedValue:validLastName)

let _ = AccountOwner(firstName: validFirstName,
lastName: validlLastName,
emailAddress: validEmailAddress,
firstNameValidator:nil,
lastNameValidator:mockLastNameValidator)

self.waitForExpectations(timeout: 1.0, handler: nil)

func testAccountOwner_ValidFirstName ValidlLastName_ValidEmailAddress_
ValidEmailAddressValidator CallsValidateOnValidator() {

89

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 4 " APPLYING TDD TO THE MODEL

let expectation = self.expectation(description: "Expected validate to be

called on validator.")
let mockEmailAddressValidator = MockEmailAddressValidator(expectation,
expectedValue:validEmailAddress)

let _ = AccountOwner(firstName: validFirstName,
lastName: validlLastName,
emailAddress: validEmailAddress,
firstNameValidator:nil,
lastNameValidator:nil,
emailAddressValidator:mockEmailAddressValidator)

self.waitForExpectations(timeout: 1.0, handler: nil)

Create a new class called MockLastNameValidator under the Mocks group in the
project navigator and update its implementation to match Listing 4-9.

Listing 4-9. MockLastNameValidator.swift
import Foundation
import XCTest

class MockLastNameValidator: LastNameValidator {

private var expectation:XCTestExpectation?
private var expectedValue:String?

init(_ expectation:XCTestExpectation, expectedValue:String) {
self.expectation = expectation
self.expectedValue = expectedValue
super.init()

}

override func validate(_ value:String) -> Bool {
if let expectation = self.expectation,
let expectedvalue = self.expectedValue {

if value.compare(expectedvalue) == .orderedSame {
expectation.fulfill()
}

}

return super.validate(value)

90

CHAPTER 4 © APPLYING TDD TO THE MODEL

Create a new class called MockEmailAddressValidator under the Mocks group in the
project navigator and update its implementation to match Listing 4-10.

Listing 4-10. MockEmailAddressValidator.swift

import Foundation
import XCTest

class MockEmailAddressValidator: EmailAddressValidator {

private var expectation:XCTestExpectation?
private var expectedValue:String?

init(_ expectation:XCTestExpectation, expectedValue:String) {
self.expectation = expectation
self.expectedValue = expectedValue
super.init()
override func validate(_ value:String) -> Bool {
if let expectation = self.expectation,
let expectedValue = self.expectedValue {

if value.compare(expectedValue) == .orderedSame {
expectation.fulfill()
}

}

return super.validate(value)

Modify the implementation of the init? method of the AccountOwner class to match:
import Foundation
class AccountOwner: NSObject {

var firstName:String?

var lastName:String?

var emailAddress:String?

init?(firstName:String, lastName:String, emailAddress:String,

firstNameValidator:FirstNameValidator? = nil,

lastNameValidator:LastNameValidator? = nil,
emailAddressValidator:EmailAddressValidator? = nil) {

91

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 4 " APPLYING TDD TO THE MODEL

let validator1 = firstNameValidator ?? FirstNameValidator()
if validatori.validate(firstName) == false {
return nil

let validator2 = lastNameValidator ?? LastNameValidator()
if validator2.validate(lastName) == false {
return nil

let validator3 = emailAddressValidator ?? EmailAddressValidatox()
if validator3.validate(emailAddress) == false {
return nil

super.init()

Save the file and run all unit tests using the Product » Test menu item. You will
notice that all tests written so far now pass, including the test in AccountOwner tests that
have been failing up until this point (see Figure 4-12).

sne » Y Baskhccrurt | Dubd RerkAcsout. Sucoreded | Todey o 1935 = -3 [=H=]{=
1R G & © B o @ W < [Basceseurs | 1 et) o @ 1 . 1 walick = <
" | BaritscouraTens » T TR THETUR

v [seonraturartoes

func test w r Valicfi _ValidLasthame_[matyfaail Ca tisted()
16t aceountDwner = Aec va.

lastNave: validLasthome,
sasilagdress: esptyString)
¥CTAsserthil{accountOaner]

funz testAccountOsncr_VolidFirsthase ValidlastWame ValidEmailicdress ValicFi lidator_Cal i i 14

let tats self
let mockFirstNaseValidatar = MockFirst

ed walidate te be ealled en validater.')

et _ = AccountOwner(firctMans: validFirsthans,
LastNave: validlesthane

ilAgdrous: validerallascross,

B teathc: P f 1mockFi

T tothezura._secrstestl) & o . :

I T ruli aelf anitForExpectations(tiseout: 1.8, handler: aill

v DmsiskddressiaiaanTosts

D wevatane s ssumessng & @ funz testhecountOsner_VelioFirsthose Validlesthame ValidEmailacdress Volisl detox_Cal i
lot axpoctation = sultempectation descriptica: *[xpocted validate to b0 ealled co validater.)
15 mock aethamevalideio s . Lue:validLasthans)

16t _ = AecesnnOwner(FirstMane: vuligFirsthase,
lastNeve: validlastHone

. emsilasdress: ulldt’nlll« e,

R Pirstlanevalidstor: ni

lestharevalicatorinil,

el waltForixpectationetineout: 1.9, handler: mil)
o n_ReneraFelas

me e Na_ RetensTrue) @
. self.waitForExpoctations(tizeouts 1.8, handler: nil)|
o ¥
4 & func testhccountOsner_ValioFirstiiase Validiasthave ValidEsailscdress_ValictmsilAddressvalidator_Callsvalidatednvalidator(] {
0o |
@ ot axpactation = self.expectation(description: *Exp validate to be called co validator.®)
e let mookEmail = MogkEnai. expoctedialue: Laddross)
1% 1st _ = AecomniDmer firsitme: valiarirstisns,
5 i
e e lidteatiassress,
firstuanavalidator:
<@
] e
) &
18 1
18

I tex:vatdaie in._ReersFalseil

Figure 4-12. Xcode Test Navigator with Passing Tests

92

CHAPTER 4 © APPLYING TDD TO THE MODEL

The AccountOwner class is almost ready, but for one small missing feature: the

values of first name, last name, and email address that are provided in the initializer, if,

should be copied over to instance variables.
Add the following three additional test cases to the AccountOwnerTests.swift file:

func testAccountOwner ValidFirstName ValidlLastName_ ValidEmailAddress_
CopiesFirstNameToIVAR() {

let accountOwner = AccountOwner(firstName: validFirstName,
lastName: validLastName,
emailAddress: validEmailAddress)

let iskEqual = accountOwner!.firstName.compare(validFirstName) ==
.orderedSame
XCTAssertTrue(isEqual)

}

func testAccountOwner ValidFirstName ValidlLastName_ValidEmailAddress_
CopiesLastNameToIVAR() {

let accountOwner = AccountOwner(firstName: validFirstName,
lastName: validlLastName,
emailAddress: validEmailAddress)

let isEqual = accountOwner!.lastName.compare(validLastName) ==
.orderedSame
XCTAssertTrue(isEqual)

}

func testAccountOwner ValidFirstName ValidlLastName_ ValidEmailAddress_
CopiesEmailAddressToIVAR() {

let accountOwner = AccountOwner(firstName: validFirstName,
lastName: validlLastName,
emailAddress: validEmailAddress)

let iskEqual = accountOwner!.emailAddress.compare(validEmailAddress) =

.orderedSame
XCTAssertTrue(isEqual)

Declare the following variables in the AccountOwner class:
var firstName:String

var lastName:String
var emailAddress:String

vww.ebook3000.con)

93

http://www.ebook3000.org

CHAPTER 4 " APPLYING TDD TO THE MODEL

Add the following lines of code to the implementation of the init? method of the
AccountOwner class:

self.firstName = firstName
self.lastName = lastName
self.emailAddress = emailAddress

Save the file and run all unit tests using the Product » Test menu item. You will
notice that all tests pass. This concludes the development of the AccountOwner class. In
the next section we will develop the Transaction class using TDD techniques.

The Transaction Class

A Transaction object represents a sum of money either entering or leaving the bank
account. Table 4-2 lists the desired member variables and methods of the Transaction class:

Table 4-2. Transaction variables and methods

Item Type Description

var txDescription:String Variable Contains a textual description of
the transaction. Should be up to 20
characters in length, cannot be empty.

var date:NSDate Variable Represents a valid date.

var isIncoming:Bool Variable True if the transaction represents a sum
of money being credited into the account.

var amount:String Variable Represents the transaction amount. Can
only include numbers and the period (.)
character.

init?(description:String, Method Allows other code to create Transaction

date:NSDate, instances.

isIncoming:Bool,
amount:String)

The approach to developing the Transaction class will be very similar to the
AccountOwner class. You will need to create tests that test verify the behavior of the
initializer and any validator objects. In this particular case, validator objects will be needed
for the description and the amount. There is no need to validate the isincoming property.
You may wish to add some validation around the range of dates that may be allowed.

The complete Transaction class is provided in Listing 4-11. If you would like to
examine the code for the tests and the validator objects, download the finished project
anonymously from github using the following URL:

https://github.com/asmtechnology/Lesson04.i0STesting.2017.Apress.git

94

https://github.com/asmtechnology/Lesson04.iOSTesting.2017.Apress.git

CHAPTER 4 © APPLYING TDD TO THE MODEL

Listing 4-11. Transaction.swift

import Foundation
class Transaction: NSObject {

var txDescription:String
var date:NSDate

var isIncoming:Bool

var amount:String

init?(txDescription:String, date:NSDate, isIncoming:Bool, amount:String,
descriptionValidator:TransactionDescriptionValidator? = nil,
amountValidator:AmountValidator? = nil) {

let validatorl = descriptionValidator ?? TransactionDescriptionValidator()
if validatori.validate(txDescription) == false {

return nil
}

let validator2 = amountValidator ?? AmountValidator()
if validator2.validate(amount) == false {

return nil
}

self.txDescription = txDescription
self.date = date

self.isIncoming = isIncoming
self.amount = amount

The BankAccount Class

A BankAccount object represents a current or savings bank account in the context of our
app. Table 4-3 lists the desired member variables and methods of the BankAccount class.

95

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 4 " APPLYING TDD TO THE MODEL

Table 4-3. Transaction variables and methods

Item Type Description

var accountName:String Variable Contains a textual description of
the account. Should be up to 20
characters in length, cannot be empty.
Special characters are allowed.

var accountNumber:String Variable Contains a numeric account
number, must be a 9-digit
number, no white space or special
characters are permitted.

var sortingCode:String Variable Contains a six digit number that
identifies a branch. No white space
or special characters are permitted.
Must begin with either 40 or 49.

var accountType:AccountType Variable An enumerated value that
represents the account type.
Can be either currentAccount or

savingsAccount.
var transactions:[Transaction] Variable An array of transactions.
var owners:[AccountOwner] Variable An array of account owners. A

bank account must have at least
one owner, and can have up to 2
account owners.

init?(accountName:String, Method Allows other code to create
accountNumber:String, BankAccount instances.
sortingCode:String,
accountType:AccountType,
owners: [AccountOwner])

The approach to developing the BankAccount class will be very similar to the
AccountOwner class. You will need to create tests that test verify the behavior of the
initializer and any validator objects. In this particular case, validator objects will be
needed for the accountName, accountNumber, and sortingCode properties.

The complete BankAccount class is provided in Listing 4-12. If you would like to
examine the code for the tests and the validator objects, download the finished project
anonymously from github using the following URL:

https://github.com/asmtechnology/Lesson04.i0STesting.2017.Apress.git

Listing 4-12. BankAccount.swift

import Foundation

enum AccountType {
case currentAccount

96

https://github.com/asmtechnology/Lesson04.iOSTesting.2017.Apress.git

CHAPTER 4 © APPLYING TDD TO THE MODEL

case savingsAccount

}

class BankAccount: NSObject {

var
var
var
var
var
var

accountName:String
accountNumber:String
sortingCode:String
accountType:AccountType
transactions:[Transaction]
owners: [AccountOwner]

init?(accountName:String,

accountNumber:String,

sortingCode:String,

accountType:AccountType,

owners: [AccountOwner],
accountNameValidator:AccountNameValidator? = nil,
accountNumberValidator:AccountNumberValidator? = nil,
sortingCodeValidator:SortingCodeValidator? = nil) {

let validator1l = accountNameValidator ?? AccountNameValidator()

if validatori.validate(accountName) == false {
return nil
}
let validator2 = accountNumberValidator ?? AccountNumberValidator()
if validator2.validate(accountNumber) == false {
return nil
}

let validator3 = sortingCodeValidator ?? SortingCodeValidator()
if validator3.validate(sortingCode) == false {

return nil

}

if owners.count == 0 {
return nil

}

self.accountName = accountName
self.accountNumber = accountNumber
self.sortingCode = sortingCode
self.accountType = accountType
self.owners = owners
self.transactions = [Transaction]()

97

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 4 " APPLYING TDD TO THE MODEL

Testing Core Data

The model objects built so far in this chapter all have one thing in common - they are all
NSObject subclasses. This is quite common in many iOS Apps; however, an increasing
number of apps are using object persistence frameworks like Core Data to both represent
and persist the model data.

A detailed discussion of Core Data is outside the scope of this book. Testing the
model layer is perhaps one of the biggest hurdles faced by developers who have used
Core Data in the model layer.

Core Data is designed to persist your model objects along with their relationships
into a database. For Core Data to be able to achieve its objectives, it introduces
a plethora of classes such as NSManagedObject, NSManagedObjectContext,
NSManagedObjectModel, NSPersistentStoreCoordintor, and also requires that you let
Core Data manage the life cycle of your model objects.

With Core Data managing the life cycle of your model objects, you can not simply
instantiate your model objects using a designated or convenience initializers; instead you
need to request a managed object context to instantiate the object.

While the managed object context itself can be conveniently instantiated with
a designated initializer, one of the parameters to this initializer is a persistent store
coordinator that requires you to provide the path to a SQLite database file.

Instantiating persistent store coordinators in your applications code is a very
common thing to do; however to instantiate one of these in a unit test case, you will
need to include a database in the test target. Including a database in a test target is
strictly frowned upon because tests that read and write from a database can easily create
dependencies between test cases.

It is easy to imagine a test case writing some data into a database, and another
reading some of the data. This type of behavior creates tight coupling between tests, the
precise execution order of the tests become important, and the tests are not independent
anymore. It is far worse when this type of behavior occurs inadvertently.

Fortunately Core Data has an often overlooked feature called in-memory stores that
can be used within tests without including an SQLlite file in the test target. An in-memory
store is a RAM-based database, and is commonly used to implement caching strategies.
One of the key properties of an in-memory store is that they can be destroyed and re-
created to an initial state with little performance overhead.

The following code snippet shows how you can create managed object context that
uses an in-memory persistent store coordinator:

func inMemoryManagedObjectContext() -> NSManagedObjectContext? {
guard let managedObjectModel = NSManagedObjectModel.

mergedModel (from: [Bundle.main]) else {
return nil
}

let persistentStoreCoordinator = NSPersistentStoreCoordinator(managedObj
ectModel: managedObjectModel)
do {

98

CHAPTER 4 © APPLYING TDD TO THE MODEL

try persistentStoreCoordinator.addPersistentStore(ofType:

NSInMemoryStoreType,
configurationName: nil,
at: nil,
options: nil)
} catch {
print("Failed to create in-memory persistent store.")
return nil

}

let managedObjectContext = NSManagedObjectContext(concurrencyType:
.mainQueueConcurrencyType)
managedObjectContext.persistentStoreCoordinator =
persistentStoreCoordinator

return managedObjectContext

You can make use of this method in your test case’s setup method to create managed
object context backed by an in-memory store. You can then use this managed object
context to instantiate Core Data objects within your tests.

Summary

In this chapter you have created the model layer of an application using Test-Driven
techniques. For each component of the model layer, you first created a set of test cases,
and then built the corresponding model layer class to ensure the test cases pass.

You have also learned to create validator objects that validate the content of the
model layer objects, and how to inject these validator objects as dependencies into model
layer objects.

Finally, you learned to create mock objects in Swift and use the mock objects to
verify the integration between model layer objects and injected validator objects.

99

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 5

Applying TDD to View
Controllers

This chapter will examine the process of building an iOS app based on the Single View
Controller project template using TDD techniques. The app will have two view controllers
that provide sign up and login screen functionality. This app will be built using the MVVM
application architecture.

Figure 5-1 depicts the user interface of the finished application.

Carrier ¥ 1M:17 AM - Carrier % 1M:17 AM -
User name: -- Create Account --
User name:
Password:
Password:
Login

E-mail address:
Don't have an account? Create one now.

Create Account
Cancel

Figure 5-1. User Interface of Finished application

© Abhishek Mishra 2017 101
A. Mishra, iOS Code Testing, DOI 10.1007/978-1-4842-2689-6_5

CHAPTER 5 ' APPLYING TDD TO VIEW CONTROLLERS

The complete source code for the app can be downloaded anonymously from github
using the following URL:

https://github.com/asmtechnology/Lesson05.10STesting.2017.Apress.git

Application Architecture

The application architecture consists of four distinct layers (see Figure 5-2).

Lagin Controller Signup Controller

Other Controllers

Login View Controller Login View Model LaginModel UserMameValidator
>
o — -«
EmailAddressValidator
Signup View Controller Signup View Model SignupModel
PasswordValidator
View /View Controller View Model Model

Figure 5-2. LoginForm Application Architecture

Following is a brief description of the layers and the component classes:

e Model Layer: Consists of the LoginModel and SignupModel
classes, instances of which are used to store the data entered
by the user on the Login and Signup screens respectively.
This layer also contains three classes to handle field
validation - UserNameValidator, PasswordValidator, and
EmailAddressValidator.

¢ View Model Layer: Consists of the LoginViewModel and
SignupViewModel classes.

e View/View Controller Layer: Consists of the
LoginViewController and SignupViewController classes. These
classes provide the user interface for the app.

e Other Controllers Layer: Consists of the LoginController
and SignupController classes that carry out the actual process
oflogin and signup. In this project, these classes are stub
implementations. In a real-world scenario, you will write code
in these classes to connect to your back-end web services and
perform the necessary steps required to log in/sign up.

102

vww.ebook3000.con)

https://github.com/asmtechnology/Lesson05.iOSTesting.2017.Apress.git
http://www.ebook3000.org

CHAPTER 5 " APPLYING TDD TO VIEW CONTROLLERS

Creating the Xcode Project

Let us start by creating a new Xcode project. Launch Xcode and create a new iOS project
based on the Single View Application template (see Figure 5-3).

Choose a template for your new project:

m watchOS tv0S macOS Cross-platform

Application

' 1 i—l

Single View Game
Application

oo Y

oag (,__/
Sticker Pack iMessage
Application Application

Framework & Library

L @
“w g
Cocoa Touch
Framework

Cocoa Touch
Static Library

Cancel

Master-Detail
Application

Metal Library

Figure 5-3. Xcode Project Template Dialog Box

*00 W oams
Page-Based Tabbed
Application Application

Use the following options while creating the new project (see Figure 5-4):

e Product Name: LoginForm

Team: None

Organization Name: Provide a suitable name

Organization Identifier: Provide a suitable identifier

Language: Swift

Devices: iPhone

Use Core Data: Unchecked
Include Unit Tests: Checked
Include UI Tests: Unchecked

103

CHAPTER 5 ' APPLYING TDD TO VIEW CONTROLLERS

Choose options for your new project:

Product Name: LoginForm
Team: MNone | <]
Organization Name: ASM Technology Ltd.

Organization ifier: com

ology
Bundle Identifier: com.asmtechnology.LoginForm

Language: Swift | <]

Devices: iPhone [T}

Use Core Data
Include Unit Tests
Include Ul Tests

Cancel Previous | Next |

Figure 5-4. Xcode Project Options Dialog Box

Note The project being created in this chapter does not include user interface (Ul) tests.
If you wish, you can add Ul tests to a project retrospectively. Chapter 13 covers the topic of
user interface testing.

Save the project to a suitable location on your computer and click Create. Since this
project will contain several new classes, it will be a good idea to place class files under
appropriate groups within the project navigator.

Create the following groups in the Xcode project navigator, under the LoginForm
folder:

e View
e Model
e ViewModel

e Protocols

Building the User Interface Layer

The user interface for this application consists of two storyboard scenes and a segue
between the scenes (see Figure 5-5).

104

vww.ebook3000.con)

http://dx.doi.org/10.1007/978-1-4842-2689-6_13
http://www.ebook3000.org

CHAPTER 5 " APPLYING TDD TO VIEW CONTROLLERS

Login View Controlier O D B

User name: -- Create Account --

Password: User name:

Password:
Login

Don't have an account? Create one now. E-mail address:

Create Account
Cancel Create

[0 View as:iPhone 7 [+ C =R} 100%

Figure 5-5. Application Storyboard

The new project that you have created has a default view controller that we will not
use. Delete the ViewController.swift file from the project navigator, and create two new
UlViewController subclasses under the View group called:

e LoginViewController, and
e SignupViewController.

The project navigator should resemble Figure 5-6.

105

CHAPTER 5 ' APPLYING TDD TO VIEW CONTROLLERS

BRQao=o 8

¥ (&) LoginForm M
v LoginForm

Protocols

ViewModel

Model

View

4 vYVwYyy

>

> LoginViewController.swift

>

s CreateAccount...Controller.swift

1

s+ AppDelegate.swift
Main.storyboard

I Assets.xcassets
LaunchScreen.storyboard
Info.plist

> » T > >

> LoginFormTests
B Products

Figure 5-6. LoginForm Project Navigator

Building the Login View Controller Scene

Open the Main.storyboard file and click on the default scene in the storyboard.
Use the Identity Inspector to change the class associated with the default scene to
LoginViewController (see Figure 5-7).

106

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 5 " APPLYING TDD TO VIEW CONTROLLERS

O e&E ¥ B ©

Custom Class

Class LoginViewController)

Module ﬁ

Identity

Storyboard ID

Restoration 1D
Use Storyboard ID

User Defined Runtime Attributes

Key Path Type Value

+

Figure 5-7. Custom View Controller class setup in the Identity Inspector

Add two text fields, two buttons, and four labels to the default storyboard scene and
arrange them to resemble Figure 5-8. Create appropriate constraints for the elements to
maintain this arrangement on different screen sizes.

BO8 b E A giran) o TR Firiahed rureing LogeFarm sn Ptors 7 P = g | sl =]]=]

ORQsQEo DE C B togiferm Leginfarm | B []) Lege Soore u Car De@one
™ B Lowrlem ¥ | v [cogm view Comtroner ki
Lageraim Y il e et L] - |

o Lyt dhaide. m o B et -]

Bemom Ly

- ternte
e
User name:
P
L Sisrybsan 10
Password:
e Delined Burtins Aibates
ey Pk Tree e
Leghn
N
Dan't have an account? Create one now. e
Lot
Creats Account x
Chymc 10 YT M-Re
v Inheries - atweg) [
botas B = - O @
i H
L1 View as: iPhoea 7 (- 18 - woex + B ol 1| B @ e

Figure 5-8. UI Components on the Login View Controller Scene

107

CHAPTER 5 ' APPLYING TDD TO VIEW CONTROLLERS

Using the storyboard, set up the LoginViewController class to act as the delegate for
the two text fields. Table 5-1 lists the outlets and action methods that you need to create in
the LoginViewController class along with their associated user interface elements.

Table 5-1. Login view controller outlets and actions

Name Type Description

@IBOutlet weak var IB Outlet Connect this outlet to the User name
userNameTextField: text field of the storyboard scene.
UITextField!

@IBOutlet weak var IB Outlet Connect this outlet to the Password
passwordTextField: text field of the storyboard scene.
UITextField!

@IBOutlet weak var IB Outlet Connect this outlet to the Login button
loginButton: UIButton! of the storyboard scene.

@IBOutlet weak var IB Outlet Connect this outlet to the Create
createAccountButton: Account button of the storyboard
UIButton! scene.

@IBAction func login IB Action Connect this method to the Touch Up
(_ sender: Any) Inside event of the Login button.
@IBAction func IB Action Connect this method to the Touch Up
createAccount Inside event of the Create Account

(_ sender: Any) button.

@IBAction func IB Action Connect this method to the Did End
userNameDidEndOnExit On Exit event of the User name text
(_ sender: Any) field.

@IBAction func IB Action Connect this method to the Did End
passwordDidEndOnExit On Exit event of the Password text field.

(_ sender: Any)

Implement the UlTextFieldDelegate protocol in a separate class extension on
LoginViewController by adding the following code to the end of the LoginViewController.
swift file:

extension LoginViewController: UITextFieldDelegate {

func textField(_ textField: UITextField,
shouldChangeCharactersIn range: NSRange,
replacementString string: String) -> Bool {

return true

108

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 5 " APPLYING TDD TO VIEW CONTROLLERS

The above snippet contains a bare-bones implementation of the textField(_,
shouldChangeCharactersIn, replacementString) delegate method from UlTextFieldDelegate.
The code in LoginViewController.swift should now resemble Listing 5-1.

Listing 5-1. LoginViewController.swift
import UIKit
class LoginViewController: UIViewController {

@IBOutlet weak var userNameTextField: UITextField!
@IBOutlet weak var passwordTextField: UITextField!
@IBOutlet weak var loginButton: UIButton!

@IBOutlet weak var createAccountButton: UIButton!

override func viewDidLoad() {
super.viewDidLoad()

}

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
}

@IBAction func login(_ sender: Any) {
}

@IBAction func createAccount(_ sender: Any) {

}
@IBAction func userNameDidEndOnExit(_ sender: Any) {

}
@IBAction func passwordDidEndOnExit(_ sender: Any) {

}
}
extension LoginViewController: UITextFieldDelegate {

func textField(textField: UITextField,
shouldChangeCharactersIn range: NSRange,
replacementString string: String) -> Bool {

return true

109

CHAPTER 5 ' APPLYING TDD TO VIEW CONTROLLERS

Building the Signup View Controller Scene

Drag and drop a new view controller from the Object Library onto the storyboard, and
place the new view controller scene beside the default storyboard scene.

Use the Identity Inspector to change the class associated with the new view
controller scene to SignupViewController.

Add four text fields, four labels, and two buttons to the new storyboard scene and
arrange them to resemble Figure 5-9. Create appropriate constraints for the elements to
maintain this arrangement on different screen sizes.

000 Bhoee 7 Fus = iend I nN=f=

Ms_sser [Cre_cene 1 () Grarater) | Wiew) P Ernal Addvens Tt ekt { L D

-- Create Account -

LUser name:

Pasaword:

[e —
E-mall address:

Cancel Croate

] Viow ag: iShono 7 [.€ -H| — ook +

@ °

Figure 5-9. UI Components on the Signup View Controller Scene

Using the storyboard, set up the SignupViewController class to act as the delegate for
the four text fields. Table 5-2 lists the outlets and action methods that must be created in
the SignupViewController class along with their associated user interface elements.

110

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 5

Table 5-2. Signup view controller outlets and actions

APPLYING TDD TO VIEW CONTROLLERS

Name Type Description
@IBOutlet weak var IB Outlet Connect this outlet to the
userNameTextField: User name text field of the
UITextField! storyboard scene.
@IBOutlet weak var 1B Outlet Connect this outlet to the
passwordTextField: Password text field of the
UITextField! storyboard scene.
@IBOutlet weak var IB Outlet Connect this outlet to the
confirmPasswordTextField: Re-enter password text field
UITextField! of the storyboard scene.
@IBOutlet weak var 1B Outlet Connect this outlet to the
emailAddressTextField: email address text field of the
UITextField! storyboard scene.
@IBOutlet weak var 1B Outlet Connect this outlet to
createButton: UIButton! the Create button of the
storyboard scene.
@IBOutlet weak var 1B Outlet Connect this outlet to
cancelButton: UIButton! the Cancel button of the
storyboard scene.
@IBAction func create IB Action Connect this method to the
(_ sender: Any) Touch Up Inside event of the
Create button.
@IBAction func cancel(_ sender: 1B Action Connect this method to the
Any) Touch Up Inside event of the
Cancel button.
@IBAction func IB Action Connect this method to the
userNameDidEndOnExit(_ sender: Did End On Exit event of the
Any) User name text field.
@IBAction func 1B Action Connect this method to the
passwordDidEndOnExit(_ sender: Did End On Exit event of the
Any) Password text field.
@IBAction func 1B Action Connect this method to the
confirmPasswordDidEndOnExit(_ Did End On Exit event of the
sender: Any) Re-enter password text field.
@IBAction func 1B Action Connect this method to the

emailAddressDidEndOnExit(
sender: Any)

Did End On Exit event of the
email address text field.

111

CHAPTER 5 ' APPLYING TDD TO VIEW CONTROLLERS

Implement the UlTextFieldDelegate protocol in a separate class extension
on SignupViewController by adding the following code to the end of the
SignupViewController.swift file:

extension SignupViewController: UITextFieldDelegate {

func textField(_ textField: UITextField,
shouldChangeCharactersIn range: NSRange,
replacementString string: String) -> Bool {

return true

The above snippet contains a bare-bones implementation of the textField(_,
shouldChangeCharactersIn, replacementString) delegate method from
UlTextFieldDelegate. The code in SignupViewController.swift should now resemble
Listing 5-2.

Listing 5-2. SignupViewController.swift

import UIKit

class SignupViewController: UIViewController {
@IBOutlet weak var userNameTextField: UITextField!
@IBOutlet weak var passwordTextField: UITextField!
@IBOutlet weak var confirmPasswordTextField: UITextField!
@IBOutlet weak var emailAddressTextField: UITextField!
@IBOutlet weak var createButton: UIButton!
@IBOutlet weak var cancelButton: UIButton!

override func viewDidLoad() {
super.viewDidLoad()
}

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
}

@IBAction func create(_ sender: Any) {

}

@IBAction func cancel(_ sender: Any) {

}

112

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 5 " APPLYING TDD TO VIEW CONTROLLERS

@IBAction func userNameDidEndOnExit(_ sender: Any) {

}

@IBAction func passwordDidEndOnExit(_ sender: Any) {

}

@IBAction func confirmPasswordDidEndOnExit(_ sender: Any) {

}

@IBAction func emailAddressDidEndOnExit(_ sender: Any) {

}
}

extension SignupViewController: UITextFieldDelegate {

func textField(_ textField: UITextField,
shouldChangeCharactersIn range: NSRange,
replacementString string: String) -> Bool {

return true

Creating a Segue Between the Login Scene and the
Signup Scene

Create a Present Modally segue from the login view controller scene to the create
account view controller scene of the storyboard. With the segue selected, switch to
the Attributes Inspector and set the value of the Identifier attribute to presentCreate
Account (see Figure 5-10).

113

CHAPTER 5 ' APPLYING TDD TO VIEW CONTROLLERS

Firiahed rureing Logindem on Phore 7 Pys = ind BN ==

B B [wogin View Costrolier Scans Present Vodaly segue “prosentCrosterccount” 1o “View Cortraer® {4 ¥ Com$0a

== Create Acgdunt ==

S0UNT? Creata one now.

ta Accouns

] Viow as: iShono 7 [.€ -H| oo+ 1o B @ent o

Figure 5-10. Setting up the Identifier Attribute of a Segue

This concludes the topic of building the user interface for the app. You may be
wondering why TDD techniques have not been applied until this point in this project.
There are a couple of reasons for this:

1. We are building the user interface of the app using
storyboards, and wiring up outlets and actions through
interface builder. Xcode does not provide any convenient
method to build this part of the application using a test-first
approach.

2. You could opt to build the user interface programmatically
instead of using storyboards. However, there is very little
benefit to be gained from building the user interface with
TDD techniques.

3. The Ul of an app can change frequently and can easily be
tested using specialized UI test techniques or manual testing.
Using a TDD-based approach to building the UT is wasted
effort as you will need to modify your tests with every small UI
change made to the app.

4. Ifyoucome from a “tests create living documentation for a
project” mindset, then you will find it hard to justify how unit
tests can create better documentation for the user interface of
the app over a simple screen shot.

114

vww.ebook3000.con)

http://www.ebook3000.org

CHAPTER 5 " APPLYING TDD TO VIEW CONTROLLERS

Building the Model Layer

There are two model classes that we need to build - LoginModel and SignupModel. In
an app as simple as the one we are building you may be tempted to ask why do we need
separate model classes at all? We could simply choose to use a simple dictionary of
strings to represent the model.

The reason to have separate model classes is to accommodate a certain minimal
level of data validation into the model. While the validation logic itself may be moved to
a separate specialized validator object, such validator objects will conceptually reside in
the model layer alongside the model objects.

The LoginModel Class

The LoginModel class contains properties that store the information the user has
entered into the fields of the login screen of the app. When a user taps the login button
on the user interface, the view model will build a LoginModel instance and pass this
instance to a specialized controller class that handles login-specific logic. The specialized
login controller class may perhaps connect to back-end services and log in using the
credentials provided.

Using a dedicated model object to store the values entered by the user in the fields
of the login screen decouples the logic in the login controller from the user interface.
Table 5-3 lists the desired properties and methods of the LoginModel class.

Table 5-3. LoginModel Properties and Methods

Item Type Description

var userName:String Variable Should be between 2 and 10 characters in
length, with no white space. Underscores are
allowed. Special characters are not permitted.

var password:String Variable Should be between 6 and 10 characters in
length, with no white space. Must have at
least one uppercase letter, one lowercase
letter, and one number.

init?(userName:String, Method Allows other code to create LoginModel
password:String) instances.

The approach to developing the LoginModel class will be very similar to the model
layer classes that were developed in Chapter 4. You will need to create tests that test verify
the behavior of the initializer and any validator objects.

The complete LoginModel class is shown in Listing 5-3. If you would like to
examine the code for the tests and the validator objects, download the finished project
anonymously from github using the following URL:

https://github.com/asmtechnology/Lesson05.i0STesting.2017.Apress.git

115

http://dx.doi.org/10.1007/978-1-4842-2689-6_4
https://github.com/asmtechnology/Lesson05.iOSTesting.2017.Apress.git

CHAPTER 5 © APPLYING TDD TO VIEW CONTROLLE